Eigenvalue and eigenvector sensitivity and approximate analysis for repeated eigenvalue problems
NASA Technical Reports Server (NTRS)
Hou, Gene J. W.; Kenny, Sean P.
1991-01-01
A set of computationally efficient equations for eigenvalue and eigenvector sensitivity analysis are derived, and a method for eigenvalue and eigenvector approximate analysis in the presence of repeated eigenvalues is presented. The method developed for approximate analysis involves a reparamaterization of the multivariable structural eigenvalue problem in terms of a single positive-valued parameter. The resulting equations yield first-order approximations of changes in both the eigenvalues and eigenvectors associated with the repeated eigenvalue problem. Examples are given to demonstrate the application of such equations for sensitivity and approximate analysis.
NASA Technical Reports Server (NTRS)
Antar, B. N.
1976-01-01
A numerical technique is presented for locating the eigenvalues of two point linear differential eigenvalue problems. The technique is designed to search for complex eigenvalues belonging to complex operators. With this method, any domain of the complex eigenvalue plane could be scanned and the eigenvalues within it, if any, located. For an application of the method, the eigenvalues of the Orr-Sommerfeld equation of the plane Poiseuille flow are determined within a specified portion of the c-plane. The eigenvalues for alpha = 1 and R = 10,000 are tabulated and compared for accuracy with existing solutions.
Krein signature for instability of PT-symmetric states
NASA Astrophysics Data System (ADS)
Chernyavsky, Alexander; Pelinovsky, Dmitry E.
2018-05-01
Krein quantity is introduced for isolated neutrally stable eigenvalues associated with the stationary states in the PT-symmetric nonlinear Schrödinger equation. Krein quantity is real and nonzero for simple eigenvalues but it vanishes if two simple eigenvalues coalesce into a defective eigenvalue. A necessary condition for bifurcation of unstable eigenvalues from the defective eigenvalue is proved. This condition requires the two simple eigenvalues before the coalescence point to have opposite Krein signatures. The theory is illustrated with several numerical examples motivated by recent publications in physics literature.
Accounting for Sampling Error in Genetic Eigenvalues Using Random Matrix Theory.
Sztepanacz, Jacqueline L; Blows, Mark W
2017-07-01
The distribution of genetic variance in multivariate phenotypes is characterized by the empirical spectral distribution of the eigenvalues of the genetic covariance matrix. Empirical estimates of genetic eigenvalues from random effects linear models are known to be overdispersed by sampling error, where large eigenvalues are biased upward, and small eigenvalues are biased downward. The overdispersion of the leading eigenvalues of sample covariance matrices have been demonstrated to conform to the Tracy-Widom (TW) distribution. Here we show that genetic eigenvalues estimated using restricted maximum likelihood (REML) in a multivariate random effects model with an unconstrained genetic covariance structure will also conform to the TW distribution after empirical scaling and centering. However, where estimation procedures using either REML or MCMC impose boundary constraints, the resulting genetic eigenvalues tend not be TW distributed. We show how using confidence intervals from sampling distributions of genetic eigenvalues without reference to the TW distribution is insufficient protection against mistaking sampling error as genetic variance, particularly when eigenvalues are small. By scaling such sampling distributions to the appropriate TW distribution, the critical value of the TW statistic can be used to determine if the magnitude of a genetic eigenvalue exceeds the sampling error for each eigenvalue in the spectral distribution of a given genetic covariance matrix. Copyright © 2017 by the Genetics Society of America.
NASA Technical Reports Server (NTRS)
Kenny, Sean P.; Hou, Gene J. W.
1994-01-01
A method for eigenvalue and eigenvector approximate analysis for the case of repeated eigenvalues with distinct first derivatives is presented. The approximate analysis method developed involves a reparameterization of the multivariable structural eigenvalue problem in terms of a single positive-valued parameter. The resulting equations yield first-order approximations to changes in the eigenvalues and the eigenvectors associated with the repeated eigenvalue problem. This work also presents a numerical technique that facilitates the definition of an eigenvector derivative for the case of repeated eigenvalues with repeated eigenvalue derivatives (of all orders). Examples are given which demonstrate the application of such equations for sensitivity and approximate analysis. Emphasis is placed on the application of sensitivity analysis to large-scale structural and controls-structures optimization problems.
Cluster structure in the correlation coefficient matrix can be characterized by abnormal eigenvalues
NASA Astrophysics Data System (ADS)
Nie, Chun-Xiao
2018-02-01
In a large number of previous studies, the researchers found that some of the eigenvalues of the financial correlation matrix were greater than the predicted values of the random matrix theory (RMT). Here, we call these eigenvalues as abnormal eigenvalues. In order to reveal the hidden meaning of these abnormal eigenvalues, we study the toy model with cluster structure and find that these eigenvalues are related to the cluster structure of the correlation coefficient matrix. In this paper, model-based experiments show that in most cases, the number of abnormal eigenvalues of the correlation matrix is equal to the number of clusters. In addition, empirical studies show that the sum of the abnormal eigenvalues is related to the clarity of the cluster structure and is negatively correlated with the correlation dimension.
Structure preserving parallel algorithms for solving the Bethe–Salpeter eigenvalue problem
Shao, Meiyue; da Jornada, Felipe H.; Yang, Chao; ...
2015-10-02
The Bethe–Salpeter eigenvalue problem is a dense structured eigenvalue problem arising from discretized Bethe–Salpeter equation in the context of computing exciton energies and states. A computational challenge is that at least half of the eigenvalues and the associated eigenvectors are desired in practice. In this paper, we establish the equivalence between Bethe–Salpeter eigenvalue problems and real Hamiltonian eigenvalue problems. Based on theoretical analysis, structure preserving algorithms for a class of Bethe–Salpeter eigenvalue problems are proposed. We also show that for this class of problems all eigenvalues obtained from the Tamm–Dancoff approximation are overestimated. In order to solve large scale problemsmore » of practical interest, we discuss parallel implementations of our algorithms targeting distributed memory systems. Finally, several numerical examples are presented to demonstrate the efficiency and accuracy of our algorithms.« less
Comparison of scalar measures used in magnetic resonance diffusion tensor imaging.
Bahn, M M
1999-07-01
The tensors derived from diffusion tensor imaging describe complex diffusion in tissues. However, it is difficult to compare tensors directly or to produce images that contain all of the information of the tensor. Therefore, it is convenient to produce scalar measures that extract desired aspects of the tensor. These measures map the three-dimensional eigenvalues of the diffusion tensor into scalar values. The measures impose an order on eigenvalue space. Many invariant scalar measures have been introduced in the literature. In the present manuscript, a general approach for producing invariant scalar measures is introduced. Because it is often difficult to determine in clinical practice which of the many measures is best to apply to a given situation, two formalisms are introduced for the presentation, definition, and comparison of measures applied to eigenvalues: (1) normalized eigenvalue space, and (2) parametric eigenvalue transformation plots. All of the anisotropy information contained in the three eigenvalues can be retained and displayed in a two-dimensional plot, the normalized eigenvalue plot. An example is given of how to determine the best measure to use for a given situation by superimposing isometric contour lines from various anisotropy measures on plots of actual measured eigenvalue data points. Parametric eigenvalue transformation plots allow comparison of how different measures impose order on normalized eigenvalue space to determine whether the measures are equivalent and how the measures differ. These formalisms facilitate the comparison of scalar invariant measures for diffusion tensor imaging. Normalized eigenvalue space allows presentation of eigenvalue anisotropy information. Copyright 1999 Academic Press.
NASA Astrophysics Data System (ADS)
Shy, L. Y.; Eichinger, B. E.
1989-05-01
Computer simulations of the formation of trifunctional and tetrafunctional polydimethyl-siloxane networks that are crosslinked by condensation of telechelic chains with multifunctional crosslinking agents have been carried out on systems containing up to 1.05×106 chains. Eigenvalue spectra of Kirchhoff matrices for these networks have been evaluated at two levels of approximation: (1) inclusion of all midchain modes, and (2) suppression of midchain modes. By use of the recursion method of Haydock and Nex, we have been able to effectively diagonalize matrices with 730 498 rows and columns without actually constructing matrices of this size. The small eigenvalues have been computed by use of the Lanczos algorithm. We demonstrate the following results: (1) The smallest eigenvalues (with chain modes suppressed) vary as μ-2/3 for sufficiently large μ, where μ is the number of junctions in the network; (2) the eigenvalue spectra of the Kirchhoff matrices are well described by McKay's theory for random regular graphs in the range of the larger eigenvalues, but there are significant departures in the region of small eigenvalues where computed spectra have many more small eigenvalues than random regular graphs; (3) the smallest eigenvalues vary as n-1.78 where n is the number of Rouse beads in the chains that comprise the network. Computations are done for both monodisperse and polydisperse chain length distributions. Large eigenvalues associated with localized motion of the junctions are found as predicted by theory. The relationship between the small eigenvalues and the equilibrium modulus of elasticity is discussed, as is the relationship between viscoelasticity and the band edge of the spectrum.
NASA Technical Reports Server (NTRS)
Jara-Almonte, J.; Mitchell, L. D.
1988-01-01
The paper covers two distinct parts: theory and application. The goal of this work was the reduction of model size with an increase in eigenvalue/vector accuracy. This method is ideal for the condensation of large truss- or beam-type structures. The theoretical approach involves the conversion of a continuum transfer matrix beam element into an 'Exact' dynamic stiffness element. This formulation is implemented in a finite element environment. This results in the need to solve a transcendental eigenvalue problem. Once the eigenvalue is determined the eigenvectors can be reconstructed with any desired spatial precision. No discretization limitations are imposed on the reconstruction. The results of such a combined finite element and transfer matrix formulation is a much smaller FEM eigenvalue problem. This formulation has the ability to extract higher eigenvalues as easily and as accurately as lower eigenvalues. Moreover, one can extract many more eigenvalues/vectors from the model than the number of degrees of freedom in the FEM formulation. Typically, the number of eigenvalues accurately extractable via the 'Exact' element method are at least 8 times the number of degrees of freedom. In contrast, the FEM usually extracts one accurate (within 5 percent) eigenvalue for each 3-4 degrees of freedom. The 'Exact' element results in a 20-30 improvement in the number of accurately extractable eigenvalues and eigenvectors.
Modal interaction in linear dynamic systems near degenerate modes
NASA Technical Reports Server (NTRS)
Afolabi, D.
1991-01-01
In various problems in structural dynamics, the eigenvalues of a linear system depend on a characteristic parameter of the system. Under certain conditions, two eigenvalues of the system approach each other as the characteristic parameter is varied, leading to modal interaction. In a system with conservative coupling, the two eigenvalues eventually repel each other, leading to the curve veering effect. In a system with nonconservative coupling, the eigenvalues continue to attract each other, eventually colliding, leading to eigenvalue degeneracy. Modal interaction is studied in linear systems with conservative and nonconservative coupling using singularity theory, sometimes known as catastrophe theory. The main result is this: eigenvalue degeneracy is a cause of instability; in systems with conservative coupling, it induces only geometric instability, whereas in systems with nonconservative coupling, eigenvalue degeneracy induces both geometric and elastic instability. Illustrative examples of mechanical systems are given.
NASA Astrophysics Data System (ADS)
Cakoni, Fioralba; Haddar, Houssem
2013-10-01
In inverse scattering theory, transmission eigenvalues can be seen as the extension of the notion of resonant frequencies for impenetrable objects to the case of penetrable dielectrics. The transmission eigenvalue problem is a relatively late arrival to the spectral theory of partial differential equations. Its first appearance was in 1986 in a paper by Kirsch who was investigating the denseness of far-field patterns for scattering solutions of the Helmholtz equation or, in more modern terminology, the injectivity of the far-field operator [1]. The paper of Kirsch was soon followed by a more systematic study by Colton and Monk in the context of developing the dual space method for solving the inverse scattering problem for acoustic waves in an inhomogeneous medium [2]. In this paper they showed that for a spherically stratified media transmission eigenvalues existed and formed a discrete set. Numerical examples were also given showing that in principle transmission eigenvalues could be determined from the far-field data. This first period of interest in transmission eigenvalues was concluded with papers by Colton et al in 1989 [3] and Rynne and Sleeman in 1991 [4] showing that for an inhomogeneous medium (not necessarily spherically stratified) transmission eigenvalues, if they existed, formed a discrete set. For the next seventeen years transmission eigenvalues were ignored. This was mainly due to the fact that, with the introduction of various sampling methods to determine the shape of an inhomogeneous medium from far-field data, transmission eigenvalues were something to be avoided and hence the fact that transmission eigenvalues formed at most a discrete set was deemed to be sufficient. In addition, questions related to the existence of transmission eigenvalues or the structure of associated eigenvectors were recognized as being particularly difficult due to the nonlinearity of the eigenvalue problem and the special structure of the associated transmission eigenvalue problem. The need to answer these questions became important after a series of papers by Cakoni et al [5], and Cakoni et al [6] suggesting that these transmission eigenvalues could be used to obtain qualitative information about the material properties of the scattering object from far-field data. The first answer to the existence of transmission eigenvalues in the general case was given in 2008 when Päivärinta and Sylvester showed the existence of transmission eigenvalues for the index of refraction sufficiently large [7] followed in 2010 by the paper of Cakoni et al who removed the size restriction on the index of refraction [8]. More importantly, in the latter it was shown that transmission eigenvalues yielded qualitative information on the material properties of the scattering object and Cakoni et al established in [9] that transmission eigenvalues could be determined from the Tikhonov regularized solution of the far-field equation. Since the appearance of these papers there has been an explosion of interest in the transmission eigenvalue problem (we refer the reader to our recent survey paper [10] for a detailed account of the developments in this field up to 2012) and the papers in this special issue are representative of the myriad directions that this research has taken. Indeed, we are happy to see that many open theoretical and numerical questions raised in [10] have been answered (totally or partially) in the contributions of this special issue: the existence of transmission eigenvalues with minimal assumptions on the contrast, the numerical evaluation of transmission eigenvalues, the inverse spectral problem, applications to non-destructive testing, etc. In addition to these topics, many other new investigations and research directions have been proposed as we shall see in the brief content summary below. A number of papers in this special issue are concerned with the question of existence of transmission eigenvalues and the structure of the associated transmission eigenfunctions. The three papers by respectively Robbiano [11], Blasten and Päivärinta [12], and Lakshtanov and Vainberg [13] provide new complementary results on the existence of transmission eigenvalues for the scalar problem under weak assumptions on the (possibly complex valued) refractive index that mainly stipulates that the contrast does not change sign on the boundary. It is interesting here to see three different new methods to obtain these results. On the other hand, the paper by Bonnet-Ben Dhia and Chesnel [14] addresses the Fredholm properties of the interior transmission problem when the contrast changes sign on the boundary, exhibiting cases where this property fails. Using more standard approaches, the existence and structure of transmission eigenvalues are analyzed in the paper by Delbary [15] for the case of frequency dependent materials in the context of Maxwell's equations, whereas the paper by Vesalainen [16] initiates the study of the transmission eigenvalue problem in unbounded domains by considering the transmission eigenvalues for Schrödinger equation with non-compactly supported potential. The paper by Monk and Selgas [17] addresses the case where the dielectric is mounted on a perfect conductor and provides some numerical examples of the localization of associated eigenvalues using the linear sampling method. A series of papers then addresses the question of localization of transmission eigenvalues and the associated inverse spectral problem for spherically stratified media. More specifically, the paper by Colton and Leung [18] provides new results on complex transmission eigenvalues and a new proof for uniqueness of a solution to the inverse spectral problem, whereas the paper by Sylvester [19] provides sharp results on how to locate all the transmission eigenvalues associated with angular independent eigenfunctions when the index of refraction is constant. The paper by Gintides and Pallikarakis [20] investigates an iterative least square method to identify the spherically stratified index of refraction from transmission eigenvalues. On the characterization of transmission eigenvalues in terms of far-field measurements, a promising new result is obtained by Kirsch and Lechleiter [21] showing how one can identify the transmission eigenvalues using the eigenvalues of the scattering operator which are available in terms of measured scattering data. In the paper by Kleefeld [22], an accurate method for computing transmission eigenvalues based on a surface integral formulation of the interior transmission problem and numerical methods for nonlinear eigenvalue problems is proposed and numerically validated for the scalar problem in three dimensions. On the other hand, the paper by Sun and Xu [23] investigates the computation of transmission eigenvalues for Maxwell's equations using a standard iterative method associated with a variational formulation of the interior transmission problem with an emphasis on the effect of anisotropy on transmission eigenvalues. From the perspective of using transmission eigenvalues in non-destructive testing, the paper by Cakoni and Moskow [24] investigates the asymptotic behavior of transmission eigenvalues with respect to small inhomogeneities. The paper by Nakamura and Wang [25] investigates the linear sampling method for the time dependent heat equation and analyses the interior transmission problem associated with this equation. Finally, in the paper by Finch and Hickmann [26], the spectrum of the interior transmission problem is related to the unique determination of the acoustic properties of a body in thermoacoustic imaging. We hope that this collection of papers will stimulate further research in the rapidly growing area of transmission eigenvalues and inverse scattering theory.
NASA Astrophysics Data System (ADS)
Audibert, Lorenzo; Cakoni, Fioralba; Haddar, Houssem
2017-12-01
In this paper we develop a general mathematical framework to determine interior eigenvalues from a knowledge of the modified far field operator associated with an unknown (anisotropic) inhomogeneity. The modified far field operator is obtained by subtracting from the measured far field operator the computed far field operator corresponding to a well-posed scattering problem depending on one (possibly complex) parameter. Injectivity of this modified far field operator is related to an appropriate eigenvalue problem whose eigenvalues can be determined from the scattering data, and thus can be used to obtain information about material properties of the unknown inhomogeneity. We discuss here two examples of such modification leading to a Steklov eigenvalue problem, and a new type of the transmission eigenvalue problem. We present some numerical examples demonstrating the viability of our method for determining the interior eigenvalues form far field data.
Use of SCALE Continuous-Energy Monte Carlo Tools for Eigenvalue Sensitivity Coefficient Calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perfetti, Christopher M; Rearden, Bradley T
2013-01-01
The TSUNAMI code within the SCALE code system makes use of eigenvalue sensitivity coefficients for an extensive number of criticality safety applications, such as quantifying the data-induced uncertainty in the eigenvalue of critical systems, assessing the neutronic similarity between different critical systems, and guiding nuclear data adjustment studies. The need to model geometrically complex systems with improved fidelity and the desire to extend TSUNAMI analysis to advanced applications has motivated the development of a methodology for calculating sensitivity coefficients in continuous-energy (CE) Monte Carlo applications. The CLUTCH and Iterated Fission Probability (IFP) eigenvalue sensitivity methods were recently implemented in themore » CE KENO framework to generate the capability for TSUNAMI-3D to perform eigenvalue sensitivity calculations in continuous-energy applications. This work explores the improvements in accuracy that can be gained in eigenvalue and eigenvalue sensitivity calculations through the use of the SCALE CE KENO and CE TSUNAMI continuous-energy Monte Carlo tools as compared to multigroup tools. The CE KENO and CE TSUNAMI tools were used to analyze two difficult models of critical benchmarks, and produced eigenvalue and eigenvalue sensitivity coefficient results that showed a marked improvement in accuracy. The CLUTCH sensitivity method in particular excelled in terms of efficiency and computational memory requirements.« less
Covariance expressions for eigenvalue and eigenvector problems
NASA Astrophysics Data System (ADS)
Liounis, Andrew J.
There are a number of important scientific and engineering problems whose solutions take the form of an eigenvalue--eigenvector problem. Some notable examples include solutions to linear systems of ordinary differential equations, controllability of linear systems, finite element analysis, chemical kinetics, fitting ellipses to noisy data, and optimal estimation of attitude from unit vectors. In many of these problems, having knowledge of the eigenvalue and eigenvector Jacobians is either necessary or is nearly as important as having the solution itself. For instance, Jacobians are necessary to find the uncertainty in a computed eigenvalue or eigenvector estimate. This uncertainty, which is usually represented as a covariance matrix, has been well studied for problems similar to the eigenvalue and eigenvector problem, such as singular value decomposition. There has been substantially less research on the covariance of an optimal estimate originating from an eigenvalue-eigenvector problem. In this thesis we develop two general expressions for the Jacobians of eigenvalues and eigenvectors with respect to the elements of their parent matrix. The expressions developed make use of only the parent matrix and the eigenvalue and eigenvector pair under consideration. In addition, they are applicable to any general matrix (including complex valued matrices, eigenvalues, and eigenvectors) as long as the eigenvalues are simple. Alongside this, we develop expressions that determine the uncertainty in a vector estimate obtained from an eigenvalue-eigenvector problem given the uncertainty of the terms of the matrix. The Jacobian expressions developed are numerically validated with forward finite, differencing and the covariance expressions are validated using Monte Carlo analysis. Finally, the results from this work are used to determine covariance expressions for a variety of estimation problem examples and are also applied to the design of a dynamical system.
Eigenvalues of the Wentzell-Laplace operator and of the fourth order Steklov problems
NASA Astrophysics Data System (ADS)
Xia, Changyu; Wang, Qiaoling
2018-05-01
We prove a sharp upper bound and a lower bound for the first nonzero eigenvalue of the Wentzell-Laplace operator on compact manifolds with boundary and an isoperimetric inequality for the same eigenvalue in the case where the manifold is a bounded domain in a Euclidean space. We study some fourth order Steklov problems and obtain isoperimetric upper bound for the first eigenvalue of them. We also find all the eigenvalues and eigenfunctions for two kind of fourth order Steklov problems on a Euclidean ball.
Finite-difference solution of the compressible stability eigenvalue problem
NASA Technical Reports Server (NTRS)
Malik, M. R.
1982-01-01
A compressible stability analysis computer code is developed. The code uses a matrix finite difference method for local eigenvalue solution when a good guess for the eigenvalue is available and is significantly more computationally efficient than the commonly used initial value approach. The local eigenvalue search procedure also results in eigenfunctions and, at little extra work, group velocities. A globally convergent eigenvalue procedure is also developed which may be used when no guess for the eigenvalue is available. The global problem is formulated in such a way that no unstable spurious modes appear so that the method is suitable for use in a black box stability code. Sample stability calculations are presented for the boundary layer profiles of a Laminar Flow Control (LFC) swept wing.
2017-09-01
VALIDATION OF MODEL UPDATING AND DAMAGE DETECTION VIA EIGENVALUE SENSITIVITY METHODS WITH ARTIFICIAL BOUNDARY CONDITIONS by Matthew D. Bouwense...VALIDATION OF MODEL UPDATING AND DAMAGE DETECTION VIA EIGENVALUE SENSITIVITY METHODS WITH ARTIFICIAL BOUNDARY CONDITIONS 5. FUNDING NUMBERS 6. AUTHOR...unlimited. EXPERIMENTAL VALIDATION OF MODEL UPDATING AND DAMAGE DETECTION VIA EIGENVALUE SENSITIVITY METHODS WITH ARTIFICIAL BOUNDARY
ERIC Educational Resources Information Center
Green, Samuel B.; Thompson, Marilyn S.; Levy, Roy; Lo, Wen-Juo
2015-01-01
Traditional parallel analysis (T-PA) estimates the number of factors by sequentially comparing sample eigenvalues with eigenvalues for randomly generated data. Revised parallel analysis (R-PA) sequentially compares the "k"th eigenvalue for sample data to the "k"th eigenvalue for generated data sets, conditioned on"k"-…
EvArnoldi: A New Algorithm for Large-Scale Eigenvalue Problems.
Tal-Ezer, Hillel
2016-05-19
Eigenvalues and eigenvectors are an essential theme in numerical linear algebra. Their study is mainly motivated by their high importance in a wide range of applications. Knowledge of eigenvalues is essential in quantum molecular science. Solutions of the Schrödinger equation for the electrons composing the molecule are the basis of electronic structure theory. Electronic eigenvalues compose the potential energy surfaces for nuclear motion. The eigenvectors allow calculation of diople transition matrix elements, the core of spectroscopy. The vibrational dynamics molecule also requires knowledge of the eigenvalues of the vibrational Hamiltonian. Typically in these problems, the dimension of Hilbert space is huge. Practically, only a small subset of eigenvalues is required. In this paper, we present a highly efficient algorithm, named EvArnoldi, for solving the large-scale eigenvalues problem. The algorithm, in its basic formulation, is mathematically equivalent to ARPACK ( Sorensen , D. C. Implicitly Restarted Arnoldi/Lanczos Methods for Large Scale Eigenvalue Calculations ; Springer , 1997 ; Lehoucq , R. B. ; Sorensen , D. C. SIAM Journal on Matrix Analysis and Applications 1996 , 17 , 789 ; Calvetti , D. ; Reichel , L. ; Sorensen , D. C. Electronic Transactions on Numerical Analysis 1994 , 2 , 21 ) (or Eigs of Matlab) but significantly simpler.
Eigenvalue density of cross-correlations in Sri Lankan financial market
NASA Astrophysics Data System (ADS)
Nilantha, K. G. D. R.; Ranasinghe; Malmini, P. K. C.
2007-05-01
We apply the universal properties with Gaussian orthogonal ensemble (GOE) of random matrices namely spectral properties, distribution of eigenvalues, eigenvalue spacing predicted by random matrix theory (RMT) to compare cross-correlation matrix estimators from emerging market data. The daily stock prices of the Sri Lankan All share price index and Milanka price index from August 2004 to March 2005 were analyzed. Most eigenvalues in the spectrum of the cross-correlation matrix of stock price changes agree with the universal predictions of RMT. We find that the cross-correlation matrix satisfies the universal properties of the GOE of real symmetric random matrices. The eigen distribution follows the RMT predictions in the bulk but there are some deviations at the large eigenvalues. The nearest-neighbor spacing and the next nearest-neighbor spacing of the eigenvalues were examined and found that they follow the universality of GOE. RMT with deterministic correlations found that each eigenvalue from deterministic correlations is observed at values, which are repelled from the bulk distribution.
NASA Technical Reports Server (NTRS)
Halyo, Nesim
1987-01-01
Some measures of eigenvalue and eigenvector sensitivity applicable to both continuous and discrete linear systems are developed and investigated. An infinite series representation is developed for the eigenvalues and eigenvectors of a system. The coefficients of the series are coupled, but can be obtained recursively using a nonlinear coupled vector difference equation. A new sensitivity measure is developed by considering the effects of unmodeled dynamics. It is shown that the sensitivity is high when any unmodeled eigenvalue is near a modeled eigenvalue. Using a simple example where the sensor dynamics have been neglected, it is shown that high feedback gains produce high eigenvalue/eigenvector sensitivity. The smallest singular value of the return difference is shown not to reflect eigenvalue sensitivity since it increases with the feedback gains. Using an upper bound obtained from the infinite series, a procedure to evaluate whether the sensitivity to parameter variations is within given acceptable bounds is developed and demonstrated by an example.
Calculation of transmission probability by solving an eigenvalue problem
NASA Astrophysics Data System (ADS)
Bubin, Sergiy; Varga, Kálmán
2010-11-01
The electron transmission probability in nanodevices is calculated by solving an eigenvalue problem. The eigenvalues are the transmission probabilities and the number of nonzero eigenvalues is equal to the number of open quantum transmission eigenchannels. The number of open eigenchannels is typically a few dozen at most, thus the computational cost amounts to the calculation of a few outer eigenvalues of a complex Hermitian matrix (the transmission matrix). The method is implemented on a real space grid basis providing an alternative to localized atomic orbital based quantum transport calculations. Numerical examples are presented to illustrate the efficiency of the method.
A numerical projection technique for large-scale eigenvalue problems
NASA Astrophysics Data System (ADS)
Gamillscheg, Ralf; Haase, Gundolf; von der Linden, Wolfgang
2011-10-01
We present a new numerical technique to solve large-scale eigenvalue problems. It is based on the projection technique, used in strongly correlated quantum many-body systems, where first an effective approximate model of smaller complexity is constructed by projecting out high energy degrees of freedom and in turn solving the resulting model by some standard eigenvalue solver. Here we introduce a generalization of this idea, where both steps are performed numerically and which in contrast to the standard projection technique converges in principle to the exact eigenvalues. This approach is not just applicable to eigenvalue problems encountered in many-body systems but also in other areas of research that result in large-scale eigenvalue problems for matrices which have, roughly speaking, mostly a pronounced dominant diagonal part. We will present detailed studies of the approach guided by two many-body models.
NASA Astrophysics Data System (ADS)
Gorgizadeh, Shahnam; Flisgen, Thomas; van Rienen, Ursula
2018-07-01
Generalized eigenvalue problems are standard problems in computational sciences. They may arise in electromagnetic fields from the discretization of the Helmholtz equation by for example the finite element method (FEM). Geometrical perturbations of the structure under concern lead to a new generalized eigenvalue problems with different system matrices. Geometrical perturbations may arise by manufacturing tolerances, harsh operating conditions or during shape optimization. Directly solving the eigenvalue problem for each perturbation is computationally costly. The perturbed eigenpairs can be approximated using eigenpair derivatives. Two common approaches for the calculation of eigenpair derivatives, namely modal superposition method and direct algebraic methods, are discussed in this paper. Based on the direct algebraic methods an iterative algorithm is developed for efficiently calculating the eigenvalues and eigenvectors of the perturbed geometry from the eigenvalues and eigenvectors of the unperturbed geometry.
NASA Astrophysics Data System (ADS)
Julaiti, Alafate; Wu, Bin; Zhang, Zhongzhi
2013-05-01
The eigenvalues of the normalized Laplacian matrix of a network play an important role in its structural and dynamical aspects associated with the network. In this paper, we study the spectra and their applications of normalized Laplacian matrices of a family of fractal trees and dendrimers modeled by Cayley trees, both of which are built in an iterative way. For the fractal trees, we apply the spectral decimation approach to determine analytically all the eigenvalues and their corresponding multiplicities, with the eigenvalues provided by a recursive relation governing the eigenvalues of networks at two successive generations. For Cayley trees, we show that all their eigenvalues can be obtained by computing the roots of several small-degree polynomials defined recursively. By using the relation between normalized Laplacian spectra and eigentime identity, we derive the explicit solution to the eigentime identity for random walks on the two treelike networks, the leading scalings of which follow quite different behaviors. In addition, we corroborate the obtained eigenvalues and their degeneracies through the link between them and the number of spanning trees.
Multicomponent diffusion in basaltic melts at 1350 °C
NASA Astrophysics Data System (ADS)
Guo, Chenghuan; Zhang, Youxue
2018-05-01
Nine successful diffusion couple experiments were conducted in an 8-component SiO2-TiO2-Al2O3-FeO-MgO-CaO-Na2O-K2O system at ∼1350 °C and at 1 GPa, to study multicomponent diffusion in basaltic melts. At least 3 traverses were measured to obtain diffusion profiles for each experiment. Multicomponent diffusion matrix at 1350 °C was obtained by simultaneously fitting diffusion profiles of diffusion couple experiments. Furthermore, in order to better constrain the diffusion matrix and reconcile mineral dissolution data, mineral dissolution experiments in the literature and diffusion couple experiments from this study, were fit together. All features of diffusion profiles in both diffusion couple and mineral dissolution experiments were well reproduced by the diffusion matrix. Diffusion mechanism is inferred from eigenvectors of the diffusion matrix, and it shows that the diffusive exchange between network-formers SiO2 and Al2O3 is the slowest, the exchange of SiO2 with other oxide components is the second slowest with an eigenvalue that is only ∼10% larger, then the exchange between divalent oxide components and all the other oxide components is the third slowest with an eigenvalue that is twice the smallest eigenvalue, then the exchange of FeO + K2O with all the other oxide components is the fourth slowest with an eigenvalue that is 5 times the smallest eigenvalue, then the exchange of MgO with FeO + CaO is the third fastest with an eigenvalue that is 6.3 times the smallest eigenvalue, then the exchange of CaO + K2O with all the other oxide components is the second fastest with an eigenvalue that is 7.5 times the smallest eigenvalue, and the exchange of Na2O with all other oxide components is the fastest with an eigenvalue that is 31 times the smallest eigenvalue. The slowest and fastest eigenvectors are consistent with those for simpler systems in most literature. The obtained diffusion matrix was successfully applied to predict diffusion profiles during mineral dissolution in basaltic melts.
S4 solution of the transport equation for eigenvalues using Legendre polynomials
NASA Astrophysics Data System (ADS)
Öztürk, Hakan; Bülbül, Ahmet
2017-09-01
Numerical solution of the transport equation for monoenergetic neutrons scattered isotropically through the medium of a finite homogeneous slab is studied for the determination of the eigenvalues. After obtaining the discrete ordinates form of the transport equation, separated homogeneous and particular solutions are formed and then the eigenvalues are calculated using the Gauss-Legendre quadrature set. Then, the calculated eigenvalues for various values of the c0, the mean number of secondary neutrons per collision, are given in the tables.
Bethe-Salpeter Eigenvalue Solver Package (BSEPACK) v0.1
DOE Office of Scientific and Technical Information (OSTI.GOV)
SHAO, MEIYEU; YANG, CHAO
2017-04-25
The BSEPACK contains a set of subroutines for solving the Bethe-Salpeter Eigenvalue (BSE) problem. This type of problem arises in this study of optical excitation of nanoscale materials. The BSE problem is a structured non-Hermitian eigenvalue problem. The BSEPACK software can be used to compute all or subset of eigenpairs of a BSE Hamiltonian. It can also be used to compute the optical absorption spectrum without computing BSE eigenvalues and eigenvectors explicitly. The package makes use of the ScaLAPACK, LAPACK and BLAS.
Sturm-Liouville eigenproblems with an interior pole
NASA Technical Reports Server (NTRS)
Boyd, J. P.
1981-01-01
The eigenvalues and eigenfunctions of self-adjoint Sturm-Liouville problems with a simple pole on the interior of an interval are investigated. Three general theorems are proved, and it is shown that as n approaches infinity, the eigenfunctions more and more closely resemble those of an ordinary Sturm-Liouville problem. The low-order modes differ significantly from those of a nonsingular eigenproblem in that both eigenvalues and eigenfunctions are complex, and the eigenvalues for all small n may cluster about a common value in contrast to the widely separated eigenvalues of the corresponding nonsingular problem. In addition, the WKB is shown to be accurate for all n, and all eigenvalues of a normal one-dimensional Sturm-Liouville equation with nonperiodic boundary conditions are well separated.
Evaluation of the eigenvalue method in the solution of transient heat conduction problems
NASA Astrophysics Data System (ADS)
Landry, D. W.
1985-01-01
The eigenvalue method is evaluated to determine the advantages and disadvantages of the method as compared to fully explicit, fully implicit, and Crank-Nicolson methods. Time comparisons and accuracy comparisons are made in an effort to rank the eigenvalue method in relation to the comparison schemes. The eigenvalue method is used to solve the parabolic heat equation in multidimensions with transient temperatures. Extensions into three dimensions are made to determine the method's feasibility in handling large geometry problems requiring great numbers of internal mesh points. The eigenvalue method proves to be slightly better in accuracy than the comparison routines because of an exact treatment, as opposed to a numerical approximation, of the time derivative in the heat equation. It has the potential of being a very powerful routine in solving long transient type problems. The method is not well suited to finely meshed grid arrays or large regions because of the time and memory requirements necessary for calculating large sets of eigenvalues and eigenvectors.
Statistical properties of cross-correlation in the Korean stock market
NASA Astrophysics Data System (ADS)
Oh, G.; Eom, C.; Wang, F.; Jung, W.-S.; Stanley, H. E.; Kim, S.
2011-01-01
We investigate the statistical properties of the cross-correlation matrix between individual stocks traded in the Korean stock market using the random matrix theory (RMT) and observe how these affect the portfolio weights in the Markowitz portfolio theory. We find that the distribution of the cross-correlation matrix is positively skewed and changes over time. We find that the eigenvalue distribution of original cross-correlation matrix deviates from the eigenvalues predicted by the RMT, and the largest eigenvalue is 52 times larger than the maximum value among the eigenvalues predicted by the RMT. The β_{473} coefficient, which reflect the largest eigenvalue property, is 0.8, while one of the eigenvalues in the RMT is approximately zero. Notably, we show that the entropy function E(σ) with the portfolio risk σ for the original and filtered cross-correlation matrices are consistent with a power-law function, E( σ) σ^{-γ}, with the exponent γ 2.92 and those for Asian currency crisis decreases significantly.
A comparison of matrix methods for calculating eigenvalues in acoustically lined ducts
NASA Technical Reports Server (NTRS)
Watson, W.; Lansing, D. L.
1976-01-01
Three approximate methods - finite differences, weighted residuals, and finite elements - were used to solve the eigenvalue problem which arises in finding the acoustic modes and propagation constants in an absorptively lined two-dimensional duct without airflow. The matrix equations derived for each of these methods were solved for the eigenvalues corresponding to various values of wall impedance. Two matrix orders, 20 x 20 and 40 x 40, were used. The cases considered included values of wall admittance for which exact eigenvalues were known and for which several nearly equal roots were present. Ten of the lower order eigenvalues obtained from the three approximate methods were compared with solutions calculated from the exact characteristic equation in order to make an assessment of the relative accuracy and reliability of the three methods. The best results were given by the finite element method using a cubic polynomial. Excellent accuracy was consistently obtained, even for nearly equal eigenvalues, by using a 20 x 20 order matrix.
On the number of eigenvalues of the discrete one-dimensional Dirac operator with a complex potential
NASA Astrophysics Data System (ADS)
Hulko, Artem
2018-03-01
In this paper we define a one-dimensional discrete Dirac operator on Z . We study the eigenvalues of the Dirac operator with a complex potential. We obtain bounds on the total number of eigenvalues in the case where V decays exponentially at infinity. We also estimate the number of eigenvalues for the discrete Schrödinger operator with complex potential on Z . That is we extend the result obtained by Hulko (Bull Math Sci, to appear) to the whole Z.
An Eigenvalue Analysis of finite-difference approximations for hyperbolic IBVPs
NASA Technical Reports Server (NTRS)
Warming, Robert F.; Beam, Richard M.
1989-01-01
The eigenvalue spectrum associated with a linear finite-difference approximation plays a crucial role in the stability analysis and in the actual computational performance of the discrete approximation. The eigenvalue spectrum associated with the Lax-Wendroff scheme applied to a model hyperbolic equation was investigated. For an initial-boundary-value problem (IBVP) on a finite domain, the eigenvalue or normal mode analysis is analytically intractable. A study of auxiliary problems (Dirichlet and quarter-plane) leads to asymptotic estimates of the eigenvalue spectrum and to an identification of individual modes as either benign or unstable. The asymptotic analysis establishes an intuitive as well as quantitative connection between the algebraic tests in the theory of Gustafsson, Kreiss, and Sundstrom and Lax-Richtmyer L(sub 2) stability on a finite domain.
An eigenvalue localization set for tensors and its applications.
Zhao, Jianxing; Sang, Caili
2017-01-01
A new eigenvalue localization set for tensors is given and proved to be tighter than those presented by Li et al . (Linear Algebra Appl. 481:36-53, 2015) and Huang et al . (J. Inequal. Appl. 2016:254, 2016). As an application of this set, new bounds for the minimum eigenvalue of [Formula: see text]-tensors are established and proved to be sharper than some known results. Compared with the results obtained by Huang et al ., the advantage of our results is that, without considering the selection of nonempty proper subsets S of [Formula: see text], we can obtain a tighter eigenvalue localization set for tensors and sharper bounds for the minimum eigenvalue of [Formula: see text]-tensors. Finally, numerical examples are given to verify the theoretical results.
SCALE Continuous-Energy Eigenvalue Sensitivity Coefficient Calculations
Perfetti, Christopher M.; Rearden, Bradley T.; Martin, William R.
2016-02-25
Sensitivity coefficients describe the fractional change in a system response that is induced by changes to system parameters and nuclear data. The Tools for Sensitivity and UNcertainty Analysis Methodology Implementation (TSUNAMI) code within the SCALE code system makes use of eigenvalue sensitivity coefficients for an extensive number of criticality safety applications, including quantifying the data-induced uncertainty in the eigenvalue of critical systems, assessing the neutronic similarity between different critical systems, and guiding nuclear data adjustment studies. The need to model geometrically complex systems with improved fidelity and the desire to extend TSUNAMI analysis to advanced applications has motivated the developmentmore » of a methodology for calculating sensitivity coefficients in continuous-energy (CE) Monte Carlo applications. The Contributon-Linked eigenvalue sensitivity/Uncertainty estimation via Tracklength importance CHaracterization (CLUTCH) and Iterated Fission Probability (IFP) eigenvalue sensitivity methods were recently implemented in the CE-KENO framework of the SCALE code system to enable TSUNAMI-3D to perform eigenvalue sensitivity calculations using continuous-energy Monte Carlo methods. This work provides a detailed description of the theory behind the CLUTCH method and describes in detail its implementation. This work explores the improvements in eigenvalue sensitivity coefficient accuracy that can be gained through the use of continuous-energy sensitivity methods and also compares several sensitivity methods in terms of computational efficiency and memory requirements.« less
Shi, Jiajia; Liu, Yuhai; Guo, Ran; Li, Xiaopei; He, Anqi; Gao, Yunlong; Wei, Yongju; Liu, Cuige; Zhao, Ying; Xu, Yizhuang; Noda, Isao; Wu, Jinguang
2015-11-01
A new concentration series is proposed for the construction of a two-dimensional (2D) synchronous spectrum for orthogonal sample design analysis to probe intermolecular interaction between solutes dissolved in the same solutions. The obtained 2D synchronous spectrum possesses the following two properties: (1) cross peaks in the 2D synchronous spectra can be used to reflect intermolecular interaction reliably, since interference portions that have nothing to do with intermolecular interaction are completely removed, and (2) the two-dimensional synchronous spectrum produced can effectively avoid accidental collinearity. Hence, the correct number of nonzero eigenvalues can be obtained so that the number of chemical reactions can be estimated. In a real chemical system, noise present in one-dimensional spectra may also produce nonzero eigenvalues. To get the correct number of chemical reactions, we classified nonzero eigenvalues into significant nonzero eigenvalues and insignificant nonzero eigenvalues. Significant nonzero eigenvalues can be identified by inspecting the pattern of the corresponding eigenvector with help of the Durbin-Watson statistic. As a result, the correct number of chemical reactions can be obtained from significant nonzero eigenvalues. This approach provides a solid basis to obtain insight into subtle spectral variations caused by intermolecular interaction.
Thierbach, Adrian; Neiss, Christian; Gallandi, Lukas; Marom, Noa; Körzdörfer, Thomas; Görling, Andreas
2017-10-10
An accurate yet computationally very efficient and formally well justified approach to calculate molecular ionization potentials is presented and tested. The first as well as higher ionization potentials are obtained as the negatives of the Kohn-Sham eigenvalues of the neutral molecule after adjusting the eigenvalues by a recently [ Görling Phys. Rev. B 2015 , 91 , 245120 ] introduced potential adjustor for exchange-correlation potentials. Technically the method is very simple. Besides a Kohn-Sham calculation of the neutral molecule, only a second Kohn-Sham calculation of the cation is required. The eigenvalue spectrum of the neutral molecule is shifted such that the negative of the eigenvalue of the highest occupied molecular orbital equals the energy difference of the total electronic energies of the cation minus the neutral molecule. For the first ionization potential this simply amounts to a ΔSCF calculation. Then, the higher ionization potentials are obtained as the negatives of the correspondingly shifted Kohn-Sham eigenvalues. Importantly, this shift of the Kohn-Sham eigenvalue spectrum is not just ad hoc. In fact, it is formally necessary for the physically correct energetic adjustment of the eigenvalue spectrum as it results from ensemble density-functional theory. An analogous approach for electron affinities is equally well obtained and justified. To illustrate the practical benefits of the approach, we calculate the valence ionization energies of test sets of small- and medium-sized molecules and photoelectron spectra of medium-sized electron acceptor molecules using a typical semilocal (PBE) and two typical global hybrid functionals (B3LYP and PBE0). The potential adjusted B3LYP and PBE0 eigenvalues yield valence ionization potentials that are in very good agreement with experimental values, reaching an accuracy that is as good as the best G 0 W 0 methods, however, at much lower computational costs. The potential adjusted PBE eigenvalues result in somewhat less accurate ionization energies, which, however, are almost as accurate as those obtained from the most commonly used G 0 W 0 variants.
Cucheb: A GPU implementation of the filtered Lanczos procedure
NASA Astrophysics Data System (ADS)
Aurentz, Jared L.; Kalantzis, Vassilis; Saad, Yousef
2017-11-01
This paper describes the software package Cucheb, a GPU implementation of the filtered Lanczos procedure for the solution of large sparse symmetric eigenvalue problems. The filtered Lanczos procedure uses a carefully chosen polynomial spectral transformation to accelerate convergence of the Lanczos method when computing eigenvalues within a desired interval. This method has proven particularly effective for eigenvalue problems that arise in electronic structure calculations and density functional theory. We compare our implementation against an equivalent CPU implementation and show that using the GPU can reduce the computation time by more than a factor of 10. Program Summary Program title: Cucheb Program Files doi:http://dx.doi.org/10.17632/rjr9tzchmh.1 Licensing provisions: MIT Programming language: CUDA C/C++ Nature of problem: Electronic structure calculations require the computation of all eigenvalue-eigenvector pairs of a symmetric matrix that lie inside a user-defined real interval. Solution method: To compute all the eigenvalues within a given interval a polynomial spectral transformation is constructed that maps the desired eigenvalues of the original matrix to the exterior of the spectrum of the transformed matrix. The Lanczos method is then used to compute the desired eigenvectors of the transformed matrix, which are then used to recover the desired eigenvalues of the original matrix. The bulk of the operations are executed in parallel using a graphics processing unit (GPU). Runtime: Variable, depending on the number of eigenvalues sought and the size and sparsity of the matrix. Additional comments: Cucheb is compatible with CUDA Toolkit v7.0 or greater.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bai, Zhaojun; Yang, Chao
What is common among electronic structure calculation, design of MEMS devices, vibrational analysis of high speed railways, and simulation of the electromagnetic field of a particle accelerator? The answer: they all require solving large scale nonlinear eigenvalue problems. In fact, these are just a handful of examples in which solving nonlinear eigenvalue problems accurately and efficiently is becoming increasingly important. Recognizing the importance of this class of problems, an invited minisymposium dedicated to nonlinear eigenvalue problems was held at the 2005 SIAM Annual Meeting. The purpose of the minisymposium was to bring together numerical analysts and application scientists to showcasemore » some of the cutting edge results from both communities and to discuss the challenges they are still facing. The minisymposium consisted of eight talks divided into two sessions. The first three talks focused on a type of nonlinear eigenvalue problem arising from electronic structure calculations. In this type of problem, the matrix Hamiltonian H depends, in a non-trivial way, on the set of eigenvectors X to be computed. The invariant subspace spanned by these eigenvectors also minimizes a total energy function that is highly nonlinear with respect to X on a manifold defined by a set of orthonormality constraints. In other applications, the nonlinearity of the matrix eigenvalue problem is restricted to the dependency of the matrix on the eigenvalues to be computed. These problems are often called polynomial or rational eigenvalue problems In the second session, Christian Mehl from Technical University of Berlin described numerical techniques for solving a special type of polynomial eigenvalue problem arising from vibration analysis of rail tracks excited by high-speed trains.« less
NASA Astrophysics Data System (ADS)
Lee, Gibbeum; Cho, Yeunwoo
2018-01-01
A new semi-analytical approach is presented to solving the matrix eigenvalue problem or the integral equation in Karhunen-Loeve (K-L) representation of random data such as irregular ocean waves. Instead of direct numerical approach to this matrix eigenvalue problem, which may suffer from the computational inaccuracy for big data, a pair of integral and differential equations are considered, which are related to the so-called prolate spheroidal wave functions (PSWF). First, the PSWF is expressed as a summation of a small number of the analytical Legendre functions. After substituting them into the PSWF differential equation, a much smaller size matrix eigenvalue problem is obtained than the direct numerical K-L matrix eigenvalue problem. By solving this with a minimal numerical effort, the PSWF and the associated eigenvalue of the PSWF differential equation are obtained. Then, the eigenvalue of the PSWF integral equation is analytically expressed by the functional values of the PSWF and the eigenvalues obtained in the PSWF differential equation. Finally, the analytically expressed PSWFs and the eigenvalues in the PWSF integral equation are used to form the kernel matrix in the K-L integral equation for the representation of exemplary wave data such as ordinary irregular waves. It is found that, with the same accuracy, the required memory size of the present method is smaller than that of the direct numerical K-L representation and the computation time of the present method is shorter than that of the semi-analytical method based on the sinusoidal functions.
Hessian eigenvalue distribution in a random Gaussian landscape
NASA Astrophysics Data System (ADS)
Yamada, Masaki; Vilenkin, Alexander
2018-03-01
The energy landscape of multiverse cosmology is often modeled by a multi-dimensional random Gaussian potential. The physical predictions of such models crucially depend on the eigenvalue distribution of the Hessian matrix at potential minima. In particular, the stability of vacua and the dynamics of slow-roll inflation are sensitive to the magnitude of the smallest eigenvalues. The Hessian eigenvalue distribution has been studied earlier, using the saddle point approximation, in the leading order of 1/ N expansion, where N is the dimensionality of the landscape. This approximation, however, is insufficient for the small eigenvalue end of the spectrum, where sub-leading terms play a significant role. We extend the saddle point method to account for the sub-leading contributions. We also develop a new approach, where the eigenvalue distribution is found as an equilibrium distribution at the endpoint of a stochastic process (Dyson Brownian motion). The results of the two approaches are consistent in cases where both methods are applicable. We discuss the implications of our results for vacuum stability and slow-roll inflation in the landscape.
Two-faced property of a market factor in asset pricing and diversification effect
NASA Astrophysics Data System (ADS)
Eom, Cheoljun
2017-04-01
This study empirically investigates the test hypothesis that a market factor acting as a representative common factor in the pricing models has a negative influence on constructing a well-diversified portfolio from the Markowitz mean-variance optimization function (MVOF). We use the comparative correlation matrix (C-CM) method to control a single eigenvalue among all eigenvalues included in the sample correlation matrix (S-CM), through the random matrix theory (RMT). In particular, this study observes the effect of the largest eigenvalue that has the property of the market factor. According to the results, the largest eigenvalue has the highest explanatory power on the stock return changes. The C-CM without the largest eigenvalue in the S-CM constructs a more diversified portfolio capable of improving the practical applicability of the MVOF. Moreover, the more diversified portfolio constructed from this C-CM has better out-of-sample performance in the future period. These results support the test hypothesis for the two-faced property of the market factor, defined by the largest eigenvalue.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Yunfeng, E-mail: yfcai@math.pku.edu.cn; Department of Computer Science, University of California, Davis 95616; Bai, Zhaojun, E-mail: bai@cs.ucdavis.edu
2013-12-15
The iterative diagonalization of a sequence of large ill-conditioned generalized eigenvalue problems is a computational bottleneck in quantum mechanical methods employing a nonorthogonal basis for ab initio electronic structure calculations. We propose a hybrid preconditioning scheme to effectively combine global and locally accelerated preconditioners for rapid iterative diagonalization of such eigenvalue problems. In partition-of-unity finite-element (PUFE) pseudopotential density-functional calculations, employing a nonorthogonal basis, we show that the hybrid preconditioned block steepest descent method is a cost-effective eigensolver, outperforming current state-of-the-art global preconditioning schemes, and comparably efficient for the ill-conditioned generalized eigenvalue problems produced by PUFE as the locally optimal blockmore » preconditioned conjugate-gradient method for the well-conditioned standard eigenvalue problems produced by planewave methods.« less
The Cr dependence problem of eigenvalues of the Laplace operator on domains in the plane
NASA Astrophysics Data System (ADS)
Haddad, Julian; Montenegro, Marcos
2018-03-01
The Cr dependence problem of multiple Dirichlet eigenvalues on domains is discussed for elliptic operators by regarding C r + 1-smooth one-parameter families of C1 perturbations of domains in Rn. As applications of our main theorem (Theorem 1), we provide a fairly complete description for all eigenvalues of the Laplace operator on disks and squares in R2 and also for its second eigenvalue on balls in Rn for any n ≥ 3. The central tool used in our proof is a degenerate implicit function theorem on Banach spaces (Theorem 2) of independent interest.
Terao, Takamichi
2010-08-01
We propose a numerical method to calculate interior eigenvalues and corresponding eigenvectors for nonsymmetric matrices. Based on the subspace projection technique onto expanded Ritz subspace, it becomes possible to obtain eigenvalues and eigenvectors with sufficiently high precision. This method overcomes the difficulties of the traditional nonsymmetric Lanczos algorithm, and improves the accuracy of the obtained interior eigenvalues and eigenvectors. Using this algorithm, we investigate three-dimensional metamaterial composites consisting of positive and negative refractive index materials, and it is demonstrated that the finite-difference frequency-domain algorithm is applicable to analyze these metamaterial composites.
The first eigenvalue of the p-Laplacian on quantum graphs
NASA Astrophysics Data System (ADS)
Del Pezzo, Leandro M.; Rossi, Julio D.
2016-12-01
We study the first eigenvalue of the p-Laplacian (with 1
A new approach to the method of source-sink potentials for molecular conduction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pickup, Barry T., E-mail: B.T.Pickup@sheffield.ac.uk, E-mail: P.W.Fowler@sheffield.ac.uk; Fowler, Patrick W., E-mail: B.T.Pickup@sheffield.ac.uk, E-mail: P.W.Fowler@sheffield.ac.uk; Borg, Martha
2015-11-21
We re-derive the tight-binding source-sink potential (SSP) equations for ballistic conduction through conjugated molecular structures in a form that avoids singularities. This enables derivation of new results for families of molecular devices in terms of eigenvectors and eigenvalues of the adjacency matrix of the molecular graph. In particular, we define the transmission of electrons through individual molecular orbitals (MO) and through MO shells. We make explicit the behaviour of the total current and individual MO and shell currents at molecular eigenvalues. A rich variety of behaviour is found. A SSP device has specific insulation or conduction at an eigenvalue ofmore » the molecular graph (a root of the characteristic polynomial) according to the multiplicities of that value in the spectra of four defined device polynomials. Conduction near eigenvalues is dominated by the transmission curves of nearby shells. A shell may be inert or active. An inert shell does not conduct at any energy, not even at its own eigenvalue. Conduction may occur at the eigenvalue of an inert shell, but is then carried entirely by other shells. If a shell is active, it carries all conduction at its own eigenvalue. For bipartite molecular graphs (alternant molecules), orbital conduction properties are governed by a pairing theorem. Inertness of shells for families such as chains and rings is predicted by selection rules based on node counting and degeneracy.« less
The Use of Sphere Indentation Experiments to Characterize Ceramic Damage Models
2011-09-01
state having two equal eigenvalues. For TXC, the axial stress (single eigenvalue) is more compressive than the lateral stresses (dual eigenvalues). For...parameters. These dynamic experiments supplement traditional characterization experiments such as tension, triaxial compression , Brazilian, and...These dynamic experiments supplement traditional characterization experiments such as tension, triaxial compression , Brazilian, and plate impact, which
NASA Technical Reports Server (NTRS)
Sloss, J. M.; Kranzler, S. K.
1972-01-01
The equivalence of a considered integral equation form with an infinite system of linear equations is proved, and the localization of the eigenvalues of the infinite system is expressed. Error estimates are derived, and the problems of finding upper bounds and lower bounds for the eigenvalues are solved simultaneously.
Derivation of an eigenvalue probability density function relating to the Poincaré disk
NASA Astrophysics Data System (ADS)
Forrester, Peter J.; Krishnapur, Manjunath
2009-09-01
A result of Zyczkowski and Sommers (2000 J. Phys. A: Math. Gen. 33 2045-57) gives the eigenvalue probability density function for the top N × N sub-block of a Haar distributed matrix from U(N + n). In the case n >= N, we rederive this result, starting from knowledge of the distribution of the sub-blocks, introducing the Schur decomposition and integrating over all variables except the eigenvalues. The integration is done by identifying a recursive structure which reduces the dimension. This approach is inspired by an analogous approach which has been recently applied to determine the eigenvalue probability density function for random matrices A-1B, where A and B are random matrices with entries standard complex normals. We relate the eigenvalue distribution of the sub-blocks to a many-body quantum state, and to the one-component plasma, on the pseudosphere.
Asymptotics of empirical eigenstructure for high dimensional spiked covariance.
Wang, Weichen; Fan, Jianqing
2017-06-01
We derive the asymptotic distributions of the spiked eigenvalues and eigenvectors under a generalized and unified asymptotic regime, which takes into account the magnitude of spiked eigenvalues, sample size, and dimensionality. This regime allows high dimensionality and diverging eigenvalues and provides new insights into the roles that the leading eigenvalues, sample size, and dimensionality play in principal component analysis. Our results are a natural extension of those in Paul (2007) to a more general setting and solve the rates of convergence problems in Shen et al. (2013). They also reveal the biases of estimating leading eigenvalues and eigenvectors by using principal component analysis, and lead to a new covariance estimator for the approximate factor model, called shrinkage principal orthogonal complement thresholding (S-POET), that corrects the biases. Our results are successfully applied to outstanding problems in estimation of risks of large portfolios and false discovery proportions for dependent test statistics and are illustrated by simulation studies.
Asymptotics of empirical eigenstructure for high dimensional spiked covariance
Wang, Weichen
2017-01-01
We derive the asymptotic distributions of the spiked eigenvalues and eigenvectors under a generalized and unified asymptotic regime, which takes into account the magnitude of spiked eigenvalues, sample size, and dimensionality. This regime allows high dimensionality and diverging eigenvalues and provides new insights into the roles that the leading eigenvalues, sample size, and dimensionality play in principal component analysis. Our results are a natural extension of those in Paul (2007) to a more general setting and solve the rates of convergence problems in Shen et al. (2013). They also reveal the biases of estimating leading eigenvalues and eigenvectors by using principal component analysis, and lead to a new covariance estimator for the approximate factor model, called shrinkage principal orthogonal complement thresholding (S-POET), that corrects the biases. Our results are successfully applied to outstanding problems in estimation of risks of large portfolios and false discovery proportions for dependent test statistics and are illustrated by simulation studies. PMID:28835726
NASA Astrophysics Data System (ADS)
Suparmi; Cari, C.; Wea, K. N.; Wahyulianti
2018-03-01
The Schrodinger equation is the fundamental equation in quantum physics. The characteristic of the particle in physics potential field can be explained by using the Schrodinger equation. In this study, the solution of 4 dimensional Schrodinger equation for the anharmonic potential and the anharmonic partner potential have done. The method that used to solve the Schrodinger equation was the ansatz wave method, while to construction the partner potential was the supersymmetric method. The construction of partner potential used to explain the experiment result that cannot be explained by the original potential. The eigenvalue for anharmonic potential and the anharmonic partner potential have the same characteristic. Every increase of quantum orbital number the eigenvalue getting smaller. This result corresponds to Bohrn’s atomic theory that the eigenvalue is inversely proportional to the atomic shell. But the eigenvalue for the anharmonic partner potential higher than the eigenvalue for the anharmonic original potential.
Iterative Methods for Elliptic Problems and the Discovery of ’q’.
1984-07-01
K = M’IlN LN 12 is a nonnegative irreducible matrix. Hence the Perron - Frobenius theory [19] tells us that there is exactly one eigenvalue A with W = p...earlier, the Perron - Frobenius theory implies that p is itself an eigenvalue. However, as we have said, in this instance the eigenvalue problem (l.12a
Asymptotic analysis on a pseudo-Hermitian Riemann-zeta Hamiltonian
NASA Astrophysics Data System (ADS)
Bender, Carl M.; Brody, Dorje C.
2018-04-01
The differential-equation eigenvalue problem associated with a recently-introduced Hamiltonian, whose eigenvalues correspond to the zeros of the Riemann zeta function, is analyzed using Fourier and WKB analysis. The Fourier analysis leads to a challenging open problem concerning the formulation of the eigenvalue problem in the momentum space. The WKB analysis gives the exact asymptotic behavior of the eigenfunction.
Willert, Jeffrey; Park, H.; Taitano, William
2015-11-01
High-order/low-order (or moment-based acceleration) algorithms have been used to significantly accelerate the solution to the neutron transport k-eigenvalue problem over the past several years. Recently, the nonlinear diffusion acceleration algorithm has been extended to solve fixed-source problems with anisotropic scattering sources. In this paper, we demonstrate that we can extend this algorithm to k-eigenvalue problems in which the scattering source is anisotropic and a significant acceleration can be achieved. Lastly, we demonstrate that the low-order, diffusion-like eigenvalue problem can be solved efficiently using a technique known as nonlinear elimination.
Solving complex band structure problems with the FEAST eigenvalue algorithm
NASA Astrophysics Data System (ADS)
Laux, S. E.
2012-08-01
With straightforward extension, the FEAST eigenvalue algorithm [Polizzi, Phys. Rev. B 79, 115112 (2009)] is capable of solving the generalized eigenvalue problems representing traveling-wave problems—as exemplified by the complex band-structure problem—even though the matrices involved are complex, non-Hermitian, and singular, and hence outside the originally stated range of applicability of the algorithm. The obtained eigenvalues/eigenvectors, however, contain spurious solutions which must be detected and removed. The efficiency and parallel structure of the original algorithm are unaltered. The complex band structures of Si layers of varying thicknesses and InAs nanowires of varying radii are computed as test problems.
Complex eigenvalue extraction in NASTRAN by the tridiagonal reduction (FEER) method
NASA Technical Reports Server (NTRS)
Newman, M.; Mann, F. I.
1977-01-01
An extension of the Tridiagonal Reduction (FEER) method to complex eigenvalue analysis in NASTRAN is described. As in the case of real eigenvalue analysis, the eigensolutions closest to a selected point in the eigenspectrum are extracted from a reduced, symmetric, tridiagonal eigenmatrix whose order is much lower than that of the full size problem. The reduction process is effected automatically, and thus avoids the arbitrary lumping of masses and other physical quantities at selected grid points. The statement of the algebraic eigenvalue problem admits mass, damping and stiffness matrices which are unrestricted in character, i.e., they may be real, complex, symmetric or unsymmetric, singular or non-singular.
Comment on ‘Numerical estimates of the spectrum for anharmonic PT symmetric potentials’
NASA Astrophysics Data System (ADS)
Amore, Paolo; Fernández, Francisco M.
2013-04-01
We show that the authors of the commented paper (Bowen et al 2012 Phys. Scr. 85 065005) draw their conclusions from the eigenvalues of truncated Hamiltonian matrices that do not converge as the matrix dimension increases. In some of the studied examples, the authors missed the real positive eigenvalues that already converge towards the exact eigenvalues of the non-Hermitian operators and focused their attention on the complex ones that do not. We also show that the authors misread Bender's argument about the eigenvalues of the harmonic oscillator with boundary conditions in the complex-x plane (Bender 2007 Rep. Prog. Phys. 70 947).
Spectral properties of the temporal evolution of brain network structure.
Wang, Rong; Zhang, Zhen-Zhen; Ma, Jun; Yang, Yong; Lin, Pan; Wu, Ying
2015-12-01
The temporal evolution properties of the brain network are crucial for complex brain processes. In this paper, we investigate the differences in the dynamic brain network during resting and visual stimulation states in a task-positive subnetwork, task-negative subnetwork, and whole-brain network. The dynamic brain network is first constructed from human functional magnetic resonance imaging data based on the sliding window method, and then the eigenvalues corresponding to the network are calculated. We use eigenvalue analysis to analyze the global properties of eigenvalues and the random matrix theory (RMT) method to measure the local properties. For global properties, the shifting of the eigenvalue distribution and the decrease in the largest eigenvalue are linked to visual stimulation in all networks. For local properties, the short-range correlation in eigenvalues as measured by the nearest neighbor spacing distribution is not always sensitive to visual stimulation. However, the long-range correlation in eigenvalues as evaluated by spectral rigidity and number variance not only predicts the universal behavior of the dynamic brain network but also suggests non-consistent changes in different networks. These results demonstrate that the dynamic brain network is more random for the task-positive subnetwork and whole-brain network under visual stimulation but is more regular for the task-negative subnetwork. Our findings provide deeper insight into the importance of spectral properties in the functional brain network, especially the incomparable role of RMT in revealing the intrinsic properties of complex systems.
Hesselmann, Andreas; Görling, Andreas
2011-01-21
A recently introduced time-dependent exact-exchange (TDEXX) method, i.e., a response method based on time-dependent density-functional theory that treats the frequency-dependent exchange kernel exactly, is reformulated. In the reformulated version of the TDEXX method electronic excitation energies can be calculated by solving a linear generalized eigenvalue problem while in the original version of the TDEXX method a laborious frequency iteration is required in the calculation of each excitation energy. The lowest eigenvalues of the new TDEXX eigenvalue equation corresponding to the lowest excitation energies can be efficiently obtained by, e.g., a version of the Davidson algorithm appropriate for generalized eigenvalue problems. Alternatively, with the help of a series expansion of the new TDEXX eigenvalue equation, standard eigensolvers for large regular eigenvalue problems, e.g., the standard Davidson algorithm, can be used to efficiently calculate the lowest excitation energies. With the help of the series expansion as well, the relation between the TDEXX method and time-dependent Hartree-Fock is analyzed. Several ways to take into account correlation in addition to the exact treatment of exchange in the TDEXX method are discussed, e.g., a scaling of the Kohn-Sham eigenvalues, the inclusion of (semi)local approximate correlation potentials, or hybrids of the exact-exchange kernel with kernels within the adiabatic local density approximation. The lowest lying excitations of the molecules ethylene, acetaldehyde, and pyridine are considered as examples.
Spectral properties of the temporal evolution of brain network structure
NASA Astrophysics Data System (ADS)
Wang, Rong; Zhang, Zhen-Zhen; Ma, Jun; Yang, Yong; Lin, Pan; Wu, Ying
2015-12-01
The temporal evolution properties of the brain network are crucial for complex brain processes. In this paper, we investigate the differences in the dynamic brain network during resting and visual stimulation states in a task-positive subnetwork, task-negative subnetwork, and whole-brain network. The dynamic brain network is first constructed from human functional magnetic resonance imaging data based on the sliding window method, and then the eigenvalues corresponding to the network are calculated. We use eigenvalue analysis to analyze the global properties of eigenvalues and the random matrix theory (RMT) method to measure the local properties. For global properties, the shifting of the eigenvalue distribution and the decrease in the largest eigenvalue are linked to visual stimulation in all networks. For local properties, the short-range correlation in eigenvalues as measured by the nearest neighbor spacing distribution is not always sensitive to visual stimulation. However, the long-range correlation in eigenvalues as evaluated by spectral rigidity and number variance not only predicts the universal behavior of the dynamic brain network but also suggests non-consistent changes in different networks. These results demonstrate that the dynamic brain network is more random for the task-positive subnetwork and whole-brain network under visual stimulation but is more regular for the task-negative subnetwork. Our findings provide deeper insight into the importance of spectral properties in the functional brain network, especially the incomparable role of RMT in revealing the intrinsic properties of complex systems.
Ultrarelativistic bound states in the spherical well
DOE Office of Scientific and Technical Information (OSTI.GOV)
Żaba, Mariusz; Garbaczewski, Piotr
2016-07-15
We address an eigenvalue problem for the ultrarelativistic (Cauchy) operator (−Δ){sup 1/2}, whose action is restricted to functions that vanish beyond the interior of a unit sphere in three spatial dimensions. We provide high accuracy spectral data for lowest eigenvalues and eigenfunctions of this infinite spherical well problem. Our focus is on radial and orbital shapes of eigenfunctions. The spectrum consists of an ordered set of strictly positive eigenvalues which naturally splits into non-overlapping, orbitally labelled E{sub (k,l)} series. For each orbital label l = 0, 1, 2, …, the label k = 1, 2, … enumerates consecutive lth seriesmore » eigenvalues. Each of them is 2l + 1-degenerate. The l = 0 eigenvalues series E{sub (k,0)} are identical with the set of even labeled eigenvalues for the d = 1 Cauchy well: E{sub (k,0)}(d = 3) = E{sub 2k}(d = 1). Likewise, the eigenfunctions ψ{sub (k,0)}(d = 3) and ψ{sub 2k}(d = 1) show affinity. We have identified the generic functional form of eigenfunctions of the spherical well which appear to be composed of a product of a solid harmonic and of a suitable purely radial function. The method to evaluate (approximately) the latter has been found to follow the universal pattern which effectively allows to skip all, sometimes involved, intermediate calculations (those were in usage, while computing the eigenvalues for l ≤ 3).« less
A divide and conquer approach to the nonsymmetric eigenvalue problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jessup, E.R.
1991-01-01
Serial computation combined with high communication costs on distributed-memory multiprocessors make parallel implementations of the QR method for the nonsymmetric eigenvalue problem inefficient. This paper introduces an alternative algorithm for the nonsymmetric tridiagonal eigenvalue problem based on rank two tearing and updating of the matrix. The parallelism of this divide and conquer approach stems from independent solution of the updating problems. 11 refs.
Marek, A; Blum, V; Johanni, R; Havu, V; Lang, B; Auckenthaler, T; Heinecke, A; Bungartz, H-J; Lederer, H
2014-05-28
Obtaining the eigenvalues and eigenvectors of large matrices is a key problem in electronic structure theory and many other areas of computational science. The computational effort formally scales as O(N(3)) with the size of the investigated problem, N (e.g. the electron count in electronic structure theory), and thus often defines the system size limit that practical calculations cannot overcome. In many cases, more than just a small fraction of the possible eigenvalue/eigenvector pairs is needed, so that iterative solution strategies that focus only on a few eigenvalues become ineffective. Likewise, it is not always desirable or practical to circumvent the eigenvalue solution entirely. We here review some current developments regarding dense eigenvalue solvers and then focus on the Eigenvalue soLvers for Petascale Applications (ELPA) library, which facilitates the efficient algebraic solution of symmetric and Hermitian eigenvalue problems for dense matrices that have real-valued and complex-valued matrix entries, respectively, on parallel computer platforms. ELPA addresses standard as well as generalized eigenvalue problems, relying on the well documented matrix layout of the Scalable Linear Algebra PACKage (ScaLAPACK) library but replacing all actual parallel solution steps with subroutines of its own. For these steps, ELPA significantly outperforms the corresponding ScaLAPACK routines and proprietary libraries that implement the ScaLAPACK interface (e.g. Intel's MKL). The most time-critical step is the reduction of the matrix to tridiagonal form and the corresponding backtransformation of the eigenvectors. ELPA offers both a one-step tridiagonalization (successive Householder transformations) and a two-step transformation that is more efficient especially towards larger matrices and larger numbers of CPU cores. ELPA is based on the MPI standard, with an early hybrid MPI-OpenMPI implementation available as well. Scalability beyond 10,000 CPU cores for problem sizes arising in the field of electronic structure theory is demonstrated for current high-performance computer architectures such as Cray or Intel/Infiniband. For a matrix of dimension 260,000, scalability up to 295,000 CPU cores has been shown on BlueGene/P.
The method of fundamental solutions for computing acoustic interior transmission eigenvalues
NASA Astrophysics Data System (ADS)
Kleefeld, Andreas; Pieronek, Lukas
2018-03-01
We analyze the method of fundamental solutions (MFS) in two different versions with focus on the computation of approximate acoustic interior transmission eigenvalues in 2D for homogeneous media. Our approach is mesh- and integration free, but suffers in general from the ill-conditioning effects of the discretized eigenoperator, which we could then successfully balance using an approved stabilization scheme. Our numerical examples cover many of the common scattering objects and prove to be very competitive in accuracy with the standard methods for PDE-related eigenvalue problems. We finally give an approximation analysis for our framework and provide error estimates, which bound interior transmission eigenvalue deviations in terms of some generalized MFS output.
Aeroelastic Stability of Idling Wind Turbines
NASA Astrophysics Data System (ADS)
Wang, Kai; Riziotis, Vasilis A.; Voutsinas, Spyros G.
2016-09-01
Wind turbine rotors in idling operation mode can experience high angles of attack, within the post stall region that are capable of triggering stall-induced vibrations. In the present paper rotor stability in slow idling operation is assessed on the basis of non-linear time domain and linear eigenvalue analysis. Analysis is performed for a 10 MW conceptual wind turbine designed by DTU. First the flow conditions that are likely to favour stall induced instabilities are identified through non-linear time domain aeroelastic analysis. Next, for the above specified conditions, eigenvalue stability simulations are performed aiming at identifying the low damped modes of the turbine. Finally the results of the eigenvalue analysis are evaluated through computations of the work of the aerodynamic forces by imposing harmonic vibrations following the shape and frequency of the various modes. Eigenvalue analysis indicates that the asymmetric and symmetric out-of-plane modes have the lowest damping. The results of the eigenvalue analysis agree well with those of the time domain analysis.
Substructure Versus Property-Level Dispersed Modes Calculation
NASA Technical Reports Server (NTRS)
Stewart, Eric C.; Peck, Jeff A.; Bush, T. Jason; Fulcher, Clay W.
2016-01-01
This paper calculates the effect of perturbed finite element mass and stiffness values on the eigenvectors and eigenvalues of the finite element model. The structure is perturbed in two ways: at the "subelement" level and at the material property level. In the subelement eigenvalue uncertainty analysis the mass and stiffness of each subelement is perturbed by a factor before being assembled into the global matrices. In the property-level eigenvalue uncertainty analysis all material density and stiffness parameters of the structure are perturbed modified prior to the eigenvalue analysis. The eigenvalue and eigenvector dispersions of each analysis (subelement and property-level) are also calculated using an analytical sensitivity approximation. Two structural models are used to compare these methods: a cantilevered beam model, and a model of the Space Launch System. For each structural model it is shown how well the analytical sensitivity modes approximate the exact modes when the uncertainties are applied at the subelement level and at the property level.
NASA Astrophysics Data System (ADS)
Li, Keqiang; Gao, Feng; Li, Shengbo Eben; Zheng, Yang; Gao, Hongbo
2017-12-01
This study presents a distributed H-infinity control method for uncertain platoons with dimensionally and structurally unknown interaction topologies provided that the associated topological eigenvalues are bounded by a predesigned range.With an inverse model to compensate for nonlinear powertrain dynamics, vehicles in a platoon are modeled by third-order uncertain systems with bounded disturbances. On the basis of the eigenvalue decomposition of topological matrices, we convert the platoon system to a norm-bounded uncertain part and a diagonally structured certain part by applying linear transformation. We then use a common Lyapunov method to design a distributed H-infinity controller. Numerically, two linear matrix inequalities corresponding to the minimum and maximum eigenvalues should be solved. The resulting controller can tolerate interaction topologies with eigenvalues located in a certain range. The proposed method can also ensure robustness performance and disturbance attenuation ability for the closed-loop platoon system. Hardware-in-the-loop tests are performed to validate the effectiveness of our method.
Spectrum of walk matrix for Koch network and its application
NASA Astrophysics Data System (ADS)
Xie, Pinchen; Lin, Yuan; Zhang, Zhongzhi
2015-06-01
Various structural and dynamical properties of a network are encoded in the eigenvalues of walk matrix describing random walks on the network. In this paper, we study the spectra of walk matrix of the Koch network, which displays the prominent scale-free and small-world features. Utilizing the particular architecture of the network, we obtain all the eigenvalues and their corresponding multiplicities. Based on the link between the eigenvalues of walk matrix and random target access time defined as the expected time for a walker going from an arbitrary node to another one selected randomly according to the steady-state distribution, we then derive an explicit solution to the random target access time for random walks on the Koch network. Finally, we corroborate our computation for the eigenvalues by enumerating spanning trees in the Koch network, using the connection governing eigenvalues and spanning trees, where a spanning tree of a network is a subgraph of the network, that is, a tree containing all the nodes.
NASA Astrophysics Data System (ADS)
Wu, Sheng-Jhih; Chu, Moody T.
2017-08-01
An inverse eigenvalue problem usually entails two constraints, one conditioned upon the spectrum and the other on the structure. This paper investigates the problem where triple constraints of eigenvalues, singular values, and diagonal entries are imposed simultaneously. An approach combining an eclectic mix of skills from differential geometry, optimization theory, and analytic gradient flow is employed to prove the solvability of such a problem. The result generalizes the classical Mirsky, Sing-Thompson, and Weyl-Horn theorems concerning the respective majorization relationships between any two of the arrays of main diagonal entries, eigenvalues, and singular values. The existence theory fills a gap in the classical matrix theory. The problem might find applications in wireless communication and quantum information science. The technique employed can be implemented as a first-step numerical method for constructing the matrix. With slight modification, the approach might be used to explore similar types of inverse problems where the prescribed entries are at general locations.
Approximation of eigenvalues of some differential equations by zeros of orthogonal polynomials
NASA Astrophysics Data System (ADS)
Volkmer, Hans
2008-04-01
Sequences of polynomials, orthogonal with respect to signed measures, are associated with a class of differential equations including the Mathieu, Lame and Whittaker-Hill equation. It is shown that the zeros of pn form sequences which converge to the eigenvalues of the corresponding differential equations. Moreover, interlacing properties of the zeros of pn are found. Applications to the numerical treatment of eigenvalue problems are given.
NASA Astrophysics Data System (ADS)
Ernawati; Carnia, E.; Supriatna, A. K.
2018-03-01
Eigenvalues and eigenvectors in max-plus algebra have the same important role as eigenvalues and eigenvectors in conventional algebra. In max-plus algebra, eigenvalues and eigenvectors are useful for knowing dynamics of the system such as in train system scheduling, scheduling production systems and scheduling learning activities in moving classes. In the translation of proteins in which the ribosome move uni-directionally along the mRNA strand to recruit the amino acids that make up the protein, eigenvalues and eigenvectors are used to calculate protein production rates and density of ribosomes on the mRNA. Based on this, it is important to examine the eigenvalues and eigenvectors in the process of protein translation. In this paper an eigenvector formula is given for a ribosome dynamics during mRNA translation by using the Kleene star algorithm in which the resulting eigenvector formula is simpler and easier to apply to the system than that introduced elsewhere. This paper also discusses the properties of the matrix {B}λ \\otimes n of model. Among the important properties, it always has the same elements in the first column for n = 1, 2,… if the eigenvalue is the time of initiation, λ = τin , and the column is the eigenvector of the model corresponding to λ.
NASA Astrophysics Data System (ADS)
Movassagh, Ramis
2016-02-01
We prove that the complex conjugate (c.c.) eigenvalues of a smoothly varying real matrix attract (Eq. 15). We offer a dynamical perspective on the motion and interaction of the eigenvalues in the complex plane, derive their governing equations and discuss applications. C.c. pairs closest to the real axis, or those that are ill-conditioned, attract most strongly and can collide to become exactly real. As an application we consider random perturbations of a fixed matrix M. If M is Normal, the total expected force on any eigenvalue is shown to be only the attraction of its c.c. (Eq. 24) and when M is circulant the strength of interaction can be related to the power spectrum of white noise. We extend this by calculating the expected force (Eq. 41) for real stochastic processes with zero-mean and independent intervals. To quantify the dominance of the c.c. attraction, we calculate the variance of other forces. We apply the results to the Hatano-Nelson model and provide other numerical illustrations. It is our hope that the simple dynamical perspective herein might help better understanding of the aggregation and low density of the eigenvalues of real random matrices on and near the real line respectively. In the appendix we provide a Matlab code for plotting the trajectories of the eigenvalues.
NASA Astrophysics Data System (ADS)
Vecharynski, Eugene; Brabec, Jiri; Shao, Meiyue; Govind, Niranjan; Yang, Chao
2017-12-01
We present two efficient iterative algorithms for solving the linear response eigenvalue problem arising from the time dependent density functional theory. Although the matrix to be diagonalized is nonsymmetric, it has a special structure that can be exploited to save both memory and floating point operations. In particular, the nonsymmetric eigenvalue problem can be transformed into an eigenvalue problem that involves the product of two matrices M and K. We show that, because MK is self-adjoint with respect to the inner product induced by the matrix K, this product eigenvalue problem can be solved efficiently by a modified Davidson algorithm and a modified locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm that make use of the K-inner product. The solution of the product eigenvalue problem yields one component of the eigenvector associated with the original eigenvalue problem. We show that the other component of the eigenvector can be easily recovered in an inexpensive postprocessing procedure. As a result, the algorithms we present here become more efficient than existing methods that try to approximate both components of the eigenvectors simultaneously. In particular, our numerical experiments demonstrate that the new algorithms presented here consistently outperform the existing state-of-the-art Davidson type solvers by a factor of two in both solution time and storage.
NASA Astrophysics Data System (ADS)
Han, Rui-Qi; Xie, Wen-Jie; Xiong, Xiong; Zhang, Wei; Zhou, Wei-Xing
The correlation structure of a stock market contains important financial contents, which may change remarkably due to the occurrence of financial crisis. We perform a comparative analysis of the Chinese stock market around the occurrence of the 2008 crisis based on the random matrix analysis of high-frequency stock returns of 1228 Chinese stocks. Both raw correlation matrix and partial correlation matrix with respect to the market index in two time periods of one year are investigated. We find that the Chinese stocks have stronger average correlation and partial correlation in 2008 than in 2007 and the average partial correlation is significantly weaker than the average correlation in each period. Accordingly, the largest eigenvalue of the correlation matrix is remarkably greater than that of the partial correlation matrix in each period. Moreover, each largest eigenvalue and its eigenvector reflect an evident market effect, while other deviating eigenvalues do not. We find no evidence that deviating eigenvalues contain industrial sectorial information. Surprisingly, the eigenvectors of the second largest eigenvalues in 2007 and of the third largest eigenvalues in 2008 are able to distinguish the stocks from the two exchanges. We also find that the component magnitudes of the some largest eigenvectors are proportional to the stocks’ capitalizations.
A comparison of acceleration methods for solving the neutron transport k-eigenvalue problem
NASA Astrophysics Data System (ADS)
Willert, Jeffrey; Park, H.; Knoll, D. A.
2014-10-01
Over the past several years a number of papers have been written describing modern techniques for numerically computing the dominant eigenvalue of the neutron transport criticality problem. These methods fall into two distinct categories. The first category of methods rewrite the multi-group k-eigenvalue problem as a nonlinear system of equations and solve the resulting system using either a Jacobian-Free Newton-Krylov (JFNK) method or Nonlinear Krylov Acceleration (NKA), a variant of Anderson Acceleration. These methods are generally successful in significantly reducing the number of transport sweeps required to compute the dominant eigenvalue. The second category of methods utilize Moment-Based Acceleration (or High-Order/Low-Order (HOLO) Acceleration). These methods solve a sequence of modified diffusion eigenvalue problems whose solutions converge to the solution of the original transport eigenvalue problem. This second class of methods is, in our experience, always superior to the first, as most of the computational work is eliminated by the acceleration from the LO diffusion system. In this paper, we review each of these methods. Our computational results support our claim that the choice of which nonlinear solver to use, JFNK or NKA, should be secondary. The primary computational savings result from the implementation of a HOLO algorithm. We display computational results for a series of challenging multi-dimensional test problems.
Okamoto, Yoshikazu; Kemp, Graham J; Isobe, Tomonori; Sato, Eisuke; Hirano, Yuji; Shoda, Junichi; Minami, Manabu
2014-12-01
Several studies have proposed the cell membrane as the main water diffusion restricting factor in the skeletal muscle cell. We sought to establish whether a particular form of exercise training (which is likely to affect only intracellular components) could affect water diffusion. The purpose of this study is to characterise prospectively the changes in diffusion tensor imaging (DTI) eigenvalues of thigh muscle resulting from hybrid training (HYBT) in patients with non-alcoholic fatty liver disease (NAFLD). Twenty-one NAFLD patients underwent HYBT for 30 minutes per day, twice a week for 6 months. Patients were scanned using DTI of the thigh pre- and post-HYBT. Fractional anisotropy (FA), apparent diffusion coefficient (ADC), the three eigenvalues lambda 1 (λ1), λ2, λ3, and the maximal cross sectional area (CSA) were measured in bilateral thigh muscles: knee flexors (biceps femoris (BF), semitendinosus (ST), semimembranous (SM)) and knee extensors (medial vastus (MV), intermediate vastus (IV), lateral vastus (LV), and rectus femoris (RF)), and compared pre- and post-HYBT by paired t-test. Muscle strength of extensors (P<0.01), but not flexors, increased significantly post-HYBT. For FA, ADC and eigenvalues, the overall picture was of increase. Some (P<0.05 in λ2 and P<0.01 in λ1) eigenvalues of flexors and all (λ1-λ3) eigenvalues of extensors increased significantly (P<0.01) post-HYBT. HYBT increased all 3 eigenvalues. We suggest this might be caused by enlargement of muscle intracellular space. Copyright © 2014 Elsevier Inc. All rights reserved.
Gasbarra, Dario; Pajevic, Sinisa; Basser, Peter J
2017-01-01
Tensor-valued and matrix-valued measurements of different physical properties are increasingly available in material sciences and medical imaging applications. The eigenvalues and eigenvectors of such multivariate data provide novel and unique information, but at the cost of requiring a more complex statistical analysis. In this work we derive the distributions of eigenvalues and eigenvectors in the special but important case of m×m symmetric random matrices, D , observed with isotropic matrix-variate Gaussian noise. The properties of these distributions depend strongly on the symmetries of the mean tensor/matrix, D̄ . When D̄ has repeated eigenvalues, the eigenvalues of D are not asymptotically Gaussian, and repulsion is observed between the eigenvalues corresponding to the same D̄ eigenspaces. We apply these results to diffusion tensor imaging (DTI), with m = 3, addressing an important problem of detecting the symmetries of the diffusion tensor, and seeking an experimental design that could potentially yield an isotropic Gaussian distribution. In the 3-dimensional case, when the mean tensor is spherically symmetric and the noise is Gaussian and isotropic, the asymptotic distribution of the first three eigenvalue central moment statistics is simple and can be used to test for isotropy. In order to apply such tests, we use quadrature rules of order t ≥ 4 with constant weights on the unit sphere to design a DTI-experiment with the property that isotropy of the underlying true tensor implies isotropy of the Fisher information. We also explain the potential implications of the methods using simulated DTI data with a Rician noise model.
Gasbarra, Dario; Pajevic, Sinisa; Basser, Peter J.
2017-01-01
Tensor-valued and matrix-valued measurements of different physical properties are increasingly available in material sciences and medical imaging applications. The eigenvalues and eigenvectors of such multivariate data provide novel and unique information, but at the cost of requiring a more complex statistical analysis. In this work we derive the distributions of eigenvalues and eigenvectors in the special but important case of m×m symmetric random matrices, D, observed with isotropic matrix-variate Gaussian noise. The properties of these distributions depend strongly on the symmetries of the mean tensor/matrix, D̄. When D̄ has repeated eigenvalues, the eigenvalues of D are not asymptotically Gaussian, and repulsion is observed between the eigenvalues corresponding to the same D̄ eigenspaces. We apply these results to diffusion tensor imaging (DTI), with m = 3, addressing an important problem of detecting the symmetries of the diffusion tensor, and seeking an experimental design that could potentially yield an isotropic Gaussian distribution. In the 3-dimensional case, when the mean tensor is spherically symmetric and the noise is Gaussian and isotropic, the asymptotic distribution of the first three eigenvalue central moment statistics is simple and can be used to test for isotropy. In order to apply such tests, we use quadrature rules of order t ≥ 4 with constant weights on the unit sphere to design a DTI-experiment with the property that isotropy of the underlying true tensor implies isotropy of the Fisher information. We also explain the potential implications of the methods using simulated DTI data with a Rician noise model. PMID:28989561
2015-03-01
ALGORITHM—EIGENVALUE ESTIMATION OF HYPERSPECTRAL WISHART COVARIANCE MATRICES FROM A LIMITED NUMBER OF SAMPLES ECBC-TN-067 Avishai Ben- David ...NUMBER 6. AUTHOR(S) Ben- David , Avishai (ECBC) and Davidson, Charles E. (STC) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7...and published by Avishai Ben- David and Charles E. Davidson (Eigenvalue Estimation of Hyperspectral WishartCovariance Matrices from Limited Number of
NASA Technical Reports Server (NTRS)
Costiner, Sorin; Taasan, Shlomo
1994-01-01
This paper presents multigrid (MG) techniques for nonlinear eigenvalue problems (EP) and emphasizes an MG algorithm for a nonlinear Schrodinger EP. The algorithm overcomes the mentioned difficulties combining the following techniques: an MG projection coupled with backrotations for separation of solutions and treatment of difficulties related to clusters of close and equal eigenvalues; MG subspace continuation techniques for treatment of the nonlinearity; an MG simultaneous treatment of the eigenvectors at the same time with the nonlinearity and with the global constraints. The simultaneous MG techniques reduce the large number of self consistent iterations to only a few or one MG simultaneous iteration and keep the solutions in a right neighborhood where the algorithm converges fast.
The nonconforming virtual element method for eigenvalue problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gardini, Francesca; Manzini, Gianmarco; Vacca, Giuseppe
We analyse the nonconforming Virtual Element Method (VEM) for the approximation of elliptic eigenvalue problems. The nonconforming VEM allow to treat in the same formulation the two- and three-dimensional case.We present two possible formulations of the discrete problem, derived respectively by the nonstabilized and stabilized approximation of the L 2-inner product, and we study the convergence properties of the corresponding discrete eigenvalue problems. The proposed schemes provide a correct approximation of the spectrum and we prove optimal-order error estimates for the eigenfunctions and the usual double order of convergence of the eigenvalues. Finally we show a large set of numericalmore » tests supporting the theoretical results, including a comparison with the conforming Virtual Element choice.« less
Asymptotics of eigenvalues and eigenvectors of Toeplitz matrices
NASA Astrophysics Data System (ADS)
Böttcher, A.; Bogoya, J. M.; Grudsky, S. M.; Maximenko, E. A.
2017-11-01
Analysis of the asymptotic behaviour of the spectral characteristics of Toeplitz matrices as the dimension of the matrix tends to infinity has a history of over 100 years. For instance, quite a number of versions of Szegő's theorem on the asymptotic behaviour of eigenvalues and of the so-called strong Szegő theorem on the asymptotic behaviour of the determinants of Toeplitz matrices are known. Starting in the 1950s, the asymptotics of the maximum and minimum eigenvalues were actively investigated. However, investigation of the individual asymptotics of all the eigenvalues and eigenvectors of Toeplitz matrices started only quite recently: the first papers on this subject were published in 2009-2010. A survey of this new field is presented here. Bibliography: 55 titles.
The Impact of the Network Topology on the Viral Prevalence: A Node-Based Approach
Yang, Lu-Xing; Draief, Moez; Yang, Xiaofan
2015-01-01
This paper addresses the impact of the structure of the viral propagation network on the viral prevalence. For that purpose, a new epidemic model of computer virus, known as the node-based SLBS model, is proposed. Our analysis shows that the maximum eigenvalue of the underlying network is a key factor determining the viral prevalence. Specifically, the value range of the maximum eigenvalue is partitioned into three subintervals: viruses tend to extinction very quickly or approach extinction or persist depending on into which subinterval the maximum eigenvalue of the propagation network falls. Consequently, computer virus can be contained by adjusting the propagation network so that its maximum eigenvalue falls into the desired subinterval. PMID:26222539
NASA Astrophysics Data System (ADS)
Costiner, Sorin; Ta'asan, Shlomo
1995-07-01
Algorithms for nonlinear eigenvalue problems (EP's) often require solving self-consistently a large number of EP's. Convergence difficulties may occur if the solution is not sought in an appropriate region, if global constraints have to be satisfied, or if close or equal eigenvalues are present. Multigrid (MG) algorithms for nonlinear problems and for EP's obtained from discretizations of partial differential EP have often been shown to be more efficient than single level algorithms. This paper presents MG techniques and a MG algorithm for nonlinear Schrödinger Poisson EP's. The algorithm overcomes the above mentioned difficulties combining the following techniques: a MG simultaneous treatment of the eigenvectors and nonlinearity, and with the global constrains; MG stable subspace continuation techniques for the treatment of nonlinearity; and a MG projection coupled with backrotations for separation of solutions. These techniques keep the solutions in an appropriate region, where the algorithm converges fast, and reduce the large number of self-consistent iterations to only a few or one MG simultaneous iteration. The MG projection makes it possible to efficiently overcome difficulties related to clusters of close and equal eigenvalues. Computational examples for the nonlinear Schrödinger-Poisson EP in two and three dimensions, presenting special computational difficulties that are due to the nonlinearity and to the equal and closely clustered eigenvalues are demonstrated. For these cases, the algorithm requires O(qN) operations for the calculation of q eigenvectors of size N and for the corresponding eigenvalues. One MG simultaneous cycle per fine level was performed. The total computational cost is equivalent to only a few Gauss-Seidel relaxations per eigenvector. An asymptotic convergence rate of 0.15 per MG cycle is attained.
Eigentime identities for on weighted polymer networks
NASA Astrophysics Data System (ADS)
Dai, Meifeng; Tang, Hualong; Zou, Jiahui; He, Di; Sun, Yu; Su, Weiyi
2018-01-01
In this paper, we first analytically calculate the eigenvalues of the transition matrix of a structure with very complex architecture and their multiplicities. We call this structure polymer network. Based on the eigenvalues obtained in the iterative manner, we then calculate the eigentime identity. We highlight two scaling behaviors (logarithmic and linear) for this quantity, strongly depending on the value of the weight factor. Finally, by making use of the obtained eigenvalues, we determine the weighted counting of spanning trees.
A New Measure of Wireless Network Connectivity
2014-10-31
matrix QG. From Lemma 1, QG is a non-zero nonnegative matrix. Thus from the Perron - Frobenius Theorem, [24], its largest magni- tude eigenvalue, known as...the Perron - Frobenius eigenvalue is real and positive. Further as QG is symmetric, all its eigenval- ues are real, and its largest magnitude...eigenvalue λmax(QG) is also its largest singular value. Also from the Perron - Frobenius Theorem, should the network be connected, i.e. QG is positive as opposed
Asymptotic theory of a slender rotating beam with end masses.
NASA Technical Reports Server (NTRS)
Whitman, A. M.; Abel, J. M.
1972-01-01
The method of matched asymptotic expansions is employed to solve the singular perturbation problem of the vibrations of a rotating beam of small flexural rigidity with concentrated end masses. The problem is complicated by the appearance of the eigenvalue in the boundary conditions. Eigenfunctions and eigenvalues are developed as power series in the perturbation parameter beta to the 1/2 power, and results are given for mode shapes and eigenvalues through terms of the order of beta.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vecharynski, Eugene; Brabec, Jiri; Shao, Meiyue
Within this paper, we present two efficient iterative algorithms for solving the linear response eigenvalue problem arising from the time dependent density functional theory. Although the matrix to be diagonalized is nonsymmetric, it has a special structure that can be exploited to save both memory and floating point operations. In particular, the nonsymmetric eigenvalue problem can be transformed into an eigenvalue problem that involves the product of two matrices M and K. We show that, because MK is self-adjoint with respect to the inner product induced by the matrix K, this product eigenvalue problem can be solved efficiently by amore » modified Davidson algorithm and a modified locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm that make use of the K-inner product. Additionally, the solution of the product eigenvalue problem yields one component of the eigenvector associated with the original eigenvalue problem. We show that the other component of the eigenvector can be easily recovered in an inexpensive postprocessing procedure. As a result, the algorithms we present here become more efficient than existing methods that try to approximate both components of the eigenvectors simultaneously. In particular, our numerical experiments demonstrate that the new algorithms presented here consistently outperform the existing state-of-the-art Davidson type solvers by a factor of two in both solution time and storage.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vecharynski, Eugene; Brabec, Jiri; Shao, Meiyue
In this article, we present two efficient iterative algorithms for solving the linear response eigenvalue problem arising from the time dependent density functional theory. Although the matrix to be diagonalized is nonsymmetric, it has a special structure that can be exploited to save both memory and floating point operations. In particular, the nonsymmetric eigenvalue problem can be transformed into an eigenvalue problem that involves the product of two matrices M and K. We show that, because MK is self-adjoint with respect to the inner product induced by the matrix K, this product eigenvalue problem can be solved efficiently by amore » modified Davidson algorithm and a modified locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm that make use of the K-inner product. The solution of the product eigenvalue problem yields one component of the eigenvector associated with the original eigenvalue problem. We show that the other component of the eigenvector can be easily recovered in an inexpensive postprocessing procedure. As a result, the algorithms we present here become more efficient than existing methods that try to approximate both components of the eigenvectors simultaneously. In particular, our numerical experiments demonstrate that the new algorithms presented here consistently outperform the existing state-of-the-art Davidson type solvers by a factor of two in both solution time and storage.« less
NASA Astrophysics Data System (ADS)
Lee, Gibbeum; Cho, Yeunwoo
2017-11-01
We present an almost analytical new approach to solving the matrix eigenvalue problem or the integral equation in Karhunen-Loeve (K-L) representation of random data such as irregular ocean waves. Instead of solving this matrix eigenvalue problem purely numerically, which may suffer from the computational inaccuracy for big data, first, we consider a pair of integral and differential equations, which are related to the so-called prolate spheroidal wave functions (PSWF). For the PSWF differential equation, the pair of the eigenvectors (PSWF) and eigenvalues can be obtained from a relatively small number of analytical Legendre functions. Then, the eigenvalues in the PSWF integral equation are expressed in terms of functional values of the PSWF and the eigenvalues of the PSWF differential equation. Finally, the analytically expressed PSWFs and the eigenvalues in the PWSF integral equation are used to form the kernel matrix in the K-L integral equation for the representation of exemplary wave data; ordinary irregular waves and rogue waves. We found that the present almost analytical method is better than the conventional data-independent Fourier representation and, also, the conventional direct numerical K-L representation in terms of both accuracy and computational cost. This work was supported by the National Research Foundation of Korea (NRF). (NRF-2017R1D1A1B03028299).
Vecharynski, Eugene; Brabec, Jiri; Shao, Meiyue; ...
2017-12-01
In this article, we present two efficient iterative algorithms for solving the linear response eigenvalue problem arising from the time dependent density functional theory. Although the matrix to be diagonalized is nonsymmetric, it has a special structure that can be exploited to save both memory and floating point operations. In particular, the nonsymmetric eigenvalue problem can be transformed into an eigenvalue problem that involves the product of two matrices M and K. We show that, because MK is self-adjoint with respect to the inner product induced by the matrix K, this product eigenvalue problem can be solved efficiently by amore » modified Davidson algorithm and a modified locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm that make use of the K-inner product. The solution of the product eigenvalue problem yields one component of the eigenvector associated with the original eigenvalue problem. We show that the other component of the eigenvector can be easily recovered in an inexpensive postprocessing procedure. As a result, the algorithms we present here become more efficient than existing methods that try to approximate both components of the eigenvectors simultaneously. In particular, our numerical experiments demonstrate that the new algorithms presented here consistently outperform the existing state-of-the-art Davidson type solvers by a factor of two in both solution time and storage.« less
Vecharynski, Eugene; Brabec, Jiri; Shao, Meiyue; ...
2017-08-24
Within this paper, we present two efficient iterative algorithms for solving the linear response eigenvalue problem arising from the time dependent density functional theory. Although the matrix to be diagonalized is nonsymmetric, it has a special structure that can be exploited to save both memory and floating point operations. In particular, the nonsymmetric eigenvalue problem can be transformed into an eigenvalue problem that involves the product of two matrices M and K. We show that, because MK is self-adjoint with respect to the inner product induced by the matrix K, this product eigenvalue problem can be solved efficiently by amore » modified Davidson algorithm and a modified locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm that make use of the K-inner product. Additionally, the solution of the product eigenvalue problem yields one component of the eigenvector associated with the original eigenvalue problem. We show that the other component of the eigenvector can be easily recovered in an inexpensive postprocessing procedure. As a result, the algorithms we present here become more efficient than existing methods that try to approximate both components of the eigenvectors simultaneously. In particular, our numerical experiments demonstrate that the new algorithms presented here consistently outperform the existing state-of-the-art Davidson type solvers by a factor of two in both solution time and storage.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vecharynski, Eugene; Brabec, Jiri; Shao, Meiyue
We present two efficient iterative algorithms for solving the linear response eigen- value problem arising from the time dependent density functional theory. Although the matrix to be diagonalized is nonsymmetric, it has a special structure that can be exploited to save both memory and floating point operations. In particular, the nonsymmetric eigenvalue problem can be transformed into a product eigenvalue problem that is self-adjoint with respect to a K-inner product. This product eigenvalue problem can be solved efficiently by a modified Davidson algorithm and a modified locally optimal block preconditioned conjugate gradient (LOBPCG) algorithm that make use of the K-innermore » product. The solution of the product eigenvalue problem yields one component of the eigenvector associated with the original eigenvalue problem. However, the other component of the eigenvector can be easily recovered in a postprocessing procedure. Therefore, the algorithms we present here are more efficient than existing algorithms that try to approximate both components of the eigenvectors simultaneously. The efficiency of the new algorithms is demonstrated by numerical examples.« less
The wasteland of random supergravities
NASA Astrophysics Data System (ADS)
Marsh, David; McAllister, Liam; Wrase, Timm
2012-03-01
We show that in a general {N} = {1} supergravity with N ≫ 1 scalar fields, an exponentially small fraction of the de Sitter critical points are metastable vacua. Taking the superpotential and Kähler potential to be random functions, we construct a random matrix model for the Hessian matrix, which is well-approximated by the sum of a Wigner matrix and two Wishart matrices. We compute the eigenvalue spectrum analytically from the free convolution of the constituent spectra and find that in typical configurations, a significant fraction of the eigenvalues are negative. Building on the Tracy-Widom law governing fluctuations of extreme eigenvalues, we determine the probability P of a large fluctuation in which all the eigenvalues become positive. Strong eigenvalue repulsion makes this extremely unlikely: we find P ∝ exp(- c N p ), with c, p being constants. For generic critical points we find p ≈ 1 .5, while for approximately-supersymmetric critical points, p ≈ 1 .3. Our results have significant implications for the counting of de Sitter vacua in string theory, but the number of vacua remains vast.
Shape sensitivity analysis of flutter response of a laminated wing
NASA Technical Reports Server (NTRS)
Bergen, Fred D.; Kapania, Rakesh K.
1988-01-01
A method is presented for calculating the shape sensitivity of a wing aeroelastic response with respect to changes in geometric shape. Yates' modified strip method is used in conjunction with Giles' equivalent plate analysis to predict the flutter speed, frequency, and reduced frequency of the wing. Three methods are used to calculate the sensitivity of the eigenvalue. The first method is purely a finite difference calculation of the eigenvalue derivative directly from the solution of the flutter problem corresponding to the two different values of the shape parameters. The second method uses an analytic expression for the eigenvalue sensitivities of a general complex matrix, where the derivatives of the aerodynamic, mass, and stiffness matrices are computed using a finite difference approximation. The third method also uses an analytic expression for the eigenvalue sensitivities, but the aerodynamic matrix is computed analytically. All three methods are found to be in good agreement with each other. The sensitivities of the eigenvalues were used to predict the flutter speed, frequency, and reduced frequency. These approximations were found to be in good agreement with those obtained using a complete reanalysis.
The eigenvalue problem in phase space.
Cohen, Leon
2018-06-30
We formulate the standard quantum mechanical eigenvalue problem in quantum phase space. The equation obtained involves the c-function that corresponds to the quantum operator. We use the Wigner distribution for the phase space function. We argue that the phase space eigenvalue equation obtained has, in addition to the proper solutions, improper solutions. That is, solutions for which no wave function exists which could generate the distribution. We discuss the conditions for ascertaining whether a position momentum function is a proper phase space distribution. We call these conditions psi-representability conditions, and show that if these conditions are imposed, one extracts the correct phase space eigenfunctions. We also derive the phase space eigenvalue equation for arbitrary phase space distributions functions. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
A multilevel finite element method for Fredholm integral eigenvalue problems
NASA Astrophysics Data System (ADS)
Xie, Hehu; Zhou, Tao
2015-12-01
In this work, we proposed a multigrid finite element (MFE) method for solving the Fredholm integral eigenvalue problems. The main motivation for such studies is to compute the Karhunen-Loève expansions of random fields, which play an important role in the applications of uncertainty quantification. In our MFE framework, solving the eigenvalue problem is converted to doing a series of integral iterations and eigenvalue solving in the coarsest mesh. Then, any existing efficient integration scheme can be used for the associated integration process. The error estimates are provided, and the computational complexity is analyzed. It is noticed that the total computational work of our method is comparable with a single integration step in the finest mesh. Several numerical experiments are presented to validate the efficiency of the proposed numerical method.
Method for computing self-consistent solution in a gun code
Nelson, Eric M
2014-09-23
Complex gun code computations can be made to converge more quickly based on a selection of one or more relaxation parameters. An eigenvalue analysis is applied to error residuals to identify two error eigenvalues that are associated with respective error residuals. Relaxation values can be selected based on these eigenvalues so that error residuals associated with each can be alternately reduced in successive iterations. In some examples, relaxation values that would be unstable if used alone can be used.
PT-symmetric eigenvalues for homogeneous potentials
NASA Astrophysics Data System (ADS)
Eremenko, Alexandre; Gabrielov, Andrei
2018-05-01
We consider one-dimensional Schrödinger equations with potential x2M(ix)ɛ, where M ≥ 1 is an integer and ɛ is real, under appropriate parity and time (PT)-symmetric boundary conditions. We prove the phenomenon which was discovered by Bender and Boettcher by numerical computation: as ɛ changes, the real spectrum suddenly becomes non-real in the sense that all but finitely many eigenvalues become non-real. We find the limit arguments of these non-real eigenvalues E as E → ∞.
Spectral properties of Google matrix of Wikipedia and other networks
NASA Astrophysics Data System (ADS)
Ermann, Leonardo; Frahm, Klaus M.; Shepelyansky, Dima L.
2013-05-01
We study the properties of eigenvalues and eigenvectors of the Google matrix of the Wikipedia articles hyperlink network and other real networks. With the help of the Arnoldi method, we analyze the distribution of eigenvalues in the complex plane and show that eigenstates with significant eigenvalue modulus are located on well defined network communities. We also show that the correlator between PageRank and CheiRank vectors distinguishes different organizations of information flow on BBC and Le Monde web sites.
An accurate method for solving a class of fractional Sturm-Liouville eigenvalue problems
NASA Astrophysics Data System (ADS)
Kashkari, Bothayna S. H.; Syam, Muhammed I.
2018-06-01
This article is devoted to both theoretical and numerical study of the eigenvalues of nonsingular fractional second-order Sturm-Liouville problem. In this paper, we implement a fractional-order Legendre Tau method to approximate the eigenvalues. This method transforms the Sturm-Liouville problem to a sparse nonsingular linear system which is solved using the continuation method. Theoretical results for the considered problem are provided and proved. Numerical results are presented to show the efficiency of the proposed method.
A control system design approach for flexible spacecraft
NASA Technical Reports Server (NTRS)
Silverberg, L. M.
1985-01-01
A control system design approach for flexible spacecraft is presented. The control system design is carried out in two steps. The first step consists of determining the ideal control system in terms of a desirable dynamic performance. The second step consists of designing a control system using a limited number of actuators that possess a dynamic performance that is close to the ideal dynamic performance. The effects of using a limited number of actuators is that the actual closed-loop eigenvalues differ from the ideal closed-loop eigenvalues. A method is presented to approximate the actual closed-loop eigenvalues so that the calculation of the actual closed-loop eigenvalues can be avoided. Depending on the application, it also may be desirable to apply the control forces as impulses. The effect of digitizing the control to produce the appropriate impulses is also examined.
NASA Astrophysics Data System (ADS)
Livan, Giacomo; Alfarano, Simone; Scalas, Enrico
2011-07-01
We study some properties of eigenvalue spectra of financial correlation matrices. In particular, we investigate the nature of the large eigenvalue bulks which are observed empirically, and which have often been regarded as a consequence of the supposedly large amount of noise contained in financial data. We challenge this common knowledge by acting on the empirical correlation matrices of two data sets with a filtering procedure which highlights some of the cluster structure they contain, and we analyze the consequences of such filtering on eigenvalue spectra. We show that empirically observed eigenvalue bulks emerge as superpositions of smaller structures, which in turn emerge as a consequence of cross correlations between stocks. We interpret and corroborate these findings in terms of factor models, and we compare empirical spectra to those predicted by random matrix theory for such models.
The Theory of Quantized Fields. III
DOE R&D Accomplishments Database
Schwinger, J.
1953-05-01
In this paper we discuss the electromagnetic field, as perturbed by a prescribed current. All quantities of physical interest in various situations, eigenvalues, eigenfunctions, and transformation probabilities, are derived from a general transformation function which is expressed in a non-Hermitian representation. The problems treated are: the determination of the energy-momentum eigenvalues and eigenfunctions for the isolated electromagnetic field, and the energy eigenvalues and eigenfunctions for the field perturbed by a time-independent current that departs from zero only within a finite time interval, and for a time-dependent current that assumes non-vanishing time-independent values initially and finally. The results are applied in a discussion of the intra-red catastrophe and of the adiabatic theorem. It is shown how the latter can be exploited to give a uniform formulation for all problems requiring the evaluation of transition probabilities or eigenvalue displacements.
Multigrid method for stability problems
NASA Technical Reports Server (NTRS)
Ta'asan, Shlomo
1988-01-01
The problem of calculating the stability of steady state solutions of differential equations is addressed. Leading eigenvalues of large matrices that arise from discretization are calculated, and an efficient multigrid method for solving these problems is presented. The resulting grid functions are used as initial approximations for appropriate eigenvalue problems. The method employs local relaxation on all levels together with a global change on the coarsest level only, which is designed to separate the different eigenfunctions as well as to update their corresponding eigenvalues. Coarsening is done using the FAS formulation in a nonstandard way in which the right-hand side of the coarse grid equations involves unknown parameters to be solved on the coarse grid. This leads to a new multigrid method for calculating the eigenvalues of symmetric problems. Numerical experiments with a model problem are presented which demonstrate the effectiveness of the method.
NASA Astrophysics Data System (ADS)
Cartarius, Holger; Musslimani, Ziad H.; Schwarz, Lukas; Wunner, Günter
2018-03-01
The spectral renormalization method was introduced in 2005 as an effective way to compute ground states of nonlinear Schrödinger and Gross-Pitaevskii type equations. In this paper, we introduce an orthogonal spectral renormalization (OSR) method to compute ground and excited states (and their respective eigenvalues) of linear and nonlinear eigenvalue problems. The implementation of the algorithm follows four simple steps: (i) reformulate the underlying eigenvalue problem as a fixed-point equation, (ii) introduce a renormalization factor that controls the convergence properties of the iteration, (iii) perform a Gram-Schmidt orthogonalization process in order to prevent the iteration from converging to an unwanted mode, and (iv) compute the solution sought using a fixed-point iteration. The advantages of the OSR scheme over other known methods (such as Newton's and self-consistency) are (i) it allows the flexibility to choose large varieties of initial guesses without diverging, (ii) it is easy to implement especially at higher dimensions, and (iii) it can easily handle problems with complex and random potentials. The OSR method is implemented on benchmark Hermitian linear and nonlinear eigenvalue problems as well as linear and nonlinear non-Hermitian PT -symmetric models.
NASA Astrophysics Data System (ADS)
Li, Zhengguang; Lai, Siu-Kai; Wu, Baisheng
2018-07-01
Determining eigenvector derivatives is a challenging task due to the singularity of the coefficient matrices of the governing equations, especially for those structural dynamic systems with repeated eigenvalues. An effective strategy is proposed to construct a non-singular coefficient matrix, which can be directly used to obtain the eigenvector derivatives with distinct and repeated eigenvalues. This approach also has an advantage that only requires eigenvalues and eigenvectors of interest, without solving the particular solutions of eigenvector derivatives. The Symmetric Quasi-Minimal Residual (SQMR) method is then adopted to solve the governing equations, only the existing factored (shifted) stiffness matrix from an iterative eigensolution such as the subspace iteration method or the Lanczos algorithm is utilized. The present method can deal with both cases of simple and repeated eigenvalues in a unified manner. Three numerical examples are given to illustrate the accuracy and validity of the proposed algorithm. Highly accurate approximations to the eigenvector derivatives are obtained within a few iteration steps, making a significant reduction of the computational effort. This method can be incorporated into a coupled eigensolver/derivative software module. In particular, it is applicable for finite element models with large sparse matrices.
Edge connectivity and the spectral gap of combinatorial and quantum graphs
NASA Astrophysics Data System (ADS)
Berkolaiko, Gregory; Kennedy, James B.; Kurasov, Pavel; Mugnolo, Delio
2017-09-01
We derive a number of upper and lower bounds for the first nontrivial eigenvalue of Laplacians on combinatorial and quantum graph in terms of the edge connectivity, i.e. the minimal number of edges which need to be removed to make the graph disconnected. On combinatorial graphs, one of the bounds corresponds to a well-known inequality of Fiedler, of which we give a new variational proof. On quantum graphs, the corresponding bound generalizes a recent result of Band and Lévy. All proofs are general enough to yield corresponding estimates for the p-Laplacian and allow us to identify the minimizers. Based on the Betti number of the graph, we also derive upper and lower bounds on all eigenvalues which are ‘asymptotically correct’, i.e. agree with the Weyl asymptotics for the eigenvalues of the quantum graph. In particular, the lower bounds improve the bounds of Friedlander on any given graph for all but finitely many eigenvalues, while the upper bounds improve recent results of Ariturk. Our estimates are also used to derive bounds on the eigenvalues of the normalized Laplacian matrix that improve known bounds of spectral graph theory.
Eigenvalue Detonation of Combined Effects Aluminized Explosives
NASA Astrophysics Data System (ADS)
Capellos, C.; Baker, E. L.; Nicolich, S.; Balas, W.; Pincay, J.; Stiel, L. I.
2007-12-01
Theory and performance for recently developed combined—effects aluminized explosives are presented. Our recently developed combined-effects aluminized explosives (PAX-29C, PAX-30, PAX-42) are capable of achieving excellent metal pushing, as well as high blast energies. Metal pushing capability refers to the early volume expansion work produced during the first few volume expansions associated with cylinder and wall velocities and Gurney energies. Eigenvalue detonation explains the observed detonation states achieved by these combined effects explosives. Cylinder expansion data and thermochemical calculations (JAGUAR and CHEETAH) verify the eigenvalue detonation behavior.
NASA Astrophysics Data System (ADS)
2018-05-01
Eigenvalues and eigenvectors, together, constitute the eigenstructure of the system. The design of vibrating systems aimed at satisfying specifications on eigenvalues and eigenvectors, which is commonly known as eigenstructure assignment, has drawn increasing interest over the recent years. The most natural mathematical framework for such problems is constituted by the inverse eigenproblems, which consist in the determination of the system model that features a desired set of eigenvalues and eigenvectors. Although such a problem is intrinsically challenging, several solutions have been proposed in the literature. The approaches to eigenstructure assignment can be basically divided into passive control and active control.
Dimension from covariance matrices.
Carroll, T L; Byers, J M
2017-02-01
We describe a method to estimate embedding dimension from a time series. This method includes an estimate of the probability that the dimension estimate is valid. Such validity estimates are not common in algorithms for calculating the properties of dynamical systems. The algorithm described here compares the eigenvalues of covariance matrices created from an embedded signal to the eigenvalues for a covariance matrix of a Gaussian random process with the same dimension and number of points. A statistical test gives the probability that the eigenvalues for the embedded signal did not come from the Gaussian random process.
Extension of the tridiagonal reduction (FEER) method for complex eigenvalue problems in NASTRAN
NASA Technical Reports Server (NTRS)
Newman, M.; Mann, F. I.
1978-01-01
As in the case of real eigenvalue analysis, the eigensolutions closest to a selected point in the eigenspectrum were extracted from a reduced, symmetric, tridiagonal eigenmatrix whose order was much lower than that of the full size problem. The reduction process was effected automatically, and thus avoided the arbitrary lumping of masses and other physical quantities at selected grid points. The statement of the algebraic eigenvalue problem admitted mass, damping, and stiffness matrices which were unrestricted in character, i.e., they might be real, symmetric or nonsymmetric, singular or nonsingular.
Chebyshev polynomials in the spectral Tau method and applications to Eigenvalue problems
NASA Technical Reports Server (NTRS)
Johnson, Duane
1996-01-01
Chebyshev Spectral methods have received much attention recently as a technique for the rapid solution of ordinary differential equations. This technique also works well for solving linear eigenvalue problems. Specific detail is given to the properties and algebra of chebyshev polynomials; the use of chebyshev polynomials in spectral methods; and the recurrence relationships that are developed. These formula and equations are then applied to several examples which are worked out in detail. The appendix contains an example FORTRAN program used in solving an eigenvalue problem.
A new localization set for generalized eigenvalues.
Gao, Jing; Li, Chaoqian
2017-01-01
A new localization set for generalized eigenvalues is obtained. It is shown that the new set is tighter than that in (Numer. Linear Algebra Appl. 16:883-898, 2009). Numerical examples are given to verify the corresponding results.
Symmetric quadratic Hamiltonians with pseudo-Hermitian matrix representation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernández, Francisco M., E-mail: fernande@quimica.unlp.edu.ar
2016-06-15
We prove that any symmetric Hamiltonian that is a quadratic function of the coordinates and momenta has a pseudo-Hermitian adjoint or regular matrix representation. The eigenvalues of the latter matrix are the natural frequencies of the Hamiltonian operator. When all the eigenvalues of the matrix are real, then the spectrum of the symmetric Hamiltonian is real and the operator is Hermitian. As illustrative examples we choose the quadratic Hamiltonians that model a pair of coupled resonators with balanced gain and loss, the electromagnetic self-force on an oscillating charged particle and an active LRC circuit. -- Highlights: •Symmetric quadratic operators aremore » useful models for many physical applications. •Any such operator exhibits a pseudo-Hermitian matrix representation. •Its eigenvalues are the natural frequencies of the Hamiltonian operator. •The eigenvalues may be real or complex and describe a phase transition.« less
Rich structure in the correlation matrix spectra in non-equilibrium steady states
NASA Astrophysics Data System (ADS)
Biswas, Soham; Leyvraz, Francois; Monroy Castillero, Paulino; Seligman, Thomas H.
2017-01-01
It has been shown that, if a model displays long-range (power-law) spatial correlations, its equal-time correlation matrix will also have a power law tail in the distribution of its high-lying eigenvalues. The purpose of this paper is to show that the converse is generally incorrect: a power-law tail in the high-lying eigenvalues of the correlation matrix may exist even in the absence of equal-time power law correlations in the initial model. We may therefore view the study of the eigenvalue distribution of the correlation matrix as a more powerful tool than the study of spatial Correlations, one which may in fact uncover structure, that would otherwise not be apparent. Specifically, we show that in the Totally Asymmetric Simple Exclusion Process, whereas there are no clearly visible correlations in the steady state, the eigenvalues of its correlation matrix exhibit a rich structure which we describe in detail.
Eigenvalue sensitivity analysis of planar frames with variable joint and support locations
NASA Technical Reports Server (NTRS)
Chuang, Ching H.; Hou, Gene J. W.
1991-01-01
Two sensitivity equations are derived in this study based upon the continuum approach for eigenvalue sensitivity analysis of planar frame structures with variable joint and support locations. A variational form of an eigenvalue equation is first derived in which all of the quantities are expressed in the local coordinate system attached to each member. Material derivative of this variational equation is then sought to account for changes in member's length and orientation resulting form the perturbation of joint and support locations. Finally, eigenvalue sensitivity equations are formulated in either domain quantities (by the domain method) or boundary quantities (by the boundary method). It is concluded that the sensitivity equation derived by the boundary method is more efficient in computation but less accurate than that of the domain method. Nevertheless, both of them in terms of computational efficiency are superior to the conventional direct differentiation method and the finite difference method.
A Decentralized Eigenvalue Computation Method for Spectrum Sensing Based on Average Consensus
NASA Astrophysics Data System (ADS)
Mohammadi, Jafar; Limmer, Steffen; Stańczak, Sławomir
2016-07-01
This paper considers eigenvalue estimation for the decentralized inference problem for spectrum sensing. We propose a decentralized eigenvalue computation algorithm based on the power method, which is referred to as generalized power method GPM; it is capable of estimating the eigenvalues of a given covariance matrix under certain conditions. Furthermore, we have developed a decentralized implementation of GPM by splitting the iterative operations into local and global computation tasks. The global tasks require data exchange to be performed among the nodes. For this task, we apply an average consensus algorithm to efficiently perform the global computations. As a special case, we consider a structured graph that is a tree with clusters of nodes at its leaves. For an accelerated distributed implementation, we propose to use computation over multiple access channel (CoMAC) as a building block of the algorithm. Numerical simulations are provided to illustrate the performance of the two algorithms.
NASA Astrophysics Data System (ADS)
Castellano, Claudio; Pastor-Satorras, Romualdo
2017-10-01
The largest eigenvalue of a network's adjacency matrix and its associated principal eigenvector are key elements for determining the topological structure and the properties of dynamical processes mediated by it. We present a physically grounded expression relating the value of the largest eigenvalue of a given network to the largest eigenvalue of two network subgraphs, considered as isolated: the hub with its immediate neighbors and the densely connected set of nodes with maximum K -core index. We validate this formula by showing that it predicts, with good accuracy, the largest eigenvalue of a large set of synthetic and real-world topologies. We also present evidence of the consequences of these findings for broad classes of dynamics taking place on the networks. As a by-product, we reveal that the spectral properties of heterogeneous networks built according to the linear preferential attachment model are qualitatively different from those of their static counterparts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beer, M.
1980-12-01
The maximum likelihood method for the multivariate normal distribution is applied to the case of several individual eigenvalues. Correlated Monte Carlo estimates of the eigenvalue are assumed to follow this prescription and aspects of the assumption are examined. Monte Carlo cell calculations using the SAM-CE and VIM codes for the TRX-1 and TRX-2 benchmark reactors, and SAM-CE full core results are analyzed with this method. Variance reductions of a few percent to a factor of 2 are obtained from maximum likelihood estimation as compared with the simple average and the minimum variance individual eigenvalue. The numerical results verify that themore » use of sample variances and correlation coefficients in place of the corresponding population statistics still leads to nearly minimum variance estimation for a sufficient number of histories and aggregates.« less
Intrinsic character of Stokes matrices
NASA Astrophysics Data System (ADS)
Gagnon, Jean-François; Rousseau, Christiane
2017-02-01
Two germs of linear analytic differential systems x k + 1Y‧ = A (x) Y with a non-resonant irregular singularity are analytically equivalent if and only if they have the same eigenvalues and equivalent collections of Stokes matrices. The Stokes matrices are the transition matrices between sectors on which the system is analytically equivalent to its formal normal form. Each sector contains exactly one separating ray for each pair of eigenvalues. A rotation in S allows supposing that R+ lies in the intersection of two sectors. Reordering of the coordinates of Y allows ordering the real parts of the eigenvalues, thus yielding triangular Stokes matrices. However, the choice of the rotation in x is not canonical. In this paper we establish how the collection of Stokes matrices depends on this rotation, and hence on a chosen order of the projection of the eigenvalues on a line through the origin.
Eigenvalue routines in NASTRAN: A comparison with the Block Lanczos method
NASA Technical Reports Server (NTRS)
Tischler, V. A.; Venkayya, Vipperla B.
1993-01-01
The NASA STRuctural ANalysis (NASTRAN) program is one of the most extensively used engineering applications software in the world. It contains a wealth of matrix operations and numerical solution techniques, and they were used to construct efficient eigenvalue routines. The purpose of this paper is to examine the current eigenvalue routines in NASTRAN and to make efficiency comparisons with a more recent implementation of the Block Lanczos algorithm by Boeing Computer Services (BCS). This eigenvalue routine is now available in the BCS mathematics library as well as in several commercial versions of NASTRAN. In addition, CRAY maintains a modified version of this routine on their network. Several example problems, with a varying number of degrees of freedom, were selected primarily for efficiency bench-marking. Accuracy is not an issue, because they all gave comparable results. The Block Lanczos algorithm was found to be extremely efficient, in particular, for very large size problems.
Eigenvalue statistics for the sum of two complex Wishart matrices
NASA Astrophysics Data System (ADS)
Kumar, Santosh
2014-09-01
The sum of independent Wishart matrices, taken from distributions with unequal covariance matrices, plays a crucial role in multivariate statistics, and has applications in the fields of quantitative finance and telecommunication. However, analytical results concerning the corresponding eigenvalue statistics have remained unavailable, even for the sum of two Wishart matrices. This can be attributed to the complicated and rotationally noninvariant nature of the matrix distribution that makes extracting the information about eigenvalues a nontrivial task. Using a generalization of the Harish-Chandra-Itzykson-Zuber integral, we find exact solution to this problem for the complex Wishart case when one of the covariance matrices is proportional to the identity matrix, while the other is arbitrary. We derive exact and compact expressions for the joint probability density and marginal density of eigenvalues. The analytical results are compared with numerical simulations and we find perfect agreement.
Rich structure in the correlation matrix spectra in non-equilibrium steady states.
Biswas, Soham; Leyvraz, Francois; Monroy Castillero, Paulino; Seligman, Thomas H
2017-01-17
It has been shown that, if a model displays long-range (power-law) spatial correlations, its equal-time correlation matrix will also have a power law tail in the distribution of its high-lying eigenvalues. The purpose of this paper is to show that the converse is generally incorrect: a power-law tail in the high-lying eigenvalues of the correlation matrix may exist even in the absence of equal-time power law correlations in the initial model. We may therefore view the study of the eigenvalue distribution of the correlation matrix as a more powerful tool than the study of spatial Correlations, one which may in fact uncover structure, that would otherwise not be apparent. Specifically, we show that in the Totally Asymmetric Simple Exclusion Process, whereas there are no clearly visible correlations in the steady state, the eigenvalues of its correlation matrix exhibit a rich structure which we describe in detail.
Chen, Yasheng; Zhu, Hongtu; An, Hongyu; Armao, Diane; Shen, Dinggang; Gilmore, John H.; Lin, Weili
2013-01-01
The aim of this study was to characterize the maturational changes of the three eigenvalues (λ1 ≥ λ2 ≥ λ3) of diffusion tensor imaging (DTI) during early postnatal life for more insights into early brain development. In order to overcome the limitations of using presumed growth trajectories for regression analysis, we employed Multivariate Adaptive Regression Splines (MARS) to derive data-driven growth trajectories for the three eigenvalues. We further employed Generalized Estimating Equations (GEE) to carry out statistical inferences on the growth trajectories obtained with MARS. With a total of 71 longitudinal datasets acquired from 29 healthy, full-term pediatric subjects, we found that the growth velocities of the three eigenvalues were highly correlated, but significantly different from each other. This paradox suggested the existence of mechanisms coordinating the maturations of the three eigenvalues even though different physiological origins may be responsible for their temporal evolutions. Furthermore, our results revealed the limitations of using the average of λ2 and λ3 as the radial diffusivity in interpreting DTI findings during early brain development because these two eigenvalues had significantly different growth velocities even in central white matter. In addition, based upon the three eigenvalues, we have documented the growth trajectory differences between central and peripheral white matter, between anterior and posterior limbs of internal capsule, and between inferior and superior longitudinal fasciculus. Taken together, we have demonstrated that more insights into early brain maturation can be gained through analyzing eigen-structural elements of DTI. PMID:23455648
Pocrnic, Ivan; Lourenco, Daniela A L; Masuda, Yutaka; Misztal, Ignacy
2016-10-31
A genomic relationship matrix (GRM) can be inverted efficiently with the Algorithm for Proven and Young (APY) through recursion on a small number of core animals. The number of core animals is theoretically linked to effective population size (N e ). In a simulation study, the optimal number of core animals was equal to the number of largest eigenvalues of GRM that explained 98% of its variation. The purpose of this study was to find the optimal number of core animals and estimate N e for different species. Datasets included phenotypes, pedigrees, and genotypes for populations of Holstein, Jersey, and Angus cattle, pigs, and broiler chickens. The number of genotyped animals varied from 15,000 for broiler chickens to 77,000 for Holsteins, and the number of single-nucleotide polymorphisms used for genomic prediction varied from 37,000 to 61,000. Eigenvalue decomposition of the GRM for each population determined numbers of largest eigenvalues corresponding to 90, 95, 98, and 99% of variation. The number of eigenvalues corresponding to 90% (98%) of variation was 4527 (14,026) for Holstein, 3325 (11,500) for Jersey, 3654 (10,605) for Angus, 1239 (4103) for pig, and 1655 (4171) for broiler chicken. Each trait in each species was analyzed using the APY inverse of the GRM with randomly selected core animals, and their number was equal to the number of largest eigenvalues. Realized accuracies peaked with the number of core animals corresponding to 98% of variation for Holstein and Jersey and closer to 99% for other breed/species. N e was estimated based on comparisons of eigenvalue decomposition in a simulation study. Assuming a genome length of 30 Morgan, N e was equal to 149 for Holsteins, 101 for Jerseys, 113 for Angus, 32 for pigs, and 44 for broilers. Eigenvalue profiles of GRM for common species are similar to those in simulation studies although they are affected by number of genotyped animals and genotyping quality. For all investigated species, the APY required less than 15,000 core animals. Realized accuracies were equal or greater with the APY inverse than with regular inversion. Eigenvalue analysis of GRM can provide a realistic estimate of N e .
NASA Astrophysics Data System (ADS)
Babaee, Hessam; Choi, Minseok; Sapsis, Themistoklis P.; Karniadakis, George Em
2017-09-01
We develop a new robust methodology for the stochastic Navier-Stokes equations based on the dynamically-orthogonal (DO) and bi-orthogonal (BO) methods [1-3]. Both approaches are variants of a generalized Karhunen-Loève (KL) expansion in which both the stochastic coefficients and the spatial basis evolve according to system dynamics, hence, capturing the low-dimensional structure of the solution. The DO and BO formulations are mathematically equivalent [3], but they exhibit computationally complimentary properties. Specifically, the BO formulation may fail due to crossing of the eigenvalues of the covariance matrix, while both BO and DO become unstable when there is a high condition number of the covariance matrix or zero eigenvalues. To this end, we combine the two methods into a robust hybrid framework and in addition we employ a pseudo-inverse technique to invert the covariance matrix. The robustness of the proposed method stems from addressing the following issues in the DO/BO formulation: (i) eigenvalue crossing: we resolve the issue of eigenvalue crossing in the BO formulation by switching to the DO near eigenvalue crossing using the equivalence theorem and switching back to BO when the distance between eigenvalues is larger than a threshold value; (ii) ill-conditioned covariance matrix: we utilize a pseudo-inverse strategy to invert the covariance matrix; (iii) adaptivity: we utilize an adaptive strategy to add/remove modes to resolve the covariance matrix up to a threshold value. In particular, we introduce a soft-threshold criterion to allow the system to adapt to the newly added/removed mode and therefore avoid repetitive and unnecessary mode addition/removal. When the total variance approaches zero, we show that the DO/BO formulation becomes equivalent to the evolution equation of the Optimally Time-Dependent modes [4]. We demonstrate the capability of the proposed methodology with several numerical examples, namely (i) stochastic Burgers equation: we analyze the performance of the method in the presence of eigenvalue crossing and zero eigenvalues; (ii) stochastic Kovasznay flow: we examine the method in the presence of a singular covariance matrix; and (iii) we examine the adaptivity of the method for an incompressible flow over a cylinder where for large stochastic forcing thirteen DO/BO modes are active.
Solution of the symmetric eigenproblem AX=lambda BX by delayed division
NASA Technical Reports Server (NTRS)
Thurston, G. A.; Bains, N. J. C.
1986-01-01
Delayed division is an iterative method for solving the linear eigenvalue problem AX = lambda BX for a limited number of small eigenvalues and their corresponding eigenvectors. The distinctive feature of the method is the reduction of the problem to an approximate triangular form by systematically dropping quadratic terms in the eigenvalue lambda. The report describes the pivoting strategy in the reduction and the method for preserving symmetry in submatrices at each reduction step. Along with the approximate triangular reduction, the report extends some techniques used in the method of inverse subspace iteration. Examples are included for problems of varying complexity.
Eigenvalues of the Laplacian of a graph
NASA Technical Reports Server (NTRS)
Anderson, W. N., Jr.; Morley, T. D.
1971-01-01
Let G be a finite undirected graph with no loops or multiple edges. The Laplacian matrix of G, Delta(G), is defined by Delta sub ii = degree of vertex i and Delta sub ij = -1 if there is an edge between vertex i and vertex j. The structure of the graph G is related to the eigenvalues of Delta(G); in particular, it is proved that all the eigenvalues of Delta(G) are nonnegative, less than or equal to the number of vertices, and less than or equal to twice the maximum vertex degree. Precise conditions for equality are given.
Sensitivity analysis and approximation methods for general eigenvalue problems
NASA Technical Reports Server (NTRS)
Murthy, D. V.; Haftka, R. T.
1986-01-01
Optimization of dynamic systems involving complex non-hermitian matrices is often computationally expensive. Major contributors to the computational expense are the sensitivity analysis and reanalysis of a modified design. The present work seeks to alleviate this computational burden by identifying efficient sensitivity analysis and approximate reanalysis methods. For the algebraic eigenvalue problem involving non-hermitian matrices, algorithms for sensitivity analysis and approximate reanalysis are classified, compared and evaluated for efficiency and accuracy. Proper eigenvector normalization is discussed. An improved method for calculating derivatives of eigenvectors is proposed based on a more rational normalization condition and taking advantage of matrix sparsity. Important numerical aspects of this method are also discussed. To alleviate the problem of reanalysis, various approximation methods for eigenvalues are proposed and evaluated. Linear and quadratic approximations are based directly on the Taylor series. Several approximation methods are developed based on the generalized Rayleigh quotient for the eigenvalue problem. Approximation methods based on trace theorem give high accuracy without needing any derivatives. Operation counts for the computation of the approximations are given. General recommendations are made for the selection of appropriate approximation technique as a function of the matrix size, number of design variables, number of eigenvalues of interest and the number of design points at which approximation is sought.
A differentiable reformulation for E-optimal design of experiments in nonlinear dynamic biosystems.
Telen, Dries; Van Riet, Nick; Logist, Flip; Van Impe, Jan
2015-06-01
Informative experiments are highly valuable for estimating parameters in nonlinear dynamic bioprocesses. Techniques for optimal experiment design ensure the systematic design of such informative experiments. The E-criterion which can be used as objective function in optimal experiment design requires the maximization of the smallest eigenvalue of the Fisher information matrix. However, one problem with the minimal eigenvalue function is that it can be nondifferentiable. In addition, no closed form expression exists for the computation of eigenvalues of a matrix larger than a 4 by 4 one. As eigenvalues are normally computed with iterative methods, state-of-the-art optimal control solvers are not able to exploit automatic differentiation to compute the derivatives with respect to the decision variables. In the current paper a reformulation strategy from the field of convex optimization is suggested to circumvent these difficulties. This reformulation requires the inclusion of a matrix inequality constraint involving positive semidefiniteness. In this paper, this positive semidefiniteness constraint is imposed via Sylverster's criterion. As a result the maximization of the minimum eigenvalue function can be formulated in standard optimal control solvers through the addition of nonlinear constraints. The presented methodology is successfully illustrated with a case study from the field of predictive microbiology. Copyright © 2015. Published by Elsevier Inc.
A Novel Hyperbolization Procedure for The Two-Phase Six-Equation Flow Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samet Y. Kadioglu; Robert Nourgaliev; Nam Dinh
2011-10-01
We introduce a novel approach for the hyperbolization of the well-known two-phase six equation flow model. The six-equation model has been frequently used in many two-phase flow applications such as bubbly fluid flows in nuclear reactors. One major drawback of this model is that it can be arbitrarily non-hyperbolic resulting in difficulties such as numerical instability issues. Non-hyperbolic behavior can be associated with complex eigenvalues that correspond to characteristic matrix of the system. Complex eigenvalues are often due to certain flow parameter choices such as the definition of inter-facial pressure terms. In our method, we prevent the characteristic matrix receivingmore » complex eigenvalues by fine tuning the inter-facial pressure terms with an iterative procedure. In this way, the characteristic matrix possesses all real eigenvalues meaning that the characteristic wave speeds are all real therefore the overall two-phase flowmodel becomes hyperbolic. The main advantage of this is that one can apply less diffusive highly accurate high resolution numerical schemes that often rely on explicit calculations of real eigenvalues. We note that existing non-hyperbolic models are discretized mainly based on low order highly dissipative numerical techniques in order to avoid stability issues.« less
Emergent spectral properties of river network topology: an optimal channel network approach.
Abed-Elmdoust, Armaghan; Singh, Arvind; Yang, Zong-Liang
2017-09-13
Characterization of river drainage networks has been a subject of research for many years. However, most previous studies have been limited to quantities which are loosely connected to the topological properties of these networks. In this work, through a graph-theoretic formulation of drainage river networks, we investigate the eigenvalue spectra of their adjacency matrix. First, we introduce a graph theory model for river networks and explore the properties of the network through its adjacency matrix. Next, we show that the eigenvalue spectra of such complex networks follow distinct patterns and exhibit striking features including a spectral gap in which no eigenvalue exists as well as a finite number of zero eigenvalues. We show that such spectral features are closely related to the branching topology of the associated river networks. In this regard, we find an empirical relation for the spectral gap and nullity in terms of the energy dissipation exponent of the drainage networks. In addition, the eigenvalue distribution is found to follow a finite-width probability density function with certain skewness which is related to the drainage pattern. Our results are based on optimal channel network simulations and validated through examples obtained from physical experiments on landscape evolution. These results suggest the potential of the spectral graph techniques in characterizing and modeling river networks.
Fourth-order convergence of a compact scheme for the one-dimensional biharmonic equation
NASA Astrophysics Data System (ADS)
Fishelov, D.; Ben-Artzi, M.; Croisille, J.-P.
2012-09-01
The convergence of a fourth-order compact scheme to the one-dimensional biharmonic problem is established in the case of general Dirichlet boundary conditions. The compact scheme invokes value of the unknown function as well as Pade approximations of its first-order derivative. Using the Pade approximation allows us to approximate the first-order derivative within fourth-order accuracy. However, although the truncation error of the discrete biharmonic scheme is of fourth-order at interior point, the truncation error drops to first-order at near-boundary points. Nonetheless, we prove that the scheme retains its fourth-order (optimal) accuracy. This is done by a careful inspection of the matrix elements of the discrete biharmonic operator. A number of numerical examples corroborate this effect. We also present a study of the eigenvalue problem uxxxx = νu. We compute and display the eigenvalues and the eigenfunctions related to the continuous and the discrete problems. By the positivity of the eigenvalues, one can deduce the stability of of the related time-dependent problem ut = -uxxxx. In addition, we study the eigenvalue problem uxxxx = νuxx. This is related to the stability of the linear time-dependent equation uxxt = νuxxxx. Its continuous and discrete eigenvalues and eigenfunction (or eigenvectors) are computed and displayed graphically.
Eigensensitivity analysis of rotating clamped uniform beams with the asymptotic numerical method
NASA Astrophysics Data System (ADS)
Bekhoucha, F.; Rechak, S.; Cadou, J. M.
2016-12-01
In this paper, free vibrations of a rotating clamped Euler-Bernoulli beams with uniform cross section are studied using continuation method, namely asymptotic numerical method. The governing equations of motion are derived using Lagrange's method. The kinetic and strain energy expression are derived from Rayleigh-Ritz method using a set of hybrid variables and based on a linear deflection assumption. The derived equations are transformed in two eigenvalue problems, where the first is a linear gyroscopic eigenvalue problem and presents the coupled lagging and stretch motions through gyroscopic terms. While the second is standard eigenvalue problem and corresponds to the flapping motion. Those two eigenvalue problems are transformed into two functionals treated by continuation method, the Asymptotic Numerical Method. New method proposed for the solution of the linear gyroscopic system based on an augmented system, which transforms the original problem to a standard form with real symmetric matrices. By using some techniques to resolve these singular problems by the continuation method, evolution curves of the natural frequencies against dimensionless angular velocity are determined. At high angular velocity, some singular points, due to the linear elastic assumption, are computed. Numerical tests of convergence are conducted and the obtained results are compared to the exact values. Results obtained by continuation are compared to those computed with discrete eigenvalue problem.
NASA Astrophysics Data System (ADS)
Little, Duncan A.; Tennyson, Jonathan; Plummer, Martin; Noble, Clifford J.; Sunderland, Andrew G.
2017-06-01
TIMEDELN implements the time-delay method of determining resonance parameters from the characteristic Lorentzian form displayed by the largest eigenvalues of the time-delay matrix. TIMEDELN constructs the time-delay matrix from input K-matrices and analyses its eigenvalues. This new version implements multi-resonance fitting and may be run serially or as a high performance parallel code with three levels of parallelism. TIMEDELN takes K-matrices from a scattering calculation, either read from a file or calculated on a dynamically adjusted grid, and calculates the time-delay matrix. This is then diagonalized, with the largest eigenvalue representing the longest time-delay experienced by the scattering particle. A resonance shows up as a characteristic Lorentzian form in the time-delay: the programme searches the time-delay eigenvalues for maxima and traces resonances when they pass through different eigenvalues, separating overlapping resonances. It also performs the fitting of the calculated data to the Lorentzian form and outputs resonance positions and widths. Any remaining overlapping resonances can be fitted jointly. The branching ratios of decay into the open channels can also be found. The programme may be run serially or in parallel with three levels of parallelism. The parallel code modules are abstracted from the main physics code and can be used independently.
On the Aharonov-Bohm Operators with Varying Poles: The Boundary Behavior of Eigenvalues
NASA Astrophysics Data System (ADS)
Noris, Benedetta; Nys, Manon; Terracini, Susanna
2015-11-01
We consider a magnetic Schrödinger operator with magnetic field concentrated at one point (the pole) of a domain and half integer circulation, and we focus on the behavior of Dirichlet eigenvalues as functions of the pole. Although the magnetic field vanishes almost everywhere, it is well known that it affects the operator at the spectral level (the Aharonov-Bohm effect, Phys Rev (2) 115:485-491, 1959). Moreover, the numerical computations performed in (Bonnaillie-Noël et al., Anal PDE 7(6):1365-1395, 2014; Noris and Terracini, Indiana Univ Math J 59(4):1361-1403, 2010) show a rather complex behavior of the eigenvalues as the pole varies in a planar domain. In this paper, in continuation of the analysis started in (Bonnaillie-Noël et al., Anal PDE 7(6):1365-1395, 2014; Noris and Terracini, Indiana Univ Math J 59(4):1361-1403, 2010), we analyze the relation between the variation of the eigenvalue and the nodal structure of the associated eigenfunctions. We deal with planar domains with Dirichlet boundary conditions and we focus on the case when the singular pole approaches the boundary of the domain: then, the operator loses its singular character and the k-th magnetic eigenvalue converges to that of the standard Laplacian. We can predict both the rate of convergence and whether the convergence happens from above or from below, in relation with the number of nodal lines of the k-th eigenfunction of the Laplacian. The proof relies on the variational characterization of eigenvalues, together with a detailed asymptotic analysis of the eigenfunctions, based on an Almgren-type frequency formula for magnetic eigenfunctions and on the blow-up technique.
Random matrix approach to cross correlations in financial data
NASA Astrophysics Data System (ADS)
Plerou, Vasiliki; Gopikrishnan, Parameswaran; Rosenow, Bernd; Amaral, Luís A.; Guhr, Thomas; Stanley, H. Eugene
2002-06-01
We analyze cross correlations between price fluctuations of different stocks using methods of random matrix theory (RMT). Using two large databases, we calculate cross-correlation matrices
A robust multilevel simultaneous eigenvalue solver
NASA Technical Reports Server (NTRS)
Costiner, Sorin; Taasan, Shlomo
1993-01-01
Multilevel (ML) algorithms for eigenvalue problems are often faced with several types of difficulties such as: the mixing of approximated eigenvectors by the solution process, the approximation of incomplete clusters of eigenvectors, the poor representation of solution on coarse levels, and the existence of close or equal eigenvalues. Algorithms that do not treat appropriately these difficulties usually fail, or their performance degrades when facing them. These issues motivated the development of a robust adaptive ML algorithm which treats these difficulties, for the calculation of a few eigenvectors and their corresponding eigenvalues. The main techniques used in the new algorithm include: the adaptive completion and separation of the relevant clusters on different levels, the simultaneous treatment of solutions within each cluster, and the robustness tests which monitor the algorithm's efficiency and convergence. The eigenvectors' separation efficiency is based on a new ML projection technique generalizing the Rayleigh Ritz projection, combined with a technique, the backrotations. These separation techniques, when combined with an FMG formulation, in many cases lead to algorithms of O(qN) complexity, for q eigenvectors of size N on the finest level. Previously developed ML algorithms are less focused on the mentioned difficulties. Moreover, algorithms which employ fine level separation techniques are of O(q(sub 2)N) complexity and usually do not overcome all these difficulties. Computational examples are presented where Schrodinger type eigenvalue problems in 2-D and 3-D, having equal and closely clustered eigenvalues, are solved with the efficiency of the Poisson multigrid solver. A second order approximation is obtained in O(qN) work, where the total computational work is equivalent to only a few fine level relaxations per eigenvector.
A method to stabilize linear systems using eigenvalue gradient information
NASA Technical Reports Server (NTRS)
Wieseman, C. D.
1985-01-01
Formal optimization methods and eigenvalue gradient information are used to develop a stabilizing control law for a closed loop linear system that is initially unstable. The method was originally formulated by using direct, constrained optimization methods with the constraints being the real parts of the eigenvalues. However, because of problems in trying to achieve stabilizing control laws, the problem was reformulated to be solved differently. The method described uses the Davidon-Fletcher-Powell minimization technique to solve an indirect, constrained minimization problem in which the performance index is the Kreisselmeier-Steinhauser function of the real parts of all the eigenvalues. The method is applied successfully to solve two different problems: the determination of a fourth-order control law stabilizes a single-input single-output active flutter suppression system and the determination of a second-order control law for a multi-input multi-output lateral-directional flight control system. Various sets of design variables and initial starting points were chosen to show the robustness of the method.
Deterministically estimated fission source distributions for Monte Carlo k-eigenvalue problems
Biondo, Elliott D.; Davidson, Gregory G.; Pandya, Tara M.; ...
2018-04-30
The standard Monte Carlo (MC) k-eigenvalue algorithm involves iteratively converging the fission source distribution using a series of potentially time-consuming inactive cycles before quantities of interest can be tallied. One strategy for reducing the computational time requirements of these inactive cycles is the Sourcerer method, in which a deterministic eigenvalue calculation is performed to obtain an improved initial guess for the fission source distribution. This method has been implemented in the Exnihilo software suite within SCALE using the SPNSPN or SNSN solvers in Denovo and the Shift MC code. The efficacy of this method is assessed with different Denovo solutionmore » parameters for a series of typical k-eigenvalue problems including small criticality benchmarks, full-core reactors, and a fuel cask. Here it is found that, in most cases, when a large number of histories per cycle are required to obtain a detailed flux distribution, the Sourcerer method can be used to reduce the computational time requirements of the inactive cycles.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Falsaperla, P.; Fonte, G.
1994-10-01
A variational method, based on some results due to T. Kato [Proc. Phys. Soc. Jpn. 4, 334 (1949)], and previously discussed is here applied to the hydrogen atom in uniform magnetic fields of tesla in order to calculate, with a rigorous error estimate, energy eigenvalues, energy eigenfunctions, and oscillator strengths relative to Rydberg states up to just below the field-free ionization threshold. Making use of a basis (parabolic Sturmian basis) with a size varying from 990 up to 5050, we obtain, over the energy range of [minus]190 to [minus]24 cm[sup [minus]1], all of the eigenvalues and a good part ofmore » the oscillator strengths with a remarkable accuracy. This, however, decreases with increasing excitation energy and, thus, above [similar to][minus]24 cm[sup [minus]1], we obtain results of good accuracy only for eigenvalues ranging up to [similar to][minus]12 cm[sup [minus]1].« less
NASA Technical Reports Server (NTRS)
Walden, H.
1974-01-01
Methods for obtaining approximate solutions for the fundamental eigenvalue of the Laplace-Beltrami operator (also referred to as the membrane eigenvalue problem for the vibration equation) on the unit spherical surface are developed. Two specific types of spherical surface domains are considered: (1) the interior of a spherical triangle, i.e., the region bounded by arcs of three great circles, and (2) the exterior of a great circle arc extending for less than pi radians on the sphere (a spherical surface with a slit). In both cases, zero boundary conditions are imposed. In order to solve the resulting second-order elliptic partial differential equations in two independent variables, a finite difference approximation is derived. The symmetric (generally five-point) finite difference equations that develop are written in matrix form and then solved by the iterative method of point successive overrelaxation. Upon convergence of this iterative method, the fundamental eigenvalue is approximated by iteration utilizing the power method as applied to the finite Rayleigh quotient.
NASA Technical Reports Server (NTRS)
Mielke, R. R.; Tung, L. J.; Carraway, P. I., III
1984-01-01
The feasibility of using reduced order models and reduced order observers with eigenvalue/eigenvector assignment procedures is investigated. A review of spectral assignment synthesis procedures is presented. Then, a reduced order model which retains essential system characteristics is formulated. A constant state feedback matrix which assigns desired closed loop eigenvalues and approximates specified closed loop eigenvectors is calculated for the reduced order model. It is shown that the eigenvalue and eigenvector assignments made in the reduced order system are retained when the feedback matrix is implemented about the full order system. In addition, those modes and associated eigenvectors which are not included in the reduced order model remain unchanged in the closed loop full order system. The full state feedback design is then implemented by using a reduced order observer. It is shown that the eigenvalue and eigenvector assignments of the closed loop full order system rmain unchanged when a reduced order observer is used. The design procedure is illustrated by an actual design problem.
Spectral analysis of Chinese language: Co-occurrence networks from four literary genres
NASA Astrophysics Data System (ADS)
Liang, Wei; Chen, Guanrong
2016-05-01
The eigenvalues and eigenvectors of the adjacency matrix of a network contain essential information about its topology. For each of the Chinese language co-occurrence networks constructed from four literary genres, i.e., essay, popular science article, news report, and novel, it is found that the largest eigenvalue depends on the network size N, the number of edges, the average shortest path length, and the clustering coefficient. Moreover, it is found that their node-degree distributions all follow a power-law. The number of different eigenvalues, Nλ, is found numerically to increase in the manner of Nλ ∝ log N for novel and Nλ ∝ N for the other three literary genres. An ;M; shape or a triangle-like distribution appears in their spectral densities. The eigenvector corresponding to the largest eigenvalue is mostly localized to a node with the largest degree. For the above observed phenomena, mathematical analysis is provided with interpretation from a linguistic perspective.
Multitasking the Davidson algorithm for the large, sparse eigenvalue problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umar, V.M.; Fischer, C.F.
1989-01-01
The authors report how the Davidson algorithm, developed for handling the eigenvalue problem for large and sparse matrices arising in quantum chemistry, was modified for use in atomic structure calculations. To date these calculations have used traditional eigenvalue methods, which limit the range of feasible calculations because of their excessive memory requirements and unsatisfactory performance attributed to time-consuming and costly processing of zero valued elements. The replacement of a traditional matrix eigenvalue method by the Davidson algorithm reduced these limitations. Significant speedup was found, which varied with the size of the underlying problem and its sparsity. Furthermore, the range ofmore » matrix sizes that can be manipulated efficiently was expended by more than one order or magnitude. On the CRAY X-MP the code was vectorized and the importance of gather/scatter analyzed. A parallelized version of the algorithm obtained an additional 35% reduction in execution time. Speedup due to vectorization and concurrency was also measured on the Alliant FX/8.« less
Deterministically estimated fission source distributions for Monte Carlo k-eigenvalue problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biondo, Elliott D.; Davidson, Gregory G.; Pandya, Tara M.
The standard Monte Carlo (MC) k-eigenvalue algorithm involves iteratively converging the fission source distribution using a series of potentially time-consuming inactive cycles before quantities of interest can be tallied. One strategy for reducing the computational time requirements of these inactive cycles is the Sourcerer method, in which a deterministic eigenvalue calculation is performed to obtain an improved initial guess for the fission source distribution. This method has been implemented in the Exnihilo software suite within SCALE using the SPNSPN or SNSN solvers in Denovo and the Shift MC code. The efficacy of this method is assessed with different Denovo solutionmore » parameters for a series of typical k-eigenvalue problems including small criticality benchmarks, full-core reactors, and a fuel cask. Here it is found that, in most cases, when a large number of histories per cycle are required to obtain a detailed flux distribution, the Sourcerer method can be used to reduce the computational time requirements of the inactive cycles.« less
Ovtchinnikov, Evgueni E.; Xanthis, Leonidas S.
2000-01-01
We present a methodology for the efficient numerical solution of eigenvalue problems of full three-dimensional elasticity for thin elastic structures, such as shells, plates and rods of arbitrary geometry, discretized by the finite element method. Such problems are solved by iterative methods, which, however, are known to suffer from slow convergence or even convergence failure, when the thickness is small. In this paper we show an effective way of resolving this difficulty by invoking a special preconditioning technique associated with the effective dimensional reduction algorithm (EDRA). As an example, we present an algorithm for computing the minimal eigenvalue of a thin elastic plate and we show both theoretically and numerically that it is robust with respect to both the thickness and discretization parameters, i.e. the convergence does not deteriorate with diminishing thickness or mesh refinement. This robustness is sine qua non for the efficient computation of large-scale eigenvalue problems for thin elastic structures. PMID:10655469
NASA Technical Reports Server (NTRS)
Mielke, R. R.; Tung, L. J.; Carraway, P. I., III
1985-01-01
The feasibility of using reduced order models and reduced order observers with eigenvalue/eigenvector assignment procedures is investigated. A review of spectral assignment synthesis procedures is presented. Then, a reduced order model which retains essential system characteristics is formulated. A constant state feedback matrix which assigns desired closed loop eigenvalues and approximates specified closed loop eigenvectors is calculated for the reduced order model. It is shown that the eigenvalue and eigenvector assignments made in the reduced order system are retained when the feedback matrix is implemented about the full order system. In addition, those modes and associated eigenvectors which are not included in the reduced order model remain unchanged in the closed loop full order system. The fulll state feedback design is then implemented by using a reduced order observer. It is shown that the eigenvalue and eigenvector assignments of the closed loop full order system remain unchanged when a reduced order observer is used. The design procedure is illustrated by an actual design problem.
On Fluctuations of Eigenvalues of Random Band Matrices
NASA Astrophysics Data System (ADS)
Shcherbina, M.
2015-10-01
We consider the fluctuations of linear eigenvalue statistics of random band matrices whose entries have the form with i.i.d. possessing the th moment, where the function u has a finite support , so that M has only nonzero diagonals. The parameter b (called the bandwidth) is assumed to grow with n in a way such that . Without any additional assumptions on the growth of b we prove CLT for linear eigenvalue statistics for a rather wide class of test functions. Thus we improve and generalize the results of the previous papers (Jana et al., arXiv:1412.2445; Li et al. Random Matrices 2:04, 2013), where CLT was proven under the assumption . Moreover, we develop a method which allows to prove automatically the CLT for linear eigenvalue statistics of the smooth test functions for almost all classical models of random matrix theory: deformed Wigner and sample covariance matrices, sparse matrices, diluted random matrices, matrices with heavy tales etc.
A finite element algorithm for high-lying eigenvalues with Neumann and Dirichlet boundary conditions
NASA Astrophysics Data System (ADS)
Báez, G.; Méndez-Sánchez, R. A.; Leyvraz, F.; Seligman, T. H.
2014-01-01
We present a finite element algorithm that computes eigenvalues and eigenfunctions of the Laplace operator for two-dimensional problems with homogeneous Neumann or Dirichlet boundary conditions, or combinations of either for different parts of the boundary. We use an inverse power plus Gauss-Seidel algorithm to solve the generalized eigenvalue problem. For Neumann boundary conditions the method is much more efficient than the equivalent finite difference algorithm. We checked the algorithm by comparing the cumulative level density of the spectrum obtained numerically with the theoretical prediction given by the Weyl formula. We found a systematic deviation due to the discretization, not to the algorithm itself.
On a local solvability and stability of the inverse transmission eigenvalue problem
NASA Astrophysics Data System (ADS)
Bondarenko, Natalia; Buterin, Sergey
2017-11-01
We prove a local solvability and stability of the inverse transmission eigenvalue problem posed by McLaughlin and Polyakov (1994 J. Diff. Equ. 107 351-82). In particular, this result establishes the minimality of the data used therein. The proof is constructive.
On the Time-Dependent Analysis of Gamow Decay
ERIC Educational Resources Information Center
Durr, Detlef; Grummt, Robert; Kolb, Martin
2011-01-01
Gamow's explanation of the exponential decay law uses complex "eigenvalues" and exponentially growing "eigenfunctions". This raises the question, how Gamow's description fits into the quantum mechanical description of nature, which is based on real eigenvalues and square integrable wavefunctions. Observing that the time evolution of any…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamazaki, Ichitaro; Wu, Kesheng; Simon, Horst
2008-10-27
The original software package TRLan, [TRLan User Guide], page 24, implements the thick restart Lanczos method, [Wu and Simon 2001], page 24, for computing eigenvalues {lambda} and their corresponding eigenvectors v of a symmetric matrix A: Av = {lambda}v. Its effectiveness in computing the exterior eigenvalues of a large matrix has been demonstrated, [LBNL-42982], page 24. However, its performance strongly depends on the user-specified dimension of a projection subspace. If the dimension is too small, TRLan suffers from slow convergence. If it is too large, the computational and memory costs become expensive. Therefore, to balance the solution convergence and costs,more » users must select an appropriate subspace dimension for each eigenvalue problem at hand. To free users from this difficult task, nu-TRLan, [LNBL-1059E], page 23, adjusts the subspace dimension at every restart such that optimal performance in solving the eigenvalue problem is automatically obtained. This document provides a user guide to the nu-TRLan software package. The original TRLan software package was implemented in Fortran 90 to solve symmetric eigenvalue problems using static projection subspace dimensions. nu-TRLan was developed in C and extended to solve Hermitian eigenvalue problems. It can be invoked using either a static or an adaptive subspace dimension. In order to simplify its use for TRLan users, nu-TRLan has interfaces and features similar to those of TRLan: (1) Solver parameters are stored in a single data structure called trl-info, Chapter 4 [trl-info structure], page 7. (2) Most of the numerical computations are performed by BLAS, [BLAS], page 23, and LAPACK, [LAPACK], page 23, subroutines, which allow nu-TRLan to achieve optimized performance across a wide range of platforms. (3) To solve eigenvalue problems on distributed memory systems, the message passing interface (MPI), [MPI forum], page 23, is used. The rest of this document is organized as follows. In Chapter 2 [Installation], page 2, we provide an installation guide of the nu-TRLan software package. In Chapter 3 [Example], page 3, we present a simple nu-TRLan example program. In Chapter 4 [trl-info structure], page 7, and Chapter 5 [trlan subroutine], page 14, we describe the solver parameters and interfaces in detail. In Chapter 6 [Solver parameters], page 21, we discuss the selection of the user-specified parameters. In Chapter 7 [Contact information], page 22, we give the acknowledgements and contact information of the authors. In Chapter 8 [References], page 23, we list reference to related works.« less
Three-dimensional geometry of coronal loops inferred by the Principal Component Analysis
NASA Astrophysics Data System (ADS)
Nisticò, Giuseppe; Nakariakov, Valery
We propose a new method for the determination of the three dimensional (3D) shape of coronal loops from stereoscopy. The common approach requires to find a 1D geometric curve, as circumference or ellipse, that best-fits the 3D tie-points which sample the loop shape in a given coordinate system. This can be easily achieved by the Principal Component (PC) analysis. It mainly consists in calculating the eigenvalues and eigenvectors of the covariance matrix of the 3D tie-points: the eigenvalues give a measure of the variability of the distribution of the tie-points, and the corresponding eigenvectors define a new cartesian reference frame directly related to the loop. The eigenvector associated with the smallest eigenvalues defines the normal to the loop plane, while the other two determine the directions of the loop axes: the major axis is related to the largest eigenvalue, and the minor axis with the second one. The magnitude of the axes is directly proportional to the square roots of these eigenvalues. The technique is fast and easily implemented in some examples, returning best-fitting estimations of the loop parameters and 3D reconstruction with a reasonable small number of tie-points. The method is suitable for serial reconstruction of coronal loops in active regions, providing a useful tool for comparison between observations and theoretical magnetic field extrapolations from potential or force-free fields.
Fast Eigensolver for Computing 3D Earth's Normal Modes
NASA Astrophysics Data System (ADS)
Shi, J.; De Hoop, M. V.; Li, R.; Xi, Y.; Saad, Y.
2017-12-01
We present a novel parallel computational approach to compute Earth's normal modes. We discretize Earth via an unstructured tetrahedral mesh and apply the continuous Galerkin finite element method to the elasto-gravitational system. To resolve the eigenvalue pollution issue, following the analysis separating the seismic point spectrum, we utilize explicitly a representation of the displacement for describing the oscillations of the non-seismic modes in the fluid outer core. Effectively, we separate out the essential spectrum which is naturally related to the Brunt-Väisälä frequency. We introduce two Lanczos approaches with polynomial and rational filtering for solving this generalized eigenvalue problem in prescribed intervals. The polynomial filtering technique only accesses the matrix pair through matrix-vector products and is an ideal candidate for solving three-dimensional large-scale eigenvalue problems. The matrix-free scheme allows us to deal with fluid separation and self-gravitation in an efficient way, while the standard shift-and-invert method typically needs an explicit shifted matrix and its factorization. The rational filtering method converges much faster than the standard shift-and-invert procedure when computing all the eigenvalues inside an interval. Both two Lanczos approaches solve for the internal eigenvalues extremely accurately, comparing with the standard eigensolver. In our computational experiments, we compare our results with the radial earth model benchmark, and visualize the normal modes using vector plots to illustrate the properties of the displacements in different modes.
NASA Astrophysics Data System (ADS)
Nobi, Ashadun; Maeng, Seong Eun; Ha, Gyeong Gyun; Lee, Jae Woo
2013-02-01
We analyzed cross-correlations between price fluctuations of global financial indices (20 daily stock indices over the world) and local indices (daily indices of 200 companies in the Korean stock market) by using random matrix theory (RMT). We compared eigenvalues and components of the largest and the second largest eigenvectors of the cross-correlation matrix before, during, and after the global financial the crisis in the year 2008. We find that the majority of its eigenvalues fall within the RMT bounds [ λ -, λ +], where λ - and λ + are the lower and the upper bounds of the eigenvalues of random correlation matrices. The components of the eigenvectors for the largest positive eigenvalues indicate the identical financial market mode dominating the global and local indices. On the other hand, the components of the eigenvector corresponding to the second largest eigenvalue are positive and negative values alternatively. The components before the crisis change sign during the crisis, and those during the crisis change sign after the crisis. The largest inverse participation ratio (IPR) corresponding to the smallest eigenvector is higher after the crisis than during any other periods in the global and local indices. During the global financial the crisis, the correlations among the global indices and among the local stock indices are perturbed significantly. However, the correlations between indices quickly recover the trends before the crisis.
Unreliable Retrial Queues in a Random Environment
2007-09-01
equivalent to the stochasticity of the matrix Ĝ. It is generally known from Perron - Frobenius theory that a given square ma- trix M is stochastic if and...only if its maximum positive eigenvalue (i.e., its Perron eigenvalue) sp(M) is equal to unity. A simple analytical condition that guarantees the
NASA Astrophysics Data System (ADS)
Zographopoulos, N. B.
2009-11-01
Motivated by the work (Karachalios N I 2008 Lett. Math. Phys. 83 189-99), we present explicit asymptotic estimates on the eigenvalues of the critical Schrödinger operator, involving inverse-square potential, based on improved Hardy-Sobolev-type inequalities.
Matrix with Prescribed Eigenvectors
ERIC Educational Resources Information Center
Ahmad, Faiz
2011-01-01
It is a routine matter for undergraduates to find eigenvalues and eigenvectors of a given matrix. But the converse problem of finding a matrix with prescribed eigenvalues and eigenvectors is rarely discussed in elementary texts on linear algebra. This problem is related to the "spectral" decomposition of a matrix and has important technical…
The Schrodinger Eigenvalue March
ERIC Educational Resources Information Center
Tannous, C.; Langlois, J.
2011-01-01
A simple numerical method for the determination of Schrodinger equation eigenvalues is introduced. It is based on a marching process that starts from an arbitrary point, proceeds in two opposite directions simultaneously and stops after a tolerance criterion is met. The method is applied to solving several 1D potential problems including symmetric…
Obtaining eigensolutions for multiple frequency ranges in a single NASTRAN execution
NASA Technical Reports Server (NTRS)
Pamidi, P. R.; Brown, W. K.
1990-01-01
A novel and general procedure for obtaining eigenvalues and eigenvectors for multiple frequency ranges in a single NASTRAN execution is presented. The scheme is applicable to normal modes analyzes employing the FEER and Inverse Power methods of eigenvalue extraction. The procedure is illustrated by examples.
Structural robustness with suboptimal responses for linear state space model
NASA Technical Reports Server (NTRS)
Keel, L. H.; Lim, Kyong B.; Juang, Jer-Nan
1989-01-01
A relationship between the closed-loop eigenvalues and the amount of perturbations in the open-loop matrix is addressed in the context of performance robustness. If the allowable perturbation ranges of elements of the open-loop matrix A and the desired tolerance of the closed-loop eigenvalues are given such that max(j) of the absolute value of Delta-lambda(j) (A+BF) should be less than some prescribed value, what is a state feedback controller F which satisfies the closed-loop eigenvalue perturbation-tolerance requirement for a class of given perturbation in A? The paper gives an algorithm to design such a controller. Numerical examples are included for illustration.
A Thick-Restart Lanczos Algorithm with Polynomial Filtering for Hermitian Eigenvalue Problems
Li, Ruipeng; Xi, Yuanzhe; Vecharynski, Eugene; ...
2016-08-16
Polynomial filtering can provide a highly effective means of computing all eigenvalues of a real symmetric (or complex Hermitian) matrix that are located in a given interval, anywhere in the spectrum. This paper describes a technique for tackling this problem by combining a thick-restart version of the Lanczos algorithm with deflation ("locking'') and a new type of polynomial filter obtained from a least-squares technique. Furthermore, the resulting algorithm can be utilized in a “spectrum-slicing” approach whereby a very large number of eigenvalues and associated eigenvectors of the matrix are computed by extracting eigenpairs located in different subintervals independently from onemore » another.« less
Initial values for the integration scheme to compute the eigenvalues for propagation in ducts
NASA Technical Reports Server (NTRS)
Eversman, W.
1977-01-01
A scheme for the calculation of eigenvalues in the problem of acoustic propagation in a two-dimensional duct is described. The computation method involves changing the coupled transcendental nonlinear algebraic equations into an initial value problem involving a nonlinear ordinary differential equation. The simplest approach is to use as initial values the hardwall eigenvalues and to integrate away from these values as the admittance varies from zero to its actual value with a linear variation. The approach leads to a powerful root finding routine capable of computing the transverse and axial wave numbers for two-dimensional ducts for any frequency, lining, admittance and Mach number without requiring initial guesses or starting points.
Stability of a laminar premixed supersonic free shear layer with chemical reactions
NASA Technical Reports Server (NTRS)
Menon, S.; Anderson, J. D., Jr.; Pai, S. I.
1984-01-01
The stability of a two-dimensional compressible supersonic flow in the wake of a flat plate is discussed. The fluid is a multi-species mixture which is undergoing finite rate chemical reactions. The spatial stability of an infinitesimal disturbance in the fluid is considered. Numerical solutions of the eigenvalue stability equations for both reactive and nonreactive supersonic flows are presented and discussed. The chemical reactions have significant influence on the stability behavior. For instance, a neutral eigenvalue is observed near the freestream Mach number of 2.375 for the nonreactive case, but disappears when the reaction is turned on. For reactive flows, the eigenvalues are not very dependent on the free stream Mach number.
Eigensolver for a Sparse, Large Hermitian Matrix
NASA Technical Reports Server (NTRS)
Tisdale, E. Robert; Oyafuso, Fabiano; Klimeck, Gerhard; Brown, R. Chris
2003-01-01
A parallel-processing computer program finds a few eigenvalues in a sparse Hermitian matrix that contains as many as 100 million diagonal elements. This program finds the eigenvalues faster, using less memory, than do other, comparable eigensolver programs. This program implements a Lanczos algorithm in the American National Standards Institute/ International Organization for Standardization (ANSI/ISO) C computing language, using the Message Passing Interface (MPI) standard to complement an eigensolver in PARPACK. [PARPACK (Parallel Arnoldi Package) is an extension, to parallel-processing computer architectures, of ARPACK (Arnoldi Package), which is a collection of Fortran 77 subroutines that solve large-scale eigenvalue problems.] The eigensolver runs on Beowulf clusters of computers at the Jet Propulsion Laboratory (JPL).
Eigenvalues of Rectangular Waveguide Using FEM With Hybrid Elements
NASA Technical Reports Server (NTRS)
Deshpande, Manohar D.; Hall, John M.
2002-01-01
A finite element analysis using hybrid triangular-rectangular elements is developed to estimate eigenvalues of a rectangular waveguide. Use of rectangular vector-edge finite elements in the vicinity of the PEC boundary and triangular elements in the interior region more accurately models the physical nature of the electromagnetic field, and consequently quicken the convergence.
NASA Technical Reports Server (NTRS)
Wunsche, A.
1993-01-01
The eigenvalue problem of the operator a + zeta(boson creation operator) is solved for arbitrarily complex zeta by applying a nonunitary operator to the vacuum state. This nonunitary approach is compared with the unitary approach leading for the absolute value of zeta less than 1 to squeezed coherent states.
Noncanonical harmonic and anharmonic oscillator in high-energy physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jannussis, A.; Vavougios, D.
1986-09-01
We study the eigenvalues of the noncanonical harmonic and anharmonic oscillator, by using different values of the elementary length l corresponding to typical cross sections for the strong interactions. There is evidence for a correlation between the energies of elementary particles (mesons, baryons, resonances) and the energy eigenvalues of the noncanonical theory.
Evaluation of Parallel Analysis Methods for Determining the Number of Factors
ERIC Educational Resources Information Center
Crawford, Aaron V.; Green, Samuel B.; Levy, Roy; Lo, Wen-Juo; Scott, Lietta; Svetina, Dubravka; Thompson, Marilyn S.
2010-01-01
Population and sample simulation approaches were used to compare the performance of parallel analysis using principal component analysis (PA-PCA) and parallel analysis using principal axis factoring (PA-PAF) to identify the number of underlying factors. Additionally, the accuracies of the mean eigenvalue and the 95th percentile eigenvalue criteria…
Twisting singular solutions of Betheʼs equations
NASA Astrophysics Data System (ADS)
Nepomechie, Rafael I.; Wang, Chunguang
2014-12-01
The Bethe equations for the periodic XXX and XXZ spin chains admit singular solutions, for which the corresponding eigenvalues and eigenvectors are ill-defined. We use a twist regularization to derive conditions for such singular solutions to be physical, in which case they correspond to genuine eigenvalues and eigenvectors of the Hamiltonian.
An Isoperimetric Inequality for Fundamental Tones of Free Plates
ERIC Educational Resources Information Center
Chasman, Laura
2009-01-01
We establish an isoperimetric inequality for the fundamental tone (first nonzero eigenvalue) of the free plate of a given area, proving the ball is maximal. Given tau greater than 0, the free plate eigenvalues omega and eigenfunctions upsilon are determined by the equation Delta Delta upsilon - tau Delta upsilon = omega upsilon together with…
A Teaching Proposal for the Study of Eigenvectors and Eigenvalues
ERIC Educational Resources Information Center
Meneu, María José Beltrán; Murillo Arcila, Marina; Jordá Mora, Enrique
2017-01-01
In this work, we present a teaching proposal which emphasizes on visualization and physical applications in the study of eigenvectors and eigenvalues. These concepts are introduced using the notion of the moment of inertia of a rigid body and the GeoGebra software. The proposal was motivated after observing students' difficulties when treating…
Emphasizing Visualization and Physical Applications in the Study of Eigenvectors and Eigenvalues
ERIC Educational Resources Information Center
BeltrÁn-Meneu, María José; Murillo-Arcila, Marina; Albarracín, Lluís
2017-01-01
This article presents a teaching proposal that emphasizes on visualization and physical applications in the study of eigenvectors and eigenvalues. More concretely, these concepts were introduced using the notion of the moment of inertia of a rigid body and the GeoGebra software. The proposal was designed after observing architecture students…
An Application of the Vandermonde Determinant
ERIC Educational Resources Information Center
Xu, Junqin; Zhao, Likuan
2006-01-01
Eigenvalue is an important concept in Linear Algebra. It is well known that the eigenvectors corresponding to different eigenvalues of a square matrix are linear independent. In most of the existing textbooks, this result is proven using mathematical induction. In this note, a new proof using Vandermonde determinant is given. It is shown that this…
Approximating natural connectivity of scale-free networks based on largest eigenvalue
NASA Astrophysics Data System (ADS)
Tan, S.-Y.; Wu, J.; Li, M.-J.; Lu, X.
2016-06-01
It has been recently proposed that natural connectivity can be used to efficiently characterize the robustness of complex networks. The natural connectivity has an intuitive physical meaning and a simple mathematical formulation, which corresponds to an average eigenvalue calculated from the graph spectrum. However, as a network model close to the real-world system that widely exists, the scale-free network is found difficult to obtain its spectrum analytically. In this article, we investigate the approximation of natural connectivity based on the largest eigenvalue in both random and correlated scale-free networks. It is demonstrated that the natural connectivity of scale-free networks can be dominated by the largest eigenvalue, which can be expressed asymptotically and analytically to approximate natural connectivity with small errors. Then we show that the natural connectivity of random scale-free networks increases linearly with the average degree given the scaling exponent and decreases monotonically with the scaling exponent given the average degree. Moreover, it is found that, given the degree distribution, the more assortative a scale-free network is, the more robust it is. Experiments in real networks validate our methods and results.
Convergence analysis of two-node CMFD method for two-group neutron diffusion eigenvalue problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, Yongjin; Park, Jinsu; Lee, Hyun Chul
2015-12-01
In this paper, the nonlinear coarse-mesh finite difference method with two-node local problem (CMFD2N) is proven to be unconditionally stable for neutron diffusion eigenvalue problems. The explicit current correction factor (CCF) is derived based on the two-node analytic nodal method (ANM2N), and a Fourier stability analysis is applied to the linearized algorithm. It is shown that the analytic convergence rate obtained by the Fourier analysis compares very well with the numerically measured convergence rate. It is also shown that the theoretical convergence rate is only governed by the converged second harmonic buckling and the mesh size. It is also notedmore » that the convergence rate of the CCF of the CMFD2N algorithm is dependent on the mesh size, but not on the total problem size. This is contrary to expectation for eigenvalue problem. The novel points of this paper are the analytical derivation of the convergence rate of the CMFD2N algorithm for eigenvalue problem, and the convergence analysis based on the analytic derivations.« less
Free Fermions and the Classical Compact Groups
NASA Astrophysics Data System (ADS)
Cunden, Fabio Deelan; Mezzadri, Francesco; O'Connell, Neil
2018-06-01
There is a close connection between the ground state of non-interacting fermions in a box with classical (absorbing, reflecting, and periodic) boundary conditions and the eigenvalue statistics of the classical compact groups. The associated determinantal point processes can be extended in two natural directions: (i) we consider the full family of admissible quantum boundary conditions (i.e., self-adjoint extensions) for the Laplacian on a bounded interval, and the corresponding projection correlation kernels; (ii) we construct the grand canonical extensions at finite temperature of the projection kernels, interpolating from Poisson to random matrix eigenvalue statistics. The scaling limits in the bulk and at the edges are studied in a unified framework, and the question of universality is addressed. Whether the finite temperature determinantal processes correspond to the eigenvalue statistics of some matrix models is, a priori, not obvious. We complete the picture by constructing a finite temperature extension of the Haar measure on the classical compact groups. The eigenvalue statistics of the resulting grand canonical matrix models (of random size) corresponds exactly to the grand canonical measure of free fermions with classical boundary conditions.
Multigrid method for stability problems
NASA Technical Reports Server (NTRS)
Taasan, Shlomo
1988-01-01
The problem of calculating the stability of steady state solutions of differential equations is treated. Leading eigenvalues (i.e., having maximal real part) of large matrices that arise from discretization are to be calculated. An efficient multigrid method for solving these problems is presented. The method begins by obtaining an initial approximation for the dominant subspace on a coarse level using a damped Jacobi relaxation. This proceeds until enough accuracy for the dominant subspace has been obtained. The resulting grid functions are then used as an initial approximation for appropriate eigenvalue problems. These problems are being solved first on coarse levels, followed by refinement until a desired accuracy for the eigenvalues has been achieved. The method employs local relaxation on all levels together with a global change on the coarsest level only, which is designed to separate the different eigenfunctions as well as to update their corresponding eigenvalues. Coarsening is done using the FAS formulation in a non-standard way in which the right hand side of the coarse grid equations involves unknown parameters to be solved for on the coarse grid. This in particular leads to a new multigrid method for calculating the eigenvalues of symmetric problems. Numerical experiments with a model problem demonstrate the effectiveness of the method proposed. Using an FMG algorithm a solution to the level of discretization errors is obtained in just a few work units (less than 10), where a work unit is the work involved in one Jacobi relization on the finest level.
The asymptotic spectra of banded Toeplitz and quasi-Toeplitz matrices
NASA Technical Reports Server (NTRS)
Beam, Richard M.; Warming, Robert F.
1991-01-01
Toeplitz matrices occur in many mathematical, as well as, scientific and engineering investigations. This paper considers the spectra of banded Toeplitz and quasi-Toeplitz matrices with emphasis on non-normal matrices of arbitrarily large order and relatively small bandwidth. These are the type of matrices that appear in the investigation of stability and convergence of difference approximations to partial differential equations. Quasi-Toeplitz matrices are the result of non-Dirichlet boundary conditions for the difference approximations. The eigenvalue problem for a banded Toeplitz or quasi-Toeplitz matrix of large order is, in general, analytically intractable and (for non-normal matrices) numerically unreliable. An asymptotic (matrix order approaches infinity) approach partitions the eigenvalue analysis of a quasi-Toeplitz matrix into two parts, namely the analysis for the boundary condition independent spectrum and the analysis for the boundary condition dependent spectrum. The boundary condition independent spectrum is the same as the pure Toeplitz matrix spectrum. Algorithms for computing both parts of the spectrum are presented. Examples are used to demonstrate the utility of the algorithms, to present some interesting spectra, and to point out some of the numerical difficulties encountered when conventional matrix eigenvalue routines are employed for non-normal matrices of large order. The analysis for the Toeplitz spectrum also leads to a diagonal similarity transformation that improves conventional numerical eigenvalue computations. Finally, the algorithm for the asymptotic spectrum is extended to the Toeplitz generalized eigenvalue problem which occurs, for example, in the stability of Pade type difference approximations to differential equations.
ERIC Educational Resources Information Center
Chou, Yeh-Tai; Wang, Wen-Chung
2010-01-01
Dimensionality is an important assumption in item response theory (IRT). Principal component analysis on standardized residuals has been used to check dimensionality, especially under the family of Rasch models. It has been suggested that an eigenvalue greater than 1.5 for the first eigenvalue signifies a violation of unidimensionality when there…
Some Results on Mean Square Error for Factor Score Prediction
ERIC Educational Resources Information Center
Krijnen, Wim P.
2006-01-01
For the confirmatory factor model a series of inequalities is given with respect to the mean square error (MSE) of three main factor score predictors. The eigenvalues of these MSE matrices are a monotonic function of the eigenvalues of the matrix gamma[subscript rho] = theta[superscript 1/2] lambda[subscript rho] 'psi[subscript rho] [superscript…
Entropy-driven phase transitions of entanglement
NASA Astrophysics Data System (ADS)
Facchi, Paolo; Florio, Giuseppe; Parisi, Giorgio; Pascazio, Saverio; Yuasa, Kazuya
2013-05-01
We study the behavior of bipartite entanglement at fixed von Neumann entropy. We look at the distribution of the entanglement spectrum, that is, the eigenvalues of the reduced density matrix of a quantum system in a pure state. We report the presence of two continuous phase transitions, characterized by different entanglement spectra, which are deformations of classical eigenvalue distributions.
Inflationary dynamics for matrix eigenvalue problems
Heller, Eric J.; Kaplan, Lev; Pollmann, Frank
2008-01-01
Many fields of science and engineering require finding eigenvalues and eigenvectors of large matrices. The solutions can represent oscillatory modes of a bridge, a violin, the disposition of electrons around an atom or molecule, the acoustic modes of a concert hall, or hundreds of other physical quantities. Often only the few eigenpairs with the lowest or highest frequency (extremal solutions) are needed. Methods that have been developed over the past 60 years to solve such problems include the Lanczos algorithm, Jacobi–Davidson techniques, and the conjugate gradient method. Here, we present a way to solve the extremal eigenvalue/eigenvector problem, turning it into a nonlinear classical mechanical system with a modified Lagrangian constraint. The constraint induces exponential inflationary growth of the desired extremal solutions. PMID:18511564
On the cross-stream spectral method for the Orr-Sommerfeld equation
NASA Technical Reports Server (NTRS)
Zorumski, William E.; Hodge, Steven L.
1993-01-01
Cross-stream models are defined as solutions to the Orr-Sommerfeld equation which are propagating normal to the flow direction. These models are utilized as a basis for a Hilbert space to approximate the spectrum of the Orr-Sommerfeld equation with plane Poiseuille flow. The cross-stream basis leads to a standard eigenvalue problem for the frequencies of Poiseuille flow instability waves. The coefficient matrix in the eigenvalue problem is shown to be the sum of a real matrix and a negative-imaginary diagonal matrix which represents the frequencies of the cross-stream modes. The real coefficient matrix is shown to approach a Toeplitz matrix when the row and column indices are large. The Toeplitz matrix is diagonally dominant, and the diagonal elements vary inversely in magnitude with diagonal position. The Poiseuille flow eigenvalues are shown to lie within Gersgorin disks with radii bounded by the product of the average flow speed and the axial wavenumber. It is shown that the eigenvalues approach the Gersgorin disk centers when the mode index is large, so that the method may be used to compute spectra with an essentially unlimited number of elements. When the mode index is large, the real part of the eigenvalue is the product of the axial wavenumber and the average flow speed, and the imaginary part of the eigen value is identical to the corresponding cross-stream mode frequency. The cross-stream method is numerically well-conditioned in comparison to Chebyshev based methods, providing equivalent accuracy for small mode indices and superior accuracy for large indices.
A few shape optimization results for a biharmonic Steklov problem
NASA Astrophysics Data System (ADS)
Buoso, Davide; Provenzano, Luigi
2015-09-01
We derive the equation of a free vibrating thin plate whose mass is concentrated at the boundary, namely a Steklov problem for the biharmonic operator. We provide Hadamard-type formulas for the shape derivatives of the corresponding eigenvalues and prove that balls are critical domains under volume constraint. Finally, we prove an isoperimetric inequality for the first positive eigenvalue.
Wave Propagation and Localization via Quasi-Normal Modes and Transmission Eigenchannels
NASA Astrophysics Data System (ADS)
Wang, Jing; Shi, Zhou; Davy, Matthieu; Genack, Azriel Z.
2013-10-01
Field transmission coefficients for microwave radiation between arrays of points on the incident and output surfaces of random samples are analyzed to yield the underlying quasi-normal modes and transmission eigenchannels of each realization of the sample. The linewidths, central frequencies, and transmitted speckle patterns associated with each of the modes of the medium are found. Modal speckle patterns are found to be strongly correlated leading to destructive interference between modes. This explains distinctive features of transmission spectra and pulsed transmission. An alternate description of wave transport is obtained from the eigenchannels and eigenvalues of the transmission matrix. The maximum transmission eigenvalue, τ1 is near unity for diffusive waves even in turbid samples. For localized waves, τ1 is nearly equal to the dimensionless conductance, which is the sum of all transmission eigenvalues, g = Στn. The spacings between the ensemble averages of successive values of lnτn are constant and equal to the inverse of the bare conductance in accord with predictions by Dorokhov. The effective number of transmission eigenvalues Neff determines the contrast between the peak and background of radiation focused for maximum peak intensity. The connection between the mode and channel approaches is discussed.
Wave Propagation and Localization via Quasi-Normal Modes and Transmission Eigenchannels
NASA Astrophysics Data System (ADS)
Wang, Jing; Shi, Zhou; Davy, Matthieu; Genack, Azriel Z.
Field transmission coefficients for microwave radiation between arrays of points on the incident and output surfaces of random samples are analyzed to yield the underlying quasi-normal modes and transmission eigenchannels of each realization of the sample. The linewidths, central frequencies, and transmitted speckle patterns associated with each of the modes of the medium are found. Modal speckle patterns are found to be strongly correlated leading to destructive interference between modes. This explains distinctive features of transmission spectra and pulsed transmission. An alternate description of wave transport is obtained from the eigenchannels and eigenvalues of the transmission matrix. The maximum transmission eigenvalue, τ1 is near unity for diffusive waves even in turbid samples. For localized waves, τ1 is nearly equal to the dimensionless conductance, which is the sum of all transmission eigenvalues, g = Στn. The spacings between the ensemble averages of successive values of lnτn are constant and equal to the inverse of the bare conductance in accord with predictions by Dorokhov. The effective number of transmission eigenvalues Neff determines the contrast between the peak and background of radiation focused for maximum peak intensity. The connection between the mode and channel approaches is discussed.
Periodic orbit spectrum in terms of Ruelle-Pollicott resonances
NASA Astrophysics Data System (ADS)
Leboeuf, P.
2004-02-01
Fully chaotic Hamiltonian systems possess an infinite number of classical solutions which are periodic, e.g., a trajectory “p” returns to its initial conditions after some fixed time τp. Our aim is to investigate the spectrum {τ1,τ2,…} of periods of the periodic orbits. An explicit formula for the density ρ(τ)=∑pδ(τ-τp) is derived in terms of the eigenvalues of the classical evolution operator. The density is naturally decomposed into a smooth part plus an interferent sum over oscillatory terms. The frequencies of the oscillatory terms are given by the imaginary part of the complex eigenvalues (Ruelle-Pollicott resonances). For large periods, corrections to the well-known exponential growth of the smooth part of the density are obtained. An alternative formula for ρ(τ) in terms of the zeros and poles of the Ruelle ζ function is also discussed. The results are illustrated with the geodesic motion in billiards of constant negative curvature. Connections with the statistical properties of the corresponding quantum eigenvalues, random-matrix theory, and discrete maps are also considered. In particular, a random-matrix conjecture is proposed for the eigenvalues of the classical evolution operator of chaotic billiards.
Recurrence quantity analysis based on matrix eigenvalues
NASA Astrophysics Data System (ADS)
Yang, Pengbo; Shang, Pengjian
2018-06-01
Recurrence plots is a powerful tool for visualization and analysis of dynamical systems. Recurrence quantification analysis (RQA), based on point density and diagonal and vertical line structures in the recurrence plots, is considered to be alternative measures to quantify the complexity of dynamical systems. In this paper, we present a new measure based on recurrence matrix to quantify the dynamical properties of a given system. Matrix eigenvalues can reflect the basic characteristics of the complex systems, so we show the properties of the system by exploring the eigenvalues of the recurrence matrix. Considering that Shannon entropy has been defined as a complexity measure, we propose the definition of entropy of matrix eigenvalues (EOME) as a new RQA measure. We confirm that EOME can be used as a metric to quantify the behavior changes of the system. As a given dynamical system changes from a non-chaotic to a chaotic regime, the EOME will increase as well. The bigger EOME values imply higher complexity and lower predictability. We also study the effect of some factors on EOME,including data length, recurrence threshold, the embedding dimension, and additional noise. Finally, we demonstrate an application in physiology. The advantage of this measure lies in a high sensitivity and simple computation.
Cui, Yao; Bulik, Ireneusz W; Jiménez-Hoyos, Carlos A; Henderson, Thomas M; Scuseria, Gustavo E
2013-10-21
We study the spectra of the molecular orbital Hessian (stability matrix) and random-phase approximation (RPA) Hamiltonian of broken-symmetry Hartree-Fock solutions, focusing on zero eigenvalue modes. After all negative eigenvalues are removed from the Hessian by following their eigenvectors downhill, one is left with only positive and zero eigenvalues. Zero modes correspond to orbital rotations with no restoring force. These rotations determine states in the Goldstone manifold, which originates from a spontaneously broken continuous symmetry in the wave function. Zero modes can be classified as improper or proper according to their different mathematical and physical properties. Improper modes arise from symmetry breaking and their restoration always lowers the energy. Proper modes, on the other hand, correspond to degeneracies of the wave function, and their symmetry restoration does not necessarily lower the energy. We discuss how the RPA Hamiltonian distinguishes between proper and improper modes by doubling the number of zero eigenvalues associated with the latter. Proper modes in the Hessian always appear in pairs which do not double in RPA. We present several pedagogical cases exemplifying the above statements. The relevance of these results for projected Hartree-Fock methods is also addressed.
Distribution of Schmidt-like eigenvalues for Gaussian ensembles of the random matrix theory
NASA Astrophysics Data System (ADS)
Pato, Mauricio P.; Oshanin, Gleb
2013-03-01
We study the probability distribution function P(β)n(w) of the Schmidt-like random variable w = x21/(∑j = 1nx2j/n), where xj, (j = 1, 2, …, n), are unordered eigenvalues of a given n × n β-Gaussian random matrix, β being the Dyson symmetry index. This variable, by definition, can be considered as a measure of how any individual (randomly chosen) eigenvalue deviates from the arithmetic mean value of all eigenvalues of a given random matrix, and its distribution is calculated with respect to the ensemble of such β-Gaussian random matrices. We show that in the asymptotic limit n → ∞ and for arbitrary β the distribution P(β)n(w) converges to the Marčenko-Pastur form, i.e. is defined as P_{n}^{( \\beta )}(w) \\sim \\sqrt{(4 - w)/w} for w ∈ [0, 4] and equals zero outside of the support, despite the fact that formally w is defined on the interval [0, n]. Furthermore, for Gaussian unitary ensembles (β = 2) we present exact explicit expressions for P(β = 2)n(w) which are valid for arbitrary n and analyse their behaviour.
Evaluation of RAPID for a UNF cask benchmark problem
NASA Astrophysics Data System (ADS)
Mascolino, Valerio; Haghighat, Alireza; Roskoff, Nathan J.
2017-09-01
This paper examines the accuracy and performance of the RAPID (Real-time Analysis for Particle transport and In-situ Detection) code system for the simulation of a used nuclear fuel (UNF) cask. RAPID is capable of determining eigenvalue, subcritical multiplication, and pin-wise, axially-dependent fission density throughout a UNF cask. We study the source convergence based on the analysis of the different parameters used in an eigenvalue calculation in the MCNP Monte Carlo code. For this study, we consider a single assembly surrounded by absorbing plates with reflective boundary conditions. Based on the best combination of eigenvalue parameters, a reference MCNP solution for the single assembly is obtained. RAPID results are in excellent agreement with the reference MCNP solutions, while requiring significantly less computation time (i.e., minutes vs. days). A similar set of eigenvalue parameters is used to obtain a reference MCNP solution for the whole UNF cask. Because of time limitation, the MCNP results near the cask boundaries have significant uncertainties. Except for these, the RAPID results are in excellent agreement with the MCNP predictions, and its computation time is significantly lower, 35 second on 1 core versus 9.5 days on 16 cores.
NASA Astrophysics Data System (ADS)
Lázaro, Mario
2018-01-01
In this paper, nonviscous, nonproportional, vibrating structures are considered. Nonviscously damped systems are characterized by dissipative mechanisms which depend on the history of the response velocities via hereditary kernel functions. Solutions of the free motion equation lead to a nonlinear eigenvalue problem involving mass, stiffness and damping matrices. Viscoelasticity leads to a frequency dependence of this latter. In this work, a novel closed-form expression to estimate complex eigenvalues is derived. The key point is to consider the damping model as perturbed by a continuous fictitious parameter. Assuming then the eigensolutions as function of this parameter, the computation of the eigenvalues sensitivity leads to an ordinary differential equation, from whose solution arises the proposed analytical formula. The resulting expression explicitly depends on the viscoelasticity (frequency derivatives of the damping function), the nonproportionality (influence of the modal damping matrix off-diagonal terms). Eigenvectors are obtained using existing methods requiring only the corresponding eigenvalue. The method is validated using a numerical example which compares proposed with exact ones and with those determined from the linear first order approximation in terms of the damping matrix. Frequency response functions are also plotted showing that the proposed approach is valid even for moderately or highly damped systems.
Implicity restarted Arnoldi/Lanczos methods for large scale eigenvalue calculations
NASA Technical Reports Server (NTRS)
Sorensen, Danny C.
1996-01-01
Eigenvalues and eigenfunctions of linear operators are important to many areas of applied mathematics. The ability to approximate these quantities numerically is becoming increasingly important in a wide variety of applications. This increasing demand has fueled interest in the development of new methods and software for the numerical solution of large-scale algebraic eigenvalue problems. In turn, the existence of these new methods and software, along with the dramatically increased computational capabilities now available, has enabled the solution of problems that would not even have been posed five or ten years ago. Until very recently, software for large-scale nonsymmetric problems was virtually non-existent. Fortunately, the situation is improving rapidly. The purpose of this article is to provide an overview of the numerical solution of large-scale algebraic eigenvalue problems. The focus will be on a class of methods called Krylov subspace projection methods. The well-known Lanczos method is the premier member of this class. The Arnoldi method generalizes the Lanczos method to the nonsymmetric case. A recently developed variant of the Arnoldi/Lanczos scheme called the Implicitly Restarted Arnoldi Method is presented here in some depth. This method is highlighted because of its suitability as a basis for software development.
Squared eigenvalue condition numbers and eigenvector correlations from the single ring theorem
NASA Astrophysics Data System (ADS)
Belinschi, Serban; Nowak, Maciej A.; Speicher, Roland; Tarnowski, Wojciech
2017-03-01
We extend the so-called ‘single ring theorem’ (Feinberg and Zee 1997 Nucl. Phys. B 504 579), also known as the Haagerup-Larsen theorem (Haagerup and Larsen 2000 J. Funct. Anal. 176 331). We do this by showing that in the limit when the size of the matrix goes to infinity a particular correlator between left and right eigenvectors of the relevant non-hermitian matrix X, being the spectral density weighted by the squared eigenvalue condition number, is given by a simple formula involving only the radial spectral cumulative distribution function of X. We show that this object allows the calculation of the conditional expectation of the squared eigenvalue condition number. We give examples and provide a cross-check of the analytic prediction by the large scale numerics.
Eigenfunctions and Eigenvalues for a Scalar Riemann-Hilbert Problem Associated to Inverse Scattering
NASA Astrophysics Data System (ADS)
Pelinovsky, Dmitry E.; Sulem, Catherine
A complete set of eigenfunctions is introduced within the Riemann-Hilbert formalism for spectral problems associated to some solvable nonlinear evolution equations. In particular, we consider the time-independent and time-dependent Schrödinger problems which are related to the KdV and KPI equations possessing solitons and lumps, respectively. Non-standard scalar products, orthogonality and completeness relations are derived for these problems. The complete set of eigenfunctions is used for perturbation theory and bifurcation analysis of eigenvalues supported by the potentials under perturbations. We classify two different types of bifurcations of new eigenvalues and analyze their characteristic features. One type corresponds to thresholdless generation of solitons in the KdV equation, while the other predicts a threshold for generation of lumps in the KPI equation.
Wakabayashi, Hideaki; Asai, Masamitsu; Matsumoto, Keiji; Yamakita, Jiro
2016-11-01
Nakayama's shadow theory first discussed the diffraction by a perfectly conducting grating in a planar mounting. In the theory, a new formulation by use of a scattering factor was proposed. This paper focuses on the middle regions of a multilayered dielectric grating placed in conical mounting. Applying the shadow theory to the matrix eigenvalues method, we compose new transformation and improved propagation matrices of the shadow theory for conical mounting. Using these matrices and scattering factors, being the basic quantity of diffraction amplitudes, we formulate a new description of three-dimensional scattering fields which is available even for cases where the eigenvalues are degenerate in any region. Some numerical examples are given for cases where the eigenvalues are degenerate in the middle regions.
Existence and analyticity of eigenvalues of a two-channel molecular resonance model
NASA Astrophysics Data System (ADS)
Lakaev, S. N.; Latipov, Sh. M.
2011-12-01
We consider a family of operators Hγμ(k), k ∈ mathbb{T}^d := (-π,π]d, associated with the Hamiltonian of a system consisting of at most two particles on a d-dimensional lattice ℤd, interacting via both a pair contact potential (μ > 0) and creation and annihilation operators (γ > 0). We prove the existence of a unique eigenvalue of Hγμ(k), k ∈ mathbb{T}^d , or its absence depending on both the interaction parameters γ,μ ≥ 0 and the system quasimomentum k ∈ mathbb{T}^d . We show that the corresponding eigenvector is analytic. We establish that the eigenvalue and eigenvector are analytic functions of the quasimomentum k ∈ mathbb{T}^d in the existence domain G ⊂ mathbb{T}^d.
NASA Astrophysics Data System (ADS)
Tarai, Madhumita; Kumar, Keshav; Divya, O.; Bairi, Partha; Mishra, Kishor Kumar; Mishra, Ashok Kumar
2017-09-01
The present work compares the dissimilarity and covariance based unsupervised chemometric classification approaches by taking the total synchronous fluorescence spectroscopy data sets acquired for the cumin and non-cumin based herbal preparations. The conventional decomposition method involves eigenvalue-eigenvector analysis of the covariance of the data set and finds the factors that can explain the overall major sources of variation present in the data set. The conventional approach does this irrespective of the fact that the samples belong to intrinsically different groups and hence leads to poor class separation. The present work shows that classification of such samples can be optimized by performing the eigenvalue-eigenvector decomposition on the pair-wise dissimilarity matrix.
Spin 0 and spin 1/2 quantum relativistic particles in a constant gravitational field
NASA Astrophysics Data System (ADS)
Khorrami, M.; Alimohammadi, M.; Shariati, A.
2003-04-01
The Klein-Gordon and Dirac equations in a semi-infinite lab ( x>0), in the background metric d s2= u2( x)(-d t2+d x2)+d y2+d z2, are investigated. The resulting equations are studied for the special case u( x)=1+ gx. It is shown that in the case of zero transverse-momentum, the square of the energy eigenvalues of the spin-1/2 particles are less than the squares of the corresponding eigenvalues of spin-0 particles with same masses, by an amount of mgℏ c. Finally, for non-zero transverse-momentum, the energy eigenvalues corresponding to large quantum numbers are obtained and the results for spin-0 and spin-1/2 particles are compared to each other.
Numerical solution of quadratic matrix equations for free vibration analysis of structures
NASA Technical Reports Server (NTRS)
Gupta, K. K.
1975-01-01
This paper is concerned with the efficient and accurate solution of the eigenvalue problem represented by quadratic matrix equations. Such matrix forms are obtained in connection with the free vibration analysis of structures, discretized by finite 'dynamic' elements, resulting in frequency-dependent stiffness and inertia matrices. The paper presents a new numerical solution procedure of the quadratic matrix equations, based on a combined Sturm sequence and inverse iteration technique enabling economical and accurate determination of a few required eigenvalues and associated vectors. An alternative procedure based on a simultaneous iteration procedure is also described when only the first few modes are the usual requirement. The employment of finite dynamic elements in conjunction with the presently developed eigenvalue routines results in a most significant economy in the dynamic analysis of structures.
A new S-type eigenvalue inclusion set for tensors and its applications.
Huang, Zheng-Ge; Wang, Li-Gong; Xu, Zhong; Cui, Jing-Jing
2016-01-01
In this paper, a new S -type eigenvalue localization set for a tensor is derived by dividing [Formula: see text] into disjoint subsets S and its complement. It is proved that this new set is sharper than those presented by Qi (J. Symb. Comput. 40:1302-1324, 2005), Li et al. (Numer. Linear Algebra Appl. 21:39-50, 2014) and Li et al. (Linear Algebra Appl. 481:36-53, 2015). As applications of the results, new bounds for the spectral radius of nonnegative tensors and the minimum H -eigenvalue of strong M -tensors are established, and we prove that these bounds are tighter than those obtained by Li et al. (Numer. Linear Algebra Appl. 21:39-50, 2014) and He and Huang (J. Inequal. Appl. 2014:114, 2014).
Gravitational lensing by eigenvalue distributions of random matrix models
NASA Astrophysics Data System (ADS)
Martínez Alonso, Luis; Medina, Elena
2018-05-01
We propose to use eigenvalue densities of unitary random matrix ensembles as mass distributions in gravitational lensing. The corresponding lens equations reduce to algebraic equations in the complex plane which can be treated analytically. We prove that these models can be applied to describe lensing by systems of edge-on galaxies. We illustrate our analysis with the Gaussian and the quartic unitary matrix ensembles.
Sur le spectre du laplacien des fibrés en tores qui s'effondrent
NASA Astrophysics Data System (ADS)
Jammes, Pierre
2005-06-01
We study the small eigenvalues of the Hodge Laplacian on collaping torus bundles with bounded curvature. In the first part of this dissertation, we consider examples of bundles on S^1 and T^2 with homogeneous structure. In the second part, we give a lower bound of the first non-zero eigenvalue of the 1-form Laplacian on principal torus bundles.
ERIC Educational Resources Information Center
Nyman, Melvin A.; Lapp, Douglas A.; St. John, Dennis; Berry, John S.
2010-01-01
This paper discusses student difficulties in grasping concepts from Linear Algebra--in particular, the connection of eigenvalues and eigenvectors to other important topics in linear algebra. Based on our prior observations from student interviews, we propose technology-enhanced instructional approaches that might positively impact student…
Convergence of the Light-Front Coupled-Cluster Method in Scalar Yukawa Theory
NASA Astrophysics Data System (ADS)
Usselman, Austin
We use Fock-state expansions and the Light-Front Coupled-Cluster (LFCC) method to study mass eigenvalue problems in quantum field theory. Specifically, we study convergence of the method in scalar Yukawa theory. In this theory, a single charged particle is surrounded by a cloud of neutral particles. The charged particle can create or annihilate neutral particles, causing the n-particle state to depend on the n + 1 and n - 1-particle state. Fock state expansion leads to an infinite set of coupled equations where truncation is required. The wave functions for the particle states are expanded in a basis of symmetric polynomials and a generalized eigenvalue problem is solved for the mass eigenvalue. The mass eigenvalue problem is solved for multiple values for the coupling strength while the number of particle states and polynomial basis order are increased. Convergence of the mass eigenvalue solutions is then obtained. Three mass ratios between the charged particle and neutral particles were studied. This includes a massive charged particle, equal masses and massive neutral particles. Relative probability between states can also be explored for more detailed understanding of the process of convergence with respect to the number of Fock sectors. The reliance on higher order particle states depended on how large the mass of the charge particle was. The higher the mass of the charged particle, the more the system depended on higher order particle states. The LFCC method solves this same mass eigenvalue problem using an exponential operator. This exponential operator can then be truncated instead to form a finite system of equations that can be solved using a built in system solver provided in most computational environments, such as MatLab and Mathematica. First approximation in the LFCC method allows for only one particle to be created by the new operator and proved to be not powerful enough to match the Fock state expansion. The second order approximation allowed one and two particles to be created by the new operator and converged to the Fock state expansion results. This showed the LFCC method to be a reliable replacement method for solving quantum field theory problems.
Electrical impedance tomography in anisotropic media with known eigenvectors
NASA Astrophysics Data System (ADS)
Abascal, Juan-Felipe P. J.; Lionheart, William R. B.; Arridge, Simon R.; Schweiger, Martin; Atkinson, David; Holder, David S.
2011-06-01
Electrical impedance tomography is an imaging method, with which volumetric images of conductivity are produced by injecting electrical current and measuring boundary voltages. It has the potential to become a portable non-invasive medical imaging technique. Until now, most implementations have neglected anisotropy even though human tissues like bone, muscle and brain white matter are markedly anisotropic. The recovery of an anisotropic conductivity tensor is uniquely determined by boundary measurements only up to a diffeomorphism that fixes the boundary. Nevertheless, uniqueness can be restored by providing information about the diffeomorphism. There are uniqueness results for two constraints: one eigenvalue and a multiple scalar of a general tensor. A useable constraint for medical applications is when the eigenvectors of the underlying tissue are known, which can be approximated from MRI or estimated from DT-MRI, although the eigenvalues are unknown. However there is no known theoretical result guaranteeing uniqueness for this constraint. In fact, only a few previous inversion studies have attempted to recover one or more eigenvalues assuming certain symmetries while ignoring nonuniqueness. In this work, the aim was to undertake a numerical study of the feasibility of the recovery of a piecewise linear finite element conductivity tensor in anisotropic media with known eigenvectors from the complete boundary data. The work suggests that uniqueness holds for this constraint, in addition to proposing a methodology for the incorporation of this prior for general conductivity tensors. This was carried out by performing an analysis of the Jacobian rank and by reconstructing four conductivity distributions: two diagonal tensors whose eigenvalues were linear and sinusoidal functions, and two general tensors whose eigenvectors resembled physiological tissue, one with eigenvectors spherically orientated like a spherical layered structure, and a sample of DT-MRI data of brain white matter. The Jacobian with respect to three eigenvalues was full-rank and it was possible to recover three eigenvalues for the four simulated distributions. This encourages further theoretical study of the uniqueness for this constraint and supports the use of this as a relevant usable method for medical applications.
Expendable launch vehicle studies
NASA Technical Reports Server (NTRS)
Bainum, Peter M.; Reiss, Robert
1995-01-01
Analytical support studies of expendable launch vehicles concentrate on the stability of the dynamics during launch especially during or near the region of maximum dynamic pressure. The in-plane dynamic equations of a generic launch vehicle with multiple flexible bending and fuel sloshing modes are developed and linearized. The information from LeRC about the grids, masses, and modes is incorporated into the model. The eigenvalues of the plant are analyzed for several modeling factors: utilizing diagonal mass matrix, uniform beam assumption, inclusion of aerodynamics, and the interaction between the aerodynamics and the flexible bending motion. Preliminary PID, LQR, and LQG control designs with sensor and actuator dynamics for this system and simulations are also conducted. The initial analysis for comparison of PD (proportional-derivative) and full state feedback LQR Linear quadratic regulator) shows that the split weighted LQR controller has better performance than that of the PD. In order to meet both the performance and robustness requirements, the H(sub infinity) robust controller for the expendable launch vehicle is developed. The simulation indicates that both the performance and robustness of the H(sub infinity) controller are better than that for the PID and LQG controllers. The modelling and analysis support studies team has continued development of methodology, using eigensensitivity analysis, to solve three classes of discrete eigenvalue equations. In the first class, the matrix elements are non-linear functions of the eigenvector. All non-linear periodic motion can be cast in this form. Here the eigenvector is comprised of the coefficients of complete basis functions spanning the response space and the eigenvalue is the frequency. The second class of eigenvalue problems studied is the quadratic eigenvalue problem. Solutions for linear viscously damped structures or viscoelastic structures can be reduced to this form. Particular attention is paid to Maxwell and Kelvin models. The third class of problems consists of linear eigenvalue problems in which the elements of the mass and stiffness matrices are stochastic. dynamic structural response for which the parameters are given by probabilistic distribution functions, rather than deterministic values, can be cast in this form. Solutions for several problems in each class will be presented.
Numerical Aspects of Eigenvalue and Eigenfunction Computations for Chaotic Quantum Systems
NASA Astrophysics Data System (ADS)
Bäcker, A.
Summary: We give an introduction to some of the numerical aspects in quantum chaos. The classical dynamics of two-dimensional area-preserving maps on the torus is illustrated using the standard map and a perturbed cat map. The quantization of area-preserving maps given by their generating function is discussed and for the computation of the eigenvalues a computer program in Python is presented. We illustrate the eigenvalue distribution for two types of perturbed cat maps, one leading to COE and the other to CUE statistics. For the eigenfunctions of quantum maps we study the distribution of the eigenvectors and compare them with the corresponding random matrix distributions. The Husimi representation allows for a direct comparison of the localization of the eigenstates in phase space with the corresponding classical structures. Examples for a perturbed cat map and the standard map with different parameters are shown. Billiard systems and the corresponding quantum billiards are another important class of systems (which are also relevant to applications, for example in mesoscopic physics). We provide a detailed exposition of the boundary integral method, which is one important method to determine the eigenvalues and eigenfunctions of the Helmholtz equation. We discuss several methods to determine the eigenvalues from the Fredholm equation and illustrate them for the stadium billiard. The occurrence of spurious solutions is discussed in detail and illustrated for the circular billiard, the stadium billiard, and the annular sector billiard. We emphasize the role of the normal derivative function to compute the normalization of eigenfunctions, momentum representations or autocorrelation functions in a very efficient and direct way. Some examples for these quantities are given and discussed.
NASA Technical Reports Server (NTRS)
Balakumar, P.; Jeyasingham, Samarasingham
1999-01-01
A program is developed to investigate the linear stability of three-dimensional compressible boundary layer flows over bodies of revolutions. The problem is formulated as a two dimensional (2D) eigenvalue problem incorporating the meanflow variations in the normal and azimuthal directions. Normal mode solutions are sought in the whole plane rather than in a line normal to the wall as is done in the classical one dimensional (1D) stability theory. The stability characteristics of a supersonic boundary layer over a sharp cone with 50 half-angle at 2 degrees angle of attack is investigated. The 1D eigenvalue computations showed that the most amplified disturbances occur around x(sub 2) = 90 degrees and the azimuthal mode number for the most amplified disturbances range between m = -30 to -40. The frequencies of the most amplified waves are smaller in the middle region where the crossflow dominates the instability than the most amplified frequencies near the windward and leeward planes. The 2D eigenvalue computations showed that due to the variations in the azimuthal direction, the eigenmodes are clustered into isolated confined regions. For some eigenvalues, the eigenfunctions are clustered in two regions. Due to the nonparallel effect in the azimuthal direction, the eigenmodes are clustered into isolated confined regions. For some eigenvalues, the eigenfunctions are clustered in two regions. Due to the nonparallel effect in the azimuthal direction, the most amplified disturbances are shifted to 120 degrees compared to 90 degrees for the parallel theory. It is also observed that the nonparallel amplification rates are smaller than that is obtained from the parallel theory.
NASA Astrophysics Data System (ADS)
Sinha, Sitabhra; Pan, Raj Kumar
The cross-correlations between price fluctuations of 201 frequently traded stocks in the National Stock Exchange (NSE) of India are analyzed in this paper. We use daily closing prices for the period 1996-2006, which coincides with the period of rapid transformation of the market following liberalization. The eigenvalue distribution of the cross-correlation matrix, C, of NSE is found to be similar to that of developed markets, such as the New York Stock Exchange (NYSE): the majority of eigenvalues fall within the bounds expected for a random matrix constructed from mutually uncorrelated time series. Of the few largest eigenvalues that deviate from the bulk, the largest is identified with market-wide movements. The intermediate eigenvalues that occur between the largest and the bulk have been associated in NYSE with specific business sectors with strong intra-group interactions. However, in the Indian market, these deviating eigenvalues are comparatively very few and lie much closer to the bulk. We propose that this is because of the relative lack of distinct sector identity in the market, with the movement of stocks dominantly influenced by the overall market trend. This is shown by explicit construction of the interaction network in the market, first by generating the minimum spanning tree from the unfiltered correlation matrix, and later, using an improved method of generating the graph after filtering out the market mode and random effects from the data. Both methods show, compared to developed markets, the relative absence of clusters of co-moving stocks that belong to the same business sector. This is consistent with the general belief that emerging markets tend to be more correlated than developed markets.
Accuracy of analytic energy level formulas applied to hadronic spectroscopy of heavy mesons
NASA Technical Reports Server (NTRS)
Badavi, Forooz F.; Norbury, John W.; Wilson, John W.; Townsend, Lawrence W.
1988-01-01
Linear and harmonic potential models are used in the nonrelativistic Schroedinger equation to obtain article mass spectra for mesons as bound states of quarks. The main emphasis is on the linear potential where exact solutions of the S-state eigenvalues and eigenfunctions and the asymptotic solution for the higher order partial wave are obtained. A study of the accuracy of two analytical energy level formulas as applied to heavy mesons is also included. Cornwall's formula is found to be particularly accurate and useful as a predictor of heavy quarkonium states. Exact solution for all partial waves of eigenvalues and eigenfunctions for a harmonic potential is also obtained and compared with the calculated discrete spectra of the linear potential. Detailed derivations of the eigenvalues and eigenfunctions of the linear and harmonic potentials are presented in appendixes.
Hydrodynamics of the Polyakov line in SU(N c) Yang-Mills
Liu, Yizhuang; Warchoł, Piotr; Zahed, Ismail
2015-12-08
We discuss a hydrodynamical description of the eigenvalues of the Polyakov line at large but finite N c for Yang-Mills theory in even and odd space-time dimensions. The hydro-static solutions for the eigenvalue densities are shown to interpolate between a uniform distribution in the confined phase and a localized distribution in the de-confined phase. The resulting critical temperatures are in overall agreement with those measured on the lattice over a broad range of N c, and are consistent with the string model results at N c = ∞. The stochastic relaxation of the eigenvalues of the Polyakov line out ofmore » equilibrium is captured by a hydrodynamical instanton. An estimate of the probability of formation of a Z(N c)bubble using a piece-wise sound wave is suggested.« less
Coherence analysis of a class of weighted networks
NASA Astrophysics Data System (ADS)
Dai, Meifeng; He, Jiaojiao; Zong, Yue; Ju, Tingting; Sun, Yu; Su, Weiyi
2018-04-01
This paper investigates consensus dynamics in a dynamical system with additive stochastic disturbances that is characterized as network coherence by using the Laplacian spectrum. We introduce a class of weighted networks based on a complete graph and investigate the first- and second-order network coherence quantifying as the sum and square sum of reciprocals of all nonzero Laplacian eigenvalues. First, the recursive relationship of its eigenvalues at two successive generations of Laplacian matrix is deduced. Then, we compute the sum and square sum of reciprocal of all nonzero Laplacian eigenvalues. The obtained results show that the scalings of first- and second-order coherence with network size obey four and five laws, respectively, along with the range of the weight factor. Finally, it indicates that the scalings of our studied networks are smaller than other studied networks when 1/√{d }
On adaptive weighted polynomial preconditioning for Hermitian positive definite matrices
NASA Technical Reports Server (NTRS)
Fischer, Bernd; Freund, Roland W.
1992-01-01
The conjugate gradient algorithm for solving Hermitian positive definite linear systems is usually combined with preconditioning in order to speed up convergence. In recent years, there has been a revival of polynomial preconditioning, motivated by the attractive features of the method on modern architectures. Standard techniques for choosing the preconditioning polynomial are based only on bounds for the extreme eigenvalues. Here a different approach is proposed, which aims at adapting the preconditioner to the eigenvalue distribution of the coefficient matrix. The technique is based on the observation that good estimates for the eigenvalue distribution can be derived after only a few steps of the Lanczos process. This information is then used to construct a weight function for a suitable Chebyshev approximation problem. The solution of this problem yields the polynomial preconditioner. In particular, we investigate the use of Bernstein-Szego weights.
Preliminary demonstration of a robust controller design method
NASA Technical Reports Server (NTRS)
Anderson, L. R.
1980-01-01
Alternative computational procedures for obtaining a feedback control law which yields a control signal based on measurable quantitites are evaluated. The three methods evaluated are: (1) the standard linear quadratic regulator design model; (2) minimization of the norm of the feedback matrix, k via nonlinear programming subject to the constraint that the closed loop eigenvalues be in a specified domain in the complex plane; and (3) maximize the angles between the closed loop eigenvectors in combination with minimizing the norm of K also via the constrained nonlinear programming. The third or robust design method was chosen to yield a closed loop system whose eigenvalues are insensitive to small changes in the A and B matrices. The relationship between orthogonality of closed loop eigenvectors and the sensitivity of closed loop eigenvalues is described. Computer programs are described.
Physics, stability, and dynamics of supply networks
NASA Astrophysics Data System (ADS)
Helbing, Dirk; Lämmer, Stefan; Seidel, Thomas; Šeba, Pétr; Płatkowski, Tadeusz
2004-12-01
We show how to treat supply networks as physical transport problems governed by balance equations and equations for the adaptation of production speeds. Although the nonlinear behavior is different, the linearized set of coupled differential equations is formally related to those of mechanical or electrical oscillator networks. Supply networks possess interesting features due to their complex topology and directed links. We derive analytical conditions for absolute and convective instabilities. The empirically observed “bullwhip effect” in supply chains is explained as a form of convective instability based on resonance effects. Moreover, it is generalized to arbitrary supply networks. Their related eigenvalues are usually complex, depending on the network structure (even without loops). Therefore, their generic behavior is characterized by damped or growing oscillations. We also show that regular distribution networks possess two negative eigenvalues only, but perturbations generate a spectrum of complex eigenvalues.
Tarai, Madhumita; Kumar, Keshav; Divya, O; Bairi, Partha; Mishra, Kishor Kumar; Mishra, Ashok Kumar
2017-09-05
The present work compares the dissimilarity and covariance based unsupervised chemometric classification approaches by taking the total synchronous fluorescence spectroscopy data sets acquired for the cumin and non-cumin based herbal preparations. The conventional decomposition method involves eigenvalue-eigenvector analysis of the covariance of the data set and finds the factors that can explain the overall major sources of variation present in the data set. The conventional approach does this irrespective of the fact that the samples belong to intrinsically different groups and hence leads to poor class separation. The present work shows that classification of such samples can be optimized by performing the eigenvalue-eigenvector decomposition on the pair-wise dissimilarity matrix. Copyright © 2017 Elsevier B.V. All rights reserved.
Reliable use of determinants to solve nonlinear structural eigenvalue problems efficiently
NASA Technical Reports Server (NTRS)
Williams, F. W.; Kennedy, D.
1988-01-01
The analytical derivation, numerical implementation, and performance of a multiple-determinant parabolic interpolation method (MDPIM) for use in solving transcendental eigenvalue (critical buckling or undamped free vibration) problems in structural mechanics are presented. The overall bounding, eigenvalue-separation, qualified parabolic interpolation, accuracy-confirmation, and convergence-recovery stages of the MDPIM are described in detail, and the numbers of iterations required to solve sample plane-frame problems using the MDPIM are compared with those for a conventional bisection method and for the Newtonian method of Simpson (1984) in extensive tables. The MDPIM is shown to use 31 percent less computation time than bisection when accuracy of 0.0001 is required, but 62 percent less when accuracy of 10 to the -8th is required; the time savings over the Newtonian method are about 10 percent.
Control of large flexible systems via eigenvalue relocation
NASA Technical Reports Server (NTRS)
Denman, E. D.; Jeon, G. J.
1985-01-01
For the vibration control of large flexible systems, a control scheme by which the eigenvalues of the closed-loop systems are assigned to predetermined locations within the feasible region through velocity-only feedback is presented. Owing to the properties of second-order lambda-matrices and an efficient model decoupling technique, the control scheme makes it possible that selected modes are damped with the rest of the modes unchanged.
Visibility of quantum graph spectrum from the vertices
NASA Astrophysics Data System (ADS)
Kühn, Christian; Rohleder, Jonathan
2018-03-01
We investigate the relation between the eigenvalues of the Laplacian with Kirchhoff vertex conditions on a finite metric graph and a corresponding Titchmarsh-Weyl function (a parameter-dependent Neumann-to-Dirichlet map). We give a complete description of all real resonances, including multiplicities, in terms of the edge lengths and the connectivity of the graph, and apply it to characterize all eigenvalues which are visible for the Titchmarsh-Weyl function.
Efficient, massively parallel eigenvalue computation
NASA Technical Reports Server (NTRS)
Huo, Yan; Schreiber, Robert
1993-01-01
In numerical simulations of disordered electronic systems, one of the most common approaches is to diagonalize random Hamiltonian matrices and to study the eigenvalues and eigenfunctions of a single electron in the presence of a random potential. An effort to implement a matrix diagonalization routine for real symmetric dense matrices on massively parallel SIMD computers, the Maspar MP-1 and MP-2 systems, is described. Results of numerical tests and timings are also presented.
Gauge equivalence of the Gross Pitaevskii equation and the equivalent Heisenberg spin chain
NASA Astrophysics Data System (ADS)
Radha, R.; Kumar, V. Ramesh
2007-11-01
In this paper, we construct an equivalent spin chain for the Gross-Pitaevskii equation with quadratic potential and exponentially varying scattering lengths using gauge equivalence. We have then generated the soliton solutions for the spin components S3 and S-. We find that the spin solitons for S3 and S- can be compressed for exponentially growing eigenvalues while they broaden out for decaying eigenvalues.
CFD simulation of simultaneous monotonic cooling and surface heat transfer coefficient
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihálka, Peter, E-mail: usarmipe@savba.sk; Matiašovský, Peter, E-mail: usarmat@savba.sk
The monotonic heating regime method for determination of thermal diffusivity is based on the analysis of an unsteady-state (stabilised) thermal process characterised by an independence of the space-time temperature distribution on initial conditions. At the first kind of the monotonic regime a sample of simple geometry is heated / cooled at constant ambient temperature. The determination of thermal diffusivity requires the determination rate of a temperature change and simultaneous determination of the first eigenvalue. According to a characteristic equation the first eigenvalue is a function of the Biot number defined by a surface heat transfer coefficient and thermal conductivity ofmore » an analysed material. Knowing the surface heat transfer coefficient and the first eigenvalue the thermal conductivity can be determined. The surface heat transport coefficient during the monotonic regime can be determined by the continuous measurement of long-wave radiation heat flow and the photoelectric measurement of the air refractive index gradient in a boundary layer. CFD simulation of the cooling process was carried out to analyse local convective and radiative heat transfer coefficients more in detail. Influence of ambient air flow was analysed. The obtained eigenvalues and corresponding surface heat transfer coefficient values enable to determine thermal conductivity of the analysed specimen together with its thermal diffusivity during a monotonic heating regime.« less
On functional determinants of matrix differential operators with multiple zero modes
NASA Astrophysics Data System (ADS)
Falco, G. M.; Fedorenko, Andrei A.; Gruzberg, Ilya A.
2017-12-01
We generalize the method of computing functional determinants with a single excluded zero eigenvalue developed by McKane and Tarlie to differential operators with multiple zero eigenvalues. We derive general formulas for such functional determinants of r× r matrix second order differential operators O with 0 < n ≤slant 2r linearly independent zero modes. We separately discuss the cases of the homogeneous Dirichlet boundary conditions, when the number of zero modes cannot exceed r, and the case of twisted boundary conditions, including the periodic and anti-periodic ones, when the number of zero modes is bounded above by 2r. In all cases the determinants with excluded zero eigenvalues can be expressed only in terms of the n zero modes and other r-n or 2r-n (depending on the boundary conditions) solutions of the homogeneous equation O h=0 , in the spirit of Gel’fand-Yaglom approach. In instanton calculations, the contribution of the zero modes is taken into account by introducing the so-called collective coordinates. We show that there is a remarkable cancellation of a factor (involving scalar products of zero modes) between the Jacobian of the transformation to the collective coordinates and the functional fluctuation determinant with excluded zero eigenvalues. This cancellation drastically simplifies instanton calculations when one uses our formulas.
A Projection free method for Generalized Eigenvalue Problem with a nonsmooth Regularizer.
Hwang, Seong Jae; Collins, Maxwell D; Ravi, Sathya N; Ithapu, Vamsi K; Adluru, Nagesh; Johnson, Sterling C; Singh, Vikas
2015-12-01
Eigenvalue problems are ubiquitous in computer vision, covering a very broad spectrum of applications ranging from estimation problems in multi-view geometry to image segmentation. Few other linear algebra problems have a more mature set of numerical routines available and many computer vision libraries leverage such tools extensively. However, the ability to call the underlying solver only as a "black box" can often become restrictive. Many 'human in the loop' settings in vision frequently exploit supervision from an expert, to the extent that the user can be considered a subroutine in the overall system. In other cases, there is additional domain knowledge, side or even partial information that one may want to incorporate within the formulation. In general, regularizing a (generalized) eigenvalue problem with such side information remains difficult. Motivated by these needs, this paper presents an optimization scheme to solve generalized eigenvalue problems (GEP) involving a (nonsmooth) regularizer. We start from an alternative formulation of GEP where the feasibility set of the model involves the Stiefel manifold. The core of this paper presents an end to end stochastic optimization scheme for the resultant problem. We show how this general algorithm enables improved statistical analysis of brain imaging data where the regularizer is derived from other 'views' of the disease pathology, involving clinical measurements and other image-derived representations.
On Distributed Strategies in Defense of a High Value Unit (HVU) Against a Swarm Attack
2012-09-01
function [ lam ,U] = tqr(a,b,U) % [ lam u] = tqr(a,b) or [ lam U] = tqr(a,b,U... lam u] = tqr(a,b): % % The column lam contains the eigenvalues of the Hermitian tridiagonal % matrix T = mxt(a,b) computed by one version of the...computed. The computed eigenvalues are real and are sorted to be % nonincreasing. % % [ lam U] = tqr(a,b,U): % % This replaces the input U
NASA Technical Reports Server (NTRS)
Ito, K.
1984-01-01
The stability and convergence properties of the Legendre-tau approximation for hereditary differential systems are analyzed. A charactristic equation is derived for the eigenvalues of the resulting approximate system. As a result of this derivation the uniform exponential stability of the solution semigroup is preserved under approximation. It is the key to obtaining the convergence of approximate solutions of the algebraic Riccati equation in trace norm.
Unstable optical resonator loss calculations using the prony method.
Siegman, A E; Miller, H Y
1970-12-01
The eigenvalues for all the significant low-order resonant modes of an unstable optical resonator with circular mirrors are computed using an eigenvalue method called the Prony method. A general equivalence relation is also given, by means of which one can obtain the design parameters for a single-ended unstable resonator of the type usually employed in practical lasers, from the calculated or tabulated values for an equivalent symmetric or double-ended unstable resonator.
NASA Astrophysics Data System (ADS)
Kumar, Santosh
2015-11-01
We provide a proof to a recent conjecture by Forrester (2014 J. Phys. A: Math. Theor. 47 065202) regarding the algebraic and arithmetic structure of Meijer G-functions which appear in the expression for probability of all eigenvalues real for the product of two real Gaussian matrices. In the process we come across several interesting identities involving Meijer G-functions.
NASA Astrophysics Data System (ADS)
Xie, Pinchen; Yang, Bingjia; Zhang, Zhongzhi; Andrade, Roberto F. S.
2018-07-01
A deterministic network with tree structure is considered, for which the spectrum of its adjacency matrix can be exactly evaluated by a recursive renormalization approach. It amounts to successively increasing number of contributions at any finite step of construction of the tree, resulting in a causal chain. The resulting eigenvalues can be related the full energy spectrum of a nearest-neighbor tight-binding model defined on this structure. Given this association, it turns out that further properties of the eigenvectors can be evaluated, like the degree of quantum localization of the tight-binding eigenstates, expressed by the inverse participation ratio (IPR). It happens that, for the current model, the IPR's are also suitable to be analytically expressed in terms in corresponding eigenvalue chain. The resulting IPR scaling behavior is expressed by the tails of eigenvalue chains as well.
NASA Astrophysics Data System (ADS)
Rotter, Stefan; Aigner, Florian; Burgdörfer, Joachim
2007-03-01
We investigate the statistical distribution of transmission eigenvalues in phase-coherent transport through quantum dots. In two-dimensional ab initio simulations for both clean and disordered two-dimensional cavities, we find markedly different quantum-to-classical crossover scenarios for these two cases. In particular, we observe the emergence of “noiseless scattering states” in clean cavities, irrespective of sharp-edged entrance and exit lead mouths. We find the onset of these “classical” states to be largely independent of the cavity’s classical chaoticity, but very sensitive with respect to bulk disorder. Our results suggest that for weakly disordered cavities, the transmission eigenvalue distribution is determined both by scattering at the disorder potential and the cavity walls. To properly account for this intermediate parameter regime, we introduce a hybrid crossover scheme, which combines previous models that are valid in the ballistic and the stochastic limit, respectively.
On curve veering and flutter of rotating blades
NASA Technical Reports Server (NTRS)
Afolabi, Dare; Mehmed, Oral
1993-01-01
The eigenvalues of rotating blades usually change with rotation speed according to the Stodola-Southwell criterion. Under certain circumstances, the loci of eigenvalues belonging to two distinct modes of vibration approach each other very closely, and it may appear as if the loci cross each other. However, our study indicates that the observable frequency loci of an undamped rotating blade do not cross, but must either repel each other (leading to 'curve veering'), or attract each other (leading to 'frequency coalescence'). Our results are reached by using standard arguments from algebraic geometry--the theory of algebraic curves and catastrophe theory. We conclude that it is important to resolve an apparent crossing of eigenvalue loci into either a frequency coalescence or a curve veering, because frequency coalescence is dangerous since it leads to flutter, whereas curve veering does not precipitate flutter and is, therefore, harmless with respect to elastic stability.
Pellacci, Benedetta; Verzini, Gianmaria
2018-05-01
We study the positive principal eigenvalue of a weighted problem associated with the Neumann spectral fractional Laplacian. This analysis is related to the investigation of the survival threshold in population dynamics. Our main result concerns the optimization of such threshold with respect to the fractional order [Formula: see text], the case [Formula: see text] corresponding to the standard Neumann Laplacian: when the habitat is not too fragmented, the principal positive eigenvalue can not have local minima for [Formula: see text]. As a consequence, the best strategy for survival is either following the diffusion with [Formula: see text] (i.e. Brownian diffusion), or with the lowest possible s (i.e. diffusion allowing long jumps), depending on the size of the domain. In addition, we show that analogous results hold for the standard fractional Laplacian in [Formula: see text], in periodic environments.
A variational eigenvalue solver on a photonic quantum processor
Peruzzo, Alberto; McClean, Jarrod; Shadbolt, Peter; Yung, Man-Hong; Zhou, Xiao-Qi; Love, Peter J.; Aspuru-Guzik, Alán; O’Brien, Jeremy L.
2014-01-01
Quantum computers promise to efficiently solve important problems that are intractable on a conventional computer. For quantum systems, where the physical dimension grows exponentially, finding the eigenvalues of certain operators is one such intractable problem and remains a fundamental challenge. The quantum phase estimation algorithm efficiently finds the eigenvalue of a given eigenvector but requires fully coherent evolution. Here we present an alternative approach that greatly reduces the requirements for coherent evolution and combine this method with a new approach to state preparation based on ansätze and classical optimization. We implement the algorithm by combining a highly reconfigurable photonic quantum processor with a conventional computer. We experimentally demonstrate the feasibility of this approach with an example from quantum chemistry—calculating the ground-state molecular energy for He–H+. The proposed approach drastically reduces the coherence time requirements, enhancing the potential of quantum resources available today and in the near future. PMID:25055053
NASA Astrophysics Data System (ADS)
Li, Yan; Harbola, Manoj K.; Krieger, J. B.; Sahni, Viraht
1989-11-01
The exchange-correlation potential of the Kohn-Sham density-functional theory has recently been interpreted as the work required to move an electron against the electric field of its Fermi-Coulomb hole charge distribution. In this paper we present self-consistent results for ground-state total energies and highest occupied eigenvalues of closed subshell atoms as obtained by this formalism in the exchange-only approximation. The total energies, which are an upper bound, lie within 50 ppm of Hartree-Fock theory for atoms heavier than Be. The highest occupied eigenvalues, as a consequence of this interpretation, approximate well the experimental ionization potentials. In addition, the self-consistently calculated exchange potentials are very close to those of Talman and co-workers [J. D. Talman and W. F. Shadwick, Phys. Rev. A 14, 36 (1976); K. Aashamar, T. M. Luke, and J. D. Talman, At. Data Nucl. Data Tables 22, 443 (1978)].
Asymmetric correlation matrices: an analysis of financial data
NASA Astrophysics Data System (ADS)
Livan, G.; Rebecchi, L.
2012-06-01
We analyse the spectral properties of correlation matrices between distinct statistical systems. Such matrices are intrinsically non-symmetric, and lend themselves to extend the spectral analyses usually performed on standard Pearson correlation matrices to the realm of complex eigenvalues. We employ some recent random matrix theory results on the average eigenvalue density of this type of matrix to distinguish between noise and non-trivial correlation structures, and we focus on financial data as a case study. Namely, we employ daily prices of stocks belonging to the American and British stock exchanges, and look for the emergence of correlations between two such markets in the eigenvalue spectrum of their non-symmetric correlation matrix. We find several non trivial results when considering time-lagged correlations over short lags, and we corroborate our findings by additionally studying the asymmetric correlation matrix of the principal components of our datasets.
NASA Astrophysics Data System (ADS)
Ahmadov, A. I.; Naeem, Maria; Qocayeva, M. V.; Tarverdiyeva, V. A.
2018-01-01
In this paper, the bound-state solution of the modified radial Schrödinger equation is obtained for the Manning-Rosen plus Hulthén potential by using new developed scheme to overcome the centrifugal part. The energy eigenvalues and corresponding radial wave functions are defined for any l≠0 angular momentum case via the Nikiforov-Uvarov (NU) and supersymmetric quantum mechanics (SUSY QM) methods. Thanks to both methods, equivalent expressions are obtained for the energy eigenvalues, and the expression of radial wave functions transformations to each other is presented. The energy levels and the corresponding normalized eigenfunctions are represented in terms of the Jacobi polynomials for arbitrary l states. A closed form of the normalization constant of the wave functions is also found. It is shown that, the energy eigenvalues and eigenfunctions are sensitive to nr radial and l orbital quantum numbers.
Crossflow effects on the growth rate of inviscid Goertler vortices in a hypersonic boundary layer
NASA Technical Reports Server (NTRS)
Fu, Yibin; Hall, Philip
1992-01-01
The effects of crossflow on the growth rate of inviscid Goertler vortices in a hypersonic boundary layer with pressure gradient are studied. Attention is focused on the inviscid mode trapped in the temperature adjustment layer; this mode has greater growth rate than any other mode. The eigenvalue problem which governs the relationship between the growth rate, the crossflow amplitude, and the wavenumber is solved numerically, and the results are then used to clarify the effects of crossflow on the growth rate of inviscid Goertler vortices. It is shown that crossflow effects on Goertler vortices are fundamentally different for incompressible and hypersonic flows. The neutral mode eigenvalue problem is found to have an exact solution, and as a by-product, we have also found the exact solution to a neutral mode eigenvalue problem which was formulated, but unsolved before, by Bassom and Hall (1991).
Acoustic modes in fluid networks
NASA Technical Reports Server (NTRS)
Michalopoulos, C. D.; Clark, Robert W., Jr.; Doiron, Harold H.
1992-01-01
Pressure and flow rate eigenvalue problems for one-dimensional flow of a fluid in a network of pipes are derived from the familiar transmission line equations. These equations are linearized by assuming small velocity and pressure oscillations about mean flow conditions. It is shown that the flow rate eigenvalues are the same as the pressure eigenvalues and the relationship between line pressure modes and flow rate modes is established. A volume at the end of each branch is employed which allows any combination of boundary conditions, from open to closed, to be used. The Jacobi iterative method is used to compute undamped natural frequencies and associated pressure/flow modes. Several numerical examples are presented which include acoustic modes for the Helium Supply System of the Space Shuttle Orbiter Main Propulsion System. It should be noted that the method presented herein can be applied to any one-dimensional acoustic system involving an arbitrary number of branches.
The eigenvalue spectrum of the Orr-Sommerfeld problem
NASA Technical Reports Server (NTRS)
Antar, B. N.
1976-01-01
A numerical investigation of the temporal eigenvalue spectrum of the ORR-Sommerfeld equation is presented. Two flow profiles are studied, the plane Poiseuille flow profile and the Blasius boundary layer (parallel): flow profile. In both cases a portion of the complex c-plane bounded by 0 less than or equal to CR sub r 1 and -1 less than or equal to ci sub i 0 is searched and the eigenvalues within it are identified. The spectra for the plane Poiseuille flow at alpha = 1.0 and R = 100, 1000, 6000, and 10000 are determined and compared with existing results where possible. The spectrum for the Blasius boundary layer flow at alpha = 0.308 and R = 998 was found to be infinite and discrete. Other spectra for the Blasius boundary layer at various Reynolds numbers seem to confirm this result. The eigenmodes belonging to these spectra were located and discussed.
Analyzing Small Signal Stability of Power System based on Online Data by Use of SMES
NASA Astrophysics Data System (ADS)
Ishikawa, Hiroyuki; Shirai, Yasuyuki; Nitta, Tanzo; Shibata, Katsuhiko
The purpose of this study is to estimate eigen-values and eigen-vectors of a power system from on-line data to evaluate the power system stability. Power system responses due to the small power modulation of known pattern from SMES (Superconducting Magnetic Energy Storage) were analyzed, and the transfer functions between the power modulation and power oscillations of generators were obtained. Eigen-values and eigen-vectors were estimated from the transfer functions. Experiments were carried out by use of a model SMES and Advanced Power System Analyzer (APSA), which is an analogue type power system simulator of Kansai Electric Power Company Inc., Japan. Changes in system condition were observed by the estimated eigen-values and eigen-vectors. Result agreed well with the resent report and digital simulation. This method gives a new application for SMES, which will be installed for improving electric power quality.
Determination of eigenvalues of dynamical systems by symbolic computation
NASA Technical Reports Server (NTRS)
Howard, J. C.
1982-01-01
A symbolic computation technique for determining the eigenvalues of dynamical systems is described wherein algebraic operations, symbolic differentiation, matrix formulation and inversion, etc., can be performed on a digital computer equipped with a formula-manipulation compiler. An example is included that demonstrates the facility with which the system dynamics matrix and the control distribution matrix from the state space formulation of the equations of motion can be processed to obtain eigenvalue loci as a function of a system parameter. The example chosen to demonstrate the technique is a fourth-order system representing the longitudinal response of a DC 8 aircraft to elevator inputs. This simplified system has two dominant modes, one of which is lightly damped and the other well damped. The loci may be used to determine the value of the controlling parameter that satisfied design requirements. The results were obtained using the MACSYMA symbolic manipulation system.
Topology and geometry of the dark matter web: A multi-stream view
NASA Astrophysics Data System (ADS)
Ramachandra, Nesar S.; Shandarin, Sergei F.
2017-05-01
Topological connections in the single-streaming voids and multistreaming filaments and walls reveal a cosmic web structure different from traditional mass density fields. A single void structure not only percolates the multistream field in all the directions, but also occupies over 99 per cent of all the single-streaming regions. Sub-grid analyses on scales smaller than simulation resolution reveal tiny pockets of voids that are isolated by membranes of the structure. For the multistreaming excursion sets, the percolating structure is significantly thinner than the filaments in overdensity excursion approach. Hessian eigenvalues of the multistream field are used as local geometrical indicators of dark matter structures. Single-streaming regions have most of the zero eigenvalues. Parameter-free conditions on the eigenvalues in the multistream region may be used to delineate primitive geometries with concavities corresponding to filaments, walls and haloes.
Single-particle energies and density of states in density functional theory
NASA Astrophysics Data System (ADS)
van Aggelen, H.; Chan, G. K.-L.
2015-07-01
Time-dependent density functional theory (TD-DFT) is commonly used as the foundation to obtain neutral excited states and transition weights in DFT, but does not allow direct access to density of states and single-particle energies, i.e. ionisation energies and electron affinities. Here we show that by extending TD-DFT to a superfluid formulation, which involves operators that break particle-number symmetry, we can obtain the density of states and single-particle energies from the poles of an appropriate superfluid response function. The standard Kohn- Sham eigenvalues emerge as the adiabatic limit of the superfluid response under the assumption that the exchange- correlation functional has no dependence on the superfluid density. The Kohn- Sham eigenvalues can thus be interpreted as approximations to the ionisation energies and electron affinities. Beyond this approximation, the formalism provides an incentive for creating a new class of density functionals specifically targeted at accurate single-particle eigenvalues and bandgaps.
Molecular dynamics in principal component space.
Michielssens, Servaas; van Erp, Titus S; Kutzner, Carsten; Ceulemans, Arnout; de Groot, Bert L
2012-07-26
A molecular dynamics algorithm in principal component space is presented. It is demonstrated that sampling can be improved without changing the ensemble by assigning masses to the principal components proportional to the inverse square root of the eigenvalues. The setup of the simulation requires no prior knowledge of the system; a short initial MD simulation to extract the eigenvectors and eigenvalues suffices. Independent measures indicated a 6-7 times faster sampling compared to a regular molecular dynamics simulation.
ERIC Educational Resources Information Center
Jurs, Stephen; And Others
The scree test and its linear regression technique are reviewed, and results of its use in factor analysis and Delphi data sets are described. The scree test was originally a visual approach for making judgments about eigenvalues, which considered the relationships of the eigenvalues to one another as well as their actual values. The graph that is…
Spectral analysis for weighted tree-like fractals
NASA Astrophysics Data System (ADS)
Dai, Meifeng; Chen, Yufei; Wang, Xiaoqian; Sun, Yu; Su, Weiyi
2018-02-01
Much information about the structural properties and dynamical aspects of a network is measured by the eigenvalues of its normalized Laplacian matrix. In this paper, we aim to present a study on the spectra of the normalized Laplacian of weighted tree-like fractals. We analytically obtain the relationship between the eigenvalues and their multiplicities for two successive generations. As an example of application of these results, we then derive closed-form expressions for their multiplicative Kirchhoff index and Kemeny's constant.
Attractors in complex networks
NASA Astrophysics Data System (ADS)
Rodrigues, Alexandre A. P.
2017-10-01
In the framework of the generalized Lotka-Volterra model, solutions representing multispecies sequential competition can be predictable with high probability. In this paper, we show that it occurs because the corresponding "heteroclinic channel" forms part of an attractor. We prove that, generically, in an attracting heteroclinic network involving a finite number of hyperbolic and non-resonant saddle-equilibria whose linearization has only real eigenvalues, the connections corresponding to the most positive expanding eigenvalues form part of an attractor (observable in numerical simulations).
Attractors in complex networks.
Rodrigues, Alexandre A P
2017-10-01
In the framework of the generalized Lotka-Volterra model, solutions representing multispecies sequential competition can be predictable with high probability. In this paper, we show that it occurs because the corresponding "heteroclinic channel" forms part of an attractor. We prove that, generically, in an attracting heteroclinic network involving a finite number of hyperbolic and non-resonant saddle-equilibria whose linearization has only real eigenvalues, the connections corresponding to the most positive expanding eigenvalues form part of an attractor (observable in numerical simulations).
Comparing the structure of an emerging market with a mature one under global perturbation
NASA Astrophysics Data System (ADS)
Namaki, A.; Jafari, G. R.; Raei, R.
2011-09-01
In this paper we investigate the Tehran stock exchange (TSE) and Dow Jones Industrial Average (DJIA) in terms of perturbed correlation matrices. To perturb a stock market, there are two methods, namely local and global perturbation. In the local method, we replace a correlation coefficient of the cross-correlation matrix with one calculated from two Gaussian-distributed time series, whereas in the global method, we reconstruct the correlation matrix after replacing the original return series with Gaussian-distributed time series. The local perturbation is just a technical study. We analyze these markets through two statistical approaches, random matrix theory (RMT) and the correlation coefficient distribution. By using RMT, we find that the largest eigenvalue is an influence that is common to all stocks and this eigenvalue has a peak during financial shocks. We find there are a few correlated stocks that make the essential robustness of the stock market but we see that by replacing these return time series with Gaussian-distributed time series, the mean values of correlation coefficients, the largest eigenvalues of the stock markets and the fraction of eigenvalues that deviate from the RMT prediction fall sharply in both markets. By comparing these two markets, we can see that the DJIA is more sensitive to global perturbations. These findings are crucial for risk management and portfolio selection.
Generalized Eigenvalues for pairs on heritian matrices
NASA Technical Reports Server (NTRS)
Rublein, George
1988-01-01
A study was made of certain special cases of a generalized eigenvalue problem. Let A and B be nxn matrics. One may construct a certain polynomial, P(A,B, lambda) which specializes to the characteristic polynomial of B when A equals I. In particular, when B is hermitian, that characteristic polynomial, P(I,B, lambda) has real roots, and one can ask: are the roots of P(A,B, lambda) real when B is hermitian. We consider the case where A is positive definite and show that when N equals 3, the roots are indeed real. The basic tools needed in the proof are Shur's theorem on majorization for eigenvalues of hermitian matrices and the interlacing theorem for the eigenvalues of a positive definite hermitian matrix and one of its principal (n-1)x(n-1) minors. The method of proof first reduces the general problem to one where the diagonal of B has a certain structure: either diag (B) = diag (1,1,1) or diag (1,1,-1), or else the 2 x 2 principal minors of B are all 1. According as B has one of these three structures, we use an appropriate method to replace A by a positive diagonal matrix. Since it can be easily verified that P(D,B, lambda) has real roots, the result follows. For other configurations of B, a scaling and a continuity argument are used to prove the result in general.
Possibility of modifying the growth trajectory in Raeini Cashmere goat.
Ghiasi, Heydar; Mokhtari, M S
2018-03-27
The objective of this study was to investigate the possibility of modifying the growth trajectory in Raeini Cashmere goat breed. In total, 13,193 records on live body weight collected from 4788 Raeini Cashmere goats were used. According to Akanke's information criterion (AIC), the sing-trait random regression model included fourth-order Legendre polynomial for direct and maternal genetic effect; maternal and individual permanent environmental effect was the best model for estimating (co)variance components. The matrices of eigenvectors for (co)variances between random regression coefficients of direct additive genetic were used to calculate eigenfunctions, and different eigenvector indices were also constructed. The obtained results showed that the first eigenvalue explained 79.90% of total genetic variance. Therefore, changing the body weights applying the first eigenfunction will be obtained rapidly. Selection based on the first eigenvector will cause favorable positive genetic gains for all body weight considered from birth to 12 months of age. For modifying the growth trajectory in Raeini Cashmere goat, the selection should be based on the second eigenfunction. The second eigenvalue accounted for 14.41% of total genetic variance for body weights that is low in comparison with genetic variance explained by the first eigenvalue. The complex patterns of genetic change in growth trajectory observed under the third and fourth eigenfunction and low amount of genetic variance explained by the third and fourth eigenvalues.
Energy levels of one-dimensional systems satisfying the minimal length uncertainty relation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernardo, Reginald Christian S., E-mail: rcbernardo@nip.upd.edu.ph; Esguerra, Jose Perico H., E-mail: jesguerra@nip.upd.edu.ph
2016-10-15
The standard approach to calculating the energy levels for quantum systems satisfying the minimal length uncertainty relation is to solve an eigenvalue problem involving a fourth- or higher-order differential equation in quasiposition space. It is shown that the problem can be reformulated so that the energy levels of these systems can be obtained by solving only a second-order quasiposition eigenvalue equation. Through this formulation the energy levels are calculated for the following potentials: particle in a box, harmonic oscillator, Pöschl–Teller well, Gaussian well, and double-Gaussian well. For the particle in a box, the second-order quasiposition eigenvalue equation is a second-ordermore » differential equation with constant coefficients. For the harmonic oscillator, Pöschl–Teller well, Gaussian well, and double-Gaussian well, a method that involves using Wronskians has been used to solve the second-order quasiposition eigenvalue equation. It is observed for all of these quantum systems that the introduction of a nonzero minimal length uncertainty induces a positive shift in the energy levels. It is shown that the calculation of energy levels in systems satisfying the minimal length uncertainty relation is not limited to a small number of problems like particle in a box and the harmonic oscillator but can be extended to a wider class of problems involving potentials such as the Pöschl–Teller and Gaussian wells.« less
NASA Astrophysics Data System (ADS)
Fyodorov, Yan V.
2018-06-01
We suggest a method of studying the joint probability density (JPD) of an eigenvalue and the associated `non-orthogonality overlap factor' (also known as the `eigenvalue condition number') of the left and right eigenvectors for non-selfadjoint Gaussian random matrices of size {N× N} . First we derive the general finite N expression for the JPD of a real eigenvalue {λ} and the associated non-orthogonality factor in the real Ginibre ensemble, and then analyze its `bulk' and `edge' scaling limits. The ensuing distribution is maximally heavy-tailed, so that all integer moments beyond normalization are divergent. A similar calculation for a complex eigenvalue z and the associated non-orthogonality factor in the complex Ginibre ensemble is presented as well and yields a distribution with the finite first moment. Its `bulk' scaling limit yields a distribution whose first moment reproduces the well-known result of Chalker and Mehlig (Phys Rev Lett 81(16):3367-3370, 1998), and we provide the `edge' scaling distribution for this case as well. Our method involves evaluating the ensemble average of products and ratios of integer and half-integer powers of characteristic polynomials for Ginibre matrices, which we perform in the framework of a supersymmetry approach. Our paper complements recent studies by Bourgade and Dubach (The distribution of overlaps between eigenvectors of Ginibre matrices, 2018. arXiv:1801.01219).
Group identification in Indonesian stock market
NASA Astrophysics Data System (ADS)
Nurriyadi Suparno, Ervano; Jo, Sung Kyun; Lim, Kyuseong; Purqon, Acep; Kim, Soo Yong
2016-08-01
The characteristic of Indonesian stock market is interesting especially because it represents developing countries. We investigate the dynamics and structures by using Random Matrix Theory (RMT). Here, we analyze the cross-correlation of the fluctuations of the daily closing price of stocks from the Indonesian Stock Exchange (IDX) between January 1, 2007, and October 28, 2014. The eigenvalue distribution of the correlation matrix consists of noise which is filtered out using the random matrix as a control. The bulk of the eigenvalue distribution conforms to the random matrix, allowing the separation of random noise from original data which is the deviating eigenvalues. From the deviating eigenvalues and the corresponding eigenvectors, we identify the intrinsic normal modes of the system and interpret their meaning based on qualitative and quantitative approach. The results show that the largest eigenvector represents the market-wide effect which has a predominantly common influence toward all stocks. The other eigenvectors represent highly correlated groups within the system. Furthermore, identification of the largest components of the eigenvectors shows the sector or background of the correlated groups. Interestingly, the result shows that there are mainly two clusters within IDX, natural and non-natural resource companies. We then decompose the correlation matrix to investigate the contribution of the correlated groups to the total correlation, and we find that IDX is still driven mainly by the market-wide effect.
FastSKAT: Sequence kernel association tests for very large sets of markers.
Lumley, Thomas; Brody, Jennifer; Peloso, Gina; Morrison, Alanna; Rice, Kenneth
2018-06-22
The sequence kernel association test (SKAT) is widely used to test for associations between a phenotype and a set of genetic variants that are usually rare. Evaluating tail probabilities or quantiles of the null distribution for SKAT requires computing the eigenvalues of a matrix related to the genotype covariance between markers. Extracting the full set of eigenvalues of this matrix (an n×n matrix, for n subjects) has computational complexity proportional to n 3 . As SKAT is often used when n>104, this step becomes a major bottleneck in its use in practice. We therefore propose fastSKAT, a new computationally inexpensive but accurate approximations to the tail probabilities, in which the k largest eigenvalues of a weighted genotype covariance matrix or the largest singular values of a weighted genotype matrix are extracted, and a single term based on the Satterthwaite approximation is used for the remaining eigenvalues. While the method is not particularly sensitive to the choice of k, we also describe how to choose its value, and show how fastSKAT can automatically alert users to the rare cases where the choice may affect results. As well as providing faster implementation of SKAT, the new method also enables entirely new applications of SKAT that were not possible before; we give examples grouping variants by topologically associating domains, and comparing chromosome-wide association by class of histone marker. © 2018 WILEY PERIODICALS, INC.
Sparse Regression as a Sparse Eigenvalue Problem
NASA Technical Reports Server (NTRS)
Moghaddam, Baback; Gruber, Amit; Weiss, Yair; Avidan, Shai
2008-01-01
We extend the l0-norm "subspectral" algorithms for sparse-LDA [5] and sparse-PCA [6] to general quadratic costs such as MSE in linear (kernel) regression. The resulting "Sparse Least Squares" (SLS) problem is also NP-hard, by way of its equivalence to a rank-1 sparse eigenvalue problem (e.g., binary sparse-LDA [7]). Specifically, for a general quadratic cost we use a highly-efficient technique for direct eigenvalue computation using partitioned matrix inverses which leads to dramatic x103 speed-ups over standard eigenvalue decomposition. This increased efficiency mitigates the O(n4) scaling behaviour that up to now has limited the previous algorithms' utility for high-dimensional learning problems. Moreover, the new computation prioritizes the role of the less-myopic backward elimination stage which becomes more efficient than forward selection. Similarly, branch-and-bound search for Exact Sparse Least Squares (ESLS) also benefits from partitioned matrix inverse techniques. Our Greedy Sparse Least Squares (GSLS) generalizes Natarajan's algorithm [9] also known as Order-Recursive Matching Pursuit (ORMP). Specifically, the forward half of GSLS is exactly equivalent to ORMP but more efficient. By including the backward pass, which only doubles the computation, we can achieve lower MSE than ORMP. Experimental comparisons to the state-of-the-art LARS algorithm [3] show forward-GSLS is faster, more accurate and more flexible in terms of choice of regularization
NASA Astrophysics Data System (ADS)
Castro, María Eugenia; Díaz, Javier; Muñoz-Caro, Camelia; Niño, Alfonso
2011-09-01
We present a system of classes, SHMatrix, to deal in a unified way with the computation of eigenvalues and eigenvectors in real symmetric and Hermitian matrices. Thus, two descendant classes, one for the real symmetric and other for the Hermitian cases, override the abstract methods defined in a base class. The use of the inheritance relationship and polymorphism allows handling objects of any descendant class using a single reference of the base class. The system of classes is intended to be the core element of more sophisticated methods to deal with large eigenvalue problems, as those arising in the variational treatment of realistic quantum mechanical problems. The present system of classes allows computing a subset of all the possible eigenvalues and, optionally, the corresponding eigenvectors. Comparison with well established solutions for analogous eigenvalue problems, as those included in LAPACK, shows that the present solution is competitive against them. Program summaryProgram title: SHMatrix Catalogue identifier: AEHZ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHZ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 2616 No. of bytes in distributed program, including test data, etc.: 127 312 Distribution format: tar.gz Programming language: Standard ANSI C++. Computer: PCs and workstations. Operating system: Linux, Windows. Classification: 4.8. Nature of problem: The treatment of problems involving eigensystems is a central topic in the quantum mechanical field. Here, the use of the variational approach leads to the computation of eigenvalues and eigenvectors of real symmetric and Hermitian Hamiltonian matrices. Realistic models with several degrees of freedom leads to large (sometimes very large) matrices. Different techniques, such as divide and conquer, can be used to factorize the matrices in order to apply a parallel computing approach. However, it is still interesting to have a core procedure able to tackle the computation of eigenvalues and eigenvectors once the matrix has been factorized to pieces of enough small size. Several available software packages, such as LAPACK, tackled this problem under the traditional imperative programming paradigm. In order to ease the modelling of complex quantum mechanical models it could be interesting to apply an object-oriented approach to the treatment of the eigenproblem. This approach offers the advantage of a single, uniform treatment for the real symmetric and Hermitian cases. Solution method: To reach the above goals, we have developed a system of classes: SHMatrix. SHMatrix is composed by an abstract base class and two descendant classes, one for real symmetric matrices and the other for the Hermitian case. The object-oriented characteristics of inheritance and polymorphism allows handling both cases using a single reference of the base class. The basic computing strategy applied in SHMatrix allows computing subsets of eigenvalues and (optionally) eigenvectors. The tests performed show that SHMatrix is competitive, and more efficient for large matrices, than the equivalent routines of the LAPACK package. Running time: The examples included in the distribution take only a couple of seconds to run.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levashov, V. A.
2016-03-07
It is possible to associate with every atom or molecule in a liquid its own atomic stress tensor. These atomic stress tensors can be used to describe liquids’ structures and to investigate the connection between structural and dynamic properties. In particular, atomic stresses allow to address atomic scale correlations relevant to the Green-Kubo expression for viscosity. Previously correlations between the atomic stresses of different atoms were studied using the Cartesian representation of the stress tensors or the representation based on spherical harmonics. In this paper we address structural correlations in a 3D model binary liquid using the eigenvalues and eigenvectorsmore » of the atomic stress tensors. This approach allows to interpret correlations relevant to the Green-Kubo expression for viscosity in a simple geometric way. On decrease of temperature the changes in the relevant stress correlation function between different atoms are significantly more pronounced than the changes in the pair density function. We demonstrate that this behaviour originates from the orientational correlations between the eigenvectors of the atomic stress tensors. We also found correlations between the eigenvalues of the same atomic stress tensor. For the studied system, with purely repulsive interactions between the particles, the eigenvalues of every atomic stress tensor are positive and they can be ordered: λ{sub 1} ≥ λ{sub 2} ≥ λ{sub 3} ≥ 0. We found that, for the particles of a given type, the probability distributions of the ratios (λ{sub 2}/λ{sub 1}) and (λ{sub 3}/λ{sub 2}) are essentially identical to each other in the liquids state. We also found that λ{sub 2} tends to be equal to the geometric average of λ{sub 1} and λ{sub 3}. In our view, correlations between the eigenvalues may represent “the Poisson ratio effect” at the atomic scale.« less
Levashov, V A
2016-03-07
It is possible to associate with every atom or molecule in a liquid its own atomic stress tensor. These atomic stress tensors can be used to describe liquids' structures and to investigate the connection between structural and dynamic properties. In particular, atomic stresses allow to address atomic scale correlations relevant to the Green-Kubo expression for viscosity. Previously correlations between the atomic stresses of different atoms were studied using the Cartesian representation of the stress tensors or the representation based on spherical harmonics. In this paper we address structural correlations in a 3D model binary liquid using the eigenvalues and eigenvectors of the atomic stress tensors. This approach allows to interpret correlations relevant to the Green-Kubo expression for viscosity in a simple geometric way. On decrease of temperature the changes in the relevant stress correlation function between different atoms are significantly more pronounced than the changes in the pair density function. We demonstrate that this behaviour originates from the orientational correlations between the eigenvectors of the atomic stress tensors. We also found correlations between the eigenvalues of the same atomic stress tensor. For the studied system, with purely repulsive interactions between the particles, the eigenvalues of every atomic stress tensor are positive and they can be ordered: λ1 ≥ λ2 ≥ λ3 ≥ 0. We found that, for the particles of a given type, the probability distributions of the ratios (λ2/λ1) and (λ3/λ2) are essentially identical to each other in the liquids state. We also found that λ2 tends to be equal to the geometric average of λ1 and λ3. In our view, correlations between the eigenvalues may represent "the Poisson ratio effect" at the atomic scale.
Analysis of spontaneous oscillations for a three-state power-stroke model.
Washio, Takumi; Hisada, Toshiaki; Shintani, Seine A; Higuchi, Hideo
2017-02-01
Our study considers the mechanism of the spontaneous oscillations of molecular motors that are driven by the power stroke principle by applying linear stability analysis around the stationary solution. By representing the coupling equation of microscopic molecular motor dynamics and mesoscopic sarcomeric dynamics by a rank-1 updated matrix system, we derived the analytical representations of the eigenmodes of the Jacobian matrix that cause the oscillation. Based on these analytical representations, we successfully derived the essential conditions for the oscillation in terms of the rate constants of the power stroke and the reversal stroke transitions of the molecular motor. Unlike the two-state model, in which the dependence of the detachment rates on the motor coordinates or the applied forces on the motors plays a key role for the oscillation, our three-state power stroke model demonstrates that the dependence of the rate constants of the power and reversal strokes on the strains in the elastic elements in the motor molecules plays a key role, where these rate constants are rationally determined from the free energy available for the power stroke, the stiffness of the elastic element in the molecular motor, and the working stroke size. By applying the experimentally confirmed values to the free energy, the stiffness, and the working stroke size, our numerical model reproduces well the experimentally observed oscillatory behavior. Furthermore, our analysis shows that two eigenmodes with real positive eigenvalues characterize the oscillatory behavior, where the eigenmode with the larger eigenvalue indicates the transient of the system of the quick sarcomeric lengthening induced by the collective reversal strokes, and the smaller eigenvalue correlates with the speed of sarcomeric shortening, which is much slower than lengthening. Applying the perturbation analyses with primal physical parameters, we find that these two real eigenvalues occur on two branches derived from a merge point of a pair of complex-conjugate eigenvalues generated by Hopf bifurcation.
Dynamic Eigenvalue Problem of Concrete Slab Road Surface
NASA Astrophysics Data System (ADS)
Pawlak, Urszula; Szczecina, Michał
2017-10-01
The paper presents an analysis of the dynamic eigenvalue problem of concrete slab road surface. A sample concrete slab was modelled using Autodesk Robot Structural Analysis software and calculated with Finite Element Method. The slab was set on a one-parameter elastic subsoil, for which the modulus of elasticity was separately calculated. The eigen frequencies and eigenvectors (as maximal vertical nodal displacements) were presented. On the basis of the results of calculations, some basic recommendations for designers of concrete road surfaces were offered.
The algebraic theory of latent projectors in lambda matrices
NASA Technical Reports Server (NTRS)
Denman, E. D.; Leyva-Ramos, J.; Jeon, G. J.
1981-01-01
Multivariable systems such as a finite-element model of vibrating structures, control systems, and large-scale systems are often formulated in terms of differential equations which give rise to lambda matrices. The present investigation is concerned with the formulation of the algebraic theory of lambda matrices and the relationship of latent roots, latent vectors, and latent projectors to the eigenvalues, eigenvectors, and eigenprojectors of the companion form. The chain rule for latent projectors and eigenprojectors for the repeated latent root or eigenvalues is given.
Eigenvalue asymptotics for the damped wave equation on metric graphs
NASA Astrophysics Data System (ADS)
Freitas, Pedro; Lipovský, Jiří
2017-09-01
We consider the linear damped wave equation on finite metric graphs and analyse its spectral properties with an emphasis on the asymptotic behaviour of eigenvalues. In the case of equilateral graphs and standard coupling conditions we show that there is only a finite number of high-frequency abscissas, whose location is solely determined by the averages of the damping terms on each edge. We further describe some of the possible behaviour when the edge lengths are no longer necessarily equal but remain commensurate.
Wigner surmises and the two-dimensional homogeneous Poisson point process.
Sakhr, Jamal; Nieminen, John M
2006-04-01
We derive a set of identities that relate the higher-order interpoint spacing statistics of the two-dimensional homogeneous Poisson point process to the Wigner surmises for the higher-order spacing distributions of eigenvalues from the three classical random matrix ensembles. We also report a remarkable identity that equates the second-nearest-neighbor spacing statistics of the points of the Poisson process and the nearest-neighbor spacing statistics of complex eigenvalues from Ginibre's ensemble of 2 x 2 complex non-Hermitian random matrices.
Non-isospectral Hamiltonians, intertwining operators and hidden hermiticity
NASA Astrophysics Data System (ADS)
Bagarello, F.
2011-12-01
We have recently proposed a strategy to produce, starting from a given Hamiltonian h and a certain operator x for which [h,xx]=0 and xx is invertible, a second Hamiltonian h with the same eigenvalues as h and whose eigenvectors are related to those of h by x. Here we extend this procedure to build up a second Hamiltonian, whose eigenvalues are different from those of h, and whose eigenvectors are still related as before. This new procedure is also extended to crypto-hermitian Hamiltonians.
On complex matrices with simple spectrum that are unitarily similar to real matrices
NASA Astrophysics Data System (ADS)
Ikramov, Khakim D.
2011-04-01
Suppose that one should verify whether a given complex n × n matrix can be converted into a real matrix by a unitary similarity transformation. Sufficient conditions for this property to hold were found in an earlier publication of this author. These conditions are relaxed in the following way: as before, the spectrum is required to be simple, but pairs of complex conjugate eigenvalues λ ,bar λ are now allowed. However, the eigenvectors corresponding to such eigenvalues must not be orthogonal.
Density-matrix-based algorithm for solving eigenvalue problems
NASA Astrophysics Data System (ADS)
Polizzi, Eric
2009-03-01
A fast and stable numerical algorithm for solving the symmetric eigenvalue problem is presented. The technique deviates fundamentally from the traditional Krylov subspace iteration based techniques (Arnoldi and Lanczos algorithms) or other Davidson-Jacobi techniques and takes its inspiration from the contour integration and density-matrix representation in quantum mechanics. It will be shown that this algorithm—named FEAST—exhibits high efficiency, robustness, accuracy, and scalability on parallel architectures. Examples from electronic structure calculations of carbon nanotubes are presented, and numerical performances and capabilities are discussed.
Hydrodynamics of the Dirac spectrum
Liu, Yizhuang; Warchoł, Piotr; Zahed, Ismail
2015-12-15
We discuss a hydrodynamical description of the eigenvalues of the Dirac spectrum in even dimensions in the vacuum and in the large N (volume) limit. The linearized hydrodynamics supports sound waves. The hydrodynamical relaxation of the eigenvalues is captured by a hydrodynamical (tunneling) minimum configuration which follows from a pertinent form of Euler equation. As a result, the relaxation from a phase of unbroken chiral symmetry to a phase of broken chiral symmetry occurs over a time set by the speed of sound.
1987-01-01
X, (0) in the open left half complex plane . (S) Eq. (1) has an equilibrium zo(p) when u = 0. Furthermore, the linearization of (1) near z0, p = 0...possesses a simple eigenvalue X(p) with XI(O) = 0, X; (0) 74 0, with the remaining eigenvalues X(0), . . . , X. (0) in the open left half complex plane ...Conference, Lausanne, June 1984. (11) "Chaos In dynamical systems by the Poincare -Melnikov-Arnold method" Proc. ARO Workshop, March 1984. %I 2.I JUAN C
1987-06-01
Vibration of an Elastic Bar We are interested in studying the small, longitudinal vibra- tions of a longitudinally loaded, elastically supported, elastic...u 2 + + 2u O(( m,Q Uk .(J- MO In the study of eigenvalue problems, central use will be made of Rellich’s theorem (cf. Agmon [19651), which states...H , where a > 0. Sufficient conditions for (4.2) - (4.4) to hold were given in Section 3; cf. (3.15) -(3.17). For the study of (4.1) it is useful to
Implicit treatment of diffusion terms in lower-upper algorithms
NASA Technical Reports Server (NTRS)
Shih, T. I.-P.; Steinthorsson, E.; Chyu, W. J.
1993-01-01
A method is presented which allows diffusion terms to be treated implicitly in the lower-upper (LU) algorithm (which is a commonly used method for solving 'compressible' Euler and Navier-Stokes equations) so that the algorithm's good stability properties will not be impaired. The new method generalizes the concept of LU factorization from that associated with the sign of eigenvalues to that associated with backward- and forward-difference operators without regard to eigenvalues. The method is verified in a turbulent boundary layer study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hintermueller, M., E-mail: hint@math.hu-berlin.de; Kao, C.-Y., E-mail: Ckao@claremontmckenna.edu; Laurain, A., E-mail: laurain@math.hu-berlin.de
2012-02-15
This paper focuses on the study of a linear eigenvalue problem with indefinite weight and Robin type boundary conditions. We investigate the minimization of the positive principal eigenvalue under the constraint that the absolute value of the weight is bounded and the total weight is a fixed negative constant. Biologically, this minimization problem is motivated by the question of determining the optimal spatial arrangement of favorable and unfavorable regions for a species to survive. For rectangular domains with Neumann boundary condition, it is known that there exists a threshold value such that if the total weight is below this thresholdmore » value then the optimal favorable region is like a section of a disk at one of the four corners; otherwise, the optimal favorable region is a strip attached to the shorter side of the rectangle. Here, we investigate the same problem with mixed Robin-Neumann type boundary conditions and study how this boundary condition affects the optimal spatial arrangement.« less
Fixed points, stability, and intermittency in a shell model for advection of passive scalars
Kockelkoren; Jensen
2000-08-01
We investigate the fixed points of a shell model for the turbulent advection of passive scalars introduced in Jensen, Paladin, and Vulpiani [Phys. Rev. A 45, 7214 (1992)]. The passive scalar field is driven by the velocity field of the popular Gledzer-Ohkitani-Yamada (GOY) shell model. The scaling behavior of the static solutions is found to differ significantly from Obukhov-Corrsin scaling straight theta(n) approximately k(-1/3)(n), which is only recovered in the limit where the diffusivity vanishes, D-->0. From the eigenvalue spectrum we show that any perturbation in the scalar will always damp out, i.e., the eigenvalues of the scalar are negative and are decoupled from the eigenvalues of the velocity. We estimate Lyapunov exponents and the intermittency parameters using a definition proposed by Benzi, Paladin, Parisi, and Vulpiani [J. Phys. A 18, 2157 (1985)]. The full model is found to be as chaotic as the GOY model, measured by the maximal Lyapunov exponent, but is more intermittent.
Statistical properties of color-signal spaces.
Lenz, Reiner; Bui, Thanh Hai
2005-05-01
In applications of principal component analysis (PCA) it has often been observed that the eigenvector with the largest eigenvalue has only nonnegative entries when the vectors of the underlying stochastic process have only nonnegative values. This has been used to show that the coordinate vectors in PCA are all located in a cone. We prove that the nonnegativity of the first eigenvector follows from the Perron-Frobenius (and Krein-Rutman theory). Experiments show also that for stochastic processes with nonnegative signals the mean vector is often very similar to the first eigenvector. This is not true in general, but we first give a heuristical explanation why we can expect such a similarity. We then derive a connection between the dominance of the first eigenvalue and the similarity between the mean and the first eigenvector and show how to check the relative size of the first eigenvalue without actually computing it. In the last part of the paper we discuss the implication of theoretical results for multispectral color processing.
Statistical properties of color-signal spaces
NASA Astrophysics Data System (ADS)
Lenz, Reiner; Hai Bui, Thanh
2005-05-01
In applications of principal component analysis (PCA) it has often been observed that the eigenvector with the largest eigenvalue has only nonnegative entries when the vectors of the underlying stochastic process have only nonnegative values. This has been used to show that the coordinate vectors in PCA are all located in a cone. We prove that the nonnegativity of the first eigenvector follows from the Perron-Frobenius (and Krein-Rutman theory). Experiments show also that for stochastic processes with nonnegative signals the mean vector is often very similar to the first eigenvector. This is not true in general, but we first give a heuristical explanation why we can expect such a similarity. We then derive a connection between the dominance of the first eigenvalue and the similarity between the mean and the first eigenvector and show how to check the relative size of the first eigenvalue without actually computing it. In the last part of the paper we discuss the implication of theoretical results for multispectral color processing.
Monte Carlo criticality source convergence in a loosely coupled fuel storage system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blomquist, R. N.; Gelbard, E. M.
2003-06-10
The fission source convergence of a very loosely coupled array of 36 fuel subassemblies with slightly non-symmetric reflection is studied. The fission source converges very slowly from a uniform guess to the fundamental mode in which about 40% of the fissions occur in one corner subassembly. Eigenvalue and fission source estimates are analyzed using a set of statistical tests similar to those used in MCNP, including the ''drift-in-mean'' test and a new drift-in-mean test using a linear fit to the cumulative estimate drift, the Shapiro-Wilk test for normality, the relative error test, and the ''1/N'' test. The normality test doesmore » not detect a drifting eigenvalue or fission source. Applied to eigenvalue estimates, the other tests generally fail to detect an unconverged solution, but they are sometimes effective when evaluating fission source distributions. None of the test provides completely reliable indication of convergence, although they can detect nonconvergence.« less
NASA Technical Reports Server (NTRS)
Berk, A.; Temkin, A.
1985-01-01
A sum rule is derived for the auxiliary eigenvalues of an equation whose eigenspectrum pertains to projection operators which describe electron scattering from multielectron atoms and ions. The sum rule's right-hand side depends on an integral involving the target system eigenfunctions. The sum rule is checked for several approximations of the two-electron target. It is shown that target functions which have a unit eigenvalue in their auxiliary eigenspectrum do not give rise to well-defined projection operators except through a limiting process. For Hylleraas target approximations, the auxiliary equations are shown to contain an infinite spectrum. However, using a Rayleigh-Ritz variational principle, it is shown that a comparatively simple aproximation can exhaust the sum rule to better than five significant figures. The auxiliary Hylleraas equation is greatly simplified by conversion to a square root equation containing the same eigenfunction spectrum and from which the required eigenvalues are trivially recovered by squaring.
Large-deviation theory for diluted Wishart random matrices
NASA Astrophysics Data System (ADS)
Castillo, Isaac Pérez; Metz, Fernando L.
2018-03-01
Wishart random matrices with a sparse or diluted structure are ubiquitous in the processing of large datasets, with applications in physics, biology, and economy. In this work, we develop a theory for the eigenvalue fluctuations of diluted Wishart random matrices based on the replica approach of disordered systems. We derive an analytical expression for the cumulant generating function of the number of eigenvalues IN(x ) smaller than x ∈R+ , from which all cumulants of IN(x ) and the rate function Ψx(k ) controlling its large-deviation probability Prob[IN(x ) =k N ] ≍e-N Ψx(k ) follow. Explicit results for the mean value and the variance of IN(x ) , its rate function, and its third cumulant are discussed and thoroughly compared to numerical diagonalization, showing very good agreement. The present work establishes the theoretical framework put forward in a recent letter [Phys. Rev. Lett. 117, 104101 (2016), 10.1103/PhysRevLett.117.104101] as an exact and compelling approach to deal with eigenvalue fluctuations of sparse random matrices.
NASA Astrophysics Data System (ADS)
Rewieński, M.; Lamecki, A.; Mrozowski, M.
2013-09-01
This paper proposes a technique, based on the Inexact Shift-Invert Lanczos (ISIL) method with Inexact Jacobi Orthogonal Component Correction (IJOCC) refinement, and a preconditioned conjugate-gradient (PCG) linear solver with multilevel preconditioner, for finding several eigenvalues for generalized symmetric eigenproblems. Several eigenvalues are found by constructing (with the ISIL process) an extended projection basis. Presented results of numerical experiments confirm the technique can be effectively applied to challenging, large-scale problems characterized by very dense spectra, such as resonant cavities with spatial dimensions which are large with respect to wavelengths of the resonating electromagnetic fields. It is also shown that the proposed scheme based on inexact linear solves delivers superior performance, as compared to methods which rely on exact linear solves, indicating tremendous potential of the 'inexact solve' concept. Finally, the scheme which generates an extended projection basis is found to provide a cost-efficient alternative to classical deflation schemes when several eigenvalues are computed.
World currency exchange rate cross-correlations
NASA Astrophysics Data System (ADS)
Droå¼dż, S.; Górski, A. Z.; Kwapień, J.
2007-08-01
World currency network constitutes one of the most complex structures that is associated with the contemporary civilization. On a way towards quantifying its characteristics we study the cross correlations in changes of the daily foreign exchange rates within the basket of 60 currencies in the period December 1998 May 2005. Such a dynamics turns out to predominantly involve one outstanding eigenvalue of the correlation matrix. The magnitude of this eigenvalue depends however crucially on which currency is used as a base currency for the remaining ones. Most prominent it looks from the perspective of a peripheral currency. This largest eigenvalue is seen to systematically decrease and thus the structure of correlations becomes more heterogeneous, when more significant currencies are used as reference. An extreme case in this later respect is the USD in the period considered. Besides providing further insight into subtle nature of complexity, these observations point to a formal procedure that in general can be used for practical purposes of measuring the relative currencies significance on various time horizons.
McCollom, Brittany A; Collis, Jon M
2014-09-01
A normal mode solution to the ocean acoustic problem of the Pekeris waveguide with an elastic bottom using a Green's function formulation for a compressional wave point source is considered. Analytic solutions to these types of waveguide propagation problems are strongly dependent on the eigenvalues of the problem; these eigenvalues represent horizontal wavenumbers, corresponding to propagating modes of energy. The eigenvalues arise as singularities in the inverse Hankel transform integral and are specified by roots to a characteristic equation. These roots manifest themselves as poles in the inverse transform integral and can be both subtle and difficult to determine. Following methods previously developed [S. Ivansson et al., J. Sound Vib. 161 (1993)], a root finding routine has been implemented using the argument principle. Using the roots to the characteristic equation in the Green's function formulation, full-field solutions are calculated for scenarios where an acoustic source lies in either the water column or elastic half space. Solutions are benchmarked against laboratory data and existing numerical solutions.
NASA Astrophysics Data System (ADS)
Ahmadov, A. I.; Naeem, Maria; Qocayeva, M. V.; Tarverdiyeva, V. A.
2018-02-01
In this paper, the bound state solution of the modified radial Schrödinger equation is obtained for the Manning-Rosen plus Hulthén potential by implementing the novel improved scheme to surmount the centrifugal term. The energy eigenvalues and corresponding radial wave functions are defined for any l ≠ 0 angular momentum case via the Nikiforov-Uvarov (NU) and supersymmetric quantum mechanics (SUSYQM) methods. By using these two different methods, equivalent expressions are obtained for the energy eigenvalues, and the expression of radial wave functions transformations to each other is demonstrated. The energy levels are worked out and the corresponding normalized eigenfunctions are represented in terms of the Jacobi polynomials for arbitrary l states. A closed form of the normalization constant of the wave functions is also found. It is shown that, the energy eigenvalues and eigenfunctions are sensitive to nr radial and l orbital quantum numbers.
Applications of elliptic operator theory to the isotropic interior transmission eigenvalue problem
NASA Astrophysics Data System (ADS)
Lakshtanov, E.; Vainberg, B.
2013-10-01
The paper concerns the isotropic interior transmission eigenvalue (ITE) problem. This problem is not elliptic, but we show that, using the Dirichlet-to-Neumann map, it can be reduced to an elliptic one. This leads to the discreteness of the spectrum as well as to certain results on a possible location of the transmission eigenvalues. If the index of refraction \\sqrt{n(x)} is real, then we obtain a result on the existence of infinitely many positive ITEs and the Weyl-type lower bound on its counting function. All the results are obtained under the assumption that n(x) - 1 does not vanish at the boundary of the obstacle or it vanishes identically, but its normal derivative does not vanish at the boundary. We consider the classical transmission problem as well as the case when the inhomogeneous medium contains an obstacle. Some results on the discreteness and localization of the spectrum are obtained for complex valued n(x).
NASA Astrophysics Data System (ADS)
Yang, Jianke; Nixon, Sean
2016-11-01
Stability of soliton families in one-dimensional nonlinear Schrödinger equations with non-parity-time (PT)-symmetric complex potentials is investigated numerically. It is shown that these solitons can be linearly stable in a wide range of parameter values both below and above phase transition. In addition, a pseudo-Hamiltonian-Hopf bifurcation is revealed, where pairs of purely-imaginary eigenvalues in the linear-stability spectra of solitons collide and bifurcate off the imaginary axis, creating oscillatory instability, which resembles Hamiltonian-Hopf bifurcations of solitons in Hamiltonian systems even though the present system is dissipative and non-Hamiltonian. The most important numerical finding is that, eigenvalues of linear-stability operators of these solitons appear in quartets (λ , - λ ,λ* , -λ*), similar to conservative systems and PT-symmetric systems. This quartet eigenvalue symmetry is very surprising for non- PT-symmetric systems, and it has far-reaching consequences on the stability behaviors of solitons.
Proposition for sensorless self-excitation by a piezoelectric device
NASA Astrophysics Data System (ADS)
Tanaka, Y.; Kokubun, Y.; Yabuno, H.
2018-04-01
In this paper, we propose a method to realize self-excitation in an oscillator actuated by a piezoelectric device without a sensor. In general, the positive feedback associated with the oscillator velocity causes the self-excitation. Instead of measuring the velocity with a sensor, we utilize the electro-mechanical coupling effect in the oscillator and piezoelectric device. We drive the piezoelectric device with a current proportional to the linear combination of the voltage across the terminals of the piezoelectric device and its differential voltage signal. Then, the oscillator with the piezoelectric device behaves like a third-order system, which has three eigenvalues. The self-excitation can be realized because appropriate feedback gains can set two of the eigenvalues to be conjugate complex roots with a positive real part and the other eigenvalue to be a negative real root. To confirm the validity of the proposed method, we experimentally demonstrated the sensorless self-excitation and, as an application example, carried out mass sensing in a sensorless self-excited macrocantilever.
NASA Astrophysics Data System (ADS)
Leibfried, D.; Wineland, D. J.
2018-03-01
Effective spin-spin interactions between ? qubits enable the determination of the eigenvalue of an arbitrary Pauli product of dimension N with a constant, small number of multi-qubit gates that is independent of N and encodes the eigenvalue in the measurement basis states of an extra ancilla qubit. Such interactions are available whenever qubits can be coupled to a shared harmonic oscillator, a situation that can be realized in many physical qubit implementations. For example, suitable interactions have already been realized for up to 14 qubits in ion traps. It should be possible to implement stabilizer codes for quantum error correction with a constant number of multi-qubit gates, in contrast to typical constructions with a number of two-qubit gates that increases as a function of N. The special case of finding the parity of N qubits only requires a small number of operations that is independent of N. This compares favorably to algorithms for computing the parity on conventional machines, which implies a genuine quantum advantage.
Volatility and correlation-based systemic risk measures in the US market
NASA Astrophysics Data System (ADS)
Civitarese, Jamil
2016-10-01
This paper deals with the problem of how to use simple systemic risk measures to assess portfolio risk characteristics. Using three simple examples taken from previous literature, one based on raw and partial correlations, another based on the eigenvalue decomposition of the covariance matrix and the last one based on an eigenvalue entropy, a Granger-causation analysis revealed some of them are not always a good measure of risk in the S&P 500 and in the VIX. The measures selected do not Granger-cause the VIX index in all windows selected; therefore, in the sense of risk as volatility, the indicators are not always suitable. Nevertheless, their results towards returns are similar to previous works that accept them. A deeper analysis has shown that any symmetric measure based on eigenvalue decomposition of correlation matrices, however, is not useful as a measure of "correlation" risk. The empirical counterpart analysis of this proposition stated that negative correlations are usually small and, therefore, do not heavily distort the behavior of the indicator.
NASA Astrophysics Data System (ADS)
Pomarède, Daniel; Hoffman, Yehuda; Courtois, Hélène M.; Tully, R. Brent
2017-08-01
The network of filaments with embedded clusters surrounding voids, which has been seen in maps derived from redshift surveys and reproduced in simulations, has been referred to as the cosmic web. A complementary description is provided by considering the shear in the velocity field of galaxies. The eigenvalues of the shear provide information regarding whether or not a region is collapsing in three dimensions, which is the condition for a knot, expanding in three dimensions, which is the condition for a void, or in the intermediate condition of a filament or sheet. The structures that are quantitatively defined by the eigenvalues can be approximated by iso-contours that provide a visual representation of the cosmic velocity (V) web. The current application is based on radial peculiar velocities from the Cosmicflows-2 collection of distances. The three-dimensional velocity field is constructed using the Wiener filter methodology in the linear approximation. Eigenvalues of the velocity shear are calculated at each point on a grid. Here, knots and filaments are visualized across a local domain of diameter ˜ 0.1c.
NASA Astrophysics Data System (ADS)
Sasaoka, Ryu; Azegami, Hideyuki; Murachi, Shunji; Kitoh, Junzoh; Ishida, Yoshito; Kawakami, Noriaki; Makino, Mitsunori; Matsuyama, Yukihiro
A hypothesis that idiopathic scoliosis is a buckling phenomenon of the fourth or sixth mode, which is the second or third lateral bending mode, induced by the growth of vertebral bodies was presented in a previous paper by the authors using numerical simulations with a finite-element model of the spine. This paper presents experimental proof of the buckling phenomenon using mechanical spine models constructed with the geometrical data of the finite-element model used in a previous work. Using three spine mechanical models with different materials at intervertebral joints, the change in the natural vibration eigenvalue of the second lateral bending mode with the growth of vertebral bodies was measured by experimental modal analysis. From the result, it was observed that natural vibration eigenvalue decreased with the growth of vertebral bodies. Since the increase in primary factor inducing the buckling phenomenon decreases natural vibration eigenvalue, the obtained result confirms the buckling hypothesis.
NASA Astrophysics Data System (ADS)
Liu, Tianyu; Du, Xining; Ji, Wei; Xu, X. George; Brown, Forrest B.
2014-06-01
For nuclear reactor analysis such as the neutron eigenvalue calculations, the time consuming Monte Carlo (MC) simulations can be accelerated by using graphics processing units (GPUs). However, traditional MC methods are often history-based, and their performance on GPUs is affected significantly by the thread divergence problem. In this paper we describe the development of a newly designed event-based vectorized MC algorithm for solving the neutron eigenvalue problem. The code was implemented using NVIDIA's Compute Unified Device Architecture (CUDA), and tested on a NVIDIA Tesla M2090 GPU card. We found that although the vectorized MC algorithm greatly reduces the occurrence of thread divergence thus enhancing the warp execution efficiency, the overall simulation speed is roughly ten times slower than the history-based MC code on GPUs. Profiling results suggest that the slow speed is probably due to the memory access latency caused by the large amount of global memory transactions. Possible solutions to improve the code efficiency are discussed.
Diagnosing Undersampling Biases in Monte Carlo Eigenvalue and Flux Tally Estimates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perfetti, Christopher M.; Rearden, Bradley T.; Marshall, William J.
2017-02-08
Here, this study focuses on understanding the phenomena in Monte Carlo simulations known as undersampling, in which Monte Carlo tally estimates may not encounter a sufficient number of particles during each generation to obtain unbiased tally estimates. Steady-state Monte Carlo simulations were performed using the KENO Monte Carlo tools within the SCALE code system for models of several burnup credit applications with varying degrees of spatial and isotopic complexities, and the incidence and impact of undersampling on eigenvalue and flux estimates were examined. Using an inadequate number of particle histories in each generation was found to produce a maximum bias of ~100 pcm in eigenvalue estimates and biases that exceeded 10% in fuel pin flux tally estimates. Having quantified the potential magnitude of undersampling biases in eigenvalue and flux tally estimates in these systems, this study then investigated whether Markov Chain Monte Carlo convergence metrics could be integrated into Monte Carlo simulations to predict the onset and magnitude of undersampling biases. Five potential metrics for identifying undersampling biases were implemented in the SCALE code system and evaluated for their ability to predict undersampling biases by comparing the test metric scores with the observed undersampling biases. Finally, of the five convergence metrics that were investigated, three (the Heidelberger-Welch relative half-width, the Gelman-Rubin more » $$\\hat{R}_c$$ diagnostic, and tally entropy) showed the potential to accurately predict the behavior of undersampling biases in the responses examined.« less
Diagnosing Undersampling in Monte Carlo Eigenvalue and Flux Tally Estimates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perfetti, Christopher M; Rearden, Bradley T
2015-01-01
This study explored the impact of undersampling on the accuracy of tally estimates in Monte Carlo (MC) calculations. Steady-state MC simulations were performed for models of several critical systems with varying degrees of spatial and isotopic complexity, and the impact of undersampling on eigenvalue and fuel pin flux/fission estimates was examined. This study observed biases in MC eigenvalue estimates as large as several percent and biases in fuel pin flux/fission tally estimates that exceeded tens, and in some cases hundreds, of percent. This study also investigated five statistical metrics for predicting the occurrence of undersampling biases in MC simulations. Threemore » of the metrics (the Heidelberger-Welch RHW, the Geweke Z-Score, and the Gelman-Rubin diagnostics) are commonly used for diagnosing the convergence of Markov chains, and two of the methods (the Contributing Particles per Generation and Tally Entropy) are new convergence metrics developed in the course of this study. These metrics were implemented in the KENO MC code within the SCALE code system and were evaluated for their reliability at predicting the onset and magnitude of undersampling biases in MC eigenvalue and flux tally estimates in two of the critical models. Of the five methods investigated, the Heidelberger-Welch RHW, the Gelman-Rubin diagnostics, and Tally Entropy produced test metrics that correlated strongly to the size of the observed undersampling biases, indicating their potential to effectively predict the size and prevalence of undersampling biases in MC simulations.« less
Inverse resonance scattering for Jacobi operators
NASA Astrophysics Data System (ADS)
Korotyaev, E. L.
2011-12-01
The Jacobi operator ( Jf) n = a n-1 f n-1 + a n f n+1 + b n f n on ℤ with real finitely supported sequences ( a n - 1) n∈ℤ and ( b n ) n∈ℤ is considered. The inverse problem for two mappings (including their characterization): ( a n , b n , n ∈ ℤ) → {the zeros of the reflection coefficient} and ( a n , b n , n ∈ ℤ) → {the eigenvalues and the resonances} is solved. All Jacobi operators with the same eigenvalues and resonances are also described.
Weerasekara, Gihan; Tokunaga, Akihiro; Terauchi, Hiroki; Eberhard, Marc; Maruta, Akihiro
2015-01-12
One of the extraordinary aspects of nonlinear wave evolution which has been observed as the spontaneous occurrence of astonishing and statistically extraordinary amplitude wave is called rogue wave. We show that the eigenvalues of the associated equation of nonlinear Schrödinger equation are almost constant in the vicinity of rogue wave and we validate that optical rogue waves are formed by the collision between quasi-solitons in anomalous dispersion fiber exhibiting weak third order dispersion.
Sparse Covariance Matrix Estimation With Eigenvalue Constraints
LIU, Han; WANG, Lie; ZHAO, Tuo
2014-01-01
We propose a new approach for estimating high-dimensional, positive-definite covariance matrices. Our method extends the generalized thresholding operator by adding an explicit eigenvalue constraint. The estimated covariance matrix simultaneously achieves sparsity and positive definiteness. The estimator is rate optimal in the minimax sense and we develop an efficient iterative soft-thresholding and projection algorithm based on the alternating direction method of multipliers. Empirically, we conduct thorough numerical experiments on simulated datasets as well as real data examples to illustrate the usefulness of our method. Supplementary materials for the article are available online. PMID:25620866
Random matrices with external source and the asymptotic behaviour of multiple orthogonal polynomials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aptekarev, Alexander I; Lysov, Vladimir G; Tulyakov, Dmitrii N
2011-02-28
Ensembles of random Hermitian matrices with a distribution measure defined by an anharmonic potential perturbed by an external source are considered. The limiting characteristics of the eigenvalue distribution of the matrices in these ensembles are related to the asymptotic behaviour of a certain system of multiple orthogonal polynomials. Strong asymptotic formulae are derived for this system. As a consequence, for matrices in this ensemble the limit mean eigenvalue density is found, and a variational principle is proposed to characterize this density. Bibliography: 35 titles.
Transient analysis using conical shell elements
NASA Technical Reports Server (NTRS)
Yang, J. C. S.; Goeller, J. E.; Messick, W. T.
1973-01-01
The use of the NASTRAN conical shell element in static, eigenvalue, and direct transient analyses is demonstrated. The results of a NASTRAN static solution of an externally pressurized ring-stiffened cylinder agree well with a theoretical discontinuity analysis. Good agreement is also obtained between the NASTRAN direct transient response of a uniform cylinder to a dynamic end load and one-dimensional solutions obtained using a method of characteristics stress wave code and a standing wave solution. Finally, a NASTRAN eigenvalue analysis is performed on a hydroballistic model idealized with conical shell elements.
BRIEF REPORT: A simple interpolation formula for the spectra of power-law and log potentials
NASA Astrophysics Data System (ADS)
Hall, Richard L.
2000-06-01
Non-relativistic potential models are considered of the pure power V(r) = sgn(q) r q and logarithmic V(r) = ln (r) types. It is shown that, from the spectral viewpoint, these potentials are actually in a single family. The log spectra can be obtained from the power spectra by the limit q→0 taken in a smooth representation Pnl(q) for the eigenvalues Enl(q). A simple approximation formula is developed which yields the first 30 eigenvalues with an error less than 0.04%.
NASA Astrophysics Data System (ADS)
Buono, Andrea; Nunziata, Ferdinando; Migliaccio, Maurizio
2016-08-01
In this paper, microwave sea surface scattering with and without oil slicks is investigated using synthetic aperture radar (SAR) fully-polarimetric (FP) and compact- polarimetric (CP) data. They show similar trends but subtle differences apply over sea surface that are here analyzed by a new physically-based approach. The model predicts that differences between FP and CP architectures, and among CP modes, are due to the different mapping between polarimetric observables and eigenvalues. This theoretical rationale is verified using actual FP SAR data and emulated CP SAR measurements.
Spectral Analysis for Weighted Iterated Triangulations of Graphs
NASA Astrophysics Data System (ADS)
Chen, Yufei; Dai, Meifeng; Wang, Xiaoqian; Sun, Yu; Su, Weiyi
Much information about the structural properties and dynamical aspects of a network is measured by the eigenvalues of its normalized Laplacian matrix. In this paper, we aim to present a first study on the spectra of the normalized Laplacian of weighted iterated triangulations of graphs. We analytically obtain all the eigenvalues, as well as their multiplicities from two successive generations. As an example of application of these results, we then derive closed-form expressions for their multiplicative Kirchhoff index, Kemeny’s constant and number of weighted spanning trees.
A discourse on sensitivity analysis for discretely-modeled structures
NASA Technical Reports Server (NTRS)
Adelman, Howard M.; Haftka, Raphael T.
1991-01-01
A descriptive review is presented of the most recent methods for performing sensitivity analysis of the structural behavior of discretely-modeled systems. The methods are generally but not exclusively aimed at finite element modeled structures. Topics included are: selections of finite difference step sizes; special consideration for finite difference sensitivity of iteratively-solved response problems; first and second derivatives of static structural response; sensitivity of stresses; nonlinear static response sensitivity; eigenvalue and eigenvector sensitivities for both distinct and repeated eigenvalues; and sensitivity of transient response for both linear and nonlinear structural response.
Fingerprint recognition of alien invasive weeds based on the texture character and machine learning
NASA Astrophysics Data System (ADS)
Yu, Jia-Jia; Li, Xiao-Li; He, Yong; Xu, Zheng-Hao
2008-11-01
Multi-spectral imaging technique based on texture analysis and machine learning was proposed to discriminate alien invasive weeds with similar outline but different categories. The objectives of this study were to investigate the feasibility of using Multi-spectral imaging, especially the near-infrared (NIR) channel (800 nm+/-10 nm) to find the weeds' fingerprints, and validate the performance with specific eigenvalues by co-occurrence matrix. Veronica polita Pries, Veronica persica Poir, longtube ground ivy, Laminum amplexicaule Linn. were selected in this study, which perform different effect in field, and are alien invasive species in China. 307 weed leaves' images were randomly selected for the calibration set, while the remaining 207 samples for the prediction set. All images were pretreated by Wallis filter to adjust the noise by uneven lighting. Gray level co-occurrence matrix was applied to extract the texture character, which shows density, randomness correlation, contrast and homogeneity of texture with different algorithms. Three channels (green channel by 550 nm+/-10 nm, red channel by 650 nm+/-10 nm and NIR channel by 800 nm+/-10 nm) were respectively calculated to get the eigenvalues.Least-squares support vector machines (LS-SVM) was applied to discriminate the categories of weeds by the eigenvalues from co-occurrence matrix. Finally, recognition ratio of 83.35% by NIR channel was obtained, better than the results by green channel (76.67%) and red channel (69.46%). The prediction results of 81.35% indicated that the selected eigenvalues reflected the main characteristics of weeds' fingerprint based on multi-spectral (especially by NIR channel) and LS-SVM model.
SCALE 6.2 Continuous-Energy TSUNAMI-3D Capabilities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perfetti, Christopher M; Rearden, Bradley T
2015-01-01
The TSUNAMI (Tools for Sensitivity and UNcertainty Analysis Methodology Implementation) capabilities within the SCALE code system make use of sensitivity coefficients for an extensive number of criticality safety applications, such as quantifying the data-induced uncertainty in the eigenvalue of critical systems, assessing the neutronic similarity between different systems, quantifying computational biases, and guiding nuclear data adjustment studies. The need to model geometrically complex systems with improved ease of use and fidelity and the desire to extend TSUNAMI analysis to advanced applications have motivated the development of a SCALE 6.2 module for calculating sensitivity coefficients using three-dimensional (3D) continuous-energy (CE) Montemore » Carlo methods: CE TSUNAMI-3D. This paper provides an overview of the theory, implementation, and capabilities of the CE TSUNAMI-3D sensitivity analysis methods. CE TSUNAMI contains two methods for calculating sensitivity coefficients in eigenvalue sensitivity applications: (1) the Iterated Fission Probability (IFP) method and (2) the Contributon-Linked eigenvalue sensitivity/Uncertainty estimation via Track length importance CHaracterization (CLUTCH) method. This work also presents the GEneralized Adjoint Response in Monte Carlo method (GEAR-MC), a first-of-its-kind approach for calculating adjoint-weighted, generalized response sensitivity coefficients—such as flux responses or reaction rate ratios—in CE Monte Carlo applications. The accuracy and efficiency of the CE TSUNAMI-3D eigenvalue sensitivity methods are assessed from a user perspective in a companion publication, and the accuracy and features of the CE TSUNAMI-3D GEAR-MC methods are detailed in this paper.« less
Eigenvalue Solvers for Modeling Nuclear Reactors on Leadership Class Machines
Slaybaugh, R. N.; Ramirez-Zweiger, M.; Pandya, Tara; ...
2018-02-20
In this paper, three complementary methods have been implemented in the code Denovo that accelerate neutral particle transport calculations with methods that use leadership-class computers fully and effectively: a multigroup block (MG) Krylov solver, a Rayleigh quotient iteration (RQI) eigenvalue solver, and a multigrid in energy (MGE) preconditioner. The MG Krylov solver converges more quickly than Gauss Seidel and enables energy decomposition such that Denovo can scale to hundreds of thousands of cores. RQI should converge in fewer iterations than power iteration (PI) for large and challenging problems. RQI creates shifted systems that would not be tractable without the MGmore » Krylov solver. It also creates ill-conditioned matrices. The MGE preconditioner reduces iteration count significantly when used with RQI and takes advantage of the new energy decomposition such that it can scale efficiently. Each individual method has been described before, but this is the first time they have been demonstrated to work together effectively. The combination of solvers enables the RQI eigenvalue solver to work better than the other available solvers for large reactors problems on leadership-class machines. Using these methods together, RQI converged in fewer iterations and in less time than PI for a full pressurized water reactor core. These solvers also performed better than an Arnoldi eigenvalue solver for a reactor benchmark problem when energy decomposition is needed. The MG Krylov, MGE preconditioner, and RQI solver combination also scales well in energy. Finally, this solver set is a strong choice for very large and challenging problems.« less
Voxel-Wise Comparisons of the Morphology of Diffusion Tensors Across Groups of Experimental Subjects
Bansal, Ravi; Staib, Lawrence H.; Plessen, Kerstin J.; Xu, Dongrong; Royal, Jason; Peterson, Bradley S.
2007-01-01
Water molecules in the brain diffuse preferentially along the fiber tracts within white matter, which form the anatomical connections across spatially distant brain regions. A diffusion tensor (DT) is a probabilistic ellipsoid composed of 3 orthogonal vectors, each having a direction and an associated scalar magnitude, that represent the probability of water molecules diffusing in each of those directions. The 3D morphologies of DTs can be compared across groups of subjects to reveal disruptions in structural organization and neuroanatomical connectivity of the brains of persons with various neuropsychiatric illnesses. Comparisons of tensor morphology across groups have typically been performed on scalar measures of diffusivity, such as Fractional Anisotropy (FA), rather than directly on the complex 3D morphologies of DTs. Scalar measures, however, are related in nonlinear ways to the eigenvalues and eigenvectors that create the 3D morphologies of DTs. We present a mathematical framework that permits the direct comparison across groups of mean eigenvalues and eigenvectors of individual DTs. We show that group-mean eigenvalues and eigenvectors are multivariate Gaussian distributed, and we use the Delta method to compute their approximate covariance matrices. Our results show that the theoretically computed Mean Tensor (MT) eigenvectors and eigenvalues match well with their respective true values. Furthermore, a comparison of synthetically generated groups of DTs highlights the limitations of using FA to detect group differences. Finally, analyses of in vivo DT data using our method reveal significant between-group differences in diffusivity along fiber tracts within white matter, whereas analyses based on FA values failed to detect some of these differences. PMID:18006284
Bifurcations of periodic motion in a three-degree-of-freedom vibro-impact system with clearance
NASA Astrophysics Data System (ADS)
Liu, Yongbao; Wang, Qiang; Xu, Huidong
2017-07-01
The smooth bifurcation and grazing non-smooth bifurcation of periodic motion of a three-degree-of-freedom vibro-impact system with clearance are studied in this paper. Firstly, a periodic solution of vibro-impact system is solved and a six-dimensional Poincaré map is established. Then, for the six-dimensional Poincaré map, the analytic expressions of all eigenvalues of Jacobi matrix with respect to parameters are unavailable. This implies that with application of the classical critical criterion described by the properties of eigenvalues, we have to numerically compute eigenvalues point by point and check their properties to search for the bifurcation points. Such the numerical calculation is a laborious job in the process of determining bifurcation points. To overcome the difficulty that originates from the classical bifurcation criteria, the explicit critical criteria without using eigenvalues calculation of high-dimensional map are applied to determine bifurcation points of Co-dimension-one period doubling bifurcation and Co-dimension-one Neimark-Sacker bifurcation and Co-dimension-two Flip-Neimark-Sacker bifurcation, and then local dynamical behaviors of these bifurcations are analyzed. Moreover, the directions of period doubling bifurcation and Neimark-Sacker bifurcation are analyzed by center manifold reduction theory and normal form approach. Finally, the existence of the grazing periodic motion of the vibro-impact system is analyzed and the grazing bifurcation point is obtained, the discontinuous grazing bifurcation behavior is studied based on the compound normal form map near the grazing point, the discontinuous jumping phenomenon and co-existing multiple solutions near the grazing bifurcation point are revealed.
Random pure states: Quantifying bipartite entanglement beyond the linear statistics.
Vivo, Pierpaolo; Pato, Mauricio P; Oshanin, Gleb
2016-05-01
We analyze the properties of entangled random pure states of a quantum system partitioned into two smaller subsystems of dimensions N and M. Framing the problem in terms of random matrices with a fixed-trace constraint, we establish, for arbitrary N≤M, a general relation between the n-point densities and the cross moments of the eigenvalues of the reduced density matrix, i.e., the so-called Schmidt eigenvalues, and the analogous functionals of the eigenvalues of the Wishart-Laguerre ensemble of the random matrix theory. This allows us to derive explicit expressions for two-level densities, and also an exact expression for the variance of von Neumann entropy at finite N,M. Then, we focus on the moments E{K^{a}} of the Schmidt number K, the reciprocal of the purity. This is a random variable supported on [1,N], which quantifies the number of degrees of freedom effectively contributing to the entanglement. We derive a wealth of analytical results for E{K^{a}} for N=2 and 3 and arbitrary M, and also for square N=M systems by spotting for the latter a connection with the probability P(x_{min}^{GUE}≥sqrt[2N]ξ) that the smallest eigenvalue x_{min}^{GUE} of an N×N matrix belonging to the Gaussian unitary ensemble is larger than sqrt[2N]ξ. As a by-product, we present an exact asymptotic expansion for P(x_{min}^{GUE}≥sqrt[2N]ξ) for finite N as ξ→∞. Our results are corroborated by numerical simulations whenever possible, with excellent agreement.
NASA Technical Reports Server (NTRS)
Zhang, Wang; Binienda, Wieslaw K.; Pindera, Marek-Jerzy
1997-01-01
A previously developed local-global stiffness matrix methodology for the response of a composite half plane, arbitrarily layered with isotropic, orthotropic or monoclinic plies, to indentation by a rigid parabolic punch is further extended to accommodate the presence of layers with complex eigenvalues (e.g., honeycomb or piezoelectric layers). First, a generalized plane deformation solution for the displacement field in an orthotropic layer or half plane characterized by complex eigenvalues is obtained using Fourier transforms. A local stiffness matrix in the transform domain is subsequently constructed for this class of layers and half planes, which is then assembled into a global stiffness matrix for the entire multilayered half plane by enforcing continuity conditions along the interfaces. Application of the mixed boundary condition on the top surface of the half plane indented by a rigid punch results in an integral equation for the unknown pressure in the contact region. The integral possesses a divergent kernel which is decomposed into Cauchy-type and regular parts using the asymptotic properties of the local stiffness matrix and a relationship between Fourier and finite Hilbert transform of the contact pressure. The solution of the resulting singular integral equation is obtained using a collocation technique based on the properties of orthogonal polynomials developed by Erdogan and Gupta. Examples are presented that illustrate the important influence of low transverse properties of layers with complex eigenvalues, such as those exhibited by honeycomb, on the load versus contact length response and contact pressure distributions for half planes containing typical composite materials.
NASA Astrophysics Data System (ADS)
Huang, Tsung-Ming; Lin, Wen-Wei; Tian, Heng; Chen, Guan-Hua
2018-03-01
Full spectrum of a large sparse ⊤-palindromic quadratic eigenvalue problem (⊤-PQEP) is considered arguably for the first time in this article. Such a problem is posed by calculation of surface Green's functions (SGFs) of mesoscopic transistors with a tremendous non-periodic cross-section. For this problem, general purpose eigensolvers are not efficient, nor is advisable to resort to the decimation method etc. to obtain the Wiener-Hopf factorization. After reviewing some rigorous understanding of SGF calculation from the perspective of ⊤-PQEP and nonlinear matrix equation, we present our new approach to this problem. In a nutshell, the unit disk where the spectrum of interest lies is broken down adaptively into pieces small enough that they each can be locally tackled by the generalized ⊤-skew-Hamiltonian implicitly restarted shift-and-invert Arnoldi (G⊤SHIRA) algorithm with suitable shifts and other parameters, and the eigenvalues missed by this divide-and-conquer strategy can be recovered thanks to the accurate estimation provided by our newly developed scheme. Notably the novel non-equivalence deflation is proposed to avoid as much as possible duplication of nearby known eigenvalues when a new shift of G⊤SHIRA is determined. We demonstrate our new approach by calculating the SGF of a realistic nanowire whose unit cell is described by a matrix of size 4000 × 4000 at the density functional tight binding level, corresponding to a 8 × 8nm2 cross-section. We believe that quantum transport simulation of realistic nano-devices in the mesoscopic regime will greatly benefit from this work.
Eigenvalue Solvers for Modeling Nuclear Reactors on Leadership Class Machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slaybaugh, R. N.; Ramirez-Zweiger, M.; Pandya, Tara
In this paper, three complementary methods have been implemented in the code Denovo that accelerate neutral particle transport calculations with methods that use leadership-class computers fully and effectively: a multigroup block (MG) Krylov solver, a Rayleigh quotient iteration (RQI) eigenvalue solver, and a multigrid in energy (MGE) preconditioner. The MG Krylov solver converges more quickly than Gauss Seidel and enables energy decomposition such that Denovo can scale to hundreds of thousands of cores. RQI should converge in fewer iterations than power iteration (PI) for large and challenging problems. RQI creates shifted systems that would not be tractable without the MGmore » Krylov solver. It also creates ill-conditioned matrices. The MGE preconditioner reduces iteration count significantly when used with RQI and takes advantage of the new energy decomposition such that it can scale efficiently. Each individual method has been described before, but this is the first time they have been demonstrated to work together effectively. The combination of solvers enables the RQI eigenvalue solver to work better than the other available solvers for large reactors problems on leadership-class machines. Using these methods together, RQI converged in fewer iterations and in less time than PI for a full pressurized water reactor core. These solvers also performed better than an Arnoldi eigenvalue solver for a reactor benchmark problem when energy decomposition is needed. The MG Krylov, MGE preconditioner, and RQI solver combination also scales well in energy. Finally, this solver set is a strong choice for very large and challenging problems.« less
A High Frequency Model of Cascade Noise
NASA Technical Reports Server (NTRS)
Envia, Edmane
1998-01-01
Closed form asymptotic expressions for computing high frequency noise generated by an annular cascade in an infinite duct containing a uniform flow are presented. There are two new elements in this work. First, the annular duct mode representation does not rely on the often-used Bessel function expansion resulting in simpler expressions for both the radial eigenvalues and eigenfunctions of the duct. In particular, the new representation provides an explicit approximate formula for the radial eigenvalues obviating the need for solutions of the transcendental annular duct eigenvalue equation. Also, the radial eigenfunctions are represented in terms of exponentials eliminating the numerical problems associated with generating the Bessel functions on a computer. The second new element is the construction of an unsteady response model for an annular cascade. The new construction satisfies the boundary conditions on both the cascade and duct walls simultaneously adding a new level of realism to the noise calculations. Preliminary results which demonstrate the effectiveness of the new elements are presented. A discussion of the utility of the asymptotic formulas for calculating cascade discrete tone as well as broadband noise is also included.
Fully Parallel MHD Stability Analysis Tool
NASA Astrophysics Data System (ADS)
Svidzinski, Vladimir; Galkin, Sergei; Kim, Jin-Soo; Liu, Yueqiang
2014-10-01
Progress on full parallelization of the plasma stability code MARS will be reported. MARS calculates eigenmodes in 2D axisymmetric toroidal equilibria in MHD-kinetic plasma models. It is a powerful tool for studying MHD and MHD-kinetic instabilities and it is widely used by fusion community. Parallel version of MARS is intended for simulations on local parallel clusters. It will be an efficient tool for simulation of MHD instabilities with low, intermediate and high toroidal mode numbers within both fluid and kinetic plasma models, already implemented in MARS. Parallelization of the code includes parallelization of the construction of the matrix for the eigenvalue problem and parallelization of the inverse iterations algorithm, implemented in MARS for the solution of the formulated eigenvalue problem. Construction of the matrix is parallelized by distributing the load among processors assigned to different magnetic surfaces. Parallelization of the solution of the eigenvalue problem is made by repeating steps of the present MARS algorithm using parallel libraries and procedures. Initial results of the code parallelization will be reported. Work is supported by the U.S. DOE SBIR program.
A spectral approach for the stability analysis of turbulent open-channel flows over granular beds
NASA Astrophysics Data System (ADS)
Camporeale, C.; Canuto, C.; Ridolfi, L.
2012-01-01
A novel Orr-Sommerfeld-like equation for gravity-driven turbulent open-channel flows over a granular erodible bed is here derived, and the linear stability analysis is developed. The whole spectrum of eigenvalues and eigenvectors of the complete generalized eigenvalue problem is computed and analyzed. The fourth-order eigenvalue problem presents singular non-polynomial coefficients with non-homogenous Robin-type boundary conditions that involve first and second derivatives. Furthermore, the Exner condition is imposed at an internal point. We propose a numerical discretization of spectral type based on a single-domain Galerkin scheme. In order to manage the presence of singular coefficients, some properties of Jacobi polynomials have been carefully blended with numerical integration of Gauss-Legendre type. The results show a positive agreement with the classical experimental data and allow one to relate the different types of instability to such parameters as the Froude number, wavenumber, and the roughness scale. The eigenfunctions allow two types of boundary layers to be distinguished, scaling, respectively, with the roughness height and the saltation layer for the bedload sediment transport.
A parallel algorithm for computing the eigenvalues of a symmetric tridiagonal matrix
NASA Technical Reports Server (NTRS)
Swarztrauber, Paul N.
1993-01-01
A parallel algorithm, called polysection, is presented for computing the eigenvalues of a symmetric tridiagonal matrix. The method is based on a quadratic recurrence in which the characteristic polynomial is constructed on a binary tree from polynomials whose degree doubles at each level. Intervals that contain exactly one zero are determined by the zeros of polynomials at the previous level which ensures that different processors compute different zeros. The signs of the polynomials at the interval endpoints are determined a priori and used to guarantee that all zeros are found. The use of finite-precision arithmetic may result in multiple zeros; however, in this case, the intervals coalesce and their number determines exactly the multiplicity of the zero. For an N x N matrix the eigenvalues can be determined in O(log-squared N) time with N-squared processors and O(N) time with N processors. The method is compared with a parallel variant of bisection that requires O(N-squared) time on a single processor, O(N) time with N processors, and O(log N) time with N-squared processors.
A new algorithm for DNS of turbulent polymer solutions using the FENE-P model
NASA Astrophysics Data System (ADS)
Vaithianathan, T.; Collins, Lance; Robert, Ashish; Brasseur, James
2004-11-01
Direct numerical simulations (DNS) of polymer solutions based on the finite extensible nonlinear elastic model with the Peterlin closure (FENE-P) solve for a conformation tensor with properties that must be maintained by the numerical algorithm. In particular, the eigenvalues of the tensor are all positive (to maintain positive definiteness) and the sum is bounded by the maximum extension length. Loss of either of these properties will give rise to unphysical instabilities. In earlier work, Vaithianathan & Collins (2003) devised an algorithm based on an eigendecomposition that allows you to update the eigenvalues of the conformation tensor directly, making it easier to maintain the necessary conditions for a stable calculation. However, simple fixes (such as ceilings and floors) yield results that violate overall conservation. The present finite-difference algorithm is inherently designed to satisfy all of the bounds on the eigenvalues, and thus restores overall conservation. New results suggest that the earlier algorithm may have exaggerated the energy exchange at high wavenumbers. In particular, feedback of the polymer elastic energy to the isotropic turbulence is now greatly reduced.
NASA Astrophysics Data System (ADS)
Haritan, Idan; Moiseyev, Nimrod
2017-07-01
Resonances play a major role in a large variety of fields in physics and chemistry. Accordingly, there is a growing interest in methods designed to calculate them. Recently, Landau et al. proposed a new approach to analytically dilate a single eigenvalue from the stabilization graph into the complex plane. This approach, termed Resonances Via Padé (RVP), utilizes the Padé approximant and is based on a unique analysis of the stabilization graph. Yet, analytic continuation of eigenvalues from the stabilization graph into the complex plane is not a new idea. In 1975, Jordan suggested an analytic continuation method based on the branch point structure of the stabilization graph. The method was later modified by McCurdy and McNutt, and it is still being used today. We refer to this method as the Truncated Characteristic Polynomial (TCP) method. In this manuscript, we perform an in-depth comparison between the RVP and the TCP methods. We demonstrate that while both methods are important and complementary, the advantage of one method over the other is problem-dependent. Illustrative examples are provided in the manuscript.
NASA Astrophysics Data System (ADS)
Ge, Li; Feng, Liang
2017-01-01
It has been proposed and demonstrated that lasing and coherent perfect absorption (CPA or "antilasing") coexist in parity-time (PT ) symmetric photonic systems. In this work we show that the spectral signature of such a CPA laser displayed by the singular value spectrum of the scattering matrix (S ) can be orders of magnitude wider than that displayed by the eigenvalue spectrum of S . Since the former reflects how strongly light can be absorbed or amplified and the latter announces the spontaneous symmetry breaking of S , these contrasting spectral signatures indicate that near perfect absorption and extremely strong amplification can be achieved even in the PT -symmetric phase of S , which is known for and defined by its flux-conserving eigenstates. We also show that these contrasting spectral signatures are accompanied by strikingly different sensitivities to disorder and imperfection, suggesting that the eigenvalue spectrum is potentially suitable for sensing and the singular value spectrum for robust switching. A differential light amplifier may also be devised based on these two spectra.
Eigenspace perturbations for uncertainty estimation of single-point turbulence closures
NASA Astrophysics Data System (ADS)
Iaccarino, Gianluca; Mishra, Aashwin Ananda; Ghili, Saman
2017-02-01
Reynolds-averaged Navier-Stokes (RANS) models represent the workhorse for predicting turbulent flows in complex industrial applications. However, RANS closures introduce a significant degree of epistemic uncertainty in predictions due to the potential lack of validity of the assumptions utilized in model formulation. Estimating this uncertainty is a fundamental requirement for building confidence in such predictions. We outline a methodology to estimate this structural uncertainty, incorporating perturbations to the eigenvalues and the eigenvectors of the modeled Reynolds stress tensor. The mathematical foundations of this framework are derived and explicated. Thence, this framework is applied to a set of separated turbulent flows, while compared to numerical and experimental data and contrasted against the predictions of the eigenvalue-only perturbation methodology. It is exhibited that for separated flows, this framework is able to yield significant enhancement over the established eigenvalue perturbation methodology in explaining the discrepancy against experimental observations and high-fidelity simulations. Furthermore, uncertainty bounds of potential engineering utility can be estimated by performing five specific RANS simulations, reducing the computational expenditure on such an exercise.
NASA Astrophysics Data System (ADS)
Huang, Zhenghua; Zhang, Tianxu; Deng, Lihua; Fang, Hao; Li, Qian
2015-12-01
Total variation(TV) based on regularization has been proven as a popular and effective model for image restoration, because of its ability of edge preserved. However, as the TV favors a piece-wise constant solution, the processing results in the flat regions of the image are easily produced "staircase effects", and the amplitude of the edges will be underestimated; the underlying cause of the problem is that the regularization parameter can not be changeable with spatial local information of image. In this paper, we propose a novel Scatter-matrix eigenvalues-based TV(SMETV) regularization with image blind restoration algorithm for deblurring medical images. The spatial information in different image regions is incorporated into regularization by using the edge indicator called difference eigenvalue to distinguish edges from flat areas. The proposed algorithm can effectively reduce the noise in flat regions as well as preserve the edge and detailed information. Moreover, it becomes more robust with the change of the regularization parameter. Extensive experiments demonstrate that the proposed approach produces results superior to most methods in both visual image quality and quantitative measures.
Schrödinger Operator with Non-Zero Accumulation Points of Complex Eigenvalues
NASA Astrophysics Data System (ADS)
Bögli, Sabine
2017-06-01
We study Schrödinger operators {H=-Δ + V} in {L2(Ω)} where {Ω} is R^d or the half-space R+d, subject to (real) Robin boundary conditions in the latter case. For {p > d} we construct a non-real potential {V \\in Lp(Ω) \\cap L^{∞}(Ω)} that decays at infinity so that H has infinitely many non-real eigenvalues accumulating at every point of the essential spectrum {σ_ess(H)=[0,∞)}. This demonstrates that the Lieb-Thirring inequalities for selfadjoint Schrödinger operators are no longer true in the non-selfadjoint case.
Survey of methods for calculating sensitivity of general eigenproblems
NASA Technical Reports Server (NTRS)
Murthy, Durbha V.; Haftka, Raphael T.
1987-01-01
A survey of methods for sensitivity analysis of the algebraic eigenvalue problem for non-Hermitian matrices is presented. In addition, a modification of one method based on a better normalizing condition is proposed. Methods are classified as Direct or Adjoint and are evaluated for efficiency. Operation counts are presented in terms of matrix size, number of design variables and number of eigenvalues and eigenvectors of interest. The effect of the sparsity of the matrix and its derivatives is also considered, and typical solution times are given. General guidelines are established for the selection of the most efficient method.
Kato type operators and Weyl's theorem
NASA Astrophysics Data System (ADS)
Duggal, B. P.; Djordjevic, S. V.; Kubrusly, Carlos
2005-09-01
A Banach space operator T satisfies Weyl's theorem if and only if T or T* has SVEP at all complex numbers [lambda] in the complement of the Weyl spectrum of T and T is Kato type at all [lambda] which are isolated eigenvalues of T of finite algebraic multiplicity. If T* (respectively, T) has SVEP and T is Kato type at all [lambda] which are isolated eigenvalues of T of finite algebraic multiplicity (respectively, T is Kato type at all [lambda][set membership, variant]iso[sigma](T)), then T satisfies a-Weyl's theorem (respectively, T* satisfies a-Weyl's theorem).
NASA Astrophysics Data System (ADS)
Deelan Cunden, Fabio; Facchi, Paolo; Florio, Giuseppe; Pascazio, Saverio
2013-05-01
Let a pure state | ψ> be chosen randomly in an NM-dimensional Hilbert space, and consider the reduced density matrix ρ A of an N-dimensional subsystem. The bipartite entanglement properties of | ψ> are encoded in the spectrum of ρ A . By means of a saddle point method and using a "Coulomb gas" model for the eigenvalues, we obtain the typical spectrum of reduced density matrices. We consider the cases of an unbiased ensemble of pure states and of a fixed value of the purity. We finally obtain the eigenvalue distribution by using a statistical mechanics approach based on the introduction of a partition function.
Continuous-energy eigenvalue sensitivity coefficient calculations in TSUNAMI-3D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perfetti, C. M.; Rearden, B. T.
2013-07-01
Two methods for calculating eigenvalue sensitivity coefficients in continuous-energy Monte Carlo applications were implemented in the KENO code within the SCALE code package. The methods were used to calculate sensitivity coefficients for several test problems and produced sensitivity coefficients that agreed well with both reference sensitivities and multigroup TSUNAMI-3D sensitivity coefficients. The newly developed CLUTCH method was observed to produce sensitivity coefficients with high figures of merit and a low memory footprint, and both continuous-energy sensitivity methods met or exceeded the accuracy of the multigroup TSUNAMI-3D calculations. (authors)
NASA Astrophysics Data System (ADS)
Chuvakhov, P. V.
2014-01-01
An exact expression for a system of both eigenvalues and right/left eigenvectors of a Jacobian matrix for a convective two-equation differential closure RANS operator split along a curvilinear coordinate is derived. It is shown by examples of numerical modeling of supersonic flows over a flat plate and a compression corner with separation that application of the exact system of eigenvalues and eigenvectors to the Roe approach for approximate solution of the Riemann problem gives rise to an increase in the convergence rate, better stability and higher accuracy of a steady-state solution in comparison with those in the case of an approximate system.
Akemann, G; Bloch, J; Shifrin, L; Wettig, T
2008-01-25
We analyze how individual eigenvalues of the QCD Dirac operator at nonzero quark chemical potential are distributed in the complex plane. Exact and approximate analytical results for both quenched and unquenched distributions are derived from non-Hermitian random matrix theory. When comparing these to quenched lattice QCD spectra close to the origin, excellent agreement is found for zero and nonzero topology at several values of the quark chemical potential. Our analytical results are also applicable to other physical systems in the same symmetry class.
NASA Technical Reports Server (NTRS)
Malik, M. R.
1982-01-01
A fast computer code COSAL for transition prediction in three dimensional boundary layers using compressible stability analysis is described. The compressible stability eigenvalue problem is solved using a finite difference method, and the code is a black box in the sense that no guess of the eigenvalue is required from the user. Several optimization procedures were incorporated into COSAL to calculate integrated growth rates (N factor) for transition correlation for swept and tapered laminar flow control wings using the well known e to the Nth power method. A user's guide to the program is provided.
A case against a divide and conquer approach to the nonsymmetric eigenvalue problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jessup, E.R.
1991-12-01
Divide and conquer techniques based on rank-one updating have proven fast, accurate, and efficient in parallel for the real symmetric tridiagonal and unitary eigenvalue problems and for the bidiagonal singular value problem. Although the divide and conquer mechanism can also be adapted to the real nonsymmetric eigenproblem in a straightforward way, most of the desirable characteristics of the other algorithms are lost. In this paper, we examine the problems of accuracy and efficiency that can stand in the way of a nonsymmetric divide and conquer eigensolver based on low-rank updating. 31 refs., 2 figs.
Radio Frequency Interference Detection for Passive Remote Sensing Using Eigenvalue Analysis
NASA Technical Reports Server (NTRS)
Schoenwald, Adam; Kim, Seung-Jun; Mohammed-Tano, Priscilla
2017-01-01
Radio frequency interference (RFI) can corrupt passive remote sensing measurements taken with microwave radiometers. With the increasingly utilized spectrum and the push for larger bandwidth radiometers, the likelihood of RFI contamination has grown significantly. In this work, an eigenvalue-based algorithm is developed to detect the presence of RFI and provide estimates of RFI-free radiation levels. Simulated tests show that the proposed detector outperforms conventional kurtosis-based RFI detectors in the low-to-medium interferece-to-noise-power-ratio (INR) regime under continuous wave (CW) and quadrature phase shift keying (QPSK) RFIs.
Radio Frequency Interference Detection for Passive Remote Sensing Using Eigenvalue Analysis
NASA Technical Reports Server (NTRS)
Schoenwald, Adam J.; Kim, Seung-Jun; Mohammed, Priscilla N.
2017-01-01
Radio frequency interference (RFI) can corrupt passive remote sensing measurements taken with microwave radiometers. With the increasingly utilized spectrum and the push for larger bandwidth radiometers, the likelihood of RFI contamination has grown significantly. In this work, an eigenvalue-based algorithm is developed to detect the presence of RFI and provide estimates of RFI-free radiation levels. Simulated tests show that the proposed detector outperforms conventional kurtosis-based RFI detectors in the low-to-medium interference-to-noise-power-ratio (INR) regime under continuous wave (CW) and quadrature phase shift keying (QPSK) RFIs.
Sensitivity analysis of hydrodynamic stability operators
NASA Technical Reports Server (NTRS)
Schmid, Peter J.; Henningson, Dan S.; Khorrami, Mehdi R.; Malik, Mujeeb R.
1992-01-01
The eigenvalue sensitivity for hydrodynamic stability operators is investigated. Classical matrix perturbation techniques as well as the concept of epsilon-pseudoeigenvalues are applied to show that parts of the spectrum are highly sensitive to small perturbations. Applications are drawn from incompressible plane Couette, trailing line vortex flow and compressible Blasius boundary layer flow. Parametric studies indicate a monotonically increasing effect of the Reynolds number on the sensitivity. The phenomenon of eigenvalue sensitivity is due to the non-normality of the operators and their discrete matrix analogs and may be associated with large transient growth of the corresponding initial value problem.
On the Wigner law in dilute random matrices
NASA Astrophysics Data System (ADS)
Khorunzhy, A.; Rodgers, G. J.
1998-12-01
We consider ensembles of N × N symmetric matrices whose entries are weakly dependent random variables. We show that random dilution can change the limiting eigenvalue distribution of such matrices. We prove that under general and natural conditions the normalised eigenvalue counting function coincides with the semicircle (Wigner) distribution in the limit N → ∞. This can be explained by the observation that dilution (or more generally, random modulation) eliminates the weak dependence (or correlations) between random matrix entries. It also supports our earlier conjecture that the Wigner distribution is stable to random dilution and modulation.
Development of a SCALE Tool for Continuous-Energy Eigenvalue Sensitivity Coefficient Calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perfetti, Christopher M; Rearden, Bradley T
2013-01-01
Two methods for calculating eigenvalue sensitivity coefficients in continuous-energy Monte Carlo applications were implemented in the KENO code within the SCALE code package. The methods were used to calculate sensitivity coefficients for several criticality safety problems and produced sensitivity coefficients that agreed well with both reference sensitivities and multigroup TSUNAMI-3D sensitivity coefficients. The newly developed CLUTCH method was observed to produce sensitivity coefficients with high figures of merit and low memory requirements, and both continuous-energy sensitivity methods met or exceeded the accuracy of the multigroup TSUNAMI-3D calculations.
Generalised quasiprobability distribution for Hermite polynomial squeezed states
NASA Astrophysics Data System (ADS)
Datta, Sunil; D'Souza, Richard
1996-02-01
Generalized quasiprobability distributions (QPD) for Hermite polynomial states are presented. These states are solutions of an eigenvalue equation which is quadratic in creation and annihilation operators. Analytical expressions for the QPD are presented for some special cases of the eigenvalues. For large squeezing these analytical expressions for the QPD take the form of a finite series in even Hermite functions. These expressions very transparently exhibit the transition between, P, Q and W functions corresponding to the change of the s-parameter of the QPD. Further, they clearly show the two-photon nature of the processes involved in the generation of these states.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shubov, Marianna A., E-mail: marianna.shubov@gmail.com
2016-06-15
We consider a well known model of a piezoelectric energy harvester. The harvester is designed as a beam with a piezoceramic layer attached to its top face (unimorph configuration). A pair of thin perfectly conductive electrodes is covering the top and the bottom faces of the piezoceramic layer. These electrodes are connected to a resistive load. The model is governed by a system consisting of two equations. The first of them is the equation of the Euler–Bernoulli model for the transverse vibrations of the beam and the second one represents the Kirchhoff’s law for the electric circuit. Both equations aremore » coupled due to the direct and converse piezoelectric effects. The boundary conditions for the beam equations are of clamped-free type. We represent the system as a single operator evolution equation in a Hilbert space. The dynamics generator of this system is a non-selfadjoint operator with compact resolvent. Our main result is an explicit asymptotic formula for the eigenvalues of this generator, i.e., we perform the modal analysis for electrically loaded (not short-circuit) system. We show that the spectrum splits into an infinite sequence of stable eigenvalues that approaches a vertical line in the left half plane and possibly of a finite number of unstable eigenvalues. This paper is the first in a series of three works. In the second one we will prove that the generalized eigenvectors of the dynamics generator form a Riesz basis (and, moreover, a Bari basis) in the energy space. In the third paper we will apply the results of the first two to control problems for this model.« less
On the linear stability of blood flow through model capillary networks.
Davis, Jeffrey M
2014-12-01
Under the approximation that blood behaves as a continuum, a numerical implementation is presented to analyze the linear stability of capillary blood flow through model tree and honeycomb networks that are based on the microvascular structures of biological tissues. The tree network is comprised of a cascade of diverging bifurcations, in which a parent vessel bifurcates into two descendent vessels, while the honeycomb network also contains converging bifurcations, in which two parent vessels merge into one descendent vessel. At diverging bifurcations, a cell partitioning law is required to account for the nonuniform distribution of red blood cells as a function of the flow rate of blood into each descendent vessel. A linearization of the governing equations produces a system of delay differential equations involving the discharge hematocrit entering each network vessel and leads to a nonlinear eigenvalue problem. All eigenvalues in a specified region of the complex plane are captured using a transformation based on contour integrals to construct a linear eigenvalue problem with identical eigenvalues, which are then determined using a standard QR algorithm. The predicted value of the dimensionless exponent in the cell partitioning law at the instability threshold corresponds to a supercritical Hopf bifurcation in numerical simulations of the equations governing unsteady blood flow. Excellent agreement is found between the predictions of the linear stability analysis and nonlinear simulations. The relaxation of the assumption of plug flow made in previous stability analyses typically has a small, quantitative effect on the stability results that depends on the specific network structure. This implementation of the stability analysis can be applied to large networks with arbitrary structure provided only that the connectivity among the network segments is known.
Approximation methods in relativistic eigenvalue perturbation theory
NASA Astrophysics Data System (ADS)
Noble, Jonathan Howard
In this dissertation, three questions, concerning approximation methods for the eigenvalues of quantum mechanical systems, are investigated: (i) What is a pseudo--Hermitian Hamiltonian, and how can its eigenvalues be approximated via numerical calculations? This is a fairly broad topic, and the scope of the investigation is narrowed by focusing on a subgroup of pseudo--Hermitian operators, namely, PT--symmetric operators. Within a numerical approach, one projects a PT--symmetric Hamiltonian onto an appropriate basis, and uses a straightforward two--step algorithm to diagonalize the resulting matrix, leading to numerically approximated eigenvalues. (ii) Within an analytic ansatz, how can a relativistic Dirac Hamiltonian be decoupled into particle and antiparticle degrees of freedom, in appropriate kinematic limits? One possible answer is the Foldy--Wouthuysen transform; however, there are alter- native methods which seem to have some advantages over the time--tested approach. One such method is investigated by applying both the traditional Foldy--Wouthuysen transform and the "chiral" Foldy--Wouthuysen transform to a number of Dirac Hamiltonians, including the central-field Hamiltonian for a gravitationally bound system; namely, the Dirac-(Einstein-)Schwarzschild Hamiltonian, which requires the formal- ism of general relativity. (iii) Are there are pseudo--Hermitian variants of Dirac Hamiltonians that can be approximated using a decoupling transformation? The tachyonic Dirac Hamiltonian, which describes faster-than-light spin-1/2 particles, is gamma5--Hermitian, i.e., pseudo-Hermitian. Superluminal particles remain faster than light upon a Lorentz transformation, and hence, the Foldy--Wouthuysen program is unsuited for this case. Thus, inspired by the Foldy--Wouthuysen program, a decoupling transform in the ultrarelativistic limit is proposed, which is applicable to both sub- and superluminal particles.
Non-Hermitian localization in biological networks.
Amir, Ariel; Hatano, Naomichi; Nelson, David R
2016-04-01
We explore the spectra and localization properties of the N-site banded one-dimensional non-Hermitian random matrices that arise naturally in sparse neural networks. Approximately equal numbers of random excitatory and inhibitory connections lead to spatially localized eigenfunctions and an intricate eigenvalue spectrum in the complex plane that controls the spontaneous activity and induced response. A finite fraction of the eigenvalues condense onto the real or imaginary axes. For large N, the spectrum has remarkable symmetries not only with respect to reflections across the real and imaginary axes but also with respect to 90^{∘} rotations, with an unusual anisotropic divergence in the localization length near the origin. When chains with periodic boundary conditions become directed, with a systematic directional bias superimposed on the randomness, a hole centered on the origin opens up in the density-of-states in the complex plane. All states are extended on the rim of this hole, while the localized eigenvalues outside the hole are unchanged. The bias-dependent shape of this hole tracks the bias-independent contours of constant localization length. We treat the large-N limit by a combination of direct numerical diagonalization and using transfer matrices, an approach that allows us to exploit an electrostatic analogy connecting the "charges" embodied in the eigenvalue distribution with the contours of constant localization length. We show that similar results are obtained for more realistic neural networks that obey "Dale's law" (each site is purely excitatory or inhibitory) and conclude with perturbation theory results that describe the limit of large directional bias, when all states are extended. Related problems arise in random ecological networks and in chains of artificial cells with randomly coupled gene expression patterns.
NASA Astrophysics Data System (ADS)
Cally, Paul S.; Xiong, Ming
2018-01-01
Fast sausage modes in solar magnetic coronal loops are only fully contained in unrealistically short dense loops. Otherwise they are leaky, losing energy to their surrounds as outgoing waves. This causes any oscillation to decay exponentially in time. Simultaneous observations of both period and decay rate therefore reveal the eigenfrequency of the observed mode, and potentially insight into the tubes’ nonuniform internal structure. In this article, a global spectral description of the oscillations is presented that results in an implicit matrix eigenvalue equation where the eigenvalues are associated predominantly with the diagonal terms of the matrix. The off-diagonal terms vanish identically if the tube is uniform. A linearized perturbation approach, applied with respect to a uniform reference model, is developed that makes the eigenvalues explicit. The implicit eigenvalue problem is easily solved numerically though, and it is shown that knowledge of the real and imaginary parts of the eigenfrequency is sufficient to determine the width and density contrast of a boundary layer over which the tubes’ enhanced internal densities drop to ambient values. Linearized density kernels are developed that show sensitivity only to the extreme outside of the loops for radial fundamental modes, especially for small density enhancements, with no sensitivity to the core. Higher radial harmonics do show some internal sensitivity, but these will be more difficult to observe. Only kink modes are sensitive to the tube centres. Variation in internal and external Alfvén speed along the loop is shown to have little effect on the fundamental dimensionless eigenfrequency, though the associated eigenfunction becomes more compact at the loop apex as stratification increases, or may even displace from the apex.
Sensitivity analysis of eigenvalues for an electro-hydraulic servomechanism
NASA Astrophysics Data System (ADS)
Stoia-Djeska, M.; Safta, C. A.; Halanay, A.; Petrescu, C.
2012-11-01
Electro-hydraulic servomechanisms (EHSM) are important components of flight control systems and their role is to control the movement of the flying control surfaces in response to the movement of the cockpit controls. As flight-control systems, the EHSMs have a fast dynamic response, a high power to inertia ratio and high control accuracy. The paper is devoted to the study of the sensitivity for an electro-hydraulic servomechanism used for an aircraft aileron action. The mathematical model of the EHSM used in this paper includes a large number of parameters whose actual values may vary within some ranges of uncertainty. It consists in a nonlinear ordinary differential equation system composed by the mass and energy conservation equations, the actuator movement equations and the controller equation. In this work the focus is on the sensitivities of the eigenvalues of the linearized homogeneous system, which are the partial derivatives of the eigenvalues of the state-space system with respect the parameters. These are obtained using a modal approach based on the eigenvectors of the state-space direct and adjoint systems. To calculate the eigenvalues and their sensitivity the system's Jacobian and its partial derivatives with respect the parameters are determined. The calculation of the derivative of the Jacobian matrix with respect to the parameters is not a simple task and for many situations it must be done numerically. The system stability is studied in relation with three parameters: m, the equivalent inertial load of primary control surface reduced to the actuator rod; B, the bulk modulus of oil and p a pressure supply proportionality coefficient. All the sensitivities calculated in this work are in good agreement with those obtained through recalculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhou, S; Cai, W; Hurwitz, M
Purpose: The goal of this study is to quantify the interfraction reproducibility of patient-specific motion models derived from 4DCBCT acquired on the day of treatment of lung cancer stereotactic body radiotherapy (SBRT) patients. Methods: Motion models are derived from patient 4DCBCT images acquired daily over 3–5 fractions of treatment by 1) applying deformable image registration between each 4DCBCT image and a reference phase from that day, resulting in a set of displacement vector fields (DVFs), and 2) performing principal component analysis (PCA) on the DVFs to derive a motion model. The motion model from the first day of treatment ismore » compared to motion models from each successive day of treatment to quantify variability in motion models generated from different days. Four SBRT patient datasets have been acquired thus far in this IRB approved study. Results: Fraction-specific motion models for each fraction and patient were derived and PCA eigenvectors and their associated eigenvalues are compared for each fraction. For the first patient dataset, the average root mean square error between the first two eigenvectors associated with the highest two eigenvalues, in four fractions was 0.1, while it was 0.25 between the last three PCA eigenvectors associated with the lowest three eigenvalues. It was found that the eigenvectors and eigenvalues of PCA motion models for each treatment fraction have variations and the first few eigenvectors are shown to be more stable across treatment fractions than others. Conclusion: Analysis of this dataset showed that the first two eigenvectors of the PCA patient-specific motion models derived from 4DCBCT were stable over the course of several treatment fractions. The third, fourth, and fifth eigenvectors had larger variations.« less
NASA Astrophysics Data System (ADS)
Qu, Junbo; Yan, Tie; Sun, Xiaofeng; Chen, Ye; Pan, Yi
2017-10-01
With the development of drilling technology to deeper stratum, overflowing especially gas cut occurs frequently, and then flow regime in wellbore annulus is from the original drilling fluid single-phase flow into gas & liquid two-phase flow. By using averaged two-fluid model equations and the basic principle of fluid mechanics to establish the continuity equations and momentum conservation equations of gas phase & liquid phase respectively. Relationship between pressure and density of gas & liquid was introduced to obtain hyperbolic equation, and get the expression of the dimensionless eigenvalue of the equation by using the characteristic line method, and analyze wellbore flow regime to get the critical gas content under different virtual mass force coefficients. Results show that the range of equation eigenvalues is getting smaller and smaller with the increase of gas content. When gas content reaches the critical point, the dimensionless eigenvalue of equation has no real solution, and the wellbore flow regime changed from bubble flow to bomb flow. When virtual mass force coefficients are 0.50, 0.60, 0.70 and 0.80 respectively, the critical gas contents are 0.32, 0.34, 0.37 and 0.39 respectively. The higher the coefficient of virtual mass force, the higher gas content in wellbore corresponding to the critical point of transition flow regime, which is in good agreement with previous experimental results. Therefore, it is possible to determine whether there is a real solution of the dimensionless eigenvalue of equation by virtual mass force coefficient and wellbore gas content, from which we can obtain the critical condition of wellbore flow regime transformation. It can provide theoretical support for the accurate judgment of the annular flow regime.
Lasing eigenvalue problems: the electromagnetic modelling of microlasers
NASA Astrophysics Data System (ADS)
Benson, Trevor; Nosich, Alexander; Smotrova, Elena; Balaban, Mikhail; Sewell, Phillip
2007-02-01
Comprehensive microcavity laser models should account for several physical mechanisms, e.g. carrier transport, heating and optical confinement, coupled by non-linear effects. Nevertheless, considerable useful information can still be obtained if all non-electromagnetic effects are neglected, often within an additional effective-index reduction to an equivalent 2D problem, and the optical modes viewed as solutions of Maxwell's equations. Integral equation (IE) formulations have many advantages over numerical techniques such as FDTD for the study of such microcavity laser problems. The most notable advantages of an IE approach are computational efficiency, the correct description of cavity boundaries without stair-step errors, and the direct solution of an eigenvalue problem rather than the spectral analysis of a transient signal. Boundary IE (BIE) formulations are more economic that volume IE (VIE) ones, because of their lower dimensionality, but they are only applicable to the constant cavity refractive index case. The Muller BIE, being free of 'defect' frequencies and having smooth or integrable kernels, provides a reliable tool for the modal analysis of microcavities. Whilst such an approach can readily identify complex-valued natural frequencies and Q-factors, the lasing condition is not addressed directly. We have thus suggested using a Muller BIE approach to solve a lasing eigenvalue problem (LEP), i.e. a linear eigenvalue solution in the form of two real-valued numbers (lasing wavelength and threshold information) when macroscopic gain is introduced into the cavity material within an active region. Such an approach yields clear insight into the lasing thresholds of individual cavities with uniform and non-uniform gain, cavities coupled as photonic molecules and cavities equipped with one or more quantum dots.
Non-Hermitian localization in biological networks
NASA Astrophysics Data System (ADS)
Amir, Ariel; Hatano, Naomichi; Nelson, David R.
2016-04-01
We explore the spectra and localization properties of the N -site banded one-dimensional non-Hermitian random matrices that arise naturally in sparse neural networks. Approximately equal numbers of random excitatory and inhibitory connections lead to spatially localized eigenfunctions and an intricate eigenvalue spectrum in the complex plane that controls the spontaneous activity and induced response. A finite fraction of the eigenvalues condense onto the real or imaginary axes. For large N , the spectrum has remarkable symmetries not only with respect to reflections across the real and imaginary axes but also with respect to 90∘ rotations, with an unusual anisotropic divergence in the localization length near the origin. When chains with periodic boundary conditions become directed, with a systematic directional bias superimposed on the randomness, a hole centered on the origin opens up in the density-of-states in the complex plane. All states are extended on the rim of this hole, while the localized eigenvalues outside the hole are unchanged. The bias-dependent shape of this hole tracks the bias-independent contours of constant localization length. We treat the large-N limit by a combination of direct numerical diagonalization and using transfer matrices, an approach that allows us to exploit an electrostatic analogy connecting the "charges" embodied in the eigenvalue distribution with the contours of constant localization length. We show that similar results are obtained for more realistic neural networks that obey "Dale's law" (each site is purely excitatory or inhibitory) and conclude with perturbation theory results that describe the limit of large directional bias, when all states are extended. Related problems arise in random ecological networks and in chains of artificial cells with randomly coupled gene expression patterns.
Graczyk, Michelle B; Duarte Queirós, Sílvio M
2017-01-01
Employing Random Matrix Theory and Principal Component Analysis techniques, we enlarge our work on the individual and cross-sectional intraday statistical properties of trading volume in financial markets to the study of collective intraday features of that financial observable. Our data consist of the trading volume of the Dow Jones Industrial Average Index components spanning the years between 2003 and 2014. Computing the intraday time dependent correlation matrices and their spectrum of eigenvalues, we show there is a mode ruling the collective behaviour of the trading volume of these stocks whereas the remaining eigenvalues are within the bounds established by random matrix theory, except the second largest eigenvalue which is robustly above the upper bound limit at the opening and slightly above it during the morning-afternoon transition. Taking into account that for price fluctuations it was reported the existence of at least seven significant eigenvalues-and that its autocorrelation function is close to white noise for highly liquid stocks whereas for the trading volume it lasts significantly for more than 2 hours -, our finding goes against any expectation based on those features, even when we take into account the Epps effect. In addition, the weight of the trading volume collective mode is intraday dependent; its value increases as the trading session advances with its eigenversor approaching the uniform vector as well, which corresponds to a soar in the behavioural homogeneity. With respect to the nonstationarity of the collective features of the trading volume we observe that after the financial crisis of 2008 the coherence function shows the emergence of an upset profile with large fluctuations from that year on, a property that concurs with the modification of the average trading volume profile we noted in our previous individual analysis.
The use of Lanczos's method to solve the large generalized symmetric definite eigenvalue problem
NASA Technical Reports Server (NTRS)
Jones, Mark T.; Patrick, Merrell L.
1989-01-01
The generalized eigenvalue problem, Kx = Lambda Mx, is of significant practical importance, especially in structural enginering where it arises as the vibration and buckling problem. A new algorithm, LANZ, based on Lanczos's method is developed. LANZ uses a technique called dynamic shifting to improve the efficiency and reliability of the Lanczos algorithm. A new algorithm for solving the tridiagonal matrices that arise when using Lanczos's method is described. A modification of Parlett and Scott's selective orthogonalization algorithm is proposed. Results from an implementation of LANZ on a Convex C-220 show it to be superior to a subspace iteration code.
Determining entire mean first-passage time for Cayley networks
NASA Astrophysics Data System (ADS)
Wang, Xiaoqian; Dai, Meifeng; Chen, Yufei; Zong, Yue; Sun, Yu; Su, Weiyi
In this paper, we consider the entire mean first-passage time (EMFPT) with random walks for Cayley networks. We use Laplacian spectra to calculate the EMFPT. Firstly, we calculate the constant term and monomial coefficient of characteristic polynomial. By using the Vieta theorem, we then obtain the sum of reciprocals of all nonzero eigenvalues of Laplacian matrix. Finally, we obtain the scaling of the EMFPT for Cayley networks by using the relationship between the sum of reciprocals of all nonzero eigenvalues of Laplacian matrix and the EMFPT. We expect that our method can be adapted to other types of self-similar networks, such as vicsek networks, polymer networks.
A parallel algorithm for the eigenvalues and eigenvectors for a general complex matrix
NASA Technical Reports Server (NTRS)
Shroff, Gautam
1989-01-01
A new parallel Jacobi-like algorithm is developed for computing the eigenvalues of a general complex matrix. Most parallel methods for this parallel typically display only linear convergence. Sequential norm-reducing algorithms also exit and they display quadratic convergence in most cases. The new algorithm is a parallel form of the norm-reducing algorithm due to Eberlein. It is proven that the asymptotic convergence rate of this algorithm is quadratic. Numerical experiments are presented which demonstrate the quadratic convergence of the algorithm and certain situations where the convergence is slow are also identified. The algorithm promises to be very competitive on a variety of parallel architectures.
Coherent mode decomposition using mixed Wigner functions of Hermite-Gaussian beams.
Tanaka, Takashi
2017-04-15
A new method of coherent mode decomposition (CMD) is proposed that is based on a Wigner-function representation of Hermite-Gaussian beams. In contrast to the well-known method using the cross spectral density (CSD), it directly determines the mode functions and their weights without solving the eigenvalue problem. This facilitates the CMD of partially coherent light whose Wigner functions (and thus CSDs) are not separable, in which case the conventional CMD requires solving an eigenvalue problem with a large matrix and thus is numerically formidable. An example is shown regarding the CMD of synchrotron radiation, one of the most important applications of the proposed method.
Structure of Aristotelian electrodynamics
NASA Astrophysics Data System (ADS)
Jacobson, Ted
2015-07-01
Aristotelian electrodynamics (AE) describes the regime of a plasma with a very strong electric field that is not shorted out, with the charge current determined completely by pair production and the balance of the Lorentz 4-force against the curvature radiation reaction. Here it is shown how the principal null directions and associated eigenvalues of the field tensor govern AE, and how force-free electrodynamics arises smoothly from AE when the eigenvalues (and therefore the electric field in some frame) vanish. A criterion for validity of AE and force-free electrodynamics is proposed in terms of a pair of "field curvature scalars" formed from the first derivative of the principal null directions.
NASA Technical Reports Server (NTRS)
Atkins, H. L.; Shu, Chi-Wang
2001-01-01
The explicit stability constraint of the discontinuous Galerkin method applied to the diffusion operator decreases dramatically as the order of the method is increased. Block Jacobi and block Gauss-Seidel preconditioner operators are examined for their effectiveness at accelerating convergence. A Fourier analysis for methods of order 2 through 6 reveals that both preconditioner operators bound the eigenvalues of the discrete spatial operator. Additionally, in one dimension, the eigenvalues are grouped into two or three regions that are invariant with order of the method. Local relaxation methods are constructed that rapidly damp high frequencies for arbitrarily large time step.
Numerical methods for the unsymmetric tridiagonal eigenvalue problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jessup, E.R.
1996-12-31
This report summarizes the results of our project {open_quotes}Numerical Methods for the Unsymmetric Tridiagonal Eigenvalue Problem{close_quotes}. It was funded by both by a DOE grant (No. DE-FG02-92ER25122, 6/1/92-5/31/94, $100,000) and by an NSF Research Initiation Award (No. CCR-9109785, 7/1/91-6/30/93, $46,564.) The publications resulting from that project during the DOE funding period are listed below. Two other journal papers and two other conference papers were produced during the NSF funding period. Most of the listed conference papers are early or partial versions of the listed journal papers.
A nonperturbative light-front coupled-cluster method
NASA Astrophysics Data System (ADS)
Hiller, J. R.
2012-10-01
The nonperturbative Hamiltonian eigenvalue problem for bound states of a quantum field theory is formulated in terms of Dirac's light-front coordinates and then approximated by the exponential-operator technique of the many-body coupled-cluster method. This approximation eliminates any need for the usual approximation of Fock-space truncation. Instead, the exponentiated operator is truncated, and the terms retained are determined by a set of nonlinear integral equations. These equations are solved simultaneously with an effective eigenvalue problem in the valence sector, where the number of constituents is small. Matrix elements can be calculated, with extensions of techniques from standard coupled-cluster theory, to obtain form factors and other observables.
Linear quadratic regulators with eigenvalue placement in a specified region
NASA Technical Reports Server (NTRS)
Shieh, Leang S.; Dib, Hani M.; Ganesan, Sekar
1988-01-01
A linear optimal quadratic regulator is developed for optimally placing the closed-loop poles of multivariable continuous-time systems within the common region of an open sector, bounded by lines inclined at + or - pi/2k (k = 2 or 3) from the negative real axis with a sector angle of pi/2 or less, and the left-hand side of a line parallel to the imaginary axis in the complex s-plane. The design method is mainly based on the solution of a linear matrix Liapunov equation, and the resultant closed-loop system with its eigenvalues in the desired region is optimal with respect to a quadratic performance index.
Statistical properties of the stock and credit market: RMT and network topology
NASA Astrophysics Data System (ADS)
Lim, Kyuseong; Kim, Min Jae; Kim, Sehyun; Kim, Soo Yong
We analyzed the dependence structure of the credit and stock market using random matrix theory and network topology. The dynamics of both markets have been spotlighted throughout the subprime crisis. In this study, we compared these two markets in view of the market-wide effect from random matrix theory and eigenvalue analysis. We found that the largest eigenvalue of the credit market as a whole preceded that of the stock market in the beginning of the financial crisis and that of two markets tended to be synchronized after the crisis. The correlation between the companies of both markets became considerably stronger after the crisis as well.
Dias, Jerry Ray
2016-06-09
The results herein demonstrate that the methods of circumscribing and the facile calculation of Hückel molecular orbital (HMO) eigenvalues by mirror-plane fragmentation have a broad application in the construction of carbon cluster series and the systematic study of trends in their electronic properties. In comparing open-ended nanotubes and their isomeric elongated fullerenes (bicapped nanotubes), we show that the former are more aromatic but the latter are more conjugated and that progressive elongation increases aromaticity and conjugation in both. Recursion equations that will allow one to obtain the eigenvalues to all 5-endcapped nanotubes are given.
Capabilities of Fully Parallelized MHD Stability Code MARS
NASA Astrophysics Data System (ADS)
Svidzinski, Vladimir; Galkin, Sergei; Kim, Jin-Soo; Liu, Yueqiang
2016-10-01
Results of full parallelization of the plasma stability code MARS will be reported. MARS calculates eigenmodes in 2D axisymmetric toroidal equilibria in MHD-kinetic plasma models. Parallel version of MARS, named PMARS, has been recently developed at FAR-TECH. Parallelized MARS is an efficient tool for simulation of MHD instabilities with low, intermediate and high toroidal mode numbers within both fluid and kinetic plasma models, implemented in MARS. Parallelization of the code included parallelization of the construction of the matrix for the eigenvalue problem and parallelization of the inverse vector iterations algorithm, implemented in MARS for the solution of the formulated eigenvalue problem. Construction of the matrix is parallelized by distributing the load among processors assigned to different magnetic surfaces. Parallelization of the solution of the eigenvalue problem is made by repeating steps of the MARS algorithm using parallel libraries and procedures. Parallelized MARS is capable of calculating eigenmodes with significantly increased spatial resolution: up to 5,000 adapted radial grid points with up to 500 poloidal harmonics. Such resolution is sufficient for simulation of kink, tearing and peeling-ballooning instabilities with physically relevant parameters. Work is supported by the U.S. DOE SBIR program.
Fully Parallel MHD Stability Analysis Tool
NASA Astrophysics Data System (ADS)
Svidzinski, Vladimir; Galkin, Sergei; Kim, Jin-Soo; Liu, Yueqiang
2015-11-01
Progress on full parallelization of the plasma stability code MARS will be reported. MARS calculates eigenmodes in 2D axisymmetric toroidal equilibria in MHD-kinetic plasma models. It is a powerful tool for studying MHD and MHD-kinetic instabilities and it is widely used by fusion community. Parallel version of MARS is intended for simulations on local parallel clusters. It will be an efficient tool for simulation of MHD instabilities with low, intermediate and high toroidal mode numbers within both fluid and kinetic plasma models, already implemented in MARS. Parallelization of the code includes parallelization of the construction of the matrix for the eigenvalue problem and parallelization of the inverse iterations algorithm, implemented in MARS for the solution of the formulated eigenvalue problem. Construction of the matrix is parallelized by distributing the load among processors assigned to different magnetic surfaces. Parallelization of the solution of the eigenvalue problem is made by repeating steps of the present MARS algorithm using parallel libraries and procedures. Results of MARS parallelization and of the development of a new fix boundary equilibrium code adapted for MARS input will be reported. Work is supported by the U.S. DOE SBIR program.
An eigenvalue approach to quantum plasmonics based on a self-consistent hydrodynamics method
NASA Astrophysics Data System (ADS)
Ding, Kun; Chan, C. T.
2018-02-01
Plasmonics has attracted much attention not only because it has useful properties such as strong field enhancement, but also because it reveals the quantum nature of matter. To handle quantum plasmonics effects, ab initio packages or empirical Feibelman d-parameters have been used to explore the quantum correction of plasmonic resonances. However, most of these methods are formulated within the quasi-static framework. The self-consistent hydrodynamics model offers a reliable approach to study quantum plasmonics because it can incorporate the quantum effect of the electron gas into classical electrodynamics in a consistent manner. Instead of the standard scattering method, we formulate the self-consistent hydrodynamics method as an eigenvalue problem to study quantum plasmonics with electrons and photons treated on the same footing. We find that the eigenvalue approach must involve a global operator, which originates from the energy functional of the electron gas. This manifests the intrinsic nonlocality of the response of quantum plasmonic resonances. Our model gives the analytical forms of quantum corrections to plasmonic modes, incorporating quantum electron spill-out effects and electrodynamical retardation. We apply our method to study the quantum surface plasmon polariton for a single flat interface.
ORACLE INEQUALITIES FOR THE LASSO IN THE COX MODEL
Huang, Jian; Sun, Tingni; Ying, Zhiliang; Yu, Yi; Zhang, Cun-Hui
2013-01-01
We study the absolute penalized maximum partial likelihood estimator in sparse, high-dimensional Cox proportional hazards regression models where the number of time-dependent covariates can be larger than the sample size. We establish oracle inequalities based on natural extensions of the compatibility and cone invertibility factors of the Hessian matrix at the true regression coefficients. Similar results based on an extension of the restricted eigenvalue can be also proved by our method. However, the presented oracle inequalities are sharper since the compatibility and cone invertibility factors are always greater than the corresponding restricted eigenvalue. In the Cox regression model, the Hessian matrix is based on time-dependent covariates in censored risk sets, so that the compatibility and cone invertibility factors, and the restricted eigenvalue as well, are random variables even when they are evaluated for the Hessian at the true regression coefficients. Under mild conditions, we prove that these quantities are bounded from below by positive constants for time-dependent covariates, including cases where the number of covariates is of greater order than the sample size. Consequently, the compatibility and cone invertibility factors can be treated as positive constants in our oracle inequalities. PMID:24086091
ORACLE INEQUALITIES FOR THE LASSO IN THE COX MODEL.
Huang, Jian; Sun, Tingni; Ying, Zhiliang; Yu, Yi; Zhang, Cun-Hui
2013-06-01
We study the absolute penalized maximum partial likelihood estimator in sparse, high-dimensional Cox proportional hazards regression models where the number of time-dependent covariates can be larger than the sample size. We establish oracle inequalities based on natural extensions of the compatibility and cone invertibility factors of the Hessian matrix at the true regression coefficients. Similar results based on an extension of the restricted eigenvalue can be also proved by our method. However, the presented oracle inequalities are sharper since the compatibility and cone invertibility factors are always greater than the corresponding restricted eigenvalue. In the Cox regression model, the Hessian matrix is based on time-dependent covariates in censored risk sets, so that the compatibility and cone invertibility factors, and the restricted eigenvalue as well, are random variables even when they are evaluated for the Hessian at the true regression coefficients. Under mild conditions, we prove that these quantities are bounded from below by positive constants for time-dependent covariates, including cases where the number of covariates is of greater order than the sample size. Consequently, the compatibility and cone invertibility factors can be treated as positive constants in our oracle inequalities.
Efficient Algorithms for Estimating the Absorption Spectrum within Linear Response TDDFT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brabec, Jiri; Lin, Lin; Shao, Meiyue
We present a special symmetric Lanczos algorithm and a kernel polynomial method (KPM) for approximating the absorption spectrum of molecules within the linear response time-dependent density functional theory (TDDFT) framework in the product form. In contrast to existing algorithms, the new algorithms are based on reformulating the original non-Hermitian eigenvalue problem as a product eigenvalue problem and the observation that the product eigenvalue problem is self-adjoint with respect to an appropriately chosen inner product. This allows a simple symmetric Lanczos algorithm to be used to compute the desired absorption spectrum. The use of a symmetric Lanczos algorithm only requires halfmore » of the memory compared with the nonsymmetric variant of the Lanczos algorithm. The symmetric Lanczos algorithm is also numerically more stable than the nonsymmetric version. The KPM algorithm is also presented as a low-memory alternative to the Lanczos approach, but the algorithm may require more matrix-vector multiplications in practice. We discuss the pros and cons of these methods in terms of their accuracy as well as their computational and storage cost. Applications to a set of small and medium-sized molecules are also presented.« less
Studying relaxation phenomena via effective master equations
NASA Astrophysics Data System (ADS)
Chan, David; Wan, Jones T. K.; Chu, L. L.; Yu, K. W.
2000-04-01
The real-time dynamics of various relaxation phenomena can be conveniently formulated by a master equation with the enumeration of transition rates between given classes of conformations. To study the relaxation time towards equilibrium, it suffices to solve for the second largest eigenvalue of the resulting eigenvalue equation. Generally speaking, there is no analytic solution for the dynamic equation. Mean-field approaches generally yield misleading results while the presumably exact Monte-Carlo methods require prohibitive time steps in most real systems. In this work, we propose an exact decimation procedure for reducing the number of conformations significantly, while there is no loss of information, i.e., the reduced (or effective) equation is an exact transformed version of the original one. However, we have to pay the price: the initial Markovianity of the evolution equation is lost and the reduced equation contains memory terms in the transition rates. Since the transformed equation has significantly reduced number of degrees of freedom, the systems can readily be diagonalized by iterative means, to obtain the exact second largest eigenvalue and hence the relaxation time. The decimation method has been applied to various relaxation equations with generally desirable results. The advantages and limitations of the method will be discussed.
A systematic linear space approach to solving partially described inverse eigenvalue problems
NASA Astrophysics Data System (ADS)
Hu, Sau-Lon James; Li, Haujun
2008-06-01
Most applications of the inverse eigenvalue problem (IEP), which concerns the reconstruction of a matrix from prescribed spectral data, are associated with special classes of structured matrices. Solving the IEP requires one to satisfy both the spectral constraint and the structural constraint. If the spectral constraint consists of only one or few prescribed eigenpairs, this kind of inverse problem has been referred to as the partially described inverse eigenvalue problem (PDIEP). This paper develops an efficient, general and systematic approach to solve the PDIEP. Basically, the approach, applicable to various structured matrices, converts the PDIEP into an ordinary inverse problem that is formulated as a set of simultaneous linear equations. While solving simultaneous linear equations for model parameters, the singular value decomposition method is applied. Because of the conversion to an ordinary inverse problem, other constraints associated with the model parameters can be easily incorporated into the solution procedure. The detailed derivation and numerical examples to implement the newly developed approach to symmetric Toeplitz and quadratic pencil (including mass, damping and stiffness matrices of a linear dynamic system) PDIEPs are presented. Excellent numerical results for both kinds of problem are achieved under the situations that have either unique or infinitely many solutions.
Efficient Algorithms for Estimating the Absorption Spectrum within Linear Response TDDFT
Brabec, Jiri; Lin, Lin; Shao, Meiyue; ...
2015-10-06
We present a special symmetric Lanczos algorithm and a kernel polynomial method (KPM) for approximating the absorption spectrum of molecules within the linear response time-dependent density functional theory (TDDFT) framework in the product form. In contrast to existing algorithms, the new algorithms are based on reformulating the original non-Hermitian eigenvalue problem as a product eigenvalue problem and the observation that the product eigenvalue problem is self-adjoint with respect to an appropriately chosen inner product. This allows a simple symmetric Lanczos algorithm to be used to compute the desired absorption spectrum. The use of a symmetric Lanczos algorithm only requires halfmore » of the memory compared with the nonsymmetric variant of the Lanczos algorithm. The symmetric Lanczos algorithm is also numerically more stable than the nonsymmetric version. The KPM algorithm is also presented as a low-memory alternative to the Lanczos approach, but the algorithm may require more matrix-vector multiplications in practice. We discuss the pros and cons of these methods in terms of their accuracy as well as their computational and storage cost. Applications to a set of small and medium-sized molecules are also presented.« less
Eigensolutions of nonviscously damped systems based on the fixed-point iteration
NASA Astrophysics Data System (ADS)
Lázaro, Mario
2018-03-01
In this paper, nonviscous, nonproportional, symmetric vibrating structures are considered. Nonviscously damped systems present dissipative forces depending on the time history of the response via kernel hereditary functions. Solutions of the free motion equation leads to a nonlinear eigenvalue problem involving mass, stiffness and damping matrices, this latter as dependent on frequency. Viscous damping can be considered as a particular case, involving damping forces as function of the instantaneous velocity of the degrees of freedom. In this work, a new numerical procedure to compute eigensolutions is proposed. The method is based on the construction of certain recursive functions which, under a iterative scheme, allow to reach eigenvalues and eigenvectors simultaneously and avoiding computation of eigensensitivities. Eigenvalues can be read then as fixed-points of those functions. A deep analysis of the convergence is carried out, focusing specially on relating the convergence conditions and error-decay rate to the damping model features, such as the nonproportionality and the viscoelasticity. The method is validated using two 6 degrees of freedom numerical examples involving both nonviscous and viscous damping and a continuous system with a local nonviscous damper. The convergence and the sequences behavior are in agreement with the results foreseen by the theory.
The behaviour of resonances in Hecke triangular billiards under deformation
NASA Astrophysics Data System (ADS)
Howard, P. J.; O'Mahony, P. F.
2007-08-01
The right-hand boundary of Artin's billiard on the Poincaré half-plane is continuously deformed to generate a class of chaotic billiards which includes fundamental domains of the Hecke groups Γ(2, n) at certain values of the deformation parameter. The quantum scattering problem in these open chaotic billiards is described and the distributions of both real and imaginary parts of the resonant eigenvalues are investigated. The transitions to arithmetic chaos in the cases n ∈ {4, 6} are closely examined and the explicit analytic form for the scattering matrix is given together with the Fourier coefficients for the scattered wavefunction. The n = 4 and 6 cases have an additional set of regular equally spaced resonances compared to Artin's billiard (n = 3). For a general deformation, a numerical procedure is presented which generates the resonance eigenvalues and the evolution of the eigenvalues is followed as the boundary is varied continuously which leads to dramatic changes in their distribution. For deformations away from the non-generic arithmetic cases, including that of the tiling Hecke triangular billiard n = 5, the distributions of the positions and widths of the resonances are consistent with the predictions of a random matrix theory.
NASA Astrophysics Data System (ADS)
Chang, Yao-Chung; Lai, Chin-Feng; Chuang, Chi-Cheng; Hou, Cheng-Yu
2018-04-01
With the progress of science and technology, more and more machines are adpot to help human life better and more convenient. When the machines have been used for a longer period of time so that the machine components are getting old, the amount of power comsumption will increase and easily cause the machine to overheat. This also causes a waste of invisible resources. If the Internet of Everything (IoE) technologies are able to be applied into the enterprise information systems for monitoring the machines use time, it can not only make energy can be effectively used, but aslo create a safer living environment. To solve the above problem, the correlation predict model is established to collect the data of power consumption converted into power eigenvalues. This study takes the power eigenvalue as the independent variable and use time as the dependent variable in order to establish the decline curve. Ultimately, the scoring and estimation modules are employed to seek the best power eigenvalue as the independent variable. To predict use time, the correlation is discussed between the use time and the decline curve to improve the entire behavioural analysis of the facilitate recognition of the use time of machines.
NASA Astrophysics Data System (ADS)
Cuevas-Maraver, Jesús; Kevrekidis, Panayotis G.; Vainchtein, Anna; Xu, Haitao
2017-09-01
In this work, we provide two complementary perspectives for the (spectral) stability of solitary traveling waves in Hamiltonian nonlinear dynamical lattices, of which the Fermi-Pasta-Ulam and the Toda lattice are prototypical examples. One is as an eigenvalue problem for a stationary solution in a cotraveling frame, while the other is as a periodic orbit modulo shifts. We connect the eigenvalues of the former with the Floquet multipliers of the latter and using this formulation derive an energy-based spectral stability criterion. It states that a sufficient (but not necessary) condition for a change in the wave stability occurs when the functional dependence of the energy (Hamiltonian) H of the model on the wave velocity c changes its monotonicity. Moreover, near the critical velocity where the change of stability occurs, we provide an explicit leading-order computation of the unstable eigenvalues, based on the second derivative of the Hamiltonian H''(c0) evaluated at the critical velocity c0. We corroborate this conclusion with a series of analytically and numerically tractable examples and discuss its parallels with a recent energy-based criterion for the stability of discrete breathers.
NASA Technical Reports Server (NTRS)
Greco, E. C.; Schlegel, T. T.; Arenare, B.; DePalma, J. L.; Starc, V.; Rahman, M. A.; Delgado, R.
2007-01-01
We investigated the ability of several known as well as new ECG repolarization parameters to differentiate healthy individuals from patients with obstructive coronary artery disease (CAD) and cardiomyopathy (CM). Advanced high-fidelity 12-lead ECG tests (approx. 5-min supine) were first performed on a "training set" of 99 individuals: 33 with ischemic or dilated CM and low ejection fraction (EF less than 40%); 33 with catheterization-proven obstructive CAD but normal EF; and 33 age-/gender-matched healthy controls. The following multiple parameters of T-wave morphology (TWM) were derived via signal averaging and singular value decomposition (SVD, which yields 8 eigenvalues, rho(sub 1) greater than rho(sub 2)...greater than rho(sub 8) and studied for their retrospective accuracy in detecting underlying disease: 1) Principal component analysis ratio of the T wave (T-PCA) = 100*rho(sub 2)/rho(sub 1); 2) Relative T-wave residuum (rTWR) = 100* SIGMA (rho(sub 4)(sup 2) +...+ rho(sub 8)(sup 2)); 3) Modified complexity ratio of the T wave (T-mCR) = 100*SIGMA(rho(sub 3)(sup 2) +...+rho(sb 8) (sup 2)); and 4) Normalized 3-dimensional volume of the T wave (nTV) = 100*(rho(sub 2)*rho(sub 3)/rho(sub 1)(sup 2). All TWM parameters significantly differentiated CAD from controls (p less than 0.0001), and also CM from controls (p less than 0.0001). Retrospective areas under the ROC curve were 0.77, 0.81, 0.82, and 0.83 (CAD vs. controls) and 0.93, 0.89, 0.95 and 0.96 (CM vs. controls) for T-PCA, rTWR, T-mCR and nTV respectively. The newer TWM parameters (T-mCR and nTV) thus outperformed the more established parameters (T-PCA and rTWR), presumably by putting a greater emphasis on the third T-wave eigenvalue, which in most healthy subjects has little energy compared to the first two eigenvalues. Subsequent prospective analyses have also yielded similar results, such that we conclude that diagnostic differentiation of pathology from non-pathology may be especially aided by detecting the transference of energy from the first and second T-wave eigenvalues into the third T-wave eigenvalue.
NASA Technical Reports Server (NTRS)
Pak, Chan-gi; Lung, Shun-fat
2009-01-01
Modern airplane design is a multidisciplinary task which combines several disciplines such as structures, aerodynamics, flight controls, and sometimes heat transfer. Historically, analytical and experimental investigations concerning the interaction of the elastic airframe with aerodynamic and in retia loads have been conducted during the design phase to determine the existence of aeroelastic instabilities, so called flutter .With the advent and increased usage of flight control systems, there is also a likelihood of instabilities caused by the interaction of the flight control system and the aeroelastic response of the airplane, known as aeroservoelastic instabilities. An in -house code MPASES (Ref. 1), modified from PASES (Ref. 2), is a general purpose digital computer program for the analysis of the closed-loop stability problem. This program used subroutines given in the International Mathematical and Statistical Library (IMSL) (Ref. 3) to compute all of the real and/or complex conjugate pairs of eigenvalues of the Hessenberg matrix. For high fidelity configuration, these aeroelastic system matrices are large and compute all eigenvalues will be time consuming. A subspace iteration method (Ref. 4) for complex eigenvalues problems with nonsymmetric matrices has been formulated and incorporated into the modified program for aeroservoelastic stability (MPASES code). Subspace iteration method only solve for the lowest p eigenvalues and corresponding eigenvectors for aeroelastic and aeroservoelastic analysis. In general, the selection of p is ranging from 10 for wing flutter analysis to 50 for an entire aircraft flutter analysis. The application of this newly incorporated code is an experiment known as the Aerostructures Test Wing (ATW) which was designed by the National Aeronautic and Space Administration (NASA) Dryden Flight Research Center, Edwards, California to research aeroelastic instabilities. Specifically, this experiment was used to study an instability known as flutter. ATW was a small-scale airplane wing comprised of an airfoil and wing tip boom. This wing was formulated based on a NACA-65A004 airfoil shape with a 3.28 aspect ratio. The wing had a span of 18 inch with root chord length of 13.2 inch and tip chord length of 8.7 inch. The total area of this wing was 197 square inch. The wing tip boom was a 1 inch diameter hollow tube of length 21.5 inch. The total weight of the wing was 2.66 lbs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smed, T.
Traditional eigenvalue sensitivity for power systems requires the formulation of the system matrix, which lacks sparsity. In this paper, a new sensitivity analysis, derived for a sparse formulation, is presented. Variables that are computed as intermediate results in established eigen value programs for power systems, but not used further, are given a new interpretation. The effect of virtually any control action can be assessed based on a single eigenvalue-eigenvector calculation. In particular, the effect of active and reactive power modulation can be found as a multiplication of two or three complex numbers. The method is illustrated in an example formore » a large power system when applied to the control design for an HVDC-link.« less
Artificial dissipation and central difference schemes for the Euler and Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Swanson, R. C.; Turkel, Eli
1987-01-01
An artificial dissipation model, including boundary treatment, that is employed in many central difference schemes for solving the Euler and Navier-Stokes equations is discussed. Modifications of this model such as the eigenvalue scaling suggested by upwind differencing are examined. Multistage time stepping schemes with and without a multigrid method are used to investigate the effects of changes in the dissipation model on accuracy and convergence. Improved accuracy for inviscid and viscous airfoil flow is obtained with the modified eigenvalue scaling. Slower convergence rates are experienced with the multigrid method using such scaling. The rate of convergence is improved by applying a dissipation scaling function that depends on mesh cell aspect ratio.
An O(log sup 2 N) parallel algorithm for computing the eigenvalues of a symmetric tridiagonal matrix
NASA Technical Reports Server (NTRS)
Swarztrauber, Paul N.
1989-01-01
An O(log sup 2 N) parallel algorithm is presented for computing the eigenvalues of a symmetric tridiagonal matrix using a parallel algorithm for computing the zeros of the characteristic polynomial. The method is based on a quadratic recurrence in which the characteristic polynomial is constructed on a binary tree from polynomials whose degree doubles at each level. Intervals that contain exactly one zero are determined by the zeros of polynomials at the previous level which ensures that different processors compute different zeros. The exact behavior of the polynomials at the interval endpoints is used to eliminate the usual problems induced by finite precision arithmetic.
A Spectral Analysis of Discrete-Time Quantum Walks Related to the Birth and Death Chains
NASA Astrophysics Data System (ADS)
Ho, Choon-Lin; Ide, Yusuke; Konno, Norio; Segawa, Etsuo; Takumi, Kentaro
2018-04-01
In this paper, we consider a spectral analysis of discrete time quantum walks on the path. For isospectral coin cases, we show that the time averaged distribution and stationary distributions of the quantum walks are described by the pair of eigenvalues of the coins as well as the eigenvalues and eigenvectors of the corresponding random walks which are usually referred as the birth and death chains. As an example of the results, we derive the time averaged distribution of so-called Szegedy's walk which is related to the Ehrenfest model. It is represented by Krawtchouk polynomials which is the eigenvectors of the model and includes the arcsine law.
Continuous-spin mixed-symmetry fields in AdS(5)
NASA Astrophysics Data System (ADS)
Metsaev, R. R.
2018-05-01
Free mixed-symmetry continuous-spin fields propagating in AdS(5) space and flat R(4,1) space are studied. In the framework of a light-cone gauge formulation of relativistic dynamics, we build simple actions for such fields. The realization of relativistic symmetries on the space of light-cone gauge mixed-symmetry continuous-spin fields is also found. Interrelations between constant parameters entering the light-cone gauge actions and eigenvalues of the Casimir operators of space-time symmetry algebras are obtained. Using these interrelations and requiring that the field dynamics in AdS(5) be irreducible and classically unitary, we derive restrictions on the constant parameters and eigenvalues of the second-order Casimir operator of the algebra.
QCD dirac operator at nonzero chemical potential: lattice data and matrix model.
Akemann, Gernot; Wettig, Tilo
2004-03-12
Recently, a non-Hermitian chiral random matrix model was proposed to describe the eigenvalues of the QCD Dirac operator at nonzero chemical potential. This matrix model can be constructed from QCD by mapping it to an equivalent matrix model which has the same symmetries as QCD with chemical potential. Its microscopic spectral correlations are conjectured to be identical to those of the QCD Dirac operator. We investigate this conjecture by comparing large ensembles of Dirac eigenvalues in quenched SU(3) lattice QCD at a nonzero chemical potential to the analytical predictions of the matrix model. Excellent agreement is found in the two regimes of weak and strong non-Hermiticity, for several different lattice volumes.
Large space structure damping design
NASA Technical Reports Server (NTRS)
Pilkey, W. D.; Haviland, J. K.
1983-01-01
Several FORTRAN subroutines and programs were developed which compute complex eigenvalues of a damped system using different approaches, and which rescale mode shapes to unit generalized mass and make rigid bodies orthogonal to each other. An analytical proof of a Minimum Constrained Frequency Criterion (MCFC) for a single damper is presented. A method to minimize the effect of control spill-over for large space structures is proposed. The characteristic equation of an undamped system with a generalized control law is derived using reanalysis theory. This equation can be implemented in computer programs for efficient eigenvalue analysis or control quasi synthesis. Methods to control vibrations in large space structure are reviewed and analyzed. The resulting prototype, using electromagnetic actuator, is described.
Non-linear eigensolver-based alternative to traditional SCF methods
NASA Astrophysics Data System (ADS)
Gavin, B.; Polizzi, E.
2013-05-01
The self-consistent procedure in electronic structure calculations is revisited using a highly efficient and robust algorithm for solving the non-linear eigenvector problem, i.e., H({ψ})ψ = Eψ. This new scheme is derived from a generalization of the FEAST eigenvalue algorithm to account for the non-linearity of the Hamiltonian with the occupied eigenvectors. Using a series of numerical examples and the density functional theory-Kohn/Sham model, it will be shown that our approach can outperform the traditional SCF mixing-scheme techniques by providing a higher converge rate, convergence to the correct solution regardless of the choice of the initial guess, and a significant reduction of the eigenvalue solve time in simulations.
Mixed-mode oscillations and interspike interval statistics in the stochastic FitzHugh-Nagumo model
NASA Astrophysics Data System (ADS)
Berglund, Nils; Landon, Damien
2012-08-01
We study the stochastic FitzHugh-Nagumo equations, modelling the dynamics of neuronal action potentials in parameter regimes characterized by mixed-mode oscillations. The interspike time interval is related to the random number of small-amplitude oscillations separating consecutive spikes. We prove that this number has an asymptotically geometric distribution, whose parameter is related to the principal eigenvalue of a substochastic Markov chain. We provide rigorous bounds on this eigenvalue in the small-noise regime and derive an approximation of its dependence on the system's parameters for a large range of noise intensities. This yields a precise description of the probability distribution of observed mixed-mode patterns and interspike intervals.
The discrete hungry Lotka Volterra system and a new algorithm for computing matrix eigenvalues
NASA Astrophysics Data System (ADS)
Fukuda, Akiko; Ishiwata, Emiko; Iwasaki, Masashi; Nakamura, Yoshimasa
2009-01-01
The discrete hungry Lotka-Volterra (dhLV) system is a generalization of the discrete Lotka-Volterra (dLV) system which stands for a prey-predator model in mathematical biology. In this paper, we show that (1) some invariants exist which are expressed by dhLV variables and are independent from the discrete time and (2) a dhLV variable converges to some positive constant or zero as the discrete time becomes sufficiently large. Some characteristic polynomial is then factorized with the help of the dhLV system. The asymptotic behaviour of the dhLV system enables us to design an algorithm for computing complex eigenvalues of a certain band matrix.
Effects of sources on time-domain finite difference models.
Botts, Jonathan; Savioja, Lauri
2014-07-01
Recent work on excitation mechanisms in acoustic finite difference models focuses primarily on physical interpretations of observed phenomena. This paper offers an alternative view by examining the properties of models from the perspectives of linear algebra and signal processing. Interpretation of a simulation as matrix exponentiation clarifies the separate roles of sources as boundaries and signals. Boundary conditions modify the matrix and thus its modal structure, and initial conditions or source signals shape the solution, but not the modal structure. Low-frequency artifacts are shown to follow from eigenvalues and eigenvectors of the matrix, and previously reported artifacts are predicted from eigenvalue estimates. The role of source signals is also briefly discussed.
Instability of the cored barotropic disc: the linear eigenvalue formulation
NASA Astrophysics Data System (ADS)
Polyachenko, E. V.
2018-05-01
Gaseous rotating razor-thin discs are a testing ground for theories of spiral structure that try to explain appearance and diversity of disc galaxy patterns. These patterns are believed to arise spontaneously under the action of gravitational instability, but calculations of its characteristics in the gas are mostly obscured. The paper suggests a new method for finding the spiral patterns based on an expansion of small amplitude perturbations over Lagrange polynomials in small radial elements. The final matrix equation is extracted from the original hydrodynamical equations without the use of an approximate theory and has a form of the linear algebraic eigenvalue problem. The method is applied to a galactic model with the cored exponential density profile.
NASA Astrophysics Data System (ADS)
Boffi, Nicholas M.; Jain, Manish; Natan, Amir
2016-02-01
A real-space high order finite difference method is used to analyze the effect of spherical domain size on the Hartree-Fock (and density functional theory) virtual eigenstates. We show the domain size dependence of both positive and negative virtual eigenvalues of the Hartree-Fock equations for small molecules. We demonstrate that positive states behave like a particle in spherical well and show how they approach zero. For the negative eigenstates, we show that large domains are needed to get the correct eigenvalues. We compare our results to those of Gaussian basis sets and draw some conclusions for real-space, basis-sets, and plane-waves calculations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Yongzheng, E-mail: yzsung@gmail.com; Li, Wang; Zhao, Donghua
In this paper, we propose a new consensus model in which the interactions among agents stochastically switch between attraction and repulsion. Such a positive-and-negative mechanism is described by the white-noise-based coupling. Analytic criteria for the consensus and non-consensus in terms of the eigenvalues of the noise intensity matrix are derived, which provide a better understanding of the constructive roles of random interactions. Specifically, we discover a positive role of noise coupling that noise can accelerate the emergence of consensus. We find that the converging speed of the multi-agent network depends on the square of the second smallest eigenvalue of itsmore » graph Laplacian. The influence of network topologies on the consensus time is also investigated.« less
Phase portraits of the full symmetric Toda systems on rank-2 groups
NASA Astrophysics Data System (ADS)
Sorin, A. S.; Chernyakov, Yu. B.; Sharygin, G. I.
2017-11-01
We continue investigations begun in our previous works where we proved that the phase diagram of the Toda system on special linear groups can be identified with the Bruhat order on the symmetric group if all eigenvalues of the Lax matrix are distinct or with the Bruhat order on permutations of a multiset if there are multiple eigenvalues. We show that the phase portrait of the Toda system and the Hasse diagram of the Bruhat order coincide in the case of an arbitrary simple Lie group of rank 2. For this, we verify this property for the two remaining rank-2 groups, Sp(4,ℝ) and the real form of G2.
Cocco, Simona; Monasson, Remi; Weigt, Martin
2013-01-01
Various approaches have explored the covariation of residues in multiple-sequence alignments of homologous proteins to extract functional and structural information. Among those are principal component analysis (PCA), which identifies the most correlated groups of residues, and direct coupling analysis (DCA), a global inference method based on the maximum entropy principle, which aims at predicting residue-residue contacts. In this paper, inspired by the statistical physics of disordered systems, we introduce the Hopfield-Potts model to naturally interpolate between these two approaches. The Hopfield-Potts model allows us to identify relevant ‘patterns’ of residues from the knowledge of the eigenmodes and eigenvalues of the residue-residue correlation matrix. We show how the computation of such statistical patterns makes it possible to accurately predict residue-residue contacts with a much smaller number of parameters than DCA. This dimensional reduction allows us to avoid overfitting and to extract contact information from multiple-sequence alignments of reduced size. In addition, we show that low-eigenvalue correlation modes, discarded by PCA, are important to recover structural information: the corresponding patterns are highly localized, that is, they are concentrated in few sites, which we find to be in close contact in the three-dimensional protein fold. PMID:23990764
Optical reflection from planetary surfaces as an operator-eigenvalue problem
Wildey, R.L.
1986-01-01
The understanding of quantum mechanical phenomena has come to rely heavily on theory framed in terms of operators and their eigenvalue equations. This paper investigates the utility of that technique as related to the reciprocity principle in diffuse reflection. The reciprocity operator is shown to be unitary and Hermitian; hence, its eigenvectors form a complete orthonormal basis. The relevant eigenvalue is found to be infinitely degenerate. A superposition of the eigenfunctions found from solution by separation of variables is inadequate to form a general solution that can be fitted to a one-dimensional boundary condition, because the difficulty of resolving the reciprocity operator into a superposition of independent one-dimensional operators has yet to be overcome. A particular lunar application in the form of a failed prediction of limb-darkening of the full Moon from brightness versus phase illustrates this problem. A general solution is derived which fully exploits the determinative powers of the reciprocity operator as an unresolved two-dimensional operator. However, a solution based on a sum of one-dimensional operators, if possible, would be much more powerful. A close association is found between the reciprocity operator and the particle-exchange operator of quantum mechanics, which may indicate the direction for further successful exploitation of the approach based on the operational calculus. ?? 1986 D. Reidel Publishing Company.
Ordinary versus PT-symmetric Φ³ quantum field theory
Bender, Carl M.; Branchina, Vincenzo; Messina, Emanuele
2012-04-02
A quantum-mechanical theory is PT-symmetric if it is described by a Hamiltonian that commutes with PT, where the operator P performs space reflection and the operator T performs time reversal. A PT-symmetric Hamiltonian often has a parametric region of unbroken PT symmetry in which the energy eigenvalues are all real. There may also be a region of broken PT symmetry in which some of the eigenvalues are complex. These regions are separated by a phase transition that has been repeatedly observed in laboratory experiments. This paper focuses on the properties of a PT-symmetric igΦ³ quantum field theory. This quantum fieldmore » theory is the analog of the PT-symmetric quantum-mechanical theory described by the Hamiltonian H=p²+ix³, whose eigenvalues have been rigorously shown to be all real. This paper compares the renormalization group properties of a conventional Hermitian gΦ³ quantum field theory with those of the PT-symmetric igΦ³ quantum field theory. It is shown that while the conventional gΦ³ theory in d=6 dimensions is asymptotically free, the igΦ³ theory is like a gΦ⁴ theory in d=4 dimensions; it is energetically stable, perturbatively renormalizable, and trivial.« less
Reuter, Martin; Wolter, Franz-Erich; Shenton, Martha; Niethammer, Marc
2009-01-01
This paper proposes the use of the surface based Laplace-Beltrami and the volumetric Laplace eigenvalues and -functions as shape descriptors for the comparison and analysis of shapes. These spectral measures are isometry invariant and therefore allow for shape comparisons with minimal shape pre-processing. In particular, no registration, mapping, or remeshing is necessary. The discriminatory power of the 2D surface and 3D solid methods is demonstrated on a population of female caudate nuclei (a subcortical gray matter structure of the brain, involved in memory function, emotion processing, and learning) of normal control subjects and of subjects with schizotypal personality disorder. The behavior and properties of the Laplace-Beltrami eigenvalues and -functions are discussed extensively for both the Dirichlet and Neumann boundary condition showing advantages of the Neumann vs. the Dirichlet spectra in 3D. Furthermore, topological analyses employing the Morse-Smale complex (on the surfaces) and the Reeb graph (in the solids) are performed on selected eigenfunctions, yielding shape descriptors, that are capable of localizing geometric properties and detecting shape differences by indirectly registering topological features such as critical points, level sets and integral lines of the gradient field across subjects. The use of these topological features of the Laplace-Beltrami eigenfunctions in 2D and 3D for statistical shape analysis is novel. PMID:20161035
Bienvenu, François; Akçay, Erol; Legendre, Stéphane; McCandlish, David M
2017-06-01
Matrix projection models are a central tool in many areas of population biology. In most applications, one starts from the projection matrix to quantify the asymptotic growth rate of the population (the dominant eigenvalue), the stable stage distribution, and the reproductive values (the dominant right and left eigenvectors, respectively). Any primitive projection matrix also has an associated ergodic Markov chain that contains information about the genealogy of the population. In this paper, we show that these facts can be used to specify any matrix population model as a triple consisting of the ergodic Markov matrix, the dominant eigenvalue and one of the corresponding eigenvectors. This decomposition of the projection matrix separates properties associated with lineages from those associated with individuals. It also clarifies the relationships between many quantities commonly used to describe such models, including the relationship between eigenvalue sensitivities and elasticities. We illustrate the utility of such a decomposition by introducing a new method for aggregating classes in a matrix population model to produce a simpler model with a smaller number of classes. Unlike the standard method, our method has the advantage of preserving reproductive values and elasticities. It also has conceptually satisfying properties such as commuting with changes of units. Copyright © 2017 Elsevier Inc. All rights reserved.
The feasibility and stability of large complex biological networks: a random matrix approach.
Stone, Lewi
2018-05-29
In the 70's, Robert May demonstrated that complexity creates instability in generic models of ecological networks having random interaction matrices A. Similar random matrix models have since been applied in many disciplines. Central to assessing stability is the "circular law" since it describes the eigenvalue distribution for an important class of random matrices A. However, despite widespread adoption, the "circular law" does not apply for ecological systems in which density-dependence operates (i.e., where a species growth is determined by its density). Instead one needs to study the far more complicated eigenvalue distribution of the community matrix S = DA, where D is a diagonal matrix of population equilibrium values. Here we obtain this eigenvalue distribution. We show that if the random matrix A is locally stable, the community matrix S = DA will also be locally stable, providing the system is feasible (i.e., all species have positive equilibria D > 0). This helps explain why, unusually, nearly all feasible systems studied here are locally stable. Large complex systems may thus be even more fragile than May predicted, given the difficulty of assembling a feasible system. It was also found that the degree of stability, or resilience of a system, depended on the minimum equilibrium population.
NASA Astrophysics Data System (ADS)
Clark, David A.
2012-09-01
Acquisition of magnetic gradient tensor data is likely to become routine in the near future. New methods for inverting gradient tensor surveys to obtain source parameters have been developed for several elementary, but useful, models. These include point dipole (sphere), vertical line of dipoles (narrow vertical pipe), line of dipoles (horizontal cylinder), thin dipping sheet, and contact models. A key simplification is the use of eigenvalues and associated eigenvectors of the tensor. The normalised source strength (NSS), calculated from the eigenvalues, is a particularly useful rotational invariant that peaks directly over 3D compact sources, 2D compact sources, thin sheets and contacts, and is independent of magnetisation direction. In combination the NSS and its vector gradient determine source locations uniquely. NSS analysis can be extended to other useful models, such as vertical pipes, by calculating eigenvalues of the vertical derivative of the gradient tensor. Inversion based on the vector gradient of the NSS over the Tallawang magnetite deposit obtained good agreement between the inferred geometry of the tabular magnetite skarn body and drill hole intersections. Besides the geological applications, the algorithms for the dipole model are readily applicable to the detection, location and characterisation (DLC) of magnetic objects, such as naval mines, unexploded ordnance, shipwrecks, archaeological artefacts, and buried drums.
NASA Technical Reports Server (NTRS)
Swafford, Timothy W.; Huddleston, David H.; Busby, Judy A.; Chesser, B. Lawrence
1992-01-01
Computations of viscous-inviscid interacting internal flowfields are presented for steady and unsteady quasi-one-dimensional (Q1D) test cases. The unsteady Q1D Euler equations are coupled with integral boundary-layer equations for unsteady, two-dimensional (planar or axisymmetric), turbulent flow over impermeable, adiabatic walls. The coupling methodology differs from that used in most techniques reported previously in that the above mentioned equation sets are written as a complete system and solved simultaneously; that is, the coupling is carried out directly through the equations as opposed to coupling the solutions of the different equation sets. Solutions to the coupled system of equations are obtained using both explicit and implicit numerical schemes for steady subsonic, steady transonic, and both steady and unsteady supersonic internal flowfields. Computed solutions are compared with measurements as well as Navier-Stokes and inverse boundary-layer methods. An analysis of the eigenvalues of the coefficient matrix associated with the quasi-linear form of the coupled system of equations indicates the presence of complex eigenvalues for certain flow conditions. It is concluded that although reasonable solutions can be obtained numerically, these complex eigenvalues contribute to the overall difficulty in obtaining numerical solutions to the coupled system of equations.
NASA Astrophysics Data System (ADS)
Cooley, Christopher G.
2017-09-01
This study investigates the vibration and dynamic response of a system of coupled electromagnetic vibration energy harvesting devices that each consist of a proof mass, elastic structure, electromagnetic generator, and energy harvesting circuit with inductance, resistance, and capacitance. The governing equations for the coupled electromechanical system are derived using Newtonian mechanics and Kirchhoff circuit laws for an arbitrary number of these subsystems. The equations are cast in matrix operator form to expose the device's vibration properties. The device's complex-valued eigenvalues and eigenvectors are related to physical characteristics of its vibration. Because the electrical circuit has dynamics, these devices have more natural frequencies than typical electromagnetic vibration energy harvesters that have purely resistive circuits. Closed-form expressions for the steady state dynamic response and average power harvested are derived for devices with a single subsystem. Example numerical results for single and double subsystem devices show that the natural frequencies and vibration modes obtained from the eigenvalue problem agree with the resonance locations and response amplitudes obtained independently from forced response calculations. This agreement demonstrates the usefulness of solving eigenvalue problems for these devices. The average power harvested by the device differs substantially at each resonance. Devices with multiple subsystems have multiple modes where large amounts of power are harvested.
Parallel solution of the symmetric tridiagonal eigenproblem. Research report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jessup, E.R.
1989-10-01
This thesis discusses methods for computing all eigenvalues and eigenvectors of a symmetric tridiagonal matrix on a distributed-memory Multiple Instruction, Multiple Data multiprocessor. Only those techniques having the potential for both high numerical accuracy and significant large-grained parallelism are investigated. These include the QL method or Cuppen's divide and conquer method based on rank-one updating to compute both eigenvalues and eigenvectors, bisection to determine eigenvalues and inverse iteration to compute eigenvectors. To begin, the methods are compared with respect to computation time, communication time, parallel speed up, and accuracy. Experiments on an IPSC hypercube multiprocessor reveal that Cuppen's method ismore » the most accurate approach, but bisection with inverse iteration is the fastest and most parallel. Because the accuracy of the latter combination is determined by the quality of the computed eigenvectors, the factors influencing the accuracy of inverse iteration are examined. This includes, in part, statistical analysis of the effect of a starting vector with random components. These results are used to develop an implementation of inverse iteration producing eigenvectors with lower residual error and better orthogonality than those generated by the EISPACK routine TINVIT. This thesis concludes with adaptions of methods for the symmetric tridiagonal eigenproblem to the related problem of computing the singular value decomposition (SVD) of a bidiagonal matrix.« less
Parallel solution of the symmetric tridiagonal eigenproblem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jessup, E.R.
1989-01-01
This thesis discusses methods for computing all eigenvalues and eigenvectors of a symmetric tridiagonal matrix on a distributed memory MIMD multiprocessor. Only those techniques having the potential for both high numerical accuracy and significant large-grained parallelism are investigated. These include the QL method or Cuppen's divide and conquer method based on rank-one updating to compute both eigenvalues and eigenvectors, bisection to determine eigenvalues, and inverse iteration to compute eigenvectors. To begin, the methods are compared with respect to computation time, communication time, parallel speedup, and accuracy. Experiments on an iPSC hyper-cube multiprocessor reveal that Cuppen's method is the most accuratemore » approach, but bisection with inverse iteration is the fastest and most parallel. Because the accuracy of the latter combination is determined by the quality of the computed eigenvectors, the factors influencing the accuracy of inverse iteration are examined. This includes, in part, statistical analysis of the effects of a starting vector with random components. These results are used to develop an implementation of inverse iteration producing eigenvectors with lower residual error and better orthogonality than those generated by the EISPACK routine TINVIT. This thesis concludes with adaptations of methods for the symmetric tridiagonal eigenproblem to the related problem of computing the singular value decomposition (SVD) of a bidiagonal matrix.« less
NASA Astrophysics Data System (ADS)
Baglivo, Fabricio Hugo; Arini, Pedro David
2011-12-01
Electrocardiographic repolarization abnormalities can be detected by Principal Components Analysis of the T-wave. In this work we studied the efect of signal averaging on the mean value and reproducibility of the ratio of the 2nd to the 1st eigenvalue of T-wave (T21W) and the absolute and relative T-wave residuum (TrelWR and TabsWR) in the ECG during ischemia induced by Percutaneous Coronary Intervention. Also, the intra-subject and inter-subject variability of T-wave parameters have been analyzed. Results showed that TrelWR and TabsWR evaluated from the average of 10 complexes had lower values and higher reproducibility than those obtained from 1 complex. On the other hand T21W calculated from 10 complexes did not show statistical diferences versus the T21W calculated on single beats. The results of this study corroborate that, with a signal averaging technique, the 2nd and the 1st eigenvalue are not afected by noise while the 4th to 8th eigenvalues are so much afected by this, suggesting the use of the signal averaged technique before calculation of absolute and relative T-wave residuum. Finally, we have shown that T-wave morphology parameters present high intra-subject stability.
NASA Astrophysics Data System (ADS)
Deraemaeker, A.; Worden, K.
2018-05-01
This paper discusses the possibility of using the Mahalanobis squared-distance to perform robust novelty detection in the presence of important environmental variability in a multivariate feature vector. By performing an eigenvalue decomposition of the covariance matrix used to compute that distance, it is shown that the Mahalanobis squared-distance can be written as the sum of independent terms which result from a transformation from the feature vector space to a space of independent variables. In general, especially when the size of the features vector is large, there are dominant eigenvalues and eigenvectors associated with the covariance matrix, so that a set of principal components can be defined. Because the associated eigenvalues are high, their contribution to the Mahalanobis squared-distance is low, while the contribution of the other components is high due to the low value of the associated eigenvalues. This analysis shows that the Mahalanobis distance naturally filters out the variability in the training data. This property can be used to remove the effect of the environment in damage detection, in much the same way as two other established techniques, principal component analysis and factor analysis. The three techniques are compared here using real experimental data from a wooden bridge for which the feature vector consists in eigenfrequencies and modeshapes collected under changing environmental conditions, as well as damaged conditions simulated with an added mass. The results confirm the similarity between the three techniques and the ability to filter out environmental effects, while keeping a high sensitivity to structural changes. The results also show that even after filtering out the environmental effects, the normality assumption cannot be made for the residual feature vector. An alternative is demonstrated here based on extreme value statistics which results in a much better threshold which avoids false positives in the training data, while allowing detection of all damaged cases.
NASA Astrophysics Data System (ADS)
Brewster, J.; Oware, E. K.
2017-12-01
Groundwater hosted in fractured rocks constitutes almost 65% of the principal aquifers in the US. The exploitation and contaminant management of fractured aquifers require fracture flow and transport modeling, which in turn requires a detailed understanding of the structure of the aquifer. The widely used equivalent porous medium approach to modeling fractured aquifer systems is inadequate to accurately predict fracture transport processes due to the averaging of the sharp lithological contrast between the matrix and the fractures. The potential of geophysical imaging (GI) to estimate spatially continuous subsurface profiles in a minimally invasive fashion is well proven. Conventional deterministic GI strategies, however, produce geologically unrealistic, smoothed-out results due to commonly enforced smoothing constraints. Stochastic GI of fractured aquifers is becoming increasing appealing due to its ability to recover realistic fracture features while providing multiple likely realizations that enable uncertainty assessment. Generating prior spatial features consistent with the expected target structures is crucial in stochastic imaging. We propose to utilize eigenvalue ratios to resolve the elongated fracture features expected in a fractured aquifer system. Eigenvalues capture the major and minor directions of variability in a region, which can be employed to evaluate shape descriptors, such as eccentricity (elongation) and orientation of features in the region. Eccentricity ranges from zero to one, representing a circularly sharped to a line feature, respectively. Here, we apply eigenvalue ratios to define a joint objective parameter consisting of eccentricity (shape) and direction terms to guide the generation of prior fracture-like features in some predefined principal directions for stochastic GI. Preliminary unconditional, synthetic experiments reveal the potential of the algorithm to simulate prior fracture-like features. We illustrate the strategy with a 2D, cross-borehole electrical resistivity tomography (ERT) in a fractured aquifer at the UB Environmental Geophysics Imaging Site, with tomograms validated with gamma and caliper logs obtained from the two ERT wells.
NASA Astrophysics Data System (ADS)
Kahler, A. C.; MacFarlane, R. E.; Mosteller, R. D.; Kiedrowski, B. C.; Frankle, S. C.; Chadwick, M. B.; McKnight, R. D.; Lell, R. M.; Palmiotti, G.; Hiruta, H.; Herman, M.; Arcilla, R.; Mughabghab, S. F.; Sublet, J. C.; Trkov, A.; Trumbull, T. H.; Dunn, M.
2011-12-01
The ENDF/B-VII.1 library is the latest revision to the United States' Evaluated Nuclear Data File (ENDF). The ENDF library is currently in its seventh generation, with ENDF/B-VII.0 being released in 2006. This revision expands upon that library, including the addition of new evaluated files (was 393 neutron files previously, now 423 including replacement of elemental vanadium and zinc evaluations with isotopic evaluations) and extension or updating of many existing neutron data files. Complete details are provided in the companion paper [M. B. Chadwick et al., "ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data," Nuclear Data Sheets, 112, 2887 (2011)]. This paper focuses on how accurately application libraries may be expected to perform in criticality calculations with these data. Continuous energy cross section libraries, suitable for use with the MCNP Monte Carlo transport code, have been generated and applied to a suite of nearly one thousand critical benchmark assemblies defined in the International Criticality Safety Benchmark Evaluation Project's International Handbook of Evaluated Criticality Safety Benchmark Experiments. This suite covers uranium and plutonium fuel systems in a variety of forms such as metallic, oxide or solution, and under a variety of spectral conditions, including unmoderated (i.e., bare), metal reflected and water or other light element reflected. Assembly eigenvalues that were accurately predicted with ENDF/B-VII.0 cross sections such as unmoderated and uranium reflected 235U and 239Pu assemblies, HEU solution systems and LEU oxide lattice systems that mimic commercial PWR configurations continue to be accurately calculated with ENDF/B-VII.1 cross sections, and deficiencies in predicted eigenvalues for assemblies containing selected materials, including titanium, manganese, cadmium and tungsten are greatly reduced. Improvements are also confirmed for selected actinide reaction rates such as 236U, 238,242Pu and 241,243Am capture in fast systems. Other deficiencies, such as the overprediction of Pu solution system critical eigenvalues and a decreasing trend in calculated eigenvalue for 233U fueled systems as a function of Above-Thermal Fission Fraction remain. The comprehensive nature of this critical benchmark suite and the generally accurate calculated eigenvalues obtained with ENDF/B-VII.1 neutron cross sections support the conclusion that this is the most accurate general purpose ENDF/B cross section library yet released to the technical community.
Krylov subspace methods - Theory, algorithms, and applications
NASA Technical Reports Server (NTRS)
Sad, Youcef
1990-01-01
Projection methods based on Krylov subspaces for solving various types of scientific problems are reviewed. The main idea of this class of methods when applied to a linear system Ax = b, is to generate in some manner an approximate solution to the original problem from the so-called Krylov subspace span. Thus, the original problem of size N is approximated by one of dimension m, typically much smaller than N. Krylov subspace methods have been very successful in solving linear systems and eigenvalue problems and are now becoming popular for solving nonlinear equations. The main ideas in Krylov subspace methods are shown and their use in solving linear systems, eigenvalue problems, parabolic partial differential equations, Liapunov matrix equations, and nonlinear system of equations are discussed.
Soni, Jalpa; Purwar, Harsh; Lakhotia, Harshit; Chandel, Shubham; Banerjee, Chitram; Kumar, Uday; Ghosh, Nirmalya
2013-07-01
A novel spectroscopic Mueller matrix system has been developed and explored for both fluorescence and elastic scattering polarimetric measurements from biological tissues. The 4 × 4 Mueller matrix measurement strategy is based on sixteen spectrally resolved (λ = 400 - 800 nm) measurements performed by sequentially generating and analyzing four elliptical polarization states. Eigenvalue calibration of the system ensured high accuracy of Mueller matrix measurement over a broad wavelength range, either for forward or backscattering geometry. The system was explored for quantitative fluorescence and elastic scattering spectroscopic polarimetric studies on normal and precancerous tissue sections from human uterine cervix. The fluorescence spectroscopic Mueller matrices yielded an interesting diattenuation parameter, exhibiting differences between normal and precancerous tissues.
Evans function computation for the stability of travelling waves
NASA Astrophysics Data System (ADS)
Barker, B.; Humpherys, J.; Lyng, G.; Lytle, J.
2018-04-01
In recent years, the Evans function has become an important tool for the determination of stability of travelling waves. This function, a Wronskian of decaying solutions of the eigenvalue equation, is useful both analytically and computationally for the spectral analysis of the linearized operator about the wave. In particular, Evans-function computation allows one to locate any unstable eigenvalues of the linear operator (if they exist); this allows one to establish spectral stability of a given wave and identify bifurcation points (loss of stability) as model parameters vary. In this paper, we review computational aspects of the Evans function and apply it to multidimensional detonation waves. This article is part of the theme issue `Stability of nonlinear waves and patterns and related topics'.
A parametric method for determining the number of signals in narrow-band direction finding
NASA Astrophysics Data System (ADS)
Wu, Qiang; Fuhrmann, Daniel R.
1991-08-01
A novel and more accurate method to determine the number of signals in the multisource direction finding problem is developed. The information-theoretic criteria of Yin and Krishnaiah (1988) are applied to a set of quantities which are evaluated from the log-likelihood function. Based on proven asymptotic properties of the maximum likelihood estimation, these quantities have the properties required by the criteria. Since the information-theoretic criteria use these quantities instead of the eigenvalues of the estimated correlation matrix, this approach possesses the advantage of not requiring a subjective threshold, and also provides higher performance than when eigenvalues are used. Simulation results are presented and compared to those obtained from the nonparametric method given by Wax and Kailath (1985).
Precise energy eigenvalues of hydrogen-like ion moving in quantum plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dutta, S.; Saha, Jayanta K.; Mukherjee, T. K.
2015-06-15
The analytic form of the electrostatic potential felt by a slowly moving test charge in quantum plasma is developed. It has been shown that the electrostatic potential is composed of two parts: the Debye-Huckel screening term and the near-field wake potential. The latter depends on the velocity of the test charge as well as on the number density of the plasma electrons. Rayleigh-Ritz variational calculation has been done to estimate precise energy eigenvalues of hydrogen-like carbon ion under such plasma environment. A detailed analysis shows that the energy levels gradually move to the continuum with increasing plasma electron density whilemore » the level crossing phenomenon has been observed with the variation of ion velocity.« less
Exact sum rules for inhomogeneous systems containing a zero mode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amore, Paolo, E-mail: paolo.amore@gmail.com
2014-10-15
We show that the formulas for the sum rules for the eigenvalues of inhomogeneous systems that we have obtained in two recent papers are incomplete when the system contains a zero mode. We prove that there are finite contributions of the zero mode to the sum rules and we explicitly calculate the expressions for the sum rules of order one and two. The previous results for systems that do not contain a zero mode are unaffected. - Highlights: • We discuss the sum rules of the eigenvalues of inhomogeneous systems containing a zero mode. • We derive the explicit expressionsmore » for sum rules of order one and two. • We perform accurate numerical tests of these results for three examples.« less
NASA Technical Reports Server (NTRS)
Yedavalli, R. K.
1992-01-01
The problem of analyzing and designing controllers for linear systems subject to real parameter uncertainty is considered. An elegant, unified theory for robust eigenvalue placement is presented for a class of D-regions defined by algebraic inequalities by extending the nominal matrix root clustering theory of Gutman and Jury (1981) to linear uncertain time systems. The author presents explicit conditions for matrix root clustering for different D-regions and establishes the relationship between the eigenvalue migration range and the parameter range. The bounds are all obtained by one-shot computation in the matrix domain and do not need any frequency sweeping or parameter gridding. The method uses the generalized Lyapunov theory for getting the bounds.
Rapid solution of large-scale systems of equations
NASA Technical Reports Server (NTRS)
Storaasli, Olaf O.
1994-01-01
The analysis and design of complex aerospace structures requires the rapid solution of large systems of linear and nonlinear equations, eigenvalue extraction for buckling, vibration and flutter modes, structural optimization and design sensitivity calculation. Computers with multiple processors and vector capabilities can offer substantial computational advantages over traditional scalar computer for these analyses. These computers fall into two categories: shared memory computers and distributed memory computers. This presentation covers general-purpose, highly efficient algorithms for generation/assembly or element matrices, solution of systems of linear and nonlinear equations, eigenvalue and design sensitivity analysis and optimization. All algorithms are coded in FORTRAN for shared memory computers and many are adapted to distributed memory computers. The capability and numerical performance of these algorithms will be addressed.
Nurhuda, M; Rouf, A
2017-09-01
The paper presents a method for simultaneous computation of eigenfunction and eigenvalue of the stationary Schrödinger equation on a grid, without imposing boundary-value condition. The method is based on the filter operator, which selects the eigenfunction from wave packet at the rate comparable to δ function. The efficacy and reliability of the method are demonstrated by comparing the simulation results with analytical or numerical solutions obtained by using other methods for various boundary-value conditions. It is found that the method is robust, accurate, and reliable. Further prospect of filter method for simulation of the Schrödinger equation in higher-dimensional space will also be highlighted.
Spectral properties of the massless relativistic quartic oscillator
NASA Astrophysics Data System (ADS)
Durugo, Samuel O.; Lőrinczi, József
2018-03-01
An explicit solution of the spectral problem of the non-local Schrödinger operator obtained as the sum of the square root of the Laplacian and a quartic potential in one dimension is presented. The eigenvalues are obtained as zeroes of special functions related to the fourth order Airy function, and closed formulae for the Fourier transform of the eigenfunctions are derived. These representations allow to derive further spectral properties such as estimates of spectral gaps, heat trace and the asymptotic distribution of eigenvalues, as well as a detailed analysis of the eigenfunctions. A subtle spectral effect is observed which manifests in an exponentially tight approximation of the spectrum by the zeroes of the dominating term in the Fourier representation of the eigenfunctions and its derivative.
NASA Technical Reports Server (NTRS)
Isaacson, D.; Isaacson, E. L.; Paes-Leme, P. J.; Marchesin, D.
1981-01-01
Several methods for computing many eigenvalues and eigenfunctions of a single anharmonic oscillator Schroedinger operator whose potential may have one or two minima are described. One of the methods requires the solution of an ill-conditioned generalized eigenvalue problem. This method has the virtue of using a bounded amount of work to achieve a given accuracy in both the single and double well regions. Rigorous bounds are given, and it is proved that the approximations converge faster than any inverse power of the size of the matrices needed to compute them. The results of computations for the g:phi(4):1 theory are presented. These results indicate that the methods actually converge exponentially fast.
Stimulated neutrino transformation through turbulence
Patton, Kelly M.; Kneller, James P.; McLaughlin, Gail C.
2014-04-30
We derive an analytical solution for the flavor evolution of a neutrino through a turbulent density profile which is found to accurately predict the amplitude and transition wavelength of numerical solutions on a case-by-case basis. The evolution is seen to strongly depend upon those Fourier modes in the turbulence which are approximately the same as the splitting between neutrino eigenvalues. Transitions are strongly enhanced by those Fourier modes in the turbulence which are approximately the same as the splitting between neutrino eigenvalues. Lastly, we also find a suppression of transitions due to the long wavelength modes when the ratio ofmore » their amplitude and the wavenumber is of order, or greater than, the first root of the Bessel function J 0.« less
Exact Solution of a Strongly Coupled Gauge Theory in 0 +1 Dimensions
NASA Astrophysics Data System (ADS)
Krishnan, Chethan; Kumar, K. V. Pavan
2018-05-01
Gauged tensor models are a class of strongly coupled quantum mechanical theories. We present the exact analytic solution of a specific example of such a theory: namely, the smallest colored tensor model due to Gurau and Witten that exhibits nonlinearities. We find explicit analytic expressions for the eigenvalues and eigenstates, and the former agree precisely with previous numerical results on (a subset of) eigenvalues of the ungauged theory. The physics of the spectrum, despite the smallness of N , exhibits rudimentary signatures of chaos. This Letter is a summary of our main results: the technical details will appear in companion paper [C. Krishnan and K. V. Pavan Kumar, Complete solution of a gauged tensor model, arXiv:1804.10103].
Gaussian quadrature for multiple orthogonal polynomials
NASA Astrophysics Data System (ADS)
Coussement, Jonathan; van Assche, Walter
2005-06-01
We study multiple orthogonal polynomials of type I and type II, which have orthogonality conditions with respect to r measures. These polynomials are connected by their recurrence relation of order r+1. First we show a relation with the eigenvalue problem of a banded lower Hessenberg matrix Ln, containing the recurrence coefficients. As a consequence, we easily find that the multiple orthogonal polynomials of type I and type II satisfy a generalized Christoffel-Darboux identity. Furthermore, we explain the notion of multiple Gaussian quadrature (for proper multi-indices), which is an extension of the theory of Gaussian quadrature for orthogonal polynomials and was introduced by Borges. In particular, we show that the quadrature points and quadrature weights can be expressed in terms of the eigenvalue problem of Ln.
Ambient Vibration Testing for Story Stiffness Estimation of a Heritage Timber Building
Min, Kyung-Won; Kim, Junhee; Park, Sung-Ah; Park, Chan-Soo
2013-01-01
This paper investigates dynamic characteristics of a historic wooden structure by ambient vibration testing, presenting a novel estimation methodology of story stiffness for the purpose of vibration-based structural health monitoring. As for the ambient vibration testing, measured structural responses are analyzed by two output-only system identification methods (i.e., frequency domain decomposition and stochastic subspace identification) to estimate modal parameters. The proposed methodology of story stiffness is estimation based on an eigenvalue problem derived from a vibratory rigid body model. Using the identified natural frequencies, the eigenvalue problem is efficiently solved and uniquely yields story stiffness. It is noteworthy that application of the proposed methodology is not necessarily confined to the wooden structure exampled in the paper. PMID:24227999
Eigenvalue Contributon Estimator for Sensitivity Calculations with TSUNAMI-3D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rearden, Bradley T; Williams, Mark L
2007-01-01
Since the release of the Tools for Sensitivity and Uncertainty Analysis Methodology Implementation (TSUNAMI) codes in SCALE [1], the use of sensitivity and uncertainty analysis techniques for criticality safety applications has greatly increased within the user community. In general, sensitivity and uncertainty analysis is transitioning from a technique used only by specialists to a practical tool in routine use. With the desire to use the tool more routinely comes the need to improve the solution methodology to reduce the input and computational burden on the user. This paper reviews the current solution methodology of the Monte Carlo eigenvalue sensitivity analysismore » sequence TSUNAMI-3D, describes an alternative approach, and presents results from both methodologies.« less
Computationally efficient finite-difference modal method for the solution of Maxwell's equations.
Semenikhin, Igor; Zanuccoli, Mauro
2013-12-01
In this work, a new implementation of the finite-difference (FD) modal method (FDMM) based on an iterative approach to calculate the eigenvalues and corresponding eigenfunctions of the Helmholtz equation is presented. Two relevant enhancements that significantly increase the speed and accuracy of the method are introduced. First of all, the solution of the complete eigenvalue problem is avoided in favor of finding only the meaningful part of eigenmodes by using iterative methods. Second, a multigrid algorithm and Richardson extrapolation are implemented. Simultaneous use of these techniques leads to an enhancement in terms of accuracy, which allows a simple method such as the FDMM with a typical three-point difference scheme to be significantly competitive with an analytical modal method.
NASA Astrophysics Data System (ADS)
Lu, Haohui; Chai, Tan; Cooley, Christopher G.
2018-03-01
This study investigates the vibration of a rotating piezoelectric device that consists of a proof mass that is supported by elastic structures with piezoelectric layers. Vibration of the proof mass causes deformation in the piezoelectric structures and voltages to power the electrical loads. The coupled electromechanical equations of motion are derived using Newtonian mechanics and Kirchhoff's circuit laws. The free vibration behavior is investigated for devices with identical (tuned) and nonidentical (mistuned) piezoelectric support structures and electrical loads. These devices have complex-valued, speed-dependent eigenvalues and eigenvectors as a result of gyroscopic effects caused by their constant rotation. The characteristics of the complex-valued eigensolutions are related to physical behavior of the device's vibration. The free vibration behaviors differ significantly for tuned and mistuned devices. Due to gyroscopic effects, the proof mass in the tuned device vibrates in either forward or backward decaying circular orbits in single-mode free response. This is proven analytically for all tuned devices, regardless of the device's specific parameters or operating speed. For mistuned devices, the proof mass has decaying elliptical forward and backward orbits. The eigenvalues are shown to be sensitive to changes in the electrical load resistances. Closed-form solutions for the eigenvalues are derived for open and close circuits. At high rotation speeds these devices experience critical speeds and instability.
Detecting, anticipating, and predicting critical transitions in spatially extended systems.
Kwasniok, Frank
2018-03-01
A data-driven linear framework for detecting, anticipating, and predicting incipient bifurcations in spatially extended systems based on principal oscillation pattern (POP) analysis is discussed. The dynamics are assumed to be governed by a system of linear stochastic differential equations which is estimated from the data. The principal modes of the system together with corresponding decay or growth rates and oscillation frequencies are extracted as the eigenvectors and eigenvalues of the system matrix. The method can be applied to stationary datasets to identify the least stable modes and assess the proximity to instability; it can also be applied to nonstationary datasets using a sliding window approach to track the changing eigenvalues and eigenvectors of the system. As a further step, a genuinely nonstationary POP analysis is introduced. Here, the system matrix of the linear stochastic model is time-dependent, allowing for extrapolation and prediction of instabilities beyond the learning data window. The methods are demonstrated and explored using the one-dimensional Swift-Hohenberg equation as an example, focusing on the dynamics of stochastic fluctuations around the homogeneous stable state prior to the first bifurcation. The POP-based techniques are able to extract and track the least stable eigenvalues and eigenvectors of the system; the nonstationary POP analysis successfully predicts the timing of the first instability and the unstable mode well beyond the learning data window.
Elzibak, Alyaa H; Noseworthy, Michael D
2014-10-01
To investigate whether postural change from erect to recumbent position affects calf muscle water diffusivity. Ten healthy adults (27.2 ± 4.9 years, 3 females) were imaged at baseline (following assumption of recumbent position), and after 34 min (session 2) and 64 min (session 3) of laying supine within a 3T MRI scanner. Diffusion tensor imaging (DTI) eigenvalues, fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were evaluated in five calf muscles (anterior and posterior tibialis and triceps surae) during each of the three imaging sessions. Significant decreases were observed in all of the eigenvalues and ADC in each of the muscles with postural change. These reductions ranged from 3.2 to 6.7% and 3.4 to 7.5% for the various DTI metrics, following 34 and 64 min of supine rest, respectively (P < 0.05). No significant differences were noted in ADC or eigenvalues between the second and third imaging sessions for any muscle. FA did not change significantly with postural manipulation in any muscle compartment. Diffusion tensor imaging indices were altered with postural change. As differences were not apparent between the latter two imaging sessions, we suggest that a short supine resting period (~34 min) is sufficient for muscle diffusivity to stabilize prior to quantitative MR imaging in healthy young adults.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venkatesan, R.C., E-mail: ravi@systemsresearchcorp.com; Plastino, A., E-mail: plastino@fisica.unlp.edu.ar
The (i) reciprocity relations for the relative Fisher information (RFI, hereafter) and (ii) a generalized RFI–Euler theorem are self-consistently derived from the Hellmann–Feynman theorem. These new reciprocity relations generalize the RFI–Euler theorem and constitute the basis for building up a mathematical Legendre transform structure (LTS, hereafter), akin to that of thermodynamics, that underlies the RFI scenario. This demonstrates the possibility of translating the entire mathematical structure of thermodynamics into a RFI-based theoretical framework. Virial theorems play a prominent role in this endeavor, as a Schrödinger-like equation can be associated to the RFI. Lagrange multipliers are determined invoking the RFI–LTS linkmore » and the quantum mechanical virial theorem. An appropriate ansatz allows for the inference of probability density functions (pdf’s, hereafter) and energy-eigenvalues of the above mentioned Schrödinger-like equation. The energy-eigenvalues obtained here via inference are benchmarked against established theoretical and numerical results. A principled theoretical basis to reconstruct the RFI-framework from the FIM framework is established. Numerical examples for exemplary cases are provided. - Highlights: • Legendre transform structure for the RFI is obtained with the Hellmann–Feynman theorem. • Inference of the energy-eigenvalues of the SWE-like equation for the RFI is accomplished. • Basis for reconstruction of the RFI framework from the FIM-case is established. • Substantial qualitative and quantitative distinctions with prior studies are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cameron, Maria K., E-mail: cameron@math.umd.edu
We develop computational tools for spectral analysis of stochastic networks representing energy landscapes of atomic and molecular clusters. Physical meaning and some properties of eigenvalues, left and right eigenvectors, and eigencurrents are discussed. We propose an approach to compute a collection of eigenpairs and corresponding eigencurrents describing the most important relaxation processes taking place in the system on its way to the equilibrium. It is suitable for large and complex stochastic networks where pairwise transition rates, given by the Arrhenius law, vary by orders of magnitude. The proposed methodology is applied to the network representing the Lennard-Jones-38 cluster created bymore » Wales's group. Its energy landscape has a double funnel structure with a deep and narrow face-centered cubic funnel and a shallower and wider icosahedral funnel. However, the complete spectrum of the generator matrix of the Lennard-Jones-38 network has no appreciable spectral gap separating the eigenvalue corresponding to the escape from the icosahedral funnel. We provide a detailed description of the escape process from the icosahedral funnel using the eigencurrent and demonstrate a superexponential growth of the corresponding eigenvalue. The proposed spectral approach is compared to the methodology of the Transition Path Theory. Finally, we discuss whether the Lennard-Jones-38 cluster is metastable from the points of view of a mathematician and a chemical physicist, and make a connection with experimental works.« less
NASA Astrophysics Data System (ADS)
Mussardo, G.; Giudici, G.; Viti, J.
2017-03-01
In this paper we introduce and study the coprime quantum chain, i.e. a strongly correlated quantum system defined in terms of the integer eigenvalues n i of the occupation number operators at each site of a chain of length M. The n i ’s take value in the interval [2,q] and may be regarded as S z eigenvalues in the spin representation j = (q - 2)/2. The distinctive interaction of the model is based on the coprimality matrix \\boldsymbolΦ : for the ferromagnetic case, this matrix assigns lower energy to configurations where occupation numbers n i and n i+1 of neighbouring sites share a common divisor, while for the anti-ferromagnetic case it assigns a lower energy to configurations where n i and n i+1 are coprime. The coprime chain, both in the ferro and anti-ferromagnetic cases, may present an exponential number of ground states whose values can be exactly computed by means of graph theoretical tools. In the ferromagnetic case there are generally also frustration phenomena. A fine tuning of local operators may lift the exponential ground state degeneracy and, according to which operators are switched on, the system may be driven into different classes of universality, among which the Ising or Potts universality class. The paper also contains an appendix by Don Zagier on the exact eigenvalues and eigenvectors of the coprimality matrix in the limit q\\to ∞ .
NASA Astrophysics Data System (ADS)
Boozer, Allen H.
1999-11-01
Modern stellarators are designed using J. Nuehrenberg’s method of varying Fourier coefficients in the shape of the plasma boundary to maximize a target function. The matrix of second derivatives of the target function at the optimum determines a quality matrix. This matrix gives the degradation in the quality of the configuration as the normal magnetic field is varied on a control surface, which lies on or outside the plasma surface. The task is finding saddle coils that produce the desired configuration in the presence of a given toroidal field. An eigenvector of the quality matrix can be important for two reasons: (1) the normal field that must be produced by the saddles is large or (2) the eigenvalue is large (an island-causing resonant perturbation). The rank of the important part of the quality matrix is the number of important eigenvectors. The current in each saddle coil produces a normal field on the control surface, which can be described by an inductance matrix. The relevant part of the inductance matrix has large eigenvalues. The coils can produce the configuration if the rank of the important part of the quality matrix and its product with the relevant part of the inductance matrix are the same. Existing coil design codes, pioneered by P. Merkel, approximate the quality matrix by the unit matrix. Stellarator flexibility could be enhanced by using a more realistic quality matrix and by using trim coils to balance large eigenvalues.
Veering and nonlinear interactions of a clamped beam in bending and torsion
NASA Astrophysics Data System (ADS)
Ehrhardt, David A.; Hill, Thomas L.; Neild, Simon A.; Cooper, Jonathan E.
2018-03-01
Understanding the linear and nonlinear dynamic behaviour of beams is critical for the design of many engineering structures such as spacecraft antennae, aircraft wings, and turbine blades. When the eigenvalues of such structures are closely-spaced, nonlinearity may lead to interactions between the underlying linear normal modes (LNMs). This work considers a clamped-clamped beam which exhibits nonlinear behaviour due to axial tension from large amplitudes of deformation. An additional cross-beam, mounted transversely and with a movable mass at each tip, allows tuning of the primary torsion LNM such that it is close to the primary bending LNM. Perturbing the location of one mass relative to that of the other leads to veering between the eigenvalues of the bending and torsion LNMs. For a number of selected geometries in the region of veering, a nonlinear reduced order model (NLROM) is created and the nonlinear normal modes (NNMs) are used to describe the underlying nonlinear behaviour of the structure. The relationship between the 'closeness' of the eigenvalues and the nonlinear dynamic behaviour is demonstrated in the NNM backbone curves, and veering-like behaviour is observed. Finally, the forced and damped dynamics of the structure are predicted using several analytical and numerical tools and are compared to experimental measurements. As well as showing a good agreement between the predicted and measured responses, phenomena such as a 1:1 internal resonance and quasi-periodic behaviour are identified.
Linear signatures in nonlinear gyrokinetics: interpreting turbulence with pseudospectra
Hatch, D. R.; Jenko, F.; Navarro, A. Banon; ...
2016-07-26
A notable feature of plasma turbulence is its propensity to retain features of the underlying linear eigenmodes in a strongly turbulent state—a property that can be exploited to predict various aspects of the turbulence using only linear information. In this context, this work examines gradient-driven gyrokinetic plasma turbulence through three lenses—linear eigenvalue spectra, pseudospectra, and singular value decomposition (SVD). We study a reduced gyrokinetic model whose linear eigenvalue spectra include ion temperature gradient driven modes, stable drift waves, and kinetic modes representing Landau damping. The goal is to characterize in which ways, if any, these familiar ingredients are manifest inmore » the nonlinear turbulent state. This pursuit is aided by the use of pseudospectra, which provide a more nuanced view of the linear operator by characterizing its response to perturbations. We introduce a new technique whereby the nonlinearly evolved phase space structures extracted with SVD are linked to the linear operator using concepts motivated by pseudospectra. Using this technique, we identify nonlinear structures that have connections to not only the most unstable eigenmode but also subdominant modes that are nonlinearly excited. The general picture that emerges is a system in which signatures of the linear physics persist in the turbulence, albeit in ways that cannot be fully explained by the linear eigenvalue approach; a non-modal treatment is necessary to understand key features of the turbulence.« less
Detecting, anticipating, and predicting critical transitions in spatially extended systems
NASA Astrophysics Data System (ADS)
Kwasniok, Frank
2018-03-01
A data-driven linear framework for detecting, anticipating, and predicting incipient bifurcations in spatially extended systems based on principal oscillation pattern (POP) analysis is discussed. The dynamics are assumed to be governed by a system of linear stochastic differential equations which is estimated from the data. The principal modes of the system together with corresponding decay or growth rates and oscillation frequencies are extracted as the eigenvectors and eigenvalues of the system matrix. The method can be applied to stationary datasets to identify the least stable modes and assess the proximity to instability; it can also be applied to nonstationary datasets using a sliding window approach to track the changing eigenvalues and eigenvectors of the system. As a further step, a genuinely nonstationary POP analysis is introduced. Here, the system matrix of the linear stochastic model is time-dependent, allowing for extrapolation and prediction of instabilities beyond the learning data window. The methods are demonstrated and explored using the one-dimensional Swift-Hohenberg equation as an example, focusing on the dynamics of stochastic fluctuations around the homogeneous stable state prior to the first bifurcation. The POP-based techniques are able to extract and track the least stable eigenvalues and eigenvectors of the system; the nonstationary POP analysis successfully predicts the timing of the first instability and the unstable mode well beyond the learning data window.
Tidal frequency estimation for closed basins
NASA Technical Reports Server (NTRS)
Eades, J. B., Jr.
1978-01-01
A method was developed for determining the fundamental tidal frequencies for closed basins of water, by means of an eigenvalue analysis. The mathematical model employed, was the Laplace tidal equations.
Bose-Einstein condensation on a manifold with non-negative Ricci curvature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akant, Levent, E-mail: levent.akant@boun.edu.tr; Ertuğrul, Emine, E-mail: emine.ertugrul@boun.edu.tr; Tapramaz, Ferzan, E-mail: waskhez@gmail.com
The Bose-Einstein condensation for an ideal Bose gas and for a dilute weakly interacting Bose gas in a manifold with non-negative Ricci curvature is investigated using the heat kernel and eigenvalue estimates of the Laplace operator. The main focus is on the nonrelativistic gas. However, special relativistic ideal gas is also discussed. The thermodynamic limit of the heat kernel and eigenvalue estimates is taken and the results are used to derive bounds for the depletion coefficient. In the case of a weakly interacting gas, Bogoliubov approximation is employed. The ground state is analyzed using heat kernel methods and finite sizemore » effects on the ground state energy are proposed. The justification of the c-number substitution on a manifold is given.« less
NASA Astrophysics Data System (ADS)
Shahzad, M.; Rizvi, H.; Panwar, A.; Ryu, C. M.
2017-06-01
We have re-visited the existence criterion of the reverse shear Alfven eigenmodes (RSAEs) in the presence of the parallel equilibrium current by numerically solving the eigenvalue equation using a fast eigenvalue solver code KAES. The parallel equilibrium current can bring in the kink effect and is known to be strongly unfavorable for the RSAE. We have numerically estimated the critical value of the toroidicity factor Qtor in a circular tokamak plasma, above which RSAEs can exist, and compared it to the analytical one. The difference between the numerical and analytical critical values is small for low frequency RSAEs, but it increases as the frequency of the mode increases, becoming greater for higher poloidal harmonic modes.
Computation of eigenpairs of Ax = lambda Bx for vibrations of spinning deformable bodies
NASA Technical Reports Server (NTRS)
Utku, S.; Clemente, J. L. M.
1984-01-01
It is shown that, when linear theory is used, the general eigenvalue problem related with the free vibrations of spinning deformable bodies is of the type AX = lambda Bx, where A is Hermitian, and B is real positive definite. Since the order n of the matrices may be large, and A and B are banded or block banded, due to the economics of the numerical solution, one is interested in obtaining only those eigenvalues which fall within the frequency band of interest of the problem. The paper extends the well known method of bisections and iteration of R to the n power to n dimensional complex spaces, i.e., to C to the n power, so that it can be applied to the present problem.
Stability of streamwise vortices
NASA Technical Reports Server (NTRS)
Khorrami, M. K.; Grosch, C. E.; Ash, R. L.
1987-01-01
A brief overview of some theoretical and computational studies of the stability of streamwise vortices is given. The local induction model and classical hydrodynamic vortex stability theories are discussed in some detail. The importance of the three-dimensionality of the mean velocity profile to the results of stability calculations is discussed briefly. The mean velocity profile is provided by employing the similarity solution of Donaldson and Sullivan. The global method of Bridges and Morris was chosen for the spatial stability calculations for the nonlinear eigenvalue problem. In order to test the numerical method, a second order accurate central difference scheme was used to obtain the coefficient matrices. It was shown that a second order finite difference method lacks the required accuracy for global eigenvalue calculations. Finally the problem was formulated using spectral methods and a truncated Chebyshev series.
Ledermüller, Katrin; Schütz, Martin
2014-04-28
A multistate local CC2 response method for the calculation of analytic energy gradients with respect to nuclear displacements is presented for ground and electronically excited states. The gradient enables the search for equilibrium geometries of extended molecular systems. Laplace transform is used to partition the eigenvalue problem in order to obtain an effective singles eigenvalue problem and adaptive, state-specific local approximations. This leads to an approximation in the energy Lagrangian, which however is shown (by comparison with the corresponding gradient method without Laplace transform) to be of no concern for geometry optimizations. The accuracy of the local approximation is tested and the efficiency of the new code is demonstrated by application calculations devoted to a photocatalytic decarboxylation process of present interest.
On Instability of Geostrophic Current with Linear Vertical Shear at Length Scales of Interleaving
NASA Astrophysics Data System (ADS)
Kuzmina, N. P.; Skorokhodov, S. L.; Zhurbas, N. V.; Lyzhkov, D. A.
2018-01-01
The instability of long-wave disturbances of a geostrophic current with linear velocity shear is studied with allowance for the diffusion of buoyancy. A detailed derivation of the model problem in dimensionless variables is presented, which is used for analyzing the dynamics of disturbances in a vertically bounded layer and for describing the formation of large-scale intrusions in the Arctic basin. The problem is solved numerically based on a high-precision method developed for solving fourth-order differential equations. It is established that there is an eigenvalue in the spectrum of eigenvalues that corresponds to unstable (growing with time) disturbances, which are characterized by a phase velocity exceeding the maximum velocity of the geostrophic flow. A discussion is presented to explain some features of the instability.
New matrix bounds and iterative algorithms for the discrete coupled algebraic Riccati equation
NASA Astrophysics Data System (ADS)
Liu, Jianzhou; Wang, Li; Zhang, Juan
2017-11-01
The discrete coupled algebraic Riccati equation (DCARE) has wide applications in control theory and linear system. In general, for the DCARE, one discusses every term of the coupled term, respectively. In this paper, we consider the coupled term as a whole, which is different from the recent results. When applying eigenvalue inequalities to discuss the coupled term, our method has less error. In terms of the properties of special matrices and eigenvalue inequalities, we propose several upper and lower matrix bounds for the solution of DCARE. Further, we discuss the iterative algorithms for the solution of the DCARE. In the fixed point iterative algorithms, the scope of Lipschitz factor is wider than the recent results. Finally, we offer corresponding numerical examples to illustrate the effectiveness of the derived results.
Sloppy-model universality class and the Vandermonde matrix.
Waterfall, Joshua J; Casey, Fergal P; Gutenkunst, Ryan N; Brown, Kevin S; Myers, Christopher R; Brouwer, Piet W; Elser, Veit; Sethna, James P
2006-10-13
In a variety of contexts, physicists study complex, nonlinear models with many unknown or tunable parameters to explain experimental data. We explain why such systems so often are sloppy: the system behavior depends only on a few "stiff" combinations of the parameters and is unchanged as other "sloppy" parameter combinations vary by orders of magnitude. We observe that the eigenvalue spectra for the sensitivity of sloppy models have a striking, characteristic form with a density of logarithms of eigenvalues which is roughly constant over a large range. We suggest that the common features of sloppy models indicate that they may belong to a common universality class. In particular, we motivate focusing on a Vandermonde ensemble of multiparameter nonlinear models and show in one limit that they exhibit the universal features of sloppy models.
Bespoke analogue space-times: meta-material mimics
NASA Astrophysics Data System (ADS)
Schuster, Sebastian; Visser, Matt
2018-06-01
Modern meta-materials allow one to construct electromagnetic media with almost arbitrary bespoke permittivity, permeability, and magneto-electric tensors. If (and only if) the permittivity, permeability, and magneto-electric tensors satisfy certain stringent compatibility conditions, can the meta-material be fully described (at the wave optics level) in terms of an effective Lorentzian metric—an analogue spacetime. We shall consider some of the standard black-hole spacetimes of primary interest in general relativity, in various coordinate systems, and determine the equivalent meta-material susceptibility tensors in a laboratory setting. In static black hole spacetimes (Schwarzschild and the like) certain eigenvalues of the susceptibility tensors will be seen to diverge on the horizon. In stationary black hole spacetimes (Kerr and the like) certain eigenvalues of the susceptibility tensors will be seen to diverge on the ergo-surface.
Graph theory approach to the eigenvalue problem of large space structures
NASA Technical Reports Server (NTRS)
Reddy, A. S. S. R.; Bainum, P. M.
1981-01-01
Graph theory is used to obtain numerical solutions to eigenvalue problems of large space structures (LSS) characterized by a state vector of large dimensions. The LSS are considered as large, flexible systems requiring both orientation and surface shape control. Graphic interpretation of the determinant of a matrix is employed to reduce a higher dimensional matrix into combinations of smaller dimensional sub-matrices. The reduction is implemented by means of a Boolean equivalent of the original matrices formulated to obtain smaller dimensional equivalents of the original numerical matrix. Computation time becomes less and more accurate solutions are possible. An example is provided in the form of a free-free square plate. Linearized system equations and numerical values of a stiffness matrix are presented, featuring a state vector with 16 components.
Neural network approach for the calculation of potential coefficients in quantum mechanics
NASA Astrophysics Data System (ADS)
Ossandón, Sebastián; Reyes, Camilo; Cumsille, Patricio; Reyes, Carlos M.
2017-05-01
A numerical method based on artificial neural networks is used to solve the inverse Schrödinger equation for a multi-parameter class of potentials. First, the finite element method was used to solve repeatedly the direct problem for different parametrizations of the chosen potential function. Then, using the attainable eigenvalues as a training set of the direct radial basis neural network a map of new eigenvalues was obtained. This relationship was later inverted and refined by training an inverse radial basis neural network, allowing the calculation of the unknown parameters and therefore estimating the potential function. Three numerical examples are presented in order to prove the effectiveness of the method. The results show that the method proposed has the advantage to use less computational resources without a significant accuracy loss.
Eigenvalue assignment by minimal state-feedback gain in LTI multivariable systems
NASA Astrophysics Data System (ADS)
Ataei, Mohammad; Enshaee, Ali
2011-12-01
In this article, an improved method for eigenvalue assignment via state feedback in the linear time-invariant multivariable systems is proposed. This method is based on elementary similarity operations, and involves mainly utilisation of vector companion forms, and thus is very simple and easy to implement on a digital computer. In addition to the controllable systems, the proposed method can be applied for the stabilisable ones and also systems with linearly dependent inputs. Moreover, two types of state-feedback gain matrices can be achieved by this method: (1) the numerical one, which is unique, and (2) the parametric one, in which its parameters are determined in order to achieve a gain matrix with minimum Frobenius norm. The numerical examples are presented to demonstrate the advantages of the proposed method.
Bazzani, Armando; Castellani, Gastone C; Cooper, Leon N
2010-05-01
We analyze the effects of noise correlations in the input to, or among, Bienenstock-Cooper-Munro neurons using the Wigner semicircular law to construct random, positive-definite symmetric correlation matrices and compute their eigenvalue distributions. In the finite dimensional case, we compare our analytic results with numerical simulations and show the effects of correlations on the lifetimes of synaptic strengths in various visual environments. These correlations can be due either to correlations in the noise from the input lateral geniculate nucleus neurons, or correlations in the variability of lateral connections in a network of neurons. In particular, we find that for fixed dimensionality, a large noise variance can give rise to long lifetimes of synaptic strengths. This may be of physiological significance.
Modal expansions for infrasound propagation and their implications for ground-to-ground propagation.
Waxler, Roger; Assink, Jelle; Velea, Doru
2017-02-01
The use of expansions in vertical eigenmodes for long range infrasound propagation modeling in the effective sound speed approximation is investigated. The question of convergence of such expansions is related to the maximum elevation angles that are required. Including atmospheric attenuation leads to a non-self-adjoint vertical eigenvalue problem. The use of leading order perturbation theory for the modal attenuation is compared to the results of numerical solutions to the non-self-adjoint eigenvalue problem and conditions under which the perturbative result is expected to be valid are obtained. Modal expansions are obtained in the frequency domain; broadband signals must be modeled through Fourier reconstruction. Such broadband signal reconstruction is investigated and the relation between bandwidth, wavetrain duration, and frequency sampling is discussed.
Resonance Extraction from the Finite Volume
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doring, Michael; Molina Peralta, Raquel
2016-06-01
The spectrum of excited hadrons becomes accessible in simulations of Quantum Chromodynamics on the lattice. Extensions of Lüscher's method allow to address multi-channel scattering problems using moving frames or modified boundary conditions to obtain more eigenvalues in finite volume. As these are at different energies, interpolations are needed to relate different eigenvalues and to help determine the amplitude. Expanding the T- or the K-matrix locally provides a controlled scheme by removing the known non-analyticities of thresholds. This can be stabilized by using Chiral Perturbation Theory. Different examples to determine resonance pole parameters and to disentangle resonances from thresholds are dis-more » cussed, like the scalar meson f0(980) and the excited baryons N(1535)1/2^- and Lambda(1405)1/2^-.« less
Pole structure of the Λ ( 1405 ) in a recent QCD simulation
Molina, R.; Doring, M.
2016-09-27
The Λ(1405) baryon is difficult to detect in experiment, absent in many quark model calculations, and supposedly manifested through a two-pole structure. Its uncommon properties made it subject to numerous experimental and theoretical studies in recent years. Lattice-QCD eigenvalues for different quark masses were recently reported by the Adelaide group. We compare these eigenvalues to predictions of a model based on Unitary Chiral Perturbation Theory. The UχPT calculation predicts the quark mass dependence remarkably well. It also explains the overlap pattern with different meson-baryon components, mainly πΣ and K¯N, at different quark masses. As a result, more accurate lattice QCDmore » data are required to draw definite conclusions on the nature of the Λ(1405).« less
RANDOM MATRIX DIAGONALIZATION--A COMPUTER PROGRAM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuchel, K.; Greibach, R.J.; Porter, C.E.
A computer prograra is described which generates random matrices, diagonalizes them and sorts appropriately the resulting eigenvalues and eigenvector components. FAP and FORTRAN listings for the IBM 7090 computer are included. (auth)
The tunneling effect for a class of difference operators
NASA Astrophysics Data System (ADS)
Klein, Markus; Rosenberger, Elke
We analyze a general class of self-adjoint difference operators H𝜀 = T𝜀 + V𝜀 on ℓ2((𝜀ℤ)d), where V𝜀 is a multi-well potential and 𝜀 is a small parameter. We give a coherent review of our results on tunneling up to new sharp results on the level of complete asymptotic expansions (see [30-35]).Our emphasis is on general ideas and strategy, possibly of interest for a broader range of readers, and less on detailed mathematical proofs. The wells are decoupled by introducing certain Dirichlet operators on regions containing only one potential well. Then the eigenvalue problem for the Hamiltonian H𝜀 is treated as a small perturbation of these comparison problems. After constructing a Finslerian distance d induced by H𝜀, we show that Dirichlet eigenfunctions decay exponentially with a rate controlled by this distance to the well. It follows with microlocal techniques that the first n eigenvalues of H𝜀 converge to the first n eigenvalues of the direct sum of harmonic oscillators on ℝd located at several wells. In a neighborhood of one well, we construct formal asymptotic expansions of WKB-type for eigenfunctions associated with the low-lying eigenvalues of H𝜀. These are obtained from eigenfunctions or quasimodes for the operator H𝜀, acting on L2(ℝd), via restriction to the lattice (𝜀ℤ)d. Tunneling is then described by a certain interaction matrix, similar to the analysis for the Schrödinger operator (see [22]), the remainder is exponentially small and roughly quadratic compared with the interaction matrix. We give weighted ℓ2-estimates for the difference of eigenfunctions of Dirichlet-operators in neighborhoods of the different wells and the associated WKB-expansions at the wells. In the last step, we derive full asymptotic expansions for interactions between two “wells” (minima) of the potential energy, in particular for the discrete tunneling effect. Here we essentially use analysis on phase space, complexified in the momentum variable. These results are as sharp as the classical results for the Schrödinger operator in [22].
Financial time series: A physics perspective
NASA Astrophysics Data System (ADS)
Gopikrishnan, Parameswaran; Plerou, Vasiliki; Amaral, Luis A. N.; Rosenow, Bernd; Stanley, H. Eugene
2000-06-01
Physicists in the last few years have started applying concepts and methods of statistical physics to understand economic phenomena. The word ``econophysics'' is sometimes used to refer to this work. One reason for this interest is the fact that Economic systems such as financial markets are examples of complex interacting systems for which a huge amount of data exist and it is possible that economic problems viewed from a different perspective might yield new results. This article reviews the results of a few recent phenomenological studies focused on understanding the distinctive statistical properties of financial time series. We discuss three recent results-(i) The probability distribution of stock price fluctuations: Stock price fluctuations occur in all magnitudes, in analogy to earthquakes-from tiny fluctuations to very drastic events, such as market crashes, eg., the crash of October 19th 1987, sometimes referred to as ``Black Monday''. The distribution of price fluctuations decays with a power-law tail well outside the Lévy stable regime and describes fluctuations that differ by as much as 8 orders of magnitude. In addition, this distribution preserves its functional form for fluctuations on time scales that differ by 3 orders of magnitude, from 1 min up to approximately 10 days. (ii) Correlations in financial time series: While price fluctuations themselves have rapidly decaying correlations, the magnitude of fluctuations measured by either the absolute value or the square of the price fluctuations has correlations that decay as a power-law and persist for several months. (iii) Correlations among different companies: The third result bears on the application of random matrix theory to understand the correlations among price fluctuations of any two different stocks. From a study of the eigenvalue statistics of the cross-correlation matrix constructed from price fluctuations of the leading 1000 stocks, we find that the largest 5-10% of the eigenvalues and the corresponding eigenvectors show systematic deviations from the predictions for a random matrix, whereas the rest of the eigenvalues conform to random matrix behavior-suggesting that these 5-10% of the eigenvalues contain system-specific information about correlated behavior. .
Properties of networks with partially structured and partially random connectivity
NASA Astrophysics Data System (ADS)
Ahmadian, Yashar; Fumarola, Francesco; Miller, Kenneth D.
2015-01-01
Networks studied in many disciplines, including neuroscience and mathematical biology, have connectivity that may be stochastic about some underlying mean connectivity represented by a non-normal matrix. Furthermore, the stochasticity may not be independent and identically distributed (iid) across elements of the connectivity matrix. More generally, the problem of understanding the behavior of stochastic matrices with nontrivial mean structure and correlations arises in many settings. We address this by characterizing large random N ×N matrices of the form A =M +L J R , where M ,L , and R are arbitrary deterministic matrices and J is a random matrix of zero-mean iid elements. M can be non-normal, and L and R allow correlations that have separable dependence on row and column indices. We first provide a general formula for the eigenvalue density of A . For A non-normal, the eigenvalues do not suffice to specify the dynamics induced by A , so we also provide general formulas for the transient evolution of the magnitude of activity and frequency power spectrum in an N -dimensional linear dynamical system with a coupling matrix given by A . These quantities can also be thought of as characterizing the stability and the magnitude of the linear response of a nonlinear network to small perturbations about a fixed point. We derive these formulas and work them out analytically for some examples of M ,L , and R motivated by neurobiological models. We also argue that the persistence as N →∞ of a finite number of randomly distributed outlying eigenvalues outside the support of the eigenvalue density of A , as previously observed, arises in regions of the complex plane Ω where there are nonzero singular values of L-1(z 1 -M ) R-1 (for z ∈Ω ) that vanish as N →∞ . When such singular values do not exist and L and R are equal to the identity, there is a correspondence in the normalized Frobenius norm (but not in the operator norm) between the support of the spectrum of A for J of norm σ and the σ pseudospectrum of M .
NASA Astrophysics Data System (ADS)
Boyd, John P.; Amore, Paolo; Fernández, Francisco M.
2018-03-01
A "bent waveguide" in the sense used here is a small perturbation of a two-dimensional rectangular strip which is infinitely long in the down-channel direction and has a finite, constant width in the cross-channel coordinate. The goal is to calculate the smallest ("ground state") eigenvalue of the stationary Schrödinger equation which here is a two-dimensional Helmholtz equation, ψxx +ψyy + Eψ = 0 where E is the eigenvalue and homogeneous Dirichlet boundary conditions are imposed on the walls of the waveguide. Perturbation theory gives a good description when the "bending strength" parameter ɛ is small as described in our previous article (Amore et al., 2017) and other works cited therein. However, such series are asymptotic, and it is often impractical to calculate more than a handful of terms. It is therefore useful to develop numerical methods for the perturbed strip to cover intermediate ɛ where the perturbation series may be inaccurate and also to check the pertubation expansion when ɛ is small. The perturbation-induced change-in-eigenvalue, δ ≡ E(ɛ) - E(0) , is O(ɛ2) . We show that the computation becomes very challenging as ɛ → 0 because (i) the ground state eigenfunction varies on both O(1) and O(1 / ɛ) length scales and (ii) high accuracy is needed to compute several correct digits in δ, which is itself small compared to the eigenvalue E. The multiple length scales are not geographically separate, but rather are inextricably commingled in the neighborhood of the boundary deformation. We show that coordinate mapping and immersed boundary strategies both reduce the computational domain to the uniform strip, allowing application of pseudospectral methods on tensor product grids with tensor product basis functions. We compared different basis sets; Chebyshev polynomials are best in the cross-channel direction. However, sine functions generate rather accurate analytical approximations with just a single basis function. In the down-channel coordinate, X ∈ [ - ∞ , ∞ ] , Fourier domain truncation using the change of coordinate X = sinh(Lt) is considerably more efficient than rational Chebyshev functions TBn(X ; L) . All the spectral methods, however, yielded the required accuracy on a desktop computer.
Monte Carlo Techniques for Nuclear Systems - Theory Lectures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Forrest B.
These are lecture notes for a Monte Carlo class given at the University of New Mexico. The following topics are covered: course information; nuclear eng. review & MC; random numbers and sampling; computational geometry; collision physics; tallies and statistics; eigenvalue calculations I; eigenvalue calculations II; eigenvalue calculations III; variance reduction; parallel Monte Carlo; parameter studies; fission matrix and higher eigenmodes; doppler broadening; Monte Carlo depletion; HTGR modeling; coupled MC and T/H calculations; fission energy deposition. Solving particle transport problems with the Monte Carlo method is simple - just simulate the particle behavior. The devil is in the details, however. Thesemore » lectures provide a balanced approach to the theory and practice of Monte Carlo simulation codes. The first lectures provide an overview of Monte Carlo simulation methods, covering the transport equation, random sampling, computational geometry, collision physics, and statistics. The next lectures focus on the state-of-the-art in Monte Carlo criticality simulations, covering the theory of eigenvalue calculations, convergence analysis, dominance ratio calculations, bias in Keff and tallies, bias in uncertainties, a case study of a realistic calculation, and Wielandt acceleration techniques. The remaining lectures cover advanced topics, including HTGR modeling and stochastic geometry, temperature dependence, fission energy deposition, depletion calculations, parallel calculations, and parameter studies. This portion of the class focuses on using MCNP to perform criticality calculations for reactor physics and criticality safety applications. It is an intermediate level class, intended for those with at least some familiarity with MCNP. Class examples provide hands-on experience at running the code, plotting both geometry and results, and understanding the code output. The class includes lectures & hands-on computer use for a variety of Monte Carlo calculations. Beginning MCNP users are encouraged to review LA-UR-09-00380, "Criticality Calculations with MCNP: A Primer (3nd Edition)" (available at http:// mcnp.lanl.gov under "Reference Collection") prior to the class. No Monte Carlo class can be complete without having students write their own simple Monte Carlo routines for basic random sampling, use of the random number generator, and simplified particle transport simulation.« less
Chandrasekhar-Kendall modes and Taylor relaxation in an axisymmetric torus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, X.Z.; Boozer, A.H.; Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027
2005-10-01
The helicity-conserving Taylor relaxation of a plasma in a toroidal chamber to a force-free configuration, which means j=(j{sub parallel})/B)B with j{sub parallel}/B independent of position, can be generalized to include the external injection of magnetic helicity. When this is done, j{sub parallel}/B has resonant values, which can be understood using the eigenmodes of Taylor-relaxed plasmas enclosed by a perfectly conducting toroidal shell. These eigenmodes include a toroidal generalization of those found by Chandrasekhar and Kendall (CK) [Astrophys. J. 126, 457 (1957)] for a spherical chamber, which has no externally produced magnetic flux. It is shown that the CK modes inmore » an axisymmetric torus are of three types: (1) helical modes as well as axisymmetric modes that have (2) and have no (3) net toroidal flux. Yoshida and Giga (YG) [Math. Z. 204, 235 (1990)] published a fourth class of modes: axisymmetric modes that have no net toroidal flux in the chamber due to toroidal flux produced by a net poloidal current in the shell canceling the net toroidal flux from the plasma currents. Jensen and Chu [Phys. Fluids 27, 2881 (1984)], as well as Taylor [Rev. Mod. Phys. 58, 741 (1986)], considered modes in which the vector potential was zero on the axisymmetric toroidal chamber. It is shown that these Jensen-Chu-Taylor modes include only the CK helical modes and the CK axisymmetric modes without net toroidal flux. If the toroidal chamber is perfectly conducting except for a cut that prevents a net poloidal current from flowing, resonances in j{sub parallel}/B occur at the eigenvalues of the axisymmetric CK modes. Jensen and Chu studied this type of resonance. Without the cut, so a poloidal current flows to conserve the net toroidal flux, it is shown that j{sub parallel}/B resonances occur at the eigenvalues of the CK modes that have no net toroidal flux and at the eigenvalues of the YG modes, which are upshifted from the eigenvalues of the axisymmetric CK modes that carry net toroidal flux.« less
NASA Workshop on Computational Structural Mechanics 1987, part 1
NASA Technical Reports Server (NTRS)
Sykes, Nancy P. (Editor)
1989-01-01
Topics in Computational Structural Mechanics (CSM) are reviewed. CSM parallel structural methods, a transputer finite element solver, architectures for multiprocessor computers, and parallel eigenvalue extraction are among the topics discussed.
NASA Astrophysics Data System (ADS)
Avitabile, Daniele; Bridges, Thomas J.
2010-06-01
Numerical integration of complex linear systems of ODEs depending analytically on an eigenvalue parameter are considered. Complex orthogonalization, which is required to stabilize the numerical integration, results in non-analytic systems. It is shown that properties of eigenvalues are still efficiently recoverable by extracting information from a non-analytic characteristic function. The orthonormal systems are constructed using the geometry of Stiefel bundles. Different forms of continuous orthogonalization in the literature are shown to correspond to different choices of connection one-form on the Stiefel bundle. For the numerical integration, Gauss-Legendre Runge-Kutta algorithms are the principal choice for preserving orthogonality, and performance results are shown for a range of GLRK methods. The theory and methods are tested by application to example boundary value problems including the Orr-Sommerfeld equation in hydrodynamic stability.
Stability analysis of an autocatalytic protein model
NASA Astrophysics Data System (ADS)
Lee, Julian
2016-05-01
A self-regulatory genetic circuit, where a protein acts as a positive regulator of its own production, is known to be the simplest biological network with a positive feedback loop. Although at least three components—DNA, RNA, and the protein—are required to form such a circuit, stability analysis of the fixed points of this self-regulatory circuit has been performed only after reducing the system to a two-component system, either by assuming a fast equilibration of the DNA component or by removing the RNA component. Here, stability of the fixed points of the three-component positive feedback loop is analyzed by obtaining eigenvalues of the full three-dimensional Hessian matrix. In addition to rigorously identifying the stable fixed points and saddle points, detailed information about the system can be obtained, such as the existence of complex eigenvalues near a fixed point.
Evaluation of MARC for the analysis of rotating composite blades
NASA Technical Reports Server (NTRS)
Bartos, Karen F.; Ernst, Michael A.
1993-01-01
The suitability of the MARC code for the analysis of rotating composite blades was evaluated using a four-task process. A nonlinear displacement analysis and subsequent eigenvalue analysis were performed on a rotating spring mass system to ensure that displacement-dependent centrifugal forces were accounted for in the eigenvalue analysis. Normal modes analyses were conducted on isotropic plates with various degrees of twist to evaluate MARC's ability to handle blade twist. Normal modes analyses were conducted on flat composite plates to validate the newly developed coupled COBSTRAN-MARC methodology. Finally, normal modes analyses were conducted on four composite propfan blades that were designed, analyzed, and fabricated at NASA Lewis Research Center. Results were compared with experimental data. The research documented herein presents MARC as a viable tool for the analysis of rotating composite blades.
Evaluation of MARC for the analysis of rotating composite blades
NASA Astrophysics Data System (ADS)
Bartos, Karen F.; Ernst, Michael A.
1993-03-01
The suitability of the MARC code for the analysis of rotating composite blades was evaluated using a four-task process. A nonlinear displacement analysis and subsequent eigenvalue analysis were performed on a rotating spring mass system to ensure that displacement-dependent centrifugal forces were accounted for in the eigenvalue analysis. Normal modes analyses were conducted on isotropic plates with various degrees of twist to evaluate MARC's ability to handle blade twist. Normal modes analyses were conducted on flat composite plates to validate the newly developed coupled COBSTRAN-MARC methodology. Finally, normal modes analyses were conducted on four composite propfan blades that were designed, analyzed, and fabricated at NASA Lewis Research Center. Results were compared with experimental data. The research documented herein presents MARC as a viable tool for the analysis of rotating composite blades.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Das, Sonjoy; Goswami, Kundan; Datta, Biswa N.
2014-12-10
Failure of structural systems under dynamic loading can be prevented via active vibration control which shifts the damped natural frequencies of the systems away from the dominant range of loading spectrum. The damped natural frequencies and the dynamic load typically show significant variations in practice. A computationally efficient methodology based on quadratic partial eigenvalue assignment technique and optimization under uncertainty has been formulated in the present work that will rigorously account for these variations and result in an economic and resilient design of structures. A novel scheme based on hierarchical clustering and importance sampling is also developed in this workmore » for accurate and efficient estimation of probability of failure to guarantee the desired resilience level of the designed system. Numerical examples are presented to illustrate the proposed methodology.« less
On the transfer matrix of the supersymmetric eight-vertex model. I. Periodic boundary conditions
NASA Astrophysics Data System (ADS)
Hagendorf, Christian; Liénardy, Jean
2018-03-01
The square-lattice eight-vertex model with vertex weights a, b, c, d obeying the relation (a^2+ab)(b^2+ab) = (c^2+ab)(d^2+ab) and periodic boundary conditions is considered. It is shown that the transfer matrix of the model for L = 2n + 1 vertical lines and periodic boundary conditions along the horizontal direction possesses the doubly degenerate eigenvalue \\Thetan = (a+b){\\hspace{0pt}}2n+1 . This proves a conjecture by Stroganov from 2001. The proof uses the supersymmetry of a related XYZ spin-chain Hamiltonian. The eigenstates of the transfer matrix corresponding to \\Thetan are shown to be the ground states of the spin-chain Hamiltonian. Moreover, for positive vertex weights \\Thetan is the largest eigenvalue of the transfer matrix.
Vibration analysis of rotor systems using reduced subsystem models
NASA Technical Reports Server (NTRS)
Fan, Uei-Jiun; Noah, Sherif T.
1989-01-01
A general impedance method using reduced submodels has been developed for the linear dynamic analysis of rotor systems. Formulated in terms of either modal or physical coordinates of the subsystems, the method enables imbalance responses at specific locations of the rotor systems to be efficiently determined from a small number of 'master' degrees of freedom. To demonstrate the capability of this impedance approach, the Space Shuttle Main Engine high-pressure oxygen turbopump has been investigated to determine the bearing loads due to imbalance. Based on the same formulation, an eigenvalue analysis has been performed to study the system stability. A small 5-DOF model has been utilized to illustrate the application of the method to eigenvalue analysis. Because of its inherent characteristics of allowing formulation of reduced submodels, the impedance method can significantly increase the computational speed.
Harmonic Bloch and dipole oscillations and their transition in elliptical optical waveguide arrays
NASA Astrophysics Data System (ADS)
Chan, Yun San; Zheng, Ming Jie; Yu, Kin Wah
2011-03-01
We have studied harmonic oscillations in an elliptical optical waveguide array in which the couplings between neighboring waveguides are varied in accord with a Kac matrix so that the propagation constant eigenvalues can take equally spaced values. As a result, the long-living optical Bloch oscillation (BO) and dipole oscillation (DO) are obtained. Moreover, when a linear gradient in the propagation constant is applied, we achieve a switching from DO to BO and vice versa by ramping up or down the gradient profile]. The various optical oscillations as well as their switching are investigated by field evolution analysis and confirmed by Hamiltonian optics. The equally spaced eigenvalues in the propagation constant allow viable applications in transmitting images, switching and routing of optical signals. Work supported by the General Research Fund of the Hong Kong SAR Government.
Eigenspace techniques for active flutter suppression
NASA Technical Reports Server (NTRS)
Garrard, William L.; Liebst, Bradley S.; Farm, Jerome A.
1987-01-01
The use of eigenspace techniques for the design of an active flutter suppression system for a hypothetical research drone is discussed. One leading edge and two trailing edge aerodynamic control surfaces and four sensors (accelerometers) are available for each wing. Full state control laws are designed by selecting feedback gains which place closed loop eigenvalues and shape closed loop eigenvectors so as to stabilize wing flutter and reduce gust loads at the wing root while yielding accepatable robustness and satisfying constrains on rms control surface activity. These controllers are realized by state estimators designed using an eigenvalue placement/eigenvector shaping technique which results in recovery of the full state loop transfer characteristics. The resulting feedback compensators are shown to perform almost as well as the full state designs. They also exhibit acceptable performance in situations in which the failure of an actuator is simulated.
NASA Astrophysics Data System (ADS)
Adhikari, Satyabrata
2018-04-01
Structural physical approximation (SPA) has been exploited to approximate nonphysical operation such as partial transpose. It has already been studied in the context of detection of entanglement and found that if the minimum eigenvalue of SPA to partial transpose is less than 2/9 then the two-qubit state is entangled. We find application of SPA to partial transpose in the estimation of the optimal singlet fraction. We show that the optimal singlet fraction can be expressed in terms of the minimum eigenvalue of SPA to partial transpose. We also show that the optimal singlet fraction can be realized using Hong-Ou-Mandel interferometry with only two detectors. Further we have shown that the generated hybrid entangled state between a qubit and a binary coherent state can be used as a resource state in quantum teleportation.
Witnessing eigenstates for quantum simulation of Hamiltonian spectra
Santagati, Raffaele; Wang, Jianwei; Gentile, Antonio A.; Paesani, Stefano; Wiebe, Nathan; McClean, Jarrod R.; Morley-Short, Sam; Shadbolt, Peter J.; Bonneau, Damien; Silverstone, Joshua W.; Tew, David P.; Zhou, Xiaoqi; O’Brien, Jeremy L.; Thompson, Mark G.
2018-01-01
The efficient calculation of Hamiltonian spectra, a problem often intractable on classical machines, can find application in many fields, from physics to chemistry. We introduce the concept of an “eigenstate witness” and, through it, provide a new quantum approach that combines variational methods and phase estimation to approximate eigenvalues for both ground and excited states. This protocol is experimentally verified on a programmable silicon quantum photonic chip, a mass-manufacturable platform, which embeds entangled state generation, arbitrary controlled unitary operations, and projective measurements. Both ground and excited states are experimentally found with fidelities >99%, and their eigenvalues are estimated with 32 bits of precision. We also investigate and discuss the scalability of the approach and study its performance through numerical simulations of more complex Hamiltonians. This result shows promising progress toward quantum chemistry on quantum computers. PMID:29387796
Calculation of skin-stiffener interface stresses in stiffened composite panels
NASA Technical Reports Server (NTRS)
Cohen, David; Hyer, Michael W.
1987-01-01
A method for computing the skin-stiffener interface stresses in stiffened composite panels is developed. Both geometrically linear and nonlinear analyses are considered. Particular attention is given to the flange termination region where stresses are expected to exhibit unbounded characteristics. The method is based on a finite-element analysis and an elasticity solution. The finite-element analysis is standard, while the elasticity solution is based on an eigenvalue expansion of the stress functions. The eigenvalue expansion is assumed to be valid in the local flange termination region and is coupled with the finite-element analysis using collocation of stresses on the local region boundaries. Accuracy and convergence of the local elasticity solution are assessed using a geometrically linear analysis. Using this analysis procedure, the influence of geometric nonlinearities and stiffener parameters on the skin-stiffener interface stresses is evaluated.
Effect of Fuel Temperature Profile on Eigenvalue Calculations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greifenkamp, Tom E; Clarno, Kevin T; Gehin, Jess C
2008-01-01
Use of an average fuel temperature is a current practice when modeling fuel for eigenvalue (k-inf) calculations. This is an approximation, as it is known from Heat-transfer methods that a fuel pin having linear power q', will have a temperature that varies radially and has a maximum temperature at the center line [1]. This paper describes an investigation into the effects on k-inf and isotopic concentrations of modeling a fuel pin using a single average temperature versus a radially varying fuel temperature profile. The axial variation is not discussed in this paper. A single fuel pin was modeled having 1,more » 3, 5, 8, or 10 regions of equal volumes (areas). Fig. 1 shows a model of a 10-ring fuel pin surrounded by a gap and then cladding.« less
Observer-Pattern Modeling and Slow-Scale Bifurcation Analysis of Two-Stage Boost Inverters
NASA Astrophysics Data System (ADS)
Zhang, Hao; Wan, Xiaojin; Li, Weijie; Ding, Honghui; Yi, Chuanzhi
2017-06-01
This paper deals with modeling and bifurcation analysis of two-stage Boost inverters. Since the effect of the nonlinear interactions between source-stage converter and load-stage inverter causes the “hidden” second-harmonic current at the input of the downstream H-bridge inverter, an observer-pattern modeling method is proposed by removing time variance originating from both fundamental frequency and hidden second harmonics in the derived averaged equations. Based on the proposed observer-pattern model, the underlying mechanism of slow-scale instability behavior is uncovered with the help of eigenvalue analysis method. Then eigenvalue sensitivity analysis is used to select some key system parameters of two-stage Boost inverter, and some behavior boundaries are given to provide some design-oriented information for optimizing the circuit. Finally, these theoretical results are verified by numerical simulations and circuit experiment.
Schwartz, L M; Bergman, D J; Dunn, K J; Mitra, P P
1996-01-01
Random walk computer simulations are an important tool in understanding magnetic resonance measurements in porous media. In this paper we focus on the description of pulsed field gradient spin echo (PGSE) experiments that measure the probability, P(R,t), that a diffusing water molecule will travel a distance R in a time t. Because PGSE simulations are often limited by statistical considerations, we will see that valuable insight can be gained by working with simple periodic geometries and comparing simulation data to the results of exact eigenvalue expansions. In this connection, our attention will be focused on (1) the wavevector, k, and time dependent magnetization, M(k, t); and (2) the normalized probability, Ps(delta R, t), that a diffusing particle will return to within delta R of the origin after time t.
Eigenvalue approach to coupled thermoelasticity in a rotating isotropic medium
NASA Astrophysics Data System (ADS)
Bayones, F. S.; Abd-Alla, A. M.
2018-03-01
In this paper the linear theory of the thermoelasticity has been employed to study the effect of the rotation in a thermoelastic half-space containing heat source on the boundary of the half-space. It is assumed that the medium under consideration is traction free, homogeneous, isotropic, as well as without energy dissipation. The normal mode analysis has been applied in the basic equations of coupled thermoelasticity and finally the resulting equations are written in the form of a vector- matrix differential equation which is then solved by eigenvalue approach. Numerical results for the displacement components, stresses, and temperature are given and illustrated graphically. Comparison was made with the results obtained in the presence and absence of the rotation. The results indicate that the effect of rotation, non-dimensional thermal wave and time are very pronounced.
NASA Astrophysics Data System (ADS)
Yamamoto, Takuya; Nishigaki, Shinsuke M.
2018-02-01
We compute individual distributions of low-lying eigenvalues of a chiral random matrix ensemble interpolating symplectic and unitary symmetry classes by the Nyström-type method of evaluating the Fredholm Pfaffian and resolvents of the quaternion kernel. The one-parameter family of these distributions is shown to fit excellently the Dirac spectra of SU(2) lattice gauge theory with a constant U(1) background or dynamically fluctuating U(1) gauge field, which weakly breaks the pseudoreality of the unperturbed SU(2) Dirac operator. The observed linear dependence of the crossover parameter with the strength of the U(1) perturbations leads to precise determination of the pseudo-scalar decay constant, as well as the chiral condensate in the effective chiral Lagrangian of the AI class.
Solving large sparse eigenvalue problems on supercomputers
NASA Technical Reports Server (NTRS)
Philippe, Bernard; Saad, Youcef
1988-01-01
An important problem in scientific computing consists in finding a few eigenvalues and corresponding eigenvectors of a very large and sparse matrix. The most popular methods to solve these problems are based on projection techniques on appropriate subspaces. The main attraction of these methods is that they only require the use of the matrix in the form of matrix by vector multiplications. The implementations on supercomputers of two such methods for symmetric matrices, namely Lanczos' method and Davidson's method are compared. Since one of the most important operations in these two methods is the multiplication of vectors by the sparse matrix, methods of performing this operation efficiently are discussed. The advantages and the disadvantages of each method are compared and implementation aspects are discussed. Numerical experiments on a one processor CRAY 2 and CRAY X-MP are reported. Possible parallel implementations are also discussed.
Parametric study of the dynamic JWL-EOS for detonation products
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urtiew, P.A.; Hayes, B.
1990-03-01
The JWL equation of state describing the adiabatic expansion of detonation products is revisited to complete the description of the principal eigenvalue, to reset the secondary eigenvalue to produce a well-behaved adiabatic gamma profile, and to normalize the characteristic equation of state in terms of conventional parameters having a clear experimental interpretation. This is accomplished by interjecting a dynamic flow condition concerning the value of the relative specific volume when the particle velocity of the detonation products is zero. In addition, a set of generic parameters based on the statistical distribution of the primary explosives making up the available datamore » base is presented. Unlike theoretical and statistical mechanical models, the adiabatic gamma function for these materials is seen to have a positive initial slope in accord with experimental findings. 10 refs., 4 figs.« less
Methods for the calculation of axial wave numbers in lined ducts with mean flow
NASA Technical Reports Server (NTRS)
Eversman, W.
1981-01-01
A survey is made of the methods available for the calculation of axial wave numbers in lined ducts. Rectangular and circular ducts with both uniform and non-uniform flow are considered as are ducts with peripherally varying liners. A historical perspective is provided by a discussion of the classical methods for computing attenuation when no mean flow is present. When flow is present these techniques become either impractical or impossible. A number of direct eigenvalue determination schemes which have been used when flow is present are discussed. Methods described are extensions of the classical no-flow technique, perturbation methods based on the no-flow technique, direct integration methods for solution of the eigenvalue equation, an integration-iteration method based on the governing differential equation for acoustic transmission, Galerkin methods, finite difference methods, and finite element methods.
NASA Astrophysics Data System (ADS)
Dore, L.; Cohen, R. C.; Schmuttenmaer, C. A.; Busarow, K. L.; Elrod, M. J.; Loeser, J. G.; Saykally, R. J.
1994-01-01
Thirteen vibration-rotation-tunneling (VRT) bands of the CH4-H2O complex have been measured in the range from 18 to 35.5 cm-1 using tunable far infrared laser spectroscopy. The ground state has an average center of mass separation of 3.70 Å and a stretching force constant of 1.52 N/m, indicating that this complex is more strongly bound than Ar-H2O. The eigenvalue spectrum has been calculated with a variational procedure using a spherical expansion of a site-site ab initio intermolecular potential energy surface [J. Chem. Phys. 93, 7808 (1991)]. The computed eigenvalues exhibit a similar pattern to the observed spectra but are not in quantitative agreement. These observations suggest that both monomers undergo nearly free internal rotation within the complex.
Calculation of normal modes of the closed waveguides in general vector case
NASA Astrophysics Data System (ADS)
Malykh, M. D.; Sevastianov, L. A.; Tiutiunnik, A. A.
2018-04-01
The article is devoted to the calculation of normal modes of the closed waveguides with an arbitrary filling ɛ, μ in the system of computer algebra Sage. Maxwell equations in the cylinder are reduced to the system of two bounded Helmholtz equations, the notion of weak solution of this system is given and then this system is investigated as a system of ordinary differential equations. The normal modes of this system are an eigenvectors of a matrix pencil. We suggest to calculate the matrix elements approximately and to truncate the matrix by usual way but further to solve the truncated eigenvalue problem exactly in the field of algebraic numbers. This approach allows to keep the symmetry of the initial problem and in particular the multiplicity of the eigenvalues. In the work would be presented some results of calculations.
Galbán, Craig J; Maderwald, Stefan; Uffmann, Kai; de Greiff, Armin; Ladd, Mark E
2004-12-01
The aim of this study was to examine the diffusive properties of adjacent muscles at rest, and to determine the relationship between diffusive and architectural properties, which are task-specific to muscles. The principle, second, and third eigenvalues, trace of the diffusion tensor, and two anisotropic parameters, ellipsoid eccentricity (e) and fractional anisotropy (FA), of various muscles in the human calf were calculated by diffusion tensor imaging (DTI). Linear correlations of the calculated parameters to the muscle physiological cross-sectional area (PCSA), which is proportional to maximum muscle force, were performed to ascertain any linear relation between muscle architecture and diffusivity. Images of the left calf were acquired from six healthy male volunteers. Seven muscles were investigated in this study. These comprised the soleus, lateral gastrocnemius, medial gastrocnemius, posterior tibialis, anterior tibialis, extensor digitorum longus, and peroneus longus. All data were presented as the mean and standard error of the mean (SEM). In general, differences in diffusive parameter values occurred primarily between functionally different muscles. A strong correlation was also found between PCSA and the third eigenvalue, e, and FA. A mathematical derivation revealed a linear relationship between PCSA and the third eigenvalue as a result of their dependence on the average radius of all fibers within a single muscle. These findings demonstrated the ability of DTI to differentiate between functionally different muscles in the same region of the body on the basis of their diffusive properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Özgün, Ege; Serebryannikov, Andriy E.; Ozbay, Ekmel
Combining loss and gain components in one photonic heterostructure opens a new route to efficient manipulation by radiation, transmission, absorption, and scattering of electromagnetic waves. Therefore, loss/gain structures enablingmore » $${\\mathscr{P}}{\\mathscr{T}}$$-symmetric and $${\\mathscr{P}}{\\mathscr{T}}$$-broken phases for eigenvalues have extensively been studied in the last decade. In particular, translation from one phase to another, which occurs at the critical point in the two-channel structures with one-dimensional loss/gain components, is often associated with one-way transmission. In this report, broadband mixing of the $${\\mathscr{P}}{\\mathscr{T}}$$-symmetric and $${\\mathscr{P}}{\\mathscr{T}}$$-broken phases for eigenvalues is theoretically demonstrated in heterostructures with four channels obtained by combining a one-dimensional loss/gain bilayer and one or two thin polarization-converting components (PCCs). The broadband phase mixing in the four-channel case is expected to yield advanced transmission and absorption regimes. Various configurations are analyzed, which are distinguished in symmetry properties and polarization conversion regime of PCCs. The conditions necessary for phase mixing are then discussed. The simplest two-component configurations with broadband mixing are found, as well as the more complex three-component configurations wherein symmetric and broken sets are not yet mixed and appear in the neighbouring frequency ranges. Peculiarities of eigenvalue behaviour are considered for different permittivity ranges of loss/gain medium, i.e., from epsilon-near-zero to high-epsilon regime.« less
MPACT Subgroup Self-Shielding Efficiency Improvements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stimpson, Shane; Liu, Yuxuan; Collins, Benjamin S.
Recent developments to improve the efficiency of the MOC solvers in MPACT have yielded effective kernels that loop over several energy groups at once, rather that looping over one group at a time. These kernels have produced roughly a 2x speedup on the MOC sweeping time during eigenvalue calculation. However, the self-shielding subgroup calculation had not been reevaluated to take advantage of these new kernels, which typically requires substantial solve time. The improvements covered in this report start by integrating the multigroup kernel concepts into the subgroup calculation, which are then used as the basis for further extensions. The nextmore » improvement that is covered is what is currently being termed as “Lumped Parameter MOC”. Because the subgroup calculation is a purely fixed source problem and multiple sweeps are performed only to update the boundary angular fluxes, the sweep procedure can be condensed to allow for the instantaneous propagation of the flux across a spatial domain, without the need to sweep along all segments in a ray. Once the boundary angular fluxes are considered to be converged, an additional sweep that will tally the scalar flux is completed. The last improvement that is investigated is the possible reduction of the number of azimuthal angles per octant in the shielding sweep. Typically 16 azimuthal angles per octant are used for self-shielding and eigenvalue calculations, but it is possible that the self-shielding sweeps are less sensitive to the number of angles than the full eigenvalue calculation.« less
Perfetti, Christopher M.; Rearden, Bradley T.
2016-03-01
The sensitivity and uncertainty analysis tools of the ORNL SCALE nuclear modeling and simulation code system that have been developed over the last decade have proven indispensable for numerous application and design studies for nuclear criticality safety and reactor physics. SCALE contains tools for analyzing the uncertainty in the eigenvalue of critical systems, but cannot quantify uncertainty in important neutronic parameters such as multigroup cross sections, fuel fission rates, activation rates, and neutron fluence rates with realistic three-dimensional Monte Carlo simulations. A more complete understanding of the sources of uncertainty in these design-limiting parameters could lead to improvements in processmore » optimization, reactor safety, and help inform regulators when setting operational safety margins. A novel approach for calculating eigenvalue sensitivity coefficients, known as the CLUTCH method, was recently explored as academic research and has been found to accurately and rapidly calculate sensitivity coefficients in criticality safety applications. The work presented here describes a new method, known as the GEAR-MC method, which extends the CLUTCH theory for calculating eigenvalue sensitivity coefficients to enable sensitivity coefficient calculations and uncertainty analysis for a generalized set of neutronic responses using high-fidelity continuous-energy Monte Carlo calculations. Here, several criticality safety systems were examined to demonstrate proof of principle for the GEAR-MC method, and GEAR-MC was seen to produce response sensitivity coefficients that agreed well with reference direct perturbation sensitivity coefficients.« less
Accelerating molecular property calculations with nonorthonormal Krylov space methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furche, Filipp; Krull, Brandon T.; Nguyen, Brian D.
Here, we formulate Krylov space methods for large eigenvalue problems and linear equation systems that take advantage of decreasing residual norms to reduce the cost of matrix-vector multiplication. The residuals are used as subspace basis without prior orthonormalization, which leads to generalized eigenvalue problems or linear equation systems on the Krylov space. These nonorthonormal Krylov space (nKs) algorithms are favorable for large matrices with irregular sparsity patterns whose elements are computed on the fly, because fewer operations are necessary as the residual norm decreases as compared to the conventional method, while errors in the desired eigenpairs and solution vectors remainmore » small. We consider real symmetric and symplectic eigenvalue problems as well as linear equation systems and Sylvester equations as they appear in configuration interaction and response theory. The nKs method can be implemented in existing electronic structure codes with minor modifications and yields speed-ups of 1.2-1.8 in typical time-dependent Hartree-Fock and density functional applications without accuracy loss. The algorithm can compute entire linear subspaces simultaneously which benefits electronic spectra and force constant calculations requiring many eigenpairs or solution vectors. The nKs approach is related to difference density methods in electronic ground state calculations, and particularly efficient for integral direct computations of exchange-type contractions. By combination with resolution-of-the-identity methods for Coulomb contractions, three- to fivefold speed-ups of hybrid time-dependent density functional excited state and response calculations are achieved.« less
Accelerating molecular property calculations with nonorthonormal Krylov space methods
Furche, Filipp; Krull, Brandon T.; Nguyen, Brian D.; ...
2016-05-03
Here, we formulate Krylov space methods for large eigenvalue problems and linear equation systems that take advantage of decreasing residual norms to reduce the cost of matrix-vector multiplication. The residuals are used as subspace basis without prior orthonormalization, which leads to generalized eigenvalue problems or linear equation systems on the Krylov space. These nonorthonormal Krylov space (nKs) algorithms are favorable for large matrices with irregular sparsity patterns whose elements are computed on the fly, because fewer operations are necessary as the residual norm decreases as compared to the conventional method, while errors in the desired eigenpairs and solution vectors remainmore » small. We consider real symmetric and symplectic eigenvalue problems as well as linear equation systems and Sylvester equations as they appear in configuration interaction and response theory. The nKs method can be implemented in existing electronic structure codes with minor modifications and yields speed-ups of 1.2-1.8 in typical time-dependent Hartree-Fock and density functional applications without accuracy loss. The algorithm can compute entire linear subspaces simultaneously which benefits electronic spectra and force constant calculations requiring many eigenpairs or solution vectors. The nKs approach is related to difference density methods in electronic ground state calculations, and particularly efficient for integral direct computations of exchange-type contractions. By combination with resolution-of-the-identity methods for Coulomb contractions, three- to fivefold speed-ups of hybrid time-dependent density functional excited state and response calculations are achieved.« less
Disease Localization in Multilayer Networks
NASA Astrophysics Data System (ADS)
de Arruda, Guilherme Ferraz; Cozzo, Emanuele; Peixoto, Tiago P.; Rodrigues, Francisco A.; Moreno, Yamir
2017-01-01
We present a continuous formulation of epidemic spreading on multilayer networks using a tensorial representation, extending the models of monoplex networks to this context. We derive analytical expressions for the epidemic threshold of the susceptible-infected-susceptible (SIS) and susceptible-infected-recovered dynamics, as well as upper and lower bounds for the disease prevalence in the steady state for the SIS scenario. Using the quasistationary state method, we numerically show the existence of disease localization and the emergence of two or more susceptibility peaks, which are characterized analytically and numerically through the inverse participation ratio. At variance with what is observed in single-layer networks, we show that disease localization takes place on the layers and not on the nodes of a given layer. Furthermore, when mapping the critical dynamics to an eigenvalue problem, we observe a characteristic transition in the eigenvalue spectra of the supra-contact tensor as a function of the ratio of two spreading rates: If the rate at which the disease spreads within a layer is comparable to the spreading rate across layers, the individual spectra of each layer merge with the coupling between layers. Finally, we report on an interesting phenomenon, the barrier effect; i.e., for a three-layer configuration, when the layer with the lowest eigenvalue is located at the center of the line, it can effectively act as a barrier to the disease. The formalism introduced here provides a unifying mathematical approach to disease contagion in multiplex systems, opening new possibilities for the study of spreading processes.
IONIZATION EQUILIBRIUM TIMESCALES IN COLLISIONAL PLASMAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Randall K.; Hughes, John P., E-mail: rsmith@cfa.harvard.ed, E-mail: jph@physics.rutgers.ed
2010-07-20
Astrophysical shocks or bursts from a photoionizing source can disturb the typical collisional plasma found in galactic interstellar media or the intergalactic medium. The spectrum emitted by this plasma contains diagnostics that have been used to determine the time since the disturbing event, although this determination becomes uncertain as the elements in the plasma return to ionization equilibrium. A general solution for the equilibrium timescale for each element arises from the elegant eigenvector method of solution to the problem of a non-equilibrium plasma described by Masai and Hughes and Helfand. In general, the ionization evolution of an element Z inmore » a constant electron temperature plasma is given by a coupled set of Z + 1 first-order differential equations. However, they can be recast as Z uncoupled first-order differential equations using an eigenvector basis for the system. The solution is then Z separate exponential functions, with the time constants given by the eigenvalues of the rate matrix. The smallest of these eigenvalues gives the scale of the slowest return to equilibrium independent of the initial conditions, while conversely the largest eigenvalue is the scale of the fastest change in the ion population. These results hold for an ionizing plasma, a recombining plasma, or even a plasma with random initial conditions, and will allow users of these diagnostics to determine directly if their best-fit result significantly limits the timescale since a disturbance or is so close to equilibrium as to include an arbitrarily long time.« less
Özgün, Ege; Serebryannikov, Andriy E; Ozbay, Ekmel; Soukoulis, Costas M
2017-11-14
Combining loss and gain components in one photonic heterostructure opens a new route to efficient manipulation by radiation, transmission, absorption, and scattering of electromagnetic waves. Therefore, loss/gain structures enabling [Formula: see text]-symmetric and [Formula: see text]-broken phases for eigenvalues have extensively been studied in the last decade. In particular, translation from one phase to another, which occurs at the critical point in the two-channel structures with one-dimensional loss/gain components, is often associated with one-way transmission. In this report, broadband mixing of the [Formula: see text]-symmetric and [Formula: see text]-broken phases for eigenvalues is theoretically demonstrated in heterostructures with four channels obtained by combining a one-dimensional loss/gain bilayer and one or two thin polarization-converting components (PCCs). The broadband phase mixing in the four-channel case is expected to yield advanced transmission and absorption regimes. Various configurations are analyzed, which are distinguished in symmetry properties and polarization conversion regime of PCCs. The conditions necessary for phase mixing are discussed. The simplest two-component configurations with broadband mixing are found, as well as the more complex three-component configurations wherein symmetric and broken sets are not yet mixed and appear in the neighbouring frequency ranges. Peculiarities of eigenvalue behaviour are considered for different permittivity ranges of loss/gain medium, i.e., from epsilon-near-zero to high-epsilon regime.
SHETTY, ANIL N.; CHIANG, SHARON; MALETIC-SAVATIC, MIRJANA; KASPRIAN, GREGOR; VANNUCCI, MARINA; LEE, WESLEY
2016-01-01
In this article, we discuss the theoretical background for diffusion weighted imaging and diffusion tensor imaging. Molecular diffusion is a random process involving thermal Brownian motion. In biological tissues, the underlying microstructures restrict the diffusion of water molecules, making diffusion directionally dependent. Water diffusion in tissue is mathematically characterized by the diffusion tensor, the elements of which contain information about the magnitude and direction of diffusion and is a function of the coordinate system. Thus, it is possible to generate contrast in tissue based primarily on diffusion effects. Expressing diffusion in terms of the measured diffusion coefficient (eigenvalue) in any one direction can lead to errors. Nowhere is this more evident than in white matter, due to the preferential orientation of myelin fibers. The directional dependency is removed by diagonalization of the diffusion tensor, which then yields a set of three eigenvalues and eigenvectors, representing the magnitude and direction of the three orthogonal axes of the diffusion ellipsoid, respectively. For example, the eigenvalue corresponding to the eigenvector along the long axis of the fiber corresponds qualitatively to diffusion with least restriction. Determination of the principal values of the diffusion tensor and various anisotropic indices provides structural information. We review the use of diffusion measurements using the modified Stejskal–Tanner diffusion equation. The anisotropy is analyzed by decomposing the diffusion tensor based on symmetrical properties describing the geometry of diffusion tensor. We further describe diffusion tensor properties in visualizing fiber tract organization of the human brain. PMID:27441031
Evolution of axis ratios from phase space dynamics of triaxial collapse
NASA Astrophysics Data System (ADS)
Nadkarni-Ghosh, Sharvari; Arya, Bhaskar
2018-04-01
We investigate the evolution of axis ratios of triaxial haloes using the phase space description of triaxial collapse. In this formulation, the evolution of the triaxial ellipsoid is described in terms of the dynamics of eigenvalues of three important tensors: the Hessian of the gravitational potential, the tensor of velocity derivatives, and the deformation tensor. The eigenvalues of the deformation tensor are directly related to the parameters that describe triaxiality, namely, the minor-to-major and intermediate-to-major axes ratios (s and q) and the triaxiality parameter T. Using the phase space equations, we evolve the eigenvalues and examine the evolution of the probability distribution function (PDF) of the axes ratios as a function of mass scale and redshift for Gaussian initial conditions. We find that the ellipticity and prolateness increase with decreasing mass scale and decreasing redshift. These trends agree with previous analytic studies but differ from numerical simulations. However, the PDF of the scaled parameter {\\tilde{q}} = (q-s)/(1-s) follows a universal distribution over two decades in mass range and redshifts which is in qualitative agreement with the universality for conditional PDF reported in simulations. We further show using the phase space dynamics that, in fact, {\\tilde{q}} is a phase space invariant and is conserved individually for each halo. These results demonstrate that the phase space analysis is a useful tool that provides a different perspective on the evolution of perturbations and can be applied to more sophisticated models in the future.
Brain vascular image segmentation based on fuzzy local information C-means clustering
NASA Astrophysics Data System (ADS)
Hu, Chaoen; Liu, Xia; Liang, Xiao; Hui, Hui; Yang, Xin; Tian, Jie
2017-02-01
Light sheet fluorescence microscopy (LSFM) is a powerful optical resolution fluorescence microscopy technique which enables to observe the mouse brain vascular network in cellular resolution. However, micro-vessel structures are intensity inhomogeneity in LSFM images, which make an inconvenience for extracting line structures. In this work, we developed a vascular image segmentation method by enhancing vessel details which should be useful for estimating statistics like micro-vessel density. Since the eigenvalues of hessian matrix and its sign describes different geometric structure in images, which enable to construct vascular similarity function and enhance line signals, the main idea of our method is to cluster the pixel values of the enhanced image. Our method contained three steps: 1) calculate the multiscale gradients and the differences between eigenvalues of Hessian matrix. 2) In order to generate the enhanced microvessels structures, a feed forward neural network was trained by 2.26 million pixels for dealing with the correlations between multi-scale gradients and the differences between eigenvalues. 3) The fuzzy local information c-means clustering (FLICM) was used to cluster the pixel values in enhance line signals. To verify the feasibility and effectiveness of this method, mouse brain vascular images have been acquired by a commercial light-sheet microscope in our lab. The experiment of the segmentation method showed that dice similarity coefficient can reach up to 85%. The results illustrated that our approach extracting line structures of blood vessels dramatically improves the vascular image and enable to accurately extract blood vessels in LSFM images.
Özgün, Ege; Serebryannikov, Andriy E.; Ozbay, Ekmel; ...
2017-11-14
Combining loss and gain components in one photonic heterostructure opens a new route to efficient manipulation by radiation, transmission, absorption, and scattering of electromagnetic waves. Therefore, loss/gain structures enablingmore » $${\\mathscr{P}}{\\mathscr{T}}$$-symmetric and $${\\mathscr{P}}{\\mathscr{T}}$$-broken phases for eigenvalues have extensively been studied in the last decade. In particular, translation from one phase to another, which occurs at the critical point in the two-channel structures with one-dimensional loss/gain components, is often associated with one-way transmission. In this report, broadband mixing of the $${\\mathscr{P}}{\\mathscr{T}}$$-symmetric and $${\\mathscr{P}}{\\mathscr{T}}$$-broken phases for eigenvalues is theoretically demonstrated in heterostructures with four channels obtained by combining a one-dimensional loss/gain bilayer and one or two thin polarization-converting components (PCCs). The broadband phase mixing in the four-channel case is expected to yield advanced transmission and absorption regimes. Various configurations are analyzed, which are distinguished in symmetry properties and polarization conversion regime of PCCs. The conditions necessary for phase mixing are then discussed. The simplest two-component configurations with broadband mixing are found, as well as the more complex three-component configurations wherein symmetric and broken sets are not yet mixed and appear in the neighbouring frequency ranges. Peculiarities of eigenvalue behaviour are considered for different permittivity ranges of loss/gain medium, i.e., from epsilon-near-zero to high-epsilon regime.« less
Normalized modes at selected points without normalization
NASA Astrophysics Data System (ADS)
Kausel, Eduardo
2018-04-01
As every textbook on linear algebra demonstrates, the eigenvectors for the general eigenvalue problem | K - λM | = 0 involving two real, symmetric, positive definite matrices K , M satisfy some well-defined orthogonality conditions. Equally well-known is the fact that those eigenvectors can be normalized so that their modal mass μ =ϕT Mϕ is unity: it suffices to divide each unscaled mode by the square root of the modal mass. Thus, the normalization is the result of an explicit calculation applied to the modes after they were obtained by some means. However, we show herein that the normalized modes are not merely convenient forms of scaling, but that they are actually intrinsic properties of the pair of matrices K , M, that is, the matrices already "know" about normalization even before the modes have been obtained. This means that we can obtain individual components of the normalized modes directly from the eigenvalue problem, and without needing to obtain either all of the modes or for that matter, any one complete mode. These results are achieved by means of the residue theorem of operational calculus, a finding that is rather remarkable inasmuch as the residues themselves do not make use of any orthogonality conditions or normalization in the first place. It appears that this obscure property connecting the general eigenvalue problem of modal analysis with the residue theorem of operational calculus may have been overlooked up until now, but which has in turn interesting theoretical implications.Á
COMPPAP - COMPOSITE PLATE BUCKLING ANALYSIS PROGRAM (IBM PC VERSION)
NASA Technical Reports Server (NTRS)
Smith, J. P.
1994-01-01
The Composite Plate Buckling Analysis Program (COMPPAP) was written to help engineers determine buckling loads of orthotropic (or isotropic) irregularly shaped plates without requiring hand calculations from design curves or extensive finite element modeling. COMPPAP is a one element finite element program that utilizes high-order displacement functions. The high order of the displacement functions enables the user to produce results more accurate than traditional h-finite elements. This program uses these high-order displacement functions to perform a plane stress analysis of a general plate followed by a buckling calculation based on the stresses found in the plane stress solution. The current version assumes a flat plate (constant thickness) subject to a constant edge load (normal or shear) on one or more edges. COMPPAP uses the power method to find the eigenvalues of the buckling problem. The power method provides an efficient solution when only one eigenvalue is desired. Once the eigenvalue is found, the eigenvector, which corresponds to the plate buckling mode shape, results as a by-product. A positive feature of the power method is that the dominant eigenvalue is the first found, which is this case is the plate buckling load. The reported eigenvalue expresses a load factor to induce plate buckling. COMPPAP is written in ANSI FORTRAN 77. Two machine versions are available from COSMIC: a PC version (MSC-22428), which is for IBM PC 386 series and higher computers and compatibles running MS-DOS; and a UNIX version (MSC-22286). The distribution medium for both machine versions includes source code for both single and double precision versions of COMPPAP. The PC version includes source code which has been optimized for implementation within DOS memory constraints as well as sample executables for both the single and double precision versions of COMPPAP. The double precision versions of COMPPAP have been successfully implemented on an IBM PC 386 compatible running MS-DOS, a Sun4 series computer running SunOS, an HP-9000 series computer running HP-UX, and a CRAY X-MP series computer running UNICOS. COMPPAP requires 1Mb of RAM and the BLAS and LINPACK math libraries, which are included on the distribution medium. The COMPPAP documentation provides instructions for using the commercial post-processing package PATRAN for graphical interpretation of COMPPAP output. The UNIX version includes two electronic versions of the documentation: one in LaTex format and one in PostScript format. The standard distribution medium for the PC version (MSC-22428) is a 5.25 inch 1.2Mb MS-DOS format diskette. The standard distribution medium for the UNIX version (MSC-22286) is a .25 inch streaming magnetic tape cartridge (Sun QIC-24) in UNIX tar format. For the UNIX version, alternate distribution media and formats are available upon request. COMPPAP was developed in 1992.
COMPPAP - COMPOSITE PLATE BUCKLING ANALYSIS PROGRAM (UNIX VERSION)
NASA Technical Reports Server (NTRS)
Smith, J. P.
1994-01-01
The Composite Plate Buckling Analysis Program (COMPPAP) was written to help engineers determine buckling loads of orthotropic (or isotropic) irregularly shaped plates without requiring hand calculations from design curves or extensive finite element modeling. COMPPAP is a one element finite element program that utilizes high-order displacement functions. The high order of the displacement functions enables the user to produce results more accurate than traditional h-finite elements. This program uses these high-order displacement functions to perform a plane stress analysis of a general plate followed by a buckling calculation based on the stresses found in the plane stress solution. The current version assumes a flat plate (constant thickness) subject to a constant edge load (normal or shear) on one or more edges. COMPPAP uses the power method to find the eigenvalues of the buckling problem. The power method provides an efficient solution when only one eigenvalue is desired. Once the eigenvalue is found, the eigenvector, which corresponds to the plate buckling mode shape, results as a by-product. A positive feature of the power method is that the dominant eigenvalue is the first found, which is this case is the plate buckling load. The reported eigenvalue expresses a load factor to induce plate buckling. COMPPAP is written in ANSI FORTRAN 77. Two machine versions are available from COSMIC: a PC version (MSC-22428), which is for IBM PC 386 series and higher computers and compatibles running MS-DOS; and a UNIX version (MSC-22286). The distribution medium for both machine versions includes source code for both single and double precision versions of COMPPAP. The PC version includes source code which has been optimized for implementation within DOS memory constraints as well as sample executables for both the single and double precision versions of COMPPAP. The double precision versions of COMPPAP have been successfully implemented on an IBM PC 386 compatible running MS-DOS, a Sun4 series computer running SunOS, an HP-9000 series computer running HP-UX, and a CRAY X-MP series computer running UNICOS. COMPPAP requires 1Mb of RAM and the BLAS and LINPACK math libraries, which are included on the distribution medium. The COMPPAP documentation provides instructions for using the commercial post-processing package PATRAN for graphical interpretation of COMPPAP output. The UNIX version includes two electronic versions of the documentation: one in LaTex format and one in PostScript format. The standard distribution medium for the PC version (MSC-22428) is a 5.25 inch 1.2Mb MS-DOS format diskette. The standard distribution medium for the UNIX version (MSC-22286) is a .25 inch streaming magnetic tape cartridge (Sun QIC-24) in UNIX tar format. For the UNIX version, alternate distribution media and formats are available upon request. COMPPAP was developed in 1992.
Analytical study of inside-out Gimbal dynamics. Volume 2: Appendix
NASA Technical Reports Server (NTRS)
Rybak, S. C.
1976-01-01
Stability data, eigenvalue data, and instrument pointing system earth point tracking time histories at various orbital altitudes are presented. These data apply to the inside-out Gimbal system configuration and the coincident Gimbal system configuration.