Anti-EGFR monoclonal antibody in cancer treatment: in vitro and in vivo evidence
Quatrale, Anna Elisa; Petriella, Daniela; Porcelli, Letizia; Tommasi, Stefania; Silvestris, Nicola; Colucci, Giuseppe; Angelo, Angelo; Azzariti, Amalia
2011-01-01
The complexity of EGFR signaling network suggests that the receptor could be promising targets for new personalised therapy. In clinical practice two strategies targeting the receptor are available; they utilise monoclonal antibodies, directed towards the extracellular domain of EGFR, and small molecule tyrosine kinase inhibitors, which bind the catalytic kinase domain of the receptor. In this review, we summarise currently known pre-clinical data on the antitumor effects of monoclonal antibodies, which bind to EGFR in its inactive configuration, competing for ligand binding and thereby blocking ligand-induced EGFR tyrosine kinase activation. As a consequence of treatment, key EGFR-dependent intracellular signals in cancer cells are affected. Data explaining the mechanisms of action of anti-EGFR monoclonal antibodies, currently used in clinical setting and under development for the treatment of solid tumors, are revised with the aim to provide an overview of the most important preclinical studies showing the impact of this class of EGFR targeted agents on tumor biology.
EGFR-targeted therapies in the post-genomic era.
Xu, Mary Jue; Johnson, Daniel E; Grandis, Jennifer R
2017-09-01
Over 90% of head and neck cancers overexpress the epidermal growth factor receptor (EGFR). In diverse tumor types, EGFR overexpression has been associated with poorer prognosis and outcomes. Therapies targeting EGFR include monoclonal antibodies, tyrosine kinase inhibitors, phosphatidylinositol 3-kinase (PI3K) inhibitors, and antisense gene therapy. Few EGFR-targeted therapeutics are approved for clinical use. The monoclonal antibody cetuximab is a Food and Drug Administration (FDA)-approved EGFR-targeted therapy, yet has exhibited modest benefit in clinical trials. The humanized monoclonal antibody nimotuzumab is also approved for head and neck cancers in Cuba, Argentina, Colombia, Peru, India, Ukraine, Ivory Coast, and Gabon in addition to nasopharyngeal cancers in China. Few other EGFR-targeted therapeutics for head and neck cancers have led to as significant responses as seen in lung carcinomas, for instance. Recent genome sequencing of head and neck tumors has helped identify patient subgroups with improved response to EGFR inhibitors, for example, cetuximab in patients with the KRAS-variant and the tyrosine kinase inhibitor erlotinib for tumors harboring MAPK1 E322K mutations. Genome sequencing has furthermore broadened our understanding of dysregulated pathways, holding the potential to enhance the benefit derived from therapies targeting EGFR.
2012-01-01
Background The epidermal growth factor receptor (EGFR) is an established target for anti-cancer treatment in different tumour types. Two different strategies have been explored to inhibit this pivotal molecule in epithelial cancer development: small molecules TKIs and monoclonal antibodies. ErbB/HER-targeting by monoclonal antibodies such as cetuximab and trastuzumab or tyrosine-kinase inhibitors as gefitinib or erlotinib has been proven effective in the treatment of advanced NSCLC. Results In this study we explored the potential of combining either erlotinib with cetuximab or trastuzumab to improve the efficacy of EGFR targeted therapy in EGFR wild-type NSCLC cell lines. Erlotinib treatment was observed to increase EGFR and/or HER2 expression at the plasma membrane level only in NSCLC cell lines sensitive to the drug inducing protein stabilization. The combined treatment had marginal effect on cell proliferation but markedly increased antibody-dependent, NK mediated, cytotoxicity in vitro. Moreover, in the Calu-3 xenograft model, the combination significantly inhibited tumour growth when compared with erlotinib and cetuximab alone. Conclusion Our results indicate that erlotinib increases surface expression of EGFR and/or HER2 only in EGFR-TKI sensitive NSCLC cell lines and, in turns, leads to increased susceptibility to ADCC both in vitro and in a xenograft models. The combination of erlotinib with monoclonal antibodies represents a potential strategy to improve the treatment of wild-type EGFR NSCLC patients sensitive to erlotinib. PMID:23234355
EGFR, HER2 and VEGF pathways: validated targets for cancer treatment.
Press, Michael F; Lenz, Heinz-Josef
2007-01-01
Targeted therapies are rationally designed to interfere with specific molecular events that are important in tumour growth, progression or survival. Several targeted therapies with anti-tumour activity in human cancer cell lines and xenograft models have now been shown to produce objective responses, delay disease progression and, in some cases, improve survival of patients with advanced malignancies. These targeted therapies include cetuximab, an anti-epidermal growth factor receptor (EGFR) monoclonal antibody; gefitinib and erlotinib, EGFR-specific tyrosine kinase inhibitors; trastuzumab, an anti-human EGFR type 2 (HER2)-related monoclonal antibody; lapatinib, a dual inhibitor of both EGFR- and HER2-associated tyrosine kinases; and bevacizumab, an anti-vascular endothelial growth factor (VEGF) monoclonal antibody. On the basis of preclinical and clinical evidence, EGFR, HER2 and VEGF represent validated targets for cancer therapy and remain the subject of intensive investigation. Both EGFR and HER2 are targets found on cancer cells, whereas VEGF is a target that acts in the tumour microenvironment. Clinical studies are focusing on how to best incorporate targeted therapy into current treatment regimens and other studies are exploring whether different strategies for inhibiting these targets will offer greater benefit. It is clear that optimal use of targeted therapy will depend on understanding how these drugs work mechanistically, and recognising that their activities may differ across patient populations, tumour types and disease stages, as well as when and how they are used in cancer treatment. The results achieved with targeted therapies to date are promising, although they illustrate the need for additional preclinical and clinical study.
Shim, Hyunbo
2011-10-31
To date, more than 30 antibodies have been approved worldwide for therapeutic use. While the monoclonal antibody market is rapidly growing, the clinical use of therapeutic antibodies is mostly limited to treatment of cancers and immunological disorders. Moreover, antibodies against only five targets (TNF-α, HER2, CD20, EGFR, and VEGF) account for more than 80 percent of the worldwide market of therapeutic antibodies. The shortage of novel, clinically proven targets has resulted in the development of many distinct therapeutic antibodies against a small number of proven targets, based on the premise that different antibody molecules against the same target antigen have distinct biological and clinical effects from one another. For example, four antibodies against TNF-α have been approved by the FDA -- infliximab, adalimumab, golimumab, and certolizumab pegol -- with many more in clinical and preclinical development. The situation is similar for HER2, CD20, EGFR, and VEGF, each having one or more approved antibodies and many more under development. This review discusses the different binding characteristics, mechanisms of action, and biological and clinical activities of multiple monoclonal antibodies against TNF-α, HER-2, CD20, and EGFR and provides insights into the development of therapeutic antibodies.
Tumor-specific novel taxoid-monoclonal antibody conjugates.
Ojima, Iwao; Geng, Xudong; Wu, Xinyuan; Qu, Chuanxing; Borella, Christopher P; Xie, Hongsheng; Wilhelm, Sharon D; Leece, Barbara A; Bartle, Laura M; Goldmacher, Victor S; Chari, Ravi V J
2002-12-19
Taxoids bearing methyldisulfanyl(alkanoyl) groups for taxoid-antibody immunoconjugates were designed, synthesized and their activities evaluated. A highly cytotoxic C-10 methyldisulfanylpropanoyl taxoid was conjugated to monoclonal antibodies recognizing the epidermal growth factor receptor (EGFR) expressed in human squamous cancers. These conjugates were shown to possess remarkable target-specific antitumor activity in vivo against EGFR-expressing A431 tumor xenografts in severe combined immune deficiency mice, resulting in complete inhibition of tumor growth in all the treated mice.
Uncovering the Origin of Skin Side Effects from EGFR-Targeted Therapies | Center for Cancer Research
The epidermal growth factor receptor (EGFR), a key regulator of cell proliferation, is often mutated or overexpressed in a variety of cancer types. EGFR-targeted therapies, including monoclonal antibodies and small molecule inhibitors, can effectively treat patients whose tumors depend on aberrant EGFR signaling. Within a few weeks of initiating therapy, however, patients
EGFR targeted PLGA nanoparticles using gemcitabine for treatment of pancreatic cancer.
Aggarwal, Sahil; Yadav, Sachin; Gupta, Swati
2011-02-01
The present study aimed to prepare and characterize anti EGFR monoclonal antibody (mab) conjugated Gemcitabine loaded PLGA nanoparticles for their selective delivery to pancreatic cells and evaluation of the systems in vitro. It was observed that direct covalent coupling of antibodies to glutaraldehyde activated nanoparticles is an appropriate method to achieve cell-type specific drug carrier systems based on polymeric nanoparticles that have potential to be applied for targeted chemotherapy in EGFR positive cancer.
Shinozaki, Eiji; Yoshino, Takayuki; Yamazaki, Kentaro; Muro, Kei; Yamaguchi, Kensei; Nishina, Tomohiro; Yuki, Satoshi; Shitara, Kohei; Bando, Hideaki; Mimaki, Sachiyo; Nakai, Chikako; Matsushima, Koutatsu; Suzuki, Yutaka; Akagi, Kiwamu; Yamanaka, Takeharu; Nomura, Shogo; Fujii, Satoshi; Esumi, Hiroyasu; Sugiyama, Masaya; Nishida, Nao; Mizokami, Masashi; Koh, Yasuhiro; Abe, Yukiko; Ohtsu, Atsushi; Tsuchihara, Katsuya
2017-11-07
Patients with BRAF V600E -mutated metastatic colorectal cancer (mCRC) have a poorer prognosis as well as resistance to anti-EGFR antibodies. However, it is unclear whether BRAF mutations other than BRAF V600E (BRAF non-V600E mutations) contribute to anti-EGFR antibody resistance. This study was composed of exploratory and inference cohorts. Candidate biomarkers identified by whole exome sequencing from super-responders and nonresponders in the exploratory cohort were validated by targeted resequencing for patients who received anti-EGFR antibody in the inference cohort. In the exploratory cohort, 31 candidate biomarkers, including KRAS/NRAS/BRAF mutations, were identified. Targeted resequencing of 150 patients in the inference cohort revealed 40 patients with RAS (26.7%), 9 patients with BRAF V600E (6.0%), and 7 patients with BRAF non-V600E mutations (4.7%), respectively. The response rates in RAS, BRAF V600E , and BRAF non-V600E were lower than those in RAS/BRAF wild-type (2.5%, 0%, and 0% vs 31.9%). The median PFS in BRAF non-V600E mutations was 2.4 months, similar to that in RAS or BRAF V600E mutations (2.1 and 1.6 months) but significantly worse than that in wild-type RAS/BRAF (5.9 months). Although BRAF non-V600E mutations identified were a rare and unestablished molecular subtype, certain BRAF non-V600E mutations might contribute to a lesser benefit of anti-EGFR monoclonal antibody treatment.
NASA Astrophysics Data System (ADS)
Spinato, Cinzia; Perez Ruiz de Garibay, Aritz; Kierkowicz, Magdalena; Pach, Elzbieta; Martincic, Markus; Klippstein, Rebecca; Bourgognon, Maxime; Wang, Julie Tzu-Wen; Ménard-Moyon, Cécilia; Al-Jamal, Khuloud T.; Ballesteros, Belén; Tobias, Gerard; Bianco, Alberto
2016-06-01
In the present work we have devised the synthesis of a novel promising carbon nanotube carrier for the targeted delivery of radioactivity, through a combination of endohedral and exohedral functionalization. Steam-purified single-walled carbon nanotubes (SWCNTs) have been initially filled with radioactive analogues (i.e. metal halides) and sealed by high temperature treatment, affording closed-ended CNTs with the filling material confined in the inner cavity. The external functionalization of these filled CNTs was then achieved by nitrene cycloaddition and followed by the derivatization with a monoclonal antibody (Cetuximab) targeting the epidermal growth factor receptor (EGFR), overexpressed by several cancer cells. The targeting efficiency of the so-obtained conjugate was evaluated by immunostaining with a secondary antibody and by incubation of the CNTs with EGFR positive cells (U87-EGFR+), followed by flow cytometry, confocal microscopy or elemental analyses. We demonstrated that our filled and functionalized CNTs can internalize more efficiently in EGFR positive cancer cells.In the present work we have devised the synthesis of a novel promising carbon nanotube carrier for the targeted delivery of radioactivity, through a combination of endohedral and exohedral functionalization. Steam-purified single-walled carbon nanotubes (SWCNTs) have been initially filled with radioactive analogues (i.e. metal halides) and sealed by high temperature treatment, affording closed-ended CNTs with the filling material confined in the inner cavity. The external functionalization of these filled CNTs was then achieved by nitrene cycloaddition and followed by the derivatization with a monoclonal antibody (Cetuximab) targeting the epidermal growth factor receptor (EGFR), overexpressed by several cancer cells. The targeting efficiency of the so-obtained conjugate was evaluated by immunostaining with a secondary antibody and by incubation of the CNTs with EGFR positive cells (U87-EGFR+), followed by flow cytometry, confocal microscopy or elemental analyses. We demonstrated that our filled and functionalized CNTs can internalize more efficiently in EGFR positive cancer cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07923c
Antibodies directed against receptor tyrosine kinases
FAUVEL, Bénédicte; Yasri, Aziz
2014-01-01
Approximately 30 therapeutic monoclonal antibodies have already been approved for cancers and inflammatory diseases, and monoclonal antibodies continue to be one of the fastest growing classes of therapeutic molecules. Because aberrant signaling by receptor tyrosine kinases (RTKs) is a commonly observed factor in cancer, most of the subclasses of RTKs are being extensively studied as potential targets for treating malignancies. The first two RTKs that have been targeted by antibody therapy, with five currently marketed antibodies, are the growth factor receptors EGFR and HER2. However, due to systemic side effects, refractory patients and the development of drug resistance, these treatments are being challenged by emerging therapeutics. This review examines current monoclonal antibody therapies against RTKs. After an analysis of agents that have already been approved, we present an analysis of antibodies in clinical development that target RTKs. Finally, we highlight promising RTKs that are emerging as new oncological targets for antibody-based therapy. PMID:24859229
Spotlight on necitumumab in the treatment of non-small-cell lung carcinoma
Thakur, Manish K; Wozniak, Antoinette J
2017-01-01
The treatment options for metastatic non-small-cell lung cancer (NSCLC) have expanded dramatically in the last 10 years with the discovery of newer drugs and targeted therapy. Epidermal growth factor receptor (EGFR), when aberrantly activated, promotes cell growth and contributes in various ways to the malignant process. EGFR has become an important therapeutic target in a variety of malignancies. Small-molecule tyrosine kinase inhibitors (TKIs) of EGFR are being used to treat advanced NSCLC and are particularly effective in the presence of EGFR mutations. Monoclonal antibodies have also been developed that block the EGFR at the cell surface and work in conjunction with chemotherapy. Necitumumab is a second-generation fully human IgG1 monoclonal antibody that has shown promise in metastatic NSCLC. The benefit has mostly been restricted to squamous cell lung cancer in the frontline setting. Considering that the survival advantage for these patients was modest, there is a need to discover biomarkers that will predict which patients will likely have the best outcomes. This review focuses on the development and clinical trial experience with necitumumab in NSCLC. PMID:28293124
Monoclonal antibodies as cancer therapeutics.
Elloumi, Jihene; Jellali, Karim; Jemel, Ikram; Aifa, Sami
2012-04-01
Three main targets were subjected for the most approved monoclonal antibodies (mAbs) in cancer therapy: EGFR in solid cancer, the clusters of differentiation in blood cancer and VEGF in angiogenesis. Meanwhile side effects, the elevated costs and resistance problems are limiting the efficiency of mAbs as targeted therapy. The combinatory therapy with chemo or radiotherapy has improved the efficiency of mAbs. The present review aims to shed more light on the immunotherapy and the related patents that were developed for cancer treatment.
Monoclonal antibody-tagged receptor-targeted contrast agents for detection of cancers
NASA Astrophysics Data System (ADS)
Soukos, N. S.; Hamblin, Michael R.; Deutsch, Thomas F.; Hasan, Tayyaba
2001-07-01
Oral cancer and precancer overexpress the epidermal growth factor receptor (EGFR) and monoclonal antibodies against EGFR coupled to photoactive dyes may have a potential both as a diagnostic and treatment modalities for oral premalignancy. We asked whether an anti-EGFR mab (C225) conjugated with the fluorescence dye indocyanine Cy5.5 could detect dysplastic changes in the hamster cheek pouch carcinogenesis model. Secondly, we tested whether the same antibody conjugated with the photosensitizer chlorin (e6) could be used together with illumination to reduce levels of expression of EGFR as evaluated by the immunophotodetection procedure. Increased fluorescence appeared to correlate with development of premalignancy when the C225-Cy5.5 conjugate was used. Areas with increased fluorescence signal were found in carcinogen-treated but clinically normal cheek pouches, that revealed dysplastsic changes by histology. The immunophotodetection procedure was carried out after photoummunotherapy with the C225-ce6 conjugate, and showed a significant reduction in fluorescence in the illuminated compared to the non-illuminated areas in the carcinogen- treated but not the normal cheek pouch. The results demonstrate that the use of anti-EGFR Mab targeted photoactive dyes may serve as a feedback controlled optical diagnosis and therapy procedure for oral premalignant lesions.
He, Xuzhi; Cruz, Jazmina L; Joseph, Shannon; Pett, Nicola; Chew, Hui Yi; Tuong, Zewen K; Okano, Satomi; Kelly, Gabrielle; Veitch, Margaret; Simpson, Fiona; Wells, James W
2018-02-23
The Epidermal Growth Factor Receptor (EGFR) is selectively expressed on the surface of numerous tumours, such as non-small cell lung, ovarian, colorectal and head and neck carcinomas. EGFR has therefore become a target for cancer therapy. Cetuximab is a chimeric human/mouse monoclonal antibody (mAb) that binds to EGFR, where it both inhibits signaling and induces cell death by antibody-dependent cell mediated cytotoxicity (ADCC). Cetuximab has been approved for clinical use in patients with head and neck squamous cell carcinoma (HNSCC) and colorectal cancer. However, only 15-20% patients benefit from this drug, thus new strategies to improve cetuximab efficiency are required. We aimed to develop a reliable and easy preclinical mouse model to evaluate the efficacy of EGFR-targeted antibodies and examine the immune mechanisms involved in tumour regression. We selected an anti-mouse EGFR mAb, 7A7, which has been reported to be "mouse cetuximab" and to exhibit similar properties to its human counterpart. Unfortunately, we were unable to reproduce previous results obtained with the 7A7 mAb. In our hands, 7A7 failed to recognize mouse EGFR, both in native and reducing conditions. Moreover, in vivo administration of 7A7 in an EGFR-expressing HPV38 tumour model did not have any impact on tumour regression or animal survival. We conclude that 7A7 does not recognize mouse EGFR and therefore cannot be used as the mouse equivalent of cetuximab use in humans. As a number of groups have spent effort and resources with similar issues we feel that publication is a responsible approach.
Prabhu, Venugopal Vinod; Devaraj, Niranjali
2017-01-01
Lung cancer is responsible for 1.6 million deaths. Approximately 80%-85% of lung cancers are of the non-small-cell variety, which includes squamous cell carcinoma, adenocarcinoma, and large-cell carcinoma. Knowing the stage of cancer progression is a requisite for determining which management approach-surgery, chemotherapy, radiotherapy, and/or immunotherapy-is optimal. Targeted therapeutic approaches with antiangiogenic monoclonal antibodies or tyrosine kinase inhibitors are one option if tumors harbor oncogene mutations. Another, newer approach is directed against cancer-specific molecules and signaling pathways and thus has more limited nonspecific toxicities. This approach targets the epidermal growth factor receptor (EGFR, HER-1/ErbB1), a receptor tyrosine kinase of the ErbB family, which consists of four closely related receptors: HER-1/ErbB1, HER-2/neu/ErbB2, HER-3/ErbB3, and HER-4/ErbB4. Because EGFR is expressed at high levels on the surface of some cancer cells, it has been recognized as an effective anticancer target. EGFR-targeted therapies include monoclonal antibodies (mAbs) and small-molecule tyrosine kinase inhibitors. Tyrosine kinases are an especially important target because they play an important role in the modulation of growth factor signaling. This review highlights various classes of synthetically derived molecules that have been reported in the last few years as potential EGFR-TK inhibitors (TKIs) and their targeted therapies in NSCLC, along with effective strategies for overcoming EGFR-TKI resistance and efforts to develop a novel potent EGFR-TKI as an efficient target of NSCLC treatment in the foreseeable future.
Trivedi, Sumita; Srivastava, Raghvendra M; Concha-Benavente, Fernando; Ferrone, Soldano; Garcia-Bates, Tatiana M; Li, Jing; Ferris, Robert L
2016-11-01
EGF receptor (EGFR) is highly overexpressed on several cancers and two targeted anti-EGFR antibodies which differ by isotype are FDA-approved for clinical use. Cetuximab (IgG1 isotype) inhibits downstream signaling of EGFR and activates antitumor, cellular immune mechanisms. As panitumumab (IgG2 isotype) may inhibit downstream EGFR signaling similar to cetuximab, it might also induce adaptive immunity. We measured in vitro activation of cellular components of the innate and adaptive immune systems. We also studied the in vivo activation of components of the adaptive immune system in patient specimens from two recent clinical trials using cetuximab or panitumumab. Both monoclonal antibodies (mAb) primarily activate natural killer (NK) cells, although cetuximab is significantly more potent than panitumumab. Cetuximab-activated neutrophils mediate antibody-dependent cellular cytotoxicity (ADCC) against head and neck squamous cell carcinomas (HNSCC) tumor cells, and interestingly, this effect was FcγRIIa- and FcγRIIIa genotype-dependent. Panitumumab may activate monocytes through CD32 (FcγRIIa); however, monocytes activated by either mAb are not able to mediate ADCC. Cetuximab enhanced dendritic cell (DC) maturation to a greater extent than panitumumab, which was associated with improved tumor antigen cross-presentation by cetuximab compared with panitumumab. This correlated with increased EGFR-specific cytotoxic CD8 + T cells in patients treated with cetuximab compared with those treated with panitumumab. Although panitumumab effectively inhibits EGFR signaling to a similar extent as cetuximab, it is less effective at triggering antitumor, cellular immune mechanisms which may be crucial for effective therapy of HNSCC. Clin Cancer Res; 22(21); 5229-37. ©2016 AACR. ©2016 American Association for Cancer Research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berger, Christian; Madshus, Inger Helene; Department of Pathology, Oslo University Hospital, Rikshospitalet, Post box 4950 Nydalen, 0424 Oslo
The monoclonal antibody C225 (Cetuximab) blocks binding of ligand to the epidermal growth factor receptor (EGFR). In addition, it is known that incubation with C225 induces endocytosis of the EGFR. This endocytosis has previously been shown to be increased when C225 is combined with an additional monoclonal anti-EGFR antibody. However, the effects of antibody combinations on EGFR activation, endocytosis, trafficking and degradation have been unclear. By binding a secondary antibody to the C225-EGFR complex, we here demonstrate that a combination of antibodies can efficiently internalize and degrade the EGFR. Although the combination of antibodies activated the EGFR kinase and inducedmore » ubiquitination of the EGFR, the kinase activity was not required for internalization of the EGFR. In contrast to EGF-induced EGFR down-regulation, the antibody combination efficiently degraded the EGFR without initiating downstream proliferative signaling. The antibody-induced internalization of EGFR was found not to depend on clathrin and/or dynamin, but depended on actin polymerization, suggesting induction of macropinocytosis. Macropinocytosis may cause internalization of large membrane areas, and this could explain the highly efficient internalization of the EGFR induced by combination of antibodies. -- Highlight: Black-Right-Pointing-Pointer Cetuximab induced endocytosis of EGFR increases upon combination with anti-human IgG. Black-Right-Pointing-Pointer Antibody combination causes internalization of EGFR by macropinocytosis. Black-Right-Pointing-Pointer Antibody-induced internalization of EGFR is independent of EGFR kinase activity. Black-Right-Pointing-Pointer Antibody combination may have a zipper effect and cross-link EGFRs on neighboring cells.« less
Hong, Kwang-Won; Kim, Chang-Goo; Lee, Seung-Hyun; Chang, Ki-Hwan; Shin, Yong Won; Ryoo, Kyung-Hwan; Kim, Se-Ho; Kim, Yong-Sung
2010-01-01
The epidermal growth factor receptor (EGFR) overexpressed in many epithelial tumors is an attractive target for tumor therapy since numerous blocking agents of EGFR signaling have proven their anti-tumor activity. Here we report a novel monoclonal antibody (mAb), A13, which was generated from mice immunized with human cervical carcinoma A431 cells. In addition to binding to soluble EGFR with affinity of K(D) approximately 5.8nM, mAb A13 specifically bound to a variety of tumor cells and human placenta tissues expressing EGFR. A13 efficiently inhibited both EGF-dependant EGFR tyrosine phosphorylation in cervical and breast tumor cells and also in vitro colony formation of EGFR-overexpressing lung tumors. Competition and sandwich ELISAs, competitive surface plasmon resonance, and domain-level epitope mapping analyses demonstrated that mAb A13 competitively bound to the domain III (amino acids 302-503) of EGFR with EGF, but recognized distinct epitopes from those of cetuximab (Erbitux). Our results demonstrated that anti-EGFR mAb A13 interfered with EGFR proliferation signaling by blocking EGF binding to EGFR with different epitopes from those of cetuximab, suggesting that combination therapies of mAb A13 with cetuximab may prove beneficial for anti-tumor therapy.
Cetuximab-conjugated iron oxide nanoparticles for cancer imaging and therapy
Tseng, Shih-Heng; Chou, Min-Yuan; Chu, I-Ming
2015-01-01
We have developed a theranostic nanoparticle, ie, cet-PEG-dexSPIONs, by conjugation of the anti-epidermal growth factor receptor (EGFR) monoclonal antibody, cetuximab, to dextran-coated superparamagnetic iron oxide nanoparticles (SPIONs) via periodate oxidation. Approximately 31 antibody molecules were conjugated to each nanoparticle. Cet-PEG-dexSPIONs specifically bind to EGFR-expressing tumor cells and enhance image contrast on magnetic resonance imaging. Cet-PEG-dexSPION-treated A431 cells showed significant inhibition of epidermal growth factor-induced EGFR phosphorylation and enhancement of EGFR internalization and degradation. In addition, a significant increase in apoptosis was detected in EGFR-overexpressing cell lines, A431 and 32D/EGFR, after 24 hours of incubation at 37°C with cet-PEG-dexSPIONs compared with cetuximab alone. The antibody-dependent cell-mediated cytotoxicity of cetuximab was observed in cet-PEG-dexSPIONs. The results demonstrated that cet-PEG-dexSPIONs retained the therapeutic effect of cetuximab in addition to having the ability to target and image EGFR-expressing tumors. Cet-PEG-dexSPIONs represent a promising targeted magnetic probe for early detection and treatment of EGFR-expressing tumor cells. PMID:26056447
Anti-EGFR Agents: Current Status, Forecasts and Future Directions.
Kwapiszewski, Radoslaw; Pawlak, Sebastian D; Adamkiewicz, Karolina
2016-12-01
The epidermal growth factor receptor (EGFR) is one of the most important and attractive targets for specific anticancer therapies. It is a robust regulator of pathways involved in cancer pathogenesis and progression. Thus far, clinical trials have demonstrated the benefits of monoclonal antibodies and synthetic tyrosine kinase inhibitors in targeting this receptor; however, novel strategies are still being developed. This article reviews the current state of efforts in targeting the EGFR in cancer therapy. Following a brief characterization of EGFR, we will present a complete list of anti-EGFR agents that are already approved, and available in clinical practice. Aside from the indications, we will present the sales forecasts and expiry dates of product patents for the selected agents. Finally, we discuss the novel anti-EGFR strategies that are currently in preclinical development.
Irreversible multitargeted ErbB family inhibitors for therapy of lung and breast cancer.
Subramaniam, Deepa; He, Aiwu Ruth; Hwang, Jimmy; Deeken, John; Pishvaian, Michael; Hartley, Marion L; Marshall, John L
2015-01-01
Overactivation of the ErbB protein family, which is comprised of 4 receptor tyrosine kinase members (ErbB1/epidermal growth factor receptor [EGFR]/HER1, ErbB2/HER2, ErbB3/HER3, and ErbB4/HER4), can drive the development and progression of a wide variety of malignancies, including colorectal, head and neck, and certain non-small cell lung cancers (NSCLCs). As a result, agents that target a specific member of the ErbB family have been developed for the treatment of cancer. These agents include the reversible EGFR tyrosine kinase inhibitors (TKIs) erlotinib and gefitinib; the EGFR-targeting monoclonal antibodies cetuximab and panitumumab; and the HER2-targeting monoclonal antibody trastuzumab. Lapatinib is a dual TKI that targets both EGFR and HER2. In addition, TKIs that inhibit multiple members of the ErbB family and also bind their targets irreversibly are under evaluation for the treatment of cancer. Three such compounds have progressed into clinical studies: the EGFR, HER2, and HER4 inhibitors afatinib, dacomitinib, and neratinib. Phase I studies of these agents have shown clinical activity in NSCLC, breast cancer, and other malignancies. Currently, afatinib is approved for EGFR mutation-positive NSCLC and is in development for squamous NSCLC, and dacomitinib is in phase III of clinical development for NSCLC, neratinib is in phase III of clinical development for the treatment of breast cancer, and afatinib is also in phase III development in head and neck cancer. Final results from clinical trials may lead to the potential approval of these agents in a variety of solid tumor malignancies.
Roberts, Patrick J; Stinchcombe, Thomas E; Der, Channing J; Socinski, Mark A
2010-11-01
In patients with metastatic colorectal cancer, the predictive value of KRAS mutational status in the selection of patients for treatment with anti-epidermal growth factor (EGFR) monoclonal antibodies is established. In patients with non-small-cell lung cancer (NSCLC), the utility of determining KRAS mutational status to predict clinical benefit to anti-EGFR therapies remains unclear. This review will provide a brief description of Ras biology, provide an overview of aberrant Ras signaling in NSCLC, and summarize the clinical data for using KRAS mutational status as a negative predictive biomarker to anti-EGFR therapies. Retrospective investigations of KRAS mutational status as a negative predictor of clinical benefit from anti-EGFR therapies in NSCLC have been performed; however, small samples sizes as a result of low prevalence of KRAS mutations and the low rate of tumor sample collection have limited the strength of these analyses. Although an association between the presence of KRAS mutation and lack of response to EGFR tyrosine kinase inhibitors (TKIs) has been observed, it remains unclear whether there is an association between KRAS mutation and EGFR TKI progression-free and overall survival. Unlike colorectal cancer, KRAS mutations do not seem to identify patients who do not benefit from anti-EGFR monoclonal antibodies in NSCLC. The future value of testing for KRAS mutational status may be to exclude the possibility of an EGFR mutation or anaplastic lymphoma kinase translocation or to identify a molecular subset of patients with NSCLC in whom to pursue a drug development strategy that targets the KRAS pathway.
Anti-Epidermal Growth Factor Receptor Gene Therapy for Glioblastoma
Hicks, Martin J.; Chiuchiolo, Maria J.; Ballon, Douglas; Dyke, Jonathan P.; Aronowitz, Eric; Funato, Kosuke; Tabar, Viviane; Havlicek, David; Fan, Fan; Sondhi, Dolan; Kaminsky, Stephen M.; Crystal, Ronald G.
2016-01-01
Glioblastoma multiforme (GBM) is the most common and aggressive primary intracranial brain tumor in adults with a mean survival of 14 to 15 months. Aberrant activation of the epidermal growth factor receptor (EGFR) plays a significant role in GBM progression, with amplification or overexpression of EGFR in 60% of GBM tumors. To target EGFR expressed by GBM, we have developed a strategy to deliver the coding sequence for cetuximab, an anti-EGFR antibody, directly to the CNS using an adeno-associated virus serotype rh.10 gene transfer vector. The data demonstrates that single, local delivery of an anti-EGFR antibody by an AAVrh.10 vector coding for cetuximab (AAVrh.10Cetmab) reduces GBM tumor growth and increases survival in xenograft mouse models of a human GBM EGFR-expressing cell line and patient-derived GBM. AAVrh10.CetMab-treated mice displayed a reduction in cachexia, a significant decrease in tumor volume and a prolonged survival following therapy. Adeno-associated-directed delivery of a gene encoding a therapeutic anti-EGFR monoclonal antibody may be an effective strategy to treat GBM. PMID:27711187
Eng, Cathy
2010-01-01
Targeted biologic agents have an established role in treating metastatic colorectal cancer (mCRC). Bevacizumab, a recombinant monoclonal antibody against the vascular endothelial growth factor ligand is approved by the U.S. Food and Drug Administration (FDA) for bevacizumab-naïve patients. Cetuximab, a chimeric monoclonal antibody (mAb) against the epidermal growth factor receptor (EGFR) is FDA approved as a single agent, or in combination with irinotecan, in both irinotecan-naïve and refractory patients, and has additional efficacy in combination with oxaliplatin. Panitumumab, a fully human EGFR mAb, is FDA approved as a single agent in refractory patients but has additional efficacy in combination with chemotherapy. After reaching a temporary therapeutic plateau of FDA-approved agents for the treatment of mCRC, pivotal results have developed that critically affect the care for these patients. Correlative data from randomized trials of EGFR inhibitors across disease settings have demonstrated higher response rates, specifically for patients with wild-type K-RAS tumors. The interpretation of the B-RAF mutation and other molecular markers may further define the appropriateness of anti-EGFR therapy. Recent literature revealed that the first-line use of combined anti-EGFR therapy plus bevacizumab resulted in inferior outcomes and additional toxicities. Furthermore, the role of biologic agents for locally advanced colon cancer cannot be advocated at this time. With impending changes in the health care system, the economic impact of mAbs will continue to be scrutinized. Hence, as the significance of molecular markers continues to develop, their role as it pertains to the appropriate use of biologic agents in the treatment of mCRC will continue to evolve.
Costa, Ricardo; Shah, Ami N; Santa-Maria, Cesar A; Cruz, Marcelo R; Mahalingam, Devalingam; Carneiro, Benedito A; Chae, Young Kwang; Cristofanilli, Massimo; Gradishar, William J; Giles, Francis J
2017-02-01
Triple negative breast cancer (TNBC) accounts for 10-20% of cases in breast cancer. Despite recent advances in the treatment of hormonal receptor+ and HER2+ breast cancers, there are no targeted therapies available for TNBC. Evidence supports that most patients with TNBC express the transmembrane Epidermal Growth Factor Receptor (EGFR). However, early phase clinical trials failed to demonstrate significant activity of EGFR-targeted monoclonal antibodies and/or tyrosine kinase inhibitors. Here, we review the recent discoveries related to the underlying biology of the EGFR pathway in TNBC, clinical progress to date and suggest rational future approaches for investigational therapies in TNBC. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tsiambas, Evangelos; Ragos, Vasileios; Lefas, Alicia Y; Georgiannos, Stavros N; Rigopoulos, Dimitrios N; Georgakopoulos, Georgios; Stamatelopoulos, Athanasios; Grapsa, Dimitra; Syrigos, Konstantinos
2016-01-01
Purpose: Among oncogenes that have already been identified and cloned, Epidermal Growth Factor Receptor (EGFR) remains one of the most significant. Understanding its deregulation mechanisms improves critically patients' selection for personalized therapies based on modern molecular biology and oncology guidelines. Anti-EGFR targeted therapeutic strategies have been developed based on specific genetic profiles and applied in subgroups of patients suffering by solid cancers of different histogenetic origin. Detection of specific EGFR somatic mutations leads to tyrosine kinase inhibitors (TKIs) application in subsets of them. Concerning EGFR gene numerical imbalances, identification of pure gene amplification is critical for targeting the molecule via monoclonal antibodies (mAbs). In the current technical paper we demonstrate the main molecular methods applied in EGFR analyses focused also on new data in interpreting numerical imbalances based on ASCO/ACAP guidelines for HER2 in situ hybridization (ISH) clarifications.
Uncovering the Origin of Skin Side Effects from EGFR-Targeted Therapies | Center for Cancer Research
The epidermal growth factor receptor (EGFR), a key regulator of cell proliferation, is often mutated or overexpressed in a variety of cancer types. EGFR-targeted therapies, including monoclonal antibodies and small molecule inhibitors, can effectively treat patients whose tumors depend on aberrant EGFR signaling. Within a few weeks of initiating therapy, however, patients develop a characteristic rash with leukocyte infiltration into the skin accompanied by pruritus (itching), scaling of the skin, hair loss, and even changes in skin cell differentiation. The side effects can become so severe that patients take reduced doses, which can limit efficacy, or stop treatment altogether. To understand how EGFR inhibitors cause these skin changes in the hopes of identifying a means of preventing them, Stuart Yuspa, M.D., of CCR’s Laboratory of Cancer Biology and Genetics, and his colleagues examined patient samples and generated a mouse model of EGFR loss in the skin.
Novel strategy for a bispecific antibody: induction of dual target internalization and degradation.
Lee, J M; Lee, S H; Hwang, J-W; Oh, S J; Kim, B; Jung, S; Shim, S-H; Lin, P W; Lee, S B; Cho, M-Y; Koh, Y J; Kim, S Y; Ahn, S; Lee, J; Kim, K-M; Cheong, K H; Choi, J; Kim, K-A
2016-08-25
Activation of the extensive cross-talk among the receptor tyrosine kinases (RTKs), particularly ErbB family-Met cross-talk, has emerged as a likely source of drug resistance. Notwithstanding brilliant successes were attained while using small-molecule inhibitors or antibody therapeutics against specific RTKs in multiple cancers over recent decades, a high recurrence rate remains unsolved in patients treated with these targeted inhibitors. It is well aligned with multifaceted properties of cancer and cross-talk and convergence of signaling pathways of RTKs. Thereby many therapeutic interventions have been actively developed to overcome inherent or acquired resistance. To date, no bispecific antibody (BsAb) showed complete depletion of dual RTKs from the plasma membrane and efficient dual degradation. In this manuscript, we report the first findings of a target-specific dual internalization and degradation of membrane RTKs induced by designed BsAbs based on the internalizing monoclonal antibodies and the therapeutic values of these BsAbs. Leveraging the anti-Met mAb able to internalize and degrade by a unique mechanism, we generated the BsAbs for Met/epidermal growth factor receptor (EGFR) and Met/HER2 to induce an efficient EGFR or HER2 internalization and degradation in the presence of Met that is frequently overexpressed in the invasive tumors and involved in the resistance against EGFR- or HER2-targeted therapies. We found that Met/EGFR BsAb ME22S induces dissociation of the Met-EGFR complex from Hsp90, followed by significant degradation of Met and EGFR. By employing patient-derived tumor models we demonstrate therapeutic potential of the BsAb-mediated dual degradation in various cancers.
Non-Covalent Functionalization of Carbon Nanovectors with an Antibody Enables Targeted Drug Delivery
Berlin, Jacob M.; Pham, Tam T.; Sano, Daisuke; Mohamedali, Khalid A.; Marcano, Daniela C.; Myers, Jeffrey N.; Tour, James M.
2011-01-01
Current chemotherapeutics are characterized by efficient tumor cell-killing and severe side effects mostly derived from off target toxicity. Hence targeted delivery of these drugs to tumor cells is actively sought. We previously demonstrated that poly(ethylene glycol)-functionalized carbon nanovectors are able to sequester paclitaxel, a widely used hydrophobic cancer drug, by simple physisorption and deliver the drug for killing of cancer cells. The cell-killing when these drug-loaded carbon nanoparticles were used was equivalent to when a commercial formulation of paclitaxel was used. Here we show that by further mixing the drug-loaded nanoparticles with Cetuximab, a monoclonal antibody that recognizes the epidermal growth factor receptor (EGFR), paclitaxel is preferentially targeted to EGFR+ tumor cells in vitro. This supports progressing to in vivo studies. Moreover, the construct is unusual in that all three components are assembled through non-covalent interactions. Such non-covalent assembly could enable high-throughput screening of drug/antibody combinations. PMID:21736358
Novel agents that downregulate EGFR, HER2, and HER3 in parallel
Ferreira, Renan Barroso; Law, Mary Elizabeth; Jahn, Stephan Christopher; Davis, Bradley John; Heldermon, Coy Don; Reinhard, Mary; Castellano, Ronald Keith; Law, Brian Keith
2015-01-01
EGFR, HER2, and HER3 contribute to the initiation and progression of human cancers, and are therapeutic targets for monoclonal antibodies and tyrosine kinase inhibitors. An important source of resistance to these agents arises from functional redundancy among EGFR, HER2, and HER3. EGFR family members contain conserved extracellular structures that are stabilized by disulfide bonds. Compounds that disrupt extracellular disulfide bonds could inactivate EGFR, HER2, and HER3 in unison. Here we describe the identification of compounds that kill breast cancer cells that overexpress EGFR or HER2. Cell death parallels downregulation of EGFR, HER2, and HER3. These compounds disrupt disulfide bonds and are termed Disulfide Bond Disrupting Agents (DDAs). DDA RBF3 exhibits anticancer efficacy in vivo at 40 mg/kg without evidence of toxicity. DDAs may complement existing EGFR-, HER2-, and HER3-targeted agents that function through alternate mechanisms of action, and combination regimens with these existing drugs may overcome therapeutic resistance. PMID:25865227
Bonomi, P D; Gandara, D; Hirsch, F R; Kerr, K M; Obasaju, C; Paz-Ares, L; Bellomo, C; Bradley, J D; Bunn, P A; Culligan, M; Jett, J R; Kim, E S; Langer, C J; Natale, R B; Novello, S; Pérol, M; Ramalingam, S S; Reck, M; Reynolds, C H; Smit, E F; Socinski, M A; Spigel, D R; Vansteenkiste, J F; Wakelee, H; Thatcher, N
2018-06-14
Upregulated expression and aberrant activation of the epidermal growth-factor receptor (EGFR) are found in lung cancer, making EGFR a relevant target for non-small-cell lung cancer (NSCLC). Treatment with anti-EGFR monoclonal antibodies (mAbs) is associated with modest improvement in overall survival in patients with squamous cell lung cancer (SqCLC) who have a significant unmet need for effective treatment options. While there is evidence that using EGFR gene copy number, EGFR mutation, and EGFR protein expression as biomarkers can help select patients who respond to treatment, it is important to consider biomarkers for response in patients treated with combination therapies that include EGFR mAbs. Randomized trials of EGFR-directed mAbs cetuximab and necitumumab in combination with chemotherapy, immunotherapy, or anti-angiogenic therapy in patients with advanced NSCLC, including SqCLC, were searched in the literature. Results of associations of potential biomarkers and outcomes were summarized. Results. Data from phase III clinical trials indicate that patients with NSCLC, including SqCLC, whose tumors express high levels of EGFR protein (H-score of ≥ 200) and/or gene copy numbers of EGFR (e.g., ≥40% cells with ≥4 EGFR copies as detected by fluorescence in situ hybridization; gene amplification in ≥ 10% of analyzed cells) derive greater therapeutic benefits from EGFR-directed mAbs. Biomarker data are limited for EGFR mAbs used in combination with immunotherapy and are absent when used in combination with anti-angiogenic agents. Therapy with EGFR-directed mAbs in combination with chemotherapy is associated with greater clinical benefits in patients with NSCLC, including SqCLC, whose tumors express high levels of EGFR protein and/or have increased EGFR gene copy number. These data support validating the role of these as biomarkers to identify those patients who derive the greatest clinical benefit from EGFR mAb therapy. However, data on biomarkers for EGFR-directed mAbs combined with immunotherapy or anti-angiogenic agents remain limited.
Caruso, Hillary G.; Hurton, Lenka V.; Najjar, Amer; Rushworth, David; Ang, Sonny; Olivares, Simon; Mi, Tiejuan; Switzer, Kirsten; Singh, Harjeet; Huls, Helen; Lee, Dean A.; Heimberger, Amy B.; Champlin, Richard E.; Cooper, Laurence J. N.
2015-01-01
Many tumors over express tumor-associated antigens relative to normal tissue, such as epidermal growth factor receptor (EGFR). This limits targeting by human T cells modified to express chimeric antigen receptors (CARs) due to potential for deleterious recognition of normal cells. We sought to generate CAR+ T cells capable of distinguishing malignant from normal cells based on the disparate density of EGFR expression by generating two CARs from monoclonal antibodies which differ in affinity. T cells with low affinity Nimo-CAR selectively targeted cells over-expressing EGFR, but exhibited diminished effector function as the density of EGFR decreased. In contrast, the activation of T cells bearing high affinity Cetux-CAR was not impacted by the density of EGFR. In summary, we describe the generation of CARs able to tune T-cell activity to the level of EGFR expression in which a CAR with reduced affinity enabled T cells to distinguish malignant from non-malignant cells. PMID:26330164
Wollina, Uwe; Tchernev, Georgi; Lotti, Torello
2018-01-25
Non-melanoma skin cancer (NMSC) is the most common malignancy in humans. Targeted therapy with monoclonal antibody cetuximab is an option in case of advanced tumor or metastasis. We present and update of the use of cetuximab in NMSC searching PUBMED 2011-2017. The monoclonal antibody cetuximab against epidermal growth factor receptor (EGFR) has been investigated for its use in NMSC during the years 2011 to 2017 by a PUBMED research using the following items: "Non-melanoma skin cancer AND cetuximab," "cutaneous squamous cell carcinoma AND cetuximab," and "basal cell carcinoma AND cetuximab", and "cetuximab AND skin toxicity". Available data were analyzed including case reports. Current evidence of cetuximab efficacy in NMSC was mainly obtained in cutaneous SCC and to a lesser extend in BCC. Response rates vary for neoadjuvant, adjuvant, mono- and combined therapy with cetuximab. Management of cutaneous toxicities is necessary. Guidelines are available. Cetuximab is an option for recurrent or advanced NMSC of the skin. It seems to be justified particularly in very high-risk tumors. There is a need for phase III trials.
Photonic modulation of EGFR: 280nm low level light arrests cancer cell activation and migration
NASA Astrophysics Data System (ADS)
Botelho, Cláudia M.; Marques, Rogério; Viruthachalam, Thiagarajan; Gonçalves, Odete; Vorum, Henrik; Gomes, Andreia C.; Neves-Petersen, Maria Teresa
2017-02-01
Overexpression of the Epidermal Growth Factor Receptor (EGFR) by cancer cells is associated with a poor prognosis for the patient. For several decades, therapies targeting EGFR have been designed, including the use of monoclonal antibodies and small molecule tyrosine kinase inhibitors. The use of these molecules had good clinical results, although its efficiency (and specificity) is still far from being optimal. In this paper, we present a new approach for a possible new cancer therapy targeting EGFR and using low intensity 280nm light. The influence of 280nm UVB illumination on cancer cells stimulated with 2nM of EGF was followed by time-lapse confocal microscopy. The 280nm illumination of the cancer cells blocks EGFR activation, inhibiting EGFR internalization and cell migration thus inhibiting the transition to the metastatic phenotype. Exposure time is a very important factor. The higher the illumination time the more significant differences were observed: 280nm light delayed or completely halted EGFR activation in the cell membrane, mainly at the cell junction level, and delayed or halted EGFR endocytic internalization, filopodia formation and cell migration.
Napolitano, Stefania; Martini, Giulia; Martinelli, Erika; Della Corte, Carminia Maria; Morgillo, Floriana; Belli, Valentina; Cardone, Claudia; Matrone, Nunzia; Ciardiello, Fortunato; Troiani, Teresa
2017-01-01
Purpose We investigated the effect of triple monoclonal antibody inhibition of EGFR to overcome acquired resistance to first generation of anti-EGFR inhibitors. Experimental design MM151 is a mixture of three different monoclonal IgG1 antibodies directed toward three different, non-overlapping, epitopes of the EGFR. We performed an in vivo study by using human CRC cell lines (SW48, LIM 1215 and CACO2) which are sensitive to EGFR inhibitors, in order to evaluate the activity of MM151 as compared to standard anti-EGFR mAbs, such as cetuximab, as single agent or in a sequential strategy of combination MM151 with irinotecan (induction therapy) followed by MM151 with a selective MEK1/2 inhibitor (MEKi) (maintenance therapy). Furthermore, the ability of MM151 to overcome acquired resistance to cetuximab has been also evaluated in cetuximab-refractory CRC models. Results MM151 shown stronger antitumor activity as compared to cetuximab. The maintenance treatment with MM151 plus MEKi resulted the most effective therapeutic modality. In fact, this combination caused an almost complete suppression of tumor growth in SW48, LIM 1215 and CACO2 xenografts model at 30 week. Moreover, in this treatment group, mice with no evidence of tumor were more than double as compared to single agent treated mice. Its superior activity has also been demonstrated, in cetuximab-refractory CRC models. Conclusions These results provide experimental evidence that more efficient and complete EGFR blockade may determine better antitumor activity and could contribute to prevent and/or overcome acquired resistance to EGFR inhibitors. PMID:29137301
Elucidation of the critical epitope of an anti-EGFR monoclonal antibody EMab-134.
Kaneko, Mika K; Yamada, Shinji; Itai, Shunsuke; Chang, Yao-Wen; Nakamura, Takuro; Yanaka, Miyuki; Kato, Yukinari
2018-07-01
The epidermal growth factor receptor (EGFR) is a type-1 transmembrane receptor tyrosine kinase, which activates the downstream signaling cascades in many tumors, such as oral and lung cancers. We previously developed EMab-134, a novel anti-EGFR monoclonal antibody (mAb), which reacts with endogenous EGFR-expressing cancer cell lines and normal cells independent of glycosylation in Western blotting, flow cytometry, and immunohistochemical analysis. EMab-134 showed very high sensitivity (94.7%) to oral squamous cell carcinomas in immunohistochemical analysis. In this study, we performed enzyme-linked immunosorbent assay (ELISA), flow cytometry, and immunohistochemical analysis to determine the epitope of EMab-134. A blocking peptide (375-394 amino acids of EGFR) neutralized the EMab-134 reaction against oral cancer cells in flow cytometry and immunohistochemistry. The minimum epitope of EMab-134 was found to be the 377- RGDSFTHTPP -386 sequence. Our findings can be applied for the production of more functional anti-EGFR mAbs that in turn can be used for antitumor treatments.
Ray, Kriti; Ujvari, Beata; Ramana, Venkata; Donald, John
2018-04-07
Epidermal growth factor receptor (EGFR) is a known target in cancer therapy and targeting the receptor has proven to be extremely successful in treating cancers that are dependent on EGFR signaling. To that effect, targeted therapies to EGFR such as Cetuximab, Panitumumab-monoclonal antibodies and Gefitinib, Erlotinib-tyrosine kinase inhibitors have had success in therapeutic scenarios. However, the development of resistance to these drugs makes it necessary to combine anti- EGFR therapies with other inhibitors, so that resistance can be overcome by the targeting of alternate signaling pathways. On the other hand, components of the inflammatory pathway, within and around a tumor, provide a conducive environment for tumor growth by supplying numerous cytokines and chemokines that foster carcinogenesis. Interleukin 6 (IL-6) is one such cytokine that is found to be associated with inflammation-driven cancers and which also plays a crucial role in acquired resistance to anti-EGFR drugs. The EGFR and IL-6 signaling pathways crosstalk in multiple ways, through various mediators and downstream signaling pathways driving resistance and hence co-targeting them has potential for future cancer treatments. Here we provide an overview on the crosstalk between the EGFR and IL-6 pathways, and discuss how co-targeting these two pathways could be a promising combination therapy of the future. Copyright © 2018 Elsevier Ltd. All rights reserved.
Itai, Shunsuke; Kaneko, Mika K; Fujii, Yuki; Yamada, Shinji; Nakamura, Takuro; Yanaka, Miyuki; Saidoh, Noriko; Handa, Saori; Chang, Yao-Wen; Suzuki, Hiroyoshi; Harada, Hiroyuki; Kato, Yukinari
2017-10-01
The epidermal growth factor receptor (EGFR) is a member of the human epidermal growth factor receptor (HER) family of receptor tyrosine kinases and is involved in cell growth and differentiation. EGFR homodimers or heterodimers with other HER members, such as HER2 and HER3, activate downstream signaling cascades in many cancers. In this study, we developed novel anti-EGFR monoclonal antibodies (mAbs) and characterized their efficacy in flow cytometry, Western blot, and immunohistochemical analyses. First, we expressed the full-length or ectodomain of EGFR in LN229 glioblastoma cells and then immunized mice with LN229/EGFR or ectodomain of EGFR, and performed the first screening using enzyme-linked immunosorbent assays. Subsequently, we selected mAbs according to their efficacy in flow cytometry (second screening), Western blot (third screening), and immunohistochemical (fourth screening) analyses. Among 100 mAbs, only one clone EMab-51 (IgG 1 , kappa) reacted with EGFR in Western blot analysis. Finally, immunohistochemical analyses with EMab-51 showed sensitive and specific reactions against oral cancer cells, warranting the use of EMab-51 to detect EGFR in pathological analyses of EGFR-expressing cancers.
Shepard, H. Michael; Brdlik, Cathleen M.; Schreiber, Hans
2008-01-01
The human EGFR (HER) family is essential for communication between many epithelial cancer cell types and the tumor microenvironment. Therapeutics targeting the HER family have demonstrated clinical success in the treatment of diverse epithelial cancers. Here we propose that the success of HER family–targeted monoclonal antibodies in cancer results from their ability to interfere with HER family consolidation of signals initiated by a multitude of other receptor systems. Ligand/receptor systems that initiate these signals include cytokine receptors, chemokine receptors, TLRs, GPCRs, and integrins. We further extrapolate that improvements in cancer therapeutics targeting the HER family are likely to incorporate mechanisms that block or reverse stromal support of malignant progression by isolating the HER family from autocrine and stromal influences. PMID:18982164
Navari, Mohsen; Zare, Mehrak; Javanmardi, Masoud; Asadi-Ghalehni, Majid; Modjtahedi, Helmout; Rasaee, Mohammad Javed
2014-10-01
One of the proposed approaches in cancer therapy is to induce and direct the patient's own immune system against cancer cells. In this study, we determined the epitope mapping of the rat anti-human epidermal growth factor receptor (EGFR) monoclonal antibody ICR-62 using a phage display of random peptide library and identified a 12 amino acids peptide, which was recognized as a mimotope. The peptide was synthesized and conjugated to bovine serum albumin (BSA) as carrier protein (P-BSA). We have shown that ICR-62 can react specifically with P-BSA as well as native EGFR. Two rabbits were immunized either by BSA or P-BSA and the rabbits IgGs were purified and examined for binding to the antigens, mimotope and the EGFR protein purified from the EGFR overexpressing A431 cell line. We showed that the rabbit IgG generated against the mimotope is capable of inhibiting the growth of A431 cells by 15%, but does not have any effect on the growth of EGFR-negative MDA-MB-453 cell line in vitro. Our results support the need for further investigations on the potential of vaccination with either mimotope of the EGFR or epitope displayed on the surface of phage particles for use in active immunotherapy of cancer.
A Pathophysiologic Role for Epidermal Growth Factor Receptor in Pemphigus Acantholysis*
Bektas, Meryem; Jolly, Puneet S.; Berkowitz, Paula; Amagai, Masayuki; Rubenstein, David S.
2013-01-01
The pemphigus family of autoimmune bullous disorders is characterized by autoantibody binding to desmoglein 1 and/or 3 (dsg1/dsg3). In this study we show that EGF receptor (EGFR) is activated following pemphigus vulgaris (PV) IgG treatment of primary human keratinocytes and that EGFR activation is downstream of p38 mitogen-activated protein kinase (p38). Inhibition of EGFR blocked PV IgG-triggered dsg3 endocytosis, keratin intermediate filament retraction, and loss of cell-cell adhesion in vitro. Significantly, inhibiting EGFR prevented PV IgG-induced blister formation in the passive transfer mouse model of pemphigus. These data demonstrate cross-talk between dsg3 and EGFR, that this cross-talk is regulated by p38, and that EGFR is a potential therapeutic target for pemphigus. Small-molecule inhibitors and monoclonal antibodies directed against EGFR are currently used to treat several types of solid tumors. This study provides the experimental rationale for investigating the use of EGFR inhibitors in pemphigus. PMID:23404504
NASA Astrophysics Data System (ADS)
Deyati, Avisek; Bagewadi, Shweta; Senger, Philipp; Hofmann-Apitius, Martin; Novac, Natalia
2015-01-01
miRNA plays an important role in tumourgenesis by regulating expression of oncogenes and tumour suppressors. Thus affects cell proliferation and differentiation, apoptosis, invasion and angiogenesis. miRNAs are potential biomarkers for diagnosis, prognosis and therapies of different forms of cancer. However, relationship between response of cancer patients towards targeted therapy and the resulting modifications of the miRNA transcriptome in the context of pathway regulation is poorly understood. With ever-increasing pathways and miRNA-mRNA interaction databases, freely available mRNA and miRNA expression data in multiple cancer therapy have produced an unprecedented opportunity to decipher the role of miRNAs in early prediction of therapeutic efficacy in diseases. Efficient translation of -omics data and accumulated knowledge to clinical decision-making are of paramount scientific and public health interest. Well-structured translational algorithms are needed to bridge the gap from databases to decisions. Herein, we present a novel SMARTmiR algorithm to prospectively predict the role of miRNA as therapeutic biomarker for an anti-EGFR monoclonal antibody i.e. cetuximab treatment in colorectal cancer.
Manivasagan, Panchanathan; Bharathiraja, Subramaniyan; Santha Moorthy, Madhappan; Oh, Yun-Ok; Song, Kyeongeun; Seo, Hansu; Oh, Junghwan
2017-05-03
The development of novel photothermal ablation agents as cancer nanotheranostics has received a great deal of attention in recent decades. Biocompatible fucoidan (Fu) is used as the coating material for gold nanorods (AuNRs) and subsequently conjugated with monoclonal antibodies against epidermal growth factor receptor (anti-EGFR) as novel photothermal ablation agents for cancer nanotheranostics because of their excellent biocompatibility, biodegradability, nontoxicity, water solubility, photostability, ease of surface modification, strongly enhanced absorption in near-infrared (NIR) regions, target specificity, minimal invasiveness, fast recovery, and prevention of damage to normal tissues. Anti-EGFR Fu-AuNRs have an average particle size of 96.37 ± 3.73 nm. Under 808 nm NIR laser at 2 W/cm 2 for 5 min, the temperature of the solution containing anti-EGFR Fu-AuNRs (30 μg/mL) increased by 52.1 °C. The anti-EGFR Fu-AuNRs exhibited high efficiency for the ablation of MDA-MB-231 cells in vitro. In vivo photothermal ablation exhibited that tumor tissues fully recovered without recurrence and finally were reconstructed with normal tissues by the 808 nm NIR laser irradiation after injection of anti-EGFR Fu-AuNRs. These results suggest that the anti-EGFR Fu-AuNRs would be novel photoablation agents for future cancer nanotheranostics.
Goux, Marine; Becker, Guillaume; Gorré, Harmony; Dammicco, Sylvestre; Desselle, Ariane; Egrise, Dominique; Leroi, Natacha; Lallemand, François; Bahri, Mohamed Ali; Doumont, Gilles; Plenevaux, Alain; Cinier, Mathieu; Luxen, André
2017-09-20
Epidermal growth-factor receptor (EGFR) is involved in cell growth and proliferation and is over-expressed in malignant tissues. Although anti-EGFR-based immunotherapy became a standard of care for patients with EGFR-positive tumors, this strategy of addressing cancer tumors by targeting EGFR with monoclonal antibodies is less-developed for patient diagnostic and monitoring. Indeed, antibodies exhibit a slow blood clearance, which is detrimental for positron emission tomography (PET) imaging. New molecular probes are proposed to overcome such limitations for patient monitoring, making use of low-molecular-weight protein scaffolds as alternatives to antibodies, such as Nanofitins with better pharmacokinetic profiles. Anti-EGFR Nanofitin B10 was reformatted by genetic engineering to exhibit a unique cysteine moiety at its C-terminus, which allows the development of a fast and site-specific radiolabeling procedure with 18 F-4-fluorobenzamido-N-ethylamino-maleimide ( 18 F-FBEM). The in vivo tumor targeting and imaging profile of the anti-EGFR Cys-B10 Nanofitin was investigated in a double-tumor xenograft model by static small-animal PET at 2 h after tail-vein injection of the radiolabeled Nanofitin 18 F-FBEM-Cys-B10. The image showed that the EGFR-positive tumor (A431) is clearly delineated in comparison to the EGFR-negative tumor (H520) with a significant tumor-to-background contrast. 18 F-FBEM-Cys-B10 demonstrated a significantly higher retention in A431 tumors than in H520 tumors at 2.5 h post-injection with a A431-to-H520 uptake ratio of 2.53 ± 0.18 and a tumor-to-blood ratio of 4.55 ± 0.63. This study provides the first report of Nanofitin scaffold used as a targeted PET radiotracer for in vivo imaging of EGFR-positive tumor, with the anti-EGFR B10 Nanofitin used as proof-of-concept. The fast generation of specific Nanofitins via a fully in vitro selection process, together with the excellent imaging features of the Nanofitin scaffold, could facilitate the development of valuable PET-based companion diagnostics.
D'Alessio, Andrea; Cecchini, Sara; Di Mauro, Daniela; Geroli, Luca; Villa, Simonetta; Quadri, Antonello; Resta, Davide; Fortugno, Carmelo
2016-11-11
Cetuximab and panitumumab are monoclonal antibody inhibitors that bind the epidermal growth factor receptor (EGFR) currently used in the treatment of metastatic colorectal cancer. The main adverse event related to EGFR inhibitors (EGFR-Is) is cutaneous toxicity, which can cause dosage reduction and interruption of treatment. State-of-the-art management of skin toxicity associated with EGFR-Is therapy involves the topical administration of corticosteroids and oral antibiotics, but is not completely effective in the management of toxicity. Subcutaneous desensitization with increasing concentrations of monoclonal antibodies can induce a tolerance to drug administration and reduce cutaneous adverse effects. To our knowledge, this is the first case in which a reduction or a disappearance of skin toxicity caused by EGFR-Is through subcutaneous desensitization has been achieved. We present cases of 2 Caucasian patients with adenocarcinoma of the colon treated with EGFR-Is who developed severe cutaneous toxicity. A 73-year-old man presented grade 4 skin toxicity of the face and grade 3 skin toxicity of the trunk during treatment with cetuximab. A 68-year-old woman developed G2 rash on the face after the first administration of cetuximab. These patients underwent subcutaneous desensitization with increasing concentrations of EGFR-Is. After this procedure, patients restarted therapy at the optimal dosage with reduction or disappearance of skin toxicity. These cases suggest that by giving rising doses of antibody it is possible to obtain desensitization able to prevent severe cutaneous adverse events in patients treated with EGFR-Is.
Niesen, Judith; Stein, Christoph; Brehm, Hannes; Hehmann-Titt, Grit; Fendel, Rolf; Melmer, Georg; Fischer, Rainer; Barth, Stefan
2015-12-01
The epidermal growth factor receptor (EGFR) is overexpressed in many solid tumors. EGFR-specific monoclonal antibodies (mAbs), such as cetuximab and panitumumab, have been approved for the treatment of colorectal and head and neck cancer. To increase tissue penetration, we constructed single-chain fragment variable (scFv) antibodies derived from these mAbs and evaluated their potential for targeted cancer therapy. The resulting scFv-based EGFR-specific immunotoxins (ITs) combine target specificity of the full-size mAb with the cell-killing activity of a toxic effector domain, a truncated version of Pseudomonas exotoxin A (ETA'). The ITs and corresponding imaging probes were tested in vitro against four solid tumor entities (rhabdomyosarcoma, breast, prostate and pancreatic cancer). Specific binding and internalization of the ITs scFv2112-ETA' (from cetuximab) and scFv1711-ETA' (from panitumumab) were demonstrated by flow cytometry and for the scFv-SNAP-tag imaging probes by live cell imaging. Cytotoxic potential of the ITs was analyzed in cell viability and apoptosis assays. Binding of the ITs was proofed ex vivo on rhabdomyosarcoma, prostate and breast cancer formalin-fixed paraffin-embedded biopsies. Both novel ITs showed significant pro-apoptotic and anti-proliferative effects toward the target cells, achieving IC50 values of 4 pM (high EGFR expression) to 460 pM (moderate EGFR expression). Additionally, rapid internalization and specific in vitro and ex vivo binding on patient tissue were confirmed. These data demonstrate the potent therapeutic activity of two novel EGFR-specific ETA'-based ITs. Both molecules are promising candidates for further development toward clinical use in the treatment of various solid tumors to supplement the existing therapeutic regimes.
Kozakiewicz, Paulina; Grzybowska-Szatkowska, Ludmiła
2018-05-01
Despite the development of standard therapies, including surgery, radiotherapy and chemotherapy, survival rates for head and neck squamous cell carcinoma (HNSCC) have not changed significantly over the past three decades. Complete recovery is achieved in <50% of patients. The treatment of advanced HNSCC frequently requires multimodality therapy and involves significant toxicity. The promising, novel treatment option for patients with HNSCC is molecular-targeted therapies. The best known targeted therapies include: Epidermal growth factor receptor (EGFR) monoclonal antibodies (cetuximab, panitumumab, zalutumumab and nimotuzumab), EGFR tyrosine kinase inhibitors (gefitinib, erlotinib, lapatinib, afatinib and dacomitinib), vascular endothelial growth factor (VEGF) inhibitor (bevacizumab) or vascular endothelial growth factor receptor (VEGFR) inhibitors (sorafenib, sunitinib and vandetanib) and inhibitors of phosphatidylinositol 3-kinase/serine/threonine-specific protein kinase/mammalian target of rapamycin. There are also various inhibitors of other pathways and targets, which are promising and require evaluation in further studies.
Nakamura, Haruhiko; Koizumi, Hirotaka; Kimura, Hiroyuki; Marushima, Hideki; Saji, Hisashi; Takagi, Masayuki
2016-09-01
Epidermal growth factor receptor (EGFR) mutation rates in adenocarcinoma in situ (AIS) and minimally invasive adenocarcinoma (MIA) were studied using both DNA analysis and mutation-specific immunohistochemistry. The peptide nucleic acid-locked nucleic acid polymerase chain reaction clamp method was used to detect mutations in exons 18, 19, 20, and 21 of the EGFR gene in DNA samples extracted from paraffin-embedded tissue sections. Simultaneously, immunohistochemical analysis with two EGFR mutation-specific monoclonal antibodies was used to identify proteins resulting from an in-frame deletion in exon 19 (E746_A750del) and a point mutation replacing leucine with arginine at codon 858 of exon 21 (L858R). Forty-three tumors (22 AIS and 21 MIA) were examined. The EGFR mutation rate in AIS detected by DNA analysis was 27.3% (L858R, 5/22; exon 19 deletion,1/22), whereas that detected in MIA was 42.9% (L858R,4/21; exon 19 deletion,5/21). Mutations detected by immunohistochemical analysis included 22.7% (L858R, 4/22; exon 19 deletion, 1/22) in AIS and 42.9% (L858R, 4/21; exon 19 deletion, 5/21) in MIA. Although some results were contradictory, concordant results were obtained using both assays in 38 of 43 cases (88.4%). DNA and immunohistochemical analyses revealed similar EGFR mutation rates in both MIA and AIS, suggesting that mutation-specific monoclonal antibodies are useful to confirm DNA assay results. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Nagaya, Tadanobu; Okuyama, Shuhei; Ogata, Fusa; Maruoka, Yasuhiro; Knapp, Deborah W; Karagiannis, Sophia N; Fazekas-Singer, Judit; Choyke, Peter L; LeBlanc, Amy K; Jensen-Jarolim, Erika; Kobayashi, Hisataka
2018-04-10
Anti-epidermal growth factor receptor (EGFR) antibody therapy is used in EGFR expressing cancers including lung, colon, head and neck, and bladder cancers, however results have been modest. Near infrared photoimmunotherapy (NIR-PIT) is a highly selective tumor treatment that employs an antibody-photo-absorber conjugate which is activated by NIR light. NIR-PIT is in clinical trials in patients with recurrent head and neck cancers using cetuximab-IR700 as the conjugate. However, its use has otherwise been restricted to mouse models. This is an effort to explore larger animal models with NIR-PIT. We describe the use of a recombinant canine anti-EGFR monoclonal antibody (mAb), can225IgG, conjugated to the photo-absorber, IR700DX, in three EGFR expressing canine transitional cell carcinoma (TCC) cell lines as a prelude to possible canine clinical studies. Can225-IR700 conjugate showed specific binding and cell-specific killing after NIR-PIT on EGFR expressing cells in vitro . In the in vivo study, can225-IR700 conjugate demonstrated accumulation of the fluorescent conjugate with high tumor-to-background ratio. Tumor-bearing mice were separated into 4 groups: (1) no treatment; (2) 100 µg of can225-IR700 i.v. only; (3) NIR light exposure only; (4) 100 µg of can225-IR700 i.v., NIR light exposure. Tumor growth was significantly inhibited by NIR-PIT treatment compared with the other groups ( p < 0.001), and significantly prolonged survival was achieved ( p < 0.001 vs. other groups) in the treatment groups. In conclusion, NIR-PIT with can225-IR700 is a promising treatment for canine EGFR-expressing cancers, including invasive transitional cell carcinoma in pet dogs, that could provide a pathway to translation to humans.
Nagaya, Tadanobu; Okuyama, Shuhei; Ogata, Fusa; Maruoka, Yasuhiro; Knapp, Deborah W.; Karagiannis, Sophia N.; Fazekas-Singer, Judit; Choyke, Peter L.; LeBlanc, Amy K.; Jensen-Jarolim, Erika; Kobayashi, Hisataka
2018-01-01
Anti-epidermal growth factor receptor (EGFR) antibody therapy is used in EGFR expressing cancers including lung, colon, head and neck, and bladder cancers, however results have been modest. Near infrared photoimmunotherapy (NIR-PIT) is a highly selective tumor treatment that employs an antibody-photo-absorber conjugate which is activated by NIR light. NIR-PIT is in clinical trials in patients with recurrent head and neck cancers using cetuximab-IR700 as the conjugate. However, its use has otherwise been restricted to mouse models. This is an effort to explore larger animal models with NIR-PIT. We describe the use of a recombinant canine anti-EGFR monoclonal antibody (mAb), can225IgG, conjugated to the photo-absorber, IR700DX, in three EGFR expressing canine transitional cell carcinoma (TCC) cell lines as a prelude to possible canine clinical studies. Can225-IR700 conjugate showed specific binding and cell-specific killing after NIR-PIT on EGFR expressing cells in vitro. In the in vivo study, can225-IR700 conjugate demonstrated accumulation of the fluorescent conjugate with high tumor-to-background ratio. Tumor-bearing mice were separated into 4 groups: (1) no treatment; (2) 100 µg of can225-IR700 i.v. only; (3) NIR light exposure only; (4) 100 µg of can225-IR700 i.v., NIR light exposure. Tumor growth was significantly inhibited by NIR-PIT treatment compared with the other groups (p < 0.001), and significantly prolonged survival was achieved (p < 0.001 vs. other groups) in the treatment groups. In conclusion, NIR-PIT with can225-IR700 is a promising treatment for canine EGFR-expressing cancers, including invasive transitional cell carcinoma in pet dogs, that could provide a pathway to translation to humans. PMID:29721181
Krippendorff, Ben-Fillippo; Oyarzún, Diego A; Huisinga, Wilhelm
2012-04-01
Cell-level kinetic models for therapeutically relevant processes increasingly benefit the early stages of drug development. Later stages of the drug development processes, however, rely on pharmacokinetic compartment models while cell-level dynamics are typically neglected. We here present a systematic approach to integrate cell-level kinetic models and pharmacokinetic compartment models. Incorporating target dynamics into pharmacokinetic models is especially useful for the development of therapeutic antibodies because their effect and pharmacokinetics are inherently interdependent. The approach is illustrated by analysing the F(ab)-mediated inhibitory effect of therapeutic antibodies targeting the epidermal growth factor receptor. We build a multi-level model for anti-EGFR antibodies by combining a systems biology model with in vitro determined parameters and a pharmacokinetic model based on in vivo pharmacokinetic data. Using this model, we investigated in silico the impact of biochemical properties of anti-EGFR antibodies on their F(ab)-mediated inhibitory effect. The multi-level model suggests that the F(ab)-mediated inhibitory effect saturates with increasing drug-receptor affinity, thereby limiting the impact of increasing antibody affinity on improving the effect. This indicates that observed differences in the therapeutic effects of high affinity antibodies in the market and in clinical development may result mainly from Fc-mediated indirect mechanisms such as antibody-dependent cell cytotoxicity.
Sym004, a Novel EGFR Antibody Mixture, Can Overcome Acquired Resistance to Cetuximab1
Iida, Mari; Brand, Toni M; Starr, Megan M; Li, Chunrong; Huppert, Evan J; Luthar, Neha; Pedersen, Mikkel W; Horak, Ivan D; Kragh, Michael; Wheeler, Deric L
2013-01-01
The epidermal growth factor receptor (EGFR) is a central regulator of tumor progression in a variety of human cancers. Cetuximab is an anti-EGFR monoclonal antibody that has been approved for head and neck and colorectal cancer treatment, but many patients treated with cetuximab don't respond or eventually acquire resistance. To determine how tumor cells acquire resistance to cetuximab, we previously developed a model of acquired resistance using the non-small cell lung cancer line NCI-H226. These cetuximab-resistant (CtxR) cells exhibit increased steady-state EGFR expression secondary to alterations in EGFR trafficking and degradation and, further, retained dependence on EGFR signaling for enhanced growth potential. Here, we examined Sym004, a novel mixture of antibodies directed against distinct epitopes on the extracellular domain of EGFR, as an alternative therapy for CtxR tumor cells. Sym004 treatment of CtxR clones resulted in rapid EGFR degradation, followed by robust inhibition of cell proliferation and down-regulation of several mitogen-activated protein kinase pathways. To determine whether Sym004 could have therapeutic benefit in vivo, we established de novo CtxR NCI-H226 mouse xenografts and subsequently treated CtxR tumors with Sym004. Sym004 treatment of mice harboring CtxR tumors resulted in growth delay compared to mice continued on cetuximab. Levels of total and phospho-EGFR were robustly decreased in CtxR tumors treated with Sym004. Immunohistochemical analysis of these Sym004-treated xenograft tumors further demonstrated decreased expression of Ki67, and phospho-rpS6, as well as a modest increase in cleaved caspase-3. These results indicate that Sym004 may be an effective targeted therapy for CtxR tumors. PMID:24204198
In vivo imaging of protease activity by Probody therapeutic activation
Wong, Kenneth R.; Menendez, Elizabeth; Craik, Charles S.; Kavanaugh, W. Michael; Vasiljeva, Olga
2017-01-01
Probody™ therapeutics are recombinant, proteolytically-activated antibody prodrugs, engineered to remain inert until activated locally by tumor-associated proteases. Probody therapeutics exploit the fundamental dysregulation of extracellular protease activity that exists in tumors relative to healthy tissue. Leveraging the ability of a Probody therapeutic to bind its target at the site of disease after proteolytic cleavage, we developed a novel method for profiling protease activity in living animals. Using NIR optical imaging, we demonstrated that a non-labeled anti-EGFR Probody therapeutic can become activated and compete for binding to tumor cells in vivo with a labeled anti-EGFR monoclonal antibody. Furthermore, by inhibiting matriptase activity in vivo with a blocking-matriptase antibody, we show that the ability of the Probody therapeutic to bind EGFR in vivo was dependent on protease activity. These results demonstrate that in vivo imaging of Probody therapeutic activation can be used for screening and characterization of protease activity in living animals, and provide a method that avoids some of the limitations of prior methods. This approach can improve our understanding of the activity of proteases in disease models and help to develop efficient strategies for cancer diagnosis and treatment. PMID:26546838
Sreeranganathan, Maya; Uthaman, Saji; Sarmento, Bruno; Mohan, Chethampadi Gopi; Park, In-Kyu; Jayakumar, Rangasamy
2017-01-01
Epidermal growth factor receptor (EGFR), upregulated in gastric cancer patients, is an oncogene of interest in the development of targeted cancer nanomedicines. This study demonstrates in silico modeling of monoclonal antibody cetuximab (CET MAb)-conjugated docetaxel (DOCT)-loaded poly(γ-glutamic acid) (γ-PGA) nanoparticles (Nps) and evaluates the in vitro/in vivo effects on EGFR-overexpressing gastric cancer cells (MKN-28). Nontargeted DOCT-γ-PGA Nps (NT Nps: 110±40 nm) and targeted CET MAb-DOCT-γ-PGA Nps (T Nps: 200±20 nm) were prepared using ionic gelation followed by 1-Ethyl-3-(3-dimethyl aminopropyl)carbodiimide-N-Hydoxysuccinimide (EDC-NSH) chemistry. Increased uptake correlated with enhanced cytotoxicity induced by targeted Nps to EGFR +ve MKN-28 compared with nontargeted Nps as evident from MTT and flow cytometric assays. Nanoformulated DOCT showed a superior pharmacokinetic profile to that of free DOCT in Swiss albino mice, indicating the possibility of improved therapeutic effect in the disease model. Qualitative in vivo imaging showed early and enhanced tumor targeted accumulation of CET MAb-DOCT-γ-PGA Nps in EGFR +ve MKN-28-based gastric cancer xenograft, which exhibited efficient arrest of tumor growth compared with nontargeted Nps and free DOCT. Thus, actively targeted CET MAb-DOCT-γ-PGA Nps could be developed as a substitute to conventional nonspecific chemotherapy, and hence could become a feasible strategy for cancer therapy for EGFR-overexpressing gastric tumors.
Day, Kristine E.; Sweeny, Larissa; Kulbersh, Brian; Zinn, Kurt R.; Rosenthal, Eben L.
2014-01-01
Purpose: Though various targets have been proposed and evaluated, no agent has yet been investigated in a clinical setting for head and neck cancer. The present study aimed to compare two fluorescently labeled anti-epidermal growth factor receptor (EGFR) antibodies for detection of head and neck squamous cell carcinoma (HNSCC). Procedures: Antigen specificities and in vitro imaging of the fluorescently labeled anti-EGFR antibodies were performed. Next, immunodeficient mice (n=22) bearing HNSCC (OSC-19 and SCC-1) tongue tumors received systemic injections of cetuximab-IRDye800CW, panitumumab-IRDye800CW, or IgG-IRDye800CW (a nonspecific control). Tumors were imaged and resected using two near-infrared imaging systems, SPY and Pearl. Fluorescent lymph nodes were also identified, and all resected tissues were sent for pathology. Results: Panitumumab-IRDye800CW and cetuximab-IRDye800CW had specific and high affinity binding for EGFR (KD=0.12 and 0.31 nM, respectively). Panitumumab-IRDye800CW demonstrated a 2-fold increase in fluorescence intensity compared to cetuximab-IRDye800CW in vitro. In vivo, both fluorescently labeled antibodies produced higher tumor-to-background ratios compared to IgG-IRDye800CW. However, there was no significant difference between the two in either cell line or imaging modality (OSC-19: p=0.08 SPY, p=0.48 Pearl; SCC-1: p=0.77 SPY, p=0.59 Pearl; paired t tests). Conclusions: There was no significant difference between the two fluorescently labeled anti-EGFR monoclonal antibodies in murine models of HNSCC. Both cetuximab and panitumumab can be considered suitable targeting agents for fluorescent intraoperative detection of HNSCC. PMID:23715932
Lin, Chien-Chen; Ni, Mei-Hui; Chang, Yu-Chung; Yeh, Hsiu-Lun; Lin, Feng-Huei
2010-11-01
Monoclonal antibodies (mAbs) have been proven useful in research and clinical applications. However, the generation of mAbs by conventional hybridoma technology is time-, cost- and labor-consuming. Here we developed a simplified procedure for efficient generation and selection of antibody-producing hybridomas within 1 h, using a particular cell sorter design, a cytoflow reactor-based cell sorter (CBCS) which consists mainly of the "cytoflow reactor" that comprises two components, a reaction chamber and a glass tubing for air and medium exchange by gravity, and the "sorting material", human EGFR-conjugated bamboo charcoal, for specific B-cell enrichment. The high surface area and porous structure of bamboo charcoal greatly increased cell density and protein production. Moreover, from Raman, FT-IR spectroscopy and IFA analysis, the carboxylation and immobilization of bamboo charcoal can be introduced easily by nitric acid treatment and conjugated handily with human EGFR using EDC/NHS. Other evidences, such as IFA, showed that the specific hybridomas generated in this study could secrete specific anti-human EGFR antibodies. Our design allows the production of mAbs while avoiding time-consuming steps, such as large numbers of limiting dilutions and screening assays, and demonstrates that the CBCS could be a powerful tool for monoclonal antibody production. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Targeted therapy in esophageal cancer.
Zhang, Lei; Ma, Jiaojiao; Han, Yu; Liu, Jinqiang; Zhou, Wei; Hong, Liu; Fan, Daiming
2016-01-01
An increasing number of patients are diagnosed with esophageal cancer at an advanced stages, and only a small group of them can benefit from the traditional chemotherapy and radiotherapy. So far, multiple monoclonal antibodies and tyrosine kinase inhibitors have been developed, alone or in combination with traditional therapy, to improve the prognosis of patients with advanced esophageal cancer. This review summarizes the recent advances of targeted therapies against EGFR, HER2, VEGFR and c-MET in esophageal cancer. More clinical trials should be performed to evaluate the efficacy and safety of various targeted therapy regimens. Future basic research should focus on investigating the molecular mechanisms of therapeutic targets in esophageal cancer.
Zaoui, K; Bossow, S; Grossardt, C; Leber, M F; Springfeld, C; Plinkert, P K; Kalle, C von; Ungerechts, G
2012-03-01
First-line treatment of recurrent and/or refractory head and neck squamous cell carcinoma (HNSCC) is based on platinum, 5-fluorouracil (5-FU) and the monoclonal antiEGFR antibody cetuximab. However, in most cases this chemoimmunotherapy does not cure the disease, and more than 50% of HNSCC patients are dying because of local recurrence of the tumors. In the majority of cases, HNSCC overexpress the epidermal growth factor receptor (EGFR), and its presence is associated with a poor outcome. In this study, we engineered an EGFR-targeted oncolytic measles virus (MV), armed with the bifunctional enzyme cytosine deaminase/uracil phosphoribosyltransferase (CD/UPRT). CD/UPRT converts 5-fluorocytosine (5-FC) into the chemotherapeutic 5-FU, a mainstay of HNSCC chemotherapy. This virus efficiently replicates in and lyses primary HNSCC cells in vitro. Arming with CD/UPRT mediates efficient prodrug activation with high bystander killing of non-infected tumor cells. In mice bearing primary HNSCC xenografts, intratumoral administration of MV-antiEGFR resulted in statistically significant tumor growth delay and prolongation of survival. Importantly, combination with 5-FC is superior to virus-only treatment leading to significant tumor growth inhibition. Thus, chemovirotherapy with EGFR-targeted and CD/UPRT-armed MV is highly efficacious in preclinical settings with direct translational implications for a planned Phase I clinical trial of MV for locoregional treatment of HNSCC.
Clinical Application of Liquid Biopsy in Targeted Therapy of Metastatic Colorectal Cancer
Trojan, Jörg; Klein-Scory, Susanne; Koch, Christine; Schmiegel, Wolff
2017-01-01
Background. Colorectal cancers (CRC) shed DNA into blood circulation. There is growing evidence that the analysis of circulating tumor DNA can be effectively used for monitoring of disease, to track tumor heterogeneity and to evaluate response to treatment. Case Presentation. Here, we describe two cases of patients with advanced CRC. The first case is about a patient with no available tissue for analysis of RAS mutation status. Liquid biopsy revealed RAS-wild-type and the therapy with anti-EGFR (epidermal growth factor receptor) monoclonal antibody cetuximab could be initiated. In the second case, the mutational profile of a patient with initial wild-type RAS-status was continually tracked during the course of treatment. An acquired KRAS exon 3 mutation was detected. The number of KRAS mutated fragments decreased continuously after the discontinuation of the therapy with EGFR-specific antibodies. Conclusion. Liquid biopsy provides a rapid genotype result, which accurately reproduces the current mutation status of tumor tissue. Furthermore, liquid biopsy enables close monitoring of the onset of secondary resistance to anti-EGFR therapy. PMID:28232873
Clinical Application of Liquid Biopsy in Targeted Therapy of Metastatic Colorectal Cancer.
Trojan, Jörg; Klein-Scory, Susanne; Koch, Christine; Schmiegel, Wolff; Baraniskin, Alexander
2017-01-01
Background. Colorectal cancers (CRC) shed DNA into blood circulation. There is growing evidence that the analysis of circulating tumor DNA can be effectively used for monitoring of disease, to track tumor heterogeneity and to evaluate response to treatment. Case Presentation. Here, we describe two cases of patients with advanced CRC. The first case is about a patient with no available tissue for analysis of RAS mutation status. Liquid biopsy revealed RAS-wild-type and the therapy with anti-EGFR (epidermal growth factor receptor) monoclonal antibody cetuximab could be initiated. In the second case, the mutational profile of a patient with initial wild-type RAS-status was continually tracked during the course of treatment. An acquired KRAS exon 3 mutation was detected. The number of KRAS mutated fragments decreased continuously after the discontinuation of the therapy with EGFR-specific antibodies. Conclusion . Liquid biopsy provides a rapid genotype result, which accurately reproduces the current mutation status of tumor tissue. Furthermore, liquid biopsy enables close monitoring of the onset of secondary resistance to anti-EGFR therapy.
Ochoa, Maria Carmen; Minute, Luna; López, Ascensión; Pérez-Ruiz, Elisabeth; Gomar, Celia; Vasquez, Marcos; Inoges, Susana; Etxeberria, Iñaki; Rodriguez, Inmaculada; Garasa, Saray; Mayer, Jan-Peter Andreas; Wirtz, Peter; Melero, Ignacio; Berraondo, Pedro
2018-01-01
Enhancement of antibody-dependent cellular cytotoxicity (ADCC) may potentiate the antitumor efficacy of tumor-targeted monoclonal antibodies. Increasing the numbers and antitumor activity of NK cells is a promising strategy to maximize the ADCC of standard-of-care tumor-targeted antibodies. For this purpose, we have preclinically tested a recombinant chimeric protein encompassing the sushi domain of the IL15Rα, IL-15, and apolipoprotein A-I (Sushi-IL15-Apo) as produced in CHO cells. The size-exclusion purified monomeric fraction of this chimeric protein was stable and retained the IL-15 and the sushi domain bioactivity as measured by CTLL-2 and Mo-7e cell proliferation and STAT5 phosphorylation in freshly isolated human NK and CD8 + T cells. On cell cultures, Sushi-IL15-Apo increases NK cell proliferation and survival as well as spontaneous and antibody-mediated cytotoxicity. Scavenger receptor class B type I (SR-B1) is the receptor for ApoA-I and is expressed on the surface of tumor cells. SR-B1 can adsorb the chimeric protein on tumor cells and can transpresent IL-15 to NK and CD8 + T cells. A transient NK-humanized murine model was developed to test the increase of ADCC attained by the chimeric protein in vivo . The EGFR + human colon cancer cell line HT-29 was intraperitoneally inoculated in immune-deficient Rag2 -/- γc -/- mice that were reconstituted with freshly isolated PBMCs and treated with the anti-EGFR mAb cetuximab. The combination of the Sushi-IL15-Apo protein and cetuximab reduced the number of remaining tumor cells in the peritoneal cavity and delayed tumor engraftment in the peritoneum. Furthermore, Sushi-IL15-Apo increased the anti-tumor effect of a murine anti-EGFR mAb in Rag1 -/- mice bearing subcutaneous MC38 colon cancer transfected to express EGFR. Thus, Sushi-IL15-Apo is a potent tool to increase the number and the activation of NK cells to promote the ADCC activity of antibodies targeting tumor antigens.
BDNF/TrkB signaling protects HT-29 human colon cancer cells from EGFR inhibition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunetto de Farias, Caroline; Children's Cancer Institute, 90420-140 Porto Alegre, RS; Laboratory of Neuropharmacology and Neural Tumor Biology, Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, 90050-170 Porto Alegre, RS
2012-08-24
Highlights: Black-Right-Pointing-Pointer BDNF protected HT-29 colorectal cancer cells from the antitumor effect of cetuximab. Black-Right-Pointing-Pointer TrkB inhibition potentiated the antitumor effect of cetuximab. Black-Right-Pointing-Pointer BDNF/TrkB signaling might be involved in resistance to anti-EGFR therapy. -- Abstract: The clinical success of targeted treatment of colorectal cancer (CRC) is often limited by resistance to anti-epidermal growth factor receptor (EGFR) therapy. The neurotrophin brain-derived neurotrophic factor (BDNF) and its receptor TrkB have recently emerged as anticancer targets, and we have previously shown increased BDNF levels in CRC tumor samples. Here we report the findings from in vitro experiments suggesting that BDNF/TrkB signaling canmore » protect CRC cells from the antitumor effects of EGFR blockade. The anti-EGFR monoclonal antibody cetuximab reduced both cell proliferation and the mRNA expression of BDNF and TrkB in human HT-29 CRC cells. The inhibitory effect of cetuximab on cell proliferation and survival was counteracted by the addition of human recombinant BDNF. Finally, the Trk inhibitor K252a synergistically enhanced the effect of cetuximab on cell proliferation, and this effect was blocked by BDNF. These results provide the first evidence that increased BDNF/TrkB signaling might play a role in resistance to EGFR blockade. Moreover, it is possible that targeting TrkB could potentiate the anticancer effects of anti-EGFR therapy.« less
Structures of Adnectin/Protein Complexes Reveal an Expanded Binding Footprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramamurthy, Vidhyashankar; Krystek, Jr., Stanley R.; Bush, Alexander
2014-10-02
Adnectins are targeted biologics derived from the tenth type III domain of human fibronectin ({sup 10}Fn3), a member of the immunoglobulin superfamily. Target-specific binders are selected from libraries generated by diversifying the three {sup 10}Fn3 loops that are analogous to the complementarity determining regions of antibodies. The crystal structures of two Adnectins were determined, each in complex with its therapeutic target, EGFR or IL-23. Both Adnectins bind different epitopes than those bound by known monoclonal antibodies. Molecular modeling suggests that some of these epitopes might not be accessible to antibodies because of the size and concave shape of the antibodymore » combining site. In addition to interactions from the Adnectin diversified loops, residues from the N terminus and/or the {beta} strands interact with the target proteins in both complexes. Alanine-scanning mutagenesis confirmed the calculated binding energies of these {beta} strand interactions, indicating that these nonloop residues can expand the available binding footprint.« less
Sellmann, Carolin; Doerner, Achim; Knuehl, Christine; Rasche, Nicolas; Sood, Vanita; Krah, Simon; Rhiel, Laura; Messemer, Annika; Wesolowski, John; Schuette, Mark; Becker, Stefan; Toleikis, Lars; Kolmar, Harald; Hock, Bjoern
2016-01-01
Bispecific antibodies (bsAbs) and antibody-drug conjugates (ADCs) have already demonstrated benefits for the treatment of cancer in several clinical studies, showing improved drug selectivity and efficacy. In particular, simultaneous targeting of prominent cancer antigens, such as EGF receptor (EGFR) and c-MET, by bsAbs has raised increasing interest for potentially circumventing receptor cross-talk and c-MET-mediated acquired resistance during anti-EGFR monotherapy. In this study, we combined the selectivity of EGFR × c-MET bsAbs with the potency of cytotoxic agents via bispecific antibody-toxin conjugation. Affinity-attenuated bispecific EGFR × c-MET antibody-drug conjugates demonstrated high in vitro selectivity toward tumor cells overexpressing both antigens and potent anti-tumor efficacy. Due to basal EGFR expression in the skin, ADCs targeting EGFR in general warrant early safety assessments. Reduction in EGFR affinity led to decreased toxicity in keratinocytes. Thus, the combination of bsAb affinity engineering with the concept of toxin conjugation may be a viable route to improve the safety profile of ADCs targeting ubiquitously expressed antigens. PMID:27694443
Melancon, Marites P.; Lu, Wei; Yang, Zhi; Zhang, Rui; Cheng, Zhi; Elliot, Andrew M.; Stafford, Jason; Olson, Tammy; Zhang, Jin Z.; Li, Chun
2009-01-01
Laser-induced phototherapy is a new therapeutic use of electromagnetic radiation for cancer treatment. The use of targeted plasmonic gold nanoparticles can reduce the laser energy necessary for selective tumor cell destruction. However, the ability for targeted delivery of the currently used gold nanoparticles to tumor cells is limited. Here, we describe a new class of molecular specific photothermal coupling agents based on hollow gold nanoshells (HAuNS, average diameter ~30 nm) covalently attached to monoclonal antibody directed at epidermal growth factor receptor (EGFR). The resulting anti-EGFR-HAuNS exhibited excellent colloidal stability and efficient photothermal effect in the near-infrared region. EGFR-mediated, selective uptake of anti-EGFR-HAuNS in EGFR-positive A431 tumor cells but not IgG-HAuNS control was demonstrated in vitro by imaging scattered light from the nanoshells. Irradiation of A431 cells treated with anti-EGFR-HAuNS with near-infrared laser resulted in selective destruction of these cells. In contrast, cells treated with anti-EGFR-HAuNS alone, laser alone, or IgG-HAuNS plus laser did not show observable effect on cell viability. Using 111In-labeled HAuNS, we showed that anti-EGFR-HAuNS could be delivered to EGFR-positive tumors at 6.8% of injected dose per gram of tissue, and the microscopic image of excised tumor with scattering signal from nanoshells confirmed preferential delivery to A431 tumor of anti-EGFR-HAuNS compared with IgG-HAuNS. The absence of silica core, the relatively small particle size and high tumor uptake, and the absence of cytotoxic surfactant required to stabilize other gold nanoparticles suggest that immuno-hollow gold nanoshells have the potential to extend to in vivo molecular therapy. PMID:18566244
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaramillo, Maria L.; Leon, Zully; Grothe, Suzanne
The anti-receptor antibody, 225 mAb, is known to block binding of ligand to the epidermal growth factor receptor (EGFR). However, the effect of this neutralizing antibody on EGFR endocytosis, trafficking and degradation remains unclear. Here, we demonstrate that endocytosis of {sup 125}I-225 mAb occurs, albeit with a slower rate than that of EGF. Using pulse chase assays, we show that internalized {sup 125}I-225 mAb is recycled to the surface much more efficiently than internalized {sup 125}I-EGF. Also, we found that internalization of {sup 125}I-225 mAb, in contrast to that of EGF, is independent of receptor tyrosine kinase activity, as evidencedmore » by its insensitivity to AG1478, a specific EGFR tyrosine kinase inhibitor. Analysis of the levels of cell surface and total EGFR showed that treatment with 225 mAb results in a 30-40% decrease in surface EGFR and a relatively slow downregulation of total EGFR. Taken together, these data indicate that 225 mAb induces internalization and downregulation of EGFR via a mechanism distinct from that underlying EGF-induced EGFR internalization and downregulation.« less
Biomarkers that currently affect clinical practice: EGFR, ALK, MET, KRAS
Vincent, M.D.; Kuruvilla, M.S.; Leighl, N.B.; Kamel–Reid, S.
2012-01-01
New drugs such as pemetrexed, the epidermal growth factor receptor (egfr) tyrosine kinase inhibitors, and the Alk inhibitor crizotinib have recently enabled progress in the management of advanced non-small-cell lung cancer (nsclc). More drugs, especially Met inhibitors, will follow. However, the benefits of these agents are not uniform across the spectrum of nsclc, and optimizing their utility requires some degree of subgrouping of nsclc by the presence or absence of certain biomarkers. The biomarkers of current or imminent value are EGFR and KRAS mutational status, ALK rearrangements, and MET immunohistochemistry. As a predictor of benefit for anti-egfr monoclonal antibodies, EGFR immunohistochemistry is also of potential interest. Some of the foregoing biomarkers (EGFR, ALK, MET) are direct drivers of the malignant phenotype. As such, they are, quite rationally, the direct targets of inhibitory drugs. However, KRAS, while definitely a driver, has resisted attempts at direct pharmacologic manipulation, and its main value might lie in its role as part of an efficient testing algorithm, because KRAS mutations appear to exclude EGFR and ALK mutations. The indirect value of KRAS in determining sensitivity to other targeted agents or to pemetrexed remains controversial. The other biomarkers (EGFR, ALK, MET) may also have indirect value as predictors of sensitivity to chemotherapy in general, to pemetrexed specifically, and to radiotherapy and molecularly targeted agents. These biomarkers have all enabled the co-development of new drugs with companion diagnostics, and they illustrate the paradigm that will govern progress in oncology in the immediate future. However, in nsclc, the acquisition of sufficient biopsy material remains a stubborn obstacle to the evolution of novel targeted therapies. PMID:22787409
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okazaki, Shogo; Nakatani, Fumi; Masuko, Kazue
2016-01-29
The use of monoclonal antibodies (mAbs) for cancer therapy is one of the most important strategies for current cancer treatment. The epidermal growth factor receptor (EGFR) family of receptor tyrosine kinases, which regulates cancer cell proliferation, survival, and migration, is a major molecular target for antibody-based therapy. ErbB4/HER4, which contains a ligand-binding extracellular region, is activated by several ligands, including neuregulins (NRGs), heparin-binding EGF-like growth factor, betacellulin and epiregulin. Although there are clinically approved antibodies for ErbB1 and ErbB2, there are no available therapeutic mAbs for ErbB4, and it is not known whether ErbB4 is a useful target for antibody-basedmore » cancer therapy. In this study, we developed an anti-ErbB4 mAb (clone P6-1) that suppresses NRG-dependent activation of ErbB4 and examined its effect on breast cancer cell proliferation in the extracellular matrix. - Highlights: • We newly generated four clones of human ErbB4 specific mAb. • ErbB4 mAb clone P6-1 blocks ErbB4 phosphorylation induced by NRG-1. • ErbB4 mAb clone P6-1 suppresses NRG-1-promoted breast cancer cells proliferation on three dimensional culture condition.« less
Kim, Ji-Hun; Sim, Dae-Won; Park, Dongsun; Jung, Tai-Geun; Lee, Seonghwan; Oh, Taeheun; Ha, Jong-Ryul; Seok, Seung-Hyeon; Seo, Min-Duk; Kang, Ho Chul; Kim, Young Pil; Won, Hyung-Sik
2016-12-01
Fragment engineering of monoclonal antibodies (mAbs) has emerged as an excellent paradigm to develop highly efficient therapeutic and/or diagnostic agents. Engineered mAb fragments can be economically produced in bacterial systems using recombinant DNA technologies. In this work, we established recombinant production in Escherichia coli for monovalent antigen-binding fragment (Fab) adopted from a clinically used anticancer mAB drug cetuximab targeting epidermal growth factor receptor (EGFR). Recombinant DNA constructs were designed to express both polypeptide chains comprising Fab in a single vector and to secrete them to bacterial periplasmic space for efficient folding. Particularly, a C-terminal engineering to confer an interchain disulfide bond appeared to be able to enhance its heterodimeric integrity and EGFR-binding activity. Conformational relevance of the purified final product was validated by mass spectrometry and crystal structure at 1.9 Å resolution. Finally, our recombinant cetuximab-Fab was found to have strong binding affinity to EGFR overexpressed in human squamous carcinoma model (A431) cells. Its binding ability was comparable to that of cetuximab. Its EGFR-binding affinity was estimated at approximately 0.7 nM of Kd in vitro, which was quite stronger than the binding affinity of natural ligand EGF. Hence, the results validate that our construction could serve as an efficient platform to produce a recombinant cetuximab-Fab with a retained antigen-binding functionality.
Wilkinson, Trevor C I
2016-06-15
The development of recombinant antibody therapeutics is a significant area of growth in the pharmaceutical industry with almost 50 approved monoclonal antibodies on the market in the US and Europe. Despite this growth, however, certain classes of important molecular targets have remained intractable to therapeutic antibodies due to complexity of the target molecules. These complex target molecules include G-protein-coupled receptors and ion channels which represent a large potential target class for therapeutic intervention with monoclonal antibodies. Although these targets have typically been addressed by small molecule approaches, the exquisite specificity of antibodies provides a significant opportunity to provide selective modulation of these target proteins. Given this opportunity, substantial effort has been applied to address the technical challenges of targeting these complex membrane proteins with monoclonal antibodies. In this review recent progress made in the strategies for discovery of functional monoclonal antibodies for these challenging membrane protein targets is addressed. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.
Itai, Shunsuke; Yamada, Shinji; Kaneko, Mika K; Chang, Yao-Wen; Harada, Hiroyuki; Kato, Yukinari
2017-12-01
Epidermal growth factor receptor (EGFR), a receptor tyrosine kinase, activates downstream signaling cascades in many tumors. In this study, we established novel anti-EGFR monoclonal antibodies (mAbs) and characterized their efficacy in flow cytometry, Western blot, and immunohistochemical analyses. We immunized mice with a combination of the extracellular domain of EGFR and EGFR-overexpressing LN229 glioblastoma cells (LN229/EGFR) and performed the first screening using enzyme-linked immunosorbent assay. Next, we selected mAbs using flow cytometry. Among 156 established clones, two mAbs, EMab-51 (IgG 1 , kappa) and EMab-134 (IgG 1 , kappa), reacted with EGFR in Western blot analysis; EMab-134 showed a much higher sensitivity compared with EMab-51. We compared the binding affinities of EMab-51 and EMab-134 using flow cytometry; the calculated K D values for EMab-51 and EMab-134 against SAS cells/HSC-2 cells were 9.2 × 10 -9 M/9.9 × 10 -9 M and 2.6 × 10 -9 M/8.3 × 10 -9 M, respectively, indicating that EMab-134 has a higher affinity to EGFR-expressing cells. Immunohistochemical analysis of EMab-51 and EMab-134 showed sensitive and specific reactions against oral cancer cells; EMab-134 demonstrated a much higher sensitivity (36/38 cases; 94.7%) to oral squamous cell carcinomas compared with EMab-51 (6/38 cases; 15.8%). This novel anti-EGFR mAb, EMab-134, could be advantageous for detecting EGFR in the pathological analysis of EGFR-expressing cancers.
ZnO thin film transistor immunosensor with high sensitivity and selectivity
NASA Astrophysics Data System (ADS)
Reyes, Pavel Ivanoff; Ku, Chieh-Jen; Duan, Ziqing; Lu, Yicheng; Solanki, Aniruddh; Lee, Ki-Bum
2011-04-01
A zinc oxide thin film transistor-based immunosensor (ZnO-bioTFT) is presented. The back-gate TFT has an on-off ratio of 108 and a threshold voltage of 4.25 V. The ZnO channel surface is biofunctionalized with primary monoclonal antibodies that selectively bind with epidermal growth factor receptor (EGFR). Detection of the antibody-antigen reaction is achieved through channel carrier modulation via pseudo double-gating field effect caused by the biochemical reaction. The sensitivity of 10 fM detection of pure EGFR proteins is achieved. The ZnO-bioTFT immunosensor also enables selectively detecting 10 fM of EGFR in a 5 mg/ml goat serum solution containing various other proteins.
Koustas, Evangelos; Karamouzis, Michalis V; Mihailidou, Chrysovalantou; Schizas, Dimitrios; Papavassiliou, Athanasios G
2017-06-28
The epidermal growth factor receptor (EGFR) and its associated pathway is a critical key regulator of CRC development and progression. The monoclonal antibodies (MoAbs) cetuximab and panitumumab, directed against EGFR, represent a major step forward in the treatment of metastatic colorectal cancer (mCRC), in terms of progression-free survival and overall survival in several clinical trials. However, the activity of anti-EGFR MoAbs appears to be limited to a subset of patients with mCRC. Studies have highlighted that acquired-resistance to anti-EGFR MoAbs biochemically converge into Ras/Raf/Mek/Erk and PI3K/Akt/mTOR pathways. Recent data also suggest that acquired-resistance to anti-EGFR MoAbs is accompanied by inhibition of EGFR internalization, ubiqutinization, degradation and prolonged downregulation. It is well established that autophagy, a self-cannibalization process, is considered to be associated with resistance to the anti-EGFR MoAbs therapy. Additionally, autophagy induced by anti-EGFR MoAbs acts as a protective response in cancer cells. Thus, inhibition of autophagy after treatment with EGFR MoAbs can result in autophagic cell death. A combination therapy comprising of anti-EGFR MoAbs and autophagy inhibitors would represent a multi-pronged approach that could be evolved into an active therapeutic strategy in mCRC patients. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Liu, Jiao; Liang, Ying; Liu, Ting; Li, Dengke; Yang, Xingsheng
2015-05-01
The study aimed to confirm that anti-epidermal growth factor receptor (EGFR) monoclonal antibody-conjugated hollow gold nanospheres (anti-EGFR/HGNs) can be selectively uptaken by cervical cancer cells and induce its apoptosis when combined with radiotherapy, as a result enhancing radiosensitivity of cervical cancer cells. HGNs with a mean diameter of 54.6 ± 7.11 nm and wall thickness of 5.01 ± 2.23 nm were viewed by transmission electron microscopy (TEM). Cell uptake was assayed by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The cytotoxicity on HeLa cells, which were used in our experiment, was assessed by CCK-8 assay. Cell cycle and apoptosis were examined by an Annexin V-FITC/propidium iodide (PI) kit with flow cytometry (FCM). The expression of several critical apoptosis-related proteins, including Bcl-2, Bax, Bad, and active caspase 3, was tested by western blot analysis. Cells treated by anti-EGFR/HGNs showed an obvious increase in nanoparticle uptake compared to naked HGNs. Anti-EGFR/HGNs combined with radiation resulted in a significant growth inhibition, compared with radiation combined with naked HGNs. Anti-EGFR/HGNs remarkably increased the ratio of HeLa cells in the G2/M phase and induced more apoptosis by an obvious deregulation of Bcl-2 and upregulation of Bax, Bad, and caspase 3 when combined with radiation. Therefore, anti-EGFR/HGNs can increase the targeted uptake of HGNs by HeLa cells and enhance radiocytotoxic targeting of cervical cancer at megavoltage radiation energies.
ErbB receptors in the biology and pathology of the aerodigestive tract
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, Sarah; Suite 500, Pittsburgh, PA 15213; Grandis, Jennifer R.
2009-02-15
The most common sites of malignancies in the aerodigestive tract include the lung, head and neck and the esophagus. Esophageal adenocarcinomas (EA), esophageal squamous cell carcinomas (ESCC), and squamous cell carcinomas of the head and neck (SCCHN) are the primary focus of this review. Traditional treatment for aerodigestive tract cancers includes primary chemoradiotherapy (CRT) or surgical resection followed by radiation (or CRT). Recent developments in treatment have focused increasingly on molecular targeting strategies including cetuximab (a monoclonal antibody against epidermal growth factor receptor (EGFR)). Cetuximab was FDA approved in 2006 for treatment of SCCHN, underscoring the importance of understanding themore » biology of these malignancies. EGFR is a member of the ErbB family of growth factor receptor tyrosine kinases. The major pathways activated by ErbB receptors include Ras/Raf/MAPK; PI3K/AKT; PLC{gamma} and STATs, all of which lead to the transcription of target genes that may contribute to aerodigestive tumor progression. This review explores the expression of ErbB receptors in EA, ESCC and SCCHN and the signaling pathways of EGFR in SCCHN.« less
Zhu, Jianhong; Zhao, Wenxia; Liang, Dan; Li, Guocheng; Qiu, Kaifeng; Wu, Junyan; Li, Jianfang
2018-04-01
To evaluate the association between fatigue and anti-epidermal growth factor receptor monoclonal antibodies (anti-EGFR MAbs), we conducted the first meta-analysis to access the incidence and risk of fatigue associated with anti-EGFR MAbs. Electronic databases were searched for randomized controlled trials (RCTs) published up to February 2017. Eligible studies were selected according to PRISMA statement. Incidence rates, risk ratio (RRs), and 95% confidence intervals (CIs) were calculated using fixed-effects or random-effects models. Outcomes of quality were summarized in accordance with the GRADE (Grading of Recommendations Assessment, Development, and Evaluation) methodology. Thirty-five RCTs (including 15,622 patients) were included; median follow-up ranged from 8.1 to 71.4 months, and the fatigue events were recorded and graded according to the Common Toxicity Criteria for Adverse Events version 2.0 or 3.0 in most of the included trials. For patients receiving anti-EGFR MAbs, the overall incidence of all-grade and high-grade fatigue was 54.1% and 10.5%, respectively. Compared with control, anti-EGFR MAbs significantly increased the risk of all-grade fatigue (RR 1.10, 95% CI, 1.05-1.14, moderate-quality evidence) and high-grade fatigue (RR 1.31, 95% CI, 1.19-1.45, moderate-quality evidence). No significant differences among subgroup analyses (anti-EGFR MAbs, tumor type, and median follow-up) on high-grade fatigue were observed. No evidence of publication bias was observed. The present study suggested that anti-EGFR MAbs may increase the risk of fatigue in cancer patients.
Szymanska, Monika; Fosdahl, Anne M; Nikolaysen, Filip; Pedersen, Mikkel W; Grandal, Michael M; Stang, Espen; Bertelsen, Vibeke
2016-10-01
The human epidermal growth factor receptor 2 (HER2/ErbB2) is overexpressed in a number of human cancers. HER2 is the preferred heterodimerization partner for other epidermal growth factor receptor (EGFR) family members and is considered to be resistant to endocytic down-regulation, properties which both contribute to the high oncogenic potential of HER2. Antibodies targeting members of the EGFR family are powerful tools in cancer treatment and can function by blocking ligand binding, preventing receptor dimerization, inhibiting receptor activation and/or inducing receptor internalization and degradation. With respect to antibody-induced endocytosis of HER2, various results are reported, and the effect seems to depend on the HER2 expression level and whether antibodies are given as individual antibodies or as mixtures of two or more. In this study, the effect of a mixture of two monoclonal antibodies against non-overlapping epitopes of HER2 was investigated with respect to localization and stability of HER2. Individual antibodies had limited effect, but the combination of antibodies induced internalization and degradation of HER2 by multiple endocytic pathways. In addition, HER2 was phosphorylated and ubiquitinated upon incubation with the antibody combination, and the HER2 kinase activity was found to be instrumental in antibody-induced HER2 down-regulation. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
The EGF receptor family as targets for cancer therapy.
Mendelsohn, J; Baselga, J
2000-12-27
Human carcinomas frequently express high levels of receptors in the EGF receptor family, and overexpression of at least two of these receptors, the EGF receptor (EGFr) and closely related ErbB2, has been associated with a more aggressive clinical behavior. Further, transfection or activation of high levels of these two receptors in nonmalignant cell lines can lead to a transformed phenotype. For these reasons therapies directed at preventing the function of these receptors have the potential to be useful anti-cancer treatments. In the last two decades monoclonal antibodies (MAbs) which block activation of the EGFr and ErbB2 have been developed. These MAbs have shown promising preclinical activity and 'chimeric' and 'humanized' MAbs have been produced in order to obviate the problem of host immune reactions. Clinical activity with these antibodies has been documented: trastuzumab, a humanized anti-ErbB2 MAb, is active and was recently approved in combination with paclitaxel for the therapy of patients with metastatic ErbB2-overexpressing breast cancer; IMC-C225, a chimeric anti-EGFr MAb, has shown impressive activity when combined with radiation therapy and reverses resistance to chemotherapy. In addition to antibodies, compounds that directly inhibit receptor tyrosine kinases have shown preclinical activity and early clinical activity has been reported. A series of phase III studies with these antibodies and direct tyrosine kinase inhibitors are ongoing or planned, and will further address the role of these active anti-receptor agents in the treatment of patients with cancer.
Mytych, Jennifer; Satora, Leszek; Kozioł, Katarzyna
2018-02-01
Bronze corydoras (Corydoras aeneus) uses the distal part of the intestine as accessory respiratory organ. Our previous study showed the presence of epidermal growth factor receptor (EGFR) cytoplasmic domain in the digestive tract of the bronze corydoras. In this study, using Western Blot method, we validated the results presented in the previous research. In detail, results of Western Blot analysis on digestive and respiratory part of bronze corydoras intestine homogenates confirmed the immunoreactivity of anti-cytoplasmic domain (C-terminal) human EGFR antibodies with protein band of approximately 180kDa (EGFR molecular weight). This indicates a high homology of EGFR domain between these species and the possibility of such antibody use in bronze corydoras. Statistically significantly higher EGFR expression was observed in the respiratory part of intestine when compared to the digestive part. This implies higher proliferation activity and angiogenesis of epithelium in this part of intestine, creating conditions for air respiration. Therefore, Corydoras aeneus may be considered as a model organism for the molecular studies of the mechanisms of epithelial proliferation initiation and inhibition depending on hypoxia and normoxia. Copyright © 2017. Published by Elsevier GmbH.
Cancer immunotherapy by a recombinant phage vaccine displaying EGFR mimotope: an in vivo study.
Asadi-Ghalehni, Majid; Ghaemmaghami, Mohamad; Klimka, Alexander; Javanmardi, Masoud; Navari, Mohsen; Rasaee, Mohammad Javad
2015-06-01
To date, several small molecule inhibitors and monoclonal-antibodies (like ICR-62) have been used to treat tumors over-expressing epidermal growth factor receptor (EGFR). However, the limitations associated with these conventional applications accentuate the necessity of alternative approaches. Mimotopes as compelling molecular tools could rationally be employed to circumvent these drawbacks. In the present study, an M13 phage displaying ICR-62 binding peptide mimotope is exploited as a vaccine candidate. It exhibited high affinity towards ICR62 and polyclonal anti-P-BSA antibodies. Following the mice immunization, phage-based mimotope vaccine induced humoral immunity. Elicited anti-EGFR mimotope antibodies were detected using ELISA method. Moreover, the phage vaccine was tested on the Lewis lung carcinoma mice model to investigate the prophylactic and therapeutic effects. The tumor volume was measured and recorded in different animal groups to evaluate the anti-tumor effects of the vaccine. Our data indicate that the reported phage-based mimotope could potentially elicit specific antibodies resulting in low titers of EGFR-specific antibodies and reduced tumor growth. However, in vivo experiments of prophylactic or therapeutic vaccination showed no specific advantage. Furthermore, phage-mimotope vaccine might be a promising approach in the field of cancer immunotherapy.
Li, Kaichun; Li, Jin
2016-01-01
Despite the great progress in the treatment of gastric cancer, it is still the third leading cause of cancer death worldwide. Patients often miss the opportunity for a surgical cure, because the cancer has already developed into advanced cancer when identified. Compared to best supportive care, chemotherapy can improve quality of life and prolong survival time, but the overall survival is often short. Due to the molecular study of gastric cancer, new molecular targeted drugs have entered the clinical use. Trastuzumab, an antibody targeting human epidermal growth factor receptor 2 (HER2), can significantly improve survival in advanced gastric cancer patients with HER2 overexpression. Second-line treatment of advanced gastric cancer with ramucirumab, an antibody targeting VEGFR-2, alone or in combination with paclitaxel, has been proved to provide a beneficial effect. The VEGFR-2 tyrosine kinase inhibitor, apatinib, can improve the survival of advanced gastric cancer patients after second-line chemotherapy failure. Unfortunately, none of the EGFR targeting antibodies (cetuximab or panitumumab), VEGF targeting monoclonal antibodies (bevacizumab), mTOR inhibitor (everolimus), or HGF/MET pathway targeting drugs has a significant survival benefit. Many other clinical trials based on molecular markers are underway. This review will summarize targeted therapies for advanced gastric cancer. PMID:26880889
Chen, Hongwei; Wang, Liya; Yu, Qiqi; Qian, Weiping; Tiwari, Diana; Yi, Hong; Wang, Andrew Y; Huang, Jing; Yang, Lily; Mao, Hui
2013-01-01
Antifouling magnetic iron oxide nanoparticles (IONPs) coated with block copolymer poly(ethylene oxide)-block-poly(γ-methacryloxypropyltrimethoxysilane) (PEO-b-PγMPS) were investigated for improving cell targeting by reducing nonspecific uptake. Conjugation of a HER2 antibody, Herceptin®, or a single chain fragment (ScFv) of antibody against epidermal growth factor receptor (ScFvEGFR) to PEO-b-PγMPS-coated IONPs resulted in HER2-targeted or EGFR-targeted IONPs (anti-HER2-IONPs or ScFvEGFR-IONPs). The anti-HER2-IONPs bound specifically to SK-BR-3, a HER2-overexpressing breast cancer cell line, but not to MDA-MB-231, a HER2-underexpressing cell line. On the other hand, the ScFvEGFR-IONPs showed strong reactivity with MDA-MB-231, an EGFR-positive human breast cancer cell line, but not with MDA-MB-453, an EGFR-negative human breast cancer cell line. Transmission electron microscopy revealed internalization of the receptor-targeted nanoparticles by the targeted cancer cells. In addition, both antibody-conjugated and non-antibody-conjugated IONPs showed reduced nonspecific uptake by RAW264.7 mouse macrophages in vitro. The developed IONPs showed a long blood circulation time (serum half-life 11.6 hours) in mice and low accumulation in both the liver and spleen. At 24 hours after systemic administration of ScFvEGFR-IONPs into mice bearing EGFR-positive breast cancer 4T1 mouse mammary tumors, magnetic resonance imaging revealed signal reduction in the tumor as a result of the accumulation of the targeted IONPs. PMID:24124366
Sepulveda, Antonia R; Hamilton, Stanley R; Allegra, Carmen J; Grody, Wayne; Cushman-Vokoun, Allison M; Funkhouser, William K; Kopetz, Scott E; Lieu, Christopher; Lindor, Noralane M; Minsky, Bruce D; Monzon, Federico A; Sargent, Daniel J; Singh, Veena M; Willis, Joseph; Clark, Jennifer; Colasacco, Carol; Bryan Rumble, R; Temple-Smolkin, Robyn; B Ventura, Christina; Nowak, Jan A
2017-05-01
- To develop evidence-based guideline recommendations through a systematic review of the literature to establish standard molecular biomarker testing of colorectal cancer (CRC) tissues to guide epidermal growth factor receptor (EGFR) therapies and conventional chemotherapy regimens. - The American Society for Clinical Pathology, College of American Pathologists, Association for Molecular Pathology, and American Society of Clinical Oncology convened an expert panel to develop an evidence-based guideline to establish standard molecular biomarker testing and guide therapies for patients with CRC. A comprehensive literature search that included more than 4,000 articles was conducted. - Twenty-one guideline statements were established. - Evidence supports mutational testing for EGFR signaling pathway genes, since they provide clinically actionable information as negative predictors of benefit to anti-EGFR monoclonal antibody therapies for targeted therapy of CRC. Mutations in several of the biomarkers have clear prognostic value. Laboratory approaches to operationalize CRC molecular testing are presented.
Synthesis of 99mTc-nimotuzumab with tricarbonyl ion: in vitro and in vivo studies.
Garcia, Maria Fernanda; Camacho, Ximena; Calzada, Victoria; Fernandez, Marcelo; Porcal, Williams; Alonso, Omar; Gambini, Juan Pablo; Cabral, Pablo
2012-01-01
The Epidermal growth factor receptor (EGFR) family plays an important role in carcinogenesis. CIMAher® (Nimotuzumab), is a humanized monoclonal antibody, which recognizes EGFR with high affinity. The aim of this work was to perform the direct labeling of Nimotuzumab with [99mTc(CO)3(H2O)3]+ as precursor and to evaluate its labeling conditions, in vitro and in vivo stability and biodistrution in normal C57 BL/6J mice. 99mTc(CO3)-Nimotuzumab labeling yields were up to 90%. More than 90% of the complex remained intact after 24 h of incubation with L-Histidine (1/300 molar ratio). Biodistribution studies in normal mice were also performed. Inmunoreactivity was confirmed by cell binding assays with A431cells. These results encourage the evaluation of the potential role of 99mTc(CO)3-Nimotuzumab as a novel tumor-avid radiotracer for targeting in vivo EGFR expression.
Feng, Liang; Wang, Wei; Yao, Hang-Ping; Zhou, Jianwei; Zhang, Ruiwen; Wang, Ming-Hai
2015-01-01
Targeting receptor tyrosine kinases by therapeutic monoclonal antibodies and antibody-drug conjugates has met with tremendous success in clinical oncology. Currently, numerous therapeutic monoclonal antibodies are under preclinical development. The potential for moving candidate antibodies into clinical trials relies heavily on therapeutic efficacy validated by human tumor xenografts in mice. Here we describe methods used to determine therapeutic efficacy of monoclonal antibodies or antibody-drug conjugates specific to human receptor tyrosine kinase using human tumor xenografts in mice as the model. The end point of the study is to determine whether treatment of tumor-bearing mice with a monoclonal antibody or antibody-drug conjugates results in significant delay of tumor growth.
Aguilar-Company, J; Fernández-Ruiz, M; García-Campelo, R; Garrido-Castro, A C; Ruiz-Camps, I
2018-06-01
The present review is part of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Infections in Compromised Hosts (ESGICH) consensus document on the safety of targeted and biologic therapies. To review, from an infectious diseases perspective, the safety profile of therapies targeting cell surface receptors and associated signaling pathways among cancer patients and to suggest preventive recommendations. Computer-based Medline searches with MeSH terms pertaining to each agent or therapeutic family. Vascular endothelial growth factor (VEGF)-targeted agents (bevacizumab and aflibercept) are associated with a meaningful increase in the risk of infection, likely due to drug-induced neutropaenia, although no clear benefit is expected from the universal use of anti-infective prophylaxis. VEGF tyrosine kinase inhibitors (i.e. sorafenib or sunitinib) do not seem to significantly affect host's susceptibility to infection, and universal anti-infective prophylaxis is not recommended either. Anti-epidermal growth factor receptor (EGFR) monoclonal antibodies (cetuximab or panitumumab) induce neutropaenia and secondary skin and soft tissue infection in cases of severe papulopustular rash. Systemic antibiotics (doxycycline or minocycline) should be administered to prevent the latter complication, whereas no recommendation can be established on the benefit from antiviral, antifungal or anti-Pneumocystis prophylaxis. A lower risk of infection is reported for anti-ErbB2/HER2 monoclonal antibodies (trastuzumab and pertuzumab) and ErbB receptor tyrosine kinase inhibitors (including dual-EGFR/ErbB2 inhibitors such as lapatinib or neratinib) compared to conventional chemotherapy, presumably as a result of the decreased occurrence of drug-induced neutropaenia. With the exception of VEGF-targeted agents, the overall risk of infection associated with the reviewed therapies seems to be low. Copyright © 2018 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
[Current Possibilities for Predicting Responses to EGFR Blockade in Metastatic Colorectal Cancer].
Němeček, R; Svoboda, M; Slabý, O
2016-01-01
The combination of modern systemic chemotherapy and anti-EGFR monoclonal antibodies improves overall survival and quality of life for patients with metastatic colorecal cancer. By contrast, the addition of anti-EGFR therapy to the treatment regime of resistant patients may lead to worse progression-free survival and overall survival. Therefore, identifying sensitive and resistant patients prior to targeted therapy of metastatic colorecal cancer is a key point during the initial decision making process. Previous research shows that primary resistance to EGFR blockade is in most cases caused by constitutive activation of signaling pathways downstream of EGFR. Of all relevant factors (mutation of KRAS, NRAS, BRAF, and PIK3CA oncogenes, inactivation of tumor suppressors PTEN and TP53, amplification of EGFR and HER2, and expression of epiregulin and amphiregulin, mikroRNA miR-31-3p, and miR-31-5p), only evaluation of KRAS and NRAS mutations has entered routine clinical practice. The role of the other markers still needs to be validated. The ongoing benefit of anti-EGFR therapy could be indicated by specific clinical parameters measured after the initiation of targeted therapy, including early tumor shrinkage, the deepness of the response, or hypomagnesemia. The accuracy of predictive dia-gnostic tools could be also increased by examining a combination of predictive markers using next generation sequencing methods. However, unjustified investigation of many molecular markers should be resisted as this may complicate interpretation of the results, particularly in terms of their specific clinical relevance. The aim of this review is to describe current possibilities with respect to predicting responses to EGFR blockade in the context of the EGFR pathway, and the utilization of such results in routine clinical practice.
Zhang, Weina; Chen, Lechuang; Ma, Kai; Zhao, Yahui; Liu, Xianghe; Wang, Yu; Liu, Mei; Liang, Shufang; Zhu, Hongxia; Xu, Ningzhi
2016-01-01
Epidermal growth factor receptor (EGFR) is a target of colon cancer therapy, but the effects of this therapy on the tumor microenvironment remain poorly understood. Our in vivo studies showed that cetuximab, an anti-EGFR monoclonal antibody, effectively inhibited AOM/DSS-induced, colitis-associated tumorigenesis, downregulated M2-related markers, and decreased F4/80+/CD206+ macrophage populations. Treatment with conditioned medium of colon cancer cells increased macrophage expression of the M2-related markers arginase-1 (Arg1), CCL17, CCL22, IL-10 and IL-4. By contrast, conditioned medium of EGFR knockout colon cancer cells inhibited expression of these M2-related markers and induced macrophage expression of the M1-related markers inducible nitric oxide synthase (iNOS), IL-12, TNF-α and CCR7. EGFR knockout in colon cancer cells inhibited macrophage-induced promotion of xenograft tumor growth. Moreover, colon cancer-derived insulin-like growth factor-1 (IGF-1) increased Arg1 expression, and treatment with the IGF1R inhibitor AG1024 inhibited that increase. These results suggest that inhibition of EGFR signaling in colon cancer cells modulates cytokine secretion (e.g. IGF-1) and prevents M1-to-M2 macrophage polarization, thereby inhibiting cancer cell growth. PMID:27683110
Biodistribution mechanisms of therapeutic monoclonal antibodies in health and disease.
Tabrizi, Mohammad; Bornstein, Gadi Gazit; Suria, Hamza
2010-03-01
The monoclonal antibody market continues to witness an impressive rate of growth and has become the leading source of expansion in the biologic segment within the pharmaceutical industry. Currently marketed monoclonal antibodies target a diverse array of antigens. These antigens are distributed in a variety of tissues such as tumors, lungs, synovial fluid, psoriatic plaques, and lymph nodes. As the concentration of drug at the proximity of the biological receptor determines the magnitude of the observed pharmacological responses, a significant consideration in effective therapeutic application of monoclonal antibodies is a thorough understanding of the processes that regulate antibody biodistribution. Monoclonal antibody distribution is affected by factors such as molecular weight, blood flow, tissue and tumor heterogeneity, structure and porosity, target antigen density, turnover rate, and the target antigen expression profile.
Monoclonal antibodies and recombinant immunoglobulins for the treatment of multiple sclerosis.
Gensicke, Henrik; Leppert, David; Yaldizli, Özgür; Lindberg, Raija L P; Mehling, Matthias; Kappos, Ludwig; Kuhle, Jens
2012-01-01
Multiple sclerosis (MS) is an inflammatory and degenerative disease leading to demyelination and axonal damage in the CNS. Autoimmunity plays a central role in MS pathogenesis. Per definition, monoclonal antibodies are recombinant biological compounds with a well defined target, thus carrying the promise of targeting pathogenic cells or molecules with high specificity, avoiding undesired off-target effects. Natalizumab was the first monoclonal antibody to be approved for the treatment of MS. Several other monoclonal antibodies are in development and have demonstrated promising efficacy in phase II studies. They can be categorized according to their mode of action into compounds targeting (i) leukocyte migration into the CNS (natalizumab); (ii) cytolytic antibodies (rituximab, ocrelizumab, ofatumumab, alemtuzumab); or (iii) antibodies and recombinant proteins targeting cytokines and chemokines and their receptors (daclizumab, ustekinumab, atacicept, tabalumab [Ly-2127399], secukinumab [AIN457]). In this review, we discuss the specific molecular targets, clinical efficacy and safety of these compounds and discuss criteria to anticipate the position of monoclonal antibodies in the diversifying armamentarium of MS therapy in the coming years.
PRMT1-mediated methylation of the EGF receptor regulates signaling and cetuximab response
Liao, Hsin-Wei; Hsu, Jung-Mao; Xia, Weiya; Wang, Hung-Ling; Wang, Ying-Nai; Chang, Wei-Chao; Arold, Stefan T.; Chou, Chao-Kai; Tsou, Pei-Hsiang; Yamaguchi, Hirohito; Fang, Yueh-Fu; Lee, Hong-Jen; Lee, Heng-Huan; Tai, Shyh-Kuan; Yang, Mhu-Hwa; Morelli, Maria P.; Sen, Malabika; Ladbury, John E.; Chen, Chung-Hsuan; Grandis, Jennifer R.; Kopetz, Scott; Hung, Mien-Chie
2015-01-01
Posttranslational modifications to the intracellular domain of the EGFR are known to regulate EGFR functions; however, modifications to the extracellular domain and their effects remain relatively unexplored. Here, we determined that methylation at R198 and R200 of the EGFR extracellular domain by protein arginine methyltransferase 1 (PRMT1) enhances binding to EGF and subsequent receptor dimerization and signaling activation. In a mouse orthotopic colorectal cancer xenograft model, expression of a methylation-defective EGFR reduced tumor growth. Moreover, increased EGFR methylation sustained signaling activation and cell proliferation in the presence of the therapeutic EGFR monoclonal antibody cetuximab. In colorectal cancer patients, EGFR methylation level also correlated with a higher recurrence rate after cetuximab treatment and reduced overall survival. Together, these data indicate that R198/R200 methylation of the EGFR plays an important role in regulating EGFR functionality and resistance to cetuximab treatment. PMID:26571401
Generation of a Canine Anti-EGFR (ErbB-1) Antibody for Passive Immunotherapy in Dog Cancer Patients
Wang, Wei; Weichselbaumer, Marlene; Matz, Miroslawa; Mader, Alexander; Steinfellner, Willibald; Meitz, Sarah; Mechtcheriakova, Diana; Sobanov, Yuri; Willmann, Michael; Stockner, Thomas; Spillner, Edzard; Kunert, Renate; Jensen-Jarolim, Erika
2014-01-01
Passive immunotherapy with monoclonal antibodies represents a cornerstone of human anticancer therapies, but has not been established in veterinary medicine yet. As the tumor-associated antigen EGFR (ErbB-1) is highly conserved between humans and dogs, and considering the effectiveness of the anti-EGFR antibody cetuximab in human clinical oncology, we present here a “caninized” version of this antibody, can225IgG, for comparative oncology studies. Variable region genes of 225, the murine precursor of cetuximab, were fused with canine constant heavy gamma and kappa chain genes, respectively, and transfected into Chinese hamster ovary (CHO) DUKX-B11 cells. Of note, 480 clones were screened and the best clones were selected according to productivity and highest specificity in EGFR-coated ELISA. Upon purification with Protein G, the recombinant cetuximab-like canine IgG was tested for integrity, correct assembly, and functionality. Specific binding to the surface of EGFR-overexpressing cells was assessed by flow cytometry and immunofluorescence; moreover, binding to canine mammary tissue was demonstrated by immunohistochemistry. In cell viability and proliferation assays, incubation with can225IgG led to significant tumor cell growth inhibition. Moreover, this antibody mediated significant tumor cell killing via phagocytosis in vitro. We thus present here, for the first time, the generation of a canine IgG antibody and its hypothetical structure. On the basis of its cetuximab-like binding site, on the one hand, and the expression of a 91% homologous EGFR molecule in canine cancer, on the other hand, this antibody may be a promising research compound to establish passive immunotherapy in dog patients with cancer. PMID:24755200
Pool, Martin; Kol, Arjan; Lub-de Hooge, Marjolijn N; Gerdes, Christian A; de Jong, Steven; de Vries, Elisabeth G E; Terwisscha van Scheltinga, Anton G T
2016-10-18
Preclinical positron emission tomography (PET) imaging revealed a mismatch between in vivo epidermal growth factor receptor (EGFR) expression and EGFR antibody tracer tumor uptake. Shed EGFR ectodomain (sEGFR), which is present in cancer patient sera, can potentially bind tracer and therefore influence tracer kinetics. To optimize EGFR-PET, we examined the influence of sEGFR levels on tracer kinetics and tumor uptake of EGFR monoclonal antibody 89Zr-imgatuzumab in varying xenograft models. Human cancer cell lines A431 (EGFR overexpressing, epidermoid), A549 and H441 (both EGFR medium expressing, non-small cell lung cancer) were xenografted in mice. Xenografted mice received 10, 25 or 160 μg 89Zr-imgatuzumab, co-injected with equal doses 111In-IgG control. MicroPET scans were made 24, 72 and 144 h post injection, followed by biodistribution analysis. sEGFR levels in liver and plasma samples were determined by ELISA. 89Zr-imgatuzumab uptake in A431 tumors was highest (29.8 ± 5.4 %ID/g) in the 160 μg dose group. Contrary, highest uptake in A549 and H441 tumors was found at the lowest (10 μg) 89Zr-imgatuzumab dose. High 89Zr-imgatuzumab liver accumulation was found in A431 xenografted mice, which decreased with antibody dose increments. 89Zr-imgatuzumab liver uptake in A549 and H441 xenografted mice was low at all doses. sEGFR levels in liver and plasma of A431 bearing mice were up to 1000-fold higher than levels found in A549, H441 and non-tumor xenografted mice. 89Zr-imgatuzumab effectively visualizes EGFR-expressing tumors. High sEGFR levels can redirect 89Zr-imgatuzumab to the liver, in which case tumor visualization can be improved by increasing tracer antibody dose.
Antibodies Specifically Targeting a Locally Misfolded Region of Tumor Associated EGFR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrett, T.; Burgess, A; Gan, H
2009-01-01
Epidermal Growth Factor Receptor (EGFR) is involved in stimulating the growth of many human tumors, but the success of therapeutic agents has been limited in part by interference from the EGFR on normal tissues. Previously, we reported an antibody (mab806) against a truncated form of EGFR found commonly in gliomas. Remarkably, it also recognizes full-length EGFR on tumor cells but not on normal cells. However, the mechanism for this activity was unclear. Crystallographic structures for Fab:EGFR{sub 287-302} complexes of mAb806 (and a second, related antibody, mAb175) show that this peptide epitope adopts conformations similar to those found in the wtEGFR.more » However, in both conformations observed for wtEGFR, tethered and untethered, antibody binding would be prohibited by significant steric clashes with the CR1 domain. Thus, these antibodies must recognize a cryptic epitope in EGFR. Structurally, it appeared that breaking the disulfide bond preceding the epitope might allow the CR1 domain to open up sufficiently for antibody binding. The EGFR{sub C271A/C283A} mutant not only binds mAb806, but binds with 1:1 stoichiometry, which is significantly greater than wtEGFR binding. Although mAb806 and mAb175 decrease tumor growth in xenografts displaying mutant, overexpressed, or autocrine stimulated EGFR, neither antibody inhibits the in vitro growth of cells expressing wtEGFR. In contrast, mAb806 completely inhibits the ligand-associated stimulation of cells expressing EGFR{sub C271A/C283A}. Clearly, the binding of mAb806 and mAb175 to the wtEGFR requires the epitope to be exposed either during receptor activation, mutation, or overexpression. This mechanism suggests the possibility of generating antibodies to target other wild-type receptors on tumor cells.« less
2018-06-15
HER2 Positive Gastric Cancer; Colorectal Cancer; Head and Neck Squamous Cell Carcinoma; EGFR Positive Solid Tumor; Advanced Solid Tumors; HER2-positive Breast Cancer; Hepatocellular Carcinoma; Small Cell Lung Cancer; Renal Cell Carcinoma; Pancreas Cancer
A potencial theranostic agent for EGF-R expression tumors: (177)Lu-DOTA-nimotuzumab.
Calzada, Victoria; Zhang, Xiuli; Fernandez, Marcelo; Diaz-Miqueli, Arlhee; Iznaga-Escobar, Normando; Deutscher, Susan L; Balter, Henia; Quinn, Thomas P; Cabral, Pablo
2012-10-01
In this work Nimotuzumab (monoclonal antibody, recognizes the EGF-R) was radiolabeled with (177)Lu as a potential cancer therapy radiopharmaceutical. In-vitro cell binding studies and in-vivo biodistribution and imaging studies were performed to determine the radiochemical stability, targeting specificity and pharmacokinetics of the (177)Lu-labeled antibody. Nimotuzumab was derivatized with DOTA-NHS at room temperature for 2 hours. DOTA-Nimotuzumab was radiolabeled with (177)LuCl3 (15 MBq/mg) at 37°C for 1 h. The radiochemical purity was assessed by ITLC, silica gel and by RP-HPLC. Binding specificity studies were performed with EGF-R positive A431 human epithelial carcinoma and EGF-R negative MDA-MB-435 breast carcinoma cells. Biodistribution studies were performed in healthy female CD-1 mice at 1 h, 4 h, 24 h, and A431 xenografted nude mice at 10 min, 1 h, 4 h, 24 h, 48 h, and 96 h. SPECT-CT imaging studies were performed in A431 xenografted mice at 24 h post injection. DOTA-Nimotuzumab was efficiently labeled with (177) LuCl(3) at 37°C. The in vitro stability of labeled product was optimal over 24 h in buffered saline and mouse serum. Specific recognition of EGF-R by (177)Lu-DOTA-Nimotuzumab was observed in A431 cell binding studies. Biodistribution studies demonstrated increasing tumor uptake of (177)Lu-DOTA-Nimotuzumab over time, with tumor to muscle ratios of 6.26, 10.68, and 18.82 at 4 h, 24 h, and 96 h post injection. Imaging of A431 xenografted mice showed high uptake in the tumor. (177)Lu-DOTA-Nimotuzumab has the potential to be a promising therapy agent, which may be useful in the treatment of patients with EGF-R positive cancer.
NASA Astrophysics Data System (ADS)
Ou, Zhongmin; Wu, Baoyan; Xing, Da
2009-08-01
The pursuit of efficient and highly targeting-selective transporters is an active topic in cancer-targeting therapy. In this study, a novel cancer-targeting transporter with integrin αvβ3 monoclonal antibody functionalized single-walled carbon nanotubes (SWCNTs) was developed to investigate cancer cell targeting in vitro. SWCNTs were first modified by phospholipid-bearing polyethylene glycol (PL-PEG). PL-PEG functionalized SWCNTs were then conjugated with fluorescein isothiocyanate (FITC) labeled integrin αvβ3 monoclonal antibody to construct SWCNT-integrin αvβ3 monoclonal antibody system (denoted as SWCNT-PEG-mAb). In vitro study revealed that the system had a high efficiency in cancer cell targeting in integrin αvβ3 positive U87MG cells. Moreover, the SWCNT-PEG-mAb is stable in physiological media, and can be readily transported into U87MG cells via integrin αvβ3-mediated endocytosis in cell. In summary, the integrin αvβ3 monoclonal antibody labeled SWCNT is a potential carrier-candidate for cancer-imaging and drug-delivering in cancer-targeting therapy.
Grimm, Hans Peter
2009-10-01
Target-mediated drug disposition (TMDD) is frequently reported for therapeutic monoclonal antibodies and is linked to the high affinity and high specificity of antibody molecules for their target. Understanding TMDD of a monoclonal antibody should go beyond the empirical description of its non-linear PK since valuable insights on the antibody-target interaction itself can be gained. This makes its mechanistic understanding precious for the drug development process, in particular for the optimization of new antibody molecules, for the design and interpretation of pharmacokinetic studies, and possibly even for the evaluation of efficacy and dose selection of drug candidates. Using the observation that the molecular (microscopic) processes are usually much more rapid than the pharmacokinetic (macroscopic) processes, a series of quasi-steady-state conditions on the microscopic level is proposed to bridge the gap between simple empirical and complex mechanistic descriptions of TMDD. These considerations show the impact of parameters such as target turnover, target expression, and target accessibility on the pharmacokinetics and pharmacodynamics of monoclonal antibodies.
Thomas, Melodie
2003-12-01
Despite treatment advances over the past decade, long-term survival for patients with non-small cell lung cancer (NSCLC) remains poor, and treatment options available after second-line therapy are limited. Increased understanding of cancer biology has led to the identification of several potential targets for treatment. The epidermal growth factor receptor (EGFR) belongs to a family of plasma membrane receptor tyrosine kinases that controls many important cellular functions, from growth and proliferation to cell death. This receptor is a particularly promising therapeutic target because it often is overexpressed in patients with NSCLC and has been implicated in the pathogenesis as well as the proliferation, invasion, and metastasis of lung cancer and other malignancies. New agents developed to inhibit EGFR function include small-molecule tyrosine kinase inhibitors, monoclonal antibodies to EGFR, and pan-EGFR inhibitors. Completed and ongoing clinical trials have shown that EGFR inhibitors have remarkable efficacy for patients with relapsed NSCLC. Among these, two phase 2 trials have shown that ZD1839 is effective when used as monotherapy. The response rates are comparable with those for docetaxel given in the second-line setting. Another phase 2 trial has shown that OSI-774 is effective in the same setting. Data from phase 3 trials indicate that adding an EGFR tyrosine kinase inhibitor to chemotherapy does not provide an additional survival benefit, as compared with standard chemotherapy alone for first-line treatment of NSCLC. It appears that EGFR tyrosine kinase inhibitors are safe and well tolerated by patients with cancer. Further studies will elucidate how these new agents can best be used for NSCLC and other tumor types.
ErbB activation signatures as potential biomarkers for anti-ErbB3 treatment in HNSCC.
Alvarado, Diego; Ligon, Gwenda F; Lillquist, Jay S; Seibel, Scott B; Wallweber, Gerald; Neumeister, Veronique M; Rimm, David L; McMahon, Gerald; LaVallee, Theresa M
2017-01-01
Head and neck squamous cell carcinoma (HNSCC) accounts for 3-5% of all tumor types and remains an unmet medical need with only two targeted therapies approved to date. ErbB3 (HER3), the kinase-impaired member of the EGFR/ErbB family, has been implicated as a disease driver in a number of solid tumors, including a subset of HNSCC. Here we show that the molecular components required for ErbB3 activation, including its ligand neuregulin-1 (NRG1), are highly prevalent in HNSCC and that HER2, but not EGFR, is the major activating ErbB3 kinase partner. We demonstrate that cetuximab treatment primarily inhibits the ERK signaling pathway and KTN3379, an anti-ErbB3 monoclonal antibody, inhibits the AKT signaling pathway, and that dual ErbB receptor inhibition results in enhanced anti-tumor activity in HNSCC models. Surprisingly, we found that while NRG1 is required for ErbB3 activation, it was not sufficient to fully predict for KTN3379 activity. An evaluation of HNSCC patient samples demonstrated that NRG1 expression was significantly associated with expression of the EGFR ligands amphiregulin (AREG) and transforming growth factor α (TGFα). Furthermore, NRG1-positive HNSCC cell lines that secreted high levels of AREG and TGFα or contained high levels of EGFR homodimers (H11D) demonstrated a better response to KTN3379. Although ErbB3 and EGFR activation are uncoupled at the receptor level, their respective signaling pathways are linked through co-expression of their respective ligands. We propose that NRG1 expression and EGFR activation signatures may enrich for improved efficacy of anti-ErbB3 therapeutic mAb approaches when combined with EGFR-targeting therapies in HNSCC.
Therapeutic targeting of SPINK1-positive prostate cancer.
Ateeq, Bushra; Tomlins, Scott A; Laxman, Bharathi; Asangani, Irfan A; Cao, Qi; Cao, Xuhong; Li, Yong; Wang, Xiaoju; Feng, Felix Y; Pienta, Kenneth J; Varambally, Sooryanarayana; Chinnaiyan, Arul M
2011-03-02
Gene fusions involving ETS (erythroblastosis virus E26 transformation-specific) family transcription factors are found in ~50% of prostate cancers and as such can be used as a basis for the molecular subclassification of prostate cancer. Previously, we showed that marked overexpression of SPINK1 (serine peptidase inhibitor, Kazal type 1), which encodes a secreted serine protease inhibitor, defines an aggressive molecular subtype of ETS fusion-negative prostate cancers (SPINK1+/ETS⁻, ~10% of all prostate cancers). Here, we examined the potential of SPINK1 as an extracellular therapeutic target in prostate cancer. Recombinant SPINK1 protein (rSPINK1) stimulated cell proliferation in benign RWPE as well as cancerous prostate cells. Indeed, RWPE cells treated with either rSPINK1 or conditioned medium from 22RV1 prostate cancer cells (SPINK1+/ETS⁻) significantly increased cell invasion and intravasation when compared with untreated cells. In contrast, knockdown of SPINK1 in 22RV1 cells inhibited cell proliferation, cell invasion, and tumor growth in xenograft assays. 22RV1 cell proliferation, invasion, and intravasation were attenuated by a monoclonal antibody (mAb) to SPINK1 as well. We also demonstrated that SPINK1 partially mediated its neoplastic effects through interaction with the epidermal growth factor receptor (EGFR). Administration of antibodies to SPINK1 or EGFR (cetuximab) in mice bearing 22RV1 xenografts attenuated tumor growth by more than 60 and 40%, respectively, or ~75% when combined, without affecting PC3 xenograft (SPINK1⁻/ETS⁻) growth. Thus, this study suggests that SPINK1 may be a therapeutic target in a subset of patients with SPINK1+/ETS⁻ prostate cancer. Our results provide a rationale for both the development of humanized mAbs to SPINK1 and evaluation of EGFR inhibition in SPINK1+/ETS⁻ prostate cancers.
Autenrieth, Michael E; Seidl, Christof; Bruchertseifer, Frank; Horn, Thomas; Kurtz, Florian; Feuerecker, Benedikt; D'Alessandria, Calogero; Pfob, Christian; Nekolla, Stephan; Apostolidis, Christos; Mirzadeh, Saed; Gschwend, Jürgen E; Schwaiger, Markus; Scheidhauer, Klemens; Morgenstern, Alfred
2018-07-01
Patients with carcinoma in situ (CIS) of the bladder refractory to bacillus Calmette-Guérin (BCG) treatment are usually treated with cystectomy. Therefore, new treatment options with preservation of the urinary bladder are needed. The objective of the study was to investigate the feasibility, safety and efficacy of a novel targeted alpha-emitter immunotherapy for CIS after BCG treatment failure. A pilot study was conducted in 12 patients (age range 64-86 years, ten men, two women) with biopsy-proven CIS of the bladder refractory to BCG treatment. The patients were treated intravesically with a single instillation (one patient was treated twice) of the alpha-emitter 213 Bi coupled to an anti-EGFR antibody (366-821 MBq). The primary aims of the study were to determine the feasibility of treatment with the 213 Bi-immunoconjugate and evaluation of adverse effects. Therapeutic efficacy was monitored by histological mapping of the urinary bladder 8 weeks after treatment and at different time points thereafter. The study proved that intravesical instillation of the 213 Bi-immunoconjugate targeting EGFR is feasible. No adverse effects were observed and all blood and urine parameters determined remained in their normal ranges. Therapeutic efficacy was considered satisfactory, in that three of the 12 patients showed no signs of CIS 44, 30 and 3 months after treatment. Intravesical instillation of 213 Bi-anti-EGFR monoclonal antibody was well tolerated and showed therapeutic efficacy. Repeated instillation and/or instillation of higher activities of the 213 Bi-immunoconjugate might lead to better therapeutic outcomes. A phase I clinical trial is planned.
In an effort to provide well-characterized monoclonal antibodies to the scientific community, the National Cancer Institute (NCI) Antibody Characterization Program requests cancer-related protein targets for affinity production and distribution.
Ping Li, Wen; Meyer, Laura A; Capretto, David A; Sherman, Christopher D; Anderson, Carolyn J
2008-04-01
The epidermal growth-factor receptor (EGFR) and its ligands have been recognized as critical factors in the pathophysiology of tumorigenesis. Overexpression of the EGFR plays a significant role in the tumor progression of a wide variety of solid human cancers. Therefore, the EGFR represents an attractive target for the design of novel diagnostic and therapeutic agents for cancer. Cetuximab (C225, Erbitux) was the first monoclonal antibody targeted against the ligand-binding site of EGFR approved by the Food and Drug Administration for the treatment of patients with EGFR-expressing, metastatic colorectal carcinoma, although clinical trials showed variability in the response to this treatment. The aim of this study involved using cetuximab to design a positron emission tomography (PET) agent to image the overexpression of EGFR in tumors. Cetuximab was conjugated with the chelator, DOTA, for radiolabeling with the positron-emitter, 64Cu (T(1/2) = 12.7 hours). 64Cu-DOTA-cetuximab showed high binding affinity to EGFR-positive A431 cells (K(D) of 0.28 nM). Both biodistribution and microPET imaging studies with 64Cu-DOTA-cetuximab demonstrated greater uptake at 24 hours postinjection in EGFR-positive A431 tumors (18.49% +/- 6.50% injected dose per gram [ID/g]), compared to EGFR-negative MDA-MB-435 tumors (2.60% +/- 0.35% ID/g). A431 tumor uptake at 24 hours was blocked with unlabeled cetuximab (10.69% +/- 2.72% ID/g), suggesting that the tumor uptake was receptor mediated. Metabolism experiments in vivo showed that 64Cu-DOTA-cetuximab was relatively stable in the blood of tumor-bearing mice; however, there was significant metabolism in the liver and tumors. 64Cu-DOTA-cetuximab is a potential agent for imaging EGFR-positive tumors in humans.
Biological characterization of cetuximab-conjugated gold nanoparticles in a tumor animal model
NASA Astrophysics Data System (ADS)
Kao, Hao-Wen; Lin, Yi-Yu; Chen, Chao-Cheng; Chi, Kwan-Hwa; Tien, Der-Chi; Hsia, Chien-Chung; Lin, Wuu-Jyh; Chen, Fu-Du; Lin, Ming-Hsien; Wang, Hsin-Ell
2014-07-01
Gold nanoparticles (AuNPs) are widely applied to the diagnosis and treatment of cancer and can be modified to contain target-specific ligands via gold-thiolate bonding. This study investigated the pharmacokinetics and microdistribution of antibody-mediated active targeting gold nanoparticles in mice with subcutaneous lung carcinoma. We conjugated AuNPs with cetuximab (C225), an antibody-targeting epidermal growth factor receptor (EGFR), and then labeled with In-111, which created EGFR-targeted AuNPs. In vitro studies showed that after a 2 h incubation, the uptake of C225-conjugated AuNPs in high EGFR-expression A549 cells was 14.9-fold higher than that of PEGylated AuNPs; furthermore, uptake was also higher at 3.8-fold when MCF7 cells with lower EGFR-expression were used. MicroSPECT/CT imaging and a biodistribution study conducted by using a A549 tumor xenograft mouse model provided evidence of elevated uptake of the C225-conjugated AuNPs into the tumor cells as a result of active targeting. Moreover, the microdistribution of PEGylated AuNPs revealed that a large portion of AuNPs remained in the tumor interstitium, whereas the C225-conjugated AuNPs displayed enhanced internalization via antibody-mediated endocytosis. Our findings suggest that the anti-EGFR antibody-conjugated AuNPs are likely to be a plausible nano-sized vehicle for drug delivery to EGFR-expressing tumors.
Moretto, Roberto; Cremolini, Chiara; Rossini, Daniele; Pietrantonio, Filippo; Battaglin, Francesca; Mennitto, Alessia; Bergamo, Francesca; Loupakis, Fotios; Marmorino, Federica; Berenato, Rosa; Marsico, Valentina Angela; Caporale, Marta; Antoniotti, Carlotta; Masi, Gianluca; Salvatore, Lisa; Borelli, Beatrice; Fontanini, Gabriella; Lonardi, Sara; De Braud, Filippo; Falcone, Alfredo
2016-08-01
Right- and left-sided colorectal cancers (CRCs) differ in clinical and molecular characteristics. Some retrospective analyses suggested that patients with right-sided tumors derive less benefit from anti-epidermal growth factor receptor (EGFR) antibodies; however, molecular selection in those studies was not extensive. Patients with RAS and BRAF wild-type metastatic CRC (mCRC) who were treated with single-agent anti-EGFRs or with cetuximab-irinotecan (if refractory to previous irinotecan) were included in the study. Differences in outcome between patients with right- and left-sided tumors were investigated. Of 75 patients, 14 and 61 had right- and left-sided tumors, respectively. None of the right-sided tumors responded according to RECIST, compared with 24 left-sided tumors (overall response rate: 0% vs. 41%; p = .0032), and only 2 patients with right-sided tumors (15%) versus 47 patients with left-sided tumors (80%) achieved disease control (p < .0001). The median duration of progression-free survival was 2.3 and 6.6 months in patients with right-sided and left-sided tumors, respectively (hazard ratio: 3.97; 95% confidence interval: 2.09-7.53; p < .0001). Patients with right-sided RAS and BRAF wild-type mCRC seemed to derive no benefit from single-agent anti-EGFRs. Right- and left-sided colorectal tumors have peculiar epidemiological and clinicopathological characteristics, distinct gene expression profiles and genetic alterations, and different prognoses. This study assessed the potential predictive impact of primary tumor site with regard to anti-epidermal growth factor receptor (EGFR) monoclonal antibody treatment in patients with RAS and BRAF wild-type metastatic colorectal cancer. The results demonstrated the lack of activity of anti-EGFRs in RAS and BRAF wild-type, right-sided tumors, thus suggesting a potential role for primary tumor location in driving treatment choices. ©AlphaMed Press.
Gruver, Aaron M; Liu, Ling; Vaillancourt, Peter; Yan, Sau-Chi B; Cook, Joel D; Roseberry Baker, Jessica A; Felke, Erin M; Lacy, Megan E; Marchal, Christophe C; Szpurka, Hadrian; Holzer, Timothy R; Rhoads, Emily K; Zeng, Wei; Wortinger, Mark A; Lu, Jirong; Chow, Chi-kin; Denning, Irene J; Beuerlein, Gregory; Davies, Julian; Hanson, Jeff C; Credille, Kelly M; Wijayawardana, Sameera R; Schade, Andrew E
2014-12-01
Development of novel targeted therapies directed against hepatocyte growth factor (HGF) or its receptor (MET) necessitates the availability of quality diagnostics to facilitate their safe and effective use. Limitations of some commercially available anti-MET antibodies have prompted development of the highly sensitive and specific clone A2H2-3. Here we report its analytical properties when applied by an automated immunohistochemistry method. Excellent antibody specificity was demonstrated by immunoblot, ELISA, and IHC evaluation of characterised cell lines including NIH3T3 overexpressing the related kinase MST1R (RON). Sensitivity was confirmed by measurements of MET in cell lines or characterised tissues. IHC correlated well with FISH and quantitative RT-PCR assessments of MET (P < 0.001). Good total agreement (89%) was observed with the anti-MET antibody clone SP44 using whole-tissue sections, but poor positive agreement (21-47%) was seen in tissue microarray cores. Multiple lots displayed appropriate reproducibility (R(2) > 0.9). Prevalence of MET positivity by IHC was higher in non-squamous cell NSCLC, MET or EGFR amplified cases, and in tumours harbouring abnormalities in EGFR exon 19 or 21. The anti-MET antibody clone A2H2-3 displays excellent specificity and sensitivity. These properties make it suitable for clinical trial investigations and development as a potential companion diagnostic. © 2014 The Authors. Histopathology Published by John Wiley & Sons Ltd.
Sato, Shuji; Drake, Andrew W; Tsuji, Isamu; Fan, Jinhong
2012-01-01
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a member of the epidermal growth factor family and has a variety of physiological and pathological functions. Modulation of HB-EGF activity might have a therapeutic potential in the oncology area. We explored the therapeutic possibilities by characterizing the in vitro biological activity of anti-HB-EGF monoclonal antibody Y-142. EGF receptor (EGFR) ligand and species specificities of Y-142 were tested. Neutralizing activities of Y-142 against HB-EGF were evaluated in EGFR and ERBB4 signaling. Biological activities of Y-142 were assessed in cancer cell proliferation and angiogenesis assays and compared with the anti-EGFR antibody cetuximab, the HB-EGF inhibitor CRM197, and the anti-vascular endothelial growth factor (VEGF) antibody bevacizumab. The binding epitope was determined with alanine scanning. Y-142 recognized HB-EGF as well as the EGFR ligand amphiregulin, and bound specifically to human HB-EGF, but not to rodent HB-EGF. In addition, Y-142 neutralized HB-EGF-induced phosphorylation of EGFR and ERBB4, and blocked their downstream ERK1/2 and AKT signaling. We also found that Y-142 inhibited HB-EGF-induced cancer cell proliferation, endothelial cell proliferation, tube formation, and VEGF production more effectively than cetuximab and CRM197 and that Y-142 was superior to bevacizumab in the inhibition of HB-EGF-induced tube formation. Six amino acids in the EGF-like domain were identified as the Y-142 binding epitope. Among the six amino acids, the combination of F115 and Y123 determined the amphiregulin cross-reactivity and that F115 accounted for the species selectivity. Furthermore, it was suggested that the potent neutralizing activity of Y-142 was derived from its recognition of R142 and Y123 and its high affinity to HB-EGF. Y-142 has a potent HB-EGF neutralizing activity that modulates multiple biological activities of HB-EGF including cancer cell proliferation and angiogenic activities. Y-142 may have a potential to be developed into a therapeutic agent for the treatment of HB-EGF-dependent cancers.
Wels, Winfried; Biburger, Markus; Müller, Tina; Dälken, Benjamin; Giesübel, Ulrike; Tonn, Torsten; Uherek, Christoph
2004-03-01
Over the past years, monoclonal antibodies have attracted enormous interest as targeted therapeutics, and a number of such reagents are in clinical use. However, responses could not be achieved in all patients with tumors expressing high levels of the respective target antigens, suggesting that other factors such as limited recruitment of endogenous immune effector mechanisms can also influence treatment outcome. This justifies the search for alternative, potentially more effective reagents. Antibody-toxins and cytolytic effector cells genetically modified to carry antibody-based receptors on the surface, represent such tailor-made targeting vehicles with the potential of improved tumor localization and enhanced efficacy. In this way, advances in recombinant antibody technology have made it possible to circumvent problems inherent in chemical coupling of antibodies and toxins, and have allowed construction via gene fusion of recombinant molecules which combine antibody-mediated recognition of tumor cells with specific delivery of potent protein toxins of bacterial or plant origin. Likewise, recombinant antibody fragments provide the basis for the construction of chimeric antigen receptors that, upon expression in cytotoxic T lymphocytes (CTLs) or natural killer (NK) cells, link antibody-mediated recognition of tumor antigens with these effector cells' potent cytolytic activities, thereby making them promising cellular therapeutics for adoptive cancer therapy. Here, general principles for the derivation of cytotoxic proteins and effector cells with antibody-dependent tumor specificity are summarized, and current strategies to employ these molecules and cells for directed cancer therapy are discussed, focusing mainly on the tumor-associated antigens epidermal growth factor receptor (EGFR) and the closely related ErbB2 (HER2) as targets.
Wei, Ling; Shi, Jianfeng; Afari, George; Bhattacharyya, Sibaprasad
2014-01-01
Panitumumab is a fully human monoclonal antibody approved for the treatment of epidermal growth factor receptor (EGFR) positive colorectal cancer. Recently, panitumumab has been radiolabeled with 89Zr and evaluated for its potential to be used as immuno-positron emission tomography (PET) probe for EGFR positive cancers. Interesting preclinical results published by several groups of researchers have prompted us to develop a robust procedure for producing clinical-grade 89Zr-panitumumab as an immuno-PET probe to evaluate EGFR-targeted therapy. In this process, clinical-grade panitumumab is bio-conjugated with desferrioxamine chelate and subsequently radiolabeled with 89Zr resulting in high radiochemical yield (>70%, n=3) and purity (>98%, n=3). All quality control (QC) tests were performed according to United States Pharmacopeia specifications. QC tests showed that 89Zr-panitumumab met all specifications for human injection. Herein, we describe a step-by-step method for the facile synthesis and QC tests of 89Zr-panitumumab for medical use. The entire process of bioconjugation, radiolabeling, and all QC tests will take about 5h. Because the synthesis is fully manual, two rapid, in-process QC tests have been introduced to make the procedure robust and error free. PMID:24448743
Pohl, Michael; Schmiegel, Wolff
Colorectal cancer (CRC) is the third most common cancer type in Western countries. Significant progress has been made in the last decade in the therapy of metastatic CRC (mCRC) with a median overall survival (OS) of patients exceeding 30 months. The integration of biologic targeted therapies and anti-epidermal growth factor receptor (EGFR) monoclonal antibodies (MABs) in the treatment of patients with genomically selected all-RAS wild-type mCRC leads to a significant progress in advanced incurable disease state. After the introduction of the anti-VEGF MAB bevacizumab, the FDA approved with ramucirumab the second antiangiogenic MAB for the mCRC treatment. Further new drugs are on the horizon and new diagnostic tools will be introduced soon. Molecular heterogeneity of mCRC has been recognized as pivotal in the evolution of clonal populations during anti-EGFR therapies. Mutations in RAS genes predict a lack of response to anti-EGFR MABs. Mutations in the mitogen-activated protein kinase-phosphoinositide 3-kinase pathways like BRAF or PIK3CA mutations or HER2/ERBB2 or MET amplifications bypass EGFR signaling and also may confer resistance to anti-EGFR MABs. HER2/ERBB2 amplification is a further driver of resistance to anti-EGFR MABs in mCRC. The phase II study of HER2 Amplification for Colo-Rectal Cancer Enhanced Stratification (HERACLES) discovers that a dual HER2-targeted therapy may be an option for HER2-amplified mCRC. The mismatch repair deficiency predicts responsiveness to an immune checkpoint blockade with the anti-PD-1 immune checkpoint inhibitor pembrolizumab. The understanding of primary (de novo) and secondary (acquired) resistance to anti-EGFR therapies, new targeted therapies, immuno-oncology and about predictive biomarkers in mCRC is guiding the development of rational therapeutic strategies. Combinations of targeted therapies are necessary to effectively treat drug-resistant cancers. Liquid biopsy is an upcoming new tool in the primary diagnosis and follow-up analysis of mutations in circulating tumor DNA. © 2016 S. Karger AG, Basel.
In an effort to provide well-characterized monoclonal antibodies to the scientific community, NCI's Antibody Characterization Program requests cancer-related protein targets for affinity production and distribution. Submissions will be accepted through July 9, 2012.
NASA Astrophysics Data System (ADS)
Hun, Xu; Zhang, Zhujun
2009-10-01
Fluorescent nanoparticles (FNs) with unique optical properties may be useful as biosensors in living cancer cell imaging and cancer targeting. In this study, anti-EGFR antibody conjugated fluorescent nanoparticles (FNs) (anti-EGFR antibody conjugated FNs) probe was used to detect breast cancer cells. FNs with excellent character such as non-toxicity and photostability were first synthesized with a simple, cost-effective and environmentally friendly modified Stőber synthesis method, and then successfully modified with anti-EGFR antibody. This kind of fluorescence probe based on the anti-EGFR antibody conjugated FNs has been used to detect breast cancer cells with fluorescence microscopy imaging technology. The experimental results demonstrate that the anti-EGFR antibody conjugated FNs can effectively recognize breast cancer cells and exhibited good sensitivity and exceptional photostability, which would provide a novel way for the diagnosis and curative effect observation of breast cancer cells and offer a new method in detecting EGFR.
Peña, Yamilé; Perera, Alejandro; Batista, Juan F
2014-01-01
INTRODUCTION The availability of monoclonal antibodies in Cuba has facilitated development and application of innovative techniques (immunoscintigraphy and radioimmunotherapy) for cancer diagnosis and treatment. Objective Review immunoscintigraphy and radioimmunotherapy techniques and analyze their use in Cuba, based on the published literature. In this context, we describe the experience of Havana's Clinical Research Center with labeled monoclonal antibodies for cancer diagnosis and treatment during the period 1993-2013. EVIDENCE ACQUISITION Basic concepts concerning cancer and monoclonal antibodies were reviewed, as well as relevant international and Cuban data. Forty-nine documents were reviewed, among them 2 textbooks, 34 articles by Cuban authors and 13 by international authors. All works published by the Clinical Research Center from 1993 through 2013 were included. Bibliography was obtained from the library of the Clinical Research Center and Infomed, Cuba's national health telematics network, using the following keywords: monoclonal antibodies, immunoscintigraphy and radioimmunotherapy. RESULTS Labeling the antibodies (ior t3, ior t1, ior cea 1, ior egf/r3, ior c5, h-R3, 14F7 and rituximab) with radioactive isotopes was a basic line of research in Cuba and has fostered their use as diagnostic and therapeutic tools. The studies conducted demonstrated the good sensitivity and diagnostic precision of immunoscintigraphy for detecting various types of tumors (head and neck, ovarian, colon, breast, lymphoma, brain). Obtaining different radioimmune conjugates with radioactive isotopes such as 99mTc and 188Re made it possible to administer radioimmunotherapy to patients with several types of cancer (brain, lymphoma, breast). The objective of 60% of the clinical trials was to determine pharmacokinetics, internal dosimetry and adverse effects of monoclonal antibodies, as well as tumor response; there were few adverse effects, no damage to vital organs, and a positive tumor response in a substantial percentage of patients. CONCLUSIONS Cuba has experience with production and radiolabeling of monoclonal antibodies, which facilitates use of these agents. Studies in Cuba conducted by the Clinical Research Center over the past 20 years have yielded satisfactory results. Evidence obtained suggests promising potential of monoclonal antibodies and nuclear medicine, with immunoscintigraphy and radioimmunotherapy techniques providing alternatives for cancer diagnosis and treatment in Cuba.
Researchers at The Eunice Kennedy Shriver National Institute on Child Health and Human Development (NICHD) have discovered monoclonal antibodies that bind to matrilin-3, a protein specifically expressed in cartilage tissue, that could be used for treating or inhibiting growth plate disorders, such as a skeletal dysplasia or short stature. The monoclonal antibodies can also be used to target therapeutic agents, such as anti-arthritis agents, to cartilage tissue. NICHD seeks statements of capability or interest from parties interested in collaborative research to co-develop, evaluate, or commercialize treatment of skeletal disorders using targeting antibodies.
In an effort to provide well-characterized monoclonal antibodies to the scientific community, NCI's Antibody Characterization Program requests cancer-related protein targets for affinity production and distribution. Submissions will be accepted through February 5, 2016.
In an effort to provide well-characterized monoclonal antibodies to the scientific community, NCI's Antibody Characterization Program requests cancer-related protein targets for affinity production and distribution. Submissions will be accepted through July 11, 2014.
In an effort to provide well-characterized monoclonal antibodies to the scientific community, NCI's Antibody Characterization Program requests cancer-related protein targets for affinity production and distribution. Submissions will be accepted through July 12, 2013.
Clinical Study of Nasopharyngeal Carcinoma Treated by Helical Tomotherapy in China: 5-Year Outcomes
Du, Lei; Zhang, Xin-Xin; Ma, Lin; Feng, Lin-Chun; Li, Fang; Zhou, Gui-Xia; Qu, Bao-Lin; Xu, Shou-Ping; Xie, Chuan-Bin; Yang, Jack
2014-01-01
Background. To evaluate the outcomes of nasopharyngeal carcinoma (NPC) patients treated with helical tomotherapy (HT). Methods. Between September 2007 and August 2012, 190 newly diagnosed NPC patients were treated with HT. Thirty-one patients were treated with radiation therapy as single modality, 129 with additional cisplatin-based chemotherapy with or without anti-EGFR monoclonal antibody therapy, and 30 with concurrent anti-EGFR monoclonal antibody therapy. Results. Acute radiation related side effects were mainly grade 1 or 2. Grade 3 and greater toxicities were rarely noted. The median followup was 32 (3–38) months. The local relapse-free survival (LRFS), nodal relapse-free survival (NRFS), distant metastasis-free survival (DMFS), and overall survival (OS) were 96.1%, 98.2%, 92.0%, and 86.3%, respectively, at 3 years. Cox multivariate regression analysis showed that age and T stage were independent predictors for 3-year OS. Conclusions. Helical tomotherapy for NPC patients achieved excellent 3-year locoregional control, distant metastasis-free survival, and overall survival, with relatively minor acute and late toxicities. Age and T stage were the main prognosis factors. PMID:25114932
Construction of Rabbit Immune Antibody Libraries.
Nguyen, Thi Thu Ha; Lee, Jong Seo; Shim, Hyunbo
2018-01-01
Rabbits have distinct advantages over mice as a source of target-specific antibodies. They produce higher affinity antibodies than mice, and may elicit strong immune response against antigens or epitopes that are poorly immunogenic or tolerated in mice. However, a great majority of currently available monoclonal antibodies are of murine origin because of the wider availability of murine fusion partner cell lines and well-established tools and protocols for fusion and cloning of mouse hybridoma. Phage-display selection of antibody libraries is an alternative method to hybridoma technology for the generation of target-specific monoclonal antibodies. High-affinity monoclonal antibodies from nonmurine species can readily be obtained by constructing immune antibody libraries from B cells of the immunized animal and screening the library by phage display. In this article, we describe the construction of a rabbit immune Fab library for the facile isolation of rabbit monoclonal antibodies. After immunization, B-cell cDNA is obtained from the spleen of the animal, from which antibody variable domain repertoires are amplified and assembled into a Fab repertoire by PCR. The Fab genes are then cloned into a phagemid vector and transformed to E. coli, from which a phage-displayed immune Fab library is rescued. Such a library can be biopanned against the immunization antigen for rapid identification of high-affinity, target-specific rabbit monoclonal antibodies.
NASA Astrophysics Data System (ADS)
Bahmani, Baharak; Vullev, Valentine; Anvari, Bahman
2012-03-01
Targeted delivery of therapeutic and imaging agents using surface modified nanovectors has been explored immensely in recent years. The growing demand for site-specific and efficient delivery of nanovectors entails stable surface conjugation of targeting moieties. We have developed a polymeric nanocapsule doped with Indocyanine green (ICG) with potential for targeted and deep tissue optical imaging and phototherapy. Our ICG-loaded nanocapsules (ICG-NCs) have potential for covalent coupling of various targeting moieties and materials due to presence of amine groups on the surface. Here, we covalently bioconjugate polyethylene glycol(PEG)-coated ICG-NCs with monoclonal antibody against HER2 through reductive amination-mediated procedures. The irreversible and stable bonds are formed between anti- EGFR and aldehyde termini of PEG chains on the surface of ICG-NCs. We confirm the uptake of conjugated ICG-NCs by ovarian cancer cells over-expressing HER2 using fluorescent confocal microscopy. The proposed process for covalent attachment of anti-HER2 to PEGylated ICG-NCs can be used as a methodology for bioconjugation of various antibodies to such nano-constrcuts, and provides the capability to use these optically active nano-probes for targeted optical imaging of ovarian and other cancer types.
Severe skin reaction secondary to concomitant radiotherapy plus cetuximab
Berger, Bernhard; Belka, Claus
2008-01-01
The therapeutic use of monoclonal antibodies against the epidermal growth factor receptor (EGFR) is specifically associated with dermatologic reactions of variable severity. Recent evidence suggests superiority of the EGFR inhibitor (EGFRI) cetuximab plus radiotherapy compared to radiotherapy alone in patients with squamous cell carcinoma of the head and neck. Although not documented in a study population, several reports indicate a possible overlap between radiation dermatitis and the EGFRI-induced skin rash. We here present a case of severe skin reaction secondary to the addition of cetuximab to radiotherapy. PMID:18226196
NASA Astrophysics Data System (ADS)
Fathil, M. F. M.; Arshad, M. K. Md; Gopinath, Subash C. B.; Adzhri, R.; Ruslinda, A. R.; Hashim, U.
2017-03-01
This paper presents preparation and characterization of conventional enzyme-linked immunosorbent assay (ELISA) for cardiac troponin detection to determine the selectivity of the cardiac troponin monoclonal antibodies. Monoclonal antibodies, used to capture and bind the targets in this experiment, are cTnI monoclonal antibody (MAb-cTnI) and cTnT monoclonal antibody (MAb-cTnT), while both cardiac troponin I (cTnI) and T (cTnT) are used as targets. ELISA is performed inside two microtiter plates for MAb-cTnI and MAb-cTnT. For each plate, monoclonal antibodies are tested by various concentrations of cTnI and cTnT ranging from 0-6400 µg/l. The binding selectivity and level of detection between monoclonal antibodies and antigen are determined through visual observation based on the color change inside each well on the plate. ELISA reader is further used to quantitatively measured the optical density of the color changes, thus produced more accurate reading. The results from this experiment are utilized to justify the use of these monoclonal antibodies as bio-receptors for cardiac troponin detection by using field-effect transistor (FET)-based biosensors coupled with substrate-gate in the future.
Targeting epidermal growth factor receptor in the treatment of non-small-cell lung cancer.
Kotsakis, Athanasios; Georgoulias, Vassilis
2010-10-01
The management of non-small-cell lung cancer (NSCLC) has undergone a paradigm shift in the last decade, with the survival advantage demonstrated by the incorporation of anti-epidermal growth factor receptor (EGFR) agents to the standard treatment of advanced/metastatic NSCLC. We review the existing data regarding the distinct anti-EGFR agents in the NSCLC treatment and the potential role of the investigated biomarkers in the clinical outcome. Tyrosine kinase inhibitors have been used in first-line, second-line and more settings with extremely good results in a subgroup of patients. Cetuximab remains the only anti-EGFR monoclonal antibody to show survival benefit when combined with a cytotoxic agent in the front-line setting. Anti-EGFR treatment is associated with a dramatic clinical benefit in a subgroup of patients, emphasizing the importance of customizing treatment. Several biomarkers have been investigated for their predictive or prognostic value. Validation of identification of biomarkers remains a focus of intense research that may ultimately guide therapeutic decision making, as none of these is considered ideal to discriminate responding from non-responding patients. However, the current evidence of the EGFR mutation analysis from a recent randomised trial suggests that EGFR mutation analysis is quite a good predictive marker for responsiveness to anti-EGFR TKIs. Moreover, the identification of surrogate markers to indicate optimal activity of the anti-EGFR agent is also needed. This review article provides data from large clinical trials using anti-EGFR agents and correlates these results with the tested biomarkers. EGFR inhibition has shown very encouraging results and has improved the outcome of the NSCLC treatment. However, a plateau of significant clinical benefit seems to have been reached and we believe that the time to move away from the traditional treatment approach to more individualizing therapies has come.
NASA Astrophysics Data System (ADS)
Ou, Zhongmin; Wu, Baoyan; Xing, Da; Zhou, Feifan; Wang, Huiying; Tang, Yonghong
2009-03-01
The application of single-walled carbon nanotubes (SWNTs) in the field of biomedicine is becoming an entirely new and exciting topic. In this study, a novel functional SWNT based on an integrin αvβ3 monoclonal antibody was developed and was used for cancer cell targeting in vitro. SWNTs were first modified by phospholipid-bearing polyethylene glycol (PL-PEG). The PL-PEG functionalized SWNTs were then conjugated with protein A. A SWNT-integrin αvβ3 monoclonal antibody system (SWNT-PEG-mAb) was thus constructed by conjugating protein A with the fluorescein labeled integrin αvβ3 monoclonal antibody. In vitro study revealed that SWNT-PEG-mAb presented a high targeting efficiency on integrin αvβ3-positive U87MG cells with low cellular toxicity, while for integrin αvβ3-negative MCF-7 cells, the system had a low targeting efficiency, indicating that the high targeting to U87MG cells was due to the specific integrin targeting of the monoclonal antibody. In conclusion, SWNT-PEG-mAb developed in this research is a potential candidate for cancer imaging and drug delivery in cancer targeting therapy.
Amplification of epidermal growth factor receptor (EGFR) and its active mutant EGFRvIII occurs frequently in glioblastoma (GBM). While EGFR and EGFRvIII play critical roles in pathogenesis, targeted therapy with EGFR-tyrosine kinase inhibitors (TKIs) or antibodies has only shown limited efficacy in patients. Here we discuss signaling pathways mediated by EGFR/EGFRvIII, current therapeutics, and novel strategies to target EGFR/EGFRvIII-amplified GBM.
Ponziani, Sara; Lamolinara, Alessia; Iezzi, Manuela; Cimini, Annamaria; Angelucci, Francesco; Sorda, Rossana La; Laurenzi, Vincenzo De; Natali, Pier Giorgio; Ippoliti, Rodolfo; Iacobelli, Stefano; Sala, Gianluca
2017-01-01
Melanoma is the most biologically aggressive skin cancer of well established constitutive and induced resistance to pharmacological treatment. Despite the recent progresses in immunotherapies, many advanced metastatic melanoma patients still face a significant mortality risk. The aggressive nature of this disease sustains an urgent need for more successful, effective drugs. HER-3 - one of the four member of the tyrosin kinase epidermal growth factor receptors (EGFRs) family- is frequently overexpressed in solid tumors, including melanoma. Moreover, up-regulation of HER-3 and its ligand NRGβ-1 are associated with poor prognosis, thus suggesting this receptor as a suitable target for cancer therapy. Several monoclonal antibodies targeting HER-3 are currently available, but preliminary results from clinical testing of these agents reveal a modest efficacy. Thus, a substantial improvement over this immunotherapeutic approach could be offered by an anti-HER-3 based Antibody-Drug Conjugate (ADC). In the present paper, we describe the generation of an ADC obtained by coupling the HER-3 targeting antibody EV20 linked to the plant toxin Saporin (Sap). In vitro, this ADC displays a powerful, specific and target-dependent cytotoxic activity which correlates with the degree of expression and internalization of HER-3 on tumor cells. Furthermore, in a murine melanoma model, EV20-Sap treatment leads to a significant reduction of the number of pulmonary metastasis. PMID:29221137
Structure of solid tumors and their vasculature: Implications for therapy with monoclonal antibodies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dvorak, H.F.; Nagy, J.A.; Dvorak, A.M.
Delivery of monoclonal antibodies to solid tumors is a vexing problem that must be solved if these antibodies are to realize their promise in therapy. Such success as has been achieved with monoclonal antibodies is attributable to the local hyperpermeability of the tumor vasculature, a property that favors antibody extravasation at tumor sites and that is mediated by a tumor-secreted vascular permeability factor. However, leaky tumor blood vessels are generally some distance removed from target tumor cells, separated by stroma and by other tumor cells that together represent significant barriers to penetration by extravasated monoclonal antibodies. For this reason, alternativemore » approaches may be attractive. These include the use of antibody-linked cytotoxins, which are able to kill tumor cells without immediate contact, and direction of antibodies against nontumor cell targets, for example, antigens unique to the tumor vascular endothelium or to tumor stroma. 50 refs.« less
Targeted Therapies for Brain Metastases from Breast Cancer.
Venur, Vyshak Alva; Leone, José Pablo
2016-09-13
The discovery of various driver pathways and targeted small molecule agents/antibodies have revolutionized the management of metastatic breast cancer. Currently, the major targets of clinical utility in breast cancer include the human epidermal growth factor receptor 2 (HER2) and epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF) receptor, mechanistic target of rapamycin (mTOR) pathway, and the cyclin-dependent kinase 4/6 (CDK-4/6) pathway. Brain metastasis, however, remains a thorn in the flesh, leading to morbidity, neuro-cognitive decline, and interruptions in the management of systemic disease. Approximately 20%-30% of patients with metastatic breast cancer develop brain metastases. Surgery, whole brain radiation therapy, and stereotactic radiosurgery are the traditional treatment options for patients with brain metastases. The therapeutic paradigm is changing due to better understanding of the blood brain barrier and the advent of tyrosine kinase inhibitors and monoclonal antibodies. Several of these agents are in clinical practice and several others are in early stage clinical trials. In this article, we will review the common targetable pathways in the management of breast cancer patients with brain metastases, and the current state of the clinical development of drugs against these pathways.
In an effort to improve rigor and reproducibility, the National Cancer Institute (NCI) Antibody Characterization Program requests cancer-related protein targets for monoclonal antibody production and distribution to the scientific community. The program from The Office of Cancer Clinical Proteomics Research provides well-characterized
O'Grady, Michael; Raha, Debasish; Hanson, Bonnie J; Bunting, Michaeline; Hanson, George T
2005-01-01
Background The transcription factor activator protein-1 (AP-1) has been implicated in a large variety of biological processes including oncogenic transformation. The tyrosine kinases of the epidermal growth factor receptor (EGFR) constitute the beginning of one signal transduction cascade leading to AP-1 activation and are known to control cell proliferation and differentiation. Drug discovery efforts targeting this receptor and other pathway components have centred on monoclonal antibodies and small molecule inhibitors. Resistance to such inhibitors has already been observed, guiding the prediction of their use in combination therapies with other targeted agents such as RNA interference (RNAi). This study examines the use of RNAi and kinase inhibitors for qualification of components involved in the EGFR/AP-1 pathway of ME180 cells, and their inhibitory effects when evaluated individually or in tandem against multiple components of this important disease-related pathway. Methods AP-1 activation was assessed using an ME180 cell line stably transfected with a beta-lactamase reporter gene under the control of AP-1 response element following epidermal growth factor (EGF) stimulation. Immunocytochemistry allowed for further quantification of small molecule inhibition on a cellular protein level. RNAi and RT-qPCR experiments were performed to assess the amount of knockdown on an mRNA level, and immunocytochemistry was used to reveal cellular protein levels for the targeted pathway components. Results Increased potency of kinase inhibitors was shown by combining RNAi directed towards EGFR and small molecule inhibitors acting at proximal or distal points in the pathway. After cellular stimulation with EGF and analysis at the level of AP-1 activation using a β-lactamase reporter gene, a 10–12 fold shift or 2.5–3 fold shift toward greater potency in the IC50 was observed for EGFR and MEK-1 inhibitors, respectively, in the presence of RNAi targeting EGFR. Conclusion EGFR pathway components were qualified as targets for inhibition of AP-1 activation using RNAi and small molecule inhibitors. The combination of these two targeted agents was shown to increase the efficacy of EGFR and MEK-1 kinase inhibitors, leading to possible implications for overcoming or preventing drug resistance, lowering effective drug doses, and providing new strategies for interrogating cellular signalling pathways. PMID:16202132
Therapeutics Targeting FGF Signaling Network in Human Diseases.
Katoh, Masaru
2016-12-01
Fibroblast growth factor (FGF) signaling through its receptors, FGFR1, FGFR2, FGFR3, or FGFR4, regulates cell fate, angiogenesis, immunity, and metabolism. Dysregulated FGF signaling causes human diseases, such as breast cancer, chondrodysplasia, gastric cancer, lung cancer, and X-linked hypophosphatemic rickets. Recombinant FGFs are pro-FGF signaling therapeutics for tissue and/or wound repair, whereas FGF analogs and gene therapy are under development for the treatment of cardiovascular disease, diabetes, and osteoarthritis. FGF traps, anti-FGF/FGFR monoclonal antibodies (mAbs), and small-molecule FGFR inhibitors are anti-FGF signaling therapeutics under development for the treatment of cancer, chondrodysplasia, and rickets. Here, I discuss the benefit-risk and cost-effectiveness issues of precision medicine targeting FGFRs, ALK, EGFR, and FLT3. FGFR-targeted therapy should be optimized for cancer treatment, focusing on genomic tests and recurrence. Copyright © 2016 Elsevier Ltd. All rights reserved.
Li, Kexin; Chang, Shasha; Wang, Zhongyan; Zhao, Xiuli; Chen, Dawei
2015-08-01
Cationic biomimetic exosomes were prepared using a novel micro-emulsion and micelle assembling method by introducing DEC205 monoclonal antibody as specific ligand to target dendritic cells (DCs). The Box-Behnken experimental design was applied for optimization of nanoliposomes (NLip) and DEC205 monoclonal antibody was then conjugated on the surface of NLip (DEC205-NLip). NLip and DEC205-NLip respectively had an average size of 62.7 ± 6.33 nm and 81.64 ± 4.25 nm, zeta potential of +30.5 ± 2.3 mV and +19.8 ± 1.8 mV and encapsulation efficiency of 91.02 ± 3.1% and 93.10 ± 2.2%. In addition, the toxicity studies confirmed DEC205 monoclonal antibody could significantly reduce the cytotoxicity of the cationic lipid against DCs. And the cellular uptake experiment evaluated the significant targeting effect of the DEC205 monoclonal antibody on DC cells. In conclusion, the novel method presented here to prepare biomimetic exosomes was an efficient approach to develop antigen carriers for specific DCs targeting. Copyright © 2015 Elsevier B.V. All rights reserved.
NCI's Antibody Characterization Program provides reagents and other critical resources to support protein/peptide measurements and analysis. In an effort to produce and distribute well-characterized monoclonal antibodies to the scientific community, the program is seeking cancer related protein targets for antibody production and characterization for distribution to the research community. Submission Period: May 20, 2011 - July 1, 2011.
Receptor tyrosine kinase inhibitors as potent weapons in war against cancers.
Sharma, P Sapra; Sharma, R; Tyagi, T
2009-01-01
Receptor Tyrosine Kinases class I (RTK class I, EGF receptor family) constitute a family of transmembrane proteins involved in various aspects of cell growth and survival and have been implicated in the initiation and progression of several types of human malignancies. Activation of EGFR may be because of overexpression, mutations resulting in constitutive activation, or autocrine expression of ligand. In contrast, activation of HER2 occurs mainly by overexpression, which leads to spontaneous homodimerization and activation of downstream signaling events in a ligand-independent manner. EGFR and HER2 have now been validated as a clinically relevant target, and several different types of agents inhibiting these receptors are currently in development. The EGFR inhibitors Erlotinib, Gefitinib, and Cetuximab have undergone extensive clinical testing and have established clinical activity in non small cell lung cancer (NSCLS) and other types of solid tumors. Several of the other erbB inhibitors are also undergoing advanced clinical testing, either alone or in combination with other agents. This review reports various inhibitors, natural, small molecules and monoclonal antibodies, along with their reported activities for various members of erbB family. It will highlight the potential for the development of novel anti-cancer molecules.
Königsberg, Robert; Hulla, Wolfgang; Klimpfinger, Martin; Reiner-Concin, Angelika; Steininger, Tanja; Büchler, Wilfried; Terkola, Robert; Dittrich, Christian
2011-01-01
Treatment of metastasized colorectal cancer (mCRC) patients with anti-epidermal growth factor receptor (EGFR)-directed monoclonal antibodies is driven by the results of the KRAS mutational status (wild type [WT]/mutated [MUT]). To find out as to what extent the treatment selection based on the KRAS status had impact on overall costs, a retrospective analysis was performed. Of 73 mCRC patients 31.5% were MUT carriers. Costs of EGFR inhibitor treatment for WT patients were significantly higher compared to those for patients with MUT (p = 0.005). Higher treatment costs in WT carriers reflect a significantly higher number of treatment cycles (p = 0.012) in this cohort of patients. Savings of drug costs minus the costs for the determination of KRAS status accounted for EUR 779.42 (SD ±336.28) per patient per cycle. The routine use of KRAS screening is a cost-effective strategy. Costs of unnecessary monoclonal EGFR inhibitor treatment can be saved in MUT patients. Copyright © 2012 S. Karger AG, Basel.
Busby, Michele; Xue, Catherine; Li, Catherine; Farjoun, Yossi; Gienger, Elizabeth; Yofe, Ido; Gladden, Adrianne; Epstein, Charles B; Cornett, Evan M; Rothbart, Scott B; Nusbaum, Chad; Goren, Alon
2016-01-01
The robustness of ChIP-seq datasets is highly dependent upon the antibodies used. Currently, polyclonal antibodies are the standard despite several limitations: They are non-renewable, vary in performance between lots and need to be validated with each new lot. In contrast, monoclonal antibody lots are renewable and provide consistent performance. To increase ChIP-seq standardization, we investigated whether monoclonal antibodies could replace polyclonal antibodies. We compared monoclonal antibodies that target five key histone modifications (H3K4me1, H3K4me3, H3K9me3, H3K27ac and H3K27me3) to their polyclonal counterparts in both human and mouse cells. Overall performance was highly similar for four monoclonal/polyclonal pairs, including when we used two distinct lots of the same monoclonal antibody. In contrast, the binding patterns for H3K27ac differed substantially between polyclonal and monoclonal antibodies. However, this was most likely due to the distinct immunogen used rather than the clonality of the antibody. Altogether, we found that monoclonal antibodies as a class perform equivalently to polyclonal antibodies for the detection of histone post-translational modifications in both human and mouse. Accordingly, we recommend the use of monoclonal antibodies in ChIP-seq experiments.
Erlotinib is a viable treatment for tumors with acquired resistance to cetuximab
Brand, Toni M; Dunn, Emily F; Iida, Mari; Myers, Rebecca A; Kostopoulos, Kellie T; Li, Chunrong; Peet, Chimera R
2011-01-01
The epidermal growth factor receptor (EGFR) is an ubiquitously expressed receptor tyrosine kinase (RTK) and is recognized as a key mediator of tumorigenesis in many human tumors. Currently there are five EGFR inhibitors used in oncology, two monoclonal antibodies (panitumumab and cetuximab) and three tyrosine kinase inhibitors (erlotinib, gefitinib and lapatinib). Both strategies of EGFR inhibition have demonstrated clinical success; however, many tumors remain non-responsive or acquire resistance during therapy. To explore potential molecular mechanisms of acquired resistance to cetuximab we previously established a series of cetuximab-resistant clones by chronically exposing the NCI-H226 NSCLC cell line to escalating doses of cetuximab. Cetuximab-resistant clones exhibited a dramatic increase in the activation of EGFR, HER2 and HER3 receptors as well as increased signaling through the MAP K and AKT pathways. RNAi studies demonstrated dependence of cetuximab-resistant clones on the EGFR signaling network. These findings prompted investigation on whether or not cells with acquired resistance to cetuximab would be sensitive to the EGFR targeted TKI erlotinib. In vitro, erlotinib was able to decrease signaling through the EGFR axis, decrease cellular proliferation and induce apoptosis. To determine if erlotinib could have therapeutic benefit in vivo, we established cetuximab-resistant NCI-H226 mouse xenografts, and subsequently treated them with erlotinib. Mice harboring cetuximab-resistant tumors treated with erlotinib exhibited either a tumor regression or growth delay as compared with vehicle controls. Analysis of the erlotinib treated tumors demonstrated a decrease in cell proliferation and increased rates of apoptosis. The work presented herein suggests that (1) cells with acquired resistance to cetuximab maintain their dependence on EGFR and (2) tumors developing resistance to cetuximab can benefit from subsequent treatment with erlotinib, providing rationale for its use in the setting of cetuximab resistance. PMID:21725209
Watanabe, Hiromi; Ichihara, Eiki; Kano, Hirohisa; Ninomiya, Kiichiro; Tanimoto, Mitsune; Kiura, Katsuyuki
2017-08-15
We herein report a case of congestive heart failure which developed during osimertinib treatment. A 78-year-old woman presented with mild exertional dyspnea three weeks after starting osimertinib for the treatment of epidermal growth factor receptor (EGFR) T790M-positive non-small cell lung cancer. She was diagnosed with congestive heart failure caused by the osimertinib. In contrast to trastuzumab, a human epidermal growth factor receptor 2 (HER2) monoclonal antibody that often causes cardiac dysfunction, the causal relationship between osimertinib and cardiotoxicity has so far received little attention and thus remains unclear. However, it inhibits HER2 in addition to mutant EGFR, thereby potentially causing cardiotoxicity.
Watanabe, Hiromi; Ichihara, Eiki; Kano, Hirohisa; Ninomiya, Kiichiro; Tanimoto, Mitsune; Kiura, Katsuyuki
2017-01-01
We herein report a case of congestive heart failure which developed during osimertinib treatment. A 78-year-old woman presented with mild exertional dyspnea three weeks after starting osimertinib for the treatment of epidermal growth factor receptor (EGFR) T790M-positive non-small cell lung cancer. She was diagnosed with congestive heart failure caused by the osimertinib. In contrast to trastuzumab, a human epidermal growth factor receptor 2 (HER2) monoclonal antibody that often causes cardiac dysfunction, the causal relationship between osimertinib and cardiotoxicity has so far received little attention and thus remains unclear. However, it inhibits HER2 in addition to mutant EGFR, thereby potentially causing cardiotoxicity. PMID:28781309
Yu, Xiaochun; Sharma, Kailash D.; Takahashi, Tsuyoshi; Iwamoto, Ryo; Mekada, Eisuke
2002-01-01
Dimerization and phosphorylation of the epidermal growth factor (EGF) receptor (EGFR) are the initial and essential events of EGF-induced signal transduction. However, the mechanism by which EGFR ligands induce dimerization and phosphorylation is not fully understood. Here, we demonstrate that EGFRs can form dimers on the cell surface independent of ligand binding. However, a chimeric receptor, comprising the extracellular and transmembrane domains of EGFR and the cytoplasmic domain of the erythropoietin receptor (EpoR), did not form a dimer in the absence of ligands, suggesting that the cytoplasmic domain of EGFR is important for predimer formation. Analysis of deletion mutants of EGFR showed that the region between 835Ala and 918Asp of the EGFR cytoplasmic domain is required for EGFR predimer formation. In contrast to wild-type EGFR ligands, a mutant form of heparin-binding EGF-like growth factor (HB2) did not induce dimerization of the EGFR-EpoR chimeric receptor and therefore failed to activate the chimeric receptor. However, when the dimerization was induced by a monoclonal antibody to EGFR, HB2 could activate the chimeric receptor. These results indicate that EGFR can form a ligand-independent inactive dimer and that receptor dimerization and activation are mechanistically distinct and separable events. PMID:12134089
Recent Advances in Monoclonal Antibody Therapies for Multiple Sclerosis.
Wootla, Bharath; Watzlawik, Jens O; Stavropoulos, Nikolaos; Wittenberg, Nathan J; Dasari, Harika; Abdelrahim, Murtada A; Henley, John R; Oh, Sang-Hyun; Warrington, Arthur E; Rodriguez, Moses
2016-06-01
Multiple sclerosis (MS) is the most common chronic inflammatory, demyelinating disease of the CNS and results in neurological disability. Existing immunomodulatory and immunosuppressive approaches lower the number of relapses but do not cure or reverse existing deficits nor improve long-term disability in MS patients. Monogenic antibodies were described as treatment options for MS, however the immunogenicity of mouse antibodies hampered the efficacy of potential therapeutics in humans. Availability of improved antibody production technologies resulted in a paradigm shift in MS treatment strategies. In this review, an overview of immunotherapies for MS that use conventional monoclonal antibodies reactive to immune system and their properties and mechanisms of action will be discussed, including recent advances in MS therapeutics and highlight natural autoantibodies (NAbs) that directly target CNS cells. Recent challenges for MS therapy are the identification of relevant molecular and cellular targets, time frame of treatment, and antibody toxicity profiles to identify safe treatment options for MS patients. The application of monoclonal antibody therapies with better biological efficacy associated with minimum side effects possesses huge clinical potential. Advances in monoclonal antibody technologies that directly target cells of nervous system may promote the CNS regeneration field from bench to bedside.
Recent Advances in Monoclonal Antibody Therapies for Multiple Sclerosis
Stavropoulos, Nikolaos; Wittenberg, Nathan J.; Dasari, Harika; Abdelrahim, Murtada A.; Henley, John R.; Oh, Sang-Hyun; Warrington, Arthur E.; Rodriguez, Moses
2016-01-01
Introduction Multiple sclerosis (MS) is the most common chronic inflammatory, demyelinating disease of the CNS and results in neurological disability. Existing immunomodulatory and immunosuppressive approaches lower the number of relapses but do not cure or reverse existing deficits nor improve long-term disability in MS patients. Areas Covered Monogenic antibodies were described as treatment options for MS, however the immunogenicity of mouse antibodies hampered the efficacy of potential therapeutics in humans. Availability of improved antibody production technologies resulted in a paradigm shift in MS treatment strategies. In this review, an overview of immunotherapies for MS that use conventional monoclonal antibodies reactive to immune system and their properties and mechanisms of action will be discussed, including recent advances in MS therapeutics and highlight natural autoantibodies (NAbs) that directly target CNS cells. Expert Opinion Recent challenges for MS therapy are the identification of relevant molecular and cellular targets, time frame of treatment, and antibody toxicity profiles to identify safe treatment options for MS patients. The application of monoclonal antibody therapies with better biological efficacy associated with minimum side effects possesses huge clinical potential. Advances in monoclonal antibody technologies that directly target cells of nervous system may promote the CNS regeneration field from bench to bedside. PMID:26914737
In an effort to provide well-characterized monoclonal antibodies to the scientific community, the National Cancer Institute (NCI) Antibody Characterization Program requests cancer-related protein targets for affinity production and distribution. The program from The Office of Cancer Clinical Proteomics Research provides reagents and other critical resources that support protein and/or peptide measurements and analysis.
Cetuximab Resistance in Head and Neck Cancer Is Mediated by EGFR-K521 Polymorphism.
Braig, Friederike; Kriegs, Malte; Voigtlaender, Minna; Habel, Beate; Grob, Tobias; Biskup, Karina; Blanchard, Veronique; Sack, Markus; Thalhammer, Anja; Ben Batalla, Isabel; Braren, Ingke; Laban, Simon; Danielczyk, Antje; Goletz, Steffen; Jakubowicz, Elzbieta; Märkl, Bruno; Trepel, Martin; Knecht, Rainald; Riecken, Kristoffer; Fehse, Boris; Loges, Sonja; Bokemeyer, Carsten; Binder, Mascha
2017-03-01
Head and neck squamous cell carcinomas (HNSCC) exhibiting resistance to the EGFR-targeting drug cetuximab poses a challenge to their effective clinical management. Here, we report a specific mechanism of resistance in this setting based upon the presence of a single nucleotide polymorphism encoding EGFR-K 521 (K-allele), which is expressed in >40% of HNSCC cases. Patients expressing the K-allele showed significantly shorter progression-free survival upon palliative treatment with cetuximab plus chemotherapy or radiation. In several EGFR-mediated cancer models, cetuximab failed to inhibit downstream signaling or to kill cells harboring a high K-allele frequency. Cetuximab affinity for EGFR-K 521 was reduced slightly, but ligand-mediated EGFR activation was intact. We found a lack of glycan sialyation on EGFR-K 521 that associated with reduced protein stability, suggesting a structural basis for reduced cetuximab efficacy. CetuGEX, an antibody with optimized Fc glycosylation targeting the same epitope as cetuximab, restored HNSCC sensitivity in a manner associated with antibody-dependent cellular cytotoxicity rather than EGFR pathway inhibition. Overall, our results highlight EGFR-K 521 expression as a key mechanism of cetuximab resistance to evaluate prospectively as a predictive biomarker in HNSCC patients. Further, they offer a preclinical rationale for the use of ADCC-optimized antibodies to treat tumors harboring this EGFR isoform. Cancer Res; 77(5); 1188-99. ©2016 AACR . ©2016 American Association for Cancer Research.
Detection of squamous carcinoma cells using gold nanoparticles
NASA Astrophysics Data System (ADS)
Dai, Wei-Yun; Lee, Sze-tsen; Hsu, Yih-Chih
2015-03-01
The goal of this study is to use gold nanoparticle as a diagnostic agent to detect human squamous carcinoma cells. Gold nanoparticles were synthesized and the gold nanoparticle size was 34.3 ± 6.2 nm. Based on the over-expression of epidermal growth factor receptor (EGFR) biomarkers in squamous carcinoma cells, we hypothesized that EGFR could be a feasible biomarker with a target moiety for detection. We further modified polyclonal antibodies of EGFR on the surface of gold nanoparticles. We found selected squamous carcinoma cells can be selectively detected using EGFR antibody-modified gold nanoparticles via receptor-mediated endocytosis. Cell death was also examined to determine the survival status of squamous carcinoma cells with respect to gold nanoparticle treatment and EGFR polyclonal antibody modification.
Bidlingmaier, Scott; Su, Yang; Liu, Bin
2015-01-01
Using phage antibody display, large libraries can be generated and screened to identify monoclonal antibodies with affinity for target antigens. However, while library size and diversity is an advantage of the phage display method, there is limited ability to quantitatively enrich for specific binding properties such as affinity. One way of overcoming this limitation is to combine the scale of phage display selections with the flexibility and quantitativeness of FACS-based yeast surface display selections. In this chapter we describe protocols for generating yeast surface antibody display libraries using phage antibody display selection outputs as starting material and FACS-based enrichment of target antigen-binding clones from these libraries. These methods should be widely applicable for the identification of monoclonal antibodies with specific binding properties.
Baker, J B; Dutta, D; Watson, D; Maddala, T; Munneke, B M; Shak, S; Rowinsky, E K; Xu, L-A; Harbison, C T; Clark, E A; Mauro, D J; Khambata-Ford, S
2011-02-01
Although it is accepted that metastatic colorectal cancers (mCRCs) that carry activating mutations in KRAS are unresponsive to anti-epidermal growth factor receptor (EGFR) monoclonal antibodies, a significant fraction of KRAS wild-type (wt) mCRCs are also unresponsive to anti-EGFR therapy. Genes encoding EGFR ligands amphiregulin (AREG) and epiregulin (EREG) are promising gene expression-based markers but have not been incorporated into a test to dichotomise KRAS wt mCRC patients with respect to sensitivity to anti-EGFR treatment. We used RT-PCR to test 110 candidate gene expression markers in primary tumours from 144 KRAS wt mCRC patients who received monotherapy with the anti-EGFR antibody cetuximab. Results were correlated with multiple clinical endpoints: disease control, objective response, and progression-free survival (PFS). Expression of many of the tested candidate genes, including EREG and AREG, strongly associate with all clinical endpoints. Using multivariate analysis with two-layer five-fold cross-validation, we constructed a four-gene predictive classifier. Strikingly, patients below the classifier cutpoint had PFS and disease control rates similar to those of patients with KRAS mutant mCRC. Gene expression appears to identify KRAS wt mCRC patients who receive little benefit from cetuximab. It will be important to test this model in an independent validation study.
[International classification of various types of monoclonal antibodies].
Scheen, A J
2009-01-01
Significant advances in the development of monoclonal antibodies ("mabs") have been acknowledged during the last two decades. Successive developments led to the marketing of murine antibodies ("o-mab" first, followed by chimeric antibodies ("xi-mab"), humanised antibodies ("zu-mab") and, finally, human monoclonal antibodies ("u-mab"). In order to facilitate the distinction between the various monoclonal antibodies used in clinical practice, an international nomenclature has been proposed with the use of a specific suffix corresponding to the origine/source of "mabs" preceded by an infix referring to the medicine's target. The efforts in developing new types of monoclonal antibodies aimed at improving their pharmacokinetics (longer half-life), pharmacodynamics (better efficacy because of stronger affinity to human receptor), and safety profile (less antigenic and immunogenic reactions). These progresses could be obtained thanks to the remarkable development of molecular biotechnology.
Chakravarty, Rubel; Goel, Shreya; Valdovinos, Hector F.; ...
2014-11-11
Scandium-44 (t 1/2 = 3.9 h) is a relatively new radioisotope of potential interest for use in clinical positron emission tomography (PET). Herein, we report, for the first time, the room-temperature radiolabeling of proteins with 44Sc for in vivo PET imaging. For this purpose, the Fab fragment of Cetuximab, a monoclonal antibody that binds with high affinity to epidermal growth factor receptor (EGFR), was generated and conjugated with N-[(R)-2-amino-3-( para-isothiocyanato-phenyl)propyl]- trans-(S,S)-cyclohexane-1,2-diamine- N,N,N',N'',N''-pentaacetic acid (CHX-A"-DTPA). The high purity of Cetuximab-Fab was confirmed by SDS-PAGE and mass spectrometry. The potential of the bioconjugate for PET imaging of EGFR expression in human glioblastomamore » (U87MG) tumor-bearing mice was investigated after 44Sc labeling. PET imaging revealed rapid tumor uptake (maximum uptake of ~12% ID/g at 4 h postinjection) of 44Sc–CHX-A"-DTPA–Cetuximab-Fab with excellent tumor-to-background ratio, which might allow for same day PET imaging in future clinical studies. Immunofluorescence staining was conducted to correlate tracer uptake in the tumor and normal tissues with EGFR expression. As a result, this successful strategy for immunoPET imaging of EGFR expression using 44Sc–CHX-''-DTPA–Cetuximab-Fab can make clinically translatable advances to select the right population of patients for EGFR-targeted therapy and also to monitor the therapeutic efficacy of anti-EGFR treatments.« less
2015-01-01
Scandium-44 (t1/2 = 3.9 h) is a relatively new radioisotope of potential interest for use in clinical positron emission tomography (PET). Herein, we report, for the first time, the room-temperature radiolabeling of proteins with 44Sc for in vivo PET imaging. For this purpose, the Fab fragment of Cetuximab, a monoclonal antibody that binds with high affinity to epidermal growth factor receptor (EGFR), was generated and conjugated with N-[(R)-2-amino-3-(para-isothiocyanato-phenyl)propyl]-trans-(S,S)-cyclohexane-1,2-diamine-N,N,N′,N″,N″-pentaacetic acid (CHX-A″-DTPA). The high purity of Cetuximab-Fab was confirmed by SDS-PAGE and mass spectrometry. The potential of the bioconjugate for PET imaging of EGFR expression in human glioblastoma (U87MG) tumor-bearing mice was investigated after 44Sc labeling. PET imaging revealed rapid tumor uptake (maximum uptake of ∼12% ID/g at 4 h postinjection) of 44Sc–CHX-A″-DTPA–Cetuximab-Fab with excellent tumor-to-background ratio, which might allow for same day PET imaging in future clinical studies. Immunofluorescence staining was conducted to correlate tracer uptake in the tumor and normal tissues with EGFR expression. This successful strategy for immunoPET imaging of EGFR expression using 44Sc–CHX-A″-DTPA–Cetuximab-Fab can make clinically translatable advances to select the right population of patients for EGFR-targeted therapy and also to monitor the therapeutic efficacy of anti-EGFR treatments. PMID:25389697
Correlation of EGFR expression, gene copy number and clinicopathological status in NSCLC.
Gaber, Rania; Watermann, Iris; Kugler, Christian; Reinmuth, Nils; Huber, Rudolf M; Schnabel, Philipp A; Vollmer, Ekkehard; Reck, Martin; Goldmann, Torsten
2014-09-17
Epidermal Growth Factor Receptor (EGFR) targeting therapies are currently of great relevance for the treatment of lung cancer. For this reason, in addition to mutational analysis immunohistochemistry (IHC) of EGFR in lung cancer has been discussed for the decision making of according therapeutic strategies. The aim of this study was to obtain standardization of EGFR-expression methods for the selection of patients who might benefit of EGFR targeting therapies. As a starting point of a broad investigation, aimed at elucidating the expression of EGFR on different biological levels, four EGFR specific antibodies were analyzed concerning potential differences in expression levels by Immunohistochemistry (IHC) and correlated with fluorescence in situ hybridization (FISH) analysis and clinicopathological data. 206 tumor tissues were analyzed in a tissue microarray format employing immunohistochemistry with four different antibodies including Dako PharmDx kit (clone 2-18C9), clone 31G7, clone 2.1E1 and clone SP84 using three different scoring methods. Protein expression was compared to FISH utilizing two different probes. EGFR protein expression determined by IHC with Dako PharmDx kit, clone 31G7 and clone 2.1E1 (p ≤ 0.05) correlated significantly with both FISH probes independently of the three scoring methods; best correlation is shown for 31G7 using the scoring method that defined EGFR positivity when ≥ 10% of the tumor cells show membranous staining of moderate and severe intensity (p=0.001). Overall, our data show differences in EGFR expression determined by IHC, due to the applied antibody. Highest concordance with FISH is shown for antibody clone 31G7, evaluated with score B (p=0.001). On this account, this antibody clone might by utilized for standard evaluation of EGFR expression by IHC. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/13000_2014_165.
Afatinib and Cetuximab in Four Patients With EGFR Exon 20 Insertion-Positive Advanced NSCLC.
van Veggel, Bianca; de Langen, Adrianus J; Hashemi, Sayed M S; Monkhorst, Kim; Heideman, Daniëlle A M; Thunnissen, Erik; Smit, Egbert F
2018-04-24
EGFR exon 20 insertions comprise 4% to 9% of EGFR mutated NSCLC. Despite being an oncogenic driver, they are associated with primary resistance to EGFR tyrosine kinase inhibitors (TKIs). We hypothesized that dual EGFR blockade with afatinib, an irreversible EGFR TKI, and cetuximab, a monoclonal antibody against EGFR, could induce tumor responses. Four patients with EGFR exon 20 insertion-positive NSCLC were treated with afatinib 40 mg once daily and cetuximab 250 mg/m 2 to 500 mg/m 2 every 2 weeks. All patients had stage IV adenocarcinoma of the lung harboring an EGFR exon 20 insertion mutation. Previous lines of treatment consisted of platinum doublet chemotherapy (n = 4) and EGFR TKI (n = 2). Three of four patients showed a partial response according to Response Evaluation Criteria in Solid Tumors (RECIST 1.1). Median progression-free survival was 5.4 months (95% confidence interval: 0.0 - 14.2 months; range 2.7 months - 17.6 months). Toxicity was manageable with appropriate skin management and dose reduction being required in two patients. Dual EGFR blockade with afatinib and cetuximab may induce tumor responses in patients with EGFR exon 20 insertion-positive NSCLC. Copyright © 2018 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Eung-Yoon; Choi, Young-Jin; Innopharmascreen, Inc., Asan 336-795
2009-11-20
Receptor tyrosine kinases (PTKs) play key roles in the pathogenesis of numerous human diseases, including cancer. Therefore PTK inhibitors are currently under intensive investigation as potential drug candidates. Herein, we report on a ProteoChip-based screening of an epidermal growth factor receptor (EGFR) tyrosine kinase (TK) inhibitor, Erkitinibs, from phytochemical libraries. PLC-{gamma}-1 was used as a substrate immobilized on a ProteoChip and incubated with an EGFR kinase to phosphorylate tyrosine residues of the substrate, followed by a fluorescence detection of the substrate recognized by a phospho-specific monoclonal antibody. Erkitinibs inhibited HeLa cell proliferation in a dose-dependent manner. In conclusion, these datamore » suggest that Erkitinibs can be a specific inhibitor of an EGFR kinase and can be further developed as a potent anti-tumor agent.« less
Fatima, Aneela; Wang, Haiying; Kang, Keren; Xia, Liliang; Wang, Ying; Ye, Wei; Wang, Jufang; Wang, Xiaoning
2014-01-01
The possibility of using variable domain heavy-chain antibodies (VHH antibodies) as diagnostic tools for dengue virus (DENV) type 2 NS1 protein was investigated and compared with the use of conventional monoclonal antibodies. After successful expression of DENV type 2 NS1 protein, the genes of VHH antibodies against NS1 protein were biopanned from a non-immune llama library by phage display. VHH antibodies were then expressed and purified from Escherichia coli. Simultaneously, monoclonal antibodies were obtained by the conventional route. Sequence analysis of the VHH antibodies revealed novel and long complementarity determining regions 3 (CDR3). Epitope mapping was performed via a phage display peptide library using purified VHH and monoclonal antibodies as targets. Interestingly, the same region of NS1, which comprises amino acids 224HWPKPHTLW232, was conserved for both kinds of antibodies displaying the consensus motif histidine-tryptophan-tryptophan or tryptophan-proline-tryptophan. The two types of antibodies were used to prepare rapid diagnostic kits based on immunochromatographic assay. The VHH antibody immobilized rapid diagnostic kit showed better sensitivity and specificity than the monoclonal antibody immobilized rapid diagnostic kit, which might be due to the long CDR3 regions of the VHH antibodies and their ability to bind to the pocket and cleft of the targeted antigen. This demonstrates that VHH antibodies are likely to be an option for developing point-of-care tests against DENV infection.
Fatima, Aneela; Wang, Haiying; Kang, Keren; Xia, Liliang; Wang, Ying; Ye, Wei; Wang, Jufang; Wang, Xiaoning
2014-01-01
The possibility of using variable domain heavy-chain antibodies (VHH antibodies) as diagnostic tools for dengue virus (DENV) type 2 NS1 protein was investigated and compared with the use of conventional monoclonal antibodies. After successful expression of DENV type 2 NS1 protein, the genes of VHH antibodies against NS1 protein were biopanned from a non-immune llama library by phage display. VHH antibodies were then expressed and purified from Escherichia coli. Simultaneously, monoclonal antibodies were obtained by the conventional route. Sequence analysis of the VHH antibodies revealed novel and long complementarity determining regions 3 (CDR3). Epitope mapping was performed via a phage display peptide library using purified VHH and monoclonal antibodies as targets. Interestingly, the same region of NS1, which comprises amino acids 224HWPKPHTLW232, was conserved for both kinds of antibodies displaying the consensus motif histidine-tryptophan-tryptophan or tryptophan-proline-tryptophan. The two types of antibodies were used to prepare rapid diagnostic kits based on immunochromatographic assay. The VHH antibody immobilized rapid diagnostic kit showed better sensitivity and specificity than the monoclonal antibody immobilized rapid diagnostic kit, which might be due to the long CDR3 regions of the VHH antibodies and their ability to bind to the pocket and cleft of the targeted antigen. This demonstrates that VHH antibodies are likely to be an option for developing point-of-care tests against DENV infection. PMID:24751715
DOE Office of Scientific and Technical Information (OSTI.GOV)
East, I.J.; Keenan, A.M.; Larson, S.M.
1984-08-31
The zona pellucida is an extracellular glycocalyx, made of three sulfated glycoproteins, that surrounds mammalian oocytes. Parenterally administered monoclonal antibodies specific for ZP-2, the most abundant zona protein, localize in the zona pellucida. When labeled with iodine-125, these monoclonal antibodies demonstrate a remarkably high target-to-nontarget tissue ratio and provide clear external radioimaging of ovarian tissue.
Bio-Imaging of Colorectal Cancer Models Using Near Infrared Labeled Epidermal Growth Factor
Cohen, Gadi; Lecht, Shimon; Arien-Zakay, Hadar; Ettinger, Keren; Amsalem, Orit; Oron-Herman, Mor; Yavin, Eylon; Prus, Diana; Benita, Simon; Nissan, Aviram; Lazarovici, Philip
2012-01-01
Novel strategies that target the epidermal growth factor receptor (EGFR) have led to the clinical development of monoclonal antibodies, which treat metastatic colorectal cancer (mCRC) but only subgroups of patients with increased wild type KRAS and EGFR gene copy, respond to these agents. Furthermore, resistance to EGFR blockade inevitably occurred, making future therapy difficult. Novel bio-imaging (BOI) methods may assist in quantization of EGFR in mCRC tissue thus complementing the immunohistochemistry methodology, in guiding the future treatment of these patients. The aim of the present study was to explore the usefulness of near infrared-labeled EGF (EGF-NIR) for bio-imaging of CRC using in vitro and in vivo orthotopic tumor CRC models and ex vivo human CRC tissues. We describe the preparation and characterization of EGF-NIR and investigate binding, using BOI of a panel of CRC cell culture models resembling heterogeneity of human CRC tissues. EGF-NIR was specifically and selectively bound by EGFR expressing CRC cells, the intensity of EGF-NIR signal to background ratio (SBR) reflected EGFR levels, dose-response and time course imaging experiments provided optimal conditions for quantization of EGFR levels by BOI. EGF-NIR imaging of mice with HT-29 orthotopic CRC tumor indicated that EGF-NIR is more slowly cleared from the tumor and the highest SBR between tumor and normal adjacent tissue was achieved two days post-injection. Furthermore, images of dissected tissues demonstrated accumulation of EGF-NIR in the tumor and liver. EGF-NIR specifically and strongly labeled EGFR positive human CRC tissues while adjacent CRC tissue and EGFR negative tissues expressed weak NIR signals. This study emphasizes the use of EGF-NIR for preclinical studies. Combined with other methods, EGF-NIR could provide an additional bio-imaging specific tool in the standardization of measurements of EGFR expression in CRC tissues. PMID:23144978
Bio-imaging of colorectal cancer models using near infrared labeled epidermal growth factor.
Cohen, Gadi; Lecht, Shimon; Arien-Zakay, Hadar; Ettinger, Keren; Amsalem, Orit; Oron-Herman, Mor; Yavin, Eylon; Prus, Diana; Benita, Simon; Nissan, Aviram; Lazarovici, Philip
2012-01-01
Novel strategies that target the epidermal growth factor receptor (EGFR) have led to the clinical development of monoclonal antibodies, which treat metastatic colorectal cancer (mCRC) but only subgroups of patients with increased wild type KRAS and EGFR gene copy, respond to these agents. Furthermore, resistance to EGFR blockade inevitably occurred, making future therapy difficult. Novel bio-imaging (BOI) methods may assist in quantization of EGFR in mCRC tissue thus complementing the immunohistochemistry methodology, in guiding the future treatment of these patients. The aim of the present study was to explore the usefulness of near infrared-labeled EGF (EGF-NIR) for bio-imaging of CRC using in vitro and in vivo orthotopic tumor CRC models and ex vivo human CRC tissues. We describe the preparation and characterization of EGF-NIR and investigate binding, using BOI of a panel of CRC cell culture models resembling heterogeneity of human CRC tissues. EGF-NIR was specifically and selectively bound by EGFR expressing CRC cells, the intensity of EGF-NIR signal to background ratio (SBR) reflected EGFR levels, dose-response and time course imaging experiments provided optimal conditions for quantization of EGFR levels by BOI. EGF-NIR imaging of mice with HT-29 orthotopic CRC tumor indicated that EGF-NIR is more slowly cleared from the tumor and the highest SBR between tumor and normal adjacent tissue was achieved two days post-injection. Furthermore, images of dissected tissues demonstrated accumulation of EGF-NIR in the tumor and liver. EGF-NIR specifically and strongly labeled EGFR positive human CRC tissues while adjacent CRC tissue and EGFR negative tissues expressed weak NIR signals. This study emphasizes the use of EGF-NIR for preclinical studies. Combined with other methods, EGF-NIR could provide an additional bio-imaging specific tool in the standardization of measurements of EGFR expression in CRC tissues.
Wu, Xiuqi; Shi, Bizhi; Zhang, Jiqin; Shi, Zhimin; Di, Shengmeng; Fan, Minliang; Gao, Huiping; Wang, Hai; Gu, Jianren; Jiang, Hua; Li, Zonghai
2017-10-04
The incorporation of an endogenous safety switch represents a rational strategy for the control of toxicities following the administration of adoptive T cell therapies. An ideal safety switch should be capable of depleting the transferred T cells with minimal injury to normal tissues. We generated a fusion receptor by engineering a cryptic 806 epitope of human epidermal growth factor receptor (EGFR) into the N terminus of the full-length human folate receptor 1 (FOLR1), designated as FR806. The expression of FR806 allows transduced T cells to be targeted with CH12, a monoclonal antibody recognizing the 806 epitope, but not wild-type EGFR in healthy tissues. FR806, therefore, constitutes a specific cell-surface marker for the elimination of transduced T cells. We demonstrate that the antibody-drug conjugate (ADC) CH12-MMAF is efficiently internalized by FR806-expressing T cells and has the potential to eliminate them. Transfected T cells could, furthermore, be efficiently detected and purified using CH12 antibodies. In immuno-compromised mice, CH12-MMAF eliminated the majority of transferred T cells expressing FR806 and anti-CD19 chimeric antigen receptor (CAR). The selectivity for the 806 epitope and internalization capacity of FOLR1 makes FR806 an efficient safety switch, which may additionally be used as a detection and purification biomarker for human T cell immunotherapies. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.
Ingthorsson, S; Andersen, K; Hilmarsdottir, B; Maelandsmo, G M; Magnusson, M K; Gudjonsson, T
2016-08-11
The members of the epidermal growth factor receptor (EGFR) kinase family are important players in breast morphogenesis and cancer. EGFR2/HER2 and EGFR expression have a prognostic value in certain subtypes of breast cancer such as HER2-amplified, basal-like and luminal type B. Many clinically approved small molecular inhibitors and monoclonal antibodies have been designed to target HER2, EGFR or both. There is, however, still limited knowledge on how the two receptors are expressed in normal breast epithelium, what effects they have on cellular differentiation and how they participate in neoplastic transformation. D492 is a breast epithelial cell line with stem cell properties that can undergo epithelial to mesenchyme transition (EMT), generate luminal- and myoepithelial cells and form complex branching structures in three-dimensional (3D) culture. Here, we show that overexpression of HER2 in D492 (D492(HER2)) resulted in EMT, loss of contact growth inhibition and increased oncogenic potential in vivo. HER2 overexpression, furthermore, inhibited endogenous EGFR expression. Re-introducing EGFR in D492(HER2) (D492(HER2/EGFR)) partially reversed the mesenchymal state of the cells, as an epithelial phenotype reappeared both in 3D cultures and in vivo. The D492(HER2/EGFR) xenografts grow slower than the D492(HER2) tumors, while overexpression of EGFR alone (D492(EGFR)) was not oncogenic in vivo. Consistent with the EGFR-mediated epithelial phenotype, overexpression of EGFR drove the cells toward a myoepithelial phenotype in 3D culture. The effect of two clinically approved anti-HER2 and EGFR therapies, trastuzumab and cetuximab, was tested alone and in combination on D492(HER2) xenografts. While trastuzumab had a growth inhibitory effect compared with untreated control, the effect of cetuximab was limited. When administered in combination, the growth inhibitory effect of trastuzumab was less pronounced. Collectively, our data indicate that in HER2-overexpressing D492 cells, EGFR can behave as a tumor suppressor, by pushing the cells towards epithelial differentiation.
Ingthorsson, S; Andersen, K; Hilmarsdottir, B; Maelandsmo, G M; Magnusson, M K; Gudjonsson, T
2016-01-01
The members of the epidermal growth factor receptor (EGFR) kinase family are important players in breast morphogenesis and cancer. EGFR2/HER2 and EGFR expression have a prognostic value in certain subtypes of breast cancer such as HER2-amplified, basal-like and luminal type B. Many clinically approved small molecular inhibitors and monoclonal antibodies have been designed to target HER2, EGFR or both. There is, however, still limited knowledge on how the two receptors are expressed in normal breast epithelium, what effects they have on cellular differentiation and how they participate in neoplastic transformation. D492 is a breast epithelial cell line with stem cell properties that can undergo epithelial to mesenchyme transition (EMT), generate luminal- and myoepithelial cells and form complex branching structures in three-dimensional (3D) culture. Here, we show that overexpression of HER2 in D492 (D492HER2) resulted in EMT, loss of contact growth inhibition and increased oncogenic potential in vivo. HER2 overexpression, furthermore, inhibited endogenous EGFR expression. Re-introducing EGFR in D492HER2 (D492HER2/EGFR) partially reversed the mesenchymal state of the cells, as an epithelial phenotype reappeared both in 3D cultures and in vivo. The D492HER2/EGFR xenografts grow slower than the D492HER2 tumors, while overexpression of EGFR alone (D492EGFR) was not oncogenic in vivo. Consistent with the EGFR-mediated epithelial phenotype, overexpression of EGFR drove the cells toward a myoepithelial phenotype in 3D culture. The effect of two clinically approved anti-HER2 and EGFR therapies, trastuzumab and cetuximab, was tested alone and in combination on D492HER2 xenografts. While trastuzumab had a growth inhibitory effect compared with untreated control, the effect of cetuximab was limited. When administered in combination, the growth inhibitory effect of trastuzumab was less pronounced. Collectively, our data indicate that in HER2-overexpressing D492 cells, EGFR can behave as a tumor suppressor, by pushing the cells towards epithelial differentiation. PMID:26686087
Barriuso Feijóo, J; Sundlov, A; González Barón, M
2004-12-01
Within the revolution of molecular biology in cancer, it should be pointed out the role of monoclonal antibodies clinically utilized as if they were "magic bullets". From the works of Kohler and Milstein in 1975 the evolution has been fast and its inclusion in daily clinical practice gradual. Among the more significant there is anti-CD20 that has revolutionized the treatment of lymphomas. Currently, antibodies conjugated with isotopes derived from anti-CD20 have been produced. Trastuzumab antibody against HER2/neu has opened new prospects in the treatment of breast cancer. Cetuximab antibody against EGFR has achieved good results in the treatment of chemotherapy-resistent colon cancer. Bevacizumab is perhaps the most promising antibody against solid tumors, having shown effectiveness as first line therapy in metastatic colon cancer in combination with chemotherapy.
Researchers at the National Cancer Institute’s Laboratory of Molecular Biology (NCI LMB) have developed and isolated several single domain monoclonal human antibodies against GPC2. NCI seeks parties interested in licensing or co-developing GPC2 antibodies and/or conjugates.
Sepulveda, Antonia R; Hamilton, Stanley R; Allegra, Carmen J; Grody, Wayne; Cushman-Vokoun, Allison M; Funkhouser, William K; Kopetz, Scott E; Lieu, Christopher; Lindor, Noralane M; Minsky, Bruce D; Monzon, Federico A; Sargent, Daniel J; Singh, Veena M; Willis, Joseph; Clark, Jennifer; Colasacco, Carol; Rumble, R Bryan; Temple-Smolkin, Robyn; Ventura, Christina B; Nowak, Jan A
2017-03-01
To develop evidence-based guideline recommendations through a systematic review of the literature to establish standard molecular biomarker testing of colorectal cancer (CRC) tissues to guide epidermal growth factor receptor (EGFR) therapies and conventional chemotherapy regimens. The American Society for Clinical Pathology, College of American Pathologists, Association for Molecular Pathology, and American Society of Clinical Oncology convened an expert panel to develop an evidence-based guideline to establish standard molecular biomarker testing and guide therapies for patients with CRC. A comprehensive literature search that included more than 4,000 articles was conducted. Twenty-one guideline statements were established. Evidence supports mutational testing for EGFR signaling pathway genes, since they provide clinically actionable information as negative predictors of benefit to anti-EGFR monoclonal antibody therapies for targeted therapy of CRC. Mutations in several of the biomarkers have clear prognostic value. Laboratory approaches to operationalize CRC molecular testing are presented. Key Words: Molecular diagnostics; Gastrointestinal; Histology; Genetics; Oncology. Copyright © 2017 American Society for Clinical Pathology, College of American Pathologists, Association for Molecular Pathology, American Society for Clinical Oncology, and American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Douthwaite, Julie A; Finch, Donna K; Mustelin, Tomas; Wilkinson, Trevor C I
2017-01-01
The development of recombinant antibody therapeutics continues to be a significant area of growth in the pharmaceutical industry with almost 50 approved monoclonal antibodies on the market in the US and Europe. Therapeutic drug targets such as soluble cytokines, growth factors and single transmembrane spanning receptors have been successfully targeted by recombinant monoclonal antibodies and the development of new product candidates continues. Despite this growth, however, certain classes of important disease targets have remained intractable to therapeutic antibodies due to the complexity of the target molecules. These complex target molecules include G protein-coupled receptors and ion channels which represent a large target class for therapeutic intervention with monoclonal antibodies. Although these targets have typically been addressed by small molecule approaches, the exquisite specificity of antibodies provides a significant opportunity to provide selective modulation of these important regulators of cell function. Given this opportunity, a significant effort has been applied to address the challenges of targeting these complex molecules and a number of targets are linked to the pathophysiology of respiratory diseases. In this review, we provide a summary of the importance of GPCRs and ion channels involved in respiratory disease and discuss advantages offered by antibodies as therapeutics at these targets. We highlight some recent GPCRs and ion channels linked to respiratory disease mechanisms and describe in detail recent progress made in the strategies for discovery of functional antibodies against challenging membrane protein targets such as GPCRs and ion channels. Copyright © 2016 Elsevier Inc. All rights reserved.
Chemotherapy usage patterns in a US-wide cohort of patients with metastatic colorectal cancer.
Abrams, Thomas A; Meyer, Gary; Schrag, Deborah; Meyerhardt, Jeffrey A; Moloney, Julie; Fuchs, Charles S
2014-02-01
Since the introduction of biologic therapies for the treatment of metastatic colorectal cancer (mCRC), few studies have examined patterns of care or predictors of specific treatment approaches. We assessed 4877 mCRC patients who received chemotherapy between January 2004 and March 2011 at academic, private, and community-based oncology practices subscribing to a US-wide chemotherapy order entry (system capturing disease, patient, provider, and treatment data. Multivariable analyses of these prospectively recorded characteristics were used to identify independent predictors of specific therapeutic choices. All statistical tests were two-sided. Throughout the study period, fluoropyrimidine/oxaliplatin combination was the most commonly used first-line chemotherapy regimen, representing 71% of first-line therapy by 2007. First-line bevacizumab use averaged 51%, peaking at 55% in 2006. Of those who received first-line bevacizumab, 34% continued to receive bevacizumab in the second-line. Only 26% of patients in our cohort ever received an anti-EGFR monoclonal antibody (cetuximab = 22%; panitumumab = 6%) at some point in their treatment course. Patients treated at academic centers, with longer duration of first-line therapy, and at sites in the western United States were statistically more likely to receive an anti-EGFR antibody. Anti-EGFR antibody use fell by 18% after the US Food and Drug Administration limited its use to patients with KRAS wild-type tumors in June 2009. Analysis of this US-wide mCRC cohort demonstrates that bevacizumab has been more consistently integrated into treatment regimens than anti-EGFR antibody therapies, particularly in first-line therapy. However, treatment choices vary substantially according to specific patient, practice, and provider characteristics.
Ntumngia, Francis B.; Schloegel, Jesse; Barnes, Samantha J.; McHenry, Amy M.; Singh, Sanjay; King, Christopher L.
2012-01-01
The Duffy binding protein (DBP) is a vital ligand for Plasmodium vivax blood-stage merozoite invasion, making the molecule an attractive vaccine candidate against vivax malaria. Similar to other blood-stage vaccine candidates, DBP allelic variation eliciting a strain-specific immunity may be a major challenge for development of a broadly effective vaccine against vivax malaria. To understand whether conserved epitopes can be the target of neutralizing anti-DBP inhibition, we generated a set of monoclonal antibodies to DBP and functionally analyzed their reactivity to a panel of allelic variants. Quantitative analysis by enzyme-linked immunosorbent assay (ELISA) determined that some monoclonal antibodies reacted strongly with epitopes conserved on all DBP variants tested, while reactivity of others was allele specific. Qualitative analysis characterized by anti-DBP functional inhibition using an in vitro erythrocyte binding inhibition assay indicated that there was no consistent correlation between the endpoint titers and functional inhibition. Some monoclonal antibodies were broadly inhibitory while inhibition of others varied significantly by target allele. These data demonstrate a potential for vaccine-elicited immunization to target conserved epitopes but optimization of DBP epitope target specificity and immunogenicity may be necessary for protection against diverse P. vivax strains. PMID:22215740
Ntumngia, Francis B; Schloegel, Jesse; Barnes, Samantha J; McHenry, Amy M; Singh, Sanjay; King, Christopher L; Adams, John H
2012-03-01
The Duffy binding protein (DBP) is a vital ligand for Plasmodium vivax blood-stage merozoite invasion, making the molecule an attractive vaccine candidate against vivax malaria. Similar to other blood-stage vaccine candidates, DBP allelic variation eliciting a strain-specific immunity may be a major challenge for development of a broadly effective vaccine against vivax malaria. To understand whether conserved epitopes can be the target of neutralizing anti-DBP inhibition, we generated a set of monoclonal antibodies to DBP and functionally analyzed their reactivity to a panel of allelic variants. Quantitative analysis by enzyme-linked immunosorbent assay (ELISA) determined that some monoclonal antibodies reacted strongly with epitopes conserved on all DBP variants tested, while reactivity of others was allele specific. Qualitative analysis characterized by anti-DBP functional inhibition using an in vitro erythrocyte binding inhibition assay indicated that there was no consistent correlation between the endpoint titers and functional inhibition. Some monoclonal antibodies were broadly inhibitory while inhibition of others varied significantly by target allele. These data demonstrate a potential for vaccine-elicited immunization to target conserved epitopes but optimization of DBP epitope target specificity and immunogenicity may be necessary for protection against diverse P. vivax strains.
Radioimmunotherapy of non-Hodgkin's lymphoma: molecular targeting and novel agents.
Pauwels, Ernest K J; Erba, Paola
2007-03-01
In recent years monoclonal antibodies have played an important role in cancer therapy. This successful track is grosso modo based upon developments in the production of desired antibody molecules, the identification of suitable tumor antigens and the construction of chimeric and fully humanized antibodies. Especially in hematologic disorders, notably in non-Hodgkin's disease, the monoclonal antibody rituximab has proven to be of value in relapsed or refractory disease. Yet, to overcome the nonoptimal properties of this drug, especially in relation to the time to next therapy, radiolabeled immunoconjugates have been synthesized. For this purpose, the radionuclide yttrium-90 has been linked to the monoclonal antibody ibritumomab via the chelator tiuxetan. The most recent clinical results of this radiolabeled agent versus the nonradioactive drug treatment are reviewed in this paper. Furthermore, attention is paid to the monoclonal antibody tositumomab labeled with iodine-131, of which the first clinical results have become available most recently. This overview also mentions possibilities to increase the therapeutic efficacy of radionuclide immunoconjugates. This can be achieved by enhancing the targeting characteristics of the antibody and the use of alpha radiation-emitting radionuclides.
Monoclonal antibodies passively protect BALB/c mice against Burkholderia mallei aerosol challenge.
Treviño, Sylvia R; Permenter, Amy R; England, Marilyn J; Parthasarathy, Narayanan; Gibbs, Paul H; Waag, David M; Chanh, Tran C
2006-03-01
Glanders is a debilitating disease with no vaccine available. Murine monoclonal antibodies were produced against Burkholderia mallei, the etiologic agent of glanders, and were shown to be effective in passively protecting mice against a lethal aerosol challenge. The antibodies appeared to target lipopolysaccharide. Humoral antibodies may be important for immune protection against B. mallei infection.
Geng, Steven B.; Cheung, Jason K.; Narasimhan, Chakravarthy; Shameem, Mohammed; Tessier, Peter M.
2014-01-01
A limitation of using monoclonal antibodies as therapeutic molecules is their propensity to associate with themselves and/or with other molecules via non-affinity (colloidal) interactions. This can lead to a variety of problems ranging from low solubility and high viscosity to off-target binding and fast antibody clearance. Measuring such colloidal interactions is challenging given that they are weak and potentially involve diverse target molecules. Nevertheless, assessing these weak interactions – especially during early antibody discovery and lead candidate optimization – is critical to preventing problems that can arise later in the development process. Here we review advances in developing and implementing sensitive methods for measuring antibody colloidal interactions as well as using these measurements for guiding antibody selection and engineering. These systematic efforts to minimize non-affinity interactions are expected to yield more effective and stable monoclonal antibodies for diverse therapeutic applications. PMID:25209466
Yamada, Tadaaki; Takeuchi, Shinji; Kita, Kenji; Bando, Hideaki; Nakamura, Takahiro; Matsumoto, Kunio; Yano, Seiji
2012-02-01
Epidermal growth factor receptor (EGFR) is an attractive drug target in lung cancer, with several anti-EGFR antibodies and small-molecule inhibitors showing efficacy in lung cancer patients. Patients, however, may develop resistance to EGFR inhibitors. We demonstrated previously that hepatocyte growth factor (HGF) induced resistance to EGFR tyrosine kinase inhibitors in lung cancers harboring EGFR mutations. We therefore determined whether HGF could induce resistance to the anti-EGFR antibody (EGFR Ab) cetuximab in lung cancer cells, regardless of EGFR gene status. Cetuximab sensitivity and signal transduction in lung cancer cells were examined in the presence or absence of HGF, HGF-producing fibroblasts, and cells tranfected with the HGF gene in vitro and in vivo. HGF induced resistance to cetuximab in H292 (EGFR wild) and Ma-1(EGFR mutant) cells. Western blotting showed that HGF-induced resistance was mediated by the Met/Gab1/Akt signaling pathway. Resistance of H292 and Ma-1 cells to cetuximab was also induced by coculture with lung fibroblasts producing high levels of HGF and by cells stably transfected with the HGF gene. This resistance was abrogated by treatment with anti-HGF neutralizing antibody. HGF-mediated resistance is a novel mechanism of resistance to EGFR Ab in lung cancers, with fibroblast-derived HGF inducing cetuximab resistance in H292 tumors in vivo. The involvement of HGF-Met-mediated signaling should be assessed in acquired resistance to EGFR Ab in lung cancer, regardless of EGFR gene status.
Zaripov, M M; Afanasieva, G V; Glukhova, X A; Trizna, Y A; Glukhov, A S; Beletsky, I P; Prusakova, O V
2015-01-01
A simple and fast method for obtaining biotin-labeled monoclonal antibodies was developed usingcontent of hybridoma culture supernatant sufficient to select antibody pairs in sandwich ELISA. The method consists in chemical biotinylation of antigen-bound antibodies in a well of ELISA plate. Using as an example target Vaccinia virus A27L protein it was shown that the yield of biotinylated reactant is enough to set comprehensive sandwich ELISA for a moderate size panel of up to 25 monoclonal antibodies with an aim to determine candidate pairs. The technique is a cheap and effective solution since it avoids obtaining preparative amounts of antibodies.
Xiao, Lifu; Tian, Xiumei; Harihar, Sitaram; Li, Qifei; Li, Li; Welch, Danny R; Zhou, Anhong
2017-06-15
There has been an interest in developing multimodal approaches to combine the advantages of individual imaging modalities, as well as to compensate for respective weaknesses. We previously reported a composite nano-system composed of gadolinium-doped mesoporous silica nanoparticle and gold nanoparticle (Gd-Au NPs) as an efficient MRI contrast agent for in vivo cancer imaging. However, MRI lacks sensitivity and is unsuitable for in vitro cancer detection. Thus, here we performed a study to use the Gd-Au NPs for detection and imaging of a widely recognized human cancer biomarker, epidermal growth factor receptor (EGFR), in individual human cancer cells with surface-enhanced Raman scattering (SERS). The Gd-Au NPs were sequentially conjugated with a monoclonal antibody recognizing EGFR and a Raman reporter molecule, 4-meraptobenzoic acid (MBA), to generate a characteristic SERS signal at 1075cm -1 . By spatially mapping the SERS intensity at 1075cm -1 , cellular distribution of EGFR and its relocalization on the plasma membrane were measured in situ. In addition, the EGFR expression levels in three human cancer cell lines (S18, A431 and A549) were measured using this SERS probe, which were consistent with the comparable measurements using immunoblotting and immunofluorescence. Our SERS results show that functionalized Gd-Au NPs successfully targeted EGFR molecules in three human cancer cell lines and monitored changes in single cell EGFR distribution in situ, demonstrating its potential to study cell activity under physiological conditions. This SERS study, combined with our previous MRI study, suggests the Gd-Au nanocomposite is a promising candidate contrast agent for multimodal cancer imaging. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Xiao, Lifu; Tian, Xiumei; Harihar, Sitaram; Li, Qifei; Li, Li; Welch, Danny R.; Zhou, Anhong
2017-06-01
There has been an interest in developing multimodal approaches to combine the advantages of individual imaging modalities, as well as to compensate for respective weaknesses. We previously reported a composite nano-system composed of gadolinium-doped mesoporous silica nanoparticle and gold nanoparticle (Gd-Au NPs) as an efficient MRI contrast agent for in vivo cancer imaging. However, MRI lacks sensitivity and is unsuitable for in vitro cancer detection. Thus, here we performed a study to use the Gd-Au NPs for detection and imaging of a widely recognized human cancer biomarker, epidermal growth factor receptor (EGFR), in individual human cancer cells with surface-enhanced Raman scattering (SERS). The Gd-Au NPs were sequentially conjugated with a monoclonal antibody recognizing EGFR and a Raman reporter molecule, 4-meraptobenzoic acid (MBA), to generate a characteristic SERS signal at 1075 cm- 1. By spatially mapping the SERS intensity at 1075 cm- 1, cellular distribution of EGFR and its relocalization on the plasma membrane were measured in situ. In addition, the EGFR expression levels in three human cancer cell lines (S18, A431 and A549) were measured using this SERS probe, which were consistent with the comparable measurements using immunoblotting and immunofluorescence. Our SERS results show that functionalized Gd-Au NPs successfully targeted EGFR molecules in three human cancer cell lines and monitored changes in single cell EGFR distribution in situ, demonstrating its potential to study cell activity under physiological conditions. This SERS study, combined with our previous MRI study, suggests the Gd-Au nanocomposite is a promising candidate contrast agent for multimodal cancer imaging.
Researchers at the National Cancer Institute (NCI) have developed a monoclonal antibody against ataxia telangiectasia-mutated and Rad3-related (ATR) kinase phosphorylated at threonine 1989. The antibody can be used for pharmacodynamic assays to quantify drug action on the ATR target.
Varshney, Avanish K.; Sunley, Kevin M.; Bowling, Rodney A.; Kwan, Tzu-Yu; Mays, Heather R.; Rambhadran, Anu; Zhang, Yanfeng; Martin, Rebecca L.; Cavalier, Michael C.; Simard, John
2018-01-01
Staphylococcus aureus can cause devastating and life-threatening infections. With the increase in multidrug resistant strains, novel therapies are needed. Limited success with active and passive immunization strategies have been attributed to S. aureus immune evasion. Here, we report on a monoclonal antibody, 514G3, that circumvents a key S. aureus evasion mechanism by targeting the cell wall moiety Protein A (SpA). SpA tightly binds most subclasses of immunoglobulins via their Fc region, neutralizing effector function. The organism can thus shield itself with a protective coat of serum antibodies and render humoral immunity ineffective. The present antibody reactivity was derived from an individual with natural anti-SpA antibody titers. The monoclonal antibody is of an IgG3 subclass, which differs critically from other immunoglobulin subclasses since its Fc is not bound by SpA. Moreover, it targets a unique epitope on SpA that allows it to bind in the presence of serum antibodies. Consequently, the antibody opsonizes S. aureus and maintains effector function to enable natural immune mediated clearance. The data presented here provide evidence that 514G3 antibody is able to successfully rescue mice from S. aureus mediated bacteremia. PMID:29364906
Precision medicine in colorectal cancer: the molecular profile alters treatment strategies.
Tran, Nguyen H; Cavalcante, Ludmila L; Lubner, Sam J; Mulkerin, Daniel L; LoConte, Noelle K; Clipson, Linda; Matkowskyj, Kristina A; Deming, Dustin A
2015-09-01
When considering treatment options for patients with metastatic colorectal cancer (mCRC), molecular profiling has become a pivotal component in guiding clinical decisions. FOLFOX and FOLFIRI (fluorouracuil, leucovorin plus oxaliplatin or ininotecan, respectively) are the standard base regimens used for the treatment of mCRC. Biologic agents, such as the epidermal growth factor receptor (EGFR) targeted therapies, cetuximab and panitumumab and the vascular endothelial growth factor monoclonal antibody, bevacizumab, are safe and effective in the first-line setting. The most efficacious use of these agents in terms of timing and selection of the right patient population continues to be debated. Here we review multiple investigations into the effectiveness of treatment options as a function of the mutations present in colon cancers. Early studies have reported that KRAS mutations at exon 2 predict resistance to EGFR targeted therapies. More recently the data have expanded to include KRAS mutations at exons 3 and 4 and NRAS mutations at exons 2, 3 and 4 as well as other biomarkers including BRAF and PIK3CA, leading to the evolution of the treatment of mCRC to a more precision-based approach. As our understanding of relevant biomarkers increases, and data from both molecular profiling and treatment response become more readily available, treatment options will become more precise and their outcomes more effective.
Evaluation of Ion Mobility-Mass Spectrometry for Comparative Analysis of Monoclonal Antibodies
NASA Astrophysics Data System (ADS)
Ferguson, Carly N.; Gucinski-Ruth, Ashley C.
2016-05-01
Analytical techniques capable of detecting changes in structure are necessary to monitor the quality of monoclonal antibody drug products. Ion mobility mass spectrometry offers an advanced mode of characterization of protein higher order structure. In this work, we evaluated the reproducibility of ion mobility mass spectrometry measurements and mobiligrams, as well as the suitability of this approach to differentiate between and/or characterize different monoclonal antibody drug products. Four mobiligram-derived metrics were identified to be reproducible across a multi-day window of analysis. These metrics were further applied to comparative studies of monoclonal antibody drug products representing different IgG subclasses, manufacturers, and lots. These comparisons resulted in some differences, based on the four metrics derived from ion mobility mass spectrometry mobiligrams. The use of collision-induced unfolding resulted in more observed differences. Use of summed charge state datasets and the analysis of metrics beyond drift time allowed for a more comprehensive comparative study between different monoclonal antibody drug products. Ion mobility mass spectrometry enabled detection of differences between monoclonal antibodies with the same target protein but different production techniques, as well as products with different targets. These differences were not always detectable by traditional collision cross section studies. Ion mobility mass spectrometry, and the added separation capability of collision-induced unfolding, was highly reproducible and remains a promising technique for advanced analytical characterization of protein therapeutics.
Fast photochemical oxidation of proteins (FPOP) maps the epitope of EGFR binding to adnectin.
Yan, Yuetian; Chen, Guodong; Wei, Hui; Huang, Richard Y-C; Mo, Jingjie; Rempel, Don L; Tymiak, Adrienne A; Gross, Michael L
2014-12-01
Epitope mapping is an important tool for the development of monoclonal antibodies, mAbs, as therapeutic drugs. Recently, a class of therapeutic mAb alternatives, adnectins, has been developed as targeted biologics. They are derived from the 10th type III domain of human fibronectin ((10)Fn3). A common approach to map the epitope binding of these therapeutic proteins to their binding partners is X-ray crystallography. Although the crystal structure is known for Adnectin 1 binding to human epidermal growth factor receptor (EGFR), we seek to determine complementary binding in solution and to test the efficacy of footprinting for this purpose. As a relatively new tool in structural biology and complementary to X-ray crystallography, protein footprinting coupled with mass spectrometry is promising for protein-protein interaction studies. We report here the use of fast photochemical oxidation of proteins (FPOP) coupled with MS to map the epitope of EGFR-Adnectin 1 at both the peptide and amino-acid residue levels. The data correlate well with the previously determined epitopes from the crystal structure and are consistent with HDX MS data, which are presented in an accompanying paper. The FPOP-determined binding interface involves various amino-acid and peptide regions near the N terminus of EGFR. The outcome adds credibility to oxidative labeling by FPOP for epitope mapping and motivates more applications in the therapeutic protein area as a stand-alone method or in conjunction with X-ray crystallography, NMR, site-directed mutagenesis, and other orthogonal methods.
Fast Photochemical Oxidation of Proteins (FPOP) Maps the Epitope of EGFR Binding to Adnectin
NASA Astrophysics Data System (ADS)
Yan, Yuetian; Chen, Guodong; Wei, Hui; Huang, Richard Y.-C.; Mo, Jingjie; Rempel, Don L.; Tymiak, Adrienne A.; Gross, Michael L.
2014-12-01
Epitope mapping is an important tool for the development of monoclonal antibodies, mAbs, as therapeutic drugs. Recently, a class of therapeutic mAb alternatives, adnectins, has been developed as targeted biologics. They are derived from the 10th type III domain of human fibronectin (10Fn3). A common approach to map the epitope binding of these therapeutic proteins to their binding partners is X-ray crystallography. Although the crystal structure is known for Adnectin 1 binding to human epidermal growth factor receptor (EGFR), we seek to determine complementary binding in solution and to test the efficacy of footprinting for this purpose. As a relatively new tool in structural biology and complementary to X-ray crystallography, protein footprinting coupled with mass spectrometry is promising for protein-protein interaction studies. We report here the use of fast photochemical oxidation of proteins (FPOP) coupled with MS to map the epitope of EGFR-Adnectin 1 at both the peptide and amino-acid residue levels. The data correlate well with the previously determined epitopes from the crystal structure and are consistent with HDX MS data, which are presented in an accompanying paper. The FPOP-determined binding interface involves various amino-acid and peptide regions near the N terminus of EGFR. The outcome adds credibility to oxidative labeling by FPOP for epitope mapping and motivates more applications in the therapeutic protein area as a stand-alone method or in conjunction with X-ray crystallography, NMR, site-directed mutagenesis, and other orthogonal methods.
Park, Sung-Jin; Kim, Myung-Jin; Kim, Yu-Kyoung; Kim, Soung-Min; Park, Ju-Yong; Myoung, Hoon
2010-06-01
The purpose of this study was to evaluate the potency of EGFR pathway inhibition achieved by combining cetuximab, an anti-EGFR monoclonal antibody, and genistein, a tyrosine kinase inhibitor, which target extracellular and intracellular domains of the receptor, respectively, in oral squamous cell carcinoma (OSCC) in vitro and in vivo. Two OSCC cell lines, HSC3 and KB, were treated with cetuximab (C, 0-400mug/ml), genistein (G, 0-80muM), or a combination of both at a range of concentrations. Downstream protein expression of EGFR, p-EGFR, and p-Akt were evaluated by Western blot. Cell proliferation and apoptosis indices were calculated to assess anti-cancer effects in vitro. The in vivo effects of cetuximab and genistein on tumor cell growth were examined using an OSCC xenografted nude mouse model and immunohistochemical analyses of proliferation (PCNA) and microvessel density (CD31). Treatment of cells with dual anti-EGFR agents reduced the expressions of p-EGFR, and p-Akt in HSC3 cell line, but there was no significant difference in downregulation between cetuximab alone and in combination with genistein in KB cells. Both HSC3 and KB cells showed a dose-dependent decrease in cell proliferation significantly with single agent treatment and combination (p<0.05). In low concentration, combined cetuximab and genistein therapy resulted in additive growth inhibition and more apoptosis compared to that achieved with single-agent exposure in both cell lines. A combination of cetuximab and genistein significantly inhibited tumor growth and caused a substantial growth delay in in vivo models of both cell lines while each single-agent exposure caused no delay of tumor growth. Immunohistochemical staining with PCNA revealed that the group receiving combined cetuximab and genistein exhibited the lowest number of proliferating cells and microvessel density (p<0.05). Combined therapy with genistein and cetuximab can add the potency of EGFR signaling inhibition. Because not all OSCC cell types appear to respond uniformly, however, selective targeting of distinct molecular pathways is required for effective clinical response. Copyright (c) 2009 Elsevier Ireland Ltd. All rights reserved.
Kao, Hua-Lin; Yeh, Yi-Chen; Lin, Chin-Hsuan; Hsu, Wei-Fang; Hsieh, Wen-Yu; Ho, Hsiang-Ling; Chou, Teh-Ying
2016-11-01
Analysis of the targetable driver mutations is now recommended in all patients with advanced lung adenocarcinoma. Molecular-based methods are usually adopted, however, along with the implementation of highly sensitive and/or mutation-specific antibodies, immunohistochemistry (IHC) has been considered an alternative method for identifying driver mutations in lung adenocarcinomas. A total of 205 lung adenocarcinomas were examined for EGFR mutations and ALK and ROS1 rearrangements using real-time PCR, fluorescence in situ hybridization (FISH) and IHC in parallel. The performance of different commercially available IHC antibody clones toward targetable driver mutations was evaluated. The association between these driver mutations and clinicopathological characteristics was also analyzed. In 205 cases we studied, 58.5% were found to harbor EGFR mutations, 6.3% ALK rearrangements and 1.0% ROS1 rearrangements. Compared to molecular-based methods, IHC of EGFR mutations showed an excellent specificity but the sensitivity is suboptimal, while IHC of ALK and ROS1 rearrangements demonstrated high sensitivity and specificity. No significant difference regarding the performance of different antibody clones toward these driver mutations was observed, except that clone SP125 showed a higher sensitivity than 43B2 in the detection of p.L858R of EGFR. In circumstances such as poor quality of nucleic acids or low content of tumor cells, IHC of EGFR mutation-specific antibodies could be used as an alternative method. Patients negative for EGFR mutations are subjected to further analysis on ALK and ROS1 rearrangements using IHC methods. Herein, we proposed a lung adenocarcinoma testing algorithm for the application of IHC in therapeutic diagnosis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Frederick, John W; Sweeny, Larissa; Hartman, Yolanda; Zhou, Tong; Rosenthal, Eben L
2016-02-01
Advanced cutaneous squamous cell carcinoma (SCC) is an uncommon and aggressive malignancy. As a result, there is limited understanding of its biology and pathogenesis. CD147 and epidermal growth factor receptor (EGFR) have been identified as oncologically important targets, but their relationship remains undefined in cutaneous SCC. Multiple cutaneous SCC cell lines (Colo-16, SRB-1, and SRB-12), were treated in vitro with a range of chimeric anti-CD147 monoclonal antibody (mAb) (0, 50, 100, and 200 µg/mL) or transfected with a small interfering RNA against CD147 (SiCD147). Cell proliferation, migration (scratch wound healing assay), and protein expression was then assessed. In vivo, Colo-16 flank xenografts were treated anti-CD147 mAb (150 µg i.p. triweekly). After treatment with anti-CD147 (200 µg/mL), there was a significant decrease in proliferation for all cell lines relative to controls (p < .005). In addition, treatment with anti-CD147 (200 µg/mL) resulted in decreased cell migration for all cell lines, with an average of 43% reduction in closure compared to controls (p < .001). Colo-16 SiCD147 expression demonstrated similar reduction in proliferation and wound closure. Anti-CD147 antibody therapy and siRNA mediated reduction in CD147 expression were both found to decrease protein expression of EGFR, which correlated with a reduction in downstream total and phosphorylated protein kinase B (pAKT). Tumor growth in vivo was reduced for both the anti-CD147 treatment group and the SiCD147 group relative to controls. Inhibition and downregulation of CD147 in cutaneous SCC resulted in suppression of the malignant phenotype in vitro and in vivo, which may be mediated in part by an alteration in EGFR expression. As a result, CD147 may serve as a potential therapeutic target for advanced cutaneous SCC. © 2014 Wiley Periodicals, Inc.
Antibodies and Selection of Monoclonal Antibodies.
Hanack, Katja; Messerschmidt, Katrin; Listek, Martin
Monoclonal antibodies are universal binding molecules with a high specificity for their target and are indispensable tools in research, diagnostics and therapy. The biotechnological generation of monoclonal antibodies was enabled by the hybridoma technology published in 1975 by Köhler and Milstein. Today monoclonal antibodies are used in a variety of applications as flow cytometry, magnetic cell sorting, immunoassays or therapeutic approaches. First step of the generation process is the immunization of the organism with appropriate antigen. After a positive immune response the spleen cells are isolated and fused with myeloma cells in order to generate stable, long-living antibody-producing cell lines - hybridoma cells. In the subsequent identification step the culture supernatants of all hybridoma cells are screened weekly for the production of the antibody of interest. Hybridoma cells producing the antibody of interest are cloned by limited dilution till a monoclonal hybridoma is found. This is a very time-consuming and laborious process and therefore different selection strategies were developed since 1975 in order to facilitate the generation of monoclonal antibodies. Apart from common automation of pipetting processes and ELISA testing there are some promising approaches to select the right monoclonal antibody very early in the process to reduce time and effort of the generation. In this chapter different selection strategies for antibody-producing hybridoma cells are presented and analysed regarding to their benefits compared to conventional limited dilution technology.
Emdal, Kristina B; Dittmann, Antje; Reddy, Raven J; Lescarbeau, Rebecca S; Moores, Sheri L; Laquerre, Sylvie; White, Forest M
2017-11-01
Approximately 10% of non-small cell lung cancer (NSCLC) patients in the United States and 40% of NSCLC patients in Asia have activating epidermal growth factor receptor (EGFR) mutations and are eligible to receive targeted anti-EGFR therapy. Despite an extension of life expectancy associated with this treatment, resistance to EGFR tyrosine kinase inhibitors and anti-EGFR antibodies is almost inevitable. To identify additional signaling routes that can be cotargeted to overcome resistance, we quantified tumor-specific molecular changes that govern resistant cancer cell growth and survival. Mass spectrometry-based quantitative proteomics was used to profile in vivo signaling changes in 41 therapy-resistant tumors from four xenograft NSCLC models. We identified unique and tumor-specific tyrosine phosphorylation rewiring in tumors resistant to treatment with the irreversible third-generation EGFR-inhibitor, osimertinib, or the novel dual-targeting EGFR/Met antibody, JNJ-61186372. Tumor-specific increases in tyrosine-phosphorylated peptides from EGFR family members, Shc1 and Gab1 or Src family kinase (SFK) substrates were observed, underscoring a differential ability of tumors to uniquely escape EGFR inhibition. Although most resistant tumors within each treatment group displayed a marked inhibition of EGFR as well as SFK signaling, the combination of EGFR inhibition (osimertinib) and SFK inhibition (saracatinib or dasatinib) led to further decrease in cell growth in vitro This result suggests that residual SFK signaling mediates therapeutic resistance and that elimination of this signal through combination therapy may delay onset of resistance. Overall, analysis of individual resistant tumors captured unique in vivo signaling rewiring that would have been masked by analysis of in vitro cell population averages. Mol Cancer Ther; 16(11); 2572-85. ©2017 AACR . ©2017 American Association for Cancer Research.
Vaidyanathan, G; White, B J; Affleck, D J; Zhao, X G; Welsh, P C; McDougald, D; Choi, J; Zalutsky, M R
2012-12-15
A major drawback of internalizing monoclonal antibodies (mAbs) radioiodinated with direct electrophilic approaches is that tumor retention of radioactivity is compromised by the rapid washout of iodo-tyrosine, the primary labeled catabolite for mAbs labeled via this strategy. In our continuing efforts to develop more versatile residualizing labels that could overcome this problem, we have designed SIB-DOTA, a prosthetic labeling template that combines the features of the prototypical, dehalogenation-resistant N-succinimidyl 3-iodobenzoate (SIB) with DOTA, a useful macrocyclic chelator for labeling with radiometals. Herein we describe the synthesis of the unlabeled standard of this prosthetic moiety, its protected tin precursor, and radioiodinated SIB-DOTA. An anti-EGFRvIII-reactive mAb, L8A4 was radiolabeled with [(131)I]SIB-DOTA in 27.1±6.2% (n=2) conjugation yields and its targeting properties to the same mAb labeled with [(125)I]SGMIB both in vitro and in vivo using U87MG·ΔEGFR cells and xenografts were compared. In vitro paired-label internalization assays showed that the intracellular radioactivity from [(131)I]SIB-DOTA-L8A4 was 21.4±0.5% and 26.2±1.1% of initially bound radioactivity at 16 and 24h, respectively. In comparison, these values for [(125)I]SGMIB-L8A4 were 16.7±0.5% and 14.9±1.1%. Similarly, the SIB-DOTA prosthetic group provided better tumor targeting in vivo than SGMIB over 8 d period. These results suggest that SIB-DOTA warrants further evaluation as a residualizing agent for labeling internalizing mAbs including those targeted to EGFRvIII. Copyright © 2012 Elsevier Ltd. All rights reserved.
Biomarker-driven EGFR therapy improves outcomes in patients with metastatic colorectal cancer.
Hendifar, Andrew; Tan, Carlyn-Rose; Annamalai, Anand; Tuli, Richard
2014-09-01
As new data from randomized studies comparing EGFR-targeting therapies with VEGF inhibitors emerge, the treatment landscape for metastatic colorectal cancer is expected to change. Although both the VEGF inhibitor bevacizumab and the anti-EGFR antibody cetuximab are approved in the first-line setting, they have not until recently been compared directly in randomized studies. Unlike targeted therapy in the EGFR pathway, there are no biomarkers guiding VEGF treatment. Recent data, discussed in this review, demonstrate that patients with KRAS/NRAS wild-type tumors benefit from anti-EGFR therapy in the first-line setting and that anti-EGFR therapy may be superior when compared with anti-VEGF approaches. This review focuses on the clinical utility of targeting EGFR by revisiting the biologic rationale for EGFR inhibition in metastatic colorectal cancer and providing new insight on the advancements in biomarker analyses with the potential to change practice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Weibin; Chen, Aizhong; Miao, Yi
Whether the 2009 pandemic H1N1 influenza vaccine can induce heterosubtypic cross-protective anti-hemagglutinin (HA) neutralizing antibodies is an important issue. We obtained a panel of fully human monoclonal antibodies from the memory B cells of a 2009 pandemic H1N1 influenza vaccine recipient. Most of the monoclonal antibodies targeted the HA protein but not the HA1 fragment. Among the analyzed antibodies, seven mAbs exhibited neutralizing activity against several influenza A viruses of different subtypes. The conserved linear epitope targeted by the neutralizing mAbs (FIEGGWTGMVDGWYGYHH) is part of the fusion peptide on HA2. Our work suggests that a heterosubtypic neutralizing antibody response primarilymore » targeting the HA stem region exists in recipients of the 2009 pandemic H1N1 influenza vaccine. The HA stem region contains various conserved neutralizing epitopes with the fusion peptide as an important one. This work may aid in the design of a universal influenza A virus vaccine.« less
Mechanisms of Action of Therapeutic Antibodies for Cancer
Redman, JM; Hill, EM; AlDeghaither, D; Weiner, LM
2015-01-01
The therapeutic utility of antibodies and their derivatives is achieved by various means. The FDA has approved several targeted antibodies that disrupt signaling of various growth factor receptors for the treatment of a number of cancers. Rituximab, and other anti-CD20 monoclonal antibodies are active in B cell malignancies. As more experience has been gained with anti-CD20 monoclonal antibodies, the multifactorial nature of their anti-tumor mechanisms has emerged. Other targeted antibodies function to dampen inhibitory checkpoints. These checkpoint inhibitors have recently achieved dramatic results in several cancers, including melanoma. These and related antibodies continue to be investigated in the clinical and pre-clinical settings. Novel antibody structures that target two or more antigens have also made their way into clinical use. Tumor targeted antibodies can also be conjugated to chemo- or radiotherapeutic agents, or catalytic toxins, as a means to deliver toxic payloads to cancer cells. Here we provide a review of these mechanisms and a discussion of their relevance to current and future clinical applications. PMID:25911943
Hu, Bing; Wei, Yuquan; Tian, Ling; Zhao, Xia; Lu, You; Wu, Yang; Yao, Bing; Liu, Jiyan; Niu, Ting; Wen, Yanjun; He, Qiuming; Su, Jingmei; Huang, Meijuan; Lou, Yanyan; Luo, Yan; Kan, Bing
2005-01-01
Active immunotherapy targeting epidermal growth factor receptor (EGFR) should be another attractive approach to the treatment of EGFR-positive tumors. To test this concept, the authors evaluated the potential immune responses and antitumor activities elicited by dendritic cells pulsed with recombinant ectodomain of mouse EGFR (DC-edMER). Spleen cells isolated from DC-edMER-vaccinated mice showed a high quantity of EGFR-specific antibody-producing cells. EGFR-reactive antibody in sera isolated from vaccinated mice was identified and shown to be effective against tumors in vitro and in vivo by adoptive transfer. DC-edMER vaccine also elicited cytotoxic T-lymphocyte responses that could mediate antitumor effects in vitro and adoptive transfer in vivo. In addition, EGFR-specific cytokines responses were elicited by DC-edMER vaccine. Immunization with DC-edMER resulted in tumor regression and prolonged survival in mice challenged with Lewis lung carcinomas and mammary cancer models. Depletion of CD4+ T lymphocytes could completely abrogate the antitumor activity and EGFR-specific antibody responses, whereas the depletion of CD8+ T lymphocytes showed partial abrogation of the antitumor activity but antibody was still detected. Furthermore, tumor-induced angiogenesis was suppressed in DC-edMER-vaccinated mice or mice treated with antibody adoptive transfer. Taken together, these findings suggest the antitumor immunity could be induced by DC-edMER, which may involve both humoral and cellular immunity, and may provide insight into the treatment of EGFR-positive tumors through the induction of active immunity against EGFR.
Polyclonal and monoclonal antibodies in clinic.
Wootla, Bharath; Denic, Aleksandar; Rodriguez, Moses
2014-01-01
Immunoglobulins (Ig) or antibodies are heavy plasma proteins, with sugar chains added to amino-acid residues by N-linked glycosylation and occasionally by O-linked glycosylation. The versatility of antibodies is demonstrated by the various functions that they mediate such as neutralization, agglutination, fixation with activation of complement and activation of effector cells. Naturally occurring antibodies protect the organism against harmful pathogens, viruses and infections. In addition, almost any organic chemical induces antibody production of antibodies that would bind specifically to the chemical. These antibodies are often produced from multiple B cell clones and referred to as polyclonal antibodies. In recent years, scientists have exploited the highly evolved machinery of the immune system to produce structurally and functionally complex molecules such as antibodies from a single B clone, heralding the era of monoclonal antibodies. Most of the antibodies currently in the clinic, target components of the immune system, are not curative and seek to alleviate symptoms rather than cure disease. Our group used a novel strategy to identify reparative human monoclonal antibodies distinct from conventional antibodies. In this chapter, we discuss the therapeutic relevance of both polyclonal and monoclonal antibodies in clinic.
Kampmeier, Florian; Niesen, Judith; Koers, Alexander; Ribbert, Markus; Brecht, Andreas; Fischer, Rainer; Kiessling, Fabian; Barth, Stefan; Thepen, Theo
2010-10-01
The epidermal growth factor receptor (EGFR) is overexpressed in several types of cancer and its inhibition can effectively inhibit tumour progression. The purpose of this study was to design an EGFR-specific imaging probe that combines efficient tumour targeting with rapid systemic clearance to facilitate non-invasive assessment of EGFR expression. Genetic fusion of a single-chain antibody fragment with the SNAP-tag produced a 48-kDa antibody derivative that can be covalently and site-specifically labelled with substrates containing 0 (6)-benzylguanine. The EGFR-specific single-chain variable fragment (scFv) fusion protein 425(scFv)SNAP was labelled with the near infrared (NIR) dye BG-747, and its accumulation, specificity and kinetics were monitored using NIR fluorescence imaging in a subcutaneous pancreatic carcinoma xenograft model. The 425(scFv)SNAP fusion protein accumulates rapidly and specifically at the tumour site. Its small size allows efficient renal clearance and a high tumour to background ratio (TBR) of 33.2 +/- 6.3 (n = 4) 10 h after injection. Binding of the labelled antibody was efficiently competed with a 20-fold excess of unlabelled probe, resulting in an average TBR of 6 +/- 1.35 (n = 4), which is similar to that obtained with a non-tumour-specific probe (5.44 +/- 1.92, n = 4). When compared with a full-length antibody against EGFR (cetuximab), 425(scFv)SNAP-747 showed significantly higher TBRs and complete clearance 72 h post-injection. The 425(scFv)SNAP fusion protein combines rapid and specific targeting of EGFR-positive tumours with a versatile and robust labelling technique that facilitates the attachment of fluorophores for use in optical imaging. The same approach could be used to couple a chelating agent for use in nuclear imaging.
Bagchi, Atrish; Haidar, Jaafar N; Eastman, Scott W; Vieth, Michal; Topper, Michael; Iacolina, Michelle D; Walker, Jason M; Forest, Amelie; Shen, Yang; Novosiadly, Ruslan D; Ferguson, Kathryn M
2018-02-01
Acquired resistance to cetuximab, an antibody that targets the EGFR, impacts clinical benefit in head and neck, and colorectal cancers. One of the mechanisms of resistance to cetuximab is the acquisition of mutations that map to the cetuximab epitope on EGFR and prevent drug binding. We find that necitumumab, another FDA-approved EGFR antibody, can bind to EGFR that harbors the most common cetuximab-resistant substitution, S468R (or S492R, depending on the amino acid numbering system). We determined an X-ray crystal structure to 2.8 Å resolution of the necitumumab Fab bound to an S468R variant of EGFR domain III. The arginine is accommodated in a large, preexisting cavity in the necitumumab paratope. We predict that this paratope shape will be permissive to other epitope substitutions, and show that necitumumab binds to most cetuximab- and panitumumab-resistant EGFR variants. We find that a simple computational approach can predict with high success which EGFR epitope substitutions abrogate antibody binding. This computational method will be valuable to determine whether necitumumab will bind to EGFR as new epitope resistance variants are identified. This method could also be useful for rapid evaluation of the effect on binding of alterations in other antibody/antigen interfaces. Together, these data suggest that necitumumab may be active in patients who are resistant to cetuximab or panitumumab through EGFR epitope mutation. Furthermore, our analysis leads us to speculate that antibodies with large paratope cavities may be less susceptible to resistance due to mutations mapping to the antigen epitope. Mol Cancer Ther; 17(2); 521-31. ©2017 AACR . ©2017 American Association for Cancer Research.
Sheng, Wei-Jin; Miao, Qing-Fang; Zhen, Yong-Su
2009-06-01
Recent studies have shown that epidermal growth factor receptor (EGFR) is an important target for cancer therapy. The present study prepared single chain Fv (scFv) directed against EGFR. Balb/c mice were immunized by human carcinoma A431 cells, and total RNA of the splenic cells was extracted. VH and VL gene fragments were amplified by RT-PCR and further joined into scFv gene with a linker, then scFv gene fragments were ligated into the phagemid vector pCANTAB 5E. The phagemid containing scFv were transformed into electro-competent E. coli TG1 cells. The recombinant phage antibody library was constructed through rescuing the transformed cells with help phage M13K07. The specified recombinant phages were enriched through 5 rounds of affinity panning and the anti-EGFR phage scFv clones were screened and identified with ELISA. A total of 48 clones from the library were selected randomly and 45 clones were identified positive. After infecting E. coli HB2151 cells with one positive clone, soluble recombinant antibodies about 27 kD were produced and located in the periplasm and the supernatant. The result of sequencing showed that the scFv gene was 768 bp, which encoded 256 amino acid residues. VH and VL including 3 CDRs and 4 FRs, respectively, were all homologous to mouse Ig. The soluble scFv showed the specific binding activity to purified EGFR and EGFR located in carcinoma cell membrane. The successful preparation of anti-EGFR scFv will provide an EGFR targeted molecule for the development of antibody-based drugs and biological therapy of cancer.
Molecular alterations and biomarkers in colorectal cancer
Grady, William M.; Pritchard, Colin C.
2013-01-01
The promise of precision medicine is now a clinical reality. Advances in our understanding of the molecular genetics of colorectal cancer genetics is leading to the development of a variety of biomarkers that are being used as early detection markers, prognostic markers, and markers for predicting treatment responses. This is no more evident than in the recent advances in testing colorectal cancers for specific molecular alterations in order to guide treatment with the monoclonal antibody therapies cetuximab and panitumumab, which target the epidermal growth factor receptor (EGFR). In this review, we update a prior review published in 2010 and describe our current understanding of the molecular pathogenesis of colorectal cancer and how these alterations relate to emerging biomarkers for early detection and risk stratification (diagnostic markers), prognosis (prognostic markers), and the prediction of treatment responses (predictive markers). PMID:24178577
Tao, Jessica J.; Castel, Pau; Radosevic-Robin, Nina; Elkabets, Moshe; Auricchio, Neil; Aceto, Nicola; Weitsman, Gregory; Barber, Paul; Vojnovic, Borivoj; Ellis, Haley; Morse, Natasha; Viola-Villegas, Nerissa Therese; Bosch, Ana; Juric, Dejan; Hazra, Saswati; Singh, Sharat; Kim, Phillip; Bergamaschi, Anna; Maheswaran, Shyamala; Ng, Tony; Penault-Llorca, Frédérique; Lewis, Jason S.; Carey, Lisa A.; Perou, Charles M.; Baselga, José; Scaltriti, Maurizio
2014-01-01
Both abundant epidermal growth factor receptor (EGFR or ErbB1) and high activity of the phosphatidyl-inositol 3-kinase (PI3K)–Akt pathway are common and therapeutically targeted in triple-negative breast cancer (TNBC). However, activation of another EGFR family member [human epidermal growth factor receptor 3 (HER3) (or ErbB3)] may limit the antitumor effects of these drugs. We found that TNBC cell lines cultured with the EGFR or HER3 ligand EGF or heregulin, respectively, and treated with either an Akt inhibitor (GDC-0068) or a PI3K inhibitor (GDC-0941) had increased abundance and phosphorylation of HER3. The phosphorylation of HER3 and EGFR in response to these treatments was reduced by the addition of a dual EGFR and HER3 inhibitor (MEHD7945A). MEHD7945A also decreased the phosphorylation (and activation) of EGFR and HER3 and the phosphorylation of downstream targets that occurred in response to the combination of EGFR ligands and PI3K-Akt pathway inhibitors. In culture, inhibition of the PI3K-Akt pathway combined with either MEHD7945A or knockdown of HER3 decreased cell proliferation compared with inhibition of the PI3K-Akt pathway alone. Combining either GDC-0068 or GDC-0941 with MEHD7945A inhibited the growth of xenografts derived from TNBC cell lines or from TNBC patient tumors, and this combination treatment was also more effective than combining either GDC-0068 or GDC-0941 with cetuximab, an EGFR-targeted antibody. After therapy with EGFR-targeted antibodies, some patients had residual tumors with increased HER3 abundance and EGFR/HER3 dimerization (an activating interaction). Thus, we propose that concomitant blockade of EGFR, HER3, and the PI3K-Akt pathway in TNBC should be investigated in the clinical setting. PMID:24667376
Tao, Jessica J; Castel, Pau; Radosevic-Robin, Nina; Elkabets, Moshe; Auricchio, Neil; Aceto, Nicola; Weitsman, Gregory; Barber, Paul; Vojnovic, Borivoj; Ellis, Haley; Morse, Natasha; Viola-Villegas, Nerissa Therese; Bosch, Ana; Juric, Dejan; Hazra, Saswati; Singh, Sharat; Kim, Phillip; Bergamaschi, Anna; Maheswaran, Shyamala; Ng, Tony; Penault-Llorca, Frédérique; Lewis, Jason S; Carey, Lisa A; Perou, Charles M; Baselga, José; Scaltriti, Maurizio
2014-03-25
Both abundant epidermal growth factor receptor (EGFR or ErbB1) and high activity of the phosphatidylinositol 3-kinase (PI3K)-Akt pathway are common and therapeutically targeted in triple-negative breast cancer (TNBC). However, activation of another EGFR family member [human epidermal growth factor receptor 3 (HER3) (or ErbB3)] may limit the antitumor effects of these drugs. We found that TNBC cell lines cultured with the EGFR or HER3 ligand EGF or heregulin, respectively, and treated with either an Akt inhibitor (GDC-0068) or a PI3K inhibitor (GDC-0941) had increased abundance and phosphorylation of HER3. The phosphorylation of HER3 and EGFR in response to these treatments was reduced by the addition of a dual EGFR and HER3 inhibitor (MEHD7945A). MEHD7945A also decreased the phosphorylation (and activation) of EGFR and HER3 and the phosphorylation of downstream targets that occurred in response to the combination of EGFR ligands and PI3K-Akt pathway inhibitors. In culture, inhibition of the PI3K-Akt pathway combined with either MEHD7945A or knockdown of HER3 decreased cell proliferation compared with inhibition of the PI3K-Akt pathway alone. Combining either GDC-0068 or GDC-0941 with MEHD7945A inhibited the growth of xenografts derived from TNBC cell lines or from TNBC patient tumors, and this combination treatment was also more effective than combining either GDC-0068 or GDC-0941 with cetuximab, an EGFR-targeted antibody. After therapy with EGFR-targeted antibodies, some patients had residual tumors with increased HER3 abundance and EGFR/HER3 dimerization (an activating interaction). Thus, we propose that concomitant blockade of EGFR, HER3, and the PI3K-Akt pathway in TNBC should be investigated in the clinical setting.
Kurosawa, Gene; Kondo, Mariko; Kurosawa, Yoshikazu
2016-11-04
When the technology for constructing human antibody (Ab) libraries using a phage-display system was developed, many researchers in Ab-related fields anticipated that it would be widely applied to the development of pharmaceutical drugs against various diseases, including cancers. However, successful examples of such applications are very limited. Moreover, researchers who utilize phage-display technology now show divergent ways of thinking about phage Ab libraries. For example, there is debate about what should be the source of V H and V L genes for the construction of libraries to cover the whole repertoire of Abs present in the human body. In the immune system, the introduction of mutations into V genes followed by selection based on binding activity, termed Ab maturation, is required for the production of Abs exhibiting high affinity to the antigen (Ag). Therefore, introduction of mutations and selection are required for isolation of Abs with high affinity after isolation of clones from phage Ab libraries. We constructed a large human Ab library termed AIMS, developed a screening method termed ICOS, and succeeded in isolating many human monoclonal Abs (mAbs) that specifically and strongly bind to various tumor-associated Ags. Eight anti-EGFR mAbs were included, which we characterized. These mAbs showed various different activities against EGFR-expressing cancer cells. In this paper, we describe these data and discuss the possibility and necessity that the mAbs isolated from the AIMS library might be developed as therapeutic drugs against cancers without introduction of mutations. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Fu, Wenyan; Sun, Hefen; Zhao, Yang; Chen, Mengting; Yang, Lipeng; Yang, Xueli; Jin, Wei
2018-05-16
The overexpression of EGFR often occurs in TNBC, and the anti-EGFR receptor antibody cetuximab is used widely to treat metastatic cancer in the clinic. However, EGFR-targeted therapies have been developed for TNBC without clinical success. In this study, we show that impaired EGFR degradation is crucial for resistance to cetuximab, which depends on the cell surface molecule CD44. To further investigate the role of CD44 in EGFR signaling and its treatment potential, we developed a targeting fusion protein composed of an anti-EGFR scFv generated from cetuximab and truncated protamine, called Ce-tP. CD44 siRNA can be specifically delivered into EGFR-positive TNBC cells by Ce-tP. Efficient knockdown of CD44 and suppression of both EGFR and downstream signaling by the Ce-tP/siRNA complex were observed in EGFR-positive TNBC cells. More importantly, our results also showed that targeted delivery of siRNA specific for CD44 can efficiently overcome resistance to EGFR targeting in TNBC cells both in vitro and in vivo. Overall, our results establish a new principle to achieve EGFR inhibition in TNBC and limit drug resistance. Copyright © 2018 Elsevier Ltd. All rights reserved.
Hehle, Verena K.; Paul, Matthew J.; Roberts, Victoria A.; van Dolleweerd, Craig J.; Ma, Julian K.-C.
2016-01-01
This study examined the degradation pattern of a murine IgG1κ monoclonal antibody expressed in and extracted from transformed Nicotiana tabacum. Gel electrophoresis of leaf extracts revealed a consistent pattern of recombinant immunoglobulin bands, including intact and full-length antibody, as well as smaller antibody fragments. N-terminal sequencing revealed these smaller fragments to be proteolytic cleavage products and identified a limited number of protease-sensitive sites in the antibody light and heavy chain sequences. No strictly conserved target sequence was evident, although the peptide bonds that were susceptible to proteolysis were predominantly and consistently located within or near to the interdomain or solvent-exposed regions in the antibody structure. Amino acids surrounding identified cleavage sites were mutated in an attempt to increase resistance. Different Guy’s 13 antibody heavy and light chain mutant combinations were expressed transiently in N. tabacum and demonstrated intensity shifts in the fragmentation pattern, resulting in alterations to the full-length antibody-to-fragment ratio. The work strengthens the understanding of proteolytic cleavage of antibodies expressed in plants and presents a novel approach to stabilize full-length antibody by site-directed mutagenesis.—Hehle, V. K., Paul, M. J., Roberts, V. A., van Dolleweerd, C. J., Ma, J. K.-C. Site-targeted mutagenesis for stabilization of recombinant monoclonal antibody expressed in tobacco (Nicotiana tabacum) plants. PMID:26712217
Selective cytotoxicity of an oxygen-radical-generating enzyme conjugated to a monoclonal antibody.
Battelli, M G; Abbondanza, A; Tazzari, P L; Dinota, A; Rizzi, S; Grassi, G; Gobbi, M; Stirpe, F
1988-07-01
The monoclonal antibody 8A, which recognizes a human plasma cell-associated antigen, was covalently linked to xanthine oxidase in a conjugate maintaining both immunological and enzymatic properties. A significant degree of target cell lysis was obtained at an enzyme concentration that was ineffective on non-target cells and on myeloid staminal cells (CFU-GM). The cytotoxic activity was abolished by an excess of antibody, by allopurinol and by superoxide dismutase and catalase. A possible use of the conjugate for bone marrow purging in multiple myeloma patients is suggested.
ERBB oncogene proteins as targets for monoclonal antibodies.
Polanovski, O L; Lebedenko, E N; Deyev, S M
2012-03-01
General properties of the family of tyrosine kinase ERBB receptors are considered in connection with their role in the generation of cascades of signal transduction in normal and tumor cells. Causes of acquisition of oncogene features by genes encoding these receptors and their role in tumorigenesis are analyzed. Anti-ERBB monoclonal antibodies approved for therapy are described in detail, and mechanisms of their antitumor activity and development of resistance to them are reviewed. The existing and the most promising strategies for creating and using monoclonal antibodies and their derivatives for therapy of cancer are discussed.
Review of cetuximab in the treatment of squamous cell carcinoma of the head and neck
Merlano, Marco; Occelli, Marcella
2007-01-01
Cetuximab is a monoclonal antibody able to inhibit and to degrade the transmembrane receptor Her-1, also known as epidermal growth factor receptor (EGFR). The inhibition of EGFR is of major importance since the receptor influences many important tumor cell activities including tumor growth, neo-angiogenesis, inhibition of the apoptotic response to chemotherapy and radiotherapy. Available experimental data suggest that cetuximab may enhance chemotherapy and radiotherapy activity, reverse resistance to some anticancer drugs and has itself anticancer activity Early clinical data support experimental results. This paper reviews the published experiences on cetuximab in the treatment of advanced head and neck cancer and points out the future objectives of the clinical research on this drug. PMID:18473010
Kemshead, J T; Jones, D H; Lashford, L; Prichard, J; Gordon, I; Breatnach, F; Coakham, H B
1986-01-01
It has been suggested that monoclonal antibodies may be useful in targeting cytotoxic compounds to tumor cells. We have explored their use in targeting 131-I to highly radiosensitive primitive neural tumors such as neuroblastoma and pineoblastomas. Two routes of administration have been employed, intravenous and intrathecal. Our current experience in using radiolabelled antibodies is described, indicating toxicities seen and any therapeutic benefit observed. The results of the study suggest that if targeted radiation has a role in the treatment of these malignancies, it will be restricted to the eradication of small tumor masses from the body.
Mehra, Ranee; Serebriiskii, Ilya G.; Dunbrack, Roland L.; Robinson, Matthew K.; Burtness, Barbara; Golemis, Erica A.
2011-01-01
Agents targeting EGFR and related ErbB family proteins are valuable therapies for the treatment of many cancers. For some tumor types, including squamous cell carcinomas of the head and neck (SCCHN), antibodies targeting EGFR were the first protein-directed agents to show clinical benefit, and remain a standard component of clinical strategies for management of the disease. Nevertheless, many patients display either intrinsic or acquired resistance to these drugs; hence, major research goals are to better understand the underlying causes of resistance, and to develop new therapeutic strategies that boost the impact of EGFR/ErbB inhibitors. In this review, we first summarize current standard use of EGFR inhibitors in the context of SCCHN, and described new agents targeting EGFR currently moving through pre-clinical and clinical development. We then discuss how changes in other transmembrane receptors, including IGF1R, c-Met, and TGF-β, can confer resistance to EGFR-targeted inhibitors, and discuss new agents targeting these proteins. Moving downstream, we discuss critical EGFR-dependent effectors, including PLC-γ; PI3K and PTEN; SHC, GRB2, and RAS and the STAT proteins, as factors in resistance to EGFR-directed inhibitors and as alternative targets of therapeutic inhibition. We summarize alternative sources of resistance among cellular changes that target EGFR itself, through regulation of ligand availability, post-translational modification of EGFR, availability of EGFR partners for hetero-dimerization and control of EGFR intracellular trafficking for recycling versus degradation. Finally, we discuss new strategies to identify effective therapeutic combinations involving EGFR-targeted inhibitors, in the context of new system level data becoming available for analysis of individual tumors. PMID:21920801
A novel anti-GPC3 monoclonal antibody (YP7) | Center for Cancer Research
Glypican-3 (GPC3) is an emerging therapeutic target in hepatoma. A novel anti-GPC3 monoclonal antibody (YP7) has been generated through a combination of peptide immunization and high-throughput flow cytometry screening. YP7 binds cell-surface-associated GPC3 with high affinity and exhibits significant hepatoma xenograft growth inhibition in nude mice. The new antibody may have
Targeting to cells of fluorescent liposomes covalently coupled with monoclonal antibody or protein A
NASA Astrophysics Data System (ADS)
Leserman, Lee D.; Barbet, Jacques; Kourilsky, François; Weinstein, John N.
1980-12-01
Many applications envisioned for liposomes in cell biology and chemotherapy require their direction to specific cellular targets1-3. The ability to use antibody as a means of conferring specificity to liposomes would markedly increase their usefulness. We report here a method for covalently coupling soluble proteins, including monoclonal antibody and Staphylococcus aureus protein A (ref. 4), to small sonicated liposomes, by using the heterobifunctional cross-linking reagent N-hydroxysuccinimidyl 3-(2-pyridyldithio)propionate (SPDP, Pharmacia). Liposomes bearing covalently coupled mouse monoclonal antibody against human β2-microglobulin [antibody B1.1G6 (IgG2a, κ) (B. Malissen et al., in preparation)] bound specifically to human, but not to mouse cells. Liposomes bearing protein A became bound to human cells previously incubated with the B1.1G6 antibody, but not to cells incubated without antibody. The coupling method results in efficient binding of protein to the liposomes without aggregation and without denaturation of the coupled ligand; at least 60% of liposomes bound functional protein. Further, liposomes did not leak encapsulated carboxyfluorescein (CF) as a consequence of the reaction.
Sforza, Vincenzo; Martinelli, Erika; Ciardiello, Fortunato; Gambardella, Valentina; Napolitano, Stefania; Martini, Giulia; della Corte, Carminia; Cardone, Claudia; Ferrara, Marianna L; Reginelli, Alfonso; Liguori, Giuseppina; Belli, Giulio; Troiani, Teresa
2016-01-01
The prognosis of patients with metastatic colorectal cancer (mCRC) remain poor despite the impressive improvement of treatments observed over the last 20 years that led to an increase in median overall survival from 6 mo, with the only best supportive care, to approximately 30 mo with the introduction of active chemotherapy drugs and targeted agents. The monoclonal antibodies (moAbs) cetuximab and panitumumab, directed against the epidermal growth factor receptor (EGFR), undoubtedly represent a major step forward in the treatment of mCRC, given the relevant efficacy in terms of progression-free survival, overall survival, response rate, and quality of life observed in several phase III clinical trials among different lines of treatment. However, the anti-EGFR moAbs were shown only to be effective in a subset of patients. For instance, KRAS and NRAS mutations have been identified as biomarkers of resistance to these drugs, improving the selection of patients who might derive a benefit from these treatments. Nevertheless, several other alterations might affect the response to these drugs, and unfortunately, even the responders eventually become resistant by developing secondary (or acquired) resistance in approximately 13-18 mo. Several studies highlighted that the landscape of responsible alterations of both primary and acquired resistance to anti-EGFR drugs biochemically converge into MEK-ERK and PIK3CA-AKT pathways. In this review, we describe the currently known mechanisms of primary and acquired resistance to anti-EGFR moAbs together with the various strategies evaluated to prevent, overcame or revert them. PMID:27605871
Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer.
Misale, Sandra; Yaeger, Rona; Hobor, Sebastijan; Scala, Elisa; Janakiraman, Manickam; Liska, David; Valtorta, Emanuele; Schiavo, Roberta; Buscarino, Michela; Siravegna, Giulia; Bencardino, Katia; Cercek, Andrea; Chen, Chin-Tung; Veronese, Silvio; Zanon, Carlo; Sartore-Bianchi, Andrea; Gambacorta, Marcello; Gallicchio, Margherita; Vakiani, Efsevia; Boscaro, Valentina; Medico, Enzo; Weiser, Martin; Siena, Salvatore; Di Nicolantonio, Federica; Solit, David; Bardelli, Alberto
2012-06-28
A main limitation of therapies that selectively target kinase signalling pathways is the emergence of secondary drug resistance. Cetuximab, a monoclonal antibody that binds the extracellular domain of epidermal growth factor receptor (EGFR), is effective in a subset of KRAS wild-type metastatic colorectal cancers. After an initial response, secondary resistance invariably ensues, thereby limiting the clinical benefit of this drug. The molecular bases of secondary resistance to cetuximab in colorectal cancer are poorly understood. Here we show that molecular alterations (in most instances point mutations) of KRAS are causally associated with the onset of acquired resistance to anti-EGFR treatment in colorectal cancers. Expression of mutant KRAS under the control of its endogenous gene promoter was sufficient to confer cetuximab resistance, but resistant cells remained sensitive to combinatorial inhibition of EGFR and mitogen-activated protein-kinase kinase (MEK). Analysis of metastases from patients who developed resistance to cetuximab or panitumumab showed the emergence of KRAS amplification in one sample and acquisition of secondary KRAS mutations in 60% (6 out of 10) of the cases. KRAS mutant alleles were detectable in the blood of cetuximab-treated patients as early as 10 months before radiographic documentation of disease progression. In summary, the results identify KRAS mutations as frequent drivers of acquired resistance to cetuximab in colorectal cancers, indicate that the emergence of KRAS mutant clones can be detected non-invasively months before radiographic progression and suggest early initiation of a MEK inhibitor as a rational strategy for delaying or reversing drug resistance.
Even, Aniek J G; Hamming-Vrieze, Olga; van Elmpt, Wouter; Winnepenninckx, Véronique J L; Heukelom, Jolien; Tesselaar, Margot E T; Vogel, Wouter V; Hoeben, Ann; Zegers, Catharina M L; Vugts, Daniëlle J; van Dongen, Guus A M S; Bartelink, Harry; Mottaghy, Felix M; Hoebers, Frank; Lambin, Philippe
2017-01-17
Biomarkers predicting treatment response to the monoclonal antibody cetuximab in locally advanced head and neck squamous cell carcinomas (LAHNSCC) are lacking. We hypothesize that tumor accessibility is an important factor in treatment success of the EGFR targeting drug. We quantified uptake of cetuximab labeled with Zirconium-89 (89Zr) using PET/CT imaging.Seventeen patients with stage III-IV LAHNSCC received a loading dose unlabeled cetuximab, followed by 10 mg 54.5±9.6 MBq 89Zr-cetuximab. PET/CT images were acquired either 3 and 6 or 4 and 7 days post-injection. 89Zr-cetuximab uptake was quantified using standardized uptake value (SUV) and tumor-to-background ratio (TBR), and correlated to EGFR immunohistochemistry. TBR was compared between scan days to determine optimal timing.Uptake of 89Zr-cetuximab varied between patients (day 6-7: SUVpeak range 2.5-6.2). TBR increased significantly (49±28%, p < 0.01) between first (1.1±0.3) and second scan (1.7±0.6). Between groups with a low and high EGFR expression a significant difference in SUVmean (2.1 versus 3.0) and SUVpeak (3.2 versus 4.7) was found, however, not in TBR. Data is available at www.cancerdata.org (DOI: 10.17195/candat.2016.11.1).In conclusion, 89Zr-cetuximab PET imaging shows large inter-patient variety in LAHNSCC and provides additional information over FDG-PET and EGFR expression. Validation of the predictive value is recommended with scans acquired 6-7 days post-injection.
van Elmpt, Wouter; Winnepenninckx, Véronique J.L.; Heukelom, Jolien; Tesselaar, Margot E.T.; Vogel, Wouter V.; Hoeben, Ann; Zegers, Catharina M.L.; Vugts, Daniëlle J.; van Dongen, Guus A.M.S.; Bartelink, Harry; Mottaghy, Felix M.; Hoebers, Frank; Lambin, Philippe
2017-01-01
Biomarkers predicting treatment response to the monoclonal antibody cetuximab in locally advanced head and neck squamous cell carcinomas (LAHNSCC) are lacking. We hypothesize that tumor accessibility is an important factor in treatment success of the EGFR targeting drug. We quantified uptake of cetuximab labeled with Zirconium-89 (89Zr) using PET/CT imaging. Seventeen patients with stage III-IV LAHNSCC received a loading dose unlabeled cetuximab, followed by 10 mg 54.5±9.6 MBq 89Zr-cetuximab. PET/CT images were acquired either 3 and 6 or 4 and 7 days post-injection. 89Zr-cetuximab uptake was quantified using standardized uptake value (SUV) and tumor-to-background ratio (TBR), and correlated to EGFR immunohistochemistry. TBR was compared between scan days to determine optimal timing. Uptake of 89Zr-cetuximab varied between patients (day 6-7: SUVpeak range 2.5-6.2). TBR increased significantly (49±28%, p < 0.01) between first (1.1±0.3) and second scan (1.7±0.6). Between groups with a low and high EGFR expression a significant difference in SUVmean (2.1 versus 3.0) and SUVpeak (3.2 versus 4.7) was found, however, not in TBR. Data is available at www.cancerdata.org (DOI: 10.17195/candat.2016.11.1). In conclusion, 89Zr-cetuximab PET imaging shows large inter-patient variety in LAHNSCC and provides additional information over FDG-PET and EGFR expression. Validation of the predictive value is recommended with scans acquired 6-7 days post-injection. PMID:27965472
Comparison of humanized IgG and FvFc anti-CD3 monoclonal antibodies expressed in CHO cells.
Serpieri, Flavia; Inocencio, Andre; de Oliveira, Jose Marcelino; Pimenta, Alécio A; Garbuio, Angélica; Kalil, Jorge; Brigido, Marcelo M; Moro, Ana Maria
2010-07-01
Two humanized monoclonal antibody constructs bearing the same variable regions of an anti-CD3 monoclonal antibody, whole IgG and FvFc, were expressed in CHO cells. Random and site-specific integration were used resulting in similar expression levels. The transfectants were selected with appropriate selection agent, and the surviving cells were plated in semi-solid medium for capture with FITC-conjugated anti-human IG antibody and picked with the robotic ClonePix FL. Conditioned media from selected clones were purified by affinity chromatography and characterized by SDS-PAGE, Western-blot, SEC-HPLC, and isoelectric focusing. Binding to the target present in healthy human mononuclear cells was assessed by flow cytometry, as well as by competition between the two constructs and the original murine monoclonal antibody. The humanized constructs were not able to dislodge the murine antibody while the murine anti-CD3 antibody could dislodge around 20% of the FvFc or IgG humanized versions. Further in vitro and in vivo pre-clinical analyses will be carried out to verify the ability of the humanized versions to demonstrate the immunoregulatory profile required for a humanized anti-CD3 monoclonal antibody.
Li, X; Lu, Y; Liang, K; Hsu, J -M.; Albarracin, C; Mills, G B; Hung, M-C; Fan, Z
2011-01-01
Epidermal growth factor receptor (EGFR)-mediated cell signaling is critical for mammary epithelial cell growth and survival; however, targeting EGFR has shown no or only minimal therapeutic benefit in patients with breast cancer. Here, we report a novel regulatory mechanism of EGFR signaling that may explain the low response rates. We found that breast tumor kinase (Brk)/protein-tyrosine kinase 6 (PTK6), a nonreceptor protein tyrosine kinase highly expressed in most human breast tumors, interacted with EGFR and sustained ligand-induced EGFR signaling. We demonstrate that Brk inhibits ligand-induced EGFR degradation through uncoupling activated EGFR from Cbl-mediated EGFR ubiquitination. In addition, upon activation by EGFR, Brk directly phosphorylated Y845 in the EGFR kinase domain, thereby further potentiating EGFR kinase activity. Experimental elevation of Brk conferred resistance of breast cancer cells to cetuximab (an EGFR-blocking antibody)-induced inhibition of cell signaling and proliferation, whereas knockdown of Brk sensitized the cells to cetuximab by inducing apoptosis. Our findings reveal a previously unknown role of Brk in EGFR-targeted therapy. PMID:22231447
NASA Astrophysics Data System (ADS)
Sanna, Pietro Paolo; Williamson, R. Anthony; de Logu, Alessandro; Bloom, Floyd E.; Burton, Dennis R.
1995-07-01
Human monoclonal antibodies have considerable potential in the prophylaxis and treatment of viral disease. However, only a few such antibodies suitable for clinical use have been produced to date. We have previously shown that large panels of human recombinant monoclonal antibodies against a plethora of infectious agents, including herpes simplex virus types 1 and 2, can be established from phage display libraries. Here we demonstrate that facile cloning of recombinant Fab fragments against specific viral proteins in their native conformation can be accomplished by panning phage display libraries against viral glycoproteins "captured" from infected cell extracts by specific monoclonal antibodies immobilized on ELISA plates. We have tested this strategy by isolating six neutralizing recombinant antibodies specific for herpes simplex glycoprotein gD or gB, some of which are against conformationally sensitive epitopes. By using defined monoclonal antibodies for the antigen-capture step, this method can be used for the isolation of antibodies to specific regions and epitopes within the target viral protein. For instance, monoclonal antibodies to a nonneutralizing epitope can be used in the capture step to clone antibodies to neutralizing epitopes, or antibodies to a neutralizing epitope can be used to clone antibodies to a different neutralizing epitope. Furthermore, by using capturing antibodies to more immunodominant epitopes, one can direct the cloning to less immunogenic ones. This method should be of value in generating antibodies to be used both in the prophylaxis and treatment of viral infections and in the characterization of the mechanisms of antibody protective actions at the molecular level.
Adnectin-Based Design of Chimeric Antigen Receptor for T Cell Engineering.
Han, Xiaolu; Cinay, Gunce E; Zhao, Yifan; Guo, Yunfei; Zhang, Xiaoyang; Wang, Pin
2017-11-01
Although chimeric antigen receptor (CAR)-engineered T cell therapy has achieved encouraging clinical trial results for treating hematological cancers, further optimization can likely expand this therapeutic success to more patients and other cancer types. Most CAR constructs used in clinical trials incorporate single chain variable fragment (scFv) as the extracellular antigen recognition domain. The immunogenicity of nonhuman scFv could cause host rejection against CAR T cells and compromise their persistence and efficacy. The limited availability of scFvs and slow discovery of new monoclonal antibodies also limit the development of novel CAR constructs. Adnectin, a class of affinity molecules derived from the tenth type III domain of human fibronectin, can be an alternative to scFv as an antigen-binding moiety in the design of CAR molecules. We constructed adnectin-based CARs targeting epithelial growth factor receptor (EGFR) and found that compared to scFv-based CAR, T cells engineered with adnectin-based CARs exhibited equivalent cell-killing activity against target H292 lung cancer cells in vitro and had comparable antitumor efficacy in xenograft tumor-bearing mice in vivo. In addition, with optimal affinity tuning, adnectin-based CAR showed higher selectivity on target cells with high EGFR expression than on those with low expression. This new design of adnectin CARs can potentially facilitate the development of T cell immunotherapy for cancer and other diseases. Copyright © 2017 The American Society of Gene and Cell Therapy. Published by Elsevier Inc. All rights reserved.
Efficient inhibition of EGFR signaling and of tumour growth by antagonistic anti-EFGR Nanobodies.
Roovers, Rob C; Laeremans, Toon; Huang, Lieven; De Taeye, Severine; Verkleij, Arie J; Revets, Hilde; de Haard, Hans J; van Bergen en Henegouwen, Paul M P
2007-03-01
The development of a number of different solid tumours is associated with over-expression of ErbB1, or the epidermal growth factor receptor (EGFR), and this over-expression is often correlated with poor prognosis of patients. Therefore, this receptor tyrosine kinase is considered to be an attractive target for antibody-based therapy. Indeed, antibodies to the EGFR have already proven their value for the treatment of several solid tumours, especially in combination with chemotherapeutic treatment regimens. Variable domains of camelid heavy chain-only antibodies (called Nanobodies) have superior properties compared with classical antibodies in that they are small, very stable, easy to produce in large quantities and easy to re-format into multi-valent or multi-specific proteins. Furthermore, they can specifically be selected for a desired function by phage antibody display. In this report, we describe the successful selection and the characterisation of antagonistic anti-EGFR Nanobodies. By using a functional selection strategy, Nanobodies that specifically competed for EGF binding to the EGFR were isolated from "immune" phage Nanobody repertoires. The selected antibody fragments were found to efficiently inhibit EGF binding to the EGFR without acting as receptor agonists themselves. In addition, they blocked EGF-mediated signalling and EGF-induced cell proliferation. In an in vivo murine xenograft model, the Nanobodies were effective in delaying the outgrowth of A431-derived solid tumours. This is the first report describing the successful use of untagged Nanobodies for the in vivo treatment of solid tumours. The results show that functional phage antibody selection, coupled to the rational design of Nanobodies, permits the rapid development of novel anti-cancer antibody-based therapeutics.
Coyne, Cody P; Narayanan, Lakshmi
2016-01-01
Corticosteroids are effective in the management of a variety of disease states, such as several forms of neoplasia (leukemia and lymphoma), autoimmune conditions, and severe inflammatory responses. Molecular strategies that selectively "target" delivery of corticosteroids minimize or prevents large amounts of the pharmaceutical moiety from passively diffusing into normal healthy cell populations residing within tissues and organ systems. The covalent immunopharmaceutical, dexamethasone-(C21-phosphoramide)-[anti-EGFR] was synthesized by reacting dexamethasone-21-monophosphate with a carbodiimide reagent to form a dexamethasone phosphate carbodiimide ester that was subsequently reacted with imidazole to create an amine-reactive dexamethasone-(C21-phosphorylimidazolide) intermediate. Monoclonal anti-EGFR immunoglobulin was combined with the amine-reactive dexamethasone-(C21-phosphorylimidazolide) intermediate, resulting in the synthesis of the covalent immunopharmaceutical, dexamethasone-(C21-phosphoramide)-[anti-EGFR]. Following spectrophotometric analysis and validation of retained epidermal growth factor receptor type 1 (EGFR)-binding avidity by cell-ELISA, the selective anti-neoplasic cytotoxic potency of dexamethasone-(C21-phosphoramide)-[anti-EGFR] was established by MTT-based vitality stain methodology using adherent monolayer populations of human pulmonary adenocarcinoma (A549) known to overexpress the tropic membrane receptors EGFR and insulin-like growth factor receptor type 1. The dexamethasone:IgG molar-incorporation-index for dexamethasone-(C21-phosphoramide)-[anti-EGFR] was 6.95:1 following exhaustive serial microfiltration. Cytotoxicity analysis: covalent bonding of dexamethasone to monoclonal anti-EGFR immunoglobulin did not significantly modify the ex vivo antineoplastic cytotoxicity of dexamethasone against pulmonary adenocarcinoma at and between the standardized dexamethasone equivalent concentrations of 10(-9) M and 10(-5) M. Rapid increases in antineoplastic cytotoxicity were observed at and between the dexamethasone equivalent concentrations of 10(-9) M and 10(-7) M where cancer cell death increased from 7.7% to a maximum of 64.9% (92.3%-35.1% residual survival), respectively, which closely paralleled values for "free" noncovalently bound dexamethasone. Organic chemistry reaction regimens were optimized to develop a multiphase synthesis regimen for dexamethasone-(C21-phosphoramide)-[anti-EGFR]. Attributes of dexamethasone-(C21-phosphoramide)-[anti-EGFR] include a high dexamethasone molar incorporation-index, lack of extraneous chemical group introduction, retained EGFR-binding avidity ("targeted" delivery properties), and potential to enhance long-term pharmaceutical moiety effectiveness.
Melancon, Marites P; Lu, Wei; Zhong, Meng; Zhou, Min; Liang, Gan; Elliott, Andrew M; Hazle, John D; Myers, Jeffrey N; Li, Chun; Stafford, R Jason
2011-10-01
Image-guided thermal ablation of tumors is becoming a more widely accepted minimally invasive alternative to surgery for patients who are not good surgical candidates, such as patients with advanced head and neck cancer. In this study, multifunctional superparamagnetic iron oxide coated with gold nanoshell (SPIO@Au NS) that have both optical and magnetic properties was conjugated with the targeting agent, C225 monoclonal antibody, against epidermal growth factor receptor (EGFR). C225-SPIO@Au NS have an average a diameter of 82 ± 4.4 nm, contain 142 ± 15 antibodies per nanoshell, have an absorption peak in the near infrared (~800 nm), and have transverse relaxivity (r(2)) of 193 and 353 mM(-1) s(-1) versus Feridex™ of 171 and 300 mM(-1) s(-1), using 1.5 T and 7 T MR scanners, respectively. Specific targeting of the synthesized C225-SPIO@Au NS was tested in vitro using A431 cells and oral cancer cells, FaDu, OSC19, and HN5, all of which overexpress EGFR. Selective binding was achieved using C225-SPIO@Au NS but not with the non-targeting PEG-SPIO@Au NS and blocking group (excess of C225 + C225-SPIO@Au NS). In vivo biodistribution on mice bearing A431 tumors also showed selective targeting of C225-SPIO@Au NS compared with the non-targeting and blocking groups. The selective photothermal ablation of the nanoshells shows that without laser treatment there were no cell death and among the groups that were treated with laser at a power of 36 W/cm(2) for 3 min, only the cells treated with C225-SPIO@Au NS had cell killing (p < 0.001). In summary, successful synthesis and characterization of targeted C225-SPIO@Au NS demonstrating both superparamagnetic and optical properties has been achieved. We have shown both in vitro and in vivo that these nanoshells are MR-active and can be selectively heated up for simultaneous imaging and photothermal ablation therapy. Published by Elsevier Ltd.
Hicklin, Daniel J
2015-04-01
The research article by Prewett and colleagues, published in the May 1, 2002, issue of Clinical Cancer Research, provided important translational data that extended earlier preclinical and clinical studies with the human-murine chimeric anti-EGFR monoclonal antibody C225. Subsequent clinical trials with C225 led to the demonstration of its efficacy in combination with irinotecan and regulatory approval for the treatment of metastatic colorectal cancer. ©2015 American Association for Cancer Research.
NASA Astrophysics Data System (ADS)
J, Aswathy; V, Seethalekshmy N.; R, Hiran K.; R, Bindhu M.; K, Manzoor; Nair, Shantikumar V.; Menon, Deepthy
2014-11-01
The field of molecular detection and targeted imaging has evolved considerably with the introduction of fluorescent semiconductor nanocrystals. Manganese-doped zinc sulphide nanocrystals (ZnS:Mn NCs), which are widely used in electroluminescent displays, have been explored for the first time for direct immunofluorescent (IF) labeling of clinical tumor tissues. ZnS:Mn NCs developed through a facile wet chemistry route were capped using amino acid cysteine, conjugated to streptavidin and thereafter coupled to biotinylated epidermal growth factor receptor (EGFR) antibody utilizing the streptavidin-biotin linkage. The overall conjugation yielded stable EGFR antibody conjugated ZnS:Mn NCs (EGFR ZnS:Mn NCs) with a hydrodynamic diameter of 65 ± 15 nm, and having an intense orange-red fluorescence emission at 598 nm. Specific labeling of EGF receptors on EGFR+ve A431 cells in a co-culture with EGFR-ve NIH3T3 cells was demonstrated using these nanoprobes. The primary antibody conjugated fluorescent NCs could also clearly delineate EGFR over-expressing cells on clinical tumor tissues processed by formalin fixation as well as cryopreservation with a specificity of 86% and accuracy of 88%, in comparison to immunohistochemistry. Tumor tissues labeled with EGFR ZnS:Mn NCs showed good fluorescence emission when imaged after storage even at 15 months. Thus, ZnS nanobioconjugates with dopant-dependent and stable fluorescence emission show promise as an efficient, target-specific fluorophore that would enable long term IF labeling of any antigen of interest on clinical tissues.
Alexander, M; King, J; Lingaratnam, S; Byrne, J; MacMillan, K; Mollo, A; Kirsa, S; Green, M
2016-04-01
There is a paucity of data available to assess the occupational health and safety risk associated with exposure to monoclonal antibodies. Industry standards and published guidelines are conflicting or outdated. Guidelines offer contrary recommendations based on an array of methodological approaches. This survey aimed to describe current practices, beliefs and attitudes relating to the handling of monoclonal antibodies by Australian medical, nursing and pharmacy clinicians. An electronic survey was distributed between June and September 2013. Respondents were surveyed on three focus areas: institutional guideline availability and content, current practices and attitudes. Demographic data relating to respondent and primary place of practice were also collected. A total of 222 clinicians completed the survey, with representation from all targeted professional groups and from a variety of geographic locations. 92% of respondents reported that their institution prepared or administered monoclonal antibodies, with 87% specifically handling anti-cancer monoclonal antibodies. Monoclonal antibodies were mostly prepared onsite (84-90%) and mostly within pharmacy clean-rooms (75%) and using cytotoxic cabinets (61%). 43% of respondents reported access to institutional monoclonal antibody handling guidelines with risk reduction strategies including training and education (71%), spill and waste management (71%), procedures for transportation (57%) and restricted handling (50%). Nurses had a stronger preference towards pharmacy manufacturing than both doctors and pharmacists for a range of clinical scenarios. 95% of all respondents identified that professional or regulatory body guidelines are an important resource when considering handling practices. Monoclonal antibodies are most commonly handled according to cytotoxic drug standards and often in the absence of formal guidelines. © The Author(s) 2014.
2012-09-01
micrometastases that may be targeted with radioimmunotherapy. Prostate specific membrane antigen (PSMA) is the single, most well-established, highly restricted...Radiolabeled anti- prostate specific membrane antigen (PSMA) monoclonal antibody J591 (177Lu-J591) for nonmetastatic castration-resistant prostate cancer...rationale for systemic salvage targeted anti- prostate specific membrane antigen radioimmunotherapy. Adv Urol 2012, Article ID 921674, doi:10.1155
Selective cytotoxicity of an oxygen-radical-generating enzyme conjugated to a monoclonal antibody.
Battelli, M G; Abbondanza, A; Tazzari, P L; Dinota, A; Rizzi, S; Grassi, G; Gobbi, M; Stirpe, F
1988-01-01
The monoclonal antibody 8A, which recognizes a human plasma cell-associated antigen, was covalently linked to xanthine oxidase in a conjugate maintaining both immunological and enzymatic properties. A significant degree of target cell lysis was obtained at an enzyme concentration that was ineffective on non-target cells and on myeloid staminal cells (CFU-GM). The cytotoxic activity was abolished by an excess of antibody, by allopurinol and by superoxide dismutase and catalase. A possible use of the conjugate for bone marrow purging in multiple myeloma patients is suggested. PMID:3262464
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smid, Ernst J.; Stoter, T. Rianne; Bloemena, Elisabeth
2006-08-01
Purpose: The aim of this study was to investigate the prognostic significance of epidermal growth factor (EGFr) expression in oral cavity squamous cell carcinoma (OCSCC) treated with curative surgery and postoperative radiotherapy. Methods and Materials: This retrospective study included 165 OCSCC patients. The expression of EGFr was assessed on paraffin-embedded tissue of the primary tumor by immunohistochemistry using a monoclonal antibody directed against EGFr. Intensity of the EGFr expression was scored by two authors blinded for the clinical outcome. Results: In the univariate analysis, locoregional control at 3 years (LRC) in the EGFr-negative cases was 69% compared with 77% inmore » the EGFr-positive cases (p 0.22). In the multivariate analysis for local control, a significant interaction was found between EGFr and overall treatment time of radiation (OTT). After stratification for EGFr expression, the OTT was of no importance in the EGFr-negative cases, whereas a significant difference in LRC was found in the EGFr-positive cases, in which the LRC after 3 years was 69% and 94% in case of an OTT of 0-42 days and >42 days, respectively (p = 0.009; hazard ratio = 3.42; 95% confidence interval, 1.28-8.96). No significant association was found between EGFr expression and overall survival. Conclusions: In the present study, no association was found between EGFr expression and outcome regarding locoregional control and overall survival. However, the results of the present study suggest that patients with squamous cell carcinoma of the oral cavity with high EGFr expression benefit more from a reduction of the overall treatment time of postoperative radiation than those with low EGFr expression.« less
Monoclonal antibody specific for IDH1 R132H mutation.
Capper, David; Zentgraf, Hanswalter; Balss, Jörg; Hartmann, Christian; von Deimling, Andreas
2009-11-01
IDH1 R132H mutations occur in approximately 70% of astrocytomas and oligodendroglial tumors. We developed a mouse monoclonal antibody targeting the IDH1 R132H mutation. Here, we show the high specificity and sensitivity of this antibody on Western blots and tissue sections from formalin fixed paraffin embedded tumor specimens. This antibody is highly useful for tumor classification, in detecting single infiltrating tumor cells and for the characterization of the cellular role of mutant IDH1 protein.
Interrogation of EGFR Targeted Uptake of TiO2 Nanoconjugates by X-ray Fluorescence Microscopy.
Yuan, Ye; Paunesku, Tatjana; Arora, Hans; Ward, Jesse; Vogt, Stefan; Woloschak, Gayle
2011-09-01
We are developing TiO 2 nanoconjugates that can be used as therapeutic and diagnostic agents. Nanoscale TiO 2 can be surface conjugated with various molecules and has the unique ability to induce the production of reactive oxygen species after radiation activation. One way to improve the potential clinical usefulness of TiO 2 nanoparticles is to control their delivery to malignant cells by targeting them to cancer cell specific antigens. Epidermal Growth Factor Receptor is one potential target that is enriched in epithelial cancers and is rapidly internalized after ligand binding. Hence, we have synthesized TiO 2 nanoparticles and functionalized them with a short EGFR binding peptide to create EGFR-targeted NCs. X-ray Fluorescence Microscopy was used to image nanoconjugates within EGFR positive HeLa cells. Further labeling of fixed cells with antibodies against EGFR and Protein A nanogold showed that TiO 2 nanoconjugates can colocalize with receptors at the cell's plasma membrane. Interestingly, with increased incubation times, EGFR targeted nanoconjugates could also be found colocalized with EGFR within the cell nucleus. This suggests that EGFR-targeted nanoconjugates can bind the receptor at the cell membrane, which leads to the internalization of NC-receptor complexes and the subsequent transport of nanoconjugates into the nucleus.
Fan, Jian-Bo; Liu, Wei; Yuan, Kun; Zhu, Xin-Hui; Xu, Da-Wei; Chen, Jia-Jia; Cui, Zhi-Ming
2014-05-09
Pleiotrophin (Ptn) plays an important role in bone growth through regulating osteoblasts' functions. The underlying signaling mechanisms are not fully understood. In the current study, we found that Ptn induced heparin-binding epidermal growth factor (HB-EGF) release to trans-activate EGF-receptor (EGFR) in both primary osteoblasts and osteoblast-like MC3T3-E1 cells. Meanwhile, Ptn activated Akt and Erk signalings in cultured osteoblasts. The EGFR inhibitor AG1478 as well as the monoclonal antibody against HB-EGF (anti-HB-EGF) significantly inhibited Ptn-induced EGFR activation and Akt and Erk phosphorylations in MC3T3-E1 cells and primary osteoblasts. Further, EGFR siRNA depletion or dominant negative mutation suppressed also Akt and Erk activation in MC3T3-E1 cells. Finally, we observed that Ptn increased alkaline phosphatase (ALP) activity and inhibited dexamethasone (Dex)-induced cell death in both MC3T3-E1 cells and primary osteoblasts, such effects were alleviated by AG1478 or anti-HB-EGF. Together, these results suggest that Ptn-induced Akt/Erk activation and some of its pleiotropic functions are mediated by EGFR trans-activation in cultured osteoblasts. Copyright © 2014 Elsevier Inc. All rights reserved.
Fujii, Rika; Schlom, Jeffrey; Hodge, James W
2018-05-01
OBJECTIVE Chordoma is a rare bone tumor derived from the notochord and is resistant to conventional therapies such as chemotherapy, radiotherapy, and targeting therapeutics. Expression of epidermal growth factor receptor (EGFR) in a large proportion of chordoma specimens indicates a potential target for therapeutic intervention. In this study the authors investigated the potential role of the anti-EGFR antibody cetuximab in immunotherapy for chordoma. METHODS Since cetuximab is a monoclonal antibody of the IgG1 isotype, it has the potential to mediate antibody-dependent cell-mediated cytotoxicity (ADCC) employing natural killer (NK) cells as effectors. Polymorphisms in the CD16 allele expressed on NK cells have been shown to influence the degree of ADCC of tumor cells, with the high-affinity valine (V)/V allele being responsible for more lysis than the V/phenylalanine (F) or FF allele. Unfortunately, however, only approximately 10% of the population expresses the VV allele on NK cells. An NK cell line, NK-92, has now been engineered to endogenously express IL-2 and the high-affinity CD16 allele. These irradiated high-affinity (ha)NK cells were analyzed for lysis of chordoma cells with and without cetuximab, and the levels of lysis observed in ADCC were compared with those of NK cells from donors expressing the VV, VF, and FF alleles. RESULTS Here the authors demonstrate for the first time 1) that cetuximab in combination with NK cells can mediate ADCC of chordoma cells; 2) the influence of the NK CD16 polymorphism in cetuximab-mediated ADCC for chordoma cell lysis; 3) that engineered haNK cells-that is, cells transduced to express the CD16 V158 FcγRIIIa receptor-bind cetuximab with similar affinity to normal NK cells expressing the high-affinity VV allele; and 4) that irradiated haNK cells induce ADCC with cetuximab in chordoma cells. CONCLUSIONS These studies provide rationale for the use of cetuximab in combination with irradiated haNK cells for therapy for chordoma.
Desoubeaux, Guillaume; Reichert, Janice M; Sleeman, Matthew; Reckamp, Karen L; Ryffel, Bernhard; Adamczewski, Jörg P; Sweeney, Theresa D; Vanbever, Rita; Diot, Patrice; Owen, Caroline A; Page, Clive; Lerondel, Stéphanie; Le Pape, Alain; Heuze-Vourc'h, Nathalie
2016-01-01
Monoclonal antibody (mAb) therapeutics have tremendous potential to benefit patients with lung diseases, for which there remains substantial unmet medical need. To capture the current state of mAb research and development in the area of respiratory diseases, the Research Center of Respiratory Diseases (CEPR-INSERM U1100), the Laboratory of Excellence "MAbImprove," the GDR 3260 "Antibodies and therapeutic targeting," and the Grant Research program ARD2020 "Biotherapeutics" invited speakers from industry, academic and government organizations to present their recent research results at the Therapeutic Monoclonal Antibodies for Respiratory Diseases: Current challenges and perspectives congress held March 31 - April 1, 2016 in Tours, France.
Miersch, Shane; Maruthachalam, Bharathikumar Vellalore; Geyer, C Ronald; Sidhu, Sachdev S
2017-05-19
We tested whether grafting an interaction domain into the hypervariable loop of a combinatorial antibody library could promote targeting to a specific epitope. Formation of the epidermal growth factor receptor (EGFR) signaling heterodimer involves extensive contacts mediated by a "dimerization loop." We grafted the dimerization loop into the third hypervariable loop of a synthetic antigen-binding fragment (Fab) library and diversified other loops using a tailored diversity strategy. This structure-directed Fab library and a naı̈ve synthetic Fab library were used to select Fabs against EGFR. Both libraries yielded high affinity Fabs that bound to overlapping epitopes on cell-surface EGFR, inhibited receptor activation, and targeted epitopes distinct from those of cetuximab and panitumumab. Epitope mapping experiments revealed complex sites of interaction, comprised of domains I and II but not exclusively localized to the receptor dimerization loop. These results validate the grafting approach for designing Fab libraries and also underscore the versatility of naı̈ve synthetic libraries.
Tunicamycin enhances the antitumor activity of trastuzumab on breast cancer in vitro and in vivo
Huang, Shengshi; Zhang, Shu; Wang, Fengshan; Shi, Yikang
2015-01-01
Trastuzumab, a humanized monoclonal antibody targeting HER2, has demonstrated clinical benefits for women with HER2-positive breast cancer; however, trastuzumab resistance remains the biggest clinical challenge. In this study, results showed that tunicamycin, an inhibitor of N-glycosylation, synergistically enhanced the antitumor activity of trastuzumab against HER2-overexpressing breast cancer cells through induction of cell cycle arrest and apoptosis. Combined treatment of tunicamycin with trastuzumab dramatically decreased the expression of EGFR family and its down signaling pathway in SKBR3 and MCF-7/HER2 cells. Tunicamycin dose-dependently inhibited tumor growth in both of SKBR3 xenografts and MCF-7/HER2 xenografts. Optimal tunicamycin without inducing ER stress in liver tissue significantly increased the antitumor effect of trastuzumab in MCF-7/HER2 xenografts. Combinations of trastuzumab with N-glycosylation inhibitors tunicamycin may be a promising approach for improving clinical efficacy of trastuzumab. PMID:26498681
Carcinomatous meningitis: Leptomeningeal metastases in solid tumors
Le Rhun, Emilie; Taillibert, Sophie; Chamberlain, Marc C.
2013-01-01
Leptomeningeal metastasis (LM) results from metastatic spread of cancer to the leptomeninges, giving rise to central nervous system dysfunction. Breast cancer, lung cancer, and melanoma are the most frequent causes of LM among solid tumors in adults. An early diagnosis of LM, before fixed neurologic deficits are manifest, permits earlier and potentially more effective treatment, thus leading to a better quality of life in patients so affected. Apart from a clinical suspicion of LM, diagnosis is dependent upon demonstration of cancer in cerebrospinal fluid (CSF) or radiographic manifestations as revealed by neuraxis imaging. Potentially of use, though not commonly employed, today are use of biomarkers and protein profiling in the CSF. Symptomatic treatment is directed at pain including headache, nausea, and vomiting, whereas more specific LM-directed therapies include intra-CSF chemotherapy, systemic chemotherapy, and site-specific radiotherapy. A special emphasis in the review discusses novel agents including targeted therapies, that may be promising in the future management of LM. These new therapies include anti-epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors erlotinib and gefitinib in nonsmall cell lung cancer, anti-HER2 monoclonal antibody trastuzumab in breast cancer, anti-CTLA4 ipilimumab and anti-BRAF tyrosine kinase inhibitors such as vermurafenib in melanoma, and the antivascular endothelial growth factor monoclonal antibody bevacizumab are currently under investigation in patients with LM. Challenges of managing patients with LM are manifold and include determining the appropriate patients for treatment as well as the optimal route of administration of intra-CSF drug therapy. PMID:23717798
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrasco-Garcia, Estefania; Saceda, Miguel; Unidad de Investigacion, Hospital General Universitario de Elche, 03203 Elche
Signaling through the epidermal growth factor receptor (EGFR) is relevant in glioblastoma. We have determined the effects of the EGFR inhibitor AG1478 in glioblastoma cell lines and found that U87 and LN-229 cells were very sensitive to this drug, since their proliferation diminished and underwent a marked G{sub 1} arrest. T98 cells were a little more refractory to growth inhibition and A172 cells did not undergo a G{sub 1} arrest. This G{sub 1} arrest was associated with up-regulation of p27{sup kip1}, whose protein turnover was stabilized. EGFR autophosphorylation was blocked with AG1478 to the same extent in all the cellmore » lines. Other small-molecule EGFR tyrosine kinase inhibitors employed in the clinic, such as gefitinib, erlotinib and lapatinib, were able to abrogate proliferation of glioblastoma cell lines, which underwent a G{sub 1} arrest. However, the EGFR monoclonal antibody, cetuximab had no effect on cell proliferation and consistently, had no effect on cell cycle either. Similarly, cetuximab did not inhibit proliferation of U87 {Delta}EGFR cells or primary glioblastoma cell cultures, whereas small-molecule EGFR inhibitors did. Activity of downstream signaling molecules of EGFR such as Akt and especially ERK1/2 was interrupted with EGFR tyrosine kinase inhibitors, whereas cetuximab treatment could not sustain this blockade over time. Small-molecule EGFR inhibitors were able to prevent phosphorylation of erbB3 and erbB4, whereas cetuximab only hindered EGFR phosphorylation, suggesting that EGFR tyrosine kinase inhibitors may mediate their anti-proliferative effects through other erbB family members. We can conclude that small-molecule EGFR inhibitors may be a therapeutic approach for the treatment of glioblastoma patients.« less
The National Cancer Institute is seeking parties interested in licensing human monoclonal antibodies (mAbs) that bind to death receptor 4 ("DR4"). The tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and its functional receptors, DR4 and DR5, have been recognized as promising targets for cancer treatment.
Kaba, Hani E J; Maier, Natalia; Schliebe-Ohler, Nicole; Mayer, Yvonne; Müller, Peter P; van den Heuvel, Joop; Schuchhardt, Johannes; Hanack, Katja; Bilitewski, Ursula
2015-01-01
We selected the immunogenic cell wall ß-(1,3)-glucosyltransferase Bgl2p from Candida albicans as a target protein for the production of antibodies. We identified a unique peptide sequence in the protein and generated monoclonal anti- C. albicans Bgl2p antibodies, which bound in particular to whole C. albicans cells. Copyright © 2014 Elsevier B.V. All rights reserved.
Fasih, Aisha; Fonge, Humphrey; Cai, Zhongli; Leyton, Jeffrey V; Tikhomirov, Ilia; Done, Susan J; Reilly, Raymond M
2012-08-01
Increased expression of epidermal growth factor receptors (EGFR) in breast cancer (BC) is often associated with trastuzumab (Herceptin)-resistant forms of the disease and represents an attractive target for novel therapies. Nimotuzumab is a humanized IgG(1) monoclonal antibody that is in clinical trials for treatment of EGFR-overexpressing malignancies. We show here that nimotuzumab derivatized with benzylisothiocyanate diethylenetriaminepentaacetic acid for labelling with the subcellular range Auger electron-emitter, (111)In and modified with nuclear translocation sequence (NLS) peptides ((111)In-NLS-Bn-DTPA-nimotuzumab) was bound, internalized and transported to the nucleus of EGFR-positive BC cells. Emission of Auger electrons in close proximity to the nucleus caused multiple DNA double-strand breaks which diminished the clonogenic survival (CS) of MDA-MB-468 cells that have high EGFR density (2.4 × 10(6) receptors/cell) to less than 3 %. (111)In-Bn-DTPA-nimotuzumab without NLS peptide modification was sevenfold less effective for killing MDA-MB-468 cells. (111)In-Bn-DTPA-nimotuzumab with/without NLS peptide modification were equivalently cytotoxic to MDA-MB-231 and TrR1 BC cells that have moderate EGFR density (5.4 × 10(5) or 4.2 × 10(5) receptors/cell, respectively) reducing their CS by twofold. MDA-MB-231 cells have intrinsic trastuzumab resistance due to low HER2 density, whereas TrR1 cells have acquired resistance despite HER2 overexpression. Biodistribution and microSPECT/CT imaging revealed that (111)In-NLS-Bn-DTPA-nimotuzumab exhibited more rapid elimination from the blood and lower tumour uptake than (111)In-Bn-DTPA-nimotuzumab. Tumour uptake of the radioimmunoconjugates in mice with MDA-MB-468 xenografts was high (8-16 % injected dose/g) and was blocked by administration of an excess of unlabelled nimotuzumab, demonstrating EGFR specificity. We conclude that (111)In-Bn-DTPA-nimotuzumab with/without NLS peptide modification are promising Auger electron-emitting radioimmunotherapeutic agents for EGFR-positive BC, but (111)In-Bn-DTPA-nimotuzumab may be preferred due to its higher tumour uptake in vivo.
NASA Astrophysics Data System (ADS)
Richter, Wiltrud; Endl, Josef; Eiermann, Thomas H.; Brandt, Michael; Kientsch-Engel, Rosemarie; Thivolet, Charles; Jungfer, Herbert; Scherbaum, Werner A.
1992-09-01
The autoimmune phenomena associated with destruction of the β cell in pancreatic islets and development of type 1 (insulin-dependent) diabetes mellitus (IDDM) include circulating islet cell antibodies. We have immortalized peripheral blood lymphocytes from prediabetic individuals and patients with newly diagnosed IDDM by Epstein-Barr virus transformation. IgG-positive cells were selected by anti-human IgG-coupled magnetic beads and expanded in cell culture. Supernatants were screened for cytoplasmic islet cell antibodies using the conventional indirect immunofluorescence test on cryostat sections of human pancreas. Six islet cell-specific B-cell lines, originating from a patient with newly diagnosed IDDM, could be stabilized on a monoclonal level. All six monoclonal islet cell antibodies (MICA 1-6) were of the IgG class. None of the MICA reacted with human thyroid, adrenal gland, anterior pituitary, liver, lung, stomach, and intestine tissues but all six reacted with pancreatic islets of different mammalian species and, in addition, with neurons of rat cerebellar cortex. MICA 1-6 were shown to recognize four distinct antigenic epitopes in islets. Islet cell antibody-positive diabetic sera but not normal human sera blocked the binding of the monoclonal antibodies to their target epitopes. Immunoprecipitation of 35S-labeled human islet cell extracts revealed that a protein of identical size to the enzyme glutamate decarboxylase (EC 4.1.1.15) was a target of all MICA. Furthermore, antigen immunotrapped by the MICA from brain homogenates showed glutamate decarboxylase enzyme activity. MICA 1-6 therefore reveal glutamate decarboxylase as the predominant target antigen of cytoplasmic islet cell autoantibodies in a patient with newly diagnosed IDDM.
2015-10-01
breast cancer does not have specific antibody drugs like Herceptin, and there is considerable need for targeted therapeutics and diagnostic...mesenchymal transition” or EMT. This process is important in several cancers , but is particularly associated with “triple-negative” breast cancer ...pathways in cancer cells and make a major impact on breast cancer . 15. SUBJECT TERMS Monoclonal Antibody, Epithelial to Mesenchymal Transition, Antibody
Xiao, Zhan; Carrasco, Rosa A; Schifferli, Kevin; Kinneer, Krista; Tammali, Ravinder; Chen, Hong; Rothstein, Ray; Wetzel, Leslie; Yang, Chunning; Chowdhury, Partha; Tsui, Ping; Steiner, Philipp; Jallal, Bahija; Herbst, Ronald; Hollingsworth, Robert E; Tice, David A
2016-04-01
HER3/ERBB3 is a kinase-deficient member of the EGFR family receptor tyrosine kinases (RTK) that is broadly expressed and activated in human cancers. HER3 is a compelling cancer target due to its important role in activation of the oncogenic PI3K/AKT pathway. It has also been demonstrated to confer tumor resistance to a variety of cancer therapies, especially targeted drugs against EGFR and HER2. HER3 can be activated by its ligand (heregulin/HRG), which induces HER3 heterodimerization with EGFR, HER2, or other RTKs. Alternatively, HER3 can be activated in a ligand-independent manner through heterodimerization with HER2 in HER2-amplified cells. We developed a fully human mAb against HER3 (KTN3379) that efficiently suppressed HER3 activity in both ligand-dependent and independent settings. Correspondingly, KTN3379 inhibited tumor growth in divergent tumor models driven by either ligand-dependent or independent mechanisms in vitro and in vivo Most intriguingly, while investigating the mechanistic underpinnings of tumor response to KTN3379, we discovered an interesting dichotomy in that PTEN loss, a frequently occurring oncogenic lesion in a broad range of cancer types, substantially blunted the tumor response in HER2-amplified cancer, but not in the ligand-driven cancer. To our knowledge, this represents the first study ascertaining the impact of PTEN loss on the antitumor efficacy of a HER3 mAb. KTN3379 is currently undergoing a phase Ib clinical trial in patients with advanced solid tumors. Our current study may help us optimize patient selection schemes for KTN3379 to maximize its clinical benefits. Mol Cancer Ther; 15(4); 689-701. ©2016 AACR. ©2016 American Association for Cancer Research.
Researchers at the National Cancer Institute (NCI) seek research collaborations or licensees for a monoclonal antibody targeting CD276, also known as B7-H3, and related conjugates. The antibody and antibody drug conjugates (ADC) containing the antibody of the current invention were tested in vivo and have potential for use in cancer immunotherapy.
Zarschler, K; Prapainop, K; Mahon, E; Rocks, L; Bramini, M; Kelly, P M; Stephan, H; Dawson, K A
2014-06-07
For effective localization of functionalized nanoparticles at diseased tissues such as solid tumours or metastases through biorecognition, appropriate targeting vectors directed against selected tumour biomarkers are a key prerequisite. The diversity of such vector molecules ranges from proteins, including antibodies and fragments thereof, through aptamers and glycans to short peptides and small molecules. Here, we analyse the specific nanoparticle targeting capabilities of two previously suggested peptides (D4 and GE11) and a small camelid single-domain antibody (sdAb), representing potential recognition agents for the epidermal growth factor receptor (EGFR). We investigate specificity by way of receptor RNA silencing techniques and look at increasing complexity in vitro by introducing increasing concentrations of human or bovine serum. Peptides D4 and GE11 proved problematic to employ and conjugation resulted in non-receptor specific uptake into cells. Our results show that sdAb-functionalized particles can effectively target the EGFR, even in more complex bovine and human serum conditions where targeting specificity is largely conserved for increasing serum concentration. In human serum however, an inhibition of overall nanoparticle uptake is observed with increasing protein concentration. For highly affine targeting ligands such as sdAbs, targeting a receptor such as EGFR with low serum competitor abundance, receptor recognition function can still be partially realised in complex conditions. Here, we stress the value of evaluating the targeting efficiency of nanoparticle constructs in realistic biological milieu, prior to more extensive in vivo studies.
Suzuki, Yasuhiro; Saito, Yuki; Okamura, Takuho; Tokuda, Yutaka
2011-06-01
There are four members of the ErbB family: the epidermal growth factor(EGF)receptor(also called HER1 or EGFR), HER2, HER3 and HER4. Dimerization is the process whereby two HER receptor molecules associate to form a noncovalent complex. HER dimers are the active receptor forms required for transmission of external stimuli to the interior of the cell. HER dimerization occurs upon ligand binding and both HER homodimers and heterodimers can be formed in the process. However, HER2 appears to be the preferred dimerization partner of the other HER family members. Fifteen∼20% of all breast cancers are HER2 positive and have a poor prognosis. Trastuzumab is an excellent, rationally-designed targeted cancer treatment. It is a recombinant, humanized, anti-HER2 monoclonal antibody that specifically binds to the extracellular area of HER2. However, the overall trastuzumab response rate is low, and the causes of trastuzumab resistance are poorly understood. Thus, there is a need for alternative anti-HER2 strategies for trastuzumab-resistant disease. Lapatinib is an orally administered small-molecule, reversible inhibitor of both EGFR and HER2 tyrosine kinase, and its activities include subsequent inhibition of its down- stream MAPK-ERK1/2, and the AKT signaling pathway. Lapatinib is more active when used in combination with capecitabine. For women with trastuzumab pre-treated HER2-positive breast cancer, Here, I will review the basics of EGFR and HER, and the treatment strategy for HER2-positive breast cancer with lapatinib.
Liang, Hui; Li, Xiaoran; Wang, Bin; Chen, Bing; Zhao, Yannan; Sun, Jie; Zhuang, Yan; Shi, Jiajia; Shen, He; Zhang, Zhijun; Dai, Jianwu
2016-02-17
Many tumors over-express collagen, which constitutes the physical scaffold of tumor microenvironment. Collagen has been considered to be a target for cancer therapy. The collagen-binding domain (CBD) is a short peptide, which could bind to collagen and achieve the sustained release of CBD-fused proteins in collagen scaffold. Here, a collagen-binding EGFR antibody fragment was designed and expressed for targeting the collagen-rich extracellular matrix in tumors. The antibody fragment (Fab) of cetuximab was fused with CBD (CBD-Fab) and expressed in Pichia pastoris. CBD-Fab maintained antigen binding and anti-tumor activity of cetuximab and obtained a collagen-binding ability in vitro. The results also showed CBD-Fab was mainly enriched in tumors and had longer retention time in tumors in A431 s.c. xenografts. Furthermore, CBD-Fab showed a similar therapeutic efficacy as cetuximab in A431 xenografts. Although CBD-Fab hasn't showed better therapeutic effects than cetuximab, its smaller molecular and special target may be applicable as antibody-drug conjugates (ADC) or immunotoxins.
Cao, Kaiyue; Pan, Yunzhi; Yu, Long; Shu, Xiong; Yang, Jing; Sun, Linxin; Sun, Lichao; Yang, Zhihua; Ran, Yuliang
2017-02-01
Cancer stem cells (CSCs) are a rare subset of cancer cells that play a significant role in cancer initiation, spreading, and recurrence. In this study, a subpopulation of lung cancer stem-like cells (LCSLCs) was identified from non-small cell lung carcinoma cell lines, SPCA-1 and A549, using serum-free suspension sphere-forming culture method. A monoclonal antibody library was constructed using immunized BLAB/c mice with the multipotent CSC cell line T3A-A3. Flow cytometry analysis showed that 33 mAbs targeted antigens can be enriched in sphere cells compared with the parental cells of SPCA-1 and A549 cell lines. Then, we performed functional antibody screening including sphere-forming inhibiting and invasion inhibiting assay. The results showed that two antibodies, 12C7 and 9B8, notably suppressed the self-renewal and invasion of LCSLCs. Fluorescence-activated cell sorting (FACs) found that the positive cells recognized by mAbs, 12C7 or 9B8, displayed features of LCSLCs. Interestingly, we found that these two antibodies recognized different subsets of cells and their combination effect was superior to the individual effect both in vitro and in vivo. Tissue microarrays were applied to detect the expression of the antigens targeted by these two antibodies. The positive expression of 12C7 and 9B8 targeted antigen was 84.4 and 82.5%, respectively, which was significantly higher than that in the non-tumor lung tissues. In conclusion, we screened two potential therapeutic antibodies that target different subsets of LCSLCs.
Targeted therapies in hepatocellular carcinoma.
Bronte, F; Bronte, G; Cusenza, S; Fiorentino, E; Rolfo, C; Cicero, G; Bronte, E; Di Marco, V; Firenze, A; Angarano, G; Fontana, T; Russo, A
2014-01-01
The onset of hepatocellular carcinoma (HCC) is related to the development of non-neoplastic liver disease, such as viral infections and cirrhosis. Even though patients with chronic liver diseases undergo clinical surveillance for early diagnosis of HCC, this cancer is often diagnosed in advanced stage. In this case locoregional treatment is not possible and systemic therapies are the best way to control it. Until now sorafenib, a Raf and multi-kinase inhibitor has been the best, choice to treat HCC systemically. It showed a survival benefit in multicenter phase III trials. However the proper patient setting to treat is not well defined, since the results in Child-Pugh B patients are conflicting. To date various new target drugs are under developed and other biological treatments normally indicated in other malignancies are under investigation also for HCC. These strategies aim to target the different biological pathways implicated in HCC development and progression. The target drugs studied in HCC include anti-VEGF and anti-EGFR monoclonal antibodies, tyrosine kinase inhibitors and mTOR inhibitors. The most important challenge is represented by the best integration of these drugs with standard treatments to achieve improvement in overall survival and quality of life.
Modjtahedi, Helmout; Essapen, Sharadah
2009-11-01
Aberrant expression of the epidermal growth factor receptor (EGFR) system has been reported in a wide range of epithelial cancers. In some studies, this has also been associated with a poor prognosis and resistance to the conventional forms of therapies. These discoveries have led to the strategic development of several kinds of EGFR inhibitors, five of which have gained US Food and Drug Administration approval for the treatment of patients with non-small-cell lung cancer (gefitinib and erlotinib), metastatic colorectal cancer (cetuximab and panitumumab), head and neck (cetuximab), pancreatic cancer (erlotinib) and breast (lapatinib) cancer. Despite these advances and recent studies on the predictive value of activating EGFR mutation and KRAS mutations with response in non-small-cell lung cancer and colon cancer patients, there is currently no reliable predictive marker for response to therapy with the anti-EGFR monoclonal antibodies cetuximab and panitumumab or the small molecule EGFR tyrosine kinase inhibitors gefitinib and erlotinib. In particular, there has been no clear association between the expression of EGFR, determined by the US Food and Drug Administration-approved EGFR PharmDX kit, and response to the EGFR inhibitors. Here, we discuss some of the controversial data and explanatory factors as well as future studies for the establishment of more reliable markers for response to therapy with EGFR inhibitors. Such investigations should lead to the selection of a more specific subpopulation of cancer patients who benefit from therapy with EGFR inhibitors, but equally to spare those who will receive no benefit or a detrimental effect from such biological agents.
Desoubeaux, Guillaume; Reichert, Janice M.; Sleeman, Matthew; Reckamp, Karen L.; Ryffel, Bernhard; Adamczewski, Jörg P.; Sweeney, Theresa D.; Vanbever, Rita; Diot, Patrice; Owen, Caroline A.; Page, Clive; Lerondel, Stéphanie; Le Pape, Alain; Heuze-Vourc'h, Nathalie
2016-01-01
ABSTRACT Monoclonal antibody (mAb) therapeutics have tremendous potential to benefit patients with lung diseases, for which there remains substantial unmet medical need. To capture the current state of mAb research and development in the area of respiratory diseases, the Research Center of Respiratory Diseases (CEPR-INSERM U1100), the Laboratory of Excellence “MAbImprove,” the GDR 3260 “Antibodies and therapeutic targeting,” and the Grant Research program ARD2020 “Biotherapeutics” invited speakers from industry, academic and government organizations to present their recent research results at the Therapeutic Monoclonal Antibodies for Respiratory Diseases: Current challenges and perspectives congress held March 31 – April 1, 2016 in Tours, France. PMID:27266390
Specific antibody for pesticide residue determination produced by antibody-pesticide complex
USDA-ARS?s Scientific Manuscript database
A new method for specific antibody production was developed using antibody (Ab)-pesticide complex as a unique immunogen. Parathion (PA) was the targeted pesticide, and rabbit polyclonal antibody (Pab) and mouse monoclonal antibody (Mab) were used as carrier proteins. The Ab-PA complexes were genera...
Lupini, Laura; Bassi, Cristian; Mlcochova, Jitka; Musa, Gentian; Russo, Marta; Vychytilova-Faltejskova, Petra; Svoboda, Marek; Sabbioni, Silvia; Nemecek, Radim; Slaby, Ondrej; Negrini, Massimo
2015-10-27
The anti-epidermal growth factor receptor (EGFR) monoclonal antibodies (moAbs) cetuximab or panitumumab are administered to colorectal cancer (CRC) patients who harbor wild-type RAS proto-oncogenes. However, a percentage of patients do not respond to this treatment. In addition to mutations in the RAS genes, mutations in other genes, such as BRAF, PI3KCA, or PTEN, could be involved in the resistance to anti-EGFR moAb therapy. In order to develop a comprehensive approach for the detection of mutations and to eventually identify other genes responsible for resistance to anti-EGFR moAbs, we investigated a panel of 21 genes by parallel sequencing on the Ion Torrent Personal Genome Machine platform. We sequenced 65 CRCs that were treated with cetuximab or panitumumab. Among these, 37 samples were responsive and 28 were resistant. We confirmed that mutations in EGFR-pathway genes (KRAS, NRAS, BRAF, PI3KCA) were relevant for conferring resistance to therapy and could predict response (p = 0.001). After exclusion of KRAS, NRAS, BRAF and PI3KCA combined mutations could still significantly associate to resistant phenotype (p = 0.045, by Fisher exact test). In addition, mutations in FBXW7 and SMAD4 were prevalent in cases that were non-responsive to anti-EGFR moAb. After we combined the mutations of all genes (excluding KRAS), the ability to predict response to therapy improved significantly (p = 0.002, by Fisher exact test). The combination of mutations at KRAS and at the five gene panel demonstrates the usefulness and feasibility of multigene sequencing to assess response to anti-EGFR moAbs. The application of parallel sequencing technology in clinical practice, in addition to its innate ability to simultaneously examine the genetic status of several cancer genes, proved to be more accurate and sensitive than the presently in use traditional approaches.
Kumar, S S; Tomita, Y; Wrin, J; Bruhn, M; Swalling, A; Mohammed, M; Price, T J; Hardingham, J E
2017-06-01
Biomarkers, such as mutant RAS, predict resistance to anti-EGFR therapy in only a proportion of patients, and hence, other predictive biomarkers are needed. The aims were to identify candidate genes upregulated in colorectal cancer cell lines resistant to anti-EGFR monoclonal antibody treatment, to knockdown (KD) these genes in the resistant cell lines to determine if sensitivity to anti-EGFR antibody was restored, and finally to perform a pilot correlative study of EGR1 expression and outcomes in a cohort of metastatic colorectal cancer (mCRC) patients given cetuximab therapy. Comparative expression array analysis of resistant cell lines (SW48, COLO-320DM, and SNU-C1) vs sensitive cell lines (LIM1215, CaCo2, and SW948) was performed. The highest up-regulated gene in each resistant cell line was knocked down (KD) using RNA interference, and effect on proliferation was assessed with and without anti-EGFR treatment. Expression of the candidate genes in patients' tumours treated with cetuximab was assessed by immunohistochemistry; survival analyses were performed comparing high vs low expression. Genes significantly upregulated in resistant cell lines were EGR1 (early growth response protein 1), HBEGF (heparin-binding epidermal growth factor-like growth factor), and AKT3 (AKT serine/threonine kinase 3). KD of each gene resulted in the respective cells being more sensitive to anti-EGFR treatment, suggesting that the resistant phenotype was reversed. In the pilot study of mCRC patients treated with cetuximab, both median PFS (1.38 months vs 6.79 months; HR 2.77 95% CI 1.2-19.4) and median OS (2.59 months vs 9.82 months; HR 3.0 95% CI 1.3-23.2) were significantly worse for those patients with high EGR1 expression. High EGR1 expression may be a candidate biomarker of resistance to anti-EGFR therapy.
Imaging Potential Evaluation of Fab Derived from the Anti-EGFRvIII Monoclonal Antibody 4G1.
Jing, Shen; He, Yujia; He, Yanqiong; Wang, Liang; Jia, Jianhua; Shan, Xiaomin; Liu, Shuang; Tang, Min; Peng, Zhiping; Liu, Xujie
2018-05-31
As one of the most crucial epidermal growth factor receptor (EGFR) variants, EGFRvIII can be detected in various tumors but rarely in normal tissues, making it an ideal target for prognosis, diagnosis or immune therapy. The recently developed anti-EGFRvIII monoclonal antibody (mAb), 4G1, has been validated as a promising molecular probe to detect EGFRvIII expression in tumors by single-photon emission computed tomography/computed tomography imaging. To overcome shortcomings associated with the whole antibody, including long-term retention, circulation and enhanced permeability and retention effects, the Fab fragment of 4G1 (Fab-4G1) was generated, labeled with 131 I and evaluated in vitro and in vivo to test its potential application in molecular imaging. Whole mAb 4G1 was first digested by immobilized ficin and then purified through a protein A column to generate the Fab fragment, Fab-4G1. Next, SDS-PAGE, Western blot, indirect fluorescence assay, flow cytometry and enzyme-linked immunosorbent assay were performed to verify molecular weight, specificity and affinity of Fab-4G1. Finally, biodistribution planar gamma imaging was performed by injection of 131 I-labeled Fab-4G1 into xenografted EGFRvIII-overexpressed tumors in nude mice. Parallel studies were also performed with intact 4G1. The molecular weight of Fab was determined to be 35-40 kDa by SDS-PAGE. In vitro tests confirmed both intact 4G1 and Fab-4G1 specifically bound EGFRvIII but not wild-type EGFR, and Fab-4G1 showed decreased affinity. Compared to 131 I-4G1, biodistribution studies showed lower tumor uptake of 131 I-Fab-4G1 at all time points, but much faster elimination in all normal organs. As for planar gamma imaging, 131 I-Fab-4G1 and 31 I-4G1 showed similar imaging effect at 2 h after injection of tracer, while 131 I-Fab-4G1 was eliminated more quickly with time, suggesting radiolabeled Fab-4G1 could be potentially used for imaging of EGFRvIII-positive tumors at early time points. Radiolabeled Fab-4G1 would be a promising nuclear probe for future clinical EGFRvIII tumor detection.
Ramirez, Ursula D; Nikonova, Anna S; Liu, Hanqing; Pecherskaya, Anna; Lawrence, Sarah H; Serebriiskii, Ilya G; Zhou, Yan; Robinson, Matthew K; Einarson, Margret B; Golemis, Erica A; Jaffe, Eileen K
2015-05-28
Overexpression or mutation of the epidermal growth factor receptor (EGFR) potently enhances the growth of many solid tumors. Tumor cells frequently display resistance to mechanistically-distinct EGFR-directed therapeutic agents, making it valuable to develop therapeutics that work by additional mechanisms. Current EGFR-targeting therapeutics include antibodies targeting the extracellular domains, and small molecules inhibiting the intracellular kinase domain. Recent studies have identified a novel prone extracellular tetrameric EGFR configuration, which we identify as a potential target for drug discovery. Our focus is on the prone EGFR tetramer, which contains a novel protein-protein interface involving extracellular domain III. This EGFR tetramer is computationally targeted for stabilization by small molecule ligand binding. This study performed virtual screening of a Life Chemicals, Inc. small molecule library of 345,232 drug-like compounds against a molecular dynamics simulation of protein-protein interfaces distinct to the novel tetramer. One hundred nine chemically diverse candidate molecules were selected and evaluated using a cell-based high-content imaging screen that directly assessed induced internalization of the EGFR effector protein Grb2. Positive hits were further evaluated for influence on phosphorylation of EGFR and its effector ERK1/2. Fourteen hit compounds affected internalization of Grb2, an adaptor responsive to EGFR activation. Most hits had limited effect on cell viability, and minimally influenced EGFR and ERK1/2 phosphorylation. Docked hit compound poses generally include Arg270 or neighboring residues, which are also involved in binding the effective therapeutic cetuximab, guiding further chemical optimization. These data suggest that the EGFR tetrameric configuration offers a novel cancer drug target.
Discovery of an antibody for pan-ebolavirus therapy.
Furuyama, Wakako; Marzi, Andrea; Nanbo, Asuka; Haddock, Elaine; Maruyama, Junki; Miyamoto, Hiroko; Igarashi, Manabu; Yoshida, Reiko; Noyori, Osamu; Feldmann, Heinz; Takada, Ayato
2016-02-10
During the latest outbreak of Ebola virus disease in West Africa, monoclonal antibody therapy (e.g., ZMapp) was utilized to treat patients. However, due to the antigenic differences among the five ebolavirus species, the current therapeutic monoclonal antibodies are only effective against viruses of the species Zaire ebolavirus. Although this particular species has indeed caused the majority of human infections in Central and, recently, West Africa, other ebolavirus species (e.g., Sudan ebolavirus and Bundibugyo ebolavirus) have also repeatedly caused outbreaks in Central Africa and thus should not be neglected in the development of countermeasures against ebolaviruses. Here we report the generation of an ebolavirus glycoprotein-specific monoclonal antibody that effectively inhibits cellular entry of representative isolates of all known ebolavirus species in vitro and show its protective efficacy in mouse models of ebolavirus infections. This novel neutralizing monoclonal antibody targets a highly conserved internal fusion loop in the glycoprotein molecule and prevents membrane fusion of the viral envelope with cellular membranes. The discovery of this highly cross-neutralizing antibody provides a promising option for broad-acting ebolavirus antibody therapy and will accelerate the design of improved vaccines that can selectively elicit cross-neutralizing antibodies against multiple species of ebolaviruses.
Deng, Li; Zhang, Yingying; Ma, Lulu; Jing, Xiaolong; Ke, Xingfa; Lian, Jianhao; Zhao, Qiang; Yan, Bo; Zhang, Jinfeng; Yao, Jianzhong; Chen, Jianming
2013-01-01
Background Targeted liposome-polycation-DNA complex (LPD), mainly conjugated with antibodies using functionalized PEG derivatives, is an effective nanovector for systemic delivery of small interference RNA (siRNA). However, there are few studies reporting the effect of different conjugation linkers on LPD for gene silencing. To clarify the influence of antibody conjugation linkers on LPD, we prepared two different immunoliposomes to deliver siRNA in which DSPE-PEG-COOH and DSPE-PEG-MAL, the commonly used PEG derivative linkers, were used to conjugate anti-EGFR Fab’ with the liposome. Methods First, 600 μg of anti-EGFR Fab’ was conjugated with 28.35 μL of a micelle solution containing DSPE-PEG-MAL or DSPE-PEG-COOH, and then post inserted into the prepared LPD. Various liposome parameters, including particle size, zeta potential, stability, and encapsulation efficiency were evaluated, and the targeting ability and gene silencing activity of TLPD-FPC (DSPE-PEG-COOH conjugated with Fab’) was compared with that of TLPD-FPM (DSPE-PEG-MAL conjugated with Fab’) in SMMC-7721 hepatocellular carcinoma cells. Results There was no significant difference in particle size between the two TLPDs, but the zeta potential was significantly different. Further, although there was no significant difference in siRNA encapsulation efficiency, cell viability, or serum stability between TLPD-FPM and TLPD-FPC, cellular uptake of TLPD-FPM was significantly greater than that of TLPD-FPC in EGFR-overexpressing SMMC-7721 cells. The luciferase gene silencing efficiency of TLPD-FPM was approximately three-fold high than that of TLPD-FPC. Conclusion Different conjugation linkers whereby antibodies are conjugated with LPD can affect the physicochemical properties of LPD and antibody conjugation efficiency, thus directly affecting the gene silencing effect of TLPD. Immunoliposomes prepared by DSPE-PEG-MAL conjugation with anti-EGFR Fab’ are more effective than TLPD containing DSPE-PEG-COOH in targeting hepatocellular carcinoma cells for siRNA delivery. PMID:24023515
Monoclonal antibodies for chronic pain: A practical review of mechanisms and clinical applications
Yeh, Ju-Fen; Akinci, Aysen; Al Shaker, Mohammed; Chang, Ming Hong; Danilov, Andrei; Guillen, Rocio; Johnson, Kirk W; Kim, Yong-Chul; Skljarevski, Vladimir; Dueñas, Héctor J; Tassanawipas, Warat
2017-01-01
Context Monoclonal antibodies are being investigated for chronic pain to overcome the shortcomings of current treatment options. Objective To provide a practical overview of monoclonal antibodies in clinical development for use in chronic pain conditions, with a focus on mechanisms of action and relevance to specific classes. Methods Qualitative review using a systematic strategy to search for randomized controlled trials, systematic and nonsystematic (narrative) reviews, observational studies, nonclinical studies, and case reports for inclusion. Studies were identified via relevant search terms using an electronic search of MEDLINE via PubMed (1990 to June 2017) in addition to hand-searching reference lists of retrieved systematic and nonsystematic reviews. Results Monoclonal antibodies targeting nerve growth factor, calcitonin gene-related peptide pathways, various ion channels, tumor necrosis factor-α, and epidermal growth factor receptor are in different stages of development. Mechanisms of action are dependent on specific signaling pathways, which commonly involve those related to peripheral neurogenic inflammation. In clinical studies, there has been a mixed response to different monoclonal antibodies in several chronic pain conditions, including migraine, neuropathic pain conditions (e.g., diabetic peripheral neuropathy), osteoarthritis, chronic back pain, ankylosing spondylitis, and cancer. Adverse events observed to date have generally been mild, although further studies are needed to ensure safety of monoclonal antibodies in early stages of development, especially where there is an overlap with non-pain-related pathways. High acquisition cost remains another treatment limitation. Conclusion Monoclonal antibodies for chronic pain have the potential to overcome the limitations of current treatment options, but strategies to ensure their appropriate use need to be determined. PMID:29056066
De novo sequencing and resurrection of a human astrovirus-neutralizing antibody
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogdanoff, Walter A.; Morgenstern, David; Bern, Marshall
Monoclonal antibody (mAb) therapeutics targeting cancer, autoimmune diseases, inflammatory diseases, and infectious diseases are growing exponentially. Although numerous panels of mAbs targeting infectious disease agents have been developed, their progression into clinically useful mAbs is often hindered by the lack of sequence information and/or loss of hybridoma cells that produce them. Here we combine the power of crystallography and mass spectrometry to determine the amino acid sequence and glycosylation modification of the Fab fragment of a potent human astrovirus-neutralizing mAb. We used this information to engineer a recombinant antibody single-chain variable fragment that has the same specificity as the parentmore » monoclonal antibody to bind to the astrovirus capsid protein. Furthermore, this antibody can now potentially be developed as a therapeutic and diagnostic agent.« less
De novo sequencing and resurrection of a human astrovirus-neutralizing antibody
Bogdanoff, Walter A.; Morgenstern, David; Bern, Marshall; ...
2016-03-14
Monoclonal antibody (mAb) therapeutics targeting cancer, autoimmune diseases, inflammatory diseases, and infectious diseases are growing exponentially. Although numerous panels of mAbs targeting infectious disease agents have been developed, their progression into clinically useful mAbs is often hindered by the lack of sequence information and/or loss of hybridoma cells that produce them. Here we combine the power of crystallography and mass spectrometry to determine the amino acid sequence and glycosylation modification of the Fab fragment of a potent human astrovirus-neutralizing mAb. We used this information to engineer a recombinant antibody single-chain variable fragment that has the same specificity as the parentmore » monoclonal antibody to bind to the astrovirus capsid protein. Furthermore, this antibody can now potentially be developed as a therapeutic and diagnostic agent.« less
XIN, XIAOYAN; SHA, HUIZI; SHEN, JINGTAO; ZHANG, BING; ZHU, BIN; LIU, BAORUI
2016-01-01
Recombinant anti-epidermal growth factor receptor-internalizing arginine-glycine-aspartic acid (anti-EGFR single-domain antibody fused with iRGD peptide) protein efficiently targets the EGFR extracellular domain and integrin αvβ/β5, and shows a high penetration into cells. Thus, this protein may improve penetration of conjugated drugs into the deep zone of gastric cancer multicellular 3D spheroids. In the present study, a novel tumor-targeting contrast agent for magnetic resonance imaging (MRI) was developed, by coupling gadolinium-diethylene triamine pentaacetate (Gd-DTPA) with the bispecific recombinant anti-EGFR-iRGD protein. The anti-EGFR-iRGD protein was extracted from Escherichia coli and Gd was loaded onto the recombinant protein by chelation using DTPA anhydride. Single-targeting agent anti-EGFR-DTPA-Gd, which served as the control, was also prepared. The results of the present study showed that anti-EGFR-iRGD-DTPA-Gd exhibited no significant cyto toxicity to human gastric carcinoma cells (BGC-823) under the experimental conditions used. Compared with a conventional contrast agent (Magnevist), anti-EGFR-iRGD-DTPA-Gd showed higher T1 relaxivity (10.157/mM/sec at 3T) and better tumor-targeting ability. In addition, the signal intensity and the area under curve for the enhanced signal time in tumor, in vivo, were stronger than Gd-DTPA alone or the anti-EGFR-Gd control. Thus, Gd-labelled anti-EGFR-iRGD has potential as a tumor-targeting contrast agent for improved MRI. PMID:27035336
Boccellino, Mariarosaria; Quagliuolo, Lucio; Alaia, Concetta; Grimaldi, Anna; Addeo, Raffaele; Nicoletti, Giovanni Francesco; Kast, Richard Eric; Caraglia, Michele
2016-11-01
The presence of an aberrantly activated epidermal growth factor receptor (EGFR) in many epithelial tumors, due to its overexpression, activating mutations, gene amplification and/or overexpression of receptor ligands, represent the fundamental basis underlying the use of EGFR tyrosine kinase inhibitors (EGFR-TKIs). Drugs inhibiting the EGFR have different mechanisms of action; while erlotinib and gefitinib inhibit the intracellular tyrosine kinase, monoclonal antibodies like cetuximab and panitumumab bind the extracellular domain of the EGFR both activating immunomediated anti-cancer effect and inhibiting receptor function. On the other hand, interleukin-8 has tumor promoting as well as neo-angiogenesis enhancing effects and several attempts have been made to inhibit its activity. One of these is based on the use of the old sulfone antibiotic dapsone that has demonstrated several interleukin-8 system inhibiting actions. Erlotinib typically gives a rash that has recently been proven to come out via up-regulated keratinocyte interleukin-8 synthesis with histological features reminiscent of typical neutrophilic dermatoses. In this review, we report experimental evidence that shows the use of dapsone to improve quality of life in erlotinib-treated patients by ameliorating rash as well as short-circuiting a growth-enhancing aspect of erlotinib based on increased interleukin-8 secretion.
A monoclonal antibody that targets a NaV1.7 channel voltage sensor for pain and itch relief
Lee, Jun-Ho; Park, Chul-Kyu; Chen, Gang; Han, Qingjian; Xie, Rou-Gang; Liu, Tong; Ji, Ru-Rong; Lee, Seok-Yong
2014-01-01
Summary Voltage-gated sodium (NaV) channels control the upstroke of the action potentials in excitable cells. Multiple studies have shown distinct roles of NaV channel subtypes in human physiology and diseases, but subtype-specific therapeutics are lacking and the current efforts have been limited to small molecules. Here we present a monoclonal antibody that targets the voltage-sensor paddle of NaV1.7, the subtype critical for pain sensation. This antibody not only inhibits NaV1.7 with high selectivity but also effectively suppresses inflammatory and neuropathic pain in mice. Interestingly, the antibody inhibits acute and chronic itch, despite well-documented differences in pain and itch modulation. Using this antibody, we discovered that NaV1.7 plays a key role in spinal cord nociceptive and pruriceptive synaptic transmission. Our studies reveal that NaV1.7 is a target for itch management and the antibody has therapeutic potential for suppressing pain and itch. Our antibody strategy may have broad applications for voltage-gated cation channels. PMID:24856969
2015-10-01
of breast cancer does not have specific antibody drugs like Herceptin, and there is considerable need for targeted therapeutics and diagnostic...epithelial to mesenchymal transition” or EMT. This process is important in several cancers , but is particularly associated with “triple-negative” breast ...pathways in cancer cells and make a major impact on breast cancer . 15. SUBJECT TERMS Monoclonal Antibody, Epithelial to Mesenchymal Transition
Primary and acquired resistance to biologic therapies in gastrointestinal cancers.
Lubner, Sam J; Uboha, Nataliya V; Deming, Dustin A
2017-06-01
Improvements in the understanding of cancer biology have led to therapeutic advances in the treatment of gastrointestinal cancers. Drugs which target the vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR) pathways have led the way in colon cancer. Monoclonal antibodies (mAbs) such as bevacizumab, ramucirumab, cetuximab, and panitumumab, have improved progression free survival and overall survival (OS) for colorectal cancers and were quickly adopted. Human epidermal growth factor receptor 2 (HER2) has demonstrated significant benefit for gastroesophageal cancers and in the setting of HER2 amplification, trastuzumab in combination with chemotherapy has become the standard of care. However, responses have not been as durable nor as robust as once hoped. Mechanisms of resistance for each of these biologic compounds have been hypothesized and are in the process of being better elucidated. This review will approach the innate and acquired mechanisms of resistance of the above compounds. Additionally, we will explore some ongoing clinical trials to capitalize on the mechanisms of resistance in the hopes of retaining the promise of targeting these pathways.
Chen, Jingyi; Wang, Danling; Xi, Jiefeng; Au, Leslie; Siekkinen, Andy; Warsen, Addie; Li, Zhi-Yuan; Zhang, Hui; Xia, Younan; Li, Xingde
2007-05-01
Gold nanocages with a relatively small size (e.g., approximately 45 nm in edge length) have been developed, and the structure of these nanocages was tailored to achieve strong absorption in the near-infrared (NIR) region for photothermal cancer treatment. Numerical calculations show that the nanocage has a large absorption cross section of 3.48 x 10(-14) m(2), facilitating conversion of NIR irradiation into heat. The gold nanocages were conjugated with monoclonal antibodies (anti-HER2) to target epidermal growth factor receptors (EGFR) that are overexpressed on the surface of breast cancer cells (SK-BR-3). Our preliminary photothermal results show that the nanocages strongly absorb light in the NIR region with an intensity threshold of 1.5 W/cm(2) to induce thermal destruction to the cancer cells. In the intensity range of 1.5-4.7 W/cm(2), the circular area of damaged cells increased linearly with the irradiation power density. These results suggest that this new class of bioconjugated gold nanostructures, immuno gold nanocages, can potentially serve as an effective photothermal therapeutic agent for cancer treatment.
Primary and acquired resistance to biologic therapies in gastrointestinal cancers
Lubner, Sam J.; Uboha, Nataliya V.; Deming, Dustin A.
2017-01-01
Improvements in the understanding of cancer biology have led to therapeutic advances in the treatment of gastrointestinal cancers. Drugs which target the vascular endothelial growth factor (VEGF) and epidermal growth factor receptor (EGFR) pathways have led the way in colon cancer. Monoclonal antibodies (mAbs) such as bevacizumab, ramucirumab, cetuximab, and panitumumab, have improved progression free survival and overall survival (OS) for colorectal cancers and were quickly adopted. Human epidermal growth factor receptor 2 (HER2) has demonstrated significant benefit for gastroesophageal cancers and in the setting of HER2 amplification, trastuzumab in combination with chemotherapy has become the standard of care. However, responses have not been as durable nor as robust as once hoped. Mechanisms of resistance for each of these biologic compounds have been hypothesized and are in the process of being better elucidated. This review will approach the innate and acquired mechanisms of resistance of the above compounds. Additionally, we will explore some ongoing clinical trials to capitalize on the mechanisms of resistance in the hopes of retaining the promise of targeting these pathways. PMID:28736637
Improved radioimmunotherapy of hematologic malignancies. Final technical report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Press, O.W.
1996-08-15
Experiments were performed to study the rates of endocytosis, intracellular routing, and metabolic degradation of radiolabeled monoclonal antibodies targeting tumor-associated antigens on human leukemia and lymphoma cells. An attempt was made to examine in vivo the effects of lysosomotropic amines and thioamides on the retention of radiolabeled monoclonal antibodies by tumor cells. Experiments also examined the impact of newer radioiodination techniques on the metabolic degradation of radioiodinated antibodies, and on the radioimmunoscintigraphy and radioimmunotherapy of neoplasms. The endocytosis, intracellular routing, and degradation of radioimmunoconjugates prepared with I-131, In-111, and Y-90 were compared. The utility of radioimmunoconjugates targeting oncogene products formore » the radioimmunotherapy and radioimmunoscintigraphy of cancer was investigated.« less
Patel, Rekha; Andrien, Bruce A
2010-01-01
Monoclonal antibodies (mAbs) and antibody fragments have become an emerging class of therapeutics since 1986. Their versatility enables them to be engineered for optimal efficiency and decreased immunogenicity, and the path to market has been set by recent regulatory approvals. One of the initial criteria for success of any protein or antibody therapeutic is to understand its binding characteristics to the target antigen. Surface plasmon resonance (SPR) has been widely used and is an important tool for ligand-antigen binding characterization. In this work, the binding kinetics of a recombinant mAb and its single-chain antibody homolog, single-chain variable fragment (scFv), was analyzed by SPR. These two proteins target the same antigen. The binding kinetics of the mAb (bivalent antibody) and scFv (monovalent scFv) for this antigen was analyzed along with an assessment of the thermodynamics of the binding interactions. Alternative binding configurations were investigated to evaluate potential experimental bias because theoretically experimental binding configuration should have no impact on binding kinetics. Self-association binding kinetics in the proteins' respective formulation solutions and antigen epitope mapping were also evaluated. Functional characterization of monoclonal and single-chain antibodies has become just as important as structural characterization in the biotechnology field.
Naturally occurring, tumor-specific, therapeutic proteins.
Argiris, Konstantinos; Panethymitaki, Chrysoula; Tavassoli, Mahvash
2011-05-01
The emerging approach to cancer treatment known as targeted therapies offers hope in improving the treatment of therapy-resistant cancers. Recent understanding of the molecular pathogenesis of cancer has led to the development of targeted novel drugs such as monoclonal antibodies, small molecule inhibitors, mimetics, antisense and small interference RNA-based strategies, among others. These compounds act on specific targets that are believed to contribute to the development and progression of cancers and resistance of tumors to conventional therapies. Delivered individually or combined with chemo- and/or radiotherapy, such novel drugs have produced significant responses in certain types of cancer. Among the most successful novel compounds are those which target tyrosine kinases (imatinib, trastuzumab, sinutinib, cetuximab). However, these compounds can cause severe side-effects as they inhibit pathways such as epidermal growth factor receptor (EGFR) or platelet-derived growth factor receptor, which are also important for normal functions in non-transformed cells. Recently, a number of proteins have been identified which show a remarkable tumor-specific cytotoxic activity. This toxicity is independent of tumor type or specific genetic changes such as p53, pRB or EGFR aberrations. These tumor-specific killer proteins are either derived from common human and animal viruses such as E1A, E4ORF4 and VP3 (apoptin) or of cellular origin, such as TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) and MDA-7 (melanoma differentiation associated-7). This review aims to present a current overview of a selection of these proteins with preferential toxicity among cancer cells and will provide an insight into the possible mechanism of action, tumor specificity and their potential as novel tumor-specific cancer therapeutics.
Kim, Se Hyun; Shim, Hyo Sup; Cho, Jaeho; Jeong, Jae Heon; Kim, Sun Mi; Hong, Yun Kyoung; Sung, Ji Hee; Ha, Sang-Jun; Kim, Hye Ryun; Chang, Hyun; Kim, Joo Hang; Tania, Crombet; Cho, Byoung Chul
2013-03-01
Nimotuzumab (TheraCIM®) is a humanized anti-epidermal growth factor receptor (EGFR) monoclonal antibody (mAb) with minimal skin toxicity. Combining a different class of anti-EGFR drug with gefitinib is a new strategy to overcome intrinsic and acquired resistance to gefitinib. The aim of this phase I trial was to determine recommended phase II dose (RPIID) and the safety of gefitinib and nimotuzumab combination treatment. Patients with advanced/metastatic NSCLC were treated with escalating doses of weekly nimotuzumab (100mg or 200mg, IV) and fixed doses of daily gefitinib (250 mg/day, PO) until disease progression or unacceptable toxicity. We planned to enroll 10 additional patients at RPIID to ascertain the safety of treatment. EGFR mutations and KRAS mutations were analyzed from available tumor samples. A total of 16 patients were enrolled (3 in 100mg cohort, 13 in 200mg cohort). Six patients (37.5%) were female, and 5 (31.3%) were never smokers. Adenocarcinoma was the major histologic type (13 patients, 81.3%). Treatment was well-tolerated without dose-limiting toxicity (DLT). Four patients (25.0%) experienced grade 2 skin toxicity (1 in 100mg cohorts, 3 in 200mg cohort). Other common grade 1/2 toxicities were fatigue (37.5%) and diarrhea (25.0%). Among 16 evaluable patients, four patients (25.0%) achieved partial response and 7 patients (43.8%) had stable disease. Two of 4 responders had EGFR mutation (exon 19 deletion). Dual agent molecular targeting of EGFR with nimotuzumab and gefitinib in patients with advanced NSCLC is well-tolerated. The RPIID for nimotuzumab is 200mg weekly IV and for gefitinib 250 mg/day PO. Based upon this phase I trial, we are planning to conduct a randomized phase II trial comparing gefitinib and nimotuzumab with gefitinib alone in patients with advanced NSCLC. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Brunn, Nicholas D; Mauze, Smita; Gu, Danling; Wiswell, Derek; Ueda, Roanna; Hodges, Douglas; Beebe, Amy M; Zhang, Shuli; Escandón, Enrique
2016-03-01
Administration of biologics to enhance T-cell function is part of a rapidly growing field of cancer immunotherapy demonstrated by the unprecedented clinical success of several immunoregulatory receptor targeting antibodies. While these biologic agents confer significant anti-tumor activity through targeted immune response modulation, they can also elicit broad immune responses potentially including the production of anti-drug antibodies (ADAs). DTA-1, an agonist monoclonal antibody against GITR, is a highly effective anti-tumor treatment in preclinical models. We demonstrate that repeated dosing with murinized DTA-1 (mDTA-1) generates ADAs with corresponding reductions in drug exposure and engagement of GITR on circulating CD3(+) CD4(+) T cells, due to rapid hepatic drug uptake and catabolism. Mice implanted with tumors after induction of preexisting mDTA-1 ADA show no anti-tumor efficacy when given 3 mg/kg mDTA-1, an efficacious dose in naive mice. Nonetheless, increasing mDTA-1 treatment to 30 mg/kg in ADA-positive mice restores mDTA-1 exposure and GITR engagement on circulating CD3(+) CD4(+) T cells, thereby partially restoring anti-tumor efficacy. Formation of anti-mDTA-1 antibodies and changes in drug exposure and disposition does not occur in GITR(-/-) mice, consistent with a role for GITR agonism in humoral immunity. Finally, the administration of muDX400, a murinized monoclonal antibody against the checkpoint inhibitor PD-1, dosed alone or combined with mDTA-1 did not result in reduced muDX400 exposure, nor did it change the nature of the anti-mDTA-1 response. This indicates that anti-GITR immunogenicity may not necessarily impact the pharmacology of coadministered monoclonal antibodies, supporting combination immunomodulatory strategies. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
Investigational drugs for the treatment of cervical cancer.
Barra, Fabio; Lorusso, Domenica; Leone Roberti Maggiore, Umberto; Ditto, Antonino; Bogani, Giorgio; Raspagliesi, Francesco; Ferrero, Simone
2017-04-01
Cervical cancer (CC) is currently the fourth most common malignant disease of women worldwide. Although the incidence and the mortality rates have been decreasing with screening detection and new treatment strategies, a significant number of metastatic or recurrent disease is still diagnosed. For those patients not amenable to curative treatments, such as surgery and radiation, palliative chemotherapy remains the standard of care. As chemotherapy regimens have limited activity, research is focalized on investigating novel pharmacologic strategies. Areas covered: This paper aims to give a complete and updated overview on investigated therapies for the treatment of CC. The authors review the results of clinical studies and highlight the ongoing trials. Expert opinion: Agents targeting various molecular pathways including epidermal growth factor receptor (EGFR), vascular endothelial growth factor (VEGF), mammalian target of rapamycin (mTOR), poly ADP-ribose polymerase (PARP), epigenetics and other biological mechanisms represent interesting investigational opportunities. Amongst such drugs, bevacizumab, an anti-VEGF monoclonal antibody, was the first targeted drug recently approved by the FDA for the treatment of patients with metastatic, recurrent, or persistent CC. Another interesting experimental approach is represented by immunotherapy, which is leading to promising results with to the development of therapeutic vaccines and immune checkpoints inhibitors.
Effect of kinase inhibitors on the therapeutic properties of monoclonal antibodies
Duong, Minh Ngoc; Matera, Eva-Laure; Mathé, Doriane; Evesque, Anne; Valsesia-Wittmann, Sandrine; Clémenceau, Béatrice; Dumontet, Charles
2015-01-01
Targeted therapies of malignancies currently consist of therapeutic monoclonal antibodies and small molecule kinase inhibitors. The combination of these novel agents raises the issue of potential antagonisms. We evaluated the potential effect of 4 kinase inhibitors, including the Bruton tyrosine kinase inhibitor ibrutinib, and 3 PI3K inhibitors idelalisib, NVP-BEZ235 and LY294002, on the effects of the 3 monoclonal antibodies, rituximab and obinutuzumab (directed against CD20) and trastuzumab (directed against HER2). We found that ibrutinib potently inhibits antibody-dependent cell-mediated cytotoxicity exerted by all antibodies, with a 50% inhibitory concentration of 0.2 microM for trastuzumab, 0.5 microM for rituximab and 2 microM for obinutuzumab, suggesting a lesser effect in combination with obinutuzumab than with rituximab. The 4 kinase inhibitors were found to inhibit phagocytosis by fresh human neutrophils, as well as antibody-dependent cellular phagocytosis induced by the 3 antibodies. Conversely co-administration of ibrutinib with rituximab, obinutuzumab or trastuzumab did not demonstrate any inhibitory effect of ibrutinib in vivo in murine xenograft models. In conclusion, some kinase inhibitors, in particular, ibrutinib, are likely to exert inhibitory effects on innate immune cells. However, these effects do not compromise the antitumor activity of monoclonal antibodies in vivo in the models that were evaluated. PMID:25523586
Pasquali, Sandro; Chiarion-Sileni, Vanna; Rossi, Carlo Riccardo; Mocellin, Simone
2017-03-01
Immune checkpoint inhibitors and targeted therapies, two new class of drugs for treatment of metastatic melanoma, have not been compared in randomized controlled trials (RCT). We quantitatively summarized the evidence and compared immune and targeted therapies in terms of both efficacy and toxicity. A comprehensive search for RCTs of immune checkpoint inhibitors and targeted therapies was conducted to August 2016. Using a network meta-analysis approach, treatments were compared with each other and ranked based on their effectiveness (as measured by the impact on progression-free survival [PFS]) and acceptability (the inverse of high grade toxicity). Twelve RCTs enrolling 6207 patients were included. Network meta-analysis generated 15 comparisons. Combined BRAF and MEK inhibitors were associated with longer PFS as compared to anti-CTLA4 (HR: 0.22; 95% confidence interval [CI]: 0.12-0.41) and anti-PD1 antibodies alone (HR: 0.38; CI: 0.20-0.72). However, anti-PD1 monoclonal antibodies were less toxic than anti-CTLA4 monoclonal antibodies (RR: 0.65; CI: 0.40-0.78) and their combination significantly increased toxicity compared to either single agent anti-CTLA4 (RR: 2.06; CI: 1.45-2.93) or anti-PD1 monoclonal antibodies (RR: 3.67; CI: 2.27-5.96). Consistently, ranking analysis suggested that the combination of targeted therapies is the most effective strategy, whereas single agent anti-PD1 antibodies have the best acceptability. The GRADE level of evidence quality for these findings was moderate to low. The simultaneous inhibition of BRAF and MEK appears the most effective treatment for melanomas harboring BRAF V600 mutation, although anti-PD1 antibodies appear to be less toxic. Further research is needed to increase the quality of evidence. Copyright © 2017 Elsevier Ltd. All rights reserved.
Lopes dos Santos, Mariana; Yeda, Fernanda Perez; Tsuruta, Lilian Rumi; Horta, Bruno Brasil; Pimenta, Alécio A; Degaki, Theri Leica; Soares, Ibere C; Tuma, Maria Carolina; Okamoto, Oswaldo Keith; Alves, Venancio A F; Old, Lloyd J; Ritter, Gerd; Moro, Ana Maria
2013-01-01
NaPi2b, a sodium-dependent phosphate transporter, is highly expressed in ovarian carcinomas and is recognized by the murine monoclonal antibody MX35. The antibody had shown excellent targeting to ovarian cancer in several early phase clinical trials but being murine the antibody's full therapeutic potential could not be explored. To overcome this impediment we developed a humanized antibody version named Rebmab200, expressed in human PER.C6® cells and cloned by limiting dilution. In order to select a clone with high therapeutic potential clones were characterized using a series of physicochemical assays, flow cytometry, real-time surface plasmon resonance, glycosylation analyses, immunohistochemistry, antibody-dependent cell-mediated cytotoxicity, complement-dependent-cytotoxicity assays and quantitative PCR. Comparative analyses of Rebmab200 and MX35 monoclonal antibodies demonstrated that the two antibodies had similar specificity for NaPi2b by flow cytometry with a panel of 30 cell lines and maintained similar kinetic parameters. Robust and high producer cell clones potentially suitable for use in manufacturing were obtained. Rebmab200 antibodies were assessed by immunohistochemistry using a large panel of tissues including human carcinomas of ovarian, lung, kidney and breast origin. An assessment of its binding towards 33 normal human organs was performed as well. Rebmab200 showed selected strong reactivity with the tested tumor types but little or no reactivity with the normal tissues tested confirming its potential for targeted therapeutics strategies. The remarkable cytotoxicity shown by Rebmab200 in OVCAR-3 cells is a significant addition to the traits of stability and productivity displayed by the top clones of Rebmab200. Antibody-dependent cell-mediated toxicity functionality was confirmed in repeated assays using cancer cell lines derived from ovary, kidney and lung as targets. To explore use of this antibody in clinical trials, GMP production of Rebmab200 has been initiated. As the next step of development, Phase I clinical trials are now planned for translation of Rebmab200 into the clinic.
dos Santos, Mariana Lopes; Yeda, Fernanda Perez; Tsuruta, Lilian Rumi; Horta, Bruno Brasil; Pimenta, Alécio A.; Degaki, Theri Leica; Soares, Ibere C.; Tuma, Maria Carolina; Okamoto, Oswaldo Keith; Alves, Venancio A. F.; Ritter, Gerd; Moro, Ana Maria
2013-01-01
NaPi2b, a sodium-dependent phosphate transporter, is highly expressed in ovarian carcinomas and is recognized by the murine monoclonal antibody MX35. The antibody had shown excellent targeting to ovarian cancer in several early phase clinical trials but being murine the antibody's full therapeutic potential could not be explored. To overcome this impediment we developed a humanized antibody version named Rebmab200, expressed in human PER.C6® cells and cloned by limiting dilution. In order to select a clone with high therapeutic potential clones were characterized using a series of physicochemical assays, flow cytometry, real-time surface plasmon resonance, glycosylation analyses, immunohistochemistry, antibody-dependent cell-mediated cytotoxicity, complement-dependent-cytotoxicity assays and quantitative PCR. Comparative analyses of Rebmab200 and MX35 monoclonal antibodies demonstrated that the two antibodies had similar specificity for NaPi2b by flow cytometry with a panel of 30 cell lines and maintained similar kinetic parameters. Robust and high producer cell clones potentially suitable for use in manufacturing were obtained. Rebmab200 antibodies were assessed by immunohistochemistry using a large panel of tissues including human carcinomas of ovarian, lung, kidney and breast origin. An assessment of its binding towards 33 normal human organs was performed as well. Rebmab200 showed selected strong reactivity with the tested tumor types but little or no reactivity with the normal tissues tested confirming its potential for targeted therapeutics strategies. The remarkable cytotoxicity shown by Rebmab200 in OVCAR-3 cells is a significant addition to the traits of stability and productivity displayed by the top clones of Rebmab200. Antibody-dependent cell-mediated toxicity functionality was confirmed in repeated assays using cancer cell lines derived from ovary, kidney and lung as targets. To explore use of this antibody in clinical trials, GMP production of Rebmab200 has been initiated. As the next step of development, Phase I clinical trials are now planned for translation of Rebmab200 into the clinic. PMID:23936189
The Influence of Adnectin Binding on the Extracellular Domain of Epidermal Growth Factor Receptor
NASA Astrophysics Data System (ADS)
Iacob, Roxana E.; Chen, Guodong; Ahn, Joomi; Houel, Stephane; Wei, Hui; Mo, Jingjie; Tao, Li; Cohen, Daniel; Xie, Dianlin; Lin, Zheng; Morin, Paul E.; Doyle, Michael L.; Tymiak, Adrienne A.; Engen, John R.
2014-12-01
The precise and unambiguous elucidation and characterization of interactions between a high affinity recognition entity and its cognate protein provides important insights for the design and development of drugs with optimized properties and efficacy. In oncology, one important target protein has been shown to be the epidermal growth factor receptor (EGFR) through the development of therapeutic anticancer antibodies that are selective inhibitors of EGFR activity. More recently, smaller protein derived from the 10th type III domain of human fibronectin termed an adnectin has also been shown to inhibit EGFR in clinical studies. The mechanism of EGFR inhibition by either an adnectin or an antibody results from specific binding of the high affinity protein to the extracellular portion of EGFR (exEGFR) in a manner that prevents phosphorylation of the intracellular kinase domain of the receptor and thereby blocks intracellular signaling. Here, the structural changes induced upon binding were studied by probing the solution conformations of full length exEGFR alone and bound to a cognate adnectin through hydrogen/deuterium exchange mass spectrometry (HDX MS). The effects of binding in solution were identified and compared with the structure of a bound complex determined by X-ray crystallography.
Immune Checkpoint PD-1/PD-L1: Is There Life Beyond Antibodies?
Konstantinidou, Markella; Zarganes-Tzitzikas, Tryfon; Magiera-Mularz, Katarzyna; Holak, Tad A; Dömling, Alexander
2018-04-23
The PD-1/PD-L1 interaction has emerged as a significant target in cancer immunotherapy. Current medications include monoclonal antibodies, which have shown impressive clinical results in the treatment of several types of tumors. The cocrystal structure of human PD-1 and PD-L1 is expected to be a valuable starting point for the design of novel inhibitors, along with the recent crystal structures with monoclonal antibodies, small molecules, and macrocycles. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Bumol, T. F.; Wang, Q. C.; Reisfeld, R. A.; Kaplan, N. O.
1983-01-01
A monoclonal antibody directed against a cell surface chondroitin sulfate proteoglycan of human melanoma cells, 9.2.27, and its diphtheria toxin A chain (DTA) conjugate were investigated for their effects on in vitro protein synthesis and in vivo tumor growth of human melanoma cells. The 9.2.27 IgG and its DTA conjugate display similar serological activities against melanoma target cells but only the conjugate can induce consistent in vitro inhibition of protein synthesis and toxicity in M21 melanoma cells. However, both 9.2.27 IgG and its DTA conjugate effect significant suppression of M21 tumor growth in vivo in an immunotherapy model of a rapidly growing tumor in athymic nu/nu mice, suggesting that other host mechanisms may mediate monoclonal antibody-induced tumor suppression.
Suzuki, Shinsuke; Ishikawa, Kazuo
2014-03-01
It has been reported that the epidermal growth factor receptor (EGFR) expression is associated with the extracellular matrix metalloproteinase inducer (EMMPRIN) in some solid tumors; however, the relationship of EMMPRIN with EGFR in head and neck cancers is not fully understood. To determine the relationship between EMMPRIN and EGFR in head and neck squamous cell carcinoma (HNSCC), HNSCC cells were stimulated with epidermal growth factor (EGF), a ligand of EGFR. EMMPRIN expression in HNSCC cells was upregulated by EGF. In addition, EGF stimulation induced HNSCC cell invasion and MMP-9 expression. This increase in invasion and MMP-9 expression was abrogated by downmodulation of EMMPRIN. Furthermore, to determine the effects of combined EMMPRIN and EGFR targeting in HNSCC, HNSCC cells were treated with an EMMPRIN function-blocking antibody and the EGFR inhibitor AG1478. This combined treatment resulted in greater inhibition of HNSCC cell proliferation and migration compared with the individual agents alone. These results suggest that EMMPRIN mediates EGFR-induced tumorigenicity and that combined targeting of EMMPRIN and EGFR may be an efficacious treatment approach.
Yu, Jie; Javier, David; Yaseen, Mohammad A.; Nitin, Nitin; Richards-Kortum, Rebecca; Anvari, Bahman; Wong, Michael S.
2010-01-01
New colloidal materials that can generate heat upon irradiation are being explored for photothermal therapy as a minimally invasive approach to cancer treatment. The near-infrared dye indocyanine green (ICG) could serve as a basis for such a material, but its encapsulation and subsequent use is very difficult to carry out. We report the three-step room-temperature synthesis of ~120-nm capsules loaded with ICG within salt-crosslinked polyallylamine aggregates, and coated with anti-epidermal growth factor receptor (anti-EGFR) antibodies for tumor cell targeting capability. We studied the synthesis conditions such as temperature and water dilution to control the capsule size and characterized the size distribution via dynamic light scattering and scanning electron microscopy. We further studied the specificity of tumor cell targeting using three carcinoma cell lines with different levels of EGFR expression, and investigated the photothermal effects of ICG containing nanocapsules on EGFR-rich tumor cells. Significant thermal toxicity was observed for encapsulated ICG as compared to free ICG at 808 nm laser irradiation with radiant exposure of 6 W/cm2. These results illustrate the ability to design a colloidal material with cell targeting and heat generating capabilities using non-covalent chemistry. PMID:20092330
A collagen-binding EGFR antibody fragment targeting tumors with a collagen-rich extracellular matrix
Liang, Hui; Li, Xiaoran; Wang, Bin; Chen, Bing; Zhao, Yannan; Sun, Jie; Zhuang, Yan; Shi, Jiajia; Shen, He; Zhang, Zhijun; Dai, Jianwu
2016-01-01
Many tumors over-express collagen, which constitutes the physical scaffold of tumor microenvironment. Collagen has been considered to be a target for cancer therapy. The collagen-binding domain (CBD) is a short peptide, which could bind to collagen and achieve the sustained release of CBD-fused proteins in collagen scaffold. Here, a collagen-binding EGFR antibody fragment was designed and expressed for targeting the collagen-rich extracellular matrix in tumors. The antibody fragment (Fab) of cetuximab was fused with CBD (CBD-Fab) and expressed in Pichia pastoris. CBD-Fab maintained antigen binding and anti-tumor activity of cetuximab and obtained a collagen-binding ability in vitro. The results also showed CBD-Fab was mainly enriched in tumors and had longer retention time in tumors in A431 s.c. xenografts. Furthermore, CBD-Fab showed a similar therapeutic efficacy as cetuximab in A431 xenografts. Although CBD-Fab hasn’t showed better therapeutic effects than cetuximab, its smaller molecular and special target may be applicable as antibody–drug conjugates (ADC) or immunotoxins. PMID:26883295
D’Souza, Jimson W.; Shchaveleva, Irina; Marks, James D.; Litwin, Samuel; Robinson, Matthew K.
2014-01-01
Background Inappropriate signaling through the epidermal growth factor receptor family (EGFR1/ERBB1, ERBB2/HER2, ERBB3/HER3, and ERBB4/HER4) of receptor tyrosine kinases leads to unregulated activation of multiple downstream signaling pathways that are linked to cancer formation and progression. In particular, ERBB3 plays a critical role in linking ERBB signaling to the phosphoinositide 3-kinase and Akt signaling pathway and increased levels of ERBB3-dependent signaling is also increasingly recognized as a mechanism for acquired resistance to ERBB-targeted therapies. Methods We had previously reported the isolation of a panel of anti-ERBB3 single-chain Fv antibodies through use of phage-display technology. In the current study scFv specific for domain I (F4) and domain III (A5) were converted into human IgG1 formats and analyzed for efficacy. Results Treatment of cells with an oligoclonal mixture of the A5/F4 IgGs appeared more effective at blocking both ligand-induced and ligand-independent signaling through ERBB3 than either single IgG alone. This correlated with improved ability to inhibit the cell growth both as a single agent and in combination with other ERBB-targeted therapies. Treatment of NCI-N87 tumor xenografts with the A5/F4 oligoclonal led to a statistically significant decrease in tumor growth rate that was further enhanced in combination with trastuzumab. Conclusion These results suggest that an oligoclonal antibody mixture may be a more effective approach to downregulate ERBB3-dependent signaling. PMID:25386657
Wacker, Daniel; Kapoor, Mili; Zhang, Ai; Han, Gye Won; Basu, Shibom; Patel, Nilkanth; Messerschmidt, Marc; Weierstall, Uwe; Liu, Wei; Katritch, Vsevolod; Roth, Bryan L.; Stevens, Raymond C.
2017-01-01
Monoclonal antibodies provide an attractive alternative to small-molecule therapies for a wide range of diseases. Given the importance of G protein-coupled receptors (GPCRs) as pharmaceutical targets, there has been an immense interest in developing therapeutic monoclonal antibodies that act on GPCRs. Here we present the 3.0-Å resolution structure of a complex between the human 5-hydroxytryptamine 2B (5-HT2B) receptor and an antibody Fab fragment bound to the extracellular side of the receptor, determined by serial femtosecond crystallography with an X-ray free-electron laser. The antibody binds to a 3D epitope of the receptor that includes all three extracellular loops. The 5-HT2B receptor is captured in a well-defined active-like state, most likely stabilized by the crystal lattice. The structure of the complex sheds light on the mechanism of selectivity in extracellular recognition of GPCRs by monoclonal antibodies. PMID:28716900
Borrini, Francesco; Bolognese, Antonio; Lamy, Aude; Sabourin, Jean-Christophe
2015-01-01
KRAS genotyping is mandatory in metastatic colorectal cancer treatment prior to undertaking antiepidermal growth factor receptor (EGFR) monoclonal antibody therapy. BRAF V600E mutation is often present in colorectal carcinoma with CpG island methylator phenotype and microsatellite instability. Currently, KRAS and BRAF evaluation is based on molecular biology techniques such as SNaPshot or Sanger sequencing. As molecular testing is performed on formalin-fixed paraffin-embedded (FFPE) samples, immunodetection would appear to be an attractive alternative for detecting mutations. Thus, our objective was to assess the validity of KRAS and BRAF immunodetection of mutations compared with the genotyping reference method in colorectal adenocarcinoma. KRAS and BRAF genotyping was assessed by SNaPshot. A rabbit anti-human KRAS polyclonal antibody was tested on 33 FFPE colorectal tumor samples with known KRAS status. Additionally, a mouse anti-human BRAF monoclonal antibody was tested on 30 FFPE tumor samples with known BRAF status. KRAS immunostaining demonstrated both poor sensitivity (27%) and specificity (64%) in detecting KRAS mutation. Conversely, BRAF immunohistochemistry showed perfect sensitivity (100%) and specificity (100%) in detecting V600E mutation. Although molecular biology remains the reference method for detecting KRAS mutation, immunohistochemistry could be an attractive method for detecting BRAF V600E mutation in colorectal cancer. PMID:25983749
NASA Astrophysics Data System (ADS)
Sadraeian, M.; Tsutae, F. M.; Moreira, H. H. T.; Araujo, A. P. U.; Guimarães, F. E. G.; Pincus, S. H.
2015-06-01
Pulchellin is a type 2 of ribosome-inactivating proteins isolated from some seeds significantly growing in Brazil. It is a potent agent to inhibit the protein synthesis in cancer cells and also HIV-infected cells. Pulchellin can be conjugated to HIV monoclonal antibodies to specifically target the HIV-infected cells. To analyze the protein synthesis inhibition by Pulchellin, the intracellular localization of the immunoconjugate should be compared to Pulchellin. In this case, the intracellular trafficking of this protein in cells can be determined by confocal microscopy. In our study, we utilized Pulchellin to construct HIV monoclonal antibody-conjugated Pulchellin A chain in order to target HIV-infected lymphocyte cells. Afterward the conjugation was labeled with the superior Alexa Fluor 488 dye. As a subsequent step, we are interested in studying the intracellular trafficking pathway of this novel conjugation in HIV-infected cells by confocal microscopy. Moreover, possible quantitative methods for fluorescent labeling of the immunoconjugate during confocal microscopy will be investigated.
Ikeda, Keigo; Satoh, Minoru; Pauley, Kaleb M.; Fritzler, Marvin J.; Reeves, Westley H.; Chan, Edward K.L.
2007-01-01
MicroRNAs (miRNAs) are short RNA molecules responsible for post-transcriptional gene silencing by the degradation or translational inhibition of their target messenger RNAs (mRNAs). This process of gene silencing, known as RNA interference (RNAi), is mediated by highly conserved Argonaute (Ago) proteins which are the key components of the RNA induced silencing complex (RISC). In humans, Ago2 is responsible for the endonuclease cleavage of targeted mRNA and it interacts with the mRNA-binding protein GW182, which is a marker for cytoplasmic foci referred to as GW bodies (GWBs). We demonstrated that the anti-Ago2 monoclonal antibody 4F9 recognized GWBs in a cell cycle dependent manner and was capable of capturing miRNAs associated with Ago2. Since Ago2 protein is the effector protein of RNAi, anti-Ago2 monoclonal antibody may be useful in capturing functional miRNAs. PMID:17054975
Ikeda, Keigo; Satoh, Minoru; Pauley, Kaleb M; Fritzler, Marvin J; Reeves, Westley H; Chan, Edward K L
2006-12-20
MicroRNAs (miRNAs) are short RNA molecules responsible for post-transcriptional gene silencing by the degradation or translational inhibition of their target messenger RNAs (mRNAs). This process of gene silencing, known as RNA interference (RNAi), is mediated by highly conserved Argonaute (Ago) proteins which are the key components of the RNA induced silencing complex (RISC). In humans, Ago2 is responsible for the endonuclease cleavage of targeted mRNA and it interacts with the mRNA-binding protein GW182, which is a marker for cytoplasmic foci referred to as GW bodies (GWBs). We demonstrated that the anti-Ago2 monoclonal antibody 4F9 recognized GWBs in a cell cycle dependent manner and was capable of capturing miRNAs associated with Ago2. Since Ago2 protein is the effector protein of RNAi, anti-Ago2 monoclonal antibody may be useful in capturing functional miRNAs.
Enhanced EGFR Targeting Activity of Plasmonic Nanostructures with Engineered GE11 Peptide.
Biscaglia, Francesca; Rajendran, Senthilkumar; Conflitti, Paolo; Benna, Clara; Sommaggio, Roberta; Litti, Lucio; Mocellin, Simone; Bocchinfuso, Gianfranco; Rosato, Antonio; Palleschi, Antonio; Nitti, Donato; Gobbo, Marina; Meneghetti, Moreno
2017-12-01
Plasmonic nanostructures show important properties for biotechnological applications, but they have to be guided on the target for exploiting their potentialities. Antibodies are the natural molecules for targeting. However, their possible adverse immunogenic activity and their cost have suggested finding other valid substitutes. Small molecules like peptides can be an alternative source of targeting agents, even if, as single molecules, their binding affinity is usually not very good. GE11 is a small dodecapeptide with specific binding to the epidermal growth factor receptor (EGFR) and low immunogenicity. The present work shows that thousands of polyethylene glycol (PEG) chains modified with lysines and functionalized with GE11 on clusters of naked gold nanoparticles, obtained by laser ablation in water, achieves a better targeting activity than that recorded with nanoparticles decorated with the specific anti-EGFR antibody Cetuximab (C225). The insertion of the cationic spacer between the polymeric part of the ligand and the targeting peptide allows for a proper presentation of GE11 on the surface of the nanosystems. Surface enhanced resonance Raman scattering signals of the plasmonic gold nanoparticles are used for quantifying the targeting activity. Molecular dynamic calculations suggest that subtle differences in the exposition of the peptide on the PEG sea are important for the targeting activity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao Wei; Zhao Shan; Liu Zhaofei
Anti-EGFR monoclonal antibodies LA22 and Erbitux bind to different epitopes of EGFR. The chemimmunoconjugates of MMC with LA22 or Erbitux were prepared, and in vitro cytotoxicity assays with A549 cells showed that LA22-MMC was much more potent than Erbitux or Erbitux-MMC. Viabilities of A549 cells treated with LA22-MMC, Erbitux or Erbitux-MMC were 35%, 94%, and 81%, respectively. Immunoscintigraphy of xenografts of human A431 and A549 cells in nude mice both showed that {sup 125}I-labeled-LA22-MMC enriched in tumor sites prominently. Most importantly, in vivo assays showed LA22-MMC was significantly more effective than free drug MMC in the treatment of subcutaneous xenograftsmore » of human A431 cells in nude mice (83% inhibition for LA22-MMC and 30% for MMC). We concluded that LA22-MMC could be a very potent drug for treatment of solid tumors.« less
Peng, Haiyong; Nerreter, Thomas; Chang, Jing; Qi, Junpeng; Li, Xiuling; Karunadharma, Pabalu; Martinez, Gustavo J; Fallahi, Mohammad; Soden, Jo; Freeth, Jim; Beerli, Roger R; Grawunder, Ulf; Hudecek, Michael; Rader, Christoph
2017-09-15
Owing to their high affinities and specificities, rabbit monoclonal antibodies (mAbs) have demonstrated value and potential primarily as basic research and diagnostic reagents, but, in some cases, also as therapeutics. To accelerate access to rabbit mAbs bypassing immunization, we generated a large naïve rabbit antibody repertoire represented by a phage display library encompassing >10 billion independent antibodies in chimeric rabbit/human Fab format and validated it by next-generation sequencing. Panels of rabbit mAbs selected from this library against two emerging cancer targets, ROR1 and ROR2, revealed high diversity, affinity, and specificity. Moreover, ROR1- and ROR2-targeting rabbit mAbs demonstrated therapeutic utility as components of chimeric antigen receptor-engineered T cells, further corroborating the value of the naïve rabbit antibody library as a rich and virtually unlimited source of rabbit mAbs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Prendergast, Jillian M; Galvao da Silva, Ana Paula; Eavarone, David A; Ghaderi, Darius; Zhang, Mai; Brady, Dane; Wicks, Joan; DeSander, Julie; Behrens, Jeff; Rueda, Bo R
Targeted therapeutics that can differentiate between normal and malignant tumor cells represent the ideal standard for the development of a successful anti-cancer strategy. The Sialyl-Thomsen-nouveau antigen (STn or Sialyl-Tn, also known as CD175s) is rarely seen in normal adult tissues, but it is abundantly expressed in many types of human epithelial cancers. We have identified novel antibodies that specifically target with high affinity the STn glycan independent of its carrier protein, affording the potential to recognize a wider array of cancer-specific sialylated proteins. A panel of murine monoclonal anti-STn therapeutic antibodies were generated and their binding specificity and efficacy were characterized in vitro and in in vivo murine cancer models. A subset of these antibodies were conjugated to monomethyl auristatin E (MMAE) to generate antibody-drug conjugates (ADCs). These ADCs demonstrated in vitro efficacy in STn-expressing cell lines and significant tumor growth inhibition in STn-expressing tumor xenograft cancer models with no evidence of overt toxicity.
Antibodies to the Glycoprotein GP2 Subunit Cross-React between Old and New World Arenaviruses.
Amanat, Fatima; Duehr, James; Oestereich, Lisa; Hastie, Kathryn M; Ollmann Saphire, Erica; Krammer, Florian
2018-01-01
Arenaviruses pose a major public health threat and cause numerous infections in humans each year. Although most viruses belonging to this family do not cause disease in humans, some arenaviruses, such as Lassa virus and Machupo virus, are the etiological agents of lethal hemorrhagic fevers. The absence of a currently licensed vaccine and the highly pathogenic nature of these viruses both make the necessity of developing viable vaccines and therapeutics all the more urgent. Arenaviruses have a single glycoprotein on the surface of virions, the glycoprotein complex (GPC), and this protein can be used as a target for vaccine development. Here, we describe immunization strategies to generate monoclonal antibodies (MAbs) that cross-react between the glycoprotein complexes of both Old World and New World arenaviruses. Several monoclonal antibodies isolated from immunized mice were highly cross-reactive, binding a range of Old World arenavirus glycoproteins, including that of Lassa virus. One such monoclonal antibody, KL-AV-2A1, bound to GPCs of both New World and Old World viruses, including Lassa and Machupo viruses. These cross-reactive antibodies bound to epitopes present on the glycoprotein 2 subunit of the glycoprotein complex, which is relatively conserved among arenaviruses. Monoclonal antibodies binding to these epitopes, however, did not inhibit viral entry as they failed to neutralize a replication-competent vesicular stomatitis virus pseudotyped with the Lassa virus glycoprotein complex in vitro In addition, no protection from virus challenge was observed in in vivo mouse models. Even so, these monoclonal antibodies might still prove to be useful in the development of clinical and diagnostic assays. IMPORTANCE Several viruses in the Arenaviridae family infect humans and cause severe hemorrhagic fevers which lead to high case fatality rates. Due to their pathogenicity and geographic tropisms, these viruses remain very understudied. As a result, an effective vaccine or therapy is urgently needed. Here, we describe efforts to produce cross-reactive monoclonal antibodies that bind to both New and Old World arenaviruses. All of our MAbs seem to be nonneutralizing and nonprotective and target subunit 2 of the glycoprotein. Due to the lack of reagents such as recombinant glycoproteins and antibodies for rapid detection assays, our MAbs could be beneficial as analytic and diagnostic tools. Copyright © 2018 Amanat et al.
Xie, Jing; Lu, Xiongxiong; Wu, Xue; Lin, Xiaoyi; Zhang, Chao; Huang, Xiaofang; Chang, Zhili; Wang, Xinjing; Wen, Chenlei; Tang, Xiaomei; Shi, Minmin; Zhan, Qian; Chen, Hao; Deng, Xiaxing; Peng, Chenghong; Li, Hongwei; Fang, Yuan; Shao, Yang; Shen, Baiyong
2016-05-01
Targeted therapies including monoclonal antibodies and small molecule inhibitors have dramatically changed the treatment of cancer over past 10 years. Their therapeutic advantages are more tumor specific and with less side effects. For precisely tailoring available targeted therapies to each individual or a subset of cancer patients, next-generation sequencing (NGS) has been utilized as a promising diagnosis tool with its advantages of accuracy, sensitivity, and high throughput. We developed and validated a NGS-based cancer genomic diagnosis targeting 115 prognosis and therapeutics relevant genes on multiple specimen including blood, tumor tissue, and body fluid from 10 patients with different cancer types. The sequencing data was then analyzed by the clinical-applicable analytical pipelines developed in house. We have assessed analytical sensitivity, specificity, and accuracy of the NGS-based molecular diagnosis. Also, our developed analytical pipelines were capable of detecting base substitutions, indels, and gene copy number variations (CNVs). For instance, several actionable mutations of EGFR,PIK3CA,TP53, and KRAS have been detected for indicating drug susceptibility and resistance in the cases of lung cancer. Our study has shown that NGS-based molecular diagnosis is more sensitive and comprehensive to detect genomic alterations in cancer, and supports a direct clinical use for guiding targeted therapy.
D'Angelo, Sara; Staquicini, Fernanda I; Ferrara, Fortunato; Staquicini, Daniela I; Sharma, Geetanjali; Tarleton, Christy A; Nguyen, Huynh; Naranjo, Leslie A; Sidman, Richard L; Arap, Wadih; Bradbury, Andrew Rm; Pasqualini, Renata
2018-05-03
We developed a potentially novel and robust antibody discovery methodology, termed selection of phage-displayed accessible recombinant targeted antibodies (SPARTA). This combines an in vitro screening step of a naive human antibody library against known tumor targets, with in vivo selections based on tumor-homing capabilities of a preenriched antibody pool. This unique approach overcomes several rate-limiting challenges to generate human antibodies amenable to rapid translation into medical applications. As a proof of concept, we evaluated SPARTA on 2 well-established tumor cell surface targets, EphA5 and GRP78. We evaluated antibodies that showed tumor-targeting selectivity as a representative panel of antibody-drug conjugates (ADCs) and were highly efficacious. Our results validate a discovery platform to identify and validate monoclonal antibodies with favorable tumor-targeting attributes. This approach may also extend to other diseases with known cell surface targets and affected tissues easily isolated for in vivo selection.
Gaber, Rania; Watermann, Iris; Kugler, Christian; Vollmer, Ekkehard; Perner, Sven; Reck, Martin; Goldmann, Torsten
2017-01-01
Targeting epidermal growth factor receptor (EGFR) in patients with non-small-cell lung cancer (NSCLC) having EGFR mutations is associated with an improved overall survival. The aim of this study is to verify, if EGFR mutations detected by immunohistochemistry (IHC) is a convincing way to preselect patients for DNA-sequencing and to figure out, the statistical association between EGFR mutation, wild-type EGFR overexpression, gene copy number gain, which are the main factors inducing EGFR tumorigenic activity and the clinicopathological data. Two hundred sixteen tumor tissue samples of primarily chemotherapeutic naïve NSCLC patients were analyzed for EGFR mutations E746-A750del and L858R and correlated with DNA-sequencing. Two hundred six of which were assessed by IHC, using 6B6 and 43B2 specific antibodies followed by DNA-sequencing of positive cases and 10 already genotyped tumor tissues were also included to investigate debugging accuracy of IHC. In addition, EGFR wild-type overexpression was IHC evaluated and EGFR gene copy number determination was performed by fluorescence in situ hybridization (FISH). Forty-one÷206 (19.9%) cases were positive for mutated EGFR by IHC. Eight of them had EGFR mutations of exons 18-21 by DNA-sequencing. Hit rate of 10 already genotyped NSCLC mutated cases was 90% by IHC. Positive association was found between EGFR mutations determined by IHC and both EGFR overexpression and increased gene copy number (p=0.002 and p<0.001, respectively). Additionally, positive association was detected between EGFR mutations, high tumor grade and clinical stage (p<0.001). IHC staining with mutation specific antibodies was demonstrated as a possible useful screening test to preselect patients for DNA-sequencing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boonsathorn, Naphatsawan; Panthong, Sumolrat; Japan Science and Technology Agency/Japan International Cooperation Agency, Science and Technology Research Partnership for Sustainable Development
Highlights: • A human monoclonal antibody against influenza virus was produced from a volunteer. • The antibody was generated from the PBMCs of the volunteer using the fusion method. • The antibody neutralized heterosubtypically group 1 influenza A viruses (H1 and H9). • The antibody targeted a novel epitope in globular head region of the hemagglutinin. • Sequences of the identified epitope are highly conserved among H1 and H9 subtypes. - Abstract: Most neutralizing antibodies elicited during influenza virus infection or by vaccination have a narrow spectrum because they usually target variable epitopes in the globular head region of hemagglutininmore » (HA). In this study, we describe a human monoclonal antibody (HuMAb), 5D7, that was prepared from the peripheral blood lymphocytes of a vaccinated volunteer using the fusion method. The HuMAb heterosubtypically neutralizes group 1 influenza A viruses, including seasonal H1N1, 2009 pandemic H1N1 (H1N1pdm) and avian H9N2, with a strong hemagglutinin inhibition activity. Selection of an escape mutant showed that the HuMAb targets a novel conformational epitope that is located in the HA head region but is distinct from the receptor binding site. Furthermore, Phe114Ile substitution in the epitope made the HA unrecognizable by the HuMAb. Amino acid residues in the predicted epitope region are also highly conserved in the HAs of H1N1 and H9N2. The HuMAb reported here may be a potential candidate for the development of therapeutic/prophylactic antibodies against H1 and H9 influenza viruses.« less
A view on EGFR-targeted therapies from the oncogene-addiction perspective.
Perez, Rolando; Crombet, Tania; de Leon, Joel; Moreno, Ernesto
2013-01-01
Tumor cell growth and survival can often be impaired by inactivating a single oncogen- a phenomenon that has been called as "oncogene addiction." It is in such scenarios that molecular targeted therapies may succeed. among known oncogenes, the epidermal growth factor receptor (EGFR) has become the target of different cancer therapies. So far, however, the clinical benefit from EGFR-targeted therapies has been rather limited. a critical review of the large amount of clinical data obtained with anti-EGFR agents, carried out from the perspective of the oncogene addiction concept, may help to understand the causes of the unsatisfactory results. In this article we intend to do such an exercise taking as basis for the analysis a few case studies of anti-EGFR agents that are currently in the clinic. There, the "EGFR addiction" phenomenon becomes apparent in high-responder patients. We further discuss how the concept of oncogene addiction needs to be interpreted on the light of emerging experimental evidences and ideas; in particular, that EGFR addiction may reflect the interconnection of several cellular pathways. In this regard we set forth several hypotheses; namely, that requirement of higher glucose uptake by hypoxic tumor cells may reinforce EGFR addiction; and that chronic use of EGFR-targeted antibodies in EGFR-addicted tumors would induce stable disease by reversing the malignant phenotype of cancer stem cells and also by sustaining an anti-tumor T cell response. Finally, we discuss possible reasons for the failure of certain combinatorial therapies involving anti-EGFR agents, arguing that some of these agents might produce either a negative or a positive trans-modulation effect on other oncogenes. It becomes evident that we need operational definitions of EGFR addiction in order to determine which patient populations may benefit from treatment with anti-EGFR drugs, and to improve the design of these therapies.
Bruckheimer, Elizabeth M; Fazenbaker, Christine A; Gallagher, Sandra; Mulgrew, Kathy; Fuhrmann, Stacy; Coffman, Karen T; Walsh, William; Ready, Shannon; Cook, Kim; Damschroder, Melissa; Kinch, Michael; Kiener, Peter A; Woods, Rob; Gao, Changshou; Dall'Acqua, William; Wu, Herren; Coats, Steven
2009-01-01
EphA2 is a receptor tyrosine kinase that has been shown to be overexpressed in a variety of human tumor types. Previous studies demonstrated that agonist monoclonal antibodies targeting EphA2 induced the internalization and degradation of the receptor, thereby abolishing its oncogenic effects. In this study, the in vitro and in vivo antibody-dependent cell-mediated cytotoxicity (ADCC) activity of EphA2 effector-enhanced agonist monoclonal antibodies was evaluated. With tumor cell lines and healthy human peripheral blood monocytes, the EphA2 antibodies demonstrated ∼80% tumor cell killing. In a dose-dependent manner, natural killer (NK) cells were required for the in vitro ADCC activity and became activated as demonstrated by the induction of cell surface expression of CD107a. To assess the role of NK cells on antitumor efficacy in vivo, the EphA2 antibodies were evaluated in xenograft models in severe compromised immunodeficient (SCID) mice (which have functional NK cells and monocytes) and SCID nonobese diabetic (NOD) mice (which largely lack functional NK cells and monocytes). Dosing of EphA2 antibody in the SCID murine tumor model resulted in a 6.2-fold reduction in tumor volume, whereas the SCID/nonobese diabetic model showed a 1.6-fold reduction over the isotype controls. Together, these results demonstrate that the anti-EphA2 monoclonal antibodies may function through at least two mechanisms of action: EphA2 receptor activation and ADCC-mediated activity. These novel EphA2 monoclonal antibodies provide additional means by which host effector mechanisms can be activated for selective destruction of EphA2-expressing tumor cells. PMID:19484140
Veluchamy, John P; Lopez-Lastra, Silvia; Spanholtz, Jan; Bohme, Fenna; Kok, Nina; Heideman, Daniëlle A M; Verheul, Henk M W; Di Santo, James P; de Gruijl, Tanja D; van der Vliet, Hans J
2017-01-01
Therapeutic monoclonal antibodies against the epidermal growth factor receptor (EGFR) act by inhibiting EGFR downstream signaling and by eliciting a natural killer (NK) cell-mediated antitumor response. The IgG 1 mAb cetuximab has been used for treatment of RAS wt metastatic colorectal cancer (mCRC) patients, showing limited efficacy. In the present study, we address the potential of adoptive NK cell therapy to overcome these limitations investigating two allogeneic NK cell products, i.e., allogeneic activated peripheral blood NK cells (A-PBNK) and umbilical cord blood stem cell-derived NK cells (UCB-NK). While cetuximab monotherapy was not effective against EGFR - RAS wt , EGFR + RAS mut , and EGFR + BRAF mut cells, A-PBNK were able to initiate lysis of EGFR + colon cancer cells irrespective of RAS or BRAF status. Cytotoxic effects of A-PBNK (but not UCB-NK) were further potentiated significantly by coating EGFR + colon cancer cells with cetuximab. Of note, a significantly higher cytotoxicity was induced by UCB-NK in EGFR - RAS wt (42 ± 8 versus 67 ± 7%), EGFR + RAS mut (20 ± 2 versus 37 ± 6%), and EGFR + BRAF mut (23 ± 3 versus 43 ± 7%) colon cancer cells compared to A-PBNK and equaled the cytotoxic efficacy of the combination of A-PBNK and cetuximab. The antitumor efficacy of UCB-NK cells against cetuximab-resistant human EGFR + RAS mut colon cancer cells was further confirmed in an in vivo preclinical mouse model where UCB-NK showed enhanced antitumor cytotoxicity against colon cancer independent of EGFR and RAS status. As UCB-NK have been proven safe in a recently conducted phase I clinical trial in acute myeloid leukemia, a fast translation into clinical proof of concept for mCRC could be considered.
Next generation and biosimilar monoclonal antibodies
2011-01-01
The Next Generation and Biosimilar Monoclonal Antibodies: Essential Considerations Towards Regulatory Acceptance in Europe workshop, organized by the European Centre of Regulatory Affairs Freiburg (EUCRAF), was held February 3–4, 2011 in Freiburg, Germany. The workshop attracted over 100 attendees from 15 countries, including regulators from 11 agencies, who interacted over the course of two days. The speakers presented their authoritative views on monoclonal antibodies (mAbs) as attractive targets for development, the experience to date with the regulatory process for biosimilar medicinal products, the European Medicines Agency draft guideline on biosimilar mAbs, as well as key elements in the development of mAbs. Participants engaged in many lively discussions, and much speculation on the nature of the quality, non-clinical and clinical requirements for authorization of biosimilar mAbs. PMID:21487235
Targeted Doxorubicin-Loaded Bacterially Derived Nano-Cells for the Treatment of Neuroblastoma.
Sagnella, Sharon M; Trieu, Jennifer; Brahmbhatt, Himanshu; MacDiarmid, Jennifer A; MacMillan, Alex; Whan, Renee M; Fife, Christopher M; McCarroll, Joshua A; Gifford, Andrew J; Ziegler, David S; Kavallaris, Maria
2018-05-01
Advanced stage neuroblastoma is an aggressive disease with limited treatment options for patients with drug-resistant tumors. Targeted delivery of chemotherapy for pediatric cancers offers promise to improve treatment efficacy and reduce toxicity associated with systemic chemotherapy. The EnGeneIC Dream Vector (EDV TM ) is a nanocell, which can package chemotherapeutic drugs and target tumors via attachment of bispecific proteins to the surface of the nanocell. Phase I trials in adults with refractory tumors have shown an acceptable safety profile. Herein we investigated the activity of EGFR-targeted and doxorubicin-loaded EDV TM ( EGFR EDV TM Dox ) for the treatment of neuroblastoma. Two independent neuroblastoma cell lines with variable expression of EGFR protein [SK-N-BE(2), high; SH-SY-5Y, low] were used. EGFR EDV TM Dox induced apoptosis in these cells compared to control, doxorubicin, or non-doxorubicin loaded EGFR EDV TM In three-dimensional tumor spheroids, imaging and fluorescence life-time microscopy revealed that EGFR EDV TM Dox had a marked enhancement of doxorubicin penetration compared to doxorubicin alone, and improved penetration compared to non-EGFR-targeted EDV TM Dox , with enhanced spheroid penetration leading to increased apoptosis. In two independent orthotopic human neuroblastoma xenograft models, short-term studies (28 days) of tumor-bearing mice led to a significant decrease in tumor size in EGFR EDV TM Dox -treated animals compared to control, doxorubicin, or non-EGFR EDV TM Dox There was increased TUNEL staining of tumors at day 28 compared to control, doxorubicin, or non-EGFR EDV TM Dox Moreover, overall survival was increased in neuroblastoma mice treated with EGFR EDV TM Dox ( P < 0007) compared to control. Drug-loaded bispecific-antibody targeted EDVs TM offer a highly promising approach for the treatment of aggressive pediatric malignancies such as neuroblastoma. Mol Cancer Ther; 17(5); 1012-23. ©2018 AACR . ©2018 American Association for Cancer Research.
Uses of monoclonal antibody 8H9
Cheung, Nai-Kong V.
2013-04-09
This invention provides a composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a suitable carrier. This invention provides a pharmaceutical composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a pharmaceutically acceptable carrier. This invention also provides an antibody other than the monoclonal antibody 8H9 comprising the complementary determining regions of monoclonal antibody 8H9 or a derivative thereof, capable of binding to the same antigen as the monoclonal antibody 8H9. This invention provides a substance capable of competitively inhibiting the binding of monoclonal antibody 8H9. This invention also provides an isolated scFv of monoclonal antibody 8H9 or a derivative thereof. This invention also provides the 8H9 antigen. This invention also provides different uses of the monoclonal antibody 8H9 or its derivative.
Uses of monoclonal antibody 8H9
Cheung, Nai-Kong V.
2010-06-22
This invention provides a composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a suitable carrier. This invention provides a pharmaceutical composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a pharmaceutically acceptable carrier. This invention also provides an antibody other than the monoclonal antibody 8H9 comprising the complementary determining regions of monoclonal antibody 8H9 or a derivative thereof, capable of binding to the same antigen as the monoclonal antibody 8H9. This invention provides a substance capable of competitively inhibiting the binding of monoclonal antibody 8H9. This invention also provides an isolated scFv of monoclonal antibody 8H9 or a derivative thereof. This invention also provides the 8H9 antigen. This invention also provides different uses of the monoclonal antibody 8H9 or its derivative.
Progress with the use of monoclonal antibodies for the treatment of systemic lupus erythematosus.
Jordan, Natasha; Lutalo, Pamela Mk; D'Cruz, David P
2015-01-01
In recent years, significant progress has been made in the use of monoclonal antibodies in the treatment of systemic lupus erythematosus (SLE). Advances in our understanding of the complexity of SLE immunopathogenesis have led to the testing of several biologic agents in clinical trials. Monoclonal therapies currently emerging or under development include B-cell depletion therapies, agents targeting B-cell survival factors, blockade of T-cell co-stimulation and anticytokine therapies. Issues remain, however, regarding clinical trial design and outcome measures in SLE which need to be addressed to optimize translation of these promising therapies into clinical practice.
Novel method for in vitro depletion of T cells by monoclonal antibody-targeted photosensitization.
Berki, T; Németh, P
1998-02-01
An immunotargeting method (called photo-immunotargeting) has been developed for selective in vitro cell destruction. The procedure combines the photosensitizing (toxic) effect of light-induced dye-molecules, e.g., hematoporphyrin (HP) and the selective binding ability of monoclonal antibodies (mAb) to cell surface molecules. The photosensitizer HP molecules were covalently attached to monoclonal antibodies (a-Thy-1) recognizing an antigen on the surface of T lymphocytes, and used for T cell destruction. To increase the selectivity of the conventional targeting methods, a physical activation step (local light irradiation) as a second degree of specificity was employed. The HP in conjugated form was sufficient to induce T cell (thymocytes, EL-4 cell line) death after irradiation at 400 nm, at tenfold lower concentration compared to the photosensitizing effect of unbound HP. The selective killing of T lymphocytes (bearing the Thy-1 antigen) in a mixed cell population was demonstrated after a treatment with the phototoxic conjugate and light irradiation. This method can be useful for selective destruction of one population (target cell) in an in vitro heterogeneous cell mixture, e.g., in bone marrow transplants for T cell depletion to avoid graft vs. host reaction.
Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases.
Dinarello, Charles A; Simon, Anna; van der Meer, Jos W M
2012-08-01
Interleukin-1 (IL-1) is a highly active pro-inflammatory cytokine that lowers pain thresholds and damages tissues. Monotherapy blocking IL-1 activity in autoinflammatory syndromes results in a rapid and sustained reduction in disease severity, including reversal of inflammation-mediated loss of sight, hearing and organ function. This approach can therefore be effective in treating common conditions such as post-infarction heart failure, and trials targeting a broad spectrum of new indications are underway. So far, three IL-1-targeted agents have been approved: the IL-1 receptor antagonist anakinra, the soluble decoy receptor rilonacept and the neutralizing monoclonal anti-IL-1β antibody canakinumab. In addition, a monoclonal antibody directed against the IL-1 receptor and a neutralizing anti-IL-1α antibody are in clinical trials.
Ren, G; Du, L; Ma, L; Feng, L-C; Zhou, G-X; Qu, B-L; Xu, S-P; Xie, C-B; Ou, G-M; Li, F; Zhang, X-X; Yang, J
2011-06-01
The preliminary short-term clinical outcome of 73 nasopharyngeal carcinoma (NPC) patients treated with helical tomotherapy at our cancer institute has been evaluated. Between September 2007 and September 2009, 73 newly diagnosed NPC patients were treated with helical tomotherapy. The distributions of clinical stages according to the UICC 2002 Staging System were: 6, 27, 24, and 16 for Stage I, IIa-b, III, and IVa-b, respectively. The prescription dose was 70-74 Gy/33F to planning gross tumor volume containing the primary tumor and positive lymph nodes, with 60-62.7 Gy/33F to high risk planning target volume, while delivering 52-56 Gy/33F to low risk planning target volume. Twenty-four patients were treated with radiation therapy as single modality, 25 with concurrent cisplatin-based chemotherapy with or without anti-EGFR monoclonal antibody therapy, and 24 with concurrent anti-EGFR monoclonal antibody therapy. Setup errors were analyzed. Side-effects were evaluated with the established RTOG/EORTC criteria. Average beam-on-time was 468.8 sec/F (396.7-696.1 sec). The setup errors in the lateral, longitudinal and vertical directions were 0.00 ± 1.79 mm, -0.55± 2.17 mm and 0.38 ± 1.43 mm, corresponding to 3.80 mm, 4.20 mm, and 2.46 mm as the CTV-PTV margin in these directions. The grade 0, 1, 2 and 3 acute skin toxicity was 2.7%, 76.7%, 13.8% and 6.8%; the grade 0, 1, 2 and 3 acute mucositis was 1.4%, 32.9%, 60.2% and 5.5%; and the grade 0, 1, 2 and 3 acute xerostomia was 4.0%, 45.3%, 50.7% and 0, respectively. Only 5 patients suffered from grade 3 or 4 leucopenia. Xerostomia resolved with passing of time and no grade 2 or more xerostomia was noted one year after radiation therapy. Concurrent chemotherapy significantly increased incidence of severe acute toxicities. One month after radiation therapy the remission rates of primary tumor and positive lymph nodes were 91.8% and 98.1%, respectively. The median follow-up was 14.8 months. The one-year relapse-free survival, distant metastasis-free survival and overall survival was 95.6%, 97.2% and 94.8%, respectively. In conclusion, the incidence of severe acute toxicities and late xerostomia was relatively infrequent for NPC patients treated with helical tomotherapy. The long-term clinical outcome for these patients is under investigation.
In-vivo fluorescence detection of breast cancer growth factor receptors by fiber-optic probe
NASA Astrophysics Data System (ADS)
Bustamante, Gilbert; Wang, Bingzhi; DeLuna, Frank; Sun, LuZhe; Ye, Jing Yong
2018-02-01
Breast cancer treatment options often include medications that target the overexpression of growth factor receptors, such as the proto-oncogene human epidermal growth factor receptor 2 (HER2/neu) and epidermal growth factor receptor (EGFR) to suppress the abnormal growth of cancerous cells and induce cancer regression. Although effective, certain treatments are toxic to vital organs, and demand assurance that the pursued receptor is present at the tumor before administration of the drug. This requires diagnostic tools to provide tumor molecular signatures, as well as locational information. In this study, we utilized a fiber-optic probe to characterize in vivo HER2 and EGFR overexpressed tumors through the fluorescence of targeted dyes. HER2 and EGFR antibodies were conjugated with ICG-Sulfo-OSu and Alexa Fluor 680, respectively, to tag BT474 (HER2+) and MDA-MB-468 (EGFR+) tumors. The fiber was inserted into the samples via a 30-gauge needle. Different wavelengths of a supercontinuum laser were selected to couple into the fiber and excite the corresponding fluorophores in the samples. The fluorescence from the dyes was collected through the same fiber and quantified by a time-correlated single photon counter. Fluorescence at different antibody-dye concentrations was measured for calibration. Mice with subcutaneous HER2+ and/or EGFR+ tumors received intravenous injections of the conjugates and were later probed at the tumor sites. The measured fluorescence was used to distinguish between tumor types and to calculate the concentration of the antibody-dye conjugates, which were detectable at levels as low as 40 nM. The fiber-optic probe presents a minimally invasive instrument to characterize the molecular signatures of breast cancer in vivo.
Crisp, Jessica L.; Vera, David R.; Tsien, Roger Y.; Ting, Richard
2016-01-01
New protecting group chemistry is used to greatly simplify imaging probe production. Temperature and organic solvent-sensitive biomolecules are covalently attached to a biotin-bearing dioxaborolane, which facilitates antibody immobilization on a streptavidin-agarose solid-phase support. Treatment with aqueous fluoride triggers fluoride-labeled antibody release from the solid phase, separated from unlabeled antibody, and creates [18F]-trifluoroborate-antibody for positron emission tomography and near-infrared fluorescent (PET/NIRF) multimodality imaging. This dioxaborolane-fluoride reaction is bioorthogonal, does not inhibit antigen binding, and increases [18F]-specific activity relative to solution-based radiosyntheses. Two applications are investigated: an anti-epithelial cell adhesion molecule (EpCAM) monoclonal antibody (mAb) that labels prostate tumors and Cetuximab, an anti-epidermal growth factor receptor (EGFR) mAb (FDA approved) that labels lung adenocarcinoma tumors. Colocalized, tumor-specific NIRF and PET imaging confirm utility of the new technology. The described chemistry should allow labeling of many commercial systems, diabodies, nanoparticles, and small molecules for dual modality imaging of many diseases. PMID:27064381
Rodriguez, Erik A; Wang, Ye; Crisp, Jessica L; Vera, David R; Tsien, Roger Y; Ting, Richard
2016-05-18
New protecting group chemistry is used to greatly simplify imaging probe production. Temperature and organic solvent-sensitive biomolecules are covalently attached to a biotin-bearing dioxaborolane, which facilitates antibody immobilization on a streptavidin-agarose solid-phase support. Treatment with aqueous fluoride triggers fluoride-labeled antibody release from the solid phase, separated from unlabeled antibody, and creates [(18)F]-trifluoroborate-antibody for positron emission tomography and near-infrared fluorescent (PET/NIRF) multimodality imaging. This dioxaborolane-fluoride reaction is bioorthogonal, does not inhibit antigen binding, and increases [(18)F]-specific activity relative to solution-based radiosyntheses. Two applications are investigated: an anti-epithelial cell adhesion molecule (EpCAM) monoclonal antibody (mAb) that labels prostate tumors and Cetuximab, an anti-epidermal growth factor receptor (EGFR) mAb (FDA approved) that labels lung adenocarcinoma tumors. Colocalized, tumor-specific NIRF and PET imaging confirm utility of the new technology. The described chemistry should allow labeling of many commercial systems, diabodies, nanoparticles, and small molecules for dual modality imaging of many diseases.
Automated Antibody De Novo Sequencing and Its Utility in Biopharmaceutical Discovery
NASA Astrophysics Data System (ADS)
Sen, K. Ilker; Tang, Wilfred H.; Nayak, Shruti; Kil, Yong J.; Bern, Marshall; Ozoglu, Berk; Ueberheide, Beatrix; Davis, Darryl; Becker, Christopher
2017-05-01
Applications of antibody de novo sequencing in the biopharmaceutical industry range from the discovery of new antibody drug candidates to identifying reagents for research and determining the primary structure of innovator products for biosimilar development. When murine, phage display, or patient-derived monoclonal antibodies against a target of interest are available, but the cDNA or the original cell line is not, de novo protein sequencing is required to humanize and recombinantly express these antibodies, followed by in vitro and in vivo testing for functional validation. Availability of fully automated software tools for monoclonal antibody de novo sequencing enables efficient and routine analysis. Here, we present a novel method to automatically de novo sequence antibodies using mass spectrometry and the Supernovo software. The robustness of the algorithm is demonstrated through a series of stress tests.
Grinberg, Yehudit; Benhar, Itai
2017-01-01
Third-generation immunotoxins are composed of a human, or humanized, targeting moiety, usually a monoclonal antibody or an antibody fragment, and a non-human effector molecule. Due to the non-human origin of the cytotoxic domain, these molecules stimulate potent anti-drug immune responses, which limit treatment options. Efforts are made to deimmunize such immunotoxins or to combine treatment with immunosuppression. An alternative approach is using the so-called “human cytotoxic fusion proteins”, in which antibodies are used to target human effector proteins. Here, we present three relevant approaches for reducing the immunogenicity of antibody-targeted protein therapeutics: (1) reducing the immunogenicity of the bacterial toxin, (2) fusing human cytokines to antibodies to generate immunocytokines and (3) addressing the immunogenicity of the targeting antibodies. PMID:28574434
Banisadr, Arsham; Safdari, Yaghoub; Kianmehr, Anvarsadat; Pourafshar, Mahdieh
2018-04-03
The aim of this study was to produce a humanized single chain antibody (scFv) as a potential improved product design to target EGFR (Epidermal Growth Factor Receptor) overexpressing cancer cells. To this end, CDR loops of cetuximab (an FDA-approved anti-EGFR antibody) were grafted on framework regions derived from type 3 (VH3 and VL3 kappa) human germline sequences to obtain recombinant VH and VL domainslinked together with a flexible linker [(Gly 4 Ser) 3 ] to form a scFv. Codon optimized synthetic gene encoding the scFv (with NH2-VH-linker-VL-COOH orientation) was expressed in E. coli Origami™ 2(DE3) cells and the resultant scFv purified by using Ni-NTA affinity chromatography. The scFv, called cet.Hum scFv, was evaluated in ELISA and immunoblot to determine whether it can recognize EGFR. The scFv was able to recognize EGFR over-expressing cancer cells (A-431) but failed to detect cancer cells with low levels of EGFR (MCF-7 cells). Although the affinity of the scFv forA-431 cells was 9 fold lower than that of cetuximab, it was strong enough to recognize these cells. Considering its ability to bind EGFR molecules, the scFv may exhibit a potential application for the detection of EGFR-overexpressing cancer cells.
Yao, Cuiping; Rudnitzki, Florian; Hüttmann, Gereon; Zhang, Zhenxi; Rahmanzadeh, Ramtin
2017-01-01
Purpose Pulsed-laser irradiation of light-absorbing gold nanoparticles (AuNPs) attached to cells transiently increases cell membrane permeability for targeted molecule delivery. Here, we targeted EGFR on the ovarian carcinoma cell line OVCAR-3 with AuNPs. In order to optimize membrane permeability and to demonstrate molecule delivery into adherent OVCAR-3 cells, we systematically investigated different experimental conditions. Materials and methods AuNPs (30 nm) were functionalized by conjugation of the antibody cetuximab against EGFR. Selective binding of the particles was demonstrated by silver staining, multiphoton imaging, and fluorescence-lifetime imaging. After laser irradiation, membrane permeability of OVCAR-3 cells was studied under different conditions of AuNP concentration, cell-incubation medium, and cell–AuNP incubation time. Membrane permeability and cell viability were evaluated by flow cytometry, measuring propidium iodide and fluorescein isothiocyanate–dextran uptake. Results Adherently growing OVCAR-3 cells can be effectively targeted with EGFR-AuNP. Laser irradiation led to successful permeabilization, and 150 kDa dextran was successfully delivered into cells with about 70% efficiency. Conclusion Antibody-targeted and laser-irradiated AuNPs can be used to deliver molecules into adherent cells. Efficacy depends not only on laser parameters but also on AuNP:cell ratio, cell-incubation medium, and cell–AuNP incubation time. PMID:28848345
Wu, Shou-Cheng; Chen, Yu-Jen; Wang, Hsiang-Ching; Chou, Min-Yuan; Chang, Teng-Yuan; Yuan, Shyng-Shiou; Chen, Chiao-Yun; Hou, Ming-Feng; Hsu, John Tsu-An; Wang, Yun-Ming
2016-01-01
The overexpression of HER2/neu and EGFR receptors plays important roles in tumorigenesis and tumor progression. Targeting these two receptors simultaneously can have a more widespread application in early diagnosis of cancers. In this study, a new multifunctional nanoparticles (MnMEIO-CyTE777-(Bis)-mPEG NPs) comprising a manganese-doped iron oxide nanoparticle core (MnMEIO), a silane-amino functionalized poly(ethylene glycol) copolymer shell, a near infrared fluorescence dye (CyTE777), and a covalently conjugated anti-HER2/neu and anti-EGFR receptors bispecific antibody (Bis) were successfully developed. In vitro T2-weighted MR imaging studies in SKBR-3 and A431 tumor cells incubated with MnMEIO-CyTE777-(Bis)-mPEG NPs showed - 94.8 ± 3.8 and - 84.1 ± 2.8% negative contrast enhancement, respectively. Pharmacokinetics study showed that MnMEIO-CyTE777-(Bis)-mPEG NPs were eliminated from serum with the half-life of 21.3 mins. In vivo MR imaging showed that MnMEIO-CyTE777-(Bis)-mPEG NPs could specifically and effectively target to HER2/neu- and EGFR-expressing tumors in mice; the relative contrast enhancements were 11.8 (at 2 hrs post-injection) and 61.5 (at 24 hrs post-injection) fold higher in SKBR-3 tumors as compared to Colo-205 tumors. T2-weighted MR and optical imaging studies revealed that the new contrast agent (MnMEIO-CyTE777-(Bis)-mPEG NPs) could specifically and effectively target to HER2/neu- and/or EGFR-expressing tumors. Our results demonstrate that MnMEIO-CyTE777-(Bis)-mPEG NPs are able to recognize the tumors expressing both HER2/neu and/or EGFR, and may provide a novel molecular imaging tool for early diagnosis of cancers expressing HER2/neu and/or EGFR. PMID:26722378
Uses of monoclonal antibody 8H9
Cheung, Nai-Kong V
2013-08-06
This invention provides a composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a suitable carrier. This invention provides a pharmaceutical composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a pharmaceutically acceptable carrier. This invention also provides an antibody other than the monoclonal antibody 8H9 comprising the complementary determining regions of monoclonal antibody 8H9 or a derivative thereof, capable of binding to the same antigen as the monoclonal antibody 8H9. This invention provides a substance capable of competitively inhibiting the binding of monoclonal antibody 8H9. This invention also provides an isolated scFv of monoclonal antibody 8H9 or a derivative thereof. This invention also provides the 8H9 antigen. This invention also provides a method of inhibiting the growth of tumor cells comprising contacting said tumor cells with an appropriate amount of monoclonal antibody 8H9 or a derivative thereof.
Uses of monoclonal antibody 8H9
Cheung, Nai-Kong V.
2010-06-15
This invention provides a composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a suitable carrier. This invention provides a pharmaceutical composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a pharmaceutically acceptable carrier. This invention also provides an antibody other than the monoclonal antibody 8H9 comprising the complementary determining regions of monoclonal antibody 8H9 or a derivative thereof, capable of binding to the same antigen as the monoclonal antibody 8H9. This invention provides a substance capable of competitively inhibiting the binding of monoclonal antibody 8H9. This invention also provides an isolated scFv of monoclonal antibody 8H9 or a derivative thereof. This invention also provides the 8H9 antigen. This invention also provides a method of inhibiting the growth of tumor cells comprising contacting said tumor cells with an appropriate amount of monoclonal antibody 8H9 or a derivative thereof.
Uses of monoclonal antibody 8H9
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, Nai-Kong V.
This invention provides a composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a suitable carrier. This invention provides a pharmaceutical composition comprising an effective amount of monoclonal antibody 8H9 or a derivative thereof and a pharmaceutically acceptable carrier. This invention also provides an antibody other than the monoclonal antibody 8H9 comprising the complementary determining regions of monoclonal antibody 8H9 or a derivative thereof, capable of binding to the same antigen as the monoclonal antibody 8H9. This invention provides a substance capable of competitively inhibiting the binding of monoclonal antibody 8H9. This invention also providesmore » an isolated scFv of monoclonal antibody 8H9 or a derivative thereof. This invention also provides the 8H9 antigen. This invention also provides a method of inhibiting the growth of tumor cells comprising contacting said tumor cells with an appropriate amount of monoclonal antibody 8H9 or a derivative thereof.« less
Leighton, Philip A; Schusser, Benjamin; Yi, Henry; Glanville, Jacob; Harriman, William
2015-01-01
Chicken immune responses to human proteins are often more robust than rodent responses because of the phylogenetic relationship between the different species. For discovery of a diverse panel of unique therapeutic antibody candidates, chickens therefore represent an attractive host for human-derived targets. Recent advances in monoclonal antibody technology, specifically new methods for the molecular cloning of antibody genes directly from primary B cells, has ushered in a new era of generating monoclonal antibodies from non-traditional host animals that were previously inaccessible through hybridoma technology. However, such monoclonals still require post-discovery humanization in order to be developed as therapeutics. To obviate the need for humanization, a modified strain of chickens could be engineered to express a human-sequence immunoglobulin variable region repertoire. Here, human variable genes introduced into the chicken immunoglobulin loci through gene targeting were evaluated for their ability to be recognized and diversified by the native chicken recombination machinery that is present in the B-lineage cell line DT40. After expansion in culture the DT40 population accumulated genetic mutants that were detected via deep sequencing. Bioinformatic analysis revealed that the human targeted constructs are performing as expected in the cell culture system, and provide a measure of confidence that they will be functional in transgenic animals.
Cetuximab in locally advanced head-and-neck cancer: defining the population
Ho, C.
2010-01-01
Encouraging data for targeted therapy in head-and-neck squamous cell carcinoma are opening new options for treatment. Phase III trials of cetuximab, an antibody directed against the epidermal growth factor receptor (egfr) have demonstrated benefit in the locally advanced and metastatic settings. Recognizing the importance of emerging therapies, Cancer Care Ontario published guideline recommendations for egfr-targeted therapy in stage iii and iv head-and-neck cancer. The present paper takes a further look at the population for whom an offer of cetuximab therapy may be appropriate. PMID:20697514
AFIR: A Dimensionless Potency Metric for Characterizing the Activity of Monoclonal Antibodies
Ramakrishna, R
2017-01-01
For monoclonal antibody (mAb) drugs, soluble targets may accumulate several thousand fold after binding to the drug. Time course data of mAb and total target is often collected and, although free target is more closely related to clinical effect, it is difficult to measure. Therefore, mathematical models of this data are used to predict target engagement. In this article, a “potency factor” is introduced as an approximation for the model‐predicted target inhibition. This potency factor is defined to be the time‐Averaged Free target concentration to Initial target concentration Ratio (AFIR), and it depends on three key quantities: the average drug concentration at steady state; the binding affinity; and the degree of target accumulation. AFIR provides the intuition for how changes in dosing regimen and binding affinity affect target capture and AFIR can be used to predict the druggability of new targets and the expected benefits of more potent, second‐generation mAbs. PMID:28375563
Saito, Ryoko; Miki, Yasuhiro; Ishida, Naoya; Inoue, Chihiro; Kobayashi, Masayuki; Hata, Shuko; Yamada-Okabe, Hisafumi; Okada, Yoshinori; Sasano, Hironobu
2018-02-18
Epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) resistance is one of the most important problems in lung cancer therapy. Lung adenocarcinoma with EGFR-TKI resistance was reported to have higher abilities of invasion and migration than cancers sensitive to EGFR-TKI, but the function of matrix metalloproteinases (MMPs) has not been explored in EGFR-TKI-resistant lung adenocarcinoma. This study aims to clarify the significance of MMP-1 in EGFR-TKI-resistant lung adenocarcinoma. From the results of in vitro studies of migration and invasion assays using EGFR-TKI-sensitive and -resistant cell lines and phosphorylation antibody arrays using EGF and rapamycin, we first demonstrate that overexpression of MMP-1, which might follow activation of a mammalian target of rapamycin (mTOR) pathway, plays an important role in the migration and invasion abilities of EGFR-TKI-resistant lung adenocarcinoma. Additionally, immunohistochemical studies using 89 cases of lung adenocarcinoma demonstrate that high expression of MMP-1 is significantly correlated with poor prognosis and factors such as smoking history and the subtype of invasive mucinous adenocarcinoma. These are consistent with the results of this in vitro study. To conclude, this study provides insights into the development of a possible alternative therapy manipulating MMP-1 and the mTOR signaling pathway in EGFR-TKI-resistant lung adenocarcinoma.
Generation and Characterization of Siglec-F-Specific Monoclonal Antibodies.
Shahmohammadi-Farid, Sima; Ghods, Roya; Jeddi-Tehrani, Mahmood; Bayat, Ali-Ahmad; Mojtabavi, Nazanin; Razavi, Alireza; Zarnani, Amir-Hassan
2017-12-01
Siglec-F (SF) is a surface glycoprotein expressed by mouse eosinophils and induces caspase- and mitochondria-dependent apoptosis after engagement with its cognate ligand or specific antibodies. This targeting eosinophils by monoclonal antibodies may help diverse diseases associated with increased frequency of eosinophils including allergy and asthma. In this paper, production of murine and rat monoclonal antibodies (mAbs) against Siglec-F has been addressed. Balb/c mice were immunized with siglec-F1 (SF1) and siglec-F2 (SF2) synthetic peptides conjugated to a carrier protein. Rats were immunized with Chinese hamster ovary CHO cells overexpressing Siglec-F (CHO-SF) or with Siglec-F-human immunoglobulin FC fusion protein (CHO-SF-Ig). Hybridomas were produced by standard protocol and screened for their reactivity by enzyme-linked immunosorbent assay (ELISA), western blotting (WB), and flow cytometry. In parallel, polyclonal antibodies were generated in New Zealand White rabbits immunized with SF1 and SF2 peptides. Three mouse and three rat mAbs were generated against synthetic peptides and SF-Ig, respectively. All mouse monoclonal and rabbit polyclonal antibodies reacted well with immunizing molecules in ELISA and detected specific band of Siglec-F in WB. However, they failed to detect native molecule in flow cytometry analysis. Quite the contrary, rat mAbs did not reacted with the denatured protein in WB, instead exhibited significant reactivity with CHO-SF cells in flow cytometry. Based on the heavily glycosylated nature of Siglec-F, it seems that generation of anti-SF antibodies able to detect native protein needs a properly folded molecule for immunization. Monoclonal antibodies reported here are invaluable tools for studying linear and conformation epitopes of SF and tracing mouse eosinophils.
Antibody Therapeutics in Oncology.
Wold, Erik D; Smider, Vaughn V; Felding, Brunhilde H
2016-03-01
One of the newer classes of targeted cancer therapeutics is monoclonal antibodies. Monoclonal antibody therapeutics are a successful and rapidly expanding drug class due to their high specificity, activity, favourable pharmacokinetics, and standardized manufacturing processes. Antibodies are capable of recruiting the immune system to attack cancer cells through complement-dependent cytotoxicity or antibody dependent cellular cytotoxicity. In an ideal scenario the initial tumor cell destruction induced by administration of a therapeutic antibody can result in uptake of tumor associated antigens by antigen-presenting cells, establishing a prolonged memory effect. Mechanisms of direct tumor cell killing by antibodies include antibody recognition of cell surface bound enzymes to neutralize enzyme activity and signaling, or induction of receptor agonist or antagonist activity. Both approaches result in cellular apoptosis. In another and very direct approach, antibodies are used to deliver drugs to target cells and cause cell death. Such antibody drug conjugates (ADCs) direct cytotoxic compounds to tumor cells, after selective binding to cell surface antigens, internalization, and intracellular drug release. Efficacy and safety of ADCs for cancer therapy has recently been greatly advanced based on innovative approaches for site-specific drug conjugation to the antibody structure. This technology enabled rational optimization of function and pharmacokinetics of the resulting conjugates, and is now beginning to yield therapeutics with defined, uniform molecular characteristics, and unprecedented promise to advance cancer treatment.
Genßler, Sabrina; Burger, Michael C; Zhang, Congcong; Oelsner, Sarah; Mildenberger, Iris; Wagner, Marlies; Steinbach, Joachim P; Wels, Winfried S
2016-04-01
Epidermal growth factor receptor (EGFR) and its mutant form EGFRvIII are overexpressed in a large proportion of glioblastomas (GBM). Immunotherapy with an EGFRvIII-specific vaccine has shown efficacy against GBM in clinical studies. However, immune escape by antigen-loss variants and lack of control of EGFR wild-type positive clones limit the usefulness of this approach. Chimeric antigen receptor (CAR)-engineered natural killer (NK) cells may represent an alternative immunotherapeutic strategy. For targeting to GBM, we generated variants of the clinically applicable human NK cell line NK-92 that express CARs carrying a composite CD28-CD3ζ domain for signaling, and scFv antibody fragments for cell binding either recognizing EGFR, EGFRvIII, or an epitope common to both antigens. In vitro analysis revealed high and specific cytotoxicity of EGFR-targeted NK-92 against established and primary human GBM cells, which was dependent on EGFR expression and CAR signaling. EGFRvIII-targeted NK-92 only lysed EGFRvIII-positive GBM cells, while dual-specific NK cells expressing a cetuximab-based CAR were active against both types of tumor cells. In immunodeficient mice carrying intracranial GBM xenografts either expressing EGFR, EGFRvIII or both receptors, local treatment with dual-specific NK cells was superior to treatment with the corresponding monospecific CAR NK cells. This resulted in a marked extension of survival without inducing rapid immune escape as observed upon therapy with monospecific effectors. Our results demonstrate that dual targeting of CAR NK cells reduces the risk of immune escape and suggest that EGFR/EGFRvIII-targeted dual-specific CAR NK cells may have potential for adoptive immunotherapy of glioblastoma.
Stress-induced molecules MICA as potential target for radioimmunotherapy of cancer
NASA Astrophysics Data System (ADS)
Abakushina, E. V.; Anokhin, Yu N.; Abakushin, D. N.; Kaprin, A. D.
2017-01-01
Improving the treatment of cancer, increasing their effectiveness and safety is the main objective in the medicine. Molecular nuclear medicine plays an important role in the therapy of cancer. Radioimmunotherapy (RIT) involves the use of antibodies conjugated with therapeutic radionuclides. More often for RIT use the radiolabeled monoclonal antibodies against tumor-associated antigens. Encouraging results have been achieved with this technology in the management of hematologic malignancies. On the contrary, solid tumors have been less responsive. Despite these encouraging results, new potential target for radioimmunodetection and RIT should be found. It was found to increase the level of tumor-associated molecules MICA in the serum of cancer patients. Use of anti-MICA monoclonal antibodies capable a specifically attach to cancer cell via NKG2D ligands and destroy it, is a very promising direction, both therapeutic and diagnostic standpoint.
Radioimmunotherapy with monoclonal antibodies. A new horizon in nuclear medicine therapy?
Sautter-Bihl, M L; Bihl, H
1994-08-01
Radioimmunotherapy (RIT) with labeled tumor-associated monoclonal antibodies (MAbs) is a promising concept in oncology, which essentially consists of biological targeting of ionising radiation to tumors. Some encouraging clinical results have been achieved with RIT. However, there are severe problems associated with both understanding the mechanisms and predicting the effectiveness of RIT. This paper reviews the results of some major clinical trials, especially in malignant lymphomas and in some solid tumors. Furthermore, problems with RIT are described such as the significance of dose inhomogeneity and dose-rate effects, the appropriate dose calculation method, the toxicity of RIT and the development of HAMAs. It is suggested that newer technologies including chimeric antibodies, multiple-step targeting protocols, bone marrow transplantation, parallel application of external radiation, heat or bioreductive drugs will enable RIT to make an essential contribution to strategies for combating cancer.
Anti-MUC1 antibody inhibits EGF receptor signaling in cancer cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hisatsune, Akinori, E-mail: hisatsun@kumamoto-u.ac.jp; Nakayama, Hideki; Kawasaki, Mitsuru
2011-02-18
Research highlights: {yields} We identified changes in the expression and function of EGFR by anti-MUC1 antibody. {yields} An anti-MUC1 antibody GP1.4 decreased EGFR from cell surface by internalization. {yields} GP1.4 specifically inhibited ERK signaling triggered EGF-EGFR signaling pathway. {yields} Internalization of EGFR was dependent on the presence of MUC1 on cell surface. {yields} GP1.4 significantly inhibited EGF-dependent cancer cell proliferation and migration. -- Abstract: MUC1 is a type I transmembrane glycoprotein aberrantly overexpressed in various cancer cells. High expression of MUC1 is closely associated with cancer progression and metastasis, leading to poor prognosis. We previously reported that MUC1 is internalizedmore » by the binding of the anti-MUC1 antibody, from the cell surface to the intracellular region via the macropinocytotic pathway. Since MUC1 is closely associated with ErbBs, such as EGF receptor (EGFR) in cancer cells, we examined the effect of the anti-MUC1 antibody on EGFR trafficking. Our results show that: (1) anti-MUC1 antibody GP1.4, but not another anti-MUC1 antibody C595, triggered the internalization of EGFR in pancreatic cancer cells; (2) internalization of EGFR by GP1.4 resulted in the inhibition of ERK phosphorylation by EGF stimulation, in a MUC1 dependent manner; (3) inhibition of ERK phosphorylation by GP1.4 resulted in the suppression of proliferation and migration of pancreatic cancer cells. We conclude that the internalization of EGFR by anti-MUC1 antibody GP1.4 inhibits the progression of cancer cells via the inhibition of EGFR signaling.« less
Human antibody technology and the development of antibodies against cytomegalovirus.
Ohlin, Mats; Söderberg-Nauclér, Cecilia
2015-10-01
Cytomegalovirus (CMV) is a virus that causes chronic infections in a large set of the population. It may cause severe disease in immunocompromised individuals, is linked to immunosenescence and implied to play an important role in the pathogenesis of cardiovascular diseases and cancer. Modulation of the immune system's abilities to manage the virus represent a highly viable therapeutic option and passive immunotherapy with polyclonal antibody preparations is already in clinical use. Defined monoclonal antibodies offer many advantages over polyclonal antibodies purified from serum. Human CMV-specific monoclonal antibodies have consequently been thoroughly investigated with respect to their potential in the treatment of diseases caused by CMV. Recent advances in human antibody technology have substantially expanded the breadth of antibodies for such applications. This review summarizes the fundamental basis for treating CMV disease by use of antibodies, the basic technologies to be used to develop such antibodies, and relevant human antibody specificities available to target this virus. Copyright © 2015 Elsevier Ltd. All rights reserved.
[Techniques for rapid production of monoclonal antibodies for use with antibody technology].
Kamada, Haruhiko
2012-01-01
A monoclonal antibody (Mab), due to its specific binding ability to a target protein, can potentially be one of the most useful tools for the functional analysis of proteins in recent proteomics-based research. However, the production of Mab is a very time-consuming and laborious process (i.e., preparation of recombinant antigens, immunization of animals, preparation of hybridomas), making it the rate-limiting step in using Mabs in high-throughput proteomics research, which heavily relies on comprehensive and rapid methods. Therefore, there is a great demand for new methods to efficiently generate Mabs against a group of proteins identified by proteome analysis. Here, we describe a useful method called "Antibody proteomic technique" for the rapid generations of Mabs to pharmaceutical target, which were identified by proteomic analyses of disease samples (ex. tumor tissue, etc.). We also introduce another method to find profitable targets on vasculature, which is called "Vascular proteomic technique". Our results suggest that this method for the rapid generation of Mabs to proteins may be very useful in proteomics-based research as well as in clinical applications.
Adawi, Azmi; Neville, Lewis F
2012-09-01
A rapid ELISA employing intact Pseudomonas aeruginosa (PA) is described that allows discrimination between strains harboring flagellin type a or b. All 52 PA strains known to harbor flagellin type b were positive in this ELISA when screened with a fully human monoclonal antibody (LST-007) targeting flagellin type b. Completion of this assay in only 6 h, from picking a single bacterial colony to a colorimetric product, could easily be adapted to a clinical laboratory setting and permit the appropriate choice of therapeutic monoclonal antibody versus its homologous flagellin target in PA-infected patients. Copyright © 2012 Elsevier Inc. All rights reserved.
Morgan, J.; Gray, A. G.; Huehns, E. R.
1989-01-01
A partially purified fraction of the water soluble photosensitive dye sulphonated aluminium phthalocyanine (AlSPc) was encapsulated in liposomes which were then linked to a targeting monoclonal antibody 791T/36 using a heterobifunctional linking agent. The photocytotoxic effects of the liposomes were determined on two cell lines bearing an antigen with which the targeting antibody binds: 791T, an osteosarcoma and C170, a colorectal carcinoma; and a control cell line not bearing the antigen; DW-BCL, an Epstein-Barr virus immortalised B-cell line. Antibody dependent cytotoxicity was observed in 791T and C170 cells and was proportional to the number of antigens on the cells, the AlSPc concentration and the time of exposure to activating red light. No significant toxicity was seen using untargeted liposomes, control cells or free AlSPc fraction under similar conditions. Targeted cells and controls kept in the dark also showed no significant toxicity. A possible mechanism of action is postulated and simple adaptations which demonstrate the versatility of the model are discussed. Some suggestions as to the clinical situations to which this system might be applied in the form of photodynamic therapy (PDT) are made. PMID:2930700
Carlsson, J; Shen, L; Xiang, J; Xu, J; Wei, Q
2013-01-01
The epidermal growth factor receptor (EGFR) family members are potential targets for therapy using extra-cellular domain receptor binding agents, such as the antibodies trastuzumab and cetuximab, or antibodies labeled with therapeutically useful radionuclides or toxins. This is especially the case when the tumor cells are resistant to chemotherapy and tyrosine kinase inhibitors. Studies concerning the expression of these receptors in prostate cancer vary in the literature, possibly due to differences in patient inclusion, sample preparations and scoring criteria. In our study, EGFR, HER2 and HER3 expression was analyzed in prostate cancer samples from primary tumors and corresponding lymph node metastases from 12 patients. The expression of HER2 and EGFR was scored from immunohistochemical preparations and the HercepTest criteria (0, 1+, 2+ or 3+), while HER3 expression was scored as no, weak or strong staining. There were 5 EGFR-positive (2+ or 3+) primary tumors and 6 EGFR-positive lymph node metastases, and there was EGFR upregulation in one metastasis. Only 4 of the 12 patients had marked HER2 expression (2+ or 3+) in their primary tumors and there was one downregulation and 5 cases of upregulation in the metastases. Thus, a total of 8 out of 12 analyzed metastases were HER2-positive. Of the 12 primary tumors, 9 expressed HER3 while only 2 of the lymph node metastases expressed recognizable HER3 staining, so 7 metastases appeared to have downregulated HER3 expression. In one of the primary tumors there was positive co-expression of EGFR and HER2, while this co-expression was observed in 4 of the metastases. Thus, there were tendencies for upregulation of HER2, increased co-expression of EGFR and HER2 and downregulation of HER3 in the prostate cancer lymph node metastases in comparison to the primary tumors. The results are encouraging for studies involving more patients. Possible strategies for EGFR- and HER2-targeted therapy are briefly discussed in the present study, especially with regard to the expression and co-expression of EGFR and HER2 in metastases.
French, Deborah; Smith, Andrew; Powers, Martin P; Wu, Alan H B
2011-08-17
Binding of a ligand to the epidermal growth factor receptor (EGFR) stimulates various intracellular signaling pathways resulting in cell cycle progression, proliferation, angiogenesis and apoptosis inhibition. KRAS is involved in signaling pathways including RAF/MAPK and PI3K and mutations in this gene result in constitutive activation of these pathways, independent of EGFR activation. Seven mutations in codons 12 and 13 of KRAS comprise around 95% of the observed human mutations, rendering monoclonal antibodies against EGFR (e.g. cetuximab and panitumumab) useless in treatment of colorectal cancer. KRAS mutation testing by two different methodologies was compared; Sanger sequencing and AutoGenomics INFINITI® assay, on DNA extracted from colorectal cancers. Out of 29 colorectal tumor samples tested, 28 were concordant between the two methodologies for the KRAS mutations that were detected in both assays with the INFINITI® assay detecting a mutation in one sample that was indeterminate by Sanger sequencing and a third methodology; single nucleotide primer extension. This study indicates the utility of the AutoGenomics INFINITI® methodology in a clinical laboratory setting where technical expertise or access to equipment for DNA sequencing does not exist. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Yanlan; Chen, Yicheng; Ding, Guoqing
The hepatocyte growth factor and its receptor c-Met are correlated with castration-resistance in prostate cancer. Although HGF has been considered as an attractive target for therapeutic antibodies, the lack of cross-reactivity of monoclonal antibodies with human/mouse HGFs is a major obstacle in preclinical developments. We generated a panel of anti-HGF RabMAbs either blocking HGF/c-Met interaction or inhibiting c-Met phosphorylation. We selected one RabMAb with mouse cross-reactivity and demonstrated that it blocked HGF-stimulated downstream activation in PC-3 and DU145 cells. Anti-HGF RabMAb inhibited not only the growth of PC-3 cells but also HGF-dependent proliferation in HUVECs. We further demonstrated the efficacymore » and potency of the anti-HGF RabMAb in tumor xenograft mice models. Through these in vitro and in vivo experiments, we explored a novel therapeutic antibody for advanced prostate cancer. - Highlights: • HGF is an attractive target for castration-refractory prostate cancer. • We generated and characterized a panel of anti-HGF rabbit monoclonal antibodies. • More than half of these anti-HGF RabMAbs was cross-reactive with mouse HGF. • Anti-HGF RabMAb blocks HGF-stimulated phosphorylation and cell growth in vitro. • Anti-HGF RabMAb inhibits tumor growth and angiogenesis in xenograft mice.« less
De Schryver, Marjorie; Cappoen, Davie; Elewaut, Dirk; Nauwynck, Hans J; Maes, Louis; Caljon, Guy; Cos, Paul; Delputte, Peter L
2017-02-01
Sialoadhesin (Sn) is a surface receptor expressed on macrophages in steady state conditions, but during inflammation, Sn can be upregulated both on macrophages and on circulating monocytes. It was shown for different species that Sn becomes internalized after binding with monoclonal antibodies. These features suggest that Sn is a potential target for immunotherapies. In this study, human and mouse macrophages were treated with anti-Sn monoclonal antibodies or F(ab') 2 fragments and the effect of their binding to Sn on phagocytosis was analyzed. Binding of antibodies to Sn resulted in delayed and reduced phagocytosis of fluorescent beads. No effect was observed on Fc-mediated phagocytosis or phagocytosis of bacteria by human macrophages. In contrast, an enhanced phagocytosis of bacteria by mouse macrophages was detected. These results showed that stimulation of Sn could have different effects on macrophage phagocytosis, depending both on the type of phagocytosis and cellular background. Copyright © 2016 Elsevier Inc. All rights reserved.
Auerbach, Marcy R.; Yan, Donghong; Vij, Rajesh; Hongo, Jo-Anne; Nakamura, Gerald; Vernes, Jean-Michel; Meng, Y. Gloria; Lein, Samantha; Chan, Pamela; Ross, Jed; Carano, Richard; Deng, Rong; Lewin-Koh, Nicholas; Xu, Min; Feierbach, Becket
2014-01-01
Human cytomegalovirus (HCMV) is the most common cause of congenital virus infection. Congenital HCMV infection occurs in 0.2–1% of all births, and causes birth defects and developmental abnormalities, including sensorineural hearing loss and developmental delay. Several key studies have established the guinea pig as a tractable model for the study of congenital HCMV infection and have shown that polyclonal antibodies can be protective [1]–[3]. In this study, we demonstrate that an anti-guinea pig CMV (GPCMV) glycoprotein H/glycoprotein L neutralizing monoclonal antibody protects against fetal infection and loss in the guinea pig. Furthermore, we have delineated the kinetics of GPCMV congenital infection, from maternal infection (salivary glands, seroconversion, placenta) to fetal infection (fetus and amniotic fluid). Our studies support the hypothesis that a neutralizing monoclonal antibody targeting an envelope GPCMV glycoprotein can protect the fetus from infection and may shed light on the therapeutic intervention of HCMV congenital infection in humans. PMID:24722349
Rankin, Andrew; Klempner, Samuel J; Erlich, Rachel; Sun, James X; Grothey, Axel; Fakih, Marwan; George, Thomas J; Lee, Jeeyun; Ross, Jeffrey S; Stephens, Philip J; Miller, Vincent A; Ali, Siraj M; Schrock, Alexa B
2016-09-28
A KRAS mutation represented the first genomic biomarker to predict lack of benefit from anti-epidermal growth factor receptor (EGFR) antibody therapy in advanced colorectal cancer (CRC). Expanded RAS testing has further refined the treatment approach, but understanding of genomic alterations underlying primary and acquired resistance is limited and further study is needed. We prospectively analyzed 4,422 clinical samples from patients with advanced CRC, using hybrid-capture based comprehensive genomic profiling (CGP) at the request of the individual treating physicians. Comparison with prior molecular testing results, when available, was performed to assess concordance. We identified a RAS/RAF pathway mutation or amplification in 62% of cases, including samples harboring KRAS mutations outside of the codon 12/13 hotspot region in 6.4% of cases. Among cases with KRAS non-codon 12/13 alterations for which prior test results were available, 79 of 90 (88%) were not identified by focused testing. Of 1,644 RAS/RAF wild-type cases analyzed by CGP, 31% harbored a genomic alteration (GA) associated with resistance to anti-EGFR therapy in advanced CRC including mutations in PIK3CA, PTEN, EGFR, and ERBB2. We also identified other targetable GA, including novel kinase fusions, receptor tyrosine kinase amplification, activating point mutations, as well as microsatellite instability. Extended genomic profiling reliably detects alterations associated with lack of benefit to anti-EGFR therapy in advanced CRC, while simultaneously identifying alterations potentially important in guiding treatment. The use of CGP during the course of clinical care allows for the refined selection of appropriate targeted therapies and clinical trials, increasing the chance of clinical benefit and avoiding therapeutic futility. Comprehensive genomic profiling (CGP) detects diverse genomic alterations associated with lack of benefit to anti-epidermal growth factor receptor therapy in advanced colorectal cancer (CRC), as well as targetable alterations in many other genes. This includes detection of a broad spectrum of activating KRAS alterations frequently missed by focused molecular hotspot testing, as well as other RAS/RAF pathway alterations, mutations shown to disrupt antibody binding, RTK activating point mutations, amplifications, and rearrangements, and activating alterations in downstream effectors including PI3K and MEK1. The use of CGP in clinical practice is critical to guide appropriate selection of targeted therapies for patients with advanced CRC. ©AlphaMed Press.
Bernardo, Lidice; Amash, Alaa; Marjoram, Danielle; Lazarus, Alan H
2016-08-25
Although the prevention of hemolytic disease of the fetus and newborn is highly effective using polyclonal anti-D, a recombinant alternative is long overdue. Unfortunately, anti-D monoclonal antibodies have been, at best, disappointing. To determine the primary attribute defining an optimal antibody, we assessed suppression of murine red blood cell (RBC) immunization by single-monoclonal antibodies vs defined blends of subtype-matched antibodies. Allogeneic RBCs expressing the HOD antigen (hen egg lysozyme [HEL]-ovalbumin-human transmembrane Duffy(b)) were transfused into naïve mice alone or together with selected combinations of HEL-specific antibodies, and the resulting suppressive effect was assessed by evaluating the antibody response. Polyclonal HEL antibodies dramatically inhibited the antibody response to the HOD antigen, whereas single-monoclonal HEL antibodies were less effective despite the use of saturating doses. A blend of monoclonal HEL-specific antibodies reactive with different HEL epitopes significantly increased the suppressive effect, whereas a blend of monoclonal antibodies that block each other's binding to the HEL protein did not increase suppression. In conclusion, these data show that polyclonal antibodies are superior to monoclonal antibodies at suppressing the immune response to the HOD cells, a feature that can be completely recapitulated using monoclonal antibodies to different epitopes. © 2016 by The American Society of Hematology.
Targeting the Insulin-Like Growth Factor 1 Receptor in Ewing's Sarcoma: Reality and Expectations
Olmos, David; Martins, Ana Sofia; Jones, Robin L.; Alam, Salma; Scurr, Michelle; Judson, Ian R.
2011-01-01
Ewing's sarcoma family of tumours comprises a group of very aggressive diseases that are potentially curable with multimodality treatment. Despite the undoubted success of current treatment, approximately 30% of patients will relapse and ultimately die of disease. The insulin-like growth factor 1 receptor (IGF-1R) has been implicated in the genesis, growth, proliferation, and the development of metastatic disease in Ewing's sarcoma. In addition, IGF1-R has been validated, both in vitro and in vivo, as a potential therapeutic target in Ewing's sarcoma. Phase I studies of IGF-1R monoclonal antibodies reported several radiological and clinical responses in Ewing's sarcoma patients, and initial reports of several Phase II studies suggest that about a fourth of the patients would benefit from IGF-1R monoclonal antibodies as single therapy, with approximately 10% of patients achieving objective responses. Furthermore, these therapies are well tolerated, and thus far severe toxicity has been rare. Other studies assessing IGF-1R monoclonal antibodies in combination with traditional cytotoxics or other targeted therapies are expected. Despite, the initial promising results, not all patients benefit from IGF-1R inhibition, and consequently, there is an urgent need for the identification of predictive markers of response. PMID:21647361
Very large scale monoclonal antibody purification: the case for conventional unit operations.
Kelley, Brian
2007-01-01
Technology development initiatives targeted for monoclonal antibody purification may be motivated by manufacturing limitations and are often aimed at solving current and future process bottlenecks. A subject under debate in many biotechnology companies is whether conventional unit operations such as chromatography will eventually become limiting for the production of recombinant protein therapeutics. An evaluation of the potential limitations of process chromatography and filtration using today's commercially available resins and membranes was conducted for a conceptual process scaled to produce 10 tons of monoclonal antibody per year from a single manufacturing plant, a scale representing one of the world's largest single-plant capacities for cGMP protein production. The process employs a simple, efficient purification train using only two chromatographic and two ultrafiltration steps, modeled after a platform antibody purification train that has generated 10 kg batches in clinical production. Based on analyses of cost of goods and the production capacity of this very large scale purification process, it is unlikely that non-conventional downstream unit operations would be needed to replace conventional chromatographic and filtration separation steps, at least for recombinant antibodies.
NASA Astrophysics Data System (ADS)
Wang, Can; Bao, Chenchen; Liang, Shujing; Zhang, Lingxia; Fu, Hualin; Wang, Yutian; Wang, Kan; Li, Chao; Deng, Min; Liao, Qiande; Ni, Jian; Cui, Daxiang
2014-05-01
The successful development of safe and highly effective nanoprobes for targeted imaging and simultaneous therapy of in vivo gastric cancer is a great challenge. Herein we reported for the first time that anti-α-subunit of ATP synthase antibody, HAI-178 monoclonal antibody-conjugated fluorescent magnetic nanoparticles, was successfully used for targeted imaging and simultaneous therapy of in vivo gastric cancer. A total of 172 specimens of gastric cancer tissues were collected, and the expression of α-subunit of ATP synthase in gastric cancer tissues was investigated by immunohistochemistry method. Fluorescent magnetic nanoparticles were prepared and conjugated with HAI-178 monoclonal antibody, and the resultant HAI-178 antibody-conjugated fluorescent magnetic nanoparticles (HAI-178-FMNPs) were co-incubated with gastric cancer MGC803 cells and gastric mucous GES-1 cells. Gastric cancer-bearing nude mice models were established, were injected with prepared HAI-178-FMNPs via tail vein, and were imaged by magnetic resonance imaging and small animal fluorescent imaging system. The results showed that the α-subunit of ATP synthase exhibited high expression in 94.7% of the gastric cancer tissues. The prepared HAI-178-FMNPs could target actively MGC803 cells, realized fluorescent imaging and magnetic resonance imaging of in vivo gastric cancer, and actively inhibited growth of gastric cancer cells. In conclusion, HAI-178 antibody-conjugated fluorescent magnetic nanoparticles have a great potential in applications such as targeted imaging and simultaneous therapy of in vivo early gastric cancer cells in the near future.
Emerging monoclonal antibodies for the treatment of renal cell carcinoma (RCC).
Atkins, Michael B; Philips, George K
2016-09-01
Advanced renal cell carcinoma (RCC) was considered refractory to most cancer therapies until the 1980s, after which immune modulating agents and targeted agents were developed. Recently the rapid development of therapeutic monoclonal antibodies targeting immune checkpoint pathways has provided significant clinical benefit in patients with many distinct cancer types. Nivolumab, an anti-PD1 monoclonal antibody showed improvement in response rate and overall survival in patients with previously treated RCC and received US FDA approval in late 2015. Current efforts with anti-PD1-based therapy include combinations with ipilimumab and with VEGF pathway blockers in the hopes on building on the activity of single agent therapy. We describe our current understanding of tumor immunology including the basis of the tumor-specific immune response and the adaptive mechanisms used by the tumor for immune escape. We describe the mechanisms of action as well as the therapeutic application of the antibodies, ipilimumab, nivolumab and atezolizumab in patients with RCC. We identify key areas of active research in biomarker development and combination therapies. Clinical trials and the field of RCC therapeutics are expected to move in the direction of combination therapies using immune checkpoint inhibitors, extending overall survival as a benchmark for new drug approvals, and biomarker validation for improved selection of patients for specific therapies.
Kugelman, Jeffrey R; Kugelman-Tonos, Johanny; Ladner, Jason T; Pettit, James; Keeton, Carolyn M; Nagle, Elyse R; Garcia, Karla Y; Froude, Jeffrey W; Kuehne, Ana I; Kuhn, Jens H; Bavari, Sina; Zeitlin, Larry; Dye, John M; Olinger, Gene G; Sanchez-Lockhart, Mariano; Palacios, Gustavo F
2015-09-29
MB-003, a plant-derived monoclonal antibody cocktail used effectively in treatment of Ebola virus infection in non-human primates, was unable to protect two of six animals when initiated 1 or 2 days post-infection. We characterized a mechanism of viral escape in one of the animals, after observation of two clusters of genomic mutations that resulted in five nonsynonymous mutations in the monoclonal antibody target sites. These mutations were linked to a reduction in antibody binding and later confirmed to be present in a viral isolate that was not neutralized in vitro. Retrospective evaluation of a second independent study allowed the identification of a similar case. Four SNPs in previously identified positions were found in this second fatality, suggesting that genetic drift could be a potential cause for treatment failure. These findings highlight the importance selecting different target domains for each component of the cocktail to minimize the potential for viral escape. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Spotlight on Anti‐CGRP Monoclonal Antibodies in Migraine: The Clinical Evidence to Date
Guerzoni, Simona; Pini, Luigi Alberto
2017-01-01
Abstract Migraine, a common neurovascular brain disorder, represents a severe and widespread health problem; along with medication‐induced (medication‐overuse) headache, it is the third‐leading cause of disability worldwide. Currently, its therapeutic management remains unsatisfactory for several reasons; up to 40% of migraineurs are eligible for prophylactic treatment, but there are issues of efficacy, safety, and adherence. In recent years the evidence on the role of calcitonin gene‐related peptide (CGRP) in migraine pathophysiology has been consolidated, so new and promising treatments for migraine pain and its possible prevention have been developed. The following review reports the results of the clinical trials conducted so far with each of the new monoclonal antibodies targeting CGRP or its receptor, with particular reference to safety, tolerance, and efficacy in migraine prevention. Moreover, the pharmacological characterization and further developments of each monoclonal antibody are reported, based on current knowledge. PMID:28409893
Stewart, Jane
2009-09-01
For many monoclonal antibodies (mAb), the preferred species for general and reproductive safety testing is often the cynomolgus monkey. This article describes the rationale for combining the traditional "segmented" embryofetal development study with the pre- and postnatal development (PPND) study into a single "enhanced" PPND study design in the cynomolgus monkey where a single cohort of animals is exposed throughout gestation and allowed to give birth naturally. The proposed "enhanced" PPND study design evaluates all the stages of the traditional two study design using fewer animals. It also assesses the functional consequences of mid to late gestational exposure. This is of particular relevance to the risk assessment of monoclonal antibodies where fetal exposure to maternal IgG increases as pregnancy progresses and where morphologic examination of a pre-term fetus may not be adequate to reveal the presence of adverse effects on functional development of key target organs.
Challenges and opportunities for monoclonal antibody therapy in veterinary oncology.
Beirão, Breno C B; Raposo, Teresa; Jain, Saurabh; Hupp, Ted; Argyle, David J
2016-12-01
Monoclonal antibodies (mAbs) have come to dominate the biologics market in human cancer therapy. Nevertheless, in veterinary medicine, very few clinical trials have been initiated using this form of therapy. Some of the advantages of mAb therapeutics over conventional drugs are high specificity, precise mode of action and long half-life, which favour infrequent dosing of the antibody. Further advancement in the field of biomedical sciences has led to the production of different forms of antibodies, such as single chain antibody fragment, Fab, bi-specific antibodies and drug conjugates for use in diagnostic and therapeutic purposes. This review describes the potential for mAbs in veterinary oncology in supporting both diagnosis and therapy of cancer. The technical and financial hurdles to facilitate clinical acceptance of mAbs are explored and insights into novel technologies and targets that could support more rapid clinical development are offered. Copyright © 2016 Elsevier Ltd. All rights reserved.
Calvanese, Luisa; Focà, Annalia; Sandomenico, Annamaria; Focà, Giuseppina; Caporale, Andrea; Doti, Nunzianna; Iaccarino, Emanuela; Leonardi, Antonio; D'Auria, Gabriella; Ruvo, Menotti; Falcigno, Lucia
2017-12-15
Nodal is a growth factor expressed during early embryonic development, but reactivated in several advanced-stage cancers. Targeting of Nodal signaling, which occurs via the binding to Cripto-1 co-receptor, results in inhibition of cell aggressiveness and reduced tumor growth. The Nodal binding region to Cripto-1 was identified and targeted with a high affinity monoclonal antibody (3D1). By STD-NMR technique, we investigated the interaction of Nodal fragments with 3D1 with the aim to elucidate at atomic level the interaction surface. Data indicate with high accuracy the antibody-antigen contact atoms and confirm the information previously obtained by immune-enzymatic methods. Main residues contacted by 3D1 are P46, V47, E49 and E50, which belong to the Nodal loop involved in the interaction with the co-receptor. Copyright © 2017 Elsevier Ltd. All rights reserved.
Valverde, Araceli; Peñarando, Jon; Cañas, Amanda; López-Sánchez, Laura M.; Conde, Francisco; Guil-Luna, Silvia; Hernández, Vanessa; Villar, Carlos; Morales-Estévez, Cristina; de la Haba-Rodríguez, Juan; Arand o, Enrique; Rodríguez-Ariza, Antonio
2017-01-01
Here we showed that the addition of the COX-2 inhibitor celecoxib improved the antitumor efficacy in colorectal cancer (CRC) of the monoclonal anti-EGFR antibody cetuximab. The addition of celecoxib augmented the efficacy of cetuximab to inhibit cell proliferation and to induce apoptosis in CRC cells. Moreover, the combination of celecoxib and cetuximab was more effective than either treatment alone in reducing the tumor volume in a mouse xenograft model. The combined treatment enhanced the inhibition of EGFR signaling and altered the subcellular distribution of β-catenin. Moreover, knockdown of FOXM1 showed that this transcription factor participates in this enhanced antitumoral response. Besides, the combined treatment decreased β-catenin/FOXM1 interaction and reduced the cancer stem cell subpopulation in CRC cells, as indicated their diminished capacity to form colonospheres. Notably, the inmunodetection of FOXM1 in the nuclei of tumor cells in human colorectal adenocarcinomas was significantly associated with response of patients to cetuximab. In summary, our study shows that the addition of celecoxib enhances the antitumor efficacy of cetuximab in CRC due to impairment of EGFR-RAS-FOXM1-β-catenin signaling axis. Results also support that FOXM1 could be a predictive marker of response of mCRC patients to cetuximab therapy. PMID:28423516
Webb, Joseph A; Ou, Yu-Chuan; Faley, Shannon; Paul, Eden P; Hittinger, Joseph P; Cutright, Camden C; Lin, Eugene C; Bellan, Leon M; Bardhan, Rizia
2017-07-31
In this study, we demonstrate the theranostic capability of actively targeted, site-specific multibranched gold nanoantennas (MGNs) in triple-negative breast cancer (TNBC) cells in vitro. By utilizing multiplexed surface-enhanced Raman scattering (SERS) imaging, enabled by the narrow peak widths of Raman signatures, we simultaneously targeted immune checkpoint receptor programmed death ligand 1 (PDL1) and the epidermal growth factor receptor (EGFR) overexpressed in TNBC cells. A 1:1 mixture of MGNs functionalized with anti-PDL1 antibodies and Raman tag 5,5-dithio-bis-(2-nitrobenzoic acid) (DTNB) and MGNs functionalized with anti-EGFR antibodies and Raman tag para -mercaptobenzoic acid ( p MBA) were incubated with the cells. SERS imaging revealed a cellular traffic map of MGN localization by surface binding and receptor-mediated endocytosis, enabling targeted diagnosis of both biomarkers. Furthermore, cells incubated with anti-EGFR- p MBA-MGNs and illuminated with an 808 nm laser for 15 min at 4.7 W/cm 2 exhibited photothermal cell death only within the laser spot (indicated by live/dead cell fluorescence assay). Therefore, this study not only provides an optical imaging platform that can track immunomarkers with spatiotemporal control but also demonstrates an externally controlled light-triggered therapeutic approach enabling receptor-specific treatment with biocompatible theranostic nanoprobes.
[Monoclonal antibodies against inflammatory mediators for the treatment of patients with sepsis].
Matsubara, Tomoyo
2002-03-01
Sepsis is a common cause of morbidity and mortality, particularly in immunocompromised and critically ill patients. Recently, a new designation, systemic inflammatory response syndrome(SIRS), has been studied. When an abnormal generalized inflammatory reaction is due to an infection, the terms sepsis and SIRS are synonymous. The systemic response to infection is mediated via the macrophage-derived cytokines that target end organ receptors in response to injury or infection. One strategy used to perturb the septic cascade is to block a particular inflammatory molecule. Results have been published on clinical trials in sepsis patients treated with several monoclonal antibodies, such as antiendotoxin antibodies, anti-tumor necrosis factor antibodies, and anti CD14 antibodies. In this chapter, the results of clinical trials in patients and in vivo data from animal models of sepsis are summarized.
Targeted polymeric micelles for delivery of poorly soluble drugs.
Torchilin, V P
2004-10-01
Polymeric micelles (micelles formed by amphiphilic block copolymers) demonstrate a series of attractive properties as drug carriers, such as high stability both in vitro and in vivo and good biocompatibility, and can be successfully used for the solubilization of various poorly soluble pharmaceuticals. These micelles can also be used as targeted drug delivery systems. The targeting can be achieved via the enhanced permeability and retention effect (into the areas with the compromised vasculature), by making micelles of stimuli-responsive amphiphilic block copolymers, or by attaching specific targeting ligand molecules to the micelle surface. Immunomicelles prepared by coupling monoclonal antibody molecules to p-nitrophenylcarbonyl groups on the water-exposed termini of the micelle corona-forming blocks demonstrate high binding specificity and targetability. Immunomicelles prepared with cancer-specific monoclonal antibody 2C5 specifically bind to different cancer cells in vitro and demonstrate increased therapeutic activity in vivo. This new family of pharmaceutical carriers can be used for the solubilization and targeted delivery of poorly soluble drugs to various pathological sites in the body.
Gilman, Morgan S A; Castellanos, Carlos A; Chen, Man; Ngwuta, Joan O; Goodwin, Eileen; Moin, Syed M; Mas, Vicente; Melero, José A; Wright, Peter F; Graham, Barney S; McLellan, Jason S; Walker, Laura M
2016-12-16
Respiratory syncytial virus (RSV) causes substantial morbidity and mortality in young children and the elderly. There are currently no licensed RSV vaccines, and passive prophylaxis with the monoclonal antibody palivizumab is restricted to high-risk infants in part due to its modest efficacy. Although it is widely agreed that an effective RSV vaccine will require the induction of a potent neutralizing antibody response against the RSV fusion (F) glycoprotein, little is known about the specificities and functional activities of RSV F-specific antibodies induced by natural infection. Here, we have comprehensively profiled the human antibody response to RSV F by isolating and characterizing 364 RSV F-specific monoclonal antibodies from the memory B cells of three healthy adult donors. In all donors, the antibody response to RSV F is comprised of a broad diversity of clones that target several antigenic sites. Nearly half of the most potent antibodies target a previously undefined site of vulnerability near the apex of the prefusion conformation of RSV F (preF), providing strong support for the development of RSV vaccine candidates that preserve the membrane-distal hemisphere of the preF protein. Additionally, the antibodies targeting this new site display convergent sequence features, thus providing a future means to rapidly detect the presence of these antibodies in human vaccine samples. Many of the antibodies that bind preF-specific surfaces are over 100 times more potent than palivizumab, and several cross-neutralize human metapneumovirus (HMPV). Taken together, the results have implications for the design and evaluation of RSV vaccine candidates and offer new options for passive prophylaxis.
Use of AN Eosinophil Specific Monoclonal Antibody in Assessing Eosinophil Function.
NASA Astrophysics Data System (ADS)
Minkoff, Marjorie Sue
A monoclonal antibody to an eosinophil specific determinant is very important in assessing eosinophil function during helminthic infection. Eosinophils induced by Schistosoma mansoni infection in BALB/c mice were used to induce C57B1/6 immunocytes for production of hybridomas secreting eosinophil monoclonal antibodies. These antibodies were shown to react with an eosinophil surface epitope but not with neutrophils or macrophages as determined by ELISA, immunodiffusion, immunofluorescence, and immunoblot assay. Affinity chromatography with eosinophil chemotactic factor-sepharose consistently selected out a { rm M_ R} 67,000 protein from solubilized eosinophil membrane antigens but not from neutrophil and macrophage antigens. In vitro studies showed that the eosinophil-specific monoclonal antibodies abrogated antibody-dependent eosinophil -mediated killing of S. mansoni schistosomula using mouse, rat or human eosinophils. Neutrophil and macrophage killing activities were unaffected. The monoclonal antibodies effected complement-dependent lysis of mouse and rat eosinophils but not of human eosinophils. ECF-treated eosinophils showed enhanced killing of schistosomula which was blocked by the monoclonal antibody. Murine and human eosinophils preincubated with monoclonal antibody exhibited decreased chemotaxis to ECF at optimal chemotactic concentrations. The monoclonal antibody also blocked eosinophil binding to ECF- sepharose beads. In vivo induction of peripheral blood eosinophilia by injection of S. mansoni eggs was suppressed by injections of monoclonal antibodies 2CD13 and 2QD45 in mouse and rat experimental models. Eosinophilia induced by keyhole limpet hemocyanin- cyclophosphamide treatment was also suppressed by monoclonal antibody in both murine and rat systems. Pulmonary granulomas in mice given egg injection and monoclonal antibody were smaller and contained fewer eosinophils than those granulomas from mice given eggs only. In immuno-biochemical studies, the monoclonal antibody 2QD45 specifically immunoprecipitated the {rm M_ R} 67,000 ECF-binding protein from ^{125}{rm I}-labeled mouse, rat, and human eosinophils as assessed by SDS-PAGE and autoradiography. Two-dimensional gel electrophoresis showed that this ECF-binding protein has a lower PI point than either mouse or bovine albumin.
NASA Astrophysics Data System (ADS)
Uchibori, Ken; Inase, Naohiko; Araki, Mitsugu; Kamada, Mayumi; Sato, Shigeo; Okuno, Yasushi; Fujita, Naoya; Katayama, Ryohei
2017-03-01
Osimertinib has been demonstrated to overcome the epidermal growth factor receptor (EGFR)-T790M, the most relevant acquired resistance to first-generation EGFR-tyrosine kinase inhibitors (EGFR-TKIs). However, the C797S mutation, which impairs the covalent binding between the cysteine residue at position 797 of EGFR and osimertinib, induces resistance to osimertinib. Currently, there are no effective therapeutic strategies to overcome the C797S/T790M/activating-mutation (triple-mutation)-mediated EGFR-TKI resistance. In the present study, we identify brigatinib to be effective against triple-mutation-harbouring cells in vitro and in vivo. Our original computational simulation demonstrates that brigatinib fits into the ATP-binding pocket of triple-mutant EGFR. The structure-activity relationship analysis reveals the key component in brigatinib to inhibit the triple-mutant EGFR. The efficacy of brigatinib is enhanced markedly by combination with anti-EGFR antibody because of the decrease of surface and total EGFR expression. Thus, the combination therapy of brigatinib with anti-EGFR antibody is a powerful candidate to overcome triple-mutant EGFR.
Witkowska, Magdalena; Smolewski, Piotr
2015-01-01
During the last decade, significant prolonged survival in diffusive large B-cell lymphoma (DLBCL) has been observed. The efficacy of initial treatment improved mostly due to addition of a chimeric anti-CD20 monoclonal antibody (rituximab) to standard chemotherapeutic regimens. Moreover, accurate understanding of DLBCL pathogenesis and remarkable progress in gene expression profiling have led to the development of a variety of tumor-specific regimens. Novel agents target directly the pathways involved in signal transduction, lead to apoptosis and cancer cells differentiation. In this article, we mainly focus on new treatment options, such as monoclonal antibodies, tyrosine kinase inhibitors and immunomodulatory drugs, currently investigated in aggressive B-cell lymphoma with particular attention to DLBCL type.
Nakanishi, Takeshi; Maru, Takamitsu; Tahara, Kazuhiro; Sanada, Hideaki; Umetsu, Mitsuo; Asano, Ryutaro; Kumagai, Izumi
2013-02-01
We showed previously that humanization of 528, a murine anti-epidermal growth factor receptor (EGFR) antibody, causes reduced affinity for its target. Here, to improve the affinity of the humanized antibody for use in cancer immunotherapy, we constructed phage display libraries focused on the complementarity-determining regions (CDRs) of the antibody and carried out affinity selection. Two-step selections using libraries constructed in a stepwise manner enabled a 32-fold affinity enhancement of humanized 528 (h528). Thermodynamic analysis of the interactions between the variable domain fragment of h528 (h528Fv) mutants and the soluble extracellular domain of EGFR indicated that the h528Fv mutants obtained from the first selection showed a large increase in negative enthalpy change due to binding, resulting in affinity enhancement. Furthermore, mutants from the second selection showed a decrease in entropy loss, which led to further affinity maturation. These results suggest that a single mutation in the heavy chain variable domain (i.e. Tyr(52) to Trp) enthalpically contributed for overcoming the energetic barrier to the antigen-antibody interaction, which was a major hurdle for the in vitro affinity maturation of h528. We reported previously that the humanized bispecific diabody hEx3 Db, which targets EGFR and CD3, shows strong anti-tumor activity. hEx3 Db mutants, in which the variable domains of h528 were replaced with those of the affinity-enhanced mutants, were prepared and characterized. In a growth inhibition assay of tumor cells, the hEx3 Db mutants showed stronger anti-tumor activity than that of hEx3 Db, suggesting that affinity enhancement of h528Fv enhances the anti-tumor activity of the bispecific diabody.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lemley, P.V.; Wright, D.C.
1992-12-31
Mice passively immunized by a protective, anti-ricin A-chain monoclonal antibody, then challenged intravenously with ricin, were protected from a subsequent ricin challenge, and were actively immunized. Two significant advantages accrued from this experiment: the monoclonal antibody neutralized the toxicity of the ricin immunogen, and active immunization was achieved with very low antigen load (approx. 0.5 micrograms/mouse). We ruled out the possibility that residual monoclonal antibody provided the protection by using three independent criteria. There was significant (four orders of magnitude) enhancement of the immune response in the presence of the monoclonal antibody; control immunizations of mice with ricin A-chain, ricinmore » B-chain or either chain with the monoclonal antibody did not induce active immunity; and the active immunization could not be replicated when protective goat polyclonal antibody was substituted for the monoclonal antibody. Because high titers were achieved rapidly without any adjuvant, we are currently investigating haptenized ricin to determine if anti-hapten monoclonal antibodies can be produced by this refined procedure.« less
Shmelkov, Evgeny; Krachmarov, Chavdar; Grigoryan, Arsen V.; Pinter, Abraham; Statnikov, Alexander; Cardozo, Timothy
2014-01-01
The extreme diversity of HIV-1 strains presents a formidable challenge for HIV-1 vaccine design. Although antibodies (Abs) can neutralize HIV-1 and potentially protect against infection, antibodies that target the immunogenic viral surface protein gp120 have widely variable and poorly predictable cross-strain reactivity. Here, we developed a novel computational approach, the Method of Dynamic Epitopes, for identification of neutralization epitopes targeted by anti-HIV-1 monoclonal antibodies (mAbs). Our data demonstrate that this approach, based purely on calculated energetics and 3D structural information, accurately predicts the presence of neutralization epitopes targeted by V3-specific mAbs 2219 and 447-52D in any HIV-1 strain. The method was used to calculate the range of conservation of these specific epitopes across all circulating HIV-1 viruses. Accurately identifying an Ab-targeted neutralization epitope in a virus by computational means enables easy prediction of the breadth of reactivity of specific mAbs across the diversity of thousands of different circulating HIV-1 variants and facilitates rational design and selection of immunogens mimicking specific mAb-targeted epitopes in a multivalent HIV-1 vaccine. The defined epitopes can also be used for the purpose of epitope-specific analyses of breakthrough sequences recorded in vaccine clinical trials. Thus, our study is a prototype for a valuable tool for rational HIV-1 vaccine design. PMID:24587168
Hajdú, István; Flachner, Beáta; Bognár, Melinda; Végh, Barbara M; Dobi, Krisztina; Lőrincz, Zsolt; Lázár, József; Cseh, Sándor; Takács, László; Kurucz, István
2014-08-01
Monoclonal antibody proteomics uses nascent libraries or cloned (Plasmascan™, QuantiPlasma™) libraries of mAbs that react with individual epitopes of proteins in the human plasma. At the initial phase of library creation, cognate protein antigen and the epitope interacting with the antibodies are not known. Scouting for monoclonal antibodies (mAbs) with the best binding characteristics is of high importance for mAb based biomarker assay development. However, in the absence of the identity of the cognate antigen the task represents a challenge. We combined phage display, and surface plasmon resonance (Biacore) experiments to test whether specific phages and the respective mimotope peptides obtained from large scale studies are applicable to determine key features of antibodies for scouting. We show here that mAb captured phage-mimotope heterogeneity that is the diversity of the selected peptide sequences, is inversely correlated with an important binding descriptor; the off-rate of the antibodies and that represents clues for driving the selection of useful mAbs for biomarker assay development. Carefully chosen synthetic mimotope peptides are suitable for specificity testing in competitive assays using the target proteome, in our case the human plasma. Copyright © 2014 Elsevier B.V. All rights reserved.
2015-01-01
High-affinity antibodies binding to linear peptides in solution are a prerequisite for performing immuno-MRM, an emerging technology for protein quantitation with high precision and specificity using peptide immunoaffinity enrichment coupled to stable isotope dilution and targeted mass spectrometry. Recombinant antibodies can be generated from appropriate libraries in high-throughput in an automated laboratory and thus may offer advantages over conventional monoclonal antibodies. However, recombinant antibodies are typically obtained as fragments (Fab or scFv) expressed from E. coli, and it is not known whether these antibody formats are compatible with the established protocols and whether the affinities necessary for immunocapture of small linear peptides can be achieved with this technology. Hence, we performed a feasibility study to ask: (a) whether it is feasible to isolate high-affinity Fabs to small linear antigens and (b) whether it is feasible to incorporate antibody fragments into robust, quantitative immuno-MRM assays. We describe successful isolation of high-affinity Fab fragments against short (tryptic) peptides from a human combinatorial Fab library. We analytically characterize three immuno-MRM assays using recombinant Fabs, full-length IgGs constructed from these Fabs, or traditional monoclonals. We show that the antibody fragments show similar performance compared with traditional mouse- or rabbit-derived monoclonal antibodies. The data establish feasibility of isolating and incorporating high-affinity Fabs into peptide immuno-MRM assays. PMID:24568200
Whiteaker, Jeffrey R; Zhao, Lei; Frisch, Christian; Ylera, Francisco; Harth, Stefan; Knappik, Achim; Paulovich, Amanda G
2014-04-04
High-affinity antibodies binding to linear peptides in solution are a prerequisite for performing immuno-MRM, an emerging technology for protein quantitation with high precision and specificity using peptide immunoaffinity enrichment coupled to stable isotope dilution and targeted mass spectrometry. Recombinant antibodies can be generated from appropriate libraries in high-throughput in an automated laboratory and thus may offer advantages over conventional monoclonal antibodies. However, recombinant antibodies are typically obtained as fragments (Fab or scFv) expressed from E. coli, and it is not known whether these antibody formats are compatible with the established protocols and whether the affinities necessary for immunocapture of small linear peptides can be achieved with this technology. Hence, we performed a feasibility study to ask: (a) whether it is feasible to isolate high-affinity Fabs to small linear antigens and (b) whether it is feasible to incorporate antibody fragments into robust, quantitative immuno-MRM assays. We describe successful isolation of high-affinity Fab fragments against short (tryptic) peptides from a human combinatorial Fab library. We analytically characterize three immuno-MRM assays using recombinant Fabs, full-length IgGs constructed from these Fabs, or traditional monoclonals. We show that the antibody fragments show similar performance compared with traditional mouse- or rabbit-derived monoclonal antibodies. The data establish feasibility of isolating and incorporating high-affinity Fabs into peptide immuno-MRM assays.
Aghebati Maleki, Leili; Majidi, Jafar; Baradaran, Behzad; Abdolalizadeh, Jalal; Kazemi, Tohid; Aghebati Maleki, Ali; Sineh sepehr, Koushan
2013-01-01
Purpose: Monoclonal antibodies or specific antibodies are now an essential tool of biomedical research and are of great commercial and medical value. The purpose of this study was to produce large scale of monoclonal antibody against CD34 in order to diagnostic application in leukemia and purification of human hematopoietic stem/progenitor cells. Methods: For large scale production of monoclonal antibody, hybridoma cells that produce monoclonal antibody against human CD34 were injected into the peritoneum of the Balb/c mice which have previously been primed with 0.5 ml Pristane. 5 ml ascitic fluid was harvested from each mouse in two times. Evaluation of mAb titration was assessed by ELISA method. The ascitic fluid was examined for class and subclasses by ELISA mouse mAb isotyping Kit. mAb was purified from ascitic fluid by affinity chromatography on Protein A-Sepharose. Purity of monoclonal antibody was monitored by SDS -PAGE and the purified monoclonal antibody was conjugated with FITC. Results: Monoclonal antibodies with high specificity and sensitivity against human CD34 by hybridoma technology were prepared. The subclass of antibody was IgG1 and its light chain was kappa. Conclusion: The conjugated monoclonal antibody could be a useful tool for isolation, purification and characterization of human hematopoietic stem cells. PMID:24312838
Montermini, Laura; Meehan, Brian; Garnier, Delphine; Lee, Wan Jin; Lee, Tae Hoon; Guha, Abhijit; Al-Nedawi, Khalid; Rak, Janusz
2015-10-02
Cancer cells emit extracellular vesicles (EVs) containing unique molecular signatures. Here, we report that the oncogenic EGF receptor (EGFR) and its inhibitors reprogram phosphoproteomes and cargo of tumor cell-derived EVs. Thus, phosphorylated EGFR (P-EGFR) and several other receptor tyrosine kinases can be detected in EVs purified from plasma of tumor-bearing mice and from conditioned media of cultured cancer cells. Treatment of EGFR-driven tumor cells with second generation EGFR kinase inhibitors (EKIs), including CI-1033 and PF-00299804 but not with anti-EGFR antibody (Cetuximab) or etoposide, triggers a burst in emission of exosome-like EVs containing EGFR, P-EGFR, and genomic DNA (exo-gDNA). The EV release can be attenuated by treatment with inhibitors of exosome biogenesis (GW4869) and caspase pathways (ZVAD). The content of P-EGFR isoforms (Tyr-845, Tyr-1068, and Tyr-1173), ERK, and AKT varies between cells and their corresponding EVs and as a function of EKI treatment. Immunocapture experiments reveal the presence of EGFR and exo-gDNA within the same EV population following EKI treatment. These findings suggest that targeted agents may induce cancer cells to change the EV emission profiles reflective of drug-related therapeutic stress. We suggest that EV-based assays may serve as companion diagnostics for targeted anticancer agents. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Dingjan, Tamir; Spendlove, Ian; Durrant, Lindy G; Scott, Andrew M; Yuriev, Elizabeth; Ramsland, Paul A
2015-10-01
Monoclonal antibodies represent the most successful class of biopharmaceuticals for the treatment of cancer. Mechanisms of action of therapeutic antibodies are very diverse and reflect their ability to engage in antibody-dependent effector mechanisms, internalize to deliver cytotoxic payloads, and display direct effects on cells by lysis or by modulating the biological pathways of their target antigens. Importantly, one of the universal changes in cancer is glycosylation and carbohydrate-binding antibodies can be produced to selectively recognize tumor cells over normal tissues. A promising group of cell surface antibody targets consists of carbohydrates presented as glycolipids or glycoproteins. In this review, we outline the basic principles of antibody-based targeting of carbohydrate antigens in cancer. We also present a detailed structural view of antibody recognition and the conformational properties of a series of related tissue-blood group (Lewis) carbohydrates that are being pursued as potential targets of cancer immunotherapy. Copyright © 2015 Elsevier Ltd. All rights reserved.
Selective bispecific T cell recruiting antibody and antitumor activity of adoptive T cell transfer.
Kobold, Sebastian; Steffen, Julius; Chaloupka, Michael; Grassmann, Simon; Henkel, Jonas; Castoldi, Raffaella; Zeng, Yi; Chmielewski, Markus; Schmollinger, Jan C; Schnurr, Max; Rothenfußer, Simon; Schendel, Dolores J; Abken, Hinrich; Sustmann, Claudio; Niederfellner, Gerhard; Klein, Christian; Bourquin, Carole; Endres, Stefan
2015-01-01
One bottleneck for adoptive T cell therapy (ACT) is recruitment of T cells into tumors. We hypothesized that combining tumor-specific T cells, modified with a marker antigen and a bispecific antibody (BiAb) that selectively recognizes transduced T cells and tumor cells would improve T cell recruitment to tumors and enhance therapeutic efficacy. SV40 T antigen-specific T cells from T cell receptor (TCR)-I-transgenic mice were transduced with a truncated human epidermal growth factor receptor (EGFR) as a marker protein. Targeting and killing by combined ACT and anti-EGFR-anti-EpCAM BiAb therapy was analyzed in C57Bl/6 mice (n = six to 12 per group) carrying subcutaneous tumors of the murine gastric cancer cell line GC8 (SV40(+) and EpCAM(+)). Anti-EGFR x anti-c-Met BiAb was used for targeting of human tumor-specific T cells to c-Met(+) human tumor cell lines. Differences between experimental conditions were analyzed using the Student's t test, and differences in tumor growth with two-way analysis of variance. Overall survival was analyzed by log-rank test. All statistical tests were two-sided. The BiAb linked EGFR-transduced T cells to tumor cells and enhanced tumor cell lysis. In vivo, the combination of ACT and Biab produced increased T cell infiltration of tumors, retarded tumor growth, and prolonged survival compared with ACT with a control antibody (median survival 95 vs 75 days, P < .001). In human cells, this strategy enhanced recruitment of human EGFR-transduced T cells to immobilized c-Met and recognition of tyrosinase(+) melanoma cells by TCR-, as well as of CEA(+) colon cancer cells by chimeric antigen receptor (CAR)-modified T cells. BiAb recruitment of tumor-specific T cells transduced with a marker antigen to tumor cells may enhance efficacy of ACT. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Deplanque, Gaël; Komatsu, Yoshito; Kobayashi, Yoshimitsu; Ocvirk, Janja; Racca, Patrizia; Guenther, Silke; Zhang, Jun; Lacouture, Mario E.; Jatoi, Aminah
2016-01-01
Inhibition of the epidermal growth factor receptor (EGFR) is an established treatment that extends patient survival across a variety of tumor types. EGFR inhibitors fall into two main categories: anti-EGFR monoclonal antibodies, such as cetuximab and panitumumab, and first-generation tyrosine kinase inhibitors, such as afatinib, gefitinib, and erlotinib. Skin reactions are the most common EGFR inhibitor-attributable adverse event, resulting in papulopustular (acneiform) eruptions that can be painful and debilitating, and which may potentially have a negative impact on patients’ quality of life and social functioning, as well as a negative impact on treatment duration. Shortened treatment duration can, in turn, compromise antineoplastic efficacy. Similarly, appropriate management of skin reactions is dependent on their accurate grading; however, conventional means for grading skin reactions are inadequate, particularly within the context of clinical trials. Treating a skin reaction only once it occurs (reactive treatment strategies) may not be the most effective management approach; instead, prophylactic approaches may be preferable. Indeed, we support the viewpoint that prophylactic management of skin reactions should be recommended for all patients treated with EGFR inhibitors. Appropriate prophylactic management could effectively reduce the severity of skin reactions in patients treated with EGFR inhibitors and therefore has the potential to directly benefit patients and improve drug adherence. Accordingly, here we review published and still-emerging data, and provide practical and evidence-based recommendations and algorithms regarding the optimal prophylactic management of EGFR inhibitor-attributable skin reactions. Implications for Practice: Epidermal growth factor receptor (EGFR) inhibitors extend patient survival across a variety of tumor types. The most common EGFR inhibitor-attributable adverse events are skin reactions. Prophylactic—rather than reactive—management of skin reactions for all patients receiving EGFR inhibitors should be recommended because appropriate prophylaxis could effectively reduce the severity of skin reactions; thus, the derivation of highly effective prophylactic strategies has the potential to directly benefit patients. Accordingly, a review of the available data leads to practical and evidence-based recommendations and algorithms regarding the optimal prophylactic management of EGFR inhibitor-attributable skin reactions. PMID:27449521
Gunawardane, Ruwanthi N.; Fordstrom, Preston; Piper, Derek E.; Masterman, Stephanie; Siu, Sophia; Liu, Dongming; Brown, Mike; Lu, Mei; Tang, Jie; Zhang, Richard; Cheng, Janet; Gates, Andrew; Meininger, David; Chan, Joyce; Carlson, Tim; Walker, Nigel; Schwarz, Margrit; Delaney, John; Zhou, Mingyue
2016-01-01
Drug discovery opportunities where loss-of-function alleles of a target gene link to a disease-relevant phenotype often require an agonism approach to up-regulate or re-establish the activity of the target gene. Antibody therapy is increasingly recognized as a favored drug modality due to multiple desirable pharmacological properties. However, agonistic antibodies that enhance the activities of the target enzymes are rarely developed because the discovery of agonistic antibodies remains elusive. Here we report an innovative scheme of discovery and characterization of human antibodies capable of binding to and agonizing a circulating enzyme lecithin cholesterol acyltransferase (LCAT). Utilizing a modified human LCAT protein with enhanced enzymatic activity as an immunogen, we generated fully human monoclonal antibodies using the XenoMouseTM platform. One of the resultant agonistic antibodies, 27C3, binds to and substantially enhances the activity of LCAT from humans and cynomolgus macaques. X-ray crystallographic analysis of the 2.45 Å LCAT-27C3 complex shows that 27C3 binding does not induce notable structural changes in LCAT. A single administration of 27C3 to cynomolgus monkeys led to a rapid increase of plasma LCAT enzymatic activity and a 35% increase of the high density lipoprotein cholesterol that was observed up to 32 days after 27C3 administration. Thus, this novel scheme of immunization in conjunction with high throughput screening may represent an effective strategy for discovering agonistic antibodies against other enzyme targets. 27C3 and other agonistic human anti-human LCAT monoclonal antibodies described herein hold potential for therapeutic development for the treatment of dyslipidemia and cardiovascular disease. PMID:26644477
Yuan, B; Ai, C-X; Yuan, L; Gao, W; Hu, J-P; Chen, J; Ren, W-Z
2014-09-12
This study aimed to prepare monoclonal antibody of feline calicivirus (FCV) and identify its basic biological characteristics. Saturated ammonium sulfate precipitation, combined differential centrifugation, and cesium chloride density gradient centrifugation were used for the purification of FCV. The purified FCV was used as antigen to immunize BALB/c mice. The hybridoma lines of anti-FCV monoclonal antibodies were established using cell fusion and hybridoma screening techniques. The subtypes of the monoclonal antibody were identified. The results showed that 3 strains of hybridoma cell lines stably secreted anti-FCV monoclonal antibody; they were named as D8, E5, and H4. The D8 and E5 were IgM subtype antibodies, and H4 was IgG2b subtype antibody. The monoclonal antibody obtained shared no cross-reactivity with feline parvovirus, canine parvovirus, and canine distemper virus. According to the different recognition sites of 2 monoclonal antibodies E5 and H4 to the FCV, they were used to coat microtiter plates and prepare 2 enzyme-labeled secondary antibodies to establish double-antibody sandwich enzyme-linked immunosorbent assay detecting method.
Grabowska, Magdalena M; Sandhu, Brindar; Day, Mark L
2012-02-01
During the progression of prostate cancer, the epithelial adhesion molecule E-cadherin is cleaved from the cell surface by ADAM15 proteolytic processing, generating an extracellular 80kDa fragment referred to as soluble E-cadherin (sE-cad). Contrary to observations in cancer, the generation of sE-cad appears to correlate with ADAM10 activity in benign prostatic epithelium. The ADAM10-specific inhibitor INCB8765 and the ADAM10 prodomain inhibit the generation of sE-cad, as well as downstream signaling and cell proliferation. Addition of EGF or amphiregulin (AREG) to these untransformed cell lines increases the amount of sE-cad shed into the conditioned media, as well as sE-cad bound to EGFR. EGF-associated shedding appears to be mediated by ADAM10 as shRNA knockdown of ADAM10 results in reduced shedding of sE-cad. To examine the physiologic role of sE-cad on benign prostatic epithelium, we treated BPH-1 and large T immortalized prostate epithelial cells (PrEC) with an sE-cad chimera comprised of the human Fc domain of IgG(1), fused to the extracellular domains of E-cadherin (Fc-Ecad). The treatment of untransformed prostate epithelial cells with Fc-Ecad resulted in phosphorylation of EGFR and downstream signaling through ERK and increased cell proliferation. Pre-treating BPH-1 and PrEC cells with cetuximab, a therapeutic monoclonal antibody against EGFR, decreased the ability of Fc-Ecad to induce EGFR phosphorylation, downstream signaling, and proliferation. These data suggest that ADAM10-generated sE-cad may have a role in EGFR signaling independent of traditional EGFR ligands. Copyright © 2011 Elsevier Inc. All rights reserved.
Development and Characterization of Canine Distemper Virus Monoclonal Antibodies.
Liu, Yuxiu; Hao, Liying; Li, Xiangdong; Wang, Linxiao; Zhang, Jianpo; Deng, Junhua; Tian, Kegong
2017-06-01
Five canine distemper virus monoclonal antibodies were developed by immunizing BALB/c mice with a traditional vaccine strain Snyder Hill. Among these monoclonal antibodies, four antibodies recognized both field and vaccine strains of canine distemper virus without neutralizing ability. One monoclonal antibody, 1A4, against hemagglutinin protein of canine distemper virus was found to react only with vaccine strain virus but not field isolates, and showed neutralizing activity to vaccine strain virus. These monoclonal antibodies could be very useful tools in the study of the pathogenesis of canine distemper virus and the development of diagnostic reagents.
Grünwald, Geoffrey K; Vetter, Alexandra; Klutz, Kathrin; Willhauck, Michael J; Schwenk, Nathalie; Senekowitsch-Schmidtke, Reingard; Schwaiger, Markus; Zach, Christian; Wagner, Ernst; Göke, Burkhard; Holm, Per S; Ogris, Manfred; Spitzweg, Christine
2013-01-01
We recently demonstrated tumor-selective iodide uptake and therapeutic efficacy of combined radiovirotherapy after systemic delivery of the theranostic sodium iodide symporter (NIS) gene using a dendrimer-coated adenovirus. To further improve shielding and targeting we physically coated replication-selective adenoviruses carrying the hNIS gene with a conjugate consisting of cationic poly(amidoamine) (PAMAM) dendrimer linked to the peptidic, epidermal growth factor receptor (EGFR)-specific ligand GE11. In vitro experiments demonstrated coxsackie-adenovirus receptor-independent but EGFR-specific transduction efficiency. Systemic injection of the uncoated adenovirus in a liver cancer xenograft mouse model led to high levels of NIS expression in the liver due to hepatic sequestration, which were significantly reduced after coating as demonstrated by 123I-scintigraphy. Reduction of adenovirus liver pooling resulted in decreased hepatotoxicity and increased transduction efficiency in peripheral xenograft tumors. 124I-PET-imaging confirmed EGFR-specificity by significantly lower tumoral radioiodine accumulation after pretreatment with the EGFR-specific antibody cetuximab. A significantly enhanced oncolytic effect was observed following systemic application of dendrimer-coated adenovirus that was further increased by additional treatment with a therapeutic dose of 131I. These results demonstrate restricted virus tropism and tumor-selective retargeting after systemic application of coated, EGFR-targeted adenoviruses therefore representing a promising strategy for improved systemic adenoviral NIS gene therapy. PMID:24193032
Law, Mary E.; Davis, Bradley J.; Bartley, Ashton N.; Higgins, Paul J.; Kilberg, Michael S.; Santostefano, Katherine E.; Terada, Naohiro; Heldermon, Coy D.; Castellano, Ronald K.; Law, Brian K.
2017-01-01
Many breast cancer deaths result from tumors acquiring resistance to available therapies. Thus, new therapeutic agents are needed for targeting drug-resistant breast cancers. Drug-refractory breast cancers include HER2+ tumors that have acquired resistance to HER2-targeted antibodies and kinase inhibitors, and “Triple-Negative” Breast Cancers (TNBCs) that lack the therapeutic targets Estrogen Receptor, Progesterone Receptor, and HER2. A significant fraction of TNBCs overexpress the HER2 family member Epidermal Growth Factor Receptor (EGFR). Thus agents that selectively kill EGFR+ and HER2+ tumors would provide new options for breast cancer therapy. We previously identified a class of compounds we termed Disulfide bond Disrupting Agents (DDAs) that selectively kill EGFR+ and HER2+ breast cancer cells in vitro and blocked the growth of HER2+ breast tumors in an animal model. DDA-dependent cytotoxicity was found to correlate with downregulation of HER1-3 and Akt dephosphorylation. Here we demonstrate that DDAs activate the Unfolded Protein Response (UPR) and that this plays a role in their ability to kill EGFR+ and HER2+ cancer cells. The use of breast cancer cell lines ectopically expressing EGFR or HER2 and pharmacological probes of UPR revealed all three DDA responses: HER1-3 downregulation, Akt dephosphorylation, and UPR activation, contribute to DDA-mediated cytotoxicity. Significantly, EGFR overexpression potentiates each of these responses. Combination studies with DDAs suggest that they may be complementary with EGFR/HER2-specific receptor tyrosine kinase inhibitors and mTORC1 inhibitors to overcome drug resistance. PMID:28423644
Tan, Shuguang; Zhang, Catherine W-H; Gao, George F
2016-01-01
Structural immunology, focusing on structures of host immune related molecules, enables the immunologists to see what the molecules look like, and more importantly, how they work together. Antibody-based PD-1/PD-L1 blockade therapy has achieved brilliant successes in clinical applications. The recent breakthrough of the complex structures of checkpoint blockade antibodies with their counterparts, pembrolizumab with PD-1 and avelumab with PD-L1, have made it clear how these monoclonal antibodies compete the binding of PD-1/PD-L1 and function to blockade the receptor-ligand interaction. Herein, we summarize the structural findings of these two reports and look into the future for how this information would facilitate the development of more efficient PD-1/PD-L1 targeting antibodies, small molecule drugs, and other protein or non-protein inhibitors. PMID:29263905
Generation and Characterization of a New Monoclonal Antibody Against CXCL4.
Gao, Jing; Wu, Mingyuan; Gao, Jin; Wang, Xia; Zhang, Yang; Zhu, Shunying; Yu, Yan; Han, Wei
2015-04-01
CXCL4 plays important roles in numerous disease processes, which makes the CXCL4 signaling pathway a potential therapeutic target. In this study, we aimed to develop a neutralizing antibody against both human and mouse CXCL4. Rats were immunized with recombinant human CXCL4 (rhCXCL4). Hybridoma clones were created by fusion of the immunized rat spleen cells with mouse myeloma SP2/0 cells and screened using recombinant mouse CXCL4 (rmCXCL4) and rhCXCL4. The CXCL4 monoclonal antibody (CXCL4 MAb) produced by the 16D6-3 hybridoma clone was sequenced and characterized by Western blot and Biacore assays. It recognized both human and mouse CXCL4 with high affinity and neutralized the effect of rhCXCL4 in vitro. Thus, the antibody may be used in the studies of CXCL4 in murine disease models and as a template in the antibody humanization for clinical developments.
NASA Astrophysics Data System (ADS)
Zarling, Joyce M.; Moran, Patricia A.; Haffar, Omar; Sias, Joan; Richman, Douglas D.; Spina, Celsa A.; Myers, Dorothea E.; Kuebelbeck, Virginia; Ledbetter, Jeffrey A.; Uckun, Fatih M.
1990-09-01
FUNCTIONAL impairment and selective depletion of CD4+ T cells, the hallmark of AIDS, are at least partly caused by human immunodeficiency virus (HIV-1) type 1 binding to the CD4 molecule and infecting CD4+ cells1,2. It may, therefore, be of therapeutic value to target an antiviral agent to CD4+ cells to prevent infection and to inhibit HIV-1 production in patients' CD4+ cells which contain proviral DNA3,4. We report here that HIV-1 replication in normal primary CD4+ T cells can be inhibited by pokeweed antiviral protein, a plant protein of relative molecular mass 30,000 (ref. 5), which inhibits replication of certain plant RNA viruses6-8, and of herpes simplex virus, poliovirus and influenza virus9-11. Targeting pokeweed antiviral protein to CD4+ T cells by conjugating it to monoclonal antibodies reactive with CDS, CD7 or CD4 expressed on CD4+ cells, increased its anti-HIV potency up to 1,000-fold. HIV-1 replication is inhibited at picomolar concentrations of conjugates of pokeweed antiviral protein and monoclonal antibodies, which do not inhibit proliferation of normal CD4+ T cells or CD4-dependent responses. These conjugates inhibit HIV-1 protein synthesis and also strongly inhibit HIV-1 production in activated CD4+ T cells from infected patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, Lili; Zhou, Lixin; Lu, Mingmin
HER2 is an orphan receptor tyrosine kinase of the EGFR families and is considered to be a key tumor driver gene [1]. Breast cancer and gastric cancer with HER2 amplification can be effectively treated by its neutralizing antibody, Herceptin. In clinic, Immunohistochemistry (IHC) was used as the primary screening method to diagnose HER2 amplification [2]. However, recent evidence suggested that the frequently used rabbit HER2 antibody 4B5 cross reacted with another family member HER4 [3]. IHC staining with 4B5 also indicated that there was strong non-specific cytoplasmic and nuclear signals in normal gastric mucosal cells and some gastric cancer samples.more » Using a protein lysate array which covers 85% of the human proteome, we have confirmed that the 4B5 bound to HER4 and a nuclear protein ZSCAN18 besides HER2. The non-specific binding accounts for the unexpected cytoplasmic and nuclear staining of 4B5 of normal gastric epithelium. Finally, we have developed a novel mouse HER2 monoclonal antibody UMAB36 with similar sensitivity to 4B5 but only reacted to HER2 across the 17,000 proteins on the protein chip. In 129 breast cancer and 158 gastric cancer samples, UMAB36 showed 100% sensitivity and specificity comparing to the HER2 FISH reference results with no unspecific staining in the gastric mucosa layer. Therefore, UMAB36 could provide as an alternative highly specific IHC reagent for testing HER2 amplification in gastric cancer populations. - Highlights: • HER2 antibody 4B5 cross-interacts with HER4 and ZSCAN18, which would interfere with the accuracy of IHC diagnosis of HER2. • A HER2 antibody UMAB36 has been developed with high sensitivity and specificity and can be utilized in HER2 diagnosis. • Protein lysate array is a novel strategy to screen for highly specific antibody.« less
Prat, Maria; Oltolina, Francesca; Basilico, Cristina
2014-01-01
Monoclonal antibodies can be seen as valuable tools for many aspects of basic as well as applied sciences. In the case of MET/HGFR, they allowed the identification of truncated isoforms of the receptor, as well as the dissection of different epitopes, establishing structure–function relationships. Antibodies directed against MET extracellular domain were found to be full or partial receptor agonists or antagonists. The agonists can mimic the effects of the different isoforms of the natural ligand, but with the advantage of being more stable than the latter. Thus, some agonist antibodies promote all the biological responses triggered by MET activation, including motility, proliferation, morphogenesis, and protection from apoptosis, while others can induce only a migratory response. On the other hand, antagonists can inhibit MET-driven biological functions either by competing with the ligand or by removing the receptor from the cell surface. Since MET/HGFR is often over-expressed and/or aberrantly activated in tumors, monoclonal antibodies can be used as probes for MET detection or as “bullets” to target MET-expressing tumor cells, thus pointing to their use in diagnosis and therapy. PMID:28548076
Differential Receptor Tyrosine Kinase PET Imaging for Therapeutic Guidance.
Wehrenberg-Klee, Eric; Turker, N Selcan; Heidari, Pedram; Larimer, Benjamin; Juric, Dejan; Baselga, José; Scaltriti, Maurizio; Mahmood, Umar
2016-09-01
Inhibitors of the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway hold promise for the treatment of breast cancer, but resistance to these treatments can arise via feedback loops that increase surface expression of the receptor tyrosine kinases (RTK) epidermal growth factor receptor 1 (EGFR) and human epidermal growth factor receptor 3 (HER3), leading to persistent growth pathway signaling. We developed PET probes that provide a method of imaging this response in vivo, determining which tumors may use this escape pathway while avoiding the need for repeated biopsies. Anti-EGFR-F(ab')2 and anti-HER3-F(ab')2 were generated from monoclonal antibodies by enzymatic digestion, conjugated to DOTA, and labeled with (64)Cu. A panel of breast cancer cell lines was treated with increasing concentrations of the AKT inhibitor GDC-0068 or the PI3K inhibitor GDC-0941. Pre- and posttreatment expression of EGFR and HER3 was compared using Western blot and correlated to probe accumulation with binding studies. Nude mice xenografts of HCC-70 or MDA-MB-468 were treated with either AKT inhibitor or PI3K inhibitor and imaged with either EGFR or HER3 PET probe. Changes in HER3 and EGFR PET probe accumulation correlate to RTK expression change as assessed by Western blot (R(2) of 0.85-0.98). EGFR PET probe PET/CT imaging of HCC70 tumors shows an SUV of 0.32 ± 0.03 for vehicle-, 0.50 ± 0.01 for GDC-0941-, and 0.62 ± 0.01 for GDC-0068-treated tumors, respectively (P < 0.01 for both comparisons to vehicle). HER3 PET probe PET/CT imaging of MDAMB468 tumors shows an SUV of 0.35 ± 0.02 for vehicle- and 0.73 ± 0.05 for GDC-0068-treated tumors (P < 0.01). Our imaging studies, using PET probes specific to EGFR and HER3, show that changes in RTK expression indicative of resistance to PI3K and AKT inhibitors can be seen within days of therapy initiation and are of sufficient magnitude as to allow reliable clinical interpretation. Noninvasive PET monitoring of these RTK feedback loops should help to rapidly assess resistance to PI3K and AKT inhibitors and guide selection of an appropriate combinatorial therapeutic regimen on an individual patient basis. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Johari-Ahar, Mohammad; Karami, Pari; Ghanei, Mostafa; Afkhami, Abbas; Bagheri, Hasan
2018-06-01
This work demonstrates the development of a gold screen-printed electrode (Au-SPE)-based biosensor modified with a molecularly imprinted polymer and amplified using antibody-conjugated nano-liposomes. The developed biosensor was utilized for dual determination of epidermal growth factor receptor (EGFR) and vascular endothelial growth factor (VEGF) as cancer biomarkers. To prepare this biosensor, Au-SPE was modified with 3,3'-dithiodipropionic acid di(N-hydroxysuccinimide ester) via self-assembly method and then the target proteins (EGFR and VEGF) were covalently attached to the modified SPE. To synthesize the molecularly imprinted polymer, monomers of acrylamide and N,N'-methylenebis(acrylamide) were polymerized around the EGFR and VEGF templates, and to characterize the prepared biosensor, electrochemical impedance spectroscopy was used for analyses of surface changes in the engineered electrodes. To produce reliable electrochemical signals, nano-liposomes which were loaded with Cd(II) and Cu(II) cations and decorated with antibodies specific for EGFR and VEGF were used as an efficient tool for detection of target biomarkers. In the analysis step, potentiometric striping analysis (PSA), as an electrochemical technique, was utilized for sensitive determination of these cations. The limits of detection (LODs) of EGFR and VEGF analyses were found to be 0.01 and 0.005 pg mL -1 with the linear dynamic ranges (LDRs) of 0.05-50000 and 0.01-7000 pg mL -1 , respectively. Moreover, the proposed biosensor was successfully used for sensitive, reproducible, and specific detection of EGFR and VEGF in real samples. Due to the SPE nature of the developed biosensor, we envision that this sensing tool has capability of being integrated with lab-on-a-chip (LOC), microfluidics, and micro total analysis systems. Copyright © 2018 Elsevier B.V. All rights reserved.
[Toxoplasma gondii: the characterization of an anti-P30 monoclonal antibody].
Fachado, A; Fernández, N; Hernández, E; Fonseca, L
1996-01-01
A specific monoclonal antibody was characterized to Toxoplasma gondii. The hybridoma produced IgG immunoglobulins. The western blot analysis showed that the monoclonal antibody was specific for the antigen of an apparent molecular mass of 30 kd, which was present on the antigen surface. The monoclonal antibody was purified starting from mouse's ascitic fluid and it was matched with sepharose 4B. This immunoabsorbent was used to purify the specific parasitic antigen. The monoclonal antibody studied may be useful for those techniques contributing to the toxoplasmosis diagnosis.
Xue, Y; Sun, C; Tan, J
1995-11-01
Porphyromonas endodontalis was known to be important microorganisms in the etiology of pulp and apical infection. In this paper, we generated hybridomas secreting monoclonal antibody against Porphyromonas endodontalis ATCC 35406. The specificity of the monoclonal antibody was examined by ELISA against a battery organisms (109 Strains). The results indicated that the monoclonal antibody did not react with any non-Porphy romanas endodontalis (104 Strains). So our monoclonal antibody is specific for Porphyromanas endodontalis and can be used in clinical samples for detection of pulp and apical infections.
Single-Cell Droplet Microfluidic Screening for Antibodies Specifically Binding to Target Cells.
Shembekar, Nachiket; Hu, Hongxing; Eustace, David; Merten, Christoph A
2018-02-20
Monoclonal antibodies are a main player in modern drug discovery. Many antibody screening formats exist, each with specific advantages and limitations. Nonetheless, it remains challenging to screen antibodies for the binding of cell-surface receptors (the most important class of all drug targets) or for the binding to target cells rather than purified proteins. Here, we present a high-throughput droplet microfluidics approach employing dual-color normalized fluorescence readout to detect antibody binding. This enables us to obtain quantitative data on target cell recognition, using as little as 33 fg of IgG per assay. Starting with an excess of hybridoma cells releasing unspecific antibodies, individual clones secreting specific binders (of target cells co-encapsulated into droplets) could be enriched 220-fold after sorting 80,000 clones in a single experiment. This opens the way for therapeutic antibody discovery, especially since the single-cell approach is in principle also applicable to primary human plasma cells. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Basu, D; Nguyen, T-T K; Montone, K T; Zhang, G; Wang, L-P; Diehl, J A; Rustgi, A K; Lee, J T; Weinstein, G S; Herlyn, M
2010-07-22
Variable drug responses among malignant cells within individual tumors may represent a barrier to their eradication using chemotherapy. Carcinoma cells expressing mesenchymal markers resist conventional and epidermal growth factor receptor (EGFR)-targeted chemotherapy. In this study, we evaluated whether mesenchymal-like sub-populations within human squamous cell carcinomas (SCCs) with predominantly epithelial features contribute to overall therapy resistance. We identified a mesenchymal-like subset expressing low E-cadherin (Ecad-lo) and high vimentin within the upper aerodigestive tract SCCs. This subset was both isolated from the cell lines and was identified in xenografts and primary clinical specimens. The Ecad-lo subset contained more low-turnover cells, correlating with resistance to the conventional chemotherapeutic paclitaxel in vitro. Epidermal growth factor induced less stimulation of the mitogen-activated protein kinase and phosphatidylinositol-3-kinase pathways in Ecad-lo cells, which was likely due to lower EGFR expression in this subset and correlated with in vivo resistance to the EGFR-targeted antibody, cetuximab. The Ecad-lo and high E-cadherin subsets were dynamic in phenotype, showing the capacity to repopulate each other from single-cell clones. Taken together, these results provide evidence for a low-turnover, mesenchymal-like sub-population in SCCs with diminished EGFR pathway function and intrinsic resistance to conventional and EGFR-targeted chemotherapies.
Next Generation Antibody Therapeutics Using Bispecific Antibody Technology.
Igawa, Tomoyuki
2017-01-01
Nearly fifty monoclonal antibodies have been approved to date, and the market for monoclonal antibodies is expected to continue to grow. Since global competition in the field of antibody therapeutics is intense, we need to establish novel antibody engineering technologies to provide true benefit for patients, with differentiated product values. Bispecific antibodies are among the next generation of antibody therapeutics that can bind to two different target antigens by the two arms of immunoglobulin G (IgG) molecule, and are thus believed to be applicable to various therapeutic needs. Until recently, large scale manufacturing of human IgG bispecific antibody was impossible. We have established a technology, named asymmetric re-engineering technology (ART)-Ig, to enable large scale manufacturing of bispecific antibodies. Three examples of next generation antibody therapeutics using ART-Ig technology are described. Recent updates on bispecific antibodies against factor IXa and factor X for the treatment of hemophilia A, bispecific antibodies against a tumor specific antigen and T cell surface marker CD3 for cancer immunotherapy, and bispecific antibodies against two different epitopes of soluble antigen with pH-dependent binding property for the elimination of soluble antigen from plasma are also described.
Hacking into the granuloma: could antibody antibiotic conjugates be developed for TB?
Ekins, Sean
2014-12-01
Alternatives to small molecule or vaccine approaches to treating tuberculosis are rarely discussed. Attacking Mycobacterium tuberculosis in the granuloma represents a challenge. It is proposed that the conjugation of small molecules onto a monoclonal antibody that recognizes macrophage or lymphocytes cell surface receptors, might be a way to target the bacteria in the granuloma. This antibody drug conjugate approach is currently being used in 2 FDA approved targeted cancer therapies. The pros and cons of this proposal for further research are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.
2006-01-06
binding site on EGFR/ErbB (Ohta, 2004). Therapeutic antibodies that target ErbB2 are, therefore, hypothesized to allow c-Cbl recruitment and c-Cbl...electrophoresed for 2 h at 200 V, the gels were dried and autoradiographed. For antibody supershift assays, nuclear extracts were pre- incubated with...Stat5b C17 antibody (Santa Cruz) for 20 min prior to the addition of the labeled probe. Northern blots Total RNA was extracted using TriPure reagent
Cross, Robert W; Mire, Chad E; Branco, Luis M; Geisbert, Joan B; Rowland, Megan M; Heinrich, Megan L; Goba, Augustine; Momoh, Mambu; Grant, Donald S; Fullah, Mohamed; Khan, Sheik Humarr; Robinson, James E; Geisbert, Thomas W; Garry, Robert F
2016-09-01
Lassa fever is a significant health threat to West African human populations with hundreds of thousands of annual cases. There are no approved medical countermeasures currently available. Compassionate use of the antiviral drug ribavirin or transfusion of convalescent serum has resulted in mixed success depending on when administered or the donor source, respectively. We previously identified several recombinant human monoclonal antibodies targeting the glycoprotein of Lassa virus with strong neutralization profiles in vitro. Here, we demonstrate remarkable therapeutic efficacy using first-in-class human antibodies in a guinea pig model of Lassa infection thereby presenting a promising treatment alternative. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Chimeric Antigen Receptor Therapy for Cancer
Barrett, David M.; Singh, Nathan; Porter, David L.; Grupp, Stephan A.; June, Carl H.
2014-01-01
Improved outcomes for patients with cancer hinge on the development of new targeted therapies with acceptable short-term and long-term toxicity. Progress in basic, preclinical, and clinical arenas spanning cellular immunology, synthetic biology, and cell-processing technologies has paved the way for clinical applications of chimeric antigen receptor– based therapies. This new form of targeted immunotherapy merges the exquisite targeting specificity of monoclonal antibodies with the potent cytotoxicity and long-term persistence provided by cytotoxic T cells. Although this field is still in its infancy, clinical trials have already shown clinically significant antitumor activity in neuroblastoma, chronic lymphocytic leukemia, and B cell lymphoma, and trials targeting a variety of other adult and pediatric malignancies are under way. Ongoing work is focused on identifying optimal tumor targets and on elucidating and manipulating both cell- and host-associated factors to support expansion and persistence of the genetically engineered cells in vivo. The potential to target essentially any tumor-associated cell-surface antigen for which a monoclonal antibody can be made opens up an entirely new arena for targeted therapy of cancer. PMID:24274181
Li, Z-Y; Yamashita, A; Kawashita, N; Sasaki, T; Pan, Y; Ono, K-I; Ikuta, K; Li, Y-G
2016-06-01
The global spread of the four dengue virus (DENV) serotypes (dengue-1 to -4) has made this virus a major and growing public health concern. Generally, pre-existing neutralizing antibodies derived from primary infection play a significant role in protecting against subsequent infection with the same serotype. By contrast, these pre-existing antibodies are believed to mediate a non-protective response to subsequent heterotypic DENV infections, leading to the onset of dengue illness. In this study, two monoclonal antibodies prepared by using peripheral blood mononuclear cells (PBMCs) from patients with dengue fever were characterized. Epitope mapping revealed that amino acid residues 254-278 in domain II of the viral envelope protein E were the target region of these antibodies. A database search revealed that certain sequences in this epitope region showed high conservation among the four serotypes of DENV. These two human monoclonal antibodies could neutralize DENV-2,-4 more effectively than DENV-1,-3. The amino acid sequences could not explain this difference in neutralizing activity. However, the 3D structure results showed that amino acid 274 could be the critical residue for the difference in neutralization. These results may provide basic information for the development of a dengue vaccine.
Stephenson, Ryan M.; Lim, Chwee Ming; Matthews, Maura; Dietsch, Gregory; Hershberg, Robert; Ferris, Robert L.
2013-01-01
Background Cetuximab is an anti-epidermal growth factor receptor (EGFR) monoclonal antibody (mAb) that prolongs survival in the treatment of head and neck cancer (HNC), but only in 10–20% of patients. An immunological mechanism of action such as natural killer (NK) cell-mediated antibody-dependent cellular cytotoxicity (ADCC) has been suggested. We investigated the effects of activating toll-like receptor (TLR)-8 to enhance activity of cetuximab-stimulated, FcγR bearing cells. Objective To determine the capability of TLR8-stimulation to enhance the activation and function of NK cells and dendritic cells (DC) in the presence of cetuximab-coated HNC cells. Methods Peripheral blood mononuclear cells (PBMC), NK, DC and CD8+ T cells were isolated and analyzed using 51Cr release ADCC, flow cytometry analysis, cytokine ELISA, and EGFR853–861 tetramer staining. Results TLR8 stimulation of unfractionated PBMC led to enhanced cetuximab-mediated ADCC in healthy donors (p<0.01) and HNC patients (p<0.001), which was dependent on NK cells. Secretion of Th1 cytokines TNFα(p<0.0001), IFNγ(p<0.0001), and IL-12p40(p<0.005) was increased. TLR8 stimulation of PBMC augmented cetuximab-enhanced NK cell degranulation (p<0.001). TLR8 stimulated NK cells enhanced DC maturation markers CD80, CD83, and CD86 in co-culture with cetuximab-treated HNC cells. TLR8 stimulation of NK-DC co-cultures significantly increased DC priming of EGFR-specific CD8+ T cells in the presence of cetuximab. Discussion VTX-2337 and cetuximab combination therapy can activate innate and adaptive anti-cancer immune responses. Further investigation in human trials will be important for determining the clinical benefit of this combination, and for determining biomarkers of response. PMID:23685782
Kovac, J; Arnol, M; Vidan-Jeras, B; Bren, A F; Kandus, A
2008-06-01
Elevated serum concentrations of soluble CD30 molecule (sCD30) have been related to acute cellular rejection and poor graft outcomes in kidney transplantation. This historical cohort study investigated the association of pretransplant sCD30 serum concentrations with kidney graft function expressed as estimated glomerular filtration rate (GFR) at 3 years after transplantation. Pretransplant sera from 176 adult deceased-donor kidney graft recipients were tested for sCD30 content using a commercially available automated enzyme-linked immunosorbent assay. The immunosuppression consisted of induction therapy with monoclonal anti-CD25 antibodies and a maintenance regimen of cyclosporine (CsA)-based therapy. GFR was estimated (eGFR) by the four-variable Modification of Diet in Renal Disease (MDRD) Study equation. According to the distribution of pretransplant sCD30 levels (median 66.7 U/mL; interquartile range, 46.6 to 98.6 U/mL), a concentration of 66 U/mL or higher was defined as high (n = 89) and below 66 U/mL as low (n = 87). Three years after transplantation, eGFR was not significantly different among recipients in high versus low sCD30 groups (69 +/- 23 mL/min/1.73m2 vs 66 +/- 21 mL/min/1.73m2; P = .327) and there was no correlation between eGFR and pretransplant sCD30 levels (r2 = 0.001; P = .73). Upon multivariate regression analysis, donor age, recipient body mass index at transplantation, and acute rejection episodes were independent variables affecting eGFR at 3 years after transplantation. This study showed that pretransplant sCD30 serum concentrations were not associated with deceased-donor kidney graft function at 3 years after transplantation. The immunosuppression with anti-CD25 antibodies and a triple CsA-based maintenance regimen could possibly be decisive for our findings.
EGFR kinase-dependent and kinase-independent roles in clear cell renal cell carcinoma.
Cossu-Rocca, Paolo; Muroni, Maria R; Sanges, Francesca; Sotgiu, Giovanni; Asunis, Anna; Tanca, Luciana; Onnis, Daniela; Pira, Giovanna; Manca, Alessandra; Dore, Simone; Uras, Maria G; Ena, Sara; De Miglio, Maria R
2016-01-01
Epidermal growth factor receptor (EGFR) is associated with progression of many epithelial malignancies and represents a significant therapeutic target. Although clear cell renal cell carcinoma (CCRCC) has been widely investigated for EGFR molecular alterations, genetic evidences of EGFR gene activating mutations and/or gene amplification have been rarely confirmed in the literature. Therefore, until now EGFR-targeted therapies in clinical trials have been demonstrated unsuccessful. New evidence has been given about the interactions between EGFR and the sodium glucose co-transporter-1 (SGLT1) in maintaining the glucose basal intracellular level to favour cancer cell growth and survival; thus a new functional role may be attributed to EGFR, regardless of its kinase activity. To define the role of EGFR in CCRCC an extensive investigation of genetic changes and functional kinase activities was performed in a series of tumors by analyzing the EGFR mutational status and expression profile, together with the protein expression of downstream signaling pathways members. Furthermore, we investigated the co-expression of EGFR and SGLT1 proteins and their relationships with clinic-pathological features in CCRCC. EGFR protein expression was identified in 98.4% of CCRCC. Furthermore, it was described for the first time that SGLT1 is overexpressed in CCRCC (80.9%), and that co-expression with EGFR is appreciable in 79.4% of the tumours. Moreover, the activation of downstream EGFR pathways was found in about 79.4% of SGLT1-positive CCRCCs. The mutational status analysis of EGFR failed to demonstrate mutations on exons 18 to 24 and the presence of EGFR-variantIII (EGFRvIII) in all CCRCCs analyzed. FISH analysis revealed absence of EGFR amplification, and high polysomy of chromosome 7. Finally, the EGFR gene expression profile showed gene overexpression in 38.2% of CCRCCs. Our study contributes to define the complexity of EGFR role in CCRCC, identifying its bivalent kinase-dependent and kinase-independent functions, both potentially involved in CCRCC progression. These results might have important implications on therapeutic approaches to CCRCC, since the disruption of the interaction between EGFR/SGLT1, mediated by anti-EGFR antibodies and/or SGLT1 inhibitors, might constitute a novel therapeutic target for CCRCC treatment, and new clinical trials should be evaluated on the basis of this therapeutic proposal.
EGFR kinase-dependent and kinase-independent roles in clear cell renal cell carcinoma
Cossu-Rocca, Paolo; Muroni, Maria R; Sanges, Francesca; Sotgiu, Giovanni; Asunis, Anna; Tanca, Luciana; Onnis, Daniela; Pira, Giovanna; Manca, Alessandra; Dore, Simone; Uras, Maria G; Ena, Sara; De Miglio, Maria R
2016-01-01
Epidermal growth factor receptor (EGFR) is associated with progression of many epithelial malignancies and represents a significant therapeutic target. Although clear cell renal cell carcinoma (CCRCC) has been widely investigated for EGFR molecular alterations, genetic evidences of EGFR gene activating mutations and/or gene amplification have been rarely confirmed in the literature. Therefore, until now EGFR-targeted therapies in clinical trials have been demonstrated unsuccessful. New evidence has been given about the interactions between EGFR and the sodium glucose co-transporter-1 (SGLT1) in maintaining the glucose basal intracellular level to favour cancer cell growth and survival; thus a new functional role may be attributed to EGFR, regardless of its kinase activity. To define the role of EGFR in CCRCC an extensive investigation of genetic changes and functional kinase activities was performed in a series of tumors by analyzing the EGFR mutational status and expression profile, together with the protein expression of downstream signaling pathways members. Furthermore, we investigated the co-expression of EGFR and SGLT1 proteins and their relationships with clinic-pathological features in CCRCC. EGFR protein expression was identified in 98.4% of CCRCC. Furthermore, it was described for the first time that SGLT1 is overexpressed in CCRCC (80.9%), and that co-expression with EGFR is appreciable in 79.4% of the tumours. Moreover, the activation of downstream EGFR pathways was found in about 79.4% of SGLT1-positive CCRCCs. The mutational status analysis of EGFR failed to demonstrate mutations on exons 18 to 24 and the presence of EGFR-variantIII (EGFRvIII) in all CCRCCs analyzed. FISH analysis revealed absence of EGFR amplification, and high polysomy of chromosome 7. Finally, the EGFR gene expression profile showed gene overexpression in 38.2% of CCRCCs. Our study contributes to define the complexity of EGFR role in CCRCC, identifying its bivalent kinase-dependent and kinase-independent functions, both potentially involved in CCRCC progression. These results might have important implications on therapeutic approaches to CCRCC, since the disruption of the interaction between EGFR/SGLT1, mediated by anti-EGFR antibodies and/or SGLT1 inhibitors, might constitute a novel therapeutic target for CCRCC treatment, and new clinical trials should be evaluated on the basis of this therapeutic proposal. PMID:27073724
Diab, M; Nguyen, F; Berthaud, M; Maurel, C; Gaschet, J; Verger, E; Ibisch, C; Rousseau, C; Chérel, M; Abadie, J; Davodeau, F
2017-09-01
We isolated 11 antibodies specific for canine CD138 (cCD138) to validate the interest of CD138 antigen targeting in dogs with spontaneous mammary carcinoma. The affinity of the monoclonal antibodies in the nanomolar range is suitable for immunohistochemistry and nuclear medicine applications. Four distinct epitopes were recognized on cCD138 by this panel of antibodies. CD138 expression in canine healthy tissues is comparable to that reported in humans. CD138 is frequently expressed in canine mammary carcinomas corresponding to the human triple negative breast cancer subtype, with cytoplasmic and membranous expression. In canine diffuse large B-cell lymphoma, CD138 expression is associated with the 'non-germinal center' phenotype corresponding to the most aggressive subtype in humans. This homology of CD138 expression between dogs and humans confirms the relevance of tumour-bearing dogs as spontaneous models for nuclear medicine applications, especially for the evaluation of new tumour targeting strategies for diagnosis by phenotypic imaging and radio-immunotherapy. © 2016 John Wiley & Sons Ltd.
[Development and application of CK-MB specific monoclonal antibodies].
Chen, Zimin; Zhou, Guoliang; Xu, Weiling; Zheng, Xiaohong; Tong, Xunzhang; Ke, Qishen; Song, Liuwei; Ge, Shengxiang
2017-01-25
The aim of this study is to develop creatine kinase isoenzyme MB (CK-MB) specific monoclonal antibodies (mAb), and characterize the monoclonal antibody and further development of quantitative detection assay for CK-MB. The BALB/c mice were immunized with purchased CK-MB antigen, then monoclonal antibodies were prepared according to conventional hybridoma technique and screened by indirect and capture ELISA method. To identify the epitopes and evaluate the classification, purchased creatine kinase isoenzyme MB (CK-MM/BB/MB) antigen was used to identify the epitopes, with immunoblotting and synthetic CK-MM and CK-BB in different linear epitope. A double antibody sandwich ELISA was applied to screen the mAb pairs for CK-MB detection, and the quantitative detection assay for CK-MB was developed. We used 74 cases of clinical specimens for comparison of our assay with Roche's CK-MB assay. We successfully developed 22 strains of hybridoms against CK-MB, these mAbs can be divided into linear, partial conformational CK-MB, CK-MM or CK-BB cross monoclonal antibody and CK-MB specific reaction with partial conformational monoclonal antibody, and CK-MB quantitative detection assay was developed by using partial conformational monoclonal antibody. The correlation coefficient factor r of our reagent and Roche's was 0.930 9. This study established a screening method for CK-MB partial conformational specific monoclonal antibody, and these monoclonal antibodies were analyzed and an established quantitative detection assay was developed. The new assay had a high concordance with Roche's.
Ezzatifar, Fatemeh; Majidi, Jafar; Baradaran, Behzad; Aghebati Maleki, Leili; Abdolalizadeh, Jalal; Yousefi, Mehdi
2015-01-01
Purpose: Monoclonal antibodies are potentially powerful tools used in biomedical research, diagnosis, and treatment of infectious diseases and cancers. The monoclonal antibody against Human IgA can be used as a diagnostic application to detect infectious diseases. The aim of this study was to improve an appropriate protocol for large-scale production of mAbs against IgA. Methods: For large-scale production of the monoclonal antibody, hybridoma cells that produce monoclonal antibodies against Human IgA were injected intraperitoneally into Balb/c mice that were previously primed with 0.5 ml Pristane. After ten days, ascitic fluid was harvested from the peritoneum of each mouse. The ELISA method was carried out for evaluation of the titration of produced mAbs. The ascitic fluid was investigated in terms of class and subclass by a mouse mAb isotyping kit. MAb was purified from the ascitic fluid by ion exchange chromatography. The purity of the monoclonal antibody was confirmed by SDS-PAGE, and the purified monoclonal antibody was conjugated with HRP. Results: Monoclonal antibodies with high specificity and sensitivity against Human IgA were prepared by hybridoma technology. The subclass of antibody was IgG1 and its light chain was the kappa type. Conclusion: This conjugated monoclonal antibody could have applications in designing ELISA kits in order to diagnose different infectious diseases such as toxoplasmosis and H. Pylori. PMID:25789225
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pepinsky, R. Blake; Silvian, Laura; Berkowitz, Steven A.
2010-11-15
Monoclonal antibodies (Mabs) are a favorite drug platform of the biopharmaceutical industry. Currently, over 20 Mabs have been approved and several hundred others are in clinical trials. The anti-LINGO-1 Mab Li33 was selected from a large panel of antibodies by Fab phage display technology based on its extraordinary biological activity in promoting oligodendrocyte differentiation and myelination in vitro and in animal models of remyelination. However, the Li33 Fab had poor solubility when converted into a full antibody in an immunoglobulin G1 framework. A detailed analysis of the biochemical and structural features of the antibody revealed several possible reasons for itsmore » propensity to aggregate. Here, we successfully applied three molecular approaches (isotype switching, targeted mutagenesis of complementarity determining region residues, and glycosylation site insertion mutagenesis) to address the solubility problem. Through these efforts we were able to improve the solubility of the Li33 Mab from 0.3 mg/mL to >50 mg/mL and reduce aggregation to an acceptable level. These strategies can be readily applied to other proteins with solubility issues.« less
Kamath, Sandip D; Abdel Rahman, Anas M; Komoda, Toshikazu; Lopata, Andreas L
2013-12-15
The major heat-stable shellfish allergen, tropomyosin, demonstrates immunological cross-reactivity, making specific differentiation of crustaceans and molluscs for food labelling very difficult. The aim of this study was to evaluate the application of allergen-specific monoclonal antibodies in differential detection of shellfish-derived tropomyosin in 11 crustacean and 7 mollusc species, and to study the impact of heating on its detection. Cross-reactive tropomyosin was detected in all crustacean species, with partial detection in molluscs: mussels, scallops and snails but none in oyster, octopus and squid. Furthermore, we have demonstrated that heating of shellfish has a profound effect on tropomyosin detection. This was evident by the enhanced recognition of multiple tropomyosin variants in the analysed shellfish species. Specific monoclonal antibodies, targetting the N-terminal region of tropomyosin, must therefore be developed to differentiate tropomyosins in crustaceans and molluscs. This can help in correct food labelling practices and thus protection of consumers. Copyright © 2013 Elsevier Ltd. All rights reserved.
Uchibori, Ken; Inase, Naohiko; Araki, Mitsugu; Kamada, Mayumi; Sato, Shigeo; Okuno, Yasushi; Fujita, Naoya; Katayama, Ryohei
2017-01-01
Osimertinib has been demonstrated to overcome the epidermal growth factor receptor (EGFR)-T790M, the most relevant acquired resistance to first-generation EGFR–tyrosine kinase inhibitors (EGFR–TKIs). However, the C797S mutation, which impairs the covalent binding between the cysteine residue at position 797 of EGFR and osimertinib, induces resistance to osimertinib. Currently, there are no effective therapeutic strategies to overcome the C797S/T790M/activating-mutation (triple-mutation)-mediated EGFR–TKI resistance. In the present study, we identify brigatinib to be effective against triple-mutation-harbouring cells in vitro and in vivo. Our original computational simulation demonstrates that brigatinib fits into the ATP-binding pocket of triple-mutant EGFR. The structure–activity relationship analysis reveals the key component in brigatinib to inhibit the triple-mutant EGFR. The efficacy of brigatinib is enhanced markedly by combination with anti-EGFR antibody because of the decrease of surface and total EGFR expression. Thus, the combination therapy of brigatinib with anti-EGFR antibody is a powerful candidate to overcome triple-mutant EGFR. PMID:28287083
Hur, Byung-ung; Yoon, Jae-bong; Liu, Li-Kun; Cha, Sang-hoon
2010-11-30
Specific antibodies that possess a subnanomolar affinity are very difficult to obtain from human naïve immunoglobulin repertoires without the use of lengthy affinity optimization procedures. Here, we designed a hierarchical phage-displayed antibody library system to generate an enormous diversity of combinatorial Fab fragments (6×10(17)) and attempted to isolate high-affinity Fabs against the human epidermal growth factor receptor (EGFR). A primary antibody library, designated HuDVFab-8L, comprising 4.5×10(9) human naïve heavy chains and eight unspecified human naïve light chains was selected against the EGFR-Fc protein by biopanning, and four anti-EGFR Fab clones were isolated. Because one of the Fab clones, denoted EG-L2-11, recognized a native EGFR expressed on A431 cells, the heavy chain of the Fab was shuffled with a human naïve light chain repertoire with a diversity of 1.4×10(8) and selected a second time against the EGFR-Fc protein again. One EG-L2-11 variant, denoted EG-19-11, recognized an EGFR epitope that was almost the same as that bound by cetuximab and had a K(D) of approximately 540 pM for soluble EGFR, which is about 7-fold higher than that of the FabC225 derived from cetuximab. This variant was also internalized by A431 cells, likely via receptor-mediated endocytosis, and it efficiently inhibited EGF-mediated tyrosine phosphorylation of the EGFR. These results demonstrate that the use of our hierarchical antibody library system is advantageous in generating fully human antibodies especially with a therapeutic purpose. Copyright © 2010 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Killington, R. A.; Powell, K. L.
1984-01-01
Monoclonal antibodies have provided an exciting addition to the "armory" of the molecular biologist and immunologist. This article discusses briefly the concept of, techniques available for, production of, and possible uses of monoclonal antibodies. (Author)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bujak, Emil; Pretto, Francesca; Ritz, Danilo
2014-09-10
There is a considerable interest for the discovery and characterization of tumor-associated antigens, which may facilitate antibody-based pharmacodelivery strategies. Thrombospondin-1 and thrombospondin-2 are homologous secreted proteins, which have previously been reported to be overexpressed during remodeling typical for wound healing and tumor progression and to possibly play a functional role in cell proliferation, migration and apoptosis. To our knowledge, a complete immunohistochemical characterization of thrombospondins levels in normal rodent tissues has not been reported so far. Using antibody phage technology, we have generated and characterized monoclonal antibodies specific to murine thrombospondin-1 and thrombospondin-2, two antigens which share 62% aminoacid identity.more » An immunofluorescence analysis revealed that both antigens are virtually undetectable in normal mouse tissues, except for a weak staining of heart tissue by antibodies specific to thrombospondin-1. The analysis also showed that thrombospondin-1 was strongly expressed in 5/7 human tumors xenografted in nude mice, while it was only barely detectable in 3/8 murine tumors grafted in immunocompetent mice. By contrast, a high-affinity antibody to thrombospondin-2 revealed a much lower level of expression of this antigen in cancer specimens. Our analysis resolves ambiguities related to conflicting reports on thrombosponding expression in health and disease. Based on our findings, thrombospondin-1 (and not thrombospondin-2) may be considered as a target for antibody-based pharmacodelivery strategies, in consideration of its low expression in normal tissues and its upregulation in cancer. - Highlights: • High affinity monoclonal antibodies to murine and human TSP1 and 2 were raised. • Both antigens are virtually undetectable in normal mouse tissues. • Strong positivity of human tumor xenografts for TSP1 was detected. • Study revealed much lower level of TSP2 expression in cancer specimens. • TSP1 (and not TSP2) may be considered as a target for antibody-based pharmacodelivery.« less
Mileshkin, Linda; Townley, Peter; Gitlitz, Barbara; Eaton, Keith; Mitchell, Paul; Hicks, Rodney; Wood, Katie; Amler, Lucas; Fine, Bernard M.; Loecke, David; Pirzkall, Andrea
2014-01-01
Background. Combination blockade of human epidermal growth factor receptor (HER) family signaling may confer enhanced antitumor activity than single-agent blockade. We performed a single-arm study of pertuzumab, a monoclonal antibody that inhibits HER2 dimerization, and erlotinib in relapsed non-small cell lung cancer (NSCLC). Methods. Patients received pertuzumab (840-mg loading dose and 420-mg maintenance intravenously every 3 weeks) and erlotinib (150-mg or 100-mg dose orally, daily). The primary endpoint was response rate (RR) by 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) at day 56 in all patients and those with EGFR wild-type tumors. Results. Of 41 patients, 28 (68.3%) experienced treatment-related grade ≥3 adverse events, including pneumatosis intestinalis (3 patients), resulting in early cessation of enrollment. Tissue samples from 32 patients showed mutated EGFR status in 9 of 41 (22%) and wild-type EGFR in 23 of 41 (56%). The FDG-PET RR for patients with assessments at day 56 was 19.5% in all patients (n = 41) and 8.7% in patients with wild-type EGFR NSCLC (n = 23). Investigator-assessed computed tomography RR at day 56 was 12.2%. Conclusion. FDG-PET suggests that pertuzumab plus erlotinib is an active combination, but combination therapy was poorly tolerated, which limits its clinical applicability. More research is warranted to identify drug combinations that disrupt HER receptor signaling but that exhibit improved tolerability profiles. PMID:24457379
Imaging Prostate Cancer Microenvironment by Collagen Hybridization
2015-10-01
expected to exhibit selective affinity to metastatic PCa tumors known to contain processed and denatured collagens. The motivating hypothesis is that the...CMP’s ability to bind to collagen/ denatured collagen can be used to image PCa in vivo as well as to determine the level of PCa malignancy. 15...targeted by antibodies (monoclonal antibody raised against denatured collagen); however antibodies have poor pharmacokinetics for in vivo imaging2. Recently
Proof of the quantitative potential of immunofluorescence by mass spectrometry.
Toki, Maria I; Cecchi, Fabiola; Hembrough, Todd; Syrigos, Konstantinos N; Rimm, David L
2017-03-01
Protein expression in formalin-fixed, paraffin-embedded patient tissue is routinely measured by Immunohistochemistry (IHC). However, IHC has been shown to be subject to variability in sensitivity, specificity and reproducibility, and is generally, at best, considered semi-quantitative. Mass spectrometry (MS) is considered by many to be the criterion standard for protein measurement, offering high sensitivity, specificity, and objective molecular quantification. Here, we seek to show that quantitative immunofluorescence (QIF) with standardization can achieve quantitative results comparable to MS. Epidermal growth factor receptor (EGFR) was measured by quantitative immunofluorescence in 15 cell lines with a wide range of EGFR expression, using different primary antibody concentrations, including the optimal signal-to-noise concentration after quantitative titration. QIF target measurement was then compared to the absolute EGFR concentration measured by Liquid Tissue-selected reaction monitoring mass spectrometry. The best agreement between the two assays was found when the EGFR primary antibody was used at the optimal signal-to-noise concentration, revealing a strong linear regression (R 2 =0.88). This demonstrates that quantitative optimization of titration by calculation of signal-to-noise ratio allows QIF to be standardized to MS and can therefore be used to assess absolute protein concentration in a linear and reproducible manner.
NASA Astrophysics Data System (ADS)
Kannadorai, Ravi Kumar; Udumala, Sunil Kumar; Sidney, Yu Wing Kwong
2016-12-01
Noninvasive and nonradioactive imaging modality to track and image apoptosis during chemotherapy of triple negative breast cancer is much needed for an effective treatment plan. Phosphatidylserine (PS) is a biomarker transiently exposed on the outer surface of the cells during apoptosis. Its externalization occurs within a few hours of an apoptotic stimulus by a chemotherapy drug and leads to presentation of millions of phospholipid molecules per apoptotic cell on the cell surface. This makes PS an abundant and accessible target for apoptosis imaging. In the current work, we show that PS monoclonal antibody tagged with indocyanine green (ICG) can help to track and image apoptosis using multispectral optoacoustic tomography in vivo. When compared to saline control, the doxorubicin treated group showed a significant increase in uptake of ICG-PS monoclonal antibody in triple negative breast tumor xenografted in NCr nude female mice. Day 5 posttreatment had the highest optoacoustic signal in the tumor region, indicating maximum apoptosis and the tumor subsequently shrank. Since multispectral optoacoustic imaging does not involve the use of radioactivity, the longer the circulatory time of the PS antibody can be exploited to monitor apoptosis over a period of time without multiple injections of commonly used imaging probes such as Tc-99m Annexin V or F-18 ML10. The proposed apoptosis imaging technique involving multispectral optoacoustic tomography, monoclonal antibody, and near-infrared absorbing fluorescent marker can be an effective tool for imaging apoptosis and treatment planning.
Noninvasive brain cancer imaging with a bispecific antibody fragment, generated via click chemistry.
Luo, Haiming; Hernandez, Reinier; Hong, Hao; Graves, Stephen A; Yang, Yunan; England, Christopher G; Theuer, Charles P; Nickles, Robert J; Cai, Weibo
2015-10-13
Early diagnosis remains a task of upmost importance for reducing cancer morbidity and mortality. Successful development of highly specific companion diagnostics targeting aberrant molecular pathways of cancer is needed for sensitive detection, accurate diagnosis, and opportune therapeutic intervention. Herein, we generated a bispecific immunoconjugate [denoted as Bs-F(ab)2] by linking two antibody Fab fragments, an anti-epidermal growth factor receptor (EGFR) Fab and an anti-CD105 Fab, via bioorthogonal "click" ligation of trans-cyclooctene and tetrazine. PET imaging of mice bearing U87MG (EGFR/CD105(+/+)) tumors with (64)Cu-labeled Bs-F(ab)2 revealed a significantly enhanced tumor uptake [42.9 ± 9.5 percentage injected dose per gram (%ID/g); n = 4] and tumor-to-background ratio (tumor/muscle ratio of 120.2 ± 44.4 at 36 h postinjection; n = 4) compared with each monospecific Fab tracer. Thus, we demonstrated that dual targeting of EGFR and CD105 provides a synergistic improvement on both affinity and specificity of (64)Cu-NOTA-Bs-F(ab)2. (64)Cu-NOTA-Bs-F(ab)2 was able to visualize small U87MG tumor nodules (<5 mm in diameter), owing to high tumor uptake (31.4 ± 10.8%ID/g at 36 h postinjection) and a tumor/muscle ratio of 76.4 ± 52.3, which provided excellent sensitivity for early detection. Finally, we successfully confirmed the feasibility of a ZW800-1-labeled Bs-F(ab)2 for near-infrared fluorescence imaging and image-guided surgical resection of U87MG tumors. More importantly, our rationale can be used in the construction of other disease-targeting bispecific antibody fragments for early detection and diagnosis of small malignant lesions.
Reinders, Lars M H; Klassen, Martin D; Jaeger, Martin; Teutenberg, Thorsten; Tuerk, Jochen
2018-04-01
Monoclonal antibodies are a group of commonly used therapeutics, whose occupational health risk is still discussed controversially. The long-term low-dose exposure side effects are insufficiently evaluated; hence, discussions are often based on a theoretical level or extrapolating side effects from therapeutic dosages. While some research groups recommend applying the precautionary principle for monoclonal antibodies, others consider the exposure risk too low for measures taken towards occupational health and safety. However, both groups agree that airborne monoclonal antibodies have the biggest risk potential. Therefore, we developed a peptide-based analytical method for occupational exposure monitoring of airborne monoclonal antibodies. The method will allow collecting data about the occupational exposure to monoclonal antibodies. Thus, the mean daily intake for personnel in pharmacies and the pharmaceutical industry can be determined for the first time and will help to substantiate the risk assessment by relevant data. The introduced monitoring method includes air sampling, sample preparation and detection by liquid chromatography coupled with high-resolution mass spectrometry of individual monoclonal antibodies as well as sum parameter. For method development and validation, a chimeric (rituximab), humanised (trastuzumab) and a fully humanised (daratumumab) monoclonal antibody are used. A limit of detection between 1 μg per sample for daratumumab and 25 μg per sample for the collective peptide is achieved. Graphical abstract Demonstration of the analytical workflow, from the release of monoclonal antibodies to the detection as single substances as well as sum parameter.
Structural basis of the therapeutic anti-PD-L1 antibody atezolizumab.
Zhang, Fei; Qi, Xiaoqiang; Wang, Xiaoxiao; Wei, Diyang; Wu, Jiawei; Feng, Lingling; Cai, Haiyan; Wang, Yugang; Zeng, Naiyan; Xu, Ting; Zhou, Aiwu; Zheng, Ying
2017-10-27
Monoclonal antibodies targeting PD-1/PD-L1 signaling pathway have achieved unprecedented success in cancer treatment over the last few years. Atezolizumab is the first PD-L1 monoclonal antibody approved by US FDA for cancer therapy; however the molecular basis of atezolizumab in blocking PD-1/PD-L1 interaction is not fully understood. Here we have solved the crystal structure of PD-L1/atezolizumab complex at 2.9 angstrom resolution. The structure shows that atezolizumab binds the front beta-sheet of PD-L1 through three CDR loops from the heavy chain and one CDR loop from the light chain. The binding involves extensive hydrogen-bonding and hydrophobic interactions. Notably there are multiple aromatic residues from the CDR loops forming Pi-Pi stacking or cation-Pi interactions within the center of the binding interface and the buried surface area is more than 2000 Å 2 , which is the largest amongst all the known PD-L1/antibody structures. Mutagenesis study revealed that two hot-spot residues (E58, R113) of PD-L1 contribute significantly to the binding of atezolizumab. The structure also shows that atezolizumab binds PD-L1 with a distinct heavy and light chain orientation and it blocks PD-1/PD-L1 interaction through competing with PD-1 for the same PD-L1 surface area. Taken together, the complex structure of PD-L1/atezolizumab solved here revealed the molecular mechanism of atezolizumab in immunotherapy and provides basis for future monoclonal antibody optimization and rational design of small chemical compounds targeting PD-L1 surface.
Structural basis of the therapeutic anti-PD-L1 antibody atezolizumab
Wei, Diyang; Wu, Jiawei; Feng, Lingling; Cai, Haiyan; Wang, Yugang; Zeng, Naiyan; Xu, Ting; Zhou, Aiwu; Zheng, Ying
2017-01-01
Monoclonal antibodies targeting PD-1/PD-L1 signaling pathway have achieved unprecedented success in cancer treatment over the last few years. Atezolizumab is the first PD-L1 monoclonal antibody approved by US FDA for cancer therapy; however the molecular basis of atezolizumab in blocking PD-1/PD-L1 interaction is not fully understood. Here we have solved the crystal structure of PD-L1/atezolizumab complex at 2.9 angstrom resolution. The structure shows that atezolizumab binds the front beta-sheet of PD-L1 through three CDR loops from the heavy chain and one CDR loop from the light chain. The binding involves extensive hydrogen-bonding and hydrophobic interactions. Notably there are multiple aromatic residues from the CDR loops forming Pi-Pi stacking or cation-Pi interactions within the center of the binding interface and the buried surface area is more than 2000 Å2, which is the largest amongst all the known PD-L1/antibody structures. Mutagenesis study revealed that two hot-spot residues (E58, R113) of PD-L1 contribute significantly to the binding of atezolizumab. The structure also shows that atezolizumab binds PD-L1 with a distinct heavy and light chain orientation and it blocks PD-1/PD-L1 interaction through competing with PD-1 for the same PD-L1 surface area. Taken together, the complex structure of PD-L1/atezolizumab solved here revealed the molecular mechanism of atezolizumab in immunotherapy and provides basis for future monoclonal antibody optimization and rational design of small chemical compounds targeting PD-L1 surface. PMID:29163822
Development of Cu-64 labeled EGF for In Vivo PET Imaging of EGFR Expression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Backer, Joseph M.
2009-07-12
In this project we proposed to establish feasibility of the development of targeted tracers for radionuclide imaging of epidermal growth factor receptors (EGFR) in cancer patients. The significance and impact of the proposed radiotracers are determined by the crucial role that EGFR plays in many cancers and by the rapid entrance of EGFR-inhibiting drugs into clinic. Clinical experience, however, revealed that only 10-25% of patients that are defined as EGFR-positive by immunohistochemical analysis respond to EGFR-directed therapeutics and there is poor correlation between EGFR immunohistochemistry and treatment. Therefore, for more efficacious use of EGFR-targeting therapeutics, there is a need formore » information about EGFR activity in patients. We hypothesized that radionuclide imaging of functionally active EGFR will provide such information and would allow for 1) rational patient stratification, 2) rapid monitoring of responses to therapy, and 3) development of personalized treatment regimens. We hypothesized that tracers based epidermal growth factor (EGF), a natural EGFR ligand, as a targeting vector would be particularly advantageous. First, only functionally active and therefore critical for disease progression EGFRs will bind and internalize an EGF-based tracer. Second, continuous internalization of EGF-based tracers by recyclable EGFR would lead to intracellular accumulation of radionuclide and improved signal-to-background ratio. Third, small size of EGF relative to antibodies would facilitate tumor penetration with vastly better non-specific soft tissue and blood clearance rates. Fourth, as a human protein, EGF is not expected to be immunogenic. Finally, at the beginning of this project, we have already engineered and expressed functionally active EGF with an N-terminal Cys-tag for site-specific conjugation of various payloads, including radionuclide chelators. In the Phase I of this project, in collaboration with Dr. Blankenberg’s group at Stanford University, 1. To synthesize and validate in vitro EGF-PEG-DOTA conjugate. The key accomplishment in this part of the project is synthesis of functionally active EGF-PEG-DOTA, construction, expression, and purification of functionally active Cys-tagged dimeric EGF (dEGF) and synthesis of corresponding dEGF-PEG-DOTA, development of protocols for radiolabeling EGF-PEG-DOTA and dEGF-PEG-DOTA with 64Cu. 2. To establish clearance, biodistribution, and stability of EGF-based PET 64Cu radiotracer. These characteristics are established for both EGF-PEG-DOTA/64Cu and dEGF-PEG-DOTA/64Cu and found to be comparable with reported data on 64Cu-radiolabeled antibodies. 3. To evaluate PET tumor imaging with EGF-based 64Cu radiotracer in mouse tumor models. Tumor imaging was evaluated in orthotopic human MDA231luc breast carcinoma model in SCID mice. Tracers accumulated in tumor area, allowing for detection of as small as few millimeter tumors. The Technical Objectives of the projects are accomplished and the results are published in Bioconjugate Chem. 20, 742, 2009.« less
Caruso, Hillary G; Torikai, Hiroki; Zhang, Ling; Maiti, Sourindra; Dai, Jianliang; Do, Kim-Anh; Singh, Harjeet; Huls, Helen; Lee, Dean A; Champlin, Richard E; Heimberger, Amy B; Cooper, Laurence J N
2016-06-01
Potential for on-target, but off-tissue toxicity limits therapeutic application of genetically modified T cells constitutively expressing chimeric antigen receptors (CARs) from tumor-associated antigens expressed in normal tissue, such as epidermal growth factor receptor (EGFR). Curtailing expression of CAR through modification of T cells by in vitro-transcribed mRNA species is one strategy to mitigate such toxicity. We evaluated expression of an EGFR-specific CAR coded from introduced mRNA in human T cells numerically expanded ex vivo to clinically significant numbers through coculture with activating and propagating cells (AaPC) derived from K562 preloaded with anti-CD3 antibody. The density of AaPC could be adjusted to affect phenotype of T cells such that reduced ratio of AaPC resulted in higher proportion of CD8 and central memory T cells that were more conducive to electrotransfer of mRNA than T cells expanded with high ratios of AaPC. RNA-modified CAR T cells produced less cytokine, but demonstrated similar cytolytic capacity as DNA-modified CAR T cells in response to EGFR-expressing glioblastoma cells. Expression of CAR by mRNA transfer was transient and accelerated by stimulation with cytokine and antigen. Loss of CAR abrogated T-cell function in response to tumor and normal cells expressing EGFR. We describe a clinically applicable method to propagate and modify T cells to transiently express EGFR-specific CAR to target EGFR-expressing tumor cells that may be used to limit on-target, off-tissue toxicity to normal tissue.
Herbert, Martha
2017-01-01
Many hypothyroid and autoimmune thyroid patients experience reactions with specific foods. Additionally, food interactions may play a role in a subset of individuals who have difficulty finding a suitable thyroid hormone dosage. Our study was designed to investigate the potential role of dietary protein immune reactivity with thyroid hormones and thyroid axis target sites. We identified immune reactivity between dietary proteins and target sites on the thyroid axis that includes thyroid hormones, thyroid receptors, enzymes, and transport proteins. We also measured immune reactivity of either target specific monoclonal or polyclonal antibodies for thyroid-stimulating hormone (TSH) receptor, 5′deiodinase, thyroid peroxidase, thyroglobulin, thyroxine-binding globulin, thyroxine, and triiodothyronine against 204 purified dietary proteins commonly consumed in cooked and raw forms. Dietary protein determinants included unmodified (raw) and modified (cooked and roasted) foods, herbs, spices, food gums, brewed beverages, and additives. There were no dietary protein immune reactions with TSH receptor, thyroid peroxidase, and thyroxine-binding globulin. However, specific antigen-antibody immune reactivity was identified with several purified food proteins with triiodothyronine, thyroxine, thyroglobulin, and 5′deiodinase. Laboratory analysis of immunological cross-reactivity between thyroid target sites and dietary proteins is the initial step necessary in determining whether dietary proteins may play a potential immunoreactive role in autoimmune thyroid disease. PMID:28894619
Optical Imaging of Targeted β-Galactosidase in Brain Tumors to Detect EGFR Levels
Broome, Ann-Marie; Ramamurthy, Gopal; Lavik, Kari; Liggett, Alexander; Kinstlinger, Ian; Basilion, James
2015-01-01
A current limitation in molecular imaging is that it often requires genetic manipulation of cancer cells for noninvasive imaging. Other methods to detect tumor cells in vivo using exogenously delivered and functionally active reporters, such as β-gal, are required. We report the development of a platform system for linking β-gal to any number of different ligands or antibodies for in vivo targeting to tissue or cells, without the requirement for genetic engineering of the target cells prior to imaging. Our studies demonstrate significant uptake in vitro and in vivo of an EGFR-targeted β-gal complex. We were then able to image orthotopic brain tumor accumulation and localization of the targeted enzyme when a fluorophore was added to the complex, as well as validate the internalization of the intravenously administered β-gal reporter complex ex vivo. After fluorescence imaging localized the β-gal complexes to the brain tumor, we topically applied a bioluminescent β-gal substrate to serial sections of the brain to evaluate the delivery and integrity of the enzyme. Finally, robust bioluminescence of the EGFR-targeted β-gal complex was captured within the tumor during noninvasive in vivo imaging. PMID:25775241
Optical imaging of targeted β-galactosidase in brain tumors to detect EGFR levels.
Broome, Ann-Marie; Ramamurthy, Gopal; Lavik, Kari; Liggett, Alexander; Kinstlinger, Ian; Basilion, James
2015-04-15
A current limitation in molecular imaging is that it often requires genetic manipulation of cancer cells for noninvasive imaging. Other methods to detect tumor cells in vivo using exogenously delivered and functionally active reporters, such as β-gal, are required. We report the development of a platform system for linking β-gal to any number of different ligands or antibodies for in vivo targeting to tissue or cells, without the requirement for genetic engineering of the target cells prior to imaging. Our studies demonstrate significant uptake in vitro and in vivo of an EGFR-targeted β-gal complex. We were then able to image orthotopic brain tumor accumulation and localization of the targeted enzyme when a fluorophore was added to the complex, as well as validate the internalization of the intravenously administered β-gal reporter complex ex vivo. After fluorescence imaging localized the β-gal complexes to the brain tumor, we topically applied a bioluminescent β-gal substrate to serial sections of the brain to evaluate the delivery and integrity of the enzyme. Finally, robust bioluminescence of the EGFR-targeted β-gal complex was captured within the tumor during noninvasive in vivo imaging.
Parkinson, Eric Kenneth
2013-01-01
The long-chain omega-3 polyunsaturated fatty acids (n-3 PUFAs)—eicosapentaenoic acid (EPA) and its metabolite docosahexaenoic acid (DHA)—inhibit cancer formation in vivo, but their mechanism of action is unclear. Extracellular signal-regulated kinase 1/2 (ERK1/2) activation and inhibition have both been associated with the induction of tumour cell apoptosis by n-3 PUFAs. We show here that low doses of EPA, in particular, inhibited the growth of premalignant and malignant keratinocytes more than the growth of normal counterparts by a combination of cell cycle arrest and apoptosis. The growth inhibition of the oral squamous cell carcinoma (SCC) lines, but not normal keratinocytes, by both n-3 PUFAs was associated with epidermal growth factor receptor (EGFR) autophosphorylation, a sustained phosphorylation of ERK1/2 and its downstream target p90RSK but not with phosphorylation of the PI3 kinase target Akt. Inhibition of EGFR with either the EGFR kinase inhibitor AG1478 or an EGFR-blocking antibody inhibited ERK1/2 phosphorylation, and the blocking antibody partially antagonized growth inhibition by EPA but not by DHA. DHA generated more reactive oxygen species and activated more c-jun N-terminal kinase than EPA, potentially explaining its increased toxicity to normal keratinocytes. Our results show that, in part, EPA specifically inhibits SCC growth and development by creating a sustained signalling imbalance to amplify the EGFR/ERK/p90RSK pathway in neoplastic keratinocytes to a supraoptimal level, supporting the chemopreventive potential of EPA, whose toxicity to normal cells might be reduced further by blocking its metabolism to DHA. Furthermore, ERK1/2 phosphorylation may have potential as a biomarker of n-3 PUFA function in vivo. PMID:23892603
Xie, Guofeng; Cheng, Kunrong; Shant, Jasleen; Raufman, Jean-Pierre
2009-04-01
Previously, we showed that ACh-induced proliferation of human colon cancer cells is mediated by transactivation of epidermal growth factor (EGF) receptors (EGFRs). In the present study, we elucidate the molecular mechanism underlying this action. ACh-induced proliferation of H508 colon cancer cells, which express exclusively M3 muscarinic receptors (M3Rs), was attenuated by anti-EGFR ligand binding domain antibody, a broad-spectrum matrix metalloproteinase (MMP) inhibitor, anti-MMP7 antibody, a diphtheria toxin analog that blocks release of an EGFR ligand [heparin-binding EGF-like growth factor (HBEGF)], and anti-HBEGF antibody. Conditioned media from ACh-treated H508 cells induced proliferation of SNU-C4 colon cancer cells that express EGFR but not M3R. These actions were attenuated by an EGFR inhibitor and by anti-EGFR and anti-HBEGF antibodies. In H508, but not SNU-C4, colon cancer cells, ACh caused a striking dose- and time-dependent increase in levels of MMP7 mRNA and MMP7 protein. Similarly, ACh induced robust MMP1 and MMP10 gene transcription. ACh-induced MMP1, MMP7, and MMP10 gene transcription was attenuated by atropine, anti-EGFR antibody, and chemical inhibitors of EGFR and ERK activation. In contrast, inhibitors of phosphatidylinositol 3-kinase and NF-kappaB activation did not alter MMP gene transcription. Collectively, these findings indicate that MMP7-catalyzed release of HBEGF mediates ACh-induced transactivation of EGFR and consequent proliferation of colon cancer cells. ACh-induced activation of EGFR and downstream ERK signaling also regulates transcriptional activation of MMP7, thereby identifying a novel feed-forward mechanism for neoplastic cell proliferation.
Xie, Guofeng; Cheng, Kunrong; Shant, Jasleen; Raufman, Jean-Pierre
2009-01-01
Previously, we showed that ACh-induced proliferation of human colon cancer cells is mediated by transactivation of epidermal growth factor (EGF) receptors (EGFRs). In the present study, we elucidate the molecular mechanism underlying this action. ACh-induced proliferation of H508 colon cancer cells, which express exclusively M3 muscarinic receptors (M3Rs), was attenuated by anti-EGFR ligand binding domain antibody, a broad-spectrum matrix metalloproteinase (MMP) inhibitor, anti-MMP7 antibody, a diphtheria toxin analog that blocks release of an EGFR ligand [heparin-binding EGF-like growth factor (HBEGF)], and anti-HBEGF antibody. Conditioned media from ACh-treated H508 cells induced proliferation of SNU-C4 colon cancer cells that express EGFR but not M3R. These actions were attenuated by an EGFR inhibitor and by anti-EGFR and anti-HBEGF antibodies. In H508, but not SNU-C4, colon cancer cells, ACh caused a striking dose- and time-dependent increase in levels of MMP7 mRNA and MMP7 protein. Similarly, ACh induced robust MMP1 and MMP10 gene transcription. ACh-induced MMP1, MMP7, and MMP10 gene transcription was attenuated by atropine, anti-EGFR antibody, and chemical inhibitors of EGFR and ERK activation. In contrast, inhibitors of phosphatidylinositol 3-kinase and NF-κB activation did not alter MMP gene transcription. Collectively, these findings indicate that MMP7-catalyzed release of HBEGF mediates ACh-induced transactivation of EGFR and consequent proliferation of colon cancer cells. ACh-induced activation of EGFR and downstream ERK signaling also regulates transcriptional activation of MMP7, thereby identifying a novel feed-forward mechanism for neoplastic cell proliferation. PMID:19221016
Takeuchi, Shinji; Wang, Wei; Li, Qi; Yamada, Tadaaki; Kita, Kenji; Donev, Ivan S; Nakamura, Takahiro; Matsumoto, Kunio; Shimizu, Eiji; Nishioka, Yasuhiko; Sone, Saburo; Nakagawa, Takayuki; Uenaka, Toshimitsu; Yano, Seiji
2012-09-01
Acquired resistance to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) is a serious problem in the management of EGFR mutant lung cancer. We recently reported that hepatocyte growth factor (HGF) induces resistance to EGFR-TKIs by activating the Met/PI3K pathway. HGF is also known to induce angiogenesis in cooperation with vascular endothelial growth factor (VEGF), which is an important therapeutic target in lung cancer. Therefore, we hypothesized that dual inhibition of HGF and VEGF may be therapeutically useful for controlling HGF-induced EGFR-TKI-resistant lung cancer. We found that a dual Met/VEGF receptor 2 kinase inhibitor, E7050, circumvented HGF-induced EGFR-TKI resistance in EGFR mutant lung cancer cell lines by inhibiting the Met/Gab1/PI3K/Akt pathway in vitro. HGF stimulated VEGF production by activation of the Met/Gab1 signaling pathway in EGFR mutant lung cancer cell lines, and E7050 showed an inhibitory effect. In a xenograft model, tumors produced by HGF-transfected Ma-1 (Ma-1/HGF) cells were more angiogenic than vector control tumors and showed resistance to gefitinib. E7050 alone inhibited angiogenesis and retarded growth of Ma-1/HGF tumors. E7050 combined with gefitinib induced marked regression of tumor growth. Moreover, dual inhibition of HGF and VEGF by neutralizing antibodies combined with gefitinib also markedly regressed tumor growth. These results indicate the therapeutic rationale of dual targeting of HGF-Met and VEGF-VEGF receptor 2 for overcoming HGF-induced EGFR-TKI resistance in EGFR mutant lung cancer. Copyright © 2012 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
AXL mediates resistance to cetuximab therapy
Brand, Toni M.; Iida, Mari; Stein, Andrew P.; Corrigan, Kelsey L.; Braverman, Cara; Luthar, Neha; Toulany, Mahmoud; Gill, Parkash S.; Salgia, Ravi; Kimple, Randall J.; Wheeler, Deric L.
2014-01-01
The EGFR antibody cetuximab is used to treat numerous cancers, but intrinsic and acquired resistance to this agent is a common clinical problem. In this study we show that overexpression of the oncogenic receptor kinase AXL is sufficient to mediate acquired resistance to cetuximab in models of non-small cell lung cancer (NSCLC) and head and neck squamous cell carcinoma (HNSCC), where AXL was overexpressed, activated and tightly associated with EGFR expression in cells resistant to cetuximab (CtxR cells). Using RNAi methods and novel AXL targeting agents, we found that AXL activation stimulated cell proliferation, EGFR activation and MAPK signaling in CtxR cells. Notably, EGFR directly regulated the expression of AXL mRNA through MAPK signaling and the transcription factor c-Jun in CtxR cells, creating a positive feedback loop that maintained EGFR activation by AXL. Cetuximab-sensitive parental cells were rendered resistant to cetuximab by stable overexpression of AXL or stimulation with EGFR ligands, the latter of which increased AXL activity and association with the EGFR. In tumor xenograft assays, the development of resistance following prolonged treatment with cetuximab was associated with AXL hyperactivation and EGFR association. Furthermore, in an examination of patient-derived xenografts established from surgically resected HNSCCs, AXL was overexpressed and activated in tumors that displayed intrinsic resistance to cetuximab. Collectively, our results identify AXL as a key mediator of cetuximab resistance, providing a rationale for clinical evaluation of AXL targeting drugs to treat cetuximab-resistant cancers. PMID:25136066
NASA Astrophysics Data System (ADS)
Massey, Richard J.; Schochetman, Gerald
1981-07-01
The inability of pathogenic animal viruses to be completely neutralized by antibodies can lead to chronic viral infections in which infectious virus persists even in the presence of excess neutralizing antibody. A mechanism that results in this nonneutralized fraction of virus was defined by the topographical relationships of viral epitopes identified with monoclonal antibodies wherein monoclonal antibodies bind to virus and sterically block the binding of neutralizing antibodies.
vor dem Esche, Ulrich; Huber, Maria; Zgaga-Griesz, Andrea; Grunow, Roland; Beyer, Wolfgang; Hahn, Ulrike; Bessler, Wolfgang G
2011-07-01
A major difficulty in creating human monoclonal antibodies is the lack of a suitable myeloma cell line to be used for fusion experiments. In order to create fully human monoclonal antibodies for passive immunization, the human mouse heteromyeloma cell line CB-F7 was evaluated. Using this cell line, we generated human monoclonal antibodies against Bacillus anthracis toxin components. Antibodies against protective antigen (PA) and against lethal factor (LF) were obtained using peripheral blood lymphocytes (PBLs) from persons vaccinated with the UK anthrax vaccine. PBL were fused with the cell line CB-F7. We obtained several clones producing PA specific Ig and one clone (hLF1-SAN) producing a monoclonal antibody (hLF1) directed against LF. The LF binding antibody was able to neutralize Anthrax toxin activity in an in vitro neutralization assay, and preliminary in vivo studies in mice also indicated a trend towards protection. We mapped the epitope of the antibody binding to LF by dot blot analysis and ELIFA using 80 synthetic LF peptides of 20 amino acid lengths with an overlapping range of 10 amino acids. Our results suggest the binding of the monoclonal antibody to the peptide regions 121-150 or 451-470 of LF. The Fab-fragment of the antibody hLF1 was cloned in Escherichia coli and could be useful as part of a fully human monoclonal antibody for the treatment of Anthrax infections. In general, our studies show the applicability of the CB-F7 line to create fully human monoclonal antibodies for vaccination. Copyright © 2010 Elsevier GmbH. All rights reserved.
Jena, Bipulendu; Maiti, Sourindra; Huls, Helen; Singh, Harjeet; Lee, Dean A.; Champlin, Richard E.; Cooper, Laurence J. N.
2013-01-01
Clinical trials targeting CD19 on B-cell malignancies are underway with encouraging anti-tumor responses. Most infuse T cells genetically modified to express a chimeric antigen receptor (CAR) with specificity derived from the scFv region of a CD19-specific mouse monoclonal antibody (mAb, clone FMC63). We describe a novel anti-idiotype monoclonal antibody (mAb) to detect CD19-specific CAR+ T cells before and after their adoptive transfer. This mouse mAb was generated by immunizing with a cellular vaccine expressing the antigen-recognition domain of FMC63. The specificity of the mAb (clone no. 136.20.1) was confined to the scFv region of the CAR as validated by inhibiting CAR-dependent lysis of CD19+ tumor targets. This clone can be used to detect CD19-specific CAR+ T cells in peripheral blood mononuclear cells at a sensitivity of 1∶1,000. In clinical settings the mAb is used to inform on the immunophenotype and persistence of administered CD19-specific T cells. Thus, our CD19-specific CAR mAb (clone no. 136.20.1) will be useful to investigators implementing CD19-specific CAR+ T cells to treat B-lineage malignancies. The methodology described to develop a CAR-specific anti-idiotypic mAb could be extended to other gene therapy trials targeting different tumor associated antigens in the context of CAR-based adoptive T-cell therapy. PMID:23469246
Humanized Antibodies for Antiviral Therapy
NASA Astrophysics Data System (ADS)
Co, Man Sung; Deschamps, Marguerite; Whitley, Richard J.; Queen, Cary
1991-04-01
Antibody therapy holds great promise for the treatment of cancer, autoimmune disorders, and viral infections. Murine monoclonal antibodies are relatively easy to produce but are severely restricted for therapeutic use by their immunogenicity in humans. Production of human monoclonal antibodies has been problematic. Humanized antibodies can be generated by introducing the six hypervariable regions from the heavy and light chains of a murine antibody into a human framework sequence and combining it with human constant regions. We humanized, with the aid of computer modeling, two murine monoclonal antibodies against herpes simplex virus gB and gD glycoproteins. The binding, virus neutralization, and cell protection results all indicate that both humanized antibodies have retained the binding activities and the biological properties of the murine monoclonal antibodies.
Poovassery, Jayakumar S; Kang, Jeffrey C; Kim, Dongyoung; Ober, Raimund J; Ward, E Sally
2015-07-15
Dysregulated expression and/or mutations of the various components of the phosphoinositide 3-kinase (PI3K)/Akt pathway occur with high frequency in prostate cancer and are associated with the development and progression of castration resistant tumors. However, small molecule kinase inhibitors that target this signaling pathway have limited efficacy in inhibiting tumor growth, primarily due to compensatory survival signals through receptor tyrosine kinases (RTKs). Although members of the epidermal growth factor receptor (EGFR), or HER, family of RTKs are strongly implicated in the development and progression of prostate cancer, targeting individual members of this family such as EGFR or HER2 has resulted in limited success in clinical trials. Multiple studies indicate a critical role for HER3 in the development of resistance against both HER-targeted therapies and PI3K/Akt pathway inhibitors. In this study, we found that the growth inhibitory effect of GDC-0941, a class I PI3K inhibitor, is markedly reduced in the presence of heregulin. Interestingly, this effect is more pronounced in cells lacking phosphatase and tensin homolog function. Heregulin-mediated resistance to GDC-0941 is associated with reactivation of Akt downstream of HER3 phosphorylation. Importantly, combined blockade of HER2 and HER3 signaling by an anti-HER2/HER3 bispecific antibody or a mixture of anti-HER2 and anti-HER3 antibodies restores sensitivity to GDC-0941 in heregulin-treated androgen-dependent and -independent prostate cancer cells. These studies indicate that the combination of PI3K inhibitors with HER2/HER3 targeting antibodies may constitute a promising therapeutic strategy for prostate cancer. © 2014 UICC.
Shankaran, Veena; Obel, Jennifer; Benson, Al B
2010-01-01
The identification of KRAS mutational status as a predictive marker of response to antibodies against the epidermal growth factor receptor (EGFR) has been one of the most significant and practice-changing recent advances in colorectal cancer research. Recently, data suggesting a potential role for other markers (including BRAF mutations, loss of phosphatase and tension homologue deleted on chromosome ten expression, and phosphatidylinositol-3-kinase-AKT pathway mutations) in predicting response to anti-EGFR therapy have emerged. Ongoing clinical trials and correlative analyses are essential to definitively identify predictive markers and develop therapeutic strategies for patients who may not derive benefit from anti-EGFR therapy. This article reviews recent clinical trials supporting the predictive role of KRAS, recent changes to clinical guidelines and pharmaceutical labeling, investigational predictive molecular markers, and newer clinical trials targeting patients with mutated KRAS.
Y-Trap Cancer Immunotherapy Drug Targets Two Proteins
Two groups of researchers, working independently, have fused a TGF-beta receptor to a monoclonal antibody that targets a checkpoint protein. The result, this Cancer Currents blog describes, is a single hybrid molecule called a Y-trap that blocks two pathways used by tumors to evade the immune system.
Nourizadeh, Ezzat; Zargar, Seyed Jalal; Alimohammadian, Mohammad Hossein; Ajdary, Soheila; Mahdavi, Mahdi
2018-01-01
Objective(s): Leishmaniasis is endemic in 88 countries. Amastigote forms of Leishmania are experts at exploiting host cell processes to establish infection. Monoclonal antibodies are key reagents used in the diagnosis of infectious and non-infectious diseases. The aim of this study was to produce monoclonal antibodies against axenic amastigotes of the Leishmania infantum strain in Iran. Materials and Methods: First, standard strains were cultured and axenic amastigote antigens of L. infantum were obtained. Since then, BALB/c smice were immunized and antibody titers were determined. For hybridoma cell formation, lymphocytes isolated from spleen of immunized mice and myeloma cells were fused at a ratio of 10 to 1 in the presence of polyethylene glycol, followed by limiting dilution for the isolation of monoclones. Subsequently, antibody isotypes were determined by using the isotyping kit. The best clone was injected intraperitoneally to pristane-primed mice for large scale production of monoclonal antibodies. The specificity of antibody was determined with Western blotting. Results: Approximately 25 positive monoclones were obtained, of which four hybrids producing anti-amastigotes L. infantum monoclonal antibodies with high optical density (OD), selected and designated as 8D2 FVI6, 8D2 FVI3, 6G2 FV4 and 6G2 FV3. Results from isotype determination showed the IgG2b sub-class in 6G2FV2 and 8D2FVI6 monoclones. Conclusion: This study produced monoclonal antibody against amastigotes of Iranian strain of L. infantum for the first time. These antibodies have reactivity against Iranian strain of L. infantum and can be used in the diagnosis of Kala-azar.
Goldberg, Richard M; Montagut, Clara; Wainberg, Zev A; Ronga, Philippe; Audhuy, François; Taieb, Julien; Stintzing, Sebastian; Siena, Salvatore; Santini, Daniele
2018-01-01
The anti-epidermal growth factor receptor (EGFR) monoclonal antibody cetuximab in combination with chemotherapy is a standard of care in the first-line treatment of RAS wild-type (wt) metastatic colorectal cancer (mCRC) and has demonstrated efficacy in later lines. Progressive disease (PD) occurs when tumours develop resistance to a therapy, although controversy remains about whether PD on a combination of chemotherapy and targeted agents implies resistance to both components. Here, we propose that some patients may gain additional clinical benefit from the reuse of cetuximab after having PD on regimens including cetuximab in an earlier treatment line. We conducted a non-systematic literature search in PubMed and reviewed published and ongoing clinical trials, focusing on later-line cetuximab reuse in patients with mCRC. Evidence from multiple studies suggests that cetuximab can be an efficacious and tolerable treatment when continued or when fit patients with mCRC are retreated with it after a break from anti-EGFR therapy. Furthermore, on the basis of available preclinical and clinical evidence, we propose that longitudinal monitoring of RAS status may identify patients suitable for such a strategy. Patients who experience progression on cetuximab plus chemotherapy but have maintained RAS wt tumour status may benefit from continuation of cetuximab with a chemotherapy backbone switch because they have probably developed resistance to the chemotherapeutic agents rather than the biologic component of the regimen. Conversely, patients whose disease progresses on cetuximab-based therapy due to drug-selected clonal expansion of RAS- mutant tumour cells may regain sensitivity to cetuximab following a defined break from anti-EGFR therapy. Looking to the future, we propose that RAS status determination at disease progression by liquid, needle or excisional biopsy may identify patients eligible for cetuximab continuation and rechallenge. With this approach, treatment benefit can be extended, adding to established continuum-of-care strategies in patients with mCRC.
Xu, Liang; Carrer, Andrea; Zonta, Francesco; Qu, Zhihu; Ma, Peixiang; Li, Sheng; Ceriani, Federico; Buratto, Damiano; Crispino, Giulia; Zorzi, Veronica; Ziraldo, Gaia; Bruno, Francesca; Nardin, Chiara; Peres, Chiara; Mazzarda, Flavia; Salvatore, Anna M.; Raspa, Marcello; Scavizzi, Ferdinando; Chu, Youjun; Xie, Sichun; Yang, Xuemei; Liao, Jun; Liu, Xiao; Wang, Wei; Wang, Shanshan; Yang, Guang; Lerner, Richard A.; Mammano, Fabio
2017-01-01
Background: Mutations leading to changes in properties, regulation, or expression of connexin-made channels have been implicated in 28 distinct human hereditary diseases. Eight of these result from variants of connexin 26 (Cx26), a protein critically involved in cell-cell signaling in the inner ear and skin. Lack of non-toxic drugs with defined mechanisms of action poses a serious obstacle to therapeutic interventions for diseases caused by mutant connexins. In particular, molecules that specifically modulate connexin hemichannel function without affecting gap junction channels are considered of primary importance for the study of connexin hemichannel role in physiological as well as pathological conditions. Monoclonal antibodies developed in the last three decades have become the most important class of therapeutic biologicals. Recombinant methods permit rapid selection and improvement of monoclonal antibodies from libraries with large diversity. Methods: By screening a combinatorial library of human single-chain fragment variable (scFv) antibodies expressed in phage, we identified a candidate that binds an extracellular epitope of Cx26. We characterized antibody action using a variety of biochemical and biophysical assays in HeLa cells, organotypic cultures of mouse cochlea and human keratinocyte-derived cells. Results: We determined that the antibody is a remarkably efficient, non-toxic, and completely reversible inhibitor of hemichannels formed by connexin 26 and does not affect direct cell-cell communication via gap junction channels. Importantly, we also demonstrate that the antibody efficiently inhibits hyperative mutant Cx26 hemichannels implicated in autosomal dominant non-syndromic hearing impairment accompanied by keratitis and hystrix-like ichthyosis-deafness (KID/HID) syndrome. We solved the crystal structure of the antibody, identified residues that are critical for binding and used molecular dynamics to uncover its mechanism of action. Conclusions: Although further studies will be necessary to validate the effect of the antibody in vivo, the methodology described here can be extended to select antibodies against hemichannels composed by other connexin isoforms and, consequently, to target other pathologies associated with hyperactive hemichannels. Our study highlights the potential of this approach and identifies connexins as therapeutic targets addressable by screening phage display libraries expressing human randomized antibodies. PMID:29018324
Sano, Daisuke; Berlin, Jacob M.; Pham, Tam T.; Marcano, Daniela C.; Valdecanas, David R.; Zhou, Ge; Milas, Luka; Myers, Jeffrey N.; Tour, James M.
2012-01-01
Current chemotherapeutics are characterized by efficient tumor cell-killing and severe side effects mostly derived from off target toxicity. Hence targeted delivery of these drugs to tumor cells is actively sought. In an in vitro system, we previously demonstrated that targeted drug delivery to cancer cells overexpressing epidermal growth factor receptor (EGFR+) can be achieved by poly(ethylene glycol)-functionalized carbon nanovectors simply mixed with a drug, paclitaxel, and an antibody that binds to the epidermal growth factor receptor, Cetuximab. This construct is unusual in that all three components are assembled through non-covalent interactions. Here we show that this same construct is effective in vivo, enhancing radiotherapy of EGFR+ tumors. This targeted nanovector system has the potential to be a new therapy for head and neck squamous cell carcinomas, deserving of further preclinical development. PMID:22316245
Generation and Characterization of a New Monoclonal Antibody Against CXCL4
Gao, Jing; Wu, Mingyuan; Gao, Jin; Wang, Xia; Zhang, Yang; Zhu, Shunying; Yu, Yan
2015-01-01
CXCL4 plays important roles in numerous disease processes, which makes the CXCL4 signaling pathway a potential therapeutic target. In this study, we aimed to develop a neutralizing antibody against both human and mouse CXCL4. Rats were immunized with recombinant human CXCL4 (rhCXCL4). Hybridoma clones were created by fusion of the immunized rat spleen cells with mouse myeloma SP2/0 cells and screened using recombinant mouse CXCL4 (rmCXCL4) and rhCXCL4. The CXCL4 monoclonal antibody (CXCL4 MAb) produced by the 16D6-3 hybridoma clone was sequenced and characterized by Western blot and Biacore assays. It recognized both human and mouse CXCL4 with high affinity and neutralized the effect of rhCXCL4 in vitro. Thus, the antibody may be used in the studies of CXCL4 in murine disease models and as a template in the antibody humanization for clinical developments. PMID:25897609
Ogawa, Mikako; Kosaka, Nobuyuki; Choyke, Peter L; Kobayashi, Hisataka
2009-01-01
In vivo molecular cancer imaging with monoclonal antibodies has great potential not only for cancer detection, but also for cancer characterization. However, the prolonged retention of intravenously injected antibody in the blood causes low target tumor-to-background ratio (TBR). Avidin has been used as a "chase" to clear the unbound, circulating biotinylated antibody and decrease the background signal. Here, we utilize a combined approach of a fluorescence resonance energy transfer (FRET) quenched antibody with an "avidin chase" to increase TBR. Trastuzumab, a humanized monoclonal antibody against human epidermal growth factor receptor type 2 (HER2), was biotinylated and conjugated with the near-infrared (NIR) fluorophore Alexa680 to synthesize Tra-Alexa680-biotin. Next, the FRET quencher, QSY-21, was conjugated to avidin, neutravidin (nAv), or streptavidin (sAv), thus creating Av-QSY21, nAv-QSY21, or sAv-QSY21 as "chasers". The fluorescence was quenched in vitro by binding Tra-Alexa680-biotin to Av-QSY21, nAv-QSY21, or sAv-QSY21. To evaluate if the injection of quencher-conjugated avidin derivatives can improve target TBR by using a dual "quench and chase" strategy, both target (3T3/HER2+) and nontarget (Balb3T3/ZsGreen) tumor-bearing mice were employed. The "FRET quench" effect induced by all the QSY21 avidin-based conjugates reduced but did not totally eliminate background signal from the blood pool. The addition of nAv-QSY21 administration increased target TBR mainly because of the "chase" effect where unbound conjugated antibody was preferentially cleared to the liver. The relatively slow clearance of unbound nAv-QSY21 leads to further reductions in background signal by leaking out of the vascular space and binding to unbound antibodies in the extravascular space of tumors, resulting in decreased nontarget tumor-to-background ratios but increased target TBR due to the "FRET quench" effect, because target-bound antibodies were internalized and could not bind to nAv-QSY21. In conclusion, the proposed "quench-and-chase" system combines two strategies, fluorescent quenching and avidin chasing, to improve target TBR and reduce nontarget TBR, which should result in both improved tumor sensitivity and improved specificity.
NASA Technical Reports Server (NTRS)
Chen, F.; Haber, E.; Matsueda, G. R.
1992-01-01
The binding of radiolabeled monoclonal antifibrin antibody 59D8 (specific for fibrin but not fibrinogen) to a series of degraded fibrin clots showed that the availability of the B beta(15-21) epitope (against which 59D8 had been raised) was inversely proportional to the extent of clot lysis. Examination of digest supernatants revealed that the B beta(15-21) epitope was released from clots as a high molecular weight degradation product in the presence of calcium ions but that the generation of low molecular weight peptides occurred in the absence of calcium ions. To address the question of epitope accessibility, we compared levels of fibrin clot binding among four radioactively labeled antibodies: antifibrin monoclonal antibody 59D8, two antifibrinogen monoclonal antibodies that cross-reacted with fibrin, and an affinity-purified polyclonal antifibrinogen antibody. We expected that the antifibrinogen antibodies would show enhanced binding to clots in comparison with the antifibrin antibody. However, the epitope accessibility experiments showed that all four antibody preparations bound fibrin clots at comparable levels. Taken together, these studies demonstrated that one fibrin-specific epitope, B beta(15-21), remains available on clots as they undergo degradation by plasmin and, importantly, that the epitope is not solubilized at a rate faster than the rate at which the clot is itself solubilized. The availability of the B beta(15-21) epitope during the course of plasminolysis assures the potential utility of antifibrin antibodies such as 59D8 for detecting thrombi and targeting plasminogen activators.
Minimizing target interference in PK immunoassays: new approaches for low-pH-sample treatment.
Partridge, Michael A; Pham, John; Dziadiv, Olena; Luong, Onson; Rafique, Ashique; Sumner, Giane; Torri, Albert
2013-08-01
Quantitating total levels of monoclonal antibody (mAb) biotherapeutics in serum using ELISA may be hindered by soluble targets. We developed two low-pH-sample-pretreatment techniques to minimize target interference. The first procedure involves sample pretreatment at pH <3.0 before neutralization and analysis in a target capture ELISA. Careful monitoring of acidification time is required to minimize potential impact on mAb detection. The second approach involves sample dilution into mild acid (pH ∼4.5) before transferring to an anti-human capture-antibody-coated plate without neutralization. Analysis of target-drug and drug-capture antibody interactions at pH 4.5 indicated that the capture antibody binds to the drug, while the drug and the target were dissociated. Using these procedures, total biotherapeutic levels were accurately measured when soluble target was >30-fold molar excess. These techniques provide alternatives for quantitating mAb biotherapeutics in the presence of a target when standard acid-dissociation procedures are ineffective.
Manjappa, Arehalli S; Chaudhari, Kiran R; Venkataraju, Makam P; Dantuluri, Prudhviraju; Nanda, Biswarup; Sidda, Chennakesavulu; Sawant, Krutika K; Murthy, Rayasa S Ramachandra
2011-02-28
A great deal of effort has been made over the years to develop liposomes that have targeting vectors (oligosaccharides, peptides, proteins and vitamins) attached to the bilayer surface. Most studies have focused on antibody conjugates since procedures for producing highly specific monoclonal antibodies are well established. Antibody conjugated liposomes have recently attracted a great deal of interest, principally because of their potential use as targeted drug delivery systems and in diagnostic applications. A number of methods have been reported for coupling antibodies to the surface of stealth liposomes. The objective of this review is to enumerate various strategies which are employed in the modification and conjugation of antibodies to the surface of stealth liposomes. This review also describes various derivatization techniques of lipids prior and after their use in the preparation of liposomes. The use of single chain variable fragments and affibodies as targeting ligands in the preparation of immunoliposomes is also discussed. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Chao; Ji, Yang; Wang, Can; Liang, Shujing; Pan, Fei; Zhang, Chunlei; Chen, Feng; Fu, Hualin; Wang, Kan; Cui, Daxiang
2014-05-01
Successful development of safe and highly effective nanoprobes for targeted imaging of in vivo early gastric cancer is a great challenge. Herein, we choose the CdSe/ZnS (core-shell) quantum dots (QDs) as prototypical materials, synthesized one kind of a new amphiphilic polymer including dentate-like alkyl chains and multiple carboxyl groups, and then used the prepared amphiphilic polymer to modify QDs. The resultant amphiphilic polymer engineered QDs (PQDs) were conjugated with BRCAA1 and Her2 monoclonal antibody, and prepared BRCAA1 antibody- and Her2 antibody-conjugated QDs were used for in vitro MGC803 cell labeling and in vivo targeted imaging of gastric cancer cells. Results showed that the PQDs exhibited good water solubility, strong photoluminescence (PL) intensity, and good biocompatibility. BRCAA1 antibody- and Her2 antibody-conjugated QD nanoprobes successfully realized targeted imaging of in vivo gastric cancer MGC803 cells. In conclusion, BRCAA1 antibody- and Her2 antibody-conjugated PQDs have great potential in applications such as single cell labeling and in vivo tracking, and targeted imaging and therapeutic effects' evaluation of in vivo early gastric cancer cells in the near future.
Nato, F; Mazie, J C; Fournier, J M; Slizewicz, B; Sagot, N; Guibourdenche, M; Postic, D; Riou, J Y
1991-01-01
Polyclonal and monoclonal antibodies against capsular polysaccharides of Neisseria meningitidis serogroups A, B, and C were produced in order to develop immunological reagents allowing both the detection of soluble antigens during meningococcal meningitis and antigenic serogrouping of N. meningitidis cultures. The performance characteristics of monoclonal and polyclonal antibody latex reagents were compared. For the detection of soluble polysaccharide antigen, polyclonal antibody latex reagent was selected for N. meningitidis A and C. The latex reagent prepared with polyclonal antibodies against N. meningitidis B could not detect capsular polysaccharide even at 1 mg/ml. The monoclonal antibody B latex reagent which detected 100 ng of polysaccharide per ml was therefore chosen. For the serogroup identification of N. meningitidis, the use of a confirmatory test results in an overall specificity of 100% with polyclonal or monoclonal antibody latex reagents. PMID:1909346
Sanders, Melanie; Guo, Yirong; Iyer, Abhishek; García, Yara Ruiz; Galvita, Anastasia; Heyerick, Arne; Deforce, Dieter; Risseeuw, Martijn D P; Van Calenbergh, Serge; Bracke, Marc; Eremin, Sergei; Madder, Annemieke; De Saeger, Sarah
2014-01-01
An immunogen synthesis strategy was designed to develop anti-deoxynivalenol (DON) monoclonal antibodies with low cross-reactivity against structurally similar trichothecenes. A total of eight different DON immunogens were synthesised, differing in the type and position of the linker on the DON molecule. After immunisation, antisera from mice immunised with different DON immunogens were checked for the presence of relevant antibodies. Then, both homologous and heterologous enzyme-linked immunosorbent assays (ELISAs) were performed for hybridoma screening. Finally, three monoclonal antibodies against DON and its analogues were generated. In addition, monoclonal antibody 13H1 could recognise DON and its analogues in the order of HT-2 toxin > 15-acetyldeoxynivalenol (15-ADON) > DON, with IC₅₀ ranging from 1.14 to 2.13 µg ml⁻¹. Another monoclonal antibody 10H10 manifested relatively close sensitivities to DON, 3-acetyldeoxynivalenol (3-ADON) and 15-ADON, with IC₅₀ values of 22, 15 and 34 ng ml⁻¹, respectively. Using an indirect ELISA format decreases the 10H10 sensitivity to 15-ADON with 92%. A third monoclonal antibody 2A9 showed to be very specific and sensitive to 3-ADON, with IC₅₀ of 0.38 ng ml⁻¹. Using both 2A9 and 10H10 monoclonal antibodies allows determining sole DON contamination.
Developing injectable immunoglobulins to treat cognitive impairment in Alzheimer's disease.
Steinitz, Michael
2008-05-01
Alzheimer's disease is a devastating disorder, clinically characterized by a comprehensive cognitive decline. The novel strategy of anti-amyloid-beta immunotherapy has been suggested following encouraging results obtained in murine models of Alzheimer's disease, in non-human primates, and in small-scale clinical trials. To examine the choice between active or passive anti-amyloid-beta immunization and the choice of the molecule to which the immune machinery should be targeted, which are central issues in future immune therapy of Alzheimer's disease. Research into the new area of Alzheimer's disease immune therapy is primarily based on in vivo and in vitro studies of murine models of Alzheimer's disease. The studies are hence limited to defined genetic deficiencies. In humans, infusion of anti-amyloid-beta antibodies is considered a safer approach than active anti-amyloid-beta vaccination. Alzheimer's-disease-protective anti-amyloid-beta monoclonal antibodies should target specific epitopes within the amyloid beta(1 42) peptide, avoiding possibly harmful binding to the ubiquitous normal amyloid precursor protein. Since Alzheimer's disease immunotherapy requires repeated infusion of antibodies over a prolonged period of time, Alzheimer's disease patients will tolerate such antibodies provided the latter are exclusively of human origin. Human monoclonal antibodies that correspond to ubiquitous anti-amyloid-beta, present in all healthy humans, might bear important protective characteristics.
Monoclonal antibodies against the rat liver glucocorticoid receptor.
Okret, S; Wikström, A C; Wrange, O; Andersson, B; Gustafsson, J A
1984-01-01
Splenic cells from one BALB/c mouse and one C57/BL mouse, immunized with purified rat liver glucocorticoid receptor (GR), were fused with the mouse myeloma cell line Sp 2/0-Ag 14. Screening for production of anti-GR-antibodies by the hybridomas was carried out with an enzyme-linked immunosorbent assay, using partially purified rat liver GR as antigen. Further screening was by a second-antibody immunoprecipitation assay using [3H]triamcinolone acetonide-GR complex from rat liver cytosol as tracer. Hybridomas from 10 different microplate wells, positive in both assays, were successfully cloned by the limiting dilution method to monoclonality. The different origins of the monoclonal antibodies were confirmed by their various isoelectric points when analyzed by isoelectric focusing. Four of the monoclonal hybridoma cell lines secreted IgM antibodies; two, IgG1; three, IgG2a; and one, IgG2b. The GR-antibody complex was identified in glycerol density gradients by a shift of the 4S GR to an 8.5S or 19S GR-antibody complex when incubated with monoclonal IgG or IgM antibody, respectively. The 10 monoclonal antibodies recognized different determinants on the GR, all situated on that domain of the receptor that is separate from the ligand and DNA-binding domains. Also, the cross-reactivity to the mouse liver GR varied among the monoclonal antibodies. No cross-reactivity was observed to the human lymphocytic GR. NaDodSO4 electrophoresis of a 0.5% pure GR preparation followed by immunoblotting using one of the monoclonal antibodies identified a single peptide with a molecular weight of 94,000, identical to the purified rat liver GR. Images PMID:6200880
Pan, Ruimin; Chen, Yuxin; Vaine, Michael; ...
2015-07-15
The fourth conserved region (C4) in the HIV-1 envelope glycoprotein (Env) gp120 is a structural element that is important for its function, as it binds to both the receptor CD4 and the co-receptor CCR5/CXCR4. It has long been known that this region is highly immunogenic and that it harbors B-cell as well as T-cell epitopes. It is the target of a number of antibodies in animal studies, which are called CD4-blockers. However, the mechanism by which the virus shields itself from such antibody responses is not known. Here, we determined the crystal structure of R53 in complex with its epitopemore » peptide using a novel anti-C4 rabbit monoclonal antibody R53. Our data show that although the epitope of R53 covers a highly conserved sequence 433AMYAPPI 439, it is not available in the gp120 trimer and in the CD4-bound conformation. Our results suggest a masking mechanism to explain how HIV-1 protects this critical region from the human immune system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Ruimin; Chen, Yuxin; Vaine, Michael
The fourth conserved region (C4) in the HIV-1 envelope glycoprotein (Env) gp120 is a structural element that is important for its function, as it binds to both the receptor CD4 and the co-receptor CCR5/CXCR4. It has long been known that this region is highly immunogenic and that it harbors B-cell as well as T-cell epitopes. It is the target of a number of antibodies in animal studies, which are called CD4-blockers. However, the mechanism by which the virus shields itself from such antibody responses is not known. Here, we determined the crystal structure of R53 in complex with its epitopemore » peptide using a novel anti-C4 rabbit monoclonal antibody R53. Our data show that although the epitope of R53 covers a highly conserved sequence 433AMYAPPI 439, it is not available in the gp120 trimer and in the CD4-bound conformation. Our results suggest a masking mechanism to explain how HIV-1 protects this critical region from the human immune system.« less
Sherwood, Laura J.; Hayhurst, Andrew
2013-01-01
Background Antigen detection assays can play an important part in environmental surveillance and diagnostics for emerging threats. We are interested in accelerating assay formulation; targeting the agents themselves to bypass requirements for a priori genome information or surrogates. Previously, using in vitro affinity reagent selection on Marburg virus we rapidly established monoclonal affinity reagent sandwich assay (MARSA) where one recombinant antibody clone was both captor and tracer for polyvalent nucleoprotein (NP). Hypothesizing that the closely related Ebolavirus genus may share the same Achilles' heel, we redirected the scheme to see whether similar assays could be delivered and began to explore their mechanism. Methods and Findings In parallel we selected panels of llama single domain antibodies (sdAb) from a semi-synthetic library against Zaire, Sudan, Ivory Coast, and Reston Ebola viruses. Each could perform as both captor and tracer in the same antigen sandwich capture assay thereby forming MARSAs. All sdAb were specific for NP and those tested required the C-terminal domain for recognition. Several clones were cross-reactive, indicating epitope conservation across the Ebolavirus genus. Analysis of two immune shark sdAb revealed they also targeted the C-terminal domain, and could be similarly employed, yet were less sensitive than a comparable llama sdAb despite stemming from immune selections. Conclusions The C-terminal domain of Ebolavirus NP is a strong attractant for antibodies and enables sensitive sandwich immunoassays to be rapidly generated using a single antibody clone. The polyvalent nature of nucleocapsid borne NP and display of the C-terminal region likely serves as a bountiful affinity sink during selections, and a highly avid target for subsequent immunoassay capture. Combined with the high degree of amino acid conservation through 37 years and across wide geographies, this domain makes an ideal handle for monoclonal affinity reagent driven antigen sandwich assays for the Ebolavirus genus. PMID:23577211
Noh, Hyangsoon; Yan, Jun; Hong, Sungguan; Kong, Ling-Yuan; Gabrusiewicz, Konrad; Xia, Xueqing; Heimberger, Amy B; Li, Shulin
2016-11-01
Intracellular vimentin overexpression has been associated with epithelial-mesenchymal transition, metastasis, invasion, and proliferation, but cell surface vimentin (CSV) is less understood. Furthermore, it remains unknown whether CSV can serve as a therapeutic target in CSV-expressing tumor cells. We found that CSV was present on glioblastoma multiforme (GBM) cancer stem cells and that CSV expression was associated with spheroid formation in those cells. A newly developed monoclonal antibody against CSV, 86C, specifically and significantly induced apoptosis and inhibited spheroid formation in GBM cells in vitro. The addition of 86C to GBM cells in vitro also led to rapid internalization of vimentin and decreased GBM cell viability. These findings were associated with an increase in caspase-3 activity, indicating activation of apoptosis. Finally, treatment with 86C inhibited GBM progression in vivo. In conclusion, CSV-expressing GBM cells have properties of tumor initiating cells, and targeting CSV with the monoclonal antibody 86C is a promising approach in the treatment of GBM.
Brain uptake of multivalent and multi-specific DVD-Ig proteins after systemic administration.
Karaoglu Hanzatian, Denise; Schwartz, Annette; Gizatullin, Farid; Erickson, Jamie; Deng, Kangwen; Villanueva, Ruth; Stedman, Christopher; Harris, Cristina; Ghayur, Tariq; Goodearl, Andrew
2018-05-17
Therapeutic monoclonal antibodies and endogenous IgG antibodies show limited uptake into the central nervous system (CNS) due to the blood-brain barrier (BBB), which regulates and controls the selective and specific transport of both exogenous and endogenous materials to the brain. The use of natural transport mechanisms, such as receptor-mediated transcytosis (RMT), to deliver antibody therapeutics into the brain have been studied in rodents and monkeys. Recent successful examples include monovalent bispecific antibodies and mono- or bivalent fusion proteins; however, these formats do not have the capability to bind to both the CNS target and the BBB transport receptor in a bivalent fashion as a canonical antibody would. Dual-variable-domain immunoglobulin (DVD-Ig) proteins offer a bispecific format where monoclonal antibody-like bivalency to both the BBB receptor and the therapeutic target is preserved, enabling independent engineering of binding affinity, potency, valency, epitope and conformation, essential for successful generation of clinical candidates for CNS applications with desired drug-like properties. Each of these parameters can affect the binding and transcytosis ability mediated by different receptors on the brain endothelium differentially, allowing exploration of diverse properties. Here, we describe generation and characterization of several different DVD-Ig proteins, specific for four different CNS targets, capable of crossing the BBB through transcytosis mediated by the transferrin receptor 1 (TfR1). After systemic administration of each DVD-Ig, we used two independent methods in parallel to observe specific uptake into the brain. An electrochemiluminescent-based sensitive quantitative assay and a semi-quantitative immunohistochemistry technique were used for brain concentration determination and biodistribution/localization in brain, respectively. Significantly enhanced brain uptake and retention was observed for all TfR1 DVD-Ig proteins regardless of the CNS target or the systemic administration route selected.
Song, In Ho; Lee, Tae Sup; Park, Yong Serk; Lee, Jin Sook; Lee, Byung Chul; Moon, Byung Seok; An, Gwang Il; Lee, Hae Won; Kim, Kwang Il; Lee, Yong Jin; Kang, Joo Hyun; Lim, Sang Moo
2016-07-01
Immuno-PET provides valuable information about tumor location, phenotype, susceptibility to therapy, and treatment response, especially to targeted radioimmunotherapy. In this study, we prepared antiepidermal growth factor receptor (EGFR) antibody via identical chelator, 3,6,9,15-tetraazabicyclo[9.3.1]-pentadeca-1(15),11,13-trience-3,6,9,-triacetic acid (PCTA), labeled with (64)Cu or (177)Lu to evaluate the EGFR expression levels using immuno-PET and the feasibility of radioimmunotherapy in an esophageal squamous cell carcinoma (ESCC) model. Cetuximab was conjugated with p-SCN-Bn-PCTA and radiolabeled with (64)Cu or (177)Lu. In vitro EGFR expression levels were determined and compared using flow cytometry and cell binding assay. In vivo EGFR expression levels were evaluated via immuno-PET imaging of (64)Cu-cetuximab and biodistribution analysis. Micro-SPECT/CT imaging, biodistribution, and radioimmunotherapy studies of (177)Lu-cetuximab were performed in the ESCC model. Therapeutic responses were monitored using (18)F-FDG PET and immunohistochemical staining. (64)Cu- or (177)Lu-labeled antibodies showed high radiolabeling yield (>98%), stability (>90%), and favorable immunoreactivity. In vitro EGFR status measured by cell binding assay was correlated with the flow cytometry data. Immuno-PET, micro-SPECT/CT, and biodistribution demonstrated specific uptake in ESCC tumors depending on the EGFR expression levels. Tumor accumulation of (64)Cu- and (177)Lu-cetuximab was peaked at 48 and 120 h, respectively. Radioimmunotherapy with (177)Lu-cetuximab showed significant inhibition of tumor growth (P < 0.01) and marked reduction of (18)F-FDG SUV compared with that of control (P < 0.05). Terminal deoxynucleotidyl transferase dUTP nick-end labeling positivity and Ki-67 staining indices increased and decreased, respectively, in the radioimmunotherapy group compared with other groups (P < 0.01). (64)Cu-cetuximab immuno-PET represented EGFR expression levels in ESCC tumors, and (177)Lu-cetuximab radioimmunotherapy effectively inhibited the tumor growth. The diagnostic and therapeutic convergence radiopharmaceutical (64)Cu-/(177)Lu-PCTA-cetuximab may be useful as a diagnostic tool in patient selection and a potent radioimmunotherapy agent in EGFR-positive ESCC tumors. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.
Ogawa, Mikako; Kosaka, Nobuyuki; Choyke, Peter L; Kobayashi, Hisataka
2009-01-01
In vivo molecular cancer imaging with monoclonal antibodies has great potential not only for cancer detection but also for cancer characterization. However, the prolonged retention of intravenously injected antibody in the blood causes low target tumor-to-background ratio (TBR). Avidin has been used as a “chase” to clear the unbound, circulating biotinylated antibody and decrease the background signal. Here, we utilize a combined approach of a Fluorescence Resonance Energy Transfer (FRET) quenched antibody with an “avidin chase” to increase TBR. Trastuzumab, a humanized monoclonal antibody against human epidermal growth factor receptor type 2 (HER2), was biotinylated and conjugated with the near-infrared (NIR) fluorophore Alexa680 to synthesize Tra-Alexa680-biotin. Next, the FRET quencher, QSY-21, was conjugated to avidin, neutravidin (nAv) or streptavidin (sAv), thus creating Av-QSY21, nAv-QSY21 or sAv-QSY21 as “chasers”. The fluorescence was quenched in vitro by binding Tra-Alexa680-biotin to Av-QSY21, nAv-QSY21 or sAv-QSY21. To evaluate if the injection of quencher-conjugated avidin-derivatives can improve target TBR by using a dual “quench and chase” strategy, both target (3T3/HER2+) and non-target (Balb3T3/ZsGreen) tumor bearing mice were employed. The “FRET quench” effect induced by all the QSY21 avidin-based conjugates reduced but did not totally eliminate background signal from the blood pool. The addition of nAv-QSY21 administration increased target TBR mainly due to the “chase” effect where unbound conjugated antibody was preferentially cleared to the liver. The relatively slow clearance of unbound nAv-QSY21 leads to further reductions in background signal by leaking out of the vascular space and binding to unbound antibodies in the extravascular space of tumors resulting in decreased non-target tumor-to-background ratios but increased target TBR due to the “FRET quench” effect because target-bound antibodies were internalized and could not bind to nAv-QSY21. In conclusion, the proposed “quench-and-chase” system combines two strategies, fluorescent quenching and avidin chasing to improve target TBR and reduce non target TBR which should result in both improved tumor sensitivity and specificity. PMID:19072537
[Anti-PD-1 antibody: basics and clinical application].
Tanaka, Yoshimasa; Okamura, Haruki
2013-09-01
Although the treatment of cancer with monoclonal antibodies has long been pursued, T cell-directed immunotherapy has met with limited success. Recently, much attention has been devoted to the blockade of PD-1 signaling to activate an immune response to cancer. PD-1, a protein expressed on T cells, is a member of the CD28 superfamily, and it transmits coinhibitory signals upon engagement with its ligands PD-L1 and PD-L2. Accumulating evidence suggests that the PD-1 system plays pivotal roles in the regulation of autoimmunity, transplantation immunity, infectious immunity, and tumor immunity. Because the interaction of PD-1 with its ligands occurs in the effector phase of killer T cell responses in peripheral blood, anti-PD-1 and anti-PD-L1 monoclonal antibodies are ideal as specific agents to augment T cell responses to tumors with fewer adverse events than with the inhibition of CTLA-4, because the interaction of CTLA-4 with its ligands occurs in the priming phase of T cell responses within lymph nodes. In recent phase I clinical trials, objective responses were observed in patients with melanoma, renal cell carcinoma, and non-small cell lung cancer who underwent immunotherapy with an anti-PD-1 monoclonal antibody. In addition, the antitumor activity of an anti-PD-L1 monoclonal antibody was observed in patients with melanoma, renal cell carcinoma, non-small cell lung cancer, and ovarian cancer. The next frontier of immunotherapy targeting the PD-1 axis is to define patient selection criteria and explore combination therapy with other therapeutic manipulations such as adoptive immunotherapies.
Selective Blockade of Human Natural Killer Cells by a Monoclonal Antibody
NASA Astrophysics Data System (ADS)
Newman, Walter
1982-06-01
A murine monoclonal antibody, 13.1, which blocks human natural killer (NK) cell-mediated lysis, has been developed. Hybridoma 13.1 was derived by fusion of NS-1 cells with spleen cells from mice immunized with an enriched population of NK cells. Supernatants of growing hybridomas were screened for their ability to block NK cell-mediated lysis of K562 targets. Antibody 13.1 is an IgG1 with a single light chain type and it does not fix complement. The 13.1 antigen is expressed on all peripheral blood mononuclear cells, with an antigen density approximately 1/30th that of HLA antigen heavy chain. Pretreatment and washing experiments revealed that inhibition of cytotoxicity occurred at the effector cell level only. Significant blocking was achieved with nanogram quantities of antibody and was not due to toxic effects on NK cells. Likewise, controls with other antibodies of the same subclass demonstrated that blocking was not a consequence of mere binding to NK cells. When a panel of 17 NK cell-susceptible targets was tested, the lysis of only 5 of these was blocked, namely K562, HL-60, KG-1, Daudi, and HEL, a human erythroleukemic cell line. The lysis of 12 human B cell and T cell line targets was not inhibited. In addition to the demonstration that the 13.1 antigen is a crucial cell surface structure involved in NK lysis, a heterogeneity of target cell recognition has been revealed that argues for the proposition that individual NK cells have multiple recognitive capabilities.
Cheng, Haixia; Fertig, Elana J; Ozawa, Hiroyuki; Hatakeyama, Hiromitsu; Howard, Jason D; Perez, Jimena; Considine, Michael; Thakar, Manjusha; Ranaweera, Ruchira; Krigsfeld, Gabriel; Chung, Christine H
2015-01-01
Epidermal growth factor receptor (EGFR) is frequently overexpressed in head and neck squamous cell carcinoma (HNSCC) and cetuximab, a monoclonal antibody targeting this receptor, is widely used to treat these patients. In the following investigation, we examined the role of SMAD4 down-regulation in mediating epithelial-to-mesenchymal transition (EMT) and cetuximab resistance in HNSCC. We determined that SMAD4 downregulation was significantly associated with increased cell motility, increased expression of vimentin, and cetuximab resistance in HNSCC cell lines. In the HNSCC genomic dataset obtained from The Cancer Genome Atlas, SMAD4 was altered in 20/279 (7%) of HNSCC via homozygous deletion, and nonsense, missense, and silent mutations. When SMAD4 expression was compared with respect to human papillomavirus (HPV) status, HPV-positive tumors had higher expression compared to HPV-negative tumors. Furthermore, higher SMAD4 expression also correlated with higher CDKN2A (p16) expression. Our data suggest that SMAD4 down-regulation plays an important role in the induction of EMT and cetuximab resistance. Patients with higher SMAD4 expression may benefit from cetuximab use in the clinic. PMID:26046389
Wright, S F; Morton, J B; Sworobuk, J E
1987-09-01
Spore morphology is currently used to identify species of vesicular-arbuscular mycorrhizal fungi. We report the first use of a highly specific immunological method for identification of a vesicular-arbuscular mycorrhizal fungus. Two monoclonal antibodies were produced against Glomus occultum. Monoclonal antibodies reacted strongly with both spores and hyphae in an indirect enzyme-linked immunosorbent assay. All other mycorrhizal (29 species) and nonmycorrhizal (5 species) fungi tested were nonreactive with the monoclonal antibodies. A single spore of G. occultum was detectable in the presence of high numbers of spores of other vesicular-arbuscular mycorrhizal fungi. Variation in the reaction of G. occultum isolates from West Virginia, Florida, and Colombia suggests that monoclonal antibodies may differentiate strains.
Mortensen, Joachim Høg
2013-01-01
Therapeutic advances do not circumvent the devastating fact that the survival rate in glioblastoma multiforme (GBM) is less than 5%. Nanoparticles consisting of liposome-based therapeutics are provided against a variety of cancer types including GBM, but available liposomal formulations are provided without targeting moieties, which increases the dosing demands to reach therapeutic concentrations with risks of side effects. We prepared PEGylated immunoliposomes (ILs) conjugated with anti-human epidermal growth factor receptor (EGFR) antibodies Cetuximab (α-hEGFR-ILs). The affinity of the α-hEGFR-ILs for the EGF receptor was evaluated in vitro using U87 mg and U251 mg cells and in vivo using an intracranial U87 mg xenograft model. The xenograft model was additionally analyzed with respect to permeability to endogenous albumin, tumor size, and vascularization. The in vitro studies revealed significantly higher binding of α-hEGFR-ILs when compared with liposomes conjugated with isotypic nonimmune immunoglobulin. The uptake and internalization of the α-hEGFR-ILs by U87 mg cells were further confirmed by 3D deconvolution analyses. In vivo, the α-hEGFR-ILs accumulated to a higher extent inside the tumor when compared to nonimmune liposomes. The data show that α-hEGFR-ILs significantly enhance the uptake and accumulation of liposomes in this experimental model of GBM suggestive of improved specific nanoparticle-based delivery. PMID:24175095
Integrating Novel Therapeutic Monoclonal Antibodies into the Management of Head and Neck Cancer
Bauman, Julie E.; Ferris, Robert L.
2014-01-01
Head and neck squamous cell carcinoma (HNSCC) is an immunosuppressive malignancy. Interest in developing novel immunotherapies in HNSCC has been reawakened by the success of cetuximab, a therapeutic monoclonal antibody (mAb) against the epidermal growth factor receptor which likely relies on immune as well as anti-signaling mechanisms. We focus on novel therapeutic mAb in current clinical development against established mechanisms of immune evasion in HNSCC, targeting: tumor antigens (TA), with resultant potential to induce antibody-dependent cell-mediated cytotoxicity and T cell activation; immunosuppressive cytokines; co-stimulatory Tumor Necrosis Factor (TNF)-family receptors; and co-inhibitory immune checkpoint receptors. Clinical trials of immunotherapeutic mAb as monotherapy, in combination with cytolytic standard therapies exposing TA or in combination with other immunomodulatory mAb, are urgently needed in HNSCC. PMID:24222079
Immunologic Approaches for the Treatment of Multiple Myeloma
Rasche, Leo; Weinhold, Niels; Morgan, Gareth J; van Rhee, Frits; Davies, Faith E
2017-01-01
The FDA approval of two monoclonal antibodies in 2015 has heralded a new era of targeted immunotherapies for multiple myeloma (MM). In this review we discuss the recent approaches using different immunological components to treat MM. In particular, we review current monoclonal antibody based therapies, engineered T- and NK cell products, ‘off-target’ immunomodulation, and strategies utilizing allogeneic cell transplantation in MM. We discuss how an immunologic approach offers promise for the treatment of this genetically heterogeneous disease, and how patients with acquired drug resistance may particularly benefit from these therapies. We also describe some of the limitations of the current strategies and speculate on the future of personalized immunotherapies for MM. PMID:28431262
Badawy, Afkar A.; El-Hindawi, Ali; Hammam, Olfat; Moussa, Mona; Helal, Noha S.; Kamel, Amira
2017-01-01
Introduction Overexpression of epidermal growth factor receptor (EGFR) has been described in several solid tumors including bladder cancer. Transforming growth factor alpha (TGFα) is frequently deregulated in neoplastic cells and plays a role in the development of bladder cancer. TGFα-EGFR ligand-receptor combination constitutes an important event in multistep tumorigenesis. Methods This study was done on 30 bladder biopsies from patients with urothelial carcinoma, 15 with squamous cell carcinoma, 10 with cystitis and 5 normal control bladder specimens. All were immuohistochemically stained with EGFR and TGFα antibodies. Results EGFR and TGFα were over-expressed in higher grades and late stages of bladder cancer. Moreover, they show higher expression in squamous cell carcinoma compared to urothelial carcinoma and in schistosomal associated lesions than in non-schistosomal associated lesions. Conclusion EGFR and TGFα could be used as prognostic predictors in early stage and grade of bladder cancer cases, especially those with schistosomal association. In addition they can help in selecting patients who can get benefit from anti-EGFR molecular targeted therapy. PMID:28413380
AXL mediates resistance to cetuximab therapy.
Brand, Toni M; Iida, Mari; Stein, Andrew P; Corrigan, Kelsey L; Braverman, Cara M; Luthar, Neha; Toulany, Mahmoud; Gill, Parkash S; Salgia, Ravi; Kimple, Randall J; Wheeler, Deric L
2014-09-15
The EGFR antibody cetuximab is used to treat numerous cancers, but intrinsic and acquired resistance to this agent is a common clinical outcome. In this study, we show that overexpression of the oncogenic receptor tyrosine kinase AXL is sufficient to mediate acquired resistance to cetuximab in models of non-small cell lung cancer (NSCLC) and head and neck squamous cell carcinoma (HNSCC), where AXL was overexpressed, activated, and tightly associated with EGFR expression in cells resistant to cetuximab (Ctx(R) cells). Using RNAi methods and novel AXL-targeting agents, we found that AXL activation stimulated cell proliferation, EGFR activation, and MAPK signaling in Ctx(R) cells. Notably, EGFR directly regulated the expression of AXL mRNA through MAPK signaling and the transcription factor c-Jun in Ctx(R) cells, creating a positive feedback loop that maintained EGFR activation by AXL. Cetuximab-sensitive parental cells were rendered resistant to cetuximab by stable overexpression of AXL or stimulation with EGFR ligands, the latter of which increased AXL activity and association with the EGFR. In tumor xenograft models, the development of resistance following prolonged treatment with cetuximab was associated with AXL hyperactivation and EGFR association. Furthermore, in an examination of patient-derived xenografts established from surgically resected HNSCCs, AXL was overexpressed and activated in tumors that displayed intrinsic resistance to cetuximab. Collectively, our results identify AXL as a key mediator of cetuximab resistance, providing a rationale for clinical evaluation of AXL-targeting drugs to treat cetuximab-resistant cancers. Cancer Res; 74(18); 5152-64. ©2014 AACR. ©2014 American Association for Cancer Research.
Kristensen, Lotte K.; Dahlman, Anna; Fröhlich, Camilla; Jacobsen, Helle J.; Poulsen, Thomas T.; Lantto, Johan; Horak, Ivan D.; Kragh, Michael; Kjaer, Andreas
2015-01-01
Purpose Overexpression of the human epidermal growth factor receptor (HER) family and their ligands plays an important role in many cancers. Targeting multiple members of the HER family simultaneously may increase the therapeutic efficacy. Here, we report the ability to image the therapeutic response obtained by targeting HER family members individually or simultaneously using the novel monoclonal antibody (mAb) mixture Pan-HER. Experimental design and results Mice with subcutaneous BxPC-3 pancreatic adenocarcinomas were divided into five groups receiving vehicle or mAb mixtures directed against either EGFR (HER1), HER2, HER3 or all three receptors combined by Pan-HER. Small animal positron emission tomography/computed tomography (PET/CT) with 2′-deoxy-2′-[18F]fluoro-D-glucose (FDG) and 3′-deoxy-3′-[18F]fluorothymidine (FLT) was performed at baseline and at day 1 or 2 after initiation of therapy. Changes in tumor uptake of tracers were quantified and compared to reduction in tumor size. Imaging results were further validated by immunohistochemistry and qPCR. Mean FDG and FLT uptake in the Pan-HER treated group decreased by 19±4.3% and 24±3.1%, respectively. The early change in FDG and FLT uptake correlated with tumor growth at day 23 relative to day 0. Ex vivo molecular analyses of markers associated with the mechanisms of FDG and FLT uptake confirmed the in vivo imaging results. Conclusions Taken together, the study supports the use of FDG and FLT as imaging biomarkers of early response to Pan-HER therapy. FDG and FLT PET/CT imaging should be considered as imaging biomarkers in clinical evaluation of the Pan-HER mAb mixture. PMID:26460961
Wu, Yi-Zhou; Sun, Jie; Zhang, Yaqin; Pu, Maomao; Zhang, Gen; He, Nongyue; Zeng, Xin
2017-04-19
Rapid diagnosis and targeted drug treatment require agents that possess multiple functions. Nanomaterials that facilitate optical imaging and direct drug delivery have shown great promise for effective cancer treatment. In this study, we first modified near-infrared fluorescent indium phosphide quantum dots (InP QDs) with a vascular endothelial growth factor receptor 2 (VEGFR2) monoclonal antibody to afford targeted drug delivery function. Then, a miR-92a inhibitor, an antisense microRNA that enhances the expression of tumor suppressor p63, was attached to the VEGFR2-InP QDs via electrostatic interactions. The functionalized InP nanocomposite (IMAN) selectively targets tumor sites and allows for infrared imaging in vivo. We further explored the mechanism of this active targeting. The IMAN was endocytosed and delivered in the form of microvesicles via VEGFR2-CD63 signaling. Moreover, the IMAN induced apoptosis of human myelogenous leukemia cells through the p63 pathway in vitro and in vivo. These results indicate that the IMAN may provide a new and promising chemotherapy strategy against cancer cells, particularly by its active targeting function and utility in noninvasive three-dimensional tumor imaging.
Hill, Jim; Copse, Catherine; Leary, Sophie; Stagg, Anthony J; Williamson, E Diane; Titball, Richard W
2003-04-01
Monoclonal antibodies specific for Yersinia pestis V antigen and F1 antigen, administered singly or in combination, protected mice in models of bubonic and pneumonic plague. Antibodies showed synergy when administered prophylactically and as a therapy 48 h postinfection. Monoclonal antibodies therefore have potential as a treatment for plague.
Using Monoclonal Antibodies to Prevent Mucosal Transmission of Epidemic Infectious Diseases
Zeitlin, Larry; Cone, Richard A.
1999-01-01
Passive immunization with antibodies has been shown to prevent a wide variety of diseases. Recent advances in monoclonal antibody technology are enabling the development of new methods for passive immunization of mucosal surfaces. Human monoclonal antibodies, produced rapidly, inexpensively, and in large quantities, may help prevent respiratory, diarrheal, and sexually transmitted diseases on a public health scale. PMID:10081672
Bevacizumab Treatment for Advanced Breast Cancer
Guarneri, Valentina; Icli, Fikri; Johnston, Stephen; Khayat, David; Loibl, Sibylle; Martin, Miguel; Zielinski, Christoph; Conte, PierFranco; Hortobagyi, Gabriel N.
2011-01-01
Significant advances in the treatment of patients with breast cancer have been made in the past 10 years. The current systemic treatment of breast cancer is characterized by the discovery of multiple cancer targets leading to treatments that are more sophisticated and specific than conventional cytotoxic chemotherapy. Two classes of compounds that have helped improve clinical outcomes are small molecules and monoclonal antibodies targeting specific tyrosine kinase receptors. Many novel targets have been discovered, and parallel multiple approaches to anticancer therapy have recently emerged from the literature. One promising strategy is targeting the proangiogenic vascular endothelial growth factors (VEGFs), either by ligand sequestration (preventing VEGF receptor binding) or inhibiting downstream receptor signaling. Bevacizumab, a monoclonal antibody directed against VEGF, has been shown to improve the efficacy of taxanes in frontline treatment of patients with metastatic breast cancer. This review outlines the most promising breast cancer studies using bevacizumab combined with traditional cytotoxic agents in advanced breast cancer. In addition, we discuss the current indications reviewed by the Oncologic Drug Advisory Committee and define our vision of how the benefit of patient clinical trials should be measured. PMID:21976315
Structural basis for the binding of the neutralizing antibody, 7D11, to the poxvirus L1 protein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Hua-Poo; Golden, Joseph W.; Gittis, Apostolos G.
2007-11-25
Medical countermeasures to prevent or treat smallpox are needed due to the potential use of poxviruses as biological weapons. Safety concerns with the currently available smallpox vaccine indicate a need for research on alternative poxvirus vaccine strategies. Molecular vaccines involving the use of proteins and/or genes and recombinant antibodies are among the strategies under current investigation. The poxvirus L1 protein, encoded by the L1R open reading frame, is the target of neutralizing antibodies and has been successfully used as a component of both protein subunit and DNA vaccines. L1-specific monoclonal antibodies (e.g., mouse monoclonal antibody mAb-7D11, mAb-10F5) with potent neutralizingmore » activity bind L1 in a conformation-specific manner. This suggests that proper folding of the L1 protein used in molecular vaccines will affect the production of neutralizing antibodies and protection. Here, we co-crystallized the Fab fragment of mAb-7D11 with the L1 protein. The crystal structure of the complex between Fab-7D11 and L1 reveals the basis for the conformation-specific binding as recognition of a discontinuous epitope containing two loops that are held together by a disulfide bond. The structure of this important conformational epitope of L1 will contribute to the development of molecular poxvirus vaccines and also provides a novel target for anti-poxvirus drugs. In addition, the sequence and structure of Fab-7D11 will contribute to the development of L1-targeted immunotherapeutics.« less
Fan, Xiangshan; Liu, Biao; Xu, Haodong; Yu, Bo; Shi, Shanshan; Zhang, Jin; Wang, Xuan; Wang, Jiandong; Lu, Zhenfeng; Ma, Henghui; Zhou, Xiaojun
2013-08-01
Mutation analysis of epidermal growth factor receptor (EGFR) is essential in determining the therapeutic strategy for lung adenocarcinoma. Immunohistochemical (IHC) staining with EGFR mutation-specific antibodies of del E746-A750 in exon 19 and L858R in exon 21 has been evaluated in resection specimens in a few studies but rarely in biopsy samples. A total of 169 cases (78 biopsies and 91 resected specimens) of lung adenocarcinoma with EGFR mutation status predefined by direct DNA sequencing were histologically examined, and IHC was performed using EGFR mutation-specific antibodies of del E746-A750 and L858R. The cases with positive results by IHC but negative results by direct DNA sequencing were examined by amplified refractory mutation system. Our results showed that the frequency of EGFR mutations for both E746-A750 deletion and L858R mutation was 38.5% (65/169) by DNA sequencing or amplified refractory mutation system and 34.3% (58/169) by IHC in lung adenocarcinomas. Based on molecular test results, the overall sensitivity, specificity, positive predictive value, and negative predictive value of IHC using these 2 antibodies in all (biopsy/resection) cases were 87.7% (80%/94.3%), 99.0% (97.9%/100%), 98.3% (96%/100%), and 92.8% (88.7%/96.6%), respectively. Lung adenocarcinomas with a predominant acinar, papillary, lepidic, or solid growth pattern more often harbor EGFR mutation of del E746-A750 or L858R. In conclusion, the immunostaining with EGFR del E746-A750 and L858R mutation antibodies is a reliable screening method with high specificity and sensitivity for identifying the EGFR mutation in both resected and biopsied lung adenocarcinomas. Copyright © 2013 Elsevier Inc. All rights reserved.
Therapeutic Recombinant Monoclonal Antibodies
ERIC Educational Resources Information Center
Bakhtiar, Ray
2012-01-01
During the last two decades, the rapid growth of biotechnology-derived techniques has led to a myriad of therapeutic recombinant monoclonal antibodies with significant clinical benefits. Recombinant monoclonal antibodies can be obtained from a number of natural sources such as animal cell cultures using recombinant DNA engineering. In contrast to…
Guéguinou, Maxime; Harnois, Thomas; Crottes, David; Uguen, Arnaud; Deliot, Nadine; Gambade, Audrey; Chantôme, Aurélie; Haelters, Jean Pierre; Jaffrès, Paul Alain; Jourdan, Marie Lise; Weber, Günther; Soriani, Olivier; Bougnoux, Philippe; Mignen, Olivier; Bourmeyster, Nicolas; Constantin, Bruno; Lecomte, Thierry
2016-01-01
Background Barely 10-20% of patients with metastatic colorectal cancer (mCRC) receive a clinical benefit from the use of anti-EGFR monoclonal antibodies (mAbs). We hypothesized that this could depends on their efficiency to reduce Store Operated Calcium Entry (SOCE) that are known to enhance cancer cells. Results In the present study, we demonstrate that SOCE promotes migration of colon cancer cell following the formation of a lipid raft ion channel complex composed of TRPC1/Orai1 and SK3 channels. Formation of this complex is stimulated by the phosphorylation of the reticular protein STIM1 by EGF and activation of the Akt pathway. Our data show that, in a positive feedback loop SOCE activates both Akt pathway and SK3 channel activity which lead to SOCE amplification. This amplification occurs through the activation of Rac1/Calpain mediated by Akt. We also show that Anti-EGFR mAbs can modulate SOCE and cancer cell migration through the Akt pathway. Interestingly, the alkyl-lipid Ohmline, which we previously showed to be an inhibitor of SK3 channel, can dissociated the lipid raft ion channel complex through decreased phosphorylation of Akt and modulation of mAbs action. Conclusions This study demonstrates that the inhibition of the SOCE-dependent colon cancer cell migration trough SK3/TRPC1/Orai1 channel complex by the alkyl-lipid Ohmline may be a novel strategy to modulate Anti-EGFR mAb action in mCRC. PMID:27102434
Glassman, Patrick M; Chen, Yang; Balthasar, Joseph P
2015-10-01
Preclinical assessment of monoclonal antibody (mAb) disposition during drug development often includes investigations in non-human primate models. In many cases, mAb exhibit non-linear disposition that relates to mAb-target binding [i.e., target-mediated disposition (TMD)]. The goal of this work was to develop a physiologically-based pharmacokinetic (PBPK) model to predict non-linear mAb disposition in plasma and in tissues in monkeys. Physiological parameters for monkeys were collected from several sources, and plasma data for several mAbs associated with linear pharmacokinetics were digitized from prior literature reports. The digitized data displayed great variability; therefore, parameters describing inter-antibody variability in the rates of pinocytosis and convection were estimated. For prediction of the disposition of individual antibodies, we incorporated tissue concentrations of target proteins, where concentrations were estimated based on categorical immunohistochemistry scores, and with assumed localization of target within the interstitial space of each organ. Kinetics of target-mAb binding and target turnover, in the presence or absence of mAb, were implemented. The model was then employed to predict concentration versus time data, via Monte Carlo simulation, for two mAb that have been shown to exhibit TMD (2F8 and tocilizumab). Model predictions, performed a priori with no parameter fitting, were found to provide good prediction of dose-dependencies in plasma clearance, the areas under plasma concentration versu time curves, and the time-course of plasma concentration data. This PBPK model may find utility in predicting plasma and tissue concentration versus time data and, potentially, the time-course of receptor occupancy (i.e., mAb-target binding) to support the design and interpretation of preclinical pharmacokinetic-pharmacodynamic investigations in non-human primates.
Srivastava, Raghvendra M.; Lee, Steve C.; Filho, Pedro A. Andrade; Lord, Christopher A.; Jie, Hyun-bae; Davidson, H. Carter; López-Albaitero, Andrés; Gibson, Sandra P.; Gooding, William E.; Ferrone, Soldano; Ferris, Robert L.
2013-01-01
Purpose Tumor antigen (TA)-specific monoclonal antibodies (mAb) block oncogenic signaling and induce Fcγ receptor (FcγR)-mediated cytotoxicity. However, the role of CD8+ cytotoxic T lymphocyte (CTL) and FcγR in initiating innate and adaptive immune responses in mAb-treated human cancer patients is still emerging. Experimental Design FcγRIIIa codon 158 polymorphism was correlated with survival in 107 cetuximab-treated head and neck cancer (HNC) patients. Flow cytometry was performed to quantify EGFR-specific T cells in cetuximab-treated HNC patients. The effect of cetuximab on NK cell, dendritic cell (DC), and T cell activation was measured using IFN-γ release assays and flow cytometry. Results FcγR IIIa polymorphism did not predict clinical outcome in cetuximab-treated HNC patients, however elevated circulating EGFR -specific CD8+ 853-861 T cells were found in cetuximab-treated HNC patients (p<0.005). Cetuximab promoted EGFR-specific cellular immunity through the interaction of EGFR+ tumor cells and FcγRIIIa on NK cells, but not on the polymorphism per se. Cetuximab-activated NK cells induced IFN-γ dependent expression of DC maturation markers, antigen presentation machinery (APM) components such as TAP-1/2, and Th1 chemokines through NKG2D/MICA binding. Cetuximab initiated adaptive immune responses via NK-cell induced DC maturation, which enhanced cross-presentation to CTL specific for EGFR as well as another TA, MAGE-3. Conclusion Cetuximab-activated NK cells promote DC maturation and CD8+ T cell priming, leading to TA spreading and Th1 cytokine release through ‘NK-DC cross-talk.’ FcγRIIIa polymorphism did not predict clinical response to cetuximab, but was necessary for NK-DC interaction and mAb induced cross-presentation. EGFR-specific T cells in cetuximab treated HNC patients may contribute to clinical response. PMID:23444227
Chen, Jun-Feng; Yu, Bi-Xia; Yu, Rui; Ma, Liang; Lv, Xiu-Yi; Cheng, Yue; Ma, Qi
2017-02-01
Epirubicin (EPI) is one of the most used intravesical chemotherapy agents after transurethral resection to non-muscle invasive bladder tumors (NMIBC) to prevent cancer recurrence and progression. However, even after resection of bladder tumors and intravesical chemotherapy, half of them will recur and progress. RON is a membrane tyrosine kinase receptor usually overexpressed in bladder cancer cells and associated with poor pathological features. This study aims to investigate the effects of anti-RON monoclonal antibody Zt/g4 on the chemosensitivity of bladder cells to EPI. After Zt/g4 treatment, cell cytotoxicity was significantly increased and cell invasion was markedly suppressed in EPI-treated bladder cancer cells. Further investigation indicated that combing Zt/g4 with EPI promoted cell G1/S-phase arrest and apoptosis, which are the potential mechanisms that RON signaling inhibition enhances chemosensitivity of EPI. Thus, combing antibody-based RON targeted therapy enhances the therapeutic effects of intravesical chemotherapy, which provides new strategy for further improvement of NMIBC patient outcomes.
Disease spectrum of abnormal serum free light chain ratio and its diagnostic significance
Xu, Bin; Tang, Yi; Zhou, Jianfeng; Zhang, Peiling; Li, Huijun
2017-01-01
Objective To analyze the spectrum of abnormal serum free light chain ratio (sFLC κ/λ ratio), and to redefine the range of sFLC κ/λ ratio, so as to achieve hierarchical diagnosis of diseases with abnormal sFLC κ/λ ratio, resulting in the increased sensitivity and specificity in the diagnosis of monoclonal plasma diseases. Methods Enrolled 1,340 patients with abnormal sFLC κ/λ ratio (<0.26 or >1.65) were grouped: (1) group A: malignant plasma diseases; (2) group B: monoclonal gammopathies of undetermined significance (MGUS); (3) group C: reactive plasma diseases. These patients were further divided by renal function eGFR <60 or >60 ml/min/1.73m2 to eliminate renal diseases influencing the results. Statistical analyses was performed by using SPSS 22 software. Results When sFLC κ/λ ratio >3.49 and eGFR >60ml/min/1.73m2, the sensitivity and specificity of the diagnosis of malignant plasma diseases were 86.1% and 94.0%, respectively. When sFLC κ/λ ratio >2.89 and eGFR <60ml/min/1.73m2, the sensitivity and specificity of the diagnosis of malignant plasma diseases were 92.0% and 97.0%, respectively. Conclusion The sensitivity and specificity of the diagnosis of monoclonal plasma diseases can be significantly improved by redefining the cut-off value of sFLC κ/λ ratio and the renal function index of eGFR. PMID:29137262
Systemic treatments for metastatic cutaneous melanoma.
Pasquali, Sandro; Hadjinicolaou, Andreas V; Chiarion Sileni, Vanna; Rossi, Carlo Riccardo; Mocellin, Simone
2018-02-06
The prognosis of people with metastatic cutaneous melanoma, a skin cancer, is generally poor. Recently, new classes of drugs (e.g. immune checkpoint inhibitors and small-molecule targeted drugs) have significantly improved patient prognosis, which has drastically changed the landscape of melanoma therapeutic management. This is an update of a Cochrane Review published in 2000. To assess the beneficial and harmful effects of systemic treatments for metastatic cutaneous melanoma. We searched the following databases up to October 2017: the Cochrane Skin Group Specialised Register, CENTRAL, MEDLINE, Embase and LILACS. We also searched five trials registers and the ASCO database in February 2017, and checked the reference lists of included studies for further references to relevant randomised controlled trials (RCTs). We considered RCTs of systemic therapies for people with unresectable lymph node metastasis and distant metastatic cutaneous melanoma compared to any other treatment. We checked the reference lists of selected articles to identify further references to relevant trials. Two review authors extracted data, and a third review author independently verified extracted data. We implemented a network meta-analysis approach to make indirect comparisons and rank treatments according to their effectiveness (as measured by the impact on survival) and harm (as measured by occurrence of high-grade toxicity). The same two review authors independently assessed the risk of bias of eligible studies according to Cochrane standards and assessed evidence quality based on the GRADE criteria. We included 122 RCTs (28,561 participants). Of these, 83 RCTs, encompassing 21 different comparisons, were included in meta-analyses. Included participants were men and women with a mean age of 57.5 years who were recruited from hospital settings. Twenty-nine studies included people whose cancer had spread to their brains. Interventions were categorised into five groups: conventional chemotherapy (including single agent and polychemotherapy), biochemotherapy (combining chemotherapy with cytokines such as interleukin-2 and interferon-alpha), immune checkpoint inhibitors (such as anti-CTLA4 and anti-PD1 monoclonal antibodies), small-molecule targeted drugs used for melanomas with specific gene changes (such as BRAF inhibitors and MEK inhibitors), and other agents (such as anti-angiogenic drugs). Most interventions were compared with chemotherapy. In many cases, trials were sponsored by pharmaceutical companies producing the tested drug: this was especially true for new classes of drugs, such as immune checkpoint inhibitors and small-molecule targeted drugs.When compared to single agent chemotherapy, the combination of multiple chemotherapeutic agents (polychemotherapy) did not translate into significantly better survival (overall survival: HR 0.99, 95% CI 0.85 to 1.16, 6 studies, 594 participants; high-quality evidence; progression-free survival: HR 1.07, 95% CI 0.91 to 1.25, 5 studies, 398 participants; high-quality evidence. Those who received combined treatment are probably burdened by higher toxicity rates (RR 1.97, 95% CI 1.44 to 2.71, 3 studies, 390 participants; moderate-quality evidence). (We defined toxicity as the occurrence of grade 3 (G3) or higher adverse events according to the World Health Organization scale.)Compared to chemotherapy, biochemotherapy (chemotherapy combined with both interferon-alpha and interleukin-2) improved progression-free survival (HR 0.90, 95% CI 0.83 to 0.99, 6 studies, 964 participants; high-quality evidence), but did not significantly improve overall survival (HR 0.94, 95% CI 0.84 to 1.06, 7 studies, 1317 participants; high-quality evidence). Biochemotherapy had higher toxicity rates (RR 1.35, 95% CI 1.14 to 1.61, 2 studies, 631 participants; high-quality evidence).With regard to immune checkpoint inhibitors, anti-CTLA4 monoclonal antibodies plus chemotherapy probably increased the chance of progression-free survival compared to chemotherapy alone (HR 0.76, 95% CI 0.63 to 0.92, 1 study, 502 participants; moderate-quality evidence), but may not significantly improve overall survival (HR 0.81, 95% CI 0.65 to 1.01, 2 studies, 1157 participants; low-quality evidence). Compared to chemotherapy alone, anti-CTLA4 monoclonal antibodies is likely to be associated with higher toxicity rates (RR 1.69, 95% CI 1.19 to 2.42, 2 studies, 1142 participants; moderate-quality evidence).Compared to chemotherapy, anti-PD1 monoclonal antibodies (immune checkpoint inhibitors) improved overall survival (HR 0.42, 95% CI 0.37 to 0.48, 1 study, 418 participants; high-quality evidence) and probably improved progression-free survival (HR 0.49, 95% CI 0.39 to 0.61, 2 studies, 957 participants; moderate-quality evidence). Anti-PD1 monoclonal antibodies may also result in less toxicity than chemotherapy (RR 0.55, 95% CI 0.31 to 0.97, 3 studies, 1360 participants; low-quality evidence).Anti-PD1 monoclonal antibodies performed better than anti-CTLA4 monoclonal antibodies in terms of overall survival (HR 0.63, 95% CI 0.60 to 0.66, 1 study, 764 participants; high-quality evidence) and progression-free survival (HR 0.54, 95% CI 0.50 to 0.60, 2 studies, 1465 participants; high-quality evidence). Anti-PD1 monoclonal antibodies may result in better toxicity outcomes than anti-CTLA4 monoclonal antibodies (RR 0.70, 95% CI 0.54 to 0.91, 2 studies, 1465 participants; low-quality evidence).Compared to anti-CTLA4 monoclonal antibodies alone, the combination of anti-CTLA4 plus anti-PD1 monoclonal antibodies was associated with better progression-free survival (HR 0.40, 95% CI 0.35 to 0.46, 2 studies, 738 participants; high-quality evidence). There may be no significant difference in toxicity outcomes (RR 1.57, 95% CI 0.85 to 2.92, 2 studies, 764 participants; low-quality evidence) (no data for overall survival were available).The class of small-molecule targeted drugs, BRAF inhibitors (which are active exclusively against BRAF-mutated melanoma), performed better than chemotherapy in terms of overall survival (HR 0.40, 95% CI 0.28 to 0.57, 2 studies, 925 participants; high-quality evidence) and progression-free survival (HR 0.27, 95% CI 0.21 to 0.34, 2 studies, 925 participants; high-quality evidence), and there may be no significant difference in toxicity (RR 1.27, 95% CI 0.48 to 3.33, 2 studies, 408 participants; low-quality evidence).Compared to chemotherapy, MEK inhibitors (which are active exclusively against BRAF-mutated melanoma) may not significantly improve overall survival (HR 0.85, 95% CI 0.58 to 1.25, 3 studies, 496 participants; low-quality evidence), but they probably lead to better progression-free survival (HR 0.58, 95% CI 0.42 to 0.80, 3 studies, 496 participants; moderate-quality evidence). However, MEK inhibitors probably have higher toxicity rates (RR 1.61, 95% CI 1.08 to 2.41, 1 study, 91 participants; moderate-quality evidence).Compared to BRAF inhibitors, the combination of BRAF plus MEK inhibitors was associated with better overall survival (HR 0.70, 95% CI 0.59 to 0.82, 4 studies, 1784 participants; high-quality evidence). BRAF plus MEK inhibitors was also probably better in terms of progression-free survival (HR 0.56, 95% CI 0.44 to 0.71, 4 studies, 1784 participants; moderate-quality evidence), and there appears likely to be no significant difference in toxicity (RR 1.01, 95% CI 0.85 to 1.20, 4 studies, 1774 participants; moderate-quality evidence).Compared to chemotherapy, the combination of chemotherapy plus anti-angiogenic drugs was probably associated with better overall survival (HR 0.60, 95% CI 0.45 to 0.81; moderate-quality evidence) and progression-free survival (HR 0.69, 95% CI 0.52 to 0.92; moderate-quality evidence). There may be no difference in terms of toxicity (RR 0.68, 95% CI 0.09 to 5.32; low-quality evidence). All results for this comparison were based on 324 participants from 2 studies.Network meta-analysis focused on chemotherapy as the common comparator and currently approved treatments for which high- to moderate-quality evidence of efficacy (as represented by treatment effect on progression-free survival) was available (based on the above results) for: biochemotherapy (with both interferon-alpha and interleukin-2); anti-CTLA4 monoclonal antibodies; anti-PD1 monoclonal antibodies; anti-CTLA4 plus anti-PD1 monoclonal antibodies; BRAF inhibitors; MEK inhibitors, and BRAF plus MEK inhibitors. Analysis (which included 19 RCTs and 7632 participants) generated 21 indirect comparisons.The best evidence (moderate-quality evidence) for progression-free survival was found for the following indirect comparisons:• both combinations of immune checkpoint inhibitors (HR 0.30, 95% CI 0.17 to 0.51) and small-molecule targeted drugs (HR 0.17, 95% CI 0.11 to 0.26) probably improved progression-free survival compared to chemotherapy;• both BRAF inhibitors (HR 0.40, 95% CI 0.23 to 0.68) and combinations of small-molecule targeted drugs (HR 0.22, 95% CI 0.12 to 0.39) were probably associated with better progression-free survival compared to anti-CTLA4 monoclonal antibodies;• biochemotherapy (HR 2.81, 95% CI 1.76 to 4.51) probably lead to worse progression-free survival compared to BRAF inhibitors;• the combination of small-molecule targeted drugs probably improved progression-free survival (HR 0.38, 95% CI 0.21 to 0.68) compared to anti-PD1 monoclonal antibodies;• both biochemotherapy (HR 5.05, 95% CI 3.01 to 8.45) and MEK inhibitors (HR 3.16, 95% CI 1.77 to 5.65) were probably associated with worse progression-free survival compared to the combination of small-molecule targeted drugs; and• biochemotherapy was probably associated with worse progression-free survival (HR 2.81, 95% CI 1.54 to 5.11) compared to the combination of immune checkpoint inhibitors.The best evidence (moderate-quality evidence) for toxicity was found for the following indirect comparisons:• combination of immune checkpoint inhibitors (RR 3.49, 95% CI 2.12 to 5.77) probably increased toxicity compared to chemotherapy;• combination of immune checkpoint inhibitors probably increased toxicity (RR 2.50, 95% CI 1.20 to 5.20) compared to BRAF inhibitors;• the combination of immune checkpoint inhibitors probably increased toxicity (RR 3.83, 95% CI 2.59 to 5.68) compared to anti-PD1 monoclonal antibodies; and• biochemotherapy was probably associated with lower toxicity (RR 0.41, 95% CI 0.24 to 0.71) compared to the combination of immune checkpoint inhibitors.Network meta-analysis-based ranking suggested that the combination of BRAF plus MEK inhibitors is the most effective strategy in terms of progression-free survival, whereas anti-PD1 monoclonal antibodies are associated with the lowest toxicity.Overall, the risk of bias of the included trials can be considered as limited. When considering the 122 trials included in this review and the seven types of bias we assessed, we performed 854 evaluations only seven of which (< 1%) assigned high risk to six trials. We found high-quality evidence that many treatments offer better efficacy than chemotherapy, especially recently implemented treatments, such as small-molecule targeted drugs, which are used to treat melanoma with specific gene mutations. Compared with chemotherapy, biochemotherapy (in this case, chemotherapy combined with both interferon-alpha and interleukin-2) and BRAF inhibitors improved progression-free survival; BRAF inhibitors (for BRAF-mutated melanoma) and anti-PD1 monoclonal antibodies improved overall survival. However, there was no difference between polychemotherapy and monochemotherapy in terms of achieving progression-free survival and overall survival. Biochemotherapy did not significantly improve overall survival and has higher toxicity rates compared with chemotherapy.There was some evidence that combined treatments worked better than single treatments: anti-PD1 monoclonal antibodies, alone or with anti-CTLA4, improved progression-free survival compared with anti-CTLA4 monoclonal antibodies alone. Anti-PD1 monoclonal antibodies performed better than anti-CTLA4 monoclonal antibodies in terms of overall survival, and a combination of BRAF plus MEK inhibitors was associated with better overall survival for BRAF-mutated melanoma, compared to BRAF inhibitors alone.The combination of BRAF plus MEK inhibitors (which can only be administered to people with BRAF-mutated melanoma) appeared to be the most effective treatment (based on results for progression-free survival), whereas anti-PD1 monoclonal antibodies appeared to be the least toxic, and most acceptable, treatment.Evidence quality was reduced due to imprecision, between-study heterogeneity, and substandard reporting of trials. Future research should ensure that those diminishing influences are addressed. Clinical areas of future investigation should include the longer-term effect of new therapeutic agents (i.e. immune checkpoint inhibitors and targeted therapies) on overall survival, as well as the combination of drugs used in melanoma treatment; research should also investigate the potential influence of biomarkers.
The therapeutic monoclonal antibody market
Ecker, Dawn M; Jones, Susan Dana; Levine, Howard L
2015-01-01
Since the commercialization of the first therapeutic monoclonal antibody product in 1986, this class of biopharmaceutical products has grown significantly so that, as of November 10, 2014, forty-seven monoclonal antibody products have been approved in the US or Europe for the treatment of a variety of diseases, and many of these products have also been approved for other global markets. At the current approval rate of ∼ four new products per year, ∼70 monoclonal antibody products will be on the market by 2020, and combined world-wide sales will be nearly $125 billion. PMID:25529996
Sub-Nanogram Detection of RDX Explosive by Monoclonal Antibodies.
Ulaeto, David O; Hutchinson, Alistair P; Nicklin, Stephen
2015-08-01
Polyclonal and monoclonal antibodies were raised to protein carrier molecules haptenized with RDX, a major component of many plastic explosives including Semtex. Sera from immunized mice detected RDX protein conjugates in standard ELISA. Clonally purified monoclonal antibodies had detection limits in the sub-ng/mL range for underivatized RDX in competition ELISA. The monoclonal antibodies are not dependent on the presence of taggants added during the manufacturing process, and are likely to have utility in the detection of any explosive containing RDX, or RDX contamination of environmental sites.
Sub-Nanogram Detection of RDX Explosive by Monoclonal Antibodies
Hutchinson, Alistair P.; Nicklin, Stephen
2015-01-01
Polyclonal and monoclonal antibodies were raised to protein carrier molecules haptenized with RDX, a major component of many plastic explosives including Semtex. Sera from immunized mice detected RDX protein conjugates in standard ELISA. Clonally purified monoclonal antibodies had detection limits in the sub-ng/mL range for underivatized RDX in competition ELISA. The monoclonal antibodies are not dependent on the presence of taggants added during the manufacturing process, and are likely to have utility in the detection of any explosive containing RDX, or RDX contamination of environmental sites. PMID:26252765
2015-09-01
Award Number: W81XWH-09-1-0596 TITLE: A Randomized Phase 2 Trial of 177Lu Radiolabeled Anti- PSMA Monoclonal Antibody J591 in Patients With High...1-0596 A Randomized Phase 2 Trial of 177Lu Radiolabeled Anti- PSMA Monoclonal Antibody J591 in Patients With High-Risk Castrat Biochemically Relapsed...in December 2014 with approval to proceed without modifications. 15. SUBJECT TERMS Prostate cancer, PSA, PSMA , monoclonal antibody
Wright, Sara F.; Morton, Joseph B.; Sworobuk, Janis E.
1987-01-01
Spore morphology is currently used to identify species of vesicular-arbuscular mycorrhizal fungi. We report the first use of a highly specific immunological method for identification of a vesicular-arbuscular mycorrhizal fungus. Two monoclonal antibodies were produced against Glomus occultum. Monoclonal antibodies reacted strongly with both spores and hyphae in an indirect enzyme-linked immunosorbent assay. All other mycorrhizal (29 species) and nonmycorrhizal (5 species) fungi tested were nonreactive with the monoclonal antibodies. A single spore of G. occultum was detectable in the presence of high numbers of spores of other vesicular-arbuscular mycorrhizal fungi. Variation in the reaction of G. occultum isolates from West Virginia, Florida, and Colombia suggests that monoclonal antibodies may differentiate strains. PMID:16347441
Mass-Production and Characterization of Anti-CD20 Monoclonal Antibody in Peritoneum of Balb/c Mice
Sineh sepehr, Koushan; Baradaran, Behzad; Majidi, Jafar; Abdolalizadeh, Jalal; Aghebati, leili; Zare Shahneh, Fatemeh
2013-01-01
Purpose: Monoclonal antibodies are important tools are used in basic research as well as, in diagnosis, imaging and treatment of immunodeficiency diseases, infections and cancers. The purpose of this study was to produce large scale of monoclonal antibody against CD20 in order to diagnostic application in leukemia and lymphomas disorders. Methods: Hybridoma cells that produce monoclonal antibody against human CD20 were administered into the peritoneum of the Balb/c mice which have previously been primed with 0.5 ml Pristane. After twelve days, approximately 7 ml ascetic fluid was harvested from the peritoneum of each mouse. Evaluation of mAb titration was assessed by ELISA method. In the present study, we describe a protocol for large scale production of MAbs. Results: We prepared monoclonal antibodies (mAbs) with high specificity and sensitivity against human CD20 by hybridoma method and characterized them by ELISA. The subclass of antibody was IgG2a and its light chain was kappa. Ascetic fluid was purified by Protein-A Sepharose affinity chromatography and the purified monoclonal antibody was conjugated with FITC and Immunofluorescence was done for confirming the specific binding. Conclusion: The conjugated monoclonal antibody could have application in diagnosis B-cell lymphomas, hairy cell leukemia, B-cell chronic lymphocytic leukemia, and melanoma cancer stem cells. PMID:24312821
Dual targeting of HER3 and MEK may overcome HER3-dependent drug-resistance of colon cancers
Bon, Giulia; Loria, Rossella; Amoreo, Carla Azzurra; Verdina, Alessandra; Sperduti, Isabella; Mastrofrancesco, Arianna; Soddu, Silvia; Diodoro, Maria Grazia; Mottolese, Marcella; Todaro, Matilde; Stassi, Giorgio; Milella, Michele; De Maria, Ruggero; Falcioni, Rita
2017-01-01
Although the medical treatment of colorectal cancer has evolved greatly in the last years, a significant portion of early-stage patients develops recurrence after therapies. The current clinical trials are directed to evaluate new drug combinations and treatment schedules. By the use of patient-derived or established colon cancer cell lines, we found that the tyrosine kinase receptor HER3 is involved in the mechanisms of resistance to therapies. In agreement, the immunohistochemical analysis of total and phospho-HER3 expression in 185 colorectal cancer specimens revealed a significant correlation with lower disease-free survival. Targeting HER3 by the use of the monoclonal antibody patritumab we found induction of growth arrest in all cell lines. Despite the high efficiency of patritumab in abrogating the HER3-dependent activation of PI3K pathway, the HER2 and EGFR-dependent MAPK pathway is activated as a compensatory mechanism. Interestingly, we found that the MEK-inhibitor trametinib inhibits, as expected, the MAPK pathway but induces the HER3-dependent activation of PI3K pathway. The combined treatment results in the abrogation of both PI3K and MAPK pathways and in a significant reduction of cell proliferation and survival. These data suggest a new strategy of therapy for HER3-overexpressing colon cancers. PMID:29312543
Wellehan, James F X; Green, Linda G; Duke, Diane G; Bootorabi, Shadi; Heard, Darryl J; Klein, Paul A; Jacobson, Elliott R
2009-09-01
Megachiropteran bats are biologically important both as endangered species and reservoirs for emerging human pathogens. Reliable detection of antibodies to specific pathogens in bats is thus epidemiologically critical. Eight variable flying foxes (Pteropus hypomelanus) were immunized with 2,4-dinitrophenylated bovine serum albumin (DNP-BSA). Each bat received monthly inoculations for 2 months. Affinity-purified IgG was used for production of polyclonal and monoclonal anti-variable flying fox IgG antibodies. ELISA and western blot analysis were used to monitor immune responses and for assessment of polyclonal and monoclonal antibody species cross-reactivity. Protein G, polyclonal antibodies, and monoclonal antibodies detected specific anti-DNP antibody responses in immunized variable flying foxes, with protein G being the most sensitive, followed by monoclonal antibodies and then polyclonal antibodies. While the polyclonal antibody was found to cross-react well against IgG of all bat species tested, some non-specific background was observed. The monoclonal antibody was found to cross-react well against IgG of six other species in the genus Pteropus and to cross-react less strongly against IgG from Eidolon helvum or Phyllostomus hastatus. Protein G distinguished best between vaccinated and unvaccinated bats, and these results validate the use of protein G for detection of bat IgG. Monoclonal antibodies developed in this study recognized immunoglobulins from other members of the genus Pteropus well, and may be useful in applications where specific detection of Pteropus IgG is needed.
Monoclonal Antibody Analysis of Keratin Expression in the Central Nervous System
NASA Astrophysics Data System (ADS)
Franko, Maryellen C.; Gibbs, Clarence J.; Rhoades, Dorothy A.; Carleton Gajdusek, D.
1987-05-01
A monoclonal antibody directed against a 65-kDa brain protein demonstrates an epitope found in keratin from human epidermis. By indirect immunofluorescence, the antibody decorates intracytoplasmic filaments in a subclass of astrocytes and Purkinje cells of adult hamster brain. Double-label immunofluorescence study using antibody to glial fibrillary acidic protein and this antibody reveals the 65-kDa protein to be closely associated with glial filaments in astrocytes of fetal mouse brain cultures. Immunoblot analysis of purified human epidermal keratin and hamster brain homogenate confirms the reactivity of this antibody to epidermal keratin polypeptides. All the major epidermal keratins were recognized by this antibody. It did not bind to the remaining major intermediate filament proteins. These findings suggest that monoclonal antibody 34C9 recognizes a cytoskeletal structure connected with intermediate filaments. In addition, the monoclonal antibody demonstrates that epidermal keratins share an epitope not only among themselves but also with a ``neural keratin.''
Targeted Lymphoma Cell Death by Novel Signal Transduction Modifications
2007-07-01
monoclonal antibodies (mAbs) that bind the two NH2-terminal immunoglobulin domains of CD22 and specifically block the interaction of CD22 with its...ligand blocking mAbs that effectively crosslink CD22 have distinct functional properties and facilitate assembly of an effector protein complex. These...immune mechanisms such as antibody and complement dependent cellular cytotoxicity. We hypothesize that enhancing the intrinsic pro-apoptotic
Monoclonal antibodies and method for detecting dioxins and dibenzofurans
Vanderlaan, Martin; Stanker, Larry H.; Watkins, Bruce E.; Bailey, Nina R.
1989-01-01
Compositions of matter are described which include five monoclonal antibodies that react with dioxins and dibenzofurans, and the five hybridomas that produce these monoclonal antibodies. In addition, a method for the use of these antibodies in a sensitive immunoassay for dioxins and dibenzofurans is given, which permits detection of these pollutants in samples at concentrations in the range of a few parts per billion.
Rosenfeld, Ronit; Alcalay, Ron; Mechaly, Adva; Lapidoth, Gideon; Epstein, Eyal; Kronman, Chanoch; J Fleishman, Sarel; Mazor, Ohad
2017-09-01
While potent monoclonal antibodies against ricin were introduced over the years, the question whether increasing antibody affinity enables better toxin neutralization was not fully addressed yet. The aim of this study was to characterize the contribution of antibody affinity to the ricin neutralization potential of the antibody. cHD23 monoclonal antibody that targets the toxin B-subunit and interferes with its binding to membranal receptors, was isolated. In order to create antibody clones with improved affinity toward ricin, a scFv-phage display library containing mutated versions of the variable regions of cHD23 was constructed and clones with improved binding of ricin were isolated. Structural modeling of these mutants suggests that the inserted mutations may increase the antibody conformational flexibility thus improving its ability to bind ricin. While it was found that the selected clones exhibited improved neutralization of ricin, the correlation between the KD values and potency was only minor (r = 0.55). However, a positive correlation (r = 0.84) exist between the off-rate values (koff) of the affinity matured clones and their ability to neutralize ricin. As cell membranes display inordinately large amounts of potential surface binding sites for ricin, it is suggested that antibodies with improved off-rate values block the ability of the toxin to bind to target receptors, in a highly efficient manner. Currently, antibody-based therapy is the most effective treatment for ricin intoxication and it is anticipated that the findings of this study will provide useful information and a possible strategy to design an improved antibody-based therapy for the toxin. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Oesterreich, Babett; Lorenz, Birgit; Schmitter, Tim; Kontermann, Roland; Zenn, Michael; Zimmermann, Bastian; Haake, Markus; Lorenz, Udo; Ohlsen, Knut
2014-01-01
Multi-antigen immunotherapy approaches against Staphylococcus aureus are expected to have the best chance of clinical success when used in combinatorial therapy, potentially incorporating opsonic killing of bacteria and toxin neutralization. We recently reported the development of a murine monoclonal antibody specific for the immunodominant staphylococcal antigen A (IsaA), which showed highly efficient staphylococcal killing in experimental infection models of S. aureus. If IsaA-specific antibodies are to be used as a component of combination therapy in humans, the binding specificity and biological activity of the humanized variant must be preserved. Here, we describe the functional characterization of a humanized monoclonal IgG1 variant designated, hUK-66. The humanized antibody showed comparable binding kinetics to those of its murine parent, and recognized the target antigen IsaA on the surface of clinically relevant S. aureus lineages. Furthermore, hUK-66 enhances the killing of S. aureus in whole blood (a physiological environment) samples from healthy subjects and patients prone to staphylococcal infections such as diabetes and dialysis patients, and patients with generalized artery occlusive disease indicating no interference with already present natural antibodies. Taken together, these data indicate that hUK-66 mediates bacterial killing even in high risk patients and thus, could play a role for immunotherapy strategies to combat severe S. aureus infections.
Anti-claudin 18.2 antibody as new targeted therapy for advanced gastric cancer.
Singh, Prabhsimranjot; Toom, Sudhamshi; Huang, Yiwu
2017-05-12
Targeted therapy and immunotherapy have revolutionized treatment of various cancers in the past decade. Despite targeted therapy with trastuzumab in Her2-positive gastric cancer patients, survival has been dismal, mostly due to disease progression and toxicity related to the treatments. One area of active development is looking for ideal monoclonal antibodies (IMAB) specific to the proteins only on the tumor and hence avoiding unnecessary side effects. Claudin proteins with isoform 2 are one such protein, specific for several cancers, particularly gastric cancer and its metastases, leading to the development of anti-claudin 18.2 specific antibody, claudiximab. This review will highlight the latest development of claudiximab as first in class IMAB for the treatment of gastric cancer.
From rabbit antibody repertoires to rabbit monoclonal antibodies.
Weber, Justus; Peng, Haiyong; Rader, Christoph
2017-03-24
In this review, we explain why and how rabbit monoclonal antibodies have become outstanding reagents for laboratory research and increasingly for diagnostic and therapeutic applications. Starting with the unique ontogeny of rabbit B cells that affords highly distinctive antibody repertoires rich in in vivo pruned binders of high diversity, affinity and specificity, we describe the generation of rabbit monoclonal antibodies by hybridoma technology, phage display and alternative methods, along with an account of successful humanization strategies.
Andersen, Ditte C; Jensen, Charlotte H; Gregersen, Annemette; Brandt, Jette; Kliem, Anette; Skjødt, Karsten; Koch, Claus; Teisner, Børge
2004-01-01
This report describes an assay for comparison of epitope specificity in groups of monoclonal antibodies against a given antigen. The only prerequisite is the biotin-labeled antigen. One of the monoclonal antibodies is captured onto a plastic surface via a rabbit anti-mouse Ig, and the other preincubated with biotinylated antigen. When the two antibodies react with the same epitope subsequent binding of the biotin-labeled antigen is abolished (inhibition). In the cases where no inhibition was observed, the two antibodies were considered to react with distinct, independent epitopes. The obvious advantages using this assay, are that it can be performed directly on culture supernatants in the early phase of monoclonal antibody production, and also works for antigens with repetitive epitopes. Moreover, the bonus effect, i.e., a signal in excess of the reference signal when sets of monoclonal antibodies with different epitope specificity are compared, gives a relative measure of affinity.
Timmerman, Peter; Barderas, Rodrigo; Desmet, Johan; Altschuh, Danièle; Shochat, Susana; Hollestelle, Martine J; Höppener, Jo W M; Monasterio, Alberto; Casal, J Ignacio; Meloen, Rob H
2009-12-04
The great success of therapeutic monoclonal antibodies has fueled research toward mimicry of their binding sites and the development of new strategies for peptide-based mimetics production. Here, we describe a new combinatorial approach for the production of peptidomimetics using the complementarity-determining regions (CDRs) from gastrin17 (pyroEGPWLEEEEEAYGWMDF-NH(2)) antibodies as starting material for cyclic peptide synthesis in a microarray format. Gastrin17 is a trophic factor in gastrointestinal tumors, including pancreatic cancer, which makes it an interesting target for development of therapeutic antibodies. Screening of microarrays containing bicyclic peptidomimetics identified a high number of gastrin binders. A strong correlation was observed between gastrin binding and overall charge of the peptidomimetic. Most of the best gastrin binders proceeded from CDRs containing charged residues. In contrast, CDRs from high affinity antibodies containing mostly neutral residues failed to yield good binders. Our experiments revealed essential differences in the mode of antigen binding between CDR-derived peptidomimetics (K(d) values in micromolar range) and the parental monoclonal antibodies (K(d) values in nanomolar range). However, chemically derived peptidomimetics from gastrin binders were very effective in gastrin neutralization studies using cell-based assays, yielding a neutralizing activity in pancreatic tumoral cell lines comparable with that of gastrin-specific monoclonal antibodies. These data support the use of combinatorial CDR-peptide microarrays as a tool for the development of a new generation of chemically synthesized cyclic peptidomimetics with functional activity.
Timmerman, Peter; Barderas, Rodrigo; Desmet, Johan; Altschuh, Danièle; Shochat, Susana; Hollestelle, Martine J.; Höppener, Jo W. M.; Monasterio, Alberto; Casal, J. Ignacio; Meloen, Rob H.
2009-01-01
The great success of therapeutic monoclonal antibodies has fueled research toward mimicry of their binding sites and the development of new strategies for peptide-based mimetics production. Here, we describe a new combinatorial approach for the production of peptidomimetics using the complementarity-determining regions (CDRs) from gastrin17 (pyroEGPWLEEEEEAYGWMDF-NH2) antibodies as starting material for cyclic peptide synthesis in a microarray format. Gastrin17 is a trophic factor in gastrointestinal tumors, including pancreatic cancer, which makes it an interesting target for development of therapeutic antibodies. Screening of microarrays containing bicyclic peptidomimetics identified a high number of gastrin binders. A strong correlation was observed between gastrin binding and overall charge of the peptidomimetic. Most of the best gastrin binders proceeded from CDRs containing charged residues. In contrast, CDRs from high affinity antibodies containing mostly neutral residues failed to yield good binders. Our experiments revealed essential differences in the mode of antigen binding between CDR-derived peptidomimetics (Kd values in micromolar range) and the parental monoclonal antibodies (Kd values in nanomolar range). However, chemically derived peptidomimetics from gastrin binders were very effective in gastrin neutralization studies using cell-based assays, yielding a neutralizing activity in pancreatic tumoral cell lines comparable with that of gastrin-specific monoclonal antibodies. These data support the use of combinatorial CDR-peptide microarrays as a tool for the development of a new generation of chemically synthesized cyclic peptidomimetics with functional activity. PMID:19808684
Mehta, Pankaj D; Blain, Jean-Francois; Freeman, Emily A; Patrick, Bruce A; Barshatzky, Marc; Hrdlicka, Lori A; Mehta, Sangita P; Frackowiak, Janusz; Mazur-Kolecka, Bozena; Wegiel, Jerzy; Patzke, Holger; Miller, David L
2017-01-01
Secreted soluble amyloid-β 1-37 (Aβ37) peptide is one of the prominent Aβ forms next to Aβ40, and is found in cerebrospinal fluid (CSF) and blood. Recent studies have shown the importance of quantitation of CSF Aβ37 levels in combination with Aβ38, Aβ40, and Aβ42 to support the diagnosis of patients with probable Alzheimer's disease (AD), and the value of antibody to Aβ37 to facilitate drug discovery studies. However, the availability of reliable and specific monoclonal antibody to Aβ37 is very limited. Our aims were: 1) to generate and partially characterize rabbit monoclonal antibody (RabmAb) to Aβ37, and 2) to determine whether the antibody detects changes in Aβ37 levels produced by a γ-secretase modulator (GSM). Our generated RabmAb to Aβ37 was found to be specific to Aβ37, since it did not react with Aβ36, Aβ38, Aβ39, Aβ40, and Aβ42 in an ELISA or immunoblotting. The epitope of the antibody was contained in the seven C-terminal residues of Aβ37. The antibody was sensitive enough to measure CSF and plasma Aβ37 levels in ELISA. Immunohistological studies showed the presence of Aβ37-positive deposits in the brain of AD, and Down syndrome persons diagnosed with AD. Our studies also showed that the antibody detected Aβ37 increases in CSF and brains of rodents following treatment with a GSM. Thus, our antibody can be widely applied to AD research, and in a panel based approach it may have potential to support the diagnosis of probable AD, and in testing the effect of GSMs to target AD.
Tu, Bailin; Tieman, Bryan; Moore, Jeffrey; Pan, You; Muerhoff, A Scott
2017-06-01
Monoclonal antibodies are widely used as the capture and detection reagents in diagnostic immunoassays. In the past, myeloma fusion partners expressing endogenous heavy and/or light chains were often used to generate hybridoma cell lines. As a result, mixed populations of antibodies were produced that can cause inaccurate test results, poor antibody stability, and significant lot-to-lot variability. We describe one such scenario where the P3U1 (P3X63Ag8U.1) myeloma fusion partner was used in the generation of a hybridoma producing protein induced vitamin K absence/antagonist-II (PIVKA II) antibody. The hybridoma produces three subpopulations of immunoglobulin as determined by ion exchange (IEx) chromatography that exhibit varying degrees of immunoreactivity (0%, 50%, or 100%) to the target antigen as determined by Surface Plasmon Resonance. To produce an antibody with the highest possible sensitivity and specificity, the antigen-specific heavy and light chain variable domains (VH and VL) were cloned from the hybridoma and tethered to murine IgG1 and kappa scaffolds. The resulting recombinant antibody was expressed in Chinese hamster ovary cells and is compatible for use in a diagnostic immunoassay.
Thaler, Josef; Karthaus, Meinolf; Mineur, Laurent; Greil, Richard; Letocha, Henry; Hofheinz, Ralf; Fernebro, Eva; Gamelin, Erick; Baños, Ana; Köhne, Claus-Henning
2012-09-29
Integument-related toxicities are common during epidermal growth factor receptor (EGFR)-targeted therapy. Panitumumab is a fully human monoclonal antibody targeting the EGFR that significantly improves progression-free survival when added to chemotherapy in patients with metastatic colorectal cancer who have wild-type (WT) KRAS tumours. Primary efficacy and tolerability results from a phase II single-arm study of first-line panitumumab plus FOLFIRI in patients with metastatic colorectal cancer have been reported. Here we report additional descriptive tolerability and quality of life data from this trial. Integument-related toxicities and quality of life were analysed; toxicities were graded using modified National Cancer Institute Common Toxicity Criteria. Kaplan-Meier estimates of time to and duration of first integument-related toxicity were prepared. Quality of life was measured using EuroQoL EQ-5D and EORTC QLQ-C30. Best overall response was analysed by skin toxicity grade and baseline quality of life. Change in quality of life was analysed by skin toxicity severity. 154 patients were enrolled (WT KRAS n = 86; mutant KRAS n = 59); most (98%) experienced integument-related toxicities (most commonly rash [42%], dry skin [40%] and acne [36%]). Median time to first integument-related toxicity was 8 days; median duration was 334 days. Overall, proportionally more patients with grade 2+ skin toxicity responded (56%) compared with those with grade 0/1 (29%). Mean overall EQ-5D health state index scores (0.81 vs. 0.78), health rating scores (72.5 vs. 71.0) and QLQ-C30 global health status scores (65.8 vs. 66.7) were comparable at baseline vs. safety follow-up (8 weeks after completion), respectively and appeared unaffected by skin toxicity severity. First-line panitumumab plus FOLFIRI has acceptable tolerability and appears to have little impact on quality of life, despite the high incidence of integument-related toxicity. ClinicalTrials.gov NCT00508404.
Clonal evolution and resistance to EGFR blockade in the blood of colorectal cancer patients.
Siravegna, Giulia; Mussolin, Benedetta; Buscarino, Michela; Corti, Giorgio; Cassingena, Andrea; Crisafulli, Giovanni; Ponzetti, Agostino; Cremolini, Chiara; Amatu, Alessio; Lauricella, Calogero; Lamba, Simona; Hobor, Sebastijan; Avallone, Antonio; Valtorta, Emanuele; Rospo, Giuseppe; Medico, Enzo; Motta, Valentina; Antoniotti, Carlotta; Tatangelo, Fabiana; Bellosillo, Beatriz; Veronese, Silvio; Budillon, Alfredo; Montagut, Clara; Racca, Patrizia; Marsoni, Silvia; Falcone, Alfredo; Corcoran, Ryan B; Di Nicolantonio, Federica; Loupakis, Fotios; Siena, Salvatore; Sartore-Bianchi, Andrea; Bardelli, Alberto
2015-07-01
Colorectal cancers (CRCs) evolve by a reiterative process of genetic diversification and clonal evolution. The molecular profile of CRC is routinely assessed in surgical or bioptic samples. Genotyping of CRC tissue has inherent limitations; a tissue sample represents a single snapshot in time, and it is subjected to spatial selection bias owing to tumor heterogeneity. Repeated tissue samples are difficult to obtain and cannot be used for dynamic monitoring of disease progression and response to therapy. We exploited circulating tumor DNA (ctDNA) to genotype colorectal tumors and track clonal evolution during treatment with the epidermal growth factor receptor (EGFR)-specific antibodies cetuximab or panitumumab. We identified alterations in ctDNA of patients with primary or acquired resistance to EGFR blockade in the following genes: KRAS, NRAS, MET, ERBB2, FLT3, EGFR and MAP2K1. Mutated KRAS clones, which emerge in blood during EGFR blockade, decline upon withdrawal of EGFR-specific antibodies, indicating that clonal evolution continues beyond clinical progression. Pharmacogenomic analysis of CRC cells that had acquired resistance to cetuximab reveals that upon antibody withdrawal KRAS clones decay, whereas the population regains drug sensitivity. ctDNA profiles of individuals who benefit from multiple challenges with anti-EGFR antibodies exhibit pulsatile levels of mutant KRAS. These results indicate that the CRC genome adapts dynamically to intermittent drug schedules and provide a molecular explanation for the efficacy of rechallenge therapies based on EGFR blockade.
Lan, Hai-Nan; Jiang, Hai-Long; Li, Wei; Wu, Tian-Cheng; Hong, Pan; Li, Yu Meng; Zhang, Hui; Cui, Huan-Zhong; Zheng, Xin
2015-01-01
B-32 is one of a panel of monoclonal anti-idiotypic antibodies to growth hormone (GH) that we developed. To characterize and identify its potential role as a novel growth hormone receptor (GHR) agonist, we determined that B-32 behaved as a typical Ab2β based on a series of enzyme-linked immunosorbent assay assays. The results of fluorescence-activated cell sorting, indirect immunofluorescence and competitive receptor binding assays demonstrated that B-32 specifically binds to the GHR expressed on target cells. Next, we examined the resulting signal transduction pathways triggered by this antibody in primary porcine hepatocytes. We found that B-32 can activate the GHR and Janus kinase (2)/signal transducers and activators of transcription (JAK2/STAT5) signalling pathways. The phosphorylation kinetics of JAK2/STAT5 induced by either GH or B-32 were analysed in dose-response and time course experiments. In addition, B32 could also stimulate porcine hepatocytes to secrete insulin-like growth factors-1. Our work indicates that a monoclonal anti-idiotypic antibody to GH (B-32) can serve as a GHR agonist or GH mimic and has application potential in domestic animal (pig) production. PMID:25656185
CD44-engineered mesoporous silica nanoparticles for overcoming multidrug resistance in breast cancer
NASA Astrophysics Data System (ADS)
Wang, Xin; Liu, Ying; Wang, Shouju; Shi, Donghong; Zhou, Xianguang; Wang, Chunyan; Wu, Jiang; Zeng, Zhiyong; Li, Yanjun; Sun, Jing; Wang, Jiandong; Zhang, Longjiang; Teng, Zhaogang; Lu, Guangming
2015-03-01
Multidrug resistance is a major impediment for the successful chemotherapy in breast cancer. CD44 is over-expressed in multidrug resistant human breast cancer cells. CD44 monoclonal antibody exhibits anticancer potential by inhibiting proliferation and regulating P-glycoprotein-mediated drug efflux activity in multidrug resistant cells. Thereby, CD44 monoclonal antibody in combination with chemotherapeutic drug might be result in enhancing chemosensitivity and overcoming multidrug resistance. The purpose of this study is to investigate the effects of the CD44 monoclonal antibody functionalized mesoporous silica nanoparticles containing doxorubicin on human breast resistant cancer MCF-7 cells. The data showed that CD44-modified mesoporous silica nanoparticles increased cytotoxicity and enhanced the downregulation of P-glycoprotein in comparison to CD44 antibody. Moreover, CD44-engineered mesoporous silica nanoparticles provided active target, which promoted more cellular uptake of DOX in the resistant cells and more retention of DOX in tumor tissues than unengineered counterpart. Animal studies of the resistant breast cancer xenografts demonstrated that CD44-engineered drug delivery system remarkably induced apoptosis and inhibited the tumor growth. Our results indicated that the CD44-engineered mesoporous silica nanoparticle-based drug delivery system offers an effective approach to overcome multidrug resistance in human breast cancer.
Bossart, Katharine N; Zhu, Zhongyu; Middleton, Deborah; Klippel, Jessica; Crameri, Gary; Bingham, John; McEachern, Jennifer A; Green, Diane; Hancock, Timothy J; Chan, Yee-Peng; Hickey, Andrew C; Dimitrov, Dimiter S; Wang, Lin-Fa; Broder, Christopher C
2009-10-01
Nipah virus is a broadly tropic and highly pathogenic zoonotic paramyxovirus in the genus Henipavirus whose natural reservoirs are several species of Pteropus fruit bats. Nipah virus has repeatedly caused outbreaks over the past decade associated with a severe and often fatal disease in humans and animals. Here, a new ferret model of Nipah virus pathogenesis is described where both respiratory and neurological disease are present in infected animals. Severe disease occurs with viral doses as low as 500 TCID(50) within 6 to 10 days following infection. The underlying pathology seen in the ferret closely resembles that seen in Nipah virus infected humans, characterized as a widespread multisystemic vasculitis, with virus replicating in highly vascular tissues including lung, spleen and brain, with recoverable virus from a variety of tissues. Using this ferret model a cross-reactive neutralizing human monoclonal antibody, m102.4, targeting the henipavirus G glycoprotein was evaluated in vivo as a potential therapeutic agent. All ferrets that received m102.4 ten hours following a high dose oral-nasal Nipah virus challenge were protected from disease while all controls died. This study is the first successful post-exposure passive antibody therapy for Nipah virus using a human monoclonal antibody.
Generation and characterization of monoclonal antibodies against Giardia muris trophozoites.
Heyworth, M F; Ho, K E; Pappo, J
1989-11-01
Mouse monoclonal antibodies (mAb) were produced against Giardia muris trophozoite surface antigens. To generate B-cell hybridomas, P3/NS1/1-Ag4-1 myeloma cells were fused with splenic lymphocytes from BALB/c mice that had been immunized parenterally with G. muris trophozoites. Hybridoma culture supernatants were screened for mAb by flow cytometry of G. muris trophozoites incubated with culture supernatant followed by fluorescein-conjugated anti-mouse IgG and IgM. Flow cytometry showed three types of trophozoite staining by mAb: (i) bright staining of greater than 90% of trophozoites, with aggregation of the organisms; (ii) bright staining of approximately 90% of trophozoites, with little or no aggregation; (iii) dull staining of approximately 20% of trophozoites, without aggregation. Western blotting of mAb on G. muris trophozoite antigens separated by polyacrylamide gel electrophoresis showed that a mAb exhibiting the third of these flow cytometry staining patterns recognized trophozoite antigens of MW approximately 31,000 and 35,000. Immunoprecipitation studies indicated that the same mAb specifically precipitated two 125I-labelled trophozoite surface antigens of MW approximately 30,000. Monoclonal antibodies generated in this study may facilitate the purification and biochemical characterization of trophozoite antigens that are targets for protective intestinal antibody in G. muris-infected mice.