Science.gov

Sample records for egg-white lysozyme crystals

  1. Crystallization of Chicken Egg-White Lysozyme from Ammonium Sulfate

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth L.; Snell, Edward H.; Pusey, Marc L.

    1997-01-01

    Chicken egg-white lysozyme was crystallized from ammonium sulfate over the pH range 4.0-7.8, with protein concentrations from 100 to 150 mg/ml. Crystals were obtained by vapor-diffusion or batch-crystallization methods. The protein crystallized in two morphologies with an apparent morphology dependence on temperature and protein concentration. In general, tetragonal crystals could be grown by lowering the protein concentration or temperature. Increasing the temperature or protein concentration resulted in the growth of orthorhombic crystals. Representative crystals of each morphology were selected for X-ray analysis. The tetragonal crystals belonged to the P4(sub 3)2(sub 1)2 space group with crystals grown at ph 4.4 having unit-cell dimensions of a = b = 78.7 1, c=38.6 A and diffracting to beyond 2.0 A. The orthorhombic crystals, grown at pH 4.8, were of space group P2(sub 1)2(sub 1)2 and had unit-cell dimensions of a = 30.51, b = 56.51 and c = 73.62 A.

  2. Crystallization of Chicken Egg-White Lysozyme from Ammonium Sulfate

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth L.; Snell, Edward H.; Pusey, Marc L.

    1997-01-01

    Chicken egg-white lysozyme was crystallized from ammonium sulfate over the pH range 4.0-7.8, with protein concentrations from 100 to 150 mg/ml. Crystals were obtained by vapor-diffusion or batch-crystallization methods. The protein crystallized in two morphologies with an apparent morphology dependence on temperature and protein concentration. In general, tetragonal crystals could be grown by lowering the protein concentration or temperature. Increasing the temperature or protein concentration resulted in the growth of orthorhombic crystals. Representative crystals of each morphology were selected for X-ray analysis. The tetragonal crystals belonged to the P4(sub 3)2(sub 1)2 space group with crystals grown at ph 4.4 having unit-cell dimensions of a = b = 78.7 1, c=38.6 A and diffracting to beyond 2.0 A. The orthorhombic crystals, grown at pH 4.8, were of space group P2(sub 1)2(sub 1)2 and had unit-cell dimensions of a = 30.51, b = 56.51 and c = 73.62 A.

  3. Crystallization of Chicken Egg White Lysozyme from Assorted Sulfate Salts

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth L.; Snell, Edward H.; Malone, Christine C.; Pusey, Marc L.

    1998-01-01

    Chicken egg white lysozyme has been found to crystallize from ammonium, sodium, potassium, rubidium, magnesium, and manganese sulfates at acidic and basic pH, with protein concentrations from 60 to 190 mg/ml. Four different crystal morphologies have been obtained, depending upon the temperature, protein concentration, and precipitating salt employed, Crystals grown at 15 C were generally tetragonal, with space group P43212. Crystallization at 20 C typically resulted in the formation of orthorhombic crystals, space group P21212 1. The tetragonal much less than orthorhombic morphology transition appeared to be a function of both the temperature and protein concentration, occurring between 15 and 20 C and between 100 and 125 mg/ml protein concentration. Crystallization from 0.8 -1.2M magnesium sulfate at pH 7.6 - 8.0 gave a hexagonal (trigonal) crystal form, space group P3121, which diffracted to 2.8 A. Ammonium sulfate was also found to result in a monoclinic form, space group C2. Small twinned monoclinic crystals of approx. 0.2 mm on edge were grown by dialysis followed by seeded sitting drop crystallization.

  4. Crystallization of Chicken Egg White Lysozyme from Assorted Sulfate Salts

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth L.; Snell, Edward H.; Malone, Christine C.; Pusey, Marc L.

    1998-01-01

    Chicken egg white lysozyme has been found to crystallize from ammonium, sodium, potassium, rubidium, magnesium, and manganese sulfates at acidic and basic pH, with protein concentrations from 60 to 190 mg/ml. Four different crystal morphologies have been obtained, depending upon the temperature, protein concentration, and precipitating salt employed, Crystals grown at 15 C were generally tetragonal, with space group P43212. Crystallization at 20 C typically resulted in the formation of orthorhombic crystals, space group P21212 1. The tetragonal much less than orthorhombic morphology transition appeared to be a function of both the temperature and protein concentration, occurring between 15 and 20 C and between 100 and 125 mg/ml protein concentration. Crystallization from 0.8 -1.2M magnesium sulfate at pH 7.6 - 8.0 gave a hexagonal (trigonal) crystal form, space group P3121, which diffracted to 2.8 A. Ammonium sulfate was also found to result in a monoclinic form, space group C2. Small twinned monoclinic crystals of approx. 0.2 mm on edge were grown by dialysis followed by seeded sitting drop crystallization.

  5. Crystallization of Chicken Egg White Lysozyme from Assorted Sulfate Salts

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth L.; Snell, Edward H.; Malone, Christine C.; Pusey, Marc L.

    1999-01-01

    Chicken egg white lysozyme has been found to crystallize from ammonium, sodium, potassium, rubidium, magnesium, and manganese sulfates at acidic and basic pH, with protein concentrations from 60 to 190 mg/ml. Crystals have also been grown at 4 C in the absence of any other added salts using isoionic lysozyme which was titrated to pH 4.6 with dilute sulfuric acid. Four different crystal forms have been obtained, depending upon the temperature, protein concentration, and precipitating salt employed. Crystals grown at 15 C were generally tetragonal, with space group P4(sub 3)2(sub 1)2. Crystallization at 20 C typically resulted in the formation of orthorhombic crystals, space group P2(sub 1)2(sub 1)2(sub 1). The tetragonal reversible reaction orthorhombic transition appeared to be a function of both the temperature and protein concentration, occurring between 15 and 20 C and between 100 and 125 mg/ml protein concentration. Crystallization from 1.2 M magnesium sulfate at pH 7.8 gave a trigonal crystal, space group P3(sub 1)2(sub 1), a = b = 87.4, c = 73.7, gamma = 120 deg, which diffracted to 2.8 A. Crystallization from ammonium sulfate at pH 4.6, generally at lower temperatures, was also found to result in a monoclinic form. space group C2, a = 65.6, b = 95.0, c = 41.2, beta = 119.2 deg. A crystal of approximately 0.2 x 0.2 x 0.5 mm grown from bulk solution diffracted to approximately 3.5 A.

  6. Crystallization of Chicken Egg White Lysozyme from Assorted Sulfate Salts

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth L.; Snell, Edward H.; Malone, Christine C.; Pusey, Marc L.

    1999-01-01

    Chicken egg white lysozyme has been found to crystallize from ammonium, sodium, potassium, rubidium, magnesium, and manganese sulfates at acidic and basic pH, with protein concentrations from 60 to 190 mg/ml. Crystals have also been grown at 4 C in the absence of any other added salts using isoionic lysozyme which was titrated to pH 4.6 with dilute sulfuric acid. Four different crystal forms have been obtained, depending upon the temperature, protein concentration, and precipitating salt employed. Crystals grown at 15 C were generally tetragonal, with space group P4(sub 3)2(sub 1)2. Crystallization at 20 C typically resulted in the formation of orthorhombic crystals, space group P2(sub 1)2(sub 1)2(sub 1). The tetragonal reversible reaction orthorhombic transition appeared to be a function of both the temperature and protein concentration, occurring between 15 and 20 C and between 100 and 125 mg/ml protein concentration. Crystallization from 1.2 M magnesium sulfate at pH 7.8 gave a trigonal crystal, space group P3(sub 1)2(sub 1), a = b = 87.4, c = 73.7, gamma = 120 deg, which diffracted to 2.8 A. Crystallization from ammonium sulfate at pH 4.6, generally at lower temperatures, was also found to result in a monoclinic form. space group C2, a = 65.6, b = 95.0, c = 41.2, beta = 119.2 deg. A crystal of approximately 0.2 x 0.2 x 0.5 mm grown from bulk solution diffracted to approximately 3.5 A.

  7. Crystallization of Chicken Egg White Lysozyme from Sulfate Salts

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth; Pusey, Marc

    1998-01-01

    It has been "known" that chicken egg white lysozyme does not crystallize from sulfate, particularly ammonium sulfate, salts, but instead gives amorphous precipitates. This has been the basis of several studies using lysozyme comparing macromolecule crystal nucleation and amorphous precipitation. Recently Ries-Kautt et al (Acta Cryst D50, (1994) 366) have shown that purified isoionic CEWL could be crystallized from low concentrations of sulfate at basic pH, and we subsequently showed that in fact CEWL could be purified in both the tetragonal and orthorhombic forms using ammonium sulfate over the pH range 4.0 to 7.8 (Acta Cryst D53, (1997) 795). We have now extended these observations to include a range of common sulfate salts, specifically sodium, potassium, rubidium, magnesium, and manganese sulfates. In all cases but the manganese sulfates both the familiar tetragonal and orthorhombic forms were obtained, with unit cell dimensions close to those known for the "classic" sodium chloride crystallized forms. Manganese sulfate has only yielded orthorhombic crystals to date. All crystallizations were carried out using low (typically less than or equal to 6 M) salt and high (greater than approximately 90 mg/ml) protein concentrations. As with ammonium sulfate, the tetragonal - orthorhombic phase shift appears to be a function of both the temperature and the protein concentration, with higher temperatures and concentrations favoring the orthorhombic and lower the tetragonal form. The phase change range is somewhat reduced for the sulfate salts, depending upon conditions being typically between approximately 15 - 20 C. Both the magnesium and manganese sulfates gave crystals at salt concentrations over 0.6 M as well, with magnesium sulfate giving a very slowly nucleating and growing hexagonal form. A triclinic crystal form, characterized by aggressively small crystals (typically 0.1 mm in size) has been occasionally obtained from ammonium sulfate. Finally, preliminary spot

  8. Crystallization of Chicken Egg White Lysozyme from Sulfate Salts

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth; Pusey, Marc

    1998-01-01

    It has been "known" that chicken egg white lysozyme does not crystallize from sulfate, particularly ammonium sulfate, salts, but instead gives amorphous precipitates. This has been the basis of several studies using lysozyme comparing macromolecule crystal nucleation and amorphous precipitation. Recently Ries-Kautt et al (Acta Cryst D50, (1994) 366) have shown that purified isoionic CEWL could be crystallized from low concentrations of sulfate at basic pH, and we subsequently showed that in fact CEWL could be purified in both the tetragonal and orthorhombic forms using ammonium sulfate over the pH range 4.0 to 7.8 (Acta Cryst D53, (1997) 795). We have now extended these observations to include a range of common sulfate salts, specifically sodium, potassium, rubidium, magnesium, and manganese sulfates. In all cases but the manganese sulfates both the familiar tetragonal and orthorhombic forms were obtained, with unit cell dimensions close to those known for the "classic" sodium chloride crystallized forms. Manganese sulfate has only yielded orthorhombic crystals to date. All crystallizations were carried out using low (typically less than or equal to 6 M) salt and high (greater than approximately 90 mg/ml) protein concentrations. As with ammonium sulfate, the tetragonal - orthorhombic phase shift appears to be a function of both the temperature and the protein concentration, with higher temperatures and concentrations favoring the orthorhombic and lower the tetragonal form. The phase change range is somewhat reduced for the sulfate salts, depending upon conditions being typically between approximately 15 - 20 C. Both the magnesium and manganese sulfates gave crystals at salt concentrations over 0.6 M as well, with magnesium sulfate giving a very slowly nucleating and growing hexagonal form. A triclinic crystal form, characterized by aggressively small crystals (typically 0.1 mm in size) has been occasionally obtained from ammonium sulfate. Finally, preliminary spot

  9. Effects of Microheterogeneity in Hen Egg-White Lysozyme Crystallization

    NASA Technical Reports Server (NTRS)

    Thomas, B. R.; Vekilov, P. G.; Rosenberger, F.

    1998-01-01

    In earlier sodium dodecylsulfate polyacylamide gel electrophoresis (SDS-PAGE) studies it has been found that commonly utilized commercial hen egg-white lysozyme (HEWL) preparations contained 0.2-0.4 mol% covalently bound dimers. Here it is shown, using high-performance capillary electrophoresis (HPCE), that HEWL contains, in addition, two differently charged monomers in comparable amounts. To explore the origin of these microheterogeneous contaminants, purified HEWL (PHEWL) has been oxidized with hydrogen peroxide (0.0026-0.88 M) at various pH levels between 4.5 and 12.0. Optical densitometry of oxidized PHEWL (OHEWL) bands in SDS PAGE gels shows that hydrogen peroxide at 0.88 M in acetate buffer pH 4.5 increased the amount of dimers about sixfold over that in commercial HEWL. OHEWL had, in addition to one of the two monomer forms found in HEWL and PHEWL, three other differently charged monomer forms, each of them representing about 25% of the preparation. SDS-PAGE analysis of OHEWL yielded two closely spaced dimer bands with M(sub r) = 28 000 and 27 500. In addition, larger HEWL oligomers with M, = 1.7 million and 320 000 were detected by gel-filtration fast protein liquid chromatography with multiangle laser light scattering detection. Non-dissociating PAGE in large pore size gels at pH 4.5 confirmed the presence of these large oligomers in HEWL and OHEWL. Increased microheterogeneity resulted in substantial effects on crystal growth and nucleation rate. On addition of 10 microgram(exp -1) mg ml(exp -1) OHEWL to 32 mg ml(exp -1) HEWL crystallizing solutions, both the number and size of forming crystals decreased roughly proportionally to the concentration of the added microheterogeneity. The same effect was observed in HEWL solutions on addition of 0.03-9,3 M Hydrogen peroxide. Repartioning of the dimer during crystallzation aat various temperatures between 277 and 293 K was analyzed by SDS-PAGE. The crystals contained <= 25 % weight by volume of the oligomers in

  10. Effects of Microheterogeneity in Hen Egg-White Lysozyme Crystallization

    NASA Technical Reports Server (NTRS)

    Thomas, B. R.; Vekilov, P. G.; Rosenberger, F.

    1998-01-01

    In earlier sodium dodecylsulfate polyacylamide gel electrophoresis (SDS-PAGE) studies it has been found that commonly utilized commercial hen egg-white lysozyme (HEWL) preparations contained 0.2-0.4 mol% covalently bound dimers. Here it is shown, using high-performance capillary electrophoresis (HPCE), that HEWL contains, in addition, two differently charged monomers in comparable amounts. To explore the origin of these microheterogeneous contaminants, purified HEWL (PHEWL) has been oxidized with hydrogen peroxide (0.0026-0.88 M) at various pH levels between 4.5 and 12.0. Optical densitometry of oxidized PHEWL (OHEWL) bands in SDS PAGE gels shows that hydrogen peroxide at 0.88 M in acetate buffer pH 4.5 increased the amount of dimers about sixfold over that in commercial HEWL. OHEWL had, in addition to one of the two monomer forms found in HEWL and PHEWL, three other differently charged monomer forms, each of them representing about 25% of the preparation. SDS-PAGE analysis of OHEWL yielded two closely spaced dimer bands with M(sub r) = 28 000 and 27 500. In addition, larger HEWL oligomers with M, = 1.7 million and 320 000 were detected by gel-filtration fast protein liquid chromatography with multiangle laser light scattering detection. Non-dissociating PAGE in large pore size gels at pH 4.5 confirmed the presence of these large oligomers in HEWL and OHEWL. Increased microheterogeneity resulted in substantial effects on crystal growth and nucleation rate. On addition of 10 microgram(exp -1) mg ml(exp -1) OHEWL to 32 mg ml(exp -1) HEWL crystallizing solutions, both the number and size of forming crystals decreased roughly proportionally to the concentration of the added microheterogeneity. The same effect was observed in HEWL solutions on addition of 0.03-9,3 M Hydrogen peroxide. Repartioning of the dimer during crystallzation aat various temperatures between 277 and 293 K was analyzed by SDS-PAGE. The crystals contained <= 25 % weight by volume of the oligomers in

  11. Control of solvent evaporation in hen egg white lysozyme crystallization

    NASA Technical Reports Server (NTRS)

    Wilson, L. J.; Suddath, F. L.

    1992-01-01

    An investigation of the role of solvent evaporation in tetragonal lysozyme crystallization was preformed with a device that employs N2(g) to control the evaporation of solvent from a micro-volume crystallization hanging drop. The number of crystals was found to vary with the rate at which the final supersaturation level was achieved. It was found that the more rapid the approach to supersaturation the larger the number of crystals. Accordingly, the crystals reached a smaller terminal size. Elongation of the (110) face parallel to the four-fold axis was observed with the slower evaporation rates.

  12. Control of solvent evaporation in hen egg white lysozyme crystallization

    NASA Astrophysics Data System (ADS)

    Wilson, L. J.; Suddath, F. L.

    1992-02-01

    An investigation of the role of solvent evaporation in tetragonal lysozyme crystallization was preformed with a device that employs N 2(g) to control the evaporation of solvent from a micro-volume crystallization hanging drop. The number of crystals was found to vary with the rate at which the final supersaturation level was achieved. It was found that the more rapid the approach to supersaturation the larger the number of crystals. Accordingly, the crystals reached a smaller terminal size. Elongation of the (110) face parallel to the four-fold axis was observed with the slower evaporation rates.

  13. Control of solvent evaporation in hen egg white lysozyme crystallization

    NASA Technical Reports Server (NTRS)

    Wilson, L. J.; Suddath, F. L.

    1992-01-01

    An investigation of the role of solvent evaporation in tetragonal lysozyme crystallization was preformed with a device that employs N2(g) to control the evaporation of solvent from a micro-volume crystallization hanging drop. The number of crystals was found to vary with the rate at which the final supersaturation level was achieved. It was found that the more rapid the approach to supersaturation the larger the number of crystals. Accordingly, the crystals reached a smaller terminal size. Elongation of the (110) face parallel to the four-fold axis was observed with the slower evaporation rates.

  14. Silver metallation of hen egg white lysozyme: X-ray crystal structure and NMR studies.

    PubMed

    Panzner, Matthew J; Bilinovich, Stephanie M; Youngs, Wiley J; Leeper, Thomas C

    2011-12-14

    The X-ray crystal structure, NMR binding studies, and enzyme activity of silver(I) metallated hen egg white lysozyme are presented. Primary bonding of silver is observed through His15 with secondary bonding interactions coming from nearby Arg14 and Asp87. A covalently bound nitrate completes a four coordinate binding pocket.

  15. The effect of protein contaminants on the crystallization of turkey egg white lysozyme

    NASA Astrophysics Data System (ADS)

    Abergel, Chantal; Nesa, Marie P.; Fontecilla-Camps, Juan C.

    1991-03-01

    We report here a series of studies on the controlled contamination of crystallizing solutions of the hexagonal form of turkey egg white lysozyme (TEWL) carried out to understand the effects of impurities on the nucleation and growth of protein crystals. The contamination of TEWL solutions with any of three other avian lysozymes affects both the nucleation and the growth processes. For hen and quail egg white lysozymes, low and medium levels of contamination result in partial inhibition of nucleation and shortening of the c-axis. Further increase of the contaminant concentration leads to detectable co-crystallization. A different effect is obtained when using the pheasant egg white lysozyme. Contamination by an unrelated protein, ribonuclease A, has an effect on the nucleation levels that is similar to those observed with the avian lysozymes. However, no effect on TEWL crystal morphology is observed. Thus, in the case of TEWL crystals, one can distinguish between a specific effect on crystal morphology induced by related proteins and a more general inhibitory effect on the nucleation levels observed in all cases studied here.

  16. Spherulitic growth of hen egg-white lysozyme crystals.

    PubMed

    Heijna, Maurits C R; Theelen, Mirjam J; van Enckevort, Willem J P; Vlieg, Elias

    2007-02-22

    In protein crystallography, spherulites are considered the result of a failed crystallization experiment. Understanding the formation of these structures may contribute to finding methods to prevent their formation. Here, we present an in situ study on lysozyme spherulites grown from sodium nitrate and sodium thiocyanate solutions, investigating their morphology and growth kinetics using optical microscopy. In a morphodrom, we indicate the conditions at which spherulites form for the lysozyme-nitrate system, showing that liquid-liquid phase separation is not a prerequisite to form sheaflike spherulites and that supersaturation is not the only factor determining their creation. Despite their sheaflike morphology, the spherulites all appear to be formed through heterogeneous nucleation. The spherulites are of a new polymorphic form and are less stable than the monoclinic form. For a single needle, growth kinetics indicate surface processes to be the rate-limiting step during growth, but for an entire spherulite volume, diffusion still plays a role. Spherulites simulated by using a time-dependent, tip-splitting model are found to compare well to experimentally observed spherulites.

  17. Production, crystallization and X-ray characterization of chemically glycosylated hen egg-white lysozyme

    SciTech Connect

    López-Jaramillo, F. J.; Pérez-Banderas, F.; Hernández-Mateo, F.; Santoyo-González, F.

    2005-04-01

    The feasibility of glycosylation post-purification has been demonstrated by introducing glucose into the model protein lysozyme via a novel reaction that is compatible with biological samples. The crystallization of glycoproteins is one of the challenges to be confronted by the crystallographic community in the frame of what is known as glycobiology. The state of the art for the crystallization of glycoproteins is not promising and removal of the carbohydrate chains is generally suggested since they are flexible and a source of heterogeneity. In this paper, the feasibility of introducing glucose into the model protein hen egg-white lysozyme via a post-purification glycosylation reaction that may turn any protein into a model glycoprotein whose carbohydrate fraction can be manipulated is demonstrated.

  18. Triple-axis x-ray diffraction analyses of hen egg-white lysozyme crystals

    NASA Astrophysics Data System (ADS)

    Matyi, R. J.; Volz, H. M.

    2001-05-01

    We have used high-resolution triple-axis x-ray diffraction analyses to monitor the defect structure in tetragonal crystals of hen egg-white lysozyme as a function of x-ray irradiation time. At long irradiation times we observed the expected decrease in peak intensity and increase in the angular extent of the peak breadth. In contrast, the initial stages of irradiation showed relatively complex changes in both the peak breadth and the intensity; in fact, during the period from 25 to 45 h of irradiation the angular breadth of the intensity (both the full-width at half-maximum and the full-width at 1% of the maximum intensity) decreased to a minimum value. We have found that the unambiguous analysis of defects at high angular resolution is complicated by the fact that the diffraction characteristics of protein crystals apparently lie at the confluence of the kinematic (ideally imperfect) and dynamic (ideally perfect) treatments of diffraction.

  19. Preparation of cross-linked hen-egg white lysozyme crystals free of cracks

    PubMed Central

    Yan, Er-Kai; Lu, Qin-Qin; Zhang, Chen-Yan; Liu, Ya-Li; He, Jin; Chen, Da; Wang, Bo; Zhou, Ren-Bin; Wu, Ping; Yin, Da-Chuan

    2016-01-01

    Cross-linked protein crystals (CLPCs) are very useful materials in applications such as biosensors, catalysis, and X-ray crystallography. Hence, preparation of CLPCs is an important research direction. During the preparation of CLPCs, an often encountered problem is that cracks may appear in the crystals, which may finally lead to shattering of the crystals into small pieces and cause problem in practical applications. To avoid cross-link induced cracking, it is necessary to study the cracking phenomenon in the preparation process. In this paper, we present an investigation on how to avoid cracking during preparation of CLPCs. An orthogonal experiment was designed to study the phenomenon of cross-link induced cracking of hen-egg white lysozyme (HEWL) crystals against five parameters (temperature, solution pH, crystal growth time, glutaraldehyde concentration, and cross-linking time). The experimental results showed that, the solution pH and crystal growth time can significantly affect cross-link induced cracking. The possible mechanism was studied, and optimized conditions for obtaining crack-free CLPCs were obtained and experimentally verified. PMID:27703210

  20. Preparation of cross-linked hen-egg white lysozyme crystals free of cracks.

    PubMed

    Yan, Er-Kai; Lu, Qin-Qin; Zhang, Chen-Yan; Liu, Ya-Li; He, Jin; Chen, Da; Wang, Bo; Zhou, Ren-Bin; Wu, Ping; Yin, Da-Chuan

    2016-10-05

    Cross-linked protein crystals (CLPCs) are very useful materials in applications such as biosensors, catalysis, and X-ray crystallography. Hence, preparation of CLPCs is an important research direction. During the preparation of CLPCs, an often encountered problem is that cracks may appear in the crystals, which may finally lead to shattering of the crystals into small pieces and cause problem in practical applications. To avoid cross-link induced cracking, it is necessary to study the cracking phenomenon in the preparation process. In this paper, we present an investigation on how to avoid cracking during preparation of CLPCs. An orthogonal experiment was designed to study the phenomenon of cross-link induced cracking of hen-egg white lysozyme (HEWL) crystals against five parameters (temperature, solution pH, crystal growth time, glutaraldehyde concentration, and cross-linking time). The experimental results showed that, the solution pH and crystal growth time can significantly affect cross-link induced cracking. The possible mechanism was studied, and optimized conditions for obtaining crack-free CLPCs were obtained and experimentally verified.

  1. Phase transition of triclinic hen egg-white lysozyme crystal associated with sodium binding.

    PubMed

    Harata, Kazuaki; Akiba, Toshihiko

    2004-04-01

    A triclinic crystal of hen egg-white lysozyme obtained from a D2O solution at 313 K was transformed into a new triclinic crystal by slow release of solvent under a temperature-regulated nitrogen-gas stream. The progress of the transition was monitored by X-ray diffraction. The transition started with the appearance of strong diffuse streaks. The diffraction spots gradually fused and faded with the emergence of diffraction from the new lattice; the scattering power of the crystal fell to a resolution of 1.5 A from the initial 0.9 A resolution. At the end of the transition, the diffuse streaks disappeared and the scattering power recovered to 1.1 A resolution. The transformed crystal contained two independent molecules and the solvent content had decreased to 18% from the 32% solvent content of the native crystal. The structure was determined at 1.1 A resolution and compared with the native structure refined at the same resolution. The backbone structures of the two molecules in the transformed crystal were superimposed on the native structure with root-mean-square deviations of 0.71 and 0.96 A. A prominent structural difference was observed in the loop region of residues Ser60-Leu75. In the native crystal, a water molecule located at the centre of this helical loop forms hydrogen bonds to main-chain peptide groups. In the transformed crystal, this water molecule is replaced by a sodium ion with octahedral coordination that involves water molecules and a nitrate ion. The peptide group connecting Arg73 and Asn74 is rotated by 180 degrees so that the CO group of Arg73 can coordinate to the sodium ion. The change in the X-ray diffraction pattern during the phase transition suggests that the transition proceeds at the microcrystal level. A mechanism is proposed for the crystal transformation.

  2. Preparation and Preliminary Characterization of Crystallizing Fluorescent Derivatives of Chicken Egg White Lysozyme

    NASA Technical Reports Server (NTRS)

    Sumida, John; Forsythe, Elizabeth L.; Pusey, Marc L.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Fluorescence is one of the most versatile and powerful tools for the study of macromolecules. While most proteins are intrinsically fluorescent, working at crystallization concentrations require the use of covalently prepared derivatives added as tracers. This approach requires derivatives that do not markedly affect the crystal packing. We have prepared fluorescent derivatives of chicken egg white lysozyme with probes bound to one of two different sites on the protein molecule. Lucifer yellow and 5-(2-aminoethyl)aminonapthalene-1-sulfonic acid (EDANS) have been attached to the side chain carboxyl of Asp(sup 101) using a carbodiimide coupling procedure. Asp(sup 101) lies within the active site cleft, and it is believed that the probes are "buried" within that cleft. Lucifer yellow and MANS probes with iodoacetamide reactive groups have been bound to His(sup 15), located on the "back side" of the molecule relative to the active site. All the derivatives fluoresce in the solution and the crystalline states. Fluorescence characterization has focused on determination of binding effects on the probe quantum yield, lifetime, absorption and emission spectra, and quenching by added solutes. Quenching studies show that, as postulated, the Asp(sup 101)-bound probes are partially sheltered from the bulk solution by their location within the active site cleft. Probes bound to His(sup 15) have quenching constants about equal to those for the free probes, indicating that this site is highly exposed to the bulk solution.

  3. Preparation and Preliminary Characterization of Crystallizing Fluorescent Derivatives of Chicken Egg White Lysozyme

    NASA Technical Reports Server (NTRS)

    Sumida, John P.; Forsythe, Elizabeth L.; Pusey, Marc L.

    2001-01-01

    Fluorescence is one of the most versatile and powerful tools for the study of macromolecules. While most proteins are intrinsically fluorescent, working at crystallization concentrations require the use of covalently prepared derivatives added as tracers. This approach requires derivatives that do not markedly affect the crystal packing. We have prepared fluorescent derivatives of chicken egg white lysozyme with probes bound to one of two different sites on the protein molecule. Lucifer yellow and 5-(2-aminoethyl)aminonapthalene-i-sulfonic acid (EDANS) have been attached to the side chain carboxyl of Asp(sup 101) using a carbodiimide coupling procedure. Asp(sup 101) lies within the active site cleft, and it is believed that the probes are 'buried' within that cleft. Lucifer yellow and MANS probes with iodoacetamide reactive five groups have been bound to His(sup 15), located on the 'back side' of the molecule relative to the active site. All the derivatives fluoresce in the solution and the crystalline states. Fluorescence characterization has focused on determination of binding effects on the probe quantum yield, lifetime, absorption and emission spectra, and quenching by added solutes. Quenching studies show that, as postulated, the Asp(sup 101)-bound probes are partially sheltered from the bulk solution by their location within the active site cleft. Probes bound to His(sup 15) have quenching constants about equal to those for the free probes, indicating that this site is highly exposed to the bulk solution.

  4. Preparation and preliminary characterization of crystallizing fluorescent derivatives of chicken egg white lysozyme

    NASA Astrophysics Data System (ADS)

    Sumida, John P.; Forsythe, Elizabeth L.; Pusey, Marc L.

    2001-11-01

    Fluorescence is one of the most versatile and powerful tools for the study of macromolecules. While most proteins are intrinsically fluorescent, working at crystallization concentrations require the use of covalently prepared derivatives added as tracers. This approach requires derivatives that do not markedly affect the crystal packing. We have prepared fluorescent derivatives of chicken egg white lysozyme with probes bound to one of two different sites on the protein molecule. Lucifer yellow and 5-(2-aminoethyl)aminonapthalene-1-sulfonic acid (EDANS) have been attached to the side chain carboxyl of Asp 101 using a carbodiimide coupling procedure. Asp 101 lies within the active site cleft, and it is believed that the probes are "buried" within that cleft. Lucifer yellow and EDANS probes with iodoacetamide reactive groups have been bound to His 15, located on the "back side" of the molecule relative to the active site. All the derivatives fluoresce in the solution and the crystalline states. Fluorescence characterization has focused on determination of binding effects on the probe quantum yield, lifetime, absorption and emission spectra, and quenching by added solutes. Quenching studies show that, as postulated, the Asp 101-bound probes are partially sheltered from the bulk solution by their location within the active site cleft. Probes bound to His 15 have quenching constants about equal to those for the free probes, indicating that this site is highly exposed to the bulk solution.

  5. Preparation and Preliminary Characterization of Crystallizing Fluorescent Derivatives of Chicken Egg White Lysozyme

    NASA Technical Reports Server (NTRS)

    Sumida, John; Forsythe, Elizabeth L.; Pusey, Marc L.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Fluorescence is one of the most versatile and powerful tools for the study of macromolecules. While most proteins are intrinsically fluorescent, working at crystallization concentrations require the use of covalently prepared derivatives added as tracers. This approach requires derivatives that do not markedly affect the crystal packing. We have prepared fluorescent derivatives of chicken egg white lysozyme with probes bound to one of two different sites on the protein molecule. Lucifer yellow and 5-(2-aminoethyl)aminonapthalene-1-sulfonic acid (EDANS) have been attached to the side chain carboxyl of Asp(sup 101) using a carbodiimide coupling procedure. Asp(sup 101) lies within the active site cleft, and it is believed that the probes are "buried" within that cleft. Lucifer yellow and MANS probes with iodoacetamide reactive groups have been bound to His(sup 15), located on the "back side" of the molecule relative to the active site. All the derivatives fluoresce in the solution and the crystalline states. Fluorescence characterization has focused on determination of binding effects on the probe quantum yield, lifetime, absorption and emission spectra, and quenching by added solutes. Quenching studies show that, as postulated, the Asp(sup 101)-bound probes are partially sheltered from the bulk solution by their location within the active site cleft. Probes bound to His(sup 15) have quenching constants about equal to those for the free probes, indicating that this site is highly exposed to the bulk solution.

  6. Preparation and Preliminary Characterization of Crystallizing Fluorescent Derivatives of Chicken Egg White Lysozyme

    NASA Technical Reports Server (NTRS)

    Sumida, John P.; Forsythe, Elizabeth L.; Pusey, Marc L.

    2001-01-01

    Fluorescence is one of the most versatile and powerful tools for the study of macromolecules. While most proteins are intrinsically fluorescent, working at crystallization concentrations require the use of covalently prepared derivatives added as tracers. This approach requires derivatives that do not markedly affect the crystal packing. We have prepared fluorescent derivatives of chicken egg white lysozyme with probes bound to one of two different sites on the protein molecule. Lucifer yellow and 5-(2-aminoethyl)aminonapthalene-i-sulfonic acid (EDANS) have been attached to the side chain carboxyl of Asp(sup 101) using a carbodiimide coupling procedure. Asp(sup 101) lies within the active site cleft, and it is believed that the probes are 'buried' within that cleft. Lucifer yellow and MANS probes with iodoacetamide reactive five groups have been bound to His(sup 15), located on the 'back side' of the molecule relative to the active site. All the derivatives fluoresce in the solution and the crystalline states. Fluorescence characterization has focused on determination of binding effects on the probe quantum yield, lifetime, absorption and emission spectra, and quenching by added solutes. Quenching studies show that, as postulated, the Asp(sup 101)-bound probes are partially sheltered from the bulk solution by their location within the active site cleft. Probes bound to His(sup 15) have quenching constants about equal to those for the free probes, indicating that this site is highly exposed to the bulk solution.

  7. AFM observation of the surface morphology and impurity effects on orthorhombic hen egg-white lysozyme crystals

    NASA Astrophysics Data System (ADS)

    Matsuzuki, Y.; Kubota, T.; Liu, X. Y.; Ataka, M.; Takano, K. J.

    2002-07-01

    Cation-exchange high performance liquid chromatography at pH 6, developed originally to purify human lysozyme, was applied to hen egg-white lysozyme. We could remove at least three kinds of impurities from the commercial product. The impurities were considered to be modified lysozyme molecules, mostly based on N-terminal amino acid analyses. Atomic force microscopic observation was made on the crystals both from the purified and non-purified solutions. The (1 1 0) faces of the orthorhombic crystals grown at 40°C from the purified solution contained linear steps, while most of the linear edges became round and rugged on the crystals from non-purified solutions. A similar change in step morphology is known to occur on insulin crystals when two amino acids were mutated from the wild type. On the (0 1 0) face, elongated, round steps became rugged when crystals grew from non-purified solutions.

  8. Characterization of dislocations in monoclinic hen egg-white lysozyme crystals by synchrotron monochromatic-beam X-ray topography

    NASA Astrophysics Data System (ADS)

    Sawaura, Takuya; Fujii, Daiki; Shen, Mengyuan; Yamamoto, Yu; Wako, Kei; Kojima, Kenichi; Tachibana, Masaru

    2011-03-01

    Dislocations in monoclinic hen egg-white lysozyme crystals were investigated by means of synchrotron monochromatic-beam X-ray topography. The loop and curved dislocations were observed to be predominant in the crystals. Almost all the dislocations lay in (1 0 1¯) crystallographic plane, which corresponds to that with smallest slicing energy estimated by macrobond approach. One of the Burgers vectors of the dislocations was determined to be [0 1 0], which corresponds to the smallest lattice translational vector on the (1 0 1¯) plane. It is suggested that the loop and curved dislocations are slip ones introduced by a stress concentration during or after the growth.

  9. Crystal structures of pheasant and guinea fowl egg-white lysozymes.

    PubMed Central

    Lescar, J.; Souchon, H.; Alzari, P. M.

    1994-01-01

    The crystal structures of pheasant and guinea fowl lysozymes have been determined by X-ray diffraction methods. Guinea fowl lysozyme crystallizes in space group P6(1)22 with cell dimensions a = 89.2 A and c = 61.7 A. The structure was refined to a final crystallographic R-factor of 17.0% for 8,854 observed reflections in the resolution range 6-1.9 A. Crystals of pheasant lysozyme are tetragonal, space group P4(3)2(1)2, with a = 98.9 A, c = 69.3 A and 2 molecules in the asymmetric unit. The final R-factor is 17.8% to 2.1 A resolution. The RMS deviation from ideality is 0.010 A for bond lengths and 2.5 degrees for bond angles in both models. Three amino acid positions beneath the active site are occupied by Thr 40, Ile 55, and Ser 91 in hen, pheasant, and other avian lysozymes, and by Ser 40, Val 55, and Thr 91 in guinea fowl and American quail lysozymes. In spite of their internal location, the structural changes associated with these substitutions are small. The pheasant enzyme has an additional N-terminal glycine residue, probably resulting from an evolutionary shift in the site of cleavage of prelysozyme. In the 3-dimensional structure, this amino acid partially fills a cleft on the surface of the molecule, close to the C alpha atom of Gly 41 and absent in lysozymes from other species (which have a large side-chain residue at position 41: Gln, His, Arg, or Lys). The overall structures are similar to those of other c-type lysozymes, with the largest deviations occurring in surface loops. Comparison of the unliganded and antibody-bound models of pheasant lysozyme suggests that surface complementarity of contacting surfaces in the antigen-antibody complex is the result of local, small rearrangements in the epitope. Structural evidence based upon this and other complexes supports the notion that antigenic variation in c-type lysozymes is primarily the result of amino acid substitutions, not of gross structural changes. PMID:8061608

  10. Measurements of thermal conductivity and thermal diffusivity of hen egg-white lysozyme crystals using a short hot wire method

    NASA Astrophysics Data System (ADS)

    Fujiwara, Seiji; Maki, Syou; Tanaka, Seiichi; Maekawa, Ryunosuke; Masuda, Tomoki; Hagiwara, Masayuki

    2017-07-01

    Thermal conductivity and thermal diffusivity of hen egg-white lysozyme (HEWL) crystals were examined by using the transient short hot wire method. This method is based on the conventional hot wire method, but improved by using a wire that is much shorter than conventional ones. The magneto-Archimedes levitation technique was utilized to attach the HEWL crystals onto the wire. Owing to the upward magnetic force, the HEWL crystals were deposited at the air-liquid interface of the protein buffer solution where the short hot wire was preliminarily fixed. In situ observation clarified that the wire was completely buried into the HEWL crystals. By means of these techniques, the measurement of thermal conductivity and thermal diffusivity of HEWL crystals was realized for the first time. Gadolinium chloride (a paramagnetic subject) was used as a precipitant agent of crystallization. Crystal growth was carried out over 20 h at 17.2 °C. The applied magnetic field was 4 T. Measurements were conducted during the crystal growth at two different times. The thermal conductivity and diffusivity of the HEWL crystals were determined to be 0.410 W/(m.K) and 3.77×10-8 m2/s at 14 h after, and 0.438 W/(m.K) and 5.18×10-8 m2/s at 20 h after, respectively. We emphasize that this method is versatile and applicable for other protein crystals.

  11. Crystal Growth of Hen Egg-White Lysozyme (HEWL) under Various Gravity Conditions

    NASA Astrophysics Data System (ADS)

    Pan, Weichun; Xu, Jin; Tsukamoto, Katsuo; Koizumi, Masako; Yamazaki, Tomoya; Zhou, Ru; Li, Ang; Fu, Yuying

    2013-08-01

    Motivated by the enhancement of protein quality under microgravity condition, the behaviors of crystal growth under various gravity conditions have been monitored via Foton Satellite and parabolic flight. We found that the normal growth rate and the step velocity would be enhanced only at high protein concentration. Although the difference of diffusion between monomer lysozyme molecule and main impurity species in HWEL dimer may be able to explain this enhancement in long period at high protein concentration, it is not valid at low lysozyme concentration and it can't explain the results obtained by parabolic flight, in which microgravity condition maintained only about 20 s. In order to compromise this contradiction, cluster, universal existing in protein solution, has been picked up. The dynamic light scattering technique figured out dimer is served as the seed for cluster formation. Due to its large size, cluster keeps still under microgravity. Via this mechanism, the purification of lysozyme above crystal surface has been achieved. We also found the two supergravity (˜1.5 g) periods immediately before and after microgravity period have different effects on the step velocity. The pre-MG period depresses the step velocity while the post-MG enhances it. This odd phenomenon ascribes to two factors: (1) the flow rate modification and (2) the purity of protein solution immediate above crystal surface.

  12. The solubility of hen egg-white lysozyme

    NASA Technical Reports Server (NTRS)

    Howard, Sandra B.; Twigg, Pamela J.; Baird, James K.; Meehan, Edward J.

    1988-01-01

    The equilibrium solubility of chicken egg-white lysozyme in the presence of crystalline solid state was determined as a function of NaCl concentration, pH, and temperature. The solubility curves obtained represent a region of the lysozyme phase diagram. This diagram makes it possible to determine the supersaturation of a given set of conditions or to achieve identical supersaturations by different combinations of parameters. The temperature dependence of the solubility permits the evaluation of Delta-H of crystallization. The data indicate a negative heat of crystallization for the tetragonal crystal form but a positive heat of crystallization for the high-temperature orthorhombic form.

  13. The solubility of hen egg-white lysozyme

    NASA Technical Reports Server (NTRS)

    Howard, Sandra B.; Twigg, Pamela J.; Baird, James K.; Meehan, Edward J.

    1988-01-01

    The equilibrium solubility of chicken egg-white lysozyme in the presence of crystalline solid state was determined as a function of NaCl concentration, pH, and temperature. The solubility curves obtained represent a region of the lysozyme phase diagram. This diagram makes it possible to determine the supersaturation of a given set of conditions or to achieve identical supersaturations by different combinations of parameters. The temperature dependence of the solubility permits the evaluation of Delta-H of crystallization. The data indicate a negative heat of crystallization for the tetragonal crystal form but a positive heat of crystallization for the high-temperature orthorhombic form.

  14. Heavy-atom derivatives in lipidic cubic phases: results on hen egg-white lysozyme tetragonal derivative crystals with Gd-HPDO3A complex.

    PubMed

    Girard, Eric; Pebay-Peyroula, Eva; Vicat, Jean; Kahn, Richard

    2004-08-01

    Gd-HPDO3A, a neutral gadolinium complex, is a good candidate for obtaining heavy-atom-derivative crystals by the lipidic cubic phase crystallization method known to be effective for membrane proteins. Gadolinium-derivative crystals of hen egg-white lysozyme were obtained by co-crystallizing the protein with 100 mM Gd-HPDO3A in a monoolein cubic phase. Diffraction data were collected to a resolution of 1.7 A using Cu Kalpha radiation from a rotating-anode generator. Two binding sites of the gadolinium complex were located from the strong gadolinium anomalous signal. The Gd-atom positions and their refined occupancies were found to be identical to those found in derivative crystals of hen egg-white lysozyme obtained by co-crystallizing the protein with 100 mM Gd-HPDO3A using the hanging-drop technique. Moreover, the refined structures are isomorphous. The lipidic cubic phase is not disturbed by the high concentration of Gd-HPDO3A. This experiment demonstrates that a gadolinium complex, Gd-HPDO3A, can be used to obtain derivative crystals by the lipidic cubic phase crystallization method. Further studies with membrane proteins that are known to crystallize in lipidic cubic phases will be undertaken with Gd-HPDO3A and other Gd complexes to test whether derivative crystals with high Gd-site occupancies can be obtained.

  15. Control of effect on the nucleation rate for hen egg white lysozyme crystals under application of an external ac electric field.

    PubMed

    Koizumi, H; Uda, S; Fujiwara, K; Nozawa, J

    2011-07-05

    The effect of an external ac electric field on the nucleation rate of hen egg white lysozyme crystals increased with an increase in the concentration of the precipitant used, which enabled the design of an electric double layer (EDL) formed at the inner surface of the drop in the oil. This is attributed to the thickness of the EDL controlled by the ionic strength of the precipitant used. Control of the EDL formed at the interface between the two phases is important to establishing this novel technique for the crystallization of proteins under the application of an external ac electric field. © 2011 American Chemical Society

  16. Bound-solvent structures for microgravity-, ground control-, gel- and microbatch-grown hen egg-white lysozyme crystals at 1.8 A resolution.

    PubMed

    Dong, J; Boggon, T J; Chayen, N E; Raftery, J; Bi, R C; Helliwell, J R

    1999-04-01

    A number of methods can be used to improve the stability of the protein crystal-growth environment, including growth in microgravity without an air-liquid phase boundary, growth in gels and growth under oil ('microbatch'). In this study, X-ray data has been collected from and structures refined for crystals of hen egg-white lysozyme (HEWL) grown using four different methods, liquid-liquid dialysis on Earth and in microgravity using the European Space Agency's (ESA) Advanced Protein Crystallization Facility (APCF) on board the NASA Space Shuttle Life and Microgravity Spacelab (LMS) mission (STS-78), crystallization in agarose gel using a tube liquid-gel diffusion method and crystallization in microbatch under oil. A comparison of the overall quality of the X-ray data, the protein structures and especially the bound-water structures has been carried out at 1.8 A. The lysozyme protein structures corresponding to these four different crystallization methods remain similar. A small improvement in the bound-solvent structure is seen in lysozyme crystals grown in microgravity by liquid-liquid dialysis, which has a more stable fluid physics state in microgravity, and is consistent with a better formed protein crystal in microgravity.

  17. Tetragonal Chicken Egg White Lysozyme Solubility in Sodium Chloride Solutions

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth L.; Judge, Russell A.; Pusey, Marc L.

    1998-01-01

    The solubility of chicken egg white lysozyme, crystallized in the tetragonal form was measured in sodium chloride solutions from 1.6 to 30.7 C, using a miniature column solubility apparatus. Sodium chloride solution concentrations ranged from 1 to 7% (w/v). The solutions were buffered with 0.1 M sodium acetate buffer with the solubility being measured at pH values in 0.2 pH unit increments in the range pH 4.0 to 5.4, with data also included at pH 4.5. Lysozyme solubility was found to increase with increases in temperature and decreasing salt concentration. Solution pH has a varied and unpredictable effect on solubility.

  18. Tetragonal Chicken Egg White Lysozyme Solubility in Sodium Chloride Solutions

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth L.; Judge, Russell A.; Pusey, Marc L.

    1998-01-01

    The solubility of chicken egg white lysozyme, crystallized in the tetragonal form was measured in sodium chloride solutions from 1.6 to 30.7 C, using a miniature column solubility apparatus. Sodium chloride solution concentrations ranged from 1 to 7% (w/v). The solutions were buffered with 0.1 M sodium acetate buffer with the solubility being measured at pH values in 0.2 pH unit increments in the range pH 4.0 to 5.4, with data also included at pH 4.5. Lysozyme solubility was found to increase with increases in temperature and decreasing salt concentration. Solution pH has a varied and unpredictable effect on solubility.

  19. Measurements of Thermal Conductivity and Thermal Diffusivity of Hen Egg-White Lysozyme Crystals and Its Solution Using the Transient Short Hot Wire Method

    NASA Astrophysics Data System (ADS)

    Fujiwara, Seiji; Maki, Syou; Maekawa, Ryunosuke; Tanaka, Seiichi; Hagiwara, Masayuki

    2017-08-01

    Protein crystals are an essentially important biological sample to advance the analysis of X-ray structure, but their thermophysical properties, especially thermal conductivity and thermal diffusivity, have not been studied sufficiently. This current situation can be attributed to various kinds of technical problems; e.g., the fragility of protein crystals and the difficulty of nucleation control. Ideally speaking, protein crystallization should be carried out under a " containerless condition" to eliminate any mechanical distortion of the crystals from the walls. To realize the condition, we have developed an original crystallization method by means of the magneto-Archimedes effect. In this paper, a transient short hot wire method was combined with the technique of magneto-Archimedes effect to realize simultaneous measurement of thermal conductivity and thermal diffusivity of hen egg-white lysozyme (HEWL) crystals. As the results, thermal conductivity and thermal diffusivity of HEWL crystals were found to be 0.410-0.438 \\hbox {W}\\cdot \\hbox {m}^{-1}\\cdot \\hbox {K}^{-1} and 3.77-5.18× 10^{-8} \\hbox {m}2\\cdot \\hbox {s}^{-1}, respectively. We clarified by the crystallizing process of HEWL that the crystals were magnetically levitated at the air-liquid interface and the short hot wire was completely buried into them as the crystals grew. We also measured the HEWL solution by the same methods. The thermal conductivity of the solution had almost the same value as that of water and had little dependency on the concentration of HEWL, but the thermal diffusivity was unclear.

  20. Action of egg white lysozyme on Clostridium tyrobutyricum.

    PubMed

    Wasserfall, F; Teuber, M

    1979-08-01

    A 500-U ml-1 portion of egg white lysozyme was able to kill 99% of 5 X 10(5) resting vegetative cells of Clostridium tyrobutyricum within 24 h of incubation at 25 degrees C. Spores were completely resistant to lysozyme. Proliferating vegetative cells were severely inhibited, although lysozyme-resistant cells developed in growing cultures in the presence of lysozyme. Whereas early stages of spore germination (loss of optical refractility and heat resistance) were not inhibited by lysozyme, the overall outgrowth of spore cells into vegetative cells was delayed by 1 day in the presence of 500 U of lysosyme ml-1. This delay was independent of the lysozyme sensitivity or resistance of the mother culture of the used spores. It is suggested that this inhibition by lysozyme of the outgrowth of spore cells into vegetative cells of the lactate-fermenting C. tyrobutyricum is the basis for the observation that lysozyme can substitute for nitrate in preventing the "late gas" defect of Edam- and Gouda-type cheeses.

  1. Biochemical characterization of lysozymes present in egg white of selected species of anatid birds.

    PubMed

    D'Surney, S J; deKloet, S R

    1985-01-01

    The isolation of lysozyme from the egg white of several representative species of waterfowl is described. The purified lysozymes were analyzed to determine the type and molecular weight of each enzyme. All enzymes found in duck egg whites were found to be of the c-type. In contrast all true geese, and the mute swan species as well as the northern blackneck screamer contain lysozyme g in their egg white.

  2. Biochemical characterization of lysozymes present in egg white of selected species of anatid birds.

    PubMed

    D'Surney, S J; deKloet, S R

    1985-01-01

    The isolation of lysozyme from the egg white of several representative species of waterfowl is described. The purified lysozymes were analyzed in order to determine the type and molecular weight of each enzyme. All enzymes found in duck egg whites were found to be of the c-type. In contrast all true geese, the Mute Swan as well as the Northern Blackneck Screamer contain lysozyme g in their egg white.

  3. High-pressure protein crystallography of hen egg-white lysozyme

    SciTech Connect

    Yamada, Hiroyuki; Nagae, Takayuki; Watanabe, Nobuhisa

    2015-04-01

    The crystal structure of hen egg-white lysozyme (HEWL) was analyzed under pressures of up to 950 MPa. The high pressure modified the conformation of the molecule and induced a novel phase transition in the tetragonal crystal of HEWL. Crystal structures of hen egg-white lysozyme (HEWL) determined under pressures ranging from ambient pressure to 950 MPa are presented. From 0.1 to 710 MPa, the molecular and internal cavity volumes are monotonically compressed. However, from 710 to 890 MPa the internal cavity volume remains almost constant. Moreover, as the pressure increases to 950 MPa, the tetragonal crystal of HEWL undergoes a phase transition from P4{sub 3}2{sub 1}2 to P4{sub 3}. Under high pressure, the crystal structure of the enzyme undergoes several local and global changes accompanied by changes in hydration structure. For example, water molecules penetrate into an internal cavity neighbouring the active site and induce an alternate conformation of one of the catalytic residues, Glu35. These phenomena have not been detected by conventional X-ray crystal structure analysis and might play an important role in the catalytic activity of HEWL.

  4. Molecular dynamics simulation of thionated hen egg white lysozyme.

    PubMed

    Huang, Wei; Eichenberger, Andreas P; van Gunsteren, Wilfred F

    2012-08-01

    Understanding of the driving forces of protein folding is a complex challenge because different types of interactions play a varying role. To investigate the role of hydrogen bonding involving the backbone, the effect of thio substitutions in a protein, hen egg white lysozyme (HEWL), was investigated through molecular dynamics simulations of native as well as partly (only residues in loops) and fully thionated HEWL using the GROMOS 54A7 force field. The results of the three simulations show that the structural properties of fully thionated HEWL clearly differ from those of the native protein, while for partly thionated HEWL they only changed slightly compared with native HEWL. The analysis of the torsional-angle distributions and hydrogen bonds in the backbone suggests that the α-helical segments of native HEWL tend to show a propensity to convert to 3(10)-helical geometry in fully thionated HEWL. A comparison of the simulated quantities with experimental NMR data such as nuclear overhauser effect (NOE) atom-atom distance bounds and (3)J((H)(N)(H)(α))-couplings measured for native HEWL illustrates that the information content of these quantities with respect to the structural changes induced by thionation of the protein backbone is rather limited.

  5. Molecular dynamics simulation of thionated hen egg white lysozyme

    PubMed Central

    Huang, Wei; Eichenberger, Andreas P; van Gunsteren, Wilfred F

    2012-01-01

    Understanding of the driving forces of protein folding is a complex challenge because different types of interactions play a varying role. To investigate the role of hydrogen bonding involving the backbone, the effect of thio substitutions in a protein, hen egg white lysozyme (HEWL), was investigated through molecular dynamics simulations of native as well as partly (only residues in loops) and fully thionated HEWL using the GROMOS 54A7 force field. The results of the three simulations show that the structural properties of fully thionated HEWL clearly differ from those of the native protein, while for partly thionated HEWL they only changed slightly compared with native HEWL. The analysis of the torsional-angle distributions and hydrogen bonds in the backbone suggests that the α-helical segments of native HEWL tend to show a propensity to convert to 310-helical geometry in fully thionated HEWL. A comparison of the simulated quantities with experimental NMR data such as nuclear overhauser effect (NOE) atom–atom distance bounds and 3JHNHα-couplings measured for native HEWL illustrates that the information content of these quantities with respect to the structural changes induced by thionation of the protein backbone is rather limited. PMID:22653637

  6. Rapid separation of lysozyme from chicken egg white by reductants and thermal treatment.

    PubMed

    Chang, H M; Yang, C C; Chang, Y C

    2000-02-01

    Reductants (0.1-2.0% ascorbic acid, cysteine, or cystine and 0.04-1. 0% beta-mercaptoethanol) were added to 5-fold diluted, salted duck egg whites (commercially and laboratory prepared) and fresh egg whites (chicken and duck), and subsequently the mixtures were heated at 70 degrees C for 1-10 min. The maximal recovery and purification fold of lysozyme obtained from fresh chicken egg whites added with 1. 0% ascorbic acid were 78% and 2.4, respectively. Storage tests showed that the obtained lyophilized lysozyme powder after dialysis was stable when refrigerated at 4 degrees C for 3 months.

  7. High-pressure protein crystallography of hen egg-white lysozyme

    PubMed Central

    Yamada, Hiroyuki; Nagae, Takayuki; Watanabe, Nobuhisa

    2015-01-01

    Crystal structures of hen egg-white lysozyme (HEWL) determined under pressures ranging from ambient pressure to 950 MPa are presented. From 0.1 to 710 MPa, the molecular and internal cavity volumes are monotonically compressed. However, from 710 to 890 MPa the internal cavity volume remains almost constant. Moreover, as the pressure increases to 950 MPa, the tetragonal crystal of HEWL undergoes a phase transition from P43212 to P43. Under high pressure, the crystal structure of the enzyme undergoes several local and global changes accompanied by changes in hydration structure. For example, water molecules penetrate into an internal cavity neighbouring the active site and induce an alternate conformation of one of the catalytic residues, Glu35. These phenomena have not been detected by conventional X-ray crystal structure analysis and might play an important role in the catalytic activity of HEWL. PMID:25849385

  8. Mineralization of CaCO3 in the presence of egg white lysozyme.

    PubMed

    Voinescu, Alina E; Touraud, Didier; Lecker, Alois; Pfitzner, Arno; Kunz, Werner; Ninham, Barry W

    2007-11-20

    The influence of egg white lysozyme on the size, shape, crystallography, and chemical composition of amorphous calcium carbonate (ACC) particles obtained from aqueous CaCl2-dimethyl carbonate (DMC)-NaOH solutions was studied. At the onset of precipitation, the presence of lysozyme led to much smaller particles (50-400 nm spherical amorphous lysozyme-calcium carbonate particles (Ly-ACC)) than those obtained from lysozyme-free solution. The nanospheres were in some cases aggregated and in addition embedded in a faint network. Their size and interconnection depended on the concentration of egg white lysozyme. When the Ly-ACC particles were left in contact with the mother liquor (CaCl2/DMC/NaOH/lysozyme solution) for 24 h, they transformed directly and exclusively into crystalline calcite. The observed results may be of relevance for a better understanding of the role of lysozyme in the process of eggshell mineralization.

  9. The Effect of Solution Thermal History on Chicken Egg White Lysozyme Nucleation

    NASA Technical Reports Server (NTRS)

    Burke, Michael W.; Judge, Russell A.; Pusey, Marc L.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Proteins are highly flexible molecules and often exhibit defined conformational changes in response to changes in the ambient temperature. Chicken egg white lysozyme has been previously shown to undergo an apparent structural change when warmed above the tetragonal/orthorhombic phase transition temperature. This is reflected by a change in the habit of the tetragonal and orthorhombic crystals so formed. In this study we show that possible conformational changes induced by heating are stable and apparently non- reversible by simple cooling. Exposure of protein solutions to temperatures above the phase change transition temperature, before combining with precipitant solution to begin crystallization, reduces final crystal numbers. Protein that is briefly warmed to 37 C, then cooled shows no sign of reversal to the unheated nucleation behavior even after storage for 4 weeks at 4 C. The change in nucleation behavior of tetragonal lysozyme crystals, attributed to a structural shift, occurs faster the greater the exposure to temperature above the equi-solubility point for the two phases. Heating for 2 h at 48 C reduces crystal numbers by 20 fold in comparison to the same solution heated for the same time at 30 C. Thermal treatment of solutions is therefore a possible tool to reduce crystal numbers and increase crystal size. The effects of a protein's previous thermal history are now shown to be a potentially critical factor in subsequent macromolecule crystal nucleation and growth studies.

  10. The Effect of Solution Thermal History on Chicken Egg White Lysozyme Nucleation

    NASA Technical Reports Server (NTRS)

    Burke, Michael W.; Judge, Russell A.; Pusey, Marc L.

    2001-01-01

    Proteins are highly flexible molecules and often exhibit defined conformational changes in response to changes in the ambient temperature. Chicken egg white lysozyme has been previously shown to undergo an apparent structural change when warmed above the tetragonal/orthorhombic phase transition temperature. This is reflected by a change in the habit of the tetragonal and orthorhombic crystals so formed. In this study, we show that possible conformational changes induced by heating are stable and apparently non-reversible by simple cooling. Exposure of protein solutions to temperatures above the phase change transition temperature, before combining with precipitant solution to begin crystallization, reduces final crystal numbers. Protein that is briefly warmed to 37 C, then cooled shows no sign of reversal to the unheated nucleation behavior even after storage for four weeks at 4 C. The change in nucleation behavior of tetragonal lysozyme crystals, attributed to a structural shift, occurs faster the greater the exposure to temperature above the equi-solubility point for the two phases. Heating for 2 hours at 48 C reduces crystal numbers by 20 fold in comparison to the same solution heated for the same time at 30 C. Thermal treatment of solutions is therefore a possible tool to reduce crystal numbers and increase crystal size. The effects of a protein's previous thermal history are now shown to be a potentially critical factor in subsequent macromolecule crystal nucleation and growth studies.

  11. The Effect of Solution Thermal History on Chicken Egg White Lysozyme Nucleation

    NASA Technical Reports Server (NTRS)

    Burke, Michael W.; Judge, Russell A.; Pusey, Marc L.

    2001-01-01

    Proteins are highly flexible molecules and often exhibit defined conformational changes in response to changes in the ambient temperature. Chicken egg white lysozyme has been previously shown to undergo an apparent structural change when warmed above the tetragonal/orthorhombic phase transition temperature. This is reflected by a change in the habit of the tetragonal and orthorhombic crystals so formed. In this study, we show that possible conformational changes induced by heating are stable and apparently non-reversible by simple cooling. Exposure of protein solutions to temperatures above the phase change transition temperature, before combining with precipitant solution to begin crystallization, reduces final crystal numbers. Protein that is briefly warmed to 37 C, then cooled shows no sign of reversal to the unheated nucleation behavior even after storage for four weeks at 4 C. The change in nucleation behavior of tetragonal lysozyme crystals, attributed to a structural shift, occurs faster the greater the exposure to temperature above the equi-solubility point for the two phases. Heating for 2 hours at 48 C reduces crystal numbers by 20 fold in comparison to the same solution heated for the same time at 30 C. Thermal treatment of solutions is therefore a possible tool to reduce crystal numbers and increase crystal size. The effects of a protein's previous thermal history are now shown to be a potentially critical factor in subsequent macromolecule crystal nucleation and growth studies.

  12. The Effect of Solution Thermal History on Chicken Egg White Lysozyme Nucleation

    NASA Technical Reports Server (NTRS)

    Burke, Michael W.; Judge, Russell A.; Pusey, Marc L.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Proteins are highly flexible molecules and often exhibit defined conformational changes in response to changes in the ambient temperature. Chicken egg white lysozyme has been previously shown to undergo an apparent structural change when warmed above the tetragonal/orthorhombic phase transition temperature. This is reflected by a change in the habit of the tetragonal and orthorhombic crystals so formed. In this study we show that possible conformational changes induced by heating are stable and apparently non- reversible by simple cooling. Exposure of protein solutions to temperatures above the phase change transition temperature, before combining with precipitant solution to begin crystallization, reduces final crystal numbers. Protein that is briefly warmed to 37 C, then cooled shows no sign of reversal to the unheated nucleation behavior even after storage for 4 weeks at 4 C. The change in nucleation behavior of tetragonal lysozyme crystals, attributed to a structural shift, occurs faster the greater the exposure to temperature above the equi-solubility point for the two phases. Heating for 2 h at 48 C reduces crystal numbers by 20 fold in comparison to the same solution heated for the same time at 30 C. Thermal treatment of solutions is therefore a possible tool to reduce crystal numbers and increase crystal size. The effects of a protein's previous thermal history are now shown to be a potentially critical factor in subsequent macromolecule crystal nucleation and growth studies.

  13. Preparation of lysozyme molecularly imprinted polymers and purification of lysozyme from egg white.

    PubMed

    Wang, Xuejiao; Dong, Shaohua; Bai, Quan

    2014-06-01

    Molecular imprinting as a promising and facile separation technique has received much attention because of its high selectivity for target molecules. In this study, lysozyme molecularly imprinted polymers (Lys-MIPs) were successfully prepared by the entrapment method with lysozyme as the template molecule, acrylamide as the functional monomer and N,N-methylenebisacrylamide as the cross-linker. The removal of the template lysozyme from the molecularly imprinted polymers was investigated in detail by two methods. The synthesized Lys-MIPs were characterized by scanning electron microscopy and Fourier transform-infrared, and the adsorption capacity, selectivity and reproducibility of the Lys-MIPs were also evaluated. The maximum adsorption capacity reached 94.8 mg/g, which is twice that of nonmolecularly imprinted polymers, and satisfactory selectivity and reproducibility were achieved. Using the Lys-MIP column, lysozyme could be separated completely from egg white, with purity close to 100% and mass recovery of 98.2%. This illustrated that the synthesized Lys-MIPs had high specific recognition and selectivity to the template lysozyme when they were applied to a mixture of protein standards and a real sample.

  14. [Separation and purification of lysozyme from egg white by high performance cation-exchange chromatography].

    PubMed

    Li, Rong; Chen, Guo-liang

    2002-05-01

    A new method used to separate and purify lysozyme from egg white by high performance cation-exchange chromatography has been established. The process conditions for purifying lysozyme were also discussed in detail. The procedure involved that homogenization of the egg white sample, preliminary purification with sodium chloride, and chromatographic separation by the weak cation exchange column (XIDACE-WCX). The experimental results showed that the purified lysozyme and other impurity proteins were completely separated. By using bioactivity assay, the recovery of lysozyme was 107%, and the specific activity was 15,467 U/mg through the column. Its purity was raised 5.6-fold. The collected fraction with activity was detected by size-exclusion chromatography (SEC). The purified lysozyme was homogeneous. Compared with the traditional soft-based low pressure ion-exchange chromatography, the developed method is rapid and effective.

  15. An integrated process for purification of lysozyme, ovalbumin, and ovomucoid from hen egg white.

    PubMed

    Roy, Ipsita; Rao, M V S; Gupta, Munishwar N

    2003-10-01

    This article describes an integrated process for simultaneous purification of lysozyme, ovalbumin, and ovomucoid from hen egg white. The crude egg white extract was passed through a cation exchanger Streamline trade mark SP and the bound lysozyme was eluted with 5% ammonium carbonate, pH 9.0, containing 1 M NaCl after elution of avidin. This partially purified lysozyme was further purified 639-fold on dye-linked cellulose beads. Ovalbumin and ovomucoid did not bind to Streamline SP. Ovalbumin could be precipitated from this unbound fraction by 5% trichloroacetic acid, and ovomucoid was removed from the supernatant by precipitation with ethanol. The yields of lysozyme, ovomucoid, and ovalbumin were 77, 94, and 98%, respectively. All the purified proteins showed single bands on sodium dodecyl sulfate polyacrylamide gel electrophoresis. All the steps are easily scalable, and the process described here can be used for large-scale simultaneous purification of these proteins in the pure form.

  16. Buffer Effects in the Solubility, Nucleation and Growth of Chicken Egg White Lysozyme

    NASA Technical Reports Server (NTRS)

    Gibson, Ursula J.

    1999-01-01

    The growth of protein crystals is important for determination of their three-dimensional structure, which relates to their biochemical functions and to the practical goal of designing pharmaceuticals to modify that function. While many proteins have been successfully crystallized by a variety of methods, there is still limited understanding of the process of nucleation and growth of even the simplest proteins. Chicken egg-white lysozyme (CEWL) is readily crystallized under a variety of conditions, and studies underway at MSFC are designed to elucidate the mechanisms by which the crystals nucleate and grow. We have investigated the effect of buffer choice on the solubility, nucleation and growth of CEWL. CEWL was purified by dialysis against a .05M phosphate buffer and chromatographic separation from contaminants in a sepharose column. Solubility studies were made as a function of buffer concentration for phosphate and formate buffers, and the nucleation and growth of crystals at 10 C was studied as a function of pH for oxalate, succinate, formate, butyrate, carbonate, phosphate and acetate buffer solutions. The solubility data support the conclusion that there is a solubility minimum as a function of buffer concentration for amphiphilic molecules, while no minimum is observed for a phosphate buffer. Nucleation is suppressed at pH greater than pKa for all buffers except phosphate. The aspect ratio of the (110) faces is shown to be a function of crystal size, rather than pH.

  17. Buffer Effects in the Solubility, Nucleation and Growth of Chicken Egg White Lysozyme

    NASA Technical Reports Server (NTRS)

    Gibson, Ursula J.

    1999-01-01

    The growth of protein crystals is important for determination of their three-dimensional structure, which relates to their biochemical functions and to the practical goal of designing pharmaceuticals to modify that function. While many proteins have been successfully crystallized by a variety of methods, there is still limited understanding of the process of nucleation and growth of even the simplest proteins. Chicken egg-white lysozyme (CEWL) is readily crystallized under a variety of conditions, and studies underway at MSFC are designed to elucidate the mechanisms by which the crystals nucleate and grow. We have investigated the effect of buffer choice on the solubility, nucleation and growth of CEWL. CEWL was purified by dialysis against a .05M phosphate buffer and chromatographic separation from contaminants in a sepharose column. Solubility studies were made as a function of buffer concentration for phosphate and formate buffers, and the nucleation and growth of crystals at 10 C was studied as a function of pH for oxalate, succinate, formate, butyrate, carbonate, phosphate and acetate buffer solutions. The solubility data support the conclusion that there is a solubility minimum as a function of buffer concentration for amphiphilic molecules, while no minimum is observed for a phosphate buffer. Nucleation is suppressed at pH greater than pKa for all buffers except phosphate. The aspect ratio of the (110) faces is shown to be a function of crystal size, rather than pH.

  18. Genetic control of the humoral immune response to avian egg white lysozymes in the chicken

    SciTech Connect

    Flanagan, M.P.

    1987-01-01

    Chickens from two closely related sublines, GHs-B6 and GHs-B13, differing serologically at the major histocompatibility complex, were significantly different in their humoral response to three avian egg white lysozymes. Specific antisera levels were measured by radioimmunoassay using /sup 125/I-labeled lysozymes. Antibodies elicited in response to these lysozymes are assumed to be directed against sites on these lysozymes where their amino acid sequence differs from that of the recipient G. domesticus egg white lysozyme (HEL). GHs-B6 birds produced a high level of antibody in response to immunization of turkey (TEL), pheasant (PhL) and guinea hen (GHL) lysozymes. GHs-B13 birds produced no detectable antibody to TEL, were intermediate in their response to PhL and equaled the antibody production of GHs-B6 birds in response to GHL. Antisera to each lysozyme were examined for crossreactivity with all other lysozymes by use of a competitive binding assay.

  19. Development of an affinity cryogel for one step purification of lysozyme from chicken egg white.

    PubMed

    Mól, Paula Chequer Gouveia; Veríssimo, Lizzy Ayra Alcântara; Eller, Monique Renon; Minim, Valéria Paula Rodrigues; Minim, Luis Antonio

    2017-02-15

    In this study, a supermacroporous polyacrylamide cryogel was produced by cryo-polymerization and activated with Tris(hydroxymethyl)aminomethane (Tris-cryogel) to be applied as an affinity ligand for a one step purification of lysozyme (LYZ), directly from chicken egg white (EW). The Tris-cryogel presented interconnected pores with size varying in the range of 20-80μm and swelling capacity of 19.6±0.9g/g. The axial dispersion of the Tris-cryogel was analyzed at different flow velocities and mobile phase viscosities. It was verified that higher viscosity resulted in a higher degree of dispersion, causing the HETP values to increase from 0.04cm to 0.8cm. Adsorption isotherms were measured at 15°C and 35°C at pH 7.5. A Langmuir model was fitted to the equilibrium data, with a maximum adsorptive capacity of 285mg/g at 15°C and 363mg/g at 35°C. Thermodynamic analysis based on the Van't Hoff relationship showed that the process was spontaneous and enthalpically driven. Lysozyme was purified directly from egg white in a one step purification process at different pH values (7.5, 8.5 and 9.5). Independent of the pH, the specificity of Tris-cryogel for lysozyme adsorption was confirmed. At pH 7.5, yield and purification fold were higher (30% and 45). In addition, the effect of the dilution rate on egg white and flow velocity were also analyzed and it was shown that flow velocity did not affected purification and column efficiency, and that diluting the egg white increased yield to 70% with a purification fold of 23. Results show Tris-cryogel is a promising matrix for use in high throughput purification of lysozyme from egg white.

  20. Human Interleukin-2 and Hen Egg White Lysozyme: Screening for Bacteriolytic Activity against Various Bacterial Cells

    PubMed Central

    Levashov, P. A.; Ovchinnikova, E. D.; Morozova, O. A.; Matolygina, D. A.; Osipova, H. E.; Cherdyntseva, T. A.; Savin, S. S.; Zakharova, G. S.; Alekseeva, A. A.; Belogurova, N. G.; Smirnov, S. A.; Tishkov, V. I.; Levashov, A. V.

    2016-01-01

    The bacteriolytic activity of interleukin-2 and hen egg white lysozyme against 34 different species of microorganisms has been studied. It was found that 6 species of microorganisms are lysed in the presence of interleukin-2. All interleukin-2-sensitive microorganisms belong either to the Enterobacteriaceae, Bacillaceae, or the Lactobacillaceae family. It was also found that 12 species of microorganisms are lysed in the presence of lysozyme, and 16 species of microorganisms are lysed in the presence of sodium dodecyl sulfate (SDS). The bacteriolytic activity of interleukin-2 and lysozyme was studied at various pH values. PMID:27099789

  1. Human Interleukin-2 and Hen Egg White Lysozyme: Screening for Bacteriolytic Activity against Various Bacterial Cells.

    PubMed

    Levashov, P A; Ovchinnikova, E D; Morozova, O A; Matolygina, D A; Osipova, H E; Cherdyntseva, T A; Savin, S S; Zakharova, G S; Alekseeva, A A; Belogurova, N G; Smirnov, S A; Tishkov, V I; Levashov, A V

    2016-01-01

    The bacteriolytic activity of interleukin-2 and hen egg white lysozyme against 34 different species of microorganisms has been studied. It was found that 6 species of microorganisms are lysed in the presence of interleukin-2. All interleukin-2-sensitive microorganisms belong either to the Enterobacteriaceae, Bacillaceae, or the Lactobacillaceae family. It was also found that 12 species of microorganisms are lysed in the presence of lysozyme, and 16 species of microorganisms are lysed in the presence of sodium dodecyl sulfate (SDS). The bacteriolytic activity of interleukin-2 and lysozyme was studied at various pH values.

  2. Heterogeneity Determination and Purification of Commercial Hen Egg-White Lysozyme

    NASA Technical Reports Server (NTRS)

    Thomas, B. R.; Vekilov, P. G.; Rosenberger, F.

    1998-01-01

    Hen egg-white lysozyme (HEWL) is widely used as a model protein, although its purity has not been adequately characterized by modern biochemical techniques. We have identified and quantified the protein heterogeneities in three commercial HEWL preparations by sodium dodecyl sulfate polyacrylamide gel electrophoresis with enhanced silver staining, reversed-phase fast protein liquid chromatography (FPLC) and immunoblotting with comparison to authentic protein standards. Depending on the source, the contaminating proteins totalled 1-6%(w/w) and consisted of ovotransferrin, ovalbumin, HEWL dimers, and polypeptides with approximate M(sub r) of 39 and 18 kDa. Furthermore, we have obtained gram quantities of electrophoretically homogeneous [> 99.9%(w/w)] HEWL by single-step semi-preparative scale cation-exchange FPLC with a yield of about 50%. Parallel studies of crystal growth kinetics, salt repartitioning and crystal perfection with this highly purified material showed fourfold increases in the growth-step velocities and significant enhancement in the structural homogeneity of HEWL crystals.

  3. Heterogeneity Determination and Purification of Commercial Hen Egg-White Lysozyme

    NASA Technical Reports Server (NTRS)

    Thomas, B. R.; Vekilov, P. G.; Rosenberger, F.

    1998-01-01

    Hen egg-white lysozyme (HEWL) is widely used as a model protein, although its purity has not been adequately characterized by modern biochemical techniques. We have identified and quantified the protein heterogeneities in three commercial HEWL preparations by sodium dodecyl sulfate polyacrylamide gel electrophoresis with enhanced silver staining, reversed-phase fast protein liquid chromatography (FPLC) and immunoblotting with comparison to authentic protein standards. Depending on the source, the contaminating proteins totalled 1-6%(w/w) and consisted of ovotransferrin, ovalbumin, HEWL dimers, and polypeptides with approximate M(sub r) of 39 and 18 kDa. Furthermore, we have obtained gram quantities of electrophoretically homogeneous [> 99.9%(w/w)] HEWL by single-step semi-preparative scale cation-exchange FPLC with a yield of about 50%. Parallel studies of crystal growth kinetics, salt repartitioning and crystal perfection with this highly purified material showed fourfold increases in the growth-step velocities and significant enhancement in the structural homogeneity of HEWL crystals.

  4. Re-refinement of 4xan: hen egg-white lysozyme with carboplatin in sodium bromide solution.

    PubMed

    Tanley, Simon W M; Schreurs, Antoine M M; Kroon-Batenburg, Loes M J; Helliwell, John R

    2016-03-01

    A re-refinement of 4xan, hen egg-white lysozyme (HEWL) with carboplatin crystallized in NaBr solution, has been made and is published here as an addendum to Tanley et al. [(2014), Acta Cryst. F70, 1135-1142]. This follows a previous re-refinement and PDB deposition (4yem) by Shabalin et al. [(2015), Acta Cryst. D71, 1965-1979]. The critical evaluation of the original PDB deposition (4xan), and the subsequent critical examination of the re-refined structure (4yem), has led to an improved model (PDB code 5hmj).

  5. Evidence of two oxidation states of copper during aggregation of hen egg white lysozyme (HEWL).

    PubMed

    Ghosh, Sudeshna; Pandey, Nitin K; Bhattacharya, Susmita; Roy, Anushree; Nagy, Nóra Veronika; Dasgupta, Swagata

    2015-05-01

    In vitro fibrillation of hen egg white lysozyme (HEWL) causes complete reduction of Cu(II) to Cu(I) at pH 7. Here in the present article, we have shown the presence of both Cu(II) and Cu(I) at pH 11 during fibrillation of HEWL using electron paramagnetic resonance and Raman spectroscopy. Our results suggest the existence of a partially reducing environment during fibrillation of hen egg white lysozyme at pH 11. The fibrillation process is governed by the pH of the solution and maximum fibrillation is found to occur at pH 11. Fibrils formed in the absence of Cu(II) were also found to cause significant hemolysis of RBC.

  6. The Effects of pH on the Growth and Aspect Ratio of Chicken Egg White Lysozyme Crystals Prepared in Different Buffers

    NASA Technical Reports Server (NTRS)

    Gibson, U. J.; Horrell, E. E.; Kou, Y.; Pusey, Marc

    2000-01-01

    We have measured the nucleation and aspect ratio of CEWL crystals grown by vapor diffusion in acetate, butyrate, carbonate, succinate, and phosphate buffers in a range of pH spanning the pK(sub a) of these buffers. The nucleation numbers drop off significantly in the vicinity of pK(sub a) for each of the buffers except the phosphate system, in which we used only the pH range around the second titration point(pK2). There is a concomitant increase in the sizes of the crystals. Some typical nucleation number results are shown. These data support and extend other observations. In addition, we have examined changes in aspect ratio which accompany the suppression of nucleation within each buffer system. The length of the face in the [001] direction was measured, and compared to the width of the (110) face in the [110] type directions. We find that while the aspect ratio of the crystals is affected by pH, it is dominated by a correlation with the size of the crystals. Small crystals are longer in the [0011 direction than crystals that are larger (higher pH within a buffer system). This relationship is found to hold independent of the choice of buffer. These results are consistent with those of Judge et al, who used a batch process which resulted in uniform sizing of crystals at each pH. In these experiments, we specifically avoid agitating the protein/salt buffer mixture when combining the two. This permits the formation of a range of sizes at a given pH. The results for a .05 M acetate 5% NaCl buffer are also shown. We will discuss these results in light of a growth model.

  7. The Effects of pH on the Growth and Aspect Ratio of Chicken Egg White Lysozyme Crystals Prepared in Different Buffers

    NASA Technical Reports Server (NTRS)

    Gibson, U. J.; Horrell, E. E.; Kou, Y.; Pusey, Marc

    2000-01-01

    We have measured the nucleation and aspect ratio of CEWL crystals grown by vapor diffusion in acetate, butyrate, carbonate, succinate, and phosphate buffers in a range of pH spanning the pK(sub a) of these buffers. The nucleation numbers drop off significantly in the vicinity of pK(sub a) for each of the buffers except the phosphate system, in which we used only the pH range around the second titration point(pK2). There is a concomitant increase in the sizes of the crystals. Some typical nucleation number results are shown. These data support and extend other observations. In addition, we have examined changes in aspect ratio which accompany the suppression of nucleation within each buffer system. The length of the face in the [001] direction was measured, and compared to the width of the (110) face in the [110] type directions. We find that while the aspect ratio of the crystals is affected by pH, it is dominated by a correlation with the size of the crystals. Small crystals are longer in the [0011 direction than crystals that are larger (higher pH within a buffer system). This relationship is found to hold independent of the choice of buffer. These results are consistent with those of Judge et al, who used a batch process which resulted in uniform sizing of crystals at each pH. In these experiments, we specifically avoid agitating the protein/salt buffer mixture when combining the two. This permits the formation of a range of sizes at a given pH. The results for a .05 M acetate 5% NaCl buffer are also shown. We will discuss these results in light of a growth model.

  8. Sequential separation of lysozyme, ovomucin, ovotransferrin, and ovalbumin from egg white.

    PubMed

    Abeyrathne, E D N S; Lee, H Y; Ahn, D U

    2014-04-01

    Ovalbumin, ovotransferrin, ovomucin, and lysozyme are a few of the egg white proteins that can be used as functional components. The objective of this study was to develop a simple, sequential separation method for multiple proteins from egg white. Separated proteins are targeted for human use, and thus any toxic compounds were excluded. The methods for individual components and the sequential separation were practiced in laboratory scale first, and then tested for scale-up. Lysozyme was separated first using FPC3500 cation exchange resin and then ovomucin using isoelectric precipitation. Ovalbumin and ovotransferrin were separated from the lysozyme- and ovomucin-free egg white by precipitating ovotransferrin first using 5.0% (wt/vol) (NH4)2SO4 and 2.5% (wt/vol) citric acid combination. After centrifugation, the supernatant (S1) was used for ovalbumin separation and the precipitant was dissolved in water, and reprecipitated using 2.0% ammonium sulfate (wt/vol) and 1.5% citric acid (wt/vol) combination. The precipitant was used as ovotransferrin fraction, and the supernatant (S2) was pooled with the first supernatant (S1), desalted using ultrafiltration, and then heat-treated to remove impurities. The yield of ovomucin and ovalbumen was >98% and that of ovotransferrin and lysozyme was >82% for both laboratory and scale-up preparations. The SDS-PAGE and western blotting of the separated proteins, except for ovomucin, showed >90% purity. The ELISA results indicated that the activities of separated ovalbumin, ovotransferrin, and lysozyme were >96%. The protocol separated 4 major proteins in sequence, and the method was simple and easily scaled up.

  9. Expression of Recombinant Human Lysozyme in Egg Whites of Transgenic Hens

    PubMed Central

    Cao, Dainan; Wu, Hanyu; Li, Qingyuan; Sun, Yingmin; Liu, Tongxin; Fei, Jing; Zhao, Yaofeng; Wu, Sen; Hu, Xiaoxiang; Li, Ning

    2015-01-01

    Chicken egg lysozyme (cLY) is an enzyme with 129 amino acid (AA) residue enzyme. This enzyme is present not only in chicken egg white but also in mucosal secretions such as saliva and tears. The antibacterial properties of egg white can be attributed to the presence of lysozyme, which is used as an anti-cancer drug and for the treatment of human immunodeficiency virus (HIV) infection. In this study, we constructed a lentiviral vector containing a synthetic cLY signal peptide and a 447 bp synthetic human lysozyme (hLY) cDNA sequence driven by an oviduct-specific ovalbumin promoter, and microinjected into the subgerminal cavity of stage X chick embryos to generate transgenic chicken. The transgene inserted in the chicken chromosomes directs the synthesis and secretion of hLY which has three times higher specific activity than cLY. Three G1 transgenic chickens were identified, the only female of which expressed recombinant human lysozyme (rhLY) at 57.66 ± 4.10 μg/ml in the egg white and the G2 transgenic hens of the G1 transgenic cock A011 expressed rhLY at 48.72 ± 1.54 μg/ml. This experiment demonstrated that transgenic hens with stable oviduct-specific expression of recombinant human lysozyme proteins can be created by microinjection of lentiviral vectors. The results of this research could be contribute to the technological development using transgenic hens as a cost-effective alternative to other mammalian systems, such as cow, sheep and goats, for the production of therapeutic proteins and other applications. PMID:25706123

  10. Expression of recombinant human lysozyme in egg whites of transgenic hens.

    PubMed

    Cao, Dainan; Wu, Hanyu; Li, Qingyuan; Sun, Yingmin; Liu, Tongxin; Fei, Jing; Zhao, Yaofeng; Wu, Sen; Hu, Xiaoxiang; Li, Ning

    2015-01-01

    Chicken egg lysozyme (cLY) is an enzyme with 129 amino acid (AA) residue enzyme. This enzyme is present not only in chicken egg white but also in mucosal secretions such as saliva and tears. The antibacterial properties of egg white can be attributed to the presence of lysozyme, which is used as an anti-cancer drug and for the treatment of human immunodeficiency virus (HIV) infection. In this study, we constructed a lentiviral vector containing a synthetic cLY signal peptide and a 447 bp synthetic human lysozyme (hLY) cDNA sequence driven by an oviduct-specific ovalbumin promoter, and microinjected into the subgerminal cavity of stage X chick embryos to generate transgenic chicken. The transgene inserted in the chicken chromosomes directs the synthesis and secretion of hLY which has three times higher specific activity than cLY. Three G1 transgenic chickens were identified, the only female of which expressed recombinant human lysozyme (rhLY) at 57.66 ± 4.10 μg/ml in the egg white and the G2 transgenic hens of the G1 transgenic cock A011 expressed rhLY at 48.72 ± 1.54 μg/ml. This experiment demonstrated that transgenic hens with stable oviduct-specific expression of recombinant human lysozyme proteins can be created by microinjection of lentiviral vectors. The results of this research could be contribute to the technological development using transgenic hens as a cost-effective alternative to other mammalian systems, such as cow, sheep and goats, for the production of therapeutic proteins and other applications.

  11. The amino acid sequence of Lady Amherst's pheasant (Chrysolophus amherstiae) and golden pheasant (Chrysolophus pictus) egg-white lysozymes.

    PubMed

    Araki, T; Kuramoto, M; Torikata, T

    1990-09-01

    The amino acids of Lady Amherst's pheasant and golden pheasant egg-white lysozymes have been sequenced. The carboxymethylated lysozymes were digested with trypsin followed by sequencing of the tryptic peptides. Lady Amherst's pheasant lysozyme proved to consist of 129 amino acid residues, and a relative molecular mass of 14,423 Da was calculated. This lysozyme had 6 amino acids substitutions when compared with hen egg-white lysozyme: Phe3 to Tyr, His15 to Leu, Gln41 to His, Asn77 to His, Gln 121 to Asn, and a newly found substitution of Ile124 to Thr. The amino acid sequence of golden pheasant lysozyme was identical to that of Lady Amherst's phesant lysozyme. The phylogenetic tree constructured by the comparison of amino acid sequences of phasianoid birds lysozymes revealed a minimum genetic distance between these pheasants and the turkey-peafowl group.

  12. Antibacterial activity of hen egg white lysozyme against Listeria monocytogenes Scott A in foods.

    PubMed Central

    Hughey, V L; Wilger, P A; Johnson, E A

    1989-01-01

    Egg white lysozyme killed or prevented growth of Listeria monocytogenes Scott A in several foods. Lysozyme was more active in vegetables than in animal-derived foods that we tested. For maximum activity in certain foods, EDTA was required in addition to lysozyme. Lysozyme with EDTA effectively killed inoculated populations of 10(4) L. monocytogenes per g in fresh corn, fresh green beans, shredded cabbage, shredded lettuce, and carrots during storage at 5 degrees C. Control incubations without lysozyme supported growth of L. monocytogenes to 10(6) to 10(7)/g. Lysozyme had less activity in animal-derived foods, including fresh pork sausage (bratwurst) and Camembert cheese. In bratwurst, lysozyme with EDTA prevented L. monocytogenes from growing for 2 to 3 weeks but did not kill significant numbers of cells and did not prevent eventual growth. The control sausages not containing lysozyme supported rapid and heavy growth, which indicated that lysozyme was bacteriostatic for 2 to 3 weeks in fresh pork sausage. We also prepared Camembert cheese containing 10(4) L. monocytogenes cells per g and investigated the changes during ripening in cheeses supplemented with lysozyme and EDTA. Cheeses with lysozyme by itself or together with EDTA reduced the L. monocytogenes population by approximately 10-fold over the first 3 to 4 weeks of ripening. In the same period, the control cheese wheels without added lysozyme with and without chelator slowly started to grown and eventually reached 10(6) to 10(7) CFU/g after 55 days of ripening.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:2494938

  13. The active site of hen egg-white lysozyme: flexibility and chemical bonding

    SciTech Connect

    Held, Jeanette Smaalen, Sander van

    2014-04-01

    Chemical bonding at the active site of lysozyme is analyzed on the basis of a multipole model employing transferable multipole parameters from a database. Large B factors at low temperatures reflect frozen-in disorder, but therefore prevent a meaningful free refinement of multipole parameters. Chemical bonding at the active site of hen egg-white lysozyme (HEWL) is analyzed on the basis of Bader’s quantum theory of atoms in molecules [QTAIM; Bader (1994 ▶), Atoms in Molecules: A Quantum Theory. Oxford University Press] applied to electron-density maps derived from a multipole model. The observation is made that the atomic displacement parameters (ADPs) of HEWL at a temperature of 100 K are larger than ADPs in crystals of small biological molecules at 298 K. This feature shows that the ADPs in the cold crystals of HEWL reflect frozen-in disorder rather than thermal vibrations of the atoms. Directly generalizing the results of multipole studies on small-molecule crystals, the important consequence for electron-density analysis of protein crystals is that multipole parameters cannot be independently varied in a meaningful way in structure refinements. Instead, a multipole model for HEWL has been developed by refinement of atomic coordinates and ADPs against the X-ray diffraction data of Wang and coworkers [Wang et al. (2007), Acta Cryst. D63, 1254–1268], while multipole parameters were fixed to the values for transferable multipole parameters from the ELMAM2 database [Domagala et al. (2012), Acta Cryst. A68, 337–351] . Static and dynamic electron densities based on this multipole model are presented. Analysis of their topological properties according to the QTAIM shows that the covalent bonds possess similar properties to the covalent bonds of small molecules. Hydrogen bonds of intermediate strength are identified for the Glu35 and Asp52 residues, which are considered to be essential parts of the active site of HEWL. Furthermore, a series of weak C

  14. Scientist prepare Lysozyme Protein Crystal

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Dan Carter and Charles Sisk center a Lysozyme Protein crystal grown aboard the USML-2 shuttle mission. Protein isolated from hen egg-white and functions as a bacteriostatic enzyme by degrading bacterial cell walls. First enzyme ever characterized by protein crystallography. It is used as an excellent model system for better understanding parameters involved in microgravity crystal growth experiments. The goal is to compare kinetic data from microgravity experiments with data from laboratory experiments to study the equilibrium.

  15. Scientist prepare Lysozyme Protein Crystal

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Dan Carter and Charles Sisk center a Lysozyme Protein crystal grown aboard the USML-2 shuttle mission. Protein isolated from hen egg-white and functions as a bacteriostatic enzyme by degrading bacterial cell walls. First enzyme ever characterized by protein crystallography. It is used as an excellent model system for better understanding parameters involved in microgravity crystal growth experiments. The goal is to compare kinetic data from microgravity experiments with data from laboratory experiments to study the equilibrium.

  16. Enhanced C-type lysozyme content of wood duck (Aix sponsa) egg white: an adaptation to cavity nesting?

    PubMed

    Wellman-Labadie, Olivier; Picman, Jaroslav; Hincke, Maxwell T

    2008-01-01

    Abstract Wild waterfowl species often nest in conditions where high humidity and microbial contamination may influence egg survival and quality. Albumen is traditionally regarded as the major impediment to microbial contamination of eggs, and its composition and activity may be selected by environmental pressures. Egg white protein from the eggs of wood duck (Aix sponsa), hooded merganser (Lophodytes cucullatus), Canada goose (Branta canadensis), and mute swan (Cygnus olor) was evaluated in order to compare the antimicrobial defenses of these species. Ovotransferrin and ovalbumin were identified in all species, but c-type lysozyme was present only in wood duck and hooded merganser egg white samples. Wood duck egg white showed the greatest bacterial activity as well as the highest lysozyme content. Egg white from wood duck and hooded merganser possessed greater lysozyme activity under acidic conditions, suggesting a c-type lysozyme with a pH optimum lower than that of Gallus gallus c-type lysozyme or the presence of g-type lysozyme. Ovotransferrin bacteriostatic activity appeared to be similar across the species investigated. The results suggest that lysozyme and ovotransferrin play a role in the antimicrobial defense of the avian egg. High levels of the broad-acting c-type lysozyme appear to have evolved in the albumen of the wood duck in order to ensure proper development of the embryo in the humid conditions of the cavity nest.

  17. NMR-based localization of ions involved in salting out of hen egg white lysozyme.

    PubMed

    Poznański, Jarosław

    2006-01-01

    NaCl-induced aggregation of hen egg white lysozyme (HEWL) was monitored by NMR spectroscopy. Small, but significant, changes induced by salt addition in TOCSY spectra were attributed to the effect of local reorganization of protein backbone upon ion binding. Salt-induced variations in HN and H alpha chemical shifts were mapped on the HEWL 3D structure which allowed the construction of a scheme of the spatial localization of potential ion binding sites. It was found that in a 0.5 M NaCl solution six chloride anions and at least one sodium cation are bound to preferred sites on the HEWL surface.

  18. (-)-Epicatechin gallate prevents alkali-salt mediated fibrillogenesis of hen egg white lysozyme.

    PubMed

    Ghosh, Sudeshna; Pandey, Nitin K; Dasgupta, Swagata

    2013-03-01

    Green tea polyphenols (GTPs) are found to be potent inhibitors of amyloid fibril formation. We report the effective inhibitory property of (-)-epicatechin gallate (ECG) during the alkali-salt induced fibrillogenesis of hen egg white lysozyme (HEWL) at 37 °C. Spectroscopic techniques such as fluorescence, circular dichroism and microscopic images show that (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECG), and (-)-epigallocatechin gallate (EGCG) show moderate inhibition of fibrillation with ECG as the most potent polyphenol. Aromatic interactions, hydrophobic interactions, the radical scavenging activity and autoxidation of polyphenols are likely to be the major reasons for ECG being the most effective inhibitor.

  19. Robust Identification of Binding Hot Spots Using Continuum Electrostatics: Application to Hen Egg-White Lysozyme

    PubMed Central

    2011-01-01

    Binding hot spots, protein regions with high binding affinity, can be identified by using X-ray crystallography or NMR spectroscopy to screen libraries of small organic molecules that tend to cluster at such hot spots. FTMap, a direct computational analogue of the experimental screening approaches, uses 16 different probe molecules for global sampling of the surface of a target protein on a dense grid and evaluates the energy of interaction using an empirical energy function that includes a continuum electrostatic term. Energy evaluation is based on the fast Fourier transform correlation approach, which allows for the sampling of billions of probe positions. The grid sampling is followed by off-grid minimization that uses a more detailed energy expression with a continuum electrostatics term. FTMap identifies the hot spots as consensus clusters formed by overlapping clusters of several probes. The hot spots are ranked on the basis of the number of probe clusters, which predicts their binding propensity. We applied FTMap to nine structures of hen egg-white lysozyme (HEWL), whose hot spots have been extensively studied by both experimental and computational methods. FTMap found the primary hot spot in site C of all nine structures, in spite of conformational differences. In addition, secondary hot spots in sites B and D that are known to be important for the binding of polysaccharide substrates were found. The predicted probe–protein interactions agree well with those seen in the complexes of HEWL with various ligands and also agree with an NMR-based study of HEWL in aqueous solutions of eight organic solvents. We argue that FTMap provides more complete information on the HEWL binding site than previous computational methods and yields fewer false-positive binding locations than the X-ray structures of HEWL from crystals soaked in organic solvents. PMID:22092261

  20. Preparation and Characterization of Fluorescent Derivatives of Chicken Egg White Lysozyme

    NASA Technical Reports Server (NTRS)

    Sumida, John; Forsythe, Elizabeth; Pusey, Marc

    2000-01-01

    Fluorescence is one of the most versatile and powerful tools for the study of macromolecules. While most proteins are intrinsically fluorescent, working at crystallization concentrations require the use of covalently prepared derivatives added as tracers. This approach requires derivatives that do not markedly affect the crystal packing. We have prepared a number of fluorescent derivatives of chicken egg white lysozyme with probes bound to one of two different sites on the protein molecule. Lucifer yellow, cascade blue, and 5-(2-aminoethyl)aminonapthalene-l-sulfonic acid (EDANS) have been attached to the side chain carboxyl of asp101 using a carbodiimide coupling procedure. asp101 lies within the active site cleft, and it is believed that the probes are at least partially "buried" within that cleft. Lucifer yellow and MANS probes with iodoacetamide reactive groups have been bound to hisl5, located on the "back side" of the molecule relative to the active site. The fluorescently labeled protein is readily purified from the starting material by cation exchange chromatography. All the derivatives fluoresce in both the solution and the crystalline states. Fluorescence characterization has focused on determining the bound probe quantum yields, lifetimes, absorption and emission spectra, and quenching by added solutes in comparison to the free probe. No appreciable changes are found in the lifetimes of any of the probes except for cascade blue, where Tau(sub free) = 3.52 ns vrs Tau(sub bound) = 2.8 ns. Spectral shifts are found in most cases. Particularly strong quenching upon binding is found in the case of the cascade blue derivative, likely due to probe interactions with the active site cleft. While none of the asp101 bound probes are well quenched by commonly employed solutes, such as potassium and sodium iodide, acrylamide, primuline, the chloride salts of manganese, cesium, and cobalt, trifluoroacetamide, trichloroethanol, and thallium iodide, in those cases where

  1. Preparation and Characterization of Fluorescent Derivatives of Chicken Egg White Lysozyme

    NASA Technical Reports Server (NTRS)

    Sumida, John; Forsythe, Elizabeth; Pusey, Marc

    2000-01-01

    Fluorescence is one of the most versatile and powerful tools for the study of macromolecules. While most proteins are intrinsically fluorescent, working at crystallization concentrations require the use of covalently prepared derivatives added as tracers. This approach requires derivatives that do not markedly affect the crystal packing. We have prepared a number of fluorescent derivatives of chicken egg white lysozyme with probes bound to one of two different sites on the protein molecule. Lucifer yellow, cascade blue, and 5-(2-aminoethyl)aminonapthalene-l-sulfonic acid (EDANS) have been attached to the side chain carboxyl of asp101 using a carbodiimide coupling procedure. asp101 lies within the active site cleft, and it is believed that the probes are at least partially "buried" within that cleft. Lucifer yellow and MANS probes with iodoacetamide reactive groups have been bound to hisl5, located on the "back side" of the molecule relative to the active site. The fluorescently labeled protein is readily purified from the starting material by cation exchange chromatography. All the derivatives fluoresce in both the solution and the crystalline states. Fluorescence characterization has focused on determining the bound probe quantum yields, lifetimes, absorption and emission spectra, and quenching by added solutes in comparison to the free probe. No appreciable changes are found in the lifetimes of any of the probes except for cascade blue, where Tau(sub free) = 3.52 ns vrs Tau(sub bound) = 2.8 ns. Spectral shifts are found in most cases. Particularly strong quenching upon binding is found in the case of the cascade blue derivative, likely due to probe interactions with the active site cleft. While none of the asp101 bound probes are well quenched by commonly employed solutes, such as potassium and sodium iodide, acrylamide, primuline, the chloride salts of manganese, cesium, and cobalt, trifluoroacetamide, trichloroethanol, and thallium iodide, in those cases where

  2. Peptidoglycan Loss During Hen Egg White Lysozyme-Inorganic Salt Lysis of Streptococcus mutans

    PubMed Central

    Goodman, Hannah; Pollock, Jerry J.; Iacono, Vincent J.; Wong, William; Shockman, Gerald D.

    1981-01-01

    Streptococcus mutans BHT was grown in Todd-Hewitt dialysate medium containing N-acetyl[14C]glucosamine for 6 to 11 generations. After treatment with cold and hot trichloroacetic acid and trypsin, 52 to 65% of the radioactivity remained present in insoluble peptidoglycan-containing residues. Hen egg white lysozyme or mutanolysin treatment of the peptidoglycan residues resulted in the release of 80 and 97%, respectively, of the 14C label to the supernatant fraction. Hydrochloric acid hydrolysates of such supernatants showed that essentially all of the radioactivity present in insoluble peptidoglycan fractions was present in compounds that comigrated on paper chromatography with glucosamine (∼60%) or muramic acid (∼30%). Treatment of whole cells with low and high concentrations of lysozyme alone resulted in losses of 45 and 70% of the insoluble peptidoglycan, respectively, yet release of deoxyribonucleic acid from cells was not detected. Sequential addition of appropriate concentrations of selected inorganic salts after lysozyme treatment did result in the liberation of deoxyribonucleic acid. Deoxyribonucleic acid release was correlated with a further release of peptidoglycan from the insoluble fraction. However, the total amount of peptidoglycan lost effected by the low concentration of lysozyme and NaSCN (lysis) was significantly less than the amount of peptidoglycan hydrolyzed by high concentrations of lysozyme alone (no lysis), suggesting that the overall amount of peptidoglycan lost did not correlate well with cellular lysis. The total amount of insoluble peptidoglycan lost at the highest salt concentrations tested was found to be greater than could be accounted for by lysozyme-sensitive linkages of the peptidoglycan, possibly implicating autolysins. The results obtained suggested that hydrolysis of peptidoglycan bonds in topologically localized, but strategically important, sites was a more significant factor in the sequence that results in loss of cellular

  3. Lysozyme Crystal

    NASA Technical Reports Server (NTRS)

    2004-01-01

    To the crystallographer, this may not be a diamond but it is just as priceless. A Lysozyme crystal grown in orbit looks great under a microscope, but the real test is X-ray crystallography. The colors are caused by polarizing filters. Proteins can form crystals generated by rows and columns of molecules that form up like soldiers on a parade ground. Shining X-rays through a crystal will produce a pattern of dots that can be decoded to reveal the arrangement of the atoms in the molecules making up the crystal. Like the troops in formation, uniformity and order are everything in X-ray crystallography. X-rays have much shorter wavelengths than visible light, so the best looking crystals under the microscope won't necessarily pass muster under the X-rays. In order to have crystals to use for X-ray diffraction studies, crystals need to be fairly large and well ordered. Scientists also need lots of crystals since exposure to air, the process of X-raying them, and other factors destroy them. Growing protein crystals in space has yielded striking results. Lysozyme's structure is well known and it has become a standard in many crystallization studies on Earth and in space.

  4. Hydrophobic interaction adsorption of hen egg white proteins albumin, conalbumin, and lysozyme.

    PubMed

    Rojas, Edwin E Garcia; dos Reis Coimbra, Jane S; Minim, Luis A; Saraiva, Sérgio H; da Silva, César A Sodré

    2006-08-18

    Hydrophobic adsorption equilibrium data of the hen egg white proteins albumin, conalbumin, and lysozyme were obtained in batch systems, at 25 degrees C, using the Streamline Phenyl resin as adsorbent. The influence of three types of salt, NaCl, Na(2)SO(4), or (NH(4))(2)SO(4), and their concentration on the equilibrium data were evaluated. The salt Na(2)SO(4) showed the higher interaction with the studied proteins, thus favoring the adsorption of proteins by the adsorbent, even though each type of salt interacted in a distinct manner with each protein. The isotherm models of Langmuir, Langmuir exponential, and Chen and Sun were well fitted to the equilibrium data, with no significant difference being observed at the 5% level of significance. The mass transfer model applied simulated correctly adsorption kinetics of the proteins under the studied conditions.

  5. Effect of temperature on the interaction of cisplatin with the model protein hen egg white lysozyme.

    PubMed

    Ferraro, Giarita; Pica, Andrea; Russo Krauss, Irene; Pane, Francesca; Amoresano, Angela; Merlino, Antonello

    2016-07-01

    The products of the reaction between cisplatin (CDDP) and the model protein hen egg white lysozyme (HEWL) at 20, 37 and 55 °C in pure water were studied by UV-Vis absorption spectroscopy, intrinsic fluorescence and circular dichroism, dynamic and electrophoretic light scattering and inductively coupled plasma mass spectrometry. X-ray structures were also solved for the adducts formed at 20 and 55 °C. Data demonstrate that high temperature facilitates the formation of CDDP-HEWL adducts, where Pt atoms bind ND1 atom of His15 or NE2 atom of His15 and NH1 atom of Arg14. Our study suggests that high human body temperature (fever) could increase the rate of drug binding to proteins thus enhancing possible toxic side effects related to CDDP administration.

  6. Egg-white-mediated crystallization of calcium carbonate

    NASA Astrophysics Data System (ADS)

    Zheng, Liang; Hu, Yanli; Ma, Yongjun; Zhou, Yong; Nie, Fude; Liu, Xun; Pei, Chonghua

    2012-12-01

    In this paper, shape-controlled crystallization and self-assembly of CaCO3 hierarchical architectures has been successfully synthesized via the gas diffusion method in egg white solution. Stepwise growth and assembly of CaCO3 nanoparticles has been observed from transition of an amorphous CaCO3 to the crystallization and stabilization of platelet-like nanoparticles and eventually, the wool sphere-like CaCO3 hierarchical architectures assembling of nanoparticles. The proteins binding on nanoparticle surfaces proved to regulate the growth of nanoparticles and subsequent assembly into hierarchical superstructures via electrostatic and dipole interactions. The samples were characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and nano mechanical Tester. The measured average elastic modulus and the hardness of calcium carbonate hybrid materials were 5.32 GPa and 0.1886 GPa by the nano-indenter test, respectively.

  7. Efficient purification of lysozyme from egg white by 2-mercapto-5-benzimidazolesulfonic acid modified Fe3O4/Au nanoparticles.

    PubMed

    Zhu, Xinjun; Zhang, Lianying; Fu, Aiyun; Yuan, Hao

    2016-02-01

    2-Mercapto-5-benzimidazolesulfonic acid (MBISA) modified Fe3O4/Au nanoparticles were synthesized in aqueous solution and characterized by photo correlation spectroscopy (PCS) and vibrating sample magnetometer (VSM). The so-obtained Fe3O4/Au-MBISA nanoparticles were capable of specific adsorbing lysozyme. The maximum amount of lysozyme adsorbed on 1.0mg Fe3O4/Au-MBISA nanoparticles was 346μg. The lysozyme desorption behavior was studied and the lysozyme recovery from Fe3O4/Au-MBISA nanoparticles approached 100% under optimal conditions, and the reusability studies showed that the nanoparticles could maintain about 91% of the initial lysozyme adsorption capacity after 7 repeated adsorption-elution cycles. The Fe3O4/Au-MBISA nanoparticles were used in the purification of lysozyme from chicken egg white, which was verified by a single SDS-PAGE band. Therefore, the obtained Fe3O4/Au-MBISA nanoparticles exhibited excellent performance in the direct purification of lysozyme from egg white.

  8. Hen Egg-White Lysozyme Crystallisation: Protein Stacking and Structure Stability Enhanced by a Tellurium(VI)-Centred Polyoxotungstate

    PubMed Central

    Bijelic, Aleksandar; Molitor, Christian; Mauracher, Stephan G; Al-Oweini, Rami; Kortz, Ulrich; Rompel, Annette

    2015-01-01

    As synchrotron radiation becomes more intense, detectors become faster and structure-solving software becomes more elaborate, obtaining single crystals suitable for data collection is now the bottleneck in macromolecular crystallography. Hence, there is a need for novel and advanced crystallisation agents with the ability to crystallise proteins that are otherwise challenging. Here, an Anderson–Evans-type polyoxometalate (POM), specifically Na6[TeW6O24]⋅22 H2O (TEW), is employed as a crystallisation additive. Its effects on protein crystallisation are demonstrated with hen egg-white lysozyme (HEWL), which co-crystallises with TEW in the vicinity (or within) the liquid–liquid phase separation (LLPS) region. The X-ray structure (PDB ID: 4PHI) determination revealed that TEW molecules are part of the crystal lattice, thus demonstrating specific binding to HEWL with electrostatic interactions and hydrogen bonds. The negatively charged TEW polyoxotungstate binds to sites with a positive electrostatic potential located between two (or more) symmetry-related protein chains. Thus, TEW facilitates the formation of protein–protein interfaces of otherwise repulsive surfaces, and thereby the realisation of a stable crystal lattice. In addition to retaining the isomorphicity of the protein structure, the anomalous scattering of the POMs was used for macromolecular phasing. The results suggest that hexatungstotellurate(VI) has great potential as a crystallisation additive to promote both protein crystallisation and structure elucidation. PMID:25521080

  9. Hen egg-white lysozyme crystallisation: protein stacking and structure stability enhanced by a Tellurium(VI)-centred polyoxotungstate.

    PubMed

    Bijelic, Aleksandar; Molitor, Christian; Mauracher, Stephan G; Al-Oweini, Rami; Kortz, Ulrich; Rompel, Annette

    2015-01-19

    As synchrotron radiation becomes more intense, detectors become faster and structure-solving software becomes more elaborate, obtaining single crystals suitable for data collection is now the bottleneck in macromolecular crystallography. Hence, there is a need for novel and advanced crystallisation agents with the ability to crystallise proteins that are otherwise challenging. Here, an Anderson-Evans-type polyoxometalate (POM), specifically Na6 [TeW6 O24 ]⋅22 H2 O (TEW), is employed as a crystallisation additive. Its effects on protein crystallisation are demonstrated with hen egg-white lysozyme (HEWL), which co-crystallises with TEW in the vicinity (or within) the liquid-liquid phase separation (LLPS) region. The X-ray structure (PDB ID: 4PHI) determination revealed that TEW molecules are part of the crystal lattice, thus demonstrating specific binding to HEWL with electrostatic interactions and hydrogen bonds. The negatively charged TEW polyoxotungstate binds to sites with a positive electrostatic potential located between two (or more) symmetry-related protein chains. Thus, TEW facilitates the formation of protein-protein interfaces of otherwise repulsive surfaces, and thereby the realisation of a stable crystal lattice. In addition to retaining the isomorphicity of the protein structure, the anomalous scattering of the POMs was used for macromolecular phasing. The results suggest that hexatungstotellurate(VI) has great potential as a crystallisation additive to promote both protein crystallisation and structure elucidation.

  10. The solubility of the tetragonal form of hen egg white lysozyme from pH 4.0 to 5.4

    NASA Technical Reports Server (NTRS)

    Cacioppo, Elizabeth; Pusey, Marc L.

    1991-01-01

    Hen egg white lysozyme solubilities in the presence of the tetragonal crystal form have been determined. Conditions investigated cover the pH range 4.0 to 5.4, varying from 2.0 to 7.0 percent NaCl concentrations and from 4 to 25 C. In all instances, the solubilities were found to increase with temperature and decrease with increasing salt concentration. The effects of pH were more complex, showing a decreasing solubility with increasing pH at low salt concentration and an increasing solubility with increasing pH at high salt concentration.

  11. The solubility of the tetragonal form of hen egg white lysozyme from pH 4.0 to 5.4

    NASA Technical Reports Server (NTRS)

    Cacioppo, Elizabeth; Pusey, Marc L.

    1991-01-01

    Hen egg white lysozyme solubilities in the presence of the tetragonal crystal form have been determined. Conditions investigated cover the pH range 4.0 to 5.4, varying from 2.0 to 7.0 percent NaCl concentrations and from 4 to 25 C. In all instances, the solubilities were found to increase with temperature and decrease with increasing salt concentration. The effects of pH were more complex, showing a decreasing solubility with increasing pH at low salt concentration and an increasing solubility with increasing pH at high salt concentration.

  12. Preparation of anionic polyelectrolyte modified magnetic nanoparticles for rapid and efficient separation of lysozyme from egg white.

    PubMed

    Chen, Jia; Lin, Yuexin; Jia, Li

    2015-04-03

    Poly(sodium 4-styrenesulfonate) modified magnetic nanoparticles (PSS-MNPs) were successfully synthesized and characterized by transmission electron microscopy, scanning electron microscopy, zeta potential, vibrating sample magnetometry, and Fourier-transform infrared spectrometry. The PSS-MNPs were found to enable effective separation of lysozyme from egg white. The impacts of solution pH, ionic strength, and contact time on the adsorption process were investigated. The adsorption kinetic data were well fitted using a pseudo-second-order kinetic model and the adsorption equilibrium can be reached in 3 min. The adsorption isotherm data could be well described by the Langmuir equation. The maximum adsorption capacity of PSS-MNPs for lysozyme was calculated to be 476.2 mg g(-1) according to the Langmuir adsorption isotherm. The fast and efficient adsorption of lysozyme by PSS-MNPs was mainly based on electrostatic interactions between them. The adsorbed lysozyme can be eluted using 20mM phosphate buffer (pH 7.0) containing 1.0M NaCl with a recovery of 96%. The extracted lysozyme from egg white demonstrated high purity, retaining about 90.7% of total lysozyme activity.

  13. Trehalose and Magnesium Chloride Exert a Common Anti-amyloidogenic Effect Towards Hen Egg White Lysozyme.

    PubMed

    Chatterjee, Rupsa; Kolli, Vidyalatha; Sarkar, Nandini

    2017-04-01

    Many degenerative disorder such as Parkinsons, Alzheimers, Huntingtons disease, etc are caused due to the deposition of amyloid fibrils, formed due to the ordered aggregation of misfolded/unfolded proteins. Misfolded or unfolded proteins aggregate mostly through hydrophobic interactions which are unexposed in native state, but become exposed upon unfolding. To counteract amyloid related diseases, inhibition of the protein self assembly into fibril is a potential therapeutic strategy. The study aims at investigating the effect of selected compounds, namely trehalose and magnesium chloride hexahydrate towards inhibition and disaggregation of amyloid fibrils using Hen Egg White Lysozyme as a model. We further attempted to understand the mechanism of action with the help of various biophysical, microscopic as well as computational studies. A common mechanism of action was identified where the selected compounds exert their anti-amyloidogenic effects by altering HEWL conformations characterized by reduction in the beta sheet content and decrease in exposed hydrophobic surfaces. The altered conformation seems to have lesser amyloidogenic propensity leading to inhibition as well as disaggregation of amyloids.

  14. Rottlerin dissolves pre-formed protein amyloid: a study on hen egg white lysozyme.

    PubMed

    Sarkar, Nandini; Kumar, Manjeet; Dubey, Vikash Kumar

    2011-09-01

    Deposition of protein fibrillar aggregates called amyloids in the tissue, is the principal cause of several degenerative diseases. Here, we have shown the disaggregation potential of rottlerin towards hen egg white lysozyme (HEWL) fibrils formed under alkaline conditions (pH-12.2). Several biophysical methods like Atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR) and fluorescence emission spectra were used for the study. Rottlerin exhibited instantaneous disaggregation effect on HEWL fibrils as monitored by Thioflavin T assay, anisotropy study and AFM imaging. Further we have monitored the conformational changes induced by rottlerin on the fibril in terms of surface hydrophobicity and secondary structure through 8-anilino-1-naphthalene sulfonic acid (ANS) fluorescence and FTIR study respectively. We have also attempted to elucidate the type of interaction between HEWL and rottlerin at pH-12.2 employing techniques like quenching study and FTIR. Rottlerin seems to have potential application as anti-amyloid compound. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Molecular dynamics simulations of hen egg white lysozyme adsorption at a charged solid surface.

    PubMed

    Kubiak, Karina; Mulheran, Paul A

    2009-09-10

    Hen egg white lysozyme (HEWL) adsorption on negatively charged, hydrophilic surfaces has been investigated using atomistic molecular dynamics. Analysis of six 20 ns trajectories performed at pH 7 and ionic strength 0.02 M (NaCl) reveals that conformational alterations are required for HEWL adsorption, and that upon adsorption the protein loses some alpha-helical content. Simulations for a few different initial orientations show that the HEWL protein adsorbs on a flat surface with an angle between the protein long axis and the surface of about 45 degrees . The main adsorption site is located on the N,C-terminal part of the HEWL surface; the major role is played by Lys1, Arg5, Arg14, and Arg128. Adsorption is not found with contrary orientations. Two additional 20 ns trajectories calculated with 0.5 M ionic strength suggest that the main force governing adsorption is electrostatic attraction between parts of the protein and the surface. A trajectory obtained for the protein situated inside a cubic box built from the charged surfaces shows that the adsorption pattern is different for flat and nonflat surfaces, and in particular, adsorption on the nonflat surface requires tertiary structure alterations and partial unfolding. The observed trends are consistent with both experimental and previous computational studies.

  16. Novel polydopamine imprinting layers coated magnetic carbon nanotubes for specific separation of lysozyme from egg white.

    PubMed

    Gao, Ruixia; Zhang, Lili; Hao, Yi; Cui, Xihui; Liu, Dechun; Zhang, Min; Tang, Yuhai

    2015-11-01

    Novel core-shell nanocomposites, consisting of magnetic carbon nanotubes (MCNTs) core surrounded by a thin polydopamine (PDA) imprinting shell for specific recognition of lysozyme (Lyz), were fabricated for the first time. The obtained products were characterized and the results showed that the PDA layer was successfully attached onto the surface of MCNTs and the corresponding thickness of imprinting layer was just about 10nm which could enable the template access the recognition cavities easily. The polymerization conditions and adsorption performance of the resultant nanomaterials were investigated in detail. The results indicated that the obtained imprinted polymers showed fast kinetic and high affinity towards Lyz and could be used to specifically separate Lyz from real egg white. In addition, the prepared materials had excellent stability and no obvious deterioration after five adsorption-regeneration cycles. Easy preparation, rapid separation, high binding capacity, and satisfactory selectivity for the template protein make this polymer attractive in biotechnology and biosensors. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Isolation of hen egg white lysozyme, ovotransferrin and ovalbumin, using a quaternary ammonium bound to a highly crosslinked agarose matrix.

    PubMed

    Vachier, M C; Piot, M; Awadé, A C

    1995-02-03

    A single-step anion-exchange chromatographic separation of egg white proteins was carried out using a Q Sepharose Fast Flow column. The separation resulted in the isolation of two lysozyme peaks with purities of ca. 99 and 88%, one peak of ovotransferrin purified to ca. 75% and two ovalbumin peaks with purities of ca. 54 and 98%. Recoveries were estimated to be ca. 60, 100 and 83% for lysozyme, ovotransferrin and ovalbumin, respectively. The amino acid compositions of all collected peaks have also been determined. This confirmed the identity of some of the proteins contained in these peaks.

  18. Size Exclusion Chromatography Studies of the Initial Self-Association Steps of Chicken Egg White Lysozyme Nucleation

    NASA Technical Reports Server (NTRS)

    Ewing, Felecia; Donovan, David; Pusey, Marc

    2000-01-01

    Nucleation is one of the least understood aspects of crystallogenesis. In the case of macromolecule nucleation, this understanding is further hampered by uncertainty over what precisely is being discussed. We define the process of solute self-association (aggregation, oligomerization, interaction, clustering, etc.) whereby n-mers (n > or = 2) having a crystallographic or nascent crystallographic arrangement leading to the critical nucleus reversibly form in the solution, to be part of the nucleation process. This reversible self-association process is a fundamental part of the nucleation process, and occurs as a function of the solute concentration. In the case of chicken egg white lysozyme, a considerable body of experimental evidence leads us to the conclusion that it also forms the crystal growth units. Size exclusion chromatography is a simple and direct method for determining the equilibrium constants for the self-association process. A Pharmacia FPLC system was used to provide accurate solution flow rates. The column, injection valve, and sample loop were all mounted within a temperature-controlled chamber. Chromatographically re-purified lysozyme was first dialyzed against the column equilibration buffer, with injection onto the column after several hours pre-incubation at the running temperature. Preliminary experiments, were carried out using a Toyopearl HW-50F column (1 x 50cm), equilibrated with 0.1 M sodium acetate, 5% sodium chloride, pH 4.6, at 15C. Protein concentrations from 0.1 to 4 mg/ml were employed (C(sub sat) = 1.2 mg/ml). The data from several different protein preparations consistently shows a progressively decreasing elution volume with increasing protein concentration, indicating that reversible self-association is occurring. The dotted line indicates the monomeric lysozyme elution volume. However, lysozyme interacts with the column matrix in these experiments, which complicates data analysis.Accordingly, we are testing silica-based HPLC

  19. Size Exclusion Chromatography Studies of the Initial Self-Association Steps of Chicken Egg White Lysozyme Nucleation

    NASA Technical Reports Server (NTRS)

    Ewing, Felecia; Donovan, David; Pusey, Marc

    2000-01-01

    Nucleation is one of the least understood aspects of crystallogenesis. In the case of macromolecule nucleation, this understanding is further hampered by uncertainty over what precisely is being discussed. We define the process of solute self-association (aggregation, oligomerization, interaction, clustering, etc.) whereby n-mers (n > or = 2) having a crystallographic or nascent crystallographic arrangement leading to the critical nucleus reversibly form in the solution, to be part of the nucleation process. This reversible self-association process is a fundamental part of the nucleation process, and occurs as a function of the solute concentration. In the case of chicken egg white lysozyme, a considerable body of experimental evidence leads us to the conclusion that it also forms the crystal growth units. Size exclusion chromatography is a simple and direct method for determining the equilibrium constants for the self-association process. A Pharmacia FPLC system was used to provide accurate solution flow rates. The column, injection valve, and sample loop were all mounted within a temperature-controlled chamber. Chromatographically re-purified lysozyme was first dialyzed against the column equilibration buffer, with injection onto the column after several hours pre-incubation at the running temperature. Preliminary experiments, were carried out using a Toyopearl HW-50F column (1 x 50cm), equilibrated with 0.1 M sodium acetate, 5% sodium chloride, pH 4.6, at 15C. Protein concentrations from 0.1 to 4 mg/ml were employed (C(sub sat) = 1.2 mg/ml). The data from several different protein preparations consistently shows a progressively decreasing elution volume with increasing protein concentration, indicating that reversible self-association is occurring. The dotted line indicates the monomeric lysozyme elution volume. However, lysozyme interacts with the column matrix in these experiments, which complicates data analysis.Accordingly, we are testing silica-based HPLC

  20. An experimental model of affinity filtration for the isolation of egg white Lysozyme using Cibacron Blue immobilized to yeast cells.

    PubMed

    Ferraris, María del Pilar; Gonzalez, Ulises A; Aguilar, Carlos F; Rodríguez, Jorge A

    2016-05-01

    An experimental model of affinity filtration process was designed using a macroligand composed by Cibacron Blue F3GA immobilized to yeast cells. Its performance was evaluated, at bench scale, through the recovery of egg white Lysozyme. The selective and reversible binding between the Cibacron ligand molecule and the enzyme is described. The separation of Lysozyme from the protein mixture included the application of stages such as affinity adsorption, concentration, diafiltration and elution. A tangential microfiltration system with an inorganic membrane was designed. The main finding was the development of the diafiltration operation, key stage in the enzyme isolation. The macroligand particle kept its integrity along the whole process and the degree of purity of the isolated Lysozyme was significant.

  1. Preliminary Work in Obtaining Site-Directed Mutants of Hen Egg White Lysozyme

    NASA Technical Reports Server (NTRS)

    Holmes, Leonard D.

    1996-01-01

    Protein crystal growth studies are recognized as a critical endeavor in the field of molecular biotechnology. The scientific applications of this field include the understanding of how enzymes function and the accumulation of accurate information of atomic structures, a key factor in the process of rational drug design. NASA has committed substantial investment and resources to the field of protein crystal growth and has conducted many microgravity protein crystal growth experiments aboard shuttle flights. Crystals grown in space tend to be larger, denser and have a more perfect habit and geometry. These improved properties gained in the microgravity environment of space result largely from the reduction of solutal convection, and the elimination of sedimentation at the growing crystal surface. Shuttle experiments have yielded many large, high quality crystals that are suitable for high resolution X-ray diffraction analysis. Examples of biologically important macromolecules which have been successfully crystallized during shuttle missions include: lysozyme, isocitrate lyase, gamma-interferon, insulin, human serum albumin and canavalin. Numerous other examples are also available. In addition to obtaining high quality crystals, investigators are also interested in learning the mechanisms by which the growth events take place. Crystallization experiments indicate that for the enzyme HEWL, measured growth rates do not follow mathematical models for 2D nucleation and dislocation-led growth of tetragonal protein crystals. As has been suggested by the laboratory of Marc L. Pusey, a possible explanation for the disagreement between observation and data is that HEWL tetraconal crystals form by aggregated units of lysozyme in supersaturated solutions. Surface measurement data was shown to fit very well with a model using an octamer unit cell as the growth unit. According to this model, the aggregation pathway and subsequent crystal growth is described by: monomer

  2. A study of renaturation of reduced hen egg white lysozyme. Enzymically active intermediates formed during oxidation of the reduced protein.

    PubMed

    Acharya, A S; Taniuchi, H

    1976-11-25

    The material obtained from reduced hen egg white lysozyme after complete air oxidation at pH 8.0 and 37 degrees has yielded, by gel filtration on a Bio-Gel P-30 column, enzymically active species and an enzymically inactive form which eluted sooner than the active species but later than expected for a dimer of lysozyme. Reduced lysozyme also elutes at the same position as this inactive material. Examination of the fragments produced on CNBr cleavage of the inactive form indicates that at least 24% of the population contains incorrect disulfide bonds involving half-cystine residues 6, 30, 115, and 127. Tryptophan fluorescence and the intrinsic viscosity of the inactive form show an enlarged molecular domain with a disordered conformation. The yield of the inactive form increases as the oxidation of reduced lysozyme is accelerated using cupric ion. In the presence of 4 X 10(-5) M cupric ion, reduced lysozyme forms almost quantitatively the inactive form, which is almost completely converted to the native form by sulfhydryl-disulfide interchange catalyzed by thiol groups of either reduced lysozyme or beta-mercaptoethanol. The material trapped by alkylation of the free sulfhydryl groups with [1-14C]iodoacetic acid during the early stage of air oxidation of reduced lysozyme was fractionated by gel filtration to permit separation of the active species from the inactive form. Ion exchange chromatography of the active species yielded completely renatured lysozyme and three major enzymically active radioactive derivatives. Two of these derivatives contained approximately 2 mol of S-carboxymethylcysteine. Isolation and characterization of radioactive tryptic peptides from each of the three active forms, permitted the identification of Cys 6 and Cys 127, Cys 76 and 94, and Cys 80 as the sulfhydryl groups alkylated in these three incompletely oxidized, partially active forms. Thus, it appears that the interatomic interactions maintaining the compact three-dimensional structure

  3. Nonequilibrium molecular dynamics study of electric and low-frequency microwave fields on hen egg white lysozyme

    NASA Astrophysics Data System (ADS)

    English, Niall J.; Solomentsev, Gleb Y.; O'Brien, Paul

    2009-07-01

    Nonequilibrium molecular dynamics simulations of various mutants of hen egg white lysozyme have been performed at 300 K and 1 bar in the presence of both external static electric and low-frequency microwave (2.45 GHz) fields of varying intensity. Significant nonthermal field effects were noted, such as marked changes in the protein's secondary structure relative to the zero-field state, depending on the field conditions, mutation, and orientation with respect to the applied field. This occurred primarily as a consequence of alignment of the protein's total dipole moment with the external field, although the dipolar alignment of water molecules in both the solvation layer and the bulk was also found to be influential. Substantial differences in behavior were found for proteins with and without overall net charges, particularly with respect to translational motion. Localized motion and perturbation of hydrogen bonds were also found to be evident for charged residues.

  4. Effect of nitrogen-doped graphene quantum dots on the fibrillation of hen egg-white lysozyme.

    PubMed

    Zeng, Hua-Jin; Miao, Min; Liu, Zhe; Yang, Ran; Qu, Ling-Bo

    2017-02-01

    In this study, the fibrillation of hen egg-white lysozyme (HEWL) in the absence and presence of different amount of nitrogen-doped graphene quantum dots (N-GQDs) was studied by Thioflavin T (ThT) spectroscopy, Congo red (CR) binding assays, 8-anilino-1-naphthalenesulfonic acid (ANS) fluorescence assay, circular dichroism (CD) and transmission electron microscopy (TEM). The experimental results indicated that not only the fibrillation of HEWL at high temperature (65°C) and low pH (pH=2.0) could be inhibited effectively by N-GQDs, but the inhibition of HEWL by N-GQDs followed a dose-dependent manner. The results of this work suggested that the N-GQDs had a great potential for designing new therapeutic agents and were promising for future treatment of amyloid-related diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Role of the lysozyme inhibitor Ivy in growth or survival of Escherichia coli and Pseudomonas aeruginosa bacteria in hen egg white and in human saliva and breast milk.

    PubMed

    Deckers, Daphne; Vanlint, Dietrich; Callewaert, Lien; Aertsen, Abram; Michiels, Chris W

    2008-07-01

    Ivy is a lysozyme inhibitor that protects Escherichia coli against lysozyme-mediated cell wall hydrolysis when the outer membrane is permeabilized by mutation or by chemical or physical stress. In the current work, we have investigated whether Ivy is necessary for the survival or growth of E. coli MG1655 and Pseudomonas aeruginosa PAO1 in hen egg white and in human saliva and breast milk, which are naturally rich in lysozyme and in membrane-permeabilizing components. Wild-type E. coli was able to grow in saliva and breast milk but showed partial inactivation in egg white. The knockout of Ivy did not affect growth in breast milk but slightly increased sensitivity to egg white and caused hypersensitivity to saliva, resulting in the complete inactivation of 10(4) CFU ml(-1) of bacteria within less than 5 hours. The depletion of lysozyme from saliva completely restored the ability of the ivy mutant to grow like the parental strain. P. aeruginosa, in contrast, showed growth in all three substrates, which was not affected by the knockout of Ivy production. These results indicate that lysozyme inhibitors like Ivy promote bacterial survival or growth in particular lysozyme-rich secretions and suggest that they may promote the bacterial colonization of specific niches in the animal host.

  6. Antibacterial activity of hen egg white lysozyme modified by heat and enzymatic treatments against oenological lactic acid bacteria and acetic acid bacteria.

    PubMed

    Carrillo, W; García-Ruiz, A; Recio, I; Moreno-Arribas, M V

    2014-10-01

    The antimicrobial activity of heat-denatured and hydrolyzed hen egg white lysozyme against oenological lactic acid and acetic acid bacteria was investigated. The lysozyme was denatured by heating, and native and heat-denatured lysozymes were hydrolyzed by pepsin. The lytic activity against Micrococcus lysodeikticus of heat-denatured lysozyme decreased with the temperature of the heat treatment, whereas the hydrolyzed lysozyme had no enzymatic activity. Heat-denatured and hydrolyzed lysozyme preparations showed antimicrobial activity against acetic acid bacteria. Lysozyme heated at 90°C exerted potent activity against Acetobacter aceti CIAL-106 and Gluconobacter oxydans CIAL-107 with concentrations required to obtain 50% inhibition of growth (IC50) of 0.089 and 0.013 mg/ml, respectively. This preparation also demonstrated activity against Lactobacillus casei CIAL-52 and Oenococcus oeni CIAL-91 (IC50, 1.37 and 0.45 mg/ml, respectively). The two hydrolysates from native and heat-denatured lysozyme were active against O. oeni CIAL-96 (IC50, 2.77 and 0.3 mg/ml, respectively). The results obtained suggest that thermal and enzymatic treatments increase the antibacterial spectrum of hen egg white lysozyme in relation to oenological microorganisms.

  7. Intestinal absorption of lysozyme, an egg-white allergen, in rats: kinetics and effect of NSAIDs.

    PubMed

    Yokooji, Tomoharu; Hamura, Koh; Matsuo, Hiroaki

    2013-08-16

    The absorption pathway(s) of a representative food allergen, lysozyme, and the mechanisms of lysozyme absorption facilitated by non-steroidal anti-inflammatory drugs were examined by intestinal closed-loop and re-circulating perfusion methods in rats. The absorption rate of fluorescein isothiocyanate (FITC)-labeled lysozyme in the proximal intestine was higher than that for a marker of non-specific absorption, FD-10, and was suppressed by colchicine (endocytosis inhibitor). Aspirin increased the absorption of FITC-lysozyme in the proximal intestine with no effects on tissue accumulation. Diclofenac facilitated FITC-lysozyme absorption, but meloxicam and loxoprofen exerted no effects on absorption. Co-administration of misoprostol (synthetic prostaglandin-E1 analog) with aspirin significantly ameliorated the aspirin-facilitated absorption of FITC-lysozyme to the same level as that seen with controls. Thus, lysozyme absorption was mediated by endocytic and paracellular pathways in the proximal intestine, and was facilitated by aspirin and diclofenac after impairment of the paracellular pathway. Misoprostol may suppress the allergen absorption facilitated by aspirin.

  8. Lytic antimicrobial activity of hen egg white lysozyme immobilized to polystyrene beads.

    PubMed

    Wu, Y; Daeschel, M A

    2007-11-01

    Lysozyme [EC 3.2.1.17] was covalently attached to polystyrene resin beads by the sole histidine residue (His-15) through peptide spacers of various lengths. The spacers were amino acid chains composed of 6-aminocaproic acid synthesized with the solid phase peptide synthesis method. Immobilized lysozyme with a spacer length of three 6-aminocaproic acid units (2736 U/g resin with a protein load of 2.21 mg/g resin) displayed the greatest degree of hydrolytic activity against lyophilized Micrococcus lysodeikticus cell wall preparations. Enzymatic activity of immobilized lysozyme was 14.2% of that of the free enzyme. Preparations with longer spacers yielded higher total activity yet the retained activity was constant at about 14% level. A control that consisted of randomly coupled lysozyme to polystyrene beads without an amino acid spacer gave an enzyme activity of 158 U/g with a protein load of 1.24 mg/g resin which equated to 1.4% retained activity. Properties of the immobilized lysozyme system were studied, including stability and activity against soluble compared with insoluble substrates. A kinetics study of the immobilized lysozyme using Eadie-Hofstee plot parameters suggested significant external diffusion effects indicative of deviation from classic Michaelis-Menten kinetic behavior.

  9. Ortho-methylated 3-hydroxypyridines hinder hen egg-white lysozyme fibrillogenesis

    PubMed Central

    Mariño, Laura; Pauwels, Kris; Casasnovas, Rodrigo; Sanchis, Pilar; Vilanova, Bartolomé; Muñoz, Francisco; Donoso, Josefa; Adrover, Miquel

    2015-01-01

    Protein aggregation with the concomitant formation of amyloid fibrils is related to several neurodegenerative diseases, but also to non-neuropathic amyloidogenic diseases and non-neurophatic systemic amyloidosis. Lysozyme is the protein involved in the latter, and it is widely used as a model system to study the mechanisms underlying fibril formation and its inhibition. Several phenolic compounds have been reported as inhibitors of fibril formation. However, the anti-aggregating capacity of other heteroaromatic compounds has not been studied in any depth. We have screened the capacity of eleven different hydroxypyridines to affect the acid-induced fibrillization of hen lysozyme. Although most of the tested hydroxypyridines alter the fibrillation kinetics of HEWL, only 3-hydroxy-2-methylpyridine, 3-hydroxy-6-methylpyridine and 3-hydroxy-2,6-dimethylpyridine completely abolish fibril formation. Different biophysical techniques and several theoretical approaches are combined to elucidate their mechanism of action. O-methylated 3-hydroxypyridines bind non-cooperatively to two distinct but amyloidogenic regions of monomeric lysozyme. This stabilises the protein structure, as evidenced by enhanced thermal stability, and results in the inhibition of the conformational transition that precedes fibril assembly. Our results point to o-methylated 3-hydroxypyridines as a promising molecular scaffold for the future development of novel fibrillization inhibitors. PMID:26169912

  10. Ortho-methylated 3-hydroxypyridines hinder hen egg-white lysozyme fibrillogenesis

    NASA Astrophysics Data System (ADS)

    Mariño, Laura; Pauwels, Kris; Casasnovas, Rodrigo; Sanchis, Pilar; Vilanova, Bartolomé; Muñoz, Francisco; Donoso, Josefa; Adrover, Miquel

    2015-07-01

    Protein aggregation with the concomitant formation of amyloid fibrils is related to several neurodegenerative diseases, but also to non-neuropathic amyloidogenic diseases and non-neurophatic systemic amyloidosis. Lysozyme is the protein involved in the latter, and it is widely used as a model system to study the mechanisms underlying fibril formation and its inhibition. Several phenolic compounds have been reported as inhibitors of fibril formation. However, the anti-aggregating capacity of other heteroaromatic compounds has not been studied in any depth. We have screened the capacity of eleven different hydroxypyridines to affect the acid-induced fibrillization of hen lysozyme. Although most of the tested hydroxypyridines alter the fibrillation kinetics of HEWL, only 3-hydroxy-2-methylpyridine, 3-hydroxy-6-methylpyridine and 3-hydroxy-2,6-dimethylpyridine completely abolish fibril formation. Different biophysical techniques and several theoretical approaches are combined to elucidate their mechanism of action. O-methylated 3-hydroxypyridines bind non-cooperatively to two distinct but amyloidogenic regions of monomeric lysozyme. This stabilises the protein structure, as evidenced by enhanced thermal stability, and results in the inhibition of the conformational transition that precedes fibril assembly. Our results point to o-methylated 3-hydroxypyridines as a promising molecular scaffold for the future development of novel fibrillization inhibitors.

  11. Dynamic layer-by-layer self-assembly of multi-walled carbon nanotubes on quartz wool for on-line separation of lysozyme in egg white.

    PubMed

    Du, Zhuo; Zhang, Suling; Zhou, Chanyuan; Liu, Miao; Li, Gongke

    2012-05-30

    The multi-walled carbon nanotubes (MWNTs) coated quartz wool (MWNTs/QW) prepared by dynamic layer-by-layer self-assembly was used as solid-phase extraction (SPE) absorbent for on-line separation and preconcentration of lysozyme in egg white. The coating procedures were performed continuously in a flow system operated by a set of sequential injection devices. The quartz wool was placed in a microcolumn forming a loose packing to guarantee the minimized flow impedance and the intimate contact between proteins and absorbent surface. Various parameters affecting SPE efficiency including the volume, pH, ionic strength and flow rate of sample and eluent were systematically studied. The feasibility of the proposed method was validated by successfully applied to the separation of lysozyme in egg white.

  12. Structural Characterization of the Complex between Hen Egg-White Lysozyme and Zr(IV) -Substituted Keggin Polyoxometalate as Artificial Protease.

    PubMed

    Sap, Annelies; De Zitter, Elke; Van Meervelt, Luc; Parac-Vogt, Tatjana N

    2015-08-10

    Successful co-crystallization of a noncovalent complex between hen egg-white lysozyme (HEWL) and the monomeric Zr(IV) -substituted Keggin polyoxometalate (POM) (Zr1 K1), (Et2 NH2)3 [Zr(PW11 O39)] (1), has been achieved, and its single-crystal X-ray structure has been determined. The dimeric Zr(IV) -substituted Keggin-type polyoxometalate (Zr1 K2), (Et2 NH2)10 [Zr(PW11 O39 )2] (2), has been previously shown to exhibit remarkable selectivity towards HEWL hydrolysis. The reported X-ray structure shows that the hydrolytically active Zr(IV) -substituted Keggin POM exists as a monomeric species. Prior to hydrolysis, this monomer interacts with HEWL in the vicinity of the previously identified cleavage sites found at Trp28-Val29 and Asn44-Arg45, through water-mediated H-bonding and electrostatic interactions. Three binding sites are observed at the interface of the negatively charged Keggin POM and the positively charged regions of HEWL at: 1) Gly16, Tyr20, and Arg21; 2) Asn44, Arg45, and Asn46; and 3) Arg128. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Oxidative renaturation of hen egg-white lysozyme in polyethylene glycol-salt aqueous two-phase systems.

    PubMed

    Lotwin, J; De Bernardez Clark, E

    1999-11-20

    Aqueous two-phase systems have been widely used for the separation and concentration of proteins. In this work we investigated the possibility of using aqueous two-phase system for the renaturation of inclusion body proteins by studying the effect of polyethylene glycol (PEG)-salt systems on the oxidative renaturation of hen egg-white lysozyme (HEWL) with guanidinium chloride (GdmCl) present in the system. To accomplish phase separation at moderately low concentrations of polymer and salt, the total GdmCl concentration had to be kept low (<1 M). The unfolded protein exhibited very low solubility under these conditions. In an attempt to increase the solubility of the protein, temperatures of 40, 50, and 60 degrees C were investigated. The effect of PEG molecular weight was also addressed. Best renaturation yields were obtained when using PEG 3400 and working at 50 degrees C. However, the total protein concentration had to be kept at a low level of 0.2 mg/mL. Lowering the total GdmCl concentration in the system resulted in increased aggregation.

  14. Investigating the inhibitory effects of zinc ions on amyloid fibril formation of hen egg-white lysozyme.

    PubMed

    Ma, Baoliang; Zhang, Fan; Wang, Xiaofei; Zhu, Xudong

    2017-05-01

    The amyloid fibrils derived from protein and peptide self-assembly have been studied in many diseases. In the present study, in combination with Thioflavin T(ThT) assay, Congo red(CR),transmission electron microscopy and cell cytotoxicity assay, we investigated the influence of zinc ions on amyloid fibril formation using hen egg white lysozyme (HEWL) as a model protein under high temperature and acidic pH conditions. We observed that HEWL tended to form the amyloid fibrils at pH 2.0 and 60°C, which was consistent with the previous studies. However, as the concentrations of zinc ions increased, the amounts of amyloid fibrils of HWEL gradually reduced, but the overall morphology of individual amyloid fibril was not significantly altered whether or not zinc ions were present. Moreover, by using circular dichroism (CD), ANS and intrinsic fluorescence spectra, we illustrated that zinc ions inhibited the formation of β-sheet and exposure of hydrophobic regions of HEWL. This work would help to understand the molecular mechanism of amyloid fibril formation. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Determination of egg white lysozyme by on-line coupled capillary isotachophoresis with capillary zone electrophoresis.

    PubMed

    Kvasnicka, Frantisek

    2003-03-01

    An on-line coupled capillary isotachophoresis - capillary zone electrophoresis method for the determination of lysozyme in selected food products is described. The optimized electrolyte system consisted of 10 mM NH(4)OH + 20 mM acetic acid (leading electrolyte), 5 mM epsilon -aminocaproic acid +5 mM acetic acid (terminating electrolyte), and 20 mM epsilon -aminocaproic acid +5 mM acetic acid +0.1% m/v hydroxypropylmethylcellulose (background electrolyte). A clear separation of lysozyme from other components of acidic sample extract was achieved within 15 min. Method characteristics, i.e., linearity (0-50 micrograms/mL), accuracy (recovery 96+/-5%), intra-assay (3.8%), quantification limit (1 microgram/ml), and detection limit (0.25 microgram/mL) were determined. Low laboriousness, sufficient sensitivity and low running costs are important attributes of this method. The developed method is suitable for the quantification of the egg content in egg pasta.

  16. Crystallization of hen egg-white avidin in a tetragonal form.

    PubMed

    Gatti, G; Bolognesi, M; Coda, A; Chiolerio, F; Filippini, E; Malcovati, M

    1984-09-25

    Hen egg-white avidin has been crystallized at pH 5.7 from ammonium sulfate solutions. The crystals belong to the tetragonal space group P4(2)2(1)2, with unit cell edges a = b = 79.6 A, c = 84.3 A. Assuming a molecular weight of 15,600 per avidin monomer, this crystal form is compatible with the presence of a dimer in the asymmetric unit, and is suitable for a crystallographic structural investigation at high resolution.

  17. Location of Bromide Ions in Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Lim, Kap; Nadarajah, Arunan; Forsythe, Elizabeth L.; Pusey, Marc L.

    1998-01-01

    Anions have been shown to play a dominant role in the crystallization of chicken egg white lysozyme from salt solutions. Previous studies employing X-ray crystallography had found one chloride ion binding site in the tetragonal crystal form of the protein and four nitrate ion binding sites in the monoclinic form. In this study the anion positions in the tetragonal form were determined from the difference Fourier map obtained from lysozyme crystal grown in bromide and chloride solutions. Five possible anion binding sites were found in this manner. Some of these sites were in pockets containing basic residues while others were near neutral, but polar, residues. The sole chloride ion binding site found in previous studies was confirmed, while four of these sites corresponded to four binding sites found for nitrate ions in monoclinic crystals. The study suggests that most of the anion binding sites in lysozyme remain unchanged, even when different anions and different crystal forms of lysozyme are employed.

  18. Location of Bromide Ions in Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Lim, Kap; Nadarajah, Arunan; Forsythe, Elizabeth L.; Pusey, Marc L.

    1998-01-01

    Anions have been shown to play a dominant role in the crystallization of chicken egg white lysozyme from salt solutions. Previous studies employing X-ray crystallography had found one chloride ion binding site in the tetragonal crystal form of the protein and four nitrate ion binding sites in the monoclinic form. In this study the anion positions in the tetragonal form were determined from the difference Fourier map obtained from lysozyme crystal grown in bromide and chloride solutions. Five possible anion binding sites were found in this manner. Some of these sites were in pockets containing basic residues while others were near neutral, but polar, residues. The sole chloride ion binding site found in previous studies was confirmed, while four of these sites corresponded to four binding sites found for nitrate ions in monoclinic crystals. The study suggests that most of the anion binding sites in lysozyme remain unchanged, even when different anions and different crystal forms of lysozyme are employed.

  19. Study on nucleation kinetics of lysozyme crystallization

    NASA Astrophysics Data System (ADS)

    Lin, Chen; Zhang, Yang; Liu, Jing J.; Wang, Xue Z.

    2017-07-01

    The nucleation kinetics of hen egg-white lysozyme crystallization was investigated using a hot stage cooling crystallizer and a microscope to monitor the solution crystallization process in real time. Images of crystals were continuously recorded under varied precipitant and protein concentrations. The nucleation rate was found to be higher at higher precipitant concentration, and increase monotonically with protein concentration if the precipitant concentration was held constant. Attempt was made to interpret the experimental data using classical nucleation theory. It was found that the model predictions are lower than the experimental values at low supersaturations but agree well with experimental data at high supersaturations. The trends in the experimental data suggest that two nucleation mechanisms might co-exist: heterogeneous nucleation seems to be the dominant at low supersaturation while at higher supersaturation homogeneous nucleation seems to play the major role.

  20. Anti-Inflammatory and Anti-Nociceptive Activities of Native and Modified Hen Egg White Lysozyme.

    PubMed

    Carrillo, Wilman; Spindola, Humberto; Ramos, Mercedes; Recio, Isidra; Carvalho, Joao Ernesto

    2016-09-28

    Persistent inflammatory conditions can have severe pathological consequences. Although the use of nonsteroidal anti-inflammatory drugs (NSAIDs) is effective, it has side effects, particularly at the gastrointestinal level. There is then a high interest to identify natural anti-inflammatory compounds with no side effects. The anti-inflammatory and anti-nociceptive activities of hen egg lysozyme (LZ), both in its native form and modified by heat treatment, chemically or by enzymatic digestion have been tested in this study. The carrageenan-induced model in mice using native LZ or modified LZ has been applied. It was observed that LZ denatured by heat treatment at pH 6.0 presented 39.47% of inhibition of paw edema when administered at 30 mg/kg. LZ denatured with DL-dithiothreitol (DTT) presented a significant result of 42.10% inhibition of paw edema when administered at 30 mg/kg of animal weight. Modified LZ showed anti-inflammatory capacity comparable with the activity of the positive control dexamethasone. A classical model of acetic acid-induced abdominal writhing tests in mice was used to assess anti-nociceptive activity of native LZ and denatured heat treatment LZ and denatured chemical agent LZ. Finally, hydrolyzed native LZ presented 48% of inhibition of abdominal writhing in mice. Modified LZ with heat, chemical, and hydrolysis presented anti-inflammatory and anti-nociceptive activities independently of their natural enzymatic activity. These novel data point out the potential use of denatured and digested LZ as therapeutic agents and offer alternatives to the use of NSAIDs. LZ can be a natural source of anti-inflammatory and anti-nociceptive agents.

  1. Is aspartate 52 essential for catalysis by chicken egg white lysozyme? The role of natural substrate-assisted hydrolysis

    SciTech Connect

    Matsumura, Ichiro; Kirsch, J.F.

    1996-02-13

    The chicken and goose egg white lysozymes (ChEWL and GoEWL) are homologues, but differ in substrate specificity. ChEWL catalyzes the hydrolysis of the glycosidic bonds of bacterial peptidoglycans and chitin-derived substrates, while GoEWL is specific for bacterial peptidoglycans. The active-site aspartate 52 residue of ChEWL, which is postulated to stabilize the oxocarbenium ion intermediate, has no counterpart in GoEWL. The substrate specificity of the D52A ChEWL mutant was compared with those of wild-type ChEWL and GoEWL. D52A ChEWL retains approximately 4% of the wild-type catalytic activity in reactions with three different bacterial cell suspensions. Asp52 therefore is not essential to the catalytic mechanism, accounting for only a 2 kcal/mol decrease in AG. The function of Asp52 in D52A ChEWL- and GoEWL-catalyzed cleavage of (carboxymethyl)chitin may be partially fulfilled by an appropriately positioned carboxyl group on the substrate (substrate-assisted catalysis). D52A ChEWL and GoEWL, unlike wild-type ChEWL, exhibit biphasic kinetics in the clearing of Micrococcus luteus cell suspensions, suggesting preferences for subsets of the linkages in the M. luteus peptidoglycan. These subsets do not exist in the peptidoglycans of Escherichia coli or Sarcina lutea, since neither D52A ChEWL nor GoEWL exhibits initial bursts in reactions with suspensions of these bacteria. We propose that substrate-assisted catalysis occurs in reactions of D52A ChEWL and GoEWL with M. luteus peptidoglycans, with the glycine carboxyl group of uncross-linked peptides attached to N-acetylmuramic acid partially substituting the function of the missing Asp52. 52 refs., 6 figs., 1 tab.

  2. Synergistic contributions of asparagine 46 and aspartate 52 to the catalytic mechanism of chicken egg white lysozyme

    SciTech Connect

    Matsumura, Ichiro; Kirsch, J.F.

    1996-02-13

    The X-ray structure of a chicken egg white lysozyme (ChEWL) complex with a peptidoglycan-derived inhibitor suggests that interactions of Asn46 and Asp52 with the D-subsite N-acetylmuramic acid due help to distort that pyranose ring into the reactive half-chair conformation and that a hydrogen bond is formed between Asn46 and Asp52. These hypotheses were investigated through the D52A, N46A, and D52A/N46A mutants of ChEWL. The Michaelis constants of the D52A and D52A/N46A ChEWL complexes with Micrococcus luteus cells are 3- and 4-fold higher, respectively, than the wild-type K{sub M}; the corresponding k{sub cat} values are 25- and 50-fold lower, respectively, than the wild-type k{sub cat}. These results support the proposal of Strynadka and James. The velocities of reactions catalyzed by the N46A and D52A mutants are approximately equal to each other for all classes of substrate, suggesting that the respective roles of Asn46 and Asp52 in transition state stabilization do not vary. The mutation of either Asn46 or Asp52 to Ala apparently disrupts the interactions of the other (nonmutated) residue with the substrate, supporting the crystallographic evidence of a hydrogen-bond interaction between the two residues. The mutations do not change the values of the dissociation constants of complexes with (carboxymethyl)chitin complexes, suggesting that ground state complexes of ChEWL with chitin-derived substrates differ in conformation from complexes with bacterial peptidoglycans. 23 refs., 7 figs., 2 tabs.

  3. Effect of pH on hen egg white lysozyme production and evolution of a recombinant strain of Aspergillus niger.

    PubMed

    Mainwaring, D O; Wiebe, M G; Robson, G D; Goldrick, M; Jeenes, D J; Archer, D B; Trinci, A P

    1999-09-24

    An Aspergillus niger strain (B1) transformed to produce mature hen egg white lysozyme (HEWL) from a glucoamylase fusion protein under control of the A. niger glucoamylase promoter was grown in glucose-limited chemostat culture at a dilution rate of 0.07 h-1 at various pH values. Maximum HEWL production (9.3 mg g-1; specific production rate = 0.65 mg g-1 per h) was obtained at pH 4.5. However, in chemostat culture, HEWL production was not stable at any pH tested. After 240 h in steady state, specific production decreased to only 0.03 +/- 0.01 and 0.24 +/- 0.02 mg g-1 per h at pH 6.5 and 4.5, respectively. Some isolates removed from the chemostat cultures had lost copies of the HEWL gene and when grown in shake flask cultures all of the isolates produced less HEWL than the parental strain. Morphological mutants with similar phenotypes were isolated at all pHs, but their rate of increase in the population was pH dependent, with cultures at low pH (< 4.5) being more morphologically stable than cultures at high (> 4.5) pH. The selective advantage of these mutants was also generally dependent on pH. Both yellow pigment producing mutants and brown sporulation mutants had higher selective advantages over the parental strain at high than at low pH, regardless of the pH at which they were isolated. However, the selective advantage of densely sporulating mutants was independent of pH.

  4. Protein crystal growth - Growth kinetics for tetragonal lysozyme crystals

    NASA Technical Reports Server (NTRS)

    Pusey, M. L.; Snyder, R. S.; Naumann, R.

    1986-01-01

    Results are reported from theoretical and experimental studies of the growth rate of lysozyme as a function of diffusion in earth-gravity conditions. The investigations were carried out to form a comparison database for future studies of protein crystal growth in the microgravity environment of space. A diffusion-convection model is presented for predicting crystal growth rates in the presence of solutal concentration gradients. Techniques used to grow and monitor the growth of hen egg white lysozyme are detailed. The model calculations and experiment data are employed to discuss the effects of transport and interfacial kinetics in the growth of the crystals, which gradually diminished the free energy in the growth solution. Density gradient-driven convection, caused by presence of the gravity field, was a limiting factor in the growth rate.

  5. Acetylated lysozyme as impurity in lysozyme crystals: constant distribution coefficient

    NASA Astrophysics Data System (ADS)

    Thomas, B. R.; Chernov, A. A.

    2001-11-01

    Hen egg white lysozyme (HEWL) was acetylated to modify molecular charge keeping the molecular size and weight nearly constant. Two derivatives, A and B, more and less acetylated, respectively, were obtained, separated, purified and added to the solution from which crystals of tetragonal HEWL crystals were grown. Amounts of the A and B impurities added were 0.76, 0.38 and 0.1 mg/ml and 0.43, 0.22, 0.1 mg/ml, respectively. The HEWL concentration were 20, 30 and 40 mg/ml. The crystals grown in 18 experiments for each impurity concentration and supersaturation were dissolved and quantities of A or B additives in these crystals were analyzed by cation exchange high performance liquid chromatography. All the data for each set of 18 samples with the different impurity and regular HEWL concentrations is well described by one distribution coefficient K=2.15±0.13 for A and K=3.42±0.25 for B. According to definition of K by Eq. (1) in the text, the condition K=const is equivalent to a decrease of impurity amount in the crystal as the supersaturation increases. The observed independence of the distribution coefficient on both the impurity concentration and supersaturation is explained by the dilution model described in this paper. It shows that the impurity adsorption and incorporation rates are proportional to the impurity concentration and that the growth rate is proportional to the concentration of crystallizing protein in solution. The frequency at which an impurity molecules irreversibly join the crystal was estimated to be 3 s -1, much higher than such frequency for regular crystal molecules 5×10 -2 s -1 at 30 mg/ml lysozyme concentration. Reasons for this inequality are discussed.

  6. Competitive adsorption from mixed hen egg-white lysozyme/surfactant solutions at the air-water interface studied by tensiometry, ellipsometry, and surface dilational rheology.

    PubMed

    Alahverdjieva, V S; Grigoriev, D O; Fainerman, V B; Aksenenko, E V; Miller, R; Möhwald, H

    2008-02-21

    The competitive adsorption at the air-water interface from mixed adsorption layers of hen egg-white lysozyme with a non-ionic surfactant (C10DMPO) was studied and compared to the mixture with an ionic surfactant (SDS) using bubble and drop shape analysis tensiometry, ellipsometry, and surface dilational rheology. The set of equilibrium and kinetic data of the mixed solutions is described by a thermodynamic model developed recently. The theoretical description of the mixed system is based on the model parameters for the individual components.

  7. The influence of low frequency of external electric field on nucleation enhancement of hen egg-white lysozyme (HEWL)

    NASA Astrophysics Data System (ADS)

    Pan, Weichun; Xu, Haixing; Zhang, Rui; Xu, Jin; Tsukamoto, Katsuo; Han, Jianzhong; Li, Ang

    2015-10-01

    Protein crystal nucleation processes are drawing increasing interests in both academic and industrial communities. Electric field is a promising means, due to its versatility and easy application, among various external fields that may lead to controllable desired protein crystal nucleation. Different from literature reported experimental and theoretical studies that examined the effects of high frequency electric fields; this work was focused on the low frequency range. For this purpose, Hen-White Lysozyme crystal nucleation from its aqueous solution was used as the model system. We found by experiments that the nucleation rate is non-monotonously dependent on electric field frequency less than 1 kHz, which may be ascribed to the mutual orientation modification between neighbor protein molecules induced by the external low frequency, and is different from the case of high frequencies that influence the intermolecular interactions.

  8. Acetylated Lysozyme as Impurity in Lysozyme Crystals: Constant Distribution Coefficient

    NASA Technical Reports Server (NTRS)

    Thomas, B. R.; Chernov, A. A.

    2000-01-01

    Hen egg white lysozyme (HEWL) was acetylated to modify molecular charge keeping the molecular size and weight nearly constant. Two derivatives, A and B, more and less acetylated, respectively, were obtained, separated, purified and added to the solution from which crystals of tetragonal HEWL crystals were grown. Amounts of the A or B impurities added were 0.76, 0.38 and 0.1 milligram per millimeter while HEWL concentration were 20, 30 and 40 milligram per milliliter. The crystals grown in 18 experiments for each impurity were dissolved and quantities of A or B additives in these crystals were analyzed by cation exchange high performance liquid chromatography. All the data for each set of 18 samples with the different impurity and regular HEWL concentrations is well described by one distribution coefficient K = 2.15 plus or minus 0.13 for A and K = 3.42 plus or minus 0.25 for B. The observed independence of the distribution coefficient on both the impurity concentration and supersaturation is explained by the dilution model described in this paper. It shows that impurity adsorption and incorporation rate is proportional to the impurity concentration and that the growth rate is proportional to the crystallizing protein in solution. With the kinetic coefficient for crystallization, beta = 5.10(exp -7) centimeters per second, the frequency at which an impurity molecule near the growing interface irreversibly joins a molecular site on the crystal was found to be 3 1 per second, much higher than the average frequency for crystal molecules. For best quality protein crystals it is better to have low microheterogeneous protein impurity concentration and high supers aturation.

  9. Incorporation of impurity to a tetragonal lysozyme crystal

    NASA Astrophysics Data System (ADS)

    Kurihara, Kazuo; Miyashita, Satoru; Sazaki, Gen; Nakada, Toshitaka; Durbin, Stephen D.; Komatsu, Hiroshi; Ohba, Tetsuhiko; Ohki, Kazuo

    1999-01-01

    Concentration of a phosphor-labeled impurity (ovalbumin) incorporated into protein (hen egg white lysozyme) crystals during growth was measured by fluorescence.This technique enabled us to measure the local impurity concentration in a crystal quantitatively. Impurity concentration increased with growth rate, which could not be explained by two conventional models (equilibrium adsorption model and Burton-Prim-Slichter model); a modified model is proposed. Impurity concentration also increased with the pH of the solution. This result is discussed considering the electrostatic interaction between the impurity and the crystallizing species.

  10. Study on separation of conalbumin and lysozyme from high concentration fresh egg white at high flow rates by a novel ion-exchanger.

    PubMed

    Ming, F; Howell, J; Acosta, F; Hubble, J

    1993-11-05

    In this report, we show that it is possible to separate valuable proteins from egg-white using a Productiv(TM) CM ion-exchanger column operated at flow rates significantly higher than those than can be achieved using traditional particulate adsorbents. In the approach taken, sample pretreatment is restricted to a simple dilution of the egg-white, which can then be applied to the column at superficial velocities (V(s)) of up to 13.8 m/h. Under a loading of 220 mg total protein per milliliter of ion-exchanger, the resolution (R(s)) between the eluted conalbumin and lysozyme fractions was found to be almost constant during nine consecutive adsorption/desorption cycles. For all nine consecutive batches, the column average adsorption capacity was greater than 30 mg/mL, with 90% recovery of adsorbed protein being achieved in each run. The overall productivity achieved was 12.6 kg/m(3) h for lysozyme and 31.2 kg/m(3) h for conalbumin.

  11. The simultaneous binding of lanthanide and N-acetylglucosamine inhibitors to hen egg-white lysozyme in solution by 1H and 13C nuclear magnetic resonance.

    PubMed Central

    Perkins, S J; Johnson, L N; Phillips, D C; Dwek, R A

    1981-01-01

    Lanthanide ions and the N-acetylglucosamine (GlcNAc) sugars are able to bind simultaneously to hen egg-white lysozyme (EC 3.2.1.17). The present study characterizes the properties of the ternary complexes with lysozyme, which involve up to seven paramagnetic lanthanides and two diamagnetic lanthanides, together with alpha GlcNAc, beta GlcNAc, alpha MeGlcNAc and beta MeGlcNAc. pH titrations and binding titrations of the GlcNAc sugars with lysozyme-La(III) complexes show that the GlcNAc sugars bind to at least two independent sites and that one of them competes with La(III) for binding to lysozyme. Given the known binding site of lanthanides at Asp-52 and Glu-35, the competitive binding site of GlcNAc is identified as subsite E. A simple analysis of the paramagnetic-lanthanide-induced shifts shows that the GlcNAc sugar binds in subsite C, in accordance with crystallographic results [Perkins, Johnson, Machin & Phillips (1979) Biochem. J. 181, 21-36]. This finding was refined by several computer analyses of the lanthanide-induced shifts of 17 proton and carbon resonances of beta MeGlcNAc. Good fits were obtained for all the signals, except for two that were affected by exchange broadening phenomena. No distinction could be made between a fit for a two-position model of Ln(III) binding with axial symmetry to lysozyme, according to the crystallographic result, or a one-position model with axial symmetry where the Ln(III) is positioned mid-way between Asp-52 and Glu-35. Although this work establishes the feasibility of lanthanide shift reagents for study of protein-ligand complexes, further work is required to establish the manner in which lanthanides bind to lysozyme in solution. PMID:7305947

  12. Crystal structure of apo-avidin from hen egg-white.

    PubMed

    Pugliese, L; Malcovati, M; Coda, A; Bolognesi, M

    1994-01-07

    The three-dimensional structure of hen egg-white apo-avidin, crystallized in a tetragonal crystal form, has been refined to a crystallographic R-factor of 0.164 (for the 6390 observed reflections in the 10.0 to 2.8 A resolution range). As in the case of holo-avidin, from which starting atomic co-ordinates were derived, the functional tetramer shows 2-pseudo 22 molecular symmetry. Each promoter is organized in an eight-stranded antiparallel orthogonal beta-barrel, with extended loop regions, which define the biotin binding pocket in the protomer core. In the absence of biotin the binding site is only partly occupied by water molecules. The structure of the binding site residues, as observed in apo-avidin, is highly complementary to that of the incoming biotin molecule, accounting for prompt and specific recognition. A crystal lattice contact may play a role in stabilizing the conformation of one protein loop, part of the biotin-binding pocket.

  13. Raman spectroscopic and low-temperature calorimetric investigation of the low-energy vibrational dynamics of hen egg-white lysozyme

    NASA Astrophysics Data System (ADS)

    Crupi, C.; D'Angelo, G.; Wanderlingh, U.; Vasi, C.

    2011-05-01

    The low-frequency vibrational dynamics of chicken hen egg-white lysozyme were investigated using Raman spectroscopy and low-temperature calorimetry. An amorphous-like behaviour of low-frequency dynamics was observed in this protein. By using inelastic light scattering data and resorting to a fitting procedure, the low-temperature specific heat trend was theoretically reproduced, confirming that, as in disordered systems, the same low-energy excitations give rise to the observed anomalies in low-frequency vibrational and low-temperature thermal properties. A further study of polarised and depolarised Raman spectra has allowed us to infer information about the symmetry of these modes. The frequency dependence of the light-vibrational coupling constant has also been analysed.

  14. Binding Structures of tri-N-acetyl-β-glucosamine in Hen Egg White Lysozyme using Molecular Dynamics with a Polarizable Force Field

    PubMed Central

    Zhong, Yang; Patel, Sandeep

    2014-01-01

    Lysozyme is a well-studied enzyme that hydrolyzes the β-(1,4)-glycosidic linkage of N-acetyl-β-glucosamine (NAG)n oligomers. The active site of hen egg-white lysozyme (HEWL) is believed to consist of six subsites, A-F that can accommodate six sugar residues. We present studies exploring the use of polarizable force fields in conjunction with all-atom molecular dynamics simulations to analyze binding structures of complexes of lysozyme and NAG trisaccharide, (NAG)3. Molecular dynamics trajectories are applied to analyze structures and conformation of the complex as well as protein-ligand interactions, including the hydrogen-bonding network in the binding pocket. Two binding modes (ABC and BCD) of (NAG)3 are investigated independently based on a fixed-charge model and a polarizable model. We also apply MM-GBSA methods based on molecular dynamics using both non-polarizable and polarizable force fields in order to compute binding free energies. We also study the correlation between RMSD and binding free energies of the wildtype and W62Y mutant; we find that for this prototypical system, approaches using the MD trajectories coupled with implicit solvent models are equivalent for polarizable and fixed-charge models. PMID:23109228

  15. Effect of human serum albumin on the kinetics of 4-methylumbelliferyl-β-D-N-N'-N″ Triacetylchitotrioside hydrolysis catalyzed by hen egg white lysozyme.

    PubMed

    Calderon, Cristian; Abuin, Elsa; Lissi, Eduardo; Montecinos, Rodrigo

    2011-08-01

    The effect of human serum albumin (HSA) addition on the rate of hydrolysis of the synthetic substrate 4-methylumbelliferyl-β-D-N-N'-N″ triacetylchitotrioside ((NAG)(3)-MUF) catalyzed by hen egg white lysozyme has been measured in aqueous solution (citrate buffer 50 mM pH = 5.2 at 37 °C). The presence of HSA leads to a decrease in the rate of the process. The reaction follows a Michaelis-Menten mechanism under all the conditions employed. The catalytic rate constant decreases tenfold when the albumin concentration increases, while the Michaelis constant remains almost constant in the albumin concentration range employed. Ultracentrifugation experiments indicate that the main origin of the observed variation in the kinetic behavior is related to the existence of an HSA-lysozyme interaction. Interestingly, the dependence of the catalytic rate constant with albumin concentration parallels the decrease of the free enzyme concentration. We interpret these results in terms of the presence in the system of two enzyme populations; namely, the HSA associated enzyme which does not react and the free enzyme reacting as in the absence of albumin. Other factors such as association of the substrate to albumin or macromolecular crowding effects due to the presence of albumin are discarded. Theoretical modeling of the structure of the HSA-lysozyme complex shows that the Glu35 and Asp52 residues located in the active site of lysozyme are oriented toward the HSA surface. This conformation will inactivate lysozyme molecules bound to HSA.

  16. The influence of impurities on protein crystallization; the case of lysozyme

    NASA Astrophysics Data System (ADS)

    Lorber, Bernard; Skouri, Mohammed; Munch, Jean-Pierre; Giegé, Richard

    1993-03-01

    Several batches of hen egg white lysozyme were compared on the basis of their biochemical purity and homogeneity as well as of their ability to crystallize in the tetragonal space group in the presence of sodium chloride and sodium acetate at pH 4.5. Trace amounts ( < 2% (w/w)) of detectable protein impurities and inactive lysozyme molecules interfere with the nucleation and crystal growth processes. The presence of impurities significantly decreases solubility of lysozyme preparations. The intentional addition of ovalbumin or bovine serum albumin to pure lysozyme is correlated with an increase of the proportion of twinned crystals. Thus, reproductibility of lysozyme crystallization is dependent upon the presence of impurities.

  17. Dynamic light scattering analysis of solutions from which lysozyme crystals grow

    NASA Technical Reports Server (NTRS)

    Bishop, J. B.; Fredericks, W. J.; Howard, S. B.; Sawada, T.

    1992-01-01

    The variation of the friction factor was measured by photon correlation spectroscopy during isothermal growth of chicken egg white lysozyme crystals. It was observed to initially increase to a maximum as crystals formed, and then to decrease to a constant value. The change in the friction factors was measured as a function of temperature at concentrations of lysozyme varying from one sufficiently low that molecular interactions were undetectable to concentrations near those at which crystals grow in solutions, in all cases the ionic strength was below that required for crystallization.

  18. Direct AFM observations of impurity effects on a lysozyme crystal

    NASA Astrophysics Data System (ADS)

    Nakada, Toshitaka; Sazaki, Gen; Miyashita, Satoru; Durbin, Stephen D.; Komatsu, Hiroshi

    1999-01-01

    Impurity effects on the growth of tetragonal lysozyme crystals have been studied using in situ atomic force microscopy. Commercially available hen egg white lysozyme was characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis with silver staining, and purified by re-crystallization and successive high pressure liquid chromatography. On the (1 1 0) crystal surface, there was no significant difference in morphology between crystals grown in commercial and in purified solutions. On the (1 0 1) surface, however, a large number of small particles were found when the crystal was grown in the commercial solution, while the surface grown in the purified solution was quite smooth. Among the typical residual impurities contained in commercial lysozyme, only covalently bound lysozyme dimer yielded such particles. From measurements of particle separation and an estimate of the critical nucleation size, we infer that the particles reduced the step velocity according to the mechanism described by Cabrera et al. [N. Cabrera, D.A. Vermilyea, in: R.H. Doremus et al. (Eds.), Growth and Perfection of Crystals, 1958, P. 393].

  19. Fluorescence characteristics of kynurenine and N'-formylkynurenine. Their use as reporters of the environment of tryptophan 62 in hen egg-white lysozyme.

    PubMed

    Fukunaga, Y; Katsuragi, Y; Izumi, T; Sakiyama, F

    1982-07-01

    Several kynurenine derivatives including N'-formylkynurenine were prepared in high purity by the ozonization of the corresponding indole compounds. The fluorescence characteristics of those derivatives were examined in connection with the use of their fluorophores as reporters for the local environment of tryptophan in proteins. Kynurenine is a weak emitter of fluorescence, with an emission maximum at 480 nm on excitation at 365 nm. With decreasing solvent polarity, the fluorescence intensity increases logarithmically and the emission maximum shifts to blue. A linear relation between these fluorescence characteristics and solvent polarity exists when the polarity is shown in terms of dielectric constant. N'-Formylkynurenine is a somewhat stronger emitter of fluorescence than kynurenine. The emission maximum is 434 nm on excitation at 325 nm and it shifts to blue in solvents of low polarity. This blue shift is also linear with respect to the dielectric constant of the solvent. Other factors influencing kynurenine fluorescence and N'-formylkynurenine fluorescence examined were neighboring groups, ionic strength, temperature, and protein denaturants. Based on the results of the present investigation, the local environment of tryptophan 62 in hen egg-white lysozyme was examined using Kyn 62-lysozyme.

  20. Relationship Between Equilibrium Forms of Lysozyme Crystals and Precipitant Anions

    NASA Technical Reports Server (NTRS)

    Nadarajah, Arunan

    1996-01-01

    Molecular forces, such as electrostatic, hydrophobic, van der Waals and steric forces, are known to be important in determining protein interactions. These forces are affected by the solution conditions and changing the pH, temperature or the ionic strength of the solution can sharply affect protein interactions. Several investigations of protein crystallization have shown that this process is also strongly dependent on solution conditions. As the ionic strength of the solution is increased, the initially soluble protein may either crystallize or form an amorphous precipitate at high ionic strengths. Studies done on the model protein hen egg white lysozyme have shown that different crystal forms can be easily and reproducibly obtained, depending primarily on the anion used to desolubilize the protein. In this study we employ pyranine to probe the effect of various anions on the water structure. Additionally, lysozyme crystallization was carried out at these conditions and the crystal form was determined by X-ray crystallography. The goal of the study was to understand the physico-chemical basis for the effect of changing the anion concentration on the equilibrium form of lysozyme crystals. It will also verify the hypothesis that the anions, by altering the bulk water structure in the crystallizing solutions, alter the surface energy of the between the crystal faces and the solution and, consequently, the equilibrium form of the crystals.

  1. Locations of Bromide Ions in Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Lim, Kap; Nadarajah, Arunan; Forsythe, Elizabeth L.; Pusey, Marc L.

    1998-01-01

    Anions have been shown to play a dominant role in the crystallization of chicken egg-white lysozyme from salt solutions. Previous studies employing X-ray crystallography have found one chloride ion binding site in the tetragonal crystal form of the protein and four nitrate ion binding sites in the monoclinic form. In this study the anion positions in the tetragonal form were determined from the difference Fourier map obtained from lysozyme crystals grown in bromide and chloride solutions. Five possible anion-binding sites were found in this manner. Some of these sites were in pockets containing basic residues while others were near neutral, but polar, residues. The sole chloride ion binding site found in previous studies was confirmed, while four further sites were found which corresponded to the four binding sites found for nitrate ions in monoclinic crystals. The study suggests that most of the anion-binding sites in lysozyme remain unchanged even when different anions and different crystal forms of lysozyme are employed.

  2. Time-dependent X-ray diffraction studies on urea/hen egg white lysozyme complexes reveal structural changes that indicate onset of denaturation

    PubMed Central

    Raskar, Tushar; Khavnekar, Sagar; Hosur, Madhusoodan

    2016-01-01

    Temporal binding of urea to lysozyme was examined using X-ray diffraction of single crystals of urea/lysozyme complexes prepared by soaking native lysozyme crystals in solutions containing 9 M urea. Four different soak times of 2, 4, 7 and 10 hours were used. The five crystal structures (including the native lysozyme), refined to 1.6 Å resolution, reveal that as the soaking time increased, more and more first-shell water molecules are replaced by urea. The number of hydrogen bonds between urea and the protein is similar to that between protein and water molecules replaced by urea. However, the number of van der Waals contacts to protein from urea is almost double that between the protein and the replaced water. The hydrogen bonding and van der Waals interactions are initially greater with the backbone and later with side chains of charged residues. Urea altered the water-water hydrogen bond network both by replacing water solvating hydrophobic residues and by shortening the first-shell intra-water hydrogen bonds by 0.2 Å. These interaction data suggest that urea uses both ‘direct’ and ‘indirect’ mechanisms to unfold lysozyme. Specific structural changes constitute the first steps in lysozyme unfolding by urea. PMID:27573790

  3. Ruthenium metalation of proteins: the X-ray structure of the complex formed between NAMI-A and hen egg white lysozyme.

    PubMed

    Messori, Luigi; Merlino, Antonello

    2014-04-28

    A crystallographic study of the adduct formed between hen egg white lysozyme (HEWL) and NAMI-A, an established ruthenium(III) anticancer agent in clinical trials, is presented here. The X-ray structure reveals that NAMI-A coordinates the protein, as a naked ruthenium ion, at two distinct sites (namely Asp101 or Asp119) after releasing all its original ligands (DMSO, imidazole and Cl(-)). Structural data of the HEWL/NAMI-A adduct are compared with those previously obtained for the HEWL adduct of AziRu, a NAMI-A analogue bearing a pyridine in place of imidazole. The present results further support the view that NAMI-A exerts its biological effects acting as a classical "prodrug" first undergoing activation and then causing extensive metalation of relevant protein targets. It is also proposed that the original Ru-ligands, although absent in the final adduct, play a major role in directing the ruthenium center to its ultimate anchoring site on the protein surface.

  4. Isolation and quantitation of a minor determinant of hen egg white lysozyme bound to I-Ak by using peptide-specific immunoaffinity.

    PubMed

    Gugasyan, R; Vidavsky, I; Nelson, C A; Gross, M L; Unanue, E R

    1998-12-01

    We report here the identification and quantitation of a minor epitope from hen egg white lysozyme (HEL) isolated from the class II MHC molecule I-Ak of APCs. We isolated and concentrated the peptides from the I-Ak extracts by a peptide-specific mAba, followed by their examination by electrospray mass spectrometry. This initial step improved the isolation, recovery, and quantitation and allowed us to identify 13 different minor peptides using the Ab specific for the HEL tryptic fragment 34-45. The HEL peptides varied on both the amino and carboxy termini. The shortest peptide was a 13-mer (residues 33-45), and the longest peptide was a 19-mer (residues 31-49). The two most abundant were 31-47 (1.3 pmol) and 31-46 (1 pmol), while the least abundant were 31-45 (40 fmol) and 32-45 (4 fmol). Only 0.3% of the total class II molecules were occupied by this family of HEL peptides. The amount of the 31-47 peptide, the predominant member of this series, was 22 times lower than that of 48-62, the major epitope of HEL. The 31-47 peptide bound about 20-fold weaker to I-Ak compared with the dominant 48-62 peptide. Thus, the lower abundance of the minor epitope correlated with its weaker binding strength.

  5. Hot spot computational identification: Application to the complex formed between the hen egg white lysozyme (HEL) and the antibody HyHEL-10

    NASA Astrophysics Data System (ADS)

    Moreira, I. S.; Fernandes, P. A.; Ramos, M. J.

    The definition and comprehension of the hot spots in an interface is a subject of primary interest for a variety of fields, including structure-based drug design. Therefore, to achieve an alanine mutagenesis computational approach that is at the same time accurate and predictive, capable of reproducing the experimental mutagenesis values is a major challenge in the computational biochemistry field. Antibody/protein antigen complexes provide one of the greatest models to study protein-protein recognition process because they have three fundamentally features: specificity, high complementary association and a small epitope restricted to the diminutive complementary determining regions (CDR) region, while the remainder of the antibody is largely invariant. Thus, we apply a computational mutational methodological approach to the study of the antigen-antibody complex formed between the hen egg white lysozyme (HEL) and the antibody HyHEL-10. A critical evaluation that focuses essentially on the limitations and advantages between different computational methods for hot spot determination, as well as between experimental and computational methodological approaches, is presented.

  6. Site-directed mutagenesis of the catalytic residues Asp-52 and Glu-35 of chicken egg white lysozyme.

    PubMed Central

    Malcolm, B A; Rosenberg, S; Corey, M J; Allen, J S; de Baetselier, A; Kirsch, J F

    1989-01-01

    The roles of the catalytic active-site residues aspartic acid-52 and glutamic acid-35 of chicken lysozyme (EC 3.2.1.17) have been investigated by separate in vitro mutagenesis of each residue to its corresponding amide (denoted as D52N and E35Q, respectively). The mutant enzyme D52N exhibits approximately 5% of the wild-type lytic activity against Micrococcus luteus cell walls, while there is no measurable activity associated with E35Q (0.1% +/- 0.1%). The measured dissociation constants for the chitotriose-enzyme complexes were 4.1 microM (D52N) and 13.4 microM (E35Q) vs. 8.6 microM for wild type, indicating that the alterations in catalytic properties may be due in part to binding effects as well as to direct catalytic participation of these residues. The mutant lysozymes have been expressed in and secreted from yeast and obtained at a level of approximately 5 mg per liter of culture by high-salt elution from the cell walls. Images PMID:2563161

  7. Site-directed mutagenesis of the catalytic residues Asp-52 and Glu-35 of chicken egg white lysozyme.

    PubMed

    Malcolm, B A; Rosenberg, S; Corey, M J; Allen, J S; de Baetselier, A; Kirsch, J F

    1989-01-01

    The roles of the catalytic active-site residues aspartic acid-52 and glutamic acid-35 of chicken lysozyme (EC 3.2.1.17) have been investigated by separate in vitro mutagenesis of each residue to its corresponding amide (denoted as D52N and E35Q, respectively). The mutant enzyme D52N exhibits approximately 5% of the wild-type lytic activity against Micrococcus luteus cell walls, while there is no measurable activity associated with E35Q (0.1% +/- 0.1%). The measured dissociation constants for the chitotriose-enzyme complexes were 4.1 microM (D52N) and 13.4 microM (E35Q) vs. 8.6 microM for wild type, indicating that the alterations in catalytic properties may be due in part to binding effects as well as to direct catalytic participation of these residues. The mutant lysozymes have been expressed in and secreted from yeast and obtained at a level of approximately 5 mg per liter of culture by high-salt elution from the cell walls.

  8. Solute transport in orthorhombic lysozyme crystals: a molecular simulation study.

    PubMed

    Malek, Kourosh

    2007-12-01

    Long-time equilibrium molecular dynamics simulations were performed to study the passage of a substrate, L: -arabinose, through nanopores of orthorhombic hen egg white lysozyme crystals. Cross-linked protein crystals (CLPC), as novel biological nanoporous media, consist of an extensive regular matrix of chiral solvent-filled nanopores via which ions and solutes, e.g. sugars and amino acids, travel in and out. We studied the diffusive motion of arabinose inside protein channels. The computed diffusion coefficients within the crystal were orders of magnitudes lower relative to the diffusion coefficient of the solute in water. This study is valuable for understanding the nature of solute-protein interactions and transport phenomena in CLPCs and provides an understanding of biocatalytic and bioseparation processes using CLPC.

  9. Improvement on the crystallization of lysozyme in the presence of hydrophilic ionic liquid.

    PubMed

    Chen, Xuwei; Ji, Yanpei; Wang, Jianhua

    2010-09-01

    The crystallization of lysozyme with hydrophilic ionic liquid 1,3-butylimidazolium chloride (BBimCl) as an additive was investigated with hanging-drop vapor diffusion crystallization protocol. The elevated threshold to super-saturation caused by the increased solubility of lysozyme in the presence of BBimCl and the slower super-saturation process of lysozyme induced by the negligible vapor pressure of BBimCl contributed to a lower super-saturation degree, offering a promoted ambient circumstance for nucleation and providing a controlled velocity for the growth of lysozyme crystal. These eventually offer a prominent promotion to the crystallization of lysozyme, i.e., less crystal polymorphism and precipitation while larger crystals and significantly improved the tolerance to the concomitant impurities or sample matrices for the crystallization of lysozyme. Therefore, the presence of BBimCl enables the direct crystallization of lysozyme from a real complex sample matrix, i.e., egg-white, which opens a promising avenue for the development of protein crystallization methodology with ionic liquids as an additive and offers vast potentials for the practical separation/purification of proteins of interest from complex real sample matrices.

  10. Construction of an artificially randomized IgNAR phage display library: screening of variable regions that bind to hen egg white lysozyme.

    PubMed

    Ohtani, Maki; Hikima, Jun-ichi; Jung, Tae Sung; Kondo, Hidehiro; Hirono, Ikuo; Aoki, Takashi

    2013-02-01

    To develop a multi-antigen-specific immunoglobulin new antigen receptor (IgNAR) variable (V) region phage display library, CDR3 in the V region of IgNAR from banded houndshark (Triakis scyllium) was artificially randomized, and clones specific for hen egg white lysozyme (HEL) were obtained by the biopanning method. The nucleotide sequence of CDR3 in the V region was randomly rearranged by PCR. Randomized CDR3-containing segments of the V region were ligated into T7 phage vector to construct a phage display library and resulted in a phage titer of 3.7 × 10(7) PFU/ml. Forty clones that contained randomized CDR3 inserts were sequenced and shown to have different nucleotide sequences. The HEL-specific clones were screened by biopanning using HEL-coated ELISA plates. After six rounds of screening, nine clones were identified as HEL-specific, eight of which showed a strong affinity to HEL in ELISA compared to a negative control (i.e., empty phage clone). The deduced amino acid sequences of CDR3 from the HEL-specific phage clones fell into four types (I-IV): type I contains a single cysteine residue and type II-IV contain two cysteine residues. These results indicated that the artificially randomized IgNAR library is useful for the rapid isolation of antigen-specific IgNAR V region without immunization of target antigen and showed that it is possible to isolate an antigen-specific IgNAR V region from this library.

  11. Presentation of type B peptide-MHC complexes from hen egg white lysozyme by TLR ligands and type I IFNs independent of H2-DM regulation.

    PubMed

    Strong, Beverly S I; Unanue, Emil R

    2011-09-01

    In APCs, presentation by MHC II molecules of the chemically dominant peptide from the protein hen egg white lysozyme (HEL) generates different conformational isomers of the peptide-MHC II complexes (pMHC). Type B pMHCs are formed in early endosomes from exogenous peptides in the absence of H2-DM, whereas in contrast, type A pMHC complexes are formed from HEL protein in late vesicles after editing by H2-DM. Thus, H2-DM edits off the more unstable pMHC complexes, which are not presented from HEL. In this study, we show that type B pMHC complexes were presented from HEL protein only after stimulation of dendritic cells (DC) with TLR ligands or type I IFN. Type I IFN contributed to most TLR ligand-induced type B pMHC generation, as presentation decreased in DC lacking the receptor for type I IFNs (IFNAR1(-/-)). In contrast, presentation of type A pMHC from HEL and from peptide was minimally affected by TLR ligands. The relative effectiveness of CD8α(+) DC or CD8α(-) DC in presenting type B pMHC complexes varied depending on the TLR ligand used. The mechanisms of generation of type B pMHC from HEL protein with TLR stimulation did not involve H2-DM or release of peptides. DC from H2-DM-deficient mice in the presence of TLR ligands presented type B pMHC. Such DC showed a slight enhancement of HEL catabolism, but peptide release was not evident. Thus, TLR ligands and type I IFN alter the pathways of presentation by MHC II molecules of DC such that type B pMHCs are generated from protein Ag.

  12. Sodium louroyl sarcosinate (sarkosyl) modulate amyloid fibril formation in hen egg white lysozyme (HEWL) at alkaline pH: a molecular insight study.

    PubMed

    Khan, Javed Masood; Khan, Mohd Shahnawaz; Alsenaidy, Mohammad Abdulrahman; Ahmed, Anwar; Sen, Priyankar; Oves, Mohammad; Al-Shabib, Nasser Abdulatif; Khan, Rizwan Hasan

    2017-05-28

    Amyloid fibril formation is responsible for several neurodegenerative diseases and are formed when native proteins misfold and stick together with different interactive forces. In the present study, we have determined the mode of interaction of the anionic surfactant sarkosyl with hen egg white lysozyme (HEWL) [EC No. 3.2.1.17] at two pHs (9.0 and 13.0) and investigated its impact on fibrillogenesis. Our data suggested that sarkosyl is promoting amyloid fibril formation in HEWL at the concentration range between 0.9 and 3.0 mM and no amyloid fibril formation was observed in the concentration range of 3.0-20.0 mM at pH 9.0. The results were confirmed by several biophysical and computational techniques, such as turbidity measurement, dynamic light scattering, Raleigh scattering, ThT fluorescence, intrinsic fluorescence, far-UV CD and atomic force microscopy. Sarkosyl was unable to induce aggregation in HEWL at pH 13.0 as confirmed by turbidity and RLS measurements. HEWL forms larger amyloid fibrils in the presence of 1.6 mM of sarkosyl. The spectroscopic, microscopic and molecular docking data suggest that the negatively charged carboxylate group and 12-carbon hydrophobic tail of sarkosyl stimulate amyloid fibril formation in HEWL via electrostatic and hydrophobic interaction. This study leads to new insight into the process of suppression of fibrillogenesis in HEWL which can be prevented by designing ligands that can retard the electrostatic and hydrophobic interaction between sarkosyl and HEWL.

  13. Anti-fibrillation propensity of a flavonoid baicalein against the fibrils of hen egg white lysozyme: potential therapeutics for lysozyme amyloidosis.

    PubMed

    Fazili, Naveed Ahmad; Bhat, Imtiyaz Ahmad; Bhat, Waseem Feeroze; Naeem, Aabgeena

    2016-10-01

    More than 20 human diseases involve the fibrillation of a specific protein/peptide which forms pathological deposits at various sites. Hereditary lysozyme amyloidosis is a systemic disorder which mostly affects liver, spleen and kidney. This conformational disorder is featured by lysozyme fibril formation. In vivo lysozyme fibrillation was simulated under in vitro conditions using a strong denaturant GdHCl at 3 M concentration. Sharp decline in the ANS fluorescence intensity compared to the partially unfolded states, almost 20-fold increase in ThT fluorescence intensity, increase in absorbance at 450 nm suggesting turbidity, negative ellipticity peak in the far-UVCD at 217 nm, red shift of 50 nm compared to the native state in Congo red assay and appearance of a network of long rope-like fibrils in transmission electron microscope (TEM) analysis suggested HEWL fibrillation. Anti-fibrillation potency of baicalein against the preformed fibrils of HEWL was investigated following ThT assay in which there was a dose-dependent decrease in ThT fluorescence intensity compared to the fibrillar state of HEWL with the maximum effect observed at 150-μM baicalein concentration, loss of negative ellipticity peak in the far-UVCD region, dip in the Rayleigh scattering intensity and absorbance at 350 and 450 nm, respectively, together with a reduction in the density of fibrillar structure in TEM imaging. Thus, it could be suggested that baicalein could prove to be a positive therapeutics for hereditary human lysozyme amyloidosis.

  14. Kinetics of supersaturation decay in the crystallization of lysozyme

    NASA Astrophysics Data System (ADS)

    Kim, Y. W.; Barlow, D. A.; Caraballo, K. G.; Baird, J. K.

    The molecular architecture of proteins can be determined by analysing the X-ray diffraction patterns of their crystals. The technology of X-ray crystallography has reached the point, however, where the determination of the structure of a given crystal is controlled by the limited availability of the crystals themselves. Proteins can often be crystallized from pH buffered aqueous solutions of strong electrolytes. When dissolved protein in solution is more stable than crystalline protein, the appearance of crystals can be said to be under thermodynamic control. If, on the other hand, the crystals are more stable than the dissolved protein, and still crystals are slow to appear, the crystallization can be said to be under kinetic control. Using dilatometry, we have followed the rate of decay of the protein supersaturation in crystallizing solutions of chicken egg-white lysozyme under conditions of kinetic control. We have found that the rate of decay of the supersaturation is first order in the supersaturation and that the rate constant is independent of the initial protein concentration, but increases with increasing pH, decreasing temperature, and with increasing concentrations of sodium chloride and buffer salt. We correlate these observed trends in the rate constant with related trends in the solubility and surface charge density of the crystals. We conclude that the rate constant for supersaturation decay is inversely proportional to the protein solubility.

  15. Eu(III) luminescence and tryptophan fluorescence spectroscopy as a tool for understanding interactions between hen egg white lysozyme and metal-substituted Keggin type polyoxometalates.

    PubMed

    Goovaerts, Vincent; Stroobants, Karen; Absillis, Gregory; Parac-Vogt, Tatjana N

    2015-09-01

    The interaction between the lacunary Keggin K7PW11O39, the Eu(III)-substituted Keggin K4EuPW11O39 (Eu-Keggin) and the Ce(IV)-substituted Keggin [Me2NH2]10[Ce(PW11O39)2] (Ce-Keggin) polyoxometalates (POMs), and the proteins hen egg white lysozyme (HEWL) and the structurally homologous α-lactalbumin (α-LA) was studied by steady state and time-resolved Eu(III) luminescence and tryptophan (Trp) fluorescence spectroscopy. The excitation spectrum of Eu-Keggin at lower concentrations ([Eu-Keggin]<100 μM) is dominated by a ligand-to-metal charge transfer band (291 nm). For higher concentrations ([Eu-Keggin]>250 μM) the (5)L6←(7)F0 transition becomes the most intense peak. In the absence of protein, the number of coordinated water molecules to the Eu(III) centre of Eu-Keggin is 4, indicating a 1:1 Eu(III):POM species. In the presence of phosphate buffer this number linearly decreases from 4 to 2 upon increasing phosphate buffer concentration. Upon addition of HEWL, there are no coordinated water molecules, suggesting interaction between Eu-Keggin and the protein surface. In addition, this interaction results in a more than threefold increase of the hypersensitive (5)D0→(7)F2 transition for the Eu-Keggin/HEWL mixture. The calculated association constant amounted to 2.2×10(2) M(-1) for the Eu-Keggin/HEWL complex. Tryptophan fluorescence quenching studies were performed and the quenching constants were calculated to be 9.1×10(4) M(-1), 4×10(4) M(-1) and 4.1×10(5) M(-1) for the lacunary Keggin/HEWL, the Eu-Keggin/HEWL and the Ce-Keggin/HEWL complexes, respectively. The number of bound POM molecules to HEWL was 1.04 for the lacunary Keggin POM, and 1.0 for Eu-Keggin, indicating the formation of a 1:1 POM/HEWL complex. The value of 1.38 for Ce-Keggin might indicate a transition from 1:1 to 1:2 interaction.

  16. The binding of platinum hexahalides (Cl, Br and I) to hen egg-white lysozyme and the chemical transformation of the PtI{sub 6} octahedral complex to a PtI{sub 3} moiety bound to His15

    SciTech Connect

    Tanley, Simon W. M.; Starkey, Laurina-Victoria; Lamplough, Lucinda; Kaenket, Surasek; Helliwell, John R.

    2014-08-29

    The platinum hexahalides have an octahedral arrangement of six halogen atoms bound to a Pt centre, thus having an octahedral shape that could prove to be useful in interpreting poor electron-density maps. In a detailed characterization, PtI{sub 6} chemically transformed to a square-planar PtI{sub 3} complex bound to the N{sup δ} atom of His15 of HEWL was also observed, which was not observed for PtBr{sub 6} or PtCl{sub 6}. This study examines the binding and chemical stability of the platinum hexahalides K{sub 2}PtCl{sub 6}, K{sub 2}PtBr{sub 6} and K{sub 2}PtI{sub 6} when soaked into pre-grown hen egg-white lysozyme (HEWL) crystals as the protein host. Direct comparison of the iodo complex with the chloro and bromo complexes shows that the iodo complex is partly chemically transformed to a square-planar PtI{sub 3} complex bound to the N{sup δ} atom of His15, a chemical behaviour that is not exhibited by the chloro or bromo complexes. Each complex does, however, bind to HEWL in its octahedral form either at one site (PtI{sub 6}) or at two sites (PtBr{sub 6} and PtCl{sub 6}). As heavy-atom derivatives of a protein, the octahedral shape of the hexahalides could be helpful in cases of difficult-to-interpret electron-density maps as they would be recognisable ‘objects’.

  17. The influence of a homologous protein impurity on lysozyme crystal growth

    NASA Astrophysics Data System (ADS)

    Bhamidi, V.; Hanson, B. L.; Edmundson, A.; Skrzypczak-Jankun, E.; Schall, C.

    1999-08-01

    The effect of a structurally similar protein impurity, turkey ( Meleagris gallopavo) egg-white lysozyme (TEWL) on crystallization of the host protein, hen-egg-white lysozyme (HEWL) from chicken ( Gallus gallus) was studied under varying impurity and host solution concentrations. A change in morphology is observed when crystals of HEWL are grown in the presence of TEWL. As the relative amount of TEWL increases, HEWL crystals become more elongated in the [0 0 1] direction. Elongation is more pronounced in samples with lower initial concentrations of HEWL than in samples with higher initial concentrations. This behavior is consistent with that of impurities in small molecule crystal growth and with predictions based on the Kubota-Mullin model. The observed effect on the growth process can be attributed to the apparent inhibition in the [1 1 0] crystal growth direction of HEWL by TEWL since slowly growing faces become dominant faces in crystal growth. Incorporation of TEWL into HEWL crystals grown in a sitting drop batch method was measured using cation exchange chromatography. The results indicate that impurity incorporation is associated with increasing supersaturation. This conclusion is consistent with a kinetically controlled process of impurity incorporation. The observed impurity effects are most probably associated with the interchange of glutamine in position 41 of HEWL by histidine in TEWL.

  18. Metal-assisted and microwave accelerated-evaporative crystallization: Application to lysozyme protein

    NASA Astrophysics Data System (ADS)

    Mauge-Lewis, Kevin

    In response to the growing need for new crystallization techniques that afford for rapid processing times along with control over crystal size and distribution, the Aslan Research Group has recently demonstrated the use of Metal-Assisted and Microwave-Accelerated Evaporative Crystallization MA-MAEC technique in conjunction with metal nanoparticles and nanostructures for the crystallization of amino acids and organic small molecules. In this study, we have employed the newly developed MA-MAEC technique to the accelerated crystallization of chicken egg-white lysozyme on circular crystallization platforms in order to demonstrate the proof-of-principle application of the method for protein crystallization. The circular crystallization platforms are constructed in-house from poly (methyl methacrylate) (PMMA) and silver nanoparticle films (SNFs), indium tin oxide (ITO) and iron nano-columns. In this study, we prove the MA-MAEC method to be a more effective technique in the rapid crystallization of macromolecules in comparison to other conventional methods. Furthermore, we demonstrate the use of the novel iCrystal system, which incorporates the use of continuous, low wattage heating to facilitate the rapid crystallization of the lysozyme while still retaining excellent crystal quality. With the incorporation of the iCrystal system, we observe crystallization times that are even shorter than those produced by the MA-MAEC technique using a conventional microwave oven in addition to significantly improved crystal quality.

  19. Molecular dynamics simulation of triclinic lysozyme in a crystal lattice.

    PubMed

    Janowski, Pawel A; Liu, Chunmei; Deckman, Jason; Case, David A

    2016-01-01

    Molecular dynamics simulations of crystals can enlighten interpretation of experimental X-ray crystallography data and elucidate structural dynamics and heterogeneity in biomolecular crystals. Furthermore, because of the direct comparison against experimental data, they can inform assessment of molecular dynamics methods and force fields. We present microsecond scale results for triclinic hen egg-white lysozyme in a supercell consisting of 12 independent unit cells using four contemporary force fields (Amber ff99SB, ff14ipq, ff14SB, and CHARMM 36) in crystalline and solvated states (for ff14SB only). We find the crystal simulations consistent across multiple runs of the same force field and robust to various solvent equilibration schemes. However, convergence is slow compared with solvent simulations. All the tested force fields reproduce experimental structural and dynamic properties well, but Amber ff14SB maintains structure and reproduces fluctuations closest to the experimental model: its average backbone structure differs from the deposited structure by 0.37Å; by contrast, the average backbone structure in solution differs from the deposited by 0.65Å. All the simulations are affected by a small progressive deterioration of the crystal lattice, presumably due to imperfect modeling of hydrogen bonding and other crystal contact interactions; this artifact is smallest in ff14SB, with average lattice positions deviating by 0.20Å from ideal. Side-chain disorder is surprisingly low with fewer than 30% of the nonglycine or alanine residues exhibiting significantly populated alternate rotamers. Our results provide helpful insight into the methodology of biomolecular crystal simulations and indicate directions for future work to obtain more accurate energy models for molecular dynamics. © 2015 The Protein Society.

  20. X-ray studies of water in crystals of lysozyme.

    PubMed

    Blake, C C; Pulford, W C; Artymiuk, P J

    1983-07-05

    The structure of the water in crystals of human and tortoise egg-white lysozyme, which contain about 350 and about 650 water molecules per protein molecule, respectively, has been studied by X-ray refinement at high resolution. In the crystals, 60 to 80% of the total water is represented by featureless electron density filling the crystal interstices, which can be modelled to a first approximation by a single-valued, smoothed electron density continuum. The number of ordered water molecules detected is 140 for human and 128 for tortoise. These ordered water molecules are either hydrogen-bonded to protein polar groups, or hydrogen-bonded to other bound water molecules, to form a single layer around the protein molecules. Estimates of the proportion of the protein surface covered by ordered water molecules have been obtained by contact area calculations, giving a lower limit of approximately 45%, an upper limit of approximately 85% and a "best" estimate of approximately 75%. Examination of the structure of the ordered water layer shows that it is probably not any other single regular structure, and suggests that there is a local ordering controlled by the nature of the protein surface. Nearly all exposed protein polar atoms interact with ordered water molecules with, on average, protein oxygen atoms interacting with twice as many water molecules as protein nitrogen atoms. Analysis of the relation of the B-factors of the bound water molecules to the B-factors of the protein atoms to which they are bound, suggests that the 33 to 35 water molecules that make multiple hydrogen bonds with the lysozyme molecules are strongly bound, and that the 95 to 105 waters that make single hydrogen bonds to the protein or other bound water molecules are more weakly bound. Comparison of the location of the bound water molecules in the two lysozymes shows that most of the multiply bound water molecules occupy similar binding sites, suggesting that crystal packing or the presence of salt

  1. Crystallization of lysozyme from lysozyme - ovalbumin mixtures: Separation potential and crystal growth kinetics

    NASA Astrophysics Data System (ADS)

    Maosoongnern, Somchai; Flood, Chalongsri; Flood, Adrian E.; Ulrich, Joachim

    2017-07-01

    Lysozyme was successfully separated from mixtures of lysozyme and ovalbumin by crystallization. The purity of the lysozyme product is more than 98%, the remaining activity is greater than 97%, and the yields of the crystal products were greater than 80%. The experimental conditions used were varied to study the effect of the operating parameters on the growth kinetics of lysozyme crystal and the separation ability of the process. The growth rates of lysozyme are second order with respect to the relative supersaturation. Therefore the growth kinetics of the crystallization process is controlled by the surface integration mechanism. The calculated growth rate constants were 5.4×10-6 cm/h and 2.5×10-6 cm/h for the crystallization process at 20 °C and 10 °C, respectively. There is no significant effect of the ovalbumin impurity up to the concentration of 67.5% ovalbumin (based on total protein) on the growth kinetics of lysozyme. Changing the NaCl concentration from 4% to 3% had no effect on the growth kinetics of lysozyme, although this does change the solubility and therefore the yield. The calculated activation energy was 53.08 kJ/mol which supports the hypothesis that the crystallization process is controlled by the surface integration mechanism.

  2. The Effect of Solution Conditions on the Nucleation Kinetics of Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Baird, James K.; Pusey, Marc L.

    1998-01-01

    An understanding of protein crystal nucleation rates and the effect of solution conditions upon them, is fundamental to the preparation of protein crystals of the desired size and shape for X-ray diffraction analysis. The ability to predict the effect of supersaturation, temperature, pH and precipitant concentration on the number and size of crystals formed is of great benefit in the pursuit of protein structure analysis. In this study we experimentally examine the effect of supersaturation, temperature, pH and sodium chloride concentration on the nucleation rate of tetragonal chicken egg white lysozyme crystals. In order to do this batch crystallization plates were prepared at given solution concentrations and incubated at three different temperatures over the period of one week. The number of crystals per well with their size and dimensions were recorded and correlated against solution conditions. Duplicate experiments indicate the reproducibility of the technique. Although it is well known that crystal numbers increase with increasing supersaturation, large changes in crystal number were also correlated against solution conditions of temperature, pH and salt concentration over the same supersaturation ranges. Analysis of these results enhance our understanding of the effect of solution conditions such as the dramatic effect that small changes in charge and ionic strength can have on the number of tetragonal lysozyme crystals that form and grow in solution.

  3. The Effect of Solution Conditions on the Nucleation Kinetics of Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Baird, James K.; Pusey, Marc L.

    1998-01-01

    An understanding of protein crystal nucleation rates and the effect of solution conditions upon them, is fundamental to the preparation of protein crystals of the desired size and shape for X-ray diffraction analysis. The ability to predict the effect of supersaturation, temperature, pH and precipitant concentration on the number and size of crystals formed is of great benefit in the pursuit of protein structure analysis. In this study we experimentally examine the effect of supersaturation, temperature, pH and sodium chloride concentration on the nucleation rate of tetragonal chicken egg white lysozyme crystals. In order to do this batch crystallization plates were prepared at given solution concentrations and incubated at three different temperatures over the period of one week. The number of crystals per well with their size and dimensions were recorded and correlated against solution conditions. Duplicate experiments indicate the reproducibility of the technique. Although it is well known that crystal numbers increase with increasing supersaturation, large changes in crystal number were also correlated against solution conditions of temperature, pH and salt concentration over the same supersaturation ranges. Analysis of these results enhance our understanding of the effect of solution conditions such as the dramatic effect that small changes in charge and ionic strength can have on the number of tetragonal lysozyme crystals that form and grow in solution.

  4. Fine specificity of regulatory T cells. II. Suppressor and helper T cells are induced by different regions of hen egg-white lysozyme in a genetically nonresponder mouse strain.

    PubMed

    Adorini, L; Harvey, M A; Miller, A; Sercarz, E E

    1979-08-01

    We have examined the ability of two purified peptide fragments derived from hen (chicken) egg-white lysozyme (HEL); N-terminal, Co-terminal peptide (a.a. 1--17:cys 6--cys 127:120--129) and mixed disulfide LII peptide (LII) (a.a. 13--105) to induce antigen-specific suppression or help in B10 (H-2b) nonresponder and B10.A (H-2a) responder mice. An anti-HEL primary in vitro antibody response can be obtained in either strain by stimulation with HEL coupled to erythrocytes (RBC). Preimmunization with HEL-complete Freund's adjuvant-(CFA) or N-C-CFA-induced suppression of the anti-HEL PFC response to HEL-RBC in spleen cell cultures from B10 mice, whereas helper activity was demonstrated in cultures from B10.A mice similarly immunized. LII-CFA priming elicited helper cells in both C57BL/10 Sn (B10) and B10.A/SgSn (B10.A) mice. The genetic nonresponsiveness of B10 mice to HEL can therefore be attributed to the activation of suppressor T cells by a limited portion of the molecule (e.g., N-C) which prevent the potential response directed against other epitopes on the same molecule (e.g., LII). One manifestation of major histocompatibility complex gene activity appears to be the intramolecular selection of different antigenic determinants leading to activation of functionally different T-cell subpopulations.

  5. Elasticity and Strength of Biomacromolecular Crystals: Lysozyme

    NASA Technical Reports Server (NTRS)

    Holmes, A. M.; Witherow, W. K.; Chen, L. Q.; Chernov, A. A.

    2003-01-01

    The static Young modulus, E = 0.1 to 0.5 GPa, the crystal critical strength (sigma(sub c)) and its ratio to E,sigma(sub c)/E is approximately 10(exp 3), were measured for the first time for non cross-linked lysozyme crystals in solution. By using a triple point bending apparatus, we also demonstrated that the crystals were purely elastic. Softness of protein crystals built of hard macromolecules (26 GPa for lysozyme) is explained by the large size of the macromolecules as compared to the range of intermolecular forces and by the weakness of intermolecular bonds as compared to the peptide bond strength. The relatively large reported dynamic elastic moduli (approximately 8 GPa) from resonance light scattering should come from averaging over the moduli of intracrystalline water and intra- and intermolecular bonding.

  6. Elasticity and Strength of Biomacromolecular Crystals: Lysozyme

    NASA Technical Reports Server (NTRS)

    Holmes, A. M.; Witherow, W. K.; Chen, L. Q.; Chernov, A. A.

    2003-01-01

    The static Young modulus, E = 0.1 to 0.5 GPa, the crystal critical strength (sigma(sub c)) and its ratio to E,sigma(sub c)/E is approximately 10(exp 3), were measured for the first time for non cross-linked lysozyme crystals in solution. By using a triple point bending apparatus, we also demonstrated that the crystals were purely elastic. Softness of protein crystals built of hard macromolecules (26 GPa for lysozyme) is explained by the large size of the macromolecules as compared to the range of intermolecular forces and by the weakness of intermolecular bonds as compared to the peptide bond strength. The relatively large reported dynamic elastic moduli (approximately 8 GPa) from resonance light scattering should come from averaging over the moduli of intracrystalline water and intra- and intermolecular bonding.

  7. AFM Studies of Salt Concentration Effects on the (110) Surface Structure of Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Pusey, Marc Lee; Gorti, Sridhar; Forsythe, Elizabeth; Konnert, John

    2002-01-01

    Previous high resolution AFM studies of the (110) surface of tetragonal chicken egg white lysozyme crystals had shown that only one of two possible molecular surfaces is present, those constituting the completed 43 helices. These suggested that the crystal growth process was by the solution-phase assembly of the growth units, which then attach to the surface. However, the best fit for the imaged surfaces, vs. those predicted based upon the bulk crystallographic coordinates, were obtained when the packing about the 43 helices was "tightened up", while maintaining the underlying crystallographic unit cell spacing. This results in a widening of the gap between adjacent helices, and the top- most layer(s) may no longer be in contact. We postulated that the tightened packing about the helices is a result of the high salt concentrations in the bulk solution, used to crystallize the protein, driving hydrophobic interactions. Once the crystal surface is sufficiently buried by subsequent growth layers the ratio of salt to protein molecules decreases and the helices relax to their bulk crystallographic coordinates. The crystal surface helix structure is thus a reflection of the solution structure, and the tightness of the packing about the 43 helices would be a function of the bulk salt concentration. AFM images of the (110) surface of tetragonal lysozyme crystals grown under low (2%) and high (5%) NaCl concentrations reveal differences in the packing about the 43 helices consistent with the above proposal.

  8. AFM Studies of Salt Concentration Effects on the (110) Surface Structure of Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Pusey, Marc Lee; Gorti, Sridhar; Forsythe, Elizabeth; Konnert, John

    2002-01-01

    Previous high resolution AFM studies of the (110) surface of tetragonal chicken egg white lysozyme crystals had shown that only one of two possible molecular surfaces is present, those constituting the completed 43 helices. These suggested that the crystal growth process was by the solution-phase assembly of the growth units, which then attach to the surface. However, the best fit for the imaged surfaces, vs. those predicted based upon the bulk crystallographic coordinates, were obtained when the packing about the 43 helices was "tightened up", while maintaining the underlying crystallographic unit cell spacing. This results in a widening of the gap between adjacent helices, and the top- most layer(s) may no longer be in contact. We postulated that the tightened packing about the helices is a result of the high salt concentrations in the bulk solution, used to crystallize the protein, driving hydrophobic interactions. Once the crystal surface is sufficiently buried by subsequent growth layers the ratio of salt to protein molecules decreases and the helices relax to their bulk crystallographic coordinates. The crystal surface helix structure is thus a reflection of the solution structure, and the tightness of the packing about the 43 helices would be a function of the bulk salt concentration. AFM images of the (110) surface of tetragonal lysozyme crystals grown under low (2%) and high (5%) NaCl concentrations reveal differences in the packing about the 43 helices consistent with the above proposal.

  9. Slow molecular dynamics close to crystal surfaces during crystallization of a protein lysozyme studied by fluorescence correlation spectroscopy

    NASA Astrophysics Data System (ADS)

    Tanaka, S.

    2010-09-01

    Fluorescence correlation spectroscopy (FCS) was applied to the crystallization processes of egg-white lysozyme. Utilizing FCS's high spatial resolution of about the laser wavelength used, the molecular dynamics close to crystal surfaces was investigated for both tetragonal single crystals and needlelike spherulites. When the FCS measurement was done at the point closer than 1 μm to the surface of a tetragonal single crystal, the relaxation time became several times longer than that in bulk solution, but the fluorescence intensity (thus concentration) was similar to that observed in bulk solution. On the other hand, the peculiar slow dynamics (a few orders of magnitude slower than that in bulk solution) of concentrated liquid states of the lysozyme molecules was observed in needlelike spherulites. We suggested that these observations could be explained by the formation of softly connected aggregates accumulating around the needlelike crystals, which could cause the instability of the crystal growth and thus the formation of spherulites. These aggregates gradually disappeared as the crystallization further proceeded. After the disappearance of the aggregates, the spherulites started to mature.

  10. Lysozyme crystallization rates controlled by anomalous fluctuations

    NASA Astrophysics Data System (ADS)

    Pullara, F.; Emanuele, A.; Palma-Vittorelli, M. B.; Palma, M. U.

    2005-02-01

    Nucleation of protein aggregates and crystals is a process activated by statistical fluctuations of concentration. Nucleation rates may change by several orders of magnitude upon apparently minor changes in the multidimensional space of parameters (temperature, pH, protein concentration, salt type and concentrations, additives). We use available data on hen egg lysozyme crystal induction times in different solution conditions. We measure by static and dynamic light scattering the amplitudes and lifetimes of anomalously ample and long-lived fluctuations occurring in proximity of the liquid-liquid demixing region of the given lysozyme solutions. This allows determining the related spinodal temperatures TS and ɛ=(T-TS)/TS. Experimental induction times appear to depend solely upon ɛ over many orders of magnitude. This is quantitatively accounted for in terms of an extended two-stage nucleation model, which jointly takes into consideration amplitudes, lifetimes and scaling properties of anomalous fluctuations. One and the same relation describes quantitatively and equally well the present case of lysozyme crystallization (the best studied case of protein crystallization) and that of sickle hemoglobin fiber formation (the best studied case of protein fiber formation). Comparison with other recent models shows that taking into account lifetimes of anomalous fluctuations allows capturing the essence of the observed behavior.

  11. Three-dimensional structure of the tetragonal crystal form of egg-white avidin in its functional complex with biotin at 2.7 A resolution.

    PubMed

    Pugliese, L; Coda, A; Malcovati, M; Bolognesi, M

    1993-06-05

    The three-dimensional structure of hen egg-white avidin, crystallized in a tetragonal crystal form, has been solved at 2.7 A resolution by molecular replacement methods. After refinement the crystallographic R-factor is 16.8%, for the 7255 reflections in the 10.0 to 2.7 A resolution range. The asymmetric unit contains two avidin polypeptide chains (M(r) 2 x 15,600), which build up the functional tetramer through a crystallographic 2-fold axis parallel to the c unit cell direction. The avidin tetramer has almost exact 222 molecular symmetry; the three possible dimers display quite distinct packing interfaces. Each protomer is organized in an eight-stranded antiparallel orthogonal beta-barrel, with extended loop regions. The avidin binding site within each promoter is located in a deep pocket, at the center of the barrel, displaying both hydrophobic and polar residues for recognition of the tightly bound vitamin. Two Trp residues, Trp70 and Trp97, and Phe79 are in close contact with biotin. Moreover, the binding pocket is partly closed in its outer rim by residue Trp110 of a neighboring subunit. Once bound, biotin is almost completely buried in the protein core, with the exception of the valeryl side-chain carboxylate group which is exposed to solvent, hydrogen bonds to residues Ala39, Thr40 and Ser75, and triggers the formation of a network of hydrogen bonded water molecules. Modeling of synthetic biotin analogues allows us to rationalize functional data available for the binding of these compounds, and to analyze them in terms of biotin recognition mechanism. Hen egg-white avidin shows clear structural homology to streptavidin, from Streptomyces avidinii, but significant deviations can be observed in some regions.

  12. Transport phenomena in the crystallization of lysozyme by osmotic dewatering and liquid-liquid diffusion in low gravity

    NASA Technical Reports Server (NTRS)

    Todd, Paul; Sportiello, Michael G.; Gregory, Derek; Cassanto, John M.; Alvarado, Ulises A.; Ostroff, Robert; Korszun, Z. R.

    1993-01-01

    Two methods of protein crystallization, osmotic dewatering and liquid-liquid diffusion, like the vapor diffusion (hanging-drop and sessile-drop) methods allow a gradual approach to supersaturation conditions. The crystallization of hen egg-white lysozyme, an extensively characterized protein crystal, in the presence of sodium chloride was used as an experimental model with which to compare these two methods in low gravity and in the laboratory. Comparisons of crystal growth rates by the two methods under the two conditions have, to date, indicated that the rate of crystal growth by osmotic dewatering is nearly the same in low gravity and on the ground, while much faster crystal growth rates can be achieved by the liquid-liquid diffusion method in low gravity.

  13. Transport phenomena in the crystallization of lysozyme by osmotic dewatering and liquid-liquid diffusion in low gravity

    NASA Technical Reports Server (NTRS)

    Todd, Paul; Sportiello, Michael G.; Gregory, Derek; Cassanto, John M.; Alvarado, Ulises A.; Ostroff, Robert; Korszun, Z. R.

    1993-01-01

    Two methods of protein crystallization, osmotic dewatering and liquid-liquid diffusion, like the vapor diffusion (hanging-drop and sessile-drop) methods allow a gradual approach to supersaturation conditions. The crystallization of hen egg-white lysozyme, an extensively characterized protein crystal, in the presence of sodium chloride was used as an experimental model with which to compare these two methods in low gravity and in the laboratory. Comparisons of crystal growth rates by the two methods under the two conditions have, to date, indicated that the rate of crystal growth by osmotic dewatering is nearly the same in low gravity and on the ground, while much faster crystal growth rates can be achieved by the liquid-liquid diffusion method in low gravity.

  14. Crystal structure of a shark single-domain antibody V region in complex with lysozyme.

    PubMed

    Stanfield, Robyn L; Dooley, Helen; Flajnik, Martin F; Wilson, Ian A

    2004-09-17

    Cartilaginous fish are the phylogenetically oldest living organisms known to possess components of the vertebrate adaptive immune system. Key to their immune response are heavy-chain, homodimeric immunoglobulins called new antigen receptors (IgNARs), in which the variable (V) domains recognize antigens with only a single immunoglobulin domain, akin to camelid heavy-chain V domains. The 1.45 angstrom resolution crystal structure of the type I IgNAR V domain in complex with hen egg-white lysozyme (HEL) reveals a minimal antigen-binding domain that contains only two of the three conventional complementarity-determining regions but still binds HEL with nanomolar affinity by means of a binding interface comparable in size to conventional antibodies.

  15. Tetragonal Lysozyme, From Monomer to Crystal

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    The data now leads us to a comprehensive model for the process by which tetragonal lysozyme crystals are nucleated and subsequently grow. Lysozyme is typically desolubilized by addition of ionic salts. The salt anions bind to basic and other sites on the protein and promote protein-protein interactions, i.e., initiate the nucleation self assembly process. Formation of protein-protein interactions occurs at the expense of the protein-anion interactions, with the anions being released to the solution. The association follows a defined pattern, forming the "head to side" interactions of the crystal 4(3) helix. The presence of the high salt also promotes hydrophobic interactions between the protein molecules, further tightening their interaction. The solute assembly process persists after crystal nucleation, and the 4(3) helical structures form the subsequent growth units. AFM measurements show that the growth units follow the dimensions of these helices, and that those on the surface are more compact about the c-axis than in the bulk crystal, with adjacent helices riot being in contact. This further supports the role of hydrophobic interactions, as the surface is still in contact with the bulk solution. Once buried within the crystal the protein:salt ratio radically changes and the hydrophobic interactions relax to those measured crystallographically. Thus the crystal growth process recapitulates the initial stages of the nucleation process, and the two seamlessly merge. Experimental evidence, based upon face growth rate, AFM, and fluorescence energy transfer data, for a postulated model of the nucleation of tetragonal lysozyme crystals and how it transitions into crystal growth will be presented.

  16. In situ study of the state of lysozyme molecules at the very early stage of the crystallization process by small-angle X-ray scattering

    NASA Astrophysics Data System (ADS)

    Marchenkova, M. A.; Volkov, V. V.; Blagov, A. E.; Dyakova, Yu. A.; Ilina, K. B.; Tereschenko, E. Yu.; Timofeev, V. I.; Pisarevsky, Yu. V.; Kovalchuk, M. V.

    2016-01-01

    The molecular state of hen egg white lysozyme in solution has been studied by small-angle X-ray scattering (SAXS) combined with molecular simulation. The addition of a precipitant is shown to change the state of the protein molecules in solution. The SAXS data were processed using the constructed models of different oligomers. Under the crystallization conditions, lysozyme is shown to be present in solution as monomers (96.0%), dimers (1.9%), and octamers (2.1%), whereas tetramers and hexamers are not found. The modeled structure of the octamer is not consistent with the commonly accepted unit cell containing eight lysozyme molecules. Meanwhile, the modeled octamers are well-fitted to the crystal structure and can serve as building blocks in the course of crystal growth.

  17. Co-extraction of egg white proteins using ion-exchange chromatography from ovomucin-removed egg whites.

    PubMed

    Omana, Dileep A; Wang, Jiapei; Wu, Jianping

    2010-07-01

    Efficient isolation of egg white components is desired due to its potential uses. Existing methods mainly targeted on one specific protein; an attempt has been made in the study to co-extract all the valuable egg white components in a continuous process. Ovomucin was first isolated by our newly developed two-step method; the resultant supernatant obtained after ovomucin isolation was used as the starting material for ion-exchange chromatography. Anion-exchange chromatography of 100 mM supernatant yielded a flow-through fraction and three other fractions representing ovotransferrin, ovalbumin and flavoproteins. The flow-through fraction was further separated into ovoinhibitor, lysozyme, ovotransferrin and an unidentified fraction which represents 4% of total egg white proteins. Chromatographic separation of 500 mM supernatant resulted in fractions representing lysozyme, ovotransferrin and ovalbumin. This co-extraction protocol represents a global recovery of 71.0% proteins.

  18. Egg White Phantoms for HIFU

    SciTech Connect

    Divkovic, Gabriela; Jenne, Juergen W.

    2005-03-28

    We used fresh egg white and polyacrylamide to create a transparent tissue mimicking phantom. Heating of phantoms by HIFU leads to egg white protein denaturation and creation of visible white lesions. We measured the acoustical and thermal properties and investigated the possibility to use such phantoms to study the lesion formation during the HIFU therapy.

  19. The effect of protein-precipitant interfaces and applied shear on the nucleation and growth of lysozyme crystals.

    PubMed

    Reis, Nuno M; Chirgadze, Dimitri Y; Blundell, Tom L; Mackley, Malcolm R

    2009-11-01

    This paper is concerned with the effect of protein-precipitant interfaces and externally applied shear on the nucleation and growth kinetics of hen egg-white lysozyme crystals. The early stages of microbatch crystallization of lysozyme were explored using both optical and confocal fluorescence microscopy imaging. Initially, an antisolvent (precipitant) was added to a protein drop and the optical development of the protein-precipitant interface was followed with time. In the presence of the water-soluble polymer poly(ethylene glycol) (PEG) a sharp interface was observed to form immediately within the drop, giving an initial clear separation between the lighter protein solution and the heavier precipitant. This interface subsequently became unstable and quickly developed within a few seconds into several unstable 'fingers' that represented regions of high concentration-gradient interfaces. Confocal microscopy demonstrated that the subsequent nucleation of protein crystals occurred preferentially in the region of these interfaces. Additional experiments using an optical shearing system demonstrated that oscillatory shear significantly decreased nucleation rates whilst extending the growth period of the lysozyme crystals. The experimental observations relating to both nucleation and growth have relevance in developing efficient and reliable protocols for general crystallization procedures and the controlled crystallization of single large high-quality protein crystals for use in X-ray crystallography.

  20. The Effects of Thermal History on Nucleation of Tetragonal Lysozyme Crystals, or Hot Protein and Cold Nucleation

    NASA Technical Reports Server (NTRS)

    Burke, Michael; Judge, Russell; Pusey, Marc

    2000-01-01

    Chicken egg white lysozyme has a well characterized thermally driven phase transition. Between pH 4.2 and 5.2, the transition temperature, as defined by the point where the tetragonal and orthorhombic solubilities are equal, is a function of the pH, salt (precipitant) type and concentration, and most likely of the buffer concentration as well. This phase transition can be carried out with protein solution alone, prior to addition of precipitant solution. Warming a lysozyme solution above the phase transition point, then cooling it back below this point, has been shown to affect the subsequent nucleation rate, as determined by the numbers and size of crystals formed, but not the growth rate for the tetragonal crystal form . We have now measured the kinetics of this process and investigated its reversibility. The transition effects are progressive with temperature, having a half time of about 1 hour at 37C at pH 4.8. After holding a lysozyme solution at 37C (prior to addition of precipitant) for 16 hours, then cooling it back to 4C no return to the pre-warmed nucleation kinetics are observed after at least 4 weeks. Orthorhombic lysozyme crystals apparently do not undergo the flow-induced growth cessation of tetragonal lysozyme crystals. Putting the protein in the orthorhombic form does not affect the averaged face growth kinetics, only nucleation, for tetragonal crystals. This differential behaviour may be exploited to elucidate how and where flow affects the lysozyme crystal growth process. The presentation will focus on the results of these and ongoing studies in this area.

  1. The Effects of Thermal History on Nucleation of Tetragonal Lysozyme Crystals, or Hot Protein and Cold Nucleation

    NASA Technical Reports Server (NTRS)

    Burke, Michael; Judge, Russell; Pusey, Marc

    2000-01-01

    Chicken egg white lysozyme has a well characterized thermally driven phase transition. Between pH 4.2 and 5.2, the transition temperature, as defined by the point where the tetragonal and orthorhombic solubilities are equal, is a function of the pH, salt (precipitant) type and concentration, and most likely of the buffer concentration as well. This phase transition can be carried out with protein solution alone, prior to addition of precipitant solution. Warming a lysozyme solution above the phase transition point, then cooling it back below this point, has been shown to affect the subsequent nucleation rate, as determined by the numbers and size of crystals formed, but not the growth rate for the tetragonal crystal form . We have now measured the kinetics of this process and investigated its reversibility. The transition effects are progressive with temperature, having a half time of about 1 hour at 37C at pH 4.8. After holding a lysozyme solution at 37C (prior to addition of precipitant) for 16 hours, then cooling it back to 4C no return to the pre-warmed nucleation kinetics are observed after at least 4 weeks. Orthorhombic lysozyme crystals apparently do not undergo the flow-induced growth cessation of tetragonal lysozyme crystals. Putting the protein in the orthorhombic form does not affect the averaged face growth kinetics, only nucleation, for tetragonal crystals. This differential behaviour may be exploited to elucidate how and where flow affects the lysozyme crystal growth process. The presentation will focus on the results of these and ongoing studies in this area.

  2. Liquid-Liquid Phase Separation in Supersaturated Lysozyme Solutions and Associated Precipitate Formation/Crystallization

    NASA Technical Reports Server (NTRS)

    Muschol, Martin; Rosenberger, Franz

    1997-01-01

    Using cloud point determinations, the phase boundaries (binodals) for metastable liquid-liquid (L-L) separation in supersaturated hen egg white lysozyme solutions with 3%, 5%, and 7% (wlv) NaCl at pH= 4.5 and protein concentrations c between 40 and 400 mg/ml were determined. The critical temperature for the binodal increased approximately linearly with salt concentration. The coexisting liquid phases both remained supersaturated but differed widely in protein concentration. No salt repartitioning was observed between the initial and the two separated liquid phases. After the L-L separation, due to the presence of the high protein concentration phase, crystallization occurred much more rapidly than in the initial solution. At high initial protein concentrations, a metastable gel phase formed at temperatures above the liquid binodal. Both crystal nucleation and gel formation were accelerated in samples that had been cycled through the binodal. Solutions in the gel and L-L regions yielded various types of precipitates. Based on theoretical considerations, previous observations with other proteins, and our experimental results with lysozyme, a generic phase diagram for globular proteins is put forth. A limited region in the (T,c) plane favorable for the growth of protein single crystals is delineated.

  3. Liquid-liquid phase separation in supersaturated lysozyme solutions and associated precipitate formation/crystallization

    NASA Astrophysics Data System (ADS)

    Muschol, Martin; Rosenberger, Franz

    1997-08-01

    Using cloud point determinations, the phase boundaries (binodals) for metastable liquid-liquid (L-L) separation in supersaturated hen egg white lysozyme solutions with 3%, 5%, and 7% (w/v) NaCl at pH=4.5 and protein concentrations c between 40 and 400 mg/ml were determined. The critical temperature for the binodal increased approximately linearly with salt concentration. The coexisting liquid phases both remained supersaturated but differed widely in protein concentration. No salt repartitioning was observed between the initial and the two separated liquid phases. After the L-L separation, due to the presence of the high protein concentration phase, crystallization occurred much more rapidly than in the initial solution. At high initial protein concentrations, a metastable gel phase formed at temperatures above the liquid binodal. Both crystal nucleation and gel formation were accelerated in samples that had been cycled through the binodal. Solutions in the gel and L-L regions yielded various types of precipitates. Based on theoretical considerations, previous observations with other proteins, and our experimental results with lysozyme, a generic phase diagram for globular proteins is put forth. A limited region in the (T,c) plane favorable for the growth of protein single crystals is delineated.

  4. Liquid-Liquid Phase Separation in Supersaturated Lysozyme Solutions and Associated Precipitate Formation/Crystallization

    NASA Technical Reports Server (NTRS)

    Muschol, Martin; Rosenberger, Franz

    1997-01-01

    Using cloud point determinations, the phase boundaries (binodals) for metastable liquid-liquid (L-L) separation in supersaturated hen egg white lysozyme solutions with 3%, 5%, and 7% (wlv) NaCl at pH= 4.5 and protein concentrations c between 40 and 400 mg/ml were determined. The critical temperature for the binodal increased approximately linearly with salt concentration. The coexisting liquid phases both remained supersaturated but differed widely in protein concentration. No salt repartitioning was observed between the initial and the two separated liquid phases. After the L-L separation, due to the presence of the high protein concentration phase, crystallization occurred much more rapidly than in the initial solution. At high initial protein concentrations, a metastable gel phase formed at temperatures above the liquid binodal. Both crystal nucleation and gel formation were accelerated in samples that had been cycled through the binodal. Solutions in the gel and L-L regions yielded various types of precipitates. Based on theoretical considerations, previous observations with other proteins, and our experimental results with lysozyme, a generic phase diagram for globular proteins is put forth. A limited region in the (T,c) plane favorable for the growth of protein single crystals is delineated.

  5. Crystal growth in a three-phase system: Diffusion and liquid-liquid phase separation in lysozyme crystal growth

    NASA Astrophysics Data System (ADS)

    Heijna, M. C. R.; van Enckevort, W. J. P.; Vlieg, E.

    2007-07-01

    In the phase diagram of the protein hen egg-white lysozyme, a region is present in which the lysozyme solution demixes and forms two liquid phases. In situ observations by optical microscopy show that the dense liquid droplets dissolve when crystals grow in this system. During this process the demixed liquid region retracts from the crystal surface. The spatial distribution of the dense phase droplets present special boundary conditions for Fick’s second law for diffusion. In combination with the cylindrical symmetry provided by the kinetically roughened crystals, this system allows for a full numerical analysis. Using experimental data for setting the boundary conditions, a quasi-steady-state solution for the time-dependent concentration profile was shown to be valid. Comparison of kinetically rough growth in a phase separated system and in a nonseparated system shows that the growth kinetics for a three-phase system differs from a two-phase system, in that crystals grow more slowly but the duration of growth is prolonged.

  6. Crystal growth in a three-phase system: diffusion and liquid-liquid phase separation in lysozyme crystal growth.

    PubMed

    Heijna, M C R; van Enckevort, W J P; Vlieg, E

    2007-07-01

    In the phase diagram of the protein hen egg-white lysozyme, a region is present in which the lysozyme solution demixes and forms two liquid phases. In situ observations by optical microscopy show that the dense liquid droplets dissolve when crystals grow in this system. During this process the demixed liquid region retracts from the crystal surface. The spatial distribution of the dense phase droplets present special boundary conditions for Fick's second law for diffusion. In combination with the cylindrical symmetry provided by the kinetically roughened crystals, this system allows for a full numerical analysis. Using experimental data for setting the boundary conditions, a quasi-steady-state solution for the time-dependent concentration profile was shown to be valid. Comparison of kinetically rough growth in a phase separated system and in a nonseparated system shows that the growth kinetics for a three-phase system differs from a two-phase system, in that crystals grow more slowly but the duration of growth is prolonged.

  7. The effect of protein–precipitant interfaces and applied shear on the nucleation and growth of lysozyme crystals

    SciTech Connect

    Reis, Nuno M.; Chirgadze, Dimitri Y.; Blundell, Tom L.; Mackley, Malcolm R.

    2009-11-01

    The nucleation of lysozyme in microbatch experiments was linked to the formation of protein–precipitant interfaces. The use of oscillatory shear allowed decreasing the nucleation rate and extending the growth period for lysozyme crystals, presumably through the control of the number of interfaces and removal of impurities or defects. This paper is concerned with the effect of protein–precipitant interfaces and externally applied shear on the nucleation and growth kinetics of hen egg-white lysozyme crystals. The early stages of microbatch crystallization of lysozyme were explored using both optical and confocal fluorescence microscopy imaging. Initially, an antisolvent (precipitant) was added to a protein drop and the optical development of the protein–precipitant interface was followed with time. In the presence of the water-soluble polymer poly(ethylene glycol) (PEG) a sharp interface was observed to form immediately within the drop, giving an initial clear separation between the lighter protein solution and the heavier precipitant. This interface subsequently became unstable and quickly developed within a few seconds into several unstable ‘fingers’ that represented regions of high concentration-gradient interfaces. Confocal microscopy demonstrated that the subsequent nucleation of protein crystals occurred preferentially in the region of these interfaces. Additional experiments using an optical shearing system demonstrated that oscillatory shear significantly decreased nucleation rates whilst extending the growth period of the lysozyme crystals. The experimental observations relating to both nucleation and growth have relevance in developing efficient and reliable protocols for general crystallization procedures and the controlled crystallization of single large high-quality protein crystals for use in X-ray crystallography.

  8. Science Study Aids 6: Lysozyme - The Cooperative Enzyme.

    ERIC Educational Resources Information Center

    Boeschen, John; Alderton, Gordon

    This publication is the sixth of a series of seven supplementary investigative materials for use in secondary science classes providing up-to-date research-related investigations. This unit is structured for grade levels 10 through 12. It is concerned with the crystallization of an enzyme, lysozyme, from egg white. The first part of this guide…

  9. 21 CFR 160.140 - Egg whites.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Egg whites. 160.140 Section 160.140 Food and Drugs... CONSUMPTION EGGS AND EGG PRODUCTS Requirements for Specific Standardized Eggs and Egg Products § 160.140 Egg whites. (a) Egg whites, liquid egg whites, liquid egg albumen is the food obtained from eggs of...

  10. 21 CFR 160.140 - Egg whites.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Egg whites. 160.140 Section 160.140 Food and Drugs... CONSUMPTION EGGS AND EGG PRODUCTS Requirements for Specific Standardized Eggs and Egg Products § 160.140 Egg whites. (a) Egg whites, liquid egg whites, liquid egg albumen is the food obtained from eggs of...

  11. 21 CFR 160.140 - Egg whites.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Egg whites. 160.140 Section 160.140 Food and Drugs... CONSUMPTION EGGS AND EGG PRODUCTS Requirements for Specific Standardized Eggs and Egg Products § 160.140 Egg whites. (a) Egg whites, liquid egg whites, liquid egg albumen is the food obtained from eggs of...

  12. 21 CFR 160.140 - Egg whites.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Egg whites. 160.140 Section 160.140 Food and Drugs... CONSUMPTION EGGS AND EGG PRODUCTS Requirements for Specific Standardized Eggs and Egg Products § 160.140 Egg whites. (a) Egg whites, liquid egg whites, liquid egg albumen is the food obtained from eggs of...

  13. 21 CFR 160.140 - Egg whites.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Egg whites. 160.140 Section 160.140 Food and Drugs... CONSUMPTION EGGS AND EGG PRODUCTS Requirements for Specific Standardized Eggs and Egg Products § 160.140 Egg whites. (a) Egg whites, liquid egg whites, liquid egg albumen is the food obtained from eggs of...

  14. Structure of an antibody-antigen complex: crystal structure of the HyHEL-10 Fab-lysozyme complex.

    PubMed Central

    Padlan, E A; Silverton, E W; Sheriff, S; Cohen, G H; Smith-Gill, S J; Davies, D R

    1989-01-01

    The crystal structure of the complex of the anti-lysozyme HyHEL-10 Fab and hen egg white lysozyme has been determined to a nominal resolution of 3.0 A. The antigenic determinant (epitope) on the lysozyme is discontinuous, consisting of residues from four different regions of the linear sequence. It consists of the exposed residues of an alpha-helix together with surrounding amino acids. The epitope crosses the active-site cleft and includes a tryptophan located within this cleft. The combining site of the antibody is mostly flat with a protuberance made up of two tyrosines that penetrate the cleft. All six complementarity-determining regions of the Fab contribute at least one residue to the binding; one residue from the framework is also in contact with the lysozyme. The contacting residues on the antibody contain a disproportionate number of aromatic side chains. The antibody-antigen contact mainly involves hydrogen bonds and van der Waals interactions; there is one ion-pair interaction but it is weak. Images PMID:2762305

  15. Fabrication of polypyrrole nano-arrays in lysozyme single crystals

    NASA Astrophysics Data System (ADS)

    England, Matt W.; Lambert, Elizabeth M.; Li, Mei; Turyanska, Lyudmila; Patil, Avinash J.; Mann, Stephen

    2012-10-01

    A template-directed method for the synthesis and organization of partially oxidized polypyrrole (PPy) nanoscale arrays within the solvent channels of glutaraldehyde-cross-linked lysozyme single crystals is presented. Macroscopic single crystals of the periodically arranged protein-polymer superstructure are electrically conductive, insoluble in water and organic solvents, and display increased levels of mechanical plasticity compared with native cross-linked lysozyme crystals.A template-directed method for the synthesis and organization of partially oxidized polypyrrole (PPy) nanoscale arrays within the solvent channels of glutaraldehyde-cross-linked lysozyme single crystals is presented. Macroscopic single crystals of the periodically arranged protein-polymer superstructure are electrically conductive, insoluble in water and organic solvents, and display increased levels of mechanical plasticity compared with native cross-linked lysozyme crystals. Electronic supplementary information (ESI) available: Optical microscopy, SEM, TEM images, FTIR spectra and tables, conductivity plot. Experimental methods. See DOI: 10.1039/c2nr32413j

  16. Protein crystal growth rates are face-specifically modified by structurally related contaminants

    NASA Astrophysics Data System (ADS)

    Hirschler, Joachim; Fontecilla-Camps, Juan Carlos

    1997-02-01

    Growth rates of turkey egg-white lysozyme (TEWL) crystal faces have been measured in uncontaminated solutions as well as in solutions contaminated by the homologous hen egg-white lysozyme (HEWL). Comparison of growth rates from uncontaminated and contaminated solutions shows that the growth rate of the {112} faces drops significantly in the presence of the contaminant, whereas the growth rate of the {110} faces does not change. This demonstrates that HEWL acts specifically on the growth process of the {112} faces.

  17. IgE reactivity to hen egg white allergens in dogs with cutaneous adverse food reactions.

    PubMed

    Shimakura, Hidekatsu; Uchiyama, Jumpei; Saito, Taku; Miyaji, Kazuki; Fujimura, Masato; Masuda, Kenichi; Okamoto, Noriaki; DeBoer, Douglas J; Sakaguchi, Masahiro

    2016-09-01

    Dogs with cutaneous adverse food reactions (CAFR) often have specific IgE to food allergens. Egg white, which is majorly composed of ovomucoid, ovalbumin, ovotransferrin, and lysozyme, is a food allergen in dogs. Information of the IgE reactivity to purified egg white allergens supports accurate diagnosis and efficiency treatment in humans. However, to the best of our knowledge, there have been no studies on the IgE reactivity to purified egg white allergens in dogs. Here, we investigated the IgE reactivity to crude and purified allergens of hen egg white in dogs with CAFR. First, when we examined serum samples from 82 dogs with CAFR for specific IgE to crude egg white by ELISA, 9.8% (8/82) of the dogs with CAFR showed the IgE reactivity to crude egg white. We then used sera from the eight dogs with positive IgE reactivity to crude egg white to examine the IgE reactivity to four purified allergens, ovomucoid, ovalbumin, ovotransferrin, and lysozyme, by ELISA. We found that 75% (6/8) of the dogs showed IgE reactivity to both ovomucoid and ovalbumin, and that 37.5% (3/8) of the dogs showed IgE reactivity to ovotransferrin. None (0/8) showed IgE reactivity to lysozyme. Moreover, validating these results, the immunoblot analyses were performed using the sera of the three dogs showing the highest IgE reactivity to crude egg white. Both anti-ovomucoid and anti-ovalbumin IgE were detected in the sera of these dogs, while anti-ovotransferrin IgE was not detected. Considering these, ovomucoid and ovalbumin appears to be the major egg white allergens in dogs with CAFR.

  18. Structure and evolution of the Ivy protein family, unexpected lysozyme inhibitors in Gram-negative bacteria

    PubMed Central

    Abergel, Chantal; Monchois, Vincent; Byrne, Deborah; Chenivesse, Sabine; Lembo, Frédérique; Lazzaroni, Jean-Claude; Claverie, Jean-Michel

    2007-01-01

    Part of an ancestral bactericidal system, vertebrate C-type lysozyme targets the peptidoglycan moiety of bacterial cell walls. We report the crystal structure of a protein inhibitor of C-type lysozyme, the Escherichia coli Ivy protein, alone and in complex with hen egg white lysozyme. Ivy exhibits a novel fold in which a protruding five-residue loop appears essential to its inhibitory effect. This feature guided the identification of Ivy orthologues in other Gram-negative bacteria. The structure of the evolutionary distant Pseudomonas aeruginosa Ivy orthologue was also determined in complex with hen egg white lysozyme, and its antilysozyme activity was confirmed. Ivy expression protects porous cell-wall E. coli mutants from the lytic effect of lysozyme, suggesting that it is a response against the permeabilizing effects of the innate vertebrate immune system. As such, Ivy acts as a virulence factor for a number of Gram-negative bacteria-infecting vertebrates. PMID:17405861

  19. Structure and evolution of the Ivy protein family, unexpected lysozyme inhibitors in Gram-negative bacteria.

    PubMed

    Abergel, Chantal; Monchois, Vincent; Byrne, Deborah; Chenivesse, Sabine; Lembo, Frédérique; Lazzaroni, Jean-Claude; Claverie, Jean-Michel

    2007-04-10

    Part of an ancestral bactericidal system, vertebrate C-type lysozyme targets the peptidoglycan moiety of bacterial cell walls. We report the crystal structure of a protein inhibitor of C-type lysozyme, the Escherichia coli Ivy protein, alone and in complex with hen egg white lysozyme. Ivy exhibits a novel fold in which a protruding five-residue loop appears essential to its inhibitory effect. This feature guided the identification of Ivy orthologues in other Gram-negative bacteria. The structure of the evolutionary distant Pseudomonas aeruginosa Ivy orthologue was also determined in complex with hen egg white lysozyme, and its antilysozyme activity was confirmed. Ivy expression protects porous cell-wall E. coli mutants from the lytic effect of lysozyme, suggesting that it is a response against the permeabilizing effects of the innate vertebrate immune system. As such, Ivy acts as a virulence factor for a number of Gram-negative bacteria-infecting vertebrates.

  20. Egg white versus Salmonella Enteritidis! A harsh medium meets a resilient pathogen.

    PubMed

    Baron, Florence; Nau, Françoise; Guérin-Dubiard, Catherine; Bonnassie, Sylvie; Gautier, Michel; Andrews, Simon C; Jan, Sophie

    2016-02-01

    Salmonella enterica serovar Enteritidis is the prevalent egg-product-related food-borne pathogen. The egg-contamination capacity of S. Enteritidis includes its exceptional survival capability within the harsh conditions provided by egg white. Egg white proteins, such as lysozyme and ovotransferrin, are well known to play important roles in defence against bacterial invaders. Indeed, several additional minor proteins and peptides have recently been found to play known or potential roles in protection against bacterial contamination. However, although such antibacterial proteins are well studied, little is known about their efficacy under the environmental conditions prevalent in egg white. Thus, the influence of factors such as temperature, alkalinity, nutrient restriction, viscosity and cooperative interactions on the activities of antibacterial proteins in egg white remains unclear. This review critically assesses the available evidence on the antimicrobial components of egg white. In addition, mechanisms employed by S. Enteritidis to resist egg white exposure are also considered along with various genetic studies that have shed light upon egg white resistance systems. We also consider how multiple, antibacterial proteins operate in association with specific environmental factors within egg white to generate a lethal protective cocktail that preserves sterility.

  1. Lysozyme

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Protein isolated from hen egg-white and functions as a bacteriostatic enzyme by degrading bacterial cell walls. First enzyme ever characterized by protein crystallography. It is used as an excellent model system for better understanding parameters involved in microgravity experiments with data from laboratory experiments to study the equilibrium rate of hanging drop experiments in microgravity.

  2. The X-ray structure of the complex formed in the reaction between oxaliplatin and lysozyme.

    PubMed

    Messori, Luigi; Marzo, Tiziano; Merlino, Antonello

    2014-08-07

    The X-ray structure of the adduct formed between oxaliplatin and the model protein hen egg white lysozyme is reported here. The structure is compared with those of cisplatin and carboplatin derivatives, previously solved. Relevant changes are highlighted among these crystal structures that are suggestive of significant differences in the reactivity of platinum drugs with this protein; possible biological implications are discussed.

  3. Effects of Purification on the Crystallization of Lysozyme

    NASA Technical Reports Server (NTRS)

    Ewing, Felecia L.; Forsythe, Elizabeth L.; Van Der Woerd, Mark; Pusey, Marc L.

    1996-01-01

    We have additionally purified a commercial lysozyme preparation by cation exchange chromatography, followed by recrystallization. This material is 99.96% pure with respect to macromolecular impurities. At basic pH, the purified lysozyme gave only tetragonal crystals at 20 C. Protein used directly from the bottle, prepared by dialysis against distilled water, or which did not bind to the cation exchange column had considerably altered crystallization behavior. Lysozyme which did not bind to the cation exchange column was subsequently purified by size exclusion chromatography. This material gave predominately bundles of rod-shaped crystals with some small tetragonal crystals at lower pHs. The origin of the bundled rod habit was postulated to be a thermally dependent tetragonal- orthorhombic change in the protein structure. This was subsequently ruled out on the basis of crystallization behavior and growth rate experiments. This suggests that heterogeneous forms of lysozyme may be responsible. These results demonstrate three classes of impurities: (1) small molecules, which may be removed by dialysis; (2) macromolecules, which are removable by chromatographic techniques; and (3) heterogeneous forms of the protein, which can be removed in this case by cation exchange chromatography. Of these, heterogeneous forms of the lysozyme apparently have the greatest affect on its crystallization behavior.

  4. Kinetic Roughening Transition and Energetics of Tetragonal Lysozyme Crystal Growth

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar; Forsythe, Elizabeth L.; Pusey, Marc L.

    2004-01-01

    Interpretation of lysozyme crystal growth rates using well-established physical theories enabled the discovery of a phenomenon possibly indicative of kinetic roughening. For example, lysozyme crystals grown above a critical supersaturation sigma, (where supersaturation sigma = ln c/c(sub eq), c = the protein concentration and c(sub eq) = the solubility concentration) exhibit microscopically rough surfaces due to the continuous addition of growth units anywhere on the surface of a crystal. The rate of crystal growth, V(sub c), for the continuous growth process is determined by the continuous flux of macromolecules onto a unit area of the crystal surface, a, from a distance, xi, per unit time due to diffusion, and a probability of attachment onto the crystal surface, expressed. Based upon models applied, the energetics of lysozyme crystal growth was determined. The magnitudes of the energy barriers of crystal growth for both the (110) and (101) faces of tetragonal lysozyme crystals are compared. Finally, evidence supportive of the kinetic roughening hypothesis is presented.

  5. Kinetic Roughening Transition and Energetics of Tetragonal Lysozyme Crystal Growth

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar; Forsythe, Elizabeth L.; Pusey, Marc L.

    2004-01-01

    Interpretation of lysozyme crystal growth rates using well-established physical theories enabled the discovery of a phenomenon possibly indicative of kinetic roughening. For example, lysozyme crystals grown above a critical supersaturation sigma, (where supersaturation sigma = ln c/c(sub eq), c = the protein concentration and c(sub eq) = the solubility concentration) exhibit microscopically rough surfaces due to the continuous addition of growth units anywhere on the surface of a crystal. The rate of crystal growth, V(sub c), for the continuous growth process is determined by the continuous flux of macromolecules onto a unit area of the crystal surface, a, from a distance, xi, per unit time due to diffusion, and a probability of attachment onto the crystal surface, expressed. Based upon models applied, the energetics of lysozyme crystal growth was determined. The magnitudes of the energy barriers of crystal growth for both the (110) and (101) faces of tetragonal lysozyme crystals are compared. Finally, evidence supportive of the kinetic roughening hypothesis is presented.

  6. Size and number density of precrystalline aggregates in lysozyme crystallization process

    NASA Astrophysics Data System (ADS)

    Tanaka, Shinpei; Ito, Kohzo; Hayakawa, Reinosuke; Ataka, Mitsuo

    1999-12-01

    Using dynamic light scattering, we investigated supersaturated aqueous solutions of hen egg white lysozyme. We could observe the formation of aggregates only in solutions, from which crystals grew within a few days. The aggregates were grouped into smaller "units" and larger "clusters." The units consisted of a few molecules, whereas the clusters grew from about 100 nm to 1 μm. At the beginning of aggregation, the number density of the units decreased, while that of the clusters increased. At this stage, unit-cluster aggregation proceeded. At the next stage, the number density of the units became constant, while that of the clusters began to decrease, which means that the units stopped aggregating and cluster-cluster aggregation started. The aggregation mechanism for the clusters fit well with the diffusion limited cluster aggregation model, but this model alone could not explain that the aggregates separated into two groups, corresponding to units and clusters, and that the units stopped aggregating during the aggregation process. We find that the observed aggregation process has several similarities to the liquid-liquid phase separation process, which occurs metastably in protein solution. Furthermore, using both models for diffusion limited aggregation and the liquid-liquid phase separation together, we could naturally explain the process of the cluster formation.

  7. Impurity effects on orientation of lysozyme crystals nucleated on fatty acid thin films

    NASA Astrophysics Data System (ADS)

    Kubo, T.; Hondoh, H.; Nakada, T.

    2008-04-01

    Commercially available lysozyme samples that have different lot numbers (E02Z04 and E05802) were crystallized on fatty acid thin films. The orientation of lysozyme crystals nucleated on the films was investigated by atomic force microscopy and optical microscopy. The numbers of lysozyme crystals with specific planes parallel to the films are different. In other words, the impurities contained in commercial lysozyme significantly affect the orientation of lysozyme crystals. Detailed analysis of the orientation distribution of the lysozyme crystals nucleated from the purified sample showed that acetic acid is one of the substances promote the epitaxy.

  8. Analysis of Monomer Aggregation and Crystal Growth Rates of Lysozyme

    NASA Technical Reports Server (NTRS)

    Nadarajah, Arunan

    1996-01-01

    This project was originally conceived to analyze the extensive data of tetragonal lysozyme crystal growth rates collected at NASA/MSFC by Dr. Marc L. Pusey's research group. At that time the lack of analysis of the growth rates was hindering progress in understanding the growth mechanism of tetragonal lysozyme and other protein crystals. After the project was initiated our initial analysis revealed unexpected complexities in the growth rate behavior. This resulted in an expansion in the scope of the project to include a comprehensive investigation of the growth mechanisms of tetragonal lysozyme crystals. A discussion of this research is included as well a list of presentations and publications resulting from the research. This project contributed significantly toward the education of several students and fostered extensive collaborations between investigators.

  9. Identification of five reptile egg whites protein using MALDI-TOF mass spectrometry and LC/MS-MS analysis.

    PubMed

    Prajanban, Bung-on; Shawsuan, Laoo; Daduang, Sakda; Kommanee, Jintana; Roytrakul, Sittiruk; Dhiravisit, Apisak; Thammasirirak, Sompong

    2012-03-16

    Proteomics of egg white proteins of five reptile species, namely Siamese crocodile (Crocodylus siamensis), soft-shelled turtle (Trionyx sinensis taiwanese), red-eared slider turtle (Trachemys scripta elegans), hawksbill turtle (Eretmochelys imbricate) and green turtle (Chelonia mydas) were studied by 2D-PAGE using IPG strip pH 4-7 size 7 cm and IPG strip pH 3-10 size 24 cm. The protein spots in the egg white of the five reptile species were identified by MALDI-TOF mass spectrometry and LC/MS-MS analysis. Sequence comparison with the database revealed that reptile egg white contained at least seven protein groups, such as serpine, transferrin precursor/iron binding protein, lysozyme C, teneurin-2 (fragment), interferon-induced GTP-binding protein Mx, succinate dehydrogenase iron-sulfur subunit and olfactory receptor 46. This report confirms that transferrin precursor/iron binding protein is the major component in reptile egg white. In egg white of Siamese crocodile, twenty isoforms of transferrin precursor were found. Iron binding protein was found in four species of turtle. In egg white of soft-shelled turtle, ten isoforms of lysozyme were found. Apart from well-known reptile egg white constituents, this study identified some reptile egg white proteins, such as the teneurin-2 (fragment), the interferon-induced GTP-binding protein Mx, the olfactory receptor 46 and the succinate dehydrogenase iron-sulfur subunit.

  10. The Effect of Protein Impurities on Lysozyme Crystal Growth

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Forsythe, Elizabeth L.; Pusey, Marc L.

    1998-01-01

    While bulk crystallization from impure solutions is used industrially as a purification step for a wide variety of materials, it is a technique that has rarely been used for proteins. Proteins have a reputation for being difficult to crystallize and high purity of the initial crystallization solution is considered paramount for success in the crystallization. Although little is written on the purifying capability of protein crystallization or of the effect of impurities on the various aspects of the crystallization process, recent published reports show that crystallization shows promise and feasibility as a purification technique for proteins. In order to further examine the issue of purity in macromolecule crystallization this study investigates the effect of the protein impurities, avidin, ovalbumin and conalbumin, at concentrations up to 50%, on the solubility, crystal face growth rates and crystal purity, of the protein lysozyme. Solubility was measured in batch experiments while a computer controlled video microscope system was used to measure the f {101} and {101} lysozyme crystal face growth rates. While little effect was observed on solubility and high crystal purity was obtained (>99.99%), the effect of the impurities on the face growth rates varied from no effect to a significant face specific effect leading to growth cessation, a phenomenon that is frequently observed in protein crystal growth. The results shed interesting light on the effect of protein impurities on protein crystal growth and strengthen the feasibility of using crystallization as a unit operation for protein purification.

  11. The Effect of Protein Impurities on Lysozyme Crystal Growth

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Forsythe, Elizabeth L.; Pusey, Marc L.

    1998-01-01

    While bulk crystallization from impure solutions is used industrially as a purification step for a wide variety of materials, it is a technique that has rarely been used for proteins. Proteins have a reputation for being difficult to crystallize and high purity of the initial crystallization solution is considered paramount for success in the crystallization. Although little is written on the purifying capability of protein crystallization or of the effect of impurities on the various aspects of the crystallization process, recent published reports show that crystallization shows promise and feasibility as a purification technique for proteins. In order to further examine the issue of purity in macromolecule crystallization this study investigates the effect of the protein impurities, avidin, ovalbumin and conalbumin, at concentrations up to 50%, on the solubility, crystal face growth rates and crystal purity, of the protein lysozyme. Solubility was measured in batch experiments while a computer controlled video microscope system was used to measure the f {101} and {101} lysozyme crystal face growth rates. While little effect was observed on solubility and high crystal purity was obtained (>99.99%), the effect of the impurities on the face growth rates varied from no effect to a significant face specific effect leading to growth cessation, a phenomenon that is frequently observed in protein crystal growth. The results shed interesting light on the effect of protein impurities on protein crystal growth and strengthen the feasibility of using crystallization as a unit operation for protein purification.

  12. Lysozyme contamination facilitates crystallization of a heterotrimeric cortactin-Arg-lysozyme complex.

    PubMed

    Liu, Weizhi; MacGrath, Stacey M; Koleske, Anthony J; Boggon, Titus J

    2012-02-01

    Crystallization of contaminating proteins is a frequently encountered problem for macromolecular crystallographers. In this study, an attempt was made to obtain a binary cocrystal structure of the SH3 domain of cortactin and a 17-residue peptide from the Arg nonreceptor tyrosine kinase encompassing a PxxPxxPxxP (PxxP1) motif. However, cocrystals could only be obtained in the presence of trace amounts of a contaminating protein. A structure solution obtained by molecular replacement followed by ARP/wARP automatic model building allowed a 'sequence-by-crystallography' approach to discover that the contaminating protein was lysozyme. This 1.65 Å resolution crystal structure determination of a 1:1:1 heterotrimeric complex of Arg, cortactin and lysozyme thus provides an unusual `caveat emptor' warning of the dangers that underpurified proteins harbor for macromolecular crystallographers.

  13. Sound Velocity and Elasticity of Tetragonal Lysozyme Crystals by Brillouin Spectroscopy

    PubMed Central

    Speziale, S.; Jiang, F.; Caylor, C. L.; Kriminski, S.; Zha, C.-S.; Thorne, R. E.; Duffy, T. S.

    2003-01-01

    Quasilongitudinal sound velocities and the second-order elastic moduli of tetragonal hen egg-white lysozyme crystals were determined as a function of relative humidity (RH) by Brillouin scattering. In hydrated crystals the measured sound velocities in the [110] plane vary between 2.12 ± 0.03 km/s along the [001] direction and 2.31 ± 0.08 km/s along the [110] direction. Dehydration from 98% to 67% RH increases the sound velocities and decreases the velocity anisotropy in (110) from 8.2% to 2.0%. A discontinuity in velocity and an inversion of the anisotropy is observed with increasing dehydration providing support for the existence of a structural transition below 88% RH. Brillouin linewidths can be described by a mechanical model in which the phonon is coupled to a relaxation mode of hydration water with a single relaxation time of 55 ± 5 ps. At equilibrium hydration (98% RH) the longitudinal moduli C11 + C12 + 2C66 = 12.81 ± 0.08 GPa, C11 = 5.49 ± 0.03 GPa, and C33 = 5.48 ± 0.05 GPa were directly determined. Inversion of the measured sound velocities in the [110] plane constrains the combination C44 + ½C13 to 2.99 ± 0.05 GPa. Further constraints on the elastic tensor are obtained by combining the Brillouin quasilongitudinal results with axial compressibilities determined from high-pressure x-ray diffraction. We constrain the adiabatic bulk modulus to the range 2.7–5.3 GPa. PMID:14581220

  14. Accelerated protein crystal growth by protein thin film template

    NASA Astrophysics Data System (ADS)

    Pechkova, Eugenia; Nicolini, Claudio

    2001-11-01

    A new method based on Langmuir-Blodgett (LB) technology is presented for the template stimulation of protein crystal growth. The new approach allows the acceleration of the hen egg white lysozyme (HEWL) crystal growth rate in comparison with such a classical vapour diffusion method as hanging drop. Protein thin films were coated on the cover slide of the common crystallization plates. Lysozyme crystal growth was observed on the LB thin films of HEWL.

  15. Crystal structures of three complexes between chito-oligosaccharides and lysozyme from the rainbow trout. How distorted is the NAG sugar in site D?

    PubMed

    Karlsen, S; Hough, E

    1995-11-01

    Like all c-type lysozymes, those from rainbow trout act as 1,4-beta-acetyl-muramidases to destroy bacteria by cleaving the polysaccharide chains of alternating N-acetylglucosamine (NAG) and N-acetylmuramic acid (NAM) units in the cell walls. Lysozymes also hydrolyse chitin, the analogous N-acetylglucosamine polymer. The rainbow trout enzymes have been shown to be particularly effective in bacterial defence. We have determined the crystal structures of three complexes between rainbow trout lysozyme (RBTL) and the chito-oligosaccharides (NAG)(2), (NAG)(3) and (NAG)(4) to resolutions of 1.8, 2.0 and 1.6 A, respectively. Crystals of these complexes were obtained by co-crystallization, and intensity data were collected on a FAST area detector system. Refinement and model building gave final R values of 16.6, 15.9 and 16.5% for the di-, tri- and tetrasaccharide complexes, respectively. The results show that the chito-oligosaccharides bind to sites A, B and C as previously observed for complexes between the hen egg-white lysozyme (HEWL) and a variety of saccharides. The NAG ring in site D is not bound so deeply and is only slightly distorted towards a half-chair conformation as observed for the equivalent NAM residue in HEWL. From our results, there is reason to question the position and the degree of strain of the D saccharide and the mode of binding and importance of two saccharides in sites E and F for correct orientation of sugar D and effective hydrolysis of a productive substrate-lysozyme complex. Simple model building study from our structures implies a 'left-sided' binding mode of (NAG)(6) in the lower part of the active site of RBTL.

  16. Measurable characteristics of lysozyme crystal growth

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar; Forsythe, Elizabeth L.; Pusey, Marc L.

    2005-01-01

    The behavior of protein crystal growth is estimated from measurements performed at both the microscopic and molecular levels. In the absence of solutal flow, it was determined that a model that balances the macromolecular flux toward the crystal surface with the flux of the crystal surface well characterizes crystal growth observed using microscopic methods. Namely, it was determined that the model provides accurate estimates for the crystal-growth velocities upon evaluation of crystal-growth measurements obtained in time. Growth velocities thus determined as a function of solution supersaturation were further interpreted using established deterministic models. From analyses of crystal-growth velocities, it was found that the mode of crystal growth varies with respect to increasing solution supersaturation, possibly owing to kinetic roughening. To verify further the hypothesis of kinetic roughening, crystal growth at the molecular level was examined using atomic force microscopy (AFM). From the AFM measurements, it was found that the magnitude of surface-height fluctuations, h(x), increases with increasing solution supersaturation. In contrast, the estimated characteristic length, xi, decreases rapidly upon increasing solution supersaturation. It was conjectured that the magnitude of both h(x) and xi could possibly determine the mode of crystal growth. Although the data precede any exact theory, the non-critical divergence of h(x) and xi with respect to increasing solution supersaturation was nevertheless preliminarily established. Moreover, approximate models to account for behavior of both h(x) and xi are also presented.

  17. Measurable characteristics of lysozyme crystal growth

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar; Forsythe, Elizabeth L.; Pusey, Marc L.

    2005-01-01

    The behavior of protein crystal growth is estimated from measurements performed at both the microscopic and molecular levels. In the absence of solutal flow, it was determined that a model that balances the macromolecular flux toward the crystal surface with the flux of the crystal surface well characterizes crystal growth observed using microscopic methods. Namely, it was determined that the model provides accurate estimates for the crystal-growth velocities upon evaluation of crystal-growth measurements obtained in time. Growth velocities thus determined as a function of solution supersaturation were further interpreted using established deterministic models. From analyses of crystal-growth velocities, it was found that the mode of crystal growth varies with respect to increasing solution supersaturation, possibly owing to kinetic roughening. To verify further the hypothesis of kinetic roughening, crystal growth at the molecular level was examined using atomic force microscopy (AFM). From the AFM measurements, it was found that the magnitude of surface-height fluctuations, h(x), increases with increasing solution supersaturation. In contrast, the estimated characteristic length, xi, decreases rapidly upon increasing solution supersaturation. It was conjectured that the magnitude of both h(x) and xi could possibly determine the mode of crystal growth. Although the data precede any exact theory, the non-critical divergence of h(x) and xi with respect to increasing solution supersaturation was nevertheless preliminarily established. Moreover, approximate models to account for behavior of both h(x) and xi are also presented.

  18. Locations of Halide Ions in Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Lim, Kap; Adimurthy, Ganapathi; Nadarajah, Arunan; Forsythe, Elizabeth L.; Pusey, Marc L.

    1998-01-01

    Anions play an important role in the crystallization of lysozyme, and are known to bind to the crystalline protein. Previous studies employing X-ray crystallography had found one chloride ion binding site in the tetragonal crystal form of the protein and four nitrate ion binding sites in the monoclinic form. Studies using other approaches have reported more chloride ion binding sites, but their locations were not known. Knowing the precise location of these anions is also useful in determining the correct electrostatic fields surrounding the protein. In the first part of this study the anion positions in the tetragonal form were determined from the difference Fourier map obtained from the lysozyme crystals grown in bromide and chloride solutions under identical conditions. The anion locations were then obtained from standard crystallographic methods and five possible anion binding sites were found in this manner. The sole chloride ion binding site found in previous studies was confirmed. The remaining four sites were new ones for tetragonal lysozyme crystals. However, three of these new sites and the previously found one corresponded to the four unique binding sites found for nitrate ions in monoclinic crystals. This suggests that most of the anion binding sites in lysozyme remain unchanged, even when different anions and different crystal forms of lysozyme are employed. It is unlikely that there are many more anions in the tetragonal lysozyme crystal structure. Assuming osmotic equilibrium it can be shown that there are at most three more anions in the crystal channels. Some of the new anion binding sites found in this study were, as expected, in pockets containing basic residues. However, some of them were near neutral, but polar, residues. Thus, the study also showed the importance of uncharged, but polar groups, on the protein surface in determining its electrostatic field. This was important for the second part of this study where the electrostatic field

  19. Locations of Halide Ions in Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Lim, Kap; Adimurthy, Ganapathi; Nadarajah, Arunan; Forsythe, Elizabeth L.; Pusey, Marc L.

    1998-01-01

    Anions play an important role in the crystallization of lysozyme, and are known to bind to the crystalline protein. Previous studies employing X-ray crystallography had found one chloride ion binding site in the tetragonal crystal form of the protein and four nitrate ion binding sites in the monoclinic form. Studies using other approaches have reported more chloride ion binding sites, but their locations were not known. Knowing the precise location of these anions is also useful in determining the correct electrostatic fields surrounding the protein. In the first part of this study the anion positions in the tetragonal form were determined from the difference Fourier map obtained from the lysozyme crystals grown in bromide and chloride solutions under identical conditions. The anion locations were then obtained from standard crystallographic methods and five possible anion binding sites were found in this manner. The sole chloride ion binding site found in previous studies was confirmed. The remaining four sites were new ones for tetragonal lysozyme crystals. However, three of these new sites and the previously found one corresponded to the four unique binding sites found for nitrate ions in monoclinic crystals. This suggests that most of the anion binding sites in lysozyme remain unchanged, even when different anions and different crystal forms of lysozyme are employed. It is unlikely that there are many more anions in the tetragonal lysozyme crystal structure. Assuming osmotic equilibrium it can be shown that there are at most three more anions in the crystal channels. Some of the new anion binding sites found in this study were, as expected, in pockets containing basic residues. However, some of them were near neutral, but polar, residues. Thus, the study also showed the importance of uncharged, but polar groups, on the protein surface in determining its electrostatic field. This was important for the second part of this study where the electrostatic field

  20. Water in hydrated orthorhombic lysozyme crystal: Insight from atomistic simulations.

    PubMed

    Hu, Zhongqiao; Jiang, Jianwen; Sandler, Stanley I

    2008-08-21

    Biologically important water in orthorhombic lysozyme crystal is investigated using atomistic simulations. A distinct hydration shell surrounding lysozyme molecules is found from the number distribution of water molecules. While the number of water molecules in the hydration shell increases, the percentage decreases as the hydration level rises. Adsorption of water in the lysozyme crystal shows type-IV behavior. At low hydration levels, water molecules primarily intercalate the minor pores and cavity in the crystal due to the strong affinity between protein and water. At high hydration levels, the major pores are filled with liquidlike water as capillary condensation occurs. A type-H4 hysteresis loop is observed in the adsorption and desorption isotherms. The locations of the water molecules identified from simulation match fairly well with the experimentally determined crystallographic hydration sites. As observed in experiment, water exhibits anomalous subdiffusion because of the geometric restrictions and interactions of protein. With increasing hydration level, this anomaly is reduced and the diffusion of water tends to progressively approach normal Brownian diffusion. The flexibility of protein framework slightly enhances water mobility, but this enhancement decreases with increasing hydration level.

  1. Water in hydrated orthorhombic lysozyme crystal: Insight from atomistic simulations

    NASA Astrophysics Data System (ADS)

    Hu, Zhongqiao; Jiang, Jianwen; Sandler, Stanley I.

    2008-08-01

    Biologically important water in orthorhombic lysozyme crystal is investigated using atomistic simulations. A distinct hydration shell surrounding lysozyme molecules is found from the number distribution of water molecules. While the number of water molecules in the hydration shell increases, the percentage decreases as the hydration level rises. Adsorption of water in the lysozyme crystal shows type-IV behavior. At low hydration levels, water molecules primarily intercalate the minor pores and cavity in the crystal due to the strong affinity between protein and water. At high hydration levels, the major pores are filled with liquidlike water as capillary condensation occurs. A type-H4 hysteresis loop is observed in the adsorption and desorption isotherms. The locations of the water molecules identified from simulation match fairly well with the experimentally determined crystallographic hydration sites. As observed in experiment, water exhibits anomalous subdiffusion because of the geometric restrictions and interactions of protein. With increasing hydration level, this anomaly is reduced and the diffusion of water tends to progressively approach normal Brownian diffusion. The flexibility of protein framework slightly enhances water mobility, but this enhancement decreases with increasing hydration level.

  2. Determining the Molecular Growth Mechanisms of Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Li, Huayu; Nadarajah, Arunan; Konnert, John H.; Pusey, Marc L.

    1998-01-01

    Studies of the growth of tetragonal lysozyme crystals employing atomic force microscopy (AFM) have shown the advantages of this technique in investigating the growth mechanisms of protein crystals [1]. The resolution of these studies was in the micron range, which revealed surface features such as the occurrence of dislocations and 2D nucleation islands, similar to those found in inorganic systems. They clearly showed that the crystals grew by these surface growth mechanisms. However, the studies also revealed some surprising features, such as bimolecular growth step heights and pronounced growth anisotropies on the (110) face, which could not be explained. In previous studies we employed Periodic Bond Chain (PBC) theory to tetragonal lysozyme crystal growth and found that the crystals were constructed by strongly bonded molecular chains forming helices about the 43 axes [2,3]. The helices were connected to each other with weaker bonds. The growth process was shown to proceed by the formation of these 43 helices, resulting in bimolecular growth steps on the (110) face. It was also shown to explain many other observations on tetragonal lysozyme crystal growth. Although PBC analysis is not a new technique [4], it has not been widely used as the mechanisms predicted from it could not be experimentally verified. In this study the growth process of these crystals was investigated, particularly for the (110) face, employing some newly developed high resolution AFM techniques. These techniques allowed individual lysozyme molecules on the crystal faces to be resolved and predictions from PBC analyses to be tested. The analyses had shown that of the two possible packing arrangements on (110) faces, only one would actually occur. Employing the first of the newly developed techniques, these faces were scanned by high resolution AFM. The resulting images were then compared with the theoretically constructed images for the two possible packing arrangements on the (110) face

  3. Three-dimensional distribution function theory for the prediction of protein-ligand binding sites and affinities: application to the binding of noble gases to hen egg-white lysozyme in aqueous solution.

    PubMed

    Imai, Takashi; Hiraoka, Ryusuke; Seto, Tomoyoshi; Kovalenko, Andriy; Hirata, Fumio

    2007-10-04

    The three-dimensional distribution function theory of molecular liquids is applied to lysozyme in mixtures of water and noble gases. The results indicate that the theory has the capability of predicting the protein-ligand binding sites and affinities. First, it is shown that the theory successfully reproduces the binding sites of xenon found by X-ray crystallography. Then, the ability of the theory to predict the size selectivity of noble gases is demonstrated. The effect of water on the selectivity is clarified by a theoretical analysis. Finally, it is demonstrated that the dose-response curve, which is employed in experiments for examining the binding affinity, is realized by the theory.

  4. Protein crystallization in microgravity.

    PubMed

    Aibara, S; Shibata, K; Morita, Y

    1997-12-01

    A space experiment involving protein crystallization was conducted in a microgravity environment using the space shuttle "Endeavour" of STS-47, on a 9-day mission from September 12th to 20th in 1992. The crystallization was carried out according to a batch method, and 5 proteins were selected as flight samples for crystallization. Two of these proteins: hen egg-white lysozyme and co-amino acid: pyruvate aminotransferase from Pseudomonas sp. F-126, were obtained as single crystals of good diffraction quality. Since 1992 we have carried out several space experiments for protein crystallization aboard space shuttles and the space station MIR. Our experimental results obtained mainly from hen egg-white lysozyme are described below, focusing on the effects of microgravity on protein crystal growth.

  5. Comparison of three liquid chromatographic methods for egg-white protein analysis.

    PubMed

    Awadé, A C; Efstathiou, T

    1999-02-19

    This paper describes and compares three chromatographic methods for the analysis of egg-white proteins. Gel-permeation chromatography allowed the separation of seven peaks from egg white, with an almost total protein recovery. A clean separation of ovomucin and lysozyme from the bulk of the proteins was obtained with this method. Reversed-phase high-performance liquid chromatography led to the fractionation of at least eight peaks. With this chromatographic method, the recovery was relatively poor. Approximately 30% of the ovalbumin was retained in the column after the elution. Finally, eleven chromatographic peaks were separated from egg white by high-performance liquid chromatography on an anion-exchange column. The recovery of proteins was almost total. The latter method afforded higher resolution.

  6. Quantifying Main Trends in Lysozyme Nucleation: The Effect of Precipitant Concentration and Impurities

    NASA Technical Reports Server (NTRS)

    Burke, Michael W.; Judge, Russell A.; Pusey, Marc L.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Full factorial experiment design incorporating multi-linear regression analysis of the experimental data allows the main trends and effects to be quickly identified while using only a limited number of experiments. These techniques were used to identify the effect of precipitant concentration and the presence of an impurity, the physiological lysozyme dimer, on the nucleation rate and crystal dimensions of the tetragonal form of chicken egg white lysozyme. Increasing precipitant concentration was found to decrease crystal numbers, the magnitude of this effect also depending on the supersaturation. The presence of the dimer generally increased nucleation. The crystal axial ratio decreased with increasing precipitant concentration independent of impurity.

  7. Quantifying Main Trends in Lysozyme Nucleation: The Effects of Precipitant Concentration, Supersaturation and Impurities

    NASA Technical Reports Server (NTRS)

    Burke, Michael W.; Leardi, Riccardo; Judge, Russell A.; Pusey, Marc L.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Full factorial experimental design incorporating multi-linear regression analysis of the experimental data allows quick identification of main trends and effects using a limited number of experiments. In this study these techniques were employed to identify the effect of precipitant concentration, supersaturation, and the presence of an impurity, the physiological lysozyme dimer, on the nucleation rate and crystal dimensions of the tetragonal forin of chicken egg white lysozyme. Decreasing precipitant concentration, increasing supers aturation, and increasing impurity, were found to increase crystal numbers. The crystal axial ratio decreased with increasing precipitant concentration, independent of impurity.

  8. Quantifying Main Trends in Lysozyme Nucleation: The Effect of Precipitant Concentration and Impurities

    NASA Technical Reports Server (NTRS)

    Burke, Michael W.; Judge, Russell A.; Pusey, Marc L.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Full factorial experiment design incorporating multi-linear regression analysis of the experimental data allows the main trends and effects to be quickly identified while using only a limited number of experiments. These techniques were used to identify the effect of precipitant concentration and the presence of an impurity, the physiological lysozyme dimer, on the nucleation rate and crystal dimensions of the tetragonal form of chicken egg white lysozyme. Increasing precipitant concentration was found to decrease crystal numbers, the magnitude of this effect also depending on the supersaturation. The presence of the dimer generally increased nucleation. The crystal axial ratio decreased with increasing precipitant concentration independent of impurity.

  9. Quantifying Main Trends in Lysozyme Nucleation: The Effects of Precipitant Concentration, Supersaturation and Impurities

    NASA Technical Reports Server (NTRS)

    Burke, Michael W.; Leardi, Riccardo; Judge, Russell A.; Pusey, Marc L.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Full factorial experimental design incorporating multi-linear regression analysis of the experimental data allows quick identification of main trends and effects using a limited number of experiments. In this study these techniques were employed to identify the effect of precipitant concentration, supersaturation, and the presence of an impurity, the physiological lysozyme dimer, on the nucleation rate and crystal dimensions of the tetragonal forin of chicken egg white lysozyme. Decreasing precipitant concentration, increasing supers aturation, and increasing impurity, were found to increase crystal numbers. The crystal axial ratio decreased with increasing precipitant concentration, independent of impurity.

  10. 21 CFR 160.145 - Dried egg whites.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Dried egg whites. 160.145 Section 160.145 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... egg whites. (a) The food dried egg whites, egg white solids, dried egg albumen, egg albumen solids is...

  11. 21 CFR 160.145 - Dried egg whites.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Dried egg whites. 160.145 Section 160.145 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... egg whites. (a) The food dried egg whites, egg white solids, dried egg albumen, egg albumen solids is...

  12. 21 CFR 160.145 - Dried egg whites.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Dried egg whites. 160.145 Section 160.145 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... egg whites. (a) The food dried egg whites, egg white solids, dried egg albumen, egg albumen solids is...

  13. 21 CFR 160.145 - Dried egg whites.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Dried egg whites. 160.145 Section 160.145 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... egg whites. (a) The food dried egg whites, egg white solids, dried egg albumen, egg albumen solids is...

  14. Nucleation and convection effects in protein crystal growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz (Principal Investigator)

    1996-01-01

    The following activities are reported on: repartitioning of NaCl and protein impurities in lysozyme crystallization; dependence of lysozyme growth kinetics on step sources and impurities; facet morphology response to nonuniformities in nutrient and impurity supply; interactions in undersaturated and supersaturated lysozyme solutions; heterogeneity determination and purification of commercial hen egg white lysozyme; nonlinear response of layer growth dynamics in the mixed kinetics-bulk transport regime; development of a simultaneous multiangle light scattering technique; and x-ray topography of tetragonal lysozyme grown by the temperature-control technique.

  15. Preliminary investigations into solutal flow about growing tetragonal lysozyme crystals

    NASA Technical Reports Server (NTRS)

    Pusey, Marc; Witherow, William; Naumann, Robert

    1988-01-01

    A series of preliminary experiments were done to investigate solutal flow about growing lysozyme crystals and its effects. Density-gradient-driven flow was observed using a schlieren optical system. Crystals used ranged from 0.3 to 1.72 mm across the (110) face, and protein concentrations were from 3.7 to 23.7 mg/ml. The convective plume velocities were found to be from 10 to 50 microns/s, which correlated with those predicted to occur based upon a diffusive-convective model. When microcrystals of lysozyme, less than 20 microns across the (110) face were subjected to directed solution flows, the growth rate was found to rapidly decrease over the 8-20 h course of the experiment. Solution flow rates used ranged from 18 to 40 microns/s, and protein concentrations were from 7.3 to 11.7 mg/ml, conditions typical of larger (greater than 0.5 mm) crystals in the terminal phases of a typical crystal growth procedure.

  16. Modeling the Growth Rates of Tetragonal Lysozyme Crystal Faces

    NASA Technical Reports Server (NTRS)

    Li, Meirong; Nadarajah, Arunan; Pusey, Marc L.

    1998-01-01

    The measured macroscopic growth rates of the (110) and (101) faces of tetragonal lysozyme show an unexpectedly complex dependence on the supersaturation. The growth rates decay asymptotically to zero when the supersaturation is lowered to zero and increase rapidly when the supersaturation is increased. When supersaturations are increased still further the growth rates attain a maximum before starting to decrease. However, growth of these crystals is known to proceed by the classical dislocation and 2D nucleation growth mechanisms. This anomaly can be explained if growth is assumed to occur not by monomer units but by lysozyme aggregates. Analysis of the molecular packing of these crystals revealed that they were constructed of strongly bonded 4(sub 3) helices, while weaker bonds were responsible for binding the helices to each other. It follows that during crystal growth the stronger bonds are formed before the weaker ones. Thus, the growth of these crystals could be viewed as a two step process: aggregate growth units corresponding to the 4(sub 3) helix are first formed in the bulk solution by stronger intermolecular bonds and then attached to the crystal face by weaker bonds on dislocation hillocks or 2D islands. This will lead to a distribution of aggregates in the solution with monomers and lower order aggregates being predominant at low supersaturations and higher order aggregates being predominant at high supersaturations. If the crystal grows mostly by higher order aggregates, such as tetramers and octamers, it would explain the anomalous dependence of the growth rates on the supersaturation. Besides the analysis of molecular packing, a comprehensive analysis of the measured (110) and (101) growth rates was also undertaken in this study. The distribution of aggregates in lysozyme nutrient solutions at various solution conditions were determined from reversible aggregation reactions at equilibrium. The supersaturation was defined for each aggregate species

  17. A Model for Tetragonal Lysozyme Crystal Nucleation and Growth

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Macromolecular crystallization is a complex process, involving a system that typically has 5 or more components (macromolecule, water, buffer + counter ion, and precipitant). Whereas small molecules have only a few contacts in the crystal lattice, macromolecules generally have 10's or even 100's of contacts between molecules. These can range from hydrogen bonds (direct or water-mediated), through van der Waals, hydrophobic, salt bridges, and ion-mediated contacts. The latter interactions are stronger and require some specificity in the molecular alignment, while the others are weaker, more prevalent, and more promiscuous, i.e., can be readily broken and reformed between other sites. Formation of a consistent, ordered, 3D structure may be difficult or impossible in the absence of any or presence of too many strong interactions. Further complicating the process is the inherent structural asymmetry of monomeric (single chain) macromolecules. The process of crystal nucleation and growth involves the ordered assembly of growth units into a defined 3D lattice. We suggest that for many macromolecules, particularly those that are monomeric, this involves a preliminary solution-phase assembly process into a growth unit having some symmetry prior to addition to the lattice, recapitulating the initial stages of the nucleation process. If this model is correct then fluids and crystal growth models assuming a strictly monodisperse nutrient solution need to be revised. This model has been developed from experimental evidence based upon face growth rate, AFM, and fluorescence energy transfer data for the nucleation and growth of tetragonal lysozyme crystals.

  18. A Model for Tetragonal Lysozyme Crystal Nucleation and Growth

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    Macromolecular crystallization is a complex process, involving a system that typically has 5 or more components (macromolecule, water, buffer + counter ion, and precipitant). Whereas small molecules have only a few contacts in the crystal lattice, macromolecules generally have 10's or even 100's of contacts between molecules. These can range from hydrogen bonds (direct or water-mediated), through van der Waals, hydrophobic, salt bridges, and ion-mediated contacts. The latter interactions are stronger and require some specificity in the molecular alignment, while the others are weaker, more prevalent, and more promiscuous, i.e., can be readily broken and reformed between other sites. Formation of a consistent, ordered, 3D structure may be difficult or impossible in the absence of any or presence of too many strong interactions. Further complicating the process is the inherent structural asymmetry of monomeric (single chain) macromolecules. The process of crystal nucleation and growth involves the ordered assembly of growth units into a defined 3D lattice. We suggest that for many macromolecules, particularly those that are monomeric, this involves a preliminary solution-phase assembly process into a growth unit having some symmetry prior to addition to the lattice, recapitulating the initial stages of the nucleation process. If this model is correct then fluids and crystal growth models assuming a strictly monodisperse nutrient solution need to be revised. This model has been developed from experimental evidence based upon face growth rate, AFM, and fluorescence energy transfer data for the nucleation and growth of tetragonal lysozyme crystals.

  19. Growth Modes and Energetics of 101 Face Lysozyme Crystal Growth

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar; Forsythe, Elizabeth L.; Pusey, L.

    2004-01-01

    From analyses of lysozyme 101 face growth rate data using a 2D nucleation model for layer-by-layer growth, we find the effective barrier for crystal growth to be gamma = 1.0 +/- 0.2 x 10(exp -13) erg/molecule. The magnitude of the effective barrier is 2.4 +/- 0.5 k(sub beta)T, at 22 C. We also find that beyond a critical solution supersaturation, sigma(sub c), crystal growth rates are more accurately described by a kinetic roughening hypothesis. Beyond sigma(sub c), crystals grow by the continuous addition of molecules anywhere on the crystal surface rather than layer-by-layer. The magnitude of the critical supersaturation (sigma(sub c), = 1.7 +/- 0.2) for a crossover from a layer-by-layer to continuous growth is found to be statistically independent of the solution conditions that vary with buffer pH, temperature or precipitant concentration. Using the experimentally determined values for gamma and sigma(sub c), we find the crystal growth unit to be comprised of 7 +/- 3 molecules. The energy barrier, E(sub c), for the continuous addition of the growth Units is 6.2 +/- 0.3 x 10(exp -13) erg/molecule or 15 +/1 1 k(sub beta)T at 22C.

  20. FUNCTIONALITY OF MEMBRANE SEPARATED EGG WHITE PROTEINS

    USDA-ARS?s Scientific Manuscript database

    The excellent nutritional and functional properties of liquid egg white (LEW), which is essentially a viscous fat-free protein solution, are exploited in many food preparations. Thermal pasteurization (at 56.6oC for 3.5 min. minimum) is currently used by industry to eliminate the microflora in LEW ...

  1. Oral Immunotherapy for Pollen Allergy Using T-Cell Epitope-Containing Egg White Derived from Genetically Manipulated Chickens

    PubMed Central

    Kawabe, Yoshinori; Hayashida, Yuuki; Numata, Kensaku; Harada, Shota; Hayashida, Yoshifumi; Ito, Akira; Kamihira, Masamichi

    2012-01-01

    Peptide immunotherapy using T-cell epitopes is expected to be an effective treatment for allergic diseases such as Japanese cedar (Cryptomeria japonica; Cj) pollinosis. To develop a treatment for pollen allergy by inducing oral tolerance, we generated genetically manipulated (GM) chickens by retroviral gene transduction, to produce a fusion protein of chicken egg white lysozyme and a peptide derived from seven dominant human T-cell epitopes of Japanese cedar pollen allergens (cLys-7crp). The transgene sequence was detected in all chickens transduced with the retroviral vector. Transduction efficiency in blood cells correlated to transgene expression. Western blot analysis revealed that cLys-7crp was expressed in the egg white of GM hens. Mice induced to develop allergic rhinitis by Cj pollinosis were fed with cLys-7crp-containing egg white produced by GM chickens. Total and Cj allergen (Cry j 1)-specific IgE levels were significantly decreased in allergic mice fed with cLys-7crp-containing egg white compared with allergic mice fed with normal egg white. These results suggest that oral administration of T-cell epitope-containing egg white derived from GM chickens is effective for the induction of immune tolerance as an allergy therapy. PMID:23144766

  2. 21 CFR 160.150 - Frozen egg whites.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Frozen egg whites. 160.150 Section 160.150 Food... HUMAN CONSUMPTION EGGS AND EGG PRODUCTS Requirements for Specific Standardized Eggs and Egg Products § 160.150 Frozen egg whites. (a) Frozen egg whites, frozen egg albumen is the food prepared by...

  3. 21 CFR 160.150 - Frozen egg whites.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Frozen egg whites. 160.150 Section 160.150 Food... HUMAN CONSUMPTION EGGS AND EGG PRODUCTS Requirements for Specific Standardized Eggs and Egg Products § 160.150 Frozen egg whites. (a) Frozen egg whites, frozen egg albumen is the food prepared by...

  4. 21 CFR 160.150 - Frozen egg whites.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Frozen egg whites. 160.150 Section 160.150 Food... HUMAN CONSUMPTION EGGS AND EGG PRODUCTS Requirements for Specific Standardized Eggs and Egg Products § 160.150 Frozen egg whites. (a) Frozen egg whites, frozen egg albumen is the food prepared by...

  5. 21 CFR 160.150 - Frozen egg whites.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Frozen egg whites. 160.150 Section 160.150 Food... HUMAN CONSUMPTION EGGS AND EGG PRODUCTS Requirements for Specific Standardized Eggs and Egg Products § 160.150 Frozen egg whites. (a) Frozen egg whites, frozen egg albumen is the food prepared by...

  6. 21 CFR 160.150 - Frozen egg whites.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Frozen egg whites. 160.150 Section 160.150 Food... HUMAN CONSUMPTION EGGS AND EGG PRODUCTS Requirements for Specific Standardized Eggs and Egg Products § 160.150 Frozen egg whites. (a) Frozen egg whites, frozen egg albumen is the food prepared by...

  7. Growth Mechanism of the (110) Face of Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Nadarajah, Arunan; Li, Meirong; Pusey, Marc L.

    1997-01-01

    The measured macroscopic growth rates of the (110) face of tetragonal lysozyme show an unexpectedly complex dependence on the supersaturation. In earlier studies it has been shown that an aggregate growth unit could account for experimental growth-rate trends. In particular molecular packing and interactions in the growth of the crystal were favored by completion of the helices along the 4, axes. In this study the molecular orientations of the possible growth units and the molecular growth mechanism were identified. This indicated that growth was a two-step process: aggregate growth units corresponding to the 4, helix are first formed in the bulk solution by stronger intermolecular bonds and then attached to the crystal face by weaker bonds. A more comprehensive analysis of the measured (110) growth rates was also undertaken. They were compared with the predicted growth rates from several dislocation and two-dimensional nucleation growth models, employing tetramer and Octamer growth units in polydisperse solutions and monomer units in monodisperse solutions. The calculations consistently showed that the measured growth rates followed the expected model relations with octamer growth units, in agreement with the predictions from the molecular level analyses.

  8. Photothermal denaturation of egg white by pulsed holmium laser

    NASA Astrophysics Data System (ADS)

    Asshauer, Thomas; Delacretaz, Guy P.; Rastegar, Sohi

    1996-05-01

    Heat denaturation of egg white is usually followed by polymerization or gelatin of the denatured components, primarily albumin, and is associated with manifestation of a distinct increase in scattering or whitening of the egg white. In this study the effect pulsed laser coagulation of egg white was studied using a CTH:YAG laser delivered through a 600 micrometers diameter fiber into a cuvette filled with raw egg white. The dynamics of laser induced photothermal denaturation of egg white was observed by monitoring the increase of light scattering by time resolved video imaging. Two distinct laser induced processes were observed. At higher radiant exposure (> 30 - 40 J/cm2) the egg whites was rapidly heated above the water vapor transition temperature and a cavitation bubble was formed. Below threshold for bubble formation a bullet-like zone of whitened egg-white is formed at the top of the fiber.

  9. A simple apparatus for controlling nucleation and size in protein crystal growth

    NASA Technical Reports Server (NTRS)

    Gernert, Kim M.; Smith, Robert; Carter, Daniel C.

    1988-01-01

    A simple device is described for controlling vapor equilibrium in macromolecular crystallization as applied to the protein crystal growth technique commonly referred to as the 'hanging drop' method. Crystal growth experiments with hen egg white lysozyme have demonstrated control of the nucleation rate. Nucleation rate and final crystal size have been found to be highly dependent upon the rate at which critical supersaturation is approached. Slower approaches show a marked decrease in the nucleation rate and an increase in crystal size.

  10. One-step purification of proteins from chicken egg white using counter-current chromatography.

    PubMed

    Shibusawa, Y; Kihira, S; Ito, Y

    1998-05-29

    Proteins present in chicken egg white are separated by counter-current chromatography (CCC) in one step using a cross-axis coil planet centrifuge (X-axis CPC). The separation was performed with an aqueous polymer two-phase system composed of 16% (w/w) poly(ethylene glycol) 1000 and 12.5% (w/w) dibasic potassium phosphate by eluting the lower phase at a flow-rate of 1.0 ml/min. From about 20 g of the crude egg white solution, lysozyme, ovalbumin, and ovotransferrin were resolved within 5.5 h. Each component was identified by 12% SDS gel electrophoresis with Coomassie brilliant blue staining.

  11. Crystallization of proteins by dynamic control of supersaturation. Ph.D. Thesis Semiannual Status Report, 21 Mar. - 20 Sep. 1990

    NASA Technical Reports Server (NTRS)

    Wilson, Lori June

    1990-01-01

    The growth of protein crystals is known to be the limiting factor in the determination of the three-dimensional structures of most proteins. It is expected that the kinetics of supersaturation, which is directly related to solvent evaporation, will affect protein crystal growth and nucleation and accordingly determine the quality, number, size, and morphology of the crystals. With a technique that controls the evaporation of solvent from a protein solution with N2(g) it is possible to determine the effect of different evaporation profiles on hen egg white lysozyme crystals. Hen egg white lysozyme was chosen as the model protein because it crystallizes easily and has solubility data available for most salt, pH, and temperature ranges. Commercially available lysozyme was further purified by a number of methods. Crystals grown with the purified lysozyme and with the unpurified lysozyme in citrate buffer were different shapes but were found to be of the same symmetry space group by precession photos. Differences were seen in the lysozyme crystals grown using different evaporation rates. At three of the four initial conditions for lysozyme crystal growth, longer evaporation times yielded better crystals. The evaporation times required to see a change in the appearance of the crystals was much longer than expected. The number of rates studied so far represent only a small fraction of the ones now available with the gas evaporation device. The technique also provides for control of both solution pH and temperature which are related to the solubilities of proteins.

  12. Preparation of deglycosylated egg white avidin.

    PubMed

    Bayer, E A; De Meester, F; Kulik, T; Wilchek, M

    1995-04-01

    A simple procedure for the preparation of deglycosylated avidin is described. Commercially obtained avidin was treated with a mixed microbial culture. The cells were capable of growing on the oligosaccharide residues, but generally ignored the polypeptide portion of the egg white glycoprotein. The resultant deglycosylated avidin retained its biotin-binding characteristics. The major bacterial strain (strain BECH080), responsible for the deglycosylation, was isolated. On the basis of elementary biochemical tests, fatty acid, and phenotypic analyses, the isolate was identified as a strain of Flavobacterium meningosepticum. The primary enzymatic activity that caused the removal of the oligosaccharide residues of avidin appeared to be similar to endoglycosidase F.

  13. Egg white proteins and their potential use in food processing or as nutraceutical and pharmaceutical agents--a review.

    PubMed

    Abeyrathne, E D N S; Lee, H Y; Ahn, D U

    2013-12-01

    Egg white contains many functionally important proteins. Ovalbumin (54%), ovotransferrin (12%), ovomucoid (11%), ovomucin (3.5%), and lysozyme (3.5%) are among the major proteins that have high potentials for industrial applications if separated. The separation methods for these proteins from egg white have been developed since early 1900, but preparation methods of these proteins for commercial applications are still under development. Simplicity and scalability of the methods, use of nontoxic chemicals for the separation, and sequential separation for multiple proteins are very important criteria for the commercial production and application of these proteins. The separated proteins can be used in food and pharmaceutical industry as is or after modifications with enzymes. Ovotransferrin is used as a metal transporter, antimicrobial, or anticancer agent, whereas lysozyme is mainly used as a food preservative. Ovalbumin is widely used as a nutrient supplement and ovomucin as a tumor suppression agent. Ovomucoid is the major egg allergen but can inhibit the growth of tumors, and thus can be used as an anticancer agent. Hydrolyzed peptides from these proteins showed very good angiotensin I converting enzyme inhibitory, anticancer, metal binding, and antioxidant activities. Therefore, separation of egg white proteins and the productions of bioactive peptides from egg white proteins are emerging areas with many new applications.

  14. Contaminant inclusion into protein crystals analyzed by electrospray mass spectrometry and X-ray crystallography.

    PubMed Central

    Hirschler, J.; Halgand, F.; Forest, E.; Fontecilla-Camps, J. C.

    1998-01-01

    The inclusion of protein contaminants into crystals of turkey egg white lysozyme (TEWL) was investigated by electrospray mass spectrometry of the dissolved crystals. The results show that significant amounts of the structurally related contaminant hen egg white lysozyme (HEWL) are included in the crystals of TEWL. The structurally unrelated contaminant RNAse A, on the other hand, is not included. The X-ray diffraction data statistics of a hybrid TEWL/HEWL crystal and an uncontaminated TEWL crystal were of similar quality. This indicates that, even though the crystals contain much higher levels of the contaminant than one would have expected after a recrystallization experiment, they are still suitable for X-ray diffraction experiments. However, attempts to detect the presence of the contaminant in the crystal by crystallographic structure refinement did not yield conclusive results. PMID:9514273

  15. Keratan sulfate glycosaminoglycan from chicken egg white

    PubMed Central

    Fu, Li; Sun, Xiaojun; He, Wenqin; Cai, Chao; Onishi, Akihiro; Zhang, Fuming; Linhardt, Robert J; Liu, Zhangguo

    2016-01-01

    Keratan sulfate (KS) was isolated from chicken egg white in amounts corresponding to ∼0.06 wt% (dry weight). This KS had a weight-average molecular weight of ∼36–41 kDa with a polydispersity of ∼1.3. The primary repeating unit present in chicken egg white KS was →4) β-N-acetyl-6-O-sulfo-d-glucosamine (1 → 3) β-d-galactose (1→ with some 6-O-sulfo galactose residues present. This KS was somewhat resistant to depolymerization using keratanase 1 but could be depolymerized efficiently through the use of reactive oxygen species generated using copper (II) and hydrogen peroxide. Of particular interest was the presence of substantial amounts of 2,8- and 2,9-linked N-acetylneuraminic acid residues in the form of oligosialic acid terminating the non-reducing ends of the KS chains. Most of the KS appears to be N-linked to a protein core as evidenced by its sensitivity to PNGase F. PMID:26903438

  16. Keratan sulfate glycosaminoglycan from chicken egg white.

    PubMed

    Fu, Li; Sun, Xiaojun; He, Wenqin; Cai, Chao; Onishi, Akihiro; Zhang, Fuming; Linhardt, Robert J; Liu, Zhangguo

    2016-07-01

    Keratan sulfate (KS) was isolated from chicken egg white in amounts corresponding to ∼0.06 wt% (dry weight). This KS had a weight-average molecular weight of ∼36-41 kDa with a polydispersity of ∼1.3. The primary repeating unit present in chicken egg white KS was →4) β-N-acetyl-6-O-sulfo-d-glucosamine (1 → 3) β-d-galactose (1→ with some 6-O-sulfo galactose residues present. This KS was somewhat resistant to depolymerization using keratanase 1 but could be depolymerized efficiently through the use of reactive oxygen species generated using copper (II) and hydrogen peroxide. Of particular interest was the presence of substantial amounts of 2,8- and 2,9-linked N-acetylneuraminic acid residues in the form of oligosialic acid terminating the non-reducing ends of the KS chains. Most of the KS appears to be N-linked to a protein core as evidenced by its sensitivity to PNGase F.

  17. Elucidation of metal-ion accumulation induced by hydrogen bonds on protein surfaces by using porous lysozyme crystals containing Rh(III) ions as the model surfaces.

    PubMed

    Ueno, Takafumi; Abe, Satoshi; Koshiyama, Tomomi; Ohki, Takahiro; Hikage, Tatsuo; Watanabe, Yoshihito

    2010-03-01

    Metal-ion accumulation on protein surfaces is a crucial step in the initiation of small-metal clusters and the formation of inorganic materials in nature. This event is expected to control the nucleation, growth, and position of the materials. There remain many unknowns, as to how proteins affect the initial process at the atomic level, although multistep assembly processes of the materials formation by both native and model systems have been clarified at the macroscopic level. Herein the cooperative effects of amino acids and hydrogen bonds promoting metal accumulation reactions are clarified by using porous hen egg white lysozyme (HEWL) crystals containing Rh(III) ions, as model protein surfaces for the reactions. The experimental results reveal noteworthy implications for initiation of metal accumulation, which involve highly cooperative dynamics of amino acids and hydrogen bonds: i) Disruption of hydrogen bonds can induce conformational changes of amino-acid residues to capture Rh(III) ions. ii) Water molecules pre-organized by hydrogen bonds can stabilize Rh(III) coordination as aqua ligands. iii) Water molecules participating in hydrogen bonds with amino-acid residues can be replaced by Rh(III) ions to form polynuclear structures with the residues. iv) Rh(III) aqua complexes are retained on amino-acid residues through stabilizing hydrogen bonds even at low pH (approximately 2). These metal-protein interactions including hydrogen bonds may promote native metal accumulation reactions and also may be useful in the preparation of new inorganic materials that incorporate proteins.

  18. Efficient incorporation of deuterated amino acids into quail egg white proteins for nuclear magnetic resonance studies

    SciTech Connect

    Brown-Mason, A.; Dobson, C.M.; Woodworth, R.C.

    1981-02-25

    The in vivo incorporation of deuterated amino acids into egg white proteins of Japanese quail is described. Using a synthetic diet, the level of incorporation of selectively deuterated tyrosine, tryptophan, histidine, and phenylalanine into lysozyme was greater than 80% as demonstrated by proton NMR. Load and load-chase experiments using (/sup 3/H)phenylalanine or (/sup 3/H)leucine monitored the fast uptake time (t sub 1/2 = 2 days) and confirmed the high levels of incorporation. The potential of this system for preparation of other proteins for NMR spectroscopy is discussed.

  19. Efficient incorporation of deuterated amino acids into quail egg white proteins for nuclear magnetic resonance studies

    SciTech Connect

    Brown-Mason, A.; Dobson, C.M.; Woodworth, R.C.

    1981-02-25

    The in vivo incorporation of deuterated amino acids into egg white proteins of Japanese quail is described. Using a synthetic diet, the level of incorporation of selectively deuterated tyrosine, tryptophan, histidine, and phenylalanine into lysozyme was greater than 80% as demonstrated by proton NMR. Load and load-chase experiments using (3H)phenylalanine or (3H)leucine monitored the fast uptake time (t 1/2 = 2 days) and confirmed the high levels of incorporation. The potential of this system for preparation of other proteins for NMR spectroscopy is discussed.

  20. Lysozyme separation by hollow-fibre ultrafiltration.

    PubMed

    Ghosh; Silva1; Cui

    2000-08-01

    This paper discusses the purification of lysozyme from chicken egg white using hollow-fibre ultrafiltration (30kDa MWCO, polysulphone membrane). Lysozyme is preferentially transmitted through the membrane while the membrane largely retains other egg white proteins. Improvement in system hydrodynamics resulted in an increase in permeate flux while lysozyme transmission remained unaffected, leading to higher productivity. The percentage purity of lysozyme obtained was generally insensitive to system hydrodynamics. The permeate flux and productivity increased with increase in transmembrane pressure (TMP) before levelling off around 0.7bar. However, the TMP did not have any pronounced effect on the transmission and the purity of lysozyme. Experiments carried out in the diafiltration mode showed that moderately pure lysozyme (80-90%) could be obtained in an extended operation.

  1. Crystallization, data collection and phasing of two digestive lysozymes from Musca domestica

    SciTech Connect

    Marana, S. R.; Cançado, F. C.; Valério, A. A.; Ferreira, C.; Terra, W. R.; Barbosa, J. A. R. G.

    2006-08-01

    The digestive lysozymes 1 and 2 from M. domestica were crystallized by vapour diffusion. The crystallographic data were processed to a maximum resolution of 1.9 Å in both cases. Lysozymes are mostly known for their defensive role against bacteria, but in several animals lysozymes have a digestive function. Here, the initial crystallographic characterization of two digestive lysozymes from Musca domestica are presented. The proteins were crystallized using the sitting-drop vapour-diffusion method in the presence of ammonium sulfate or PEG/2-propanol as the precipitant. X-ray diffraction data were collected to a maximum resolution of 1.9 Å using synchrotron radiation. The lysozyme 1 and 2 crystals belong to the monoclinic space group P2{sub 1} (unit-cell parameters a = 36.52, b = 79.44, c = 45.20 Å, β = 102.97°) and the orthorhombic space group P2{sub 1}2{sub 1}2 (unit-cell parameters a = 73.90, b = 96.40, c = 33.27 Å), respectively. The crystal structures were solved by molecular replacement and structure refinement is in progress.

  2. Domain organization and properties of LB lysozyme crystals down to submicron size.

    PubMed

    Pechkova, Eugenia; Nicolini, Claudio

    2010-07-01

    New topographic details appeared evident in protein crystal buffered with glycerol solution native on mica by atomic force microscopy and after laser irradiation on glass by light microscopy. This observation indicates the existence of distinct domains in the 3D crystal organisation that are quite different in size and number between the lysozyme crystals grown by Langmuir-Blodgett (LB) nanotemplate with respect to traditional hanging-drop vapour diffusion. Nanodiffraction by highly focused synchrotron radiation of laser cut submicron crystals confirmed the atomic structure of all residues of LB lysozyme crystals as being the most resistant to radiation damage. Crystals grown by LB nanotemplate still diffracted at good resolution after several steps of X-ray 'burning', while the classical crystals decayed very quickly at the same exposure.

  3. Crystallization of lysozyme with (R)-, (S)- and (RS)-2-methyl-2,4-pentanediol

    PubMed Central

    Stauber, Mark; Jakoncic, Jean; Berger, Jacob; Karp, Jerome M.; Axelbaum, Ariel; Sastow, Dahniel; Buldyrev, Sergey V.; Hrnjez, Bruce J.; Asherie, Neer

    2015-01-01

    Chiral control of crystallization has ample precedent in the small-molecule world, but relatively little is known about the role of chirality in protein crystallization. In this study, lysozyme was crystallized in the presence of the chiral additive 2-methyl-2,4-pentanediol (MPD) separately using the R and S enantiomers as well as with a racemic RS mixture. Crystals grown with (R)-MPD had the most order and produced the highest resolution protein structures. This result is consistent with the observation that in the crystals grown with (R)-MPD and (RS)-MPD the crystal contacts are made by (R)-MPD, demonstrating that there is preferential interaction between lysozyme and this enantiomer. These findings suggest that chiral interactions are important in protein crystallization. PMID:25760593

  4. UV inactivation of E. coli in liquid egg white

    USDA-ARS?s Scientific Manuscript database

    An ultraviolet light (UV) system was developed to pasteurize liquid egg white. The system consisted of low-pressure mercury bulbs surrounded by UV transparent tubing. Egg white was inoculated with Escherichia coli K12 and pumped through the UV system at a flow rate of 330 ml/min. The effects of trea...

  5. Crystallization of lysozyme with (R)-, (S)- and (RS)-2-methyl-2, 4-pentanediol

    SciTech Connect

    Stauber, Mark; Jakoncic, Jean; Berger, Jacob; Karp, Jerome M.; Axelbaum, Ariel; Sastow, Dahniel; Buldyrev, Sergey V.; Hrnjez, Bruce J.; Asherie, Neer

    2015-03-01

    Crystallization of lysozyme with (R)-2-methyl-2, 4-pentanediol produces more ordered crystals and a higher resolution protein structure than crystallization with (S)-2-methyl-2, 4-pentanediol. The results suggest that chiral interactions with chiral additives are important in protein crystal formation. Chiral control of crystallization has ample precedent in the small-molecule world, but relatively little is known about the role of chirality in protein crystallization. In this study, lysozyme was crystallized in the presence of the chiral additive 2-methyl-2, 4-pentanediol (MPD) separately using the R and S enantiomers as well as with a racemic RS mixture. Crystals grown with (R)-MPD had the most order and produced the highest resolution protein structures. This result is consistent with the observation that in the crystals grown with (R)-MPD and (RS)-MPD the crystal contacts are made by (R)-MPD, demonstrating that there is preferential interaction between lysozyme and this enantiomer. These findings suggest that chiral interactions are important in protein crystallization.

  6. Purification of lysozyme using ultrafiltration.

    PubMed

    Ghosh, R; Cui, Z F

    2000-04-20

    This article examines the separation of lysozyme from chicken egg white by ultrafiltration with 25 kDa and 50 kDa MWCO polysulfone membranes. The effects of pH, system hydrodynamics, feed concentration, and transmembrane pressure on permeate flux, lysozyme transmission, purification factor, and productivity have been discussed. With both types of membranes, higher permeate flux and lysozyme transmission were observed at higher pH. Higher lysozyme purity was generally obtained with the 25 kDa MWCO membrane. Purity of lysozyme decreased when the feed concentration was increased. With the 50 kDa MWCO membrane permeate flux, productivity and the purity of lysozyme were found to increase with increase in transmembrane pressure. The possibility of using a two-step ultrafiltration process for achieving high productivity along with high purity of lysozyme was also investigated.

  7. Superior Catalytic Performance of Gold Nanoparticles Within Small Cross-Linked Lysozyme Crystals.

    PubMed

    Liu, Mingyue; Wang, Libing; Huang, Renliang; Yu, Yanjun; Su, Rongxin; Qi, Wei; He, Zhimin

    2016-10-08

    Bionanomaterials synthesized by bio-inspired templating methods have emerged as a novel class of composite materials with varied applications in catalysis, detection, drug delivery, and biomedicine. In this study, two kinds of cross-linked lysozyme crystals (CLLCs) of different sizes were applied for the in situ growth of Au nanoparticles (AuNPs). The resulting composite materials were characterized by light microscopy, scanning electron microscopy, transmission electron microscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy. The catalytic properties of the prepared materials were examined in the catalytic reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). It was found that the size of the AuNPs increased with an increase in Au loading for both small and large crystals. In addition, small crystals favored homogeneous adsorption and distribution of the metal precursors. And the size of the AuNPs within small crystals could be maintained below 2.5 nm by managing the HAuCl4/lysozyme molar ratio. Furthermore, the lysozyme functional groups blocked the AuNP activity sites, therefore reducing their catalytic activity. This effect was more pronounced for small AuNPs. Moreover, the mass transfer of reactants (4-NP) from solution to AuNPs within the crystals restricted their catalytic reduction, leading to superior catalytic performance of the AuNPs within small cross-linked lysozyme crystals (Au@S-CLLCs) compared to those within large cross-linked lysozyme crystals (Au@L-CLLCs) at similar Au loadings. Finally, an increase in Au loading clogged the crystal channels with increased quantities of larger aggregated AuNPs, thus impeding the catalytic performance of Au@S-CLLCs.

  8. Aggregation of egg white proteins with pulsed electric fields and thermal processes.

    PubMed

    Wu, Li; Zhao, Wei; Yang, Ruijin; Yan, Wenxu; Sun, Qianyan

    2016-08-01

    Pulsed electric field (PEF) processing is progressing towards application for liquid egg to ensure microbial safety. However, it usually causes protein aggregation, and the mechanism is still unclear. In this study, egg white protein was applied to investigate the changes in protein structure and mechanism of aggregates formation and a comparison was made with thermal treatment. Soluble protein content decreased with the increase of turbidity after both treatments. Fluorescence intensity and free sulfhydryl content were increased after being treated at 70 °C for 4 min. Less-remarkable changes of hydrophobicity were observed after PEF treatments (30 kV cm(-1) , 800 µs). Soluble and insoluble aggregates were observed by thermal treatment, and disulfide bonds were the main binding forces. The main components of insoluble aggregates formed by thermal treatment were ovotransferrin (30.58%), lysozyme (18.47%) and ovalbumin (14.20%). While only insoluble aggregates were detected during PEF processes, which consists of ovotransferrin (11.86%), lysozyme (21.11%) and ovalbumin (31.07%). Electrostatic interaction played a very important role in the aggregates formation. PEF had a minor impact on the structure of egg white protein. PEF had insignificant influence on heat-sensitive protein, indicating that PEF has potential in processing food with high biological activity and heat sensitive properties. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  9. A new method for predetermining the diffraction quality of protein crystals: using SOAP as a selection tool.

    PubMed

    Owen, Robin Leslie; Garman, Elspeth

    2005-02-01

    A microscope for quantitative analysis of the birefringence properties of samples is introduced. The microscope is used to measure variations in the slow optical axis position (SOAP) across hen egg-white lysozyme, glucose isomerase and fibronectin crystals. By comparing these variations with indicators of diffraction quality, it is shown that the optical properties of a protein crystal provide a non-invasive method of determining crystal diffraction quality before any X-ray data collection is attempted.

  10. Multi-angle static and dynamic light scattering investigation of lysozyme association: From crystallization to liquid liquid phase separation

    NASA Astrophysics Data System (ADS)

    Onuma, Kazuo; Kanzaki, Noriko

    2007-06-01

    The association of hen egg white lysozyme was observed using time-resolved multi-angle static and dynamic light scattering. In solutions containing 1.2 M of NaCl with a pH of 4.6 buffered by 50 mM of NaAc, and maintained at 20C, the apparent molecular weight Mw, and gyration radius Rg, of lysozyme aggregates were measured at 0.3-5-s intervals for various lysozyme concentrations from 8 to 32 mg/mL using static light scattering. At 32 mg/mL, liquid-liquid phase separation (LLPS) occurred. The (Kc/ΔR(q)) vs. q2 plot had a non-linear shape with a maximum at a particular q2, indicating that the aggregate size distribution was within a narrow range. This had not been observed in our previous studies of high-molecular-weight proteins. The dynamic light scattering data were consistent with those of static light scattering; i.e., CONTIN analysis showed clear bimodal (monomer and aggregate) distributions. Fractal dimension analysis of the aggregates with the protein concentration showed that the inner structure of the scatterer formed during LLPS was rigid in the final stage, which supports a two-step nucleation model.

  11. The Effect of Solution Parameters on Lysozyme Nucleation Rates and Crystal Quality

    NASA Technical Reports Server (NTRS)

    Judge, R. A.; Snell, E. H.

    1998-01-01

    In the pursuit of strongly diffracting high quality macromolecule crystals of suitable volume, this study investigates how the formation of macromolecules in solution and their growth characteristics effect crystal volume and diffracting quality. We systematically investigated the effect of solution conditions on lysozyme nucleation rates and the volume of crystals produced. Batch crystallization plates were used in combination with a video microscope system to measure nucleation rates and crystal volume. As expected from classical nucleation theory, crystal numbers were found to increase with increases in temperature and supersaturation. Small changes in solution pH, at constant supersaturation values were found, however, to dramatically effect the number of crystals nucleated in the wells varying from 1000s to 10s in the pH range 4.0 to 5.2. Having optimized the conditions required to produce an appropriate number of crystals of a suitable volume for X-ray analysis, a large number of uniform crystals were produced under exactly the same conditions. In the X-ray analysis of more than 50 such crystals there was found a wide variation in crystal lattice parameters and data quality. The variation in X-ray quality crystal samples is thought to be related to the growth rate variation caused by growth rate dispersion seen in lysozyme crystal growth experiments.

  12. The Effect of Solution Parameters on Lysozyme Nucleation Rates and Crystal Quality

    NASA Technical Reports Server (NTRS)

    Judge, R. A.; Snell, E. H.

    1998-01-01

    In the pursuit of strongly diffracting high quality macromolecule crystals of suitable volume, this study investigates how the formation of macromolecules in solution and their growth characteristics effect crystal volume and diffracting quality. We systematically investigated the effect of solution conditions on lysozyme nucleation rates and the volume of crystals produced. Batch crystallization plates were used in combination with a video microscope system to measure nucleation rates and crystal volume. As expected from classical nucleation theory, crystal numbers were found to increase with increases in temperature and supersaturation. Small changes in solution pH, at constant supersaturation values were found, however, to dramatically effect the number of crystals nucleated in the wells varying from 1000s to 10s in the pH range 4.0 to 5.2. Having optimized the conditions required to produce an appropriate number of crystals of a suitable volume for X-ray analysis, a large number of uniform crystals were produced under exactly the same conditions. In the X-ray analysis of more than 50 such crystals there was found a wide variation in crystal lattice parameters and data quality. The variation in X-ray quality crystal samples is thought to be related to the growth rate variation caused by growth rate dispersion seen in lysozyme crystal growth experiments.

  13. Does Warming a Lysozyme Solution Cook Ones Data?

    NASA Technical Reports Server (NTRS)

    Pusey, Marc; Burke, Michael; Judge, Russell

    2000-01-01

    Chicken egg white lysozyme has a well characterized thermally driven phase transition. Between pH 4.0 and 5.2, the transition temperature, as defined by the point where the tetragonal and orthorhombic solubility are equal, is a function of the pH, salt (precipitant) type and concentration, and most likely of the buffer concentration as well. This phase transition can be carried out with protein solution alone, prior to the initiation of the crystallization process. We have now measured the kinetics of this process and investigated its reversibility. An aliquot of a stock protein solution is held at a given temperature, and at periodic intervals used to set up batch crystallization experiments. The batch solutions were incubated at 20 C until macroscopic crystals were obtained, at which point the number of crystals in each well were counted. The transition effects increased with temperature, slowly falling off at 30 C with a half time (time to approx. 1/2 the t = 0 number of crystals) of approx. 5 hours, and an estimated half time of approx. 0.5 hours at 43 C. Further, the process was not reversible by simple cooling. After holding a lysozyme solution at 37 C (prior to addition of precipitant) for 16 hours, then cooling and holding it at 4 C, no return to the pre-warmed nucleation kinetics are observed after at least 4 weeks. Thus every thermal excursion above the phase transition point results in a further decrease in the nucleation rate of that solution, the extent being a function of the time and temperature. Orthorhombic lysozyme crystals apparently do not undergo the flow-induced growth cessation of tetragonal lysozyme crystals. We have previously shown that putting the protein in the orthorhombic form does not affect the averaged face growth kinetics, only nucleation, for tetragonal crystals. We may be able to use this differential behavior to elucidate how flow affects tile lysozyme crystal growth process.

  14. Does Warming a Lysozyme Solution Cook Ones Data?

    NASA Technical Reports Server (NTRS)

    Pusey, Marc; Burke, Michael; Judge, Russell

    2000-01-01

    Chicken egg white lysozyme has a well characterized thermally driven phase transition. Between pH 4.0 and 5.2, the transition temperature, as defined by the point where the tetragonal and orthorhombic solubility are equal, is a function of the pH, salt (precipitant) type and concentration, and most likely of the buffer concentration as well. This phase transition can be carried out with protein solution alone, prior to the initiation of the crystallization process. We have now measured the kinetics of this process and investigated its reversibility. An aliquot of a stock protein solution is held at a given temperature, and at periodic intervals used to set up batch crystallization experiments. The batch solutions were incubated at 20 C until macroscopic crystals were obtained, at which point the number of crystals in each well were counted. The transition effects increased with temperature, slowly falling off at 30 C with a half time (time to approx. 1/2 the t = 0 number of crystals) of approx. 5 hours, and an estimated half time of approx. 0.5 hours at 43 C. Further, the process was not reversible by simple cooling. After holding a lysozyme solution at 37 C (prior to addition of precipitant) for 16 hours, then cooling and holding it at 4 C, no return to the pre-warmed nucleation kinetics are observed after at least 4 weeks. Thus every thermal excursion above the phase transition point results in a further decrease in the nucleation rate of that solution, the extent being a function of the time and temperature. Orthorhombic lysozyme crystals apparently do not undergo the flow-induced growth cessation of tetragonal lysozyme crystals. We have previously shown that putting the protein in the orthorhombic form does not affect the averaged face growth kinetics, only nucleation, for tetragonal crystals. We may be able to use this differential behavior to elucidate how flow affects tile lysozyme crystal growth process.

  15. The Averaged Face Growth Rates of lysozyme Crystals: The Effect of Temperature

    NASA Technical Reports Server (NTRS)

    Nadarajah, Arunan; Forsythe, Elizabeth L.; Pusey, Marc L.

    1995-01-01

    Measurements of the averaged or macroscopic face growth rates of lysozyme crystals are reported here for the (110) face of tetragonal lysozyme, at three sets of pH and salt concentrations, with temperatures over a 4-22 C range for several protein concentrations. The growth rate trends with supersaturation were similar to previous microscopic growth rate measurements. However, it was found that at high super-saturations the growth rates attain a maximum and then start decreasing. No 'dead zone' was observed but the growth rates were found to approach zero asymptotically at very low super-saturations. The growth rate data also displayed a dependence on pH and salt concentration which could not be characterized solely by the super-saturation. A complete mechanism for lysozyme crystal growth, involving the formation of an aggregate growth unit, mass transport of the growth unit to the crystal interface and faceted crystal growth by growth unit addition, is suggested. Such a mechanism may provide a more consistent explanation for the observed growth rate trends than those suggested by other investigators. The nutrient solution interactions leading to the formation of the aggregate growth unit may, thus, be as important as those occurring at the crystal interface and may account for the differences between small molecule and protein crystal growth.

  16. Characterization of protein and virus crystals by quasi-planar wave X-ray topography: a comparison between crystals grown in solution and in agarose gel

    NASA Astrophysics Data System (ADS)

    Lorber, B.; Sauter, C.; Ng, J. D.; Zhu, D. W.; Giegé, R.; Vidal, O.; Robert, M. C.; Capelle, B.

    1999-07-01

    Quasi-planar wave reflection profile and X-ray topography studies have been done to characterize the mosaicity of solution- and gel-grown crystals of three proteins, turkey egg-white (TEW) lysozyme, thaumatin, and a bacterial aspartyl-tRNA synthetase (AspRS) as well as of one virus, tomato bushy stunt virus (TBSV). These materials are representative of a large range of molecular weight, overall particle shapes, crystals habits, packings, and solvent contents. Measurements of the full-width at half-maximum (FWHM) of reflections show that these different crystals have all a weak mosaicity. Topographs display the same features as those of the well-studied hen egg-white (HEW) lysozyme crystals: misorientation generated at the seed level for TEW lysozyme or thaumatin crystals and/or strains at growth sector boundaries for AspRS crystals. No growth defects are evidenced for TBSV crystals. For the study of crystals diffracting at lower resolution (AspRS and virus), a less absorbant sample holder, which facilitates crystal positioning in the X-ray beam, has been developed. The results obtained for solution- and gel-grown crystals do not show important differences. However, for TEW lysozyme and thaumatin crystals, one notices a larger dispersion of results in the solution case and an overall tendency for improved reproducibility of quality for gel-grown crystals.

  17. Observations of the "egg white injury" in ants.

    PubMed

    Poissonnier, Laure-Anne; Simpson, Stephen J; Dussutour, Audrey

    2014-01-01

    A key determinant of the relationship between diet and longevity is the balance of protein to carbohydrate in the diet. Eating excess protein relative to carbohydrate shortens lifespan in solitary and social insects. Here we explored how lifespan and behavior in ants was affected by the quality of protein ingested and the presence of associated antinutrients (i.e. compounds that interfere with the absorption of nutrients). We tested diets prepared with either egg white protein only or a protein mixture. Egg white contains an anti-nutrient called avidin. Avidin binds to the B vitamin biotin, preventing its absorption. First, we demonstrate that an egg-white diet was twice as deleterious as a protein-mixture diet. Second, we show that ingestion of egg-white diet drastically affected social behavior, triggering elevated levels of aggression within the colony. Lastly, we reveal that by adding biotin to the egg white diet we were able to lessen its detrimental effects. This latest result suggests that ants suffered biotin deficiency when fed the egg white diet. In conclusion, anti-nutrients were known to affect health and performance of animals, but this is the first study showing that anti-nutrients also lead to severe changes in behavior.

  18. Observations of the “Egg White Injury” in Ants

    PubMed Central

    Poissonnier, Laure-Anne; Simpson, Stephen J.; Dussutour, Audrey

    2014-01-01

    A key determinant of the relationship between diet and longevity is the balance of protein to carbohydrate in the diet. Eating excess protein relative to carbohydrate shortens lifespan in solitary and social insects. Here we explored how lifespan and behavior in ants was affected by the quality of protein ingested and the presence of associated antinutrients (i.e. compounds that interfere with the absorption of nutrients). We tested diets prepared with either egg white protein only or a protein mixture. Egg white contains an anti-nutrient called avidin. Avidin binds to the B vitamin biotin, preventing its absorption. First, we demonstrate that an egg-white diet was twice as deleterious as a protein-mixture diet. Second, we show that ingestion of egg-white diet drastically affected social behavior, triggering elevated levels of aggression within the colony. Lastly, we reveal that by adding biotin to the egg white diet we were able to lessen its detrimental effects. This latest result suggests that ants suffered biotin deficiency when fed the egg white diet. In conclusion, anti-nutrients were known to affect health and performance of animals, but this is the first study showing that anti-nutrients also lead to severe changes in behavior. PMID:25392989

  19. Energy Minimization of Molecular Features Observed on the (110) Face of Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Perozzo, Mary A.; Konnert, John H.; Li, Huayu; Nadarajah, Arunan; Pusey, Marc

    1999-01-01

    Molecular dynamics and energy minimization have been carried out using the program XPLOR to check the plausibility of a model lysozyme crystal surface. The molecular features of the (110) face of lysozyme were observed using atomic force microscopy (AFM). A model of the crystal surface was constructed using the PDB file 193L, and was used to simulate an AFM image. Molecule translations, van der Waals radii, and assumed AFM tip shape were adjusted to maximize the correlation coefficient between the experimental and simulated images. The highest degree of 0 correlation (0.92) was obtained with the molecules displaced over 6 A from their positions within the bulk of the crystal. The quality of this starting model, the extent of energy minimization, and the correlation coefficient between the final model and the experimental data will be discussed.

  20. Salt-induced aggregation of lysozyme: Implications for crystal growth

    NASA Astrophysics Data System (ADS)

    Wilson, Lori J.

    1994-10-01

    Crystallization of proteins is a prerequisite for structural analysis by x-ray crystallography. While improvements in protein crystals have been obtained in microgravity onboard the U.S. Space Shuttle, attempts to improve the crystal growth process both on the ground and in space have been limited by our lack of understanding of the mechanisms involved. Almost all proteins are crystallized with the aid of a precipitating agent. Many of the common precipitating agents are inorganic salts. An understanding of the role of salts on the aggregation of protein monomers is the key to the elucidation of the mechanisms involved in protein crystallization. In order for crystallization to occur individual molecules must self-associate into aggregates. Detection and characterization of aggregates in supersaturated protein solutions is the first step in understanding salt-induced crystallization.

  1. Salt-induced aggregation of lysozyme: Implications for crystal growth

    NASA Technical Reports Server (NTRS)

    Wilson, Lori J.

    1994-01-01

    Crystallization of proteins is a prerequisite for structural analysis by x-ray crystallography. While improvements in protein crystals have been obtained in microgravity onboard the U.S. Space Shuttle, attempts to improve the crystal growth process both on the ground and in space have been limited by our lack of understanding of the mechanisms involved. Almost all proteins are crystallized with the aid of a precipitating agent. Many of the common precipitating agents are inorganic salts. An understanding of the role of salts on the aggregation of protein monomers is the key to the elucidation of the mechanisms involved in protein crystallization. In order for crystallization to occur individual molecules must self-associate into aggregates. Detection and characterization of aggregates in supersaturated protein solutions is the first step in understanding salt-induced crystallization.

  2. Refolding of denatured lysozyme by water-in-oil microemulsions of sucrose fatty acid esters.

    PubMed

    Noritomi, Hidetaka; Takasugi, Tsubasa; Kato, Satoru

    2008-04-01

    Water-in-oil (w/o) microemulsion of sucrose fatty acid ester was used to renature denatured hen egg white lysozyme without aggregation. After lysozyme was denatured in 5 M guanidine hydrochloride for 24 h, the resultant denatured lysozyme was held in the microemulsion, overnight at 25 degrees C. Renatured lysozyme was transferred from the microemulsion phase to the recovery aqueous phase by conventional liquid-liquid extraction. The enzymatic activity of the recovered lysozyme was 93%.

  3. An intrinsically shielded hydrogel for the adsorptive recovery of lysozyme.

    PubMed

    Wang, Lu; Zhang, Rongsheng; Eisenthal, Robert; Hubble, John

    2006-07-01

    The present paper addresses the selective recovery of lysozyme from egg white using CM-dextran (carboxymethyldextran)-based hydrogels containing Cibacron Blue as an affinity ligand and co-immobilized BSA intended to act as a shielding agent to reduce non-specific adsorption. Initial studies using pure lysozyme were conducted that indicated that the adsorption capacity increased with ligand density and that adsorption was well described by a Langmuir-type isotherm. The inclusion of BSA as a putative shielding agent did not decrease the adsorption capacity for lysozyme in single-adsorbate experiments. To assess the effectiveness of the shielding strategy, subsequent experiments were conducted with both defined lysozyme/ovalbumin mixtures and hen's-egg white. From these studies, the optimal operating conditions for lysozyme recovery have been determined. These include: optimal initial egg-white concentration [a 10% (v/v) solution of native egg white in the chosen buffer], affinity-ligand density (1.86 mM) and ligand-to-shielding-agent ratio (4:1). The purity of lysozyme obtained from egg white was improved from 69% with a non-shielded hydrogel to 94% with an intrinsically shielded hydrogel. Finally, the possibility of using a protein, rather than dextran-backbone-based, hydrogel was investigated. It was found that BSA could take the place of CM-dextran as the gel backbone in a simplified synthesis, producing a gel which also proved effective for lysozyme recovery with a 30% lysozyme in egg-white solution purified to approx. 92% in a single adsorption-desorption cycle.

  4. Crystallization of lysozyme with (R)-, (S)- and (RS)-2-methyl-2,4-pentanediol

    DOE PAGES

    Stauber, Mark; Jakoncic, Jean; Berger, Jacob; ...

    2015-03-01

    Chiral control of crystallization has ample precedent in the small-molecule world, but relatively little is known about the role of chirality in protein crystallization. In this study, lysozyme was crystallized in the presence of the chiral additive 2-methyl-2,4-pentanediol (MPD) separately using the R and S enantiomers as well as with a racemic RS mixture. Crystals grown with (R)-MPD had the most order and produced the highest resolution protein structures. This result is consistent with the observation that in the crystals grown with (R)-MPD and (RS)-MPD the crystal contacts are made by (R)-MPD, demonstrating that there is preferential interaction between lysozymemore » and this enantiomer. These findings suggest that chiral interactions are important in protein crystallization.« less

  5. Fluorescence Studies of Lysozyme Nucleation

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Smith, Lori

    1998-01-01

    Fluorescence is one of the most powerful tools available for the study of macromolecules. For example, fluorescence can be used to study self association through methods such as anisotropy (the rotational rate of the molecule in solution), quenching (the accessibility of a bound probe to the bulk solution), and resonance energy transfer (measurement of the distance between two species). Fluorescence can also be used to study the local environment of the probe molecules, and the changes in that environment which accompany crystal nucleation and growth. However fluorescent techniques have been very much underutilized in macromolecular growth studies. One major advantage is that the fluorescent species generally must be at low concentration, typically ca 10-5 to 10-6 M. Thus one can study a very wide range of solution conditions, ranging from very high to very low protein concentration, he latter of which are not readily accessible to scattering techniques. We have prepared a number of fluorescent derivatives of chicken egg white lysozyme (CEWL). Fluorescent probes have been attached to two different sites, ASP 101 and the N-terrninal amine, with a sought for use in different lines of study. Preliminary resonance energy transfer studies have been -carried out using pyrene acetic acid (Ex 340 mn, Em 376 nm) lysozyme as a donor and cascade blue (Ex 377 run, Em 423 nm) labeled lysozyme as an acceptor. The emission of both the pyrene and cascade blue probes was followed as a function of the salt protein concentrations. The data show an increase in cascade blue and a concomitant decrease in the pyrene fluorescence as either the salt or protein concentrations are increased, suggesting that the two species are approaching each other close enough for resonance energy transfer to occur. This data can be analyzed to measure the distance between the probe molecules and, knowing their locations on the protein molecule their distances from and orientations with respect to each

  6. Fluorescence Studies of Lysozyme Nucleation

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Smith, Lori

    1998-01-01

    Fluorescence is one of the most powerful tools available for the study of macromolecules. For example, fluorescence can be used to study self association through methods such as anisotropy (the rotational rate of the molecule in solution), quenching (the accessibility of a bound probe to the bulk solution), and resonance energy transfer (measurement of the distance between two species). Fluorescence can also be used to study the local environment of the probe molecules, and the changes in that environment which accompany crystal nucleation and growth. However fluorescent techniques have been very much underutilized in macromolecular growth studies. One major advantage is that the fluorescent species generally must be at low concentration, typically ca 10-5 to 10-6 M. Thus one can study a very wide range of solution conditions, ranging from very high to very low protein concentration, he latter of which are not readily accessible to scattering techniques. We have prepared a number of fluorescent derivatives of chicken egg white lysozyme (CEWL). Fluorescent probes have been attached to two different sites, ASP 101 and the N-terrninal amine, with a sought for use in different lines of study. Preliminary resonance energy transfer studies have been -carried out using pyrene acetic acid (Ex 340 mn, Em 376 nm) lysozyme as a donor and cascade blue (Ex 377 run, Em 423 nm) labeled lysozyme as an acceptor. The emission of both the pyrene and cascade blue probes was followed as a function of the salt protein concentrations. The data show an increase in cascade blue and a concomitant decrease in the pyrene fluorescence as either the salt or protein concentrations are increased, suggesting that the two species are approaching each other close enough for resonance energy transfer to occur. This data can be analyzed to measure the distance between the probe molecules and, knowing their locations on the protein molecule their distances from and orientations with respect to each

  7. The second space experiment of protein crystallization with domestic facilities.

    PubMed

    Wang, Y; Pan, J; Niu, X; Zhou, Y; Hua, Z; Xu, Q; Wu, S; Han, Q; Li, H; Liu, Y; Teng, M; He, H; Lin, S; Bi, R

    1996-10-01

    The second experiment of protein crystallization was performed on domestic re-entry satellite FSW-2 in 1994-07. The results are superior to the ones of the first mission in 1992: 9 of 10 different proteins were crystallized in space, and 70% of the total 48 samples yielded single crystals. Besides hen egg-white lysozyme which grew high-quality crystals on the first mission, an acidic phospholipase A2(aPLA2) from snake venom and hemoglobin from Anser Indicus produced good-quality crystals suitable for X-ray diffraction analyses. The positive effect of microgravity on protein crystal growth is verified again at this time.

  8. Growth of (101) Faces of Tetragonal Lysozyme Crystals: Measured Growth Rate Trends

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth L.; Nadarajah, Arunan; Pusey, Marc L.

    1998-01-01

    Earlier extensive measurements of the growth rates of the (110) face of tetragonal lysozyme crystals had shown unexpected dependencies on the supersaturation. In this study similar growth rate measurements were done for the (101) faces of the crystals. The data show a similar dependence on the supersaturation, becoming appreciable only at high supersaturations, reaching a maximum value and then decreasing. As reported in earlier studies, the (101) growth rates are larger at low supersaturations than the (110) growth rates at the same conditions, and smaller at high supersaturations. These trends suggest that the growth mechanism of the (101) is similar to that of the (110) face, involving the addition of lysozyme aggregates formed in solution, but with a growth unit smaller than that of the (110) face.

  9. [Relation between the lysozyme hydration isotherm and molecule packing in the solid phase].

    PubMed

    Gevorkian, S G; Morozov, V N

    1983-01-01

    A micromethod for measurement of mass changes of glutaraldehyde treated protein crystals is presented. The method is based on analysis of transverse resonance vibration of a cantilevered tungsten micro-needle (1,5 divided by 2 mm long, 30 divided by 40 mkm in diameter) having the specimen stuck on its free sharp end. The method is accurate to within 0.1% for specimens with masses 0.1 divided by 0.01 mg. Absorption isotherms for water uptake by triclinic (P1), monoclinic (P2(1) ) and tetragonal (P4(3)2(1)2) crystals as well as by amorphous films of hen egg-white lysozyme are obtained. Hydration of lysozyme molecule is shown to be highly dependent on molecular packing in the sample both at low and high relative humidities.

  10. Lack of Evidence for Prenucleation Aggregate Formation in Lysozyme Crystal Growth Solutions

    NASA Technical Reports Server (NTRS)

    Muschol, Martin; Rosenberger, Franz

    1996-01-01

    There have been numerous claims of large concentrations of prenucleation aggregates in supersaturated as well as undersaturated lysozyme solutions at high salt concentrations. The presence of these aggregates was derived from measurements of the light or neutron scattering intensity, ultracentrifugation and dialysis behavior, as well as over-simplified crystal growth kinetics considerations. In all these interpretations it has been assumed that lysozyme solutions are either ideal or that protein interactions are independent of salt concentration. Contrary to these presumptions, our static and dynamic light scattering experiments provide evidence that lysozyme forms highly non-ideal, strongly interacting solutions. At low salt concentrations, the scattering intensities fall well below the values expected for an ideal, monomeric solution at the same protein concentration, while diffusivities increase with increasing protein concentration. Upon increase in salt concentration, these trends are eventually reversed. This enhancement in scattering intensity and decrease in diffusivity was widely interpreted as sign of aggregate formation. Yet, a quantitative interpretation of the scattering behavior over the whole salt concentration range can only be given in terms of a transition from net repulsion to net attraction between lysozyme monomers. Increased salt screening of the electrostatic repulsion among the protein macro-ions, together with attractive protein interactions, such as van der Waals, hydrophobic and hydration forces, provide an unambiguous mechanism for the observed transition and a more physical interpretation of the various observations.

  11. Proteomics analysis of egg white proteins from different egg varieties.

    PubMed

    Wang, Jiapei; Liang, Yue; Omana, Dileep A; Kav, Nat N V; Wu, Jianping

    2012-01-11

    The market of specialty eggs, such as omega-3-enriched eggs, organic eggs, and free-range eggs, is continuously growing. The nutritional composition of egg yolk can be manipulated by feed diet; however, it is not known if there is any difference in the composition of egg white proteins among different egg varieties. The purpose of the study was to compare the egg white proteins among six different egg varieties using proteomics analysis. Egg white proteins were analyzed using two-dimensional gel electrophoresis (2-DE), and 89 protein spots were subjected to LC-MS/MS. A total of 23 proteins, belonging to Gallus gallus , were identified from 72 detected protein spots. A quiescence-specific protein precursor in egg white was identified for the first time in this study. Significant differences in the abundant levels of 19 proteins (from 65 protein spots) were observed among six egg varieties. Four proteins, ovalbumin-related protein Y, cystatin, avidin, and albumin precursor, were not different among these six egg varieties. These findings suggest that the abundance, but not the composition, of egg white proteins varied among the egg varieties.

  12. CCD Video Observation of Microgravity Crystallization of Lysozyme and Correlation with Accelerometer Data

    NASA Technical Reports Server (NTRS)

    Snell, E. H.; Boggon, T. J.; Helliwell, J. R.; Moskowitz, M. E.; Nadarajah, A.

    1997-01-01

    Lysozyme has been crystallized using the ESA Advanced Protein Crystallization Facility onboard the NASA Space Shuttle Orbiter during the IML-2 mission. CCD video monitoring was used to follow the crystallization process and evaluate the growth rate. During the mission some tetragonal crystals were observed moving over distances of up to 200 micrometers. This was correlated with microgravity disturbances caused by firings of vernier jets on the Orbiter. Growth-rate measurement of a stationary crystal (which had nucleated on the growth reactor wall) showed spurts and lulls correlated with an onboard activity; astronaut exercise. The stepped growth rates may be responsible for the residual mosaic block structure seen in crystal mosaicity and topography measurements.

  13. CCD Video Observation of Microgravity Crystallization of Lysozyme and Correlation with Accelerometer Data

    NASA Technical Reports Server (NTRS)

    Snell, E. H.; Boggon, T. J.; Helliwell, J. R.; Moskowitz, M. E.; Nadarajah, A.

    1997-01-01

    Lysozyme has been crystallized using the ESA Advanced Protein Crystallization Facility onboard the NASA Space Shuttle Orbiter during the IML-2 mission. CCD video monitoring was used to follow the crystallization process and evaluate the growth rate. During the mission some tetragonal crystals were observed moving over distances of up to 200 micrometers. This was correlated with microgravity disturbances caused by firings of vernier jets on the Orbiter. Growth-rate measurement of a stationary crystal (which had nucleated on the growth reactor wall) showed spurts and lulls correlated with an onboard activity; astronaut exercise. The stepped growth rates may be responsible for the residual mosaic block structure seen in crystal mosaicity and topography measurements.

  14. The Effect of Temperature and Solution pH on the Nucleation of Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Jacobs, Randolph S.; Frazier, Tyralynn; Snell, Edward H.; Pusey, Marc L.

    1999-01-01

    Part of the challenge of macromolecular crystal growth for structure determination is obtaining crystals with a volume suitable for x-ray analysis. In this respect an understanding of the effect of solution conditions on macromolecule nucleation rates is advantageous. This study investigated the effects of supersaturation, temperature, and pH on the nucleation rate of tetragonal lysozyme crystals. Batch crystallization plates were prepared at given solution concentrations and incubated at set temperatures over 1 week. The number of crystals per well with their size and axial ratios were recorded and correlated with solution conditions. Crystal numbers were found to increase with increasing supersaturation and temperature. The most significant variable, however, was pH; crystal numbers changed by two orders of magnitude over the pH range 4.0-5.2. Crystal size also varied with solution conditions, with the largest crystals obtained at pH 5.2. Having optimized the crystallization conditions, we prepared a batch of crystals under the same initial conditions, and 50 of these crystals were analyzed by x-ray diffraction techniques. The results indicate that even under the same crystallization conditions, a marked variation in crystal properties exists.

  15. The effect of temperature and solution pH on the nucleation of tetragonal lysozyme crystals.

    PubMed

    Judge, R A; Jacobs, R S; Frazier, T; Snell, E H; Pusey, M L

    1999-09-01

    Part of the challenge of macromolecular crystal growth for structure determination is obtaining crystals with a volume suitable for x-ray analysis. In this respect an understanding of the effect of solution conditions on macromolecule nucleation rates is advantageous. This study investigated the effects of supersaturation, temperature, and pH on the nucleation rate of tetragonal lysozyme crystals. Batch crystallization plates were prepared at given solution concentrations and incubated at set temperatures over 1 week. The number of crystals per well with their size and axial ratios were recorded and correlated with solution conditions. Crystal numbers were found to increase with increasing supersaturation and temperature. The most significant variable, however, was pH; crystal numbers changed by two orders of magnitude over the pH range 4.0-5.2. Crystal size also varied with solution conditions, with the largest crystals obtained at pH 5.2. Having optimized the crystallization conditions, we prepared a batch of crystals under the same initial conditions, and 50 of these crystals were analyzed by x-ray diffraction techniques. The results indicate that even under the same crystallization conditions, a marked variation in crystal properties exists.

  16. The Effect of Temperature and Solution pH on the Nucleation of Tetragonal Lysozyme Crystals

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Jacobs, Randolph S.; Frazier, Tyralynn; Snell, Edward H.; Pusey, Marc L.

    1999-01-01

    Part of the challenge of macromolecular crystal growth for structure determination is obtaining crystals with a volume suitable for x-ray analysis. In this respect an understanding of the effect of solution conditions on macromolecule nucleation rates is advantageous. This study investigated the effects of supersaturation, temperature, and pH on the nucleation rate of tetragonal lysozyme crystals. Batch crystallization plates were prepared at given solution concentrations and incubated at set temperatures over 1 week. The number of crystals per well with their size and axial ratios were recorded and correlated with solution conditions. Crystal numbers were found to increase with increasing supersaturation and temperature. The most significant variable, however, was pH; crystal numbers changed by two orders of magnitude over the pH range 4.0-5.2. Crystal size also varied with solution conditions, with the largest crystals obtained at pH 5.2. Having optimized the crystallization conditions, we prepared a batch of crystals under the same initial conditions, and 50 of these crystals were analyzed by x-ray diffraction techniques. The results indicate that even under the same crystallization conditions, a marked variation in crystal properties exists.

  17. Effect of Stirring Method on Protein Crystallization

    NASA Astrophysics Data System (ADS)

    Yaoi, Mari; Adachi, Hiroaki; Takano, Kazufumi; Matsumura, Hiroyoshi; Inoue, Tsuyoshi; Mori, Yusuke; Sasaki, Takatomo

    2004-10-01

    We previously proposed the use of solution stirring during the growth of protein crystals using the Micro-Stirring technique with a rotary shaker. In this paper, we report on the effects of a new type solution flow on the crystallization of hen egg-white lysozyme (HEWL) using a wave shaker. The time required for nucleation was reduced by wave stirring, but increased by rotary stirring. Nucleation was stimulated by wave stirring. This result indicates that protein crystal growth in a stirred solution is strongly dependent on the stirring method used and the solution flow. Therefore, optimized stirring conditions are essential for producing high-quality protein crystals.

  18. Systemic administration of lipopolysaccharide in laying hens stimulates antimicrobial properties of egg white against Staphylococcus aureus.

    PubMed

    Bedrani, Larbi; Helloin, Emmanuelle; Guyot, Nicolas; Nys, Yves

    2013-04-15

    The natural protective system of eggs relies on egg yolk immunoglobulins and on antimicrobial proteins/peptides mainly concentrated in the egg white. There is much evidence concerning the specific stimulation of immunoglobulins by antigens but to date, the influence of the hen milieu on the regulation of the egg innate molecular immunity has not been established. To explore the hypothesis of modulation in egg antimicrobial molecules, laying hens were immune-challenged with intravenous injections of Salmonella enterica Enteritidis lipopolysaccharide (LPS) at 24 h intervals. Eggs of the control and LPS groups were collected over a period of 21 days following the first LPS injection and the egg white activities against Staphylococcus aureus and Escherichia coli were assessed. The increase in egg white anti-S. aureus activity reached 20.9% and 23.4% (p<0.05) respectively on days 5 and 6 after the first LPS injection. Anti-E. coli activity increased moderately only on days 9 and 15 after the LPS treatment. To explore the origin of these increased antimicrobial activities, we analyzed the lysozyme and proteases inhibiting (anti-trypsin and anti-chymotrypsin) activities and the pH variations of egg whites. We recorded no significant variations between the two experimental groups for these potential modulating factors. Finally, using RT-qPCR we studied the expression of several genes coding for antimicrobial proteins and peptides involved in the immune response in the infundibulum and the magnum, Out of the 11 genes, only TLR4 in the magnum and ovocalyxin-36 in infundibulum were over-expressed respectively 24h and 8 days after the first LPS injection. The other candidate genes showed similar or down regulated expression in the LPS group as compared to the control especially during the first 24h. Our results suggest that the hen enhances the albumen antimicrobial activity of its eggs when exposed to immune stimulations or infections. This could be an attempt to preventively

  19. The Anti-sigma Factor RsiV Is a Bacterial Receptor for Lysozyme: Co-crystal Structure Determination and Demonstration That Binding of Lysozyme to RsiV Is Required for σV Activation

    PubMed Central

    Houtman, Jon C.

    2016-01-01

    σ factors provide RNA polymerase with promoter specificity in bacteria. Some σ factors require activation in order to interact with RNA polymerase and transcribe target genes. The Extra-Cytoplasmic Function (ECF) σ factor, σV, is encoded by several Gram-positive bacteria and is specifically activated by lysozyme. This activation requires the proteolytic destruction of the anti-σ factor RsiV via a process of regulated intramembrane proteolysis (RIP). In many cases proteases that cleave at site-1 are thought to directly sense a signal and initiate the RIP process. We previously suggested binding of lysozyme to RsiV initiated the proteolytic destruction of RsiV and activation of σV. Here we determined the X-ray crystal structure of the RsiV-lysozyme complex at 2.3 Å which revealed that RsiV and lysozyme make extensive contacts. We constructed RsiV mutants with altered abilities to bind lysozyme. We find that mutants that are unable to bind lysozyme block site-1 cleavage of RsiV and σV activation in response to lysozyme. Taken together these data demonstrate that RsiV is a receptor for lysozyme and binding of RsiV to lysozyme is required for σV activation. In addition, the co-structure revealed that RsiV binds to the lysozyme active site pocket. We provide evidence that in addition to acting as a sensor for the presence of lysozyme, RsiV also inhibits lysozyme activity. Thus we have demonstrated that RsiV is a protein with multiple functions. RsiV inhibits σV activity in the absence of lysozyme, RsiV binds lysozyme triggering σV activation and RsiV inhibits the enzymatic activity of lysozyme. PMID:27602573

  20. Precrystallization structures in supersaturated lysozyme solutions studied by dynamic light scattering and scanning force microscopy

    NASA Astrophysics Data System (ADS)

    Schaper, Achim; Georgalis, Yannis; Umbach, Patrick; Raptis, Jannis; Saenger, Wolfram

    1997-05-01

    A comparitive study of the nanostructure evolving during aggregation of hen-egg white lysozyme in supersaturated solution was carried out by dynamic light scattering (DLS) and scanning force microscopy (SFM). Lysozyme aggregate (cluster) formation was observed in solution in the presence of NaCl, (NH4)2SO4, and NaNO3 as precipitating agents. The growth kinetics were examined by DLS and revealed fractal growth of the clusters with a fractal dimension of 1.8 obtained independently of the type of inert salt. Such behavior is typical for diffusion-limited cluster-cluster (DLCA) aggregation. Initial lysozyme cluster sizes were in the range of 12-35 nm. SFM images of individual lysozyme clusters at the liquid-solid interface were obtained in the presence of NaCl and NaNO3 under crystallization conditions, and revealed cluster sizes in agreement with those determined by DLS. Extended domains of smaller sized clusters appeared on the mica surface after subjecting supersaturated lysozyme solutions to a dialysis step. The feasibility of DLS and SFM for monitoring the nano- and mesoscopic morphology of lysozyme aggregates in supersatured solutions and at the solid-liquid interface is discussed.

  1. Enhancement of crystal homogeneity of protein crystals under application of an external alternating current electric field

    SciTech Connect

    Koizumi, H.; Uda, S.; Fujiwara, K.; Nozawa, J.; Tachibana, M.; Kojima, K.

    2014-10-06

    X-ray diffraction rocking-curve measurements were performed on tetragonal hen egg white (HEW) lysozyme crystals grown with and without the application of an external alternating current (AC) electric field. The crystal quality was assessed by the full width at half maximum (FWHM) value for each rocking curve. For two-dimensional maps of the FWHMs measured on the 440 and the 12 12 0 reflection, the crystal homogeneity was improved under application of an external electric field at 1 MHz, compared with that without. In particular, the significant improvement of the crystal homogeneity was observed for the 12 12 0 reflection.

  2. Effect of different concentrations of calcium chloride and potassium chloride on egg white proteins during isoelectric precipitation of ovomucin.

    PubMed

    Omana, D A; Wu, J

    2009-10-01

    The effect of various concentrations of CaCl2 and KCl on egg white proteins during isoelectric precipitation of ovomucin was investigated in this study. At low concentrations of CaCl2 (<50 mM), lysozyme was the major contaminant in the precipitated ovomucin, whereas ovalbumin was the predominant one at high concentrations (>or=100 mM). At 50 mM CaCl2 concentration, the concentrations of both lysozyme and ovalbumin were moderate. Ovomucin with a purity of 97.3% was prepared using a 2-step method: egg white was first precipitated in the presence of 50 mM CaCl2 followed by a second 500 mM CaCl2 extraction. The concentrations of other proteins in the precipitate were 1.3% of ovalbumin, 1.1% of lysozyme, and 0.4% of ovomucoid. Unlike CaCl2-treated samples, ovotransferrin was found to be the second major contaminant in all KCl-treated precipitates. Compared with the control, adding KCl at the lowest concentration of 2.5 mM increased significantly the content of ovalbumin (from 7.6 to 68.0%) and reduced significantly the content of lysozyme (from 25.5 to 6.4%) in the precipitates; however, increasing the concentrations of KCl up to 500 mM did not affect the content of ovalbumin, but the content of lysozyme showed a general reduction trend. Although KCl was used widely in literature as the last step of ovomucin washing, our results show that KCl is not an efficient salt in purifying ovomucin.

  3. The Solubility of Orthorhombic Lysozyme Crystals Obtained at High pH

    SciTech Connect

    Aldabaibeh, Naser; Jones, Matthew J.; Myerson, Allan S.; Ulrich, Joachim

    2009-07-06

    The high pH region of the phase diagram of lysozyme with NaCl as a precipitant was determined. In this region of the phase diagram, lysozyme crystallizes in one of two different orthorhombic modifications, the low and high temperature orthorhombic modifications. The solubility of two modifications was measured at different temperatures, pH values, and NaCl concentrations. Both modifications show a similar dependence on the solution conditions where solubility increases with temperature and decreases with pH and NaCl concentration. The transition temperature between the two modifications was determined from the solubility curves and was shown to increase with pH and NaCl concentration. At pH values close to the isoelectric point (pH 11), the transition temperature becomes independent of NaCl concentration.

  4. Quartz Crystal Microbalance Measurements of Protein Deposition onto Cross-linked polyHEMA Hydrogel

    NASA Astrophysics Data System (ADS)

    Teichroeb, Jonathan; Forrest, James; Jones, Lyndon

    2006-03-01

    The adsorption of various concentrations of several opthalmologically relevant proteins was measured using Quartz Crystal Microbalance (QCM). Hen egg white lysozyme HEWL, bovine serum albumin BSA, and lactoferrin were measured both individually and in various combinations as they adsorbed onto cross-linked polyHEMA substrate. Results are discussed in terms of the concentration and time dependence of total adhered protein, as well as the amount of desorbable protein. Variations seen during competitive adsorption are also presented.

  5. Influence of impurities on protein crystal perfection

    NASA Astrophysics Data System (ADS)

    Robert, M. C.; Capelle, B.; Lorber, B.; Giegé, R.

    2001-11-01

    A quasi-planar X-ray study has been done to assess the quality of crystals of pure thaumatin and of hen egg-white lysozyme as well as of lysozyme which was intentionally contaminated by structurally unrelated (ovalbumin and conalbumin) or related (turkey egg-white lysozyme) macromolecules. To investigate the behavior of different growth sectors, we have chosen crystals exhibiting well defined habit, namely crystals grown either in agarose gel or in silica gel. The main defect evidenced is a misorientation originating at the level of the nucleus: the parts grown in the + c and - c directions seem to be individuals twisted always clockwise with respect to the growth direction. The measured lattice plane tilt increases up to 3.5 min of arc when the contaminant content increases. In addition to this defect, we could measure for lysozyme relative lattice parameters differences (Δ d/ d) of the order of 10 -4 between prismatic and pyramidal growth sectors. All these defects do not seem to have a major influence on the resolution limit but they have consequences on optical properties.

  6. Laboratorial characteristics of patients with diarrhoea suffering from egg white allergy.

    PubMed

    Liu, F; Lin, L-R; Zhang, H-L; Liu, G-L; Tong, M-L; Zeng, Y-L; Huang, S-J; Huang, C-L; Liu, L-L; Yang, T-C

    2014-01-01

    Egg allergy is associated with diarrhoeal symptoms. However, the mechanism underlying allergic diarrhoea remains unclear. To determine whether egg white-specific IgE antibodies coexist with egg white-specific IgG antibodies in patients with egg allergy featuring diarrhoeal symptoms, and whether there is any relationship between these two antibody types. A total of 89 patients with egg allergy featuring diarrhoeal symptoms (average age, 23.2 years; range, 1-78 years), all of whom tested positive for egg white-specific IgG, were enrolled in this study. The concentration of total IgE, egg white-specific IgE and number of eosinophils in the serum were determined. Among the 89 egg white allergic patients tested, 49 (55.1%) patients showed high reactivity to egg white-specific IgG, 48 (53.9%) patients had elevated serum total IgE levels, and 25 (28.1%) patients had elevated absolute eosinophil numbers. Out of the 89 egg white allergic patients, 25 showed elevated egg white-specific IgE antibody levels. Of the 25 patients who were positive for egg white-specific IgE antibody, 21 presented high sensitive reaction to egg white-specific IgG, three presented moderate sensitive reaction to egg white-specific IgG, and one presented mild sensitive reaction to egg white-specific IgG. A moderate correlation between egg white-specific IgG and egg white-specific IgE, egg white-specific IgG and absolute eosinophil number was found in the egg white allergic patients (r=0.438, P=0.000; r=0.322, P=0.002). Egg white-specific IgE levels varied in different age groups; the egg white-specific IgE concentration of younger patients (age≤18 years, mean rank 54.29) was significantly higher than that of the adult patients (age>18 years, mean rank 34.61) (Z=-3.629, P=0.000). Egg white-specific IgE antibody could coexist with egg white-specific IgG antibody in patients suffering from egg white allergy. Aberrant changes in the concentration of egg white-specific IgE antibody were associated with

  7. Macromolecule Crystal Quality Improvement in Microgravity: The Role of Impurities

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Snell, Edward H.; Pusey, Marc L.; Sportiello, Michael G.; Todd, Paul; Bellamy, Henry; Borgstahl, Gloria E.; Pokros, Matt; Cassanto, John M.

    2000-01-01

    While macromolecule impurities may affect crystal size and morphology the over-riding question is; "How do macromolecule impurities effect crystal X-ray quality and diffraction resolution?" In the case of chicken egg white lysozyme, crystals can be grown in the presence of a number of impurities without affecting diffraction resolution. One impurity however, the lysozyme dimer, does negatively impact the X-ray crystal properties. Crystal quality improvement as a result of better partitioning of this impurity during crystallization in microgravity has been reported'. In our recent experimental work dimer partitioning was found to be not significantly different between the two environments. Mosaicity analysis of pure crystals showed a reduced mosaicity and increased signal to noise for the microgravity grown crystals. Dimer incorporation however, did greatly reduce the resolution limit in both ground and microgravity grown crystals. These results indicate that impurity effects in microgravity are complex and may rely on the conditions or techniques employed.

  8. Macromolecule Crystal Quality Improvement in Microgravity: The Role of Impurities

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Snell, Edward H.; Pusey, Marc L.; Sportiello, Michael G.; Todd, Paul; Bellamy, Henry; Borgstahl, Gloria E.; Pokros, Matt; Cassanto, John M.

    2000-01-01

    While macromolecule impurities may affect crystal size and morphology the over-riding question is; "How do macromolecule impurities effect crystal X-ray quality and diffraction resolution?" In the case of chicken egg white lysozyme, crystals can be grown in the presence of a number of impurities without affecting diffraction resolution. One impurity however, the lysozyme dimer, does negatively impact the X-ray crystal properties. Crystal quality improvement as a result of better partitioning of this impurity during crystallization in microgravity has been reported'. In our recent experimental work dimer partitioning was found to be not significantly different between the two environments. Mosaicity analysis of pure crystals showed a reduced mosaicity and increased signal to noise for the microgravity grown crystals. Dimer incorporation however, did greatly reduce the resolution limit in both ground and microgravity grown crystals. These results indicate that impurity effects in microgravity are complex and may rely on the conditions or techniques employed.

  9. Liquid egg white pasteurization using a centrifugal UV irradiator

    USDA-ARS?s Scientific Manuscript database

    Studies are lacking on UV nonthermal pasteurization of liquid egg white (LEW). The objective of this study was to inactivate Escherichia coli using a UV irradiator that centrifugally formed a thin film of LEW on the inside of a rotating cylinder. The LEW was inoculated with E. coli K12 to approximat...

  10. Formation of lysinoalanine in egg white under alkali treatment.

    PubMed

    Zhao, Yan; Luo, Xuying; Li, Jianke; Xu, Mingsheng; Tu, Yonggang

    2016-03-01

    To investigate the formation mechanism of lysinoalanine (LAL) in eggs during the alkali treatment process, NaOH was used for the direct alkali treatment of egg white, ovalbumin, and amino acids; in addition, the amount of LAL formed during the alkali treatment process was measured. The results showed that the alkali treatment resulted in the formation of LAL in the egg white. The LAL content increased with increasing pH and temperature, with the LAL content first increasing and then leveling off with increasing time. The amount of LAL formed in the ovalbumin under the alkali treatment condition accounted for approximately 50.51% to 58.68% of the amount of LAL formed in the egg white. Thus, the LAL formed in the ovalbumin was the main source for the LAL in the egg white during the alkali treatment process. Under the alkali treatment condition, free L-serine, L-cysteine, and L-cystine reacted with L-lysine to form LAL; therefore, they are the precursor amino acids of LAL formed in eggs during the alkali treatment process.

  11. 21 CFR 160.145 - Dried egg whites.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... use under § 173.25 of this chapter shall be used. As a further preliminary step to drying, the glucose... microorganisms. Dried egg whites may be powdered. (b) The optional glucose-removing procedures are: (1) Enzyme procedure. A glucose-oxidase-catalase preparation and hydrogen peroxide solution are added to liquid egg...

  12. Cross-linked lysozyme crystal templated synthesis of Au nanoparticles as high-performance recyclable catalysts.

    PubMed

    Liang, Miao; Wang, Libing; Liu, Xia; Qi, Wei; Su, Rongxin; Huang, Renliang; Yu, Yanjun; He, Zhimin

    2013-06-21

    Bio-nanomaterials fabricated using a bioinspired templating technique represent a novel class of composite materials with diverse applications in biomedical, electronic devices, drug delivery, and catalysis. In this study, Au nanoparticles (NPs) are synthesized within the solvent channels of cross-linked lysozyme crystals (CLLCs) in situ without the introduction of extra chemical reagents or physical treatments. The as-prepared AuNPs-in-protein crystal hybrid materials are characterized by light microscopy, transmission electron microscopy, x-ray diffraction, and Fourier-transform infrared spectroscopy analyses. Small AuNPs with narrow size distribution reveal the restriction effects of the porous structure in the lysozyme crystals. These composite materials are proven to be active heterogeneous catalysts for the reduction of 4-nitrophenol to 4-aminophenol. These catalysts can be easily recovered and reused at least 20 times because of the physical stability and macro-dimension of CLLCs. This work is the first to use CLLCs as a solid biotemplate for the preparation of recyclable high-performance catalysts.

  13. Cross-linked lysozyme crystal templated synthesis of Au nanoparticles as high-performance recyclable catalysts

    NASA Astrophysics Data System (ADS)

    Liang, Miao; Wang, Libing; Liu, Xia; Qi, Wei; Su, Rongxin; Huang, Renliang; Yu, Yanjun; He, Zhimin

    2013-06-01

    Bio-nanomaterials fabricated using a bioinspired templating technique represent a novel class of composite materials with diverse applications in biomedical, electronic devices, drug delivery, and catalysis. In this study, Au nanoparticles (NPs) are synthesized within the solvent channels of cross-linked lysozyme crystals (CLLCs) in situ without the introduction of extra chemical reagents or physical treatments. The as-prepared AuNPs-in-protein crystal hybrid materials are characterized by light microscopy, transmission electron microscopy, x-ray diffraction, and Fourier-transform infrared spectroscopy analyses. Small AuNPs with narrow size distribution reveal the restriction effects of the porous structure in the lysozyme crystals. These composite materials are proven to be active heterogeneous catalysts for the reduction of 4-nitrophenol to 4-aminophenol. These catalysts can be easily recovered and reused at least 20 times because of the physical stability and macro-dimension of CLLCs. This work is the first to use CLLCs as a solid biotemplate for the preparation of recyclable high-performance catalysts.

  14. Structure of the newly found green turtle egg-white ribonuclease.

    PubMed

    Katekaew, Somporn; Kuaprasert, Buabarn; Torikata, Takao; Kakuta, Yoshimitsu; Kimura, Makoto; Yoneda, Kazunari; Araki, Tomohiro

    2010-07-01

    Marine green turtle (Chelonia mydas) egg-white ribonuclease (GTRNase) was crystallized from 1.1 M ammonium sulfate pH 5.5 and 30% glycerol using the sitting-drop vapour-diffusion method. The structure of GTRNase has been solved at 1.60 A resolution by the molecular-replacement technique using a model based on the structure of RNase 5 (murine angiogenin) from Mus musculus (46% identity). The crystal belonged to the monoclinic space group C2, with unit-cell parameters a = 86.271, b = 34.174, c = 39.738 A, alpha = 90, beta = 102, gamma = 90 degrees . GTRNase consists of three helices and seven beta-strands and displays the alpha+beta folding topology typical of a member of the RNase A superfamily. Superposition of the C(alpha) coordinates of GTRNase and RNase A superfamily members indicates that the overall structure is highly similar to that of angiogenin or RNase 5 from M. musculus (PDB code 2bwl) and RNase A from Bos taurus (PDB code 2blz), with root-mean-square deviations of 3.9 and 2.0 A, respectively. The catalytic residues are conserved with respect to the RNase A superfamily. The three disulfide bridges observed in the reptilian enzymes are conserved in GTRNase, while one further disulfide bond is required for the structural stability of mammalian RNases. GTRNase is expressed in egg white and the fact that its sequence has the highest similarity to that of snapping turtle pancreatic RNase suggests that the GTRNase secreted from oviduct cells to form egg white is probably the product of the same gene as activated in pancreatic cells.

  15. Small-angle X-ray scattering study of conditions for the formation of growth units of protein crystals in lysozyme solutions

    NASA Astrophysics Data System (ADS)

    Dyakova, Yu. A.; Ilina, K. B.; Konarev, P. V.; Kryukova, A. E.; Marchenkova, M. A.; Blagov, A. E.; Volkov, V. V.; Pisarevsky, Yu. V.; Kovalchuk, M. V.

    2017-05-01

    The structural composition of lysozyme solutions favorable for the formation of the tetragonal form of protein crystals was studied by synchrotron-based small-angle X-ray scattering depending on the protein concentration and the temperature. Along with lysozyme monomers, dimers and octamers are found in crystallization solutions; the octamer content increases with an increase in the protein concentration.

  16. Effects of Kinetic Roughening and Liquid-Liquid Phase Transition on Lysozyme Crystal Growth Velocities

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar; Konnert, John; Forsythe, Elizabeth L.; Pusey, Marc L.

    2004-01-01

    We measured the growth velocities of the (110) face of tetragonal lysozyme, V (centimeters per second), at four different concentrations, c (milligrams per milliliter), as the solution temperature, T (Centigrade), was reduced. For a broad range of T dependent on c, we find that the growth velocities increased as the solution temperature was reduced. The initial increase in V is well characterized by the 2D nucleation model for crystal growth, yielding the magnitude of an effective barrier for growth, gamma(sub s) = 1.2 plus or minus 0.1 x 10(exp -13) erg/molecule. Below certain temperatures, T(sub cr), dependent on c, however, a kinetic roughening hypothesis that considers the continuous addition of molecules anywhere on the crystal surface better describes the observed growth velocities. The application of the continuous growth model, up to the solution cloud-point temperatures, T(sub cl), enabled the determinations of the crossover concentration, c(sub r), from estimated values of T(sub cr). For all conditions presented, we find that the crossover from growth by 2D nucleation to continuous addition occurs at a supersaturation, sigma (sub c), = 2.0 plus or minus 0.1. Moreover, we find the energy barrier for the continuous addition, E(sub c), within the temperature range T(sub cl) less than T less than T less than T (sub cr), to be 6 plus or minus 1 x 10(exp -13) erg/molecule. Further reduction of T below approximately 2-3 C of T(sub cl), also revealed a rapid slowing of crystal growth velocities. From quasi-elastic light scattering investigations, we find that the rapid diminishment of crystal growth velocities can be accounted for by the phase behavior of lysozyme solutions. Namely, we find the reversible formation of dense fluid proto-droplets comprised of lysozyme molecules to occur below approximately 0.3 C of T(sub cl). Hence, the rapid slowing of growth velocities may occur as a result of the sudden depletion of "mobile" molecules within crystal growth

  17. Effects of Kinetic Roughening and Liquid-Liquid Phase Transition on Lysozyme Crystal Growth Velocities

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar; Konnert, John; Forsythe, Elizabeth L.; Pusey, Marc L.

    2004-01-01

    We measured the growth velocities of the (110) face of tetragonal lysozyme, V (centimeters per second), at four different concentrations, c (milligrams per milliliter), as the solution temperature, T (Centigrade), was reduced. For a broad range of T dependent on c, we find that the growth velocities increased as the solution temperature was reduced. The initial increase in V is well characterized by the 2D nucleation model for crystal growth, yielding the magnitude of an effective barrier for growth, gamma(sub s) = 1.2 plus or minus 0.1 x 10(exp -13) erg/molecule. Below certain temperatures, T(sub cr), dependent on c, however, a kinetic roughening hypothesis that considers the continuous addition of molecules anywhere on the crystal surface better describes the observed growth velocities. The application of the continuous growth model, up to the solution cloud-point temperatures, T(sub cl), enabled the determinations of the crossover concentration, c(sub r), from estimated values of T(sub cr). For all conditions presented, we find that the crossover from growth by 2D nucleation to continuous addition occurs at a supersaturation, sigma (sub c), = 2.0 plus or minus 0.1. Moreover, we find the energy barrier for the continuous addition, E(sub c), within the temperature range T(sub cl) less than T less than T less than T (sub cr), to be 6 plus or minus 1 x 10(exp -13) erg/molecule. Further reduction of T below approximately 2-3 C of T(sub cl), also revealed a rapid slowing of crystal growth velocities. From quasi-elastic light scattering investigations, we find that the rapid diminishment of crystal growth velocities can be accounted for by the phase behavior of lysozyme solutions. Namely, we find the reversible formation of dense fluid proto-droplets comprised of lysozyme molecules to occur below approximately 0.3 C of T(sub cl). Hence, the rapid slowing of growth velocities may occur as a result of the sudden depletion of "mobile" molecules within crystal growth

  18. Growth of (101) faces of tetragonal lysozyme crystals: measured growth-rate trends

    NASA Technical Reports Server (NTRS)

    Forsythe, E. L.; Nadarajah, A.; Pusey, M. L.

    1999-01-01

    Previous extensive measurements of the growth rates of the (110) face of tetragonal lysozyme crystals have shown unexpected dependencies on the supersaturation. In this study, similar growth-rate measurements were performed for the (101) faces of the crystals. The data show a similar dependence on the supersaturation, becoming appreciable only at high supersaturations, reaching a maximum value and then decreasing. The (101) growth rates are larger at low supersaturations than the (110) growth rates under the same conditions and are smaller at high supersaturations. These trends suggest that the growth mechanism of the (101) face is similar to that of the (110) face: both processes involve the addition of multimeric growth units formed in solution, but the average size of the units for the (101) face is likely to be smaller than for the (110) face.

  19. Time-dependent, protein-directed growth of gold nanoparticles within a single crystal of lysozyme

    SciTech Connect

    Wei, H.; Robinson, H.; Wang, Z.; Zhang, J.; House, S.; Gao, Y.-G.; Yang, L.; Tan, L. H.; Xing, H.; Hou, C.; Robertson, I. M.; Zuo, J.-M.; Lu, Y.

    2011-01-30

    Gold nanoparticles are useful in biomedical applications due to their distinct optical properties and high chemical stability. Reports of the biogenic formation of gold colloids from gold complexes has also led to an increased level of interest in the biomineralization of gold. However, the mechanism responsible for biomolecule-directed gold nanoparticle formation remains unclear due to the lack of structural information about biological systems and the fast kinetics of biomimetic chemical systems in solution. Here we show that intact single crystals of lysozyme can be used to study the time-dependent, protein-directed growth of gold nanoparticles. The protein crystals slow down the growth of the gold nanoparticles, allowing detailed kinetic studies to be carried out, and permit a three-dimensional structural characterization that would be difficult to achieve in solution. Furthermore, we show that additional chemical species can be used to fine-tune the growth rate of the gold nanoparticles.

  20. Growth of (101) faces of tetragonal lysozyme crystals: measured growth-rate trends

    NASA Technical Reports Server (NTRS)

    Forsythe, E. L.; Nadarajah, A.; Pusey, M. L.

    1999-01-01

    Previous extensive measurements of the growth rates of the (110) face of tetragonal lysozyme crystals have shown unexpected dependencies on the supersaturation. In this study, similar growth-rate measurements were performed for the (101) faces of the crystals. The data show a similar dependence on the supersaturation, becoming appreciable only at high supersaturations, reaching a maximum value and then decreasing. The (101) growth rates are larger at low supersaturations than the (110) growth rates under the same conditions and are smaller at high supersaturations. These trends suggest that the growth mechanism of the (101) face is similar to that of the (110) face: both processes involve the addition of multimeric growth units formed in solution, but the average size of the units for the (101) face is likely to be smaller than for the (110) face.

  1. Time-dependent Protein-directed Growth of Gold Nanoparticles within a Single Crystal of Lysozyme

    SciTech Connect

    H Wei; Z Wang; J Zhang; S House; Y Gao; L Yang; H Robinson; L Tan; H Xing; C Hou

    2011-12-31

    Gold nanoparticles are useful in biomedical applications due to their distinct optical properties and high chemical stability. Reports of the biogenic formation of gold colloids from gold complexes has also led to an increased level of interest in the biomineralization of gold. However, the mechanism responsible for biomolecule-directed gold nanoparticle formation remains unclear due to the lack of structural information about biological systems and the fast kinetics of biomimetic chemical systems in solution. Here we show that intact single crystals of lysozyme can be used to study the time-dependent, protein-directed growth of gold nanoparticles. The protein crystals slow down the growth of the gold nanoparticles, allowing detailed kinetic studies to be carried out, and permit a three-dimensional structural characterization that would be difficult to achieve in solution. Furthermore, we show that additional chemical species can be used to fine-tune the growth rate of the gold nanoparticles.

  2. Egg white protein-bonded columns and their applications.

    PubMed

    Oda, Y

    2000-11-01

    Egg white protein-bonded columns were developed for HPLC. These columns can be used under aqueous mobile phase and separate various kinds of drug enantiomers. Hyphenated techniques using protein-bonded columns with LC/MS and/or column switching have been recognized as integral methods in pharmaceutical research to analyze drug enantiomers. Therefore, these methods are very useful for research fields of pharmacokinetics and pharmacology.

  3. Recent advances for the production and recovery methods of lysozyme.

    PubMed

    Ercan, Duygu; Demirci, Ali

    2016-12-01

    Lysozyme is an antimicrobial peptide with a high enzymatic activity and positive charges. Therefore, it has applications in food and pharmaceutical industries as an antimicrobial agent. Lysozyme is ubiquitous in both animal and plant kingdoms. Currently, egg-white lysozyme is the most commercially available form of lysozyme. The main concerns of egg-white lysozyme are high recovery cost, low activity and most importantly the immunological problems to some people. Therefore, human lysozyme production has gained importance in recent years. Scientists have developed transgenic plants, animals and microorganisms that can produce human lysozyme. Out of these, microbial production has advantages for commercial productions, because high production levels are achievable in a relatively short time. It has been reported that fermentation parameters, such as pH, temperature, aeration, are key factors to increase the effectiveness of the human lysozyme production. Moreover, purification of the lysozyme from the fermentation broth needs to be optimized for the economical production. In conclusion, this review paper covers the mechanism of lysozyme, its sources, production methods and recovery of lysozyme.

  4. Quality characteristic of spray-drying egg white powders.

    PubMed

    Ma, Shuang; Zhao, Songning; Zhang, Yan; Yu, Yiding; Liu, Jingbo; Xu, Menglei

    2013-10-01

    Spray drying is a useful method for developing egg process and utilization. The objective of this study was to evaluate effects on spray drying condition of egg white. The optimized conditions were spraying flow 22 mL/min, feeding temperature 39.8 °C and inlet-air temperature 178.2 °C. Results of sulfydryl (SH) groups measurement indicated conformation structure have changed resulting in protein molecule occur S-S crosslinking phenomenon when heating. It led to free SH content decreased during spray drying process. There was almost no change of differential scanning calorimetry between fresh egg white and spray-drying egg white powder (EWP). For a given protein, the apparent SH reactivity is in turn influenced by the physico-chemical characteristics of the reactant. The phenomenon illustrated the thermal denaturation of these proteins was unrelated to their free SH contents. Color measurement was used to study browning level. EWP in optimized conditions revealed insignificant brown stain. Swelling capacity and scanning electron micrograph both proved well quality characteristic of spray-drying EWP. Results suggested spray drying under the optimized conditions present suitable and alternative method for egg processing industrial implementation. Egg food industrialization needs new drying method to extend shelf-life. The purpose of the study was to provide optimal process of healthy and nutritional instant spray-drying EWP and study quality characteristic of spray-drying EWP.

  5. Effects of pressure on the crystallization and the solubility of proteins in agarose gel

    NASA Astrophysics Data System (ADS)

    Kadri, A.; Lorber, B.; Jenner, G.; Giegé, R.

    2002-11-01

    Crystals of thaumatin and of lysozyme from turkey and hen egg white have been prepared in batch at 20°C under hydrostatic pressures in the 0.1-220 MPa range. The latter model protein served as a reference in this comparative study. Crystallization was performed in an agarose gel in contrast to former studies under pressure that were conducted in solution. After depressurization, the habit, number, length, shape and solubility of crystals were compared to those of control crystals that were prepared at atmospheric pressure (0.1 MPa). For the three proteins, the number of the crystals increases with pressure. For thaumatin and hen lysozyme, crystal length decreases but for turkey lysozyme it increases. While the solubility of the first protein decreases, that of both lysozymes increases. The relationship between solubility and pressure is linear in the three cases. The crystallization volumes Δ V are -11 cm 3 mol -1 for thaumatin, +15 cm 3 mol -1 for turkey lysozyme and +3 cm 3 mol -1 for hen lysozyme. For the lysozymes, they are explained by pressure-dependent conformational changes. The structure of thaumatin appears to be less deformable under pressure.

  6. Dehydration Process of Protein Crystals by Micro-Brillouin Scattering

    NASA Astrophysics Data System (ADS)

    Hashimoto, Eiji; Aoki, Yuichiro; Seshimo, Yuichi; Sasanuma, Keita; Ike, Yuji; Kojima, Seiji

    2008-05-01

    Polymorphism and dehydration process have been studied by the micro-Brillouin scattering technique in hen egg white lysozyme crystals without cross-linking. Two types of crystal with tetragonal and monoclinic systems have been successfully grown by the two-liquid interface method. The dehydration processes of tetragonal and monoclinic crystals have been investigated by the exposure of crystals to open air. Sound velocity increases markedly owing to the increase in intermolecular interaction between lysozyme molecules, while the attenuation of sound wave decreases markedly owing to the decrease in friction generated by mobile water. The time dependences of sound velocity in two crystals have been discussed on the basis of the Avrami-Erofe'ev model. It is found that a monoclinic crystal dehydrates much faster than a tetragonal one.

  7. Diffraction and imaging study of imperfections of crystallized lysozyme with coherent X-rays

    NASA Technical Reports Server (NTRS)

    Hu, Z. W.; Chu, Y. S.; Lai, B.; Thomas, B. R.; Chernov, A. A.

    2004-01-01

    Phase-contrast X-ray diffraction imaging and high-angular-resolution diffraction combined with phase-contrast radiographic imaging were employed to characterize defects and perfection of a uniformly grown tetragonal lysozyme crystal in the symmetric Laue case. The full-width at half-maximum (FWHM) of a 4 4 0 rocking curve measured from the original crystal was approximately 16.7 arcsec and imperfections including line defects, inclusions and other microdefects were observed in the diffraction images of the crystal. The observed line defects carry distinct dislocation features running approximately along the <1 1 0> growth front and have been found to originate mostly in a central growth area and occasionally in outer growth regions. Inclusions of impurities or formations of foreign particles in the central growth region are resolved in the images with high sensitivity to defects. Slow dehydration led to the broadening of a fairly symmetric 4 4 0 rocking curve by a factor of approximately 2.6, which was primarily attributed to the dehydration-induced microscopic effects that are clearly shown in X-ray diffraction images. The details of the observed defects and the significant change in the revealed microstructures with drying provide insight into the nature of imperfections, nucleation and growth, and the properties of protein crystals.

  8. Diffraction and imaging study of imperfections of crystallized lysozyme with coherent X-rays

    NASA Technical Reports Server (NTRS)

    Hu, Z. W.; Chu, Y. S.; Lai, B.; Thomas, B. R.; Chernov, A. A.

    2004-01-01

    Phase-contrast X-ray diffraction imaging and high-angular-resolution diffraction combined with phase-contrast radiographic imaging were employed to characterize defects and perfection of a uniformly grown tetragonal lysozyme crystal in the symmetric Laue case. The full-width at half-maximum (FWHM) of a 4 4 0 rocking curve measured from the original crystal was approximately 16.7 arcsec and imperfections including line defects, inclusions and other microdefects were observed in the diffraction images of the crystal. The observed line defects carry distinct dislocation features running approximately along the <1 1 0> growth front and have been found to originate mostly in a central growth area and occasionally in outer growth regions. Inclusions of impurities or formations of foreign particles in the central growth region are resolved in the images with high sensitivity to defects. Slow dehydration led to the broadening of a fairly symmetric 4 4 0 rocking curve by a factor of approximately 2.6, which was primarily attributed to the dehydration-induced microscopic effects that are clearly shown in X-ray diffraction images. The details of the observed defects and the significant change in the revealed microstructures with drying provide insight into the nature of imperfections, nucleation and growth, and the properties of protein crystals.

  9. Estimated effects of silicone glue on protein crystal growth

    NASA Astrophysics Data System (ADS)

    Maruyama, Mihoko; Shimizu, Noriko; Sugiyama, Shigeru; Takahashi, Yoshinori; Adachi, Hiroaki; Takano, Kazufumi; Murakami, Satoshi; Inoue, Tsuyoshi; Matsumura, Hiroyoshi; Mori, Yusuke

    2010-09-01

    Silicone glue (modified silicone polymer) is widely used for both experiments involving inorganic crystal growth and those involving organic materials like proteins. This material is very useful for building a hand-made experiment setup or for fixing protein crystals to specific locations. Though silicone glue is regarded as harmful to proteins, no systematic verification was performed to investigate its impurity effects on protein crystal growth. We focused on and estimated the impurity effects of silicone glue on protein crystal growth. Hen egg white lysozyme (HEWL) was used as a model protein. Surface morphology and step velocity of tetragonal lysozyme crystals in the presence and absence of silicone glue were investigated by laser confocal interference contrast microscopy (LCM-DIM). The surface morphology of a tetragonal lysozyme crystal in the presence of silicone glue corresponded to that grown in a lysozyme solution without silicone glue. The dependency of step velocities on supersaturation in the presence of silicone glue also exhibited the same tendency as that of a glue-free system. These two phenomena indicate that the silicone glue did not act as an impurity on lysozyme crystals. Therefore, we conclude that silicone glue is an effective material for various unique experiments involving protein crystals or for applying new methods to create large, high-quality protein crystals.

  10. Dynamic response of tetragonal lysozyme crystals to changes in relative humidity: implications for post-growth crystal treatments.

    PubMed

    Dobrianov, I; Kriminski, S; Caylor, C L; Lemay, S G; Kimmer, C; Kisselev, A; Finkelstein, K D; Thorne, R E

    2001-01-01

    The dynamic response of tetragonal lysozyme crystals to dehydration has been characterized in situ using a combination of X-ray topography, high-resolution diffraction line-shape measurements and conventional crystallographic diffraction. For dehydration from 98% relative humidity (r.h.) to above 89%, mosaicity and diffraction resolution show little change and X-ray topographs remain featureless. Lattice constants decrease rapidly but the lattice-constant distribution within the crystal remains very narrow, indicating that water concentration gradients remain very small. Near 88% r.h., the c-axis lattice parameter decreases abruptly, the steady-state mosaicity and diffraction resolution degrade sharply and topographs develop extensive contrast. This transformation exhibits metastability and hysteresis. At fixed r.h. < 88% it is irreversible, but the original order can be almost completely restored by rehydration. These results suggest that this transformation is a first-order structural transition involving an abrupt loss of crystal water. The front between transformed and untransformed regions may propagate inward from the crystal surface and the resulting stresses along the front may degrade mosaicity. Differences in crystal size, shape and initial perfection may produce the observed variations in degradation timescale. Consequently, the success of more general post-growth treatments may often involve identifying procedures that either avoid lattice transitions, minimize disorder created during such transitions or maintain the lattice in an ordered metastable state.

  11. Tetragonal Lysozyme Nucleation and Crystal Growth: The Role of the Solution Phase

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Forsythe, Elizabeth; Sumida, John; Maxwell, Daniel; Gorti, Sridhar

    2002-01-01

    Lysozyme, and most particularly the tetragonal form of the protein, has become the default standard protein for use in macromolecule crystal nucleation and growth studies. There is a substantial body of experimental evidence, from this and other laboratories, that strongly suggests this proteins crystal nucleation and growth is by addition of associated species that are preformed by standard reversible concentration-driven self association processes in the bulk solution. The evidence includes high resolution AFM studies of the surface packing and of growth unit size at incorporation, fluorescence resonance energy transfer measurements of intermolecular distances in dilute solution, dialysis kinetics, and modeling of the growth rate data. We have developed a selfassociation model for the proteins crystal nucleation and growth. The model accounts for the obtained crystal symmetry, explains the observed surface structures, and shows the importance of the symmetry obtained by self-association in solution to the process as a whole. Further, it indicates that nucleation and crystal growth are not distinct mechanistically, but identical, with the primary difference being the probability that the particle will continue to grow or dissolve. This model also offers a possible mechanism for fluid flow effects on the growth process and how microgravity may affect it. While a single lysozyme molecule is relatively small (M.W. = 14,400), a structured octamer in the 4(sub 3) helix configuration (the proposed average sized growth unit) would have a M.W. = 115,000 and dimensions of 5.6 x 5.6 x 7.6 nm. Direct AFM measurements of growth unit incorporation indicate that units as wide as 11.2 nm and as long as 11.4 nm commonly attach to the crystal. These measurements were made at approximately saturation conditions, and they reflect the sizes of species that both added or desorbed from the crystal surface. The larger and less isotropic the associated species the more likely that it

  12. Tetragonal Lysozyme Nucleation and Crystal Growth: The Role of the Solution Phase

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Forsythe, Elizabeth; Sumida, John; Maxwell, Daniel; Gorti, Sridhar

    2002-01-01

    Lysozyme, and most particularly the tetragonal form of the protein, has become the default standard protein for use in macromolecule crystal nucleation and growth studies. There is a substantial body of experimental evidence, from this and other laboratories, that strongly suggests this proteins crystal nucleation and growth is by addition of associated species that are preformed by standard reversible concentration-driven self association processes in the bulk solution. The evidence includes high resolution AFM studies of the surface packing and of growth unit size at incorporation, fluorescence resonance energy transfer measurements of intermolecular distances in dilute solution, dialysis kinetics, and modeling of the growth rate data. We have developed a selfassociation model for the proteins crystal nucleation and growth. The model accounts for the obtained crystal symmetry, explains the observed surface structures, and shows the importance of the symmetry obtained by self-association in solution to the process as a whole. Further, it indicates that nucleation and crystal growth are not distinct mechanistically, but identical, with the primary difference being the probability that the particle will continue to grow or dissolve. This model also offers a possible mechanism for fluid flow effects on the growth process and how microgravity may affect it. While a single lysozyme molecule is relatively small (M.W. = 14,400), a structured octamer in the 4(sub 3) helix configuration (the proposed average sized growth unit) would have a M.W. = 115,000 and dimensions of 5.6 x 5.6 x 7.6 nm. Direct AFM measurements of growth unit incorporation indicate that units as wide as 11.2 nm and as long as 11.4 nm commonly attach to the crystal. These measurements were made at approximately saturation conditions, and they reflect the sizes of species that both added or desorbed from the crystal surface. The larger and less isotropic the associated species the more likely that it

  13. Comparison of bactericidal activity of six lysozymes at atmospheric pressure and under high hydrostatic pressure.

    PubMed

    Nakimbugwe, Dorothy; Masschalck, Barbara; Atanassova, Miroslava; Zewdie-Bosüner, Abebetch; Michiels, Chris W

    2006-05-01

    The antibacterial working range of six lysozymes was tested under ambient and high pressure, on a panel of five gram-positive (Enterococcus faecalis, Bacillus subtilis, Listeria innocua, Staphylococcus aureus and Micrococcus lysodeikticus) and five gram-negative bacteria (Yersinia enterocolitica, Shigella flexneri, Escherichia coli O157:H7, Pseudomonas aeruginosa and Salmonella typhimurium). The lysozymes included two that are commercially available (hen egg white lysozyme or HEWL, and mutanolysin from Streptomyces globisporus or M1L), and four that were chromatographically purified (bacteriophage lambda lysozyme or LaL, bacteriophage T4 lysozyme or T4L, goose egg white lysozyme or GEWL, and cauliflower lysozyme or CFL). T4L, LaL and GEWL were highly pure as evaluated by silver staining of SDS-PAGE gels and zymogram analysis while CFL was only partially pure. At ambient pressure each gram-positive test organism displayed a specific pattern of sensitivity to the six lysozymes, but none of the gram-negative bacteria was sensitive to any of the lysozymes. High pressure treatment (130-300 MPa, 25 degrees C, 15 min) sensitised several gram-positive and gram-negative bacteria for one or more lysozymes. M. lysodeikticus and P. aeruginosa became sensitive to all lysozymes under high pressure, S. typhimurium remained completely insensitive to all lysozymes, and the other bacteria showed sensitisation to some of the lysozymes. The possible applications of the different lysozymes as biopreservatives, and the possible reasons for the observed differences in bactericidal specificity are discussed.

  14. Desalted duck egg white peptides promote calcium uptake by counteracting the adverse effects of phytic acid.

    PubMed

    Hou, Tao; Liu, Weiwei; Shi, Wen; Ma, Zhili; He, Hui

    2017-03-15

    The structure of the desalted duck egg white peptides-calcium chelate was characterized by fluorescence spectroscopy, fourier transform infrared spectroscopy, and dynamic light scattering. Characterization results showed structural folding and aggregation of amino acids or oligopeptides during the chelation process. Desalted duck egg white peptides enhanced the calcium uptake in the presence of oxalate, phosphate and zinc ions in Caco-2 monolayers. Animal model indicated that desalted duck egg white peptides effectively enhanced the mineral absorption and counteracted the deleterious effects of phytic acid. These findings suggested that desalted duck egg white peptides might promote calcium uptake in three pathways: 1) desalted duck egg white peptides bind with calcium to form soluble chelate and avoid precipitate; 2) the chelate is absorbed as small peptides by enterocyte; and 3) desalted duck egg white peptides regulate the proliferation and differentiation of enterocytes through the interaction with transient receptor potential vanilloid 6 calcium channel.

  15. Regulation of Exacerbated Immune Responses in Human Peripheral Blood Cells by Hydrolysed Egg White Proteins

    PubMed Central

    Lozano-Ojalvo, Daniel; Molina, Elena; López-Fandiño, Rosina

    2016-01-01

    The anti-allergic potential of egg white protein hydrolysates (from ovalbumin, lysozyme and ovomucoid) was evaluated as their ability to hinder cytokine and IgE production by Th2-skewed human peripheral blood mononuclear cells (PBMCs), as well as the release of pro-inflammatory factors and generation of reactive oxygen species from Th1-stimulated peripheral blood leukocytes (PBLs). The binding to IgE of egg allergic patients was determined and the peptides present in the hydrolysates were identified. The hydrolysates with alcalase down-regulated the production of Th2-biased cytokines and the secretion of IgE to the culture media of Th2-skewed PBMCs, and they significantly neutralized oxidative stress in PBLs. The hydrolysates of ovalbumin and ovomucoid with pepsin helped to re-establish the Th1/Th2 balance in Th2-biased PBMCs, while they also inhibited the release of pro-inflammatory mediators and reduced oxidative stress in PBLs treated with inflammatory stimuli. The hydrolysates with alcalase, in addition to equilibrating Th2 differentiation, exhibited a low IgE-binding. Therefore, they would elicit mild allergic reactions while retaining T cell-stimulating abilities, which might correlate with an anti-allergic benefit. PMID:27007699

  16. Proteomic analysis of egg white heparin-binding proteins: towards the identification of natural antibacterial molecules.

    PubMed

    Guyot, Nicolas; Labas, Valérie; Harichaux, Grégoire; Chessé, Magali; Poirier, Jean-Claude; Nys, Yves; Réhault-Godbert, Sophie

    2016-06-13

    The chicken egg resists most environmental microbes suggesting that it potentially contains efficient antimicrobial molecules. Considering that some heparin-binding proteins in mammals are antibacterial, we investigated the presence and the antimicrobial activity of heparin-binding proteins from chicken egg white. Mass spectrometry analysis of the proteins recovered after heparin-affinity chromatography, revealed 20 proteins, including known antimicrobial proteins (avidin, lysozyme, TENP, ovalbumin-related protein X and avian bêta-defensin 11). The antibacterial activity of three new egg candidates (vitelline membrane outer layer protein 1, beta-microseminoprotein-like (LOC101750704) and pleiotrophin) was demonstrated against Listeria monocytogenes and/or Salmonella enterica Enteritidis. We showed that all these molecules share the property to inhibit bacterial growth through their heparin-binding domains. However, vitelline membrane outer layer 1 has additional specific structural features that can contribute to its antimicrobial potential. Moreover, we identified potential supplementary effectors of innate immunity including mucin 5B, E-selectin ligand 1, whey acidic protein 3, peptidyl prolyl isomerase B and retinoic acid receptor responder protein 2. These data support the concept of using heparin affinity combined to mass spectrometry to obtain an overview of the various effectors of innate immunity composing biological milieus, and to identify novel antimicrobial candidates of interest in the race for alternatives to antibiotics.

  17. Proteomic analysis of egg white heparin-binding proteins: towards the identification of natural antibacterial molecules

    PubMed Central

    Guyot, Nicolas; Labas, Valérie; Harichaux, Grégoire; Chessé, Magali; Poirier, Jean-Claude; Nys, Yves; Réhault-Godbert, Sophie

    2016-01-01

    The chicken egg resists most environmental microbes suggesting that it potentially contains efficient antimicrobial molecules. Considering that some heparin-binding proteins in mammals are antibacterial, we investigated the presence and the antimicrobial activity of heparin-binding proteins from chicken egg white. Mass spectrometry analysis of the proteins recovered after heparin-affinity chromatography, revealed 20 proteins, including known antimicrobial proteins (avidin, lysozyme, TENP, ovalbumin-related protein X and avian bêta-defensin 11). The antibacterial activity of three new egg candidates (vitelline membrane outer layer protein 1, beta-microseminoprotein-like (LOC101750704) and pleiotrophin) was demonstrated against Listeria monocytogenes and/or Salmonella enterica Enteritidis. We showed that all these molecules share the property to inhibit bacterial growth through their heparin-binding domains. However, vitelline membrane outer layer 1 has additional specific structural features that can contribute to its antimicrobial potential. Moreover, we identified potential supplementary effectors of innate immunity including mucin 5B, E-selectin ligand 1, whey acidic protein 3, peptidyl prolyl isomerase B and retinoic acid receptor responder protein 2. These data support the concept of using heparin affinity combined to mass spectrometry to obtain an overview of the various effectors of innate immunity composing biological milieus, and to identify novel antimicrobial candidates of interest in the race for alternatives to antibiotics. PMID:27294500

  18. The effects of temperature and NaCl concentration on tetragonal lysozyme face growth rates

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth; Pusey, Marc Lee

    1994-01-01

    Measurements were made of the (110) and (101) face growth rates of the tetragonal form of hen egg white lysozyme at 0.1M sodium acetate buffer, pH 4.0, from 4 to 22 C and with 3.0%, 5.0%, and 7.0% NaCl used as the precipitating salt. The data were collected at supersaturation ratios ranging from approximately 4 to approximately 63. Both decreasing temperature and increasing salt concentrations shifted plots of the growth rate versus C/C(sat) to the right, i.e. higher supersaturations were required for comparable growth rates. The observed trends in the growth data are counter to those expected from the solubility data. If tetragonal lysozyme crystal growth is by addition of ordered aggregates from the solution, then the observed growth data could be explained as a result of the effects of lowered temperature and increased salt concentration on the kinetics and equilibrium processes governing protein-protein interactions in solution. The data indicate that temperature would be a more tractable means of controlling the growth rate for tetragonal lysozyme crystals contrary to the usual practice in, e.g., vapor diffusion protein crystal growth, where both the precipitant and protein concentrations are simultaneously increased. However, the available range for control is dependent upon the protein concentration, with the greatest growth rate control being at the lower concentration.

  19. Lysozyme-Mediated Formation of Protein-Silica Nano-Composites for Biosensing Applications (Postprint)

    DTIC Science & Technology

    2009-05-05

    reagents Lysozyme (from hen egg white ), tetramethyl orthosilicate (TMOS) and tetraethyl orthosilicate (TEOS) were purchased from Sigma–Aldrich (St. Louis...AFRL-RX-TY-TP-2009-4611 LYSOZYME -MEDIATED FORMATION OF PROTEIN-SILICA NANO-COMPOSITES FOR BIOSENSING APPLICATIONS (POSTPRINT) Madhumati...Include area code) 15-MAR-2009 Journal Article - POSTPRINT 01-MAR-2008 -- 01-MAR-2009 Lysozyme -Mediated Formation of Protein–Silica Nano-Composites for

  20. Protein Crystal Growth Under Forced Solution Flow: Experimental Setup and General Response of Lysozyme

    NASA Technical Reports Server (NTRS)

    Vekilov, P. G.; Rosenberger, F.

    1998-01-01

    We have experimentally studied the effects of solution flow on the growth kinetics of the protein lysozyme. To this end, we have expanded our interferometry setup by a novel crystallization cell and solution recirculation system. This combination permits monitoring of interface morphology and kinetics with a depth resolution of 200 A at bulk flow rates of up to 2000 micron/s. Particular attention was paid to the prevention of protein denaturation that is often associated with the pumping of protein solutions. We found that at bulk flow rates it less than 250 microns/s the average growth rate and step velocity, R(sub avg) and upsilon(sub avg) increase with increasing it. This can be quantitatively understood in terms of the enhanced, convective solute supply to the interface. With high-purity solutions, it u greater than 250 microns/s lead to growth deceleration, and, at low supersaturations sigma, to growth cessation. When solutions containing approx. 1% of other protein impurities were used, growth deceleration occurred at any u greater than 0 and cessation in the low sigma experiments was reached at about half the it causing cessation with pure solution. The flow-induced changes in R(sub avg) and upsilon(sub avg) including growth cessation, were reversible and reproducible, independent of the direction of the u-changes and solution purity. Hence, we attribute the deceleration to the convection-enhanced supply of impurities to the interface, which at higher flow rates overpowers the effects of enhanced interfacial solute concentration. Most importantly, we found that convective transport leads to a significant reduction in kinetics fluctuations, in agreement with our earlier expectations for the lysozyme system. This supports our hypothesis that these long-term fluctuations represent an intrinsic response feature of the coupled bulk transport-interfacial kinetics system in the mixed growth control regime.

  1. Protein Crystal Growth Under Forced Solution Flow: Experimental Setup and General Response of Lysozyme

    NASA Technical Reports Server (NTRS)

    Vekilov, P. G.; Rosenberger, F.

    1998-01-01

    We have experimentally studied the effects of solution flow on the growth kinetics of the protein lysozyme. To this end, we have expanded our interferometry setup by a novel crystallization cell and solution recirculation system. This combination permits monitoring of interface morphology and kinetics with a depth resolution of 200 A at bulk flow rates of up to 2000 micron/s. Particular attention was paid to the prevention of protein denaturation that is often associated with the pumping of protein solutions. We found that at bulk flow rates it less than 250 microns/s the average growth rate and step velocity, R(sub avg) and upsilon(sub avg) increase with increasing it. This can be quantitatively understood in terms of the enhanced, convective solute supply to the interface. With high-purity solutions, it u greater than 250 microns/s lead to growth deceleration, and, at low supersaturations sigma, to growth cessation. When solutions containing approx. 1% of other protein impurities were used, growth deceleration occurred at any u greater than 0 and cessation in the low sigma experiments was reached at about half the it causing cessation with pure solution. The flow-induced changes in R(sub avg) and upsilon(sub avg) including growth cessation, were reversible and reproducible, independent of the direction of the u-changes and solution purity. Hence, we attribute the deceleration to the convection-enhanced supply of impurities to the interface, which at higher flow rates overpowers the effects of enhanced interfacial solute concentration. Most importantly, we found that convective transport leads to a significant reduction in kinetics fluctuations, in agreement with our earlier expectations for the lysozyme system. This supports our hypothesis that these long-term fluctuations represent an intrinsic response feature of the coupled bulk transport-interfacial kinetics system in the mixed growth control regime.

  2. In vitro peptic digestion of ovomucin-depleted egg white affected by pH, temperature and pulsed electric fields.

    PubMed

    Liu, Ya-Fei; Oey, Indrawati; Bremer, Phil; Silcock, Patrick; Carne, Alan

    2017-09-15

    The effect of pH (4, 5, 7, and 9) combined with either heat (60, 80°C for 10min) or pulsed electric fields (PEF) (1.4-1.8kV/cm, 260-690kJ/kg) treatments on the in vitro peptic digestion of ovomucin-depleted egg white was investigated. Protein digestibility, unaffected by 60°C heating, was increased by heating at 80°C, which caused protein aggregation and solution turbidity. Compared to ovalbumin and lysozyme, ovotransferrin was more susceptible to pepsinolysis. Susceptibility to pepsinolysis of ovalbumin and lysozyme was markedly enhanced by heating at 80°C, compared to either 60°C heating or PEF processing. MALDI-MS identified proteolytic fragments from ovalbumin and lysozyme, exhibiting varied resistance to pepsinolysis. PEF processing at ∼690kJ/kg and pH 4 increased protein digestibility to a similar level to that obtained after heating at 80°C, with negligible solution turbidity, showing potential for the production of digestible protein drinks with good consumer visual appeal owing to their clarity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Growth of (101) Faces of Tetragonal Lysozyme Crystals: Determination of the Growth Mechanism

    NASA Technical Reports Server (NTRS)

    Li, Meirong; Nadarajah, Arunan; Pusey, Marc L.

    1998-01-01

    Measurements of the macroscopic growth rates of the (101) face of tetragonal lysozyme crystals indicate an unusual dependence on the supersaturation (Forsythe, Nadarajah & Pusey, 1998), similar to that observed for the (110) face. As done before for the (110) face, in this study the surface packing arrangement for the (101) face was constructed, based on earlier microscopic observations and theoretical analysis of the internal molecular packing. This allowed the minimum growth unit for this face to be identified as a tetramer corresponding to a single turn of helices centered about the 4(sub 3) axes, and the minimum growth step to be of unimolecular height. A macroscopic mathematical model for the growth of the (101) face was developed, based on the formation of aggregate growth units in solution and the addition of a unit to the crystal face by dislocation and two-dimensional nucleation mechanisms. The calculations showed that the best fits were obtained for tetramer or octamer growth units in this model, indicating that average size of the growth unit participating in the growth process was between these two sizes.

  4. Investigating the Effect of Impurities on Macromolecule Crystal Growth in Microgravity

    NASA Technical Reports Server (NTRS)

    Snell, Edward H.; Judge, Russell A.; Crawford, Lisa; Forsythe, Elizabeth L.; Pusey, Marc L.; Sportiello, Michael; Todd, Paul; Bellamy, Henry; Lovelace, Jeff; Cassanto, John M.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Chicken egg-white lysozyme (CEWL) crystals were grown in microgravity and on the ground in the presence of various amounts of a naturally occurring lysozyme dimer impurity. No significant favorable differences in impurity incorporation between microgravity and ground crystal samples were observed. At low impurity concentration the microgravity crystals preferentially incorporated the dimer. The presence of the dimer in the crystallization solutions in microgravity reduced crystal size, increased mosaicity and reduced the signal to noise ratio of the X-ray data. Microgravity samples proved more sensitive to impurity. Accurate indexing of the reflections proved critical to the X-ray analysis. The largest crystals with the best X-ray diffraction properties were grown from pure solution in microgravity.

  5. Investigating the Effect of Impurities on Macromolecule Crystal Growth in Microgravity

    NASA Technical Reports Server (NTRS)

    Snell, Edward H.; Judge, Russell A.; Crawford, Lisa; Forsythe, Elizabeth L.; Pusey, Marc L.; Sportiello, Michael; Todd, Paul; Bellamy, Henry; Lovelace, Jeff; Cassanto, John M.; hide

    2001-01-01

    Chicken egg-white lysozyme (CEWL) crystals were grown in microgravity and on the ground in the presence of various amounts of a naturally occurring lysozyme dimer impurity. No significant favorable differences in impurity incorporation between microgravity and ground crystal samples were observed. At low impurity concentration the microgravity crystals preferentially incorporated the dimer. The presence of the dimer in the crystallization solutions in microgravity reduced crystal size, increased mosaicity and reduced the signal to noise ratio of the X-ray data. Microgravity samples proved more sensitive to impurity. Accurate indexing of the reflections proved critical to the X-ray analysis. The largest crystals with the best X-ray diffraction properties were grown from pure solution in microgravity.

  6. [Purification of ovalbumin from hen egg white by high-speed counter-current aqueous two-phase chromatography].

    PubMed

    Zhi, Wen-Bo; Deng, Qiu-Yun; Song, Jiang-Nan; Ouyang, Fan

    2005-01-01

    High-speed counte-recurrent chromatography (HSCCC) is a continuous liquid-liquid partition chromatography without solid matrix, which has the significant features of high resolution and high recovery. The separation of bio-macromolecule in aqueous two-phase systems (ATPs) with HSCCC is still under research, and the establishment of high-speed counter-current aqueous two-phase chromatography (HSCCC-ATP) relies on the improvement of equipment structure and optimization of operation parameters. By using a multi-column high-speed counter-current chromatograph, the separation of protein mixture and the purification of ovalbumin from hen egg white were studied. The effects of pH and PEG concentration on the partition coefficients of proteins were tested in PEG1000-phosphate ATPs, and distinct differences among partition coefficients of proteins were found at pH 9.2 and 15.0% (W/W) PEG concentration in said system. The separation of protein mixture, consisting of cytochrome C, lysozyme and myoglobin was successfully performed in 15.0% (W/W) PEG1000-17.0% (W/W) potassium phosphate ATPs at pH 9.2 with high-speed counter-current chromatograph at rotation speed of 850r/min and flow rate of 0.8mL/min, using upper phase as stationary phase. pH and PEG concentration also had distinct effects on the partition coefficients of the major protein components in hen egg white, including ovaltransferrin, ovalbumin and lysozyme. The optimal pH value and PEG concentration for the purification of ovalbumin by HSCCC-ATP were found to be 9.2 and 16.0% (W/W) respectively. Ovalbumin was successfully purified to homogeneity from the hen egg white sample in 16.0% (W/W) PEG1000-17.0% (W/W) potassium phosphate ATPs at pH 9.2 with high-speed counter-current chromatograph at rotation speed of 850r/min and flow rate of 1.8mL/min, using upper phase as stationary phase. The purification recovery of ovalbumin was around 95%.

  7. Crystal quality and differential crystal-growth behaviour of three proteins crystallized in gel at high hydrostatic pressure.

    PubMed

    Kadri, A; Lorber, B; Charron, C; Robert, M-C; Capelle, B; Damak, M; Jenner, G; Giegé, R

    2005-06-01

    Pressure is a non-invasive physical parameter that can be used to control and influence protein crystallization. It is also found that protein crystals of superior quality can be produced in gel. Here, a novel crystallization strategy combining hydrostatic pressure and agarose gel is described. Comparative experiments were conducted on hen and turkey egg-white lysozymes and the plant protein thaumatin. Crystals could be produced under up to 75-100 MPa (lysozymes) and 250 MPa (thaumatin). Several pressure-dependent parameters were determined, which included solubility and supersaturation of the proteins, number, size and morphology of the crystals, and the crystallization volume. Exploration of three-dimensional phase diagrams in which pH and pressure varied identified growth conditions where crystals had largest size and best morphology. As a general trend, nucleation and crystal-growth kinetics are altered and nucleation is always enhanced under pressure. Further, solubility of the lysozymes increases with pressure while that of thaumatin decreases. Likewise, changes in crystallization volumes at high and atmospheric pressure are opposite, being positive for the lysozymes and negative for thaumatin. Crystal quality was estimated by analysis of Bragg reflection profiles and X-ray topographs. While the quality of lysozyme crystals deteriorates as pressure increases, that of thaumatin crystals improves, with more homogeneous crystal morphology suggesting that pressure selectively dissociates ill-formed nuclei. Analysis of the thaumatin structure reveals a less hydrated solvent shell around the protein when pressure increases, with approximately 20% less ordered water molecules in crystals grown at 150 MPa when compared with those grown at atmospheric pressure (0.1 MPa). Noticeably, the altered water distribution is seen in depressurized crystals, indicating that pressure triggers a stable structural alteration on the protein surface while its polypeptide backbone

  8. Global Gene-expression Analysis of the Response of Salmonella Enteritidis to Egg White Exposure Reveals Multiple Egg White-imposed Stress Responses

    PubMed Central

    Baron, Florence; Bonnassie, Sylvie; Alabdeh, Mariah; Cochet, Marie-Françoise; Nau, Françoise; Guérin-Dubiard, Catherine; Gautier, Michel; Andrews, Simon C.; Jan, Sophie

    2017-01-01

    Chicken egg white protects the embryo from bacterial invaders by presenting an assortment of antagonistic activities that combine together to both kill and inhibit growth. The key features of the egg white anti-bacterial system are iron restriction, high pH, antibacterial peptides and proteins, and viscosity. Salmonella enterica serovar Enteritidis is the major pathogen responsible for egg-borne infection in humans, which is partly explained by its exceptional capacity for survival under the harsh conditions encountered within egg white. However, at temperatures up to 42°C, egg white exerts a much stronger bactericidal effect on S. Enteritidis than at lower temperatures, although the mechanism of egg white-induced killing is only partly understood. Here, for the first time, the impact of exposure of S. Enteritidis to egg white under bactericidal conditions (45°C) is explored by global-expression analysis. A large-scale (18.7% of genome) shift in transcription is revealed suggesting major changes in specific aspects of S. Enteritidis physiology: induction of egg white related stress-responses (envelope damage, exposure to heat and alkalinity, and translation shutdown); shift in energy metabolism from respiration to fermentation; and enhanced micronutrient provision (due to iron and biotin restriction). Little evidence of DNA damage or redox stress was obtained. Instead, data are consistent with envelope damage resulting in cell death by lysis. A surprise was the high degree of induction of hexonate/hexuronate utilization genes, despite no evidence indicating the presence of these substrates in egg white. PMID:28553268

  9. The Question of Impurities in Macromolecule Crystal Quality Improvement in Microgravity

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Snell, Edward H.; Pusey, Marc L.; Sportiello, Michael G.; Todd, Paul; Bellamy, Henry; Borgstahl, Gloria E.; Pokros, Matthew; Cassanto, John M.

    2000-01-01

    While macromolecule impurities may affect crystal size and morphology the over-riding question is how do macromolecule impurities effect crystal X-ray quality and diffraction resolution. In the case of chicken egg white lysozyme previous researchers have reported that crystals grown in the presence of ovalbumin, ovotransferrin, and turkey egg white lysozyme show no difference in diffraction resolution compared to those grown in pure solutions. One impurity however, a naturally occurring lysozyme dimer, does negatively impact the X-ray crystal properties. For this impurity it has been reported that crystal quality improvement in microgravity may be due to improved impurity partitioning during crystallization. In this study we have examined the incorporation of the dimer into lysozyme crystals, both on the ground and in microgravity experiments, and have performed detailed X-ray analysis of the crystals using a new technique for finely probing the mosaicity of the crystal at the Stanford Synchrotron Radiation Laboratory. Dimer partitioning was not significantly different in microgravity compared to the ground based experiments, although it is significantly better than that previously reported in microgravity. Mosaicity analysis of pure crystals, 1422 indexed reflections (microgravity) and 752 indexed reflections (ground), gave average results of 0.0066 and 0.0092 degrees (FWHM) respectively. The microgravity crystals also provided an increased signal to noise. Dimer incorporation increased the average mosaicity in microgravity but not on the ground. However, dimer incorporation did greatly reduce the resolution limit in both ground and microgravity grown crystals. The data is being treated anisotropically to explore these effects. These results indicate that impurity effects in microgravity are complex and that the conditions or techniques employed may greatly affect the role of impurities.

  10. The Question of Impurities in Macromolecule Crystal Quality Improvement in Microgravity

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Snell, Edward H.; Pusey, Marc L.; Sportiello, Michael G.; Todd, Paul; Bellamy, Henry; Borgstahl, Gloria E.; Pokros, Matthew; Cassanto, John M.

    2000-01-01

    While macromolecule impurities may affect crystal size and morphology the over-riding question is how do macromolecule impurities effect crystal X-ray quality and diffraction resolution. In the case of chicken egg white lysozyme previous researchers have reported that crystals grown in the presence of ovalbumin, ovotransferrin, and turkey egg white lysozyme show no difference in diffraction resolution compared to those grown in pure solutions. One impurity however, a naturally occurring lysozyme dimer, does negatively impact the X-ray crystal properties. For this impurity it has been reported that crystal quality improvement in microgravity may be due to improved impurity partitioning during crystallization. In this study we have examined the incorporation of the dimer into lysozyme crystals, both on the ground and in microgravity experiments, and have performed detailed X-ray analysis of the crystals using a new technique for finely probing the mosaicity of the crystal at the Stanford Synchrotron Radiation Laboratory. Dimer partitioning was not significantly different in microgravity compared to the ground based experiments, although it is significantly better than that previously reported in microgravity. Mosaicity analysis of pure crystals, 1422 indexed reflections (microgravity) and 752 indexed reflections (ground), gave average results of 0.0066 and 0.0092 degrees (FWHM) respectively. The microgravity crystals also provided an increased signal to noise. Dimer incorporation increased the average mosaicity in microgravity but not on the ground. However, dimer incorporation did greatly reduce the resolution limit in both ground and microgravity grown crystals. The data is being treated anisotropically to explore these effects. These results indicate that impurity effects in microgravity are complex and that the conditions or techniques employed may greatly affect the role of impurities.

  11. Interactions of Pseudomonas aeruginosa PA-IIL lectin with quail egg white glycoproteins.

    PubMed

    Lerrer, B; Gilboa-Garber, N

    2001-12-01

    Pseudomonas aeruginosa produces several lectins, including the galactophilic PA-IL and the fucose- and mannose-binding PA-IIL. The great advantage of these two lectins is their stability in purified preparations. Following observations that pigeon egg white blocks Escherichia coli P-fimbriae and PA-IL, we examined the interactions of diverse avian egg white components with PA-IIL. This lectin may represent both mannose- and fucose-specific microbial adhesins. For comparison, Con A (which also binds mannose) and Ulex europaeus lectin (UEA-I, which binds fucose) were analyzed in parallel. The lectin interactions with chicken, quail, and pigeon egg whites and several purified chicken egg white glycoproteins were examined by a hemagglutination inhibition test and Western blotting. Both analyses showed that like Con A and unlike UEA-I, which was not sensitive to any of these three egg whites, PA-IIL most strongly reacted with the quail egg white. However, in contrast with Con A, its interactions with the chicken egg white components, excluding avidin, were very poor. The results of this study might indicate the possibility that some of the egg white components that interacted with the above two mannose-binding lectins (exhibiting individual heterogeneity) might be associated with the innate immunity against mannose-specific microbial or viral adhesion during the fowl embryonic period.

  12. Physical properties of microencapsulated gamma-3 salmon oil with egg white powder

    USDA-ARS?s Scientific Manuscript database

    Microencapsulated salmon oil with egg white powders are a good source of high quality protein and amino acids including leucine and omega-3 fatty acids, which may be beneficial for athletes. The study demonstrated that egg white powders containing omega-3 salmon oil can be effectively produced by sp...

  13. Separation of lysozyme using superparamagnetic carboxymethyl chitosan nanoparticles.

    PubMed

    Sun, Jun; Su, Yujie; Rao, Shengqi; Yang, Yanjun

    2011-08-01

    Functionalized Fe(3)O(4) nanoparticles conjugated with polyethylene glycol (PEG) and carboxymethyl chitosan (CM-CTS) were developed and used as a novel magnetic absorbing carrier for the separation and purification of lysozyme from the aqueous solution and chicken egg white, respectively. The morphology of magnetic CM-CTS nanoparticles was observed by transmission electron microscope (TEM). It was found that the diameter of superparamagnetic carboxymethyl chitosan nanoparticles (Fe(3)O(4) (PEG+CM-CTS)) was about 15 nm, and could easily aggregate by a magnet when suspending in the aqueous solution. The adsorption capacity of lysozyme onto the superparamagnetic Fe(3)O(4) (PEG+CM-CTS) nanoparticles was determined by changing the medium pH, temperature, ionic strength and the concentration of lysozyme. The maximum adsorption loading reached 256.4 mg/g. Due to the small diameter, the adsorption equilibrium of lysozyme onto the nanoparticles reached very quickly within 20 min. The adsorption equilibrium of lysozyme onto the superparamagnetic nanoparticles fitted well with the Langmuir model. The nanoparticles were stable when subjected to six repeated adsorption-elution cycles. Separation and purification were monitored by determining the lysozyme activity using Micrococcus lysodeikticus as substrate. The lysozyme was purified from chicken egg white in a single step had higher purity, as determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Considering that the superparamagnetic nanoparticles possess the advantages of high efficiency, cost-effectiveness and excellent binding of a larger amount of lysozyme and easier separation from the reaction system, thus this type of superparamagnetic nanoparticles would bring advantages to the conventional separation techniques of lysozyme from chicken egg white.

  14. The effects of xylitol and sorbitol on lysozyme- and peroxidase-related enzymatic and candidacidal activities.

    PubMed

    Kim, Bum-Soo; Chang, Ji-Youn; Kim, Yoon-Young; Kho, Hong-Seop

    2015-07-01

    To investigate whether xylitol and sorbitol affect enzymatic and candidacidal activities of lysozyme, the peroxidase system, and the glucose oxidase-mediated peroxidase system. Xylitol and sorbitol were added to hen egg-white lysozyme, bovine lactoperoxidase, glucose oxidase-mediated peroxidase, and whole saliva in solution and on hydroxyapatite surfaces. The enzymatic activities of lysozyme, peroxidase, and glucose oxidase-mediated peroxidase were determined by the turbidimetric method, the NbsSCN assay, and production of oxidized o-dianisidine, respectively. Candidacidal activities were determined by comparing colony forming units using Candida albicans ATCC strains 10231, 11006, and 18804. While xylitol and sorbitol did not affect the enzymatic activity of hen egg-white lysozyme both in solution and on hydroxyapatite surfaces, they did inhibit the enzymatic activity of salivary lysozyme significantly in solution, but not on the surfaces. Xylitol and sorbitol enhanced the enzymatic activities of both bovine lactoperoxidase and salivary peroxidase significantly in a dose-dependent manner in solution, but not on the surfaces. Sorbitol, but not xylitol, inhibited the enzymatic activity of glucose oxidase-mediated peroxidase significantly. Both xylitol and sorbitol did not affect candidacidal activities of hen egg-white lysozyme, the bovine lactoperoxidase system, or the glucose oxidase-mediated bovine lactoperoxidase system. Xylitol and sorbitol inhibited salivary lysozyme activity, but enhanced both bovine lactoperoxidase and salivary peroxidase activities significantly in solution. Xylitol and sorbitol did not augment lysozyme- and peroxidase-related candidacidal activities. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Ovomucoid Is Not Superior to Egg White Testing in Predicting Tolerance to Baked Egg

    PubMed Central

    Bartnikas, Lisa M.; Sheehan, William J.; Larabee, Katherine S.; Petty, Carter; Schneider, Lynda C.; Phipatanakul, Wanda

    2013-01-01

    BACKGROUND Children with egg allergy may tolerate baked egg products. Ovomucoid specific IgE (sIgE) antibody levels have been suggested to predict outcomes of baked egg challenges. OBJECTIVE We determined the relationship of ovomucoid and egg white sIgE levels and egg white skin prick test (SPT) wheal size with baked egg challenge outcome. METHODS Retrospective review of 1186 patients who underwent ovomucoid sIgE blood testing. Subset analysis was of 169 patients who underwent baked egg food challenges. RESULTS Egg white sIgE, ovomucoid sIgE, and egg white SPT were different among those eating regular egg, eating baked egg only, or avoiding all egg (P < .001 for all). One hundred forty-two of 169 patients (84.0%) passed baked egg challenges. We were able to establish >90% predictive values for passing baked egg challenge for egg white sIgE, ovomucoid sIgE, and egg white SPT. No patient with egg white SPT wheal <3 mm failed a baked egg challenge. Receiver operating characteristic curve analysis of egg white sIgE, ovomucoid sIgE, and egg white SPT showed areas under the curve of 0.721, 0.645, and 0.624, respectively. No significant difference was observed among these immunologic parameters in their abilities to predict baked egg challenge outcome (P = .301). CONCLUSION Most children with egg allergy in this study passed baked egg challenges. Ovomucoid sIgE, although a useful clinical predictor of baked egg tolerance, was not superior to egg white SPT or sIgE in predicting outcome of baked egg challenge. PMID:24013255

  16. A method for rapid liquid-solid phase solubility measurements using the protein lysozyme

    NASA Astrophysics Data System (ADS)

    Pusey, Marc L.; Gernert, Kim

    1988-05-01

    Using hens' egg white lysozyme crystals as the test material, a simple system was developed for rapidly and unambiguously determining solubilities in (aqueous) solutions. The system is based upon a maximization of the solid surface area available for solute transfer to or from the solution, and a minimization of both the solution volume which must be equilibrated and the distance over which diffusive solute exchange occurs. This technique is further enhanced by using duplicate test systems which differ only in that one approaches equilibrium from an oversaturated solution, while the other from an undersaturated solution. Thus, the resulting data pair brackets the solubility value. In practical terms, the data points are found to usually be within 3% of each other, and individual solubility data points may usually be made at this resolution within 8-24 h depending upon the temperature change made since the previous determination.

  17. A method for rapid liquid-solid phase solubility measurements using the protein lysozyme

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Gernert, Kim

    1988-01-01

    Using hen's egg white lysozyme crystals as the test material, a simple system was developed for rapidly and unambiguously determining solubilities in (aqueous) solutions. The system is based upon a maximization of the solid surface area available for solute transfer to or from the solution, and a minimization of both the solution volume which must be equilibrated and the distance over which diffusive solute exchange occurs. This technique is further enhanced by using duplicate test systems which differ only in that one approaches equilibrium from an oversaturated solution, while the other from an undersaturated solution. Thus, the resulting data pair brackets the solubility value. In practical terms, the data points are found to usually be within 3 percent of each other, and individual solubility data points may usually be made at this resolution within 8-24 h depending upon the temperature change made since the previous determination.

  18. Highly Perturbed pKa Values in the Unfolded State of Hen Egg White Lysozyme

    PubMed Central

    Bradley, John; O'Meara, Fergal; Farrell, Damien; Nielsen, Jens Erik

    2012-01-01

    The majority of pKa values in protein unfolded states are close to the amino acid model pKa values, thus reflecting the weak intramolecular interactions present in the unfolded ensemble of most proteins. We have carried out thermal denaturation measurements on the WT and eight mutants of HEWL from pH 1.5 to pH 11.0 to examine the unfolded state pKa values and the pH dependence of protein stability for this enzyme. The availability of accurate pKa values for the folded state of HEWL and separate measurements of mutant-induced effects on the folded state pKa values, allows us to estimate the pKa values of seven acidic residues in the unfolded state of HEWL. Asp-48 and Asp-66 display pKa values of 2.9 and 3.1 in our analysis, thus representing the most depressed unfolded state pKa values observed to date. We observe a strong correlation between the folded state pKa values and the unfolded state pKa values of HEWL, thus suggesting that the unfolded state of HEWL possesses a large degree of native state characteristics. PMID:22500764

  19. Nucleation and Convection Effects in Protein Crystal Growth

    NASA Technical Reports Server (NTRS)

    Rosenberger, Franz

    1997-01-01

    Work during the second year under this grant (NAG8-1161) resulted in several major achievements. We have characterized protein impurities as well as microheterogeneities in the proteins hen egg white lysozyme and horse spleen apoferritin, and demonstrated the effects of these impurities on nucleation and crystallization. In particular, the purification of apoferritin resulted in crystals with an X-ray diffraction resolution of better than 1.8 A, i.e. a 1 A improvement over earlier work on the cubic form. Furthermore, we have shown, in association with studies of liquid-liquid phase separation, that depending on the growth conditions, lysozyme can produce all growth morphologies that have been observed with other proteins. Finally, in connection with our experimental and simulation work on growth step bunching, we have developed a system-dependent criterion for advantages and disadvantages of crystallization from solution under reduced gravity. In the following, these efforts are described in some detail.

  20. From Egg to Crystal: A Practical on Purification, Characterization, and Crystallization of Lysozyme for Bachelor Students

    ERIC Educational Resources Information Center

    Olieric, Vincent; Schreiber, Angelique; Lorber, Bernard; Putz, Joern

    2007-01-01

    A practical hands-on course encompassing enzyme purification, biochemical characterization, and crystallization that completed the course work of 350 second-year bachelor students enrolled in molecular biology/biochemistry was given at the Universite Louis Pasteur of Strasbourg (France). The experimental part of the practical dealt entirely with…

  1. From Egg to Crystal: A Practical on Purification, Characterization, and Crystallization of Lysozyme for Bachelor Students

    ERIC Educational Resources Information Center

    Olieric, Vincent; Schreiber, Angelique; Lorber, Bernard; Putz, Joern

    2007-01-01

    A practical hands-on course encompassing enzyme purification, biochemical characterization, and crystallization that completed the course work of 350 second-year bachelor students enrolled in molecular biology/biochemistry was given at the Universite Louis Pasteur of Strasbourg (France). The experimental part of the practical dealt entirely with…

  2. A clinical and immunological study of allergy to hen's egg white. VI. Occurrence of proteins cross-reacting with allergens in hen's egg white as studied in egg white from turkey, duck, goose, seagull, and in hen egg yolk, and hen and chicken sera and flesh.

    PubMed

    Langeland, T

    1983-08-01

    The occurrence of proteins cross-reacting with allergens in hen's egg white was studied in turkey, duck, goose and seagull egg whites, in hen egg yolk, and in hen and chicken sera and flesh. The study was based upon quantitative immunoelectrophoretic techniques. The different egg whites were all found to contain proteins cross-reacting with most of the allergens in hen's egg white, but the degree of cross-reactivity varied considerably among the various egg whites. All egg whites contained proteins able to bind human IgE-antibody in the sera of patients with allergy to hen's egg white. Several proteins cross-reacting with allergens in hen's egg white were also detected in egg yolk and in hen and chicken sera and flesh. Clinical implications of the results are discussed.

  3. Purification, characterization and comparison of reptile lysozymes.

    PubMed

    Thammasirirak, Sompong; Ponkham, Pornpimol; Preecharram, Sutthidech; Khanchanuan, Rathakarn; Phonyothee, Phalakorn; Daduang, Sakda; Srisomsap, Chantragan; Araki, Tomohiro; Svasti, Jisnuson

    2006-06-01

    Cation exchange column chromatography and gel filtration chromatography were used to purify four reptile lysozymes from egg white: SSTL A and SSTL B from soft shelled turtle (Trionyx sinensis), ASTL from Asiatic soft shelled turtle (Amyda cartilagenea) and GSTL from green sea turtle (Chelonia mydas). The molecular masses of the purified reptile lysozymes were estimated to be 14 kDa by SDS-PAGE. Enzyme activity of the four lysozymes could be confirmed by gel zymograms and showed charge differences on native-PAGE. SSTL A, SSTL B and ASTL had sharp pH optima of about pH 6.0, which contrasts with that of GSTL, which showed dual pH optima at about pH 6.0 and pH 8.0. The activities of the reptile lysozymes rapidly decreased within 30 min of incubation at 90 degrees C except for ASTL, which was more stable. Partial N-terminal amino acid sequencing and peptide mapping strongly suggested that the enzymes were C-type lysozymes. Interestingly, the mature SSTL lysozymes show an extra Gly residue at the N-terminus, which was previously found in soft-shelled turtle lysozyme. The reptile lysozymes showed lytic activity against several species of bacteria, such as Micrococcus luteus and Vibrio cholerae, but showed only weak activity to Pseudomonas aeruginosa and lacked activity towards Aeromonas hydrophila.

  4. Effect of Proteolytic Modification on Texture and Mastication of Heat‐Treated Egg White Gels

    PubMed Central

    Funaki, Junko; Minami, Michiko; Abe, Sachie; Ueda, Reiko; Eto, Wakako; Kugino, Kenji; Kugino, Mutsuko; Abe, Keiko; Toko, Kiyoshi

    2016-01-01

    Abstract Raw egg white undergoes sol–gel transition by heat treatment, which changes it to an elastic gel. Here, protease treatment to render a new texture to heated egg white gel was applied. Protease‐treated gels exhibited ductile flow without obvious rupture points. Transmission electron microscopy analysis showed that in protease‐treated gels, protein aggregates were distributed more homogeneously compared with that observed in the untreated control, probably because ovalbumin was digested into small peptides as revealed by SDS‐PAGE. The properties of the gel were evaluated by sensory tests and by measuring the movement of the masseter muscle, using surface electromyography. Results showed that maximum bite force and mastication duration were decreased for the protease‐treated gels, which were evaluated as being softer, smoother, less elastic and better textured. Overall, our results indicate that protease‐treated egg white gel has superior qualities and is easier to swallow than the untreated gel. Practical Applications In the food industry, the use of egg white is limited compared with that of egg yolk and whole eggs. In this study, we performed protease treatment to generate a new food material with smoother and softer texture compared with heat treated egg white. Our findings may expand the consumption of egg white, which can be consumed by people with mastication and swallowing disorders, and reduce the waste of egg white as a surplus product. PMID:28239213

  5. Irradiation of shell egg on the physicochemical and functional properties of liquid egg white.

    PubMed

    Min, B; Nam, K C; Jo, C; Ahn, D U

    2012-10-01

    This study was aimed at determining the effect of irradiation of shell eggs on the physiochemical and functional properties of liquid egg white during storage. Color and textural parameters of irradiated liquid egg white after cooking were also determined. Shell eggs were irradiated at 0, 2.5, 5, or 10 kGy using a linear accelerator. Egg white was separated from yolk and stored in at 4°C up to 14 d. Viscosity, pH, turbidity, foaming properties, color, and volatile profile of liquid egg white, and color and texture properties of cooked egg white were determined at 0, 7, and 14 d of storage. Irradiation increased the turbidity but decreased viscosity of liquid egg white. Foaming capacity and foam stability were not affected by irradiation at lower dose (2.5 kGy), but were deteriorated at higher doses (≥5.0 kGy) of irradiation. Sulfur-containing volatiles were generated by irradiation and their amounts increased as the irradiation dose increased. However, the sulfur volatiles disappeared during storage under aerobic conditions. Lightness (L* value) and yellowness (b* value) decreased, but greenness (-a* value) increased in cooked egg white in irradiation dose-dependent manners. All textural parameters (hardness, adhesiveness, cohesiveness, chewiness, and resilience) of cooked egg white increased as the irradiation dose increased, but those changes were marginal. Our results indicated that irradiation of shell egg at lower doses (up to 2.5 kGy) had little negative impact on the physiochemical and functional properties of liquid egg white, but can improve the efficiency of egg processing due to its viscosity-lowering effect. Therefore, irradiation of shell eggs at the lower doses has high potential to be used by the egg processing industry to improve the safety of liquid egg without compromising its quality.

  6. Correlation of ovalbumin of egg white components with allergic diseases in children.

    PubMed

    Lin, Yang-Te; Wu, Chih-Te; Huang, Jing-Long; Cheng, Ju-Hui; Yeh, Kuo-Wei

    2016-02-01

    Immunoglobulin E (IgE)-mediated food allergy, such as egg white allergy, is common in young children (<3 years old), but not all young children sensitive to egg white present with allergic symptoms. This study investigated the relationship between sensitization to egg white component allergens and clinical manifestations of allergic diseases in young children. From March to December 2010, 2256 children with physician-diagnosed allergic diseases were tested for serum levels of egg white, ovalbumin, and ovomucoid-specific IgE in the Pediatric Allergy and Asthma Center of Chang Gung Memorial Hospital. Serum was analyzed for specific IgE antibodies to egg white, ovalbumin, and ovomucoid by ImmunoCAP (Phadia, Uppsala, Sweden). Allergen-specific IgE levels ≥0.35 kUA/L were defined as positive. There was a significantly higher sensitization rate to egg white and its components in children aged 2-4 years old. The sensitization rate to egg white, ovalbumin, and ovomucoid in this age group was 53.5%, 48.3%, and 37.2%, respectively, and the trend of the sensitization decreased with age (p < 0.001). After adjusting for age, sensitization to egg white and ovalbumin was associated with children with dermatitis [egg white: odds ratio (OR) = 1.28, 95% confidence intervals (CI) = 1.03-1.58, p < 0.05; ovalbumin: OR = 1.30, 95% CI = 1.04-1.62, p < 0.05]. Children with ovomucoid sensitization had no statistically significant risk among different groups in the current study. Children aged 2-4 years old have higher sensitivity to egg white, ovalbumin, and ovomucoid. Children with egg white and ovalbumin sensitization have a higher risk for atopic dermatitis, and ovalbumin has a more important contribution. Furthermore, we suggested that in children with atopic dermatitis, if they are aged 2-4 years old and are having egg white and ovalbumin sensitization, avoiding eating raw or slightly heated eggs might have a beneficial effect. Copyright © 2014. Published by

  7. On the development of multifunctional luminescent supramolecular hydrogel of gold and egg white

    NASA Astrophysics Data System (ADS)

    Patra, Sudeshna; Ravulapalli, Sathyavathi; Hahm, Myung Gwan; Tadi, Kiran Kumar; Narayanan, Tharangattu N.

    2016-10-01

    Highly stable, luminescent, and printable/paintable supramolecular egg white hydrogel-based surface enhanced Raman scattering (SERS) matrix is created by an in situ synthesis of gold clusters inside a luminescent egg white hydrogel (Au-Gel). The synthesis of stable luminescent egg-white-based hydrogel, where the hydrogel can act as a three dimensional (3D) matrix, using a simple cross-linking chemistry, has promising application in the biomedical field including in 3D cell culturing. Furthermore, this functional hydrogel is demonstrated for micromolar-level detection of Rhodamine 6G using the SERS technique, where Au-Gel is painted over a flexible cellulose pad.

  8. Rheological behaviour of egg white and egg yolk from different poultry specimen

    NASA Astrophysics Data System (ADS)

    Kumbár, V.; Nedomová, Š.; Votava, J.; Buchar, J.

    2017-01-01

    The main goal of this study is differences in rheological behaviour of hen (ISA BROWN), goose (Anser anser f. domestica) and Japanese quail (Coturnix japonica) egg white and egg yolk. The rheological behaviour of egg white and egg yolk was studied using a concentric cylinder viscometer. Rheological behaviour was pseudoplastic and flow curves were fitted by the Herschel-Bulkley model and Ostwald-de Waele model with high values of coeficients of determination R2. The meaning of rheological parameters on friction factors during flow of egg white and egg yolk in real tube has been shown. Preliminary information on time-dependent behaviour of tested liquids has been also obtained.

  9. Spatiotemporal development of soaked protein crystal

    PubMed Central

    Mizutani, Ryuta; Shimizu, Yusuke; Saiga, Rino; Ueno, Go; Nakamura, Yuki; Takeuchi, Akihisa; Uesugi, Kentaro; Suzuki, Yoshio

    2014-01-01

    Crystal soaking is widely performed in biological crystallography. This paper reports time-resolved X-ray crystallographic and microtomographic analyses of tetragonal crystals of chicken egg-white lysozyme soaked in mother liquor containing potassium hexachloroplatinate. The microtomographic analysis showed that X-ray attenuation spread from the superficial layer of the crystal and then to the crystal core. The crystallographic analyses indicated that platinum sites can be classified into two groups from the temporal development of the electron densities. A soaking process consisting of binding-rate-driven and equilibrium-driven layers is proposed to describe these results. This study suggests that the composition of chemical and structural species resulting from the soaking process varies depending on the position in the crystal. PMID:25043871

  10. Spatiotemporal development of soaked protein crystal

    NASA Astrophysics Data System (ADS)

    Mizutani, Ryuta; Shimizu, Yusuke; Saiga, Rino; Ueno, Go; Nakamura, Yuki; Takeuchi, Akihisa; Uesugi, Kentaro; Suzuki, Yoshio

    2014-07-01

    Crystal soaking is widely performed in biological crystallography. This paper reports time-resolved X-ray crystallographic and microtomographic analyses of tetragonal crystals of chicken egg-white lysozyme soaked in mother liquor containing potassium hexachloroplatinate. The microtomographic analysis showed that X-ray attenuation spread from the superficial layer of the crystal and then to the crystal core. The crystallographic analyses indicated that platinum sites can be classified into two groups from the temporal development of the electron densities. A soaking process consisting of binding-rate-driven and equilibrium-driven layers is proposed to describe these results. This study suggests that the composition of chemical and structural species resulting from the soaking process varies depending on the position in the crystal.

  11. Tandem ion exchange fractionation of chicken egg white reveals the presence of proliferative bioactivity.

    PubMed

    Lee, Albert; Molloy, Mark P; Baker, Mark S; Kapur, Amit

    2013-05-01

    Chicken eggs are recognized for their versatility as a food product and as a model for research in biology and medicine. This study investigated the egg white as a source of bioactive compounds. Egg white was fractionated using tandem ion exchange chromatography (SAX and SCX), and seven fractions were assessed for any associated bioactivity. Four fractions at various protein concentrations were shown to contain proliferative bioactivity that exceeded the FBS control. The most potent fraction (6) was used in an in vitro wound closure assay to demonstrate a positive influence on cell migration and restored scratch wounds more rapidly than the control. LC-MS/MS identified 33 proteins in fraction 6 of egg white, most of which play important roles in cell growth and development, signaling, motility, and proliferation. These candidate bioactives suggest that the egg white contains essential compounds that contribute to the growth of an embryo prior to fertilization.

  12. Crystallization of lysozyme with (R)-, (S)- and (RS)-2-methyl-2,4-pentanediol

    SciTech Connect

    Stauber, Mark; Jakoncic, Jean; Berger, Jacob; Karp, Jerome M.; Axelbaum, Ariel; Sastow, Dahniel; Buldyrev, Sergey V.; Hrnjez, Bruce J.; Asherie, Neer

    2015-03-01

    Chiral control of crystallization has ample precedent in the small-molecule world, but relatively little is known about the role of chirality in protein crystallization. In this study, lysozyme was crystallized in the presence of the chiral additive 2-methyl-2,4-pentanediol (MPD) separately using the R and S enantiomers as well as with a racemic RS mixture. Crystals grown with (R)-MPD had the most order and produced the highest resolution protein structures. This result is consistent with the observation that in the crystals grown with (R)-MPD and (RS)-MPD the crystal contacts are made by (R)-MPD, demonstrating that there is preferential interaction between lysozyme and this enantiomer. These findings suggest that chiral interactions are important in protein crystallization.

  13. Macroporous chitin affinity membranes for lysozyme separation.

    PubMed

    Ruckenstein, E; Zeng, X

    1997-12-20

    Macroporous chitin membranes with high, controlled porosity and good mechanical properties have been prepared using a technique developed in this laboratory based on silica particles as porogen. They were employed for the affinity separation of lysozyme. Chitin membranes (1 mm thickness) can be operated at high fluxes (>/=1.1 mL/min/cm(2)) corresponding to pressure drops >/=2 psi. Their adsorption capacity for lysozyme ( approximately 50 mg/mL membrane) is by an order of magnitude higher than that of the chitin beads employed in column separation. In a binary mixture of lysozyme and ovalbumin, the membranes showed very high selectivity towards lysozyme. The effect of some important operation parameters, such as the flow rates during loading and elution were investigated. Lysozyme of very high purity (>98%) was obtained from a mixture of lysozyme and ovalbumin, and from egg white. The results indicate that the macroporous chitin membranes can be used for the separation, purification, and recovery of lysozyme at large scale. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 610-617, 1997.

  14. Liquid egg white pasteurization using a centrifugal UV irradiator.

    PubMed

    Geveke, David J; Torres, Daniel

    2013-03-01

    Studies are limited on UV nonthermal pasteurization of liquid egg white (LEW). The objective of this study was to inactivate Escherichia coli using a UV irradiator that centrifugally formed a thin film of LEW on the inside of a rotating cylinder. The LEW was inoculated with E. coli K12 to approximately 8 log cfu/ml and was processed at the following conditions: UV intensity 1.5 to 9.0 mW/cm²; cylinder rotational speed 450 to 750 RPM, cylinder inclination angle 15° to 45°, and flow rate 300 to 900 ml/min, and treatment time 1.1 to 3.2s. Appropriate dilutions of the samples were pourplated with tryptic soy agar (TSA). Sublethal injury was determined using TSA+4% NaCl. The regrowth of surviving E. coli during refrigerated storage for 28 days was investigated. The electrical energy of the UV process was also determined. The results demonstrated that UV processing of LEW at a dose of 29 mJ/cm² at 10°C reduced E. coli by 5 log cfu/ml. Inactivation significantly increased with increasing UV dose and decreasing flow rate. The results at cylinder inclination angles of 30° and 45° were similar and were significantly better than those at 15°. The cylinder rotational speed had no significant effect on inactivation. The occurrence of sublethal injury was detected. Storage of UV processed LEW at 4° and 10°C for 21 days further reduced the population of E. coli to approximately 1 log cfu/ml where it remained for an additional 7 days. The UV energy applied to the LEW to obtain a 5 log reduction of E. coli was 3.9 J/ml. These results suggest that LEW may be efficiently pasteurized, albeit at low flow rates, using a nonthermal UV device that centrifugally forms a thin film.

  15. Lysozyme Thermal Denaturation and Self-Interaction: Four Integrated Thermodynamic Experiments for the Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Schwinefus, Jeffrey J.; Schaefle, Nathaniel J.; Muth, Gregory W.; Miessler, Gary L.; Clark, Christopher A.

    2008-01-01

    As part of an effort to infuse our physical chemistry laboratory with biologically relevant, investigative experiments, we detail four integrated thermodynamic experiments that characterize the denaturation (or unfolding) and self-interaction of hen egg white lysozyme as a function of pH and ionic strength. Students first use Protein Explorer to…

  16. Lysozyme Thermal Denaturation and Self-Interaction: Four Integrated Thermodynamic Experiments for the Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Schwinefus, Jeffrey J.; Schaefle, Nathaniel J.; Muth, Gregory W.; Miessler, Gary L.; Clark, Christopher A.

    2008-01-01

    As part of an effort to infuse our physical chemistry laboratory with biologically relevant, investigative experiments, we detail four integrated thermodynamic experiments that characterize the denaturation (or unfolding) and self-interaction of hen egg white lysozyme as a function of pH and ionic strength. Students first use Protein Explorer to…

  17. Preparation of Egg White Liquid Hydrolysate (ELH) and Its Radical-Scavenging Activity.

    PubMed

    Noh, Dong Ouk; Suh, Hyung Joo

    2015-09-01

    In the present study, an optimum protease was selected to hydrolyze the egg white liquid protein for the antioxidant peptides. Alcalase treatment yielded the highest amount of α-amino groups (15.27 mg/mL), while the control (no enzymatic hydrolysis) showed the lowest amount of α-amino groups (1.53 mg/mL). Alcalase also gave the highest degree of hydrolysis (DH) value (43.2%) and was more efficient for egg white liquid hydrolysis than the other enzymes. The Alcalase hydrolysate had the highest radical-scavenging activity (82.5%) at a concentration of 5.0 mg/mL. The conditions for enzymatic hydrolysis of egg white liquid with Alcalase were selected as substrate : water ratio of 2:1. Five percent Alacalse treatment did not show significant (P>0.05) increases of DH and α-amino nitrogen content after 24 h-hydrolysis. Thirty two hour-hydrolysis with 5% Alcalase is sufficient to make antioxidative egg white liquid hydrolysate from egg white liquid. DPPH and ABTS radical-scavenging activities were significantly (P<0.05) higher after enzymatic digestion. These results suggest that active peptides released from egg-white protein are effective radical-scavengers. Thus, this approach may be useful for the preparation of potent antioxidant products.

  18. Temperature-dependent physical properties of egg white for HIFU applications

    NASA Astrophysics Data System (ADS)

    Liu, Yunbo; Maruvada, Subha; Herman, Bruce A.; Harris, Gerald R.

    2012-10-01

    Because egg white denatures at elevated temperature due to its protein content, it has the potential for use as a blood coagulation surrogate in pre-clinical evaluations of thermal therapy procedures such as high intensity focused ultrasound (HIFU) surgery. We therefore have measured the relevant physical properties of egg white, including coagulation temperature, frequency-dependent attenuation, sound speed, viscosity, and thermal properties, as a function of temperature (20 - 95°C). Thermal coagulation and attenuation (5-12 MHz) of cow blood, pig blood, and human blood also were assessed and compared with egg white. For a 30 s thermal exposure, both egg white and blood samples started to denature at 65°C and coagulate into an elastic gel at 85°C. The temperature-dependent parameters were found to be similar to that of the blood samples. For example, the attenuation of egg white ranged from 0.23f1.09 to 2.7f0.5 dB/cm over the 20°C - 95°C range. These results suggest that egg white would make a useful blood mimic for bench testing of therapeutic ultrasound devices.

  19. Use of Mucor miehei lipase to improve functional properties of yolk-contaminated egg whites.

    PubMed

    Macherey, Laura N; Conforti, Frank D; Eigel, William; O'Keefe, Sean F

    2011-05-01

    Egg yolk contamination of egg whites continues to be a serious problem in the egg industry. The ability of egg whites to form stable and voluminous foams is greatly inhibited by yolk contamination, even at very low levels, between 0.01% and 0.2% w/w yolk in white. Experiments were conducted to determine if Mucor miehei lipase could regenerate the functional properties of yolk-contaminated egg whites. Lipase from M. miehei and colipase from porcine pancreas were added to yolk-contaminated (0.2%, w/w) egg white samples to hydrolyze triglycerides originating from egg yolk. Enzymatic hydrolysis of triacylglycerols was confirmed using thin-layer chromatography. Treatment of yolk-contaminated samples with lipase and colipase yielded significant (P < 0.05) improvements in a number of the functional properties, including the final foam volume, foam capacity, and foaming power. These functional properties showed complete restoration to control levels. However, foam stability and foam drainage levels were not statistically different from yolk-contaminated samples that had not been enzymatically treated. Enzyme-treated yolk-contaminated egg whites were also tested in angel food cakes. Enzyme-treated, yolk-contaminated egg whites performed similarly to non-yolk-contaminated control, and much better than yolk-contaminated sample in angel food cakes. The results show that most negative effects of yolk contamination can be reversed by treatment with Mucor miehei lipase and colipase.

  20. Preparation of Egg White Liquid Hydrolysate (ELH) and Its Radical-Scavenging Activity

    PubMed Central

    Noh, Dong Ouk; Suh, Hyung Joo

    2015-01-01

    In the present study, an optimum protease was selected to hydrolyze the egg white liquid protein for the antioxidant peptides. Alcalase treatment yielded the highest amount of α-amino groups (15.27 mg/mL), while the control (no enzymatic hydrolysis) showed the lowest amount of α-amino groups (1.53 mg/mL). Alcalase also gave the highest degree of hydrolysis (DH) value (43.2%) and was more efficient for egg white liquid hydrolysis than the other enzymes. The Alcalase hydrolysate had the highest radical-scavenging activity (82.5%) at a concentration of 5.0 mg/mL. The conditions for enzymatic hydrolysis of egg white liquid with Alcalase were selected as substrate : water ratio of 2:1. Five percent Alacalse treatment did not show significant (P>0.05) increases of DH and α-amino nitrogen content after 24 h-hydrolysis. Thirty two hour-hydrolysis with 5% Alcalase is sufficient to make antioxidative egg white liquid hydrolysate from egg white liquid. DPPH and ABTS radical-scavenging activities were significantly (P<0.05) higher after enzymatic digestion. These results suggest that active peptides released from egg-white protein are effective radical-scavengers. Thus, this approach may be useful for the preparation of potent antioxidant products. PMID:26451355

  1. Behavior of lysozyme adsorbed onto biological liquid crystal lipid monolayer at the air/water interface

    NASA Astrophysics Data System (ADS)

    Lu, Xiaolong; Shi, Ruixin; Hao, Changchun; Chen, Huan; Zhang, Lei; Li, Junhua; Xu, Guoqing; Sun, Runguang

    2016-09-01

    The interaction between proteins and lipids is one of the basic problems of modern biochemistry and biophysics. The purpose of this study is to compare the penetration degree of lysozyme into 1,2-diapalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphoethano-lamine (DPPE) by analyzing the data of surface pressure-area (π-A) isotherms and surface pressure-time (π-T) curves. Lysozyme can penetrate into both DPPC and DPPE monolayers because of the increase of surface pressure at an initial pressure of 15 mN/m. However, the changes of DPPE are larger than DPPC, indicating stronger interaction of lysozyme with DPPE than DPPC. The reason may be due to the different head groups and phase state of DPPC and DPPE monolayers at the surface pressure of 15 mN/m. Atomic force microscopy reveals that lysozyme was absorbed by DPPC and DPPE monolayers, which leads to self-aggregation and self-assembly, forming irregular multimers and conical multimeric. Through analysis, we think that the process of polymer formation is similar to the aggregation mechanism of amyloid fibers. Project supported by the National Natural Science Foundation of China (Grant Nos. 21402114 and 11544009), the Natural Science Basic Research Plan in Shaanxi Province of China (Grant No. 2016JM2010), the Fundamental Research Funds for the Central Universities of China (Grant No. GK201603026), and the National University Science and Technology Innovation Project of China (Grant No. 201610718013).

  2. The effect of ordering of internal water in thaumatin and lysozyme crystals as revealed by Raman method

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, A. B.; Christopher, G.; Smith, C. D.; Mirov, S. B.; Rosenblum, W. M.; DeLucas, L. J.

    2000-10-01

    The correlation between the relative intensity of water Raman band and crystal quality was studied for thaumatin and tetragonal lysozyme crystals grown under different conditions. The intensity variation of the band, revealed for the set of crystals was interpreted as being due to the different extents of ordering of internal water molecules. It was suggested that ordering is mainly relative to the alignment of the angle between the O-H bonds in water, since this angle serves as a normal coordinate for the symmetric bending vibration of H-O-H unit and the spectral width of the corresponding Raman band (2ν 2) at 3212 cm -1 appeared to be the main indicator of ordering. The assumption that the ordering of internal water molecules is relative to the overall protein crystal perfectness was verified by comparison of crystal scores obtained via the Raman and diffraction methods. The assessment of the crystal perfectness via these two methods seems to show some correlation. If this correlation confirmed, the noninvasive Raman spectroscopy may be used to monitor crystal quality during its growth.

  3. Kinetic Analysis of Protein Crystal Nucleation in Gel Matrix

    PubMed Central

    Wang, Lei; Liu, Xiang-Yang

    2008-01-01

    The effect of agarose on nucleation of hen egg white lysozyme crystal was examined quantitatively using a temperature-jumping technique. For the first time, to our knowledge, the inhibition of agarose during the nucleation of lysozyme was quantified in two respects: a), the effect of increasing interfacial nucleation barrier, described by the so-called interfacial correlation parameter f(m); and b), the ratio of diffusion to interfacial kinetics obtained from dynamic surface tension measurements. It follows from a dynamic surface tension analysis that the agarose network inhibits the nucleation of lysozyme by means of an enhancement of the repulsion and interfacial structure mismatch between foreign bodies and lysozyme crystals, slowing down the diffusion process of the protein molecules and clusters toward the crystal-fluid interface and inhibiting the rearrangement of protein molecules at the interface. Our results, based on ultraviolet-visible spectroscopy, also show no evidence of the supersaturation enhancement effect in protein agarose gels. The effects of nucleation suppression and transport limitation in gels result in bigger, fewer, and perhaps better quality protein crystals. The understandings obtained in this study will improve our knowledge in controlling the crystallization of proteins and other biomolecules. PMID:18835910

  4. Rapid and simple purification of lysozyme from the egg shell membrane.

    PubMed

    Kozuka, Miyuki; Murao, Sato; Yamane, Takuya; Inoue, Tsutomu; Ohkubo, Iwao; Ariga, Hiroyoshi

    2015-01-01

    Lysozyme (EC 3.2.1.17) is a hydrolytic enzyme that cleaves the β-(1,4)-glycosidic bond between N-acetylmuramic acid and N-acetylglucosamine in peptidoglycan, a major bacterial cell wall polymer. In the food industry, lysozyme is used as an additive mainly in the production of wine and beer. Lysozyme was found to be localized in the egg shell membrane. In this study, we found that lysozyme was easily purified from the egg shell membrane and that the enzyme also had antibacterial activity. Furthermore, we found that the antibacterial activity of purified lysozyme from the egg shell membrane was lower than that of purified lysozyme from the egg white at alkaline pH. The method for rapid purification of lysozyme developed in this study should contribute to the food industry.

  5. Tetragonal Lysozyme Interactions Studied by Site Directed Mutagenesis

    NASA Technical Reports Server (NTRS)

    Crawford, Lisa; Karr, Laurel J.; Nadarajah, Arunan; Pusey, Marc

    1999-01-01

    A number of recent experimental and theoretical studies have indicated that tetragonal lysozyme crystal growth proceeds by the addition of aggregates, formed by reversible self association of the solute molecules in the bulk solution. Periodic bond chain and atomic force microscopy studies have indicated that the probable growth unit is at minimum a 43 tetramer, and most likely an octamer composed of two complete turns about the 43 axis. If these results are correct, then there are intermolecular interactions which are only formed in the solution and others only formed at the joining of the growth unit to the crystal surface. We have set out to study these interactions, and the correctness of this hypothesis, using site directed mutagenesis of specific amino acid residues involved in the different bonds. We had initially expressed wild type lysozyme in S. cervasiae with yields of approximately 5 mg/L, which were eventually raised to approximately 40 mg/L. We are now moving the expression to the Pichia system, with anticipated yields of 300 to (3)500 mg/L, comparable to what can be obtained from egg whites. An additional advantage of using recombinant protein is the greater genetic homogeneity of the material obtained and the absence of any other contaminating egg proteins. The first mutation experiments are TYR 23 (Registered) PHE or ALA and ASN 113 (Registered) ALA or ASP. Both TYR 23 and ASN 113 form part of the postulated dimerization intermolecular binding site which lead to the formation of the 43 helix. Tyrosine also participates in an intermolecular hydrogen bond with ARG 114. The results of these and subsequent experiments will be discussed.

  6. Tetragonal Lysozyme Interactions Studied by Site Directed Mutagenesis

    NASA Technical Reports Server (NTRS)

    Crawford, Lisa; Karr, Laurel; Pusey, Marc

    1998-01-01

    A number of recent experimental and theoretical studies have indicated that tetragonal lysozyme crystal growth proceeds by the addition of aggregates, formed by reversible self association of the solute molecules in the bulk'solution. Periodic bond chain and atomic force microscopy studies have indicated that the probable growth unit is at minimum a 43 tetramer, and most likely an octamer composed of two complete turns about the 4(sub 3) axis. If these results are correct, then there are intermolecular interactions which are only formed in the solution and others only formed at the joining of the growth unit to the crystal surface. We have set out to study these interactions, and the correctness of this hypothesis, using site directed mutagenesis of specific amino acid residues involved in the different bonds. We had initially expressed wild type lysozyme in S. cervasiae with yields of approximately 5 mg/L, which were eventually raised to approximately 40 mg/L. We are now moving the expression to the Pichia system, with anticipated yields of 300 to greater than 500 mg/L, comparable to what can be obtained from egg whites. An additional advantage of using recombinant protein is the greater genetic homogeneity of the material obtained and the absence of any other contaminating egg proteins. The first mutation experiments are TYR 23 yields PHE or ALA and ASN 113 yields ALA or ASP. Both TYR 23 and ASN 113 form part of the postulated dimerization intermolecular binding site which lead to the formation of the 4(sub 3) helix. Tyrosine also participates in an intermolecular hydrogen bond with ARG 114. The results of these and subsequent experiments will be discussed.

  7. Tetragonal Lysozyme Interactions Studied by Site Directed Mutagenesis

    NASA Technical Reports Server (NTRS)

    Crawford, Lisa; Karr, Laurel J.; Nadarajah, Arunan; Pusey, Marc

    1999-01-01

    A number of recent experimental and theoretical studies have indicated that tetragonal lysozyme crystal growth proceeds by the addition of aggregates, formed by reversible self association of the solute molecules in the bulk solution. Periodic bond chain and atomic force microscopy studies have indicated that the probable growth unit is at minimum a 43 tetramer, and most likely an octamer composed of two complete turns about the 43 axis. If these results are correct, then there are intermolecular interactions which are only formed in the solution and others only formed at the joining of the growth unit to the crystal surface. We have set out to study these interactions, and the correctness of this hypothesis, using site directed mutagenesis of specific amino acid residues involved in the different bonds. We had initially expressed wild type lysozyme in S. cervasiae with yields of approximately 5 mg/L, which were eventually raised to approximately 40 mg/L. We are now moving the expression to the Pichia system, with anticipated yields of 300 to (3)500 mg/L, comparable to what can be obtained from egg whites. An additional advantage of using recombinant protein is the greater genetic homogeneity of the material obtained and the absence of any other contaminating egg proteins. The first mutation experiments are TYR 23 (Registered) PHE or ALA and ASN 113 (Registered) ALA or ASP. Both TYR 23 and ASN 113 form part of the postulated dimerization intermolecular binding site which lead to the formation of the 43 helix. Tyrosine also participates in an intermolecular hydrogen bond with ARG 114. The results of these and subsequent experiments will be discussed.

  8. X-Ray Diffraction and Imaging Study of Imperfections of Crystallized Lysozyme with Coherent X-Rays

    NASA Technical Reports Server (NTRS)

    Hu, Zheng-Wei; Chu, Y. S.; Lai, B.; Cai, Z.; Thomas, B. R.; Chernov, A. A.

    2003-01-01

    Phase-sensitive x-ray diffraction imaging and high angular-resolution diffraction combined with phase contrast radiographic imaging are employed to characterize defects and perfection of a uniformly grown tetragonal lysozyme crystal in symmetric Laue case. The fill width at half-maximum (FWHM) of a 4 4 0 rocking curve measured from the original crystal is approximately 16.7 arcseconds, and defects, which include point defects, line defects, and microscopic domains, have been clearly observed in the diffraction images of the crystal. The observed line defects carry distinct dislocation features running approximately along the <110> growth front, and they have been found to originate mostly at a central growth area and occasionally at outer growth regions. Individual point defects trapped at a crystal nucleus are resolved in the images of high sensitivity to defects. Slow dehydration has led to the broadening of the 4 4 0 rocking curve by a factor of approximately 2.4. A significant change of the defect structure and configuration with drying has been revealed, which suggests the dehydration induced migration and evolution of dislocations and lattice rearrangements to reduce overall strain energy. The sufficient details of the observed defects shed light upon perfection, nucleation and growth, and properties of protein crystals.

  9. X-Ray Diffraction and Imaging Study of Imperfections of Crystallized Lysozyme with Coherent X-Rays

    NASA Technical Reports Server (NTRS)

    Hu, Zheng-Wei; Chu, Y. S.; Lai, B.; Cai, Z.; Thomas, B. R.; Chernov, A. A.

    2003-01-01

    Phase-sensitive x-ray diffraction imaging and high angular-resolution diffraction combined with phase contrast radiographic imaging are employed to characterize defects and perfection of a uniformly grown tetragonal lysozyme crystal in symmetric Laue case. The fill width at half-maximum (FWHM) of a 4 4 0 rocking curve measured from the original crystal is approximately 16.7 arcseconds, and defects, which include point defects, line defects, and microscopic domains, have been clearly observed in the diffraction images of the crystal. The observed line defects carry distinct dislocation features running approximately along the <110> growth front, and they have been found to originate mostly at a central growth area and occasionally at outer growth regions. Individual point defects trapped at a crystal nucleus are resolved in the images of high sensitivity to defects. Slow dehydration has led to the broadening of the 4 4 0 rocking curve by a factor of approximately 2.4. A significant change of the defect structure and configuration with drying has been revealed, which suggests the dehydration induced migration and evolution of dislocations and lattice rearrangements to reduce overall strain energy. The sufficient details of the observed defects shed light upon perfection, nucleation and growth, and properties of protein crystals.

  10. Effects of Solution Stirring on Protein Crystal Growth

    NASA Astrophysics Data System (ADS)

    Yaoi, Mari; Aadachi, Hiroaki; Takano, Kazufumi; Matsumura, Hiroyoshi; Inoue, Tsuyoshi; Mori, Yusuke; Sasaki, Takatomo

    2004-05-01

    We report the influence of solution stirring on the growth of hen egg white lysozyme crystals. Solution stirring rate was controlled by varying the rotation speed of a rotary shaker. A range of precipitation agent (sodium chloride) concentrations was also investigated. The time required for crystal nucleation to occur was observed to be much greater in stirred samples than in unstirred samples. Solution stirring resulted in a reduced number of crystals (at sodium chloride concentrations from 6 to 9%). These crystals were larger and of a higher quality. However, the time required for nucleation to occur was reduced by gentle stirring (25 and 50 rpm) in a 12.5% sodium chloride concentration solution, suggesting that stirring can stimulate nucleation. These results indicate that the optimization of solution stirring rates is a useful technique for controlling protein crystal growth.

  11. In situ measurement and dynamic control of the evaporation rate in vapor diffusion crystallization of proteins

    NASA Astrophysics Data System (ADS)

    Shu, Zhan-Yong; Gong, Hai-Yun; Bi, Ru-Chang

    1998-08-01

    A special device with a weight-sensitive facility was designed for monitoring and controlling the water evaporation in vapor diffusion protein crystallization. The device made it possible to measure the weight of the drop in real time while the crystallization experiment was going on normally. The precise water equilibration curves under different crystallization conditions could be obtained automatically. By monitoring and controlling the evaporation rate, the crystallization of hen egg-white lysozyme and trichosanthin, a plant protein from Chinese herb, was optimized by regulating the reservoir solution dynamically. The experimental results of these two proteins indicate both the feasibility of the device and the usefulness of dynamic control technique. Compared with traditional crystallization experiments, dynamically controlled crystallization can reduce the number of nuclei, increase the crystal size and save experimental time effectively.

  12. Calcium-binding and structural stability of echidna and canine milk lysozymes.

    PubMed

    Kikuchi, M; Kawano, K; Nitta, K

    1998-10-01

    For echidna and canine milk lysozymes, which were presumed to be the calcium-binding lysozymes by their amino acid sequences, we have quantitated their calcium-binding strength and examined their guanidine unfolding profiles. The calcium-binding constants of echidna and canine lysozymes were determined to be 8.6 x 10(6) M(-1) and 8.9 x 10(6) M(-1) in 0.1 M KCl at pH 7.1 and 20 C, respectively. The unfolding of decalcified canine lysozyme proceeds in the same manner as that of alpha-lactalbumin, through a stable molten globule intermediate. However, neither calcium-bound nor decalcified echidna lysozyme shows a stable molten globule intermediate. This unfolding profile of echidna lysozyme is identical to that of conventional lysozymes and pigeon egg-white lysozyme, avian calcium-binding lysozyme. This result supports the suggestion of Prager and Jolles (Prager EM, Jolles P. 1996. Animal lysozymes c and g: An overview. In: Jolles P, ed. Lysozymes: Model enzymes in biochemistry and biology. Basel-Boston-Berlin: Birkhauzer Verlag. pp 9-31) that the lineage of avian and echidna calcium-binding lysozymes and that of eutherian calcium-binding lysozymes diverged separately from that of conventional lysozymes.

  13. Characterization of egg white antibacterial properties during the first half of incubation: A comparative study between embryonated and unfertilized eggs.

    PubMed

    Guyot, N; Réhault-Godbert, S; Slugocki, C; Harichaux, G; Labas, V; Helloin, E; Nys, Y

    2016-12-01

    Egg white is an important contributor to the protection of eggs against bacterial contaminations during the first half of incubation (day zero to 12), prior to the egg white transfer into the amniotic fluid to be orally absorbed by the embryo. This protective system relies on an arsenal of antimicrobial proteins and on intrinsic physicochemical properties that are generally unfavorable for bacterial multiplication and dissemination. Some changes in these parameters can be observed in egg white during egg storage and incubation. The aim of this work was to characterize changes in the antibacterial potential of egg white in embryonated eggs (FE) during the first half of incubation using unfertilized eggs (UF) as controls. Egg white samples were collected at day zero, 4, 8, and 12 and analyzed for pH, protein concentration, and protein profile. Antibacterial properties of egg white proteins were evaluated against Listeria monocytogenes, Streptococcus uberis, Staphylococcus aureus, Escherichia coli, and Salmonella Enteritidis. During incubation, differential variations of egg white pH and protein concentrations were observed between UF and FE. At equal protein concentrations, similar activities against L. monocytogenes and S. uberis were observed for FE and UF egg white proteins. A progressive decline in these activities, however, was observed over incubation time, regardless of the egg group (UF or FE). SDS-PAGE analysis of egg white proteins during incubation revealed discrete changes in the profile of major proteins, whereas the stability of some less abundant antimicrobial proteins seemed more affected. To conclude, the antibacterial activity of egg white proteins progressively decreased during the first half of egg incubation, possibly resulting from the alteration of specific antimicrobial proteins. This apparent decline may be partly counterbalanced in embryonated eggs by the increase in egg white protein concentration. The antibacterial potential of egg white

  14. Optimization of Extraction Parameters for Enhanced Production of Ovotransferrin from Egg White for Antimicrobial Applications

    PubMed Central

    Alshammari, Eyad M. A.; Khan, Saif; Jawed, Arshad; Adnan, Mohd; Khan, Mahvish; Nabi, Gowher; Lohani, Mohtashim; Haque, Shafiul

    2015-01-01

    Ovotransferrin is the second most abundant protein (~12-13% of the total egg protein) in egg white after ovalbumin. Ovotransferrin is a potent natural antimicrobial agent as it possesses antibacterial, antifungal, and antiviral properties and is also the major metal binding protein found in egg, which makes it an industrially important protein. Ovotransferrin was extracted from egg white using its metal (iron) binding properties. In the present study, eggs from two different sources were used (fresh local eggs from domestic household source and poultry eggs from shops) to compare the results and Response Surface Methodology was used for the experiment design and data analysis. The following extraction conditions were optimized so as to maximize the yield of ovotransferrin from egg white: ethanol % (v/v) and pH and volume (mL) of 25 mM FeCl3/50 mL of egg white. A maximum yield of ~85 ± 2.5% was obtained near the optimum extraction conditions. The yield was calculated based on the theoretical value (934 mg) of ovotransferrin in 100 mL of 1.5x diluted egg white solution. Our results suggest that efficient downstream processing may reduce the cost of overall production process of this promising enzyme, making it a natural and cost-effective alternative to the existing chemically synthesized antimicrobial agents. PMID:26640801

  15. Preparation and Characterization of Fluorescent Derivatives of Lysozyme

    NASA Technical Reports Server (NTRS)

    Smith, Lori; Pusey, Marc

    1998-01-01

    Fluorescence is one of the most versatile and powerful tools for the study of macromolecules. However, its use in macromolecular crystal growth studies is hampered by the necessity of preparing fluorescent derivatives where the probe does not markedly affect the crystal packing. Alternatively, one can prepare derivatives of limited utility if it is known that they will not affect the specific goals of a given study. We have prepared a number of fluorescent derivatives of chicken egg white lysozyme, covalently attaching fluorescent probes to two different sites on the protein molecule. The first site is the side chain carboxyl group of ASP 101. Amine containing probes such as lucifer yellow, cascade blue, and 5- (2-aminoethyl) aminonapthalene-l-sulfonic acid (EDANS) have been attached using a carbodiimide coupling procedure. ASP 101 lies within the active site cleft, and it is believed that the probes are "buried" within that cleft. This is supported by the fact that all such derivatives have been found to crystallize, with the crystals being fluorescent. Tetragonal crystals of the lucifer yellow derivative have been found to diffract to at least 1.9 A resolution. X-ray diffraction data has been acquired and we are now working on the structure of this derivative. The second group of derivatives is to the N-terminal amine group. The derivatization reaction is performed by using a succinimidyl ester of the probe to be attached. Fluorescent probes such as pyrene acetic acid, 5-carboxyfluorescein, and Oregon green have been attached to this site. We have had little success in crystallizing these derivatives, probably because this site is part of the contact region between the 43 helix chains. However, these sites do not interfere with formation of the 43 helices and the derivatives are suitable for study of their formation in solution. The derivatives are being characterized by steady state and lifetime fluorescence methods, and the presentation will discuss these

  16. Preparation and Characterization of Fluorescent Derivatives of Lysozyme

    NASA Technical Reports Server (NTRS)

    Smith, Lori; Pusey, Marc

    1998-01-01

    Fluorescence is one of the most versatile and powerful tools for the study of macromolecules. However, its use in macromolecular crystal growth studies is hampered by the necessity of preparing fluorescent derivatives where the probe does not markedly affect the crystal packing. Alternatively, one can prepare derivatives of limited utility if it is known that they will not affect the specific goals of a given study. We have prepared a number of fluorescent derivatives of chicken egg white lysozyme, covalently attaching fluorescent probes to two different sites on the protein molecule. The first site is the side chain carboxyl group of ASP 101. Amine containing probes such as lucifer yellow, cascade blue, and 5- (2-aminoethyl) aminonapthalene-l-sulfonic acid (EDANS) have been attached using a carbodiimide coupling procedure. ASP 101 lies within the active site cleft, and it is believed that the probes are "buried" within that cleft. This is supported by the fact that all such derivatives have been found to crystallize, with the crystals being fluorescent. Tetragonal crystals of the lucifer yellow derivative have been found to diffract to at least 1.9 A resolution. X-ray diffraction data has been acquired and we are now working on the structure of this derivative. The second group of derivatives is to the N-terminal amine group. The derivatization reaction is performed by using a succinimidyl ester of the probe to be attached. Fluorescent probes such as pyrene acetic acid, 5-carboxyfluorescein, and Oregon green have been attached to this site. We have had little success in crystallizing these derivatives, probably because this site is part of the contact region between the 43 helix chains. However, these sites do not interfere with formation of the 43 helices and the derivatives are suitable for study of their formation in solution. The derivatives are being characterized by steady state and lifetime fluorescence methods, and the presentation will discuss these

  17. Growth of crystals in optical tweezers

    NASA Astrophysics Data System (ADS)

    Gibson, Ursula; Singer, Wolfgang; Nieminen, Timo; Heckenberg, Norman; Rubinsztein-Dunlop, Halina

    2005-08-01

    We report here on the use of optical tweezers in the growth and manipulation of protein and inorganic crystals. Sodium chloride and hen egg-white lysozyme crystals were grown in a batch process, and then seeds from the solution were introduced into the optical tweezers. The regular and controllable shape and the known optical birefringence in these structures allowed a detailed study of the orientation effects in the beam due to both polarization and gradient forces. Additionally, we determined that the laser tweezers could be used to suspend a crystal for three-dimensional growth under varying conditions. Studies included increasing the protein concentration, thermal cycling, and a diffusion-induced increase in precipitant concentration. Preliminary studies on the use of the tweezers to create a localized seed for growth from polyethylene oxide solutions are also reported.

  18. Beneficial effect of solubility enhancers on protein crystal nucleation and growth.

    PubMed

    Gosavi, Rajendrakumar A; Bhamidi, Venkateswarlu; Varanasi, Sasidhar; Schall, Constance A

    2009-04-21

    Crystallizing solutions of proteins often contain various nonelectrolyte additives that arise from the purification process of proteins or from the reagents employed in the screening kits. Currently, limited knowledge exists about the influence of these additives on the mechanisms underlying the crystallization process, in particular on the nucleation stage of crystals. To address this need, we studied crystallization of two proteins, D-xylose isomerase and chicken egg-white lysozyme, in small batches and in the presence of two solubility-enhancing additives, acetonitrile and glycerol. We have also measured the nucleation rates of crystals of these proteins in the presence and in the absence of acetonitrile using the method of initial rates. With the addition of the solubility enhancers, both proteins exhibited an increase in crystal nucleation at any given supersaturation. Solubility enhancing additives appear to lower the energy barrier to nucleation by influencing the strength of attraction between the protein molecules. We have characterized the quality of D-xylose isomerase crystals by determining the crystal mosaicity, which showed considerable improvement for crystals grown in the presence of additives. When compared to the crystals of chicken egg-white lysozyme, D-xylose isomerase crystals required higher supersaturations to nucleate. We attribute this result to the large size of the D-xylose isomerase molecule, which influences the energy barrier to nucleation by increasing the surface area of the critical nucleus. Contrary to the common expectation that reagents that solubilize the protein may hinder the crystallization process, our results suggest that solubility enhancers, in fact, can have a beneficial effect on the nucleation and growth of crystals. These findings are of importance in formulating successful strategies toward crystallizing new proteins.

  19. Combinatorial compatibility as habit-controlling factor in lysozyme crystallization I. Monomeric and tetrameric F faces derived graph-theoretically

    NASA Astrophysics Data System (ADS)

    Strom, C. S.; Bennema, P.

    1997-03-01

    A series of two articles discusses possible morphological evidence for oligomerization of growth units in the crystallization of tetragonal lysozyme, based on a rigorous graph-theoretic derivation of the F faces. In the first study (Part I), the growth layers are derived as valid networks satisfying the conditions of F slices in the context of the PBC theory using the graph-theoretic method implemented in program FFACE [C.S. Strom, Z. Krist. 172 (1985) 11]. The analysis is performed in monomeric and alternative tetrameric and octameric formulations of the unit cell, assuming tetramer formation according to the strongest bonds. F (flat) slices with thickness Rdhkl ( {1}/{2} < R ≤ 1 ) are predicted theoretically in the forms 1 1 0, 0 1 1, 1 1 1. The relevant energies are established in the broken bond model. The relation between possible oligomeric specifications of the unit cell and combinatorially feasible F slice compositions in these orientations is explored.

  20. Octamer formation in lysozyme solutions at the initial crystallization stage detected by small-angle neutron scattering.

    PubMed

    Boikova, Anastasiia S; Dyakova, Yulia A; Ilina, Kseniia B; Konarev, Petr V; Kryukova, Alyona E; Kuklin, Alexandr I; Marchenkova, Margarita A; Nabatov, Boris V; Blagov, Alexandr E; Pisarevsky, Yurii V; Kovalchuk, Mikhail V

    2017-07-01

    Solutions of lysozyme in heavy water were studied by small-angle neutron scattering (SANS) at concentrations of 40, 20 and 10 mg ml(-1) with and without the addition of precipitant, and at temperatures of 10, 20 and 30°C. In addition to the expected protein monomers, dimeric and octameric species were identified in solutions at the maximum concentration and close to the optimal conditions for crystallization. An optimal temperature for octamer formation was identified and both deviation from this temperature and a reduction in protein concentration led to a significant decrease in the volume fractions of octamers detected. In the absence of precipitant, only monomers and a minor fraction of dimers are present in solution.

  1. Triclinic lysozyme at 0.65 angstrom resolution.

    SciTech Connect

    Wang, J.; Dauter, M.; Alkire, R.; Joachimiak, A.; Dauter, Z.; Biosciences Division; SAIC-Frederick Inc.; National Cancer Inst.

    2007-01-01

    The crystal structure of triclinic hen egg-white lysozyme (HEWL) has been refined against diffraction data extending to 0.65 {angstrom} resolution measured at 100 K using synchrotron radiation. Refinement with anisotropic displacement parameters and with the removal of stereochemical restraints for the well ordered parts of the structure converged with a conventional R factor of 8.39% and an R{sub free} of 9.52%. The use of full-matrix refinement provided an estimate of the variances in the derived parameters. In addition to the 129-residue protein, a total of 170 water molecules, nine nitrate ions, one acetate ion and three ethylene glycol molecules were located in the electron-density map. Eight sections of the main chain and many side chains were modeled with alternate conformations. The occupancies of the water sites were refined and this step is meaningful when assessed by use of the free R factor. A detailed description and comparison of the structure are made with reference to the previously reported triclinic HEWL structures refined at 0.925 {angstrom} (at the low temperature of 120 K) and at 0.95 {angstrom} resolution (at room temperature).

  2. Triclinic lysozyme at 0.65 A resolution.

    PubMed

    Wang, Jiawei; Dauter, Miroslawa; Alkire, Randy; Joachimiak, Andrzej; Dauter, Zbigniew

    2007-12-01

    The crystal structure of triclinic hen egg-white lysozyme (HEWL) has been refined against diffraction data extending to 0.65 A resolution measured at 100 K using synchrotron radiation. Refinement with anisotropic displacement parameters and with the removal of stereochemical restraints for the well ordered parts of the structure converged with a conventional R factor of 8.39% and an R(free) of 9.52%. The use of full-matrix refinement provided an estimate of the variances in the derived parameters. In addition to the 129-residue protein, a total of 170 water molecules, nine nitrate ions, one acetate ion and three ethylene glycol molecules were located in the electron-density map. Eight sections of the main chain and many side chains were modeled with alternate conformations. The occupancies of the water sites were refined and this step is meaningful when assessed by use of the free R factor. A detailed description and comparison of the structure are made with reference to the previously reported triclinic HEWL structures refined at 0.925 A (at the low temperature of 120 K) and at 0.95 A resolution (at room temperature).

  3. Egg white coagulum: a precisely tailorable membrane for biomimetic multilevel structured nanomaterials

    PubMed Central

    Wang, Xiaolei; Zhu, Hui; Liu, Xuexia; Yang, Fan; Yang, Xiurong

    2013-01-01

    For the first time, hen egg white coagulum was utilized as a surface modification agent for biomimetic multilevel structured nanomaterials (BMSN). By using a straightforward thermal control process, hen egg white can be coagulated in a precisely tailored manner, which is specifically adapted to the morphology of BMSN. Consequently, the structural stability, hydrophobicity and biocompatibility of BMSN can be improved significantly and simultaneously within one hour. Meanwhile, their initial structure-related function can be maintained with higher reliability. These advantages offer an incentive to use egg white coagulum as a facile, precise, quick and much cost-effective alternative to the conventional stabilization materials, such as hot melt adhesive, chitosan and polydopamine. PMID:23492932

  4. Egg white hydrolysate inhibits oxidation in mayonnaise and a model system.

    PubMed

    Kobayashi, Hideaki; Sasahara, Ryou; Yoda, Shoichi; Kotake-Nara, Eiichi

    2017-06-01

    The flavor deterioration of mayonnaise is induced by iron, which is released from egg yolk phosvitin under acidic conditions and promotes lipid oxidation. To prevent oxidative deterioration, natural components, rather than synthetic chemicals such as ethylenediaminetetraacetic acid have been required by consumers. In the present study, we evaluated the inhibitory effects of three egg white components with the same amino acid composition, namely egg white protein, hydrolysate, and the amino acid mixture, on lipid oxidation in mayonnaise and an acidic egg yolk solution as a model system. We found that the hydrolysate had the strongest inhibitory effect on lipid oxidation among the three components. The mechanism underlying the antioxidant effect was associated with Fe(2+)-chelating activity. Thus, egg white hydrolysate may have the potential as natural inhibitors of lipid oxidation in mayonnaise.

  5. Lysophosphatidic acid produced by hen egg white lysophospholipase D induces vascular development on extraembryonic membranes.

    PubMed

    Morishige, Junichi; Uto, Yoshihiro; Hori, Hitoshi; Satouchi, Kiyoshi; Yoshiomoto, Tanihiro; Tokumura, Akira

    2013-03-01

    Lysophosphatidic acid (lysoPtdOH), a lysophospholipid mediator, exerts diverse physiological effects, including angiogenesis, through its specific G-protein-coupled receptors. Previously, we showed that unfertilized hen egg white contains polyunsaturated fatty acid-rich lysoPtdOH and lysophospholipase D (lysoPLD). Here, we examined whether lysoPtdOH was produced by lysoPLD in the presence and absence of a hen fertilized ovum and what the physiological role of lysoPtdOH in hen egg white is. Mass spectrometry showed that fertilized hen egg white contained about 8 μM lysoPtdOH before incubation with an ovum, mainly comprised of 18:1- (12.6 %), 18:2- (37.8 %) and 20:4-molecular species (41.5 %). In an early gestation period, the lysoPtdOH was increased up to 9.6 μM, concomitant with a decrease in the level of polyunsaturated lysophosphatidylcholine (lysoPtdCho). Moreover, lysoPtdOH-degrading activities were found in egg white and the vitelline membrane, showing that these enzymes control lysoPtdOH levels in egg white. In an egg yolk angiogenesis assay, two lysoPtdOH receptor antagonists, Ki16425 and N-palmitoyl serine phosphoric acid (NASP), inhibited blood vessel formation induced by exogenously added 18:1-lysoPtdOH and its precursor lysoPtdCho on the hen yolk sac. Ki16425 and NASP also inhibited blood vessel formation in the chorioallantoic membrane (CAM). Furthermore, the relatively higher levels of LPA₁, LPA₂, LPA₄ and LPA₆ mRNA were present in the yolk sac and CAM. These results suggest that lysoPtdOH produced from lysoPtdCho by the action of lysoPLD in hen egg white is involved in the formation of blood vessel networks through several lysoPtdOH receptors on various extraembryonic membranes, including the yolk sac membrane and CAM.

  6. Dietary egg whites for phosphorus control in maintenance haemodialysis patients: a pilot study.

    PubMed

    Taylor, Lynn M; Kalantar-Zadeh, Kamyar; Markewich, Theodore; Colman, Sara; Benner, Debbie; Sim, John J; Kovesdy, Csaba P

    2011-03-01

    High dietary protein intake is associated with greater survival in maintenance haemodialysis (MHD) patients. High-protein foods may increase dietary phosphorus burden, which is associated with increased mortality in these patients. Hypothesis is: an egg white based diet with low phosphorus to protein ratio (<1.4 mg/g) will lower serum phosphorus without deteriorating the nutritional status in MHD patients. We assessed serum phosphorus and albumin levels in MHD patients who agreed to ingest one meal per day with pasteurised liquid egg whites without phosphorus additives, as principal protein source. Thirteen otherwise stable MHD patients with serum phosphorus >4.0 mg/dl agreed to consume eight ounces (225 g) of pasteurised liquid egg whites one meal per day for six weeks. Recipes were suggested to improve diet variety. Thirteen participating patients included seven women, three African Americans and five diabetics. Twelve patients exhibited drop in serum phosphorus. Mean population fall in serum phosphorus was 0.94 mg/dl, i.e. from 5.58 ± 1.34 (mean ± SD) to 4.63 ± 1.18 (p = 0.003). Serum albumin showed an increase by 0.19 g/dl, i.e. from 4.02 ± 0.29 to 4.21 ± 0.36 g/dl (p = 0.014). Changes in phosphorus pill count were not statistically significant (p = 0.88). The egg white diet was well tolerated, and recipe variety appreciated. Pasteurised liquid egg whites may be an effective diet component lowering serum phosphorus without risking malnutrition. Controlled trials are indicated to examine egg white based dietary interventions in MHD patients at home or during haemodialysis treatment. © 2011 European Dialysis and Transplant Nurses Association/European Renal Care Association.

  7. Determination of yolk contamination in liquid egg white using Raman spectroscopy.

    PubMed

    Cluff, K; Konda Naganathan, G; Jonnalagada, D; Mortensen, I; Wehling, R; Subbiah, J

    2016-07-01

    Purified egg white is an important ingredient in a number of baked and confectionary foods because of its foaming properties. However, yolk contamination in amounts as low as 0.01% can impede the foaming ability of egg white. In this study, we used Raman spectroscopy to evaluate the hypothesis that yolk contamination in egg white could be detected based on its molecular optical properties. Yolk contaminated egg white samples (n = 115) with contamination levels ranging from 0% to 0.25% (on weight basis) were prepared. The samples were excited with a 785 nm laser and Raman spectra from 250 to 3,200 cm(-1) were recorded. The Raman spectra were baseline corrected using an optimized piecewise cubic interpolation on each spectrum and then normalized with a standard normal variate transformation. Samples were randomly divided into calibration (n = 77) and validation (n = 38) data sets. A partial least squares regression (PLSR) model was developed to predict yolk contamination levels, based on the Raman spectral fingerprint. Raman spectral peaks, in the spectral region of 1,080 and 1,666 cm(-1), had the largest influence on detecting yolk contamination in egg white. The PLSR model was able to correctly predict yolk contamination levels with an R(2) = 0.90 in the validation data set. These results demonstrate the capability of Raman spectroscopy for detection of yolk contamination at very low levels in egg white and present a strong case for development of an on-line system to be deployed in egg processing plants. © 2016 Poultry Science Association Inc.

  8. DIETARY EGG WHITES FOR PHOSPHORUS CONTROL IN MAINTENANCE HAEMODIALYSIS PATIENTS: A PILOT STUDY

    PubMed Central

    Taylor, Lynn M.; Kalantar-Zadeh, Kamyar; Markewich, Theodore; Colman, Sara; Benner, Debbie; Sim, John J.; Kovesdy, Csaba P.

    2015-01-01

    SUMMARY Background High dietary protein intake is associated with greater survival in maintenance haemodialysis (MHD) patients. High-protein foods may increase dietary phosphorus burden, which is associated with increased mortality in these patients. Hypothesis is: an egg white based diet with low phosphorus to protein ratio (<1.4 mg/g) will lower serum phosphorus without deteriorating the nutritional status in MHD patients. Objective We assessed serum phosphorus and albumin levels in MHD patients who agreed to ingest one meal per day with pasteurised liquid egg whites without phosphorus additives, as principal protein source. Methods Thirteen otherwise stable MHD patients with serum phosphorus >4.0 mg/dl agreed to consume eight ounces (225 g) of pasteurised liquid egg whites one meal per day for six weeks. Recipes were suggested to improve diet variety. Results Thirteen participating patients included seven women, three African Americans and five diabetics. Twelve patients exhibited drop in serum phosphorus. Mean population fall in serum phosphorus was 0.94 mg/dl, i.e. from 5.58 ± 1.34 (mean ± SD) to 4.63 ± 1.18 (p = 0.003). Serum albumin showed an increase by 0.19 g/dl, i.e. from 4.02 ± 0.29 to 4.21 ± 0.36 g/dl (p = 0.014). Changes in phosphorus pill count were not statistically significant (p = 0.88). The egg white diet was well tolerated, and recipe variety appreciated. Conclusion Pasteurised liquid egg whites may be an effective diet component lowering serum phosphorus without risking malnutrition. Controlled trials are indicated to examine egg white based dietary interventions in MHD patients at home or during haemodialysis treatment. PMID:21288313

  9. Synchrotron X-Ray Reciprocal Space Mapping, Topography and Diffraction Resolution Studies of Macromolecular Crystal Quality

    NASA Technical Reports Server (NTRS)

    Boggon, T. J.; Helliwell, J. R.; Judge, Russell A.; Siddons, D. P.; Snell, Edward H.; Stojanoff, V.

    2000-01-01

    A comprehensive study of microgravity and ground grown chicken egg white lysozyme crystals is presented using synchrotron X-ray reciprocal space mapping, topography techniques and diffraction resolution. Microgravity crystals displayed, on average, reduced intrinsic mosaicities but no differences in terms of stress over their earth grown counterparts. Topographic analysis revealed that in the microgravity case the majority of the crystal was contributing to the peak of the reflection at the appropriate Bragg angle. In the earth case at the diffraction peak only a small volume of the crystal contributed to the intensity. The techniques prove to be highly complementary with the reciprocal space mapping providing a quantitative measure of the crystal mosaicity and stress (or variation in lattice spacing) and topography providing a qualitative overall assessment of the crystal in terms of its X-ray diffraction properties. Structural data collection was also carried out both at the synchrotron and in the laboratory.

  10. Synchrotron X-Ray Reciprocal Space Mapping, Topography and Diffraction Resolution Studies of Macromolecular Crystal Quality

    NASA Technical Reports Server (NTRS)

    Boggon, T. J.; Helliwell, J. R.; Judge, Russell A.; Siddons, D. P.; Snell, Edward H.; Stojanoff, V.

    2000-01-01

    A comprehensive study of microgravity and ground grown chicken egg white lysozyme crystals is presented using synchrotron X-ray reciprocal space mapping, topography techniques and diffraction resolution. Microgravity crystals displayed, on average, reduced intrinsic mosaicities but no differences in terms of stress over their earth grown counterparts. Topographic analysis revealed that in the microgravity case the majority of the crystal was contributing to the peak of the reflection at the appropriate Bragg angle. In the earth case at the diffraction peak only a small volume of the crystal contributed to the intensity. The techniques prove to be highly complementary with the reciprocal space mapping providing a quantitative measure of the crystal mosaicity and stress (or variation in lattice spacing) and topography providing a qualitative overall assessment of the crystal in terms of its X-ray diffraction properties. Structural data collection was also carried out both at the synchrotron and in the laboratory.

  11. Use of europium ions for SAD phasing of lysozyme at the Cu Kα wavelength.

    PubMed

    Vijayakumar, Balakrishnan; Velmurugan, Devadasan

    2013-01-01

    Europium is shown to be a good anomalous scatterer in SAD phasing for solving the structure of biological macromolecules. The large value of the anomalous contribution of europium, f'' = 11.17 e(-), at the Cu Kα wavelength is an advantage in de novo phasing and automated model building. Tetragonal crystals of hen egg-white lysozyme (HEWL) incorporating europium(III) chloride (50 mM) were obtained which diffracted to a resolution of 2.3 Å at a wavelength of 1.54 Å (Cu Kα). The master data set (360° frames) was split and analyzed for anomalous signal-to-noise ratio, multiplicity, completeness, SAD phasing and automated building. The structure solution and model building of the split data sets were carried out using phenix.autosol and phenix.autobuild. The contributions of the Eu ions to SAD phasing using in-house data collection are discussed. This study revealed successful lysozyme phasing by SAD using laboratory-source data involving Eu ions, which are mainly coordinated by the side chains of Asn46, Asp52 and Asp101 together with some water molecules.

  12. Development of an egg-white bioassay for monitoring biotin levels in urine and serum.

    PubMed

    Zarogiannis, Sotirios; Liakopoulos, Vassilios; Hatzoglou, Chrissi; Vogiatzidis, Konstantinos; Salmas, Marios; Stefanidis, Ioannis; Gourgoulianis, Konstantinos; Molyvdas, Paschalis Adam; Lafis, Spiros

    2007-05-01

    This article reports on the development of a simple and cost-effective bioassay for the detection of biotin in urine and serum, based on the very selective binding of avidin and biotin. Avidin was allowed to react without isolating it from egg white. Egg white was treated with the dye HABA, which binds to avidin. Upon subsequent treatment with biotin, HABA is released due to the high affinity of biotin to avidin. The amount of HABA released is proportional to the amount of biotin used.

  13. Free-falling Crystals: Biological Macromolecular Crystal Growth Studies in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Snell, E. H.; Pusey, M. L.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Spacecraft orbiting the earth experience a reduced acceleration environment due to being in a state of continuous free-fall. This state colloquially termed microgravity, has produced improved X-ray diffraction quality crystals of biological macromolecules. Improvements in X-ray diffraction resolution (detail) or signal to noise, provide greater detail in the three-dimensional molecular structure providing information about the molecule, how it works, how to improve its function or how to impede it. Greater molecular detail obtained by crystallization in microgravity, has important implications for structural biology. In this article we examine the theories behind macromolecule crystal quality improvement in microgravity using results obtained from studies with the model protein, chicken egg white lysozyme.

  14. Free-falling Crystals: Biological Macromolecular Crystal Growth Studies in Low Earth Orbit

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Snell, E. H.; Pusey, M. L.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Spacecraft orbiting the earth experience a reduced acceleration environment due to being in a state of continuous free-fall. This state colloquially termed microgravity, has produced improved X-ray diffraction quality crystals of biological macromolecules. Improvements in X-ray diffraction resolution (detail) or signal to noise, provide greater detail in the three-dimensional molecular structure providing information about the molecule, how it works, how to improve its function or how to impede it. Greater molecular detail obtained by crystallization in microgravity, has important implications for structural biology. In this article we examine the theories behind macromolecule crystal quality improvement in microgravity using results obtained from studies with the model protein, chicken egg white lysozyme.

  15. Crystallization of proteins by dynamic control of evaporation

    NASA Astrophysics Data System (ADS)

    Wilson, L. G.; Bray, T. L.; Suddath, F. L.

    1991-03-01

    It is expected that the kinetics of supersaturation, which is directly related to the evaporation of solvent from a crystallization solution, will greatly affect both nucleation and crystal growth processes. Therefore, a novel device has been developed which allows computer regulation of the flow of N 2(g) over a hanging drop to dynamically control the evaporation of solvent. A thermal conductivity detector is used to monitor the amount of water vapor transferred from the drop to the gas stream and provides closed loop control of the evaporation process. Data acquisition and control are accomplished using a custom program written with LabVIEW software (National Instruments) on a Macintosh II microcomputer. Quantitation of several evaporation protocols has been accomplished using both the thermal conductivity detector and a novel conductance cell that allows continuous measurement of solution analyte concentrations. Crystals of hen egg white lysozyme have been grown at different evaporation rates and analyzed according to size and number of single crystals.

  16. A novel angiotensin converting enzyme inhibitory peptide derived from proteolytic digest of Chinese soft-shelled turtle egg white proteins.

    PubMed

    Rawendra, Reynetha D S; Aisha; Chang, Chi-I; Aulanni'am; Chen, Ho-Hsien; Huang, Tzou-Chi; Hsu, Jue-Liang

    2013-12-06

    In this study, soft-shelled turtle (Pelodiscus sinensis) egg white (SSTEW) proteins were digested by thermolysin and the resulting small peptides were further fractionated by reverse phase chromatography. Peptides with angiotensin I-converting enzyme inhibitory (ACEI) activity from these fractions were screened. A lysozyme-derived peptide, IW-11, from the fraction with the most effective ACEI was identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and its purified form showed effective ACEI activity in vitro (IC50=4.39±0.31μM). The Lineweaver-Burk plots indicated that the inhibition towards ACE caused by this peptide is a competitive inhibition. The molecular docking study further revealed that the ACEI activity of IW-11 is mainly attributed to the formation of hydrogen bonds between the N-terminal residue of IW-11 and the S1 pocket (Ala354 and Tyr523) and the S2' region (His513 and His353) of ACE. Moreover, the digestion parameters were further optimized and the target peptide (82% purity) was readily obtained (15% yield) without any cumbersome purification procedure. Notably, lysozyme C is the most abundant protein in SSTEW, which implies that an efficient production of this ACEI peptide from SSTEW is promising. Inhibition of ACE has proven to be an effective strategy in prevention and treatment of hypertension and related diseases. Unlike typical synthetic ACE inhibitors which exert well described side effects, food-derived peptides with ACE inhibitory activity may be safer alternatives for hypertension treatment. In this study, we comprehensively identified peptides derived from SSTEW digest using a proteomic approach. IW-11, which is derived from lysozyme, the most abundant protein in SSTEW, showed remarkable inhibition towards ACE. This peptide has been demonstrated to have a competitive inhibitory property which is able to bind to ACE active site and found to be a true inhibitor against ACE according to Lineweaver-Burk plots. Using an

  17. Pepsin Egg White Hydrolysate Ameliorates Obesity-Related Oxidative Stress, Inflammation and Steatosis in Zucker Fatty Rats

    PubMed Central

    Garcés-Rimón, M.; González, C.; Uranga, J. A.; López-Miranda, V.; López-Fandiño, R.; Miguel, M.

    2016-01-01

    The aim of this work was to evaluate the effect of the administration of egg white hydrolysates on obesity-related disorders, with a focus on lipid metabolism, inflammation and oxidative stress, in Zucker fatty rats. Obese Zucker rats received water, pepsin egg white hydrolysate (750 mg/kg/day) or Rhizopus aminopeptidase egg white hydrolysate (750 mg/kg/day) for 12 weeks. Lean Zucker rats received water. Body weight, solid and liquid intakes were weekly measured. At the end of the study, urine, faeces, different organs and blood samples were collected. The consumption of egg white hydrolysed with pepsin significantly decreased the epididymal adipose tissue, improved hepatic steatosis, and lowered plasmatic concentration of free fatty acids in the obese animals. It also decreased plasma levels of tumor necrosis factor-alpha and reduced oxidative stress. Pepsin egg white hydrolysate could be used as a tool to improve obesity-related complications. PMID:26985993

  18. A comparison of pulsed radiofrequency and continuous radiofrequency on thermocoagulation of egg white in vitro.

    PubMed

    Heavner, James E; Boswell, Mark V; Racz, Gabor B

    2006-04-01

    Clinical studies have demonstrated the efficacy of pulsed radiofrequency (PRF). PRF energy is delivered to neural structures via specifically designed, percutaneously placed needles to treat some chronic pain states. PRF was introduced as a non-destructive alternative to destructive lesioning produced by continuous radiofrequency (CRF) energy. However, there is an ongoing controversy regarding the potential tissue-destructive effects of PRF used for pain management. To evaluate the ability of PRF to coagulate egg white at various temperatures used clinically and to compare with CRF. A commercially available (TYCO-Radionics Labs) 5 cm, 22G (0.7 mm) SMK needle with 5 mm active tip was inserted into a 10 mL test tube containing raw egg white at 37 degrees C and the tip was heated up to 80 degrees C. The photographic patterns of thermocoagulation of egg white in vitro produced by continuous and pulsed radiofrequency (RF) were compared and the lowest temperature at which PRF produced thermocoagulation was determined. Pulsed RF produced barely detectable thermocoagulation at 60 degrees C. Above 60 degrees C, the pattern of coagulation produced by PRF resembled that observed with CRF. However, the density and size of the coagulation ball appeared somewhat greater with CRF. PRF coagulated egg white at temperatures above 60degrees C in a manner similar to CRF. Monitoring needle tip temperature using the thermode supplied with the needle during PRF and keeping the recorded tip temperature below 60degrees C may minimize unwanted thermal destruction of tissue.

  19. Removal of Salmonella enteritidis from unpasteurized liquid egg white using a cross flow microfiltration

    USDA-ARS?s Scientific Manuscript database

    Liquid egg white (LEW) is typically pasteurized to prevent common foodborne illnesses such as salmonellosis; however, heat pasteurization does not eliminate all pathogenic or spoilage microbes. In this study, a novel intervention technology based on cross-flow microfiltration (MF) was evaluated for ...

  20. Removal of Salmonella Enteritidis from commercial† unpasteurized liquid egg white using pilot scale crossflow tangential microfiltration

    USDA-ARS?s Scientific Manuscript database

    The effectiveness of a pilot-scale cross-flow microfiltration (MF) process for removal of Salmonella enteritidis from liquid egg white (LEW) was evaluated. To facilitate MF, 110 L of unpasteurized LEW from a local egg breaking plant was first wedge screened, homogenized and then diluted (1:2 w/w) w...

  1. Comparison of supplements to enhance recovery of thermally-injured Salmonella from liquid egg white

    USDA-ARS?s Scientific Manuscript database

    The recovery of Salmonella from liquid egg white (LEW) is complicated by thermal and innate LEW antimicrobial-induced injury. Numerous supplements have been reported to promote the recovery of injured bacteria. The purpose of this study was to determine the efficacy of twelve media supplements to ...

  2. UV penetration depth in liquid egg white and liquid whole egg

    USDA-ARS?s Scientific Manuscript database

    Knowledge of penetration depth of UV in liquid egg is crucial in designing nonthermal UV pasteurizers. An experimental method was developed to determine penetration depth of 254 nm UV in liquid whole egg (LWE) and liquid egg white (LEW). An apparatus was assembled consisting of a bank of UV bulbs at...

  3. Pasteurization of Liquid Egg White using a Centrifugal Ultraviolet Light Device

    USDA-ARS?s Scientific Manuscript database

    A UV device that centrifugally forms a thin film has recently been shown to nonthermally pasteurize grapefruit juice. The effectiveness of this UV device on inactivating bacteria in liquid egg white (LEW) is unknown. The objective of this study was to determine the nonthermal inactivation of Escheri...

  4. Proteomic analysis of egg white proteins during the early phase of embryonic development.

    PubMed

    Qiu, Ning; Ma, Meihu; Cai, Zhaoxia; Jin, Yongguo; Huang, Xi; Huang, Qun; Sun, Shuguo

    2012-03-16

    Avian egg albumen participates in embryonic development by providing essential nutrients as well as antimicrobial protection. Although various biological functions of egg white proteins were suggested during embryogenesis, global changes of these proteins under incubation conditions remained uninvestigated. This study presents a proteomic analysis on the change of egg white proteins during the first week of embryonic development. By using 2-DE, together with MALDI-TOF MS/MS, thirty protein spots representing eight proteins were identified showing significant changes in abundance during incubation. An accelerating degradation of ovalbumin was observed in a wide range of molecular weight. In addition, four protein complexes were predicted according to the detected molecular weight increase. Among these speculated protein complexes, an ovalbumin spot coupled with RNA-binding protein was detected. The absence of these protein complexes before incubation, followed by the constant increase in abundance during incubation indicates conceivable pivotal roles in embryonic development. To better understand the function of the proteins identified in this study, discrepancies of egg white protein changes between fertilized and unfertilized chicken eggs were additionally demonstrated. These findings will provide insight into the embryogenesis process to improve our knowledge of egg white proteins in regulating and supporting early embryonic development. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Purification and characterization of antioxidant peptides from enzymatically hydrolyzed chicken egg white.

    PubMed

    Nimalaratne, Chamila; Bandara, Nandika; Wu, Jianping

    2015-12-01

    Egg white is considered as a rich source of high quality proteins with various bioactive peptide fractions. Enzymatic hydrolysis of proteins can be used to release bioactive fractions and different enzymes have different abilities in releasing such bioactive fractions depending on the enzyme's site of activity on a protein. In this study, several proteases were examined for their ability to release antioxidant peptides from hen egg white and protease P was selected based on the antioxidant activity and the digestion yield of the crude protein hydrolysate. A combination of several purification steps including ultrafiltration with low molecular weight cut-off membranes, cation exchange chromatography and reversed phase high performance liquid chromatography was used to purify 'protease P egg white hydrolysate'. Sixteen antioxidant peptides, which were derived from ovalbumin, ovotransferrin and cystatin were isolated from the most active fractions. Amino acid sequences of those peptides were determined using LC-MS/MS. Oxygen radical absorbance capacity (ORAC) values of selected short chain peptides were determined using synthetic peptides. Two peptides AEERYP and DEDTQAMP (Ala-Glu-Glu-Arg-Tyr-Pro and Asp-Glu-Asp-Thr-Gln-Ala-Met-Pro) showed the highest ORAC values. The results from this study indicate that egg white is rich in antioxidant peptides which can be used as a potential source for preparing bioactive ingredients using enzymatic hydrolysis followed by purification techniques.

  6. Improvement of foaming ability of egg white product by irradiation and its application

    NASA Astrophysics Data System (ADS)

    Song, Hyun-Pa; Kim, Binna; Choe, Jun-Ho; Jung, Samooel; Kim, Kyong-Su; Kim, Dong-Ho; Jo, Cheorun

    2009-03-01

    To investigate the enhancement of foaming abilities of liquid egg white (LEW) and egg white powder (EWP) by irradiation and its application for bakery product, LEW and EWP were irradiated at 0, 1, 2, and 5 kGy by Co-60 gamma ray. There was no pH change found among treatments in both LEW and EWP. The viscosity of LEW decreased significantly by irradiation ( P<0.05), whereas that of EWP was not affected by irradiation. The foaming ability of LEW and EWP was significantly increased by irradiation as a dose-dependent manner ( P<0.05). The volume and the height of angel cake baked with irradiated LEW were significantly higher than those of unirradiated control ( P<0.05). For EWP, the volume and the height of angel cake were greater at 2 kGy only than those of control. A significant decrease in hardness, chewiness, and gumminess values and an increase in Hunter L* value were observed in the angel cakes prepared from irradiated egg white products ( P<0.05). Results indicated that irradiation of egg white could offer advantages in increasing foaming ability and improving quality of final bakery products.

  7. Dynamic analysis of growth of Salmonella Enteritidis in liquid egg whites

    USDA-ARS?s Scientific Manuscript database

    Salmonella Enteritidis (SE) is a common foodborne pathogen associated with eggs and egg products. This research was conducted to study the kinetics of growth and survival of SE in liquid egg whites (LEW). A dynamic temperature profile that exposed SE to suboptimal temperatures and below the minimu...

  8. Microfiltration of enzyme treated egg whites for accelerated detection of viable Salmonella

    USDA-ARS?s Scientific Manuscript database

    We report detection of <13 CFU of Salmonella per 25 g egg white within 7 h by concentrating the bacteria using microfiltration through 0.2-lm cutoff polyethersulfone hollow fiber membranes. A combination of enzyme treatment, controlled cross-flow on both sides of the hollow fibers, and media selecti...

  9. Purification of Lysozyme by Intrinsically Shielded Hydrogel Beads

    NASA Astrophysics Data System (ADS)

    Li, Cong; Zhang, R.; Wang, L.; Bowyer, A.; Eisenthal, R.; Shen, Yehua; Hubble, J.

    2013-07-01

    Macro-sized intrinsically shielded hydrogel beads have been prepared from BSA and CM-dextran grafted with CB using a technique based on freeze-thawing gelation method. The size of the beads lies in around 500 μm. Isothemal titration calorimetry (ITC) showed that the relative binding affinities of the lysozyme for CB, compared with BSA, at pH 3.0 was stronger than that at pH 7.4. They were employed for the affinity separation of lysozyme using chromatography column. Their adsorption capacity for lysozyme at pH 3.0 is higher than that at pH 9. In a binary mixture of lysozyme and ovalbumin, the beads showed very high selectivity toward lysozyme. Lysozyme of very high purity (> 93%) was obtained from a mixture of lysozyme and ovalbumin, and 85% from egg white solution. The results indicate that the macro-sized bead can be used for the separation, purification, and recovery of lysozyme in a chromatograph column.

  10. Synchrotron X-ray reciprocal-space mapping, topography and diffraction resolution studies of macromolecular crystal quality.

    PubMed

    Boggon, T J; Helliwell, J R; Judge, R A; Olczak, A; Siddons, D P; Snell, E H; Stojanoff, V

    2000-07-01

    A comprehensive study of microgravity and ground-grown chicken egg-white lysozyme crystals is presented using synchrotron X-ray reciprocal-space mapping, topography techniques and diffraction resolution. Microgravity crystals displayed reduced intrinsic mosaicities on average, but no differences in terms of strain over their ground-grown counterparts. Topographic analysis revealed that in the microgravity case the majority of the crystal was contributing to the peak of the reflection at the appropriate Bragg angle. In the ground-control case only a small volume of the crystal contributed to the intensity at the diffraction peak. The techniques prove to be highly complementary, with the reciprocal-space mapping providing a quantitative measure of the crystal mosaicity and strain (or variation in lattice spacing) and the topography providing a qualitative overall assessment of the crystal in terms of its X-ray diffraction properties. Structural data collection was also carried out at the synchrotron.

  11. Fast high-pressure freezing of protein crystals in their mother liquor

    PubMed Central

    Burkhardt, Anja; Warmer, Martin; Panneerselvam, Saravanan; Wagner, Armin; Zouni, Athina; Glöckner, Carina; Reimer, Rudolph; Hohenberg, Heinrich; Meents, Alke

    2012-01-01

    High-pressure freezing (HPF) is a method which allows sample vitrification without cryoprotectants. In the present work, protein crystals were cooled to cryogenic temperatures at a pressure of 210 MPa. In contrast to other HPF methods published to date in the field of cryocrystallography, this protocol involves rapid sample cooling using a standard HPF device. The fast cooling rates allow HPF of protein crystals directly in their mother liquor without the need for cryoprotectants or external reagents. HPF was first attempted with hen egg-white lysozyme and cubic insulin crystals, yielding good to excellent diffraction quality. Non-cryoprotected crystals of the membrane protein photosystem II have been successfully cryocooled for the first time. This indicates that the presented HPF method is well suited to the vitrification of challenging systems with large unit cells and weak crystal contacts. PMID:22505429

  12. Microfiltration of enzyme treated egg whites for accelerated detection of viable Salmonella.

    PubMed

    Ku, Seockmo; Ximenes, Eduardo; Kreke, Thomas; Foster, Kirk; Deering, Amanda J; Ladisch, Michael R

    2016-11-01

    We report detection of <13 CFU of Salmonella per 25 g egg white within 7 h by concentrating the bacteria using microfiltration through 0.2-μm cutoff polyethersulfone hollow fiber membranes. A combination of enzyme treatment, controlled cross-flow on both sides of the hollow fibers, and media selection were key to controlling membrane fouling so that rapid concentration and the subsequent detection of low numbers of microbial cells were achieved. We leveraged the protective effect of egg white proteins and peptone so that the proteolytic enzymes did not attack the living cells while hydrolyzing the egg white proteins responsible for fouling. The molecular weight of egg white proteins was reduced from about 70 kDa to 15 kDa during hydrolysis. This enabled a 50-fold concentration of the cells when a volume of 525 mL of peptone and egg white, containing 13 CFU of Salmonella, was decreased to a 10 mL volume in 50 min. A 10-min microcentrifugation step further concentrated the viable Salmonella cells by 10×. The final cell recovery exceeded 100%, indicating that microbial growth occurred during the 3-h processing time. The experiments leading to rapid concentration, recovery, and detection provided further insights on the nature of membrane fouling enabling fouling effects to be mitigated. Unlike most membrane processes where protein recovery is the goal, recovery of viable microorganisms for pathogen detection is the key measure of success, with modification of cell-free proteins being both acceptable and required to achieve rapid microfiltration of viable microorganisms. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1464-1471, 2016.

  13. Differential abundance of egg white proteins in laying hens treated with corticosterone.

    PubMed

    Kim, Jimin; Choi, Yang-Ho

    2014-12-24

    Stressful environments can affect not only egg production and quality but also gene and protein abundance in the ovary and oviduct in laying hens. The oviductal magnum of laying hens is the organ responsible for the synthesis and secretion of egg white proteins. The objective of this study was to investigate the effects of dietary corticosterone as a stress model on the abundance of proteins in the egg white and of mRNA and proteins in the magnum in laying hens. After a 14-day acclimation, 40 laying hens were divided into two groups which were provided for the next 14 days with either control (Control) or corticosterone (Stress) diet containing at 30 mg/kg. Corticosterone treatment resulted in increased feed intake (P ≤ 0.05) and decreased egg production. Two-dimensional electrophoresis (2DE) with MALDI-TOF/TOF MS/MS using eggs obtained on days 0 and 5 revealed differential abundance of egg white proteins by Stress: transiently expressed in neural precursors (TENP), hemopexin (HPX), IgY-Fcυ3-4, and extracellular fatty acid-binding protein (Ex-FABP) were decreased while ovoinhibitor and ovalbumin-related protein X (OVAX) were increased on days 5 vs 0 (P ≤ 0.05). Expression of mRNAs and proteins was also significantly modulated in the magnum of hens in Stress on day 14 (P ≤ 0.05). In conclusion, the current study provides the first evidence showing that dietary corticosterone modulates protein abundance in the egg white in laying hens, and it suggests that environmental stress can differentially modify expression of egg white proteins in laying hens.

  14. Kinetic Roughening and Energetics of Tetragonal Lysozyme Crystal Growth: A Preliminary Atomic Force Microscopy Investigation

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar; Forsythe, Elizabeth L.; Pusey, Marc L.

    2004-01-01

    We examined particulars of crystal growth from measurements obtained at both microscopic and molecular levels. The crystal growth measurements performed at the microscopic level are well characterized by a model that balances the flux of macromolecules towards the crystal surface with the flux of the crystal surface. Numerical evaluation of model with measurements of crystal growth, in time, provided accurate estimates for the average growth velocities. Growth velocities thus obtained were also interpreted using well-established phenomenological theories. Moreover, we find that microscopic measurements of growth velocity measurements obtained as a function of temperature best characterizes changes in crystal growth modes, when present. We also examined the possibility of detecting a change in crystal growth modes at the molecular level using atomic force microscopy, AFM. From preliminary AFM measurements performed at various supersaturations, we find that magnitude of surface height fluctuations, h(x), increases with supersaturation. Further examination of surface height fluctuations using methods established for fluctuation spectroscopy also enabled the discovery of the existence of a characteristic length, c, which may possibly determine the mode of crystal growth. Although the results are preliminary, we establish the non- critical divergence of 5 and the root-mean-square (rms) magnitude of height-height fluctuations as the kinetic roughening transition temperatures are approached. Moreover, we also examine approximate models for interpreting the non-critical behavior of both 6 and rms magnitude of height-height fluctuations, as the solution supersaturation is increased towards the kinetic roughening supersaturation.

  15. Kinetic Roughening and Energetics of Tetragonal Lysozyme Crystal Growth: A Preliminary Atomic Force Microscopy Investigation

    NASA Technical Reports Server (NTRS)

    Gorti, Sridhar; Forsythe, Elizabeth L.; Pusey, Marc L.

    2004-01-01

    We examined particulars of crystal growth from measurements obtained at both microscopic and molecular levels. The crystal growth measurements performed at the microscopic level are well characterized by a model that balances the flux of macromolecules towards the crystal surface with the flux of the crystal surface. Numerical evaluation of model with measurements of crystal growth, in time, provided accurate estimates for the average growth velocities. Growth velocities thus obtained were also interpreted using well-established phenomenological theories. Moreover, we find that microscopic measurements of growth velocity measurements obtained as a function of temperature best characterizes changes in crystal growth modes, when present. We also examined the possibility of detecting a change in crystal growth modes at the molecular level using atomic force microscopy, AFM. From preliminary AFM measurements performed at various supersaturations, we find that magnitude of surface height fluctuations, h(x), increases with supersaturation. Further examination of surface height fluctuations using methods established for fluctuation spectroscopy also enabled the discovery of the existence of a characteristic length, c, which may possibly determine the mode of crystal growth. Although the results are preliminary, we establish the non- critical divergence of 5 and the root-mean-square (rms) magnitude of height-height fluctuations as the kinetic roughening transition temperatures are approached. Moreover, we also examine approximate models for interpreting the non-critical behavior of both 6 and rms magnitude of height-height fluctuations, as the solution supersaturation is increased towards the kinetic roughening supersaturation.

  16. A Proposed Pathway for the Nucleation and Crystal Growth of the Tetragonal Form of Lysozyme

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    A number of factors, the shape and charge distribution anisotropy, multiple components in the solution (buffer + counter ion, precipitant, protein, and water), conformational flexibility, and large numbers of intermolecular contacts, all serve as complicating variables in understanding the nucleation and growth mechanism for macromolecules. Intermolecular contacts include hydrogen bonds, van der Waals, hydrophobic, salt bridges, and ion-mediated contacts. The latter interactions are stronger and give specificity while the others are weaker, more prevalent, and more promiscuous, i.e., can lead to a range of possible molecular interactions. We propose that for tetragonal lysozyme, and by extension many other monomeric proteins, there is a solution-phase assembly process to form 4(sub 3) helix structures that are the basic unit for nucleation. The formation of these structures is continuous and concentration dependent. They subsequently also servc as growth units, with that process then being a recapitulation of the nucleation process. The advantages of solution phase assembly are the immediate burying of the strongest interactions, removing them from subsequent participation in the nucleation and growth process, and the introduction of symmetry into the system, which also assists in the assembly process.

  17. Dependence of nucleation kinetics and crystal morphology of a model protein system on ionic strength

    NASA Astrophysics Data System (ADS)

    Bhamidi, V.; Skrzypczak-Jankun, E.; Schall, C. A.

    2001-11-01

    Nucleation rate data for hen egg-white lysozyme crystallization were obtained using a particle counter. Tetragonal lysozyme crystals were expected to form at the temperature and solution conditions of these experiments: 4°C, pH 4.5 with 0.1 M sodium acetate buffer and 2-6% NaCl (w/v). The rates varied as expected, as smooth monotonic functions of supersaturation at 2%, 3% and 6% NaCl. However, at 5% NaCl, a great deal of scatter in the data was observed. At 2% and 3% NaCl, all the batches contained crystals with tetragonal morphology. At 6% NaCl, almost all of the vials contained the white powder with few or no tetragonal crystals. At 5% NaCl concentration, a mixture of tetragonal crystals and powder formed in varying proportions in all the vials as observed by visual inspection. The powdery material was examined using optical microscopy and was seen to consist of needles with regular structure and sharp, faceted edges. Powder diffraction data from these needles was inconsistent with experimental powder diffraction data from tetragonal lysozyme crystals. It is possible that at high salt and protein concentrations liquid-liquid separation occurred and yielded a crystal polymorph.

  18. Femtosecond laser processing of protein crystals grown in agarose gel

    NASA Astrophysics Data System (ADS)

    Hasenaka, Hitoshi; Sugiyama, Shigeru; Hirose, Mika; Shimizu, Noriko; Kitatani, Tomoya; Takahashi, Yoshinori; Adachi, Hiroaki; Takano, Kazufumi; Murakami, Satoshi; Inoue, Tsuyoshi; Mori, Yusuke; Matsumura, Hiroyoshi

    2009-12-01

    Manual manipulation of protein crystals is often required in order to obtain X-ray diffraction (XRD) data, but the success of the manual operation depends on the experience and fortuity of the operators. Here, we demonstrated the processing of protein crystals grown in semi-solid agarose gel using a femtosecond laser. This high-precision, reproducible processing could be achieved without unsealing the crystallization trays by using a focused femtosecond laser. We confirmed that the gel-immobilized crystals of hen egg white lysozyme, glucose isomerase and thaumatin could be processed by this technique. In contrast, the processing of protein crystals grown in non-gelled solution triggered polycrystallization or was unsuccessful. The processed gel-grown lysozyme crystal was subsequently captured by a nylon loop without difficulty and mounted onto the goniometer head of the XRD equipment for XRD data collection. The statistics of the obtained XRD data indicated that laser irradiation has little influence on crystallinity, suggesting that the processed protein crystals are virtually suitable for X-ray analysis. This approach provides a reliable method of processing protein crystals and may lead to an automated system for protein crystal processing.

  19. Immunochemical investigation of allergenic residues in experimental and commercially-available wines fined with egg white proteins.

    PubMed

    Uberti, Francesca; Danzi, Roberta; Stockley, Creina; Peñas, Elena; Ballabio, Cinzia; Di Lorenzo, Chiara; Tarantino, Chiara; Restani, Patrizia

    2014-09-15

    Proteinaceous egg whites are widely used as a fining agent during the production of red wines. Residues of egg white in the final wine could present a risk for individuals allergic to eggs. This study investigated the presence of allergenic residues in both red and white wines fined with egg whites. Experimental and commercially available wines fined with egg whites, with or without subsequent bentonite fining, were studied. Unfined wines were used as negative controls. The physicochemical characteristics of each wine were determined to assess their possible role in enhancing or hindering the elimination of allergenic residues from wine. The amount of egg white protein residues was investigated both by a specifically developed/validated ELISA test and by immunoblotting. Both immunochemical tests used the same anti-total egg white protein antibody and were highly sensitive to the allergen. No egg white protein was detected in the wines studied in either immunochemical test, irrespective of the physicochemical characteristics of the wine, the type and dosage of the fining agent and the oenological process used. The risk of adverse reactions in egg-allergic individuals should therefore be considered negligible, but the exemption from labelling should be allowed only when the absence of residues is confirmed by analytical controls.

  20. Relation between the phase separation and the crystallization in protein solutions

    NASA Astrophysics Data System (ADS)

    Tanaka, Shinpei; Yamamoto, Masahiko; Ito, Kohzo; Hayakawa, Reinosuke; Ataka, Mitsuo

    1997-07-01

    Liquid-liquid phase separation and crystallization (or solid-liquid phase separation) both occur in protein solutions. By adopting egg-white lysozyme for a model system, we compared two types of diagrams, a phase diagram of the liquid-liquid phase separation and a morphological diagram of protein crystals. By superimposing these diagrams, we distinguished two types of white precipitates, urchinlike spherulites arising from the crystallization and protein-rich droplets from the liquid-liquid phase separation. Furthermore, we observed a transformation from the protein-rich droplets to the spherulites, and simultaneously an unusual pattern evolution of the protein-rich phase unlike the conventional phase separation of typical binary mixtures. This is understood in terms of the competition between the crystallization and the liquid-liquid phase separation.

  1. Some properties of a macromolecular conjugate of lysozyme prepared by modification with a monomethoxypolyethylene glycol derivative.

    PubMed

    Nodake, Y; Yamasaki, N

    2000-04-01

    Hen egg-white lysozyme was modified with a succinyl ester derivative of monomethoxypolyethylene glycol (mPEG-COONSu), and some properties of the resulting conjugate (mPEG-lysozyme) were studied. The conjugate was prepared by modification of lysozyme with mPEG-COONSu and purified with use of columns of CM-Toyopearl 650M and Sephadex G-75. Analytical data indicated that in the conjugate, 1.05 moles of mPEG with an average molecular weight of 5,000 were covalently attached to the lysozyme molecule. Tryptic peptide analysis of the conjugate showed that Lys 33 in lysozyme is the residue mainly modified with mPEG-COONSu. Covalent attachment of the mPEG-derivative to amino groups greatly increased the thermostability of lysozyme without any conformational change of the protein molecule. mPEG-lysozyme retained full enzyme activity for glycol chitin, but lytic activity for Micrococcus luteus cells in neutral media was 75% of that of native lysozyme and its optimal pH was at pH 5.0. It was also found that the reactivity of lysozyme with anti-lysozyme antibody from BALB/c mice or human lymphocytes was decreased by modification with mPEG-COONSu. From these findings, it was suggested that mPEG-COONSu can be advantageously used for protein tailoring of lysozyme.

  2. Sperm Lysozyme-Like Protein 1 (SLLP1), an intra-acrosomal oolemmal-binding sperm protein, reveals filamentous organization in protein crystal form.

    PubMed

    Zheng, H; Mandal, A; Shumilin, I A; Chordia, M D; Panneerdoss, S; Herr, J C; Minor, W

    2015-07-01

    Sperm lysozyme-like protein 1 (SLLP1) is one of the lysozyme-like proteins predominantly expressed in mammalian testes that lacks bacteriolytic activity, localizes in the sperm acrosome, and exhibits high affinity for an oolemmal receptor, SAS1B. The crystal structure of mouse SLLP1 (mSLLP1) was determined at 2.15 Å resolution. mSLLP1 monomer adopts a structural fold similar to that of chicken/mouse lysozymes retaining all four canonical disulfide bonds. mSLLP1 is distinct from c-lysozyme by substituting two essential catalytic residues (E35T/D52N), exhibiting different surface charge distribution, and by forming helical filaments approximately 75 Å in diameter with a 25 Å central pore comprised of six monomers per helix turn repeating every 33 Å. Cross-species alignment of all reported SLLP1 sequences revealed a set of invariant surface regions comprising a characteristic fingerprint uniquely identifying SLLP1 from other c-lysozyme family members. The fingerprint surface regions reside around the lips of the putative glycan-binding groove including three polar residues (Y33/E46/H113). A flexible salt bridge (E46-R61) was observed covering the glycan-binding groove. The conservation of these regions may be linked to their involvement in oolemmal protein binding. Interaction between SLLP1 monomer and its oolemmal receptor SAS1B was modeled using protein-protein docking algorithms, utilizing the SLLP1 fingerprint regions along with the SAS1B conserved surface regions. This computational model revealed complementarity between the conserved SLLP1/SAS1B interacting surfaces supporting the experimentally observed SLLP1/SAS1B interaction involved in fertilization. © 2015 American Society of Andrology and European Academy of Andrology.

  3. Sperm Lysozyme-Like Protein 1 (SLLP1), an intra-acrosomal oolemmal-binding sperm protein, reveals filamentous organization in protein crystal form

    PubMed Central

    Zheng, Heping; Mandal, Arabinda; Shumilin, Igor A.; Chordia, Mahendra D.; Panneerdoss, Subbarayalu; Herr, John C.; Minor, Wladek

    2016-01-01

    Sperm Lysozyme-Like Protein 1 (SLLP1) is one of the lysozyme-like proteins predominantly expressed in mammalian testes that lacks bacteriolytic activity, localizes in the sperm acrosome, and exhibits high affinity for an oolemmal receptor, SAS1B. The crystal structure of mouse SLLP1 (mSLLP1) was determined at 2.15Å resolution. mSLLP1 monomer adopts a structural fold similar to that of chicken/mouse lysozymes retaining all four canonical disulfide bonds. mSLLP1 is distinct from c-lysozyme by substituting two essential catalytic residues (E35T/D52N), exhibiting different surface charge distribution, and by forming helical filaments approximately 75Å in diameter with a 25Å central pore comprised of six monomers per helix turn repeating every 33Å. Cross-species alignment of all reported SLLP1 sequences revealed a set of invariant surface regions comprising a characteristic fingerprint uniquely identifying SLLP1 from other c-lysozyme family members. The fingerprint surface regions reside around the lips of the putative glycan binding groove including three polar residues (Y33/E46/H113). A flexible salt bridge (E46-R61) was observed covering the glycan binding groove. The conservation of these regions may be linked to their involvement in oolemmal protein binding. Interaction between SLLP1 monomer and its oolemmal receptor SAS1B was modeled using protein-protein docking algorithms, utilizing the SLLP1 fingerprint regions along with the SAS1B conserved surface regions. This computational model revealed complementarity between the conserved SLLP1/SAS1B interacting surfaces supporting the experimentally-observed SLLP1/SAS1B interaction involved in fertilization. PMID:26198801

  4. Activity and immunodetection of lysozyme in earthworm Dendrobaena veneta (Annelida).

    PubMed

    Fiołka, Marta J; Zagaja, Mirosław P; Hułas-Stasiak, Monika; Wielbo, Jerzy

    2012-01-01

    In the present study, lysozyme-like activity against Micrococcus luteus was detected in the coelomic fluid, the extract from coelomocytes, intestine and in the homogenates from cocoons of Dendrobaena veneta. Four hours after immunization with Escherichia coli, the lysozyme activity in the coelomic fluid increased about three times and in the extract of coelomocytes - four times, in comparison to the control. In three cases: of the coelomic fluid, the homogenates from cocoons and the extract from coelomocytes, the antibody against HEWL (hen egg white lysozyme) recognized only one protein with a molecular mass of about 14.4 kDa. In the coelomic fluid, apart from the protein with molecular mass of 14.4 kDa the antibody directed against human lysozyme recognized an additional protein of 22 kDa. Using the bioautography technique after electrophoretic resolution of native proteins in acidic polyacrylamide gels, two lytic zones of M. luteus were observed in the case of the coelomic fluid and three after the analysis of the extract of coelomocytes and the egg homogenates. The results indicated the existence of several forms of lysozyme with a different electric charge in the analyzed D. veneta samples. The highest lysozyme activity in the intestine of D. veneta was observed in the midgut. The antibody directed against human lysozyme indicated a strong positive signal in epidermal and midgut cells of earthworm. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. [Purification and characterization of a lysozyme from a marine microorganism].

    PubMed

    Zou, Yan-Li; Sun, Mi; Wang, Yue-Jun

    2005-05-01

    A novel lysozyme was purified from a marine microorganism and its major characteristics were studied. Cell-free supernatant was prepared by centrifugation of culture broth, ultrafiltration using a hollow fiber (molecular weight cut off, 50kD) and concentration using a hollow fiber (molecular weight cut off, 10kD). The crude lysozyme was purified 34.7 fold to electrophoretic homogeneity with a recovery of 24.1% by CM-Sepharose FF cationic-exchange and Sephadex G-100 gel chromatography. The relative molecular weight of this lysozyme was determined as about 39 kD. The optimum pH and temperature towards Micrococcus lysodleikticus were pH 8.0 and 35 degrees C respectively, and the enzyme was stable at temperature below 50 degrees C and pH 5.0 - 10.0. The lysozyme activity was slightly enhanced by Zn2+ and Cu2+ and slightly inhibited by Mn2+ and Ag+. The lysozyme showed good compatibility to many common chemical agents such as EDTA (0.1%) and KH2 PO4 (1.0%). The lysozyme had broad-spectrum against many bacteria, including a number of pathogens, which were resistant to egg-white lysozyme.

  6. Imaging and interferometric analysis of protein crystal growth

    NASA Astrophysics Data System (ADS)

    Raghunandan, Ranjini; Gupta, Anamika Sethia; Muralidhar, K.

    2008-04-01

    Protein crystals are grown under controlled temperature, concentration and vapor pressure conditions, usually by vapor diffusion, liquid-liquid diffusion and dialysis techniques. The present study examines the effects of protein concentration, drop size and reservoir height on the crystal growth of Hen Egg White Lysozyme (HEWL). Crystals are grown by the hanging drop vapor diffusion method using Modular VDX TM Plates. Due to the vapor pressure difference created between the protein drop and the reservoir, evaporation takes place till equilibrium is attained. Crystal formation takes place after a certain level of supersaturation is attained when the protein precipitates out in crystalline form. The observations revealed that the growth is faster for higher lysozyme concentration, smaller drop sizes and larger reservoir heights. The morphology of the crystals is viewed during the growth process using stereomicroscope. The number of crystals formed is the maximum for higher concentrations, drop sizes and reservoir heights. When the number of crystals formed is less, the size of the crystals is comparatively larger. The effect of evaporation of water vapor from the protein drop into the reservoir is studied using Mach-Zehnder interferometry. The recorded interferograms and shadowgraph images indicate the diffusion of condensed water into the reservoir. The radius of the drop is determined using the shadowgraph images of the growth process. The radius decreases with evaporation and the rate of decrease of radius is highest for higher protein concentrations, smaller drop sizes and larger reservoir heights.

  7. Effects of pH, temperature and pulsed electric fields on the turbidity and protein aggregation of ovomucin-depleted egg white.

    PubMed

    Liu, Ya-Fei; Oey, Indrawati; Bremer, Phil; Carne, Alan; Silcock, Pat

    2017-01-01

    The effect of either pulsed electric fields (PEF) or thermal processing on protein aggregation of ovomucin-depleted egg white (OdEW) solutions at different pH was assessed by solution turbidity and SDS-PAGE. Heating to 60°C for 10min caused marked protein aggregation of OdEW at pH5, 7, and 9. At constant electric field strength (E=1.4-1.8kV/cm), PEF processing under high specific energy input (Wspec=260-700kJ/kg) induced some protein aggregation at pH5 and 7, but not at either pH4 or 9. Similar effects of pH on protein aggregation were observed upon PEF processing at varied E (from 0.7 to 1.7kV/cm) but with constant Wspec (713kJ/kg). Analysis by SDS-PAGE revealed that proteins in the OdEW solution at pH5 were most susceptible to both PEF- and heat-induced protein aggregation and lysozyme was only involved in the formation of insoluble aggregates under PEF. The present study shows that PEF treatment has considerable potential for minimizing protein aggregation in the processing of heat-labile egg white proteins. Retaining the OdEW proteins in solution during processing has potential industry application, for example, protein fortification of drinks with OdEW, where minimizing solution turbidity would be advantageous. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Predictive control of crystal size distribution in protein crystallization.

    PubMed

    Shi, Dan; Mhaskar, Prashant; El-Farra, Nael H; Christofides, Panagiotis D

    2005-07-01

    This work focuses on the modelling, simulation and control of a batch protein crystallization process that is used to produce the crystals of tetragonal hen egg-white (HEW) lysozyme. First, a model is presented that describes the formation of protein crystals via nucleation and growth. Existing experimental data are used to develop empirical models of the nucleation and growth mechanisms of the tetragonal HEW lysozyme crystal. The developed growth and nucleation rate expressions are used within a population balance model to simulate the batch crystallization process. Then, model reduction techniques are used to derive a reduced-order moments model for the purpose of controller design. Online measurements of the solute concentration and reactor temperature are assumed to be available, and a Luenberger-type observer is used to estimate the moments of the crystal size distribution based on the available measurements. A predictive controller, which uses the available state estimates, is designed to achieve the objective of maximizing the volume-averaged crystal size while respecting constraints on the manipulated input variables (which reflect physical limitations of control actuators) and on the process state variables (which reflect performance considerations). Simulation results demonstrate that the proposed predictive controller is able to increase the volume-averaged crystal size by 30% and 8.5% compared to constant temperature control (CTC) and constant supersaturation control (CSC) strategies, respectively, while reducing the number of fine crystals produced. Furthermore, a comparison of the crystal size distributions (CSDs) indicates that the product achieved by the proposed predictive control strategy has larger total volume and lower polydispersity compared to the CTC and CSC strategies. Finally, the robustness of the proposed method (achieved due to the presence of feedback) with respect to plant-model mismatch is demonstrated. The proposed method is

  9. Lysozyme net charge and ion binding in concentrated aqueous electrolyte solutions

    SciTech Connect

    Kuehner, Daniel E.; Engmann, Jan; Fergg, Florian; Wernick, Meredith; Blanch, Harvey W.; Prausnitz, John M.

    1999-02-01

    Hydrogen-ion titrations were conducted for hen-egg-white lysozyme in solutions of potassium chloride over the range pH 2.5--11.5 and for ionic strengths to 2.0 M. The dependence of lysozyme`s net proton charge, z{sub p}, on pH and ionic strength in potassium chloride solution is measured. From the ionic-strength dependence of z{sub p}, interactions of lysozyme with potassium and chloride ions are calculated using the molecular-thermodynamic theory of Fraaije and Lyklema. Lysozyme interacts preferentially with up to 12 chloride ions at pH 2.5. The observed dependence of ion-protein interactions on pH and ionic strength is explained in terms of electric-double-layer theory. New experimental pK{sub a} data are reported for 11 amino acids in potassium chloride solutions of ionic strength to 3.0 M.

  10. Expression of exogenous protein in the egg white of transgenic chickens.

    PubMed

    Harvey, Alex J; Speksnijder, Gordon; Baugh, Larry R; Morris, Julie A; Ivarie, Robert

    2002-04-01

    Using a replication-deficient retroviral vector based on the avian leukosis virus (ALV), we inserted into the chicken genome a transgene encoding a secreted protein, beta-lactamase, under the control of the ubiquitous cytomegalovirus (CMV) promoter. Biologically active beta-lactamase was secreted into the serum and egg white of four generations of transgenic chickens. The expression levels were similar in successive generations, and expression levels in the magnum of the oviduct were constant over at least 16 months in transgenic hens, indicating that the transgene was stable and not subject to silencing. These results support the potential of the hen as a bioreactor for the production of commercially valuable, biologically active proteins in egg white.

  11. Complete amino acid sequence of three reptile lysozymes.

    PubMed

    Ponkham, Pornpimol; Daduang, Sakda; Kitimasak, Wachira; Krittanai, Chartchai; Chokchaichamnankit, Daranee; Srisomsap, Chantragan; Svasti, Jisnuson; Kawamura, Shunsuke; Araki, Tomohiro; Thammasirirak, Sompong

    2010-01-01

    To study the structure and function of reptile lysozymes, we have reported their purification, and in this study we have established the amino acid sequence of three egg white lysozymes in soft-shelled turtle eggs (SSTL A and SSTL B from Trionyx sinensis, ASTL from Amyda cartilaginea) by using the rapid peptide mapping method. The established amino acid sequence of SSTL A, SSTL B, and ASTL showed substitutions of 43, 42, and 44 residues respectively when compared with the HEWL (hen egg white lysozyme) sequence. In these reptile lysozymes, SSTL A had one substitution compared with SSTL B (Gly126Asp) and had an N-terminal extra Gly and 11 substitutions compared with ASTL. SSTL B had an N-terminal extra Gly and 10 residues different from ASTL. The sequence of SSTL B was identical to soft-shelled turtle lysozyme from STL (Trionyx sinensis japonicus). The Ile residue at position 93 of ASTL is the first report in all C-type lysozymes. Furthermore, amino acid substitutions (Phe34His, Arg45Tyr, Thr47Arg, and Arg114Tyr) were also found at subsites E and F when compared with HEWL. The time course using N-acetylglucosamine pentamer as a substrate exhibited a reduction of the rate constant of glycosidic cleavage and increase of binding free energy for subsites E and F, which proved the contribution for amino acids mentioned above for substrate binding at subsites E and F. Interestingly, the variable binding free energy values occurred on ASTL, may be contributed from substitutions at outside of subsites E and F.

  12. Single-Step Purification of Ovalbumin from Egg White Using Aqueous Biphasic Systems

    PubMed Central

    Pereira, Matheus M.; Cruz, Rafaela A. P.; Almeida, Mafalda R.; Lima, Álvaro S.; Coutinho, João A. P.; Freire, Mara G.

    2016-01-01

    The ability of aqueous biphasic systems (ABS) composed of polyethylene glycols of different molecular weights (PEG 400, 600 and 1000) and buffered aqueous solutions of potassium citrate/citric acid (pH = 5.0 - 8.0) to selectively extract ovalbumin from egg white was here investigated. Phase diagrams, tie-lines and tie-line lengths were determined at 25ºC and the partitioning of ovalbumin in these systems was then evaluated. Aiming at optimizing the selective extraction of ovalbumin in the studied ABS, factors such as pH, PEG molecular weight and amount of the phase-forming components were initially investigated with pure commercial ovalbumin. In almost all ABS, it was observed a preferential partitioning of ovalbumin to the polymer-rich phase, with extraction efficiencies higher than 90%. The best ABS were then applied in the purification of ovalbumin from the real egg white matrix. In order to ascertain on the ovalbumin purity and yield, sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and size exclusion high performance liquid chromatography (SE-HPLC) analyses were conducted, confirming that the isolation/purification of ovalbumin from egg white was completely achieved in a single-step with a recovery yield of 65%. The results obtained show that polymer-salt-based ABS allow the selective extraction of ovalbumin from egg white with a simpler approach and better performance than previously reported. Finally, it is shown that ovalbumin can be completely recovered from the PEG-rich phase by an induced precipitation using an inexpensive and sustainable separation platform which can be easily applied on an industrial scale. PMID:27642253

  13. Single-Step Purification of Ovalbumin from Egg White Using Aqueous Biphasic Systems.

    PubMed

    Pereira, Matheus M; Cruz, Rafaela A P; Almeida, Mafalda R; Lima, Álvaro S; Coutinho, João A P; Freire, Mara G

    2016-06-01

    The ability of aqueous biphasic systems (ABS) composed of polyethylene glycols of different molecular weights (PEG 400, 600 and 1000) and buffered aqueous solutions of potassium citrate/citric acid (pH = 5.0 - 8.0) to selectively extract ovalbumin from egg white was here investigated. Phase diagrams, tie-lines and tie-line lengths were determined at 25ºC and the partitioning of ovalbumin in these systems was then evaluated. Aiming at optimizing the selective extraction of ovalbumin in the studied ABS, factors such as pH, PEG molecular weight and amount of the phase-forming components were initially investigated with pure commercial ovalbumin. In almost all ABS, it was observed a preferential partitioning of ovalbumin to the polymer-rich phase, with extraction efficiencies higher than 90%. The best ABS were then applied in the purification of ovalbumin from the real egg white matrix. In order to ascertain on the ovalbumin purity and yield, sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) and size exclusion high performance liquid chromatography (SE-HPLC) analyses were conducted, confirming that the isolation/purification of ovalbumin from egg white was completely achieved in a single-step with a recovery yield of 65%. The results obtained show that polymer-salt-based ABS allow the selective extraction of ovalbumin from egg white with a simpler approach and better performance than previously reported. Finally, it is shown that ovalbumin can be completely recovered from the PEG-rich phase by an induced precipitation using an inexpensive and sustainable separation platform which can be easily applied on an industrial scale.

  14. Effect of moisture content on selected physicochemical properties of two commercial hen egg white powders.

    PubMed

    Rao, Qinchun; Labuza, Theodore P

    2012-05-01

    After short-term storage at 23°C, selected physicochemical properties of two hen egg white powders (with and without hydrolysis) were studied. Overall, the effect of moisture content on physicochemical properties of Hydrolysed Egg White powder (HEW) was more severe than those of Dried Egg White powder (DEW). The denaturation temperature (Td) and its enthalpy change (ΔHd) of ovalbumin in DEW followed an exponential model, as well as the Td of HEW. The Gordon-Taylor equation modelled well the glass transition temperatures (Tg) of HEW and DEW. The Guggenheim-Anderson-de Boer (GAB) model fitted well to the type II moisture sorption isotherm. At the critical moisture content (12.0%, dry basis), compared with DEW, the colour of HEW began to darken dramatically and its hardness started to change significantly. These changes were closely related to the inherent characteristics of the two products. The mechanisms relevant to these physicochemical changes were discussed. Published by Elsevier Ltd.

  15. Thermodynamic instability in supersaturated lysozyme solutions: Effect of salt and role of concentration fluctuations

    NASA Astrophysics Data System (ADS)

    Manno, Mauro; Xiao, Caide; Bulone, Donatella; Martorana, Vincenzo; San Biagio, Pier Luigi

    2003-07-01

    Experimental and theoretical work has suggested that protein crystal nucleation can be affected by the separation of two metastable liquid phases with different local concentrations, or more specifically by critical density fluctuations. We measure the amplitude and correlation length of local concentration fluctuations by light scattering for supersaturated solutions of hen egg-white lysozyme (at pH 4.5 and at different NaCl concentrations, up to 7% w/v). By extrapolating the critical divergent behavior of concentration fluctuation amplitude versus temperature, we determine the spinodal line, that is the limit of stability. Cloud-point measurements are used to determine liquid-liquid coexistence, consistent with previous work. In the present work, which is an extensive study of off-critical fluctuations in supersaturated protein solution, we observe a nonclassical scaling divergent behavior of the correlation length of concentration fluctuations, thus suggesting that off-critical fluctuations may have a role in crystallization kinetics. To appropriately fit the spinodal data, an entropic term must be added to the van der Waals or to the adhesive hard-sphere model. We interpret this contribution as due to the salt-induced modulation of protein hydration.

  16. Thermodynamic instability in supersaturated lysozyme solutions: effect of salt and role of concentration fluctuations.

    PubMed

    Manno, Mauro; Xiao, Caide; Bulone, Donatella; Martorana, Vincenzo; San Biagio, Pier Luigi

    2003-07-01

    Experimental and theoretical work has suggested that protein crystal nucleation can be affected by the separation of two metastable liquid phases with different local concentrations, or more specifically by critical density fluctuations. We measure the amplitude and correlation length of local concentration fluctuations by light scattering for supersaturated solutions of hen egg-white lysozyme (at pH 4.5 and at different NaCl concentrations, up to 7% w/v). By extrapolating the critical divergent behavior of concentration fluctuation amplitude versus temperature, we determine the spinodal line, that is the limit of stability. Cloud-point measurements are used to determine liquid-liquid coexistence, consistent with previous work. In the present work, which is an extensive study of off-critical fluctuations in supersaturated protein solution, we observe a nonclassical scaling divergent behavior of the correlation length of concentration fluctuations, thus suggesting that off-critical fluctuations may have a role in crystallization kinetics. To appropriately fit the spinodal data, an entropic term must be added to the van der Waals or to the adhesive hard-sphere model. We interpret this contribution as due to the salt-induced modulation of protein hydration.

  17. Lysozyme Photochemistry as a Function of Temperature. The Protective Effect of Nanoparticles on Lysozyme Photostability.

    PubMed

    Oliveira Silva, Catarina; Petersen, Steffen B; Pinto Reis, Catarina; Rijo, Patrícia; Molpeceres, Jesús; Vorum, Henrik; Neves-Petersen, Maria Teresa

    2015-01-01

    The presence of aromatic residues and their close spatial proximity to disulphide bridges makes hen egg white lysozyme labile to UV excitation. UVB induced photo-oxidation of tryptophan and tyrosine residues leads to photochemical products, such as, kynurenine, N-formylkynurenine and dityrosine and to the disruption of disulphide bridges in proteins. We here report that lysozyme UV induced photochemistry is modulated by temperature, excitation power, illumination time, excitation wavelength and by the presence of plasmonic quencher surfaces, such as gold, and by the presence of natural fluorescence quenchers, such as hyaluronic acid and oleic acid. We show evidence that the photo-oxidation effects triggered by 295 nm at 20°C are reversible and non-reversible at 10°C, 25°C and 30°C. This paper provides evidence that the 295 nm damage threshold of lysozyme lies between 0.1 μW and 0.3 μW. Protein conformational changes induced by temperature and UV light have been detected upon monitoring changes in the fluorescence emission spectra of lysozyme tryptophan residues and SYPRO® Orange. Lysozyme has been conjugated onto gold nanoparticles, coated with hyaluronic acid and oleic acid (HAOA). Steady state and time resolved fluorescence studies of free and conjugated lysozyme onto HAOA gold nanoparticles reveals that the presence of the polymer decreased the rate of the observed photochemical reactions and induced a preference for short fluorescence decay lifetimes. Size and surface charge of the HAOA gold nanoparticles have been determined by dynamic light scattering and zeta potential measurements. TEM analysis of the particles confirms the presence of a gold core surrounded by a HAOA matrix. We conclude that HAOA gold nanoparticles may efficiently protect lysozyme from the photochemical effects of UVB light and this nanocarrier could be potentially applied to other proteins with clinical relevance. In addition, this study confirms that the temperature plays a

  18. Fluorescence Studies of Protein Crystal Nucleation

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.

    1999-01-01

    Fluorescence can be used to study protein crystal nucleation through methods such as anisotropy, quenching, and resonance energy transfer (FRET), to follow pH and ionic strength changes, and follow events occurring at the growth interface. We have postulated, based upon a range of experimental evidence that the growth unit of tetragonal hen egg white lysozyme is an octamer. Several fluorescent derivatives of chicken egg white lysozyme have been prepared. The fluorescent probes lucifer yellow (LY), cascade blue, and 5-((2-aminoethyl)aminonapthalene-1-sulfonic acid (EDANS), have been covalently attached to ASP 101. All crystallize in the characteristic tetragonal form, indicating that the bound probes are likely laying within the active site cleft. Crystals of the LY and EDANS derivatives have been found to diffract to at least 1.7 A. A second group of derivatives is to the N-terminal amine group, and these do not crystallize as this site is part of the contact region between the adjacent 43 helix chains. However derivatives at these sites would not interfere with formation of the 43 helices in solution. Preliminary FRET studies have been carried out using N-terminal bound pyrene acetic acid (Ex 340 nm, Em 376 nm) lysozyme as a donor and LY (Ex -425 nm, Em 525 nm) labeled lysozyme as an acceptor. FRET data have been obtained at pH 4.6, 0.1 M NaAc buffer, at 5 and 7% NaCl, 4 C. The corresponding Csat values are 0.471 and 0.362 mg/ml (approximately 3.3 and approximately 2.5 x 10(exp -5) M respectively). The data at both salt concentrations show a consistent trend of decreasing fluorescence intensity of the donor species (PAA) with increasing total protein concentration. This decrease is more pronounced at 7% NaCl, consistent with the expected increased intermolecular interactions at higher salt concentrations reflected in the lower solubility. The calculated average distance between any two protein molecules at 5 x 10(exp -6) M is approximately 70nm, well beyond the

  19. Fluorescence Studies of Protein Crystal Nucleation

    NASA Technical Reports Server (NTRS)

    Pusey, Marc L.

    1999-01-01

    Fluorescence can be used to study protein crystal nucleation through methods such as anisotropy, quenching, and resonance energy transfer (FRET), to follow pH and ionic strength changes, and follow events occurring at the growth interface. We have postulated, based upon a range of experimental evidence that the growth unit of tetragonal hen egg white lysozyme is an octamer. Several fluorescent derivatives of chicken egg white lysozyme have been prepared. The fluorescent probes lucifer yellow (LY), cascade blue, and 5-((2-aminoethyl)aminonapthalene-1-sulfonic acid (EDANS), have been covalently attached to ASP 101. All crystallize in the characteristic tetragonal form, indicating that the bound probes are likely laying within the active site cleft. Crystals of the LY and EDANS derivatives have been found to diffract to at least 1.7 A. A second group of derivatives is to the N-terminal amine group, and these do not crystallize as this site is part of the contact region between the adjacent 43 helix chains. However derivatives at these sites would not interfere with formation of the 43 helices in solution. Preliminary FRET studies have been carried out using N-terminal bound pyrene acetic acid (Ex 340 nm, Em 376 nm) lysozyme as a donor and LY (Ex -425 nm, Em 525 nm) labeled lysozyme as an acceptor. FRET data have been obtained at pH 4.6, 0.1 M NaAc buffer, at 5 and 7% NaCl, 4 C. The corresponding Csat values are 0.471 and 0.362 mg/ml (approximately 3.3 and approximately 2.5 x 10(exp -5) M respectively). The data at both salt concentrations show a consistent trend of decreasing fluorescence intensity of the donor species (PAA) with increasing total protein concentration. This decrease is more pronounced at 7% NaCl, consistent with the expected increased intermolecular interactions at higher salt concentrations reflected in the lower solubility. The calculated average distance between any two protein molecules at 5 x 10(exp -6) M is approximately 70nm, well beyond the

  20. Comparative proteomic analysis of egg white proteins during the rapid embryonic growth period by combinatorial peptide ligand libraries.

    PubMed

    Liu, Yijun; Qiu, Ning; Ma, Meihu

    2015-10-01

    Egg white proteins provide essential nutrients and antimicrobial protection during embryonic development. Although various biological functions of major egg white proteins have been investigated via embryogenesis, understanding of global changes in low-abundance proteins has been limited. In the current study, a proteomic analysis of low-abundance egg white proteins was conducted using combinatorial peptide ligand libraries (CPLL), two-dimensional gel electrophoresis (2-DE), and matrix-assisted laser desorption/ionization-time-of-flight with two mass analyzers for tandem mass spectrometry (MALDI-TOF MS/MS) during the rapid embryonic growth period. Significant increases in the relative abundance of 88 protein spots (P ≤ 0.05), of which 47 spots were found to correspond to 10 proteins from 8 protein families were identified over 16 d incubation. During this developmental process, the protein concentration increased and the amount of albumin solid material decreased in the residual egg white. Clusterin precursors were observed over a wide range of pH values and the tenp protein increased continuously during embryonic development. Low-abundance proteins were identified in a comparison of optimal incubation conditions to the altered conditions of 2 control groups to better understand the function of these proteins in egg whites. Collectively, these findings provide insight into the supportive role of the egg white during embryonic development, enabling a broader understanding of chick embryogenesis. © 2015 Poultry Science Association Inc.

  1. Identification of Egg White Proteins and Divergence in the Regulatory Region of the Ovalbumin Gene in Avians.

    PubMed

    Ren, Jindong; Hu, Jianhong; Chen, Li; Liu, Yali; Xu, Xiaoqin; He, Jun; Shen, Jianliang; Lu, Lizhi

    2017-01-01

    Egg white proteins play an important role in avian reproductive systems and are an ideal resource for bioreactor construction. In this study, 1D electrophoresis and MALDI-TOF-MS were performed to analyze egg white proteins in four species. In total, 18, 11, 28, and 13 proteins were identified in the egg whites of the chicken, duck, goose, and pigeon, respectively. Egg white proteins in chickens have been studied previously; therefore, we focused on the proteins in goose and duck egg whites. Based on the amino acid sequence analysis and a comparison of the unique peptides, high similarity was observed between the goose and duck egg whites. Diversity in the regulatory region of the ovalbumin gene explained the higher ovalbumin expression in the duck and goose than in the chicken. These data clarify the evolutionary processes underlying to the unique peptides contributing to the differential expression of ovalbumin in avians. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Effects of alkaline concentration, temperature, and additives on the strength of alkaline-induced egg white gel.

    PubMed

    Zhao, Yan; Tu, Yonggang; Li, Jianke; Xu, Mingsheng; Yang, Youxian; Nie, Xuliang; Yao, Yao; Du, Huaying

    2014-10-01

    Egg whites can undergo gelation at extreme pH. In this paper, the effects of NaOH concentration (1.5, 2, 2.5, and 3%), temperature (10, 20, 30, and 40°C), and additives (metallic compounds, carbohydrates, stabilizers, and coagulants) on the strength of alkaline-induced egg white gel were investigated. Results showed that NaOH concentration and induced temperature significantly affected the rate of formation and peak strength of the egg white gel. Of the 6 metallic compounds used in this experiment, CuSO₄exhibited the optimal effect on the strength of alkaline-induced egg white gel, followed by MgCl₂, ZnSO4, PbO, and CaCl₂. When CuSO₄concentration was 0.2%, the gel strength increased by 31.92%. The effect of Fe₂(SO₄)₃was negligible. Of the 5 carbohydrate additives, xanthan gum (0.2%) caused the highest increase (54.31%) in the strength of alkaline-induced egg white gel, followed by sodium alginate, glucose, starch, and sucrose. Meanwhile, propylene glycol (0.25%) caused the highest improvement (15.78%) in the strength of alkaline-induced egg white gel among the 3 stabilizing agents and coagulants used, followed by Na₂HPO₄and glucono-δ-lactone. ©2014 Poultry Science Association Inc.

  3. Backbone 1H, 13C, and 15N resonance assignments for lysozyme from bacteriophage lambda

    PubMed Central

    Di Paolo, Alexandre; Duval, Valérie; Matagne, André

    2010-01-01

    Lysozyme from lambda bacteriophage (λ lysozyme) is an 18 kDa globular protein displaying some of the structural features common to all lysozymes; in particular, λ lysozyme consists of two structural domains connected by a helix, and has its catalytic residues located at the interface between these two domains. An interesting feature of λ lysozyme, when compared to the well-characterised hen egg-white lysozyme, is its lack of disulfide bridges; this makes λ lysozyme an interesting system for studies of protein folding. A comparison of the folding properties of λ lysozyme and hen lysozyme will provide important insights into the role that disulfide bonds play in the refolding pathway of the latter protein. Here we report the 1H, 13C and 15N backbone resonance assignments for λ lysozyme by heteronuclear multidimensional NMR spectroscopy. These assignments provide the starting point for detailed investigation of the refolding pathway using pulse-labelling hydrogen/deuterium exchange experiments monitored by NMR. PMID:20300891

  4. HPLC of the Polypeptides in a Hydrolyzate of Egg-White Lysozyme. An Experiment for the Undergraduate Biochemistry Laboratory.

    ERIC Educational Resources Information Center

    Richardson, W. S., III; Burns, L.

    1988-01-01

    Describes a simple high-performance liquid chromatography experiment for undergraduate biochemistry laboratories. The experiment illustrates the separation of polypeptides by a step gradient elution using a single pump instrument with no gradient attachments. Discusses instrumentation, analysis, a sample preparation, and results. (CW)

  5. HPLC of the Polypeptides in a Hydrolyzate of Egg-White Lysozyme. An Experiment for the Undergraduate Biochemistry Laboratory.

    ERIC Educational Resources Information Center

    Richardson, W. S., III; Burns, L.

    1988-01-01

    Describes a simple high-performance liquid chromatography experiment for undergraduate biochemistry laboratories. The experiment illustrates the separation of polypeptides by a step gradient elution using a single pump instrument with no gradient attachments. Discusses instrumentation, analysis, a sample preparation, and results. (CW)

  6. FORMATION OF PROTOPLASTS FROM STREPTOCOCCUS FAECALIS BY LYSOZYME1

    PubMed Central

    Bibb, William R.; Straughn, W. R.

    1962-01-01

    Bibb, William R. (University of North Carolina, Chapel Hill) and W. R. Straughn. Formation of protoplasts from Streptococcus faecalis by lysozyme. J. Bacteriol. 84:1094–1098. 1962.—Incubation of whole cells of Streptococcus faecalis F24 in the presence of the crystalline egg-white lysozyme and appropriate sucrose concentration resulted in the formation of discrete spherical structures. On dilution, these osmotically fragile structures lysed immediately. Methyl pentose determinations on isolated cell walls and protoplast membranes verified the presence of rhamnose in the cell walls and its essentially complete absence in protoplast membranes. Cell walls were rendered soluble by lysozyme. After lysozyme treatment of cell walls, 96% of the rhamnose present was not sedimented by centrifugation at 12,500 × g for 30 min. No cell-wall structures were recognized by phasecontrast or electron microscopy. After direct lysis of whole cells of S. faecalis F24 by lysozyme, protoplast membranes were isolated. It is concluded that, in the strain of group D streptococcus studied, lysozyme effectively removes the cell wall. Images PMID:13968087

  7. Structural study of lysozyme in two ionic liquids at cryogenic temperature

    NASA Astrophysics Data System (ADS)

    Yoshimura, Yukihiro; Takekiyo, Takahiro; Mori, Takahiro

    2016-11-01

    We have investigated the structure and activity of chicken egg-white lysozyme in aqueous solutions of two typical ionic liquids, 1-butyl-3-methylimidazolium chloride and ethylammonium nitrate, at cryogenic temperature. An increase in structural disorder due to the unfolding and a decrease in the α-helical structure of lysozyme were noticeable upon glass formation. However, a decrease in the structural stability after cooling was less than that before cooling. The secondary and tertiary structures showed good reversibility upon cooling to 77 K and then reverting back to ambient temperature. We discussed an influence of a cooling upon the structure in aqueous ionic liquid solutions.

  8. Impact of casein and egg white proteins on the structure of wheat gluten-based protein-rich food.

    PubMed

    Wouters, Arno G B; Rombouts, Ine; Lagrain, Bert; Delcour, Jan A

    2016-02-01

    There is a growing interest in texturally and nutritionally satisfying vegetable alternatives to meat. Wheat gluten proteins have unique functional properties but a poor nutritional value in comparison to animal proteins. This study investigated the potential of egg white and bovine milk casein with well-balanced amino acid composition to increase the quality of wheat gluten-based protein-rich foods. Heating a wheat gluten (51.4 g)-water (100.0 mL) blend for 120 min at 100 °C increased its firmness less than heating a wheat gluten (33.0 g)-freeze-dried egg white (16.8 g)-water (100.0 mL) blend. In contrast, the addition of casein to the gluten-water blend negatively impacted firmness after heating. Firmness was correlated with loss of protein extractability in sodium dodecyl sulfate containing medium during heating, which was higher with egg white than with casein. Even more, heat-induced polymerization of the gluten-water blend with egg white but not with casein was greater than expected from the losses in extractability of gluten and egg white on their own. Structure formation was favored by mixing gluten with egg white but not with casein. These observations were linked to the intrinsic polymerization behavior of egg white and casein, but also to their interaction with gluten. Thus not all nutritionally suitable proteins can be used for enrichment of gluten-based protein-rich foods. © 2015 Society of Chemical Industry.

  9. Effect of dry heating on the microbiological quality, functional properties, and natural bacteriostatic ability of egg white after reconstitution.

    PubMed

    Baron, Florence; Nau, Françoise; Guérin-Dubiard, Catherine; Gonnet, Fabienne; Dubois, Jean-Jacques; Gautier, Michel

    2003-05-01

    Spray-dried egg white (powder) is widely used in the food industry because of its variety of functional properties and its practical advantages. Moreover, egg white powder is generally considered safe because it can withstand high temperatures that allow for the destruction of all pathogens, especially Salmonella. In France, two types of treatments are used to improve the functional properties (whipping and gelling) of dried egg white: standard storage at 67 degrees C for about 15 days and storage at 75 to 80 degrees C for 15 days. The objective of this study was to investigate the effects of two dry-heating treatments (storage at 67 and 75 degrees C for 15 days) on the subsequent ability of egg white to resist Salmonella growth after reconstitution. The impact on the endogenous microflora of the powder and on its functional properties was also considered. Both dry-heating treatments were efficient in destroying a large number of Salmonella. Dry heating at 75 degrees C affected the bacteriostatic ability of reconstituted egg white to a greater extent than did dry heating at 67 degrees C. This loss of bacteriostatic ability could be attributable to the thermal denaturation of ovotransferrin, resulting in a reduction in its activity as an iron chelator. However, dry heating at 75 degrees C resulted in improved functional properties. Ultimately, no complete compromise between better functional quality and the preservation of the bacteriostatic ability of egg white after reconstitution is possible. Our results underline the importance of the use of hygienic conditions with egg white powder, especially with powder subjected to high-temperature treatments.

  10. Antioxidant Effect and Functional Properties of Hydrolysates Derived from Egg-White Protein

    PubMed Central

    Cho, Dae-Yeon; Jo, Kyungae; Cho, So Young; Kim, Jin Man; Lim, Kwangsei; Suh, Hyung Joo

    2014-01-01

    This study utilized commercially available proteolytic enzymes to prepare egg-white protein hydrolysates (EPHs) with different degrees of hydrolysis. The antioxidant effect and functionalities of the resultant products were then investigated. Treatment with Neutrase yielded the most α-amino groups (6.52 mg/mL). Alcalase, Flavourzyme, Protamex, and Ficin showed similar degrees of α-amino group liberation (3.19-3.62 mg/mL). Neutrase treatment also resulted in the highest degree of hydrolysis (23.4%). Alcalase and Ficin treatment resulted in similar degrees of hydrolysis. All hydrolysates, except for the Flavourzyme hydrolysate, had greater radical scavenging activity than the control. The Neutrase hydrolysate showed the highest 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity (IC50=3.6mg/mL). Therefore, Neutrase was identified as the optimal enzyme for hydrolyzing egg-white protein to yield antioxidant peptides. During Neutrase hydrolysis, the reaction rate was rapid over the first 4 h, and then subsequently declined. The IC50 value was lowest after the first hour (2.99 mg/mL). The emulsifying activity index (EAI) of EPH treated with Neutrase decreased, as the pH decreased. The EPH foaming capacity was maximal at pH 3.6, and decreased at an alkaline pH. Digestion resulted in significantly higher 1,1-diphenyl-2-picrylhydrazyl (DPPH) and ABTS radical scavenging activity. The active peptides released from egg-white protein showed antioxidative activities on ABTS and DHHP radical. Thus, this approach may be useful for the preparation of potent antioxidant products. PMID:26761178

  11. An RNA aptamer possessing a novel monovalent cation-mediated fold inhibits lysozyme catalysis by inhibiting the binding of long natural substrates.

    PubMed

    Padlan, Camille S; Malashkevich, Vladimir N; Almo, Steve C; Levy, Matthew; Brenowitz, Michael; Girvin, Mark E

    2014-04-01

    RNA aptamers are being developed as inhibitors of macromolecular and cellular function, diagnostic tools, and potential therapeutics. Our understanding of the physical nature of this emerging class of nucleic acid-protein complexes is limited; few atomic resolution structures have been reported for aptamers bound to their protein target. Guided by chemical mapping, we systematically minimized an RNA aptamer (Lys1) selected against hen egg white lysozyme. The resultant 59-nucleotide compact aptamer (Lys1.2minE) retains nanomolar binding affinity and the ability to inhibit lysozyme's catalytic activity. Our 2.0-Å crystal structure of the aptamer-protein complex reveals a helical stem stabilizing two loops to form a protein binding platform that binds lysozyme distal to the catalytic cleft. This structure along with complementary solution analyses illuminate a novel protein-nucleic acid interface; (1) only 410 Å(2) of solvent accessible surface are buried by aptamer binding; (2) an unusually small fraction (∼18%) of the RNA-protein interaction is electrostatic, consistent with the limited protein phosphate backbone contacts observed in the structure; (3) a single Na(+) stabilizes the loops that constitute the protein-binding platform, and consistent with this observation, Lys1.2minE-lysozyme complex formation takes up rather than displaces cations at low ionic strength; (4) Lys1.2minE inhibits catalysis of large cell wall substrates but not catalysis of small model substrates; and (5) the helical stem of Lys1.2minE can be shortened to four