An 8-node tetrahedral finite element suitable for explicit transient dynamic simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Key, S.W.; Heinstein, M.W.; Stone, C.M.
1997-12-31
Considerable effort has been expended in perfecting the algorithmic properties of 8-node hexahedral finite elements. Today the element is well understood and performs exceptionally well when used in modeling three-dimensional explicit transient dynamic events. However, the automatic generation of all-hexahedral meshes remains an elusive achievement. The alternative of automatic generation for all-tetrahedral finite element is a notoriously poor performer, and the 10-node quadratic tetrahedral finite element while a better performer numerically is computationally expensive. To use the all-tetrahedral mesh generation extant today, the authors have explored the creation of a quality 8-node tetrahedral finite element (a four-node tetrahedral finite elementmore » enriched with four midface nodal points). The derivation of the element`s gradient operator, studies in obtaining a suitable mass lumping and the element`s performance in applications are presented. In particular, they examine the 80node tetrahedral finite element`s behavior in longitudinal plane wave propagation, in transverse cylindrical wave propagation, and in simulating Taylor bar impacts. The element only samples constant strain states and, therefore, has 12 hourglass modes. In this regard, it bears similarities to the 8-node, mean-quadrature hexahedral finite element. Given automatic all-tetrahedral meshing, the 8-node, constant-strain tetrahedral finite element is a suitable replacement for the 8-node hexahedral finite element and handbuilt meshes.« less
Method of modifying a volume mesh using sheet extraction
Borden, Michael J [Albuquerque, NM; Shepherd, Jason F [Albuquerque, NM
2007-02-20
A method and machine-readable medium provide a technique to modify a hexahedral finite element volume mesh using dual generation and sheet extraction. After generating a dual of a volume stack (mesh), a predetermined algorithm may be followed to modify the volume mesh of hexahedral elements. The predetermined algorithm may include the steps of determining a sheet of hexahedral mesh elements, generating nodes for merging, and merging the nodes to delete the sheet of hexahedral mesh elements and modify the volume mesh.
Connectivity-based, all-hexahedral mesh generation method and apparatus
Tautges, T.J.; Mitchell, S.A.; Blacker, T.D.; Murdoch, P.
1998-06-16
The present invention is a computer-based method and apparatus for constructing all-hexahedral finite element meshes for finite element analysis. The present invention begins with a three-dimensional geometry and an all-quadrilateral surface mesh, then constructs hexahedral element connectivity from the outer boundary inward, and then resolves invalid connectivity. The result of the present invention is a complete representation of hex mesh connectivity only; actual mesh node locations are determined later. The basic method of the present invention comprises the step of forming hexahedral elements by making crossings of entities referred to as ``whisker chords.`` This step, combined with a seaming operation in space, is shown to be sufficient for meshing simple block problems. Entities that appear when meshing more complex geometries, namely blind chords, merged sheets, and self-intersecting chords, are described. A method for detecting invalid connectivity in space, based on repeated edges, is also described, along with its application to various cases of invalid connectivity introduced and resolved by the method. 79 figs.
Connectivity-based, all-hexahedral mesh generation method and apparatus
Tautges, Timothy James; Mitchell, Scott A.; Blacker, Ted D.; Murdoch, Peter
1998-01-01
The present invention is a computer-based method and apparatus for constructing all-hexahedral finite element meshes for finite element analysis. The present invention begins with a three-dimensional geometry and an all-quadrilateral surface mesh, then constructs hexahedral element connectivity from the outer boundary inward, and then resolves invalid connectivity. The result of the present invention is a complete representation of hex mesh connectivity only; actual mesh node locations are determined later. The basic method of the present invention comprises the step of forming hexahedral elements by making crossings of entities referred to as "whisker chords." This step, combined with a seaming operation in space, is shown to be sufficient for meshing simple block problems. Entities that appear when meshing more complex geometries, namely blind chords, merged sheets, and self-intersecting chords, are described. A method for detecting invalid connectivity in space, based on repeated edges, is also described, along with its application to various cases of invalid connectivity introduced and resolved by the method.
Arbitrary-level hanging nodes for adaptive hphp-FEM approximations in 3D
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavel Kus; Pavel Solin; David Andrs
2014-11-01
In this paper we discuss constrained approximation with arbitrary-level hanging nodes in adaptive higher-order finite element methods (hphp-FEM) for three-dimensional problems. This technique enables using highly irregular meshes, and it greatly simplifies the design of adaptive algorithms as it prevents refinements from propagating recursively through the finite element mesh. The technique makes it possible to design efficient adaptive algorithms for purely hexahedral meshes. We present a detailed mathematical description of the method and illustrate it with numerical examples.
NASA Technical Reports Server (NTRS)
Krueger, Ronald; Goetze, Dirk; Ransom, Jonathon (Technical Monitor)
2006-01-01
Strain energy release rates were computed along straight delamination fronts of Double Cantilever Beam, End-Notched Flexure and Single Leg Bending specimens using the Virtual Crack Closure Technique (VCCT). Th e results were based on finite element analyses using ABAQUS# and ANSYS# and were calculated from the finite element results using the same post-processing routine to assure a consistent procedure. Mixed-mode strain energy release rates obtained from post-processing finite elem ent results were in good agreement for all element types used and all specimens modeled. Compared to previous studies, the models made of s olid twenty-node hexahedral elements and solid eight-node incompatible mode elements yielded excellent results. For both codes, models made of standard brick elements and elements with reduced integration did not correctly capture the distribution of the energy release rate acr oss the width of the specimens for the models chosen. The results suggested that element types with similar formulation yield matching results independent of the finite element software used. For comparison, m ixed-mode strain energy release rates were also calculated within ABAQUS#/Standard using the VCCT for ABAQUS# add on. For all specimens mod eled, mixed-mode strain energy release rates obtained from ABAQUS# finite element results using post-processing were almost identical to re sults calculated using the VCCT for ABAQUS# add on.
Hexahedral finite element mesh coarsening using pillowing technique
Staten, Matthew L [Pittsburgh, PA; Woodbury, Adam C [Provo, UT; Benzley, Steven E [Provo, UT; Shepherd, Jason F [Edgewood, NM
2012-06-05
A techniques for coarsening a hexahedral mesh is described. The technique includes identifying a coarsening region within a hexahedral mesh to be coarsened. A boundary sheet of hexahedral elements is inserted into the hexahedral mesh around the coarsening region. A column of hexahedral elements is identified within the boundary sheet. The column of hexahedral elements is collapsed to create an extraction sheet of hexahedral elements contained within the coarsening region. Then, the extraction sheet of hexahedral elements is extracted to coarsen the hexahedral mesh.
Gonzales, Matthew J.; Sturgeon, Gregory; Segars, W. Paul; McCulloch, Andrew D.
2016-01-01
Cubic Hermite hexahedral finite element meshes have some well-known advantages over linear tetrahedral finite element meshes in biomechanical and anatomic modeling using isogeometric analysis. These include faster convergence rates as well as the ability to easily model rule-based anatomic features such as cardiac fiber directions. However, it is not possible to create closed complex objects with only regular nodes; these objects require the presence of extraordinary nodes (nodes with 3 or >= 5 adjacent elements in 2D) in the mesh. The presence of extraordinary nodes requires new constraints on the derivatives of adjacent elements to maintain continuity. We have developed a new method that uses an ensemble coordinate frame at the nodes and a local-to-global mapping to maintain continuity. In this paper, we make use of this mapping to create cubic Hermite models of the human ventricles and a four-chamber heart. We also extend the methods to the finite element equations to perform biomechanics simulations using these meshes. The new methods are validated using simple test models and applied to anatomically accurate ventricular meshes with valve annuli to simulate complete cardiac cycle simulations. PMID:27182096
1994-02-01
numerical treatment. An explicit numerical procedure based on Runqe-Kutta time stepping for cell-centered, hexahedral finite volumes is...An explicit numerical procedure based on Runge-Kutta time stepping for cell-centered, hexahedral finite volumes is outlined for the approximate...Discretization 16 3.1 Cell-Centered Finite -Volume Discretization in Space 16 3.2 Artificial Dissipation 17 3.3 Time Integration 21 3.4 Convergence
NASA Technical Reports Server (NTRS)
Raju, I. S.; Newman, J. C., Jr.
1993-01-01
A computer program, surf3d, that uses the 3D finite-element method to calculate the stress-intensity factors for surface, corner, and embedded cracks in finite-thickness plates with and without circular holes, was developed. The cracks are assumed to be either elliptic or part eliptic in shape. The computer program uses eight-noded hexahedral elements to model the solid. The program uses a skyline storage and solver. The stress-intensity factors are evaluated using the force method, the crack-opening displacement method, and the 3-D virtual crack closure methods. In the manual the input to and the output of the surf3d program are described. This manual also demonstrates the use of the program and describes the calculation of the stress-intensity factors. Several examples with sample data files are included with the manual. To facilitate modeling of the user's crack configuration and loading, a companion program (a preprocessor program) that generates the data for the surf3d called gensurf was also developed. The gensurf program is a three dimensional mesh generator program that requires minimal input and that builds a complete data file for surf3d. The program surf3d is operational on Unix machines such as CRAY Y-MP, CRAY-2, and Convex C-220.
Method of modifying a volume mesh using sheet insertion
Borden, Michael J [Albuquerque, NM; Shepherd, Jason F [Albuquerque, NM
2006-08-29
A method and machine-readable medium provide a technique to modify a hexahedral finite element volume mesh using dual generation and sheet insertion. After generating a dual of a volume stack (mesh), a predetermined algorithm may be followed to modify (refine) the volume mesh of hexahedral elements. The predetermined algorithm may include the steps of locating a sheet of hexahedral mesh elements, determining a plurality of hexahedral elements within the sheet to refine, shrinking the plurality of elements, and inserting a new sheet of hexahedral elements adjacently to modify the volume mesh. Additionally, another predetermined algorithm using mesh cutting may be followed to modify a volume mesh.
Lee, Chu-Hee; Landham, Priyan R; Eastell, Richard; Adams, Michael A; Dolan, Patricia; Yang, Lang
2017-09-01
Finite element models of an isolated vertebral body cannot accurately predict compressive strength of the spinal column because, in life, compressive load is variably distributed across the vertebral body and neural arch. The purpose of this study was to develop and validate a patient-specific finite element model of a functional spinal unit, and then use the model to predict vertebral strength from medical images. A total of 16 cadaveric functional spinal units were scanned and then tested mechanically in bending and compression to generate a vertebral wedge fracture. Before testing, an image processing and finite element analysis framework (SpineVox-Pro), developed previously in MATLAB using ANSYS APDL, was used to generate a subject-specific finite element model with eight-node hexahedral elements. Transversely isotropic linear-elastic material properties were assigned to vertebrae, and simple homogeneous linear-elastic properties were assigned to the intervertebral disc. Forward bending loading conditions were applied to simulate manual handling. Results showed that vertebral strengths measured by experiment were positively correlated with strengths predicted by the functional spinal unit finite element model with von Mises or Drucker-Prager failure criteria ( R 2 = 0.80-0.87), with areal bone mineral density measured by dual-energy X-ray absorptiometry ( R 2 = 0.54) and with volumetric bone mineral density from quantitative computed tomography ( R 2 = 0.79). Large-displacement non-linear analyses on all specimens did not improve predictions. We conclude that subject-specific finite element models of a functional spinal unit have potential to estimate the vertebral strength better than bone mineral density alone.
Construction of hexahedral finite element mesh capturing realistic geometries of a petroleum reserve
Park, Byoung Yoon; Roberts, Barry L.; Sobolik, Steven R.
2017-07-27
The three-dimensional finite element mesh capturing realistic geometries of the Bayou Choctaw site has been constructed using the sonar and seismic survey data obtained from the field. The mesh consists of hexahedral elements because the salt constitutive model is coded using hexahedral elements. Various ideas and techniques to construct finite element mesh capturing artificially and naturally formed geometries are provided. The techniques to reduce the number of elements as much as possible to save on computer run time while maintaining the computational accuracy is also introduced. The steps and methodologies could be applied to construct the meshes of Big Hill,more » Bryan Mound, and West Hackberry strategic petroleum reserve sites. The methodology could be applied to the complicated shape masses for various civil and geological structures.« less
Construction of hexahedral finite element mesh capturing realistic geometries of a petroleum reserve
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Byoung Yoon; Roberts, Barry L.; Sobolik, Steven R.
The three-dimensional finite element mesh capturing realistic geometries of the Bayou Choctaw site has been constructed using the sonar and seismic survey data obtained from the field. The mesh consists of hexahedral elements because the salt constitutive model is coded using hexahedral elements. Various ideas and techniques to construct finite element mesh capturing artificially and naturally formed geometries are provided. The techniques to reduce the number of elements as much as possible to save on computer run time while maintaining the computational accuracy is also introduced. The steps and methodologies could be applied to construct the meshes of Big Hill,more » Bryan Mound, and West Hackberry strategic petroleum reserve sites. The methodology could be applied to the complicated shape masses for various civil and geological structures.« less
Tadepalli, Srinivas C; Erdemir, Ahmet; Cavanagh, Peter R
2011-08-11
Finite element analysis has been widely used in the field of foot and footwear biomechanics to determine plantar pressures as well as stresses and strains within soft tissue and footwear materials. When dealing with anatomical structures such as the foot, hexahedral mesh generation accounts for most of the model development time due to geometric complexities imposed by branching and embedded structures. Tetrahedral meshing, which can be more easily automated, has been the approach of choice to date in foot and footwear biomechanics. Here we use the nonlinear finite element program Abaqus (Simulia, Providence, RI) to examine the advantages and disadvantages of tetrahedral and hexahedral elements under compression and shear loading, material incompressibility, and frictional contact conditions, which are commonly seen in foot and footwear biomechanics. This study demonstrated that for a range of simulation conditions, hybrid hexahedral elements (Abaqus C3D8H) consistently performed well while hybrid linear tetrahedral elements (Abaqus C3D4H) performed poorly. On the other hand, enhanced quadratic tetrahedral elements with improved stress visualization (Abaqus C3D10I) performed as well as the hybrid hexahedral elements in terms of contact pressure and contact shear stress predictions. Although the enhanced quadratic tetrahedral element simulations were computationally expensive compared to hexahedral element simulations in both barefoot and footwear conditions, the enhanced quadratic tetrahedral element formulation seems to be very promising for foot and footwear applications as a result of decreased labor and expedited model development, all related to facilitated mesh generation. Copyright © 2011. Published by Elsevier Ltd.
A methodology for quadrilateral finite element mesh coarsening
Staten, Matthew L.; Benzley, Steven; Scott, Michael
2008-03-27
High fidelity finite element modeling of continuum mechanics problems often requires using all quadrilateral or all hexahedral meshes. The efficiency of such models is often dependent upon the ability to adapt a mesh to the physics of the phenomena. Adapting a mesh requires the ability to both refine and/or coarsen the mesh. The algorithms available to refine and coarsen triangular and tetrahedral meshes are very robust and efficient. However, the ability to locally and conformally refine or coarsen all quadrilateral and all hexahedral meshes presents many difficulties. Some research has been done on localized conformal refinement of quadrilateral and hexahedralmore » meshes. However, little work has been done on localized conformal coarsening of quadrilateral and hexahedral meshes. A general method which provides both localized conformal coarsening and refinement for quadrilateral meshes is presented in this paper. This method is based on restructuring the mesh with simplex manipulations to the dual of the mesh. Finally, this method appears to be extensible to hexahedral meshes in three dimensions.« less
Unstructured Euler flow solutions using hexahedral cell refinement
NASA Technical Reports Server (NTRS)
Melton, John E.; Cappuccio, Gelsomina; Thomas, Scott D.
1991-01-01
An attempt is made to extend grid refinement into three dimensions by using unstructured hexahedral grids. The flow solver is developed using the TIGER (topologically Independent Grid, Euler Refinement) as the starting point. The program uses an unstructured hexahedral mesh and a modified version of the Jameson four-stage, finite-volume Runge-Kutta algorithm for integration of the Euler equations. The unstructured mesh allows for local refinement appropriate for each freestream condition, thereby concentrating mesh cells in the regions of greatest interest. This increases the computational efficiency because the refinement is not required to extend throughout the entire flow field.
A voxel-based finite element model for the prediction of bladder deformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chai Xiangfei; Herk, Marcel van; Hulshof, Maarten C. C. M.
2012-01-15
Purpose: A finite element (FE) bladder model was previously developed to predict bladder deformation caused by bladder filling change. However, two factors prevent a wide application of FE models: (1) the labor required to construct a FE model with high quality mesh and (2) long computation time needed to construct the FE model and solve the FE equations. In this work, we address these issues by constructing a low-resolution voxel-based FE bladder model directly from the binary segmentation images and compare the accuracy and computational efficiency of the voxel-based model used to simulate bladder deformation with those of a classicalmore » FE model with a tetrahedral mesh. Methods: For ten healthy volunteers, a series of MRI scans of the pelvic region was recorded at regular intervals of 10 min over 1 h. For this series of scans, the bladder volume gradually increased while rectal volume remained constant. All pelvic structures were defined from a reference image for each volunteer, including bladder wall, small bowel, prostate (male), uterus (female), rectum, pelvic bone, spine, and the rest of the body. Four separate FE models were constructed from these structures: one with a tetrahedral mesh (used in previous study), one with a uniform hexahedral mesh, one with a nonuniform hexahedral mesh, and one with a low-resolution nonuniform hexahedral mesh. Appropriate material properties were assigned to all structures and uniform pressure was applied to the inner bladder wall to simulate bladder deformation from urine inflow. Performance of the hexahedral meshes was evaluated against the performance of the standard tetrahedral mesh by comparing the accuracy of bladder shape prediction and computational efficiency. Results: FE model with a hexahedral mesh can be quickly and automatically constructed. No substantial differences were observed between the simulation results of the tetrahedral mesh and hexahedral meshes (<1% difference in mean dice similarity coefficient to manual contours and <0.02 cm difference in mean standard deviation of residual errors). The average equation solving time (without manual intervention) for the first two types of hexahedral meshes increased to 2.3 h and 2.6 h compared to the 1.1 h needed for the tetrahedral mesh, however, the low-resolution nonuniform hexahedral mesh dramatically decreased the equation solving time to 3 min without reducing accuracy. Conclusions: Voxel-based mesh generation allows fast, automatic, and robust creation of finite element bladder models directly from binary segmentation images without user intervention. Even the low-resolution voxel-based hexahedral mesh yields comparable accuracy in bladder shape prediction and more than 20 times faster in computational speed compared to the tetrahedral mesh. This approach makes it more feasible and accessible to apply FE method to model bladder deformation in adaptive radiotherapy.« less
Rib fractures under anterior-posterior dynamic loads: experimental and finite-element study.
Li, Zuoping; Kindig, Matthew W; Kerrigan, Jason R; Untaroiu, Costin D; Subit, Damien; Crandall, Jeff R; Kent, Richard W
2010-01-19
The purpose of this study was to investigate whether using a finite-element (FE) mesh composed entirely of hexahedral elements to model cortical and trabecular bone (all-hex model) would provide more accurate simulations than those with variable thickness shell elements for cortical bone and hexahedral elements for trabecular bone (hex-shell model) in the modeling human ribs. First, quasi-static non-injurious and dynamic injurious experiments were performed using the second, fourth, and tenth human thoracic ribs to record the structural behavior and fracture tolerance of individual ribs under anterior-posterior bending loads. Then, all-hex and hex-shell FE models for the three ribs were developed using an octree-based and multi-block hex meshing approach, respectively. Material properties of cortical bone were optimized using dynamic experimental data and the hex-shell model of the fourth rib and trabecular bone properties were taken from the literature. Overall, the reaction force-displacement relationship predicted by both all-hex and hex-shell models with nodes in the offset middle-cortical surfaces compared well with those measured experimentally for all the three ribs. With the exception of fracture locations, the predictions from all-hex and offset hex-shell models of the second and fourth ribs agreed better with experimental data than those from the tenth rib models in terms of reaction force at fracture (difference <15.4%), ultimate failure displacement and time (difference <7.3%), and cortical bone strains. The hex-shell models with shell nodes in outer cortical surfaces increased static reaction forces up to 16.6%, compared to offset hex-shell models. These results indicated that both all-hex and hex-shell modeling strategies were applicable for simulating rib responses and bone fractures for the loading conditions considered, but coarse hex-shell models with constant or variable shell thickness were more computationally efficient and therefore preferred. Copyright 2009 Elsevier Ltd. All rights reserved.
Refinement Of Hexahedral Cells In Euler Flow Computations
NASA Technical Reports Server (NTRS)
Melton, John E.; Cappuccio, Gelsomina; Thomas, Scott D.
1996-01-01
Topologically Independent Grid, Euler Refinement (TIGER) computer program solves Euler equations of three-dimensional, unsteady flow of inviscid, compressible fluid by numerical integration on unstructured hexahedral coordinate grid refined where necessary to resolve shocks and other details. Hexahedral cells subdivided, each into eight smaller cells, as needed to refine computational grid in regions of high flow gradients. Grid Interactive Refinement and Flow-Field Examination (GIRAFFE) computer program written in conjunction with TIGER program to display computed flow-field data and to assist researcher in verifying specified boundary conditions and refining grid.
A template-based approach for parallel hexahedral two-refinement
Owen, Steven J.; Shih, Ryan M.; Ernst, Corey D.
2016-10-17
Here, we provide a template-based approach for generating locally refined all-hex meshes. We focus specifically on refinement of initially structured grids utilizing a 2-refinement approach where uniformly refined hexes are subdivided into eight child elements. The refinement algorithm consists of identifying marked nodes that are used as the basis for a set of four simple refinement templates. The target application for 2-refinement is a parallel grid-based all-hex meshing tool for high performance computing in a distributed environment. The result is a parallel consistent locally refined mesh requiring minimal communication and where minimum mesh quality is greater than scaled Jacobian 0.3more » prior to smoothing.« less
A template-based approach for parallel hexahedral two-refinement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Owen, Steven J.; Shih, Ryan M.; Ernst, Corey D.
Here, we provide a template-based approach for generating locally refined all-hex meshes. We focus specifically on refinement of initially structured grids utilizing a 2-refinement approach where uniformly refined hexes are subdivided into eight child elements. The refinement algorithm consists of identifying marked nodes that are used as the basis for a set of four simple refinement templates. The target application for 2-refinement is a parallel grid-based all-hex meshing tool for high performance computing in a distributed environment. The result is a parallel consistent locally refined mesh requiring minimal communication and where minimum mesh quality is greater than scaled Jacobian 0.3more » prior to smoothing.« less
Automated hexahedral mesh generation from biomedical image data: applications in limb prosthetics.
Zachariah, S G; Sanders, J E; Turkiyyah, G M
1996-06-01
A general method to generate hexahedral meshes for finite element analysis of residual limbs and similar biomedical geometries is presented. The method utilizes skeleton-based subdivision of cross-sectional domains to produce simple subdomains in which structured meshes are easily generated. Application to a below-knee residual limb and external prosthetic socket is described. The residual limb was modeled as consisting of bones, soft tissue, and skin. The prosthetic socket model comprised a socket wall with an inner liner. The geometries of these structures were defined using axial cross-sectional contour data from X-ray computed tomography, optical scanning, and mechanical surface digitization. A tubular surface representation, using B-splines to define the directrix and generator, is shown to be convenient for definition of the structure geometries. Conversion of cross-sectional data to the compact tubular surface representation is direct, and the analytical representation simplifies geometric querying and numerical optimization within the mesh generation algorithms. The element meshes remain geometrically accurate since boundary nodes are constrained to lie on the tubular surfaces. Several element meshes of increasing mesh density were generated for two residual limbs and prosthetic sockets. Convergence testing demonstrated that approximately 19 elements are required along a circumference of the residual limb surface for a simple linear elastic model. A model with the fibula absent compared with the same geometry with the fibula present showed differences suggesting higher distal stresses in the absence of the fibula. Automated hexahedral mesh generation algorithms for sliced data represent an advancement in prosthetic stress analysis since they allow rapid modeling of any given residual limb and optimization of mesh parameters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Hojun; Owen, Steven J.; Abdeljawad, Fadi F.
In order to better incorporate microstructures in continuum scale models, we use a novel finite element (FE) meshing technique to generate three-dimensional polycrystalline aggregates from a phase field grain growth model of grain microstructures. The proposed meshing technique creates hexahedral FE meshes that capture smooth interfaces between adjacent grains. Three dimensional realizations of grain microstructures from the phase field model are used in crystal plasticity-finite element (CP-FE) simulations of polycrystalline a -iron. We show that the interface conformal meshes significantly reduce artificial stress localizations in voxelated meshes that exhibit the so-called "wedding cake" interfaces. This framework provides a direct linkmore » between two mesoscale models - phase field and crystal plasticity - and for the first time allows mechanics simulations of polycrystalline materials using three-dimensional hexahedral finite element meshes with realistic topological features.« less
Spatial Convergence of Three Dimensional Turbulent Flows
NASA Technical Reports Server (NTRS)
Park, Michael A.; Anderson, W. Kyle
2016-01-01
Finite-volume and finite-element schemes, both implemented within the FUN3D flow solver, are evaluated for several test cases described on the Turbulence-Modeling Resource (TMR) web site. The cases include subsonic flow over a hemisphere cylinder, subsonic flow over a swept bump configuration, and supersonic flow in a square duct. The finite- volume and finite-element schemes are both used to obtain solutions for the first two cases, whereas only the finite-volume scheme is used for the supersonic duct. For the hemisphere cylinder, finite-element solutions obtained on tetrahedral meshes are compared with finite- volume solutions on mixed-element meshes. For the swept bump, finite-volume solutions have been obtained for both hexahedral and tetrahedral meshes and are compared with finite-element solutions obtained on tetrahedral meshes. For the hemisphere cylinder and the swept bump, solutions are obtained on a series of meshes with varying grid density and comparisons are made between drag coefficients, pressure distributions, velocity profiles, and profiles of the turbulence working variable. The square duct shows small variation due to element type or the spatial accuracy of turbulence model convection. It is demonstrated that the finite-element scheme on tetrahedral meshes yields similar accuracy as the finite- volume scheme on mixed-element and hexahedral grids, and demonstrates less sensitivity to the mesh topology (biased tetrahedral grids) than the finite-volume scheme.
Shape functions for velocity interpolation in general hexahedral cells
Naff, R.L.; Russell, T.F.; Wilson, J.D.
2002-01-01
Numerical methods for grids with irregular cells require discrete shape functions to approximate the distribution of quantities across cells. For control-volume mixed finite-element (CVMFE) methods, vector shape functions approximate velocities and vector test functions enforce a discrete form of Darcy's law. In this paper, a new vector shape function is developed for use with irregular, hexahedral cells (trilinear images of cubes). It interpolates velocities and fluxes quadratically, because as shown here, the usual Piola-transformed shape functions, which interpolate linearly, cannot match uniform flow on general hexahedral cells. Truncation-error estimates for the shape function are demonstrated. CVMFE simulations of uniform and non-uniform flow with irregular meshes show first- and second-order convergence of fluxes in the L2 norm in the presence and absence of singularities, respectively.
Multiresolution molecular mechanics: Surface effects in nanoscale materials
NASA Astrophysics Data System (ADS)
Yang, Qingcheng; To, Albert C.
2017-05-01
Surface effects have been observed to contribute significantly to the mechanical response of nanoscale structures. The newly proposed energy-based coarse-grained atomistic method Multiresolution Molecular Mechanics (MMM) (Yang, To (2015), [57]) is applied to capture surface effect for nanosized structures by designing a surface summation rule SRS within the framework of MMM. Combined with previously proposed bulk summation rule SRB, the MMM summation rule SRMMM is completed. SRS and SRB are consistently formed within SRMMM for general finite element shape functions. Analogous to quadrature rules in finite element method (FEM), the key idea to the good performance of SRMMM lies in that the order or distribution of energy for coarse-grained atomistic model is mathematically derived such that the number, position and weight of quadrature-type (sampling) atoms can be determined. Mathematically, the derived energy distribution of surface area is different from that of bulk region. Physically, the difference is due to the fact that surface atoms lack neighboring bonding. As such, SRS and SRB are employed for surface and bulk domains, respectively. Two- and three-dimensional numerical examples using the respective 4-node bilinear quadrilateral, 8-node quadratic quadrilateral and 8-node hexahedral meshes are employed to verify and validate the proposed approach. It is shown that MMM with SRMMM accurately captures corner, edge and surface effects with less 0.3% degrees of freedom of the original atomistic system, compared against full atomistic simulation. The effectiveness of SRMMM with respect to high order element is also demonstrated by employing the 8-node quadratic quadrilateral to solve a beam bending problem considering surface effect. In addition, the introduced sampling error with SRMMM that is analogous to numerical integration error with quadrature rule in FEM is very small.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Byoung Yoon; Roberts, Barry L.
The three-dimensional finite element mesh capturing realistic geometries of Bayou Choctaw site has been constructed using the sonar and seismic survey data obtained from the field. The mesh is consisting of hexahedral elements because the salt constitutive model is coded using hexahedral elements. Various ideas and techniques to construct finite element mesh capturing artificially and naturally formed geometries are provided. The techniques to reduce the number of elements as much as possible to save on computer run time with maintaining the computational accuracy is also introduced. The steps and methodologies could be applied to construct the meshes of Big Hill,more » Bryan Mound, and West Hackberry strategic petroleum reserve sites. The methodology could be applied to the complicated shape masses for not only various civil and geological structures but also biological applications such as artificial limbs.« less
Gaussian curvature analysis allows for automatic block placement in multi-block hexahedral meshing.
Ramme, Austin J; Shivanna, Kiran H; Magnotta, Vincent A; Grosland, Nicole M
2011-10-01
Musculoskeletal finite element analysis (FEA) has been essential to research in orthopaedic biomechanics. The generation of a volumetric mesh is often the most challenging step in a FEA. Hexahedral meshing tools that are based on a multi-block approach rely on the manual placement of building blocks for their mesh generation scheme. We hypothesise that Gaussian curvature analysis could be used to automatically develop a building block structure for multi-block hexahedral mesh generation. The Automated Building Block Algorithm incorporates principles from differential geometry, combinatorics, statistical analysis and computer science to automatically generate a building block structure to represent a given surface without prior information. We have applied this algorithm to 29 bones of varying geometries and successfully generated a usable mesh in all cases. This work represents a significant advancement in automating the definition of building blocks.
Finite Element Simulation of Articular Contact Mechanics with Quadratic Tetrahedral Elements
Maas, Steve A.; Ellis, Benjamin J.; Rawlins, David S.; Weiss, Jeffrey A.
2016-01-01
Although it is easier to generate finite element discretizations with tetrahedral elements, trilinear hexahedral (HEX8) elements are more often used in simulations of articular contact mechanics. This is due to numerical shortcomings of linear tetrahedral (TET4) elements, limited availability of quadratic tetrahedron elements in combination with effective contact algorithms, and the perceived increased computational expense of quadratic finite elements. In this study we implemented both ten-node (TET10) and fifteen-node (TET15) quadratic tetrahedral elements in FEBio (www.febio.org) and compared their accuracy, robustness in terms of convergence behavior and computational cost for simulations relevant to articular contact mechanics. Suitable volume integration and surface integration rules were determined by comparing the results of several benchmark contact problems. The results demonstrated that the surface integration rule used to evaluate the contact integrals for quadratic elements affected both convergence behavior and accuracy of predicted stresses. The computational expense and robustness of both quadratic tetrahedral formulations compared favorably to the HEX8 models. Of note, the TET15 element demonstrated superior convergence behavior and lower computational cost than both the TET10 and HEX8 elements for meshes with similar numbers of degrees of freedom in the contact problems that we examined. Finally, the excellent accuracy and relative efficiency of these quadratic tetrahedral elements was illustrated by comparing their predictions with those for a HEX8 mesh for simulation of articular contact in a fully validated model of the hip. These results demonstrate that TET10 and TET15 elements provide viable alternatives to HEX8 elements for simulation of articular contact mechanics. PMID:26900037
NASA Astrophysics Data System (ADS)
Lonsdale, R. D.; Webster, R.
This paper demonstrates the application of a simple finite volume approach to a finite element mesh, combining the economy of the former with the geometrical flexibility of the latter. The procedure is used to model a three-dimensional flow on a mesh of linear eight-node brick (hexahedra). Simulations are performed for a wide range of flow problems, some in excess of 94,000 nodes. The resulting computer code ASTEC that incorporates these procedures is described.
Zeng, Zhi-Li; Cheng, Li-Ming; Zhu, Rui; Wang, Jian-Jie; Yu, Yan
2011-08-23
To build an effective nonlinear three-dimensional finite-element (FE) model of T(11)-L(3) segments for a further biomechanical study of thoracolumbar spine. The CT (computed tomography) scan images of healthy adult T(11)-L(3) segments were imported into software Simpleware 2.0 to generate a triangular mesh model. Using software Geomagic 8 for model repair and optimization, a solid model was generated into the finite element software Abaqus 6.9. The reasonable element C3D8 was selected for bone structures. Created between bony endplates, the intervertebral disc was subdivided into nucleus pulposus and annulus fibrosus (44% nucleus, 56% annulus). The nucleus was filled with 5 layers of 8-node solid elements and annulus reinforced by 8 crisscross collagenous fiber layers. The nucleus and annulus were meshed by C3D8RH while the collagen fibers meshed by two node-truss elements. The anterior (ALL) and posterior (PLL) longitudinal ligaments, flavum (FL), supraspinous (SSL), interspinous (ISL) and intertransverse (ITL) ligaments were modeled with S4R shell elements while capsular ligament (CL) was modeled with 3-node shell element. All surrounding ligaments were represented by envelope of 1 mm uniform thickness. The discs and bone structures were modeled with hyper-elastic and elasto-plastic material laws respectively while the ligaments governed by visco-elastic material law. The nonlinear three-dimensional finite-element model of T(11)-L(3) segments was generated and its efficacy verified through validating the geometric similarity and disc load-displacement and stress distribution under the impact of violence. Using ABAQUS/ EXPLICIT 6.9 the explicit dynamic finite element solver, the impact test was simulated in vitro. In this study, a 3-dimensional, nonlinear FE model including 5 vertebrae, 4 intervertebral discs and 7 ligaments consisted of 78 887 elements and 71 939 nodes. The model had good geometric similarity under the same conditions. The results of FEM intervertebral disc load-displacement curve were similar to those of in vitro test. The stress distribution results of vertebral cortical bone, posterior complex and cancellous bone were similar to those of other static experiments in a dynamic impact test under the observation of stress cloud. With the advantages of high geometric and mechanical similarity and complete thoracolumbar, hexahedral meshes, nonlinear finite element model may facilitate the impact loading test for a further dynamic analysis of injury mechanism for thoracolumbar burst fracture.
Clement, R; Schneider, J; Brambs, H-J; Wunderlich, A; Geiger, M; Sander, F G
2004-02-01
The paper demonstrates how to generate an individual 3D volume model of a human single-rooted tooth using an automatic workflow. It can be implemented into finite element simulation. In several computational steps, computed tomography data of patients are used to obtain the global coordinates of the tooth's surface. First, the large number of geometric data is processed with several self-developed algorithms for a significant reduction. The most important task is to keep geometrical information of the real tooth. The second main part includes the creation of the volume model for tooth and periodontal ligament (PDL). This is realized with a continuous free form surface of the tooth based on the remaining points. Generating such irregular objects for numerical use in biomechanical research normally requires enormous manual effort and time. The finite element mesh of the tooth, consisting of hexahedral elements, is composed of different materials: dentin, PDL and surrounding alveolar bone. It is capable of simulating tooth movement in a finite element analysis and may give valuable information for a clinical approach without the restrictions of tetrahedral elements. The mesh generator of FE software ANSYS executed the mesh process for hexahedral elements successfully.
Three-dimensional modeling of flexible pavements : executive summary, August 2001.
DOT National Transportation Integrated Search
2001-08-01
A linear viscoelastic model has been incorporated into a three-dimensional finite element program for analysis of flexible pavements. Linear and quadratic versions of hexahedral elements and quadrilateral axisymmetrix elements are provided. Dynamic p...
Three dimensional modeling of flexible pavements : final report, March 2002.
DOT National Transportation Integrated Search
2001-08-01
A linear viscoelastic model has been incorporated into a three-dimensional finite element program for analysis of flexible pavements. Linear and quadratic versions of hexahedral elements and quadrilateral axisymmetrix elements are provided. Dynamic p...
Finite element simulation of articular contact mechanics with quadratic tetrahedral elements.
Maas, Steve A; Ellis, Benjamin J; Rawlins, David S; Weiss, Jeffrey A
2016-03-21
Although it is easier to generate finite element discretizations with tetrahedral elements, trilinear hexahedral (HEX8) elements are more often used in simulations of articular contact mechanics. This is due to numerical shortcomings of linear tetrahedral (TET4) elements, limited availability of quadratic tetrahedron elements in combination with effective contact algorithms, and the perceived increased computational expense of quadratic finite elements. In this study we implemented both ten-node (TET10) and fifteen-node (TET15) quadratic tetrahedral elements in FEBio (www.febio.org) and compared their accuracy, robustness in terms of convergence behavior and computational cost for simulations relevant to articular contact mechanics. Suitable volume integration and surface integration rules were determined by comparing the results of several benchmark contact problems. The results demonstrated that the surface integration rule used to evaluate the contact integrals for quadratic elements affected both convergence behavior and accuracy of predicted stresses. The computational expense and robustness of both quadratic tetrahedral formulations compared favorably to the HEX8 models. Of note, the TET15 element demonstrated superior convergence behavior and lower computational cost than both the TET10 and HEX8 elements for meshes with similar numbers of degrees of freedom in the contact problems that we examined. Finally, the excellent accuracy and relative efficiency of these quadratic tetrahedral elements was illustrated by comparing their predictions with those for a HEX8 mesh for simulation of articular contact in a fully validated model of the hip. These results demonstrate that TET10 and TET15 elements provide viable alternatives to HEX8 elements for simulation of articular contact mechanics. Copyright © 2016 Elsevier Ltd. All rights reserved.
Unconstrained paving and plastering method for generating finite element meshes
Staten, Matthew L.; Owen, Steven J.; Blacker, Teddy D.; Kerr, Robert
2010-03-02
Computer software for and a method of generating a conformal all quadrilateral or hexahedral mesh comprising selecting an object with unmeshed boundaries and performing the following while unmeshed voids are larger than twice a desired element size and unrecognizable as either a midpoint subdividable or pave-and-sweepable polyhedra: selecting a front to advance; based on sizes of fronts and angles with adjacent fronts, determining which adjacent fronts should be advanced with the selected front; advancing the fronts; detecting proximities with other nearby fronts; resolving any found proximities; forming quadrilaterals or unconstrained columns of hexahedra where two layers cross; and establishing hexahedral elements where three layers cross.
Hadagali, Prasannaah; Peters, James R; Balasubramanian, Sriram
2018-03-01
Personalized Finite Element (FE) models and hexahedral elements are preferred for biomechanical investigations. Feature-based multi-block methods are used to develop anatomically accurate personalized FE models with hexahedral mesh. It is tedious to manually construct multi-blocks for large number of geometries on an individual basis to develop personalized FE models. Mesh-morphing method mitigates the aforementioned tediousness in meshing personalized geometries every time, but leads to element warping and loss of geometrical data. Such issues increase in magnitude when normative spine FE model is morphed to scoliosis-affected spinal geometry. The only way to bypass the issue of hex-mesh distortion or loss of geometry as a result of morphing is to rely on manually constructing the multi-blocks for scoliosis-affected spine geometry of each individual, which is time intensive. A method to semi-automate the construction of multi-blocks on the geometry of scoliosis vertebrae from the existing multi-blocks of normative vertebrae is demonstrated in this paper. High-quality hexahedral elements were generated on the scoliosis vertebrae from the morphed multi-blocks of normative vertebrae. Time taken was 3 months to construct the multi-blocks for normative spine and less than a day for scoliosis. Efforts taken to construct multi-blocks on personalized scoliosis spinal geometries are significantly reduced by morphing existing multi-blocks.
A multidimensional finite element method for CFD
NASA Technical Reports Server (NTRS)
Pepper, Darrell W.; Humphrey, Joseph W.
1991-01-01
A finite element method is used to solve the equations of motion for 2- and 3-D fluid flow. The time-dependent equations are solved explicitly using quadrilateral (2-D) and hexahedral (3-D) elements, mass lumping, and reduced integration. A Petrov-Galerkin technique is applied to the advection terms. The method requires a minimum of computational storage, executes quickly, and is scalable for execution on computer systems ranging from PCs to supercomputers.
NASA Technical Reports Server (NTRS)
Chavez, Patrick F.
1987-01-01
The effort at Sandia National Labs. on the methodologies and techniques being used to generate strict hexahedral finite element meshes from a solid model is described. The functionality of the modeler is used to decompose the solid into a set of nonintersecting meshable finite element primitives. The description of the decomposition is exported, via a Boundary Representative format, to the meshing program which uses the information for complete finite element model specification. Particular features of the program are discussed in some detail along with future plans for development which includes automation of the decomposition using artificial intelligence techniques.
A finite element study of the EIDI system. [Electro-Impulse De-Icing System
NASA Technical Reports Server (NTRS)
Khatkhate, A. A.; Scavuzzo, R. J.; Chu, M. L.
1988-01-01
This paper presents a method for modeling the structural dynamics of an Electro-Impulse De-Icing System, using finite element analyses procedures. A guideline for building a representative finite element model is discussed. Modeling was done initially using four noded cubic elements, four noded isoparametric plate elements and eight noded isoparametric shell elements. Due to the size of the problem and due to the underestimation of shear stress results when compared to previous analytical work an approximate model was created to predict possible areas of shedding of ice. There appears to be good agreement with the test data provided by The Boeing Commercial Airplane Company. Thus these initial results of this method were found to be encouraging. Additional analytical work and comparison with experiment is needed in order to completely evaluate this approach.
NASA Astrophysics Data System (ADS)
Park, B. Y.; Roberts, B. L.; Sobolik, S. R.
2016-12-01
The U.S. Strategic Petroleum Reserve (SPR) stores crude oil in 60 caverns located at four sites located along the Gulf Coast. As a matter of normal operation of caverns in a salt dome, the continuous mechanical creep of salt, along with the change in internal cavern and casing pressure due to cavern closure and fluid exchanges, impose several mechanical conditions on the skin, well, and casing of a cavern that could potentially create damage. Sandia, on behalf of DOE, is evaluating the structural integrity of the salt surrounding existing caverns in the Bayou Choctaw (BC) salt dome in Louisiana. In reality, the geometry, spacing, and depths of the caverns are irregular. It is not easy to realize the naturally and artificially formed cavern and salt dome for numerical analysis. It is harder to convert the geometries into the meshed mass consisting of only hexahedral finite elements. A three-dimensional (3D) finite element mesh capturing realistic geometries of the Bayou Choctaw site has been constructed using the seismic and sonar survey data obtained from the field (see Figures below). The mesh consists of hexahedral elements because the salt constitutive model is coded using hexahedral elements. Techniques to reduce the number of elements as much as possible to save on computer run time while maintaining computational accuracy are also developed. These methodologies could also be applied to construct computational meshes for the Big Hill, Bryan Mound, and West Hackberry SPR sites. The methodology could be applied to the complicated shape masses for not only various civil and geological structures but also biological applications such as artificial limbs. The newly developed mesh is expected to provide more accurate solutions of geotechnical concerns that arise due to the close proximity of the caverns to each other or to the edge of salt. Also, there are nine abandoned caverns, one of which is believed to be in a quasi-stable condition. Stability issues for these abandoned caverns must be evaluated and, if necessary, addressed to prevent potential cavern collapse. The integrity of wellbores at the interbed between the caprock and salt is another concern because oil leaks could occur due to the horizontal and downward movements of the salt top relative to the caprock.
NASA Technical Reports Server (NTRS)
Karlovitz, L. A.; Atluri, S. N.; Xue, W.-M.
1985-01-01
The extensions of Reissner's two-field (stress and displacement) principle to the cases wherein the displacement field is discontinuous and/or the stress field results in unreciprocated tractions, at a finite number of surfaces ('interelement boundaries') in a domain (as, for instance, when the domain is discretized into finite elements), is considered. The conditions for the existence, uniqueness, and stability of mixed-hybrid finite element solutions based on such discontinuous fields, are summarized. The reduction of these global conditions to local ('element') level, and the attendant conditions on the ranks of element matrices, are discussed. Two examples of stable, invariant, least-order elements - a four-node square planar element and an eight-node cubic element - are discussed in detail.
Quadrilateral/hexahedral finite element mesh coarsening
Staten, Matthew L; Dewey, Mark W; Scott, Michael A; Benzley, Steven E
2012-10-16
A technique for coarsening a finite element mesh ("FEM") is described. This technique includes identifying a coarsening region within the FEM to be coarsened. Perimeter chords running along perimeter boundaries of the coarsening region are identified. The perimeter chords are redirected to create an adaptive chord separating the coarsening region from a remainder of the FEM. The adaptive chord runs through mesh elements residing along the perimeter boundaries of the coarsening region. The adaptive chord is then extracted to coarsen the FEM.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nelson, Eric M.
2004-05-20
The YAP software library computes (1) electromagnetic modes, (2) electrostatic fields, (3) magnetostatic fields and (4) particle trajectories in 2d and 3d models. The code employs finite element methods on unstructured grids of tetrahedral, hexahedral, prism and pyramid elements, with linear through cubic element shapes and basis functions to provide high accuracy. The novel particle tracker is robust, accurate and efficient, even on unstructured grids with discontinuous fields. This software library is a component of the MICHELLE 3d finite element gun code.
A support-operator method for 3-D rupture dynamics
NASA Astrophysics Data System (ADS)
Ely, Geoffrey P.; Day, Steven M.; Minster, Jean-Bernard
2009-06-01
We present a numerical method to simulate spontaneous shear crack propagation within a heterogeneous, 3-D, viscoelastic medium. Wave motions are computed on a logically rectangular hexahedral mesh, using the generalized finite-difference method of Support Operators (SOM). This approach enables modelling of non-planar surfaces and non-planar fault ruptures. Our implementation, the Support Operator Rupture Dynamics (SORD) code, is highly scalable, enabling large-scale, multiprocessors calculations. The fault surface is modelled by coupled double nodes, where rupture occurs as dictated by the local stress conditions and a frictional failure law. The method successfully performs test problems developed for the Southern California Earthquake Center (SCEC)/U.S. Geological Survey (USGS) dynamic earthquake rupture code validation exercise, showing good agreement with semi-analytical boundary integral method results. We undertake further dynamic rupture tests to quantify numerical errors introduced by shear deformations to the hexahedral mesh. We generate a family of meshes distorted by simple shearing, in the along-strike direction, up to a maximum of 73°. For SCEC/USGS validation problem number 3, grid-induced errors increase with mesh shear angle, with the logarithm of error approximately proportional to angle over the range tested. At 73°, rms misfits are about 10 per cent for peak slip rate, and 0.5 per cent for both rupture time and total slip, indicating that the method (which, up to now, we have applied mainly to near-vertical strike-slip faulting) is also capable of handling geometries appropriate to low-angle surface-rupturing thrust earthquakes. Additionally, we demonstrate non-planar rupture effects, by modifying the test geometry to include, respectively, cylindrical curvature and sharp kinks.
NASA Astrophysics Data System (ADS)
Ivan, L.; De Sterck, H.; Susanto, A.; Groth, C. P. T.
2015-02-01
A fourth-order accurate finite-volume scheme for hyperbolic conservation laws on three-dimensional (3D) cubed-sphere grids is described. The approach is based on a central essentially non-oscillatory (CENO) finite-volume method that was recently introduced for two-dimensional compressible flows and is extended to 3D geometries with structured hexahedral grids. Cubed-sphere grids feature hexahedral cells with nonplanar cell surfaces, which are handled with high-order accuracy using trilinear geometry representations in the proposed approach. Varying stencil sizes and slope discontinuities in grid lines occur at the boundaries and corners of the six sectors of the cubed-sphere grid where the grid topology is unstructured, and these difficulties are handled naturally with high-order accuracy by the multidimensional least-squares based 3D CENO reconstruction with overdetermined stencils. A rotation-based mechanism is introduced to automatically select appropriate smaller stencils at degenerate block boundaries, where fewer ghost cells are available and the grid topology changes, requiring stencils to be modified. Combining these building blocks results in a finite-volume discretization for conservation laws on 3D cubed-sphere grids that is uniformly high-order accurate in all three grid directions. While solution-adaptivity is natural in the multi-block setting of our code, high-order accurate adaptive refinement on cubed-sphere grids is not pursued in this paper. The 3D CENO scheme is an accurate and robust solution method for hyperbolic conservation laws on general hexahedral grids that is attractive because it is inherently multidimensional by employing a K-exact overdetermined reconstruction scheme, and it avoids the complexity of considering multiple non-central stencil configurations that characterizes traditional ENO schemes. Extensive numerical tests demonstrate fourth-order convergence for stationary and time-dependent Euler and magnetohydrodynamic flows on cubed-sphere grids, and robustness against spurious oscillations at 3D shocks. Performance tests illustrate efficiency gains that can be potentially achieved using fourth-order schemes as compared to second-order methods for the same error level. Applications on extended cubed-sphere grids incorporating a seventh root block that discretizes the interior of the inner sphere demonstrate the versatility of the spatial discretization method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Qingcheng, E-mail: qiy9@pitt.edu; To, Albert C., E-mail: albertto@pitt.edu
Surface effects have been observed to contribute significantly to the mechanical response of nanoscale structures. The newly proposed energy-based coarse-grained atomistic method Multiresolution Molecular Mechanics (MMM) (Yang, To (2015), ) is applied to capture surface effect for nanosized structures by designing a surface summation rule SR{sup S} within the framework of MMM. Combined with previously proposed bulk summation rule SR{sup B}, the MMM summation rule SR{sup MMM} is completed. SR{sup S} and SR{sup B} are consistently formed within SR{sup MMM} for general finite element shape functions. Analogous to quadrature rules in finite element method (FEM), the key idea to themore » good performance of SR{sup MMM} lies in that the order or distribution of energy for coarse-grained atomistic model is mathematically derived such that the number, position and weight of quadrature-type (sampling) atoms can be determined. Mathematically, the derived energy distribution of surface area is different from that of bulk region. Physically, the difference is due to the fact that surface atoms lack neighboring bonding. As such, SR{sup S} and SR{sup B} are employed for surface and bulk domains, respectively. Two- and three-dimensional numerical examples using the respective 4-node bilinear quadrilateral, 8-node quadratic quadrilateral and 8-node hexahedral meshes are employed to verify and validate the proposed approach. It is shown that MMM with SR{sup MMM} accurately captures corner, edge and surface effects with less 0.3% degrees of freedom of the original atomistic system, compared against full atomistic simulation. The effectiveness of SR{sup MMM} with respect to high order element is also demonstrated by employing the 8-node quadratic quadrilateral to solve a beam bending problem considering surface effect. In addition, the introduced sampling error with SR{sup MMM} that is analogous to numerical integration error with quadrature rule in FEM is very small. - Highlights: • Surface effect captured by Multiresolution Molecular Mechanics (MMM) is presented. • A novel surface summation rule within the framework of MMM is proposed. • Surface, corner and edges effects are accuterly captured in two and three dimension. • MMM with less 0.3% degrees of freedom of atomistics reproduces atomistic results.« less
Explicit Trace Inequalities for Isogeometric Analysis and Parametric Hexahedral Finite Elements
2011-05-01
Computational Mechanics, 43:3– 37, 2008. [6] Y Bazilevs, L Beirao da Veiga , J A Cottrell, T J R Hughes, and G Sangalli. Isoge- ometric analysis... Veiga , A Buffa, J Rivas, and G Sangalli. Some estimates for h − p − k refinement in isogeometric analysis. Numerische Mathematik, 118:271–305, 2011
Extending ALE3D, an Arbitrarily Connected hexahedral 3D Code, to Very Large Problem Size (U)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nichols, A L
2010-12-15
As the number of compute units increases on the ASC computers, the prospect of running previously unimaginably large problems is becoming a reality. In an arbitrarily connected 3D finite element code, like ALE3D, one must provide a unique identification number for every node, element, face, and edge. This is required for a number of reasons, including defining the global connectivity array required for domain decomposition, identifying appropriate communication patterns after domain decomposition, and determining the appropriate load locations for implicit solvers, for example. In most codes, the unique identification number is defined as a 32-bit integer. Thus the maximum valuemore » available is 231, or roughly 2.1 billion. For a 3D geometry consisting of arbitrarily connected hexahedral elements, there are approximately 3 faces for every element, and 3 edges for every node. Since the nodes and faces need id numbers, using 32-bit integers puts a hard limit on the number of elements in a problem at roughly 700 million. The first solution to this problem would be to replace 32-bit signed integers with 32-bit unsigned integers. This would increase the maximum size of a problem by a factor of 2. This provides some head room, but almost certainly not one that will last long. Another solution would be to replace all 32-bit int declarations with 64-bit long long declarations. (long is either a 32-bit or a 64-bit integer, depending on the OS). The problem with this approach is that there are only a few arrays that actually need to extended size, and thus this would increase the size of the problem unnecessarily. In a future computing environment where CPUs are abundant but memory relatively scarce, this is probably the wrong approach. Based on these considerations, we have chosen to replace only the global identifiers with the appropriate 64-bit integer. The problem with this approach is finding all the places where data that is specified as a 32-bit integer needs to be replaced with the 64-bit integer. that need to be replaced. In the rest of this paper we describe the techniques used to facilitate this transformation, issues raised, and issues still to be addressed. This poster will describe the reasons, methods, issues associated with extending the ALE3D code to run problems larger than 700 million elements.« less
A mortar formulation including viscoelastic layers for vibration analysis
NASA Astrophysics Data System (ADS)
Paolini, Alexander; Kollmannsberger, Stefan; Rank, Ernst; Horger, Thomas; Wohlmuth, Barbara
2018-05-01
In order to reduce the transfer of sound and vibrations in structures such as timber buildings, thin elastomer layers can be embedded between their components. The influence of these elastomers on the response of the structures in the low frequency range can be determined accurately by using conforming hexahedral finite elements. Three-dimensional mesh generation, however, is yet a non-trivial task and mesh refinements which may be necessary at the junctions can cause a high computational effort. One remedy is to mesh the components independently from each other and to couple them using the mortar method. Further, the hexahedral mesh for the thin elastomer layer itself can be avoided by integrating its elastic behavior into the mortar formulation. The present paper extends this mortar formulation to take damping into account such that frequency response analyses can be performed more accurately. Finally, the proposed method is verified by numerical examples.
A comparative study on different methods of automatic mesh generation of human femurs.
Viceconti, M; Bellingeri, L; Cristofolini, L; Toni, A
1998-01-01
The aim of this study was to evaluate comparatively five methods for automating mesh generation (AMG) when used to mesh a human femur. The five AMG methods considered were: mapped mesh, which provides hexahedral elements through a direct mapping of the element onto the geometry; tetra mesh, which generates tetrahedral elements from a solid model of the object geometry; voxel mesh which builds cubic 8-node elements directly from CT images; and hexa mesh that automatically generated hexahedral elements from a surface definition of the femur geometry. The various methods were tested against two reference models: a simplified geometric model and a proximal femur model. The first model was useful to assess the inherent accuracy of the meshes created by the AMG methods, since an analytical solution was available for the elastic problem of the simplified geometric model. The femur model was used to test the AMG methods in a more realistic condition. The femoral geometry was derived from a reference model (the "standardized femur") and the finite element analyses predictions were compared to experimental measurements. All methods were evaluated in terms of human and computer effort needed to carry out the complete analysis, and in terms of accuracy. The comparison demonstrated that each tested method deserves attention and may be the best for specific situations. The mapped AMG method requires a significant human effort but is very accurate and it allows a tight control of the mesh structure. The tetra AMG method requires a solid model of the object to be analysed but is widely available and accurate. The hexa AMG method requires a significant computer effort but can also be used on polygonal models and is very accurate. The voxel AMG method requires a huge number of elements to reach an accuracy comparable to that of the other methods, but it does not require any pre-processing of the CT dataset to extract the geometry and in some cases may be the only viable solution.
NASA Technical Reports Server (NTRS)
Madsen, Niel K.
1992-01-01
Several new discrete surface integral (DSI) methods for solving Maxwell's equations in the time-domain are presented. These methods, which allow the use of general nonorthogonal mixed-polyhedral unstructured grids, are direct generalizations of the canonical staggered-grid finite difference method. These methods are conservative in that they locally preserve divergence or charge. Employing mixed polyhedral cells, (hexahedral, tetrahedral, etc.) these methods allow more accurate modeling of non-rectangular structures and objects because the traditional stair-stepped boundary approximations associated with the orthogonal grid based finite difference methods can be avoided. Numerical results demonstrating the accuracy of these new methods are presented.
Analysis of interlaminar stresses in symmetric and unsymmetric laminates under various loadings
NASA Astrophysics Data System (ADS)
Leger, C. A.; Chan, W. S.
1993-04-01
A quasi-three-dimensional finite-element model is developed to investigate the interlaminar stresses in a composite laminate under combined loadings. An isoparametric quadrilateral element with eight nodes and three degrees of freedom per node is the finite element used in this study. The element is used to model a composite laminate cross section loaded by tension, torsion, transverse shear, and both beam and chord bending which are representative of loading in a helicopter rotor system. Symmetric and unsymmetric laminates are examined with comparisons made between the interlaminar stress distributions and magnitudes for each laminate. Unsymmetric results are compared favorably to limited results found in literature. The unsymmetric interlaminar normal stress distribution in a symmetric laminate containing a free edge delamination is also examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
KNUPP,PATRICK; MITCHELL,SCOTT A.
1999-11-01
In an attempt to automatically produce high-quality all-hex meshes, we investigated a mesh improvement strategy: given an initial poor-quality all-hex mesh, we iteratively changed the element connectivity, adding and deleting elements and nodes, and optimized the node positions. We found a set of hex reconnection primitives. We improved the optimization algorithms so they can untangle a negative-Jacobian mesh, even considering Jacobians on the boundary, and subsequently optimize the condition number of elements in an untangled mesh. However, even after applying both the primitives and optimization we were unable to produce high-quality meshes in certain regions. Our experiences suggest that manymore » boundary configurations of quadrilaterals admit no hexahedral mesh with positive Jacobians, although we have no proof of this.« less
Finite element analysis of human joints
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bossart, P.L.; Hollerbach, K.
1996-09-01
Our work focuses on the development of finite element models (FEMs) that describe the biomechanics of human joints. Finite element modeling is becoming a standard tool in industrial applications. In highly complex problems such as those found in biomechanics research, however, the full potential of FEMs is just beginning to be explored, due to the absence of precise, high resolution medical data and the difficulties encountered in converting these enormous datasets into a form that is usable in FEMs. With increasing computing speed and memory available, it is now feasible to address these challenges. We address the first by acquiringmore » data with a high resolution C-ray CT scanner and the latter by developing semi-automated method for generating the volumetric meshes used in the FEM. Issues related to tomographic reconstruction, volume segmentation, the use of extracted surfaces to generate volumetric hexahedral meshes, and applications of the FEM are described.« less
Tuned grid generation with ICEM CFD
NASA Technical Reports Server (NTRS)
Wulf, Armin; Akdag, Vedat
1995-01-01
ICEM CFD is a CAD based grid generation package that supports multiblock structured, unstructured tetrahedral and unstructured hexahedral grids. Major development efforts have been spent to extend ICEM CFD's multiblock structured and hexahedral unstructured grid generation capabilities. The modules added are: a parametric grid generation module and a semi-automatic hexahedral grid generation module. A fully automatic version of the hexahedral grid generation module for around a set of predefined objects in rectilinear enclosures has been developed. These modules will be presented and the procedures used will be described, and examples will be discussed.
Functional Equivalence Acceptance Testing of FUN3D for Entry Descent and Landing Applications
NASA Technical Reports Server (NTRS)
Gnoffo, Peter A.; Wood, William A.; Kleb, William L.; Alter, Stephen J.; Glass, Christopher E.; Padilla, Jose F.; Hammond, Dana P.; White, Jeffery A.
2013-01-01
The functional equivalence of the unstructured grid code FUN3D to the the structured grid code LAURA (Langley Aerothermodynamic Upwind Relaxation Algorithm) is documented for applications of interest to the Entry, Descent, and Landing (EDL) community. Examples from an existing suite of regression tests are used to demonstrate the functional equivalence, encompassing various thermochemical models and vehicle configurations. Algorithm modifications required for the node-based unstructured grid code (FUN3D) to reproduce functionality of the cell-centered structured code (LAURA) are also documented. Challenges associated with computation on tetrahedral grids versus computation on structured-grid derived hexahedral systems are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wannamaker, Philip E.
We have developed an algorithm for the inversion of magnetotelluric (MT) data to a 3D earth resistivity model based upon the finite element method. Hexahedral edge finite elements are implemented to accommodate discontinuities in the electric field across resistivity boundaries, and to accurately simulate topographic variations. All matrices are reduced and solved using direct solution modules which avoids ill-conditioning endemic to iterative solvers such as conjugate gradients, principally PARDISO for the finite element system and PLASMA for the parameter step estimate. Large model parameterizations can be handled by transforming the Gauss-Newton estimator to data-space form. Accuracy of the forward problemmore » and jacobians has been checked by comparison to integral equations results and by limiting asymptotes. Inverse accuracy and performance has been verified against the public Dublin Secret Test Model 2 and the well-known Mount St Helens 3D MT data set. This algorithm we believe is the most capable yet for forming 3D images of earth resistivity structure and their implications for geothermal fluids and pathways.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
KNUPP,PATRICK
2000-12-13
We investigate a well-motivated mesh untangling objective function whose optimization automatically produces non-inverted elements when possible. Examples show the procedure is highly effective on simplicial meshes and on non-simplicial (e.g., hexahedral) meshes constructed via mapping or sweeping algorithms. The current whisker-weaving (WW) algorithm in CUBIT usually produces hexahedral meshes that are unsuitable for analyses due to inverted elements. The majority of these meshes cannot be untangled using the new objective function. The most likely source of the difficulty is poor mesh topology.
QUADRATIC SERENDIPITY FINITE ELEMENTS ON POLYGONS USING GENERALIZED BARYCENTRIC COORDINATES.
Rand, Alexander; Gillette, Andrew; Bajaj, Chandrajit
2014-01-01
We introduce a finite element construction for use on the class of convex, planar polygons and show it obtains a quadratic error convergence estimate. On a convex n -gon, our construction produces 2 n basis functions, associated in a Lagrange-like fashion to each vertex and each edge midpoint, by transforming and combining a set of n ( n + 1)/2 basis functions known to obtain quadratic convergence. The technique broadens the scope of the so-called 'serendipity' elements, previously studied only for quadrilateral and regular hexahedral meshes, by employing the theory of generalized barycentric coordinates. Uniform a priori error estimates are established over the class of convex quadrilaterals with bounded aspect ratio as well as over the class of convex planar polygons satisfying additional shape regularity conditions to exclude large interior angles and short edges. Numerical evidence is provided on a trapezoidal quadrilateral mesh, previously not amenable to serendipity constructions, and applications to adaptive meshing are discussed.
Sandia Higher Order Elements (SHOE) v 0.5 alpha
DOE Office of Scientific and Technical Information (OSTI.GOV)
2013-09-24
SHOE is research code for characterizing and visualizing higher-order finite elements; it contains a framework for defining classes of interpolation techniques and element shapes; methods for interpolating triangular, quadrilateral, tetrahedral, and hexahedral cells using Lagrange and Legendre polynomial bases of arbitrary order; methods to decompose each element into domains of constant gradient flow (using a polynomial solver to identify critical points); and an isocontouring technique that uses this decomposition to guarantee topological correctness. Please note that this is an alpha release of research software and that some time has passed since it was actively developed; build- and run-time issues likelymore » exist.« less
Chalal, Hocine; Abed-Meraim, Farid
2018-06-20
In the current contribution, prismatic and hexahedral quadratic solid⁻shell (SHB) finite elements are proposed for the geometrically nonlinear analysis of thin structures made of functionally graded material (FGM). The proposed SHB finite elements are developed within a purely 3D framework, with displacements as the only degrees of freedom. Also, the in-plane reduced-integration technique is combined with the assumed-strain method to alleviate various locking phenomena. Furthermore, an arbitrary number of integration points are placed along a special direction, which represents the thickness. The developed elements are coupled with functionally graded behavior for the modeling of thin FGM plates. To this end, the Young modulus of the FGM plate is assumed to vary gradually in the thickness direction, according to a volume fraction distribution. The resulting formulations are implemented into the quasi-static ABAQUS/Standard finite element software in the framework of large displacements and rotations. Popular nonlinear benchmark problems are considered to assess the performance and accuracy of the proposed SHB elements. Comparisons with reference solutions from the literature demonstrate the good capabilities of the developed SHB elements for the 3D simulation of thin FGM plates.
Toward An Unstructured Mesh Database
NASA Astrophysics Data System (ADS)
Rezaei Mahdiraji, Alireza; Baumann, Peter Peter
2014-05-01
Unstructured meshes are used in several application domains such as earth sciences (e.g., seismology), medicine, oceanography, cli- mate modeling, GIS as approximate representations of physical objects. Meshes subdivide a domain into smaller geometric elements (called cells) which are glued together by incidence relationships. The subdivision of a domain allows computational manipulation of complicated physical structures. For instance, seismologists model earthquakes using elastic wave propagation solvers on hexahedral meshes. The hexahedral con- tains several hundred millions of grid points and millions of hexahedral cells. Each vertex node in the hexahedrals stores a multitude of data fields. To run simulation on such meshes, one needs to iterate over all the cells, iterate over incident cells to a given cell, retrieve coordinates of cells, assign data values to cells, etc. Although meshes are used in many application domains, to the best of our knowledge there is no database vendor that support unstructured mesh features. Currently, the main tool for querying and manipulating unstructured meshes are mesh libraries, e.g., CGAL and GRAL. Mesh li- braries are dedicated libraries which includes mesh algorithms and can be run on mesh representations. The libraries do not scale with dataset size, do not have declarative query language, and need deep C++ knowledge for query implementations. Furthermore, due to high coupling between the implementations and input file structure, the implementations are less reusable and costly to maintain. A dedicated mesh database offers the following advantages: 1) declarative querying, 2) ease of maintenance, 3) hiding mesh storage structure from applications, and 4) transparent query optimization. To design a mesh database, the first challenge is to define a suitable generic data model for unstructured meshes. We proposed ImG-Complexes data model as a generic topological mesh data model which extends incidence graph model to multi-incidence relationships. We instrument ImG model with sets of optional and application-specific constraints which can be used to check validity of meshes for a specific class of object such as manifold, pseudo-manifold, and simplicial manifold. We conducted experiments to measure the performance of the graph database solution in processing mesh queries and compare it with GrAL mesh library and PostgreSQL database on synthetic and real mesh datasets. The experiments show that each system perform well on specific types of mesh queries, e.g., graph databases perform well on global path-intensive queries. In the future, we investigate database operations for the ImG model and design a mesh query language.
Finite element study of human pelvis model in side impact for Chinese adult occupants.
Ma, Zhengwei; Lan, Fengchong; Chen, Jiqing; Liu, Weiguo
2015-01-01
The occupant's pelvis is very vulnerable to side collision in road accidents. Finite element (FE) studies on pelvic injury help to design occupant protection devices to improve vehicle safety. This study was aimed to develop a highly biofidelic pelvis model of Chinese adults and assess its sensitivity to variations in pelvis cortical bone thickness, bone material properties, and loading conditions. In this study, 4 different FE models of the pelvis were developed from the computed tomography (CT) data of a volunteer representing the 50th percentile Chinese male. Two of them were meshed using entirely hexahedral elements with variable and constant cortical thickness distribution (the V-Hex and C-Hex models), and the others were modeled with hexahedral elements for cancellous bone and variable or constant thickness shell elements for cortical bone (the V-HS and C-HS models). In model developments, the semi-automatic multiblock meshing approach was employed to maintain the pelvis geometric curvature and generate a high-quality hexahedral mesh. Then, several simulations with postmortem human subjects (PMHS) tests were performed to obtain the most accurate model in predicting pelvic injury. Based on the most accurate model, sensitivity studies were conducted to analyze the effects of the cortex thickness, Young's modulus of the cortical and cancellous bone, impactor velocity, and impactor with or without padding on the biomechanical responses and injuries of pelvis. The results indicate that the models with variable cortical bone thickness can give more accurate predictions than those with constant cortical thickness. Both the V-Hex and V-HS models are favorable for simulating pelvic response and injury, but the simulation results of the V-Hex model agree with the tests better. The sensitivity study shows that pelvic response is more sensitive to alterations in the Young's modulus of cortical bone than cancellous bone. Compared to failure displacement, peak force is more sensitive to the cortical bone thickness. However, displacement is more sensitive to the Young's modulus of cancellous bone than peak force. The padding attached on the impactor plays a significant role in absorbing the impact energy and alleviating pelvic injury. The all-hex meshing method with variable cortical bone thickness has the highest accuracy but is time-consuming. The cortical bone plays a determining role in resisting pelvic fracture. Peak impact force appears to be a reasonable injury predictor for pelvic injury assessment. Some appropriate energy absorbers installed in the car door can significantly reduce pelvic injury and will be beneficial for occupant protection.
Ray tracing through a hexahedral mesh in HADES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henderson, G L; Aufderheide, M B
In this paper we describe a new ray tracing method targeted for inclusion in HADES. The algorithm tracks rays through three-dimensional tetrakis hexahedral mesh objects, like those used by the ARES code to model inertial confinement experiments.
NASA Astrophysics Data System (ADS)
Kordy, M. A.; Wannamaker, P. E.; Maris, V.; Cherkaev, E.; Hill, G. J.
2014-12-01
We have developed an algorithm for 3D simulation and inversion of magnetotelluric (MT) responses using deformable hexahedral finite elements that permits incorporation of topography. Direct solvers parallelized on symmetric multiprocessor (SMP), single-chassis workstations with large RAM are used for the forward solution, parameter jacobians, and model update. The forward simulator, jacobians calculations, as well as synthetic and real data inversion are presented. We use first-order edge elements to represent the secondary electric field (E), yielding accuracy O(h) for E and its curl (magnetic field). For very low frequency or small material admittivity, the E-field requires divergence correction. Using Hodge decomposition, correction may be applied after the forward solution is calculated. It allows accurate E-field solutions in dielectric air. The system matrix factorization is computed using the MUMPS library, which shows moderately good scalability through 12 processor cores but limited gains beyond that. The factored matrix is used to calculate the forward response as well as the jacobians of field and MT responses using the reciprocity theorem. Comparison with other codes demonstrates accuracy of our forward calculations. We consider a popular conductive/resistive double brick structure and several topographic models. In particular, the ability of finite elements to represent smooth topographic slopes permits accurate simulation of refraction of electromagnetic waves normal to the slopes at high frequencies. Run time tests indicate that for meshes as large as 150x150x60 elements, MT forward response and jacobians can be calculated in ~2.5 hours per frequency. For inversion, we implemented data space Gauss-Newton method, which offers reduction in memory requirement and a significant speedup of the parameter step versus model space approach. For dense matrix operations we use tiling approach of PLASMA library, which shows very good scalability. In synthetic inversions we examine the importance of including the topography in the inversion and we test different regularization schemes using weighted second norm of model gradient as well as inverting for a static distortion matrix following Miensopust/Avdeeva approach. We also apply our algorithm to invert MT data collected at Mt St Helens.
Efficient volume computation for three-dimensional hexahedral cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dukowicz, J.K.
1988-02-01
Currently, algorithms for computing the volume of hexahedral cells with ''ruled'' surfaces require a minimum of 122 FLOPs (floating point operations) per cell. A new algorithm is described which reduces the operation count to 57 FLOPs per cell. copyright 1988 Academic Press, Inc.
Decohesion Elements using Two and Three-Parameter Mixed-Mode Criteria
NASA Technical Reports Server (NTRS)
Davila, Carlos G.; Camanho, Pedro P.
2001-01-01
An eight-node decohesion element implementing different criteria to predict delamination growth under mixed-mode loading is proposed. The element is used at the interface between solid finite elements to model the initiation and propagation of delamination. A single displacement-based damage parameter is used in a softening law to track the damage state of the interface. The power law criterion and a three-parameter mixed-mode criterion are used to predict delamination growth. The accuracy of the predictions is evaluated in single mode delamination and in the mixed-mode bending tests.
NASA Technical Reports Server (NTRS)
Zhang, Zeng-Chan; Yu, S. T. John; Chang, Sin-Chung; Jorgenson, Philip (Technical Monitor)
2001-01-01
In this paper, we report a version of the Space-Time Conservation Element and Solution Element (CE/SE) Method in which the 2D and 3D unsteady Euler equations are simulated using structured or unstructured quadrilateral and hexahedral meshes, respectively. In the present method, mesh values of flow variables and their spatial derivatives are treated as independent unknowns to be solved for. At each mesh point, the value of a flow variable is obtained by imposing a flux conservation condition. On the other hand, the spatial derivatives are evaluated using a finite-difference/weighted-average procedure. Note that the present extension retains many key advantages of the original CE/SE method which uses triangular and tetrahedral meshes, respectively, for its 2D and 3D applications. These advantages include efficient parallel computing ease of implementing non-reflecting boundary conditions, high-fidelity resolution of shocks and waves, and a genuinely multidimensional formulation without using a dimensional-splitting approach. In particular, because Riemann solvers, the cornerstones of the Godunov-type upwind schemes, are not needed to capture shocks, the computational logic of the present method is considerably simpler. To demonstrate the capability of the present method, numerical results are presented for several benchmark problems including oblique shock reflection, supersonic flow over a wedge, and a 3D detonation flow.
Free vibration of laminated composite stiffened hyperbolic paraboloid shell panel with cutout
NASA Astrophysics Data System (ADS)
Sahoo, Sarmila
2016-08-01
Composite shell structures are extensively used in aerospace, civil, marine and other engineering applications. In practical civil engineering applications, the necessity of covering large column free open areas is often an issue and hyperbolic paraboloid shells are used as roofing units. Quite often, to save weight and also to provide a facility for inspection, cutouts are provided in shell panels. The paper considers free vibration characteristics of stiffened composite hyperbolic paraboloid shell panel with cutout in terms of natural frequency and mode shapes. A finite element code is developed for the purpose by combining an eight noded curved shell element with a three noded curved beam element. The size of the cutouts and their positions with respect to the shell centre are varied for different edge conditions to arrive at a set of inferences of practical engineering significances.
Final Report of the Project "From the finite element method to the virtual element method"
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manzini, Gianmarco; Gyrya, Vitaliy
The Finite Element Method (FEM) is a powerful numerical tool that is being used in a large number of engineering applications. The FEM is constructed on triangular/tetrahedral and quadrilateral/hexahedral meshes. Extending the FEM to general polygonal/polyhedral meshes in straightforward way turns out to be extremely difficult and leads to very complex and computationally expensive schemes. The reason for this failure is that the construction of the basis functions on elements with a very general shape is a non-trivial and complex task. In this project we developed a new family of numerical methods, dubbed the Virtual Element Method (VEM) for themore » numerical approximation of partial differential equations (PDE) of elliptic type suitable to polygonal and polyhedral unstructured meshes. We successfully formulated, implemented and tested these methods and studied both theoretically and numerically their stability, robustness and accuracy for diffusion problems, convection-reaction-diffusion problems, the Stokes equations and the biharmonic equations.« less
QUADRATIC SERENDIPITY FINITE ELEMENTS ON POLYGONS USING GENERALIZED BARYCENTRIC COORDINATES
RAND, ALEXANDER; GILLETTE, ANDREW; BAJAJ, CHANDRAJIT
2013-01-01
We introduce a finite element construction for use on the class of convex, planar polygons and show it obtains a quadratic error convergence estimate. On a convex n-gon, our construction produces 2n basis functions, associated in a Lagrange-like fashion to each vertex and each edge midpoint, by transforming and combining a set of n(n + 1)/2 basis functions known to obtain quadratic convergence. The technique broadens the scope of the so-called ‘serendipity’ elements, previously studied only for quadrilateral and regular hexahedral meshes, by employing the theory of generalized barycentric coordinates. Uniform a priori error estimates are established over the class of convex quadrilaterals with bounded aspect ratio as well as over the class of convex planar polygons satisfying additional shape regularity conditions to exclude large interior angles and short edges. Numerical evidence is provided on a trapezoidal quadrilateral mesh, previously not amenable to serendipity constructions, and applications to adaptive meshing are discussed. PMID:25301974
Chen, Ning; Yu, Dejie; Xia, Baizhan; Liu, Jian; Ma, Zhengdong
2017-04-01
This paper presents a homogenization-based interval analysis method for the prediction of coupled structural-acoustic systems involving periodical composites and multi-scale uncertain-but-bounded parameters. In the structural-acoustic system, the macro plate structure is assumed to be composed of a periodically uniform microstructure. The equivalent macro material properties of the microstructure are computed using the homogenization method. By integrating the first-order Taylor expansion interval analysis method with the homogenization-based finite element method, a homogenization-based interval finite element method (HIFEM) is developed to solve a periodical composite structural-acoustic system with multi-scale uncertain-but-bounded parameters. The corresponding formulations of the HIFEM are deduced. A subinterval technique is also introduced into the HIFEM for higher accuracy. Numerical examples of a hexahedral box and an automobile passenger compartment are given to demonstrate the efficiency of the presented method for a periodical composite structural-acoustic system with multi-scale uncertain-but-bounded parameters.
Wieding, Jan; Souffrant, Robert; Fritsche, Andreas; Mittelmeier, Wolfram; Bader, Rainer
2012-01-01
The use of finite element analysis (FEA) has grown to a more and more important method in the field of biomedical engineering and biomechanics. Although increased computational performance allows new ways to generate more complex biomechanical models, in the area of orthopaedic surgery, solid modelling of screws and drill holes represent a limitation of their use for individual cases and an increase of computational costs. To cope with these requirements, different methods for numerical screw modelling have therefore been investigated to improve its application diversity. Exemplarily, fixation was performed for stabilization of a large segmental femoral bone defect by an osteosynthesis plate. Three different numerical modelling techniques for implant fixation were used in this study, i.e. without screw modelling, screws as solid elements as well as screws as structural elements. The latter one offers the possibility to implement automatically generated screws with variable geometry on arbitrary FE models. Structural screws were parametrically generated by a Python script for the automatic generation in the FE-software Abaqus/CAE on both a tetrahedral and a hexahedral meshed femur. Accuracy of the FE models was confirmed by experimental testing using a composite femur with a segmental defect and an identical osteosynthesis plate for primary stabilisation with titanium screws. Both deflection of the femoral head and the gap alteration were measured with an optical measuring system with an accuracy of approximately 3 µm. For both screw modelling techniques a sufficient correlation of approximately 95% between numerical and experimental analysis was found. Furthermore, using structural elements for screw modelling the computational time could be reduced by 85% using hexahedral elements instead of tetrahedral elements for femur meshing. The automatically generated screw modelling offers a realistic simulation of the osteosynthesis fixation with screws in the adjacent bone stock and can be used for further investigations. PMID:22470474
A Mixed Multi-Field Finite Element Formulation for Thermopiezoelectric Composite Shells
NASA Technical Reports Server (NTRS)
Lee, Ho-Jun; Saravanos, Dimitris A.
1999-01-01
Analytical formulations are presented which account for the coupled mechanical, electrical, and thermal response of piezoelectric composite shell structures. A new mixed multi-field laminate theory is developed which combines "single layer" assumptions for the displacements along with layerwise fields for the electric potential and temperature. This laminate theory is formulated using curvilinear coordinates and is based on the principles of linear thermopiezoelectricity. The mechanics have the inherent capability to explicitly model both the active and sensory responses of piezoelectric composite shells in thermal environment. Finite element equations are derived and implemented for an eight-noded shell element. Numerical studies are conducted to investigate both the sensory and active responses of piezoelectric composite shell structures subjected to thermal loads. Results for a cantilevered plate with an attached piezoelectric layer are com- pared with corresponding results from a commercial finite element code and a previously developed program. Additional studies are conducted on a cylindrical shell with an attached piezoelectric layer to demonstrate capabilities to achieve thermal shape control on curved piezoelectric structures.
Zhang, Ying; Wang, Jun; Hao, Guan
2018-01-08
With the development of autonomous unmanned intelligent systems, such as the unmanned boats, unmanned planes and autonomous underwater vehicles, studies on Wireless Sensor-Actor Networks (WSANs) have attracted more attention. Network connectivity algorithms play an important role in data exchange, collaborative detection and information fusion. Due to the harsh application environment, abnormal nodes often appear, and the network connectivity will be prone to be lost. Network self-healing mechanisms have become critical for these systems. In order to decrease the movement overhead of the sensor-actor nodes, an autonomous connectivity restoration algorithm based on finite state machine is proposed. The idea is to identify whether a node is a critical node by using a finite state machine, and update the connected dominating set in a timely way. If an abnormal node is a critical node, the nearest non-critical node will be relocated to replace the abnormal node. In the case of multiple node abnormality, a regional network restoration algorithm is introduced. It is designed to reduce the overhead of node movements while restoration happens. Simulation results indicate the proposed algorithm has better performance on the total moving distance and the number of total relocated nodes compared with some other representative restoration algorithms.
Zhang, Ying; Wang, Jun; Hao, Guan
2018-01-01
With the development of autonomous unmanned intelligent systems, such as the unmanned boats, unmanned planes and autonomous underwater vehicles, studies on Wireless Sensor-Actor Networks (WSANs) have attracted more attention. Network connectivity algorithms play an important role in data exchange, collaborative detection and information fusion. Due to the harsh application environment, abnormal nodes often appear, and the network connectivity will be prone to be lost. Network self-healing mechanisms have become critical for these systems. In order to decrease the movement overhead of the sensor-actor nodes, an autonomous connectivity restoration algorithm based on finite state machine is proposed. The idea is to identify whether a node is a critical node by using a finite state machine, and update the connected dominating set in a timely way. If an abnormal node is a critical node, the nearest non-critical node will be relocated to replace the abnormal node. In the case of multiple node abnormality, a regional network restoration algorithm is introduced. It is designed to reduce the overhead of node movements while restoration happens. Simulation results indicate the proposed algorithm has better performance on the total moving distance and the number of total relocated nodes compared with some other representative restoration algorithms. PMID:29316702
STARS: A general-purpose finite element computer program for analysis of engineering structures
NASA Technical Reports Server (NTRS)
Gupta, K. K.
1984-01-01
STARS (Structural Analysis Routines) is primarily an interactive, graphics-oriented, finite-element computer program for analyzing the static, stability, free vibration, and dynamic responses of damped and undamped structures, including rotating systems. The element library consists of one-dimensional (1-D) line elements, two-dimensional (2-D) triangular and quadrilateral shell elements, and three-dimensional (3-D) tetrahedral and hexahedral solid elements. These elements enable the solution of structural problems that include truss, beam, space frame, plane, plate, shell, and solid structures, or any combination thereof. Zero, finite, and interdependent deflection boundary conditions can be implemented by the program. The associated dynamic response analysis capability provides for initial deformation and velocity inputs, whereas the transient excitation may be either forces or accelerations. An effective in-core or out-of-core solution strategy is automatically employed by the program, depending on the size of the problem. Data input may be at random within a data set, and the program offers certain automatic data-generation features. Input data are formatted as an optimal combination of free and fixed formats. Interactive graphics capabilities enable convenient display of nodal deformations, mode shapes, and element stresses.
NASA Astrophysics Data System (ADS)
Shivakumar, J.; Ashok, M. H.; Khadakbhavi, Vishwanath; Pujari, Sanjay; Nandurkar, Santosh
2018-02-01
The present work focuses on geometrically nonlinear transient analysis of laminated smart composite plates integrated with the patches of Active fiber composites (AFC) using Active constrained layer damping (ACLD) as the distributed actuators. The analysis has been carried out using generalised energy based finite element model. The coupled electromechanical finite element model is derived using Von Karman type nonlinear strain displacement relations and a first-order shear deformation theory (FSDT). Eight-node iso-parametric serendipity elements are used for discretization of the overall plate integrated with AFC patch material. The viscoelastic constrained layer is modelled using GHM method. The numerical results shows the improvement in the active damping characteristics of the laminated composite plates over the passive damping for suppressing the geometrically nonlinear transient vibrations of laminated composite plates with AFC as patch material.
Chen, G; Wu, F Y; Liu, Z C; Yang, K; Cui, F
2015-08-01
Subject-specific finite element (FE) models can be generated from computed tomography (CT) datasets of a bone. A key step is assigning material properties automatically onto finite element models, which remains a great challenge. This paper proposes a node-based assignment approach and also compares it with the element-based approach in the literature. Both approaches were implemented using ABAQUS. The assignment procedure is divided into two steps: generating the data file of the image intensity of a bone in a MATLAB program and reading the data file into ABAQUS via user subroutines. The node-based approach assigns the material properties to each node of the finite element mesh, while the element-based approach assigns the material properties directly to each integration point of an element. Both approaches are independent from the type of elements. A number of FE meshes are tested and both give accurate solutions; comparatively the node-based approach involves less programming effort. The node-based approach is also independent from the type of analyses; it has been tested on the nonlinear analysis of a Sawbone femur. The node-based approach substantially improves the level of automation of the assignment procedure of bone material properties. It is the simplest and most powerful approach that is applicable to many types of analyses and elements. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
Improving sub-grid scale accuracy of boundary features in regional finite-difference models
Panday, Sorab; Langevin, Christian D.
2012-01-01
As an alternative to grid refinement, the concept of a ghost node, which was developed for nested grid applications, has been extended towards improving sub-grid scale accuracy of flow to conduits, wells, rivers or other boundary features that interact with a finite-difference groundwater flow model. The formulation is presented for correcting the regular finite-difference groundwater flow equations for confined and unconfined cases, with or without Newton Raphson linearization of the nonlinearities, to include the Ghost Node Correction (GNC) for location displacement. The correction may be applied on the right-hand side vector for a symmetric finite-difference Picard implementation, or on the left-hand side matrix for an implicit but asymmetric implementation. The finite-difference matrix connectivity structure may be maintained for an implicit implementation by only selecting contributing nodes that are a part of the finite-difference connectivity. Proof of concept example problems are provided to demonstrate the improved accuracy that may be achieved through sub-grid scale corrections using the GNC schemes.
Longest, P Worth; Vinchurkar, Samir
2007-04-01
A number of research studies have employed a wide variety of mesh styles and levels of grid convergence to assess velocity fields and particle deposition patterns in models of branching biological systems. Generating structured meshes based on hexahedral elements requires significant time and effort; however, these meshes are often associated with high quality solutions. Unstructured meshes that employ tetrahedral elements can be constructed much faster but may increase levels of numerical diffusion, especially in tubular flow systems with a primary flow direction. The objective of this study is to better establish the effects of mesh generation techniques and grid convergence on velocity fields and particle deposition patterns in bifurcating respiratory models. In order to achieve this objective, four widely used mesh styles including structured hexahedral, unstructured tetrahedral, flow adaptive tetrahedral, and hybrid grids have been considered for two respiratory airway configurations. Initial particle conditions tested are based on the inlet velocity profile or the local inlet mass flow rate. Accuracy of the simulations has been assessed by comparisons to experimental in vitro data available in the literature for the steady-state velocity field in a single bifurcation model as well as the local particle deposition fraction in a double bifurcation model. Quantitative grid convergence was assessed based on a grid convergence index (GCI), which accounts for the degree of grid refinement. The hexahedral mesh was observed to have GCI values that were an order of magnitude below the unstructured tetrahedral mesh values for all resolutions considered. Moreover, the hexahedral mesh style provided GCI values of approximately 1% and reduced run times by a factor of 3. Based on comparisons to empirical data, it was shown that inlet particle seedings should be consistent with the local inlet mass flow rate. Furthermore, the mesh style was found to have an observable effect on cumulative particle depositions with the hexahedral solution most closely matching empirical results. Future studies are needed to assess other mesh generation options including various forms of the hybrid configuration and unstructured hexahedral meshes.
Hexahedral mesh generation via the dual arrangement of surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, S.A.; Tautges, T.J.
1997-12-31
Given a general three-dimensional geometry with a prescribed quadrilateral surface mesh, the authors consider the problem of constructing a hexahedral mesh of the geometry whose boundary is exactly the prescribed surface mesh. Due to the specialized topology of hexahedra, this problem is more difficult than the analogous one for tetrahedra. Folklore has maintained that a surface mesh must have a constrained structure in order for there to exist a compatible hexahedral mesh. However, they have proof that a surface mesh need only satisfy mild parity conditions, depending on the topology of the three-dimensional geometry, for there to exist a compatiblemore » hexahedral mesh. The proof is based on the realization that a hexahedral mesh is dual to an arrangement of surfaces, and the quadrilateral surface mesh is dual to the arrangement of curves bounding these surfaces. The proof is constructive and they are currently developing an algorithm called Whisker Weaving (WW) that mirrors the proof steps. Given the bounding curves, WW builds the topological structure of an arrangement of surfaces having those curves as its boundary. WW progresses in an advancing front manner. Certain local rules are applied to avoid structures that lead to poor mesh quality. Also, after the arrangement is constructed, additional surfaces are inserted to separate features, so e.g., no two hexahedra share more than one quadrilateral face. The algorithm has generated meshes for certain non-trivial problems, but is currently unreliable. The authors are exploring strategies for consistently selecting which portion of the surface arrangement to advance based on the existence proof. This should lead us to a robust algorithm for arbitrary geometries and surface meshes.« less
Curved Thermopiezoelectric Shell Structures Modeled by Finite Element Analysis
NASA Technical Reports Server (NTRS)
Lee, Ho-Jun
2000-01-01
"Smart" structures composed of piezoelectric materials may significantly improve the performance of aeropropulsion systems through a variety of vibration, noise, and shape-control applications. The development of analytical models for piezoelectric smart structures is an ongoing, in-house activity at the NASA Glenn Research Center at Lewis Field focused toward the experimental characterization of these materials. Research efforts have been directed toward developing analytical models that account for the coupled mechanical, electrical, and thermal response of piezoelectric composite materials. Current work revolves around implementing thermal effects into a curvilinear-shell finite element code. This enhances capabilities to analyze curved structures and to account for coupling effects arising from thermal effects and the curved geometry. The current analytical model implements a unique mixed multi-field laminate theory to improve computational efficiency without sacrificing accuracy. The mechanics can model both the sensory and active behavior of piezoelectric composite shell structures. Finite element equations are being implemented for an eight-node curvilinear shell element, and numerical studies are being conducted to demonstrate capabilities to model the response of curved piezoelectric composite structures (see the figure).
Sensitivity analysis on the effective stiffness properties of 3-D orthotropic honeycomb cores
NASA Astrophysics Data System (ADS)
Karakoç, Alp
2018-01-01
The present study investigates the influences of representative volume element RVE mesh and material parameters, here cell wall elastic moduli, on the effective stiffness properties of three dimensional orthotropic honeycomb cores through strain driven computational homogenization in the finite element framework. For this purpose, case studies were carried out, for which hexagonal cellular RVEs were generated, meshed with eight node linear brick finite elements of varying numbers. Periodic boundary conditions were then implemented on the RVE boundaries by using one-to-one nodal match for the corresponding corners, edges and surfaces for the imposed macroscopic strains. As a novelty, orthotropic material properties were assigned for each cell wall by means of the transformation matrices following the cell wall orientations. Thereafter, simulations were conducted and volume averaged macroscopic stresses were obtained. Eventually, effective stiffness properties were obtained, through which RVE sensitivity analysis was carried out. The investigations indicate that there is a strong relation between number of finite elements and most of the effective stiffness parameters. In addition to this, cell wall elastic moduli also play critical role on the effective properties of the investigated materials.
Bem, C
1996-01-01
Tuberculous lymphadenitis is common in Central Africa, where diagnosis by histological examination of a biopsied node is often delayed. In the present study, the naked eye appearance of the cut surface of 306 consecutive biopsied lymph nodes was compared with the histological diagnosis. One hundred and eight-eight nodes showed tuberculosis on histology (including two with coexisting second pathology). One hundred and forty-eight (79%) cases of tuberculous lymphadenitis (including both with coexisting second pathology) showed noncaseating tuberculomata or caseation visible on naked eye examination. Such signs were not seen in other nodes. Other signs were seen in another 18 (10%) tuberculous nodes. It is concluded that naked eye examination of nodes provides useful information for the diagnosis of tuberculous lymphadenitis, pending confirmation by histology.
Isolation and Connectivity in Random Geometric Graphs with Self-similar Intensity Measures
NASA Astrophysics Data System (ADS)
Dettmann, Carl P.
2018-05-01
Random geometric graphs consist of randomly distributed nodes (points), with pairs of nodes within a given mutual distance linked. In the usual model the distribution of nodes is uniform on a square, and in the limit of infinitely many nodes and shrinking linking range, the number of isolated nodes is Poisson distributed, and the probability of no isolated nodes is equal to the probability the whole graph is connected. Here we examine these properties for several self-similar node distributions, including smooth and fractal, uniform and nonuniform, and finitely ramified or otherwise. We show that nonuniformity can break the Poisson distribution property, but it strengthens the link between isolation and connectivity. It also stretches out the connectivity transition. Finite ramification is another mechanism for lack of connectivity. The same considerations apply to fractal distributions as smooth, with some technical differences in evaluation of the integrals and analytical arguments.
Free Mesh Method: fundamental conception, algorithms and accuracy study
YAGAWA, Genki
2011-01-01
The finite element method (FEM) has been commonly employed in a variety of fields as a computer simulation method to solve such problems as solid, fluid, electro-magnetic phenomena and so on. However, creation of a quality mesh for the problem domain is a prerequisite when using FEM, which becomes a major part of the cost of a simulation. It is natural that the concept of meshless method has evolved. The free mesh method (FMM) is among the typical meshless methods intended for particle-like finite element analysis of problems that are difficult to handle using global mesh generation, especially on parallel processors. FMM is an efficient node-based finite element method that employs a local mesh generation technique and a node-by-node algorithm for the finite element calculations. In this paper, FMM and its variation are reviewed focusing on their fundamental conception, algorithms and accuracy. PMID:21558752
NASA Astrophysics Data System (ADS)
Nissen-Meyer, T.; Luo, Y.; Morency, C.; Tromp, J.
2008-12-01
Seismic-wave propagation in exploration-industry settings has seen major research and development efforts for decades, yet large-scale applications have often been limited to 2D or 3D finite-difference, (visco- )acoustic wave propagation due to computational limitations. We explore the possibility of including all relevant physical signatures in the wavefield using the spectral- element method (SPECFEM3D, SPECFEM2D), thereby accounting for acoustic, (visco-)elastic, poroelastic, anisotropic wave propagation in meshes which honor all crucial discontinuities. Mesh design is the crux of the problem, and we use CUBIT (Sandia Laboratories) to generate unstructured quadrilateral 2D and hexahedral 3D meshes for these complex background models. While general hexahedral mesh generation is an unresolved problem, we are able to accommodate most of the relevant settings (e.g., layer-cake models, salt bodies, overthrusting faults, and strong topography) with respectively tailored workflows. 2D simulations show localized, characteristic wave effects due to these features that shall be helpful in designing survey acquisition geometries in a relatively economic fashion. We address some of the fundamental issues this comprehensive modeling approach faces regarding its feasibility: Assessing geological structures in terms of the necessity to honor the major structural units, appropriate velocity model interpolation, quality control of the resultant mesh, and computational cost for realistic settings up to frequencies of 40 Hz. The solution to this forward problem forms the basis for subsequent 2D and 3D adjoint tomography within this context, which is the subject of a companion paper.
NASA Technical Reports Server (NTRS)
Loh, Ching Y.; Himansu, Ananda; Hultgren, Lennart S.
2003-01-01
A 3-D space-time CE/SE Navier-Stokes solver using an unstructured hexahedral grid is described and applied to a circular jet screech noise computation. The present numerical results for an underexpanded jet, corresponding to a fully expanded Mach number of 1.42, capture the dominant and nonaxisymmetric 'B' screech mode and are generally in good agreement with existing experiments.
Modeling delamination growth in composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reedy, E.D. Jr.; Mello, F.J.
1996-12-01
A method for modeling the initiation and growth of discrete delaminations in shell-like composite structures is presented. The laminate is divided into two or more sublaminates, with each sublaminate modeled with four-noded quadrilateral shell elements. A special, eight-noded hex constraint element connects opposing sublaminate shell elements. It supplies the nodal forces and moments needed to make the two opposing shell elements act as a single shell element until a prescribed failure criterion is satisfied. Once the failure criterion is attained, the connection is broken, creating or growing a discrete delamination. This approach has been implemented in a 3D finite elementmore » code. This code uses explicit time integration, and can analyze shell-like structures subjected to large deformations and complex contact conditions. The shell elements can use existing composite material models that include in-plane laminate failure modes. This analysis capability was developed to perform crashworthiness studies of composite structures, and is useful whenever there is a need to estimate peak loads, energy absorption, or the final shape of a highly deformed composite structure. This paper describes the eight-noded hex constraint element used to model the initiation and growth of a delamination, and discusses associated implementation issues. Particular attention is focused on the delamination growth criterion, and it is verified that calculated results do not depend on element size. In addition, results for double cantilever beam and end notched flexure specimens are presented and compared to measured data to assess the ability of the present approach to model a growing delamination.« less
Method and apparatus for connecting finite element meshes and performing simulations therewith
Dohrmann, Clark R.; Key, Samuel W.; Heinstein, Martin W.
2003-05-06
The present invention provides a method of connecting dissimilar finite element meshes. A first mesh, designated the master mesh, and a second mesh, designated the slave mesh, each have interface surfaces proximal the other. Each interface surface has a corresponding interface mesh comprising a plurality of interface nodes. Each slave interface node is assigned new coordinates locating the interface node on the interface surface of the master mesh. The slave interface surface is further redefined to be the projection of the slave interface mesh onto the master interface surface.
NASA Technical Reports Server (NTRS)
Diskin, Boris; Thomas, James L.
2010-01-01
Cell-centered and node-centered approaches have been compared for unstructured finite-volume discretization of inviscid fluxes. The grids range from regular grids to irregular grids, including mixed-element grids and grids with random perturbations of nodes. Accuracy, complexity, and convergence rates of defect-correction iterations are studied for eight nominally second-order accurate schemes: two node-centered schemes with weighted and unweighted least-squares (LSQ) methods for gradient reconstruction and six cell-centered schemes two node-averaging with and without clipping and four schemes that employ different stencils for LSQ gradient reconstruction. The cell-centered nearest-neighbor (CC-NN) scheme has the lowest complexity; a version of the scheme that involves smart augmentation of the LSQ stencil (CC-SA) has only marginal complexity increase. All other schemes have larger complexity; complexity of node-centered (NC) schemes are somewhat lower than complexity of cell-centered node-averaging (CC-NA) and full-augmentation (CC-FA) schemes. On highly anisotropic grids typical of those encountered in grid adaptation, discretization errors of five of the six cell-centered schemes converge with second order on all tested grids; the CC-NA scheme with clipping degrades solution accuracy to first order. The NC schemes converge with second order on regular and/or triangular grids and with first order on perturbed quadrilaterals and mixed-element grids. All schemes may produce large relative errors in gradient reconstruction on grids with perturbed nodes. Defect-correction iterations for schemes employing weighted least-square gradient reconstruction diverge on perturbed stretched grids. Overall, the CC-NN and CC-SA schemes offer the best options of the lowest complexity and secondorder discretization errors. On anisotropic grids over a curved body typical of turbulent flow simulations, the discretization errors converge with second order and are small for the CC-NN, CC-SA, and CC-FA schemes on all grids and for NC schemes on triangular grids; the discretization errors of the CC-NA scheme without clipping do not converge on irregular grids. Accurate gradient reconstruction can be achieved by introducing a local approximate mapping; without approximate mapping, only the NC scheme with weighted LSQ method provides accurate gradients. Defect correction iterations for the CC-NA scheme without clipping diverge; for the NC scheme with weighted LSQ method, the iterations either diverge or converge very slowly. The best option in curved geometries is the CC-SA scheme that offers low complexity, second-order discretization errors, and fast convergence.
Nonlinear Dynamic Responses of Composite Rotor Blades
1988-08-01
models. QHD40 is an eight-noded plate element with seven degrees of freedom (three midsurface displacements, two rotations and two higher order terms for...in-plane displacements) per corner node and three degrees of freedom (transverse midsurface displacement and two rotations) per mid-state node. QHD48...and QHD48S are eight-noded plate and shell elements respectively, with six degrees of freedom (three midsurface displacements and three rotations
Variation of the energy release rate as a crack approaches and passes through an elastic inclusion
NASA Astrophysics Data System (ADS)
Li, Rongshun; Chudnovsky, A.
1993-02-01
The variation of the energy release rate (ERP) at the tip of a crack penetrating an elastic inclusion is analyzed using an approach involving modeling the random array of microcracks or other defects by an elastic inclusion with effective elastic properties. Computations are carried out using a finite element procedure. The eight-noded isoparametric serendipity element with the shift of the midpoint to the quarter-point is used to simulate the singularity at the crack tip, and the crack growth is accommodated by implementing a mesh regeneration technique. The ERP values were calculated for various crack tip positions which simulate the process of the crack approaching and penetrating the inclusion.
Variation of the energy release rate as a crack approaches and passes through an elastic inclusion
NASA Technical Reports Server (NTRS)
Li, Rongshun; Chudnovsky, A.
1993-01-01
The variation of the energy release rate (ERP) at the tip of a crack penetrating an elastic inclusion is analyzed using an approach involving modeling the random array of microcracks or other defects by an elastic inclusion with effective elastic properties. Computations are carried out using a finite element procedure. The eight-noded isoparametric serendipity element with the shift of the midpoint to the quarter-point is used to simulate the singularity at the crack tip, and the crack growth is accommodated by implementing a mesh regeneration technique. The ERP values were calculated for various crack tip positions which simulate the process of the crack approaching and penetrating the inclusion.
Use of edge-based finite elements for solving three dimensional scattering problems
NASA Technical Reports Server (NTRS)
Chatterjee, A.; Jin, J. M.; Volakis, John L.
1991-01-01
Edge based finite elements are free from drawbacks associated with node based vectorial finite elements and are, therefore, ideal for solving 3-D scattering problems. The finite element discretization using edge elements is checked by solving for the resonant frequencies of a closed inhomogeneously filled metallic cavity. Great improvements in accuracy are observed when compared to the classical node based approach with no penalty in terms of computational time and with the expected absence of spurious modes. A performance comparison between the edge based tetrahedra and rectangular brick elements is carried out and tetrahedral elements are found to be more accurate than rectangular bricks for a given storage intensity. A detailed formulation for the scattering problem with various approaches for terminating the finite element mesh is also presented.
Wittek, Adam; Joldes, Grand; Couton, Mathieu; Warfield, Simon K; Miller, Karol
2010-12-01
Long computation times of non-linear (i.e. accounting for geometric and material non-linearity) biomechanical models have been regarded as one of the key factors preventing application of such models in predicting organ deformation for image-guided surgery. This contribution presents real-time patient-specific computation of the deformation field within the brain for six cases of brain shift induced by craniotomy (i.e. surgical opening of the skull) using specialised non-linear finite element procedures implemented on a graphics processing unit (GPU). In contrast to commercial finite element codes that rely on an updated Lagrangian formulation and implicit integration in time domain for steady state solutions, our procedures utilise the total Lagrangian formulation with explicit time stepping and dynamic relaxation. We used patient-specific finite element meshes consisting of hexahedral and non-locking tetrahedral elements, together with realistic material properties for the brain tissue and appropriate contact conditions at the boundaries. The loading was defined by prescribing deformations on the brain surface under the craniotomy. Application of the computed deformation fields to register (i.e. align) the preoperative and intraoperative images indicated that the models very accurately predict the intraoperative deformations within the brain. For each case, computing the brain deformation field took less than 4 s using an NVIDIA Tesla C870 GPU, which is two orders of magnitude reduction in computation time in comparison to our previous study in which the brain deformation was predicted using a commercial finite element solver executed on a personal computer. Copyright © 2010 Elsevier Ltd. All rights reserved.
A Lower Limb-Pelvis Finite Element Model with 3D Active Muscles.
Mo, Fuhao; Li, Fan; Behr, Michel; Xiao, Zhi; Zhang, Guanjun; Du, Xianping
2018-01-01
A lower limb-pelvis finite element (FE) model with active three-dimensional (3D) muscles was developed in this study for biomechanical analysis of human body. The model geometry was mainly reconstructed from a male volunteer close to the anthropometry of a 50th percentile Chinese male. Tissue materials and structural features were established based on the literature and new implemented experimental tests. In particular, the muscle was modeled with a combination of truss and hexahedral elements to define its passive and active properties as well as to follow the detailed anatomy structure. Both passive and active properties of the model were validated against the experiments of Post-Mortem Human Surrogate (PMHS) and volunteers, respectively. The model was then used to simulate driver's emergency braking during frontal crashes and investigate Knee-Thigh-Hip (KTH) injury mechanisms and tolerances of the human body. A significant force and bending moment variance was noted for the driver's femur due to the effects of active muscle forces during emergency braking. In summary, the present lower limb-pelvis model can be applied in various research fields to support expensive and complex physical tests or corresponding device design.
Finite-time synchronization of complex networks with non-identical nodes and impulsive disturbances
NASA Astrophysics Data System (ADS)
Zhang, Wanli; Li, Chuandong; He, Xing; Li, Hongfei
2018-01-01
This paper investigates the finite-time synchronization of complex networks (CNs) with non-identical nodes and impulsive disturbances. By utilizing stability theories, new 1-norm-based analytical techniques and suitable comparison, systems, several sufficient conditions are obtained to realize the synchronization goal in finite time. State feedback controllers with and without the sign function are designed. Results show that the controllers with sign function can reduce the conservativeness of control gains and the controllers without sign function can overcome the chattering phenomenon. Numerical simulations are offered to verify the effectiveness of the theoretical analysis.
A Spectral Element Discretisation on Unstructured Triangle / Tetrahedral Meshes for Elastodynamics
NASA Astrophysics Data System (ADS)
May, Dave A.; Gabriel, Alice-A.
2017-04-01
The spectral element method (SEM) defined over quadrilateral and hexahedral element geometries has proven to be a fast, accurate and scalable approach to study wave propagation phenomena. In the context of regional scale seismology and or simulations incorporating finite earthquake sources, the geometric restrictions associated with hexahedral elements can limit the applicability of the classical quad./hex. SEM. Here we describe a continuous Galerkin spectral element discretisation defined over unstructured meshes composed of triangles (2D), or tetrahedra (3D). The method uses a stable, nodal basis constructed from PKD polynomials and thus retains the spectral accuracy and low dispersive properties of the classical SEM, in addition to the geometric versatility provided by unstructured simplex meshes. For the particular basis and quadrature rule we have adopted, the discretisation results in a mass matrix which is not diagonal, thereby mandating linear solvers be utilised. To that end, we have developed efficient solvers and preconditioners which are robust with respect to the polynomial order (p), and possess high arithmetic intensity. Furthermore, we also consider using implicit time integrators, together with a p-multigrid preconditioner to circumvent the CFL condition. Implicit time integrators become particularly relevant when considering solving problems on poor quality meshes, or meshes containing elements with a widely varying range of length scales - both of which frequently arise when meshing non-trivial geometries. We demonstrate the applicability of the new method by examining a number of two- and three-dimensional wave propagation scenarios. These scenarios serve to characterise the accuracy and cost of the new method. Lastly, we will assess the potential benefits of using implicit time integrators for regional scale wave propagation simulations.
Reissner-Mindlin Legendre Spectral Finite Elements with Mixed Reduced Quadrature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brito, K. D.; Sprague, M. A.
2012-10-01
Legendre spectral finite elements (LSFEs) are examined through numerical experiments for static and dynamic Reissner-Mindlin plate bending and a mixed-quadrature scheme is proposed. LSFEs are high-order Lagrangian-interpolant finite elements with nodes located at the Gauss-Lobatto-Legendre quadrature points. Solutions on unstructured meshes are examined in terms of accuracy as a function of the number of model nodes and total operations. While nodal-quadrature LSFEs have been shown elsewhere to be free of shear locking on structured grids, locking is demonstrated here on unstructured grids. LSFEs with mixed quadrature are, however, locking free and are significantly more accurate than low-order finite-elements for amore » given model size or total computation time.« less
NASA Technical Reports Server (NTRS)
Venkatachari, Balaji Shankar; Streett, Craig L.; Chang, Chau-Lyan; Friedlander, David J.; Wang, Xiao-Yen; Chang, Sin-Chung
2016-01-01
Despite decades of development of unstructured mesh methods, high-fidelity time-accurate simulations are still predominantly carried out on structured, or unstructured hexahedral meshes by using high-order finite-difference, weighted essentially non-oscillatory (WENO), or hybrid schemes formed by their combinations. In this work, the space-time conservation element solution element (CESE) method is used to simulate several flow problems including supersonic jet/shock interaction and its impact on launch vehicle acoustics, and direct numerical simulations of turbulent flows using tetrahedral meshes. This paper provides a status report for the continuing development of the space-time conservation element solution element (CESE) numerical and software framework under the Revolutionary Computational Aerosciences (RCA) project. Solution accuracy and large-scale parallel performance of the numerical framework is assessed with the goal of providing a viable paradigm for future high-fidelity flow physics simulations.
Toward Verification of USM3D Extensions for Mixed Element Grids
NASA Technical Reports Server (NTRS)
Pandya, Mohagna J.; Frink, Neal T.; Ding, Ejiang; Parlette, Edward B.
2013-01-01
The unstructured tetrahedral grid cell-centered finite volume flow solver USM3D has been recently extended to handle mixed element grids composed of hexahedral, prismatic, pyramidal, and tetrahedral cells. Presently, two turbulence models, namely, baseline Spalart-Allmaras (SA) and Menter Shear Stress Transport (SST), support mixed element grids. This paper provides an overview of the various numerical discretization options available in the newly enhanced USM3D. Using the SA model, the flow solver extensions are verified on three two-dimensional test cases available on the Turbulence Modeling Resource website at the NASA Langley Research Center. The test cases are zero pressure gradient flat plate, planar shear, and bump-inchannel. The effect of cell topologies on the flow solution is also investigated using the planar shear case. Finally, the assessment of various cell and face gradient options is performed on the zero pressure gradient flat plate case.
Advances in Modal Analysis Using a Robust and Multiscale Method
NASA Astrophysics Data System (ADS)
Picard, Cécile; Frisson, Christian; Faure, François; Drettakis, George; Kry, Paul G.
2010-12-01
This paper presents a new approach to modal synthesis for rendering sounds of virtual objects. We propose a generic method that preserves sound variety across the surface of an object at different scales of resolution and for a variety of complex geometries. The technique performs automatic voxelization of a surface model and automatic tuning of the parameters of hexahedral finite elements, based on the distribution of material in each cell. The voxelization is performed using a sparse regular grid embedding of the object, which permits the construction of plausible lower resolution approximations of the modal model. We can compute the audible impulse response of a variety of objects. Our solution is robust and can handle nonmanifold geometries that include both volumetric and surface parts. We present a system which allows us to manipulate and tune sounding objects in an appropriate way for games, training simulations, and other interactive virtual environments.
Adaptive Meshing Techniques for Viscous Flow Calculations on Mixed Element Unstructured Meshes
NASA Technical Reports Server (NTRS)
Mavriplis, D. J.
1997-01-01
An adaptive refinement strategy based on hierarchical element subdivision is formulated and implemented for meshes containing arbitrary mixtures of tetrahendra, hexahendra, prisms and pyramids. Special attention is given to keeping memory overheads as low as possible. This procedure is coupled with an algebraic multigrid flow solver which operates on mixed-element meshes. Inviscid flows as well as viscous flows are computed an adaptively refined tetrahedral, hexahedral, and hybrid meshes. The efficiency of the method is demonstrated by generating an adapted hexahedral mesh containing 3 million vertices on a relatively inexpensive workstation.
Conservative and bounded volume-of-fluid advection on unstructured grids
NASA Astrophysics Data System (ADS)
Ivey, Christopher B.; Moin, Parviz
2017-12-01
This paper presents a novel Eulerian-Lagrangian piecewise-linear interface calculation (PLIC) volume-of-fluid (VOF) advection method, which is three-dimensional, unsplit, and discretely conservative and bounded. The approach is developed with reference to a collocated node-based finite-volume two-phase flow solver that utilizes the median-dual mesh constructed from non-convex polyhedra. The proposed advection algorithm satisfies conservation and boundedness of the liquid volume fraction irrespective of the underlying flux polyhedron geometry, which differs from contemporary unsplit VOF schemes that prescribe topologically complicated flux polyhedron geometries in efforts to satisfy conservation. Instead of prescribing complicated flux-polyhedron geometries, which are prone to topological failures, our VOF advection scheme, the non-intersecting flux polyhedron advection (NIFPA) method, builds the flux polyhedron iteratively such that its intersection with neighboring flux polyhedra, and any other unavailable volume, is empty and its total volume matches the calculated flux volume. During each iteration, a candidate nominal flux polyhedron is extruded using an iteration dependent scalar. The candidate is subsequently intersected with the volume guaranteed available to it at the time of the flux calculation to generate the candidate flux polyhedron. The difference in the volume of the candidate flux polyhedron and the actual flux volume is used to calculate extrusion during the next iteration. The choice in nominal flux polyhedron impacts the cost and accuracy of the scheme; however, it does not impact the methods underlying conservation and boundedness. As such, various robust nominal flux polyhedron are proposed and tested using canonical periodic kinematic test cases: Zalesak's disk and two- and three-dimensional deformation. The tests are conducted on the median duals of a quadrilateral and triangular primal mesh, in two-dimensions, and on the median duals of a hexahedral, wedge and tetrahedral primal mesh, in three-dimensions. Comparisons are made with the adaptation of a conventional unsplit VOF advection scheme to our collocated node-based flow solver. Depending on the choice in the nominal flux polyhedron, the NIFPA scheme presented accuracies ranging from zeroth to second order and calculation times that differed by orders of magnitude. For the nominal flux polyhedra which demonstrate second-order accuracy on all tests and meshes, the NIFPA method's cost was comparable to the traditional topologically complex second-order accurate VOF advection scheme.
Communication Dynamics in Finite Capacity Social Networks
NASA Astrophysics Data System (ADS)
Haerter, Jan O.; Jamtveit, Bjørn; Mathiesen, Joachim
2012-10-01
In communication networks, structure and dynamics are tightly coupled. The structure controls the flow of information and is itself shaped by the dynamical process of information exchanged between nodes. In order to reconcile structure and dynamics, a generic model, based on the local interaction between nodes, is considered for the communication in large social networks. In agreement with data from a large human organization, we show that the flow is non-Markovian and controlled by the temporal limitations of individuals. We confirm the versatility of our model by predicting simultaneously the degree-dependent node activity, the balance between information input and output of nodes, and the degree distribution. Finally, we quantify the limitations to network analysis when it is based on data sampled over a finite period of time.
A parallel algorithm for generation and assembly of finite element stiffness and mass matrices
NASA Technical Reports Server (NTRS)
Storaasli, O. O.; Carmona, E. A.; Nguyen, D. T.; Baddourah, M. A.
1991-01-01
A new algorithm is proposed for parallel generation and assembly of the finite element stiffness and mass matrices. The proposed assembly algorithm is based on a node-by-node approach rather than the more conventional element-by-element approach. The new algorithm's generality and computation speed-up when using multiple processors are demonstrated for several practical applications on multi-processor Cray Y-MP and Cray 2 supercomputers.
A Novel Polygonal Finite Element Method: Virtual Node Method
NASA Astrophysics Data System (ADS)
Tang, X. H.; Zheng, C.; Zhang, J. H.
2010-05-01
Polygonal finite element method (PFEM), which can construct shape functions on polygonal elements, provides greater flexibility in mesh generation. However, the non-polynomial form of traditional PFEM, such as Wachspress method and Mean Value method, leads to inexact numerical integration. Since the integration technique for non-polynomial functions is immature. To overcome this shortcoming, a great number of integration points have to be used to obtain sufficiently exact results, which increases computational cost. In this paper, a novel polygonal finite element method is proposed and called as virtual node method (VNM). The features of present method can be list as: (1) It is a PFEM with polynomial form. Thereby, Hammer integral and Gauss integral can be naturally used to obtain exact numerical integration; (2) Shape functions of VNM satisfy all the requirements of finite element method. To test the performance of VNM, intensive numerical tests are carried out. It found that, in standard patch test, VNM can achieve significantly better results than Wachspress method and Mean Value method. Moreover, it is observed that VNM can achieve better results than triangular 3-node elements in the accuracy test.
NASA Astrophysics Data System (ADS)
Ignatyev, A. V.; Ignatyev, V. A.; Onischenko, E. V.
2017-11-01
This article is the continuation of the work made bt the authors on the development of the algorithms that implement the finite element method in the form of a classical mixed method for the analysis of geometrically nonlinear bar systems [1-3]. The paper describes an improved algorithm of the formation of the nonlinear governing equations system for flexible plane frames and bars with large displacements of nodes based on the finite element method in a mixed classical form and the use of the procedure of step-by-step loading. An example of the analysis is given.
Moving Particles Through a Finite Element Mesh
Peskin, Adele P.; Hardin, Gary R.
1998-01-01
We present a new numerical technique for modeling the flow around multiple objects moving in a fluid. The method tracks the dynamic interaction between each particle and the fluid. The movements of the fluid and the object are directly coupled. A background mesh is designed to fit the geometry of the overall domain. The mesh is designed independently of the presence of the particles except in terms of how fine it must be to track particles of a given size. Each particle is represented by a geometric figure that describes its boundary. This figure overlies the mesh. Nodes are added to the mesh where the particle boundaries intersect the background mesh, increasing the number of nodes contained in each element whose boundary is intersected. These additional nodes are then used to describe and track the particle in the numerical scheme. Appropriate element shape functions are defined to approximate the solution on the elements with extra nodes. The particles are moved through the mesh by moving only the overlying nodes defining the particles. The regular finite element grid remains unchanged. In this method, the mesh does not distort as the particles move. Instead, only the placement of particle-defining nodes changes as the particles move. Element shape functions are updated as the nodes move through the elements. This method is especially suited for models of moderate numbers of moderate-size particles, where the details of the fluid-particle coupling are important. Both the complications of creating finite element meshes around appreciable numbers of particles, and extensive remeshing upon movement of the particles are simplified in this method. PMID:28009377
NASA Astrophysics Data System (ADS)
Aftosmis, Michael J.
1992-10-01
A new node based upwind scheme for the solution of the 3D Navier-Stokes equations on adaptively refined meshes is presented. The method uses a second-order upwind TVD scheme to integrate the convective terms, and discretizes the viscous terms with a new compact central difference technique. Grid adaptation is achieved through directional division of hexahedral cells in response to evolving features as the solution converges. The method is advanced in time with a multistage Runge-Kutta time stepping scheme. Two- and three-dimensional examples establish the accuracy of the inviscid and viscous discretization. These investigations highlight the ability of the method to produce crisp shocks, while accurately and economically resolving viscous layers. The representation of these and other structures is shown to be comparable to that obtained by structured methods. Further 3D examples demonstrate the ability of the adaptive algorithm to effectively locate and resolve multiple scale features in complex 3D flows with many interacting, viscous, and inviscid structures.
High-order finite difference formulations for the incompressible Navier-Stokes equations on the CM-5
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tafti, D.
1995-12-01
The paper describes the features and implementation of a general purpose high-order accurate finite difference computer program for direct and large-eddy simulations of turbulence on the CM-5 in the data parallel mode. Benchmarking studies for a direct simulation of turbulent channel flow are discussed. Performance of up to 8.8 GFLOPS is obtained for the high-order formulations on 512 processing nodes of the CM-5. The execution time for a simulation with 24 million nodes in a domain with two periodic directions is in the range of 0.2 {mu}secs/time-step/degree of freedom on 512 processing nodes of the CM-5.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamachi, Eiji; Yoshida, Takashi; Yamaguchi, Toshihiko
2014-10-06
We developed two-scale FE analysis procedure based on the crystallographic homogenization method by considering the hierarchical structure of poly-crystal aluminium alloy metal. It can be characterized as the combination of two-scale structure, such as the microscopic polycrystal structure and the macroscopic elastic plastic continuum. Micro polycrystal structure can be modeled as a three dimensional representative volume element (RVE). RVE is featured as by 3×3×3 eight-nodes solid finite elements, which has 216 crystal orientations. This FE analysis code can predict the deformation, strain and stress evolutions in the wire drawing processes in the macro- scales, and further the crystal texture andmore » hardening evolutions in the micro-scale. In this study, we analyzed the texture evolution in the wire drawing processes by our two-scale FE analysis code under conditions of various drawing angles of dice. We evaluates the texture evolution in the surface and center regions of the wire cross section, and to clarify the effects of processing conditions on the texture evolution.« less
NASA Astrophysics Data System (ADS)
Nakamachi, Eiji; Yoshida, Takashi; Kuramae, Hiroyuki; Morimoto, Hideo; Yamaguchi, Toshihiko; Morita, Yusuke
2014-10-01
We developed two-scale FE analysis procedure based on the crystallographic homogenization method by considering the hierarchical structure of poly-crystal aluminium alloy metal. It can be characterized as the combination of two-scale structure, such as the microscopic polycrystal structure and the macroscopic elastic plastic continuum. Micro polycrystal structure can be modeled as a three dimensional representative volume element (RVE). RVE is featured as by 3×3×3 eight-nodes solid finite elements, which has 216 crystal orientations. This FE analysis code can predict the deformation, strain and stress evolutions in the wire drawing processes in the macro- scales, and further the crystal texture and hardening evolutions in the micro-scale. In this study, we analyzed the texture evolution in the wire drawing processes by our two-scale FE analysis code under conditions of various drawing angles of dice. We evaluates the texture evolution in the surface and center regions of the wire cross section, and to clarify the effects of processing conditions on the texture evolution.
Chen, Yubin; Miao, Yingyun; Xu, Chuan; Zhang, Gang; Lei, Tao; Tan, Yinghui
2010-04-19
To study wound ballistics of the mandibular angle, a combined hexahedral-tetrahedral finite element (FE) model of the pig mandible was developed to simulate ballistic impact. An experimental study was carried out by measuring impact load parameters from 14 fresh pig mandibles that were shot at the mandibular angle by a standard 7.62 mm M43 bullet. FE analysis was executed through the LS-DYNA code under impact loads similar to those obtained from the experimental study. The resulting residual velocity, the transferred energy from the bullet to the mandible, and the surface area of the entrance wound had no statistical differences between the FE simulation and the experimental study. However, the mean surface area of the exit wounds in the experimental study was significantly larger than that in the simulation. According to the FE analysis, the stress concentrated zones were mainly located at the region of impact, condylar neck, coronoid process and mandibular body. The simulation results also indicated that trabecular bone had less stress concentration and a lower speed of stress propagation compared with cortical bone. The FE model is appropriate and conforms to the basic principles of wound ballistics. This modeling system will be helpful for further investigations of the biomechanical mechanisms of wound ballistics. Copyright 2009 Elsevier Ltd. All rights reserved.
Li, Zuoping; Alonso, Jorge E; Kim, Jong-Eun; Davidson, James S; Etheridge, Brandon S; Eberhardt, Alan W
2006-09-01
Three-dimensional finite element (FE) models of human pubic symphyses were constructed from computed tomography image data of one male and one female cadaver pelvis. The pubic bones, interpubic fibrocartilaginous disc and four pubic ligaments were segmented semi-automatically and meshed with hexahedral elements using automatic mesh generation schemes. A two-term viscoelastic Prony series, determined by curve fitting results of compressive creep experiments, was used to model the rate-dependent effects of the interpubic disc and the pubic ligaments. Three-parameter Mooney-Rivlin material coefficients were calculated for the discs using a heuristic FE approach based on average experimental joint compression data. Similarly, a transversely isotropic hyperelastic material model was applied to the ligaments to capture average tensile responses. Linear elastic isotropic properties were assigned to bone. The applicability of the resulting models was tested in bending simulations in four directions and in tensile tests of varying load rates. The model-predicted results correlated reasonably with the joint bending stiffnesses and rate-dependent tensile responses measured in experiments, supporting the validity of the estimated material coefficients and overall modeling approach. This study represents an important and necessary step in the eventual development of biofidelic pelvis models to investigate symphysis response under high-energy impact conditions, such as motor vehicle collisions.
NASA Astrophysics Data System (ADS)
Bueschel, A.; Klinkel, S.; Wagner, W.
2011-04-01
Smart materials are active and multifunctional materials, which play an important part for sensor and actuator applications. These materials have the potential to transform passive structures into adaptive systems. However, a prerequisite for the design and the optimization of these materials is, that reliable models exist, which incorporate the interaction between the different combinations of thermal, electrical, magnetic, optical and mechanical effects. Polymeric electroelastic materials, so-called electroactive polymer (EAP), own the characteristic to deform if an electric field is applied. EAP's possesses the benefit that they share the characteristic of polymers, these are lightweight, inexpensive, fracture tolerant, elastic, and the chemical and physical structure is well understood. However, the description "electroactive polymer" is a generic term for many kinds of different microscopic mechanisms and polymeric materials. Based on the laws of electromagnetism and elasticity, a visco-electroelastic model is developed and implemented into the finite element method (FEM). The presented three-dimensional solid element has eight nodes and trilinear interpolation functions for the displacement and the electric potential. The continuum mechanics model contains finite deformations, the time dependency and the nearly incompressible behavior of the material. To describe the possible, large time dependent deformations, a finite viscoelastic model with a split of the deformation gradient is used. Thereby the time dependent characteristic of polymeric materials is incorporated through the free energy function. The electromechanical interactions are considered by the electrostatic forces and inside the energy function.
Light concentrator of the wide field of view Cherenkov telescope
NASA Astrophysics Data System (ADS)
Yang, Rui; Sheng, Xi Yi; Liao, Bo Lin
2016-10-01
The Wide Field of View Cherenkov Telescope (WFCT) is mainly constituted by optical reflector and focal-plane photomultiplier (PMT) array camera. In order to avoid loss of Cherenkov signal resulting from the dead area between circular PMT tubes and invalid fringe of each PMT, the light concentrator used as front window of PMT is considered to improve detective efficiency. Basing on the edge-ray principle and features of WFCT, several light concentrators are designed and simulated with ZEMAX. The result shows that the hollow hexahedral compound parabolic concentrator (hex-CPC) has good performance in collecting light. Moreover, the samples of the hollow hexahedral CPC have been manufactured and tested.
Finite-Time and Fixed-Time Cluster Synchronization With or Without Pinning Control.
Liu, Xiwei; Chen, Tianping
2018-01-01
In this paper, the finite-time and fixed-time cluster synchronization problem for complex networks with or without pinning control are discussed. Finite-time (or fixed-time) synchronization has been a hot topic in recent years, which means that the network can achieve synchronization in finite-time, and the settling time depends on the initial values for finite-time synchronization (or the settling time is bounded by a constant for any initial values for fixed-time synchronization). To realize the finite-time and fixed-time cluster synchronization, some simple distributed protocols with or without pinning control are designed and the effectiveness is rigorously proved. Several sufficient criteria are also obtained to clarify the effects of coupling terms for finite-time and fixed-time cluster synchronization. Especially, when the cluster number is one, the cluster synchronization becomes the complete synchronization problem; when the network has only one node, the coupling term between nodes will disappear, and the synchronization problem becomes the simplest master-slave case, which also includes the stability problem for nonlinear systems like neural networks. All these cases are also discussed. Finally, numerical simulations are presented to demonstrate the correctness of obtained theoretical results.
A Floating Node Method for the Modelling of Discontinuities Within a Finite Element
NASA Technical Reports Server (NTRS)
Pinho, Silvestre T.; Chen, B. Y.; DeCarvalho, Nelson V.; Baiz, P. M.; Tay, T. E.
2013-01-01
This paper focuses on the accurate numerical representation of complex networks of evolving discontinuities in solids, with particular emphasis on cracks. The limitation of the standard finite element method (FEM) in approximating discontinuous solutions has motivated the development of re-meshing, smeared crack models, the eXtended Finite Element Method (XFEM) and the Phantom Node Method (PNM). We propose a new method which has some similarities to the PNM, but crucially: (i) does not introduce an error on the crack geometry when mapping to natural coordinates; (ii) does not require numerical integration over only part of a domain; (iii) can incorporate weak discontinuities and cohesive cracks more readily; (iv) is ideally suited for the representation of multiple and complex networks of (weak, strong and cohesive) discontinuities; (v) leads to the same solution as a finite element mesh where the discontinuity is represented explicitly; and (vi) is conceptually simpler than the PNM.
Hou, Huazhou; Zhang, Qingling
2016-11-01
In this paper we investigate the finite-time synchronization for second-order multi-agent system via pinning exponent sliding mode control. Firstly, for the nonlinear multi-agent system, differential mean value theorem is employed to transfer the nonlinear system into linear system, then, by pinning only one node in the system with novel exponent sliding mode control, we can achieve synchronization in finite time. Secondly, considering the 3-DOF helicopter system with nonlinear dynamics and disturbances, the novel exponent sliding mode control protocol is applied to only one node to achieve the synchronization. Finally, the simulation results show the effectiveness and the advantages of the proposed method. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.
Critical temperatures of hybrid laminates using finite elements
NASA Astrophysics Data System (ADS)
Chockalingam, S.; Mathew, T. C.; Singh, G.; Rao, G. V.
1992-06-01
Thermal buckling of antisymmetric cross-ply hybrid laminates is investigated. A one-dimensional finite element based on first-order shear deformation theory, having two nodes and six degrees of freedom per node, namely axial displacement, transverse displacements and rotation of the normal to the beam axis and their derivatives with respect to beam coordinate axis, is employed for this purpose. Various types of hybrid laminates with different combination of glass/epoxy, Kevlar/epoxy and carbon/epoxy are considered. Effects of slenderness ratio, boundary conditions and lay-ups are studied in detail.
Linear magnetoconductivity in an intrinsic topological Weyl semimetal
NASA Astrophysics Data System (ADS)
Zhang, Song-Bo; Lu, Hai-Zhou; Shen, Shun-Qing
2016-05-01
Searching for the signature of the violation of chiral charge conservation in solids has inspired a growing passion for the magneto-transport in topological semimetals. One of the open questions is how the conductivity depends on magnetic fields in a semimetal phase when the Fermi energy crosses the Weyl nodes. Here, we study both the longitudinal and transverse magnetoconductivity of a topological Weyl semimetal near the Weyl nodes with the help of a two-node model that includes all the topological semimetal properties. In the semimetal phase, the Fermi energy crosses only the 0th Landau bands in magnetic fields. For a finite potential range of impurities, it is found that both the longitudinal and transverse magnetoconductivity are positive and linear at the Weyl nodes, leading to an anisotropic and negative magnetoresistivity. The longitudinal magnetoconductivity depends on the potential range of impurities. The longitudinal conductivity remains finite at zero field, even though the density of states vanishes at the Weyl nodes. This work establishes a relation between the linear magnetoconductivity and the intrinsic topological Weyl semimetal phase.
Computational performance of Free Mesh Method applied to continuum mechanics problems
YAGAWA, Genki
2011-01-01
The free mesh method (FMM) is a kind of the meshless methods intended for particle-like finite element analysis of problems that are difficult to handle using global mesh generation, or a node-based finite element method that employs a local mesh generation technique and a node-by-node algorithm. The aim of the present paper is to review some unique numerical solutions of fluid and solid mechanics by employing FMM as well as the Enriched Free Mesh Method (EFMM), which is a new version of FMM, including compressible flow and sounding mechanism in air-reed instruments as applications to fluid mechanics, and automatic remeshing for slow crack growth, dynamic behavior of solid as well as large-scale Eigen-frequency of engine block as applications to solid mechanics. PMID:21558753
NASA Technical Reports Server (NTRS)
Utku, S.
1969-01-01
A general purpose digital computer program for the in-core solution of linear equilibrium problems of structural mechanics is documented. The program requires minimum input for the description of the problem. The solution is obtained by means of the displacement method and the finite element technique. Almost any geometry and structure may be handled because of the availability of linear, triangular, quadrilateral, tetrahedral, hexahedral, conical, triangular torus, and quadrilateral torus elements. The assumption of piecewise linear deflection distribution insures monotonic convergence of the deflections from the stiffer side with decreasing mesh size. The stresses are provided by the best-fit strain tensors in the least squares at the mesh points where the deflections are given. The selection of local coordinate systems whenever necessary is automatic. The core memory is used by means of dynamic memory allocation, an optional mesh-point relabelling scheme and imposition of the boundary conditions during the assembly time.
A pyramid scheme for three-dimensional diffusion equations on polyhedral meshes
NASA Astrophysics Data System (ADS)
Wang, Shuai; Hang, Xudeng; Yuan, Guangwei
2017-12-01
In this paper, a new cell-centered finite volume scheme is proposed for three-dimensional diffusion equations on polyhedral meshes, which is called as pyramid scheme (P-scheme). The scheme is designed for polyhedral cells with nonplanar cell-faces. The normal flux on a nonplanar cell-face is discretized on a planar face, which is determined by a simple optimization procedure. The resulted discrete form of the normal flux involves only cell-centered and cell-vertex unknowns, and is free from face-centered unknowns. In the case of hexahedral meshes with skewed nonplanar cell-faces, a quite simple expression is obtained for the discrete normal flux. Compared with the second order accurate O-scheme [31], the P-scheme is more robust and the discretization cost is reduced remarkably. Numerical results are presented to show the performance of the P-scheme on various kinds of distorted meshes. In particular, the P-scheme is shown to be second order accurate.
Development of advanced Navier-Stokes solver
NASA Technical Reports Server (NTRS)
Yoon, Seokkwan
1994-01-01
The objective of research was to develop and validate new computational algorithms for solving the steady and unsteady Euler and Navier-Stokes equations. The end-products are new three-dimensional Euler and Navier-Stokes codes that are faster, more reliable, more accurate, and easier to use. The three-dimensional Euler and full/thin-layer Reynolds-averaged Navier-Stokes equations for compressible/incompressible flows are solved on structured hexahedral grids. The Baldwin-Lomax algebraic turbulence model is used for closure. The space discretization is based on a cell-centered finite-volume method augmented by a variety of numerical dissipation models with optional total variation diminishing limiters. The governing equations are integrated in time by an implicit method based on lower-upper factorization and symmetric Gauss-Seidel relaxation. The algorithm is vectorized on diagonal planes of sweep using two-dimensional indices in three dimensions. Convergence rates and the robustness of the codes are enhanced by the use of an implicit full approximation storage multigrid method.
Zhang, Xiaoyan; Kim, Daeseung; Shen, Shunyao; Yuan, Peng; Liu, Siting; Tang, Zhen; Zhang, Guangming; Zhou, Xiaobo; Gateno, Jaime
2017-01-01
Accurate surgical planning and prediction of craniomaxillofacial surgery outcome requires simulation of soft tissue changes following osteotomy. This can only be achieved by using an anatomically detailed facial soft tissue model. The current state-of-the-art of model generation is not appropriate to clinical applications due to the time-intensive nature of manual segmentation and volumetric mesh generation. The conventional patient-specific finite element (FE) mesh generation methods are to deform a template FE mesh to match the shape of a patient based on registration. However, these methods commonly produce element distortion. Additionally, the mesh density for patients depends on that of the template model. It could not be adjusted to conduct mesh density sensitivity analysis. In this study, we propose a new framework of patient-specific facial soft tissue FE mesh generation. The goal of the developed method is to efficiently generate a high-quality patient-specific hexahedral FE mesh with adjustable mesh density while preserving the accuracy in anatomical structure correspondence. Our FE mesh is generated by eFace template deformation followed by volumetric parametrization. First, the patient-specific anatomically detailed facial soft tissue model (including skin, mucosa, and muscles) is generated by deforming an eFace template model. The adaptation of the eFace template model is achieved by using a hybrid landmark-based morphing and dense surface fitting approach followed by a thin-plate spline interpolation. Then, high-quality hexahedral mesh is constructed by using volumetric parameterization. The user can control the resolution of hexahedron mesh to best reflect clinicians’ need. Our approach was validated using 30 patient models and 4 visible human datasets. The generated patient-specific FE mesh showed high surface matching accuracy, element quality, and internal structure matching accuracy. They can be directly and effectively used for clinical simulation of facial soft tissue change. PMID:29027022
Zhang, Xiaoyan; Kim, Daeseung; Shen, Shunyao; Yuan, Peng; Liu, Siting; Tang, Zhen; Zhang, Guangming; Zhou, Xiaobo; Gateno, Jaime; Liebschner, Michael A K; Xia, James J
2018-04-01
Accurate surgical planning and prediction of craniomaxillofacial surgery outcome requires simulation of soft tissue changes following osteotomy. This can only be achieved by using an anatomically detailed facial soft tissue model. The current state-of-the-art of model generation is not appropriate to clinical applications due to the time-intensive nature of manual segmentation and volumetric mesh generation. The conventional patient-specific finite element (FE) mesh generation methods are to deform a template FE mesh to match the shape of a patient based on registration. However, these methods commonly produce element distortion. Additionally, the mesh density for patients depends on that of the template model. It could not be adjusted to conduct mesh density sensitivity analysis. In this study, we propose a new framework of patient-specific facial soft tissue FE mesh generation. The goal of the developed method is to efficiently generate a high-quality patient-specific hexahedral FE mesh with adjustable mesh density while preserving the accuracy in anatomical structure correspondence. Our FE mesh is generated by eFace template deformation followed by volumetric parametrization. First, the patient-specific anatomically detailed facial soft tissue model (including skin, mucosa, and muscles) is generated by deforming an eFace template model. The adaptation of the eFace template model is achieved by using a hybrid landmark-based morphing and dense surface fitting approach followed by a thin-plate spline interpolation. Then, high-quality hexahedral mesh is constructed by using volumetric parameterization. The user can control the resolution of hexahedron mesh to best reflect clinicians' need. Our approach was validated using 30 patient models and 4 visible human datasets. The generated patient-specific FE mesh showed high surface matching accuracy, element quality, and internal structure matching accuracy. They can be directly and effectively used for clinical simulation of facial soft tissue change.
The fundamental theorem of asset pricing under default and collateral in finite discrete time
NASA Astrophysics Data System (ADS)
Alvarez-Samaniego, Borys; Orrillo, Jaime
2006-08-01
We consider a financial market where time and uncertainty are modeled by a finite event-tree. The event-tree has a length of N, a unique initial node at the initial date, and a continuum of branches at each node of the tree. Prices and returns of J assets are modeled, respectively, by a R2JxR2J-valued stochastic process . In this framework we prove a version of the Fundamental Theorem of Asset Pricing which applies to defaultable securities backed by exogenous collateral suffering a contingent linear depreciation.
An Element-Based Concurrent Partitioner for Unstructured Finite Element Meshes
NASA Technical Reports Server (NTRS)
Ding, Hong Q.; Ferraro, Robert D.
1996-01-01
A concurrent partitioner for partitioning unstructured finite element meshes on distributed memory architectures is developed. The partitioner uses an element-based partitioning strategy. Its main advantage over the more conventional node-based partitioning strategy is its modular programming approach to the development of parallel applications. The partitioner first partitions element centroids using a recursive inertial bisection algorithm. Elements and nodes then migrate according to the partitioned centroids, using a data request communication template for unpredictable incoming messages. Our scalable implementation is contrasted to a non-scalable implementation which is a straightforward parallelization of a sequential partitioner.
DRACO development for 3D simulations
NASA Astrophysics Data System (ADS)
Fatenejad, Milad; Moses, Gregory
2006-10-01
The DRACO (r-z) lagrangian radiation-hydrodynamics laser fusion simulation code is being extended to model 3D hydrodynamics in (x-y-z) coordinates with hexahedral cells on a structured grid. The equation of motion is solved with a lagrangian update with optional rezoning. The fluid equations are solved using an explicit scheme based on (Schulz, 1964) while the SALE-3D algorithm (Amsden, 1981) is used as a template for computing cell volumes and other quantities. A second order rezoner has been added which uses linear interpolation of the underlying continuous functions to preserve accuracy (Van Leer, 1976). Artificial restoring force terms and smoothing algorithms are used to avoid grid distortion in high aspect ratio cells. These include alternate node couplers along with a rotational restoring force based on the Tensor Code (Maenchen, 1964). Electron and ion thermal conduction is modeled using an extension of Kershaw's method (Kershaw, 1981) to 3D geometry. Test problem simulations will be presented to demonstrate the applicability of this new version of DRACO to the study of fluid instabilities in three dimensions.
NASA Astrophysics Data System (ADS)
Dey, Sudip; Karmakar, Amit
2014-02-01
This paper presents the time dependent response of multiple delaminated angle-ply composite pretwisted conical shells subjected to low velocity normal impact. The finite element formulation is based on Mindlin's theory incorporating rotary inertia and effects of transverse shear deformation. An eight-noded isoparametric plate bending element is employed to satisfy the compatibility of deformation and equilibrium of resultant forces and moments at the delamination crack front. A multipoint constraint algorithm is incorporated which leads to asymmetric stiffness matrices. The modified Hertzian contact law which accounts for permanent indentation is utilized to compute the contact force, and the time dependent equations are solved by Newmark's time integration algorithm. Parametric studies are conducted with respect to triggering parameters like laminate configuration, location of delamination, angle of twist, velocity of impactor, and impactor's displacement for centrally impacted shells.
Waveguide-type optical circuits for recognition of optical 8QAM-coded label
NASA Astrophysics Data System (ADS)
Surenkhorol, Tumendemberel; Kishikawa, Hiroki; Goto, Nobuo; Gonchigsumlaa, Khishigjargal
2017-10-01
Optical signal processing is expected to be applied in network nodes. In photonic routers, label recognition is one of the important functions. We have studied different kinds of label recognition methods so far for on-off keying, binary phase-shift keying, quadrature phase-shift keying, and 16 quadrature amplitude modulation-coded labels. We propose a method based on waveguide circuits to recognize an optical eight quadrature amplitude modulation (8QAM)-coded label by simple passive optical signal processing. The recognition of the proposed method is theoretically analyzed and numerically simulated by the finite difference beam propagation method. The noise tolerance is discussed, and bit-error rate against optical signal-to-noise ratio is evaluated. The scalability of the proposed method is also discussed theoretically for two-symbol length 8QAM-coded labels.
Rigid body formulation in a finite element context with contact interaction
NASA Astrophysics Data System (ADS)
Refachinho de Campos, Paulo R.; Gay Neto, Alfredo
2018-03-01
The present work proposes a formulation to employ rigid bodies together with flexible bodies in the context of a nonlinear finite element solver, with contact interactions. Inertial contributions due to distribution of mass of a rigid body are fully developed, considering a general pole position associated with a single node, representing a rigid body element. Additionally, a mechanical constraint is proposed to connect a rigid region composed by several nodes, which is useful for linking rigid/flexible bodies in a finite element environment. Rodrigues rotation parameters are used to describe finite rotations, by an updated Lagrangian description. In addition, the contact formulation entitled master-surface to master-surface is employed in conjunction with the rigid body element and flexible bodies, aiming to consider their interaction in a rigid-flexible multibody environment. New surface parameterizations are presented to establish contact pairs, permitting pointwise interaction in a frictional scenario. Numerical examples are provided to show robustness and applicability of the methods.
Supercomputer implementation of finite element algorithms for high speed compressible flows
NASA Technical Reports Server (NTRS)
Thornton, E. A.; Ramakrishnan, R.
1986-01-01
Prediction of compressible flow phenomena using the finite element method is of recent origin and considerable interest. Two shock capturing finite element formulations for high speed compressible flows are described. A Taylor-Galerkin formulation uses a Taylor series expansion in time coupled with a Galerkin weighted residual statement. The Taylor-Galerkin algorithms use explicit artificial dissipation, and the performance of three dissipation models are compared. A Petrov-Galerkin algorithm has as its basis the concepts of streamline upwinding. Vectorization strategies are developed to implement the finite element formulations on the NASA Langley VPS-32. The vectorization scheme results in finite element programs that use vectors of length of the order of the number of nodes or elements. The use of the vectorization procedure speeds up processing rates by over two orders of magnitude. The Taylor-Galerkin and Petrov-Galerkin algorithms are evaluated for 2D inviscid flows on criteria such as solution accuracy, shock resolution, computational speed and storage requirements. The convergence rates for both algorithms are enhanced by local time-stepping schemes. Extension of the vectorization procedure for predicting 2D viscous and 3D inviscid flows are demonstrated. Conclusions are drawn regarding the applicability of the finite element procedures for realistic problems that require hundreds of thousands of nodes.
Quadrilateral finite element mesh coarsening
Staten, Matthew L; Dewey, Mark W; Benzley, Steven E
2012-10-16
Techniques for coarsening a quadrilateral mesh are described. These techniques include identifying a coarsening region within the quadrilateral mesh to be coarsened. Quadrilateral elements along a path through the coarsening region are removed. Node pairs along opposite sides of the path are identified. The node pairs along the path are then merged to collapse the path.
General method to find the attractors of discrete dynamic models of biological systems.
Gan, Xiao; Albert, Réka
2018-04-01
Analyzing the long-term behaviors (attractors) of dynamic models of biological networks can provide valuable insight. We propose a general method that can find the attractors of multilevel discrete dynamical systems by extending a method that finds the attractors of a Boolean network model. The previous method is based on finding stable motifs, subgraphs whose nodes' states can stabilize on their own. We extend the framework from binary states to any finite discrete levels by creating a virtual node for each level of a multilevel node, and describing each virtual node with a quasi-Boolean function. We then create an expanded representation of the multilevel network, find multilevel stable motifs and oscillating motifs, and identify attractors by successive network reduction. In this way, we find both fixed point attractors and complex attractors. We implemented an algorithm, which we test and validate on representative synthetic networks and on published multilevel models of biological networks. Despite its primary motivation to analyze biological networks, our motif-based method is general and can be applied to any finite discrete dynamical system.
General method to find the attractors of discrete dynamic models of biological systems
NASA Astrophysics Data System (ADS)
Gan, Xiao; Albert, Réka
2018-04-01
Analyzing the long-term behaviors (attractors) of dynamic models of biological networks can provide valuable insight. We propose a general method that can find the attractors of multilevel discrete dynamical systems by extending a method that finds the attractors of a Boolean network model. The previous method is based on finding stable motifs, subgraphs whose nodes' states can stabilize on their own. We extend the framework from binary states to any finite discrete levels by creating a virtual node for each level of a multilevel node, and describing each virtual node with a quasi-Boolean function. We then create an expanded representation of the multilevel network, find multilevel stable motifs and oscillating motifs, and identify attractors by successive network reduction. In this way, we find both fixed point attractors and complex attractors. We implemented an algorithm, which we test and validate on representative synthetic networks and on published multilevel models of biological networks. Despite its primary motivation to analyze biological networks, our motif-based method is general and can be applied to any finite discrete dynamical system.
Feasibility of contrast-enhanced ultrasound-guided biopsy of sentinel lymph nodes in dogs.
Gelb, Hylton R; Freeman, Lynetta J; Rohleder, Jacob J; Snyder, Paul W
2010-01-01
Our goal was to develop and validate a technique to identify the sentinel lymph nodes of the mammary glands of healthy dogs with contrast-enhanced ultrasound, and evaluate the feasibility of obtaining representative samples of a sentinel lymph node under ultrasound guidance using a new biopsy device. Three healthy intact female adult hounds were anesthetized and each received an injection of octafluoropropane-filled lipid microspheres and a separate subcutaneous injection of methylene blue dye around a mammary gland. Ultrasound was then used to follow the contrast agent through the lymphatic channel to the sentinel lymph node. Lymph node biopsy was performed under ultrasound guidance, followed by an excisional biopsy of the lymph nodes and a regional mastectomy procedure. Excised tissues were submitted for histopathologic examination and evaluated as to whether they were representative of the node. The ultrasound contrast agent was easily visualized with ultrasound leading up to the sentinel lymph nodes. Eight normal lymph nodes (two inguinal, one axillary in two dogs; two inguinal in one dog) were identified and biopsied. Lymphoid tissue was obtained from all biopsy specimens. Samples from four of eight lymph nodes contained both cortical and medullary lymphoid tissue. Contrast-enhanced ultrasound can be successfully used to image and guide minimally invasive biopsy of the normal sentinel lymph nodes draining the mammary glands in healthy dogs. Further work is needed to evaluate whether this technique may be applicable in patients with breast cancer or other conditions warranting evaluation of sentinel lymph nodes in animals.
Pegg, Elise C; Gill, Harinderjit S
2016-09-06
A new software tool to assign the material properties of bone to an ABAQUS finite element mesh was created and compared with Bonemat, a similar tool originally designed to work with Ansys finite element models. Our software tool (py_bonemat_abaqus) was written in Python, which is the chosen scripting language for ABAQUS. The purpose of this study was to compare the software packages in terms of the material assignment calculation and processing speed. Three element types were compared (linear hexahedral (C3D8), linear tetrahedral (C3D4) and quadratic tetrahedral elements (C3D10)), both individually and as part of a mesh. Comparisons were made using a CT scan of a hemi-pelvis as a test case. A small difference, of -0.05kPa on average, was found between Bonemat version 3.1 (the current version) and our Python package. Errors were found in the previous release of Bonemat (version 3.0 downloaded from www.biomedtown.org) during calculation of the quadratic tetrahedron Jacobian, and conversion of the apparent density to modulus when integrating over the Young׳s modulus field. These issues caused up to 2GPa error in the modulus assignment. For these reasons, we recommend users upgrade to the most recent release of Bonemat. Processing speeds were assessed for the three different element types. Our Python package took significantly longer (110s on average) to perform the calculations compared with the Bonemat software (10s). Nevertheless, the workflow advantages of the package and added functionality makes 'py_bonemat_abaqus' a useful tool for ABAQUS users. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hybrid mesh finite volume CFD code for studying heat transfer in a forward-facing step
NASA Astrophysics Data System (ADS)
Jayakumar, J. S.; Kumar, Inder; Eswaran, V.
2010-12-01
Computational fluid dynamics (CFD) methods employ two types of grid: structured and unstructured. Developing the solver and data structures for a finite-volume solver is easier than for unstructured grids. But real-life problems are too complicated to be fitted flexibly by structured grids. Therefore, unstructured grids are widely used for solving real-life problems. However, using only one type of unstructured element consumes a lot of computational time because the number of elements cannot be controlled. Hence, a hybrid grid that contains mixed elements, such as the use of hexahedral elements along with tetrahedral and pyramidal elements, gives the user control over the number of elements in the domain, and thus only the domain that requires a finer grid is meshed finer and not the entire domain. This work aims to develop such a finite-volume hybrid grid solver capable of handling turbulence flows and conjugate heat transfer. It has been extended to solving flow involving separation and subsequent reattachment occurring due to sudden expansion or contraction. A significant effect of mixing high- and low-enthalpy fluid occurs in the reattached regions of these devices. This makes the study of the backward-facing and forward-facing step with heat transfer an important field of research. The problem of the forward-facing step with conjugate heat transfer was taken up and solved for turbulence flow using a two-equation model of k-ω. The variation in the flow profile and heat transfer behavior has been studied with the variation in Re and solid to fluid thermal conductivity ratios. The results for the variation in local Nusselt number, interface temperature and skin friction factor are presented.
Study of hypervelocity meteoroid impact on orbital space stations
NASA Technical Reports Server (NTRS)
Leimbach, K. R.; Prozan, R. J.
1973-01-01
Structural damage resulting in hypervelocity impact of a meteorite on a spacecraft is discussed. Of particular interest is the backside spallation caused by such a collision. To treat this phenomenon two numerical schemes were developed in the course of this study to compute the elastic-plastic flow fracture of a solid. The numerical schemes are a five-point finite difference scheme and a four-node finite element scheme. The four-node finite element scheme proved to be less sensitive to the type of boundary conditions and loadings. Although further development work is needed to improve the program versatility (generalization of the network topology, secondary storage for large systems, improving of the coding to reduce the run time, etc.), the basic framework is provided for a utilitarian computer program which may be used in a wide variety of situations. Analytic results showing the program output are given for several test cases.
Influence of Joint Flexibility on Vibration Analysis of Free-Free Beams
NASA Astrophysics Data System (ADS)
Gunda, Jagadish Babu; Krishna, Y.
2014-12-01
In present work, joint flexibility (or looseness) of the free-free beam is investigated by using a two noded beam finite element formulation with transverse displacement and joint rotations as the degrees of freedom per node at joint location. Flexibility of the joint is primarily represented by means of a rotational spring analogy, where the stiffness of the rotational spring characterizes the looseness of the flexible joint for an applied bending moment. Influence of joint location as well as joint stiffness on modal behavior of first five modes of slender, uniform free-free beams are discussed for various values of non-dimensional rotational spring stiffness parameter. Numerical accuracy of the results obtained from the present finite element formulation are validated by using the commercially available finite element software which shows the confidence gained on the numerical results discussed in the present study.
The design and experiment of a novel ultrasonic motor based on the combination of bending modes.
Yan, Jipeng; Liu, Yingxiang; Liu, Junkao; Xu, Dongmei; Chen, Weishan
2016-09-01
This paper presents a new-type linear ultrasonic motor which takes advantage of the combination of two orthogonal bending vibration modes. The proposed ultrasonic motor consists of eight pieces of PZT ceramic plates and a metal beam that includes two cone-shaped horns and a cylindrical driving foot. The finite element analyses were finished to verify the working principle of the proposed motor. The mode shapes of the motor were obtained by modal analysis; the elliptical trajectories of nodes on the driving foot were obtained by time-domain analysis. Based on the analyses, a prototype of the proposed motor was fabricated and measured. The mechanical output characteristics were obtained by experiments. The maximal velocity of the proposed motor is 735mm/s and the maximal thrust is 1.1N. Copyright © 2016 Elsevier B.V. All rights reserved.
Game of life on phyllosilicates: Gliders, oscillators and still life
NASA Astrophysics Data System (ADS)
Adamatzky, Andrew
2013-10-01
A phyllosilicate is a sheet of silicate tetrahedra bound by basal oxygens. A phyllosilicate automaton is a regular network of finite state machines - silicon nodes and oxygen nodes - which mimics structure of the phyllosilicate. A node takes states 0 and 1. Each node updates its state in discrete time depending on a sum of states of its three (silicon) or six (oxygen) neighbours. Phyllosilicate automata exhibit localisations attributed to Conway's Game of Life: gliders, oscillators, still lifes, and a glider gun. Configurations and behaviour of typical localisations, and interactions between the localisations are illustrated.
A comparison between different finite elements for elastic and aero-elastic analyses.
Mahran, Mohamed; ELsabbagh, Adel; Negm, Hani
2017-11-01
In the present paper, a comparison between five different shell finite elements, including the Linear Triangular Element, Linear Quadrilateral Element, Linear Quadrilateral Element based on deformation modes, 8-node Quadrilateral Element, and 9-Node Quadrilateral Element was presented. The shape functions and the element equations related to each element were presented through a detailed mathematical formulation. Additionally, the Jacobian matrix for the second order derivatives was simplified and used to derive each element's strain-displacement matrix in bending. The elements were compared using carefully selected elastic and aero-elastic bench mark problems, regarding the number of elements needed to reach convergence, the resulting accuracy, and the needed computation time. The best suitable element for elastic free vibration analysis was found to be the Linear Quadrilateral Element with deformation-based shape functions, whereas the most suitable element for stress analysis was the 8-Node Quadrilateral Element, and the most suitable element for aero-elastic analysis was the 9-Node Quadrilateral Element. Although the linear triangular element was the last choice for modal and stress analyses, it establishes more accurate results in aero-elastic analyses, however, with much longer computation time. Additionally, the nine-node quadrilateral element was found to be the best choice for laminated composite plates analysis.
NASA Astrophysics Data System (ADS)
Carrera; Valvano; Kulikov
2018-01-01
In this work, a new class of finite elements for the analysis of composite and sandwich shells embedding piezoelectric skins and patches is proposed. The main idea of models coupling is developed by presenting the concept of nodal dependent kinematics where the same finite element can present at each node a different approximation of the main unknowns by setting a node-wise through-the-thickness approximation base. In a global/local approach scenario, the computational costs can be reduced drastically by assuming refined theories only in those zones/nodes of the structural domain where the resulting strain and stress states, and their electro-mechanical coupling present a complex distribution. Several numerical investigations are carried out to validate the accuracy and efficiency of the present shell element. An accurate representation of mechanical stresses and electric displacements in localized zones is possible with reduction of the computational costs if an accurate distribution of the higher-order kinematic capabilities is performed. On the contrary, the accuracy of the solution in terms of mechanical displacements and electric potential values depends on the global approximation over the whole structure. The efficacy of the present node-dependent variable kinematic models, thus, depends on the characteristics of the problem under consideration as well as on the required analysis type.
A weak Galerkin least-squares finite element method for div-curl systems
NASA Astrophysics Data System (ADS)
Li, Jichun; Ye, Xiu; Zhang, Shangyou
2018-06-01
In this paper, we introduce a weak Galerkin least-squares method for solving div-curl problem. This finite element method leads to a symmetric positive definite system and has the flexibility to work with general meshes such as hybrid mesh, polytopal mesh and mesh with hanging nodes. Error estimates of the finite element solution are derived. The numerical examples demonstrate the robustness and flexibility of the proposed method.
NASA Astrophysics Data System (ADS)
Artés, Joan C.; Rezende, Alex C.; Oliveira, Regilene D. S.
Planar quadratic differential systems occur in many areas of applied mathematics. Although more than one thousand papers have been written on these systems, a complete understanding of this family is still missing. Classical problems, and in particular, Hilbert's 16th problem [Hilbert, 1900, 1902], are still open for this family. Our goal is to make a global study of the family QsnSN of all real quadratic polynomial differential systems which have a finite semi-elemental saddle-node and an infinite saddle-node formed by the collision of two infinite singular points. This family can be divided into three different subfamilies, all of them with the finite saddle-node in the origin of the plane with the eigenvectors on the axes and with the eigenvector associated with the zero eigenvalue on the horizontal axis and (A) with the infinite saddle-node in the horizontal axis, (B) with the infinite saddle-node in the vertical axis and (C) with the infinite saddle-node in the bisector of the first and third quadrants. These three subfamilies modulo the action of the affine group and time homotheties are three-dimensional and we give the bifurcation diagram of their closure with respect to specific normal forms, in the three-dimensional real projective space. The subfamilies (A) and (B) have already been studied [Artés et al., 2013b] and in this paper we provide the complete study of the geometry of the last family (C). The bifurcation diagram for the subfamily (C) yields 371 topologically distinct phase portraits with and without limit cycles for systems in the closure /line{QsnSN(C)} within the representatives of QsnSN(C) given by a chosen normal form. Algebraic invariants are used to construct the bifurcation set. The phase portraits are represented on the Poincaré disk. The bifurcation set of /line{QsnSN(C)} is not only algebraic due to the presence of some surfaces found numerically. All points in these surfaces correspond to either connections of separatrices, or the presence of a double limit cycle.
NASA Technical Reports Server (NTRS)
Anderson, C. M.; Noor, A. K.
1975-01-01
Computerized symbolic integration was used in conjunction with group-theoretic techniques to obtain analytic expressions for the stiffness, geometric stiffness, consistent mass, and consistent load matrices of composite shallow shell structural elements. The elements are shear flexible and have variable curvature. A stiffness (displacement) formulation was used with the fundamental unknowns consisting of both the displacement and rotation components of the reference surface of the shell. The triangular elements have six and ten nodes; the quadrilateral elements have four and eight nodes and can have internal degrees of freedom associated with displacement modes which vanish along the edges of the element (bubble modes). The stiffness, geometric stiffness, consistent mass, and consistent load coefficients are expressed as linear combinations of integrals (over the element domain) whose integrands are products of shape functions and their derivatives. The evaluation of the elemental matrices is divided into two separate problems - determination of the coefficients in the linear combination and evaluation of the integrals. The integrals are performed symbolically by using the symbolic-and-algebraic-manipulation language MACSYMA. The efficiency of using symbolic integration in the element development is demonstrated by comparing the number of floating-point arithmetic operations required in this approach with those required by a commonly used numerical quadrature technique.
An Embedded Statistical Method for Coupling Molecular Dynamics and Finite Element Analyses
NASA Technical Reports Server (NTRS)
Saether, E.; Glaessgen, E.H.; Yamakov, V.
2008-01-01
The coupling of molecular dynamics (MD) simulations with finite element methods (FEM) yields computationally efficient models that link fundamental material processes at the atomistic level with continuum field responses at higher length scales. The theoretical challenge involves developing a seamless connection along an interface between two inherently different simulation frameworks. Various specialized methods have been developed to solve particular classes of problems. Many of these methods link the kinematics of individual MD atoms with FEM nodes at their common interface, necessarily requiring that the finite element mesh be refined to atomic resolution. Some of these coupling approaches also require simulations to be carried out at 0 K and restrict modeling to two-dimensional material domains due to difficulties in simulating full three-dimensional material processes. In the present work, a new approach to MD-FEM coupling is developed based on a restatement of the standard boundary value problem used to define a coupled domain. The method replaces a direct linkage of individual MD atoms and finite element (FE) nodes with a statistical averaging of atomistic displacements in local atomic volumes associated with each FE node in an interface region. The FEM and MD computational systems are effectively independent and communicate only through an iterative update of their boundary conditions. With the use of statistical averages of the atomistic quantities to couple the two computational schemes, the developed approach is referred to as an embedded statistical coupling method (ESCM). ESCM provides an enhanced coupling methodology that is inherently applicable to three-dimensional domains, avoids discretization of the continuum model to atomic scale resolution, and permits finite temperature states to be applied.
A New Concurrent Multiscale Methodology for Coupling Molecular Dynamics and Finite Element Analyses
NASA Technical Reports Server (NTRS)
Yamakov, Vesselin; Saether, Erik; Glaessgen, Edward H/.
2008-01-01
The coupling of molecular dynamics (MD) simulations with finite element methods (FEM) yields computationally efficient models that link fundamental material processes at the atomistic level with continuum field responses at higher length scales. The theoretical challenge involves developing a seamless connection along an interface between two inherently different simulation frameworks. Various specialized methods have been developed to solve particular classes of problems. Many of these methods link the kinematics of individual MD atoms with FEM nodes at their common interface, necessarily requiring that the finite element mesh be refined to atomic resolution. Some of these coupling approaches also require simulations to be carried out at 0 K and restrict modeling to two-dimensional material domains due to difficulties in simulating full three-dimensional material processes. In the present work, a new approach to MD-FEM coupling is developed based on a restatement of the standard boundary value problem used to define a coupled domain. The method replaces a direct linkage of individual MD atoms and finite element (FE) nodes with a statistical averaging of atomistic displacements in local atomic volumes associated with each FE node in an interface region. The FEM and MD computational systems are effectively independent and communicate only through an iterative update of their boundary conditions. With the use of statistical averages of the atomistic quantities to couple the two computational schemes, the developed approach is referred to as an embedded statistical coupling method (ESCM). ESCM provides an enhanced coupling methodology that is inherently applicable to three-dimensional domains, avoids discretization of the continuum model to atomic scale resolution, and permits finite temperature states to be applied.
2003-09-01
application .................................................. 5-42 5.10 Different materials within crack-block...5-30 Figure 5-29 - Application of required user edge node sets... applications . Users have at their disposal all of the capabilities within these finite element programs and may, if desired, include any number of
Moving Finite Elements in 2-D.
1982-06-07
that a small number of control parameters would allow a great deal of flexibility in the type of node mobility available in specific problems while...CLEO ), Washington, DC, June 10-12, 1981.) 5. R. J. Gelinas and S. K. Doss, "The Moving Finite Element Method: 1-D Transient Flow Aplications ," to
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jiamin; Hoffman, Joanne; Zhao, Jocelyn
2016-07-15
Purpose: To develop an automated system for mediastinal lymph node detection and station mapping for chest CT. Methods: The contextual organs, trachea, lungs, and spine are first automatically identified to locate the region of interest (ROI) (mediastinum). The authors employ shape features derived from Hessian analysis, local object scale, and circular transformation that are computed per voxel in the ROI. Eight more anatomical structures are simultaneously segmented by multiatlas label fusion. Spatial priors are defined as the relative multidimensional distance vectors corresponding to each structure. Intensity, shape, and spatial prior features are integrated and parsed by a random forest classifiermore » for lymph node detection. The detected candidates are then segmented by the following curve evolution process. Texture features are computed on the segmented lymph nodes and a support vector machine committee is used for final classification. For lymph node station labeling, based on the segmentation results of the above anatomical structures, the textual definitions of mediastinal lymph node map according to the International Association for the Study of Lung Cancer are converted into patient-specific color-coded CT image, where the lymph node station can be automatically assigned for each detected node. Results: The chest CT volumes from 70 patients with 316 enlarged mediastinal lymph nodes are used for validation. For lymph node detection, their system achieves 88% sensitivity at eight false positives per patient. For lymph node station labeling, 84.5% of lymph nodes are correctly assigned to their stations. Conclusions: Multiple-channel shape, intensity, and spatial prior features aggregated by a random forest classifier improve mediastinal lymph node detection on chest CT. Using the location information of segmented anatomic structures from the multiatlas formulation enables accurate identification of lymph node stations.« less
NASA Technical Reports Server (NTRS)
Diskin, Boris; Thomas, James L.; Nielsen, Eric J.; Nishikawa, Hiroaki; White, Jeffery A.
2009-01-01
Discretization of the viscous terms in current finite-volume unstructured-grid schemes are compared using node-centered and cell-centered approaches in two dimensions. Accuracy and efficiency are studied for six nominally second-order accurate schemes: a node-centered scheme, cell-centered node-averaging schemes with and without clipping, and cell-centered schemes with unweighted, weighted, and approximately mapped least-square face gradient reconstruction. The grids considered range from structured (regular) grids to irregular grids composed of arbitrary mixtures of triangles and quadrilaterals, including random perturbations of the grid points to bring out the worst possible behavior of the solution. Two classes of tests are considered. The first class of tests involves smooth manufactured solutions on both isotropic and highly anisotropic grids with discontinuous metrics, typical of those encountered in grid adaptation. The second class concerns solutions and grids varying strongly anisotropically over a curved body, typical of those encountered in high-Reynolds number turbulent flow simulations. Results from the first class indicate the face least-square methods, the node-averaging method without clipping, and the node-centered method demonstrate second-order convergence of discretization errors with very similar accuracies per degree of freedom. The second class of tests are more discriminating. The node-centered scheme is always second order with an accuracy and complexity in linearization comparable to the best of the cell-centered schemes. In comparison, the cell-centered node-averaging schemes are less accurate, have a higher complexity in linearization, and can fail to converge to the exact solution when clipping of the node-averaged values is used. The cell-centered schemes using least-square face gradient reconstruction have more compact stencils with a complexity similar to the complexity of the node-centered scheme. For simulations on highly anisotropic curved grids, the least-square methods have to be amended either by introducing a local mapping of the surface anisotropy or modifying the scheme stencil to reflect the direction of strong coupling.
Swirling flow in bileaflet mechanical heart valve
NASA Astrophysics Data System (ADS)
Gataulin, Yakov A.; Khorobrov, Svyatoslav V.; Yukhnev, Andrey D.
2018-05-01
Bileaflet mechanical valves are most commonly used for heart valve replacement. Nowadays swirling blood flow is registered in different parts of the cardiovascular system: left ventricle, aorta, arteries and veins. In present contribution for the first time the physiological swirling flow inlet conditions are used for numerical simulation of aortic bileaflet mechanical heart valve hemodynamics. Steady 3-dimensional continuity and RANS equations are employed to describe blood motion. The Menter SST model is used to simulate turbulence effects. Boundary conditions are corresponded to systolic peak flow. The domain was discretized into hybrid tetrahedral and hexahedral mesh with an emphasis on wall boundary layer. A system of equations was solved in Ansys Fluent finite-volume package. Noticeable changes in the flow structure caused by inlet swirl are shown. The swirling flow interaction with the valve leaflets is analyzed. A central orifice jet changes its cross-section shape, which leads to redistribution of wall shear stress on the leaflets. Transvalvular pressure gradient and area-averaged leaflet wall shear stress increase. Physiological swirl intensity noticeably reduces downstream of the valve.
Jiang-Jun, Zhou; Min, Zhao; Ya-Bo, Yan; Wei, Lei; Ren-Fa, Lv; Zhi-Yu, Zhu; Rong-Jian, Chen; Wei-Tao, Yu; Cheng-Fei, Du
2014-03-01
Finite element analysis was used to compare preoperative and postoperative stress distribution of a bone healing model of femur fracture, to identify whether broken ends of fractured bone would break or not after fixation dislodgement one year after intramedullary nailing. Method s: Using fast, personalized imaging, bone healing models of femur fracture were constructed based on data from multi-slice spiral computed tomography using Mimics, Geomagic Studio, and Abaqus software packages. The intramedullary pin was removed by Boolean operations before fixation was dislodged. Loads were applied on each model to simulate a person standing on one leg. The von Mises stress distribution, maximum stress, and its location was observed. Results : According to 10 kinds of display groups based on material assignment, the nodes of maximum and minimum von Mises stress were the same before and after dislodgement, and all nodes of maximum von Mises stress were outside the fracture line. The maximum von Mises stress node was situated at the bottom quarter of the femur. The von Mises stress distribution was identical before and after surgery. Conclusion : Fast, personalized model establishment can simulate fixation dislodgement before operation, and personalized finite element analysis was performed to successfully predict whether nail dislodgement would disrupt femur fracture or not.
Structural Analysis of the Redesigned Ice/Frost Ramp Bracket
NASA Technical Reports Server (NTRS)
Phillips, D. R.; Dawicke, D. S.; Gentz, S. J.; Roberts, P. W.; Raju, I. S.
2007-01-01
This paper describes the interim structural analysis of a redesigned Ice/Frost Ramp bracket for the Space Shuttle External Tank (ET). The proposed redesigned bracket consists of mounts for attachment to the ET wall, supports for the electronic/instrument cables and propellant repressurization lines that run along the ET, an upper plate, a lower plate, and complex bolted connections. The eight nominal bolted connections are considered critical in the summarized structural analysis. Each bolted connection contains a bolt, a nut, four washers, and a non-metallic spacer and block that are designed for thermal insulation. A three-dimensional (3D) finite element model of the bracket is developed using solid 10-node tetrahedral elements. The loading provided by the ET Project is used in the analysis. Because of the complexities associated with accurately modeling the bolted connections in the bracket, the analysis is performed using a global/local analysis procedure. The finite element analysis of the bracket identifies one of the eight bolted connections as having high stress concentrations. A local area of the bracket surrounding this bolted connection is extracted from the global model and used as a local model. Within the local model, the various components of the bolted connection are refined, and contact is introduced along the appropriate interfaces determined by the analysts. The deformations from the global model are applied as boundary conditions to the local model. The results from the global/local analysis show that while the stresses in the bolts are well within yield, the spacers fail due to compression. The primary objective of the interim structural analysis is to show concept viability for static thermal testing. The proposed design concept would undergo continued design optimization to address the identified analytical assumptions and concept shortcomings, assuming successful thermal testing.
Mehl, S.; Hill, M.C.
2004-01-01
This paper describes work that extends to three dimensions the two-dimensional local-grid refinement method for block-centered finite-difference groundwater models of Mehl and Hill [Development and evaluation of a local grid refinement method for block-centered finite-difference groundwater models using shared nodes. Adv Water Resour 2002;25(5):497-511]. In this approach, the (parent) finite-difference grid is discretized more finely within a (child) sub-region. The grid refinement method sequentially solves each grid and uses specified flux (parent) and specified head (child) boundary conditions to couple the grids. Iteration achieves convergence between heads and fluxes of both grids. Of most concern is how to interpolate heads onto the boundary of the child grid such that the physics of the parent-grid flow is retained in three dimensions. We develop a new two-step, "cage-shell" interpolation method based on the solution of the flow equation on the boundary of the child between nodes shared with the parent grid. Error analysis using a test case indicates that the shared-node local grid refinement method with cage-shell boundary head interpolation is accurate and robust, and the resulting code is used to investigate three-dimensional local grid refinement of stream-aquifer interactions. Results reveal that (1) the parent and child grids interact to shift the true head and flux solution to a different solution where the heads and fluxes of both grids are in equilibrium, (2) the locally refined model provided a solution for both heads and fluxes in the region of the refinement that was more accurate than a model without refinement only if iterations are performed so that both heads and fluxes are in equilibrium, and (3) the accuracy of the coupling is limited by the parent-grid size - A coarse parent grid limits correct representation of the hydraulics in the feedback from the child grid.
Stress Recovery and Error Estimation for 3-D Shell Structures
NASA Technical Reports Server (NTRS)
Riggs, H. R.
2000-01-01
The C1-continuous stress fields obtained from finite element analyses are in general lower- order accurate than are the corresponding displacement fields. Much effort has focussed on increasing their accuracy and/or their continuity, both for improved stress prediction and especially error estimation. A previous project developed a penalized, discrete least squares variational procedure that increases the accuracy and continuity of the stress field. The variational problem is solved by a post-processing, 'finite-element-type' analysis to recover a smooth, more accurate, C1-continuous stress field given the 'raw' finite element stresses. This analysis has been named the SEA/PDLS. The recovered stress field can be used in a posteriori error estimators, such as the Zienkiewicz-Zhu error estimator or equilibrium error estimators. The procedure was well-developed for the two-dimensional (plane) case involving low-order finite elements. It has been demonstrated that, if optimal finite element stresses are used for the post-processing, the recovered stress field is globally superconvergent. Extension of this work to three dimensional solids is straightforward. Attachment: Stress recovery and error estimation for shell structure (abstract only). A 4-node, shear-deformable flat shell element developed via explicit Kirchhoff constraints (abstract only). A novel four-node quadrilateral smoothing element for stress enhancement and error estimation (abstract only).
Barall, Michael
2009-01-01
We present a new finite-element technique for calculating dynamic 3-D spontaneous rupture on an earthquake fault, which can reduce the required computational resources by a factor of six or more, without loss of accuracy. The grid-doubling technique employs small cells in a thin layer surrounding the fault. The remainder of the modelling volume is filled with larger cells, typically two or four times as large as the small cells. In the resulting non-conforming mesh, an interpolation method is used to join the thin layer of smaller cells to the volume of larger cells. Grid-doubling is effective because spontaneous rupture calculations typically require higher spatial resolution on and near the fault than elsewhere in the model volume. The technique can be applied to non-planar faults by morphing, or smoothly distorting, the entire mesh to produce the desired 3-D fault geometry. Using our FaultMod finite-element software, we have tested grid-doubling with both slip-weakening and rate-and-state friction laws, by running the SCEC/USGS 3-D dynamic rupture benchmark problems. We have also applied it to a model of the Hayward fault, Northern California, which uses realistic fault geometry and rock properties. FaultMod implements fault slip using common nodes, which represent motion common to both sides of the fault, and differential nodes, which represent motion of one side of the fault relative to the other side. We describe how to modify the traction-at-split-nodes method to work with common and differential nodes, using an implicit time stepping algorithm.
Staten, Matthew L.; Shepherd, Jason F.; Ledoux, Frank; Shimada, Kenji; Merkley, Karl G.; Carbonera, Carlos
2013-03-05
A technique for conforming an interface between a first mesh and a second mesh is disclosed. A first interface surface in the first mesh and a second interface surface in the second mesh residing along the interface are identified. The first and second interface surfaces are initially non-conforming along the interface. Chords within the first and second interface surfaces that fall within a threshold separation distance of each other are paired. Sheets having chords that reside within the first or second interface surfaces are recursively inserted into or extracted from one or both of the first and second meshes until all remaining chords within the first interface surface are paired with corresponding chords in the second interface surface and all remaining chords within the second interface surface are paired with corresponding chords in the first interface surface.
Computational Modeling of Liquid and Gaseous Control Valves
NASA Technical Reports Server (NTRS)
Daines, Russell; Ahuja, Vineet; Hosangadi, Ashvin; Shipman, Jeremy; Moore, Arden; Sulyma, Peter
2005-01-01
In this paper computational modeling efforts undertaken at NASA Stennis Space Center in support of rocket engine component testing are discussed. Such analyses include structurally complex cryogenic liquid valves and gas valves operating at high pressures and flow rates. Basic modeling and initial successes are documented, and other issues that make valve modeling at SSC somewhat unique are also addressed. These include transient behavior, valve stall, and the determination of flow patterns in LOX valves. Hexahedral structured grids are used for valves that can be simplifies through the use of axisymmetric approximation. Hybrid unstructured methodology is used for structurally complex valves that have disparate length scales and complex flow paths that include strong swirl, local recirculation zones/secondary flow effects. Hexahedral (structured), unstructured, and hybrid meshes are compared for accuracy and computational efficiency. Accuracy is determined using verification and validation techniques.
Elastic-plastic mixed-iterative finite element analysis: Implementation and performance assessment
NASA Technical Reports Server (NTRS)
Sutjahjo, Edhi; Chamis, Christos C.
1993-01-01
An elastic-plastic algorithm based on Von Mises and associative flow criteria is implemented in MHOST-a mixed iterative finite element analysis computer program developed by NASA Lewis Research Center. The performance of the resulting elastic-plastic mixed-iterative analysis is examined through a set of convergence studies. Membrane and bending behaviors of 4-node quadrilateral shell finite elements are tested for elastic-plastic performance. Generally, the membrane results are excellent, indicating the implementation of elastic-plastic mixed-iterative analysis is appropriate.
Method of generating a surface mesh
Shepherd, Jason F [Albuquerque, NM; Benzley, Steven [Provo, UT; Grover, Benjamin T [Tracy, CA
2008-03-04
A method and machine-readable medium provide a technique to generate and modify a quadrilateral finite element surface mesh using dual creation and modification. After generating a dual of a surface (mesh), a predetermined algorithm may be followed to generate and modify a surface mesh of quadrilateral elements. The predetermined algorithm may include the steps of generating two-dimensional cell regions in dual space, determining existing nodes in primal space, generating new nodes in the dual space, and connecting nodes to form the quadrilateral elements (faces) for the generated and modifiable surface mesh.
NASA Astrophysics Data System (ADS)
Jin, Zhongkun; Yin, Yao; Liu, Bilong
2016-03-01
The finite element method is often used to investigate the sound absorption of anechoic coating backed with orthogonally rib-stiffened plate. Since the anechoic coating contains cavities, the number of grid nodes of a periodic unit cell is usually large. An equivalent modulus method is proposed to reduce the large amount of nodes by calculating an equivalent homogeneous layer. Applications of this method in several models show that the method can well predict the sound absorption coefficient of such structure in a wide frequency range. Based on the simulation results, the sound absorption performance of such structure and the influences of different backings on the first absorption peak are also discussed.
NASA Technical Reports Server (NTRS)
Glaisner, F.; Tezduyar, T. E.
1987-01-01
Finite element procedures for the Navier-Stokes equations in the primitive variable formulation and the vorticity stream-function formulation have been implemented. For both formulations, streamline-upwind/Petrov-Galerkin techniques are used for the discretization of the transport equations. The main problem associated with the vorticity stream-function formulation is the lack of boundary conditions for vorticity at solid surfaces. Here an implicit treatment of the vorticity at no-slip boundaries is incorporated in a predictor-multicorrector time integration scheme. For the primitive variable formulation, mixed finite-element approximations are used. A nine-node element and a four-node + bubble element have been implemented. The latter is shown to exhibit a checkerboard pressure mode and a numerical treatment for this spurious pressure mode is proposed. The two methods are compared from the points of view of simulating internal and external flows and the possibilities of extensions to three dimensions.
Sudden spreading of infections in an epidemic model with a finite seed fraction
NASA Astrophysics Data System (ADS)
Hasegawa, Takehisa; Nemoto, Koji
2018-03-01
We study a simple case of the susceptible-weakened-infected-removed model in regular random graphs in a situation where an epidemic starts from a finite fraction of initially infected nodes (seeds). Previous studies have shown that, assuming a single seed, this model exhibits a kind of discontinuous transition at a certain value of infection rate. Performing Monte Carlo simulations and evaluating approximate master equations, we find that the present model has two critical infection rates for the case with a finite seed fraction. At the first critical rate the system shows a percolation transition of clusters composed of removed nodes, and at the second critical rate, which is larger than the first one, a giant cluster suddenly grows and the order parameter jumps even though it has been already rising. Numerical evaluation of the master equations shows that such sudden epidemic spreading does occur if the degree of the underlying network is large and the seed fraction is small.
NASA Technical Reports Server (NTRS)
Diskin, Boris; Thomas, James L.; Nielsen, Eric J.; Nishikawa, Hiroaki; White, Jeffery A.
2010-01-01
Discretization of the viscous terms in current finite-volume unstructured-grid schemes are compared using node-centered and cell-centered approaches in two dimensions. Accuracy and complexity are studied for four nominally second-order accurate schemes: a node-centered scheme and three cell-centered schemes - a node-averaging scheme and two schemes with nearest-neighbor and adaptive compact stencils for least-square face gradient reconstruction. The grids considered range from structured (regular) grids to irregular grids composed of arbitrary mixtures of triangles and quadrilaterals, including random perturbations of the grid points to bring out the worst possible behavior of the solution. Two classes of tests are considered. The first class of tests involves smooth manufactured solutions on both isotropic and highly anisotropic grids with discontinuous metrics, typical of those encountered in grid adaptation. The second class concerns solutions and grids varying strongly anisotropically over a curved body, typical of those encountered in high-Reynolds number turbulent flow simulations. Tests from the first class indicate the face least-square methods, the node-averaging method without clipping, and the node-centered method demonstrate second-order convergence of discretization errors with very similar accuracies per degree of freedom. The tests of the second class are more discriminating. The node-centered scheme is always second order with an accuracy and complexity in linearization comparable to the best of the cell-centered schemes. In comparison, the cell-centered node-averaging schemes may degenerate on mixed grids, have a higher complexity in linearization, and can fail to converge to the exact solution when clipping of the node-averaged values is used. The cell-centered schemes using least-square face gradient reconstruction have more compact stencils with a complexity similar to that of the node-centered scheme. For simulations on highly anisotropic curved grids, the least-square methods have to be amended either by introducing a local mapping based on a distance function commonly available in practical schemes or modifying the scheme stencil to reflect the direction of strong coupling. The major conclusion is that accuracies of the node centered and the best cell-centered schemes are comparable at equivalent number of degrees of freedom.
FDG uptake in cervical lymph nodes in children without head and neck cancer.
Vali, Reza; Bakari, Alaa A; Marie, Eman; Kousha, Mahnaz; Charron, Martin; Shammas, Amer
2017-06-01
Reactive cervical lymphadenopathy is common in children and may demonstrate increased 18 F-fluoro-deoxyglucose ( 18 F-FDG) uptake on positron emission tomography/computed tomography (PET/CT). We sought to evaluate the frequency and significance of 18 F-FDG uptake by neck lymph nodes in children with no history of head and neck cancer. The charts of 244 patients (114 female, mean age: 10.4 years) with a variety of tumors such as lymphoma and post-transplant lymphoproliferative diseases (PTLD), but no head and neck cancers, who had undergone 18 F-FDG PET/CT were reviewed retrospectively. Using the maximum standardized uptake value (SUVmax), increased 18 F-FDG uptake by neck lymph nodes was recorded and compared with the final diagnosis based on follow-up studies or biopsy results. Neck lymph node uptake was identified in 70/244 (28.6%) of the patients. In 38 patients, the lymph nodes were benign. In eight patients, the lymph nodes were malignant (seven PTLD and one lymphoma). In 24 patients, we were not able to confirm the final diagnosis. Seven out of the eight malignant lymph nodes were positive for PTLD. The mean SUVmax was significantly higher in malignant lesions (4.2) compared with benign lesions (2.1) (P = 0.00049). 18 F-FDG uptake in neck lymph nodes is common in children and is frequently due to reactive lymph nodes, especially when the SUVmax is <3.2. The frequency of malignant cervical lymph nodes is higher in PTLD patients compared with other groups.
Material nonlinear analysis via mixed-iterative finite element method
NASA Technical Reports Server (NTRS)
Sutjahjo, Edhi; Chamis, Christos C.
1992-01-01
The performance of elastic-plastic mixed-iterative analysis is examined through a set of convergence studies. Membrane and bending behaviors are tested using 4-node quadrilateral finite elements. The membrane result is excellent, which indicates the implementation of elastic-plastic mixed-iterative analysis is appropriate. On the other hand, further research to improve bending performance of the method seems to be warranted.
Scalability of Parallel Spatial Direct Numerical Simulations on Intel Hypercube and IBM SP1 and SP2
NASA Technical Reports Server (NTRS)
Joslin, Ronald D.; Hanebutte, Ulf R.; Zubair, Mohammad
1995-01-01
The implementation and performance of a parallel spatial direct numerical simulation (PSDNS) approach on the Intel iPSC/860 hypercube and IBM SP1 and SP2 parallel computers is documented. Spatially evolving disturbances associated with the laminar-to-turbulent transition in boundary-layer flows are computed with the PSDNS code. The feasibility of using the PSDNS to perform transition studies on these computers is examined. The results indicate that PSDNS approach can effectively be parallelized on a distributed-memory parallel machine by remapping the distributed data structure during the course of the calculation. Scalability information is provided to estimate computational costs to match the actual costs relative to changes in the number of grid points. By increasing the number of processors, slower than linear speedups are achieved with optimized (machine-dependent library) routines. This slower than linear speedup results because the computational cost is dominated by FFT routine, which yields less than ideal speedups. By using appropriate compile options and optimized library routines on the SP1, the serial code achieves 52-56 M ops on a single node of the SP1 (45 percent of theoretical peak performance). The actual performance of the PSDNS code on the SP1 is evaluated with a "real world" simulation that consists of 1.7 million grid points. One time step of this simulation is calculated on eight nodes of the SP1 in the same time as required by a Cray Y/MP supercomputer. For the same simulation, 32-nodes of the SP1 and SP2 are required to reach the performance of a Cray C-90. A 32 node SP1 (SP2) configuration is 2.9 (4.6) times faster than a Cray Y/MP for this simulation, while the hypercube is roughly 2 times slower than the Y/MP for this application. KEY WORDS: Spatial direct numerical simulations; incompressible viscous flows; spectral methods; finite differences; parallel computing.
Improved finite element methodology for integrated thermal structural analysis
NASA Technical Reports Server (NTRS)
Dechaumphai, P.; Thornton, E. A.
1982-01-01
An integrated thermal-structural finite element approach for efficient coupling of thermal and structural analysis is presented. New thermal finite elements which yield exact nodal and element temperatures for one dimensional linear steady state heat transfer problems are developed. A nodeless variable formulation is used to establish improved thermal finite elements for one dimensional nonlinear transient and two dimensional linear transient heat transfer problems. The thermal finite elements provide detailed temperature distributions without using additional element nodes and permit a common discretization with lower order congruent structural finite elements. The accuracy of the integrated approach is evaluated by comparisons with analytical solutions and conventional finite element thermal structural analyses for a number of academic and more realistic problems. Results indicate that the approach provides a significant improvement in the accuracy and efficiency of thermal stress analysis for structures with complex temperature distributions.
A mixed volume grid approach for the Euler and Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Coirier, William J.; Jorgenson, Philip C. E.
1996-01-01
An approach for solving the compressible Euler and Navier-Stokes equations upon meshes composed of nearly arbitrary polyhedra is described. Each polyhedron is constructed from an arbitrary number of triangular and quadrilateral face elements, allowing the unified treatment of tetrahedral, prismatic, pyramidal, and hexahedral cells, as well the general cut cells produced by Cartesian mesh approaches. The basics behind the numerical approach and the resulting data structures are described. The accuracy of the mixed volume grid approach is assessed by performing a grid refinement study upon a series of hexahedral, tetrahedral, prismatic, and Cartesian meshes for an analytic inviscid problem. A series of laminar validation cases are made, comparing the results upon differing grid topologies to each other, to theory, and experimental data. A computation upon a prismatic/tetrahedral mesh is made simulating the laminar flow over a wall/cylinder combination.
Optimization of Time-Dependent Particle Tracing Using Tetrahedral Decomposition
NASA Technical Reports Server (NTRS)
Kenwright, David; Lane, David
1995-01-01
An efficient algorithm is presented for computing particle paths, streak lines and time lines in time-dependent flows with moving curvilinear grids. The integration, velocity interpolation and step-size control are all performed in physical space which avoids the need to transform the velocity field into computational space. This leads to higher accuracy because there are no Jacobian matrix approximations or expensive matrix inversions. Integration accuracy is maintained using an adaptive step-size control scheme which is regulated by the path line curvature. The problem of cell-searching, point location and interpolation in physical space is simplified by decomposing hexahedral cells into tetrahedral cells. This enables the point location to be done analytically and substantially faster than with a Newton-Raphson iterative method. Results presented show this algorithm is up to six times faster than particle tracers which operate on hexahedral cells yet produces almost identical particle trajectories.
Stable Artificial Dissipation Operators for Finite Volume Schemes on Unstructured Grids
NASA Technical Reports Server (NTRS)
Svard, Magnus; Gong, Jing; Nordstrom, Jan
2006-01-01
Our objective is to derive stable first-, second- and fourth-order artificial dissipation operators for node based finite volume schemes. Of particular interest are general unstructured grids where the strength of the finite volume method is fully utilized. A commonly used finite volume approximation of the Laplacian will be the basis in the construction of the artificial dissipation. Both a homogeneous dissipation acting in all directions with equal strength and a modification that allows different amount of dissipation in different directions are derived. Stability and accuracy of the new operators are proved and the theoretical results are supported by numerical computations.
Rupture Dynamics Simulation for Non-Planar fault by a Curved Grid Finite Difference Method
NASA Astrophysics Data System (ADS)
Zhang, Z.; Zhu, G.; Chen, X.
2011-12-01
We first implement the non-staggered finite difference method to solve the dynamic rupture problem, with split-node, for non-planar fault. Split-node method for dynamic simulation has been used widely, because of that it's more precise to represent the fault plane than other methods, for example, thick fault, stress glut and so on. The finite difference method is also a popular numeric method to solve kinematic and dynamic problem in seismology. However, previous works focus most of theirs eyes on the staggered-grid method, because of its simplicity and computational efficiency. However this method has its own disadvantage comparing to non-staggered finite difference method at some fact for example describing the boundary condition, especially the irregular boundary, or non-planar fault. Zhang and Chen (2006) proposed the MacCormack high order non-staggered finite difference method based on curved grids to precisely solve irregular boundary problem. Based upon on this non-staggered grid method, we make success of simulating the spontaneous rupture problem. The fault plane is a kind of boundary condition, which could be irregular of course. So it's convinced that we could simulate rupture process in the case of any kind of bending fault plane. We will prove this method is valid in the case of Cartesian coordinate first. In the case of bending fault, the curvilinear grids will be used.
On absence of steady state in the Bouchaud-Mézard network model
NASA Astrophysics Data System (ADS)
Liu, Zhiyuan; Serota, R. A.
2018-02-01
In the limit of infinite number of nodes (agents), the Itô-reduced Bouchaud-Mézard network model of economic exchange has a time-independent mean and a steady-state inverse gamma distribution. We show that for a finite number of nodes the mean is actually distributed as a time-dependent lognormal and inverse gamma is quasi-stationary, with the time-dependent scale parameter.
Three-Dimensional Finite Element Analysis of Sheet-Pile Cellular Cofferdams
1992-04-01
requirements were in selecting the shell element for this study: * Nodes only at the midsurface of the element. * Higher-order shape functions to...on orthogonal curvilinear coordinate (shell coordinates) system with the ref- erence surface of the element midsurface (Figure 4.13). The formulation...element was selected which allows for: * Nodes at the midsurface of the element only. 150 CHAPTER 4. ADDITIONS TO THE ELEMENT LIBRARY " Higher-order
Pawaskar, Sainath Shrikant; Fisher, John; Jin, Zhongmin
2010-03-01
Contact detection in cartilage contact mechanics is an important feature of any analytical or computational modeling investigation when the biphasic nature of cartilage and the corresponding tribology are taken into account. The fluid flow boundary conditions will change based on whether the surface is in contact or not, which will affect the interstitial fluid pressurization. This in turn will increase or decrease the load sustained by the fluid phase, with a direct effect on friction, wear, and lubrication. In laboratory experiments or clinical hemiarthroplasty, when a rigid indenter or metallic prosthesis is used to apply load to the cartilage, there will not be any fluid flow normal to the surface in the contact region due to the impermeable nature of the indenter/prosthesis. In the natural joint, on the other hand, where two cartilage surfaces interact, flow will depend on the pressure difference across the interface. Furthermore, in both these cases, the fluid would flow freely in non-contacting regions. However, it should be pointed out that the contact area is generally unknown in advance in both cases and can only be determined as part of the solution. In the present finite element study, a general and robust algorithm was proposed to decide nodes in contact on the cartilage surface and, accordingly, impose the fluid flow boundary conditions. The algorithm was first tested for a rigid indenter against cartilage model. The algorithm worked well for two-dimensional four-noded and eight-noded axisymmetric element models as well as three-dimensional models. It was then extended to include two cartilages in contact. The results were in excellent agreement with the previous studies reported in the literature.
Curvature estimation for multilayer hinged structures with initial strains
NASA Astrophysics Data System (ADS)
Nikishkov, G. P.
2003-10-01
Closed-form estimate of curvature for hinged multilayer structures with initial strains is developed. The finite element method is used for modeling of self-positioning microstructures. The geometrically nonlinear problem with large rotations and large displacements is solved using step procedure with node coordinate update. Finite element results for curvature of the hinged micromirror with variable width is compared to closed-form estimates.
General framework for dynamic large deformation contact problems based on phantom-node X-FEM
NASA Astrophysics Data System (ADS)
Broumand, P.; Khoei, A. R.
2018-04-01
This paper presents a general framework for modeling dynamic large deformation contact-impact problems based on the phantom-node extended finite element method. The large sliding penalty contact formulation is presented based on a master-slave approach which is implemented within the phantom-node X-FEM and an explicit central difference scheme is used to model the inertial effects. The method is compared with conventional contact X-FEM; advantages, limitations and implementational aspects are also addressed. Several numerical examples are presented to show the robustness and accuracy of the proposed method.
NASA Astrophysics Data System (ADS)
Beheshti, Alireza
2018-03-01
The contribution addresses the finite element analysis of bending of plates given the Kirchhoff-Love model. To analyze the static deformation of plates with different loadings and geometries, the principle of virtual work is used to extract the weak form. Following deriving the strain field, stresses and resultants may be obtained. For constructing four-node quadrilateral plate elements, the Hermite polynomials defined with respect to the variables in the parent space are applied explicitly. Based on the approximated field of displacement, the stiffness matrix and the load vector in the finite element method are obtained. To demonstrate the performance of the subparametric 4-node plate elements, some known, classical examples in structural mechanics are solved and there are comparisons with the analytical solutions available in the literature.
Construction of optimal 3-node plate bending triangles by templates
NASA Astrophysics Data System (ADS)
Felippa, C. A.; Militello, C.
A finite element template is a parametrized algebraic form that reduces to specific finite elements by setting numerical values to the free parameters. The present study concerns Kirchhoff Plate-Bending Triangles (KPT) with 3 nodes and 9 degrees of freedom. A 37-parameter template is constructed using the Assumed Natural Deviatoric Strain (ANDES). Specialization of this template includes well known elements such as DKT and HCT. The question addressed here is: can these parameters be selected to produce high performance elements? The study is carried out by staged application of constraints on the free parameters. The first stage produces element families satisfying invariance and aspect ratio insensitivity conditions. Application of energy balance constraints produces specific elements. The performance of such elements in benchmark tests is presently under study.
A simple finite element method for non-divergence form elliptic equation
Mu, Lin; Ye, Xiu
2017-03-01
Here, we develop a simple finite element method for solving second order elliptic equations in non-divergence form by combining least squares concept with discontinuous approximations. This simple method has a symmetric and positive definite system and can be easily analyzed and implemented. We could have also used general meshes with polytopal element and hanging node in the method. We prove that our finite element solution approaches to the true solution when the mesh size approaches to zero. Numerical examples are tested that demonstrate the robustness and flexibility of the method.
A mixed shear flexible finite element for the analysis of laminated plates
NASA Technical Reports Server (NTRS)
Putcha, N. S.; Reddy, J. N.
1984-01-01
A mixed shear flexible finite element based on the Hencky-Mindlin type shear deformation theory of laminated plates is presented and their behavior in bending is investigated. The element consists of three displacements, two rotations, and three moments as the generalized degrees of freedom per node. The numerical convergence and accuracy characteristics of the element are investigated by comparing the finite element solutions with the exact solutions. The present study shows that reduced-order integration of the stiffness coefficients due to shear is necessary to obtain accurate results for thin plates.
A simple finite element method for non-divergence form elliptic equation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Lin; Ye, Xiu
Here, we develop a simple finite element method for solving second order elliptic equations in non-divergence form by combining least squares concept with discontinuous approximations. This simple method has a symmetric and positive definite system and can be easily analyzed and implemented. We could have also used general meshes with polytopal element and hanging node in the method. We prove that our finite element solution approaches to the true solution when the mesh size approaches to zero. Numerical examples are tested that demonstrate the robustness and flexibility of the method.
Simulation of Detecting Damage in Composite Stiffened Panel Using Lamb Waves
NASA Technical Reports Server (NTRS)
Wang, John T.; Ross, Richard W.; Huang, Guo L.; Yuan, Fuh G.
2013-01-01
Lamb wave damage detection in a composite stiffened panel is simulated by performing explicit transient dynamic finite element analyses and using signal imaging techniques. This virtual test process does not need to use real structures, actuators/sensors, or laboratory equipment. Quasi-isotropic laminates are used for the stiffened panels. Two types of damage are studied. One type is a damage in the skin bay and the other type is a debond between the stiffener flange and the skin. Innovative approaches for identifying the damage location and imaging the damage were developed. The damage location is identified by finding the intersection of the damage locus and the path of the time reversal wave packet re-emitted from the sensor nodes. The damage locus is a circle that envelops the potential damage locations. Its center is at the actuator location and its radius is computed by multiplying the group velocity by the time of flight to damage. To create a damage image for estimating the size of damage, a group of nodes in the neighborhood of the damage location is identified for applying an image condition. The image condition, computed at a finite element node, is the zero-lag cross-correlation (ZLCC) of the time-reversed incident wave signal and the time reversal wave signal from the sensor nodes. This damage imaging process is computationally efficient since only the ZLCC values of a small amount of nodes in the neighborhood of the identified damage location are computed instead of those of the full model.
Tartaglione, Girolamo; Vigili, Maurizio G; Rahimi, Siavash; Celebrini, Alessandra; Pagan, Marco; Lauro, Luigi; Al-Nahhas, Adil; Rubello, Domenico
2008-04-01
To evaluate the role of dynamic lymphoscintigraphy with a same-day protocol for sentinel node biopsy in oral cavity cancer. Twenty-two consecutive patients affected by cT1-2N0 squamous cell carcinoma of the oral cavity were enrolled between September 2001 and November 2005. After a local anaesthetic (10% lidocaine spray), a dose of 30-50 MBq of Tc human serum albumin nanocolloid, in ml saline, was injected superficially (1-2 mm subendothelial injection) into four points around the lesion. Dynamic lymphoscintigraphy was acquired immediately (256x256 matrix, 5 min pre-set time, LEGP collimator) in lateral and anterior projections. The imaging was prolonged until the lymph nodes of at least two neck levels were visualized (time required min). About 3 h later (same-day protocol) the patients had a radioguided sentinel node biopsy. Elective neck dissection was performed in the first 13 patients; whereas the last nine patients had elective neck dissection only if the sentinel node was positive. Sentinel nodes were dissected into 1 mm thick block sections and studied by haematoxylin & eosin staining and immunohistochemistry (anticytokeratin antibody). The sentinel nodes were found on the 1st neck level in 13 cases, on the 2nd neck level in eight cases, and on the 3rd neck level in one case (100% sensitivity). The average number of sentinel nodes was 2.2 for each patient. The sentinel node was positive in eight patients (36%); with six of them having the sentinel node as the exclusive site of metastasis. No skip metastases were found in the 14 patients with negative sentinel node (100% specificity). Our preliminary data indicate that superficial injections of radiocolloid and dynamic lymphoscintigraphy provide a high success rate in sentinel node identification in oral cavity cancers. Dynamic lymphoscintigraphy helps in distinguishing sentinel node from second-tier lymph nodes. The same-day protocol is advisable in order to correctly identify the first sentinel node, avoiding multiple and unnecessary node biopsies, without reducing sensitivity.
NASA Technical Reports Server (NTRS)
Cardoso, Humberto Pontes
1990-01-01
The Satelite de Coleta de Dados (SCD) 02 (Data Collection Satellite) has the following characteristics: 115 kg weight, octagonal prism shape, 1 m diameter, and 0.67 m height. Its specified orbit is nearly circular, 700 km altitude, is inclined 25 deg with respect to the equator line, and has 100 min period. The electric power is supplied by eight solar panels installed on the lateral sides of the satellite. The equipment is located on the central (both faces) and lower (internal face) panels. The satellite is spin stabilized and its attitude control is such that during its lifetime, the solar aspect angle will vary between 80 and 100 deg with respect to its spin axis. Two critical cases were selected for thermal control design purposes: Hot case (maximum solar constant, solar aspect angle equal to 100 deg, minimum eclipse time and maximum internal heat dissipation); and a passive thermal design concept was achieved and the maximum and minimum equipment operating temperatures were obtained through a 109 node finite difference mathematical model.
Entanglement routers via a wireless quantum network based on arbitrary two qubit systems
NASA Astrophysics Data System (ADS)
Metwally, N.
2014-12-01
A wireless quantum network is generated between multi-hops, where each hop consists of two entangled nodes. These nodes share a finite number of entangled two-qubit systems randomly. Different types of wireless quantum bridges (WQBS) are generated between the non-connected nodes. The efficiency of these WQBS to be used as quantum channels between its terminals to perform quantum teleportation is investigated. We suggest a theoretical wireless quantum communication protocol to teleport unknown quantum signals from one node to another, where the more powerful WQBS are used as quantum channels. It is shown that, by increasing the efficiency of the sources that emit the initial partial entangled states, one can increase the efficiency of the wireless quantum communication protocol.
Tezaur, I. K.; Perego, M.; Salinger, A. G.; ...
2015-04-27
This paper describes a new parallel, scalable and robust finite element based solver for the first-order Stokes momentum balance equations for ice flow. The solver, known as Albany/FELIX, is constructed using the component-based approach to building application codes, in which mature, modular libraries developed as a part of the Trilinos project are combined using abstract interfaces and template-based generic programming, resulting in a final code with access to dozens of algorithmic and advanced analysis capabilities. Following an overview of the relevant partial differential equations and boundary conditions, the numerical methods chosen to discretize the ice flow equations are described, alongmore » with their implementation. The results of several verification studies of the model accuracy are presented using (1) new test cases for simplified two-dimensional (2-D) versions of the governing equations derived using the method of manufactured solutions, and (2) canonical ice sheet modeling benchmarks. Model accuracy and convergence with respect to mesh resolution are then studied on problems involving a realistic Greenland ice sheet geometry discretized using hexahedral and tetrahedral meshes. Also explored as a part of this study is the effect of vertical mesh resolution on the solution accuracy and solver performance. The robustness and scalability of our solver on these problems is demonstrated. Lastly, we show that good scalability can be achieved by preconditioning the iterative linear solver using a new algebraic multilevel preconditioner, constructed based on the idea of semi-coarsening.« less
Karimi, Alireza; Navidbakhsh, Mahdi; Razaghi, Reza
2014-06-01
Polyvinyl alcohol (PVA) sponge is in widespread use for biomedical and tissue engineering applications owing to its biocompatibility, availability, relative cheapness, and excellent mechanical properties. This study reports a novel concept of design in energy absorbing materials which consist in the use of PVA sponge as an alternative reinforcement material to enhance the energy loss of impact loads. An experimental study is carried out to measure the mechanical properties of the PVA sponge under uniaxial loading. The kinetic energy absorption capacity of the PVA sponge is computed by a hexahedral finite element (FE) model of the steel ball and bullet through the LS-DYNA code under impact load at three different thicknesses (5, 10, 15mm). The results show that a higher sponge thickness invokes a higher energy loss of the steel ball and bullet. The highest energy loss of the steel ball and bullet is observed for the thickest sponge with 160 and 35J, respectively. The most common type of traumatic brain injury in which the head subject to impact load causes the brain to move within the skull and consequently brain hemorrhaging. These results suggest the application of the PVA sponge as a great kinetic energy absorber material compared to commonly used expanded polystyrene foams (EPS) to absorb most of the impact energy and reduces the transmitted load. The results might have implications not only for understanding of the mechanical properties of PVA sponge but also for use as an alternative reinforcement material in helmet and packaging material design. Copyright © 2014 Elsevier B.V. All rights reserved.
ROSA: Distributed Joint Routing and Dynamic Spectrum Allocation in Cognitive Radio Ad Hoc Networks
2010-03-01
Aug. 1999. [20] I. N. Psaromiligkos and S. N. Batalama. Rapid Combined Synchronization/Demodulation Structures for DS - CDMA Systems - Part II: Finite...Medley. Rapid Combined Synchronization/Demodulation Structures for DS - CDMA Systems - Part I: Algorithmic developments. IEEE Transactions on...multiple access ( CDMA ) [21][20] al- low concurrent co-located communications so that a message from node i to node j can be correctly received even if
Manual for automatic generation of finite element models of spiral bevel gears in mesh
NASA Technical Reports Server (NTRS)
Bibel, G. D.; Reddy, S.; Kumar, A.
1994-01-01
The goal of this research is to develop computer programs that generate finite element models suitable for doing 3D contact analysis of faced milled spiral bevel gears in mesh. A pinion tooth and a gear tooth are created and put in mesh. There are two programs: Points.f and Pat.f to perform the analysis. Points.f is based on the equation of meshing for spiral bevel gears. It uses machine tool settings to solve for an N x M mesh of points on the four surfaces, pinion concave and convex, and gear concave and convex. Points.f creates the file POINTS.OUT, an ASCI file containing N x M points for each surface. (N is the number of node points along the length of the tooth, and M is nodes along the height.) Pat.f reads POINTS.OUT and creates the file tl.out. Tl.out is a series of PATRAN input commands. In addition to the mesh density on the tooth face, additional user specified variables are the number of finite elements through the thickness, and the number of finite elements along the tooth full fillet. A full fillet is assumed to exist for both the pinion and gear.
Theoretical Manual for Analysis of Arch Dams
1993-07-01
eight nodes lying on the midsurface , half-way between the corresponding surface nodes (Pawsey 1970). Each node on the midsurface has five DOF’s, three...translations in the global directions, and two rotations about two axes perpendicular to the midsurface normal (Figure 5-4). The sixth DOF, associated...Figure 5-3). The coordinates of any point within the element are described in terms of the midsurface coordinates and a vector connecting the two upper
Possibilities of the particle finite element method for fluid-soil-structure interaction problems
NASA Astrophysics Data System (ADS)
Oñate, Eugenio; Celigueta, Miguel Angel; Idelsohn, Sergio R.; Salazar, Fernando; Suárez, Benjamín
2011-09-01
We present some developments in the particle finite element method (PFEM) for analysis of complex coupled problems in mechanics involving fluid-soil-structure interaction (FSSI). The PFEM uses an updated Lagrangian description to model the motion of nodes (particles) in both the fluid and the solid domains (the later including soil/rock and structures). A mesh connects the particles (nodes) defining the discretized domain where the governing equations for each of the constituent materials are solved as in the standard FEM. The stabilization for dealing with an incompressibility continuum is introduced via the finite calculus method. An incremental iterative scheme for the solution of the non linear transient coupled FSSI problem is described. The procedure to model frictional contact conditions and material erosion at fluid-solid and solid-solid interfaces is described. We present several examples of application of the PFEM to solve FSSI problems such as the motion of rocks by water streams, the erosion of a river bed adjacent to a bridge foundation, the stability of breakwaters and constructions sea waves and the study of landslides.
A Numerical Investigation of Two-Different Drosophila Forward Flight Modes
NASA Astrophysics Data System (ADS)
Sahin, Mehmet; Dilek, Ezgi; Erzincanli, Belkis
2016-11-01
The parallel large-scale unstructured finite volume method based on an Arbitrary Lagrangian-Eulerian (ALE) formulation has been applied in order to investigate the near wake structure of Drosophila in forward flight. DISTENE MeshGems-Hexa algorithm based on the octree method is used to generate the all hexahedral mesh for the wing-body combination. The mesh deformation algorithm is based on the indirect radial basis function (RBF) method at each time level while avoiding remeshing in order to enhance numerical robustness. The large-scale numerical simulations are carried out for a flapping Drosophila in forward flight. In the first case, the wing tip-path plane is tilted forward to generate forward force. In the second case, paddling wing motion is used to generate the forward fore. The λ2-criterion proposed by Jeong and Hussain (1995) is used for investigating the time variation of the Eulerian coherent structures in the near wake. The present simulations reveal highly detailed near wake topology for a hovering Drosophila. This is very useful in terms of understanding physics in biological flights which can provide a very useful tool for designing bio-inspired MAVs.
Numerical analysis of the three-dimensional swirling flow in centrifugal compressor volutes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ayder, E.; Van den Braembussche, R.
1994-07-01
The improvement of centrifugal compressor performance and the control of the radial forces acting on the impeller due to the circumferential variation of the static pressure caused by the volute require a good understanding of the flow mechanisms and an accurate prediction of the flow pattern inside the volute. A three-dimensional volute calculation method has been developed for this purpose. The volute is discretized by means of hexahedral elements. A cell vertex finite volume approach is used in combination with a time-marching procedure. The numerical procedure makes use of a central space discretization and a four-step Runge-Kutta time-stepping scheme. Themore » artificial dissipation used in the solver is based on the fourth-order differences of the conservative variables. Implicit residual smoothing improves the convergence rate. The loss model implemented in the code accounts for the losses due to internal shear and friction losses on the walls. A comparison of the calculated and measured results inside a volute with elliptical cross section reveals that the modified Euler solver accurately predicts the velocity and pressure distribution inside and upstream of the volute.« less
Development of computational methods for heavy lift launch vehicles
NASA Technical Reports Server (NTRS)
Yoon, Seokkwan; Ryan, James S.
1993-01-01
The research effort has been focused on the development of an advanced flow solver for complex viscous turbulent flows with shock waves. The three-dimensional Euler and full/thin-layer Reynolds-averaged Navier-Stokes equations for compressible flows are solved on structured hexahedral grids. The Baldwin-Lomax algebraic turbulence model is used for closure. The space discretization is based on a cell-centered finite-volume method augmented by a variety of numerical dissipation models with optional total variation diminishing limiters. The governing equations are integrated in time by an implicit method based on lower-upper factorization and symmetric Gauss-Seidel relaxation. The algorithm is vectorized on diagonal planes of sweep using two-dimensional indices in three dimensions. A new computer program named CENS3D has been developed for viscous turbulent flows with discontinuities. Details of the code are described in Appendix A and Appendix B. With the developments of the numerical algorithm and dissipation model, the simulation of three-dimensional viscous compressible flows has become more efficient and accurate. The results of the research are expected to yield a direct impact on the design process of future liquid fueled launch systems.
Nanowire nanocomputer as a finite-state machine.
Yao, Jun; Yan, Hao; Das, Shamik; Klemic, James F; Ellenbogen, James C; Lieber, Charles M
2014-02-18
Implementation of complex computer circuits assembled from the bottom up and integrated on the nanometer scale has long been a goal of electronics research. It requires a design and fabrication strategy that can address individual nanometer-scale electronic devices, while enabling large-scale assembly of those devices into highly organized, integrated computational circuits. We describe how such a strategy has led to the design, construction, and demonstration of a nanoelectronic finite-state machine. The system was fabricated using a design-oriented approach enabled by a deterministic, bottom-up assembly process that does not require individual nanowire registration. This methodology allowed construction of the nanoelectronic finite-state machine through modular design using a multitile architecture. Each tile/module consists of two interconnected crossbar nanowire arrays, with each cross-point consisting of a programmable nanowire transistor node. The nanoelectronic finite-state machine integrates 180 programmable nanowire transistor nodes in three tiles or six total crossbar arrays, and incorporates both sequential and arithmetic logic, with extensive intertile and intratile communication that exhibits rigorous input/output matching. Our system realizes the complete 2-bit logic flow and clocked control over state registration that are required for a finite-state machine or computer. The programmable multitile circuit was also reprogrammed to a functionally distinct 2-bit full adder with 32-set matched and complete logic output. These steps forward and the ability of our unique design-oriented deterministic methodology to yield more extensive multitile systems suggest that proposed general-purpose nanocomputers can be realized in the near future.
Nanowire nanocomputer as a finite-state machine
Yao, Jun; Yan, Hao; Das, Shamik; Klemic, James F.; Ellenbogen, James C.; Lieber, Charles M.
2014-01-01
Implementation of complex computer circuits assembled from the bottom up and integrated on the nanometer scale has long been a goal of electronics research. It requires a design and fabrication strategy that can address individual nanometer-scale electronic devices, while enabling large-scale assembly of those devices into highly organized, integrated computational circuits. We describe how such a strategy has led to the design, construction, and demonstration of a nanoelectronic finite-state machine. The system was fabricated using a design-oriented approach enabled by a deterministic, bottom–up assembly process that does not require individual nanowire registration. This methodology allowed construction of the nanoelectronic finite-state machine through modular design using a multitile architecture. Each tile/module consists of two interconnected crossbar nanowire arrays, with each cross-point consisting of a programmable nanowire transistor node. The nanoelectronic finite-state machine integrates 180 programmable nanowire transistor nodes in three tiles or six total crossbar arrays, and incorporates both sequential and arithmetic logic, with extensive intertile and intratile communication that exhibits rigorous input/output matching. Our system realizes the complete 2-bit logic flow and clocked control over state registration that are required for a finite-state machine or computer. The programmable multitile circuit was also reprogrammed to a functionally distinct 2-bit full adder with 32-set matched and complete logic output. These steps forward and the ability of our unique design-oriented deterministic methodology to yield more extensive multitile systems suggest that proposed general-purpose nanocomputers can be realized in the near future. PMID:24469812
Fermi-Dirac statistics and traffic in complex networks.
de Moura, Alessandro P S
2005-06-01
We propose an idealized model for traffic in a network, in which many particles move randomly from node to node, following the network's links, and it is assumed that at most one particle can occupy any given node. This is intended to mimic the finite forwarding capacity of nodes in communication networks, thereby allowing the possibility of congestion and jamming phenomena. We show that the particles behave like free fermions, with appropriately defined energy-level structure and temperature. The statistical properties of this system are thus given by the corresponding Fermi-Dirac distribution. We use this to obtain analytical expressions for dynamical quantities of interest, such as the mean occupation of each node and the transport efficiency, for different network topologies and particle densities. We show that the subnetwork of free nodes always fragments into small isolated clusters for a sufficiently large number of particles, implying a communication breakdown at some density for all network topologies. These results are compared to direct simulations.
Ultrasonography of the medial iliac lymph nodes in the dog.
Llabrés-Díaz, Francisco J
2004-01-01
Sixty-one medial iliac lymph nodes of 38 different dogs (eight with adenocarcinoma of the apocrine glands of the anal sac, 13 with multicentric lymphoma, six with multicentric lymphoma but in clinical remission, and 11 control dogs) were evaluated to assess the ability of ultrasound to identify and interrogate these lymph nodes across the different groups and to differentiate these groups using different sonographic parameters. Ultrasound proved to be useful to assess canine medial iliac lymph nodes. An increase in size or number of detected lymph nodes or finding rounder or heterogeneous lymph nodes could differentiate lymph nodes of dogs of the control group from lymph nodes of dogs with lymphoma or an adenocarcinoma of the apocrine glands of the anal sac. Subcategories of malignancy could not be differentiated. More studies need to be performed, both with patients with reactive lymph nodes and also focusing on other canine superficial lymph nodes, before generalizing the results of this study to other areas or diseases.
On the motion of substance in a channel of a network and human migration
NASA Astrophysics Data System (ADS)
Vitanov, Nikolay K.; Vitanov, Kaloyan N.
2018-01-01
We model the motion of a substance in a channel of a network that consists of chain of (i) nodes of the network and (ii) edges that connect the nodes and form the way for motion of the substance. The nodes of the channel can have different ;leakage;, i.e., some amount of the substance can leave the channel at a node and the rate of leaving can be different for the different nodes of the channel. The nodes close to the end of the channel for some (design or other) reason may be more ;attractive; for the substance in comparison to the nodes around the incoming node of the channel. We discuss channels containing infinite or finite number of nodes. The main outcome of the model is the distribution of the substance along the nodes. Two regimes of functioning of the channels are studied: stationary regime and non-stationary regime. The distribution of the substance along the nodes of the channel for the case of stationary regime is a distribution with a very long tail that contains as particular case the Waring distribution (for channel with infinite number of nodes) or the truncated Waring distribution (for channel with finite number of nodes). In the non-stationary regime of functioning of the channel one observes an exponential increase or exponential decrease of the amount of substance in the nodes. However the asymptotic distribution of the substance among the nodes of the channel in this regime remains stationary. The studied model is applied to the case of migration of humans through a migration channel consisting of chain of countries. In this case the model accounts for the number of migrants entering the channel through the first country of the channel; permeability of the borders between the countries; possible large attractiveness of some countries of the channel; possibility for migrants to obtain permission to reside in a country of the channel. The main outcome of the model is the distribution of migrants along the countries of the channel. We discuss the conditions for concentration of migrants in selected country of the channel. Finally two scenarios of changes of conditions of the functioning of the channel are discussed. It is shown that from the point of view of decreasing of the number of migrants in the countries of the channel it is more effective to concentrate efforts on preventing the entrance of migrants in the first country of the channel when compared to concentration of efforts on decrease of permeability of the borders between the countries of the channel.
Electromagnetic finite elements based on a four-potential variational principle
NASA Technical Reports Server (NTRS)
Schuler, James J.; Felippa, Carlos A.
1991-01-01
Electromagnetic finite elements based on a variational principle that uses the electromagnetic four-potential as a primary variable are derived. This choice is used to construct elements suitable for downstream coupling with mechanical and thermal finite elements for the analysis of electromagnetic/mechanical systems that involve superconductors. The main advantages of the four-potential as a basis for finite element formulation are that the number of degrees of freedom per node remains modest as the problem dimensionally increases, that jump discontinuities on interfaces are naturally accommodated, and that statics as well as dynamics may be treated without any a priori approximations. The new elements are tested on an axisymmetric problem under steady state forcing conditions. The results are in excellent agreement with analytical solutions.
Validation of High Displacement Piezoelectric Actuator Finite Element Models
NASA Technical Reports Server (NTRS)
Taleghani, B. K.
2000-01-01
The paper presents the results obtained by using NASTRAN(Registered Trademark) and ANSYS(Regitered Trademark) finite element codes to predict doming of the THUNDER piezoelectric actuators during the manufacturing process and subsequent straining due to an applied input voltage. To effectively use such devices in engineering applications, modeling and characterization are essential. Length, width, dome height, and thickness are important parameters for users of such devices. Therefore, finite element models were used to assess the effects of these parameters. NASTRAN(Registered Trademark) and ANSYS(Registered Trademark) used different methods for modeling piezoelectric effects. In NASTRAN(Registered Trademark), a thermal analogy was used to represent voltage at nodes as equivalent temperatures, while ANSYS(Registered Trademark) processed the voltage directly using piezoelectric finite elements. The results of finite element models were validated by using the experimental results.
C deg continuity elements by Hybrid Stress method. M.S. Thesis, 1982 Final Report
NASA Technical Reports Server (NTRS)
Kang, David Sung-Soo
1991-01-01
An intensive study of the assumed variable distribution necessary for the Assumed Displacement Formulation, the Hellinger-Reissner Formulation, and the Hu-Washizu Formulation is made in a unified manner. With emphasis on physical explanation, a systematic method for the Hybrid Stress element construction is outlined. The numerical examples use four and eight node plane stress elements and eight and twenty node solid elements. Computation cost study indicates that the hybrid stress element derived using recently developed Uncoupled Stress Formulation is comparable in CPU time to the Assumed Displacement element. Overall, main emphasis is placed on providing a broader understanding of the Hybrid Stress Formulation.
Nonlinear Finite Element Analysis of Shells with Large Aspect Ratio
NASA Technical Reports Server (NTRS)
Chang, T. Y.; Sawamiphakdi, K.
1984-01-01
A higher order degenerated shell element with nine nodes was selected for large deformation and post-buckling analysis of thick or thin shells. Elastic-plastic material properties are also included. The post-buckling analysis algorithm is given. Using a square plate, it was demonstrated that the none-node element does not have shear locking effect even if its aspect ratio was increased to the order 10 to the 8th power. Two sample problems are given to illustrate the analysis capability of the shell element.
Classifying Infrastructure in an Urban Battlespace Using Thermal IR Signatures
2006-11-01
Huntsville, Alabama for sharing their ATLAS data for Atlanta. REFERENCES Bentz , D . P . (2000). A Computer Model to Predict the Surface Temperature...10: 2 2 xt α Δ Δ ≤ (10) 2.2 Implementing the Model Bentz uses a 1- D finite difference grid with a varying number of nodes. The nodes are equally...and rooftops were modeled as a function of time and environmental conditions using 1- D heat transfer theory. The model was implemented in MATLAB
General formulation of long-range degree correlations in complex networks
NASA Astrophysics Data System (ADS)
Fujiki, Yuka; Takaguchi, Taro; Yakubo, Kousuke
2018-06-01
We provide a general framework for analyzing degree correlations between nodes separated by more than one step (i.e., beyond nearest neighbors) in complex networks. One joint and four conditional probability distributions are introduced to fully describe long-range degree correlations with respect to degrees k and k' of two nodes and shortest path length l between them. We present general relations among these probability distributions and clarify the relevance to nearest-neighbor degree correlations. Unlike nearest-neighbor correlations, some of these probability distributions are meaningful only in finite-size networks. Furthermore, as a baseline to determine the existence of intrinsic long-range degree correlations in a network other than inevitable correlations caused by the finite-size effect, the functional forms of these probability distributions for random networks are analytically evaluated within a mean-field approximation. The utility of our argument is demonstrated by applying it to real-world networks.
NASA Astrophysics Data System (ADS)
Rouzegar, J.; Abbasi, A.
2018-03-01
This research presents a finite element formulation based on four-variable refined plate theory for bending analysis of cross-ply and angle-ply laminated composite plates integrated with a piezoelectric fiber-reinforced composite actuator under electromechanical loading. The four-variable refined plate theory is a simple and efficient higher-order shear deformation theory, which predicts parabolic variation of transverse shear stresses across the plate thickness and satisfies zero traction conditions on the plate free surfaces. The weak form of governing equations is derived using the principle of minimum potential energy, and a 4-node non-conforming rectangular plate element with 8 degrees of freedom per node is introduced for discretizing the domain. Several benchmark problems are solved by the developed MATLAB code and the obtained results are compared with those from exact and other numerical solutions, showing good agreement.
A Viscoelastic Hybrid Shell Finite Element
NASA Technical Reports Server (NTRS)
Johnson, Arthur
1999-01-01
An elastic large displacement thick-shell hybrid finite element is modified to allow for the calculation of viscoelastic stresses. Internal strain variables are introduced at he element's stress nodes and are employed to construct a viscous material model. First order ordinary differential equations relate the internal strain variables to the corresponding elastic strains at the stress nodes. The viscous stresses are computed from the internal strain variables using viscous moduli which are a fraction of the elastic moduli. The energy dissipated by the action of the viscous stresses in included in the mixed variational functional. Nonlinear quasi-static viscous equilibrium equations are then obtained. Previously developed Taylor expansions of the equilibrium equations are modified to include the viscous terms. A predictor-corrector time marching solution algorithm is employed to solve the algebraic-differential equations. The viscous shell element is employed to numerically simulate a stair-step loading and unloading of an aircraft tire in contact with a frictionless surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuprat, A.P.; Glasser, A.H.
The authors discuss unstructured grids for application to transport in the tokamak edge SOL. They have developed a new metric with which to judge element elongation and resolution requirements. Using this method, the authors apply a standard moving finite element technique to advance the SOL equations while inserting/deleting dynamically nodes that violate an elongation criterion. In a tokamak plasma, this method achieves a more uniform accuracy, and results in highly stretched triangular finite elements, except near separatrix X-point where transport is more isotropic.
A Fully Distributed Approach to the Design of a KBIT/SEC VHF Packet Radio Network,
1984-02-01
topological change and consequent out-modea routing data. Algorithm development has been aided by computer simulation using a finite state machine technique...development has been aided by computer simulation using a finite state machine technique to model a realistic network of up to fifty nodes. This is...use of computer based equipments in weapons systems and their associated sensors and command and control elements and the trend from voice to data
Development of fast wireless detection system for fixed offshore platform
NASA Astrophysics Data System (ADS)
Li, Zhigang; Yu, Yan; Jiao, Dong; Wang, Jie; Li, Zhirui; Ou, Jinping
2011-04-01
Offshore platforms' security is concerned since in 1950s and 1960s, and in the early 1980s some important specifications and standards are built, and all these provide technical basis of fixed platform design, construction, installation and evaluation. With the condition that more and more platforms are in serving over age, the research about the evaluation and detection technology of offshore platform has been a hotspot, especially underwater detection, and assessment method based on the finite element calculation. For fixed platform structure detection, conventional NDT methods, such as eddy current, magnetic powder, permeate, X-ray and ultrasonic, etc, are generally used. These techniques are more mature, intuitive, but underwater detection needs underwater robot, the necessary supporting tools of auxiliary equipment, and trained professional team, thus resources and cost used are considerable, installation time of test equipment is long. This project presents a new kind of fast wireless detection and damage diagnosis system for fixed offshore platform using wireless sensor networks, that is, wireless sensor nodes can be put quickly on the offshore platform, detect offshore platform structure global status by wireless communication, and then make diagnosis. This system is operated simply, suitable for offshore platform integrity states rapid assessment. The designed system consists in intelligence acquisition equipment and 8 wireless collection nodes, the whole system has 64 collection channels, namely every wireless collection node has eight 16-bit accuracy of A/D channels. Wireless collection node, integrated with vibration sensing unit, embedded low-power micro-processing unit, wireless transceiver unit, large-capacity power unit, and GPS time synchronization unit, can finish the functions such as vibration data collection, initial analysis, data storage, data wireless transmission. Intelligence acquisition equipment, integrated with high-performance computation unit, wireless transceiver unit, mobile power unit and embedded data analysis software, can totally control multi-wireless collection nodes, receive and analyze data, parameter identification. Data is transmitted at the 2.4GHz wireless communication channel, every sensing data channel in charge of data transmission is in a stable frequency band, control channel responsible for the control of power parameters is in a public frequency band. The test is initially conducted for the designed system, experimental results show that the system has good application prospects and practical value with fast arrangement, high sampling rate, high resolution, capacity of low frequency detection.
ACCURATE CHEMICAL MASTER EQUATION SOLUTION USING MULTI-FINITE BUFFERS
Cao, Youfang; Terebus, Anna; Liang, Jie
2016-01-01
The discrete chemical master equation (dCME) provides a fundamental framework for studying stochasticity in mesoscopic networks. Because of the multi-scale nature of many networks where reaction rates have large disparity, directly solving dCMEs is intractable due to the exploding size of the state space. It is important to truncate the state space effectively with quantified errors, so accurate solutions can be computed. It is also important to know if all major probabilistic peaks have been computed. Here we introduce the Accurate CME (ACME) algorithm for obtaining direct solutions to dCMEs. With multi-finite buffers for reducing the state space by O(n!), exact steady-state and time-evolving network probability landscapes can be computed. We further describe a theoretical framework of aggregating microstates into a smaller number of macrostates by decomposing a network into independent aggregated birth and death processes, and give an a priori method for rapidly determining steady-state truncation errors. The maximal sizes of the finite buffers for a given error tolerance can also be pre-computed without costly trial solutions of dCMEs. We show exactly computed probability landscapes of three multi-scale networks, namely, a 6-node toggle switch, 11-node phage-lambda epigenetic circuit, and 16-node MAPK cascade network, the latter two with no known solutions. We also show how probabilities of rare events can be computed from first-passage times, another class of unsolved problems challenging for simulation-based techniques due to large separations in time scales. Overall, the ACME method enables accurate and efficient solutions of the dCME for a large class of networks. PMID:27761104
Mesh Deformation Based on Fully Stressed Design: The Method and Two-Dimensional Examples
NASA Technical Reports Server (NTRS)
Hsu, Su-Yuen; Chang, Chau-Lyan
2007-01-01
Mesh deformation in response to redefined boundary geometry is a frequently encountered task in shape optimization and analysis of fluid-structure interaction. We propose a simple and concise method for deforming meshes defined with three-node triangular or four-node tetrahedral elements. The mesh deformation method is suitable for large boundary movement. The approach requires two consecutive linear elastic finite-element analyses of an isotropic continuum using a prescribed displacement at the mesh boundaries. The first analysis is performed with homogeneous elastic property and the second with inhomogeneous elastic property. The fully stressed design is employed with a vanishing Poisson s ratio and a proposed form of equivalent strain (modified Tresca equivalent strain) to calculate, from the strain result of the first analysis, the element-specific Young s modulus for the second analysis. The theoretical aspect of the proposed method, its convenient numerical implementation using a typical linear elastic finite-element code in conjunction with very minor extra coding for data processing, and results for examples of large deformation of two-dimensional meshes are presented in this paper. KEY WORDS: Mesh deformation, shape optimization, fluid-structure interaction, fully stressed design, finite-element analysis, linear elasticity, strain failure, equivalent strain, Tresca failure criterion
Rigged String Configurations, Bethe Ansatz Qubits, and Conservation of Parity
NASA Astrophysics Data System (ADS)
Lulek, T.
Bethe Ansatz solutions for the Heisenberg Hamiltonian of a one - dimensional magnetic ring of N nodes, each with the spin 1/2, within the XXX model, have been presented as some composite systems, in a spirit of quantum information theory. The constituents are single - node spin states, which organize into strings of various length, and "seas of holes". The former are responsible for dynamics, whereas the latter determine the range of riggings for strings. Another aim was to demonstrate a unification of Bethe Ansatz eigenstates by means of Galois symmetries of finite field extensions. The key observation is that the original eigenproblem is expressible in integers, and thus, for a finite fixed N, the splitting field of the characteristic polynom of the Heisenberg Hamiltonian is also finite. The Galois group of the latter field permutes, by definition, roots of this polynom, which implies permutation of eigenstates. General considerations are demonstrated on the example of heptagon (N = 7), which admits an implementation of a collection of arithmetic qubits, and also demonstrates a special case of degeneration of the spectrum of the Hamiltonian, resulting from conservation of parity, within the realm of rigged string configurations.
NASA Astrophysics Data System (ADS)
Mudunuru, M. K.; Shabouei, M.; Nakshatrala, K.
2015-12-01
Advection-diffusion-reaction (ADR) equations appear in various areas of life sciences, hydrogeological systems, and contaminant transport. Obtaining stable and accurate numerical solutions can be challenging as the underlying equations are coupled, nonlinear, and non-self-adjoint. Currently, there is neither a robust computational framework available nor a reliable commercial package known that can handle various complex situations. Herein, the objective of this poster presentation is to present a novel locally conservative non-negative finite element formulation that preserves the underlying physical and mathematical properties of a general linear transient anisotropic ADR equation. In continuous setting, governing equations for ADR systems possess various important properties. In general, all these properties are not inherited during finite difference, finite volume, and finite element discretizations. The objective of this poster presentation is two fold: First, we analyze whether the existing numerical formulations (such as SUPG and GLS) and commercial packages provide physically meaningful values for the concentration of the chemical species for various realistic benchmark problems. Furthermore, we also quantify the errors incurred in satisfying the local and global species balance for two popular chemical kinetics schemes: CDIMA (chlorine dioxide-iodine-malonic acid) and BZ (Belousov--Zhabotinsky). Based on these numerical simulations, we show that SUPG and GLS produce unphysical values for concentration of chemical species due to the violation of the non-negative constraint, contain spurious node-to-node oscillations, and have large errors in local and global species balance. Second, we proposed a novel finite element formulation to overcome the above difficulties. The proposed locally conservative non-negative computational framework based on low-order least-squares finite elements is able to preserve these underlying physical and mathematical properties. Several representative numerical examples are discussed to illustrate the importance of the proposed numerical formulations to accurately describe various aspects of mixing process in chaotic flows and to simulate transport in highly heterogeneous anisotropic media.
The predictive factors for lymph node metastasis in early gastric cancer: A clinical study.
Wang, Yinzhong
2015-01-01
To detect the clinicopathological factors associated with lymph node metastases in early gastric cancer. We retrospectively evaluated the distribution of metastatic nodes in 198 patients with early gastric cancer treated in our hospital between May 2008 and January 2015, the clinicopathological factors including age, gender, tumor location, tumor size, macroscopic type, depth of invasion, histological type and venous invasion were studied, and the relationship between various parameters and lymph node metastases was analyzed. In this study, one hundred and ninety-eight patients with early gastric cancer were included, and lymph node metastasis was detected in 28 patients. Univariate analysis revealed a close relationship between tumor size, depth of invasion, histological type, venous invasion, local ulceration and lymph node metastases. Multivariate analysis revealed that the five factors were independent risk factors for lymph node metastases. The clinicopathological parameters including tumor size, depth of invasion, local ulceration, histological type and venous invasion are closely correlated with lymph node metastases, should be paid high attention in early gastric cancer patients.
A Novel Deployment Scheme Based on Three-Dimensional Coverage Model for Wireless Sensor Networks
Xiao, Fu; Yang, Yang; Wang, Ruchuan; Sun, Lijuan
2014-01-01
Coverage pattern and deployment strategy are directly related to the optimum allocation of limited resources for wireless sensor networks, such as energy of nodes, communication bandwidth, and computing power, and quality improvement is largely determined by these for wireless sensor networks. A three-dimensional coverage pattern and deployment scheme are proposed in this paper. Firstly, by analyzing the regular polyhedron models in three-dimensional scene, a coverage pattern based on cuboids is proposed, and then relationship between coverage and sensor nodes' radius is deduced; also the minimum number of sensor nodes to maintain network area's full coverage is calculated. At last, sensor nodes are deployed according to the coverage pattern after the monitor area is subdivided into finite 3D grid. Experimental results show that, compared with traditional random method, sensor nodes number is reduced effectively while coverage rate of monitor area is ensured using our coverage pattern and deterministic deployment scheme. PMID:25045747
Fission-Fusion Adaptivity in Finite Elements for Nonlinear Dynamics of Shells
1988-11-30
where mesh refinement will prove useful. In fact, the deviation of a bilinear element from a smooth shell midsurface can be related to the angle between...comparisons with nonadaptive meshes. Conclusions and further discussions are given in Section 6. -5- 2. FINITE ELEMENT FORMULATION The shape of the midsurface ...8217 22 , and e3 is defined so that e, and e2 are tangent to the midsurface and rotate with the element; 2. for each node, a triad b i is defined so that
1990-08-01
corneal structure for both normal and swollen corneas. Other problems of future interest are the understanding of the structure of scarred and dystrophied ...METHOD AND RESULTS The system of equations is solved numerically on a Cray X-MP by a finite element method with 9-node Lagrange quadrilaterals ( Becker ...Appl. Math., 42, 430. Becker , E. B., G. F. Carey, and J. T. Oden, 1981. Finite Elements: An Introduction (Vol. 1), Prentice- Hall, Englewood Cliffs, New
Growth dominates choice in network percolation
NASA Astrophysics Data System (ADS)
Vijayaraghavan, Vikram S.; Noël, Pierre-André; Waagen, Alex; D'Souza, Raissa M.
2013-09-01
The onset of large-scale connectivity in a network (i.e., percolation) often has a major impact on the function of the system. Traditionally, graph percolation is analyzed by adding edges to a fixed set of initially isolated nodes. Several years ago, it was shown that adding nodes as well as edges to the graph can yield an infinite order transition, which is much smoother than the traditional second-order transition. More recently, it was shown that adding edges via a competitive process to a fixed set of initially isolated nodes can lead to a delayed, extremely abrupt percolation transition with a significant jump in large but finite systems. Here we analyze a process that combines both node arrival and edge competition. If started from a small collection of seed nodes, we show that the impact of node arrival dominates: although we can significantly delay percolation, the transition is of infinite order. Thus, node arrival can mitigate the trade-off between delay and abruptness that is characteristic of explosive percolation transitions. This realization may inspire new design rules where network growth can temper the effects of delay, creating opportunities for network intervention and control.
A Parallel Fast Sweeping Method for the Eikonal Equation
NASA Astrophysics Data System (ADS)
Baker, B.
2017-12-01
Recently, there has been an exciting emergence of probabilistic methods for travel time tomography. Unlike gradient-based optimization strategies, probabilistic tomographic methods are resistant to becoming trapped in a local minimum and provide a much better quantification of parameter resolution than, say, appealing to ray density or performing checkerboard reconstruction tests. The benefits associated with random sampling methods however are only realized by successive computation of predicted travel times in, potentially, strongly heterogeneous media. To this end this abstract is concerned with expediting the solution of the Eikonal equation. While many Eikonal solvers use a fast marching method, the proposed solver will use the iterative fast sweeping method because the eight fixed sweep orderings in each iteration are natural targets for parallelization. To reduce the number of iterations and grid points required the high-accuracy finite difference stencil of Nobel et al., 2014 is implemented. A directed acyclic graph (DAG) is created with a priori knowledge of the sweep ordering and finite different stencil. By performing a topological sort of the DAG sets of independent nodes are identified as candidates for concurrent updating. Additionally, the proposed solver will also address scalability during earthquake relocation, a necessary step in local and regional earthquake tomography and a barrier to extending probabilistic methods from active source to passive source applications, by introducing an asynchronous parallel forward solve phase for all receivers in the network. Synthetic examples using the SEG over-thrust model will be presented.
Laminated Thin Shell Structures Subjected to Free Vibration in a Hygrothermal Environment
NASA Technical Reports Server (NTRS)
Gotsis, Pascal K.; Guptill, James D.
1994-01-01
Parametric studies were performed to assess the effects of various parameters on the free-vibration behavior (natural frequencies) of (+/- theta)(sub 2) angle-ply, fiber composite, thin shell structures in a hygrothermal environment. Knowledge of the natural frequencies of structures is important in considering their response to various kinds of excitation, especially when structures and force systems are complex and when excitations are not periodic. The three dimensional, finite element structural analysis computer code CSTEM was used in the Cray YMP computer environment. The fiber composite shell was assumed to be cylindrical and made from T300 graphite fibers embedded in an intermediate-modulus, high-strength matrix. The following parameters were investigated: the length and the laminate thickness of the shell, the fiber orientation, the fiber volume fraction, the temperature profile through the thickness of the laminate, and laminates with different ply thicknesses. The results indicate that the fiber orientation and the length of the laminated shell had significant effects on the natural frequencies. The fiber volume fraction, the laminate thickness, and the temperature profile through the shell thickness had weak effects on the natural frequencies. Finally, the laminates with different ply thicknesses had an insignificant influence on the behavior of the vibrated laminated shell. Also, a single through-the-thickness, eight-node, three dimensional composite finite element analysis appears to be sufficient for investigating the free-vibration behavior of thin, composite, angle-ply shell structures.
Finite-time mixed outer synchronization of complex networks with coupling time-varying delay.
He, Ping; Ma, Shu-Hua; Fan, Tao
2012-12-01
This article is concerned with the problem of finite-time mixed outer synchronization (FMOS) of complex networks with coupling time-varying delay. FMOS is a recently developed generalized synchronization concept, i.e., in which different state variables of the corresponding nodes can evolve into finite-time complete synchronization, finite-time anti-synchronization, and even amplitude finite-time death simultaneously for an appropriate choice of the controller gain matrix. Some novel stability criteria for the synchronization between drive and response complex networks with coupling time-varying delay are derived using the Lyapunov stability theory and linear matrix inequalities. And a simple linear state feedback synchronization controller is designed as a result. Numerical simulations for two coupled networks of modified Chua's circuits are then provided to demonstrate the effectiveness and feasibility of the proposed complex networks control and synchronization schemes and then compared with the proposed results and the previous schemes for accuracy.
Research on Finite Element Model Generating Method of General Gear Based on Parametric Modelling
NASA Astrophysics Data System (ADS)
Lei, Yulong; Yan, Bo; Fu, Yao; Chen, Wei; Hou, Liguo
2017-06-01
Aiming at the problems of low efficiency and poor quality of gear meshing in the current mainstream finite element software, through the establishment of universal gear three-dimensional model, and explore the rules of unit and node arrangement. In this paper, a finite element model generation method of universal gear based on parameterization is proposed. Visual Basic program is used to realize the finite element meshing, give the material properties, and set the boundary / load conditions and other pre-processing work. The dynamic meshing analysis of the gears is carried out with the method proposed in this pape, and compared with the calculated values to verify the correctness of the method. The method greatly shortens the workload of gear finite element pre-processing, improves the quality of gear mesh, and provides a new idea for the FEM pre-processing.
Finite element solution for energy conservation using a highly stable explicit integration algorithm
NASA Technical Reports Server (NTRS)
Baker, A. J.; Manhardt, P. D.
1972-01-01
Theoretical derivation of a finite element solution algorithm for the transient energy conservation equation in multidimensional, stationary multi-media continua with irregular solution domain closure is considered. The complete finite element matrix forms for arbitrarily irregular discretizations are established, using natural coordinate function representations. The algorithm is embodied into a user-oriented computer program (COMOC) which obtains transient temperature distributions at the node points of the finite element discretization using a highly stable explicit integration procedure with automatic error control features. The finite element algorithm is shown to posses convergence with discretization for a transient sample problem. The condensed form for the specific heat element matrix is shown to be preferable to the consistent form. Computed results for diverse problems illustrate the versatility of COMOC, and easily prepared output subroutines are shown to allow quick engineering assessment of solution behavior.
NASA Astrophysics Data System (ADS)
Hoffman, Joanne; Liu, Jiamin; Turkbey, Evrim; Kim, Lauren; Summers, Ronald M.
2015-03-01
Station-labeling of mediastinal lymph nodes is typically performed to identify the location of enlarged nodes for cancer staging. Stations are usually assigned in clinical radiology practice manually by qualitative visual assessment on CT scans, which is time consuming and highly variable. In this paper, we developed a method that automatically recognizes the lymph node stations in thoracic CT scans based on the anatomical organs in the mediastinum. First, the trachea, lungs, and spines are automatically segmented to locate the mediastinum region. Then, eight more anatomical organs are simultaneously identified by multi-atlas segmentation. Finally, with the segmentation of those anatomical organs, we convert the text definitions of the International Association for the Study of Lung Cancer (IASLC) lymph node map into patient-specific color-coded CT image maps. Thus, a lymph node station is automatically assigned to each lymph node. We applied this system to CT scans of 86 patients with 336 mediastinal lymph nodes measuring equal or greater than 10 mm. 84.8% of mediastinal lymph nodes were correctly mapped to their stations.
1980-02-01
8 d. Data Set 4 8 e. Data Set 5 9 f. Data Set 6 9 g. Data Set 7 10 h. Data Set 8 10 i. Data Set 9 11 J. Data Set 10 12 k. Data...Coordinates NODE X Y NODE X Y NODE X Y 1 4.0 0.5 7 3.50 1.0 13 1.50 1.5 2 4.0 1.0 8 3.50 1.5 14 1.25 0.5 3 4.0 1.5 9 2.50 0.5 15 1.25 1.5 4 3.75 0.5 10 ...4 1+5 1+6 1+7 1 1 3 8 6 2 5 7 4 2 8 13 11 6 10 12 9 7 3 16 11 13 18 14 12 15 17 Note that I can be chosen to be any corner node. 6. PLOTTING THE
Convergence studies in meshfree peridynamic simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seleson, Pablo; Littlewood, David J.
2016-04-15
Meshfree methods are commonly applied to discretize peridynamic models, particularly in numerical simulations of engineering problems. Such methods discretize peridynamic bodies using a set of nodes with characteristic volume, leading to particle-based descriptions of systems. In this article, we perform convergence studies of static peridynamic problems. We show that commonly used meshfree methods in peridynamics suffer from accuracy and convergence issues, due to a rough approximation of the contribution to the internal force density of nodes near the boundary of the neighborhood of a given node. We propose two methods to improve meshfree peridynamic simulations. The first method uses accuratemore » computations of volumes of intersections between neighbor cells and the neighborhood of a given node, referred to as partial volumes. The second method employs smooth influence functions with a finite support within peridynamic kernels. Numerical results demonstrate great improvements in accuracy and convergence of peridynamic numerical solutions, when using the proposed methods.« less
Influence of twin boundaries on superconducting gap nodes in FeSe single crystal studied by STM/STS
NASA Astrophysics Data System (ADS)
Watashige, T.; Hanaguri, T.; Kohsaka, Y.; Iwaya, K.; Fu, Y.; Kasahara, S.; Watanabe, D.; Mizukami, Y.; Mikami, T.; Kawamoto, Y.; Kurata, S.; Shibauchi, T.; Matsuda, Y.; Böhmer, A. E.; Wolf, T.; Meingast, C.; Löhneysen, H. V.
2014-03-01
We performed scanning tunneling microscopy (STM) and spectroscopy (STS) measurements on high-quality FeSe single crystals grown by vapor transport technique to examine the superconducting-gap structure. In MBE-grown FeSe thin films, based on the V-shaped tunneling spectra, nodal superconductivity is suggested. It is interesting to investigate how the nodes are affected by various kinds of defects. We found that twin boundaries bring about drastic effects on the gap nodes. With approaching to the twin boundary, V-shaped spectra gradually change to U-shaped ones. Interestingly, in the area between the twin boundaries separated by about 30 nm, the gap node is completely lifted and there appears a finite gap over +/-0.4 meV. This unusual twin-boundary effect will give us a hint to elucidate the superconducting-gap structure.
Split Node and Stress Glut Methods for Dynamic Rupture Simulations in Finite Elements.
NASA Astrophysics Data System (ADS)
Ramirez-Guzman, L.; Bielak, J.
2008-12-01
I present two numerical techniques to solve the Dynamic problem. I revisit and modify the Split Node approach and introduce a Stress Glut type Method. Both algorithms are implemented using a iso/sub- parametric FEM solver. In the first case, I discuss the formulation and perform an analysis of convergence for different orders of approximation for the acoustic case. I describe the algorithm of the second methodology as well as the assumptions made. The key to the new technique is to have an accurate representation of the traction. Thus, I devote part of the discussion to analyze the tractions for a simple example. The sensitivity of the method is tested by comparing against Split Node solutions.
1976-04-01
node. A schematic flow chart of the program is shown i& Fig. 1. Description of Variables BETA COEF IANGLE 1BUF ICHECK IMAX INFO JMAX KMAX ß...MAXINT DEL IMAX JMAX XLAMDA NMODE NP NELEM ICHECK Mach number Reduced frequency Mesh spacing as measured by the length of the side of the...Number of nodes Number of elements Option parameter used to check the mesh correctness. For ICHECK = 1, a quick run is performed to print out the
NASA Astrophysics Data System (ADS)
Fallahi, Arya; Oswald, Benedikt; Leidenberger, Patrick
2012-04-01
We study a 3-dimensional, dual-field, fully explicit method for the solution of Maxwell's equations in the time domain on unstructured, tetrahedral grids. The algorithm uses the element level time domain (ELTD) discretization of the electric and magnetic vector wave equations. In particular, the suitability of the method for the numerical analysis of nanometer structured systems in the optical region of the electromagnetic spectrum is investigated. The details of the theory and its implementation as a computer code are introduced and its convergence behavior as well as conditions for stable time domain integration is examined. Here, we restrict ourselves to non-dispersive dielectric material properties since dielectric dispersion will be treated in a subsequent paper. Analytically solvable problems are analyzed in order to benchmark the method. Eventually, a dielectric microlens is considered to demonstrate the potential of the method. A flexible method of 2nd order accuracy is obtained that is applicable to a wide range of nano-optical configurations and can be a serious competitor to more conventional finite difference time domain schemes which operate only on hexahedral grids. The ELTD scheme can resolve geometries with a wide span of characteristic length scales and with the appropriate level of detail, using small tetrahedra where delicate, physically relevant details must be modeled.
Mixed mimetic spectral element method for Stokes flow: A pointwise divergence-free solution
NASA Astrophysics Data System (ADS)
Kreeft, Jasper; Gerritsma, Marc
2013-05-01
In this paper we apply the recently developed mimetic discretization method to the mixed formulation of the Stokes problem in terms of vorticity, velocity and pressure. The mimetic discretization presented in this paper and in Kreeft et al. [51] is a higher-order method for curvilinear quadrilaterals and hexahedrals. Fundamental is the underlying structure of oriented geometric objects, the relation between these objects through the boundary operator and how this defines the exterior derivative, representing the grad, curl and div, through the generalized Stokes theorem. The mimetic method presented here uses the language of differential k-forms with k-cochains as their discrete counterpart, and the relations between them in terms of the mimetic operators: reduction, reconstruction and projection. The reconstruction consists of the recently developed mimetic spectral interpolation functions. The most important result of the mimetic framework is the commutation between differentiation at the continuous level with that on the finite dimensional and discrete level. As a result operators like gradient, curl and divergence are discretized exactly. For Stokes flow, this implies a pointwise divergence-free solution. This is confirmed using a set of test cases on both Cartesian and curvilinear meshes. It will be shown that the method converges optimally for all admissible boundary conditions.
Anomalous DC Hall response in noncentrosymmetric tilted Weyl semimetals
NASA Astrophysics Data System (ADS)
Mukherjee, S. P.; Carbotte, J. P.
2018-03-01
Weyl nodes come in pairs of opposite chirality. For broken time reversal symmetry (TR) they are displaced in momentum space by {Q} and the anomalous DC Hall conductivity σxy is proportional to {Q} at charge neutrality. For finite doping there are additive corrections to σxy which depend on the chemical potential as well as on the tilt (C ) of the Dirac cones and on their relative orientation. If inversion symmetry (I) is also broken the Weyl nodes are shifted in energy by an amount Q0 . This introduces further changes in σxy and we provide simple analytic formulas for these modifications for both type I (C<1 ) and type II (C>1 , overtilted) Weyl. For type I when the Weyl nodes have equal magnitude but oppositely directed tilts, the correction to σxy is proportional to the chemical potential μ and completely independent of the energy shift Q0 . When instead the tilts are parallel, the correction is linear in Q0 and μ drops out. For type II the corrections involve both μ and Q0 , are nonlinear and also involve a momentum cut off. We discuss the implied changes to the Nernst coefficient and to the thermal Hall effect of a finite Q0 .
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Jaehyung; Wagner, Lucas K.; Ertekin, Elif, E-mail: ertekin@illinois.edu
2015-12-14
The fixed node diffusion Monte Carlo (DMC) method has attracted interest in recent years as a way to calculate properties of solid materials with high accuracy. However, the framework for the calculation of properties such as total energies, atomization energies, and excited state energies is not yet fully established. Several outstanding questions remain as to the effect of pseudopotentials, the magnitude of the fixed node error, and the size of supercell finite size effects. Here, we consider in detail the semiconductors ZnSe and ZnO and carry out systematic studies to assess the magnitude of the energy differences arising from controlledmore » and uncontrolled approximations in DMC. The former include time step errors and supercell finite size effects for ground and optically excited states, and the latter include pseudopotentials, the pseudopotential localization approximation, and the fixed node approximation. We find that for these compounds, the errors can be controlled to good precision using modern computational resources and that quantum Monte Carlo calculations using Dirac-Fock pseudopotentials can offer good estimates of both cohesive energy and the gap of these systems. We do however observe differences in calculated optical gaps that arise when different pseudopotentials are used.« less
FSM-F: Finite State Machine Based Framework for Denial of Service and Intrusion Detection in MANET.
N Ahmed, Malik; Abdullah, Abdul Hanan; Kaiwartya, Omprakash
2016-01-01
Due to the continuous advancements in wireless communication in terms of quality of communication and affordability of the technology, the application area of Mobile Adhoc Networks (MANETs) significantly growing particularly in military and disaster management. Considering the sensitivity of the application areas, security in terms of detection of Denial of Service (DoS) and intrusion has become prime concern in research and development in the area. The security systems suggested in the past has state recognition problem where the system is not able to accurately identify the actual state of the network nodes due to the absence of clear definition of states of the nodes. In this context, this paper proposes a framework based on Finite State Machine (FSM) for denial of service and intrusion detection in MANETs. In particular, an Interruption Detection system for Adhoc On-demand Distance Vector (ID-AODV) protocol is presented based on finite state machine. The packet dropping and sequence number attacks are closely investigated and detection systems for both types of attacks are designed. The major functional modules of ID-AODV includes network monitoring system, finite state machine and attack detection model. Simulations are carried out in network simulator NS-2 to evaluate the performance of the proposed framework. A comparative evaluation of the performance is also performed with the state-of-the-art techniques: RIDAN and AODV. The performance evaluations attest the benefits of proposed framework in terms of providing better security for denial of service and intrusion detection attacks.
Pulse bifurcations and instabilities in an excitable medium: Computations in finite ring domains
NASA Astrophysics Data System (ADS)
Or-Guil, M.; Krishnan, J.; Kevrekidis, I. G.; Bär, M.
2001-10-01
We investigate the instabilities and bifurcations of traveling pulses in a model excitable medium; in particular, we discuss three different scenarios involving either the loss of stability or disappearance of stable pulses. In numerical simulations beyond the instabilities we observe replication of pulses (``backfiring'') resulting in complex periodic or spatiotemporally chaotic dynamics as well as modulated traveling pulses. We approximate the linear stability of traveling pulses through computations in a finite albeit large domain with periodic boundary conditions. The critical eigenmodes at the onset of the instabilities are related to the resulting spatiotemporal dynamics and ``act'' upon the back of the pulses. The first scenario has been analyzed earlier [M. G. Zimmermann et al., Physica D 110, 92 (1997)] for high excitability (low excitation threshold): it involves the collision of a stable pulse branch with an unstable pulse branch in a so-called T point. In the framework of traveling wave ordinary differential equations, pulses correspond to homoclinic orbits and the T point to a double heteroclinic loop. We investigate this transition for a pulse in a domain with finite length and periodic boundary conditions. Numerical evidence of the proximity of the infinite-domain T point in this setup appears in the form of two saddle node bifurcations. Alternatively, for intermediate excitation threshold, an entire cascade of saddle nodes causing a ``spiraling'' of the pulse branch appears near the parameter values corresponding to the infinite-domain T point. Backfiring appears at the first saddle-node bifurcation, which limits the existence region of stable pulses. The third case found in the model for large excitation threshold is an oscillatory instability giving rise to ``breathing,'' traveling pulses that periodically vary in width and speed.
USDA-ARS?s Scientific Manuscript database
The objective of this study was to determine cytokine and chemokine mRNA expression profiles in tracheobronchial lymph nodes from pigs singularly infected with porcine circovirus type 2 (PCV2), Mycoplasma hyopneumoniae (MHYO), or coinfected with both. Twenty-eight pigs were randomly assigned to one ...
NASA Astrophysics Data System (ADS)
Casadei, F.; Ruzzene, M.
2011-04-01
This work illustrates the possibility to extend the field of application of the Multi-Scale Finite Element Method (MsFEM) to structural mechanics problems that involve localized geometrical discontinuities like cracks or notches. The main idea is to construct finite elements with an arbitrary number of edge nodes that describe the actual geometry of the damage with shape functions that are defined as local solutions of the differential operator of the specific problem according to the MsFEM approach. The small scale information are then brought to the large scale model through the coupling of the global system matrices that are assembled using classical finite element procedures. The efficiency of the method is demonstrated through selected numerical examples that constitute classical problems of great interest to the structural health monitoring community.
NASA Astrophysics Data System (ADS)
Davis, D. D., Jr.; Krishnamurthy, T.; Stroud, W. J.; McCleary, S. L.
1991-05-01
State-of-the-art nonlinear finite element analysis techniques are evaluated by applying them to a realistic aircraft structural component. A wing panel from the V-22 tiltrotor aircraft is chosen because it is a typical modern aircraft structural component for which there is experimental data for comparison of results. From blueprints and drawings, a very detailed finite element model containing 2284 9-node Assumed Natural-Coordinate Strain elements was generated. A novel solution strategy which accounts for geometric nonlinearity through the use of corotating element reference frames and nonlinear strain-displacement relations is used to analyze this detailed model. Results from linear analyses using the same finite element model are presented in order to illustrate the advantages and costs of the nonlinear analysis as compared with the more traditional linear analysis.
NASA Technical Reports Server (NTRS)
Davis, D. D., Jr.; Krishnamurthy, T.; Stroud, W. J.; Mccleary, S. L.
1991-01-01
State-of-the-art nonlinear finite element analysis techniques are evaluated by applying them to a realistic aircraft structural component. A wing panel from the V-22 tiltrotor aircraft is chosen because it is a typical modern aircraft structural component for which there is experimental data for comparison of results. From blueprints and drawings, a very detailed finite element model containing 2284 9-node Assumed Natural-Coordinate Strain elements was generated. A novel solution strategy which accounts for geometric nonlinearity through the use of corotating element reference frames and nonlinear strain-displacement relations is used to analyze this detailed model. Results from linear analyses using the same finite element model are presented in order to illustrate the advantages and costs of the nonlinear analysis as compared with the more traditional linear analysis.
Three dimensional modeling of rigid pavement : executive summary, February 1995.
DOT National Transportation Integrated Search
1995-02-17
A finite-element program has been developed to model the response of rigid pavement to both static loads and temperature changes. The program is fully three-dimensional and incorporates not only the common twenty-node brick element but also a thin in...
Three-dimensional modeling of rigid pavement : final report, September 1995.
DOT National Transportation Integrated Search
1995-02-17
A finite-element program has been developed to model the response of rigid pavement to both static loads and temperature changes. The program is fully three-dimensional and incorporates not only the common twenty-node brick element but also a thin in...
NASA Astrophysics Data System (ADS)
Yasin, M. Yaqoob; Kapuria, S.
2014-01-01
In this work, we present a new efficient four-node finite element for shallow multilayered piezoelectric shells, considering layerwise mechanics and electromechanical coupling. The laminate mechanics is based on the zigzag theory that has only seven kinematic degrees of freedom per node. The normal deformation of the piezoelectric layers under the electric field is accounted for without introducing any additional deflection variables. A consistent quadratic variation of the electric potential across the piezoelectric layers with the provision of satisfying the equipotential condition of electroded surfaces is adopted. The performance of the new element is demonstrated for the static response under mechanical and electric potential loads, and for free vibration response of smart shells under different boundary conditions. The predictions are found to be very close to the three dimensional piezoelasticity solutions for hybrid shells made of not only single-material composite substrates, but also sandwich substrates with a soft core for which the equivalent single layer (ESL) theories perform very badly.
Quasi-Static Viscoelastic Finite Element Model of an Aircraft Tire
NASA Technical Reports Server (NTRS)
Johnson, Arthur R.; Tanner, John A.; Mason, Angela J.
1999-01-01
An elastic large displacement thick-shell mixed finite element is modified to allow for the calculation of viscoelastic stresses. Internal strain variables are introduced at the element's stress nodes and are employed to construct a viscous material model. First order ordinary differential equations relate the internal strain variables to the corresponding elastic strains at the stress nodes. The viscous stresses are computed from the internal strain variables using viscous moduli which are a fraction of the elastic moduli. The energy dissipated by the action of the viscous stresses is included in the mixed variational functional. The nonlinear quasi-static viscous equilibrium equations are then obtained. Previously developed Taylor expansions of the nonlinear elastic equilibrium equations are modified to include the viscous terms. A predictor-corrector time marching solution algorithm is employed to solve the algebraic-differential equations. The viscous shell element is employed to computationally simulate a stair-step loading and unloading of an aircraft tire in contact with a frictionless surface.
Effects of Mesh Irregularities on Accuracy of Finite-Volume Discretization Schemes
NASA Technical Reports Server (NTRS)
Diskin, Boris; Thomas, James L.
2012-01-01
The effects of mesh irregularities on accuracy of unstructured node-centered finite-volume discretizations are considered. The focus is on an edge-based approach that uses unweighted least-squares gradient reconstruction with a quadratic fit. For inviscid fluxes, the discretization is nominally third order accurate on general triangular meshes. For viscous fluxes, the scheme is an average-least-squares formulation that is nominally second order accurate and contrasted with a common Green-Gauss discretization scheme. Gradient errors, truncation errors, and discretization errors are separately studied according to a previously introduced comprehensive methodology. The methodology considers three classes of grids: isotropic grids in a rectangular geometry, anisotropic grids typical of adapted grids, and anisotropic grids over a curved surface typical of advancing layer grids. The meshes within the classes range from regular to extremely irregular including meshes with random perturbation of nodes. Recommendations are made concerning the discretization schemes that are expected to be least sensitive to mesh irregularities in applications to turbulent flows in complex geometries.
A computer program for anisotropic shallow-shell finite elements using symbolic integration
NASA Technical Reports Server (NTRS)
Andersen, C. M.; Bowen, J. T.
1976-01-01
A FORTRAN computer program for anisotropic shallow-shell finite elements with variable curvature is described. A listing of the program is presented together with printed output for a sample case. Computation times and central memory requirements are given for several different elements. The program is based on a stiffness (displacement) finite-element model in which the fundamental unknowns consist of both the displacement and the rotation components of the reference surface of the shell. Two triangular and four quadrilateral elements are implemented in the program. The triangular elements have 6 or 10 nodes, and the quadrilateral elements have 4 or 8 nodes. Two of the quadrilateral elements have internal degrees of freedom associated with displacement modes which vanish along the edges of the elements (bubble modes). The triangular elements and the remaining two quadrilateral elements do not have bubble modes. The output from the program consists of arrays corresponding to the stiffness, the geometric stiffness, the consistent mass, and the consistent load matrices for individual elements. The integrals required for the generation of these arrays are evaluated by using symbolic (or analytic) integration in conjunction with certain group-theoretic techniques. The analytic expressions for the integrals are exact and were developed using the symbolic and algebraic manipulation language.
Lymph node staging of oral and maxillofacial neoplasms in 31 dogs and cats.
Herring, Erin S; Smith, Mark M; Robertson, John L
2002-09-01
A retrospective study was performed to report the histologic examination results of regional lymph nodes of dogs and cats with oral or maxillofacial neoplasms. Twenty-eight dogs and 3 cats were evaluated. Histologic examination results of standard and serial tissue sectioning of regional lymph nodes were recorded. When available, other clinical parameters including mandibular lymph node palpation, thoracic radiographs, and pre- and postoperative fine needle aspiration of lymph nodes were compared with the histologic results. Squamous cell carcinoma, fibrosarcoma, and melanoma were the most common neoplasms diagnosed in dogs. Squamous cell carcinoma and fibrosarcoma were diagnosed in cats. Of the palpably enlarged mandibular lymph nodes, 17.0% had metastatic disease histologically. Radiographically evident thoracic metastatic disease was present in 7.4% of cases. Preoperative cytologic evaluation of the mandibular lymph node based on fine needle aspiration concurred with the histologic results in 90.5% of lymph nodes examined. Postoperative cytologic evaluation of fine needle aspirates of regional lymph nodes concurred with the histologic results in 80.6% of lymph nodes examined. Only 54.5% of cases with metastatic disease to regional lymph nodes had metastasis that included the mandibular lymph node. Serial lymph node sectioning provided additional information or metastasis detection. Cytologic evaluation of the mandibular lymph node correlates positively with histology, however results may fail to indicate the presence of regional metastasis. Assessment of all regional lymph nodes in dogs and cats with oral or maxillofacial neoplasms will detect more metastatic disease than assessing the mandibular lymph node only.
New ghost-node method for linking different models with varied grid refinement
James, S.C.; Dickinson, J.E.; Mehl, S.W.; Hill, M.C.; Leake, S.A.; Zyvoloski, G.A.; Eddebbarh, A.-A.
2006-01-01
A flexible, robust method for linking grids of locally refined ground-water flow models constructed with different numerical methods is needed to address a variety of hydrologic problems. This work outlines and tests a new ghost-node model-linking method for a refined "child" model that is contained within a larger and coarser "parent" model that is based on the iterative method of Steffen W. Mehl and Mary C. Hill (2002, Advances in Water Res., 25, p. 497-511; 2004, Advances in Water Res., 27, p. 899-912). The method is applicable to steady-state solutions for ground-water flow. Tests are presented for a homogeneous two-dimensional system that has matching grids (parent cells border an integer number of child cells) or nonmatching grids. The coupled grids are simulated by using the finite-difference and finite-element models MODFLOW and FEHM, respectively. The simulations require no alteration of the MODFLOW or FEHM models and are executed using a batch file on Windows operating systems. Results indicate that when the grids are matched spatially so that nodes and child-cell boundaries are aligned, the new coupling technique has error nearly equal to that when coupling two MODFLOW models. When the grids are nonmatching, model accuracy is slightly increased compared to that for matching-grid cases. Overall, results indicate that the ghost-node technique is a viable means to couple distinct models because the overall head and flow errors relative to the analytical solution are less than if only the regional coarse-grid model was used to simulate flow in the child model's domain.
Densification and structural transitions in networks that grow by node copying
NASA Astrophysics Data System (ADS)
Bhat, U.; Krapivsky, P. L.; Lambiotte, R.; Redner, S.
2016-12-01
We introduce a growing network model, the copying model, in which a new node attaches to a randomly selected target node and, in addition, independently to each of the neighbors of the target with copying probability p . When p <1/2 , this algorithm generates sparse networks, in which the average node degree is finite. A power-law degree distribution also arises, with a nonuniversal exponent whose value is determined by a transcendental equation in p . In the sparse regime, the network is "normal," e.g., the relative fluctuations in the number of links are asymptotically negligible. For p ≥1/2 , the emergent networks are dense (the average degree increases with the number of nodes N ), and they exhibit intriguing structural behaviors. In particular, the N dependence of the number of m cliques (complete subgraphs of m nodes) undergoes m -1 transitions from normal to progressively more anomalous behavior at an m -dependent critical values of p . Different realizations of the network, which start from the same initial state, exhibit macroscopic fluctuations in the thermodynamic limit: absence of self-averaging. When linking to second neighbors of the target node can occur, the number of links asymptotically grows as N2 as N →∞ , so that the network is effectively complete as N →∞ .
Nogami, Hirofumi; Arai, Shozo; Okada, Hironao; Zhan, Lan; Itoh, Toshihiro
2017-01-01
Monitoring rumen conditions in cows is important because a dysfunctional rumen system may cause death. Sub-acute ruminal acidosis (SARA) is a typical disease in cows, and is characterized by repeated periods of low ruminal pH. SARA is regarded as a trigger for rumen atony, rumenitis, and abomasal displacement, which may cause death. In previous studies, rumen conditions were evaluated by wireless sensor nodes with pH measurement capability. The primary advantage of the pH sensor is its ability to continuously measure ruminal pH. However, these sensor nodes have short lifetimes since they are limited by the finite volume of the internal liquid of the reference electrode. Mimicking rumen atony, we attempt to evaluate the rumen condition using wireless sensor nodes with three-axis accelerometers. The theoretical life span of such sensor nodes depends mainly on the transmission frequency of acceleration data and the size of the battery, and the proposed sensor nodes are 30.0 mm in diameter and 70.0 mm in length and have a life span of over 600 days. Using the sensor nodes, we compare the rumen motility of the force transducer measurement with the three-axis accelerometer data. As a result, we can detect discriminative movement of rumen atony. PMID:28346374
Nogami, Hirofumi; Arai, Shozo; Okada, Hironao; Zhan, Lan; Itoh, Toshihiro
2017-03-27
Monitoring rumen conditions in cows is important because a dysfunctional rumen system may cause death. Sub-acute ruminal acidosis (SARA) is a typical disease in cows, and is characterized by repeated periods of low ruminal pH. SARA is regarded as a trigger for rumen atony, rumenitis, and abomasal displacement, which may cause death. In previous studies, rumen conditions were evaluated by wireless sensor nodes with pH measurement capability. The primary advantage of the pH sensor is its ability to continuously measure ruminal pH. However, these sensor nodes have short lifetimes since they are limited by the finite volume of the internal liquid of the reference electrode. Mimicking rumen atony, we attempt to evaluate the rumen condition using wireless sensor nodes with three-axis accelerometers. The theoretical life span of such sensor nodes depends mainly on the transmission frequency of acceleration data and the size of the battery, and the proposed sensor nodes are 30.0 mm in diameter and 70.0 mm in length and have a life span of over 600 days. Using the sensor nodes, we compare the rumen motility of the force transducer measurement with the three-axis accelerometer data. As a result, we can detect discriminative movement of rumen atony.
NASA Technical Reports Server (NTRS)
Hua, Chongyu; Volakis, John L.
1990-01-01
AUTOMESH-2D is a computer program specifically designed as a preprocessor for the scattering analysis of two dimensional bodies by the finite element method. This program was developed due to a need for reproducing the effort required to define and check the geometry data, element topology, and material properties. There are six modules in the program: (1) Parameter Specification; (2) Data Input; (3) Node Generation; (4) Element Generation; (5) Mesh Smoothing; and (5) Data File Generation.
NASA Astrophysics Data System (ADS)
Schmidt, Peter; Lund, Björn; Hieronymus, Christoph
2012-03-01
When general-purpose finite element analysis software is used to model glacial isostatic adjustment (GIA), the first-order effect of prestress advection has to be accounted for by the user. We show here that the common use of elastic foundations at boundaries between materials of different densities will produce incorrect displacements, unless the boundary is perpendicular to the direction of gravity. This is due to the foundations always acting perpendicular to the surface to which they are attached, while the body force they represent always acts in the direction of gravity. If prestress advection is instead accounted for by the use of elastic spring elements in the direction of gravity, the representation will be correct. The use of springs adds a computation of the spring constants to the analysis. The spring constant for a particular node is defined by the product of the density contrast at the boundary, the gravitational acceleration, and the area supported by the node. To be consistent with the finite element formulation, the area is evaluated by integration of the nodal shape functions. We outline an algorithm for the calculation and include a Python script that integrates the shape functions over a bilinear quadrilateral element. For linear rectangular and triangular elements, the area supported by each node is equal to the element area divided the number of defining nodes, thereby simplifying the computation. This is, however, not true in the general nonrectangular case, and we demonstrate this with a simple 1-element model. The spring constant calculation is simple and performed in the preprocessing stage of the analysis. The time spent on the calculation is more than compensated for by a shorter analysis time, compared to that for a model with foundations. We illustrate the effects of using springs versus foundations with a simple two-dimensional GIA model of glacial loading, where the Earth model has an inclined boundary between the overlying elastic layer and the lower viscoelastic layer. Our example shows that the error introduced by the use of foundations is large enough to affect an analysis based on high-accuracy geodetic data.
A new range-free localisation in wireless sensor networks using support vector machine
NASA Astrophysics Data System (ADS)
Wang, Zengfeng; Zhang, Hao; Lu, Tingting; Sun, Yujuan; Liu, Xing
2018-02-01
Location information of sensor nodes is of vital importance for most applications in wireless sensor networks (WSNs). This paper proposes a new range-free localisation algorithm using support vector machine (SVM) and polar coordinate system (PCS), LSVM-PCS. In LSVM-PCS, two sets of classes are first constructed based on sensor nodes' polar coordinates. Using the boundaries of the defined classes, the operation region of WSN field is partitioned into a finite number of polar grids. Each sensor node can be localised into one of the polar grids by executing two localisation algorithms that are developed on the basis of SVM classification. The centre of the resident polar grid is then estimated as the location of the sensor node. In addition, a two-hop mass-spring optimisation (THMSO) is also proposed to further improve the localisation accuracy of LSVM-PCS. In THMSO, both neighbourhood information and non-neighbourhood information are used to refine the sensor node location. The results obtained verify that the proposed algorithm provides a significant improvement over existing localisation methods.
Nonlinear Krylov and moving nodes in the method of lines
NASA Astrophysics Data System (ADS)
Miller, Keith
2005-11-01
We report on some successes and problem areas in the Method of Lines from our work with moving node finite element methods. First, we report on our "nonlinear Krylov accelerator" for the modified Newton's method on the nonlinear equations of our stiff ODE solver. Since 1990 it has been robust, simple, cheap, and automatic on all our moving node computations. We publicize further trials with it here because it should be of great general usefulness to all those solving evolutionary equations. Second, we discuss the need for reliable automatic choice of spatially variable time steps. Third, we discuss the need for robust and efficient iterative solvers for the difficult linearized equations (Jx=b) of our stiff ODE solver. Here, the 1997 thesis of Zulu Xaba has made significant progress.
Comparing Blast Effects on Human Torso Finite Element Model against Existing Lethality Curves
2010-07-15
vertebrae, intervertebral discs, ribs, cartilage, sternum, scapula, and clavicle . The internal organs include the heart and aorta, lungs and trachea...Thoracic Vertebrae Intervertebral Disc Scapula Clavicle Heritage Style Viewgraphs6 HTFEM Development Internal Organs Ten-noded tetrahedral
Nakamura, Keiko; Tajima, Kiyoshi; Chen, Ker-Kong; Nagamatsu, Yuki; Kakigawa, Hiroshi; Masumi, Shin-ich
2013-12-01
This study focused on the application of novel finite-element analysis software for constructing a finite-element model from the computed tomography data of a human dentulous mandible. The finite-element model is necessary for evaluating the mechanical response of the alveolar part of the mandible, resulting from occlusal force applied to the teeth during biting. Commercially available patient-specific general computed tomography-based finite-element analysis software was solely applied to the finite-element analysis for the extraction of computed tomography data. The mandibular bone with teeth was extracted from the original images. Both the enamel and the dentin were extracted after image processing, and the periodontal ligament was created from the segmented dentin. The constructed finite-element model was reasonably accurate using a total of 234,644 nodes and 1,268,784 tetrahedral and 40,665 shell elements. The elastic moduli of the heterogeneous mandibular bone were determined from the bone density data of the computed tomography images. The results suggested that the software applied in this study is both useful and powerful for creating a more accurate three-dimensional finite-element model of a dentulous mandible from the computed tomography data without the need for any other software.
Improving finite element results in modeling heart valve mechanics.
Earl, Emily; Mohammadi, Hadi
2018-06-01
Finite element analysis is a well-established computational tool which can be used for the analysis of soft tissue mechanics. Due to the structural complexity of the leaflet tissue of the heart valve, the currently available finite element models do not adequately represent the leaflet tissue. A method of addressing this issue is to implement computationally expensive finite element models, characterized by precise constitutive models including high-order and high-density mesh techniques. In this study, we introduce a novel numerical technique that enhances the results obtained from coarse mesh finite element models to provide accuracy comparable to that of fine mesh finite element models while maintaining a relatively low computational cost. Introduced in this study is a method by which the computational expense required to solve linear and nonlinear constitutive models, commonly used in heart valve mechanics simulations, is reduced while continuing to account for large and infinitesimal deformations. This continuum model is developed based on the least square algorithm procedure coupled with the finite difference method adhering to the assumption that the components of the strain tensor are available at all nodes of the finite element mesh model. The suggested numerical technique is easy to implement, practically efficient, and requires less computational time compared to currently available commercial finite element packages such as ANSYS and/or ABAQUS.
Verification of Orthogrid Finite Element Modeling Techniques
NASA Technical Reports Server (NTRS)
Steeve, B. E.
1996-01-01
The stress analysis of orthogrid structures, specifically with I-beam sections, is regularly performed using finite elements. Various modeling techniques are often used to simplify the modeling process but still adequately capture the actual hardware behavior. The accuracy of such 'Oshort cutso' is sometimes in question. This report compares three modeling techniques to actual test results from a loaded orthogrid panel. The finite element models include a beam, shell, and mixed beam and shell element model. Results show that the shell element model performs the best, but that the simpler beam and beam and shell element models provide reasonable to conservative results for a stress analysis. When deflection and stiffness is critical, it is important to capture the effect of the orthogrid nodes in the model.
Listing triangles in expected linear time on a class of power law graphs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nordman, Daniel J.; Wilson, Alyson G.; Phillips, Cynthia Ann
Enumerating triangles (3-cycles) in graphs is a kernel operation for social network analysis. For example, many community detection methods depend upon finding common neighbors of two related entities. We consider Cohen's simple and elegant solution for listing triangles: give each node a 'bucket.' Place each edge into the bucket of its endpoint of lowest degree, breaking ties consistently. Each node then checks each pair of edges in its bucket, testing for the adjacency that would complete that triangle. Cohen presents an informal argument that his algorithm should run well on real graphs. We formalize this argument by providing an analysismore » for the expected running time on a class of random graphs, including power law graphs. We consider a rigorously defined method for generating a random simple graph, the erased configuration model (ECM). In the ECM each node draws a degree independently from a marginal degree distribution, endpoints pair randomly, and we erase self loops and multiedges. If the marginal degree distribution has a finite second moment, it follows immediately that Cohen's algorithm runs in expected linear time. Furthermore, it can still run in expected linear time even when the degree distribution has such a heavy tail that the second moment is not finite. We prove that Cohen's algorithm runs in expected linear time when the marginal degree distribution has finite 4/3 moment and no vertex has degree larger than {radical}n. In fact we give the precise asymptotic value of the expected number of edge pairs per bucket. A finite 4/3 moment is required; if it is unbounded, then so is the number of pairs. The marginal degree distribution of a power law graph has bounded 4/3 moment when its exponent {alpha} is more than 7/3. Thus for this class of power law graphs, with degree at most {radical}n, Cohen's algorithm runs in expected linear time. This is precisely the value of {alpha} for which the clustering coefficient tends to zero asymptotically, and it is in the range that is relevant for the degree distribution of the World-Wide Web.« less
Algorithm implementation on the Navier-Stokes computer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krist, S.E.; Zang, T.A.
1987-03-01
The Navier-Stokes Computer is a multi-purpose parallel-processing supercomputer which is currently under development at Princeton University. It consists of multiple local memory parallel processors, called Nodes, which are interconnected in a hypercube network. Details of the procedures involved in implementing an algorithm on the Navier-Stokes computer are presented. The particular finite difference algorithm considered in this analysis was developed for simulation of laminar-turbulent transition in wall bounded shear flows. Projected timing results for implementing this algorithm indicate that operation rates in excess of 42 GFLOPS are feasible on a 128 Node machine.
Algorithm implementation on the Navier-Stokes computer
NASA Technical Reports Server (NTRS)
Krist, Steven E.; Zang, Thomas A.
1987-01-01
The Navier-Stokes Computer is a multi-purpose parallel-processing supercomputer which is currently under development at Princeton University. It consists of multiple local memory parallel processors, called Nodes, which are interconnected in a hypercube network. Details of the procedures involved in implementing an algorithm on the Navier-Stokes computer are presented. The particular finite difference algorithm considered in this analysis was developed for simulation of laminar-turbulent transition in wall bounded shear flows. Projected timing results for implementing this algorithm indicate that operation rates in excess of 42 GFLOPS are feasible on a 128 Node machine.
NASA Technical Reports Server (NTRS)
Ghista, D. N.; Hamid, M. S.
1977-01-01
The three-dimensional left ventricular chamber geometrical model is developed from single plane cineangiocardiogram. This left ventricular model is loaded by an internal pressure monitored by cardiac catheterization. The resulting stresses in the left ventricular model chamber's wall are determined by computerized finite element procedure. For the discretization of this left ventricular model structure, a 20-node, isoparametric finite element is employed. The analysis and formulation of the computerised procedure is presented in the paper, along with the detailed algorithms and computer programs. The procedure is applied to determine the stresses in a left ventricle at an instant, during systole. Next, a portion (represented by a finite element) of this left ventricular chamber is simulated as being infarcted by making its active-state modulus value equal to its passive-state value; the neighbouring elements are shown to relieve the 'infarcted' element of stress by themselves taking on more stress.
User's Guide for ENSAERO_FE Parallel Finite Element Solver
NASA Technical Reports Server (NTRS)
Eldred, Lloyd B.; Guruswamy, Guru P.
1999-01-01
A high fidelity parallel static structural analysis capability is created and interfaced to the multidisciplinary analysis package ENSAERO-MPI of Ames Research Center. This new module replaces ENSAERO's lower fidelity simple finite element and modal modules. Full aircraft structures may be more accurately modeled using the new finite element capability. Parallel computation is performed by breaking the full structure into multiple substructures. This approach is conceptually similar to ENSAERO's multizonal fluid analysis capability. The new substructure code is used to solve the structural finite element equations for each substructure in parallel. NASTRANKOSMIC is utilized as a front end for this code. Its full library of elements can be used to create an accurate and realistic aircraft model. It is used to create the stiffness matrices for each substructure. The new parallel code then uses an iterative preconditioned conjugate gradient method to solve the global structural equations for the substructure boundary nodes.
FSM-F: Finite State Machine Based Framework for Denial of Service and Intrusion Detection in MANET
N. Ahmed, Malik; Abdullah, Abdul Hanan; Kaiwartya, Omprakash
2016-01-01
Due to the continuous advancements in wireless communication in terms of quality of communication and affordability of the technology, the application area of Mobile Adhoc Networks (MANETs) significantly growing particularly in military and disaster management. Considering the sensitivity of the application areas, security in terms of detection of Denial of Service (DoS) and intrusion has become prime concern in research and development in the area. The security systems suggested in the past has state recognition problem where the system is not able to accurately identify the actual state of the network nodes due to the absence of clear definition of states of the nodes. In this context, this paper proposes a framework based on Finite State Machine (FSM) for denial of service and intrusion detection in MANETs. In particular, an Interruption Detection system for Adhoc On-demand Distance Vector (ID-AODV) protocol is presented based on finite state machine. The packet dropping and sequence number attacks are closely investigated and detection systems for both types of attacks are designed. The major functional modules of ID-AODV includes network monitoring system, finite state machine and attack detection model. Simulations are carried out in network simulator NS-2 to evaluate the performance of the proposed framework. A comparative evaluation of the performance is also performed with the state-of-the-art techniques: RIDAN and AODV. The performance evaluations attest the benefits of proposed framework in terms of providing better security for denial of service and intrusion detection attacks. PMID:27285146
Finite Element Modeling Used to Study Stress Distribution on the Foot
NASA Technical Reports Server (NTRS)
Morales, Nelson; Davis, Brian; Tajaddini, Azita
2004-01-01
A method to study the stress distribution inside the forefoot during walking was developed at the Cleveland Clinic Foundation by a researcher from the NASA Glenn Research Center. In this method, a semiautomated process was outlined to create a three-dimensional, patient-specific, finite element model (FEM) of the forefoot using magnetic resonance images (MRI). The images were processed in Matlab using the k-nearest neighbor (k-NN) classification algorithm and Sobel edge detection to separate the different tissue types: bone, skin, fat, and muscle. This information was used to create curves and surfaces that were exported to an FEM preprocessor known as Truegrid. In Truegrid, eight-noded or brick elements were created by using surface mapping. The FEM was processed and postprocessed in Abaqus. Material properties of the models were obtained from past experiments such as fat pad confined compression, skin axial and biaxial tests, muscle in vivo compressive tests, and reference literature (bone properties). Nonlinear (hyperelastic) material models were used for the skin (epidermis and dermis), fat, and muscles; and a linear elastic model was used for the bones. Muscle activation during walking yielded uncertainties in the muscle material model since contracted muscles are stiffer than relaxed muscles. These uncertainties were resolved by performing a sensitivity analysis of the muscle material properties. The original properties were multiplied by arbitrary factors of 2, 3, 0.5, and 0.33. The strain and stress distributions, as well as the locations of peak values, were similar in all cases. The peak contact pressure P obtained for each case varied with respect to the applied factor f as follows:
Practical aspects of prestack depth migration with finite differences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ober, C.C.; Oldfield, R.A.; Womble, D.E.
1997-07-01
Finite-difference, prestack, depth migrations offers significant improvements over Kirchhoff methods in imaging near or under salt structures. The authors have implemented a finite-difference prestack depth migration algorithm for use on massively parallel computers which is discussed. The image quality of the finite-difference scheme has been investigated and suggested improvements are discussed. In this presentation, the authors discuss an implicit finite difference migration code, called Salvo, that has been developed through an ACTI (Advanced Computational Technology Initiative) joint project. This code is designed to be efficient on a variety of massively parallel computers. It takes advantage of both frequency and spatialmore » parallelism as well as the use of nodes dedicated to data input/output (I/O). Besides giving an overview of the finite-difference algorithm and some of the parallelism techniques used, migration results using both Kirchhoff and finite-difference migration will be presented and compared. The authors start out with a very simple Cartoon model where one can intuitively see the multiple travel paths and some of the potential problems that will be encountered with Kirchhoff migration. More complex synthetic models as well as results from actual seismic data from the Gulf of Mexico will be shown.« less
NASA Technical Reports Server (NTRS)
Bakuckas, J. G.; Tan, T. M.; Lau, A. C. W.; Awerbuch, J.
1993-01-01
A finite element-based numerical technique has been developed to simulate damage growth in unidirectional composites. This technique incorporates elastic-plastic analysis, micromechanics analysis, failure criteria, and a node splitting and node force relaxation algorithm to create crack surfaces. Any combination of fiber and matrix properties can be used. One of the salient features of this technique is that damage growth can be simulated without pre-specifying a crack path. In addition, multiple damage mechanisms in the forms of matrix cracking, fiber breakage, fiber-matrix debonding and plastic deformation are capable of occurring simultaneously. The prevailing failure mechanism and the damage (crack) growth direction are dictated by the instantaneous near-tip stress and strain fields. Once the failure mechanism and crack direction are determined, the crack is advanced via the node splitting and node force relaxation algorithm. Simulations of the damage growth process in center-slit boron/aluminum and silicon carbide/titanium unidirectional specimens were performed. The simulation results agreed quite well with the experimental observations.
Simplified Dynamic Analysis of Grinders Spindle Node
NASA Astrophysics Data System (ADS)
Demec, Peter
2014-12-01
The contribution deals with the simplified dynamic analysis of surface grinding machine spindle node. Dynamic analysis is based on the use of the transfer matrix method, which is essentially a matrix form of method of initial parameters. The advantage of the described method, despite the seemingly complex mathematical apparatus, is primarily, that it does not require for solve the problem of costly commercial software using finite element method. All calculations can be made for example in MS Excel, which is advantageous especially in the initial stages of constructing of spindle node for the rapid assessment of the suitability its design. After detailing the entire structure of spindle node is then also necessary to perform the refined dynamic analysis in the environment of FEM, which it requires the necessary skills and experience and it is therefore economically difficult. This work was developed within grant project KEGA No. 023TUKE-4/2012 Creation of a comprehensive educational - teaching material for the article Production technique using a combination of traditional and modern information technology and e-learning.
Minimizing EIT image artefacts from mesh variability in finite element models.
Adler, Andy; Lionheart, William R B
2011-07-01
Electrical impedance tomography (EIT) solves an inverse problem to estimate the conductivity distribution within a body from electrical simulation and measurements at the body surface, where the inverse problem is based on a solution of Laplace's equation in the body. Most commonly, a finite element model (FEM) is used, largely because of its ability to describe irregular body shapes. In this paper, we show that simulated variations in the positions of internal nodes within a FEM can result in serious image artefacts in the reconstructed images. Such variations occur when designing FEM meshes to conform to conductivity targets, but the effects may also be seen in other applications of absolute and difference EIT. We explore the hypothesis that these artefacts result from changes in the projection of the anisotropic conductivity tensor onto the FEM system matrix, which introduces anisotropic components into the simulated voltages, which cannot be reconstructed onto an isotropic image, and appear as artefacts. The magnitude of the anisotropic effect is analysed for a small regular FEM, and shown to be proportional to the relative node movement as a fraction of element size. In order to address this problem, we show that it is possible to incorporate a FEM node movement component into the formulation of the inverse problem. These results suggest that it is important to consider artefacts due to FEM mesh geometry in EIT image reconstruction.
Application of kernel method in fluorescence molecular tomography
NASA Astrophysics Data System (ADS)
Zhao, Yue; Baikejiang, Reheman; Li, Changqing
2017-02-01
Reconstruction of fluorescence molecular tomography (FMT) is an ill-posed inverse problem. Anatomical guidance in the FMT reconstruction can improve FMT reconstruction efficiently. We have developed a kernel method to introduce the anatomical guidance into FMT robustly and easily. The kernel method is from machine learning for pattern analysis and is an efficient way to represent anatomical features. For the finite element method based FMT reconstruction, we calculate a kernel function for each finite element node from an anatomical image, such as a micro-CT image. Then the fluorophore concentration at each node is represented by a kernel coefficient vector and the corresponding kernel function. In the FMT forward model, we have a new system matrix by multiplying the sensitivity matrix with the kernel matrix. Thus, the kernel coefficient vector is the unknown to be reconstructed following a standard iterative reconstruction process. We convert the FMT reconstruction problem into the kernel coefficient reconstruction problem. The desired fluorophore concentration at each node can be calculated accordingly. Numerical simulation studies have demonstrated that the proposed kernel-based algorithm can improve the spatial resolution of the reconstructed FMT images. In the proposed kernel method, the anatomical guidance can be obtained directly from the anatomical image and is included in the forward modeling. One of the advantages is that we do not need to segment the anatomical image for the targets and background.
[Interest of infiltration of Impar node in rebel vulvodynia: About a series of 8 cases].
Cardaillac, C; Ploteau, S; Labat, J-J; Levesque, A; Riant, T
2016-12-01
Vulvodynia is a common and debilitating disease, for which treatments are often of limits efficacy. As the Impar node receives nociceptive afferents from pelvis and perineum, it is a potential therapeutic target to treat pain in this region. The objective of the study was to evaluate the relevance of ropivacaine Impar node infiltration in patients suffering from rebel vulvodyny. This was a retrospective, single-center study. The Impar node infiltrations were performed by a single operator in eight patients suffering from rebel vulvodynia. Ropivacaine and iopamidol were administered in prone position with a lateral approach under scanner. The anaesthetic diagnostic block of the Impar node was positive in all eight patients included in the study. Thereafter these patients benefited of 2 additional therapeutic infiltrations. Subsequently, an infiltration of the node with 100UI of botulinum toxin was performed in two patients with a bilateral approach under scanner. The analgesic efficacy was evaluated by a Visual Analogic Scale (VAS) before, immediately after, and at day 15 following the infiltration. A subjective evaluation of pain comprising the percentage of overall improvement and duration of analgesic efficacy was performed after the third infiltration. Comparison of the VAS before and immediately after the Impar block showed in the first anesthetic block a significant decrease in pain median VAS from 51/100 to 16/100 (P=0.01). Similarly, for the second block, VAS decreased from 52.5/100 to 15/100 (P=0.02). The maximal pain reported on Day 15, was significantly lower after the third infiltration than that after the first (P=0.03). Five patients reported an overall improvement in their quality of life of over 50%, which lasted an average of six weeks. A long lasting effectiveness was obtained in the two patients who benefited of the botulinum toxin. The infiltration of Impar node is an interesting technique for patients suffering of rebel vulvodynia. 4. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Calibration of International Space Station (ISS) Node 1 Vibro-Acoustic Model
NASA Technical Reports Server (NTRS)
Zhang, Weiguo; Raveendra, Ravi
2014-01-01
Reported here is the ability of utilizing the Energy Finite Element Method (E-FEM) to predict the vibro-acoustic sound fields within the International Space Station (ISS) Node 1 and to compare the results with actual measurements of leak sounds made by a one atmosphere to vacuum leak through a small hole in the pressure wall of the Node 1 STA module during its period of storage at Stennis Space Center (SSC). While the E-FEM method represents a reverberant sound field calculation, of importance to this application is the requirement to also handle the direct field effect of the sound generation. It was also important to be able to compute the sound fields in the ultrasonic frequency range. This report demonstrates the capability of this technology as applied to this type of application.
Comparison of radiated noise from shrouded and unshrouded propellers
NASA Technical Reports Server (NTRS)
Eversman, Walter
1992-01-01
The ducted propeller in a free field is modeled using the finite element method. The generation, propagation, and radiation of sound from a ducted fan is described by the convened wave equation with volumetric body forces. Body forces are used to introduce the blade loading for rotating blades and stationary exit guide vanes. For an axisymmetric nacelle or shroud, the problem is formulated in cylindrical coordinates. For a specified angular harmonic, the angular coordinate is eliminated, resulting in a two-dimensional representation. A finite element discretization based on nine-node quadratic isoparametric elements is used.
Finite element model for brittle fracture and fragmentation
Li, Wei; Delaney, Tristan J.; Jiao, Xiangmin; ...
2016-06-01
A new computational model for brittle fracture and fragmentation has been developed based on finite element analysis of non-linear elasticity equations. The proposed model propagates the cracks by splitting the mesh nodes alongside the most over-strained edges based on the principal direction of strain tensor. To prevent elements from overlapping and folding under large deformations, robust geometrical constraints using the method of Lagrange multipliers have been incorporated. In conclusion, the model has been applied to 2D simulations of the formation and propagation of cracks in brittle materials, and the fracture and fragmentation of stretched and compressed materials.
Finite element model for brittle fracture and fragmentation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Wei; Delaney, Tristan J.; Jiao, Xiangmin
A new computational model for brittle fracture and fragmentation has been developed based on finite element analysis of non-linear elasticity equations. The proposed model propagates the cracks by splitting the mesh nodes alongside the most over-strained edges based on the principal direction of strain tensor. To prevent elements from overlapping and folding under large deformations, robust geometrical constraints using the method of Lagrange multipliers have been incorporated. In conclusion, the model has been applied to 2D simulations of the formation and propagation of cracks in brittle materials, and the fracture and fragmentation of stretched and compressed materials.
Multisource passive acoustic tracking: an application of random finite set data fusion
NASA Astrophysics Data System (ADS)
Ali, Andreas M.; Hudson, Ralph E.; Lorenzelli, Flavio; Yao, Kung
2010-04-01
Multisource passive acoustic tracking is useful in animal bio-behavioral study by replacing or enhancing human involvement during and after field data collection. Multiple simultaneous vocalizations are a common occurrence in a forest or a jungle, where many species are encountered. Given a set of nodes that are capable of producing multiple direction-of-arrivals (DOAs), such data needs to be combined into meaningful estimates. Random Finite Set provides the mathematical probabilistic model, which is suitable for analysis and optimal estimation algorithm synthesis. Then the proposed algorithm has been verified using a simulation and a controlled test experiment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Paul T.; Heroux, Michael A.; Barrett, Richard F.
The performance of a large-scale, production-quality science and engineering application (‘app’) is often dominated by a small subset of the code. Even within that subset, computational and data access patterns are often repeated, so that an even smaller portion can represent the performance-impacting features. If application developers, parallel computing experts, and computer architects can together identify this representative subset and then develop a small mini-application (‘miniapp’) that can capture these primary performance characteristics, then this miniapp can be used to both improve the performance of the app as well as provide a tool for co-design for the high-performance computing community.more » However, a critical question is whether a miniapp can effectively capture key performance behavior of an app. This study provides a comparison of an implicit finite element semiconductor device modeling app on unstructured meshes with an implicit finite element miniapp on unstructured meshes. The goal is to assess whether the miniapp is predictive of the performance of the app. Finally, single compute node performance will be compared, as well as scaling up to 16,000 cores. Results indicate that the miniapp can be reasonably predictive of the performance characteristics of the app for a single iteration of the solver on a single compute node.« less
Lin, Paul T.; Heroux, Michael A.; Barrett, Richard F.; ...
2015-07-30
The performance of a large-scale, production-quality science and engineering application (‘app’) is often dominated by a small subset of the code. Even within that subset, computational and data access patterns are often repeated, so that an even smaller portion can represent the performance-impacting features. If application developers, parallel computing experts, and computer architects can together identify this representative subset and then develop a small mini-application (‘miniapp’) that can capture these primary performance characteristics, then this miniapp can be used to both improve the performance of the app as well as provide a tool for co-design for the high-performance computing community.more » However, a critical question is whether a miniapp can effectively capture key performance behavior of an app. This study provides a comparison of an implicit finite element semiconductor device modeling app on unstructured meshes with an implicit finite element miniapp on unstructured meshes. The goal is to assess whether the miniapp is predictive of the performance of the app. Finally, single compute node performance will be compared, as well as scaling up to 16,000 cores. Results indicate that the miniapp can be reasonably predictive of the performance characteristics of the app for a single iteration of the solver on a single compute node.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shadid, John Nicolas; Lin, Paul Tinphone
2009-01-01
This preliminary study considers the scaling and performance of a finite element (FE) semiconductor device simulator on a capacity cluster with 272 compute nodes based on a homogeneous multicore node architecture utilizing 16 cores. The inter-node communication backbone for this Tri-Lab Linux Capacity Cluster (TLCC) machine is comprised of an InfiniBand interconnect. The nonuniform memory access (NUMA) nodes consist of 2.2 GHz quad socket/quad core AMD Opteron processors. The performance results for this study are obtained with a FE semiconductor device simulation code (Charon) that is based on a fully-coupled Newton-Krylov solver with domain decomposition and multilevel preconditioners. Scaling andmore » multicore performance results are presented for large-scale problems of 100+ million unknowns on up to 4096 cores. A parallel scaling comparison is also presented with the Cray XT3/4 Red Storm capability platform. The results indicate that an MPI-only programming model for utilizing the multicore nodes is reasonably efficient on all 16 cores per compute node. However, the results also indicated that the multilevel preconditioner, which is critical for large-scale capability type simulations, scales better on the Red Storm machine than the TLCC machine.« less
Growing optimal scale-free networks via likelihood
NASA Astrophysics Data System (ADS)
Small, Michael; Li, Yingying; Stemler, Thomas; Judd, Kevin
2015-04-01
Preferential attachment, by which new nodes attach to existing nodes with probability proportional to the existing nodes' degree, has become the standard growth model for scale-free networks, where the asymptotic probability of a node having degree k is proportional to k-γ. However, the motivation for this model is entirely ad hoc. We use exact likelihood arguments and show that the optimal way to build a scale-free network is to attach most new links to nodes of low degree. Curiously, this leads to a scale-free network with a single dominant hub: a starlike structure we call a superstar network. Asymptotically, the optimal strategy is to attach each new node to one of the nodes of degree k with probability proportional to 1/N +ζ (γ ) (k+1 ) γ (in a N node network): a stronger bias toward high degree nodes than exhibited by standard preferential attachment. Our algorithm generates optimally scale-free networks (the superstar networks) as well as randomly sampling the space of all scale-free networks with a given degree exponent γ . We generate viable realization with finite N for 1 ≪γ <2 as well as γ >2 . We observe an apparently discontinuous transition at γ ≈2 between so-called superstar networks and more treelike realizations. Gradually increasing γ further leads to reemergence of a superstar hub. To quantify these structural features, we derive a new analytic expression for the expected degree exponent of a pure preferential attachment process and introduce alternative measures of network entropy. Our approach is generic and can also be applied to an arbitrary degree distribution.
Studies of biaxial mechanical properties and nonlinear finite element modeling of skin.
Shang, Xituan; Yen, Michael R T; Gaber, M Waleed
2010-06-01
The objective of this research is to conduct mechanical property studies of skin from two individual but potentially connected aspects. One is to determine the mechanical properties of the skin experimentally by biaxial tests, and the other is to use the finite element method to model the skin properties. Dynamic biaxial tests were performed on 16 pieces of abdominal skin specimen from rats. Typical biaxial stress-strain responses show that skin possesses anisotropy, nonlinearity and hysteresis. To describe the stress-strain relationship in forms of strain energy function, the material constants of each specimen were obtained and the results show a high correlation between theory and experiments. Based on the experimental results, a finite element model of skin was built to model the skin's special properties including anisotropy and nonlinearity. This model was based on Arruda and Boyce's eight-chain model and Bischoff et al.'s finite element model of skin. The simulation results show that the isotropic, nonlinear eight-chain model could predict the skin's anisotropic and nonlinear responses to biaxial loading by the presence of an anisotropic prestress state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giunta, G.; Belouettar, S.
In this paper, the static response of three-dimensional beams made of functionally graded materials is investigated through a family of hierarchical one-dimensional finite elements. A wide variety of elements is proposed differing by the kinematic formulation and the number of nodes per elements along the beam axis. Elements’ stiffness matrix and load vector are derived in a unified nuclear form that does not depend upon the a priori expansion order over the cross-section nor the finite element approximation along the beam axis. Results are validated towards three-dimensional finite element models as well as equivalent Navier-type analytical solutions. The numerical investigationsmore » show that accurate and efficient solutions (when compared with full three-dimensional FEM solutions) can be obtained by the proposed family of hierarchical one-dimensional elements’ family.« less
NASA Technical Reports Server (NTRS)
Raju, I. S.
1986-01-01
The Q3DG is a computer program developed to perform a quasi-three-dimensional stress analysis for composite laminates which may contain delaminations. The laminates may be subjected to mechanical, thermal, and hygroscopic loads. The program uses the finite element method and models the laminates with eight-noded parabolic isoparametric elements. The program computes the strain-energy-release components and the total strain-energy release in all three modes for delamination growth. A rectangular mesh and data file generator, DATGEN, is included. The DATGEN program can be executed interactively and is user friendly. The documentation includes sections dealing with the Q3D analysis theory, derivation of element stiffness matrices and consistent load vectors for the parabolic element. Several sample problems with the input for Q3DG and output from the program are included. The capabilities of the DATGEN program are illustrated with examples of interactive sessions. A microfiche of all the examples is included. The Q3DG and DATGEN programs have been implemented on CYBER 170 class computers. Q3DG and DATGEN were developed at the Langley Research Center during the early eighties and documented in 1984 to 1985.
Numerical modelling of flow through foam's node.
Anazadehsayed, Abdolhamid; Rezaee, Nastaran; Naser, Jamal
2017-10-15
In this work, for the first time, a three-dimensional model to describe the dynamics of flow through geometric Plateau border and node components of foam is presented. The model involves a microscopic-scale structure of one interior node and four Plateau borders with an angle of 109.5 from each other. The majority of the surfaces in the model make a liquid-gas interface where the boundary condition of stress balance between the surface and bulk is applied. The three-dimensional Navier-Stoke equation, along with continuity equation, is solved using the finite volume approach. The numerical results are validated against the available experimental results for the flow velocity and resistance in the interior nodes and Plateau borders. A qualitative illustration of flow in a node in different orientations is shown. The scaled resistance against the flow for different liquid-gas interface mobility is studied and the geometrical characteristics of the node and Plateau border components of the system are compared to investigate the Plateau border and node dominated flow regimes numerically. The findings show the values of the resistance in each component, in addition to the exact point where the flow regimes switch. Furthermore, a more accurate effect of the liquid-gas interface on the foam flow, particularly in the presence of a node in the foam network is obtained. The comparison of the available numerical results with our numerical results shows that the velocity of the node-PB system is lower than the velocity of single PB system for mobile interfaces. That is owing to the fact that despite the more relaxed geometrical structure of the node, constraining effect of merging and mixing of flow and increased viscous damping in the node component result in the node-dominated regime. Moreover, we obtain an accurate updated correlation for the dependence of the scaled average velocity of the node-Plateau border system on the liquid-gas interface mobility described by Boussinesq number. Copyright © 2017 Elsevier Inc. All rights reserved.
Kawamoto, Hirokazu; Takayasu, Hideki; Jensen, Henrik Jeldtoft; Takayasu, Misako
2015-01-01
Through precise numerical analysis, we reveal a new type of universal loopless percolation transition in randomly removed complex networks. As an example of a real-world network, we apply our analysis to a business relation network consisting of approximately 3,000,000 links among 300,000 firms and observe the transition with critical exponents close to the mean-field values taking into account the finite size effect. We focus on the largest cluster at the critical point, and introduce survival probability as a new measure characterizing the robustness of each node. We also discuss the relation between survival probability and k-shell decomposition.
Quantifying uncertainties in the structural response of SSME blades
NASA Technical Reports Server (NTRS)
Nagpal, Vinod K.
1987-01-01
To quantify the uncertainties associated with the geometry and material properties of a Space Shuttle Main Engine (SSME) turbopump blade, a computer code known as STAEBL was used. A finite element model of the blade used 80 triangular shell elements with 55 nodes and five degrees of freedom per node. The whole study was simulated on the computer and no real experiments were conducted. The structural response has been evaluated in terms of three variables which are natural frequencies, root (maximum) stress, and blade tip displacements. The results of the study indicate that only the geometric uncertainties have significant effects on the response. Uncertainties in material properties have insignificant effects.
NASA Astrophysics Data System (ADS)
Dana, Saumik; Ganis, Benjamin; Wheeler, Mary F.
2018-01-01
In coupled flow and poromechanics phenomena representing hydrocarbon production or CO2 sequestration in deep subsurface reservoirs, the spatial domain in which fluid flow occurs is usually much smaller than the spatial domain over which significant deformation occurs. The typical approach is to either impose an overburden pressure directly on the reservoir thus treating it as a coupled problem domain or to model flow on a huge domain with zero permeability cells to mimic the no flow boundary condition on the interface of the reservoir and the surrounding rock. The former approach precludes a study of land subsidence or uplift and further does not mimic the true effect of the overburden on stress sensitive reservoirs whereas the latter approach has huge computational costs. In order to address these challenges, we augment the fixed-stress split iterative scheme with upscaling and downscaling operators to enable modeling flow and mechanics on overlapping nonmatching hexahedral grids. Flow is solved on a finer mesh using a multipoint flux mixed finite element method and mechanics is solved on a coarse mesh using a conforming Galerkin method. The multiscale operators are constructed using a procedure that involves singular value decompositions, a surface intersections algorithm and Delaunay triangulations. We numerically demonstrate the convergence of the augmented scheme using the classical Mandel's problem solution.
NASA Astrophysics Data System (ADS)
Balusu, K.; Huang, H.
2017-04-01
A combined dislocation fan-finite element (DF-FE) method is presented for efficient and accurate simulation of dislocation nodal forces in 3D elastically anisotropic crystals with dislocations intersecting the free surfaces. The finite domain problem is decomposed into half-spaces with singular traction stresses, an infinite domain, and a finite domain with non-singular traction stresses. As such, the singular and non-singular parts of the traction stresses are addressed separately; the dislocation fan (DF) method is introduced to balance the singular traction stresses in the half-spaces while the finite element method (FEM) is employed to enforce the non-singular boundary conditions. The accuracy and efficiency of the DF method is demonstrated using a simple isotropic test case, by comparing it with the analytical solution as well as the FEM solution. The DF-FE method is subsequently used for calculating the dislocation nodal forces in a finite elastically anisotropic crystal, which produces dislocation nodal forces that converge rapidly with increasing mesh resolutions. In comparison, the FEM solution fails to converge, especially for nodes closer to the surfaces.
Computing an upper bound on contact stress with surrogate duality
NASA Astrophysics Data System (ADS)
Xuan, Zhaocheng; Papadopoulos, Panayiotis
2016-07-01
We present a method for computing an upper bound on the contact stress of elastic bodies. The continuum model of elastic bodies with contact is first modeled as a constrained optimization problem by using finite elements. An explicit formulation of the total contact force, a fraction function with the numerator as a linear function and the denominator as a quadratic convex function, is derived with only the normalized nodal contact forces as the constrained variables in a standard simplex. Then two bounds are obtained for the sum of the nodal contact forces. The first is an explicit formulation of matrices of the finite element model, derived by maximizing the fraction function under the constraint that the sum of the normalized nodal contact forces is one. The second bound is solved by first maximizing the fraction function subject to the standard simplex and then using Dinkelbach's algorithm for fractional programming to find the maximum—since the fraction function is pseudo concave in a neighborhood of the solution. These two bounds are solved with the problem dimensions being only the number of contact nodes or node pairs, which are much smaller than the dimension for the original problem, namely, the number of degrees of freedom. Next, a scheme for constructing an upper bound on the contact stress is proposed that uses the bounds on the sum of the nodal contact forces obtained on a fine finite element mesh and the nodal contact forces obtained on a coarse finite element mesh, which are problems that can be solved at a lower computational cost. Finally, the proposed method is verified through some examples concerning both frictionless and frictional contact to demonstrate the method's feasibility, efficiency, and robustness.
NASA Astrophysics Data System (ADS)
Pathak, Harshavardhana S.; Shukla, Ratnesh K.
2016-08-01
A high-order adaptive finite-volume method is presented for simulating inviscid compressible flows on time-dependent redistributed grids. The method achieves dynamic adaptation through a combination of time-dependent mesh node clustering in regions characterized by strong solution gradients and an optimal selection of the order of accuracy and the associated reconstruction stencil in a conservative finite-volume framework. This combined approach maximizes spatial resolution in discontinuous regions that require low-order approximations for oscillation-free shock capturing. Over smooth regions, high-order discretization through finite-volume WENO schemes minimizes numerical dissipation and provides excellent resolution of intricate flow features. The method including the moving mesh equations and the compressible flow solver is formulated entirely on a transformed time-independent computational domain discretized using a simple uniform Cartesian mesh. Approximations for the metric terms that enforce discrete geometric conservation law while preserving the fourth-order accuracy of the two-point Gaussian quadrature rule are developed. Spurious Cartesian grid induced shock instabilities such as carbuncles that feature in a local one-dimensional contact capturing treatment along the cell face normals are effectively eliminated through upwind flux calculation using a rotated Hartex-Lax-van Leer contact resolving (HLLC) approximate Riemann solver for the Euler equations in generalized coordinates. Numerical experiments with the fifth and ninth-order WENO reconstructions at the two-point Gaussian quadrature nodes, over a range of challenging test cases, indicate that the redistributed mesh effectively adapts to the dynamic flow gradients thereby improving the solution accuracy substantially even when the initial starting mesh is non-adaptive. The high adaptivity combined with the fifth and especially the ninth-order WENO reconstruction allows remarkably sharp capture of discontinuous propagating shocks with simultaneous resolution of smooth yet complex small scale unsteady flow features to an exceptional detail.
Magnetic-tunnelling-induced Weyl node annihilation in TaP
NASA Astrophysics Data System (ADS)
Zhang, Cheng-Long; Xu, Su-Yang; Wang, C. M.; Lin, Ziquan; Du, Z. Z.; Guo, Cheng; Lee, Chi-Cheng; Lu, Hong; Feng, Yiyang; Huang, Shin-Ming; Chang, Guoqing; Hsu, Chuang-Han; Liu, Haiwen; Lin, Hsin; Li, Liang; Zhang, Chi; Zhang, Jinglei; Xie, Xin-Cheng; Neupert, Titus; Hasan, M. Zahid; Lu, Hai-Zhou; Wang, Junfeng; Jia, Shuang
2017-10-01
Weyl nodes are topological objects in three-dimensional metals. Whereas the energy of the lowest Landau band of a conventional Fermi pocket increases with magnetic field due to the zero-point energy (1/2ℏω), the lowest Landau band of Weyl cones stays at zero energy unless a strong magnetic field couples Weyl fermions of opposite chirality. In the Weyl semimetal TaP, which possesses two types of Weyl nodes (four pairs of W1 and eight pairs of W2 nodes), we observed such a magnetic coupling between the electron pockets arising from the W1 Weyl fermions. As a result, their lowest Landau bands move above the chemical potential, leading to a sharp sign reversal in the Hall resistivity at a specific magnetic field corresponding to the separation in momentum space of the W1 Weyl nodes, . By contrast, annihilation is not observed for the hole pocket because the separation of the W2 Weyl nodes is much larger. These findings reveal the nontrivial topology of Weyl fermions in high-field transport measurements and demonstrate the observation of Weyl node annihilation, which is a unique topological phenomenon associated with Weyl fermions.
Nonlinear Legendre Spectral Finite Elements for Wind Turbine Blade Dynamics: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Q.; Sprague, M. A.; Jonkman, J.
2014-01-01
This paper presents a numerical implementation and examination of new wind turbine blade finite element model based on Geometrically Exact Beam Theory (GEBT) and a high-order spectral finite element method. The displacement-based GEBT is presented, which includes the coupling effects that exist in composite structures and geometric nonlinearity. Legendre spectral finite elements (LSFEs) are high-order finite elements with nodes located at the Gauss-Legendre-Lobatto points. LSFEs can be an order of magnitude more efficient that low-order finite elements for a given accuracy level. Interpolation of the three-dimensional rotation, a major technical barrier in large-deformation simulation, is discussed in the context ofmore » LSFEs. It is shown, by numerical example, that the high-order LSFEs, where weak forms are evaluated with nodal quadrature, do not suffer from a drawback that exists in low-order finite elements where the tangent-stiffness matrix is calculated at the Gauss points. Finally, the new LSFE code is implemented in the new FAST Modularization Framework for dynamic simulation of highly flexible composite-material wind turbine blades. The framework allows for fully interactive simulations of turbine blades in operating conditions. Numerical examples showing validation and LSFE performance will be provided in the final paper.« less
Finite element solution of lubrication problems
NASA Technical Reports Server (NTRS)
Reddi, M. M.
1971-01-01
A variational formulation of the transient lubrication problem is presented and the corresponding finite element equations derived for three and six point triangles, and, four and eight point quadrilaterals. Test solutions for a one dimensional slider bearing used in validating the computer program are given. Utility of the method is demonstrated by a solution of the shrouded step bearing.
Forecasting of Storm-Surge Floods Using ADCIRC and Optimized DEMs
NASA Technical Reports Server (NTRS)
Valenti, Elizabeth; Fitzpatrick, Patrick
2006-01-01
Increasing the accuracy of storm-surge flood forecasts is essential for improving preparedness for hurricanes and other severe storms and, in particular, for optimizing evacuation scenarios. An interactive database, developed by WorldWinds, Inc., contains atlases of storm-surge flood levels for the Louisiana/Mississippi gulf coast region. These atlases were developed to improve forecasting of flooding along the coastline and estuaries and in adjacent inland areas. Storm-surge heights depend on a complex interaction of several factors, including: storm size, central minimum pressure, forward speed of motion, bottom topography near the point of landfall, astronomical tides, and, most importantly, maximum wind speed. The information in the atlases was generated in over 100 computational simulations, partly by use of a parallel-processing version of the ADvanced CIRCulation (ADCIRC) model. ADCIRC is a nonlinear computational model of hydrodynamics, developed by the U.S. Army Corps of Engineers and the US Navy, as a family of two- and three-dimensional finite-element-based codes. It affords a capability for simulating tidal circulation and storm-surge propagation over very large computational domains, while simultaneously providing high-resolution output in areas of complex shoreline and bathymetry. The ADCIRC finite-element grid for this project covered the Gulf of Mexico and contiguous basins, extending into the deep Atlantic Ocean with progressively higher resolution approaching the study area. The advantage of using ADCIRC over other storm-surge models, such as SLOSH, is that input conditions can include all or part of wind stress, tides, wave stress, and river discharge, which serve to make the model output more accurate. To keep the computational load manageable, this work was conducted using only the wind stress, calculated by using historical data from Hurricane Camille, as the input condition for the model. Hurricane storm-surge simulations were performed on an eight-node Linux computer cluster. Each node contained dual 2-GHz processors, 2GB of memory, and a 40GB hard drive. The digital elevation model (DEM) for this region was specified using a combination of Navy data (over water), NOAA data (for the coastline), and optimized Interferometric Synthetic Aperture Radar data (over land). This high-resolution topographical data of the Mississippi coastal region provided the ADCIRC model with improved input with which to calculate improved storm-surge forecasts.
Dynamics of epidemic diseases on a growing adaptive network
Demirel, Güven; Barter, Edmund; Gross, Thilo
2017-01-01
The study of epidemics on static networks has revealed important effects on disease prevalence of network topological features such as the variance of the degree distribution, i.e. the distribution of the number of neighbors of nodes, and the maximum degree. Here, we analyze an adaptive network where the degree distribution is not independent of epidemics but is shaped through disease-induced dynamics and mortality in a complex interplay. We study the dynamics of a network that grows according to a preferential attachment rule, while nodes are simultaneously removed from the network due to disease-induced mortality. We investigate the prevalence of the disease using individual-based simulations and a heterogeneous node approximation. Our results suggest that in this system in the thermodynamic limit no epidemic thresholds exist, while the interplay between network growth and epidemic spreading leads to exponential networks for any finite rate of infectiousness when the disease persists. PMID:28186146
Dynamics of epidemic diseases on a growing adaptive network.
Demirel, Güven; Barter, Edmund; Gross, Thilo
2017-02-10
The study of epidemics on static networks has revealed important effects on disease prevalence of network topological features such as the variance of the degree distribution, i.e. the distribution of the number of neighbors of nodes, and the maximum degree. Here, we analyze an adaptive network where the degree distribution is not independent of epidemics but is shaped through disease-induced dynamics and mortality in a complex interplay. We study the dynamics of a network that grows according to a preferential attachment rule, while nodes are simultaneously removed from the network due to disease-induced mortality. We investigate the prevalence of the disease using individual-based simulations and a heterogeneous node approximation. Our results suggest that in this system in the thermodynamic limit no epidemic thresholds exist, while the interplay between network growth and epidemic spreading leads to exponential networks for any finite rate of infectiousness when the disease persists.
Dynamics of epidemic diseases on a growing adaptive network
NASA Astrophysics Data System (ADS)
Demirel, Güven; Barter, Edmund; Gross, Thilo
2017-02-01
The study of epidemics on static networks has revealed important effects on disease prevalence of network topological features such as the variance of the degree distribution, i.e. the distribution of the number of neighbors of nodes, and the maximum degree. Here, we analyze an adaptive network where the degree distribution is not independent of epidemics but is shaped through disease-induced dynamics and mortality in a complex interplay. We study the dynamics of a network that grows according to a preferential attachment rule, while nodes are simultaneously removed from the network due to disease-induced mortality. We investigate the prevalence of the disease using individual-based simulations and a heterogeneous node approximation. Our results suggest that in this system in the thermodynamic limit no epidemic thresholds exist, while the interplay between network growth and epidemic spreading leads to exponential networks for any finite rate of infectiousness when the disease persists.
Quadrature rules with multiple nodes for evaluating integrals with strong singularities
NASA Astrophysics Data System (ADS)
Milovanovic, Gradimir V.; Spalevic, Miodrag M.
2006-05-01
We present a method based on the Chakalov-Popoviciu quadrature formula of Lobatto type, a rather general case of quadrature with multiple nodes, for approximating integrals defined by Cauchy principal values or by Hadamard finite parts. As a starting point we use the results obtained by L. Gori and E. Santi (cf. On the evaluation of Hilbert transforms by means of a particular class of Turan quadrature rules, Numer. Algorithms 10 (1995), 27-39; Quadrature rules based on s-orthogonal polynomials for evaluating integrals with strong singularities, Oberwolfach Proceedings: Applications and Computation of Orthogonal Polynomials, ISNM 131, Birkhauser, Basel, 1999, pp. 109-119). We generalize their results by using some of our numerical procedures for stable calculation of the quadrature formula with multiple nodes of Gaussian type and proposed methods for estimating the remainder term in such type of quadrature formulae. Numerical examples, illustrations and comparisons are also shown.
NASA Astrophysics Data System (ADS)
Kordy, M.; Wannamaker, P.; Maris, V.; Cherkaev, E.; Hill, G.
2016-01-01
Following the creation described in Part I of a deformable edge finite-element simulator for 3-D magnetotelluric (MT) responses using direct solvers, in Part II we develop an algorithm named HexMT for 3-D regularized inversion of MT data including topography. Direct solvers parallelized on large-RAM, symmetric multiprocessor (SMP) workstations are used also for the Gauss-Newton model update. By exploiting the data-space approach, the computational cost of the model update becomes much less in both time and computer memory than the cost of the forward simulation. In order to regularize using the second norm of the gradient, we factor the matrix related to the regularization term and apply its inverse to the Jacobian, which is done using the MKL PARDISO library. For dense matrix multiplication and factorization related to the model update, we use the PLASMA library which shows very good scalability across processor cores. A synthetic test inversion using a simple hill model shows that including topography can be important; in this case depression of the electric field by the hill can cause false conductors at depth or mask the presence of resistive structure. With a simple model of two buried bricks, a uniform spatial weighting for the norm of model smoothing recovered more accurate locations for the tomographic images compared to weightings which were a function of parameter Jacobians. We implement joint inversion for static distortion matrices tested using the Dublin secret model 2, for which we are able to reduce nRMS to ˜1.1 while avoiding oscillatory convergence. Finally we test the code on field data by inverting full impedance and tipper MT responses collected around Mount St Helens in the Cascade volcanic chain. Among several prominent structures, the north-south trending, eruption-controlling shear zone is clearly imaged in the inversion.
Coupled thermomechanical behavior of graphene using the spring-based finite element approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Georgantzinos, S. K., E-mail: sgeor@mech.upatras.gr; Anifantis, N. K., E-mail: nanif@mech.upatras.gr; Giannopoulos, G. I., E-mail: ggiannopoulos@teiwest.gr
The prediction of the thermomechanical behavior of graphene using a new coupled thermomechanical spring-based finite element approach is the aim of this work. Graphene sheets are modeled in nanoscale according to their atomistic structure. Based on molecular theory, the potential energy is defined as a function of temperature, describing the interatomic interactions in different temperature environments. The force field is approached by suitable straight spring finite elements. Springs simulate the interatomic interactions and interconnect nodes located at the atomic positions. Their stiffness matrix is expressed as a function of temperature. By using appropriate boundary conditions, various different graphene configurations aremore » analyzed and their thermo-mechanical response is approached using conventional finite element procedures. A complete parametric study with respect to the geometric characteristics of graphene is performed, and the temperature dependency of the elastic material properties is finally predicted. Comparisons with available published works found in the literature demonstrate the accuracy of the proposed method.« less
Element fracture technique for hypervelocity impact simulation
NASA Astrophysics Data System (ADS)
Zhang, Xiao-tian; Li, Xiao-gang; Liu, Tao; Jia, Guang-hui
2015-05-01
Hypervelocity impact dynamics is the theoretical support of spacecraft shielding against space debris. The numerical simulation has become an important approach for obtaining the ballistic limits of the spacecraft shields. Currently, the most widely used algorithm for hypervelocity impact is the smoothed particle hydrodynamics (SPH). Although the finite element method (FEM) is widely used in fracture mechanics and low-velocity impacts, the standard FEM can hardly simulate the debris cloud generated by hypervelocity impact. This paper presents a successful application of the node-separation technique for hypervelocity impact debris cloud simulation. The node-separation technique assigns individual/coincident nodes for the adjacent elements, and it applies constraints to the coincident node sets in the modeling step. In the explicit iteration, the cracks are generated by releasing the constrained node sets that meet the fracture criterion. Additionally, the distorted elements are identified from two aspects - self-piercing and phase change - and are deleted so that the constitutive computation can continue. FEM with the node-separation technique is used for thin-wall hypervelocity impact simulations. The internal structures of the debris cloud in the simulation output are compared with that in the test X-ray graphs under different material fracture criteria. It shows that the pressure criterion is more appropriate for hypervelocity impact. The internal structures of the debris cloud are also simulated and compared under different thickness-to-diameter ratios (t/D). The simulation outputs show the same spall pattern with the tests. Finally, the triple-plate impact case is simulated with node-separation FEM.
Shock waves on complex networks
NASA Astrophysics Data System (ADS)
Mones, Enys; Araújo, Nuno A. M.; Vicsek, Tamás; Herrmann, Hans J.
2014-05-01
Power grids, road maps, and river streams are examples of infrastructural networks which are highly vulnerable to external perturbations. An abrupt local change of load (voltage, traffic density, or water level) might propagate in a cascading way and affect a significant fraction of the network. Almost discontinuous perturbations can be modeled by shock waves which can eventually interfere constructively and endanger the normal functionality of the infrastructure. We study their dynamics by solving the Burgers equation under random perturbations on several real and artificial directed graphs. Even for graphs with a narrow distribution of node properties (e.g., degree or betweenness), a steady state is reached exhibiting a heterogeneous load distribution, having a difference of one order of magnitude between the highest and average loads. Unexpectedly we find for the European power grid and for finite Watts-Strogatz networks a broad pronounced bimodal distribution for the loads. To identify the most vulnerable nodes, we introduce the concept of node-basin size, a purely topological property which we show to be strongly correlated to the average load of a node.
NASA Technical Reports Server (NTRS)
Putcha, N. S.; Reddy, J. N.
1986-01-01
A mixed shear flexible finite element, with relaxed continuity, is developed for the geometrically linear and nonlinear analysis of layered anisotropic plates. The element formulation is based on a refined higher order theory which satisfies the zero transverse shear stress boundary conditions on the top and bottom faces of the plate and requires no shear correction coefficients. The mixed finite element developed herein consists of eleven degrees of freedom per node which include three displacements, two rotations and six moment resultants. The element is evaluated for its accuracy in the analysis of the stability and vibration of anisotropic rectangular plates with different lamination schemes and boundary conditions. The mixed finite element described here for the higher order theory gives very accurate results for buckling loads and natural frequencies.
The finite cell method for polygonal meshes: poly-FCM
NASA Astrophysics Data System (ADS)
Duczek, Sascha; Gabbert, Ulrich
2016-10-01
In the current article, we extend the two-dimensional version of the finite cell method (FCM), which has so far only been used for structured quadrilateral meshes, to unstructured polygonal discretizations. Therefore, the adaptive quadtree-based numerical integration technique is reformulated and the notion of generalized barycentric coordinates is introduced. We show that the resulting polygonal (poly-)FCM approach retains the optimal rates of convergence if and only if the geometry of the structure is adequately resolved. The main advantage of the proposed method is that it inherits the ability of polygonal finite elements for local mesh refinement and for the construction of transition elements (e.g. conforming quadtree meshes without hanging nodes). These properties along with the performance of the poly-FCM are illustrated by means of several benchmark problems for both static and dynamic cases.
Mixed finite-difference scheme for free vibration analysis of noncircular cylinders
NASA Technical Reports Server (NTRS)
Noor, A. K.; Stephens, W. B.
1973-01-01
A mixed finite-difference scheme is presented for the free-vibration analysis of simply supported closed noncircular cylindrical shells. The problem is formulated in terms of eight first-order differential equations in the circumferential coordinate which possess a symmetric coefficient matrix and are free of the derivatives of the elastic and geometric characteristics of the shell. In the finite-difference discretization, two interlacing grids are used for the different fundamental unknowns in such a way as to avoid averaging in the difference-quotient expressions used for the first derivative. The resulting finite-difference equations are symmetric. The inverse-power method is used for obtaining the eigenvalues and eigenvectors.
Combining Thermal And Structural Analyses
NASA Technical Reports Server (NTRS)
Winegar, Steven R.
1990-01-01
Computer code makes programs compatible so stresses and deformations calculated. Paper describes computer code combining thermal analysis with structural analysis. Called SNIP (for SINDA-NASTRAN Interfacing Program), code provides interface between finite-difference thermal model of system and finite-element structural model when no node-to-element correlation between models. Eliminates much manual work in converting temperature results of SINDA (Systems Improved Numerical Differencing Analyzer) program into thermal loads for NASTRAN (NASA Structural Analysis) program. Used to analyze concentrating reflectors for solar generation of electric power. Large thermal and structural models needed to predict distortion of surface shapes, and SNIP saves considerable time and effort in combining models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manzini, Gianmarco
2012-07-13
We develop and analyze a new family of virtual element methods on unstructured polygonal meshes for the diffusion problem in primal form, that use arbitrarily regular discrete spaces V{sub h} {contained_in} C{sup {alpha}} {element_of} N. The degrees of freedom are (a) solution and derivative values of various degree at suitable nodes and (b) solution moments inside polygons. The convergence of the method is proven theoretically and an optimal error estimate is derived. The connection with the Mimetic Finite Difference method is also discussed. Numerical experiments confirm the convergence rate that is expected from the theory.
Layerwise Finite Elements for Smart Piezoceramic Composite Plates in Thermal Environments
NASA Technical Reports Server (NTRS)
Saravanos, Dimitris A.; Lee, Ho-Jun
1996-01-01
Analytical formulations are presented which account for the coupled mechanical, electrical, and thermal response of piezoelectric composite laminates and plate structures. A layerwise theory is formulated with the inherent capability to explicitly model the active and sensory response of piezoelectric composite plates having arbitrary laminate configurations in thermal environments. Finite element equations are derived and implemented for a bilinear 4-noded plate element. Application cases demonstrate the capability to manage thermally induced bending and twisting deformations in symmetric and antisymmetric composite plates with piezoelectric actuators, and show the corresponding electrical response of distributed piezoelectric sensors. Finally, the resultant stresses in the thermal piezoelectric composite laminates are investigated.
A computer program for the simulation of folds of different sizes under the influence of gravity
NASA Astrophysics Data System (ADS)
Vacas Peña, José M.; Martínez Catalán, José R.
2004-02-01
Folding&g is a computer program, based on the finite element method, developed to simulate the process of natural folding from small to large scales in two dimensions. Written in Pascal code and compiled with Borland Delphi 3.0, the program has a friendly interactive user interface and can be used for research as well as educational purposes. Four main menu options allow the user to import or to build and to save a model data file, select the type of graphic output, introduce and modify several physical parameters and enter the calculation routines. The program employs isoparametric, initially rectangular elements with eight nodes, which can sustain large deformations. The mathematical procedure is based on the elasticity equations, but has been modified to simulate a viscous rheology, either linear or of power-law type. The parameters to be introduced include either the linear viscosity, or, when the viscosity is non-linear, the material constant, activation energy, temperature and power of the differential stress. All the parameters can be set by rows, which simulate layers. A toggle permits gravity to be introduced into the calculations. In this case, the density of the different rows must be specified, and the sizes of the finite elements and of the whole model become meaningful. Viscosity values can also be assigned to blocks of several rows and columns, which permits the modelling of heterogeneities such as rectangular areas of high strength, which can be used to simulate shearing components interfering with the buckling process. The program is applied to several cases of folding, including a single competent bed and multilayers, and its results compared with analytical and experimental results. The influence of gravity is illustrated by the modelling of diapiric structures and of a large recumbent fold.
Hedayati, Zohreh; Shomali, Mehrdad
2016-12-01
Nowadays, mini screws are used in orthodontic tooth movement to obtain maximum or absolute anchorage. They have gained popularity among orthodontists for en masse retraction of anterior teeth after first premolar extraction in maximum anchorage cases. The purpose of this study was to determine the type of anterior tooth movement during the time when force was applied from different mini screw placements to the anterior power arm with various heights. A finite element method was used for modeling maxillary teeth and bone structure. Brackets, wire, and hooks were also designed for modeling. Two appropriate positions for mini screw in the mesial and distal of the second premolar were designed as fixed nodes. Forces were applied from the mini screw to four different levels of anterior hook height: 0, 3, 6, and 9 mm. Initial tooth movement in eight different conditions was analyzed and calculated with ANSYS software. Rotation of anterior dentition was decreased with a longer anterior power arm and the mesial placement of the mini screw. Bodily movements occurred with the 9-mm height of the power arm in both mini screw positions. Intrusion or extrusion of the anterior teeth segment depended on the level of the mini screw and the edge of the power arm on the Z axis. According to the findings of this study, the best control in the sagittal plane during anterior en masse retraction was achieved by mesial placement of the mini screw and the 9-mm height of the anterior power arm. Where control in the vertical plane was concerned, distal placement of the mini screw with the 6-mm power arm height had minimum adverse effect on anterior dentition.
WENO schemes on arbitrary mixed-element unstructured meshes in three space dimensions
NASA Astrophysics Data System (ADS)
Tsoutsanis, P.; Titarev, V. A.; Drikakis, D.
2011-02-01
The paper extends weighted essentially non-oscillatory (WENO) methods to three dimensional mixed-element unstructured meshes, comprising tetrahedral, hexahedral, prismatic and pyramidal elements. Numerical results illustrate the convergence rates and non-oscillatory properties of the schemes for various smooth and discontinuous solutions test cases and the compressible Euler equations on various types of grids. Schemes of up to fifth order of spatial accuracy are considered.
Runkle, Donna L.; McLean, J.S.
1995-01-01
A generalized finite-difference model was prepared for the Blaine aquifer in southwestern Oklahoma and northwestern Texas. This report releases the model for use and modification. A grid of 1-square-mile nodes was established over the area, with 1,030 of the nodes actively simulated in the model. The steady-state model simulation used a uniform recharge rate of 2.2 inches per year and three values of hydraulic conductivity: 80, 19, and 4.7 feet per day. About 44 percent of the recharge is discharged as pumpage from wells, and the remainder is discharged to rivers and creeks within and adjacent to the study area.
Fem Formulation for Heat and Mass Transfer in Porous Medium
NASA Astrophysics Data System (ADS)
Azeem; Soudagar, Manzoor Elahi M.; Salman Ahmed, N. J.; Anjum Badruddin, Irfan
2017-08-01
Heat and mass transfer in porous medium can be modelled using three partial differential equations namely, momentum equation, energy equation and mass diffusion. These three equations are coupled to each other by some common terms that turn the whole phenomenon into a complex problem with inter-dependable variables. The current article describes the finite element formulation of heat and mass transfer in porous medium with respect to Cartesian coordinates. The problem under study is formulated into algebraic form of equations by using Galerkin's method with the help of two-node linear triangular element having three nodes. The domain is meshed with smaller sized elements near the wall region and bigger size away from walls.
Cascading failures in interdependent networks with finite functional components
NASA Astrophysics Data System (ADS)
Di Muro, M. A.; Buldyrev, S. V.; Stanley, H. E.; Braunstein, L. A.
2016-10-01
We present a cascading failure model of two interdependent networks in which functional nodes belong to components of size greater than or equal to s . We find theoretically and via simulation that in complex networks with random dependency links the transition is first order for s ≥3 and continuous for s =2 . We also study interdependent lattices with a distance constraint r in the dependency links and find that increasing r moves the system from a regime without a phase transition to one with a second-order transition. As r continues to increase, the system collapses in a first-order transition. Each regime is associated with a different structure of domain formation of functional nodes.
Kawamoto, Hirokazu; Takayasu, Hideki; Jensen, Henrik Jeldtoft; Takayasu, Misako
2015-01-01
Through precise numerical analysis, we reveal a new type of universal loopless percolation transition in randomly removed complex networks. As an example of a real-world network, we apply our analysis to a business relation network consisting of approximately 3,000,000 links among 300,000 firms and observe the transition with critical exponents close to the mean-field values taking into account the finite size effect. We focus on the largest cluster at the critical point, and introduce survival probability as a new measure characterizing the robustness of each node. We also discuss the relation between survival probability and k-shell decomposition. PMID:25885791
Three-dimensional flat shell-to-shell coupling: numerical challenges
NASA Astrophysics Data System (ADS)
Guo, Kuo; Haikal, Ghadir
2017-11-01
The node-to-surface formulation is widely used in contact simulations with finite elements because it is relatively easy to implement using different types of element discretizations. This approach, however, has a number of well-known drawbacks, including locking due to over-constraint when this formulation is used as a twopass method. Most studies on the node-to-surface contact formulation, however, have been conducted using solid elements and little has been done to investigate the effectiveness of this approach for beam or shell elements. In this paper we show that locking can also be observed with the node-to-surface contact formulation when applied to plate and flat shell elements even with a singlepass implementation with distinct master/slave designations, which is the standard solution to locking with solid elements. In our study, we use the quadrilateral four node flat shell element for thin (Kirchhoff-Love) plate and thick (Reissner-Mindlin) plate theory, both in their standard forms and with improved formulations such as the linked interpolation [1] and the Discrete Kirchhoff [2] elements for thick and thin plates, respectively. The Lagrange multiplier method is used to enforce the node-to-surface constraints for all elements. The results show clear locking when compared to those obtained using a conforming mesh configuration.
Hong, Q; Wang, Y; Wang, J J; Hu, C G; Fang, Y J; Fan, X X; Liu, T; Tong, Q
2017-01-10
Objective: To evaluate the application value of carbon lymph node tracing technique by preoperative endoscopic subserosal injection in laparoscopic radical gastrectomy. Methods: From June 2013 to February 2015, seventy eight patients with gastric cancer were enrolled and randomly divided into trial group and control group. Subserosal injection of carbon nanoparticles around the tumor was performed by preoperative endoscopic subserosal injection one day before the operation in trial group, while the patients routinely underwent laparoscopic gastrectomy in control group. Results of harvested lymph nodes, postoperative complications were compared between the two groups. Carbon nanoparticle-related side effect was also evaluated. Results: The average number of harvested lymph node in trial group was significantly higher than that in control group (35.5±8.5 vs 29.5±6.5, P <0.05). The rate of overall black-dyed harvested lymph node was 74.7% (1 035/1 386) in trial group, the black-dyed lymph node rate in D1 lymph node was 80.1%, which was significantly higher than that in D2 lymph node (69.8%, χ 2 =19.38, P <0.01). When comparing the lymph node with and without black-dyed in trial group, the rate of metastasis lymph node was significantly higher in lymph node with black-dyed (17.3% vs 4.0%, χ 2 =38.67, P <0.01). There was no significant difference in postoperative complications rate between two group (trial group 10.2%; control group 12.8%, χ 2 =0.00, P >0.05), and no carbon nanoparticle-related side effect was observed. Conclusion: Given a higher harvested lymph node number and a similar rate of complications, preoperative endoscopic subserosal injection of carbon nanoparticles was safe and feasible.
Technique for reliable sentinel node biopsy in squamous cell carcinomas of the floor of mouth.
Stoeckli, Sandro J; Huebner, Thomas; Huber, Gerhard F; Broglie, Martina A
2016-09-01
Applicability of sentinel node biopsy (SNB) for tumors of the floor of mouth (FOM) is controversial. Prospective evaluation of the accuracy of gamma-probe-guided superselective neck dissection of the preglandular triangle of level I for SNB in FOM squamous cell carcinoma (SCC) after preoperative lymphoscintigraphy and single photon emission CT (SPECT)/CT. In total, 22 sentinel lymph nodes were harvested in level I. Eight of 22 (36%) were seen on lymphoscintigraphy and 11 (50%) on SPECT/CT. Eleven sentinel lymph nodes (50%) were only detected intraoperatively. In unilateral tumors, 20% were contralateral, and, in midline tumors, 93% showed bilateral level I sentinel lymph nodes. The false-negative rate was 8.3%, the negative predictive value was 96.4%, and the false-omission rate was 3.6%. The ultimate neck control rate, including salvage treatment, was 100%. SNB in FOM can be reliably performed using the presented surgical technique. Level I exploration, bilaterally in midline tumors, is mandatory irrespective of the visualization of sentinel lymph nodes in other levels. © 2016 Wiley Periodicals, Inc. Head Neck 38: 1367-1372, 2016. © 2016 Wiley Periodicals, Inc.
Suh, Chong Hyun; Choi, Young Jun; Baek, Jung Hwan; Lee, Jeong Hyun
2017-01-01
To evaluate the diagnostic performance of shear wave elastography for malignant cervical lymph nodes. We searched the Ovid-MEDLINE and EMBASE databases for published studies regarding the use of shear wave elastography for diagnosing malignant cervical lymph nodes. The diagnostic performance of shear wave elastography was assessed using bivariate modelling and hierarchical summary receiver operating characteristic modelling. Meta-regression analysis and subgroup analysis according to acoustic radiation force impulse imaging (ARFI) and Supersonic shear imaging (SSI) were also performed. Eight eligible studies which included a total sample size of 481 patients with 647 cervical lymph nodes, were included. Shear wave elastography showed a summary sensitivity of 81 % (95 % CI: 72-88 %) and specificity of 85 % (95 % CI: 70-93 %). The results of meta-regression analysis revealed that the prevalence of malignant lymph nodes was a significant factor affecting study heterogeneity (p < .01). According to the subgroup analysis, the summary estimates of the sensitivity and specificity did not differ between ARFI and SSI (p = .93). Shear wave elastography is an acceptable imaging modality for diagnosing malignant cervical lymph nodes. We believe that both ARFI and SSI may have a complementary role for diagnosing malignant cervical lymph nodes. • Shear wave elastography is acceptable modality for diagnosing malignant cervical lymph nodes. • Shear wave elastography demonstrated summary sensitivity of 81 % and specificity of 85 %. • ARFI and SSI have complementary roles for diagnosing malignant cervical lymph nodes.
Left-right asymmetry in pelvic lymph nodes distribution: is there a right-side prevalence?
Ghezzi, Fabio; Cromi, Antonella; Uccella, Stefano; Giudici, Silvia; Franchi, Massimo; Bolis, Pierfrancesco
2006-08-01
To assess whether pelvic lymph nodes have a left-right asymmetric distribution. The oncologic databases of two gynecologic academic departments were used to identify consecutive patients undergoing pelvic systematic lymphadenectomy as part of the treatment for a variety of gynecologic malignancies. All procedures were carried out in a standardized fashion. Lymph node counts were retrieved from pathological reports. Four hundred and twenty-eight women underwent pelvic lymphadenectomy during the study period. The median lymph node count was higher on the right side than on the left side [10 (0-33) versus 8 (0-29); P<0.0001]. A prevalence of right-sided nodes was found in 265 (61.9%) patients, while in 44 (10.3%) cases pelvic nodes were equally distributed on the two sides. The right-sided prevalence was significantly higher than the expected 50% in each type of malignancy and surgical technique subgroup. The right-sided prevalence was statistically significant even when the analysis was performed for different nodal groups [external iliac nodes: 5 (0-23) versus 4 (0-13), P=0.005; hypogastric and obturator nodes: 6 (0-17) versus 5 (0-19), P=0.04]. Moreover, nodal count was higher on the right than on the left in obese [10 (1-33) versus 8 (1-26), P=0.0002] and nonobese women [10 (0-32) versus 9 (0-29), P<0.0001]. Our findings suggest the existence of a left-right asymmetry in pelvic lymph nodes distribution, with right-sided prevalence.
A Variational Nodal Approach to 2D/1D Pin Resolved Neutron Transport for Pressurized Water Reactors
Zhang, Tengfei; Lewis, E. E.; Smith, M. A.; ...
2017-04-18
A two-dimensional/one-dimensional (2D/1D) variational nodal approach is presented for pressurized water reactor core calculations without fuel-moderator homogenization. A 2D/1D approximation to the within-group neutron transport equation is derived and converted to an even-parity form. The corresponding nodal functional is presented and discretized to obtain response matrix equations. Within the nodes, finite elements in the x-y plane and orthogonal functions in z are used to approximate the spatial flux distribution. On the radial interfaces, orthogonal polynomials are employed; on the axial interfaces, piecewise constants corresponding to the finite elements eliminate the interface homogenization that has been a challenge for method ofmore » characteristics (MOC)-based 2D/1D approximations. The angular discretization utilizes an even-parity integral method within the nodes, and low-order spherical harmonics (P N) on the axial interfaces. The x-y surfaces are treated with high-order P N combined with quasi-reflected interface conditions. Furthermore, the method is applied to the C5G7 benchmark problems and compared to Monte Carlo reference calculations.« less
A Variational Nodal Approach to 2D/1D Pin Resolved Neutron Transport for Pressurized Water Reactors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Tengfei; Lewis, E. E.; Smith, M. A.
A two-dimensional/one-dimensional (2D/1D) variational nodal approach is presented for pressurized water reactor core calculations without fuel-moderator homogenization. A 2D/1D approximation to the within-group neutron transport equation is derived and converted to an even-parity form. The corresponding nodal functional is presented and discretized to obtain response matrix equations. Within the nodes, finite elements in the x-y plane and orthogonal functions in z are used to approximate the spatial flux distribution. On the radial interfaces, orthogonal polynomials are employed; on the axial interfaces, piecewise constants corresponding to the finite elements eliminate the interface homogenization that has been a challenge for method ofmore » characteristics (MOC)-based 2D/1D approximations. The angular discretization utilizes an even-parity integral method within the nodes, and low-order spherical harmonics (P N) on the axial interfaces. The x-y surfaces are treated with high-order P N combined with quasi-reflected interface conditions. Furthermore, the method is applied to the C5G7 benchmark problems and compared to Monte Carlo reference calculations.« less
An efficient structural finite element for inextensible flexible risers
NASA Astrophysics Data System (ADS)
Papathanasiou, T. K.; Markolefas, S.; Khazaeinejad, P.; Bahai, H.
2017-12-01
A core part of all numerical models used for flexible riser analysis is the structural component representing the main body of the riser as a slender beam. Loads acting on this structural element are self-weight, buoyant and hydrodynamic forces, internal pressure and others. A structural finite element for an inextensible riser with a point-wise enforcement of the inextensibility constrain is presented. In particular, the inextensibility constraint is applied only at the nodes of the meshed arc length parameter. Among the virtues of the proposed approach is the flexibility in the application of boundary conditions and the easy incorporation of dissipative forces. Several attributes of the proposed finite element scheme are analysed and computation times for the solution of some simplified examples are discussed. Future developments aim at the appropriate implementation of material and geometric parameters for the beam model, i.e. flexural and torsional rigidity.
Response to defects in multipartite and bipartite entanglement of isotropic quantum spin networks
NASA Astrophysics Data System (ADS)
Roy, Sudipto Singha; Dhar, Himadri Shekhar; Rakshit, Debraj; SenDe, Aditi; Sen, Ujjwal
2018-05-01
Quantum networks are an integral component in performing efficient computation and communication tasks that are not accessible using classical systems. A key aspect in designing an effective and scalable quantum network is generating entanglement between its nodes, which is robust against defects in the network. We consider an isotropic quantum network of spin-1/2 particles with a finite fraction of defects, where the corresponding wave function of the network is rotationally invariant under the action of local unitaries. By using quantum information-theoretic concepts like strong subadditivity of von Neumann entropy and approximate quantum telecloning, we prove analytically that in the presence of defects, caused by loss of a finite fraction of spins, the network, composed of a fixed numbers of lattice sites, sustains genuine multisite entanglement and at the same time may exhibit finite moderate-range bipartite entanglement, in contrast to the network with no defects.
NASA Technical Reports Server (NTRS)
Averill, Ronald C.
2002-01-01
An effective and robust interface element technology able to connect independently modeled finite element subdomains has been developed. This method is based on the use of penalty constraints and allows coupling of finite element models whose nodes do not coincide along their common interface. Additionally, the present formulation leads to a computational approach that is very efficient and completely compatible with existing commercial software. A significant effort has been directed toward identifying those model characteristics (element geometric properties, material properties, and loads) that most strongly affect the required penalty parameter, and subsequently to developing simple 'formulae' for automatically calculating the proper penalty parameter for each interface constraint. This task is especially critical in composite materials and structures, where adjacent sub-regions may be composed of significantly different materials or laminates. This approach has been validated by investigating a variety of two-dimensional problems, including composite laminates.
Comments on the Diffusive Behavior of Two Upwind Schemes
NASA Technical Reports Server (NTRS)
Wood, William A.; Kleb, William L.
1998-01-01
The diffusive characteristics of two upwind schemes, multi-dimensional fluctuation splitting and locally one-dimensional finite volume, are compared for scalar advection-diffusion problems. Algorithms for the two schemes are developed for node-based data representation on median-dual meshes associated with unstructured triangulations in two spatial dimensions. Four model equations are considered: linear advection, non-linear advection, diffusion, and advection-diffusion. Modular coding is employed to isolate the effects of the two approaches for upwind flux evaluation, allowing for head-to-head accuracy and efficiency comparisons. Both the stability of compressive limiters and the amount of artificial diffusion generated by the schemes is found to be grid-orientation dependent, with the fluctuation splitting scheme producing less artificial diffusion than the finite volume scheme. Convergence rates are compared for the combined advection-diffusion problem, with a speedup of 2.5 seen for fluctuation splitting versus finite volume when solved on the same mesh. However, accurate solutions to problems with small diffusion coefficients can be achieved on coarser meshes using fluctuation splitting rather than finite volume, so that when comparing convergence rates to reach a given accuracy, fluctuation splitting shows a speedup of 29 over finite volume.
Diffusion Characteristics of Upwind Schemes on Unstructured Triangulations
NASA Technical Reports Server (NTRS)
Wood, William A.; Kleb, William L.
1998-01-01
The diffusive characteristics of two upwind schemes, multi-dimensional fluctuation splitting and dimensionally-split finite volume, are compared for scalar advection-diffusion problems. Algorithms for the two schemes are developed for node-based data representation on median-dual meshes associated with unstructured triangulations in two spatial dimensions. Four model equations are considered: linear advection, non-linear advection, diffusion, and advection-diffusion. Modular coding is employed to isolate the effects of the two approaches for upwind flux evaluation, allowing for head-to-head accuracy and efficiency comparisons. Both the stability of compressive limiters and the amount of artificial diffusion generated by the schemes is found to be grid-orientation dependent, with the fluctuation splitting scheme producing less artificial diffusion than the dimensionally-split finite volume scheme. Convergence rates are compared for the combined advection-diffusion problem, with a speedup of 2-3 seen for fluctuation splitting versus finite volume when solved on the same mesh. However, accurate solutions to problems with small diffusion coefficients can be achieved on coarser meshes using fluctuation splitting rather than finite volume, so that when comparing convergence rates to reach a given accuracy, fluctuation splitting shows a 20-25 speedup over finite volume.
Dickinson, J.E.; James, S.C.; Mehl, S.; Hill, M.C.; Leake, S.A.; Zyvoloski, G.A.; Faunt, C.C.; Eddebbarh, A.-A.
2007-01-01
A flexible, robust method for linking parent (regional-scale) and child (local-scale) grids of locally refined models that use different numerical methods is developed based on a new, iterative ghost-node method. Tests are presented for two-dimensional and three-dimensional pumped systems that are homogeneous or that have simple heterogeneity. The parent and child grids are simulated using the block-centered finite-difference MODFLOW and control-volume finite-element FEHM models, respectively. The models are solved iteratively through head-dependent (child model) and specified-flow (parent model) boundary conditions. Boundary conditions for models with nonmatching grids or zones of different hydraulic conductivity are derived and tested against heads and flows from analytical or globally-refined models. Results indicate that for homogeneous two- and three-dimensional models with matched grids (integer number of child cells per parent cell), the new method is nearly as accurate as the coupling of two MODFLOW models using the shared-node method and, surprisingly, errors are slightly lower for nonmatching grids (noninteger number of child cells per parent cell). For heterogeneous three-dimensional systems, this paper compares two methods for each of the two sets of boundary conditions: external heads at head-dependent boundary conditions for the child model are calculated using bilinear interpolation or a Darcy-weighted interpolation; specified-flow boundary conditions for the parent model are calculated using model-grid or hydrogeologic-unit hydraulic conductivities. Results suggest that significantly more accurate heads and flows are produced when both Darcy-weighted interpolation and hydrogeologic-unit hydraulic conductivities are used, while the other methods produce larger errors at the boundary between the regional and local models. The tests suggest that, if posed correctly, the ghost-node method performs well. Additional testing is needed for highly heterogeneous systems. ?? 2007 Elsevier Ltd. All rights reserved.
A finite element head and neck model as a supportive tool for deformable image registration.
Kim, Jihun; Saitou, Kazuhiro; Matuszak, Martha M; Balter, James M
2016-07-01
A finite element (FE) head and neck model was developed as a tool to aid investigations and development of deformable image registration and patient modeling in radiation oncology. Useful aspects of a FE model for these purposes include ability to produce realistic deformations (similar to those seen in patients over the course of treatment) and a rational means of generating new configurations, e.g., via the application of force and/or displacement boundary conditions. The model was constructed based on a cone-beam computed tomography image of a head and neck cancer patient. The three-node triangular surface meshes created for the bony elements (skull, mandible, and cervical spine) and joint elements were integrated into a skeletal system and combined with the exterior surface. Nodes were additionally created inside the surface structures which were composed of the three-node triangular surface meshes, so that four-node tetrahedral FE elements were created over the whole region of the model. The bony elements were modeled as a homogeneous linear elastic material connected by intervertebral disks. The surrounding tissues were modeled as a homogeneous linear elastic material. Under force or displacement boundary conditions, FE analysis on the model calculates approximate solutions of the displacement vector field. A FE head and neck model was constructed that skull, mandible, and cervical vertebrae were mechanically connected by disks. The developed FE model is capable of generating realistic deformations that are strain-free for the bony elements and of creating new configurations of the skeletal system with the surrounding tissues reasonably deformed. The FE model can generate realistic deformations for skeletal elements. In addition, the model provides a way of evaluating the accuracy of image alignment methods by producing a ground truth deformation and correspondingly simulated images. The ability to combine force and displacement conditions provides flexibility for simulating realistic anatomic configurations.
Use of High Frequency Ultrasound to Monitor Cervical Lymph Node Alterations in Mice
Walk, Elyse L.; McLaughlin, Sarah; Coad, James; Weed, Scott A.
2014-01-01
Cervical lymph node evaluation by clinical ultrasound is a non-invasive procedure used in diagnosing nodal status, and when combined with fine-needle aspiration cytology (FNAC), provides an effective method to assess nodal pathologies. Development of high-frequency ultrasound (HF US) allows real-time monitoring of lymph node alterations in animal models. While HF US is frequently used in animal models of tumor biology, use of HF US for studying cervical lymph nodes alterations associated with murine models of head and neck cancer, or any other model of lymphadenopathy, is lacking. Here we utilize HF US to monitor cervical lymph nodes changes in mice following exposure to the oral cancer-inducing carcinogen 4-nitroquinoline-1-oxide (4-NQO) and in mice with systemic autoimmunity. 4-NQO induces tumors within the mouse oral cavity as early as 19 wks that recapitulate HNSCC. Monitoring of cervical (mandibular) lymph nodes by gray scale and power Doppler sonography revealed changes in lymph node size eight weeks after 4-NQO treatment, prior to tumor formation. 4-NQO causes changes in cervical node blood flow resulting from oral tumor progression. Histological evaluation indicated that the early 4-NQO induced changes in lymph node volume were due to specific hyperproliferation of T-cell enriched zones in the paracortex. We also show that HF US can be used to perform image-guided fine needle aspirate (FNA) biopsies on mice with enlarged mandibular lymph nodes due to genetic mutation of Fas ligand (Fasl). Collectively these studies indicate that HF US is an effective technique for the non-invasive study of cervical lymph node alterations in live mouse models of oral cancer and other mouse models containing cervical lymphadenopathy. PMID:24955984
Use of high frequency ultrasound to monitor cervical lymph node alterations in mice.
Walk, Elyse L; McLaughlin, Sarah; Coad, James; Weed, Scott A
2014-01-01
Cervical lymph node evaluation by clinical ultrasound is a non-invasive procedure used in diagnosing nodal status, and when combined with fine-needle aspiration cytology (FNAC), provides an effective method to assess nodal pathologies. Development of high-frequency ultrasound (HF US) allows real-time monitoring of lymph node alterations in animal models. While HF US is frequently used in animal models of tumor biology, use of HF US for studying cervical lymph nodes alterations associated with murine models of head and neck cancer, or any other model of lymphadenopathy, is lacking. Here we utilize HF US to monitor cervical lymph nodes changes in mice following exposure to the oral cancer-inducing carcinogen 4-nitroquinoline-1-oxide (4-NQO) and in mice with systemic autoimmunity. 4-NQO induces tumors within the mouse oral cavity as early as 19 wks that recapitulate HNSCC. Monitoring of cervical (mandibular) lymph nodes by gray scale and power Doppler sonography revealed changes in lymph node size eight weeks after 4-NQO treatment, prior to tumor formation. 4-NQO causes changes in cervical node blood flow resulting from oral tumor progression. Histological evaluation indicated that the early 4-NQO induced changes in lymph node volume were due to specific hyperproliferation of T-cell enriched zones in the paracortex. We also show that HF US can be used to perform image-guided fine needle aspirate (FNA) biopsies on mice with enlarged mandibular lymph nodes due to genetic mutation of Fas ligand (Fasl). Collectively these studies indicate that HF US is an effective technique for the non-invasive study of cervical lymph node alterations in live mouse models of oral cancer and other mouse models containing cervical lymphadenopathy.
Systematic network coding for two-hop lossy transmissions
NASA Astrophysics Data System (ADS)
Li, Ye; Blostein, Steven; Chan, Wai-Yip
2015-12-01
In this paper, we consider network transmissions over a single or multiple parallel two-hop lossy paths. These scenarios occur in applications such as sensor networks or WiFi offloading. Random linear network coding (RLNC), where previously received packets are re-encoded at intermediate nodes and forwarded, is known to be a capacity-achieving approach for these networks. However, a major drawback of RLNC is its high encoding and decoding complexity. In this work, a systematic network coding method is proposed. We show through both analysis and simulation that the proposed method achieves higher end-to-end rate as well as lower computational cost than RLNC for finite field sizes and finite-sized packet transmissions.
Treatment of singularities in a middle-crack tension specimen
NASA Technical Reports Server (NTRS)
Shivakumar, K. N.; Raju, I. S.
1990-01-01
A three-dimensional finite-element analysis of a middle-crack tension specimen subjected to mode I loading was performed to study the stress singularity along the crack front. The specimen was modeled using 20-node isoparametric elements with collapsed nonsingular elements at the crack front. The displacements and stresses from the analysis were used to estimate the power of singularities, by a log-log regression analysis, along the crack front. Analyses showed that finite-sized cracked bodies have two singular stress fields. Because of two singular stress fields near the free surface and the classical square root singularity elsewhere, the strain energy release rate appears to be an appropriate parameter all along the crack front.
Finite element mesh refinement criteria for stress analysis
NASA Technical Reports Server (NTRS)
Kittur, Madan G.; Huston, Ronald L.
1990-01-01
This paper discusses procedures for finite-element mesh selection and refinement. The objective is to improve accuracy. The procedures are based on (1) the minimization of the stiffness matrix race (optimizing node location); (2) the use of h-version refinement (rezoning, element size reduction, and increasing the number of elements); and (3) the use of p-version refinement (increasing the order of polynomial approximation of the elements). A step-by-step procedure of mesh selection, improvement, and refinement is presented. The criteria for 'goodness' of a mesh are based on strain energy, displacement, and stress values at selected critical points of a structure. An analysis of an aircraft lug problem is presented as an example.
Simulation of CNT-AFM tip based on finite element analysis for targeted probe of the biological cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yousefi, Amin Termeh, E-mail: at.tyousefi@gmail.com; Miyake, Mikio, E-mail: miyakejaist@gmail.com; Ikeda, Shoichiro, E-mail: sho16.ikeda@gmail.com
Carbon nanotubes (CNTs) are potentially ideal tips for atomic force microscopy (AFM) due to the robust mechanical properties, nano scale diameter and also their ability to be functionalized by chemical and biological components at the tip ends. This contribution develops the idea of using CNTs as an AFM tip in computational analysis of the biological cell’s. Finite element analysis employed for each section and displacement of the nodes located in the contact area was monitored by using an output database (ODB). This reliable integration of CNT-AFM tip process provides a new class of high performance nanoprobes for single biological cellmore » analysis.« less
Poodat, Fatemeh; Arrowsmith, Colin; Fraser, David; Gordon, Ascelin
2015-09-01
Connectivity among fragmented areas of habitat has long been acknowledged as important for the viability of biological conservation, especially within highly modified landscapes. Identifying important habitat patches in ecological connectivity is a priority for many conservation strategies, and the application of 'graph theory' has been shown to provide useful information on connectivity. Despite the large number of metrics for connectivity derived from graph theory, only a small number have been compared in terms of the importance they assign to nodes in a network. This paper presents a study that aims to define a new set of metrics and compares these with traditional graph-based metrics, used in the prioritization of habitat patches for ecological connectivity. The metrics measured consist of "topological" metrics, "ecological metrics," and "integrated metrics," Integrated metrics are a combination of topological and ecological metrics. Eight metrics were applied to the habitat network for the fat-tailed dunnart within Greater Melbourne, Australia. A non-directional network was developed in which nodes were linked to adjacent nodes. These links were then weighted by the effective distance between patches. By applying each of the eight metrics for the study network, nodes were ranked according to their contribution to the overall network connectivity. The structured comparison revealed the similarity and differences in the way the habitat for the fat-tailed dunnart was ranked based on different classes of metrics. Due to the differences in the way the metrics operate, a suitable metric should be chosen that best meets the objectives established by the decision maker.
Competing Contact Processes on Homogeneous Networks with Tunable Clusterization
NASA Astrophysics Data System (ADS)
Rybak, Marcin; Kułakowski, Krzysztof
2013-03-01
We investigate two homogeneous networks: the Watts-Strogatz network with mean degree ⟨k⟩ = 4 and the Erdös-Rényi network with ⟨k⟩ = 10. In both kinds of networks, the clustering coefficient C is a tunable control parameter. The network is an area of two competing contact processes, where nodes can be in two states, S or D. A node S becomes D with probability 1 if at least two its mutually linked neighbors are D. A node D becomes S with a given probability p if at least one of its neighbors is S. The competition between the processes is described by a phase diagram, where the critical probability pc depends on the clustering coefficient C. For p > pc the rate of state S increases in time, seemingly to dominate in the whole system. Below pc, the majority of nodes is in the D-state. The numerical results indicate that for the Watts-Strogatz network the D-process is activated at the finite value of the clustering coefficient C, close to 0.3. On the contrary, for the Erdös-Rényi network the transition is observed at the whole investigated range of C.
An adaptively refined XFEM with virtual node polygonal elements for dynamic crack problems
NASA Astrophysics Data System (ADS)
Teng, Z. H.; Sun, F.; Wu, S. C.; Zhang, Z. B.; Chen, T.; Liao, D. M.
2018-02-01
By introducing the shape functions of virtual node polygonal (VP) elements into the standard extended finite element method (XFEM), a conforming elemental mesh can be created for the cracking process. Moreover, an adaptively refined meshing with the quadtree structure only at a growing crack tip is proposed without inserting hanging nodes into the transition region. A novel dynamic crack growth method termed as VP-XFEM is thus formulated in the framework of fracture mechanics. To verify the newly proposed VP-XFEM, both quasi-static and dynamic cracked problems are investigated in terms of computational accuracy, convergence, and efficiency. The research results show that the present VP-XFEM can achieve good agreement in stress intensity factor and crack growth path with the exact solutions or experiments. Furthermore, better accuracy, convergence, and efficiency of different models can be acquired, in contrast to standard XFEM and mesh-free methods. Therefore, VP-XFEM provides a suitable alternative to XFEM for engineering applications.
Numerical Modeling of Saturated Boiling in a Heated Tube
NASA Technical Reports Server (NTRS)
Majumdar, Alok; LeClair, Andre; Hartwig, Jason
2017-01-01
This paper describes a mathematical formulation and numerical solution of boiling in a heated tube. The mathematical formulation involves a discretization of the tube into a flow network consisting of fluid nodes and branches and a thermal network consisting of solid nodes and conductors. In the fluid network, the mass, momentum and energy conservation equations are solved and in the thermal network, the energy conservation equation of solids is solved. A pressure-based, finite-volume formulation has been used to solve the equations in the fluid network. The system of equations is solved by a hybrid numerical scheme which solves the mass and momentum conservation equations by a simultaneous Newton-Raphson method and the energy conservation equation by a successive substitution method. The fluid network and thermal network are coupled through heat transfer between the solid and fluid nodes which is computed by Chen's correlation of saturated boiling heat transfer. The computer model is developed using the Generalized Fluid System Simulation Program and the numerical predictions are compared with test data.
Calibration of International Space Station (ISS) Node 1 Vibro-Acoustic Model-Report 2
NASA Technical Reports Server (NTRS)
Zhang, Weiguo; Raveendra, Ravi
2014-01-01
Reported here is the capability of the Energy Finite Element Method (E-FEM) to predict the vibro-acoustic sound fields within the International Space Station (ISS) Node 1 and to compare the results with simulated leak sounds. A series of electronically generated structural ultrasonic noise sources were created in the pressure wall to emulate leak signals at different locations of the Node 1 STA module during its period of storage at Stennis Space Center (SSC). The exact sound source profiles created within the pressure wall at the source were unknown, but were estimated from the closest sensor measurement. The E-FEM method represents a reverberant sound field calculation, and of importance to this application is the requirement to correctly handle the direct field effect of the sound generation. It was also important to be able to compute the sound energy fields in the ultrasonic frequency range. This report demonstrates the capability of this technology as applied to this type of application.
Digital system for structural dynamics simulation
NASA Technical Reports Server (NTRS)
Krauter, A. I.; Lagace, L. J.; Wojnar, M. K.; Glor, C.
1982-01-01
State-of-the-art digital hardware and software for the simulation of complex structural dynamic interactions, such as those which occur in rotating structures (engine systems). System were incorporated in a designed to use an array of processors in which the computation for each physical subelement or functional subsystem would be assigned to a single specific processor in the simulator. These node processors are microprogrammed bit-slice microcomputers which function autonomously and can communicate with each other and a central control minicomputer over parallel digital lines. Inter-processor nearest neighbor communications busses pass the constants which represent physical constraints and boundary conditions. The node processors are connected to the six nearest neighbor node processors to simulate the actual physical interface of real substructures. Computer generated finite element mesh and force models can be developed with the aid of the central control minicomputer. The control computer also oversees the animation of a graphics display system, disk-based mass storage along with the individual processing elements.
[Formula: see text] regularity properties of singular parameterizations in isogeometric analysis.
Takacs, T; Jüttler, B
2012-11-01
Isogeometric analysis (IGA) is a numerical simulation method which is directly based on the NURBS-based representation of CAD models. It exploits the tensor-product structure of 2- or 3-dimensional NURBS objects to parameterize the physical domain. Hence the physical domain is parameterized with respect to a rectangle or to a cube. Consequently, singularly parameterized NURBS surfaces and NURBS volumes are needed in order to represent non-quadrangular or non-hexahedral domains without splitting, thereby producing a very compact and convenient representation. The Galerkin projection introduces finite-dimensional spaces of test functions in the weak formulation of partial differential equations. In particular, the test functions used in isogeometric analysis are obtained by composing the inverse of the domain parameterization with the NURBS basis functions. In the case of singular parameterizations, however, some of the resulting test functions do not necessarily fulfill the required regularity properties. Consequently, numerical methods for the solution of partial differential equations cannot be applied properly. We discuss the regularity properties of the test functions. For one- and two-dimensional domains we consider several important classes of singularities of NURBS parameterizations. For specific cases we derive additional conditions which guarantee the regularity of the test functions. In addition we present a modification scheme for the discretized function space in case of insufficient regularity. It is also shown how these results can be applied for computational domains in higher dimensions that can be parameterized via sweeping.
Li, Shudong; Zhang, Yan; Gu, Yaodong; Ren, James
2017-12-01
Due to the limitations of experimental approaches, comparison of the internal deformation and stresses of the human man foot between forefoot and rearfoot landing is not fully established. The objective of this work is to develop an effective FE modelling approach to comparatively study the stresses and energy in the foot during forefoot strike (FS) and rearfoot strike (RS). The stress level and rate of stress increase in the Metatarsals are established and the injury risk between these two landing styles is evaluated and discussed. A detailed subject specific FE foot model is developed and validated. A hexahedral dominated meshing scheme was applied on the surface of the foot bones and skin. An explicit solver (Abaqus/Explicit) was used to stimulate the transient landing process. The deformation and internal energy of the foot and stresses in the metatarsals are comparatively investigated. The results for forefoot strike tests showed an overall higher average stress level in the metatarsals during the entire landing cycle than that for rearfoot strike. The increase rate of the metatarsal stress from the 0.5 body weight (BW) to 2 BW load point is 30.76% for forefoot strike and 21.39% for rearfoot strike. The maximum rate of stress increase among the five metatarsals is observed on the 1st metatarsal in both landing modes. The results indicate that high stress level during forefoot landing phase may increase potential of metatarsal injuries. Copyright © 2017 Elsevier Ltd. All rights reserved.
Finite plateau in spectral gap of polychromatic constrained random networks
NASA Astrophysics Data System (ADS)
Avetisov, V.; Gorsky, A.; Nechaev, S.; Valba, O.
2017-12-01
We consider critical behavior in the ensemble of polychromatic Erdős-Rényi networks and regular random graphs, where network vertices are painted in different colors. The links can be randomly removed and added to the network subject to the condition of the vertex degree conservation. In these constrained graphs we run the Metropolis procedure, which favors the connected unicolor triads of nodes. Changing the chemical potential, μ , of such triads, for some wide region of μ , we find the formation of a finite plateau in the number of intercolor links, which exactly matches the finite plateau in the network algebraic connectivity (the value of the first nonvanishing eigenvalue of the Laplacian matrix, λ2). We claim that at the plateau the spontaneously broken Z2 symmetry is restored by the mechanism of modes collectivization in clusters of different colors. The phenomena of a finite plateau formation holds also for polychromatic networks with M ≥2 colors. The behavior of polychromatic networks is analyzed via the spectral properties of their adjacency and Laplacian matrices.
Effective-medium theory of elastic waves in random networks of rods.
Katz, J I; Hoffman, J J; Conradi, M S; Miller, J G
2012-06-01
We formulate an effective medium (mean field) theory of a material consisting of randomly distributed nodes connected by straight slender rods, hinged at the nodes. Defining wavelength-dependent effective elastic moduli, we calculate both the static moduli and the dispersion relations of ultrasonic longitudinal and transverse elastic waves. At finite wave vector k the waves are dispersive, with phase and group velocities decreasing with increasing wave vector. These results are directly applicable to networks with empty pore space. They also describe the solid matrix in two-component (Biot) theories of fluid-filled porous media. We suggest the possibility of low density materials with higher ratios of stiffness and strength to density than those of foams, aerogels, or trabecular bone.
Digitizing for Computer-Aided Finite Element Model Generation.
1979-10-10
this approach is a collection of programs developed over the last eight years at the University of Arizona, and called the GIFTS system. This paper...briefly describes the latest version of the system, GIFTS -5, and demonstrates its suitability in a design environment by simple examples. The programs...constituting the GIFTS system were used as a tool for research in many areas, including mesh generation, finite element data base design, interactive
A Finite Element Method to Correct Deformable Image Registration Errors in Low-Contrast Regions
Zhong, Hualiang; Kim, Jinkoo; Li, Haisen; Nurushev, Teamour; Movsas, Benjamin; Chetty, Indrin J.
2012-01-01
Image-guided adaptive radiotherapy requires deformable image registration to map radiation dose back and forth between images. The purpose of this study is to develop a novel method to improve the accuracy of an intensity-based image registration algorithm in low-contrast regions. A computational framework has been developed in this study to improve the quality of the “demons” registration. For each voxel in the registration’s target image, the standard deviation of image intensity in a neighborhood of this voxel was calculated. A mask for high-contrast regions was generated based on their standard deviations. In the masked regions, a tetrahedral mesh was refined recursively so that a sufficient number of tetrahedral nodes in these regions can be selected as driving nodes. An elastic system driven by the displacements of the selected nodes was formulated using a finite element method (FEM) and implemented on the refined mesh. The displacements of these driving nodes were generated with the “demons” algorithm. The solution of the system was derived using a conjugated gradient method, and interpolated to generate a displacement vector field for the registered images. The FEM correction method was compared with the “demons” algorithm on the CT images of lung and prostate patients. The performance of the FEM correction relating to the “demons” registration was analyzed based on the physical property of their deformation maps, and quantitatively evaluated through a benchmark model developed specifically for this study. Compared to the benchmark model, the “demons” registration has the maximum error of 1.2 cm, which can be corrected by the FEM method to 0.4 cm, and the average error of the “demons” registration is reduced from 0.17 cm to 0.11 cm. For the CT images of lung and prostate patients, the deformation maps generated by the “demons” algorithm were found unrealistic at several places. In these places, the displacement differences between the “demons” registrations and their FEM corrections were found in the range of 0.4 cm and 1.1cm. The mesh refinement and FEM simulation were implemented in a single thread application which requires about 45 minutes of computation time on a 2.6 GH computer. This study has demonstrated that the finite element method can be integrated with intensity-based image registration algorithms to improve their registration accuracy, especially in low-contrast regions. PMID:22581269
Process for computing geometric perturbations for probabilistic analysis
Fitch, Simeon H. K. [Charlottesville, VA; Riha, David S [San Antonio, TX; Thacker, Ben H [San Antonio, TX
2012-04-10
A method for computing geometric perturbations for probabilistic analysis. The probabilistic analysis is based on finite element modeling, in which uncertainties in the modeled system are represented by changes in the nominal geometry of the model, referred to as "perturbations". These changes are accomplished using displacement vectors, which are computed for each node of a region of interest and are based on mean-value coordinate calculations.
Kuusk, Teele; De Bruijn, Roderick; Brouwer, Oscar R; De Jong, Jeroen; Donswijk, Maarten; Grivas, Nikolaos; Hendricksen, Kees; Horenblas, Simon; Prevoo, Warner; Valdés Olmos, Renato A; Van Der Poel, Henk G; Van Rhijn, Bas W G; Wit, Esther M; Bex, Axel
2018-06-01
Lymphatic drainage from renal tumors is unpredictable. In vivo drainage studies of primary lymphatic landing sites may reveal the variability and dynamics of lymphatic connections. The purpose of this study was to investigate the lymphatic drainage pattern of renal tumors in vivo with single photon emission/computerized tomography after intratumor radiotracer injection. We performed a phase II, prospective, single arm study to investigate the distribution of sentinel nodes from renal tumors on single photon emission/computerized tomography. Patients with cT1-3 (less than 10 cm) cN0M0 renal tumors of any subtype were enrolled in analysis. After intratumor ultrasound guided injection of 0.4 ml 99m Tc-nanocolloid we performed preoperative imaging of sentinel nodes with lymphoscintigraphy and single photon emission/computerized tomography. Sentinel and locoregional nonsentinel nodes were resected with a γ probe combined with a mobile γ camera. The primary study end point was the location of sentinel nodes outside the locoregional retroperitoneal templates on single photon emission/computerized tomography. Using a Simon minimax 2-stage design to detect a 25% extralocoregional retroperitoneal template location of sentinel nodes on imaging at α = 0.05 and 80% power at least 40 patients with sentinel node imaging on single photon emission/computerized tomography were needed. Of the 68 patients 40 underwent preoperative single photon emission/computerized tomography of sentinel nodes and were included in primary end point analysis. Lymphatic drainage outside the locoregional retroperitoneal templates was observed in 14 patients (35%). Eight patients (20%) had supradiaphragmatic sentinel nodes. Sentinel nodes from renal tumors were mainly located in the respective locoregional retroperitoneal templates. Simultaneous sentinel nodes were located outside the suggested lymph node dissection templates, including supradiaphragmatic sentinel nodes in more than a third of the patients. Copyright © 2018 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Quantum statistics in complex networks
NASA Astrophysics Data System (ADS)
Bianconi, Ginestra
The Barabasi-Albert (BA) model for a complex network shows a characteristic power law connectivity distribution typical of scale free systems. The Ising model on the BA network shows that the ferromagnetic phase transition temperature depends logarithmically on its size. We have introduced a fitness parameter for the BA network which describes the different abilities of nodes to compete for links. This model predicts the formation of a scale free network where each node increases its connectivity in time as a power-law with an exponent depending on its fitness. This model includes the fact that the node connectivity and growth rate do not depend on the node age alone and it reproduces non trivial correlation properties of the Internet. We have proposed a model of bosonic networks by a generalization of the BA model where the properties of quantum statistics can be applied. We have introduced a fitness eta i = e-bei where the temperature T = 1/ b is determined by the noise in the system and the energy ei accounts for qualitative differences of each node for acquiring links. The results of this work show that a power law network with exponent gamma = 2 can give a Bose condensation where a single node grabs a finite fraction of all the links. In order to address the connection with self-organized processes we have introduced a model for a growing Cayley tree that generalizes the dynamics of invasion percolation. At each node we associate a parameter ei (called energy) such that the probability to grow for each node is given by pii ∝ ebei where T = 1/ b is a statistical parameter of the system determined by the noise called the temperature. This model has been solved analytically with a similar mathematical technique as the bosonic scale-free networks and it shows the self organization of the low energy nodes at the interface. In the thermodynamic limit the Fermi distribution describes the probability of the energy distribution at the interface.
Loiselle, Christopher; Eby, Peter R.; Kim, Janice N.; Calhoun, Kristine E.; Allison, Kimberly H.; Gadi, Vijayakrishna K.; Peacock, Sue; Storer, Barry; Mankoff, David A.; Partridge, Savannah C.; Lehman, Constance D.
2014-01-01
Rationale and Objectives To test the ability of quantitative measures from preoperative Dynamic Contrast Enhanced MRI (DCE-MRI) to predict, independently and/or with the Katz pathologic nomogram, which breast cancer patients with a positive sentinel lymph node biopsy will have ≥ 4 positive axillary lymph nodes upon completion axillary dissection. Methods and Materials A retrospective review was conducted to identify clinically node-negative invasive breast cancer patients who underwent preoperative DCE-MRI, followed by sentinel node biopsy with positive findings and complete axillary dissection (6/2005 – 1/2010). Clinical/pathologic factors, primary lesion size and quantitative DCE-MRI kinetics were collected from clinical records and prospective databases. DCE-MRI parameters with univariate significance (p < 0.05) to predict ≥ 4 positive axillary nodes were modeled with stepwise regression and compared to the Katz nomogram alone and to a combined MRI-Katz nomogram model. Results Ninety-eight patients with 99 positive sentinel biopsies met study criteria. Stepwise regression identified DCE-MRI total persistent enhancement and volume adjusted peak enhancement as significant predictors of ≥4 metastatic nodes. Receiver operating characteristic (ROC) curves demonstrated an area under the curve (AUC) of 0.78 for the Katz nomogram, 0.79 for the DCE-MRI multivariate model, and 0.87 for the combined MRI-Katz model. The combined model was significantly more predictive than the Katz nomogram alone (p = 0.003). Conclusion Integration of DCE-MRI primary lesion kinetics significantly improved the Katz pathologic nomogram accuracy to predict presence of metastases in ≥ 4 nodes. DCE-MRI may help identify sentinel node positive patients requiring further localregional therapy. PMID:24331270
Cuny, F; Géry, B; Florescu, C; Clarisse, B; Blanchard, D; Rame, J-P; Babin, E; De Raucourt, D
2013-11-01
Study of patients with stage T1N0M0 or T2N0M0 glottic cancer treated by exclusive radiotherapy and comparison of the survival and functional results of this series with those of the literature. Retrospective study of stage T1N0M0 or T2N0M0 glottic cancers diagnosed between 1st January 2000 and 31st December 2010 and treated by exclusive radiotherapy. Evaluation of survival, recurrence and larynx preservation rates. CLCC François-Baclesse and CHU de Caen. Fifty-nine patients (53 men and sixwomen) treated for glottic cancer (57 squamous cell carcinomas, two verrucous carcinomas) comprising 51 T1N0M0 and eight T2N0M0 tumours. Treatment with exclusive radiotherapy (mean dose of 70 Grays limited to the thyroid cartilage for 57 patients, with lymph node irradiation for two patients). In this series, five (9.8%) patients with stage T1N0M0 glottic cancer and three patients (37.5%) with stage T2N0M0 glottic cancer relapsed, corresponding to a global recurrence rate of 13.6%. Three of the eight recurrences involved lymph nodes exclusively (N), two patients relapsed exclusively at the primary tumour site (T) and three patients presented local and lymph node recurrence (T and N). Treatment consisted of salvage total laryngectomy with bilateral cervical lymph node dissection in three cases, bilateral cervical lymph node dissection and sensitized radiotherapy in two cases, exclusive chemotherapy in one case, cervical lymph node dissection and cervical radiotherapy in one case. The last patient with recurrence died prior to salvage therapy. The larynx preservation rate was 94.9%. In comparison with the literature, treatment of stage T1-T2N0M0 glottic cancer by exclusive radiotherapy gives very good results, with a larynx preservation rate of 95%. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Simulation of Locking Space Truss Deployments for a Large Deployable Sparse Aperture Reflector
2015-03-01
Dr. Alan Jennings, for his unending patience with my struggles through this entire process . Without his expertise, guidance, and trust I would have...engineer since they are not automatically meshed. Fortunately, the mesh process is quite swift. Figure 13 shows both a linear hexahedral element as well...less than that of the serial process . Therefore, COMSOL’s partially parallelized algorithms will not be sped up as a function of cores added and is
NASA Astrophysics Data System (ADS)
Franco, J. M.; Rández, L.
The construction of new two-step hybrid (TSH) methods of explicit type with symmetric nodes and weights for the numerical integration of orbital and oscillatory second-order initial value problems (IVPs) is analyzed. These methods attain algebraic order eight with a computational cost of six or eight function evaluations per step (it is one of the lowest costs that we know in the literature) and they are optimal among the TSH methods in the sense that they reach a certain order of accuracy with minimal cost per step. The new TSH schemes also have high dispersion and dissipation orders (greater than 8) in order to be adapted to the solution of IVPs with oscillatory solutions. The numerical experiments carried out with several orbital and oscillatory problems show that the new eighth-order explicit TSH methods are more efficient than other standard TSH or Numerov-type methods proposed in the scientific literature.
Overconfidence, preview, and probability in strategic planning
NASA Technical Reports Server (NTRS)
Wickens, Christopher D.; Pizarro, David; Bell, Brian
1991-01-01
The performance of eight subjects in a 'rescue' video game requiring choices as to which node they should fly to in order to rescue the simulated casualties is presently studied with a view to biases and display support criteria in strategic planning. After each choice, the subjects needed to fly a challenging tracking dynamic along a path to reach the next node. The results obtained indicate that the choices of the subjects were less optimal when full preview was offered, perhaps due to subjects' reliance on the simple strategy of choosing routes with the greatest number of casualties.
Technique for Calculating Solution Derivatives With Respect to Geometry Parameters in a CFD Code
NASA Technical Reports Server (NTRS)
Mathur, Sanjay
2011-01-01
A solution has been developed to the challenges of computation of derivatives with respect to geometry, which is not straightforward because these are not typically direct inputs to the computational fluid dynamics (CFD) solver. To overcome these issues, a procedure has been devised that can be used without having access to the mesh generator, while still being applicable to all types of meshes. The basic approach is inspired by the mesh motion algorithms used to deform the interior mesh nodes in a smooth manner when the surface nodes, for example, are in a fluid structure interaction problem. The general idea is to model the mesh edges and nodes as constituting a spring-mass system. Changes to boundary node locations are propagated to interior nodes by allowing them to assume their new equilibrium positions, for instance, one where the forces on each node are in balance. The main advantage of the technique is that it is independent of the volumetric mesh generator, and can be applied to structured, unstructured, single- and multi-block meshes. It essentially reduces the problem down to defining the surface mesh node derivatives with respect to the geometry parameters of interest. For analytical geometries, this is quite straightforward. In the more general case, one would need to be able to interrogate the underlying parametric CAD (computer aided design) model and to evaluate the derivatives either analytically, or by a finite difference technique. Because the technique is based on a partial differential equation (PDE), it is applicable not only to forward mode problems (where derivatives of all the output quantities are computed with respect to a single input), but it could also be extended to the adjoint problem, either by using an analytical adjoint of the PDE or a discrete analog.
Computer aided stress analysis of long bones utilizing computer tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marom, S.A.
1986-01-01
A computer aided analysis method, utilizing computed tomography (CT) has been developed, which together with a finite element program determines the stress-displacement pattern in a long bone section. The CT data file provides the geometry, the density and the material properties for the generated finite element model. A three-dimensional finite element model of a tibial shaft is automatically generated from the CT file by a pre-processing procedure for a finite element program. The developed pre-processor includes an edge detection algorithm which determines the boundaries of the reconstructed cross-sectional images of the scanned bone. A mesh generation procedure than automatically generatesmore » a three-dimensional mesh of a user-selected refinement. The elastic properties needed for the stress analysis are individually determined for each model element using the radiographic density (CT number) of each pixel with the elemental borders. The elastic modulus is determined from the CT radiographic density by using an empirical relationship from the literature. The generated finite element model, together with applied loads, determined from existing gait analysis and initial displacements, comprise a formatted input for the SAP IV finite element program. The output of this program, stresses and displacements at the model elements and nodes, are sorted and displayed by a developed post-processor to provide maximum and minimum values at selected locations in the model.« less
Cooley, Richard L.
1992-01-01
MODFE, a modular finite-element model for simulating steady- or unsteady-state, area1 or axisymmetric flow of ground water in a heterogeneous anisotropic aquifer is documented in a three-part series of reports. In this report, part 2, the finite-element equations are derived by minimizing a functional of the difference between the true and approximate hydraulic head, which produces equations that are equivalent to those obtained by either classical variational or Galerkin techniques. Spatial finite elements are triangular with linear basis functions, and temporal finite elements are one dimensional with linear basis functions. Physical processes that can be represented by the model include (1) confined flow, unconfined flow (using the Dupuit approximation), or a combination of both; (2) leakage through either rigid or elastic confining units; (3) specified recharge or discharge at points, along lines, or areally; (4) flow across specified-flow, specified-head, or head-dependent boundaries; (5) decrease of aquifer thickness to zero under extreme water-table decline and increase of aquifer thickness from zero as the water table rises; and (6) head-dependent fluxes from springs, drainage wells, leakage across riverbeds or confining units combined with aquifer dewatering, and evapotranspiration. The matrix equations produced by the finite-element method are solved by the direct symmetric-Doolittle method or the iterative modified incomplete-Cholesky conjugate-gradient method. The direct method can be efficient for small- to medium-sized problems (less than about 500 nodes), and the iterative method is generally more efficient for larger-sized problems. Comparison of finite-element solutions with analytical solutions for five example problems demonstrates that the finite-element model can yield accurate solutions to ground-water flow problems.
Ruskin, Olivia; Sanelli, Alexandra; Herschtal, Alan; Webb, Angela; Dixon, Ben; Pohl, Miklos; Donahoe, Simon; Spillane, John; Henderson, Michael A; Gyorki, David E
2016-09-01
Recommended margins for thick cutaneous melanoma (Breslow thickness >4 mm; T4) have decreased over recent decades. Optimal margins and the role of sentinel node biopsy (SNB) in thick head and neck melanoma remain controversial. A single-center review was conducted of patients treated between 2002 and 2012 assessing the impact of excision margins and sentinel lymph node status on locoregional recurrence and melanoma-specific survival (MSS). One hundred eight patients were identified. Median age was 71.1 years and median Breslow thickness was 6.0 mm. Median follow-up was 40 months. Locoregional recurrence occurred in 27% and there was no significant reduction in recurrence with margins ≥2 cm (p = .17). Increasing margins did not improve survival (p = .58). Fifty-nine patients (55%) underwent SNB, of which 27% were positive. There was a trend toward longer survival for patients who were sentinel lymph node-negative (p = .097). Wider margins do not significantly improve locoregional recurrence or MSS. Sentinel lymph node involvement reflects a poor prognosis. © 2016 Wiley Periodicals, Inc. Head Neck 38: 1373-1379, 2016. © 2016 Wiley Periodicals, Inc.
NOTE: Solving the ECG forward problem by means of a meshless finite element method
NASA Astrophysics Data System (ADS)
Li, Z. S.; Zhu, S. A.; He, Bin
2007-07-01
The conventional numerical computational techniques such as the finite element method (FEM) and the boundary element method (BEM) require laborious and time-consuming model meshing. The new meshless FEM only uses the boundary description and the node distribution and no meshing of the model is required. This paper presents the fundamentals and implementation of meshless FEM and the meshless FEM method is adapted to solve the electrocardiography (ECG) forward problem. The method is evaluated on a single-layer torso model, in which the analytical solution exists, and tested in a realistic geometry homogeneous torso model, with satisfactory results being obtained. The present results suggest that the meshless FEM may provide an alternative for ECG forward solutions.
A refined mixed shear flexible finite element for the nonlinear analysis of laminated plates
NASA Technical Reports Server (NTRS)
Putcha, N. S.; Reddy, J. N.
1986-01-01
The present study is concerned with the development of a mixed shear flexible finite element with relaxed continuity for the geometrically linear and nonlinear analysis of laminated anisotropic plates. The formulation of the element is based on a refined higher-order theory. This theory satisfies the zero transverse shear stress boundary conditions on the top and bottom faces of the plate. Shear correction coefficients are not needed. The developed element consists of 11 degrees-of-freedom per node, taking into account three displacements, two rotations, and six moment resultants. An evaluation of the element is conducted with respect to the accuracy obtained in the bending of laminated anistropic rectangular plates with different lamination schemes, loadings, and boundary conditions.
High speed finite element simulations on the graphics card
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huthwaite, P.; Lowe, M. J. S.
A software package is developed to perform explicit time domain finite element simulations of ultrasonic propagation on the graphical processing unit, using Nvidia’s CUDA. Of critical importance for this problem is the arrangement of nodes in memory, allowing data to be loaded efficiently and minimising communication between the independently executed blocks of threads. The initial stage of memory arrangement is partitioning the mesh; both a well established ‘greedy’ partitioner and a new, more efficient ‘aligned’ partitioner are investigated. A method is then developed to efficiently arrange the memory within each partition. The technique is compared to a commercial CPU equivalent,more » demonstrating an overall speedup of at least 100 for a non-destructive testing weld model.« less
Finite Element Analysis of Doorframe Structure of Single Oblique Pole Type in Container Crane
NASA Astrophysics Data System (ADS)
Cheng, X. F.; Wu, F. Q.; Tang, G.; Hu, X.
2017-07-01
Compared with the composite type, the single oblique pole type has more advantages, such as simple structure, thrift steel and high safe overhead clearance. The finite element model of the single oblique pole type is established in nodes by ANSYS, and more details are considered when the model is simplified, such as the section of Girder and Boom, torque in Girder and Boom occurred by Machinery house and Trolley, density according to the way of simplification etc. The stress and deformation of ten observation points are compared and analyzed, when the trolley is in nine dangerous positions. Based on the result of analysis, six dangerous points are selected to provide reference for the detection and evaluation of container crane.
Automation Tools for Finite Element Analysis of Adhesively Bonded Joints
NASA Technical Reports Server (NTRS)
Tahmasebi, Farhad; Brodeur, Stephen J. (Technical Monitor)
2002-01-01
This article presents two new automation creation tools that obtain stresses and strains (Shear and peel) in adhesively bonded joints. For a given adhesively bonded joint Finite Element model, in which the adhesive is characterised using springs, these automation tools read the corresponding input and output files, use the spring forces and deformations to obtain the adhesive stresses and strains, sort the stresses and strains in descending order, and generate plot files for 3D visualisation of the stress and strain fields. Grids (nodes) and elements can be numbered in any order that is convenient for the user. Using the automation tools, trade-off studies, which are needed for design of adhesively bonded joints, can be performed very quickly.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Kai; Fu, Shubin; Gibson, Richard L.
It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both the boundaries and interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale mediummore » property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Kai, E-mail: kaigao87@gmail.com; Fu, Shubin, E-mail: shubinfu89@gmail.com; Gibson, Richard L., E-mail: gibson@tamu.edu
It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both the boundaries and interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale mediummore » property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system.« less
Gao, Kai; Fu, Shubin; Gibson, Richard L.; ...
2015-04-14
It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both the boundaries and interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale mediummore » property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system.« less
Chan, B; Donzelli, P S; Spilker, R L
2000-06-01
The fluid viscosity term of the fluid phase constitutive equation and the interface boundary conditions between biphasic, solid and fluid domains have been incorporated into a mixed-penalty finite element formulation of the linear biphasic theory for hydrated soft tissue. The finite element code can now model a single-phase viscous incompressible fluid, or a single-phase elastic solid, as limiting cases of a biphasic material. Interface boundary conditions allow the solution of problems involving combinations of biphasic, fluid and solid regions. To incorporate these conditions, the volume-weighted mixture velocity is introduced as a degree of freedom at interface nodes so that the kinematic continuity conditions are satisfied by conventional finite element assembly techniques. Results comparing our numerical method with an independent, analytic solution for the problem of Couette flow over rigid and deformable porous biphasic layers show that the finite element code accurately predicts the viscous fluid flows and deformation in the porous biphasic region. Thus, the analysis can be used to model the interface between synovial fluid and articular cartilage in diarthrodial joints. This is an important step toward modeling and understanding the mechanisms of joint lubrication and another step toward fully modeling the in vivo behavior of a diarthrodial joint.
NASA Technical Reports Server (NTRS)
Dame, L. T.; Stouffer, D. C.
1986-01-01
A tool for the mechanical analysis of nickel base single crystal superalloys, specifically Rene N4, used in gas turbine engine components is developed. This is achieved by a rate dependent anisotropic constitutive model implemented in a nonlinear three dimensional finite element code. The constitutive model is developed from metallurigical concepts utilizing a crystallographic approach. A non Schmid's law formulation is used to model the tension/compression asymmetry and orientation dependence in octahedral slip. Schmid's law is a good approximation to the inelastic response of the material in cube slip. The constitutive equations model the tensile behavior, creep response, and strain rate sensitivity of these alloys. Methods for deriving the material constants from standard tests are presented. The finite element implementation utilizes an initial strain method and twenty noded isoparametric solid elements. The ability to model piecewise linear load histories is included in the finite element code. The constitutive equations are accurately and economically integrated using a second order Adams-Moulton predictor-corrector method with a dynamic time incrementing procedure. Computed results from the finite element code are compared with experimental data for tensile, creep and cyclic tests at 760 deg C. The strain rate sensitivity and stress relaxation capabilities of the model are evaluated.
Accurate chemical master equation solution using multi-finite buffers
Cao, Youfang; Terebus, Anna; Liang, Jie
2016-06-29
Here, the discrete chemical master equation (dCME) provides a fundamental framework for studying stochasticity in mesoscopic networks. Because of the multiscale nature of many networks where reaction rates have a large disparity, directly solving dCMEs is intractable due to the exploding size of the state space. It is important to truncate the state space effectively with quantified errors, so accurate solutions can be computed. It is also important to know if all major probabilistic peaks have been computed. Here we introduce the accurate CME (ACME) algorithm for obtaining direct solutions to dCMEs. With multifinite buffers for reducing the state spacemore » by $O(n!)$, exact steady-state and time-evolving network probability landscapes can be computed. We further describe a theoretical framework of aggregating microstates into a smaller number of macrostates by decomposing a network into independent aggregated birth and death processes and give an a priori method for rapidly determining steady-state truncation errors. The maximal sizes of the finite buffers for a given error tolerance can also be precomputed without costly trial solutions of dCMEs. We show exactly computed probability landscapes of three multiscale networks, namely, a 6-node toggle switch, 11-node phage-lambda epigenetic circuit, and 16-node MAPK cascade network, the latter two with no known solutions. We also show how probabilities of rare events can be computed from first-passage times, another class of unsolved problems challenging for simulation-based techniques due to large separations in time scales. Overall, the ACME method enables accurate and efficient solutions of the dCME for a large class of networks.« less
Accurate chemical master equation solution using multi-finite buffers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Youfang; Terebus, Anna; Liang, Jie
Here, the discrete chemical master equation (dCME) provides a fundamental framework for studying stochasticity in mesoscopic networks. Because of the multiscale nature of many networks where reaction rates have a large disparity, directly solving dCMEs is intractable due to the exploding size of the state space. It is important to truncate the state space effectively with quantified errors, so accurate solutions can be computed. It is also important to know if all major probabilistic peaks have been computed. Here we introduce the accurate CME (ACME) algorithm for obtaining direct solutions to dCMEs. With multifinite buffers for reducing the state spacemore » by $O(n!)$, exact steady-state and time-evolving network probability landscapes can be computed. We further describe a theoretical framework of aggregating microstates into a smaller number of macrostates by decomposing a network into independent aggregated birth and death processes and give an a priori method for rapidly determining steady-state truncation errors. The maximal sizes of the finite buffers for a given error tolerance can also be precomputed without costly trial solutions of dCMEs. We show exactly computed probability landscapes of three multiscale networks, namely, a 6-node toggle switch, 11-node phage-lambda epigenetic circuit, and 16-node MAPK cascade network, the latter two with no known solutions. We also show how probabilities of rare events can be computed from first-passage times, another class of unsolved problems challenging for simulation-based techniques due to large separations in time scales. Overall, the ACME method enables accurate and efficient solutions of the dCME for a large class of networks.« less
Gilet, T; Vandewalle, N; Dorbolo, S
2009-05-01
This Rapid Communication presents an analytical study of the bouncing of a completely inelastic ball on a vertically vibrated plate. The interplay of saddle-node and period-doubling bifurcations leads to an intricate structure of the bifurcation diagram with uncommon properties, such as an infinity of bifurcation cascades in a finite range of the control parameter Gamma. A pseudochaotic behavior, consisting in arbitrarily long and complex periodic sequences, is observed through this generic system.
NASA Astrophysics Data System (ADS)
Gilet, T.; Vandewalle, N.; Dorbolo, S.
2009-05-01
This Rapid Communication presents an analytical study of the bouncing of a completely inelastic ball on a vertically vibrated plate. The interplay of saddle-node and period-doubling bifurcations leads to an intricate structure of the bifurcation diagram with uncommon properties, such as an infinity of bifurcation cascades in a finite range of the control parameter Γ . A pseudochaotic behavior, consisting in arbitrarily long and complex periodic sequences, is observed through this generic system.
A time-domain finite element boundary integral approach for elastic wave scattering
NASA Astrophysics Data System (ADS)
Shi, F.; Lowe, M. J. S.; Skelton, E. A.; Craster, R. V.
2018-04-01
The response of complex scatterers, such as rough or branched cracks, to incident elastic waves is required in many areas of industrial importance such as those in non-destructive evaluation and related fields; we develop an approach to generate accurate and rapid simulations. To achieve this we develop, in the time domain, an implementation to efficiently couple the finite element (FE) method within a small local region, and the boundary integral (BI) globally. The FE explicit scheme is run in a local box to compute the surface displacement of the scatterer, by giving forcing signals to excitation nodes, which can lie on the scatterer itself. The required input forces on the excitation nodes are obtained with a reformulated FE equation, according to the incident displacement field. The surface displacements computed by the local FE are then projected, through time-domain BI formulae, to calculate the scattering signals with different modes. This new method yields huge improvements in the efficiency of FE simulations for scattering from complex scatterers. We present results using different shapes and boundary conditions, all simulated using this approach in both 2D and 3D, and then compare with full FE models and theoretical solutions to demonstrate the efficiency and accuracy of this numerical approach.
Mehl, S.; Hill, M.C.
2002-01-01
A new method of local grid refinement for two-dimensional block-centered finite-difference meshes is presented in the context of steady-state groundwater-flow modeling. The method uses an iteration-based feedback with shared nodes to couple two separate grids. The new method is evaluated by comparison with results using a uniform fine mesh, a variably spaced mesh, and a traditional method of local grid refinement without a feedback. Results indicate: (1) The new method exhibits quadratic convergence for homogeneous systems and convergence equivalent to uniform-grid refinement for heterogeneous systems. (2) Coupling the coarse grid with the refined grid in a numerically rigorous way allowed for improvement in the coarse-grid results. (3) For heterogeneous systems, commonly used linear interpolation of heads from the large model onto the boundary of the refined model produced heads that are inconsistent with the physics of the flow field. (4) The traditional method works well in situations where the better resolution of the locally refined grid has little influence on the overall flow-system dynamics, but if this is not true, lack of a feedback mechanism produced errors in head up to 3.6% and errors in cell-to-cell flows up to 25%. ?? 2002 Elsevier Science Ltd. All rights reserved.
Scaling properties in time-varying networks with memory
NASA Astrophysics Data System (ADS)
Kim, Hyewon; Ha, Meesoon; Jeong, Hawoong
2015-12-01
The formation of network structure is mainly influenced by an individual node's activity and its memory, where activity can usually be interpreted as the individual inherent property and memory can be represented by the interaction strength between nodes. In our study, we define the activity through the appearance pattern in the time-aggregated network representation, and quantify the memory through the contact pattern of empirical temporal networks. To address the role of activity and memory in epidemics on time-varying networks, we propose temporal-pattern coarsening of activity-driven growing networks with memory. In particular, we focus on the relation between time-scale coarsening and spreading dynamics in the context of dynamic scaling and finite-size scaling. Finally, we discuss the universality issue of spreading dynamics on time-varying networks for various memory-causality tests.
A new 3D maser code applied to flaring events
NASA Astrophysics Data System (ADS)
Gray, M. D.; Mason, L.; Etoka, S.
2018-06-01
We set out the theory and discretization scheme for a new finite-element computer code, written specifically for the simulation of maser sources. The code was used to compute fractional inversions at each node of a 3D domain for a range of optical thicknesses. Saturation behaviour of the nodes with regard to location and optical depth was broadly as expected. We have demonstrated via formal solutions of the radiative transfer equation that the apparent size of the model maser cloud decreases as expected with optical depth as viewed by a distant observer. Simulations of rotation of the cloud allowed the construction of light curves for a number of observable quantities. Rotation of the model cloud may be a reasonable model for quasi-periodic variability, but cannot explain periodic flaring.
Time-reversal and rotation symmetry breaking superconductivity in Dirac materials
NASA Astrophysics Data System (ADS)
Chirolli, Luca; de Juan, Fernando; Guinea, Francisco
2017-05-01
We consider mixed symmetry superconducting phases in Dirac materials in the odd-parity channel, where pseudoscalar and vector order parameters can coexist due to their similar critical temperatures when attractive interactions are of a finite range. We show that the coupling of these order parameters to unordered magnetic dopants favors the condensation of time-reversal symmetry breaking (TRSB) phases, characterized by a condensate magnetization, rotation symmetry breaking, and simultaneous ordering of the dopant moments. We find a rich phase diagram of mixed TRSB phases characterized by peculiar bulk quasiparticles, with Weyl nodes and nodal lines, and distinctive surface states. These findings are consistent with recent experiments on NbxBi2Se3 that report evidence of point nodes, nematicity, and TRSB superconductivity induced by Nb magnetic moments.
Brountzos, Elias N; Panagiotou, Irene E; Bafaloukos, Dimitrios I; Kelekis, Dimitrios A
2003-01-01
Careful monitoring of regional lymph nodes and early detection of metastases in malignant melanoma patients has an impact on their survival, since it may permit beneficial surgical therapy. Palpation is routinely used in clinical practice. The value of ultrasonography for routine follow-up of melanoma patients, still, is not generally accepted. The aim of our study was to assess the sensitivity and specificity of ultrasound and clinical examination respectively, in the detection of melanoma regional node metastases. Additionally, we evaluated whether early detection of metastases improved overall survival. One hundred and forty-eight melanoma patients with an intermediate or thick primary lesion were followed between January 1997 and May 2001. Clinical examination and concomitant regional lymph node ultrasonography were performed, every 3-4 months. If suspicious findings were identified, regional lymph node dissection was undertaken. Forty-four from the initial 148 patients relapsed with regional lymph nodal metastases. In 11 patients (25%) palpation failed to reveal the disease and metastases were depicted only by ultrasonography. In only 1 patient ultrasonography was false-negative. The sensitivity and specificity of palpation were 72.7 and 97% respectively, while those of ultrasonography were 97.7 (p<0.001) and 98% respectively. Ultrasonography was more sensitive in detecting lymph node metastases in the axilla (100%) and the groin (93.3%). When overall survival of patients presenting with local-regional recurrence was calculated--depending on the number of involved lymph nodes--a survival benefit (p<0.05) was found for patients with only one lymph node metastasis. In conclusion, ultrasonography is superior to clinical examination in the early detection of regional lymph node metastases from an intermediate or thick malignant melanoma and should be a part of those patients' surveillance.
The Value of Sentinel Lymph Node Biopsy in Oral Cavity Cancers
Kaya, İsa; Göde, Sercan; Öztürk, Kerem; Turhal, Göksel; Aliyev, Araz; Akyıldız, Serdar; Duygun, Ülkem Yararbaş; Uluöz, Ümit; Yavuzer, Atilla
2015-01-01
Objective The aim of this study was to establish the effectiveness of sentinel lymph node biopsy in the detection of metastasis in N0 necks of T1–T2 early-stage oral cavity cancers. Materials and Methods Twenty neck dissections were performed in 18 patients diagnosed with T1 and T2 oral cavity cancer, with an indication for elective neck dissection between November 2007 and January 2011. The male to female ratio was 12:8, with a mean age of 54.5 years (range 28–76). Eight of the dissections were performed for lower lip cancer, 7 for tongue cancer, and 5 for floor of the mouth cancer. Sentinel lymph node biopsy was used to detect metastatic lymph nodes. Tc99m radionuclide injection was administered to the periphery of the tumor 24 h before the operation, and a lymphoscintigraphy image was obtained 30 min after the injection. Sentinel lymph nodes were localized and excised on the day of surgery using static lymphoscintigraphy images and a gamma probe. Sentinel lymph nodes were sent for a frozen section examination, and either a selective or a comprehensive neck dissection was performed for each neck according to the results. Results After the final histopathological examination of the specimens, the negative predictive value, the positive predictive value, the accuracy of the sentinel lymph node biopsy, and frozen section accuracy were found to be 100%. Conclusion Sentinel lymph node biopsy was found to be an efficient method in the pathological staging and management of the N0 neck in early T-stage oral cavity cancers. PMID:29391982
Hegemann, Nina-Sophie; Wenter, Vera; Spath, Sonja; Kusumo, Nadia; Li, Minglun; Bartenstein, Peter; Fendler, Wolfgang P; Stief, Christian; Belka, Claus; Ganswindt, Ute
2016-03-11
In order to define adequate radiation portals in nodal positive prostate cancer a detailed knowledge of the anatomic lymph-node distribution is mandatory. We therefore systematically analyzed the localization of Choline PET/CT positive lymph nodes and compared it to the RTOG recommendation of pelvic CTV, as well as to previous work, the SPECT sentinel lymph node atlas. Thirty-two patients being mostly high risk patients with a PSA of 12.5 ng/ml (median) received PET/CT before any treatment. Eighty-seven patients received PET/CT for staging due to biochemical failure with a median PSA of 3.12 ng/ml. Each single PET-positive lymph node was manually contoured in a "virtual" patient dataset to achieve a 3-D visualization, resulting in an atlas of the cumulative PET positive lymph node distribution. Further the PET-positive lymph node location in each patient was assessed with regard to the existence of a potential geographic miss (i.e. PET-positive lymph nodes that would not have been treated adequately by the RTOG consensus on CTV definition of pelvic lymph nodes). Seventy-eight and 209 PET positive lymph nodes were detected in patients with no prior treatment and in postoperative patients, respectively. The most common sites of PET positive lymph nodes in patients with no prior treatment were external iliac (32.1 %), followed by common iliac (23.1 %) and para-aortic (19.2 %). In postoperative patients the most common sites of PET positive lymph nodes were common iliac (24.9 %), followed by external iliac (23.0 %) and para-aortic (20.1 %). In patients with no prior treatment there were 34 (43.6 %) and in postoperative patients there were 77 (36.8 %) of all detected lymph nodes that would not have been treated adequately using the RTOG CTV. We compared the distribution of lymph nodes gained by Choline PET/CT to the preexisting SPECT sentinel lymph node atlas and saw an overall good congruence. Choline PET/CT and SPECT sentinel lymph node atlas are comparable to each other. More than one-third of the PET positive lymph nodes in patients with no prior treatment and in postoperative patients would not have been treated adequately using the RTOG CTV. To reduce geographical miss, image based definition of an individual target volume is necessary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
OWEN,STEVEN J.
A method for decomposing a volume with a prescribed quadrilateral surface mesh, into a hexahedral-dominated mesh is proposed. With this method, known as Hex-Morphing (H-Morph), an initial tetrahedral mesh is provided. Tetrahedral are transformed and combined starting from the boundary and working towards the interior of the volume. The quadrilateral faces of the hexahedra are treated as internal surfaces, which can be recovered using constrained triangulation techniques. Implementation details of the edge and face recovery process are included. Examples and performance of the H-Morph algorithm are also presented.
An Experimental Study of an Ultra-Mobile Vehicle for Off-Road Transportation.
1984-09-01
commenced with the * aluminum plate from which the links will be fabricated having been cut out. Welding of the leg links is-in progress. The leg boxes , which...Control forkoulh-Ternain Locomotion i Multilegged Robot Vehicle, TEX di s~s- rt o n, March, 1984.- 28. Ozguner, F. and Kao, M.L., "A Multimicroprocessor...efficient structure. 3.3.1 Body Model The body is modelled as a hexahedral box with the top plane wider than the bottom plane, which allows the abduction
Accurate Finite Difference Algorithms
NASA Technical Reports Server (NTRS)
Goodrich, John W.
1996-01-01
Two families of finite difference algorithms for computational aeroacoustics are presented and compared. All of the algorithms are single step explicit methods, they have the same order of accuracy in both space and time, with examples up to eleventh order, and they have multidimensional extensions. One of the algorithm families has spectral like high resolution. Propagation with high order and high resolution algorithms can produce accurate results after O(10(exp 6)) periods of propagation with eight grid points per wavelength.
Three-dimensional elastic-plastic finite-element analysis of fatigue crack propagation
NASA Technical Reports Server (NTRS)
Goglia, G. L.; Chermahini, R. G.
1985-01-01
Fatigue cracks are a major problem in designing structures subjected to cyclic loading. Cracks frequently occur in structures such as aircraft and spacecraft. The inspection intervals of many aircraft structures are based on crack-propagation lives. Therefore, improved prediction of propagation lives under flight-load conditions (variable-amplitude loading) are needed to provide more realistic design criteria for these structures. The main thrust was to develop a three-dimensional, nonlinear, elastic-plastic, finite element program capable of extending a crack and changing boundary conditions for the model under consideration. The finite-element model is composed of 8-noded (linear-strain) isoparametric elements. In the analysis, the material is assumed to be elastic-perfectly plastic. The cycle stress-strain curve for the material is shown Zienkiewicz's initial-stress method, von Mises's yield criterion, and Drucker's normality condition under small-strain assumptions are used to account for plasticity. The three-dimensional analysis is capable of extending the crack and changing boundary conditions under cyclic loading.
BeamDyn: a high-fidelity wind turbine blade solver in the FAST modular framework
Wang, Qi; Sprague, Michael A.; Jonkman, Jason; ...
2017-03-14
Here, this paper presents a numerical implementation of the geometrically exact beam theory based on the Legendre-spectral-finite-element (LSFE) method. The displacement-based geometrically exact beam theory is presented, and the special treatment of three-dimensional rotation parameters is reviewed. An LSFE is a high-order finite element with nodes located at the Gauss-Legendre-Lobatto points. These elements can be an order of magnitude more computationally efficient than low-order finite elements for a given accuracy level. The new module, BeamDyn, is implemented in the FAST modularization framework for dynamic simulation of highly flexible composite-material wind turbine blades within the FAST aeroelastic engineering model. The frameworkmore » allows for fully interactive simulations of turbine blades in operating conditions. Numerical examples are provided to validate BeamDyn and examine the LSFE performance as well as the coupling algorithm in the FAST modularization framework. BeamDyn can also be used as a stand-alone high-fidelity beam tool.« less
Comparison of three explicit multigrid methods for the Euler and Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Chima, Rodrick V.; Turkel, Eli; Schaffer, Steve
1987-01-01
Three explicit multigrid methods, Ni's method, Jameson's finite-volume method, and a finite-difference method based on Brandt's work, are described and compared for two model problems. All three methods use an explicit multistage Runge-Kutta scheme on the fine grid, and this scheme is also described. Convergence histories for inviscid flow over a bump in a channel for the fine-grid scheme alone show that convergence rate is proportional to Courant number and that implicit residual smoothing can significantly accelerate the scheme. Ni's method was slightly slower than the implicitly-smoothed scheme alone. Brandt's and Jameson's methods are shown to be equivalent in form but differ in their node versus cell-centered implementations. They are about 8.5 times faster than Ni's method in terms of CPU time. Results for an oblique shock/boundary layer interaction problem verify the accuracy of the finite-difference code. All methods slowed considerably on the stretched viscous grid but Brandt's method was still 2.1 times faster than Ni's method.
Structure of the Nucleon and its Excitations
NASA Astrophysics Data System (ADS)
Kamleh, Waseem; Leinweber, Derek; Liu, Zhan-wei; Stokes, Finn; Thomas, Anthony; Thomas, Samuel; Wu, Jia-jun
2018-03-01
The structure of the ground state nucleon and its finite-volume excitations are examined from three different perspectives. Using new techniques to extract the relativistic components of the nucleon wave function, the node structure of both the upper and lower components of the nucleon wave function are illustrated. A non-trivial role for gluonic components is manifest. In the second approach, the parity-expanded variational analysis (PEVA) technique is utilised to isolate states at finite momenta, enabling a novel examination of the electric and magnetic form factors of nucleon excitations. Here the magnetic form factors of low-lying odd-parity nucleons are particularly interesting. Finally, the structure of the nucleon spectrum is examined in a Hamiltonian effective field theory analysis incorporating recent lattice-QCD determinations of low-lying two-particle scattering-state energies in the finite volume. The Roper resonance of Nature is observed to originate from multi-particle coupled-channel interactions while the first radial excitation of the nucleon sits much higher at approximately 1.9 GeV.
BeamDyn: a high-fidelity wind turbine blade solver in the FAST modular framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Qi; Sprague, Michael A.; Jonkman, Jason
Here, this paper presents a numerical implementation of the geometrically exact beam theory based on the Legendre-spectral-finite-element (LSFE) method. The displacement-based geometrically exact beam theory is presented, and the special treatment of three-dimensional rotation parameters is reviewed. An LSFE is a high-order finite element with nodes located at the Gauss-Legendre-Lobatto points. These elements can be an order of magnitude more computationally efficient than low-order finite elements for a given accuracy level. The new module, BeamDyn, is implemented in the FAST modularization framework for dynamic simulation of highly flexible composite-material wind turbine blades within the FAST aeroelastic engineering model. The frameworkmore » allows for fully interactive simulations of turbine blades in operating conditions. Numerical examples are provided to validate BeamDyn and examine the LSFE performance as well as the coupling algorithm in the FAST modularization framework. BeamDyn can also be used as a stand-alone high-fidelity beam tool.« less
Anatomical variations in lymphatic drainage of the right lung: applications in lung cancer surgery.
Ndiaye, Assane; Di-Marino, V; Ba, P S; Ndiaye, Aï; Gaye, M; Nazarian, S
2016-12-01
To specify the topography and variations in lymphatic drainage of the right lung to the mediastinum and their therapeutic implications in non-small cell lung cancers (NSCLC). We injected a dye into the subpleural lymphatic vessels in 65 right lung segments, followed by dissection in 22 subjects. At the upper lobe, we had injected 32 segments. We noted extrasegmental overflow in one case; extrasegmental and extralobar drainage in two cases; drainage to the lymph nodes of another lobe in one case. Fifty-six percent of the segments drained directly (skipping intrapulmonary and hilar lymph nodes) into the right paratracheal lymph nodes, and one dorsal segment drained into the thoracic duct. A ventral segment drained into the inferior tracheobronchial lymph nodes. A contralateral drainage to the recurrent chain was observed in two cases. Sixteen segments of the middle lobe were injected and mainly drained into the inferior tracheobronchial lymph nodes with six direct paths; one medial segment drained into the right anterior mediastinal chain. We noted three contralateral drainages and eight downward abdominal drainages. Out of the 17 segments of the lower lobe injected, 6 segments drained into the lymph nodes of another lobe, 5 segments showed a direct route to the lower quadrant chains. We noted one time a drainage into the paraesophageal lymph nodes. The variations in lymphatic drainage of the right lung require to carry out systematically a radical mediastinal lymphadenectomy during the removal of non-small cell lung cancers and to associate an adjuvant treatment.
A Markovian model of evolving world input-output network
Isacchini, Giulio
2017-01-01
The initial theoretical connections between Leontief input-output models and Markov chains were established back in 1950s. However, considering the wide variety of mathematical properties of Markov chains, so far there has not been a full investigation of evolving world economic networks with Markov chain formalism. In this work, using the recently available world input-output database, we investigated the evolution of the world economic network from 1995 to 2011 through analysis of a time series of finite Markov chains. We assessed different aspects of this evolving system via different known properties of the Markov chains such as mixing time, Kemeny constant, steady state probabilities and perturbation analysis of the transition matrices. First, we showed how the time series of mixing times and Kemeny constants could be used as an aggregate index of globalization. Next, we focused on the steady state probabilities as a measure of structural power of the economies that are comparable to GDP shares of economies as the traditional index of economies welfare. Further, we introduced two measures of systemic risk, called systemic influence and systemic fragility, where the former is the ratio of number of influenced nodes to the total number of nodes, caused by a shock in the activity of a node, and the latter is based on the number of times a specific economic node is affected by a shock in the activity of any of the other nodes. Finally, focusing on Kemeny constant as a global indicator of monetary flow across the network, we showed that there is a paradoxical effect of a change in activity levels of economic nodes on the overall flow of the world economic network. While the economic slowdown of the majority of nodes with high structural power results to a slower average monetary flow over the network, there are some nodes, where their slowdowns improve the overall quality of the network in terms of connectivity and the average flow of the money. PMID:29065145
Leading edge analysis of transcriptomic changes during pseudorabies virus infection
USDA-ARS?s Scientific Manuscript database
Eight RNA samples taken from the tracheobronchial lymph nodes (TBLN) of pigs that were either infected or non-infected with a feral isolate of porcine pseudorabies virus (PRV) were used to investigate changes in gene expression related to the pathogen. The RNA was processed into fastq files for each...
Jain, Varun; Shyagali, Tarulatha R; Kambalyal, Prabhuraj; Rajpara, Yagnesh; Doshi, Jigar
2017-12-01
The study aimed to evaluate and compare the stress distribution and 3-dimensional displacements along the craniofacial sutures in between the Rapid maxillary Expansion (RME) and Implant supported RME (I-RME). METHODS: Finite element model of the skull and the implants were created using ANSYS software. The finite element model thus built composed of 537692 elements and 115694 nodes in RME model & 543078 elements and 117948 nodes with implants model. The forces were applied on the palatal surface of the posterior teeth to cause 5mm of transverse displacement on either side of the palatal halves, making it a total of 10mm. The stresses and the displacement values were obtained and interpreted. Varying pattern of stress and the displacements with both positive and negative values were seen. The maximum displacement was seen in the case of plain RME model and that too at Pterygomaxillary suture and Mid-palatal suture in descending order. In the case of I-RME maximum displacement was seen at Zygomaticomaxillary suture followed by Pterygomaxillary suture. The displacements produced in all the three planes of space for the plain RME model were greater in comparison to the Implant Supported RME model. And the stresses remained high for all the sutures in case of an I-RME. There is a definite difference in the stress and the displacement pattern produced by RME and I-RME model and each can be used according to the need of the patient. The stresses generated in case of conventional RME were considerably less than that of the I-RME for all the sutures.
NASA Astrophysics Data System (ADS)
Re, B.; Dobrzynski, C.; Guardone, A.
2017-07-01
A novel strategy to solve the finite volume discretization of the unsteady Euler equations within the Arbitrary Lagrangian-Eulerian framework over tetrahedral adaptive grids is proposed. The volume changes due to local mesh adaptation are treated as continuous deformations of the finite volumes and they are taken into account by adding fictitious numerical fluxes to the governing equation. This peculiar interpretation enables to avoid any explicit interpolation of the solution between different grids and to compute grid velocities so that the Geometric Conservation Law is automatically fulfilled also for connectivity changes. The solution on the new grid is obtained through standard ALE techniques, thus preserving the underlying scheme properties, such as conservativeness, stability and monotonicity. The adaptation procedure includes node insertion, node deletion, edge swapping and points relocation and it is exploited both to enhance grid quality after the boundary movement and to modify the grid spacing to increase solution accuracy. The presented approach is assessed by three-dimensional simulations of steady and unsteady flow fields. The capability of dealing with large boundary displacements is demonstrated by computing the flow around the translating infinite- and finite-span NACA 0012 wing moving through the domain at the flight speed. The proposed adaptive scheme is applied also to the simulation of a pitching infinite-span wing, where the bi-dimensional character of the flow is well reproduced despite the three-dimensional unstructured grid. Finally, the scheme is exploited in a piston-induced shock-tube problem to take into account simultaneously the large deformation of the domain and the shock wave. In all tests, mesh adaptation plays a crucial role.
Deng, Zhen; Wang, Huihao; Niu, Wenxin; Lan, Tianying; Wang, Kuan; Zhan, Hongsheng
2016-08-01
This study aims to develop and validate a three-dimensional finite element model of inferior cervical spinal segments C4-7of a healthy volunteer,and to provide a computational platform for investigating the biomechanical mechanism of treating cervical vertebra disease with Traditional Chinese Traumotology Manipulation(TCTM).A series of computed tomography(CT)images of C4-7segments were processed to establish the finite element model using softwares Mimics 17.0,Geromagic12.0,and Abaqus 6.13.A reference point(RP)was created on the endplate of C4 and coupled with all nodes of C4.All loads(±0.5,±1,±1.5and±2Nm)were added to the RP for the six simulations(flexion,extension,lateral bending and axial rotation).Then,the range of motion of each segment was calculated and compared with experimental measurements of in vitro studies.On the other hand,1Nm moment was loaded on the model to observe the main stress regions of the model in different status.We successfully established a detail model of inferior cervical spinal segments C4-7of a healthy volunteer with 591 459 elements and 121 446 nodes which contains the structure of the vertebra,intervertebral discs,ligaments and facet joints.The model showed an accordance result after the comparison with the in vitro studies in the six simulations.Moreover,the main stress region occurred on the model could reflect the main stress distribution of normal human cervical spine.The model is accurate and realistic which is consistent with the biomechanical properties of the cervical spine.The model can be used to explore the biomechanical mechanism of treating cervical vertebra disease with TCTM.
Galerkin finite element scheme for magnetostrictive structures and composites
NASA Astrophysics Data System (ADS)
Kannan, Kidambi Srinivasan
The ever increasing-role of magnetostrictives in actuation and sensing applications is an indication of their importance in the emerging field of smart structures technology. As newer, and more complex, applications are developed, there is a growing need for a reliable computational tool that can effectively address the magneto-mechanical interactions and other nonlinearities in these materials and in structures incorporating them. This thesis presents a continuum level quasi-static, three-dimensional finite element computational scheme for modeling the nonlinear behavior of bulk magnetostrictive materials and particulate magnetostrictive composites. Models for magnetostriction must deal with two sources of nonlinearities-nonlinear body forces/moments in equilibrium equations governing magneto-mechanical interactions in deformable and magnetized bodies; and nonlinear coupled magneto-mechanical constitutive models for the material of interest. In the present work, classical differential formulations for nonlinear magneto-mechanical interactions are recast in integral form using the weighted-residual method. A discretized finite element form is obtained by applying the Galerkin technique. The finite element formulation is based upon three dimensional eight-noded (isoparametric) brick element interpolation functions and magnetostatic infinite elements at the boundary. Two alternative possibilities are explored for establishing the nonlinear incremental constitutive model-characterization in terms of magnetic field or in terms of magnetization. The former methodology is the one most commonly used in the literature. In this work, a detailed comparative study of both methodologies is carried out. The computational scheme is validated, qualitatively and quantitatively, against experimental measurements published in the literature on structures incorporating the magnetostrictive material Terfenol-D. The influence of nonlinear body forces and body moments of magnetic origin, on the response of magnetostrictive structures to complex mechanical and magnetic loading conditions, is carefully examined. While monolithic magnetostrictive materials have been commercially-available since the late eighties, attention in the smart structures research community has recently focussed upon building and using magnetostrictive particulate composite structures for conventional actuation applications and novel sensing methodologies in structural health monitoring. A particulate magnetostrictive composite element has been developed in the present work to model such structures. This composite element incorporates interactions between magnetostrictive particles by combining a numerical micromechanical analysis based on magneto-mechanical Green's functions, with a homogenization scheme based upon the Mori-Tanaka approach. This element has been applied to the simulation of particulate actuators and sensors reported in the literature. Simulation results are compared to experimental data for validation purposes. The computational schemes developed, for bulk materials and for composites, are expected to be of great value to researchers and designers of novel applications based on magnetostrictives.
Impact of eliminating fracture intersection nodes in multiphase compositional flow simulation
NASA Astrophysics Data System (ADS)
Walton, Kenneth M.; Unger, Andre J. A.; Ioannidis, Marios A.; Parker, Beth L.
2017-04-01
Algebraic elimination of nodes at discrete fracture intersections via the star-delta technique has proven to be a valuable tool for making multiphase numerical simulations more tractable and efficient. This study examines the assumptions of the star-delta technique and exposes its effects in a 3-D, multiphase context for advective and dispersive/diffusive fluxes. Key issues of relative permeability-saturation-capillary pressure (kr-S-Pc) and capillary barriers at fracture-fracture intersections are discussed. This study uses a multiphase compositional, finite difference numerical model in discrete fracture network (DFN) and discrete fracture-matrix (DFM) modes. It verifies that the numerical model replicates analytical solutions and performs adequately in convergence exercises (conservative and decaying tracer, one and two-phase flow, DFM and DFN domains). The study culminates in simulations of a two-phase laboratory experiment in which a fluid invades a simple fracture intersection. The experiment and simulations evoke different invading fluid flow paths by varying fracture apertures as oil invades water-filled fractures and as water invades air-filled fractures. Results indicate that the node elimination technique as implemented in numerical model correctly reproduces the long-term flow path of the invading fluid, but that short-term temporal effects of the capillary traps and barriers arising from the intersection node are lost.
NASA Astrophysics Data System (ADS)
Kubicka, Katarzyna; Radoń, Urszula; Szaniec, Waldemar; Pawlak, Urszula
2017-10-01
The paper concerns the reliability analysis of steel structures subjected to high temperatures of fire gases. Two types of spatial structures were analysed, namely with pinned and rigid nodes. The fire analysis was carried out according to prescriptions of Eurocode. The static-strength analysis was conducted using the finite element method (FEM). The MES3D program, developed by Szaniec (Kielce University of Technology, Poland), was used for this purpose. The results received from MES3D made it possible to carry out the reliability analysis using the Numpress Explore program that was developed at the Institute of Fundamental Technological Research of the Polish Academy of Sciences [9]. The measurement of reliability of structures is the Hasofer-Lind reliability index (β). The reliability analysis was carried out according to approximation (FORM, SORM) and simulation (Importance Sampling, Monte Carlo) methods. As the fire progresses, the value of reliability index decreases. The analysis conducted for the study made it possible to evaluate the impact of node types on those changes. In real structures, it is often difficult to define correctly types of nodes, so some simplifications are made. The presented analysis contributes to the recognition of consequences of such assumptions for the safety of structures, subjected to fire.
Order of accuracy of QUICK and related convection-diffusion schemes
NASA Technical Reports Server (NTRS)
Leonard, B. P.
1993-01-01
This report attempts to correct some misunderstandings that have appeared in the literature concerning the order of accuracy of the QUICK scheme for steady-state convective modeling. Other related convection-diffusion schemes are also considered. The original one-dimensional QUICK scheme written in terms of nodal-point values of the convected variable (with a 1/8-factor multiplying the 'curvature' term) is indeed a third-order representation of the finite volume formulation of the convection operator average across the control volume, written naturally in flux-difference form. An alternative single-point upwind difference scheme (SPUDS) using node values (with a 1/6-factor) is a third-order representation of the finite difference single-point formulation; this can be written in a pseudo-flux difference form. These are both third-order convection schemes; however, the QUICK finite volume convection operator is 33 percent more accurate than the single-point implementation of SPUDS. Another finite volume scheme, writing convective fluxes in terms of cell-average values, requires a 1/6-factor for third-order accuracy. For completeness, one can also write a single-point formulation of the convective derivative in terms of cell averages, and then express this in pseudo-flux difference form; for third-order accuracy, this requires a curvature factor of 5/24. Diffusion operators are also considered in both single-point and finite volume formulations. Finite volume formulations are found to be significantly more accurate. For example, classical second-order central differencing for the second derivative is exactly twice as accurate in a finite volume formulation as it is in single-point.
Efficient computational methods for electromagnetic imaging with applications to 3D magnetotellurics
NASA Astrophysics Data System (ADS)
Kordy, Michal Adam
The motivation for this work is the forward and inverse problem for magnetotellurics, a frequency domain electromagnetic remote-sensing geophysical method used in mineral, geothermal, and groundwater exploration. The dissertation consists of four papers. In the first paper, we prove the existence and uniqueness of a representation of any vector field in H(curl) by a vector lying in H(curl) and H(div). It allows us to represent electric or magnetic fields by another vector field, for which nodal finite element approximation may be used in the case of non-constant electromagnetic properties. With this approach, the system matrix does not become ill-posed for low-frequency. In the second paper, we consider hexahedral finite element approximation of an electric field for the magnetotelluric forward problem. The near-null space of the system matrix for low frequencies makes the numerical solution unstable in the air. We show that the proper solution may obtained by applying a correction on the null space of the curl. It is done by solving a Poisson equation using discrete Helmholtz decomposition. We parallelize the forward code on multicore workstation with large RAM. In the next paper, we use the forward code in the inversion. Regularization of the inversion is done by using the second norm of the logarithm of conductivity. The data space Gauss-Newton approach allows for significant savings in memory and computational time. We show the efficiency of the method by considering a number of synthetic inversions and we apply it to real data collected in Cascade Mountains. The last paper considers a cross-frequency interpolation of the forward response as well as the Jacobian. We consider Pade approximation through model order reduction and rational Krylov subspace. The interpolating frequencies are chosen adaptively in order to minimize the maximum error of interpolation. Two error indicator functions are compared. We prove a theorem of almost always lucky failure in the case of the right hand analytically dependent on frequency. The operator's null space is treated by decomposing the solution into the part in the null space and orthogonal to it.
Perfect quantum excitation energy transport via single edge perturbation in a complete network
NASA Astrophysics Data System (ADS)
Bassereh, Hassan; Salari, Vahid; Shahbazi, Farhad; Ala-Nissila, Tapio
2017-06-01
We consider quantum excitation energy transport (EET) in a network of two-state nodes in the Markovian approximation by employing the Lindblad formulation. We find that EET from an initial site, where the excitation is inserted to the sink, is generally inefficient due to the inhibition of transport by localization of the excitation wave packet in a symmetric, fully-connected network. We demonstrate that the EET efficiency can be significantly increased up to ≈100% by perturbing hopping transport between the initial node and the one connected directly to the sink, while the rate of energy transport is highest at a finite value of the hopping parameter. We also show that prohibiting hopping between the other nodes which are not directly linked to the sink does not improve the efficiency. We show that external dephasing noise in the network plays a constructive role for EET in the presence of localization in the network, while in the absence of localization it reduces the efficiency of EET. We also consider the influence of off-diagonal disorder in the hopping parameters of the network.
Convergence analysis of two-node CMFD method for two-group neutron diffusion eigenvalue problem
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, Yongjin; Park, Jinsu; Lee, Hyun Chul
2015-12-01
In this paper, the nonlinear coarse-mesh finite difference method with two-node local problem (CMFD2N) is proven to be unconditionally stable for neutron diffusion eigenvalue problems. The explicit current correction factor (CCF) is derived based on the two-node analytic nodal method (ANM2N), and a Fourier stability analysis is applied to the linearized algorithm. It is shown that the analytic convergence rate obtained by the Fourier analysis compares very well with the numerically measured convergence rate. It is also shown that the theoretical convergence rate is only governed by the converged second harmonic buckling and the mesh size. It is also notedmore » that the convergence rate of the CCF of the CMFD2N algorithm is dependent on the mesh size, but not on the total problem size. This is contrary to expectation for eigenvalue problem. The novel points of this paper are the analytical derivation of the convergence rate of the CMFD2N algorithm for eigenvalue problem, and the convergence analysis based on the analytic derivations.« less
New Parallel Algorithms for Landscape Evolution Model
NASA Astrophysics Data System (ADS)
Jin, Y.; Zhang, H.; Shi, Y.
2017-12-01
Most landscape evolution models (LEM) developed in the last two decades solve the diffusion equation to simulate the transportation of surface sediments. This numerical approach is difficult to parallelize due to the computation of drainage area for each node, which needs huge amount of communication if run in parallel. In order to overcome this difficulty, we developed two parallel algorithms for LEM with a stream net. One algorithm handles the partition of grid with traditional methods and applies an efficient global reduction algorithm to do the computation of drainage areas and transport rates for the stream net; the other algorithm is based on a new partition algorithm, which partitions the nodes in catchments between processes first, and then partitions the cells according to the partition of nodes. Both methods focus on decreasing communication between processes and take the advantage of massive computing techniques, and numerical experiments show that they are both adequate to handle large scale problems with millions of cells. We implemented the two algorithms in our program based on the widely used finite element library deal.II, so that it can be easily coupled with ASPECT.
Performance of a parallel thermal-hydraulics code TEMPEST
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fann, G.I.; Trent, D.S.
The authors describe the parallelization of the Tempest thermal-hydraulics code. The serial version of this code is used for production quality 3-D thermal-hydraulics simulations. Good speedup was obtained with a parallel diagonally preconditioned BiCGStab non-symmetric linear solver, using a spatial domain decomposition approach for the semi-iterative pressure-based and mass-conserved algorithm. The test case used here to illustrate the performance of the BiCGStab solver is a 3-D natural convection problem modeled using finite volume discretization in cylindrical coordinates. The BiCGStab solver replaced the LSOR-ADI method for solving the pressure equation in TEMPEST. BiCGStab also solves the coupled thermal energy equation. Scalingmore » performance of 3 problem sizes (221220 nodes, 358120 nodes, and 701220 nodes) are presented. These problems were run on 2 different parallel machines: IBM-SP and SGI PowerChallenge. The largest problem attains a speedup of 68 on an 128 processor IBM-SP. In real terms, this is over 34 times faster than the fastest serial production time using the LSOR-ADI solver.« less
On 3D inelastic analysis methods for hot section components
NASA Technical Reports Server (NTRS)
Mcknight, R. L.; Chen, P. C.; Dame, L. T.; Holt, R. V.; Huang, H.; Hartle, M.; Gellin, S.; Allen, D. H.; Haisler, W. E.
1986-01-01
Accomplishments are described for the 2-year program, to develop advanced 3-D inelastic structural stress analysis methods and solution strategies for more accurate and cost effective analysis of combustors, turbine blades and vanes. The approach was to develop a matrix of formulation elements and constitutive models. Three constitutive models were developed in conjunction with optimized iterating techniques, accelerators, and convergence criteria within a framework of dynamic time incrementing. Three formulations models were developed; an eight-noded mid-surface shell element, a nine-noded mid-surface shell element and a twenty-noded isoparametric solid element. A separate computer program was developed for each combination of constitutive model-formulation model. Each program provides a functional stand alone capability for performing cyclic nonlinear structural analysis. In addition, the analysis capabilities incorporated into each program can be abstracted in subroutine form for incorporation into other codes or to form new combinations.
The 3D inelastic analysis methods for hot section components
NASA Technical Reports Server (NTRS)
Mcknight, R. L.; Maffeo, R. J.; Tipton, M. T.; Weber, G.
1992-01-01
A two-year program to develop advanced 3D inelastic structural stress analysis methods and solution strategies for more accurate and cost effective analysis of combustors, turbine blades, and vanes is described. The approach was to develop a matrix of formulation elements and constitutive models. Three constitutive models were developed in conjunction with optimized iterating techniques, accelerators, and convergence criteria within a framework of dynamic time incrementing. Three formulation models were developed: an eight-noded midsurface shell element; a nine-noded midsurface shell element; and a twenty-noded isoparametric solid element. A separate computer program has been developed for each combination of constitutive model-formulation model. Each program provides a functional stand alone capability for performing cyclic nonlinear structural analysis. In addition, the analysis capabilities incorporated into each program can be abstracted in subroutine form for incorporation into other codes or to form new combinations.
Molecular dynamics simulation of propagating cracks
NASA Technical Reports Server (NTRS)
Mullins, M.
1982-01-01
Steady state crack propagation is investigated numerically using a model consisting of 236 free atoms in two (010) planes of bcc alpha iron. The continuum region is modeled using the finite element method with 175 nodes and 288 elements. The model shows clear (010) plane fracture to the edge of the discrete region at moderate loads. Analysis of the results obtained indicates that models of this type can provide realistic simulation of steady state crack propagation.
Using algebra for massively parallel processor design and utilization
NASA Technical Reports Server (NTRS)
Campbell, Lowell; Fellows, Michael R.
1990-01-01
This paper summarizes the author's advances in the design of dense processor networks. Within is reported a collection of recent constructions of dense symmetric networks that provide the largest know values for the number of nodes that can be placed in a network of a given degree and diameter. The constructions are in the range of current potential engineering significance and are based on groups of automorphisms of finite-dimensional vector spaces.
Kim, Seok-Mo; Jun, Hak Hoon; Chang, Ho-Jin; Chun, Ki Won; Kim, Bup-Woo; Lee, Yong Sang; Chang, Hang-Seok; Park, Cheong Soo
2016-06-01
Tuberculosis (TB) lymphadenitis is a frequent cause of lymphadenopathy in areas in which TB is endemic. Cervical lymphadenopathy in TB can mimic lateral neck metastasis (LNM) from papillary thyroid carcinoma (PTC). This study evaluated the clinicopathological features of patients with PTC and TB lateral neck lymphadenopathy. Of the 9098 thyroid cancer patients who underwent thyroid cancer surgery at the Thyroid Cancer Center of Gangnam Severance Hospital between January 2009 and April 2013, 28 had PTC and showed TB lymphadenopathy of the lateral neck node. The clinicopathological features of these 28 patients were evaluated. Preoperatively, all 28 patients were diagnosed with PTC and showed cervical lymphadenopathy. All had radiological characteristics suspicious of metastasis in lateral neck nodes. Based upon the results from intraoperative frozen sections, lymph node dissection (LND) was not performed on 19 patients. Seven of eight patients who underwent LND had metastasis combined with tuberculous lymphadenopathy, with the remaining patient negative for LNM. Intraoperative sampling and frozen sectioning of lymph nodes suspicious of metastasis can help avoid unnecessary LND for tuberculous lymphadenopathy. © 2014 Royal Australasian College of Surgeons.
NASA Astrophysics Data System (ADS)
Feng, Shou; Fu, Ping; Zheng, Wenbin
2018-03-01
Predicting gene function based on biological instrumental data is a complicated and challenging hierarchical multi-label classification (HMC) problem. When using local approach methods to solve this problem, a preliminary results processing method is usually needed. This paper proposed a novel preliminary results processing method called the nodes interaction method. The nodes interaction method revises the preliminary results and guarantees that the predictions are consistent with the hierarchy constraint. This method exploits the label dependency and considers the hierarchical interaction between nodes when making decisions based on the Bayesian network in its first phase. In the second phase, this method further adjusts the results according to the hierarchy constraint. Implementing the nodes interaction method in the HMC framework also enhances the HMC performance for solving the gene function prediction problem based on the Gene Ontology (GO), the hierarchy of which is a directed acyclic graph that is more difficult to tackle. The experimental results validate the promising performance of the proposed method compared to state-of-the-art methods on eight benchmark yeast data sets annotated by the GO.
Torak, L.J.
1993-01-01
A MODular, Finite-Element digital-computer program (MODFE) was developed to simulate steady or unsteady-state, two-dimensional or axisymmetric ground-water flow. Geometric- and hydrologic-aquifer characteristics in two spatial dimensions are represented by triangular finite elements and linear basis functions; one-dimensional finite elements and linear basis functions represent time. Finite-element matrix equations are solved by the direct symmetric-Doolittle method or the iterative modified, incomplete-Cholesky, conjugate-gradient method. Physical processes that can be represented by the model include (1) confined flow, unconfined flow (using the Dupuit approximation), or a combination of both; (2) leakage through either rigid or elastic confining beds; (3) specified recharge or discharge at points, along lines, and over areas; (4) flow across specified-flow, specified-head, or bead-dependent boundaries; (5) decrease of aquifer thickness to zero under extreme water-table decline and increase of aquifer thickness from zero as the water table rises; and (6) head-dependent fluxes from springs, drainage wells, leakage across riverbeds or confining beds combined with aquifer dewatering, and evapotranspiration. The report describes procedures for applying MODFE to ground-water-flow problems, simulation capabilities, and data preparation. Guidelines for designing the finite-element mesh and for node numbering and determining band widths are given. Tables are given that reference simulation capabilities to specific versions of MODFE. Examples of data input and model output for different versions of MODFE are provided.
[Establishment and validation of normal human L1-L5 lumbar three-dimensional finite element model].
Zhu, Zhenqi; Liu, Chenjun; Wang, Jiefu; Wang, Kaifeng; Huang, Zhixin; Wang, Weida; Liu, Haiying
2014-10-14
To create and validate a L1-L5 lumbar three-dimensional finite element model. The L1-L5 lumbar spines of a male healthy volunteer were scanned with computed tomography (CT). And a L1-L5 lumbar three-dimensional finite element model was created with the aid of software packages of Mimics, Geomagic and Ansys. Then border conditions were set, unit type was determined, finite element mesh was divided and a model was established for loading and calculating. Average model stiffness under the conditions of flexion, extension, lateral bending and axial rotation was calculated and compared with the outcomes of former articles for validation. A normal human L1-L5 lumbar three-dimensional finite element model was established to include 459 340 elements and 661 938 nodes. After constraining the inferior endplate of L5 vertebral body, 500 kg × m × s⁻² compressive loading was imposed averagely on the superior endplate of L1 vertebral body. Then 10 kg × m² × s⁻² moment simulating flexion, extension, lateral bending and axial rotation were imposed on the superior endplate of L1 vertebral body. Eventually the average stiffness of all directions was calculated and it was similar to the outcomes of former articles. The L1-L5 lumbar three-dimensional finite element model is validated so that it may used with biomechanical simulation and analysis of normal or surgical models.
Torak, Lynn J.
1992-01-01
A MODular, Finite-Element digital-computer program (MODFE) was developed to simulate steady or unsteady-state, two-dimensional or axisymmetric ground-water flow. Geometric- and hydrologic-aquifer characteristics in two spatial dimensions are represented by triangular finite elements and linear basis functions; one-dimensional finite elements and linear basis functions represent time. Finite-element matrix equations are solved by the direct symmetric-Doolittle method or the iterative modified, incomplete-Cholesky, conjugate-gradient method. Physical processes that can be represented by the model include (1) confined flow, unconfined flow (using the Dupuit approximation), or a combination of both; (2) leakage through either rigid or elastic confining beds; (3) specified recharge or discharge at points, along lines, and over areas; (4) flow across specified-flow, specified-head, or head-dependent boundaries; (5) decrease of aquifer thickness to zero under extreme water-table decline and increase of aquifer thickness from zero as the water table rises; and (6) head-dependent fluxes from springs, drainage wells, leakage across riverbeds or confining beds combined with aquifer dewatering, and evapotranspiration.The report describes procedures for applying MODFE to ground-water-flow problems, simulation capabilities, and data preparation. Guidelines for designing the finite-element mesh and for node numbering and determining band widths are given. Tables are given that reference simulation capabilities to specific versions of MODFE. Examples of data input and model output for different versions of MODFE are provided.
Finite Element Modelling of the Indo-Gangetic Basin to Study Site Amplification
NASA Astrophysics Data System (ADS)
Sivasubramonian, J.; Jaya, D.; Raghukanth, S. T. G.; Mai, P. M.
2017-12-01
We have developed a finite-element model of the 3D velocity structure of the Indo-Gangetic basin (IG basin) to quantify site amplifications due to seismic waves emanated from regional earthquakes. Estimating seismic wave amplifications is difficult in case of limited instrumentation, thus motivating us to propose a new simulation-based approach. The input required for the finite-element model include the spatial coordinates and the material properties (density, P-wave and S-wave velocities, Q factor) of the basin. Recent studies in the basin demarcate sediment layers of varying thickness, reaching down to a depth of 6 km and S-wave velocities ranging from 0.4-2.4 km/s (Srinivas et al., 2013). In the present study, our regional model has dimensions 900 x 900 x 80 km in x, y and z directions, discretized into 320 x 320 x 53 hexahedral elements. The top 6 km of the IG basin is divided into 8 different sediment layers with varying material properties. We use kinematic rupture models for the earthquake sources to simulate past as well as hypothetical future events. Two past earthquakes (Mw4.9, Delhi; Mw5.2, Chamoli) and two hypothetical earthquakes (Mw7.1; Mw8.5) are considered in our study. The rupture plane dimensions (L and W) and the slip distribution are estimated using the method of Mai and Beroza (2002). Based on focal-mechanism solutions and the depths of seismicity, we define the strike (580, 3090), the dip (650, 210), the rake (160, 770), and the depth of top edge of fault (5 km, 19 km) for the two large hypothetical earthquakes. Based on these parameters, the Centroid Moment Tensor (CMT) solution of the source is obtained. Ground motions are then simulated by solving the three-dimensional wave equation using the spectral element method (Komatitsch and Tromp, 1999). The key observations from our results are: 1) basin amplification factors for Peak Ground Velocity (PGV) are twice as high as Peak Ground Displacement (PGD) 2) PGV amplifications are as high as a factor of 6 for earthquakes occurring inside the basin, and a factor of 4 for Himalayan earthquakes (to the north of the study region) 3) The simulated shake maps of PGV and PGD show directivity. Based on the above observations, we conclude that it is important to include our model into low-frequency ground-motion estimation for seismic hazard analysis.
Arridge, S R; Dehghani, H; Schweiger, M; Okada, E
2000-01-01
We present a method for handling nonscattering regions within diffusing domains. The method develops from an iterative radiosity-diffusion approach using Green's functions that was computationally slow. Here we present an improved implementation using a finite element method (FEM) that is direct. The fundamental idea is to introduce extra equations into the standard diffusion FEM to represent nondiffusive light propagation across a nonscattering region. By appropriate mesh node ordering the computational time is not much greater than for diffusion alone. We compare results from this method with those from a discrete ordinate transport code, and with Monte Carlo calculations. The agreement is very good, and, in addition, our scheme allows us to easily model time-dependent and frequency domain problems.
NASA Technical Reports Server (NTRS)
Schallhorn, Paul; Majumdar, Alok
2012-01-01
This paper describes a finite volume based numerical algorithm that allows multi-dimensional computation of fluid flow within a system level network flow analysis. There are several thermo-fluid engineering problems where higher fidelity solutions are needed that are not within the capacity of system level codes. The proposed algorithm will allow NASA's Generalized Fluid System Simulation Program (GFSSP) to perform multi-dimensional flow calculation within the framework of GFSSP s typical system level flow network consisting of fluid nodes and branches. The paper presents several classical two-dimensional fluid dynamics problems that have been solved by GFSSP's multi-dimensional flow solver. The numerical solutions are compared with the analytical and benchmark solution of Poiseulle, Couette and flow in a driven cavity.
CHAP-2 heat-transfer analysis of the Fort St. Vrain reactor core
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kotas, J.F.; Stroh, K.R.
1983-01-01
The Los Alamos National Laboratory is developing the Composite High-Temperature Gas-Cooled Reactor Analysis Program (CHAP) to provide advanced best-estimate predictions of postulated accidents in gas-cooled reactor plants. The CHAP-2 reactor-core model uses the finite-element method to initialize a two-dimensional temperature map of the Fort St. Vrain (FSV) core and its top and bottom reflectors. The code generates a finite-element mesh, initializes noding and boundary conditions, and solves the nonlinear Laplace heat equation using temperature-dependent thermal conductivities, variable coolant-channel-convection heat-transfer coefficients, and specified internal fuel and moderator heat-generation rates. This paper discusses this method and analyzes an FSV reactor-core accident thatmore » simulates a control-rod withdrawal at full power.« less
Parallel DSMC Solution of Three-Dimensional Flow Over a Finite Flat Plate
NASA Technical Reports Server (NTRS)
Nance, Robert P.; Wilmoth, Richard G.; Moon, Bongki; Hassan, H. A.; Saltz, Joel
1994-01-01
This paper describes a parallel implementation of the direct simulation Monte Carlo (DSMC) method. Runtime library support is used for scheduling and execution of communication between nodes, and domain decomposition is performed dynamically to maintain a good load balance. Performance tests are conducted using the code to evaluate various remapping and remapping-interval policies, and it is shown that a one-dimensional chain-partitioning method works best for the problems considered. The parallel code is then used to simulate the Mach 20 nitrogen flow over a finite-thickness flat plate. It is shown that the parallel algorithm produces results which compare well with experimental data. Moreover, it yields significantly faster execution times than the scalar code, as well as very good load-balance characteristics.
NASA Astrophysics Data System (ADS)
Zárate, Francisco; Cornejo, Alejandro; Oñate, Eugenio
2018-07-01
This paper extends to three dimensions (3D), the computational technique developed by the authors in 2D for predicting the onset and evolution of fracture in a finite element mesh in a simple manner based on combining the finite element method and the discrete element method (DEM) approach (Zárate and Oñate in Comput Part Mech 2(3):301-314, 2015). Once a crack is detected at an element edge, discrete elements are generated at the adjacent element vertexes and a simple DEM mechanism is considered in order to follow the evolution of the crack. The combination of the DEM with simple four-noded linear tetrahedron elements correctly captures the onset of fracture and its evolution, as shown in several 3D examples of application.
NASA Technical Reports Server (NTRS)
Saravanos, Dimitris A.
1996-01-01
Mechanics for the analysis of laminated composite shells with piezoelectric actuators and sensors are presented. A new mixed-field laminate theory for piezoelectric shells is formulated in curvilinear coordinates which combines single-layer assumptions for the displacements and a layerwise representation for the electric potential. The resultant coupled governing equations for curvilinear piezoelectric laminates are described. Structural mechanics are subsequently developed and an 8-node finite-element is formulated for the static and dynamic analysis of adaptive composite structures of general laminations containing piezoelectric layers. Evaluations of the method and comparisons with reported results are presented for laminated piezoelectric-composite plates, a closed cylindrical shell with a continuous piezoceramic layer and a laminated composite semi-circular cantilever shell with discrete cylindrical piezoelectric actuators and/or sensors.
Thermal constitutive matrix applied to asynchronous electrical machine using the cell method
NASA Astrophysics Data System (ADS)
Domínguez, Pablo Ignacio González; Monzón-Verona, José Miguel; Rodríguez, Leopoldo Simón; Sánchez, Adrián de Pablo
2018-03-01
This work demonstrates the equivalence of two constitutive equations. One is used in Fourier's law of the heat conduction equation, the other in electric conduction equation; both are based on the numerical Cell Method, using the Finite Formulation (FF-CM). A 3-D pure heat conduction model is proposed. The temperatures are in steady state and there are no internal heat sources. The obtained results are compared with an equivalent model developed using the Finite Elements Method (FEM). The particular case of 2-D was also studied. The errors produced are not significant at less than 0.2%. The number of nodes is the number of the unknowns and equations to resolve. There is no significant gain in precision with increasing density of the mesh.
Analysis and Calculation of the Fluid Flow and the Temperature Field by Finite Element Modeling
NASA Astrophysics Data System (ADS)
Dhamodaran, M.; Jegadeesan, S.; Kumar, R. Praveen
2018-04-01
This paper presents a fundamental and accurate approach to study numerical analysis of fluid flow and heat transfer inside a channel. In this study, the Finite Element Method is used to analyze the channel, which is divided into small subsections. The small subsections are discretized using higher number of domain elements and the corresponding number of nodes. MATLAB codes are developed to be used in the analysis. Simulation results showed that the analyses of fluid flow and temperature are influenced significantly by the changing entrance velocity. Also, there is an apparent effect on the temperature fields due to the presence of an energy source in the middle of the domain. In this paper, the characteristics of flow analysis and heat analysis in a channel have been investigated.
Chen, Gang; Song, Yongduan; Guan, Yanfeng
2018-03-01
This brief investigates the finite-time consensus tracking control problem for networked uncertain mechanical systems on digraphs. A new terminal sliding-mode-based cooperative control scheme is developed to guarantee that the tracking errors converge to an arbitrarily small bound around zero in finite time. All the networked systems can have different dynamics and all the dynamics are unknown. A neural network is used at each node to approximate the local unknown dynamics. The control schemes are implemented in a fully distributed manner. The proposed control method eliminates some limitations in the existing terminal sliding-mode-based consensus control methods and extends the existing analysis methods to the case of directed graphs. Simulation results on networked robot manipulators are provided to show the effectiveness of the proposed control algorithms.
a Cell Vertex Algorithm for the Incompressible Navier-Stokes Equations on Non-Orthogonal Grids
NASA Astrophysics Data System (ADS)
Jessee, J. P.; Fiveland, W. A.
1996-08-01
The steady, incompressible Navier-Stokes (N-S) equations are discretized using a cell vertex, finite volume method. Quadrilateral and hexahedral meshes are used to represent two- and three-dimensional geometries respectively. The dependent variables include the Cartesian components of velocity and pressure. Advective fluxes are calculated using bounded, high-resolution schemes with a deferred correction procedure to maintain a compact stencil. This treatment insures bounded, non-oscillatory solutions while maintaining low numerical diffusion. The mass and momentum equations are solved with the projection method on a non-staggered grid. The coupling of the pressure and velocity fields is achieved using the Rhie and Chow interpolation scheme modified to provide solutions independent of time steps or relaxation factors. An algebraic multigrid solver is used for the solution of the implicit, linearized equations.A number of test cases are anlaysed and presented. The standard benchmark cases include a lid-driven cavity, flow through a gradual expansion and laminar flow in a three-dimensional curved duct. Predictions are compared with data, results of other workers and with predictions from a structured, cell-centred, control volume algorithm whenever applicable. Sensitivity of results to the advection differencing scheme is investigated by applying a number of higher-order flux limiters: the MINMOD, MUSCL, OSHER, CLAM and SMART schemes. As expected, studies indicate that higher-order schemes largely mitigate the diffusion effects of first-order schemes but also shown no clear preference among the higher-order schemes themselves with respect to accuracy. The effect of the deferred correction procedure on global convergence is discussed.
Investigation of tDCS volume conduction effects in a highly realistic head model
NASA Astrophysics Data System (ADS)
Wagner, S.; Rampersad, S. M.; Aydin, Ü.; Vorwerk, J.; Oostendorp, T. F.; Neuling, T.; Herrmann, C. S.; Stegeman, D. F.; Wolters, C. H.
2014-02-01
Objective. We investigate volume conduction effects in transcranial direct current stimulation (tDCS) and present a guideline for efficient and yet accurate volume conductor modeling in tDCS using our newly-developed finite element (FE) approach. Approach. We developed a new, accurate and fast isoparametric FE approach for high-resolution geometry-adapted hexahedral meshes and tissue anisotropy. To attain a deeper insight into tDCS, we performed computer simulations, starting with a homogenized three-compartment head model and extending this step by step to a six-compartment anisotropic model. Main results. We are able to demonstrate important tDCS effects. First, we find channeling effects of the skin, the skull spongiosa and the cerebrospinal fluid compartments. Second, current vectors tend to be oriented towards the closest higher conducting region. Third, anisotropic WM conductivity causes current flow in directions more parallel to the WM fiber tracts. Fourth, the highest cortical current magnitudes are not only found close to the stimulation sites. Fifth, the median brain current density decreases with increasing distance from the electrodes. Significance. Our results allow us to formulate a guideline for volume conductor modeling in tDCS. We recommend to accurately model the major tissues between the stimulating electrodes and the target areas, while for efficient yet accurate modeling, an exact representation of other tissues is less important. Because for the low-frequency regime in electrophysiology the quasi-static approach is justified, our results should also be valid for at least low-frequency (e.g., below 100 Hz) transcranial alternating current stimulation.
Wagner, Lars M; Kremer, Nathalie; Gelfand, Michael J; Sharp, Susan E; Turpin, Brian K; Nagarajan, Rajaram; Tiao, Gregory M; Pressey, Joseph G; Yin, Julie; Dasgupta, Roshni
2017-01-01
Lymph node metastases are an important cause of treatment failure for pediatric and adolescent/young adult (AYA) sarcoma patients. Nodal sampling is recommended for certain sarcoma subtypes that have a predilection for lymphatic spread. Sentinel lymph node biopsy (SLNB) may improve the diagnostic yield of nodal sampling, particularly when single-photon emission computed tomography/computed tomography (SPECT-CT) is used to facilitate anatomic localization. Functional imaging with positron emission tomography/computed tomography (PET-CT) is increasingly used for sarcoma staging and is a less invasive alternative to SLNB. To assess the utility of these 2 staging methods, this study prospectively compared SLNB plus SPECT-CT with PET-CT for the identification of nodal metastases in pediatric and AYA patients. Twenty-eight pediatric and AYA sarcoma patients underwent SLNB with SPECT-CT. The histological findings of the excised lymph nodes were then correlated with preoperative PET-CT imaging. A median of 2.4 sentinel nodes were sampled per patient. No wound infections or chronic lymphedema occurred. SLNB identified tumors in 7 of the 28 patients (25%), including 3 patients who had normal PET-CT imaging of the nodal basin. In contrast, PET-CT demonstrated hypermetabolic regional nodes in 14 patients, and this resulted in a positive predictive value of only 29%. The sensitivity and specificity of PET-CT for detecting histologically confirmed nodal metastases were only 57% and 52%, respectively. SLNB can safely guide the rational selection of nodes for biopsy in pediatric and AYA sarcoma patients and can identify therapy-changing nodal disease not appreciated with PET-CT. Cancer 2017;155-160. © 2016 American Cancer Society. © 2016 American Cancer Society.
Soergel, Philipp; Hertel, Hermann; Nacke, Anna Kaarina; Klapdor, Rüdiger; Derlin, Thorsten; Hillemanns, Peter
2017-05-01
Nowadays, sentinel diagnostic is performed using technetium 99m (Tc) nanocolloid as a radioactive marker and sometimes patent blue. In the last years, indocyanine green has been evaluated for sentinel diagnostic in different tumor entities. Indocyanine green is a fluorescent molecule that emits a light signal in the near-infrared band after excitation. Our study aimed to evaluate indocyanine green compared with the criterion-standard Tc-nanocolloid. We included patients with primary, unifocal vulvar cancer of less than 4 cm with clinically node-negative groins in this prospective trial. Sentinel diagnostic was carried out using Tc-nanocolloid, indocyanine green, and patent blue. We examined each groin for light signals from the near-infrared band, for radioactivity, and for blue staining. A sentinel lymph node was defined as a Tc-nanocolloid-positive lymph node. All sentinel lymph nodes and all additional blue or fluorescent lymph nodes were excised and tested and then sent for histologic examination. In all, 27 patients were included in whom we found 91 sentinel lymph nodes in 52 groins. All these lymph nodes were positive for indocyanine green, also giving a sensitivity of 100% (95% confidence interval [CI], 96.0%-100%) compared with Tc-nanocolloid. Eight additional lymph nodes showed indocyanine green fluorescence but no Tc positivity, so that the positive predictive value was 91.9% (95% confidence interval, 84.6%-96.5%). In 1 patient, a false-negative sentinel missed by all 3 modalities was found. Our results show that indocyanine green is a promising approach for inguinal sentinel identification in vulvar cancer with a similar sensitivity as radioactive Tc-nanocolloid and worth to be evaluated in further studies.
Summary of Data from the Fifth AIAA CFD Drag Prediction Workshop
NASA Technical Reports Server (NTRS)
Levy, David W.; Laflin, Kelly R.; Tinoco, Edward N.; Vassberg, John C.; Mani, Mori; Rider, Ben; Rumsey, Chris; Wahls, Richard A.; Morrison, Joseph H.; Brodersen, Olaf P.;
2013-01-01
Results from the Fifth AIAA CFD Drag Prediction Workshop (DPW-V) are presented. As with past workshops, numerical calculations are performed using industry-relevant geometry, methodology, and test cases. This workshop focused on force/moment predictions for the NASA Common Research Model wing-body configuration, including a grid refinement study and an optional buffet study. The grid refinement study used a common grid sequence derived from a multiblock topology structured grid. Six levels of refinement were created resulting in grids ranging from 0.64x10(exp 6) to 138x10(exp 6) hexahedra - a much larger range than is typically seen. The grids were then transformed into structured overset and hexahedral, prismatic, tetrahedral, and hybrid unstructured formats all using the same basic cloud of points. This unique collection of grids was designed to isolate the effects of grid type and solution algorithm by using identical point distributions. This study showed reduced scatter and standard deviation from previous workshops. The second test case studied buffet onset at M=0.85 using the Medium grid (5.1x106 nodes) from the above described sequence. The prescribed alpha sweep used finely spaced intervals through the zone where wing separation was expected to begin. Some solutions exhibited a large side of body separation bubble that was not observed in the wind tunnel results. An optional third case used three sets of geometry, grids, and conditions from the Turbulence Model Resource website prepared by the Turbulence Model Benchmarking Working Group. These simple cases were intended to help identify potential differences in turbulence model implementation. Although a few outliers and issues affecting consistency were identified, the majority of participants produced consistent results.
Darling, M.E.; Hubbard, L.E.
1994-01-01
Computerized Geographic Information Systems (GIS) have become viable and valuable tools for managing,analyzing, creating, and displaying data for three-dimensional finite-difference ground-water flow models. Three GIS applications demonstrated in this study are: (1) regridding of data arrays from an existing large-area, low resolution ground-water model to a smaller, high resolution grid; (2) use of GIS techniques for assembly of data-input arrays for a ground-water model; and (3) use of GIS for rapid display of data for verification, for checking of ground-water model output, and for the cre.ation of customized maps for use in reports. The Walla Walla River Basin was selected as the location for the demonstration because (1) data from a low resolution ground-water model (Columbia Plateau Regional Aquifer System Analysis [RASA]) were available and (2) concern for long-term use of water resources for irrigation in the basin. The principal advantage of regridding is that it may provide the ability to more precisely calibrate a model, assuming chat a more detailed coverage of data is available, and to evaluate the numerical errors associated with a particular grid design.Regridding gave about an 8-fold increase in grid-node density.Several FORTRAN programs were developed to load the regridded ground-water data into a finite-difference modular model as model-compatible input files for use in a steady-state model run.To facilitate the checking and validating of the GIS regridding process, maps and tabular reports were produced for each of eight ground-water parameters by model layer. Also, an automated subroutine that was developed to view the model-calculated water levels in cross-section will aid in the synthesis and interpretation of model results.
Modeling Temporal Behavior in Large Networks: A Dynamic Mixed-Membership Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossi, R; Gallagher, B; Neville, J
Given a large time-evolving network, how can we model and characterize the temporal behaviors of individual nodes (and network states)? How can we model the behavioral transition patterns of nodes? We propose a temporal behavior model that captures the 'roles' of nodes in the graph and how they evolve over time. The proposed dynamic behavioral mixed-membership model (DBMM) is scalable, fully automatic (no user-defined parameters), non-parametric/data-driven (no specific functional form or parameterization), interpretable (identifies explainable patterns), and flexible (applicable to dynamic and streaming networks). Moreover, the interpretable behavioral roles are generalizable, computationally efficient, and natively supports attributes. We applied ourmore » model for (a) identifying patterns and trends of nodes and network states based on the temporal behavior, (b) predicting future structural changes, and (c) detecting unusual temporal behavior transitions. We use eight large real-world datasets from different time-evolving settings (dynamic and streaming). In particular, we model the evolving mixed-memberships and the corresponding behavioral transitions of Twitter, Facebook, IP-Traces, Email (University), Internet AS, Enron, Reality, and IMDB. The experiments demonstrate the scalability, flexibility, and effectiveness of our model for identifying interesting patterns, detecting unusual structural transitions, and predicting the future structural changes of the network and individual nodes.« less
Schlottmann, Francisco; Barbetta, Arianna; Mungo, Benedetto; Lidor, Anne O; Molena, Daniela
2017-03-01
Nodal status is one of the most important long-term prognostic factors for esophageal cancer. The aim of this study was to evaluate the ability of near-infrared (NIR) light fluorescent imaging to identify the lymphatic drainage pattern of esophageal cancer. Patients with distal esophageal cancer or esophagogastric junction cancer scheduled for esophagectomy were enrolled in this study. Before surgery, an endoscopy was performed with submucosal injection of 2 cc of indocyanine green (ICG) around the tumor. Real-time NIR images from the surgical field were obtained for each patient to visualize the lymphatic ICG drainage. A total of nine patients were included in this study. Ivor Lewis esophagectomy was performed in all cases. ICG drainage was visualized to first drain along the left gastric nodes in eight patients (88.9%) and toward the diaphragmatic nodes in one patient (11.1%). The median number of resected nodes was 32. Three patients (33.3%) presented nodal involvement. All of them had positive nodes in the first nodal station identified with ICG. Evaluation of the lymphatic drainage pattern with real-time NIR light fluorescent technique is feasible. Distal and esophagogastric junction tumors showed to drain first in the left gastric nodes in most of the cases.
Malignant lymphoma simulating lymph node toxoplasmosis.
Miettinen, M; Franssila, K
1982-03-01
On histological examination of 667 cases originally suspected of lymph node toxoplasmosis, 12 cases were diagnosed as malignant lymphoma and 15 cases as atypical hyperplasia (AH), suspicious of malignant lymphoma. All 12 malignant cases were of Hodgkin's disease: eight of the lymphocyte predominant nodular type, two of lymphocyte predominant diffuse type, and two of the nodular sclerosis type. In all cases, the lymph nodes contained small groups of epithelioid cells which were virtually indistinguishable from those seen in toxoplasmosis. In the differential diagnosis between lymph node toxoplasmosis and malignant lymphoma, the following features were found helpful. In toxoplasmosis the general structure is preserved and germinal centres are frequent, while in malignant lymphoma and in AH the general structure is destroyed. However, in some cases of toxoplasmosis germinal centres may be difficult to identify because their margins are indistinct due to clusters of epithelioid cells. Also, in some types of Hodgkin's disease and in some cases of AH with epithelioid cells, the general structure of the lymph node may be partially preserved. The occurrence of epithelioid cells within germinal centres seems to be a specific feature for toxoplasmosis; it was never seen in malignant lymphoma nor in AH. The occurrence of strands of monocytoid cells (unreife Sinushistiocytose) though a fairly typical feature of toxoplasmosis, was also occasionally seen in Hodgkin's disease or AH.
Jeon, Hyeonjae; Park, Kwangjin; Hwang, Dae-Joon; Choo, Hyunseung
2009-01-01
Sensor nodes transmit the sensed information to the sink through wireless sensor networks (WSNs). They have limited power, computational capacities and memory. Portable wireless devices are increasing in popularity. Mechanisms that allow information to be efficiently obtained through mobile WSNs are of significant interest. However, a mobile sink introduces many challenges to data dissemination in large WSNs. For example, it is important to efficiently identify the locations of mobile sinks and disseminate information from multi-source nodes to the multi-mobile sinks. In particular, a stationary dissemination path may no longer be effective in mobile sink applications, due to sink mobility. In this paper, we propose a Sink-oriented Dynamic Location Service (SDLS) approach to handle sink mobility. In SDLS, we propose an Eight-Direction Anchor (EDA) system that acts as a location service server. EDA prevents intensive energy consumption at the border sensor nodes and thus provides energy balancing to all the sensor nodes. Then we propose a Location-based Shortest Relay (LSR) that efficiently forwards (or relays) data from a source node to a sink with minimal delay path. Our results demonstrate that SDLS not only provides an efficient and scalable location service, but also reduces the average data communication overhead in scenarios with multiple and moving sinks and sources.
Development of small scale cluster computer for numerical analysis
NASA Astrophysics Data System (ADS)
Zulkifli, N. H. N.; Sapit, A.; Mohammed, A. N.
2017-09-01
In this study, two units of personal computer were successfully networked together to form a small scale cluster. Each of the processor involved are multicore processor which has four cores in it, thus made this cluster to have eight processors. Here, the cluster incorporate Ubuntu 14.04 LINUX environment with MPI implementation (MPICH2). Two main tests were conducted in order to test the cluster, which is communication test and performance test. The communication test was done to make sure that the computers are able to pass the required information without any problem and were done by using simple MPI Hello Program where the program written in C language. Additional, performance test was also done to prove that this cluster calculation performance is much better than single CPU computer. In this performance test, four tests were done by running the same code by using single node, 2 processors, 4 processors, and 8 processors. The result shows that with additional processors, the time required to solve the problem decrease. Time required for the calculation shorten to half when we double the processors. To conclude, we successfully develop a small scale cluster computer using common hardware which capable of higher computing power when compare to single CPU processor, and this can be beneficial for research that require high computing power especially numerical analysis such as finite element analysis, computational fluid dynamics, and computational physics analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frayce, D.; Khayat, R.E.; Derdouri, A.
The dual reciprocity boundary element method (DRBEM) is implemented to solve three-dimensional transient heat conduction problems in the presence of arbitrary sources, typically as these problems arise in materials processing. The DRBEM has a major advantage over conventional BEM, since it avoids the computation of volume integrals. These integrals stem from transient, nonlinear, and/or source terms. Thus there is no need to discretize the inner domain, since only a number of internal points are needed for the computation. The validity of the method is assessed upon comparison with results from benchmark problems where analytical solutions exist. There is generally goodmore » agreement. Comparison against finite element results is also favorable. Calculations are carried out in order to assess the influence of the number and location of internal nodes. The influence of the ratio of the numbers of internal to boundary nodes is also examined.« less
Hybrid Percolation Transition in Cluster Merging Processes: Continuously Varying Exponents
NASA Astrophysics Data System (ADS)
Cho, Y. S.; Lee, J. S.; Herrmann, H. J.; Kahng, B.
2016-01-01
Consider growing a network, in which every new connection is made between two disconnected nodes. At least one node is chosen randomly from a subset consisting of g fraction of the entire population in the smallest clusters. Here we show that this simple strategy for improving connection exhibits a more unusual phase transition, namely a hybrid percolation transition exhibiting the properties of both first-order and second-order phase transitions. The cluster size distribution of finite clusters at a transition point exhibits power-law behavior with a continuously varying exponent τ in the range 2 <τ (g )≤2.5 . This pattern reveals a necessary condition for a hybrid transition in cluster aggregation processes, which is comparable to the power-law behavior of the avalanche size distribution arising in models with link-deleting processes in interdependent networks.
NASA Astrophysics Data System (ADS)
Khechai, Abdelhak; Tati, Abdelouahab; Guettala, Abdelhamid
2017-05-01
In this paper, an effort is made to understand the effects of geometric singularities on the load bearing capacity and stress distribution in thin laminated plates. Composite plates with variously shaped cutouts are frequently used in both modern and classical aerospace, mechanical and civil engineering structures. Finite element investigation is undertaken to show the effect of geometric singularities on stress distribution. In this study, the stress concentration factors (SCFs) in cross-and-angle-ply laminated as well as in isotropic plates subjected to uniaxial loading are studied using a quadrilateral finite element of four nodes with thirty-two degrees-of-freedom per element. The varying parameters such as the cutout shape and hole sizes (a/b) are considered. The numerical results obtained by the present element are compared favorably with those obtained using the finite element software Freefem++ and the analytic findings published in literature, which demonstrates the accuracy of the present element. Freefem++ is open source software based on the finite element method, which could be helpful to study and improving the analyses of the stress distribution in composite plates with cutouts. The Freefem++ and the quadrilateral finite element formulations will be given in the beginning of this paper. Finally, to show the effect of the fiber orientation angle and anisotropic modulus ratio on the (SCF), number of figures are given for various ratio (a/b).
NASA Astrophysics Data System (ADS)
Khechai, Abdelhak; Tati, Abdelouahab; Belarbi, Mohamed Ouejdi; Guettala, Abdelhamid
2018-03-01
The design of high-performance composite structures frequently includes discontinuities to reduce the weight and fastener holes for joining. Understanding the behavior of perforated laminates is necessary for structural design. In the current work, stress concentrations taking place in laminated and isotropic plates subjected to tensile load are investigated. The stress concentrations are obtained using a recent quadrilateral finite element of four nodes with 32 DOFs. The present finite element (PE) is a combination of two finite elements. The first finite element is a linear isoparametric membrane element and the second is a high precision Hermitian element. One of the essential objectives of the current investigation is to confirm the capability and efficiency of the PE for stress determination in perforated laminates. Different geometric parameters, such as the cutout form, sizes and cutout orientations, which have a considerable effect on the stress values, are studied. Using the present finite element formulation, the obtained results are found to be in good agreement with the analytical findings, which validates the capability and the efficiency of the proposed formulation. Finally, to understand the material parameters effect such as the orientation of fibers and degree of orthotropy ratio on the stress values, many figures are presented using different ellipse major to minor axis ratio. The stress concentration values are considerably affected by increasing the orientation angle of the fibers and degree of orthotropy.
NASA Astrophysics Data System (ADS)
Pescaru, A.; Oanta, E.; Axinte, T.; Dascalescu, A.-D.
2015-11-01
Computer aided engineering is based on models of the phenomena which are expressed as algorithms. The implementations of the algorithms are usually software applications which are processing a large volume of numerical data, regardless the size of the input data. In this way, the finite element method applications used to have an input data generator which was creating the entire volume of geometrical data, starting from the initial geometrical information and the parameters stored in the input data file. Moreover, there were several data processing stages, such as: renumbering of the nodes meant to minimize the size of the band length of the system of equations to be solved, computation of the equivalent nodal forces, computation of the element stiffness matrix, assemblation of system of equations, solving the system of equations, computation of the secondary variables. The modern software application use pre-processing and post-processing programs to easily handle the information. Beside this example, CAE applications use various stages of complex computation, being very interesting the accuracy of the final results. Along time, the development of CAE applications was a constant concern of the authors and the accuracy of the results was a very important target. The paper presents the various computing techniques which were imagined and implemented in the resulting applications: finite element method programs, finite difference element method programs, applied general numerical methods applications, data generators, graphical applications, experimental data reduction programs. In this context, the use of the extended precision data types was one of the solutions, the limitations being imposed by the size of the memory which may be allocated. To avoid the memory-related problems the data was stored in files. To minimize the execution time, part of the file was accessed using the dynamic memory allocation facilities. One of the most important consequences of the paper is the design of a library which includes the optimized solutions previously tested, that may be used for the easily development of original CAE cross-platform applications. Last but not least, beside the generality of the data type solutions, there is targeted the development of a software library which may be used for the easily development of node-based CAE applications, each node having several known or unknown parameters, the system of equations being automatically generated and solved.
The International Space Station Assembly on Schedule
NASA Technical Reports Server (NTRS)
1997-01-01
As engineers continue to prepare the International Space Station (ISS) for in-orbit assembly in the year 2002, ANSYS software has proven instrumental in resolving a structural problem in the project's two primary station modules -- Nodes 1 and 2. Proof pressure tests performed in May revealed "low temperature, post-yield creep" in some of the Nodes' gussets, which were designed to reinforce ports for loads from station keeping and reboost motion of the entire space station. An extensive effort was undertaken to characterize the creep behavior of the 2219-T851 aluminum forging material from which the gussets were made. Engineers at Sverdrup Technology, Inc. (Huntsville, AL) were responsible for conducting a combined elastic-plastic-creep analysis of the gussets to determine the amount of residual compressive stress which existed in the gussets following the proof pressure tests, and to determine the stress-strain history in the gussets while on-orbit. Boeing, NASA's Space Station prime contractor, supplied the Finite Element Analysis (FEA) model geometry and developed the creep equations from the experimental data taken by NASA's Marshall Space Flight Center and Langley Research Center. The goal of this effort was to implement the uniaxial creep equations into a three dimensional finite element program, and to determine analytically whether or not the creep was something that the space station program could live with. The objective was to show analytically that either the creep rate was at an acceptable level, or that the node module had to be modified to lower the stress levels to where creep did not occur. The elastic-plastic-creep analysis was performed using the ANSYS finite element program of ANSYS, Inc. (Houston, PA). The analysis revealed that the gussets encountered a compressive stress of approximately 30,000 pounds per square inch (psi) when unloaded. This compressive residual stress significantly lowered the maximum tension stress in the gussets which decreased the creep strain rate. The analysis also showed that the gussets would not experience a great deal of creep from future pressure tests if braces or struts proposed by Boeing were installed to redistribute stress away from them. Subsequent analysis of on-orbit station keeping and reboost loads convinced Boeing that the gussets should be removed altogether.
NASA Technical Reports Server (NTRS)
Smith, Wayne Farrior
1973-01-01
The effect of finite source size on the power statistics in a reverberant room for pure tone excitation was investigated. Theoretical results indicate that the standard deviation of low frequency, pure tone finite sources is always less than that predicted by point source theory and considerably less when the source dimension approaches one-half an acoustic wavelength or greater. A supporting experimental study was conducted utilizing an eight inch loudspeaker and a 30 inch loudspeaker at eleven source positions. The resulting standard deviation of sound power output of the smaller speaker is in excellent agreement with both the derived finite source theory and existing point source theory, if the theoretical data is adjusted to account for experimental incomplete spatial averaging. However, the standard deviation of sound power output of the larger speaker is measurably lower than point source theory indicates, but is in good agreement with the finite source theory.
Finite volume effects on the electric polarizability of neutral hadrons in lattice QCD
NASA Astrophysics Data System (ADS)
Lujan, M.; Alexandru, A.; Freeman, W.; Lee, F. X.
2016-10-01
We study the finite volume effects on the electric polarizability for the neutron, neutral pion, and neutral kaon using eight dynamically generated two-flavor nHYP-clover ensembles at two different pion masses: 306(1) and 227(2) MeV. An infinite volume extrapolation is performed for each hadron at both pion masses. For the neutral kaon, finite volume effects are relatively mild. The dependence on the quark mass is also mild, and a reliable chiral extrapolation can be performed along with the infinite volume extrapolation. Our result is αK0 phys=0.356 (74 )(46 )×10-4 fm3 . In contrast, for neutron, the electric polarizability depends strongly on the volume. After removing the finite volume corrections, our neutron polarizability results are in good agreement with chiral perturbation theory. For the connected part of the neutral pion polarizability, the negative trend persists, and it is not due to finite volume effects but likely sea quark charging effects.
Protzel, C; Knoedel, J; Zimmermann, U; Woenckhaus, C; Poetsch, M; Giebel, J
2007-11-01
Clinical outcome of penile squamous cell carcinoma (PSCC) largely depends on the presence of lymph node metastasis. In search of a valuable marker predicting the risk for metastasis, the expression of Ki67 was investigated immunohistochemically in primary tumors and compared to presence of inguinal lymph node metastasis. As human papilloma virus (HPV) is thought to affect Ki67 expression, we evaluated whether occurrence of HPV DNA correlates to Ki67 score or metastatic potential. Samples originated from patients subjected to resection of invasive SCC of penis. Immunohistochemistry was done on paraffin-embedded sections using a monoclonal antibody against Ki67. After DNA isolation from paraffin embedded tissue the presence of HPV 6/11, HPV 16 and HPV 18 DNA was analyzed by PCR. Statistical analysis was done using two tail unpaired t test and Chi-square test. Four of 28 patients showed a weak Ki67 expression, without displaying lymph node metastasis. Among 17 patients showing an intermediate Ki67 index, eight exhibited metastases while in all seven patients with a strong expression of Ki67 lymph node metastases were found. The median Ki67 expression in metastastic lesions was significantly different (50.3%) from tumors without lymph node metastasis (31.8%) (p=0.024). Furthermore, a correlation between presence of HPV DNA and strong Ki67 expression was determined (p=0.009). Since our study demonstrated a strong Ki67 labeling index significantly associated to positive lymph nodes, we suggest Ki67 expression as a prognostic marker for lymph node metastasis in penile squamous carcinoma.
CT of chronic infiltrative lung disease: Prevalence of mediastinal lymphadenopathy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Niimi, Hiroshi; Kang, Eun-Young; Kwong, S.
1996-03-01
Our goal was to determine the prevalence of mediastinal lymph node enlargement at CT in patients with diffuse infiltrative lung disease. The study was retrospective and included 175 consecutive patients with diffuse infiltrative lung diseases. Diagnoses included idiopathic pulmonary fibrosis (IPF) (n = 61), usual interstitial pneumonia associated with collagen vascular disease (CVD) (n = 20), idiopathic bronchiolitis obliterans organizing pneumonia (BOOP) (n = 22), extrinsic allergic alveolitis (EAA) (n = 17), and sarcoidosis (n = 55). Fifty-eight age-matched patients with CT of the chest performed for unrelated conditions served as controls. The presence, number, and sites of enlarged nodesmore » (short axis {ge}10 mm in diameter) were recorded. Enlarged mediastinal nodes were present in 118 of 175 patients (67%) with infiltrative lung disease and 3 of 58 controls (5%) (p < 0.001). The prevalence of enlarged nodes was 84% (46 of 55) in sarcoidosis, 67% (41 of 61) in IPF, 70% (14 of 20) in CVD, 53% (9 of 17) in EAA, and 36% (8 of 22) in BOOP. The mean number of enlarged nodes was higher in sarcoidosis (mean 3.2) than in the other infiltrative diseases (mean 1.2) (p < 0.001). Enlarged nodes were most commonly present in station 10R, followed by 7, 4R, and 5. Patients with infiltrative lung disease frequently have enlarged mediastinal lymph nodes. However, in diseases other than sarcoid, usually only one or two nodes are enlarged and their maximal short axis diameter is <15 mm. 11 refs., 2 figs., 1 tab.« less
Epiphanio, S; Guimarães, M A; Fedullo, D L; Correa, S H; Catão-Dias, J L
2000-06-01
From 1991 to 1995, eight New World nonhuman primates of the family Callitrichidae belonging to the collection of Fundacão Parque Zoologico de São Paulo died of toxoplasmosis. Of the eight affected nonhuman primates, four were Leontopithecus chrysomelas (one male, three females) and four were Saguinus imperator (two males, two females). The most commonly affected organs were the lungs, liver, and lymph nodes, with hemorrhagic and necrotic lesions. Histopathologic examination revealed protozoa that were morphologically consistent with Toxoplasma gondii. Immunohistochemical assays were strongly positive for T. gondii.
Prakash, M Jaya; Zou, Yang; Hong, Seunghee; Park, Mira; Bui, Minh-Phuong Ngoc; Seong, Gi Hun; Lah, Myoung Soo
2009-02-16
A metal-organic polyhedron of truncated octahedral geometry augmented with a C(4)-symmetric square-planar Cu(II) paddle-wheel node as a secondary building unit can be prepared using a C(3)-symmetric ligand that occupies the face of the octahedral cage, where the three phenyl groups containing a m-carboxylate group in the ligand provide the necessary curvature to form the finite octahedral cage.
Thermal modeling of high efficiency AMTEC cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ivanenok, J.F. III; Sievers, R.K.; Crowley, C.J.
1995-12-31
Remotely condensed Alkali Metal Thermal to Electric Conversion (AMTEC) cells achieve high efficiency by thermally isolating the hot {beta} Alumina Solid Electrolyte (BASE) tube from the cold condensing region. In order to design high efficiency AMTEC cells the designer must understand the heat losses associated with the AMTEC process. The major parasitic heat losses are due to conduction and radiation, and significant coupling of the two mechanisms occurs. This paper describes an effort to characterize the thermal aspects of the model PL-6 AMTEC cell and apply this understanding to the design of a higher efficiency AMTEC cell, model PL-8. Twomore » parallel analyses were used to model the thermal characteristics of PL-6. The first was a lumped node model using the classical electric circuit analogy and the second was a detailed finite-difference model. The lumped node model provides high speed and reasonable accuracy, and the detailed finite-difference model provides a more accurate, as well as visual, description of the cell temperature profiles. The results of the two methods are compared to the as-measured PL-6 data. PL-6 was the first cell to use a micromachined condenser to lower the radiation losses to the condenser, and it achieved a conversion efficiency of 15% (3 W output/20 W Input) at a temperature of 1050 K.« less
Construction and optical properties of infinite Cd and finite Cu molecules stairs
NASA Astrophysics Data System (ADS)
Zhao, Qiang; Mao, Wutao; Shen, Zhi; Wang, Qinghong; Zhou, Qian
2017-02-01
Two coordination complexes, namely [(hpdq)(pta)Cd]n (1) and [(pptp)(pta)Cu2Cl] (2) have been synthesized by solvothermal method based on two polypyridyl ligands, 2,3,6,7,10,11-hexakis- (2-pyridyl)dipyrazino[2,3-f:2‧,3‧-h]quinoxaline) (hpdq), 4‧-(4- (3H-pyrrol-3-yl)phenyl)- 2,2‧:6‧,2″- terpyridine (pptp) and auxiliary ligand p-phthalic acid (pta), respectively. Single crystal x-ray diffraction analyses reveal that complexes 1 and 2 assembled based on distinct asymmetric unit comprising one and two respective polypyridyl ligands but one Cd(II) and two Cu(I)ions, respectively. Among them, The asymmetric units in 1 was extended to one dimensional chain via the link of auxiliary ligand pta, just like infinite layers of stairs that connected by cadmium ions as the node. While that in 2 to Zero dimensional tetranuclear structure via the link of auxiliary ligand pta, just like finite four layers of stairs that Copper ion as the node connection. Furthermore, solid fluorescence spectra properties of two complexes were also investigated, and the result shows the fluorescence intensity of complex 1 is stronger than that of the hpdq ligand, but the fluorescence intensity of complex 2 is weaker than that of the pptp ligand. CCDC number of 1and 2 are 1483301 and 1483302.
NASA Astrophysics Data System (ADS)
Wang, Changguo; Tan, Huifeng; Du, Xingwen
2009-10-01
This paper extends Le van’s work to the case of nonlinear problem and the complicated configuration. The wrinkling stress distribution and the pressure effects are also included in our analysis. Pseudo-beam method is presented based on the inflatable beam theory to model the inflatable structures as a set of inflatable beam elements with a pre-stressed state. In this method, the discretized nonlinear equations are given based upon the virtual work principle with a 3-node Timoshenko’s beam model. Finite element simulation is performed by using a 3-node BEAM189 element incorporating ANSYS nonlinear program. The pressure effect is equivalent included in our method by modifying beam element cross-section parameters related to pressure. A benchmark example, the bending case of an inflatable cantilever beam, is performed to verify the accuracy of our proposed method. The comparisons reveal that the numerical results obtained with our method are close to open published analytical and membrane finite element results. The method is then used to evaluate the whole buckling and the load-carrying characteristics of an inflatable support frame subjected to a compression force. The wrinkling stress and region characteristics are also shown in the end. This method gives better convergence characteristics, and requires much less computation time. It is very effective to deal with the whole load-carrying ability analytical problems for large scale inflatable structures with complex configuration.
NASA Astrophysics Data System (ADS)
Boscheri, Walter; Dumbser, Michael
2014-10-01
In this paper we present a new family of high order accurate Arbitrary-Lagrangian-Eulerian (ALE) one-step ADER-WENO finite volume schemes for the solution of nonlinear systems of conservative and non-conservative hyperbolic partial differential equations with stiff source terms on moving tetrahedral meshes in three space dimensions. A WENO reconstruction technique is used to achieve high order of accuracy in space, while an element-local space-time Discontinuous Galerkin finite element predictor on moving curved meshes is used to obtain a high order accurate one-step time discretization. Within the space-time predictor the physical element is mapped onto a reference element using a high order isoparametric approach, where the space-time basis and test functions are given by the Lagrange interpolation polynomials passing through a predefined set of space-time nodes. Since our algorithm is cell-centered, the final mesh motion is computed by using a suitable node solver algorithm. A rezoning step as well as a flattener strategy are used in some of the test problems to avoid mesh tangling or excessive element deformations that may occur when the computation involves strong shocks or shear waves. The ALE algorithm presented in this article belongs to the so-called direct ALE methods because the final Lagrangian finite volume scheme is based directly on a space-time conservation formulation of the governing PDE system, with the rezoned geometry taken already into account during the computation of the fluxes. We apply our new high order unstructured ALE schemes to the 3D Euler equations of compressible gas dynamics, for which a set of classical numerical test problems has been solved and for which convergence rates up to sixth order of accuracy in space and time have been obtained. We furthermore consider the equations of classical ideal magnetohydrodynamics (MHD) as well as the non-conservative seven-equation Baer-Nunziato model of compressible multi-phase flows with stiff relaxation source terms.
Quantitative photoacoustic assessment of ex-vivo lymph nodes of colorectal cancer patients
NASA Astrophysics Data System (ADS)
Sampathkumar, Ashwin; Mamou, Jonathan; Saegusa-Beercroft, Emi; Chitnis, Parag V.; Machi, Junji; Feleppa, Ernest J.
2015-03-01
Staging of cancers and selection of appropriate treatment requires histological examination of multiple dissected lymph nodes (LNs) per patient, so that a staggering number of nodes require histopathological examination, and the finite resources of pathology facilities create a severe processing bottleneck. Histologically examining the entire 3D volume of every dissected node is not feasible, and therefore, only the central region of each node is examined histologically, which results in severe sampling limitations. In this work, we assess the feasibility of using quantitative photoacoustics (QPA) to overcome the limitations imposed by current procedures and eliminate the resulting under sampling in node assessments. QPA is emerging as a new hybrid modality that assesses tissue properties and classifies tissue type based on multiple estimates derived from spectrum analysis of photoacoustic (PA) radiofrequency (RF) data and from statistical analysis of envelope-signal data derived from the RF signals. Our study seeks to use QPA to distinguish cancerous from non-cancerous regions of dissected LNs and hence serve as a reliable means of imaging and detecting small but clinically significant cancerous foci that would be missed by current methods. Dissected lymph nodes were placed in a water bath and PA signals were generated using a wavelength-tunable (680-950 nm) laser. A 26-MHz, f-2 transducer was used to sense the PA signals. We present an overview of our experimental setup; provide a statistical analysis of multi-wavelength classification parameters (mid-band fit, slope, intercept) obtained from the PA signal spectrum generated in the LNs; and compare QPA performance with our established quantitative ultrasound (QUS) techniques in distinguishing metastatic from non-cancerous tissue in dissected LNs. QPA-QUS methods offer a novel general means of tissue typing and evaluation in a broad range of disease-assessment applications, e.g., cardiac, intravascular, musculoskeletal, endocrine-gland, etc.
GPU-accelerated Modeling and Element-free Reverse-time Migration with Gauss Points Partition
NASA Astrophysics Data System (ADS)
Zhen, Z.; Jia, X.
2014-12-01
Element-free method (EFM) has been applied to seismic modeling and migration. Compared with finite element method (FEM) and finite difference method (FDM), it is much cheaper and more flexible because only the information of the nodes and the boundary of the study area are required in computation. In the EFM, the number of Gauss points should be consistent with the number of model nodes; otherwise the accuracy of the intermediate coefficient matrices would be harmed. Thus when we increase the nodes of velocity model in order to obtain higher resolution, we find that the size of the computer's memory will be a bottleneck. The original EFM can deal with at most 81×81 nodes in the case of 2G memory, as tested by Jia and Hu (2006). In order to solve the problem of storage and computation efficiency, we propose a concept of Gauss points partition (GPP), and utilize the GPUs to improve the computation efficiency. Considering the characteristics of the Gaussian points, the GPP method doesn't influence the propagation of seismic wave in the velocity model. To overcome the time-consuming computation of the stiffness matrix (K) and the mass matrix (M), we also use the GPUs in our computation program. We employ the compressed sparse row (CSR) format to compress the intermediate sparse matrices and try to simplify the operations by solving the linear equations with the CULA Sparse's Conjugate Gradient (CG) solver instead of the linear sparse solver 'PARDISO'. It is observed that our strategy can significantly reduce the computational time of K and Mcompared with the algorithm based on CPU. The model tested is Marmousi model. The length of the model is 7425m and the depth is 2990m. We discretize the model with 595x298 nodes, 300x300 Gauss cells and 3x3 Gauss points in each cell. In contrast to the computational time of the conventional EFM, the GPUs-GPP approach can substantially improve the efficiency. The speedup ratio of time consumption of computing K, M is 120 and the speedup ratio time consumption of RTM is 11.5. At the same time, the accuracy of imaging is not harmed. Another advantage of the GPUs-GPP method is its easy applications in other numerical methods such as the FEM. Finally, in the GPUs-GPP method, the arrays require quite limited memory storage, which makes the method promising in dealing with large-scale 3D problems.
Neworal, E P M; Altemani, A; Mamoni, R L; Noronha, I L; Blotta, M H S L
2003-03-07
Paracoccidioidomycosis (PCM) is a deep mycosis caused by Paracoccidioides brasiliensis, with high incidence in Brazil. In order to examine the immune response in lesional tissue from patients with PCM, we analyzed cytokines as well as the phenotype of the cell infiltrate. Paraffin-embedded tissue from the oral mucosa of eight patients with the localized adult form (AF) of PCM and from the lymph nodes of 10 patients with the juvenile form (JF) of PCM was analyzed by immunohistochemistry to detect tumor necrosis factor-alpha (TNF-alpha), inducible nitric oxide synthase (iNOS), transforming growth factor-beta (TGF-beta) and interleukin-10 (IL-10). Most of the inflammatory cells in the lymph nodes were CD68+ (macrophages, epithelioid and giant cells), while a mixed infiltrate with macrophages, plasma cells and neutrophils was detected in the oral mucosa. TNF-alpha as well as iNOS expression was similar in lymph nodes and oral mucosa, whereas TGF-beta and IL-10 were observed in a larger number of macrophages, epithelioid and giant cells in the lymph nodes, where numerous yeast cells were visualized. The higher expression of anti-inflammatory cytokines (IL-10 and TGF-beta) in lesions of patients with the JF of PCM (lymph nodes) may represent a mechanism by which the fungus evades the host immune response, contributing to a more severe and disseminated form of the disease.
Haijun, Yu; Qiuji, Wu; Zhenming, Fu; Yong, Huang; Zhengkai, Liao; Conghua, Xie; Yunfeng, Zhou; Yahua, Zhong
2015-08-01
In the context of gastric cancer, lymph node target volume delineation for post-operative radiotherapy is currently built on the traditional system of dividing the stomach and 2-D treatment methods. Here, we have proposed a new delineation approach with irradiation indications for lymph node stations. Its safety and efficacy were evaluated in a phase II clinical trial. Fifty-four gastric cancer patients with D2 lymph node dissection received 2 cycles of FOLFOX4. They subsequently received concurrent chemoradiotherapy (45 Gy at 1.8 Gy per fraction, 5 fractions per week for 5 weeks) with a 5-fluorouracil/leucovorin regimen, followed by 4 additional FOLFOX4 cycles. The target volume included the remnant stomach, anastomosis site, tumor bed, and regional lymph nodes selected through our new approach by taking gastric arteries as references. The most common grade 3-4 adverse event was neutropenia (14.8%). Neutropenia, anemia, and nausea were common grade 1-2 toxicities. No treatment-related deaths occurred during treatment. The 3-year overall, disease-free, and locoregional recurrence-free survival rates were 81.6%, 70.2%, and 91.1%, respectively. Eight patients developed peritoneal or distant metastases. Using our new approach and irradiation indications, delineation of the target volume of post-operative lymph node stations was feasible and well tolerated after D2 resection in patients with gastric cancer. Copyright © 2015 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
NASA Astrophysics Data System (ADS)
Herrington, A. R.; Lauritzen, P. H.; Reed, K. A.
2017-12-01
The spectral element dynamical core of the Community Atmosphere Model (CAM) has recently been coupled to an approximately isotropic, finite-volume grid per implementation of the conservative semi-Lagrangian multi-tracer transport scheme (CAM-SE-CSLAM; Lauritzen et al. 2017). In this framework, the semi-Lagrangian transport of tracers are computed on the finite-volume grid, while the adiabatic dynamics are solved using the spectral element grid. The physical parameterizations are evaluated on the finite-volume grid, as opposed to the unevenly spaced Gauss-Lobatto-Legendre nodes of the spectral element grid. Computing the physics on the finite-volume grid reduces numerical artifacts such as grid imprinting, possibly because the forcing terms are no longer computed at element boundaries where the resolved dynamics are least smooth. The separation of the physics grid and the dynamics grid allows for a unique opportunity to understand the resolution sensitivity in CAM-SE-CSLAM. The observed large sensitivity of CAM to horizontal resolution is a poorly understood impediment to improved simulations of regional climate using global, variable resolution grids. Here, a series of idealized moist simulations are presented in which the finite-volume grid resolution is varied relative to the spectral element grid resolution in CAM-SE-CSLAM. The simulations are carried out at multiple spectral element grid resolutions, in part to provide a companion set of simulations, in which the spectral element grid resolution is varied relative to the finite-volume grid resolution, but more generally to understand if the sensitivity to the finite-volume grid resolution is consistent across a wider spectrum of resolved scales. Results are interpreted in the context of prior ideas regarding resolution sensitivity of global atmospheric models.
Leveraging Energy Harvesting and Wake-Up Receivers for Long-Term Wireless Sensor Networks.
Ait Aoudia, Fayçal; Gautier, Matthieu; Magno, Michele; Berder, Olivier; Benini, Luca
2018-05-15
Wireless sensor nodes are traditionally powered by individual batteries, and a significant effort has been devoted to maximizing the lifetime of these devices. However, as the batteries can only store a finite amount of energy, the network is still doomed to die, and changing the batteries is not always possible. A promising solution is to enable each node to harvest energy directly in its environment, using individual energy harvesters. Moreover, novel ultra-low power wake-up receivers, which allow continuous listening of the channel with negligible power consumption, are emerging. These devices enable asynchronous communication, further reducing the power consumption related to communication, which is typically one the most energy-consuming tasks in wireless sensor networks. Energy harvesting and wake-up receivers can be combined to significantly increase the energy efficiency of sensor networks. In this paper, we propose an energy manager for energy harvesting wireless sensor nodes and an asynchronous medium access control protocol, which exploits ultra-low power wake-up receivers. The two components are designed to work together and especially to fit the stringent constraints of wireless sensor nodes. The proposed approach has been implemented on a real hardware platform and tested in the field. Experimental results demonstrate the benefits of the proposed approach in terms of energy efficiency, power consumption and throughput, which can be up to more than two-times higher compared to traditional schemes.
Leveraging Energy Harvesting and Wake-Up Receivers for Long-Term Wireless Sensor Networks
Ait Aoudia, Fayçal; Gautier, Matthieu; Magno, Michele; Benini, Luca
2018-01-01
Wireless sensor nodes are traditionally powered by individual batteries, and a significant effort has been devoted to maximizing the lifetime of these devices. However, as the batteries can only store a finite amount of energy, the network is still doomed to die, and changing the batteries is not always possible. A promising solution is to enable each node to harvest energy directly in its environment, using individual energy harvesters. Moreover, novel ultra-low power wake-up receivers, which allow continuous listening of the channel with negligible power consumption, are emerging. These devices enable asynchronous communication, further reducing the power consumption related to communication, which is typically one the most energy-consuming tasks in wireless sensor networks. Energy harvesting and wake-up receivers can be combined to significantly increase the energy efficiency of sensor networks. In this paper, we propose an energy manager for energy harvesting wireless sensor nodes and an asynchronous medium access control protocol, which exploits ultra-low power wake-up receivers. The two components are designed to work together and especially to fit the stringent constraints of wireless sensor nodes. The proposed approach has been implemented on a real hardware platform and tested in the field. Experimental results demonstrate the benefits of the proposed approach in terms of energy efficiency, power consumption and throughput, which can be up to more than two-times higher compared to traditional schemes. PMID:29762535
Analytical and Photogrammetric Characterization of a Planar Tetrahedral Truss
NASA Technical Reports Server (NTRS)
Wu, K. Chauncey; Adams, Richard R.; Rhodes, Marvin D.
1990-01-01
Future space science missions are likely to require near-optical quality reflectors which are supported by a stiff truss structure. This support truss should conform closely with its intended shape to minimize its contribution to the overall surface error of the reflector. The current investigation was conducted to evaluate the planar surface accuracy of a regular tetrahedral truss structure by comparing the results of predicted and measured node locations. The truss is a 2-ring hexagonal structure composed of 102 equal-length truss members. Each truss member is nominally 2 meters in length between node centers and is comprised of a graphite/epoxy tube with aluminum nodes and joints. The axial stiffness and the length variation of the truss components were determined experimentally and incorporated into a static finite element analysis of the truss. From this analysis, the root mean square (RMS) surface error of the truss was predicted to be 0.11 mm (0004 in). Photogrammetry tests were performed on the assembled truss to measure the normal displacements of the upper surface nodes and to determine if the truss would maintain its intended shape when subjected to repeated assembly. Considering the variation in the truss component lengths, the measures rms error of 0.14 mm (0.006 in) in the assembled truss is relatively small. The test results also indicate that a repeatable truss surface is achievable. Several potential sources of error were identified and discussed.
Three-dimensional finite-element analysis of chevron-notched fracture specimens
NASA Technical Reports Server (NTRS)
Raju, I. S.; Newman, J. C., Jr.
1984-01-01
Stress-intensity factors and load-line displacements were calculated for chevron-notched bar and rod fracture specimens using a three-dimensional finite-element analysis. Both specimens were subjected to simulated wedge loading (either uniform applied displacement or uniform applied load). The chevron-notch sides and crack front were assumed to be straight. Crack-length-to-specimen width ratios (a/w) ranged from 0.4 to 0.7. The width-to-thickness ratio (w/B) was 1.45 or 2. The bar specimens had a height-to-width ratio of 0.435 or 0.5. Finite-element models were composed of singularity elements around the crack front and 8-noded isoparametric elements elsewhere. The models had about 11,000 degrees of freedom. Stress-intensity factors were calculated by using a nodal-force method for distribution along the crack front and by using a compliance method for average values. The stress intensity factors and load-line displacements are presented and compared with experimental solutions from the literature. The stress intensity factors and load-line displacements were about 2.5 and 5 percent lower than the reported experimental values, respectively.
NASA Astrophysics Data System (ADS)
Zhang, Zhi-Qian; Liu, G. R.; Khoo, Boo Cheong
2013-02-01
A three-dimensional immersed smoothed finite element method (3D IS-FEM) using four-node tetrahedral element is proposed to solve 3D fluid-structure interaction (FSI) problems. The 3D IS-FEM is able to determine accurately the physical deformation of the nonlinear solids placed within the incompressible viscous fluid governed by Navier-Stokes equations. The method employs the semi-implicit characteristic-based split scheme to solve the fluid flows and smoothed finite element methods to calculate the transient dynamics responses of the nonlinear solids based on explicit time integration. To impose the FSI conditions, a novel, effective and sufficiently general technique via simple linear interpolation is presented based on Lagrangian fictitious fluid meshes coinciding with the moving and deforming solid meshes. In the comparisons to the referenced works including experiments, it is clear that the proposed 3D IS-FEM ensures stability of the scheme with the second order spatial convergence property; and the IS-FEM is fairly independent of a wide range of mesh size ratio.
Interior Noise Predictions in the Preliminary Design of the Large Civil Tiltrotor (LCTR2)
NASA Technical Reports Server (NTRS)
Grosveld, Ferdinand W.; Cabell, Randolph H.; Boyd, David D.
2013-01-01
A prediction scheme was established to compute sound pressure levels in the interior of a simplified cabin model of the second generation Large Civil Tiltrotor (LCTR2) during cruise conditions, while being excited by turbulent boundary layer flow over the fuselage, or by tiltrotor blade loading and thickness noise. Finite element models of the cabin structure, interior acoustic space, and acoustically absorbent (poro-elastic) materials in the fuselage were generated and combined into a coupled structural-acoustic model. Fluctuating power spectral densities were computed according to the Efimtsov turbulent boundary layer excitation model. Noise associated with the tiltrotor blades was predicted in the time domain as fluctuating surface pressures and converted to power spectral densities at the fuselage skin finite element nodes. A hybrid finite element (FE) approach was used to compute the low frequency acoustic cabin response over the frequency range 6-141 Hz with a 1 Hz bandwidth, and the Statistical Energy Analysis (SEA) approach was used to predict the interior noise for the 125-8000 Hz one-third octave bands.
NASA Technical Reports Server (NTRS)
Jackson, Karen E.; Fasanella, Edwin L.
2004-01-01
A finite element model of an ATR42-300 commuter-class aircraft was developed and a crash simulation was executed. Analytical predictions were correlated with data obtained from a 30-feet per second (9.14-meters per second) vertical drop test of the aircraft. The purpose of the test was to evaluate the structural response of the aircraft when subjected to a severe, but survivable, impact. The aircraft was configured with seats, dummies, luggage, and other ballast. The wings were filled with 8,700 lb. (3,946 kilograms) of water to represent the fuel. The finite element model, which consisted of 57,643 nodes and 62,979 elements, was developed from direct measurements of the airframe geometry. The seats, dummies, luggage, simulated engines and fuel, and other ballast were represented using concentrated masses. The model was executed in LS-DYNA, a commercial finite element code for performing explicit transient dynamic simulations. Analytical predictions of structural deformation and selected time-history responses were correlated with experimental data from the drop test to validate the simulation.
NASA Technical Reports Server (NTRS)
Chen, T.; Raju, I. S.
2002-01-01
A coupled finite element (FE) method and meshless local Petrov-Galerkin (MLPG) method for analyzing two-dimensional potential problems is presented in this paper. The analysis domain is subdivided into two regions, a finite element (FE) region and a meshless (MM) region. A single weighted residual form is written for the entire domain. Independent trial and test functions are assumed in the FE and MM regions. A transition region is created between the two regions. The transition region blends the trial and test functions of the FE and MM regions. The trial function blending is achieved using a technique similar to the 'Coons patch' method that is widely used in computer-aided geometric design. The test function blending is achieved by using either FE or MM test functions on the nodes in the transition element. The technique was evaluated by applying the coupled method to two potential problems governed by the Poisson equation. The coupled method passed all the patch test problems and gave accurate solutions for the problems studied.
Method for calculating internal radiation and ventilation with the ADINAT heat-flow code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Butkovich, T.R.; Montan, D.N.
1980-04-01
One objective of the spent fuel test in Climax Stock granite (SFTC) is to correctly model the thermal transport, and the changes in the stress field and accompanying displacements from the application of the thermal loads. We have chosen the ADINA and ADINAT finite element codes to do these calculations. ADINAT is a heat transfer code compatible to the ADINA displacement and stress analysis code. The heat flow problem encountered at SFTC requires a code with conduction, radiation, and ventilation capabilities, which the present version of ADINAT does not have. We have devised a method for calculating internal radiation andmore » ventilation with the ADINAT code. This method effectively reproduces the results from the TRUMP multi-dimensional finite difference code, which correctly models radiative heat transport between drift surfaces, conductive and convective thermal transport to and through air in the drifts, and mass flow of air in the drifts. The temperature histories for each node in the finite element mesh calculated with ADINAT using this method can be used directly in the ADINA thermal-mechanical calculation.« less
Nick, H M; Paluszny, A; Blunt, M J; Matthai, S K
2011-11-01
A second order in space accurate implicit scheme for time-dependent advection-dispersion equations and a discrete fracture propagation model are employed to model solute transport in porous media. We study the impact of the fractures on mass transport and dispersion. To model flow and transport, pressure and transport equations are integrated using a finite-element, node-centered finite-volume approach. Fracture geometries are incrementally developed from a random distributions of material flaws using an adoptive geomechanical finite-element model that also produces fracture aperture distributions. This quasistatic propagation assumes a linear elastic rock matrix, and crack propagation is governed by a subcritical crack growth failure criterion. Fracture propagation, intersection, and closure are handled geometrically. The flow and transport simulations are separately conducted for a range of fracture densities that are generated by the geomechanical finite-element model. These computations show that the most influential parameters for solute transport in fractured porous media are as follows: fracture density and fracture-matrix flux ratio that is influenced by matrix permeability. Using an equivalent fracture aperture size, computed on the basis of equivalent permeability of the system, we also obtain an acceptable prediction of the macrodispersion of poorly interconnected fracture networks. The results hold for fractures at relatively low density.
NASA Technical Reports Server (NTRS)
Cerracchio, Priscilla; Gherlone, Marco; Di Sciuva, Marco; Tessler, Alexander
2013-01-01
The marked increase in the use of composite and sandwich material systems in aerospace, civil, and marine structures leads to the need for integrated Structural Health Management systems. A key capability to enable such systems is the real-time reconstruction of structural deformations, stresses, and failure criteria that are inferred from in-situ, discrete-location strain measurements. This technology is commonly referred to as shape- and stress-sensing. Presented herein is a computationally efficient shape- and stress-sensing methodology that is ideally suited for applications to laminated composite and sandwich structures. The new approach employs the inverse Finite Element Method (iFEM) as a general framework and the Refined Zigzag Theory (RZT) as the underlying plate theory. A three-node inverse plate finite element is formulated. The element formulation enables robust and efficient modeling of plate structures instrumented with strain sensors that have arbitrary positions. The methodology leads to a set of linear algebraic equations that are solved efficiently for the unknown nodal displacements. These displacements are then used at the finite element level to compute full-field strains, stresses, and failure criteria that are in turn used to assess structural integrity. Numerical results for multilayered, highly heterogeneous laminates demonstrate the unique capability of this new formulation for shape- and stress-sensing.
Impact of solids on composite materials
NASA Technical Reports Server (NTRS)
Bronson, Arturo; Maldonado, Jerry; Chern, Tzong; Martinez, Francisco; Mccord-Medrano, Johnnie; Roschke, Paul N.
1987-01-01
The failure modes of composite materials as a result of low velocity impact were investigated by simulating the impact with a finite element analysis. An important facet of the project is the modeling of the impact of a solid onto cylindrical shells composed of composite materials. The model under development will simulate the delamination sustained when a composite material encounters impact from another rigid body. The computer equipment was installed, the computer network tested, and a finite element method model was developed to compare results with known experimental data. The model simulated the impact of a steel rod onto a rotating shaft. Pre-processing programs (GMESH and TANVEL) were developed to generate node and element data for the input into the three dimensional, dynamic finite element analysis code (DYNA3D). The finite element mesh was configured with a fine mesh near the impact zone and a coarser mesh for the impacting rod and the regions surrounding the impacting zone. For the computer simulation, five impacting loads were used to determine the time history of the stresses, the scribed surface areas, and the amount of ridging. The processing time of the computer codes amounted from 1 to 4 days. The calculated surface area were within 6-12 percent, relative error when compated to the actual scratch area.
Penalty-Based Interface Technology for Prediction of Delamination Growth in Laminated Structures
NASA Technical Reports Server (NTRS)
Averill, Ronald C.
2004-01-01
An effective interface element technology has been developed for connecting and simulating crack growth between independently modeled finite element subdomains (e.g., composite plies). This method has been developed using penalty constraints and allows coupling of finite element models whose nodes do not necessarily coincide along their common interface. Additionally, the present formulation leads to a computational approach that is very efficient and completely compatible with existing commercial software. The present interface element has been implemented in the commercial finite element code ABAQUS as a User Element Subroutine (UEL), making it easy to test the approach for a wide range of problems. The interface element technology has been formulated to simulate delamination growth in composite laminates. Thanks to its special features, the interface element approach makes it possible to release portions of the interface surface whose length is smaller than that of the finite elements. In addition, the penalty parameter can vary within the interface element, allowing the damage model to be applied to a desired fraction of the interface between the two meshes. Results for double cantilever beam DCB, end-loaded split (ELS) and fixed-ratio mixed mode (FRMM) specimens are presented. These results are compared to measured data to assess the ability of the present damage model to simulate crack growth.
Finite Element Method Analysis of An Out Flow With Free Surface In Transition Zones
NASA Astrophysics Data System (ADS)
Saoula, R. Iddir S.; Mokhtar, K. Ait
The object of this work is to present this part of the fluid mechanics that relates to out-flows of the fluid to big speeds in transitions. Results usually gotten by the classic processes can only have a qualitative aspect. The method fluently used for the count of these out-flows to big speeds is the one of characteristics, this approach remains interesting so much that doesn't appear within the out-flow of intersections of shock waves, as well as of reflections of these. In the simple geometry case, the method of finite differences satisfying result, But when the complexity of this geometry imposes itself, it is the method of finite elements that is proposed to solve this type of prob- lem, in particular for problems Trans critic. The goal of our work is to analyse free surface flows in channels no prismatic has oblong transverse section in zone of tran- sition. (Convergent, divergent). The basic mathematical model of this study is Saint Venant derivatives partial equations. To solve these equations we use the finite ele- ment method, the element of reference is the triangular element with 6 nodes which are quadratic in speed and linear in height (pressure). Our results and their obtains by others are very close to experimental results.
A contact algorithm for shell problems via Delaunay-based meshing of the contact domain
NASA Astrophysics Data System (ADS)
Kamran, K.; Rossi, R.; Oñate, E.
2013-07-01
The simulation of the contact within shells, with all of its different facets, represents still an open challenge in Computational Mechanics. Despite the effort spent in the development of techniques for the simulation of general contact problems, an all-seasons algorithm applicable to complex shell contact problems is yet to be developed. This work focuses on the solution of the contact between thin shells by using a technique derived from the particle finite element method together with a rotation-free shell triangle. The key concept is to define a discretization of the contact domain (CD) by constructing a finite element mesh of four-noded tetrahedra that describes the potential contact volume. The problem is completed by using an assumed-strain approach to define an elastic contact strain over the CD.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Takao, Seishin, E-mail: takao@mech-me.eng.hokudai.ac.jp; Tadano, Shigeru; Taguchi, Hiroshi
2011-11-01
Purpose: To establish a method for the accurate acquisition and analysis of the variations in tumor volume, location, and three-dimensional (3D) shape of tumors during radiotherapy in the era of image-guided radiotherapy. Methods and Materials: Finite element models of lymph nodes were developed based on computed tomography (CT) images taken before the start of treatment and every week during the treatment period. A surface geometry map with a volumetric scale was adopted and used for the analysis. Six metastatic cervical lymph nodes, 3.5 to 55.1 cm{sup 3} before treatment, in 6 patients with head and neck carcinomas were analyzed inmore » this study. Three fiducial markers implanted in mouthpieces were used for the fusion of CT images. Changes in the location of the lymph nodes were measured on the basis of these fiducial markers. Results: The surface geometry maps showed convex regions in red and concave regions in blue to ensure that the characteristics of the 3D tumor geometries are simply understood visually. After the irradiation of 66 to 70 Gy in 2 Gy daily doses, the patterns of the colors had not changed significantly, and the maps before and during treatment were strongly correlated (average correlation coefficient was 0.808), suggesting that the tumors shrank uniformly, maintaining the original characteristics of the shapes in all 6 patients. The movement of the gravitational center of the lymph nodes during the treatment period was everywhere less than {+-}5 mm except in 1 patient, in whom the change reached nearly 10 mm. Conclusions: The surface geometry map was useful for an accurate evaluation of the changes in volume and 3D shapes of metastatic lymph nodes. The fusion of the initial and follow-up CT images based on fiducial markers enabled an analysis of changes in the location of the targets. Metastatic cervical lymph nodes in patients were suggested to decrease in size without significant changes in the 3D shape during radiotherapy. The movements of the gravitational center of the lymph nodes were almost all less than {+-}5 mm.« less
He, Qingqing; Zhuang, Dayong; Zheng, Luming; Fan, Ziyi; Zhou, Peng; Zhu, Jian; Lv, Zhen; Chai, Jixin; Cao, Lei
2012-12-01
Electrocautery has been proven to be associated with prolonged serous drainage that might result in several complications in patients requiring axillary lymph node dissection for breast cancer. We proposed that the Harmonic Focus might outperform electrocautery in axillary lymph node dissection, resulting in shorter operative times and reduced postoperative complications. One hundred twenty-eight women with confirmed T1-3 N1-2 breast cancer were randomly assigned to undergo mastectomy or breast-conserving surgery with axillary dissection by using Harmonic Focus or electrocautery. Sixty-four has surgery with Harmonic Focus (group A) and 64 with electrocautery (group B) by the same surgical team. Operative time, blood loss, total drainage volume and days, incidence of seroma, hematoma, pain score, and flap necrosis were recorded. Using Harmonic Focus significantly diminished operative time, blood loss, total drainage volume, days of stay, and visual analogue scale as compared with traditional electrocautery. There was no statistical difference between the 2 groups regarding seroma, hematoma, and flap necrosis. Axillary lymph node dissection using Harmonic Focus is feasible, safe, and a more comfortable design for the surgeon. Copyright © 2012 Elsevier Inc. All rights reserved.
Carnation (Dianthus caryophylus L.).
Nontaswatsri, Chalermsri; Fukai, Seiichi
2006-01-01
Carnation is a valuable crop for the cut flower industry and demand for new and improved varieties is growing. However, genetic transformation of carnations is currently limited because of a lack of efficient routine technique. In this chapter, we present an easy and effective protocol for gene transfer to carnation node explants and subsequent adventitious shoot regeneration. For high-adventitious shoot regeneration, node explants from first to third node of 5- to 8-cm long shoots were cultured on Murashige and Skoog (MS) medium, containing 1.0 mg/Lthidiazuron (TDZ), 0.1 mg/L alpha-napthalenoacetic acid (NAA), 20 g/L sucrose, and 2 g/L Gellan gum for 10 d. Then the explants were cut into 8 radial segments and subcultured onto MS medium, containing 1.0 mg/L BA, 0.1 mg/L NAA, 20 g/L sucrose and 2 g/L Gellan Gum. For effective genetic transformation, 3- to 5-d precultured node explants were submerged in an Agrobacerium suspension for 10 min, then cocultivated on filter paper soaked with water and 50 microM acetosyringone (AS). After cocultivation, the explants were cut into eight radial segments and subcultured onto selection medium until transformed shoots regenerated from the explants.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mazeron, J.J.; Langlois, D.; Lobo, P.A.
1984-10-01
From 1970 to 1979, a group of 50 patients was treated for squamous cell carcinoma of the penis by interstitial irradiation using an afterloading technique and iridium 192 wires. The group included 9 patients with T1 tumors, 27 with T2 tumors, and 14 with T3 tumors. Forty-five patients presented with no metastatic inguinal nodes (NO), 3 patients with N1 nodes, and 2 patients had N3 nodes. After treatment, 11 patients (1 T1, 6 T2 and 4 T3) developed local recurrences. Three patients developed post-therapeutic necrosis which necessitated partial amputation in 2 cases. Eight patients developed post-therapeutic urethral stenosis, which requiredmore » surgical treatment in three of the cases. Twenty-one percent of the patients died of their disease. The authors advocate interstitial irradiation using iridium 192 wires for the treatment of non-infiltrating or moderately infiltrating squamous cell carcinoma of the penis in which the largest dimension does no exceed 4 cm. When regular follow-up can be assurred, it is reasonable to forgo prophylactic treatment of the inguinal nodes in patients presenting without groin metastasis.« less
Scaling of load in communications networks.
Narayan, Onuttom; Saniee, Iraj
2010-09-01
We show that the load at each node in a preferential attachment network scales as a power of the degree of the node. For a network whose degree distribution is p(k)∼k{-γ} , we show that the load is l(k)∼k{η} with η=γ-1 , implying that the probability distribution for the load is p(l)∼1/l{2} independent of γ . The results are obtained through scaling arguments supported by finite size scaling studies. They contradict earlier claims, but are in agreement with the exact solution for the special case of tree graphs. Results are also presented for real communications networks at the IP layer, using the latest available data. Our analysis of the data shows relatively poor power-law degree distributions as compared to the scaling of the load versus degree. This emphasizes the importance of the load in network analysis.
Mobility and Congestion in Dynamical Multilayer Networks with Finite Storage Capacity
NASA Astrophysics Data System (ADS)
Manfredi, S.; Di Tucci, E.; Latora, V.
2018-02-01
Multilayer networks describe well many real interconnected communication and transportation systems, ranging from computer networks to multimodal mobility infrastructures. Here, we introduce a model in which the nodes have a limited capacity of storing and processing the agents moving over a multilayer network, and their congestions trigger temporary faults which, in turn, dynamically affect the routing of agents seeking for uncongested paths. The study of the network performance under different layer velocities and node maximum capacities reveals the existence of delicate trade-offs between the number of served agents and their time to travel to destination. We provide analytical estimates of the optimal buffer size at which the travel time is minimum and of its dependence on the velocity and number of links at the different layers. Phenomena reminiscent of the slower is faster effect and of the Braess' paradox are observed in our dynamical multilayer setup.
NASA Astrophysics Data System (ADS)
Xie, Hong-Yi; Vavilov, Maxim G.; Levchenko, Alex
2018-02-01
We consider mesoscopic four-terminal Josephson junctions and study emergent topological properties of the Andreev subgap bands. We use symmetry-constrained analysis for Wigner-Dyson classes of scattering matrices to derive band dispersions. When the scattering matrix of the normal region connecting superconducting leads is energy independent, the determinant formula for Andreev spectrum can be reduced to a palindromic equation that admits a complete analytical solution. Band topology manifests with an appearance of the Weyl nodes which serve as monopoles of finite Berry curvature. The corresponding fluxes are quantified by Chern numbers that translate into a quantized nonlocal conductance that we compute explicitly for the time-reversal-symmetric scattering matrix. The topological regime can also be identified by supercurrents as Josephson current-phase relationships exhibit pronounced nonanalytic behavior and discontinuities near Weyl points that can be controllably accessed in experiments.
Mobility and Congestion in Dynamical Multilayer Networks with Finite Storage Capacity.
Manfredi, S; Di Tucci, E; Latora, V
2018-02-09
Multilayer networks describe well many real interconnected communication and transportation systems, ranging from computer networks to multimodal mobility infrastructures. Here, we introduce a model in which the nodes have a limited capacity of storing and processing the agents moving over a multilayer network, and their congestions trigger temporary faults which, in turn, dynamically affect the routing of agents seeking for uncongested paths. The study of the network performance under different layer velocities and node maximum capacities reveals the existence of delicate trade-offs between the number of served agents and their time to travel to destination. We provide analytical estimates of the optimal buffer size at which the travel time is minimum and of its dependence on the velocity and number of links at the different layers. Phenomena reminiscent of the slower is faster effect and of the Braess' paradox are observed in our dynamical multilayer setup.
Acoustic Type-II Weyl Nodes from Stacking Dimerized Chains
NASA Astrophysics Data System (ADS)
Yang, Zhaoju; Zhang, Baile
2016-11-01
Lorentz-violating type-II Weyl fermions, which were missed in Weyl's prediction of nowadays classified type-I Weyl fermions in quantum field theory, have recently been proposed in condensed matter systems. The semimetals hosting type-II Weyl fermions offer a rare platform for realizing many exotic physical phenomena that are different from type-I Weyl systems. Here we construct the acoustic version of a type-II Weyl Hamiltonian by stacking one-dimensional dimerized chains of acoustic resonators. This acoustic type-II Weyl system exhibits distinct features in a finite density of states and unique transport properties of Fermi-arc-like surface states. In a certain momentum space direction, the velocity of these surface states is determined by the tilting direction of the type-II Weyl nodes rather than the chirality dictated by the Chern number. Our study also provides an approach of constructing acoustic topological phases at different dimensions with the same building blocks.
Simulation platform of LEO satellite communication system based on OPNET
NASA Astrophysics Data System (ADS)
Zhang, Yu; Zhang, Yong; Li, Xiaozhuo; Wang, Chuqiao; Li, Haihao
2018-02-01
For the purpose of verifying communication protocol in the low earth orbit (LEO) satellite communication system, an Optimized Network Engineering Tool (OPNET) based simulation platform is built. Using the three-layer modeling mechanism, the network model, the node model and the process model of the satellite communication system are built respectively from top to bottom, and the protocol will be implemented by finite state machine and Proto-C language. According to satellite orbit parameters, orbit files are generated via Satellite Tool Kit (STK) and imported into OPNET, and the satellite nodes move along their orbits. The simulation platform adopts time-slot-driven mode, divides simulation time into continuous time slots, and allocates slot number for each time slot. A resource allocation strategy is simulated on this platform, and the simulation results such as resource utilization rate, system throughput and packet delay are analyzed, which indicate that this simulation platform has outstanding versatility.
Experimental measurement-device-independent quantum digital signatures.
Roberts, G L; Lucamarini, M; Yuan, Z L; Dynes, J F; Comandar, L C; Sharpe, A W; Shields, A J; Curty, M; Puthoor, I V; Andersson, E
2017-10-23
The development of quantum networks will be paramount towards practical and secure telecommunications. These networks will need to sign and distribute information between many parties with information-theoretic security, requiring both quantum digital signatures (QDS) and quantum key distribution (QKD). Here, we introduce and experimentally realise a quantum network architecture, where the nodes are fully connected using a minimum amount of physical links. The central node of the network can act either as a totally untrusted relay, connecting the end users via the recently introduced measurement-device-independent (MDI)-QKD, or as a trusted recipient directly communicating with the end users via QKD. Using this network, we perform a proof-of-principle demonstration of QDS mediated by MDI-QKD. For that, we devised an efficient protocol to distil multiple signatures from the same block of data, thus reducing the statistical fluctuations in the sample and greatly enhancing the final QDS rate in the finite-size scenario.
Numerical Modeling of Flow Distribution in Micro-Fluidics Systems
NASA Technical Reports Server (NTRS)
Majumdar, Alok; Cole, Helen; Chen, C. P.
2005-01-01
This paper describes an application of a general purpose computer program, GFSSP (Generalized Fluid System Simulation Program) for calculating flow distribution in a network of micro-channels. GFSSP employs a finite volume formulation of mass and momentum conservation equations in a network consisting of nodes and branches. Mass conservation equation is solved for pressures at the nodes while the momentum conservation equation is solved at the branches to calculate flowrate. The system of equations describing the fluid network is solved by a numerical method that is a combination of the Newton-Raphson and successive substitution methods. The numerical results have been compared with test data and detailed CFD (computational Fluid Dynamics) calculations. The agreement between test data and predictions is satisfactory. The discrepancies between the predictions and test data can be attributed to the frictional correlation which does not include the effect of surface tension or electro-kinetic effect.
NASA Technical Reports Server (NTRS)
Crouch, P. E.; Grossman, Robert
1992-01-01
This note is concerned with the explicit symbolic computation of expressions involving differential operators and their actions on functions. The derivation of specialized numerical algorithms, the explicit symbolic computation of integrals of motion, and the explicit computation of normal forms for nonlinear systems all require such computations. More precisely, if R = k(x(sub 1),...,x(sub N)), where k = R or C, F denotes a differential operator with coefficients from R, and g member of R, we describe data structures and algorithms for efficiently computing g. The basic idea is to impose a multiplicative structure on the vector space with basis the set of finite rooted trees and whose nodes are labeled with the coefficients of the differential operators. Cancellations of two trees with r + 1 nodes translates into cancellation of O(N(exp r)) expressions involving the coefficient functions and their derivatives.
Deep anistropic shell program for tire analysis
NASA Technical Reports Server (NTRS)
Andersen, C. M.
1981-01-01
A finite element program was constructed to model the mechanical response of a tire, treated as a deep anisotropic shell, to specified static loads. The program is based on a Sanders Budiansky type shell theory with the effects of transverse shear deformation and bending-extensional coupling included. A displacement formulation is used together with a total Lagrangian description of the deformation. Sixteen-node quadrilateral elements with bicubic shape functions are employed. The Noor basis reduction technique and various type of symmetry considerations serve to improve the computational efficiency.
Simulation of Finite-Precision Effects in Digital Filters.
1991-12-12
the output power due to roundoff noise [13:422][15:3591. To prevent overflow, the filter gains are < 1.0 at branch nodes where the signal enters. This...performed and prevented with a message to the user. A useful check for the user is one when the coefficients are quantized. If a quantized version of a...8217(55) ------------ ALL DONE - WRITE(6,1)’***** PLEASE ENTER NUMBER OR [RET] TO RUN PRGRAM *****’ WRITE(6,1)’ ENTER NUMBER [#]:’ READ(5,38,END=99,ERR
Mixed Integer PDE Constrained Optimization for the Control of a Wildfire Hazard
2017-01-01
are nodes suitable for extinguishing the fire. We introduce a discretization of the time horizon [0, T] by the set of time T := {0, At,..., ntZ\\t = T...of the constraints and objective with a discrete counterpart. The PDE is replaced by a linear system obtained from a convergent finite difference...method [5] and the integral is replaced by a quadrature formula. The domain is discretized by replacing 17 with an equidistant grid of length Ax
A Strategic Approach to Optimizing the U.S. Army’s Aeromedical Evacuation System in Afghanistan
2009-07-10
arise on distinct nodes and the facilities are restricted to a finite set of candidate locations ( Daskin 2008). Here, this problem classifies as a ...Research Logistics, 55(4), 283-294. Daskin , M. (1983) A maximum expected covering location model: formulation, properties and heuristic solution...34,," !hal notwithstan<ling any oilier provision 01 law. no person sha~ be subject to any penart)’ l or fai!;ng to comply willi a cdledion 01 inIormalion W
Wave propagation in graphite/epoxy laminates due to impact
NASA Technical Reports Server (NTRS)
Tan, T. M.; Sun, C. T.
1982-01-01
The low velocity impact response of graphite-epoxy laminates is investigated theoretically and experimentally. A nine-node isoparametric finite element in conjunction with an empirical contact law was used for the theoretical investigation. Flat laminates subjected to pendulum impact were used for the experimental investigation. Theoretical results are in good agreement with strain gage experimental data. The collective results of the investigation indicate that the theoretical procedure describes the impact response of the laminate up to about 150 in/sec. impact velocity.