Sample records for einstein aging study

  1. Einstein and Einstein A: A Study in Crater Morphology

    NASA Image and Video Library

    2017-12-08

    NASA image release May 14, 2010 Einstein and Einstein A: A Study in Crater Morphology Located on the western limb of the Moon, Einstein and Einstein A craters (16.3oN, 271.3oE ) are only visible to Earth-based observers during certain lunar lighting and orientation conditions. Einstein A is younger than Einstein, as indicated by the fact that it lies squarely in the middle of the floor of Einstein. When viewed in topographic data, these two craters reveal much about the relative age and shape of an impact crater. To understand further, let's first take a look at Einstein. Einstein is a fairly large crater that spans 198 km across. A crater's size alone however cannot reveal much about age. ÊEinstein's relative age can be determined by examining the frequency and distribution of impact craters overprinted on its rim and floor. Younger craters have had fewer impacts, which enables them to retain their original morphology. Einstein A reveals most of its original structure, including a raised rim and ejecta blanket, and is therefore a relatively young crater as compared to Einstein, whose original structure has been somewhat degraded over time by smaller impacts. The Einstein craters were named after famed physicist, philosopher, and scientist Albert Einstein (1879-1955). To learn more go to: www.nasa.gov/mission_pages/LRO/multimedia/lroimages/lola-... NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  2. A brief dietary assessment predicts executive dysfunction in an elderly cohort: results from the Einstein Aging Study

    USDA-ARS?s Scientific Manuscript database

    Objectives: To examine the association between diet and executive function, episodic memory and global verbal cognition in the Einstein Aging Study (EAS) cohort and determine whether race modifies this relationship. Design: Cross-sectional. Setting: Community. Participants: EAS participants without ...

  3. Influence of Perceived Stress on Incident Amnestic Mild Cognitive Impairment: Results From the Einstein Aging Study.

    PubMed

    Katz, Mindy J; Derby, Carol A; Wang, Cuiling; Sliwinski, Martin J; Ezzati, Ali; Zimmerman, Molly E; Zwerling, Jessica L; Lipton, Richard B

    2016-01-01

    Stress is a potentially remediable risk factor for amnestic mild cognitive impairment (aMCI). Our objective is to determine whether perceived stress predicts incident aMCI and to determine if the influence of stress on aMCI is independent of known aMCI risk factors, particularly demographic variables, depression, and apolipoprotein genotype. The Einstein Aging Study is a longitudinal community-based study of older adults. The Perceived Stress Scale (PSS) was administered annually in the Einstein Aging Study to participants (N=507; 71 developed incident aMCI; mean follow-up time=3.6 y, SD=2.0) who were aged 70 years and older, free of aMCI and dementia at baseline PSS administration, and had at least 1 subsequent annual follow-up. Cox hazard models were used to examine time to aMCI onset adjusting for covariates. High levels of perceived stress are associated with a 30% greater risk of incident aMCI (per 5-point increase in PSS: hazard ratio=1.30; 95% confidence interval, 1.08-1.58) independent of covariates. The consistency of results after covariate adjustment and the lack of evidence for reverse causation in longitudinal analyses suggest that these findings are robust. Understanding of the effect of perceived stress on cognition may lead to intervention strategies that prevent the onset of aMCI and Alzheimer dementia.

  4. Endogenous Estradiol Is Associated with Verbal Memory in Nondemented Older Men

    ERIC Educational Resources Information Center

    Zimmerman, Molly E.; Lipton, Richard B.; Santoro, Nanette; McConnell, Daniel S.; Derby, Carol A.; Katz, Mindy J.; Baigi, Khosrow; Saunders-Pullman, Rachel

    2011-01-01

    This study examined the relationship between endogenous hormones and cognitive function in nondemented, ethnically-diverse community-dwelling older men enrolled in the Einstein Aging Study (EAS). All eligible participants (185 men, mean age = 81 years) received neuropsychological assessment (Free and Cued Selective Reminding Test (FCSRT), Logical…

  5. Astronomical and Cosmological Symbolism in Art Dedicated to Newton and Einstein

    NASA Astrophysics Data System (ADS)

    Sinclair, R.

    2013-04-01

    Separated by two and a half centuries, Isaac Newton (1642-1727) and Albert Einstein (1879-1955) had profound impacts on our understanding of the universe. Newton established our understanding of universal gravitation, which was recast almost beyond recognition by Einstein. Both discovered basic patterns behind astronomical phenomena and became the best-known scientists of their respective periods. I will describe here how artists of the 18th and 20th centuries represented the achievements of Newton and Einstein. Representations of Newton express reverence, almost an apotheosis, portraying him as the creator of the universe. Einstein, in a different age, is represented often as a comic figure, and only rarely do we find art that hints at the profound view of the universe he developed.

  6. Virtually Being Einstein Results in an Improvement in Cognitive Task Performance and a Decrease in Age Bias

    PubMed Central

    Banakou, Domna; Kishore, Sameer; Slater, Mel

    2018-01-01

    The brain's body representation is amenable to rapid change, even though we tend to think of our bodies as relatively fixed and stable. For example, it has been shown that a life-sized body perceived in virtual reality as substituting the participant's real body, can be felt as if it were their own, and that the body type can induce perceptual, attitudinal and behavioral changes. Here we show that changes can also occur in cognitive processing and specifically, executive functioning. Fifteen male participants were embodied in a virtual body that signifies super-intelligence (Einstein) and 15 in a (Normal) virtual body of similar age to their own. The Einstein body participants performed better on a cognitive task than the Normal body, considering prior cognitive ability (IQ), with the improvement greatest for those with low self-esteem. Einstein embodiment also reduced implicit bias against older people. Hence virtual body ownership may additionally be used to enhance executive functioning. PMID:29942270

  7. Virtually Being Einstein Results in an Improvement in Cognitive Task Performance and a Decrease in Age Bias.

    PubMed

    Banakou, Domna; Kishore, Sameer; Slater, Mel

    2018-01-01

    The brain's body representation is amenable to rapid change, even though we tend to think of our bodies as relatively fixed and stable. For example, it has been shown that a life-sized body perceived in virtual reality as substituting the participant's real body, can be felt as if it were their own, and that the body type can induce perceptual, attitudinal and behavioral changes. Here we show that changes can also occur in cognitive processing and specifically, executive functioning. Fifteen male participants were embodied in a virtual body that signifies super-intelligence (Einstein) and 15 in a (Normal) virtual body of similar age to their own. The Einstein body participants performed better on a cognitive task than the Normal body, considering prior cognitive ability (IQ), with the improvement greatest for those with low self-esteem. Einstein embodiment also reduced implicit bias against older people. Hence virtual body ownership may additionally be used to enhance executive functioning.

  8. Cerebral cortex astroglia and the brain of a genius: A propos of A. Einstein's

    PubMed Central

    Colombo, Jorge A.; Reisin, Hernán D.; Miguel-Hidalgo, José J.; Rajkowska, Grazyna

    2010-01-01

    The glial fibrillary acidic protein immunoreactive astroglial layout of the cerebral cortex from Albert Einstein and other four age-matched human cases lacking any known neurological disease was analyzed using quantification of geometrical features mathematically defined. Several parameters (parallelism, relative depth, tortuosity) describing the primate-specific interlaminar glial processes did not show individually distinctive characteristics in any of the samples analyzed. However, A. Einstein's astrocytic processes showed larger sizes and higher numbers of interlaminar terminal masses, reaching sizes of 15 μm in diameter. These bulbous endings are of unknown significance and they have been described occurring in Alzheimer's disease. These observations are placed in the context of the general discussion regarding the proposal – by other authors – that structural, postmortem characteristics of the aged brain of Albert Einstein may serve as markers of his cognitive performance, a proposal to which the authors of this paper do not subscribe, and argue against. PMID:16675021

  9. [Albert Einstein and his abdominal aortic aneurysm].

    PubMed

    Cervantes Castro, Jorge

    2011-01-01

    The interesting case of Albert Einstein's abdominal aortic aneurysm is presented. He was operated on at age 69 and, finding that the large aneurysm could not be removed, the surgeon elected to wrap it with cellophane to prevent its growth. However, seven years later the aneurysm ruptured and caused the death of the famous scientist.

  10. Age-specific and sex-specific prevalence and incidence of mild cognitive impairment, dementia, and Alzheimer dementia in blacks and whites: a report from the Einstein Aging Study.

    PubMed

    Katz, Mindy J; Lipton, Richard B; Hall, Charles B; Zimmerman, Molly E; Sanders, Amy E; Verghese, Joe; Dickson, Dennis W; Derby, Carol A

    2012-01-01

    As the population ages, the need to characterize rates of cognitive impairment and dementia within demographic groups defined by age, sex, and race becomes increasingly important. There are limited data available on the prevalence and incidence of amnestic mild cognitive impairment (aMCI) and nonamnestic mild cognitive impairment (naMCI) from population-based studies. The Einstein Aging Study, a systematically recruited community-based cohort of 1944 adults aged 70 or older (1168 dementia free at baseline; mean age, 78.8 y; average follow-up, 3.9 y), provides the opportunity to examine the prevalence and incidence rates for dementia, Alzheimer dementia (AD), aMCI, and naMCI by demographic characteristics. Dementia prevalence was 6.5% (4.9% AD). Overall dementia incidence was 2.9/100 person-years (2.3/100 person-years for AD). Dementia and AD rates increased with age but did not differ by sex. Prevalence of aMCI was 11.6%, and naMCI prevalence was 9.9%. aMCI incidence was 3.8 and naMCI incidence was 3.9/100 person-years. Rates of aMCI increased significantly with age in men and in blacks; sex, education, and race were not significant risk factors. In contrast, naMCI incidence did not increase with age; however, blacks were at higher risk compared with whites, even when controlling for sex and education. Results highlight the public health significance of preclinical cognitive disease.

  11. Trends in Dementia Incidence in a Birth Cohort Analysis of the Einstein Aging Study.

    PubMed

    Derby, Carol A; Katz, Mindy J; Lipton, Richard B; Hall, Charles B

    2017-11-01

    Trends in dementia incidence rates have important implications for planning and prevention. To better understand incidence trends over time requires separation of age and cohort effects, and few prior studies have used this approach. To examine trends in dementia incidence and concomitant trends in cardiovascular comorbidities among individuals aged 70 years or older who were enrolled in the Einstein Aging Study between 1993 and 2015. In this birth cohort analysis of all-cause dementia incidence in persons enrolled in the Einstein Aging Study from October 20, 1993, through November 17, 2015, a systematically recruited, population-based sample of 1348 participants from Bronx County, New York, who were 70 years or older without dementia at enrollment and at least one annual follow-up was studied. Poisson regression was used to model dementia incidence as a function of age, sex, educational level, race, and birth cohort, with profile likelihood used to identify the timing of significant increases or decreases in incidence. Birth year and age. Incident dementia defined by consensus case conference based on annual, standardized neuropsychological and neurologic examination findings, using criteria from the DSM-IV. Among 1348 individuals (mean [SD] baseline age, 78.5 [5.4] years; 830 [61.6%] female; 915 [67.9%] non-Hispanic white), 150 incident dementia cases developed during 5932 person-years (mean [SD] follow-up, 4.4 [3.4] years). Dementia incidence decreased in successive birth cohorts. Incidence per 100 person-years was 5.09 in birth cohorts before 1920, 3.11 in the 1920 through 1924 birth cohorts, 1.73 in the 1925 through 1929 birth cohorts, and 0.23 in cohorts born after 1929. Change point analyses identified a significant decrease in dementia incidence among those born after July 1929 (95% CI, June 1929 to January 1930). The relative rate for birth cohorts before July 1929 vs after was 0.13 (95% CI, 0.04-0.41). Prevalence of stroke and myocardial infarction decreased across successive birth cohorts, whereas diabetes prevalence increased. Adjustment for these cardiovascular comorbidities did not explain the decreased dementia incidence rates for more recent birth cohorts. Analyses confirm decreasing dementia incidence in this population-based sample. Whether decreasing incidence will contribute to reduced burden of dementia given the aging of the population is not known.

  12. Seeing and Experiencing Relativity--A New Tool for Teaching?

    ERIC Educational Resources Information Center

    Kortemeyer, Gerd; Fish, Jordan; Hacker, Jesse; Kienle, Justin; Kobylarek, Alexander; Sigler, Michael; Wierenga, Bert; Cheu, Ryan; Kim, Ebae; Sherin, Zach; Sidhu, Sonny; Tan, Philip

    2013-01-01

    "What would you see if you were riding a beam of light?" This thought experiment, which Einstein reports to have "conducted" at the age of 16, of course has no sensible answer: as Einstein published a decade later, you could never reach the speed of light. But it does make sense to ask what you would see if you were traveling…

  13. Is the Association between Children's Baby Video Viewing and Poor Language Development Robust? A Reanalysis of Zimmerman, Christakis, and Meltzoff (2007)

    ERIC Educational Resources Information Center

    Ferguson, Christopher J.; Donnellan, M. Brent

    2014-01-01

    Zimmerman, Christakis, and Meltzoff (2007) reported that exposure to Baby Einstein videos was negatively associated with language development. The current study uses the Zimmerman et al. (2007) data set to replicate and extend the original analyses. Caregivers of 392 children aged 6 to 16 months and 358 children aged 17 to 27 months reported on…

  14. Cerebral Hemodynamics in the Elderly: A Transcranial Doppler Study in the Einstein Aging Study Cohort.

    PubMed

    Yang, Dixon; Cabral, Digna; Gaspard, Emmanuel N; Lipton, Richard B; Rundek, Tatjana; Derby, Carol A

    2016-09-01

    We sought to describe the relationship between age, sex, and race/ethnicity with transcranial Doppler hemodynamic characteristics from major intracerebral arterial segments in a large elderly population with varying demographics. We analyzed 369 stroke-free participants aged 70 years and older from the Einstein Aging Study. Single-gate, nonimaging transcranial Doppler sonography, a noninvasive sonographic technique that assesses real-time cerebrovascular hemodynamics, was used to interrogate 9 cerebral arterial segments. Individual Doppler spectra and cerebral blood flow velocities were acquired, and the pulsatility index and resistive index were calculated by the device's automated waveform-tracking function. Multiple linear regression models were used to examine the independent associations of age, sex, and race/ethnicity with transcranial Doppler measures, adjusting for hypertension, history of myocardial infarction or revascularization, and history of diabetes. Among enrolled participants, 303 individuals had at least 1 vessel insonated (mean age [SD], 80 [6] years; 63% women; 58% white; and 32% black). With age, transcranial Doppler measures of mean blood flow velocity were significantly decreased in the basilar artery (P = .001) and posterior cerebral artery (right, P = .003; left, P = .02). Pulsatility indices increased in the left middle cerebral artery (P = .01) and left anterior cerebral artery (P = .03), and the resistive index was increased in the left middle cerebral artery (P = .007) with age. Women had higher pulsatility and resistive indices compared to men in several vessels. We report a decreased mean blood flow velocity and weakly increased arterial pulsatility and resistance with aging in a large elderly stroke-free population. These referential trends in cerebrovascular hemodynamics may carry important implications in vascular diseases associated with advanced age, increased risk of cerebrovascular disease, cognitive decline, and dementia.

  15. Transcranial Doppler and Lower Extremity Function in Older Adults: Einstein Aging Study.

    PubMed

    Ezzati, Ali; Rundek, Tatjana; Verghese, Joe; Derby, Carol A

    2017-12-01

    To determine whether transcranial Doppler ultrasound (TCD) measures of mean blood flow velocity (MBFV) in the major cerebral arteries are associated with measures of lower extremity function in community-dwelling older adults. Cross-sectional study. Community sample. Individuals aged 70 and older (mean 79.5, 54% female) without dementia participating in the Einstein Aging Study (N = 200). All participants underwent TCD assessments and tests of lower extremity function at an annual clinic visit. Average MBFV for anterior (left and right anterior and middle cerebral arteries (MCAs)) and posterior (vertebral (VA) and basilar (BA) artery) circulation was measured using a standardized TCD protocol. Lower extremity function was characterized according to gait speed (cm/s) measured using an instrumented walkway, balance according to unipedal stance time (UPST, seconds), and lower extremity strength according to timed repeated chair rise (seconds). Multiple regression models adjusted for age, sex, race, education, and medical comorbidities showed that lower MBFV in the MCA was associated with slower gait speed and chair rise time but not with UPST. Ordinal regression models showed that lower MBFV in the VA and BA is associated with shorter UPST. Low MBFV in the anterior and posterior cerebral circulation was associated with worse lower extremity function and balance in older adults. This might be indicative of the importance of age-related changes in cerebral hemodynamics in the function of brain regions involved in specific aspects of physical performance. © 2017, Copyright the Authors Journal compilation © 2017, The American Geriatrics Society.

  16. A critical view of the quest for brain structural markers of Albert Einstein's special talents (a pot of gold under the rainbow).

    PubMed

    Colombo, Jorge A

    2018-06-01

    Assertions regarding attempts to link glial and macrostructural brain events with cognitive performance regarding Albert Einstein, are critically reviewed. One basic problem arises from attempting to draw causal relationships regarding complex, delicately interactive functional processes involving finely tuned molecular and connectivity phenomena expressed in cognitive performance, based on highly variable brain structural events of a single, aged, formalin fixed brain. Data weaknesses and logical flaws are considered. In other instances, similar neuroanatomical observations received different interpretations and conclusions, as those drawn, e.g., from schizophrenic brains. Observations on white matter events also raise methodological queries. Additionally, neurocognitive considerations on other intellectual aptitudes of A. Einstein were simply ignored.

  17. Series expansion of the modified Einstein Procedure

    Treesearch

    Seema Chandrakant Shah-Fairbank

    2009-01-01

    This study examines calculating total sediment discharge based on the Modified Einstein Procedure (MEP). A new procedure based on the Series Expansion of the Modified Einstein Procedure (SEMEP) has been developed. This procedure contains four main modifications to MEP. First, SEMEP solves the Einstein integrals quickly and accurately based on a series expansion. Next,...

  18. Stability of the Einstein static universe in Einstein-Cartan theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atazadeh, K., E-mail: atazadeh@azaruniv.ac.ir

    The existence and stability of the Einstein static solution have been built in the Einstein-Cartan gravity. We show that this solution in the presence of perfect fluid with spin density satisfying the Weyssenhoff restriction is cyclically stable around a center equilibrium point. Thus, study of this solution is interesting because it supports non-singular emergent cosmological models in which the early universe oscillates indeterminately about an initial Einstein static solution and is thus past eternal.

  19. Einstein as a Missionary of Science

    NASA Astrophysics Data System (ADS)

    Renn, Jürgen

    2013-10-01

    The paper reviews Einstein's engagement as a mediator and popularizer of science. It discusses the formative role of popular scientific literature for the young Einstein, showing that not only his broad scientific outlook but also his internationalist political views were shaped by these readings. Then, on the basis of recent detailed studies, Einstein's travels and their impact on the dissemination of relativity theory are examined. These activities as well as Einstein's own popular writings are interpreted in the context of his understanding of science as part of human culture.

  20. Einstein observations of active galaxies and quasars

    NASA Technical Reports Server (NTRS)

    Schreier, E. J.

    1979-01-01

    The radio galaxies Centaurus A and Signus B are discussed. In both these sources, a comparison of the radio and imaged X-ray flux is allowed for the measurement of the magnetic fields. Einstein observations of quasars are discussed. The number of known X-ray emitting QSO's was increased from 3 to 22 and the distances where these QSO's were seen to correspond to an age of 15 billion years. It was shown that these quasars contributed significantly to the X-ray background.

  1. Einstein's Jury: Trial by Telescope

    NASA Astrophysics Data System (ADS)

    Crelinsten, Jeffrey

    2007-03-01

    While Einstein's theory of relativity ultimately laid the foundation for modern studies of the universe, it took a long time to be accepted. Between 1905 and 1930, relativity was poorly understood and Einstein worked hard to try to make it more accessible to scientists and scientifically literate laypeople. Its acceptance was largely due to the astronomy community, which undertook precise measurements to test Einstein's astronomical predictions. The well-known 1919 British eclipse expeditions that made Einstein famous did not convince most scientists to accept relativity. The 1920s saw numerous attempts to measure light-bending, as well as solar line displacements and even ether-drift. How astronomers approached the ``Einstein problem'' in these early years before and after the First World War, and how the public reacted to what they reported, helped to shape attitudes we hold today about Einstein and his ideas.

  2. Astronomers' Race to Test Relativity, 1911-1930

    NASA Astrophysics Data System (ADS)

    Crelinsten, Jeffrey

    2006-11-01

    Einstein's theory of relativity changed our notions of space and time and has dramatically altered the way we look at the universe and our place in it. Yet to this day a working knowledge of the theory is beyond most people. In today's popular culture, Einstein is a remote, loveable genius and his theory is incomprehensible. While Einstein's theory ultimately laid the foundation for modern studies of the universe, it took a long time to be accepted. Between 1905 and 1930, relativity was poorly understood and Einstein worked hard to try to make it more accessible to scientists and scientifically literate laypeople. Its acceptance was largely due to the astronomy community, which undertook precise measurements to test Einstein's astronomical predictions. How astronomers approached the ``Einstein problem'' in these early years and how the public reacted to what they reported helped to shape attitudes we hold today about Einstein and his ideas.

  3. Thought-Experiments about Gravity in the History of Science and in Research into Children's Thinking

    ERIC Educational Resources Information Center

    Blown, E. J.; Bryce, T. G. K.

    2013-01-01

    This article examines the main strands of thinking about gravity through the ages and the continuity of thought-experiments, from the early Greeks, through medieval times, to Galileo, Newton and Einstein. The key ideas are used to contextualise an empirical study of 247 children's ideas about falling objects carried out in China and New Zealand,…

  4. The epidemiological profile of Pediatric Intensive Care Center at Hospital Israelita Albert Einstein.

    PubMed

    Lanetzki, Camila Sanches; de Oliveira, Carlos Augusto Cardim; Bass, Lital Moro; Abramovici, Sulim; Troster, Eduardo Juan

    2012-01-01

    This study outlined the epidemiological profiles of patients who were admitted to the Pediatric Intensive Care Center at Albert Einstein Israelite Hospital during 2009. Data were retrospectively collected for all patients admitted to the PICC during 2009. A total of 433 medical charts were reviewed, and these data were extracted using the DATAMARTS System and analyzed using the statistical software package STATA, version 11.0. There were no statistically significant differences in regards to patient gender, and the predominant age group consisted of patients between the ages of 1 to 4 years. The average occupancy rate was 69.3% per year, and there was a greater number of admissions during April, August, and October. The average length of stay at the hospital ranged from 9.7 to 19.1 days. Respiratory diseases were the main cause for admission to the Pediatric Intensive Care Center, and the mortality rate of the patients admitted was 1.85%. Respiratory diseases were the most common ailment among patients admitted to the Pediatric Intensive Care Center, and the highest mortality rates were associated with neoplastic diseases.

  5. An Examination of the Documentary Film "Einstein and Eddington" in Terms of Nature of Science Themes, Philosophical Movements, and Concepts

    ERIC Educational Resources Information Center

    Kapucu, Munise Seçkin

    2016-01-01

    This study aims to examine nature of science themes, philosophical movements, and overall concepts covered in the documentary film, "Einstein and Eddington". A qualitative research method was used. In this study, the documentary film "Einstein and Eddington," the viewing time of which is 1 hour and 28 minutes, was used as the…

  6. Albert Einstein's Magic Mountain: An Aarau Education*

    NASA Astrophysics Data System (ADS)

    Hunziker, Herbert

    2015-03-01

    For economic reasons, the electrotechnical factory J. Einstein & Cie. (co-owned by Albert Einstein's father Hermann) had to be closed in the summer of 1894. While Albert's parents emigrated to Italy to build a new existence, he remained in Munich to complete his studies at the Gymnasium. Left behind, however, he had a difficult time with what he considered the rigid educational practices at the Munich Luitpold-Gymnasium and quit without a diploma. The present article discusses Einstein's richly winding path to the Aargau Cantonal School (Switzerland), especially its history and educational philosophy during the time of his stay in Aarau. There, Einstein met some outstanding teachers, who could serve him as models of scholars and human beings. In spite of Einstein's distinct independence of mind, these personalities may well have had a significant influence on the alignment of his inner compass.

  7. Competition between Bose-Einstein Condensation and Spin Dynamics.

    PubMed

    Naylor, B; Brewczyk, M; Gajda, M; Gorceix, O; Maréchal, E; Vernac, L; Laburthe-Tolra, B

    2016-10-28

    We study the impact of spin-exchange collisions on the dynamics of Bose-Einstein condensation by rapidly cooling a chromium multicomponent Bose gas. Despite relatively strong spin-dependent interactions, the critical temperature for Bose-Einstein condensation is reached before the spin degrees of freedom fully thermalize. The increase in density due to Bose-Einstein condensation then triggers spin dynamics, hampering the formation of condensates in spin-excited states. Small metastable spinor condensates are, nevertheless, produced, and they manifest in strong spin fluctuations.

  8. On static black holes solutions in Einstein and Einstein-Gauss-Bonnet gravity with topology [Formula: see text].

    PubMed

    Dadhich, Naresh; Pons, Josep M

    We study static black hole solutions in Einstein and Einstein-Gauss-Bonnet gravity with the topology of the product of two spheres, [Formula: see text], in higher dimensions. There is an unusual new feature of the Gauss-Bonnet black hole: the avoidance of a non-central naked singularity prescribes a mass range for the black hole in terms of [Formula: see text]. For an Einstein-Gauss-Bonnet black hole a limited window of negative values for [Formula: see text] is also permitted. This topology encompasses black strings, branes, and generalized Nariai metrics. We also give new solutions with the product of two spheres of constant curvature.

  9. Identification of Heterogeneous Cognitive Subgroups in Community-Dwelling Older Adults: A Latent Class Analysis of the Einstein Aging Study.

    PubMed

    Zammit, Andrea R; Hall, Charles B; Lipton, Richard B; Katz, Mindy J; Muniz-Terrera, Graciela

    2018-05-01

    The aim of this study was to identify natural subgroups of older adults based on cognitive performance, and to establish each subgroup's characteristics based on demographic factors, physical function, psychosocial well-being, and comorbidity. We applied latent class (LC) modeling to identify subgroups in baseline assessments of 1345 Einstein Aging Study (EAS) participants free of dementia. The EAS is a community-dwelling cohort study of 70+ year-old adults living in the Bronx, NY. We used 10 neurocognitive tests and 3 covariates (age, sex, education) to identify latent subgroups. We used goodness-of-fit statistics to identify the optimal class solution and assess model adequacy. We also validated our model using two-fold split-half cross-validation. The sample had a mean age of 78.0 (SD=5.4) and a mean of 13.6 years of education (SD=3.5). A 9-class solution based on cognitive performance at baseline was the best-fitting model. We characterized the 9 identified classes as (i) disadvantaged, (ii) poor language, (iii) poor episodic memory and fluency, (iv) poor processing speed and executive function, (v) low average, (vi) high average, (vii) average, (viii) poor executive and poor working memory, (ix) elite. The cross validation indicated stable class assignment with the exception of the average and high average classes. LC modeling in a community sample of older adults revealed 9 cognitive subgroups. Assignment of subgroups was reliable and associated with external validators. Future work will test the predictive validity of these groups for outcomes such as Alzheimer's disease, vascular dementia and death, as well as markers of biological pathways that contribute to cognitive decline. (JINS, 2018, 24, 511-523).

  10. E=mc2 in theory and in practice

    NASA Astrophysics Data System (ADS)

    Friedlander, Michael W.

    2009-02-01

    Einstein and Oppenheimer are forever linked by that famous equation. Einstein derived it and Oppenheimer oversaw its terrible application. The Meaning of Genius is the subtitle that Silvan Schweber has chosen for his study of these two very different giants. Schweber is a theoretical physicist whose years at the Institute for Advanced Study in Princeton overlapped with those of Einstein and Oppenheimer, for whom he provides a perceptive comparison in his book's introductory chapter.

  11. Rivaroxaban for the treatment of symptomatic deep-vein thrombosis and pulmonary embolism in Chinese patients: a subgroup analysis of the EINSTEIN DVT and PE studies.

    PubMed

    Wang, Yuqi; Wang, Chen; Chen, Zhong; Zhang, Jiwei; Liu, Zhihong; Jin, Bi; Ying, Kejing; Liu, Changwei; Shao, Yuxia; Jing, Zhicheng; Meng, Isabelle Ling; Prins, Martin H; Pap, Akos F; Müller, Katharina; Lensing, Anthonie Wa

    2013-12-16

    The worldwide EINSTEIN DVT and EINSTEIN PE studies randomized 8282 patients with acute symptomatic deep-vein thrombosis (DVT) and/or pulmonary embolism (PE) and, for the first time in trials in this setting, included patients in China. This analysis evaluates the results of these studies in this subgroup of patients. A total of 439 Chinese patients who had acute symptomatic DVT (n=211), or PE with or without DVT (n=228), were randomized to receive rivaroxaban (15 mg twice daily for 21 days, followed by 20 mg once daily) or standard therapy of enoxaparin overlapping with and followed by an adjusted-dose vitamin K antagonist, for 3, 6, or 12 months. The primary efficacy outcome was symptomatic recurrent venous thromboembolism. The principal safety outcome was major or non-major clinically relevant bleeding. The primary efficacy outcome occurred in seven (3.2%) of the 220 patients in the rivaroxaban group and in seven (3.2%) of the 219 patients in the standard-therapy group (hazard ratio, 1.04; 95% confidence interval 0.36-3.0; p=0.94). The principal safety outcome occurred in 13 (5.9%) patients in the rivaroxaban group and in 20 (9.2%) patients in the standard-therapy group (hazard ratio, 0.63; 95% confidence interval 0.31-1.26; p=0.19). Major bleeding was observed in no patients in the rivaroxaban group and in five (2.3%) patients in the standard-therapy group. In fragile patients (defined as age >75 years, creatinine clearance <50 mL/min, and/or body weight ≤50 kg), the principal safety outcome occurred in four (8.9%) of the 45 patients who received rivaroxaban compared with seven (15.2%) of the 46 patients who received standard therapy. In Chinese patients with acute symptomatic DVT and/or PE, rivaroxaban was as efficacious as enoxaparin followed by vitamin K antagonist therapy, with a similar safety profile. The relative efficacy and safety of rivaroxaban compared with enoxaparin/vitamin K antagonist were consistent with that found in the rest of the world. EINSTEIN PE, ClinicalTrials.gov NCT00439777; EINSTEIN DVT, ClinicalTrials.gov NCT00440193.

  12. Einstein and Millikan

    NASA Astrophysics Data System (ADS)

    Erwin, Charlotte

    2005-03-01

    Albert Einstein traveled to America by boat during the great depression to consult with scientists at the California Institute of Technology. He was a theoretical physicist, a Nobel Prize winner, and a 20th century folk hero. Few members of the general public understood his theories, but they idolized him all the same. The invitation came from physicist Robert Millikan, who had initiated a visiting-scholars program at Caltech shortly after he became head of the school in 1921. Einstein's visits to the campus in 1931, 1932, and 1933 capped Millikan's campaign to make Caltech one of the physics capitals of the world. Mount Wilson astronomer Edwin Hubble's discovery that redshifts are proportional to their distances from the observer challenged Einstein's cosmological picture of a static universe. The big question at Caltech in 1931 was whether Einstein would give up his cosmological constant and accept the idea of an expanding universe. By day, Einstein discussed his theory and its interpretation at length with Richard Tolman, Hubble, and the other scientists on the campus. By night, Einstein filled his travel diary with his personal impressions. During his third visit, Einstein sidestepped as long as possible the question of whether conditions in Germany might prevent his return there. After the January 30 announcement that Hitler had become chancellor of Germany, the question could no longer be evaded. He postponed his return trip for a few weeks and then went to Belgium for several months instead of to Berlin. In the fall of 1933, Albert Einstein returned to the United States as an emigre and became a charter member of Abraham Flexner's new Institute for Advanced Study in Princeton, New Jersey. Why did Einstein go to Princeton and not Pasadena?

  13. Nambu at Work

    NASA Astrophysics Data System (ADS)

    Freund, Peter G. O.

    Yoichiro Nambu, whose life and seminal contributions to Physics we celebrate here, went in 1952 to the Institute for Advanced Study in Princeton. Shortly after his arrival there, J. Robert Oppenheimer, the Institute's director, put Yoichiro and the other new arrivals on notice that though Albert Einstein was a professor at the Institute, and therefore had an office there, nobody was to disturb the great man without first receiving special permission personally from Oppie. Most people would spend a year or two in the same building with Einstein and then spend a whole lifetime regretting not to have met him. Yoichiro decided that he will meet Einstein, no matter what Oppie says. He knew Bruria Kaufmann, Einstein's assistant at that time, and with her help got to visit the great physicist. Einstein was very friendly and visibly happy that finally one of the young people had bothered to visit him. Einstein asked Yoichiro what was going on in particle physics, and was rather skeptical about separate nucleon and meson fields for which he saw no deeper reason...

  14. Alien Life Imagined

    NASA Astrophysics Data System (ADS)

    Brake, Mark

    2012-11-01

    1. Kosmos: aliens in ancient Greece; 2. The world turned upside down: Copernicanism and the voyages of discovery; 3. In Newton's train: pluralism and the system of the world; 4. Extraterrestrials in the early machine age; 5. After Darwin: the war of the worlds; 6. Einstein's sky: life in the new universe; 7. Ever since SETI: astrobiology in the space age; References; Index.

  15. The Evolution of Hyperedge Cardinalities and Bose-Einstein Condensation in Hypernetworks.

    PubMed

    Guo, Jin-Li; Suo, Qi; Shen, Ai-Zhong; Forrest, Jeffrey

    2016-09-27

    To depict the complex relationship among nodes and the evolving process of a complex system, a Bose-Einstein hypernetwork is proposed in this paper. Based on two basic evolutionary mechanisms, growth and preference jumping, the distribution of hyperedge cardinalities is studied. The Poisson process theory is used to describe the arrival process of new node batches. And, by using the Poisson process theory and a continuity technique, the hypernetwork is analyzed and the characteristic equation of hyperedge cardinalities is obtained. Additionally, an analytical expression for the stationary average hyperedge cardinality distribution is derived by employing the characteristic equation, from which Bose-Einstein condensation in the hypernetwork is obtained. The theoretical analyses in this paper agree with the conducted numerical simulations. This is the first study on the hyperedge cardinality in hypernetworks, where Bose-Einstein condensation can be regarded as a special case of hypernetworks. Moreover, a condensation degree is also discussed with which Bose-Einstein condensation can be classified.

  16. Einstein Universe Revisited and End of Dark ERA

    NASA Astrophysics Data System (ADS)

    Nurgaliev, Ildus S.

    2015-01-01

    Historically the earliest general relativistic cosmological solution was received by Einstein himself as homogenous, isotropic one. In accordance with European cosmology it was expected static. The Eternal Universe as scientific model is conflicting with the existed theological model of the Universe created by God, therefore, of the limited age. Christianity, younger Islam, older Judaism are based on creationism. Much older oriental traditions such us Hinduism and Buddhism are based on conceptions of eternal and cyclic Universe which are closer to scientific worldview. To have static universe Einstein needed a factor to counteract gravity and postulated cosmological term and considered it as a disadvantage of the theory. This aesthetic dissatisfaction was amplified by interpretation distance-redshift relationship as a cosmological expansion effect. Emerged scientific cosmological community (excluding Hubble himself - almost always) endorsed the concept of expanding Universe. At the same time, as it is shown in this report, a natural well known factors do exist to counteract gravity. They are inertial centrifugal and Coriolis forces finding their geometrical presentation in the relativity theory.

  17. The Stokes-Einstein relation at moderate Schmidt number.

    PubMed

    Balboa Usabiaga, Florencio; Xie, Xiaoyi; Delgado-Buscalioni, Rafael; Donev, Aleksandar

    2013-12-07

    The Stokes-Einstein relation for the self-diffusion coefficient of a spherical particle suspended in an incompressible fluid is an asymptotic result in the limit of large Schmidt number, that is, when momentum diffuses much faster than the particle. When the Schmidt number is moderate, which happens in most particle methods for hydrodynamics, deviations from the Stokes-Einstein prediction are expected. We study these corrections computationally using a recently developed minimally resolved method for coupling particles to an incompressible fluctuating fluid in both two and three dimensions. We find that for moderate Schmidt numbers the diffusion coefficient is reduced relative to the Stokes-Einstein prediction by an amount inversely proportional to the Schmidt number in both two and three dimensions. We find, however, that the Einstein formula is obeyed at all Schmidt numbers, consistent with linear response theory. The mismatch arises because thermal fluctuations affect the drag coefficient for a particle due to the nonlinear nature of the fluid-particle coupling. The numerical data are in good agreement with an approximate self-consistent theory, which can be used to estimate finite-Schmidt number corrections in a variety of methods. Our results indicate that the corrections to the Stokes-Einstein formula come primarily from the fact that the particle itself diffuses together with the momentum. Our study separates effects coming from corrections to no-slip hydrodynamics from those of finite separation of time scales, allowing for a better understanding of widely observed deviations from the Stokes-Einstein prediction in particle methods such as molecular dynamics.

  18. Scalar field coupling to Einstein tensor in regular black hole spacetime

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Wu, Chen

    2018-02-01

    In this paper, we study the perturbation property of a scalar field coupling to Einstein's tensor in the background of the regular black hole spacetimes. Our calculations show that the the coupling constant η imprints in the wave equation of a scalar perturbation. We calculated the quasinormal modes of scalar field coupling to Einstein's tensor in the regular black hole spacetimes by the 3rd order WKB method.

  19. Compliance of the Stokes-Einstein model and breakdown of the Stokes-Einstein-Debye model for a urea-based supramolecular polymer of high viscosity.

    PubMed

    Świergiel, Jolanta; Bouteiller, Laurent; Jadżyn, Jan

    2014-11-14

    Impedance spectroscopy was used for the study of the static and dynamic behavior of the electrical conductivity of a hydrogen-bonded supramolecular polymer of high viscosity. The experimental data are discussed in the frame of the Stokes-Einstein and Stokes-Einstein-Debye models. It was found that the translational movement of the ions is due to normal Brownian diffusion, which was revealed by a fulfillment of Ohm's law by the electric current and a strictly exponential decay of the current after removing the electric stimulus. The dependence of the dc conductivity on the viscosity of the medium fulfills the Stokes-Einstein model quite well. An extension of the model, by including in it the conductivity relaxation time, is proposed in this paper. A breakdown of the Stokes-Einstein-Debye model is revealed by the relations of the dipolar relaxation time to the viscosity and to the dc ionic conductivity. The importance of the C=O···H-N hydrogen bonds in that breakdown is discussed.

  20. The Einstein-Vlasov System/Kinetic Theory.

    PubMed

    Andréasson, Håkan

    2011-01-01

    The main purpose of this article is to provide a guide to theorems on global properties of solutions to the Einstein-Vlasov system. This system couples Einstein's equations to a kinetic matter model. Kinetic theory has been an important field of research during several decades in which the main focus has been on non-relativistic and special relativistic physics, i.e., to model the dynamics of neutral gases, plasmas, and Newtonian self-gravitating systems. In 1990, Rendall and Rein initiated a mathematical study of the Einstein-Vlasov system. Since then many theorems on global properties of solutions to this system have been established. This paper gives introductions to kinetic theory in non-curved spacetimes and then the Einstein-Vlasov system is introduced. We believe that a good understanding of kinetic theory in non-curved spacetimes is fundamental to a good comprehension of kinetic theory in general relativity.

  1. The Einstein Dossiers: Science and Politics - Einstein's Berlin Period with an Appendix on Einstein's FBI File

    NASA Astrophysics Data System (ADS)

    Grundmann, Siegfried

    In 1919 the Prussian Ministry of Science, Arts and Culture opened a dossier on "Einstein's Theory of Relativity." It was rediscovered by the author in 1961 and is used in conjunction with numerous other subsequently identified 'Einstein' files as the basis of this fascinating book. In particular, the author carefully scrutinizes Einstein's FBI file from 1950-55 against mostly unpublished material from European including Soviet sources and presents hitherto unknown documentation on Einstein's alleged contacts with the German Communist Party and the Comintern.

  2. From Einstein's theorem to Bell's theorem: a history of quantum non-locality

    NASA Astrophysics Data System (ADS)

    Wiseman, H. M.

    2006-04-01

    In this Einstein Year of Physics it seems appropriate to look at an important aspect of Einstein's work that is often down-played: his contribution to the debate on the interpretation of quantum mechanics. Contrary to physics ‘folklore’, Bohr had no defence against Einstein's 1935 attack (the EPR paper) on the claimed completeness of orthodox quantum mechanics. I suggest that Einstein's argument, as stated most clearly in 1946, could justly be called Einstein's reality locality completeness theorem, since it proves that one of these three must be false. Einstein's instinct was that completeness of orthodox quantum mechanics was the falsehood, but he failed in his quest to find a more complete theory that respected reality and locality. Einstein's theorem, and possibly Einstein's failure, inspired John Bell in 1964 to prove his reality locality theorem. This strengthened Einstein's theorem (but showed the futility of his quest) by demonstrating that either reality or locality is a falsehood. This revealed the full non-locality of the quantum world for the first time.

  3. A new golden age: testing general relativity with cosmology.

    PubMed

    Bean, Rachel; Ferreira, Pedro G; Taylor, Andy

    2011-12-28

    Gravity drives the evolution of the Universe and is at the heart of its complexity. Einstein's field equations can be used to work out the detailed dynamics of space and time and to calculate the emergence of large-scale structure in the distribution of galaxies and radiation. Over the past few years, it has become clear that cosmological observations can be used not only to constrain different world models within the context of Einstein gravity but also to constrain the theory of gravity itself. In this article, we look at different aspects of this new field in which cosmology is used to test theories of gravity with a wide range of observations.

  4. Joseph A. Burton Forum Award Talk: Remembering our Humanity: the deep impact of the Russell-Einstein Manifesto

    NASA Astrophysics Data System (ADS)

    Lewis, Patricia M.

    2009-05-01

    ``There lies before us, if we choose, continual progress in happiness, knowledge, and wisdom. Shall we, instead, choose death, because we cannot forget our quarrels? We appeal as human beings to human beings: Remember your humanity, and forget the rest.'' Days before his death, Albert Einstein joined Bertrand Russell and other notable scientists and philosophers in issuing a statement calling for the abolition of war and for governments to ``find peaceful means for the settlement of all matters of dispute between them." As a first step, they called for the renunciation of nuclear weapons. The initiative led to the establishment of the Pugwash Conferences on Science and World Affairs, which bring together influential scholars and public figures concerned with reducing the danger of armed conflict and seeking cooperative solutions for global problems. The Russell-Einstein Manifesto has had a major impact on the way in which people discuss the issues of peace and war. The paper traces the growing awareness of the meaning of war, ways in which violent conflict can be prevented, particularly in the nuclear age, and the humanitarian imperative for so doing. From the Russell-Einstein Manifesto, London, 9 July 1955, signed also by Max Born, Percy W. Bridgman, Leopold Infeld, Frederic Joliot-Curie, Herman J. Muller, Linus Pauling, Cecil F. Powell, Joseph Rotblat and Hideki Yukawa

  5. Einstein and Besso: Not a Partnership of Equals

    NASA Astrophysics Data System (ADS)

    Janssen, Michel

    2005-04-01

    In the 1905 special relativity paper Einstein famously acknowledged the help of his friend and colleague Michele Besso. Besso had been an ideal sounding board for Einstein's ideas. During the years that Einstein developed general relativity, Besso was a good deal more than a sounding board. He collaborated with Einstein on calculations of the perihelion motion of Mercury in 1913. His contributions were substantial and would have warranted co-authorship of Einstein's famous paper on Mercury's perihelion of November 1915, in which Besso is not mentioned at all. Besso also alerted Einstein to problems with the early version of general relativity that Einstein had worked out together with Marcel Grossmann. Einstein essentially ignored Besso's warnings. In addition, Besso went out of his way during this period to act as a mediator between a not always appreciative Einstein, living in Berlin with his cousin Elsa who would become his second wife, and his estranged first wife Mileva, living in Zurich with the couple's two young sons. This period is much better documented than the period leading up to the 1905 paper and consequently much more revealing about the nature of the relationship between Einstein and Besso.

  6. Einstein/Roosevelt Letters: A Unit.

    ERIC Educational Resources Information Center

    Bodle, Walter S.

    1985-01-01

    The letters in this unit of study intended for secondary students are facsimile reproductions of the correspondence between Albert Einstein and President Roosevelt on the possibility of constructing an atomic bomb. Classroom activities are also suggested. (RM)

  7. PEOPLE IN PHYSICS: Albert Einstein's personal papers: a physics teaching resource

    NASA Astrophysics Data System (ADS)

    Derman, Samuel

    2000-01-01

    The concept of `Einstein the man' is put forward as a way of generating interest in the study of physics amongst students. Einstein provides an instantly recognizable face for science and thus a gateway into the subject through discussion of the man. Supporting this is the great volume of archive material which is available to students, teachers and the general public and in particular the archives of the Jewish National & University Library in Jerusalem.

  8. Horizon structure of rotating Einstein-Born-Infeld black holes and shadow

    NASA Astrophysics Data System (ADS)

    Atamurotov, Farruh; Ghosh, Sushant G.; Ahmedov, Bobomurat

    2016-05-01

    We investigate the horizon structure of the rotating Einstein-Born-Infeld solution which goes over to the Einstein-Maxwell's Kerr-Newman solution as the Born-Infeld parameter goes to infinity (β → ∞). We find that for a given β , mass M, and charge Q, there exist a critical spinning parameter aE and rHE, which corresponds to an extremal Einstein-Born-Infeld black hole with degenerate horizons, and aE decreases and rHE increases with increase of the Born-Infeld parameter β , while a

  9. Bose-Einstein correlations: A study of an invariance group

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Zalewski, K.

    2005-08-01

    A group of transformations changing the phases of the elements of the single-particle density matrix, but leaving unchanged the predictions for identical particles concerning the momentum distributions, momentum correlations etc., is identified. Its implications for the determinations of the interaction regions from studies of Bose-Einstein correlations are discussed.

  10. H + O3 Fourier-transform infrared emission and laser absorption studies of OH(X2Pi) radical - An experimental dipole moment function and state-to-state Einstein A coefficients

    NASA Technical Reports Server (NTRS)

    Nelson, David D., Jr.; Schiffman, Aram; Nesbitt, David J.; Orlando, John J.; Burkholder, James B.

    1990-01-01

    FTIR emission/absorption spectroscopy is used to measure the relative intensities of 88 pairs of rovibrational transitions of OH(X2Pi) distributed over 16 vibrational bands. The experimental technique used to obtain the Einstein A ratios is discussed. The dipole moment function which follows from the intensity ratios along with Einstein A coefficients calculated from mu(r) is presented.

  11. Two characteristic temperatures for a Bose-Einstein condensate of a finite number of particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Idziaszek, Z.; Institut fuer Theoretische Physik, Universitaet Hannover, D-30167 Hannover,; Rzazewski, K.

    2003-09-01

    We consider two characteristic temperatures for a Bose-Einstein condensate, which are related to certain properties of the condensate statistics. We calculate them for an ideal gas confined in power-law traps and show that they approach the critical temperature in the limit of large number of particles. The considered characteristic temperatures can be useful in the studies of Bose-Einstein condensates of a finite number of atoms indicating the point of a phase transition.

  12. Beyond Einstein: Exploring the Extreme Universe

    NASA Technical Reports Server (NTRS)

    Barbier, Louis M.

    2005-01-01

    This paper will give an overview of the NASA Universe Division Beyond Einstein program. The Beyond Einstein program consists of a series of exploratory missions to investigate some of the most important and pressing problems in modern-day astrophysics - including searches for Dark Energy and studies of the earliest times in the universe, during the inflationary period after the Big Bang. A variety of new technologies are being developed both in the science instrumentation these missions will carry and in the spacecraft that will carry those instruments.

  13. Cosmological perturbations during the Bose-Einstein condensation of dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freitas, R.C.; Gonçalves, S.V.B., E-mail: rodolfo.camargo@pq.cnpq.br, E-mail: sergio.vitorino@pq.cnpq.br

    In the present work, we analyze the evolution of the scalar and tensorial perturbations and the quantities relevant for the physical description of the Universe, as the density contrast of the scalar perturbations and the gravitational waves energy density during the Bose-Einstein condensation of dark matter. The behavior of these parameters during the Bose-Einstein phase transition of dark matter is analyzed in details. To study the cosmological dynamics and evolution of scalar and tensorial perturbations in a Universe with and without cosmological constant we use both analytical and numerical methods. The Bose-Einstein phase transition modifies the evolution of gravitational wavesmore » of cosmological origin, as well as the process of large-scale structure formation.« less

  14. Albert Einstein and Friedrich Dessauer: Political Views and Political Practice

    NASA Astrophysics Data System (ADS)

    Goenner, Hubert

    In this case study I compare the political views of the physicists Albert Einstein and Friedrich Dessauer between the first and second world wars, and I investigate their translation into concrete political practice. Both departed from their roles as experts in physics in favor of political engagement. The essence of Einstein's political practice seems to have been a form of political participation in exerting moral influence on people and organizations through public declarations and appeals in isolation from political mass movements. Dessauer exerted political influence both through public office (as a member of Parliament for the Catholic Center Party) and by acquiring a newspaper. The different political practice of both Einstein and Dessauer were unsuccessful in thwarting the Nazi takeover.

  15. X-ray emission at low-mass end of the MS - Results from an extensive Einstein Observatory survey

    NASA Technical Reports Server (NTRS)

    Barbera, M.; Micela, G.; Sciortino, S.; Vaiana, G. S.; Harnden, F. R., Jr.; Rosner, R.

    1992-01-01

    The 0.16-4.0 keV X-ray emission from K and M stars of luminosity classes IV, V, and VI within 25 parsec of the sun was measured using all available Einstein Observatory IPC data and a critical compilation of catalogued optical data. Fifty four of 88 stars were detected, 70 of 138 M stars with Mv less than 13.4 (corresponding to M6) and 15 or 31 fainter M stars. The surveyed stars were grouped, on the basis of U, V, W space velocity components, into old-disk, young-disk, and halo population stars. Then, a subsample was selected which is statistically representative of the population of K and M stars in the solar neighborhood, on the basis of which unbiased Maximum Likelihood X-ray luminosity functions were constructed for K, early M, and late M stars. The investigation revealed a decrease of X-ray luminosity with increasing stellar age in the range of ages of disk population stars.

  16. What about Albert Einstein? Using Biographies to Promote Students' Scientific Thinking

    ERIC Educational Resources Information Center

    Fingon, Joan C.; Fingon, Shallon D.

    2009-01-01

    Who hasn't heard of Einstein? Science educators everywhere are familiar with Einstein's genius and general theory of relativity. Students easily recognize Einstein's image by his white flyaway hair and bushy mustache. It is well known that Einstein was a brilliant physicist and an abstract thinker who often used his creativity and imagination in…

  17. Einstein's Cosmos (German Title: Einsteins Kosmos)

    NASA Astrophysics Data System (ADS)

    Duerbeck, Hilmar W.; Dick, Wolfgang R.

    The different contributions of the present volume illuminate the interaction between Einstein and his colleagues when the foundations of modern cosmology were laid: First, the relativistic effects in the solar system, the gravitational redshift in the solar spectrum, and Einstein's relations with Freundlich and Eddington. Second, the cosmological models of Einstein, de Sitter, Friedmann, and Lemaître, which were discussed controversely till the end of the 1920s. Other scientists have also widened or critically questioned Einstein's insight and knowledge: Schwarzschild, Selety, Silberstein, and Mandl, whose life and work is discussed in separate articles. In those days, politics more than ever in history had influenced the lifes of scientists. Therefore, some comments on the ``political cosmos'' that has influenced decisively Einstein's life are also given. A special role in popularizing Einstein's world view was played by Archenhold Observatory in Berlin. A list of Einstein memorial places and a bibliographic list conclude the present book. All papers are written in German, and have English abstracts.

  18. Dutch museum marks Einstein anniversary

    NASA Astrophysics Data System (ADS)

    van Calmthout, Matijn

    2016-01-01

    A new painting of Albert Einstein's field equation from his 1915 general theory of relativity was unveiled in a ceremony in November 2015 by the Dutch physicist Robbert Dijkgraaf, who is director of the Princeton Institute for Advanced Study in the US.

  19. Multiple Intelligences and the Artistic Imagination: A Case Study of Einstein and Picasso.

    ERIC Educational Resources Information Center

    Newbold, Clair T.

    1999-01-01

    Argues that Albert Einstein and Pablo Picasso possessed similar artistic thought processes, maintaining that their influential discoveries (relativity theory and cubist painting), which launched 20th-century modernism, were amazingly similar in concept. (SR)

  20. BOOK REVIEW: Einsteins Kosmos. Untersuchungen zur Geschichte der Kosmologie Relativitatstheorie und zu Einsteins Wirken und Nachwirken

    NASA Astrophysics Data System (ADS)

    Sterken, C.; Duerbeck, H. W.; Dick, W. R.

    2006-12-01

    This book collects about 15 papers (most of them by one single author) on Einstein and the history of general relativity (GR) and the foundations of relativistic cosmology. The matter not only deals with Einstein and his times, but also with pre-GR ideas, and with the interplay of Einstein and his colleagues (opposing as well as supporting personalities). As the title indicates, all papers are written in German, but they include comprehensive Abstracts both in German and English. The book is illustrated with quite a number classical - but also some far more original though not less beautiful - photographs and facsimiles of documents. The book is edited very well, though the style of references is not quite homogeneous. There is no Index. K. Hentschel covers Einstein's argumentation for the existence of graviational redshift, and the initial search for empirical support. The error analysis of observational evidence supporting relativistic light deflection is discussed in a paper by P. Brosche. In particular, H. Duerbeck and P. Flin - in their description of the life and work of Silberstein, who was quite sceptic on the significance of the observational verifications a la Eddington - include the transcription of two most revealing letters by Silberstein to Sommerfeld (1919) and to Einstein (1934). In the first letter, Silberstein clearly shows his scientific maturity and integrity by scrutinising the observational evidence supporting light deflection, presented at a joint meeting of the Royal Society and the Royal Astronomical Society. The second letter, which is more a personal letter, includes lots of political references and connotations. Some of Einstein's political views are also revealed by D.B. Herrmann on the basis of his own correspondence with E.G. Straus, a collaborator of Einstein's. In a consequent paper, S. Grundmann gives remarks on Herrmann's contribution and illustrates Einstein's attitude towards Marx, Engels, Lenin and Stalin. M. Schemmel discusses Schwarzschild's cosmological speculations, and wonders why some people do immediately grasp the meaning and consequence of newly proposed doctrines, whereas the bulk of the contemporaneous scientists respond in a rather low profile. T. Jung reviews Einstein's contribution to cosmology, leading to the Friedmann-Einstein and Einstein-de Sitter universes (with a detailed Appendix on the Friedmann-Lemaitre cosmology), and also presents the cosmological work of Selety, and his correspondence with Einstein. In a subsequent paper, H.-J. Schmidt comments on Einstein's criticism on de Sitter's solution of the Einstein field equations. Controversies with Einstein are elaborated by G. Singer (on Friedmann) and by K. Roessler (on Lemaitre). J. Renn and T. Sauer discuss Mandl's role in the publication history of Einstein's papers, notably Einstein's short paper on gravitational lensing. Finally, the book concludes with a contribution by D.B. Herrmann about the relationship between Einstein and Archenhold Observatory (where Einstein gave his first Berlin popular lecture in 1915), the transcription of H.-J. Treder's 1979 public address at the Einstein memorial plaque, and an inventory list of about 50 Einstein memorabilia - monuments, busts, plaques - compiled by W.R. Dick. This book is based on ideas approached in a historical context from the individual perspective of the authors. It is a real treasure trove of information and basic references on the history of GR, and it also covers quite some grounds with mathematical equations.

  1. Reassessing the Ritz-Einstein debate on the radiation asymmetry in classical electrodynamics

    NASA Astrophysics Data System (ADS)

    Frisch, Mathias; Pietsch, Wolfgang

    2016-08-01

    We investigate the debate between Walter Ritz and Albert Einstein on the origin and nature of the radiation asymmetry. We argue that Ritz's views on the radiation asymmetry were far richer and nuanced than the oft-cited joint letter with Einstein (Ritz & Einstein, 1909) suggests, and that Einstein's views in 1909 on the asymmetry are far more ambiguous than is commonly recognized. Indeed, there is strong evidence that Einstein ultimately came to agree with Ritz that elementary radiation processes in classical electrodynamics are non-symmetric and fully retarded.

  2. The NASA Beyond Einstein Program

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.

    2006-01-01

    Einstein's legacy is incomplete, his theory of General relativity raises -- but cannot answer --three profound questions: What powered the big bang? What happens to space, time, and matter at the edge of a black hole? and What is the mysterious dark energy pulling the Universe apart? The Beyond Einstein program within NASA's Office of Space Science aims to answer these questions, employing a series of missions linked by powerful new technologies and complementary approaches towards shared science goals. The Beyond Einstein program has three linked elements which advance science and technology towards two visions; to detect directly gravitational wave signals from the earliest possible moments of the BIg Bang, and to image the event horizon of a black hole. The central element is a pair of Einstein Great Observatories, Constellation-X and LISA. Constellation-X is a powerful new X-ray observatory dedicated to X-Ray Spectroscopy. LISA is the first spaced based gravitational wave detector. These powerful facilities will blaze new paths to the questions about black holes, the Big Bang and dark energy. The second element is a series of competitively selected Einstein Probes, each focused on one of the science questions and includes a mission dedicated resolving the Dark Energy mystery. The third element is a program of technology development, theoretical studies and education. The Beyond Einstein program is a new element in the proposed NASA budget for 2004. This talk will give an overview of the program and the missions contained within it.

  3. Bose-Einstein correlations of same-sign charged pions in the forward region in pp collisions at √{s}=7 TeV

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Alfonso Albero, A.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Archilli, F.; d'Argent, P.; Arnau Romeu, J.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Babuschkin, I.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baker, S.; Balagura, V.; Baldini, W.; Baranov, A.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Baryshnikov, F.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Beiter, A.; Bel, L. J.; Beliy, N.; Bellee, V.; Belloli, N.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Beranek, S.; Berezhnoy, A.; Bernet, R.; Berninghoff, D.; Bertholet, E.; Bertolin, A.; Betancourt, C.; Betti, F.; Bettler, M.-O.; van Beuzekom, M.; Bezshyiko, Ia.; Bifani, S.; Billoir, P.; Birnkraut, A.; Bitadze, A.; Bizzeti, A.; Bjørn, M.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Boettcher, T.; Bondar, A.; Bondar, N.; Bonivento, W.; Bordyuzhin, I.; Borgheresi, A.; Borghi, S.; Borisyak, M.; Borsato, M.; Bossu, F.; Boubdir, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britton, T.; Brodzicka, J.; Brundu, D.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Byczynski, W.; Cadeddu, S.; Cai, H.; Calabrese, R.; Calladine, R.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D. H.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cavallero, G.; Cenci, R.; Chamont, D.; Charles, M.; Charpentier, Ph.; Chatzikonstantinidis, G.; Chefdeville, M.; Chen, S.; Cheung, S. F.; Chitic, S.-G.; Chobanova, V.; Chrzaszcz, M.; Chubykin, A.; Ciambrone, P.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collins, P.; Colombo, T.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombs, G.; Coquereau, S.; Corti, G.; Corvo, M.; Costa Sobral, C. M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Currie, R.; D'Ambrosio, C.; Da Cunha Marinho, F.; Dall'Occo, E.; Dalseno, J.; Davis, A.; De Aguiar Francisco, O.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Serio, M.; De Simone, P.; Dean, C. T.; Decamp, D.; Del Buono, L.; Dembinski, H.-P.; Demmer, M.; Dendek, A.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Nezza, P.; Dijkstra, H.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Douglas, L.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Durante, P.; Dzhelyadin, R.; Dziewiecki, M.; Dziurda, A.; Dzyuba, A.; Easo, S.; Ebert, M.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Farley, N.; Farry, S.; Fazzini, D.; Federici, L.; Ferguson, D.; Fernandez, G.; Fernandez Declara, P.; Fernandez Prieto, A.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fini, R. A.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fohl, K.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Franco Lima, V.; Frank, M.; Frei, C.; Fu, J.; Funk, W.; Furfaro, E.; Färber, C.; Gabriel, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcia Martin, L. M.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Garsed, P. J.; Gascon, D.; Gaspar, C.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianì, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gizdov, K.; Gligorov, V. V.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gorelov, I. V.; Gotti, C.; Govorkova, E.; Grabowski, J. P.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greim, R.; Griffith, P.; Grillo, L.; Gruber, L.; Gruberg Cazon, B. R.; Grünberg, O.; Gushchin, E.; Guz, Yu.; Gys, T.; Göbel, C.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hamilton, B.; Han, X.; Hancock, T. H.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Hasse, C.; Hatch, M.; He, J.; Hecker, M.; Heinicke, K.; Heister, A.; Hennessy, K.; Henrard, P.; Henry, L.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hombach, C.; Hopchev, P. H.; Huard, Z. C.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hutchcroft, D.; Ibis, P.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jalocha, J.; Jans, E.; Jawahery, A.; Jezabek, M.; Jiang, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Karacson, M.; Kariuki, J. M.; Karodia, S.; Kazeev, N.; Kecke, M.; Kelsey, M.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Klimkovich, T.; Koliiev, S.; Kolpin, M.; Komarov, I.; Kopecna, R.; Koppenburg, P.; Kosmyntseva, A.; Kotriakhova, S.; Kozeiha, M.; Kravchuk, L.; Kreps, M.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; Leflat, A.; Lefrançois, J.; Lefèvre, R.; Lemaitre, F.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, P.-R.; Li, T.; Li, Y.; Li, Z.; Likhomanenko, T.; Lindner, R.; Lionetto, F.; Lisovskyi, V.; Liu, X.; Loh, D.; Loi, A.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Lyu, X.; Machefert, F.; Maciuc, F.; Macko, V.; Mackowiak, P.; Maddrell-Mander, S.; Maev, O.; Maguire, K.; Maisuzenko, D.; Majewski, M. W.; Malde, S.; Malecki, B.; Malinin, A.; Maltsev, T.; Manca, G.; Mancinelli, G.; Manning, P.; Marangotto, D.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marinangeli, M.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massacrier, L. M.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurice, E.; Maurin, B.; Mazurov, A.; McCann, M.; McNab, A.; McNulty, R.; Mead, J. V.; Meadows, B.; Meaux, C.; Meier, F.; Meinert, N.; Melnychuk, D.; Merk, M.; Merli, A.; Michielin, E.; Milanes, D. A.; Millard, E.; Minard, M.-N.; Minzoni, L.; Mitzel, D. S.; Mogini, A.; Molina Rodriguez, J.; Mombächer, T.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morello, M. J.; Morgunova, O.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Mulder, M.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, T. D.; Nguyen-Mau, C.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Nogay, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Oldeman, R.; Onderwater, C. J. G.; Ossowska, A.; Otalora Goicochea, J. M.; Owen, P.; Oyanguren, A.; Pais, P. R.; Palano, A.; Palutan, M.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parker, W.; Parkes, C.; Passaleva, G.; Pastore, A.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petrov, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pikies, M.; Pinci, D.; Pisani, F.; Pistone, A.; Piucci, A.; Placinta, V.; Playfer, S.; Plo Casasus, M.; Polci, F.; Poli Lener, M.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Pomery, G. J.; Ponce, S.; Popov, A.; Popov, D.; Poslavskii, S.; Potterat, C.; Price, E.; Prisciandaro, J.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Pullen, H.; Punzi, G.; Qian, W.; Quagliani, R.; Quintana, B.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Ratnikov, F.; Raven, G.; Ravonel Salzgeber, M.; Reboud, M.; Redi, F.; Reichert, S.; dos Reis, A. C.; Remon Alepuz, C.; Renaudin, V.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Robert, A.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Rogozhnikov, A.; Roiser, S.; Rollings, A.; Romanovskiy, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Rudolph, M. S.; Ruf, T.; Ruiz Valls, P.; Ruiz Vidal, J.; Saborido Silva, J. J.; Sadykhov, E.; Sagidova, N.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarpis, G.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schellenberg, M.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schreiner, H. F.; Schubert, K.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sepulveda, E. S.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Simone, S.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Soares Lavra, l.; Sokoloff, M. D.; Soler, F. J. P.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefko, P.; Stefkova, S.; Steinkamp, O.; Stemmle, S.; Stenyakin, O.; Stepanova, M.; Stevens, H.; Stone, S.; Storaci, B.; Stracka, S.; Stramaglia, M. E.; Straticiuc, M.; Straumann, U.; Sun, J.; Sun, L.; Sutcliffe, W.; Swientek, K.; Syropoulos, V.; Szczekowski, M.; Szumlak, T.; Szymanski, M.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Tellarini, G.; Teubert, F.; Thomas, E.; van Tilburg, J.; Tilley, M. J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Toriello, F.; Tourinho Jadallah Aoude, R.; Tournefier, E.; Traill, M.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tully, A.; Tuning, N.; Ukleja, A.; Usachov, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagner, A.; Vagnoni, V.; Valassi, A.; Valat, S.; Valenti, G.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vecchi, S.; van Veghel, M.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Venkateswaran, A.; Verlage, T. A.; Vernet, M.; Vesterinen, M.; Viana Barbosa, J. V.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Viemann, H.; Vilasis-Cardona, X.; Vitti, M.; Volkov, V.; Vollhardt, A.; Voneki, B.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Vázquez Sierra, C.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wang, J.; Ward, D. R.; Wark, H. M.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Winn, M.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wraight, K.; Wyllie, K.; Xie, Y.; Xu, Z.; Yang, Z.; Yang, Z.; Yao, Y.; Yin, H.; Yu, J.; Yuan, X.; Yushchenko, O.; Zarebski, K. A.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zheng, Y.; Zhu, X.; Zhukov, V.; Zonneveld, J. B.; Zucchelli, S.

    2017-12-01

    Bose-Einstein correlations of same-sign charged pions, produced in proton-proton collisions at a 7 TeV centre-of-mass energy, are studied using a data sample collected by the LHCb experiment. The signature for Bose-Einstein correlations is observed in the form of an enhancement of pairs of like-sign charged pions with small four-momentum difference squared. The charged-particle multiplicity dependence of the Bose-Einstein correlation parameters describing the correlation strength and the size of the emitting source is investigated, determining both the correlation radius and the chaoticity parameter. The measured correlation radius is found to increase as a function of increasing charged-particle multiplicity, while the chaoticity parameter is seen to decrease. [Figure not available: see fulltext.

  4. Albert Einstein and his mentor Max Talmey. The seventh Charles B. Snyder Lecture.

    PubMed

    Ravin, J G

    1997-01-01

    While he was a student at the Munich medical school, Max Talmey strongly influenced the education of Albert Einstein. Their association occurred during five years of Einstein's second decade. They lost contact for many years after each left Munich. Talmey emigrated to the United States and practiced medicine, mainly ophthalmology, in New York City. He made significant contributions to medicine, to the popularization of Einstein's work, and to the development of international languages. The relationship of Talmey and Einstein was rekindled when Einstein visited and later moved to the United States.

  5. In the limelight of stars. Einstein, Mandl, and the origins of gravitational lens research (German Title: Im Rampenlicht der Sterne. Einstein, Mandl und die Ursprünge der Gravitationslinsenforschung)

    NASA Astrophysics Data System (ADS)

    Renn, Jürgen; Sauer, Tilman

    Einstein's paper on gravitational lensing from 1936 was published only as a result of insistent prodding by the Czech amateur scientist Rudi Mandl. We discuss Mandl's role for the publication history of Einstein's paper and point out striking similarities between Mandl's situation in 1936 and Einstein's own position in 1912. At that time, Einstein himself had already considered the idea of gravitational lensing, as had been discovered some years ago through the identification of research notes from that period. Other early discussions of gravitational lensing by Lodge, Chwolson, Tikhov, Zwicky, Russell, and others were either only perceived or only written after Mandl had succeeded to persuade Einstein into publication.

  6. Einstein's cosmology review of 1933: a new perspective on the Einstein-de Sitter model of the cosmos

    NASA Astrophysics Data System (ADS)

    O'Raifeartaigh, Cormac; O'Keeffe, Michael; Nahm, Werner; Mitton, Simon

    2015-09-01

    We present a first English translation and analysis of a little-known review of relativistic cosmology written by Albert Einstein in late 1932. The article, which was published in 1933 in a book of Einstein papers translated into French, contains a substantial review of static and dynamic relativistic models of the cosmos, culminating in a discussion of the Einstein-de Sitter model. The article offers a valuable contemporaneous insight into Einstein's cosmology in the early 1930s and confirms that his interest lay in the development of the simplest model of the cosmos that could account for observation. The article also confirms that Einstein did not believe that simplified relativistic models could give an accurate description of the early universe.

  7. Personal Recollections of Albert Einstein

    NASA Astrophysics Data System (ADS)

    Moszkowski, Steven

    2005-03-01

    My grandparents were good friends of Albert Einstein in Berlin. Later my parents also were on friendly terms with him. I had the opportunity to meet Einstein four times after my parents and I came to the United States in 1940. My parents and I, on occasion, had correspondence with Einstein and took a few photos of him. Albert Einstein had considerable influence on my development and style of doing physics, as I will discuss.

  8. An Out-of-Math Experience: Einstein, Relativity, and the Developmental Mathematics Student.

    ERIC Educational Resources Information Center

    Fiore, Greg

    2000-01-01

    Discusses Einstein's special relativity theory and some of the developmental mathematics involved. Presents motivational classroom materials used in discussing relative-motion problems, evaluating a radical expression, graphing with asymptotes, interpreting a graph, studying variation, and solving literal and radical equations. (KHR)

  9. Exact solutions for coupled Einstein, Dirac, Maxwell, and zero-mass scalar fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patra, A.C.; Ray, D.

    1987-12-01

    Coupled equations for Einstein, Maxwell, Dirac, and zero-mass scalar fields studied by Krori, Bhattacharya, and Nandi are integrated for plane-symmetric time-independent case. It is shown that solutions do not exist for the plane-symmetric time-dependent case.

  10. Albert Einstein's Personal Papers: A Physics Teaching Resource.

    ERIC Educational Resources Information Center

    Derman, Samuel

    2000-01-01

    Presents the concept of using Einstein the man as a way of generating interest in the study of physics among students. Finds that it provides an instantly recognizable face for science, thus a gateway to the subject through the discussion of the man. (Author/CCM)

  11. Einstein, race, and the myth of the cultural icon

    NASA Astrophysics Data System (ADS)

    Jerome, Fred

    2004-12-01

    The most remarkable aspect of Einstein's 1946 address at Lincoln University is that it has vanished from Einstein's recorded history. Its disappearance into a historical black hole symbolizes what seems to happen in the creation of a cultural icon. It is but one of many political statements by Einstein to have met such a fate, though his civil rights activism is most glaringly mission. One explanation for this historical amnesia is that those who shape our official memories felt that Einstein's "controversial" friends like Paul Robeson and activities like co-chairing the anti-lynching crusade might tarnish Einstein as an icon. That icon, sanctified by Time magazine when it dubbed Einstein "Person of the Century" at the end of 1999, is a myth, albeit a marvelous one. Yet it is not so much the motive for the omission but the consequence of it that should concern us. Americans and the millions of Einstein fans around the world are left unaware that he was an outspoken, passionate, committed antiracist.

  12. Rediscovering Einstein's legacy: How Einstein anticipates Kuhn and Feyerabend on the nature of science.

    PubMed

    Oberheim, Eric

    2016-06-01

    Thomas Kuhn and Paul Feyerabend promote incommensurability as a central component of their conflicting accounts of the nature of science. This paper argues that in so doing, they both develop Albert Einstein's views, albeit in different directions. Einstein describes scientific revolutions as conceptual replacements, not mere revisions, endorsing 'Kant-on-wheels' metaphysics in light of 'world change'. Einstein emphasizes underdetermination of theory by evidence, rational disagreement in theory choice, and the non-neutrality of empirical evidence. Einstein even uses the term 'incommensurable' specifically to apply to challenges posed to comparatively evaluating scientific theories in 1949, more than a decade before Kuhn and Feyerabend. This analysis shows how Einstein anticipates substantial components of Kuhn and Feyerabend's views, and suggests that there are strong reasons to suspect that Kuhn and Feyerabend were directly inspired by Einstein's use of the term 'incommensurable', as well as his more general methodological and philosophical reflections. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. New Information about Albert Einstein's Brain.

    PubMed

    Falk, Dean

    2009-01-01

    In order to glean information about hominin (or other) brains that no longer exist, details of external neuroanatomy that are reproduced on endocranial casts (endocasts) from fossilized braincases may be described and interpreted. Despite being, of necessity, speculative, such studies can be very informative when conducted in light of the literature on comparative neuroanatomy, paleontology, and functional imaging studies. Albert Einstein's brain no longer exists in an intact state, but there are photographs of it in various views. Applying techniques developed from paleoanthropology, previously unrecognized details of external neuroanatomy are identified on these photographs. This information should be of interest to paleoneurologists, comparative neuroanatomists, historians of science, and cognitive neuroscientists. The new identifications of cortical features should also be archived for future scholars who will have access to additional information from improved functional imaging technology. Meanwhile, to the extent possible, Einstein's cerebral cortex is investigated in light of available data about variation in human sulcal patterns. Although much of his cortical surface was unremarkable, regions in and near Einstein's primary somatosensory and motor cortices were unusual. It is possible that these atypical aspects of Einstein's cerebral cortex were related to the difficulty with which he acquired language, his preference for thinking in sensory impressions including visual images rather than words, and his early training on the violin.

  14. The Einstein-Vlasov System/Kinetic Theory.

    PubMed

    Andréasson, Håkan

    2005-01-01

    The main purpose of this article is to provide a guide to theorems on global properties of solutions to the Einstein-Vlasov system. This system couples Einstein's equations to a kinetic matter model. Kinetic theory has been an important field of research during several decades in which the main focus has been on nonrelativistic and special relativistic physics, i.e. to model the dynamics of neutral gases, plasmas, and Newtonian self-gravitating systems. In 1990, Rendall and Rein initiated a mathematical study of the Einstein-Vlasov system. Since then many theorems on global properties of solutions to this system have been established. The Vlasov equation describes matter phenomenologically, and it should be stressed that most of the theorems presented in this article are not presently known for other such matter models (i.e. fluid models). This paper gives introductions to kinetic theory in non-curved spacetimes and then the Einstein-Vlasov system is introduced. We believe that a good understanding of kinetic theory in non-curved spacetimes is fundamental to good comprehension of kinetic theory in general relativity.

  15. The Einstein-Vlasov System/Kinetic Theory.

    PubMed

    Andréasson, Håkan

    2002-01-01

    The main purpose of this article is to provide a guide to theorems on global properties of solutions to the Einstein-Vlasov system. This system couples Einstein's equations to a kinetic matter model. Kinetic theory has been an important field of research during several decades in which the main focus has been on nonrelativistic and special relativistic physics, i.e. to model the dynamics of neutral gases, plasmas, and Newtonian self-gravitating systems. In 1990, Rendall and Rein initiated a mathematical study of the Einstein-Vlasov system. Since then many theorems on global properties of solutions to this system have been established. The Vlasov equation describes matter phenomenologically, and it should be stressed that most of the theorems presented in this article are not presently known for other such matter models (i.e. fluid models). This paper gives introductions to kinetic theory in non-curved spacetimes and then the Einstein-Vlasov system is introduced. We believe that a good understanding of kinetic theory in non-curved spacetimes is fundamental to good comprehension of kinetic theory in general relativity.

  16. 5D Super Yang-Mills on Y p, q Sasaki-Einstein Manifolds

    NASA Astrophysics Data System (ADS)

    Qiu, Jian; Zabzine, Maxim

    2015-01-01

    On any simply connected Sasaki-Einstein five dimensional manifold one can construct a super Yang-Mills theory which preserves at least two supersymmetries. We study the special case of toric Sasaki-Einstein manifolds known as Y p, q manifolds. We use the localisation technique to compute the full perturbative part of the partition function. The full equivariant result is expressed in terms of a certain special function which appears to be a curious generalisation of the triple sine function. As an application of our general result we study the large N behaviour for the case of single hypermultiplet in adjoint representation and we derive the N 3-behaviour in this case.

  17. Einstein as Evaluator?

    ERIC Educational Resources Information Center

    Caulley, Darrel N.

    1982-01-01

    Like any other person, Albert Einstein was an informal evaluator, engaged in placing value on various aspects of his life, work, and the world. Based on Einstein's own statements, this paper speculates about what Einstein would have been like as a connoisseur evaluator, a conceptual evaluator, or a responsive evaluator. (Author/BW)

  18. Nonequilibrium Brownian motion beyond the effective temperature.

    PubMed

    Gnoli, Andrea; Puglisi, Andrea; Sarracino, Alessandro; Vulpiani, Angelo

    2014-01-01

    The condition of thermal equilibrium simplifies the theoretical treatment of fluctuations as found in the celebrated Einstein's relation between mobility and diffusivity for Brownian motion. Several recent theories relax the hypothesis of thermal equilibrium resulting in at least two main scenarios. With well separated timescales, as in aging glassy systems, equilibrium Fluctuation-Dissipation Theorem applies at each scale with its own "effective" temperature. With mixed timescales, as for example in active or granular fluids or in turbulence, temperature is no more well-defined, the dynamical nature of fluctuations fully emerges and a Generalized Fluctuation-Dissipation Theorem (GFDT) applies. Here, we study experimentally the mixed timescale regime by studying fluctuations and linear response in the Brownian motion of a rotating intruder immersed in a vibro-fluidized granular medium. Increasing the packing fraction, the system is moved from a dilute single-timescale regime toward a denser multiple-timescale stage. Einstein's relation holds in the former and is violated in the latter. The violation cannot be explained in terms of effective temperatures, while the GFDT is able to impute it to the emergence of a strong coupling between the intruder and the surrounding fluid. Direct experimental measurements confirm the development of spatial correlations in the system when the density is increased.

  19. Teaching Einsteinian physics at schools: part 1, models and analogies for relativity

    NASA Astrophysics Data System (ADS)

    Kaur, Tejinder; Blair, David; Moschilla, John; Stannard, Warren; Zadnik, Marjan

    2017-11-01

    The Einstein-First project aims to change the paradigm of school science teaching through the introduction of modern Einsteinian concepts of space and time, gravity and quanta at an early age. These concepts are rarely taught to school students despite their central importance to modern science and technology. The key to implementing the Einstein-First curriculum is the development of appropriate models and analogies. This paper is the first part of a three-paper series. It presents the conceptual foundation of our approach, based on simple physical models and analogies, followed by a detailed description of the models and analogies used to teach concepts of general and special relativity. Two accompanying papers address the teaching of quantum physics (Part 2) and research outcomes (Part 3).

  20. Einstein's 1919 View

    NASA Astrophysics Data System (ADS)

    Goradia, Shantilal

    2012-10-01

    When Rutherford discovered the nuclear force in 1919, he felt the force he discovered reflected some deviation of Newtonian gravity. Einstein too in his 1919 paper published the failure of the general relativity and Newtonian gravity to explain nuclear force and, in his concluding remarks, he retracted his earlier introduction of the cosmological constant. Consistent with his genius, we modify Newtonian gravity as probabilistic gravity using natural Planck units for a realistic study of nature. The result is capable of expressing both (1) nuclear force [strong coupling], and (2) Newtonian gravity in one equation, implying in general, in layman's words, that gravity is the cumulative effect of all quantum mechanical forces which are impossible to measure at long distances. Non discovery of graviton and quantum gravity silently support our findings. Continuing to climb on the shoulders of the giants enables us to see horizons otherwise unseen, as reflected in our book: ``Quantum Consciousness - The Road to Reality,'' and physics/0210040, where we derive the fine structure constant as a function of the age of the universe in Planck times consistent with Gamow's hint, using natural logarithm consistent with Feynman's hint.

  1. Astrophysical observations: lensing and eclipsing Einstein's theories.

    PubMed

    Bennett, Charles L

    2005-02-11

    Albert Einstein postulated the equivalence of energy and mass, developed the theory of special relativity, explained the photoelectric effect, and described Brownian motion in five papers, all published in 1905, 100 years ago. With these papers, Einstein provided the framework for understanding modern astrophysical phenomena. Conversely, astrophysical observations provide one of the most effective means for testing Einstein's theories. Here, I review astrophysical advances precipitated by Einstein's insights, including gravitational redshifts, gravitational lensing, gravitational waves, the Lense-Thirring effect, and modern cosmology. A complete understanding of cosmology, from the earliest moments to the ultimate fate of the universe, will require developments in physics beyond Einstein, to a unified theory of gravity and quantum physics.

  2. Einstein's Riddle as a Tool for Profiling Students

    ERIC Educational Resources Information Center

    Özeke, Vildan; Akçapina, Gökhan

    2016-01-01

    There are many computer games, learning environments, online tutoring systems or computerized tools which keeps the track of the user while learning or engaging in the activities. This paper presents results from an exploratory study and aims to group students regarding their behavior data while solving the Einstein's riddle. 45 undergraduate…

  3. Einstein Revisited

    ERIC Educational Resources Information Center

    Fine, Leonard

    2005-01-01

    A brief description on the work and life of the great physicist scientist Albert Einstein is presented. The photoelectric paper written by him in 1905 led him to the study of fluctuations in the energy density of radiation and from there to the incomplete nature of the equipartition theorem of classical mechanics, which failed to account for…

  4. Quantum equivalence of f (R) gravity and scalar-tensor theories in the Jordan and Einstein frames

    NASA Astrophysics Data System (ADS)

    Ohta, Nobuyoshi

    2018-03-01

    The f(R) gravity and scalar-tensor theory are known to be equivalent at the classical level. We study if this equivalence is valid at the quantum level. There are two descriptions of the scalar-tensor theory in the Jordan and Einstein frames. It is shown that these three formulations of the theories give the same determinant or effective action on shell, and thus they are equivalent at the quantum one-loop level on shell in arbitrary dimensions. We also compute the one-loop divergence in f(R) gravity on an Einstein space.

  5. Dark soliton interaction of spinor Bose-Einstein condensates in an optical lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Zaidong; Li Qiuyan

    2007-08-15

    We study the magnetic soliton dynamics of spinor Bose-Einstein condensates in an optical lattice which results in an effective Hamiltonian of anisotropic pseudospin chain. An equation of nonlinear Schroedinger type is derived and exact magnetic soliton solutions are obtained analytically by means of Hirota method. Our results show that the critical external field is needed for creating the magnetic soliton in spinor Bose-Einstein condensates. The soliton size, velocity and shape frequency can be controlled in practical experiment by adjusting the magnetic field. Moreover, the elastic collision of two solitons is investigated in detail.

  6. Spatial interference patterns in the dynamics of a 2D Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Bera, Jayanta; Roy, Utpal

    2018-05-01

    Bose-Einstein condensate has become a highly tunable physical system, which is proven to mimic a number of interesting physical phenomena in condensed matter physics. We study the dynamics of a two-dimensional Bose Einstein condensate (BEC) in the presence of a flat harmonic confinement and time-dependent sharp potential peak. Condensate density can be meticulously controlled with time by tuning the physically relevant parameters: frequency of the harmonic trap, width of the peaks, frequency of their oscillations, initial density etc. By engineering various trap profile, we solve the system, numerically, and explore the resulting spatial interference patters.

  7. [The meeting of Einstein with Cajal (Madrid, 1923): a lost tide of fortune].

    PubMed

    Montes-Santiago, J

    The year 2005 was the centennial year of the Albert Einstein's transcendental works that changed forever the humans thoughts on the universe. It is also celebrated the 50th anniversary of his death. It was proclaimed 'World Year of Physics' and a multiplicity of celebrations have exhaustively analyzed Einstein's cardinals contributions. However, among these, the meeting of Einstein with another titanic of science, Santiago Ramon y Cajal, has passed some unnoticed. In this study the circumstances of this meeting are evoked. The parallelisms between the lives of both prominent figures awarded with the Nobel Prize are highlighted. They are the 'classic' authors most widely cited in the current scientific literature. The events and persons who made possible that shining but forgotten interview are detailed. Such a meeting took place in Madrid, on the occasion of the Einstein's trip to Spain in 1923. That travel exceeded his primary scientific nature, reaching the category of a social phenomenon and was widely covered by the printed mass media at that time. Finally, the curious coincidence of the invocation of Cajal's theories to justify the genius of the German physicist nearly 75 years after their meeting is mentioned. Although it was a brief meeting and the circumstances surrounding it largely unknown, it produced a great impression to Einstein and constitutes a supreme instant in the history of the 20th century.

  8. Einstein for Schools and the General Public

    ERIC Educational Resources Information Center

    Johansson, K. E.; Kozma, C; Nilsson, Ch

    2006-01-01

    In April 2005 the World Year of Physics (Einstein Year in the UK and Ireland) was celebrated with an Einstein week in Stockholm House of Science. Seven experiments illustrated Einstein's remarkable work in 1905 on Brownian motion, the photoelectric effect and special relativity. Thirteen school classes with 260 pupils, 30 teachers and 25 members…

  9. Conceptual Development of Einstein's Mass-Energy Relationship

    ERIC Educational Resources Information Center

    Wong, Chee Leong; Yap, Kueh Chin

    2005-01-01

    Einstein's special theory of relativity was published in 1905. It stands as one of the greatest intellectual achievements in the history of human thought. Einstein described the equivalence of mass and energy as "the most important upshot of the special theory of relativity" (Einstein, 1919). In this paper, we will discuss the evolution of the…

  10. EPR before EPR: A 1930 Einstein-Bohr thought Experiment Revisited

    ERIC Educational Resources Information Center

    Nikolic, Hrvoje

    2012-01-01

    In 1930, Einstein argued against the consistency of the time-energy uncertainty relation by discussing a thought experiment involving a measurement of the mass of the box which emitted a photon. Bohr seemingly prevailed over Einstein by arguing that Einstein's own general theory of relativity saves the consistency of quantum mechanics. We revisit…

  11. A Brief Dietary Assessment Predicts Executive Dysfunction in an Elderly Cohort: Results from the Einstein Aging Study.

    PubMed

    Sundermann, Erin E; Katz, Mindy J; Lipton, Richard B; Lichtenstein, Alice H; Derby, Carol A

    2016-11-01

    To examine the association between diet and executive function, episodic memory and global verbal cognition in the Einstein Aging Study (EAS) cohort and determine whether race modifies this relationship. Cross-sectional. Community. EAS participants without dementia who completed the Rapid Eating and Activity Assessment for Patients (REAP) (N = 492). The previously validated REAP is based on the 2000 U.S. dietary guidelines. REAP scores were dichotomized as less-healthy (

  12. The Einstein database of IPC x-ray observations of optically selected and radio-selected quasars, 1.

    NASA Technical Reports Server (NTRS)

    Wilkes, Belinda J.; Tananbaum, Harvey; Worrall, D. M.; Avni, Yoram; Oey, M. S.; Flanagan, Joan

    1994-01-01

    We present the first volume of the Einstein quasar database. The database includes estimates of the X-ray count rates, fluxes, and luminosities for 514 quasars and Seyfert 1 galaxies observed with the Imaging Proportional Counter (IPC) aboard the Einstein Observatory. All were previously known optically selected or radio-selected objects, and most were the targets of the X-ray observations. The X-ray properties of the Active Galactic Nuclei (AGNs) have been derived by reanalyzing the IPC data in a systematic manner to provide a uniform database for general use by the astronomical community. We use the database to extend earlier quasar luminosity studies which were made using only a subset of the currently available data. The database can be accessed on internet via the SAO Einstein on-line system ('Einline') and is available in ASCII format on magnetic tape and DOS diskette.

  13. Spotlight on advances in VTE management: CALLISTO and EINSTEIN CHOICE.

    PubMed

    Bach, Miriam; Bauersachs, Rupert

    2016-09-28

    Venous thromboembolism (VTE) is associated with numerous complications and high mortality rates. Patients with cancer are at high risk of developing cancer-associated thrombosis (CAT), and VTE recurrence is common. Evidence supporting use of non-vitamin K antagonist (VKA) oral anticoagulants (NOACs) in patients with cancer is lacking - direct comparisons between NOACs and low-molecular-weight heparin (LMWH) are needed, along with patient-reported outcomes. Cancer Associated thrombosis - expLoring soLutions for patients through Treatment and Prevention with RivarOxaban (CALLISTO) is an international research programme exploring the potential of the direct, oral factor Xa inhibitor rivaroxaban for the prevention and treatment of CAT, supplementing existing data from EINSTEIN DVT and EINSTEIN PE. Here, we focus on four CALLISTO studies: A Study to Evaluate the Efficacy and Safety of Rivaroxaban Venous Thromboembolism Prophylaxis in Ambulatory Cancer Participants receiving Chemotherapy (CASSINI), Anticoagulation Therapy in SELECTeD Cancer Patients at Risk of Recurrence of Venous Thromboembolism (SELECT-D), Rivaroxaban in the Treatment of Venous Thromboembolism in Cancer Patients - a Randomized Phase III Study (CONKO-011) and a database analysis. Optimal anticoagulation duration for VTE treatment has always been unclear. Following favourable results for rivaroxaban 20 mg once-daily (Q. D.) for secondary VTE prevention (EINSTEIN EXT), EINSTEIN CHOICE is assessing rivaroxaban safety and (20 mg Q. D. or 10 mg Q. D.) vs acetylsalicylic acid (ASA), and will investigate whether an alternative rivaroxaban dose (10 mg Q. D.) could offer long-term VTE protection. It is anticipated that results from these studies will provide important answers and expand upon current evidence for rivaroxaban in VTE management.

  14. Posing Einstein's Question: Questioning Einstein's Pose.

    ERIC Educational Resources Information Center

    Topper, David; Vincent, Dwight E.

    2000-01-01

    Discusses the events surrounding a famous picture of Albert Einstein in which he poses near a blackboard containing a tensor form of his 10 field equations for pure gravity with a question mark after it. Speculates as to the content of Einstein's lecture and the questions he might have had about the equation. (Contains over 30 references.) (WRM)

  15. Hidden symmetries on Kerr-NUT-(A)dS metrics of Einstein-Sasaki type

    NASA Astrophysics Data System (ADS)

    Visinescu, Mihai

    2013-01-01

    The hidden symmetries of higher dimensional Euclideanised Kerr-NUT-(A)dS metrics are investigated. In certain scaling limits these metrics are related to the Einstein-Sasaki ones. The complete set of Killing-Yano tensors of the Einstein-Sasaki spaces are presented. For this purpose the Killing forms of the Calabi-Yau cone over the Einstein-Sasaki manifold are constructed. Two new Killing forms on Einstein-Sasaki manifolds are identified associated with the complex volume form of the cone manifolds. As a concrete example we present the complete set of Killing-Yano tensors on the five-dimensional Einstein-Sasaki Y(p, q) spaces. The corresponding hidden symmetries are not anomalous and the geodesic equations are superintegrable.

  16. The Use of Thought Experiments in Teaching Physics to Upper Secondary-Level Students: Two Examples from the Theory of Relativity

    ERIC Educational Resources Information Center

    Velentzas, Athanasios; Halkia, Krystallia

    2013-01-01

    The present study focuses on the way thought experiments (TEs) can be used as didactical tools in teaching physics to upper secondary-level students. A qualitative study was designed to investigate to what extent the TEs called "Einstein's elevator" and "Einstein's train" can function as tools in teaching basic concepts of the…

  17. Book Review: Einstein studies in Russia. Yuri Balashov and Vladimir Vizgin (Eds.); Birkhäuser, Basel, 2002, 315pp, US 59.95, ISBN 0-8176-4263-3

    NASA Astrophysics Data System (ADS)

    Pechenkin, A. A.

    Most of the articles included here were first published in Russian in the series Einstein Studies (Einshteinovskii sbornik) (ES) between 1974 and 1990. ES was established in 1966 with support from the Nobel Prize-winning physicist Igor E. Tamm, who became one of the editors,

  18. The Impact of Infant-Directed Videos on Parent-Child Interaction

    ERIC Educational Resources Information Center

    Pempek, Tiffany A.; Demers, Lindsay B.; Hanson, Katherine G.; Kirkorian, Heather L.; Anderson, Daniel R.

    2011-01-01

    This study assessed whether infant-directed videos designed to promote parent-child interactions actually support such engagement. Parents watched videos from the "Baby Einstein" or the "Sesame Beginnings" series for 2 weeks at home with their 12- or 18-month-old infants. "Baby Einstein" encourages parents to label objects and actions; "Sesame…

  19. [ISO 9002 at the Center of Pediatric Intensive Care at the Albert Einstein Israeli Hospital].

    PubMed

    Gé Lacerda, D P; Rocha, M L; Santos, R P

    2000-01-01

    This study shows the process of implementation of a quality program in Pediatric Intensive Therapy Center of "Hospital Israelita Albert Einstein" which resulted in the certification of this service for the Standards ISO 9002/94. It points out the nurse's role as a leader in this process.

  20. Memory Binding Test Predicts Incident Dementia: Results from the Einstein Aging Study.

    PubMed

    Mowrey, Wenzhu B; Lipton, Richard B; Katz, Mindy J; Ramratan, Wendy S; Loewenstein, David A; Zimmerman, Molly E; Buschke, Herman

    2018-01-01

    The Memory Binding Test (MBT) demonstrated good cross-sectional discriminative validity and predicted incident aMCI. To assess whether the MBT predicts incident dementia better than a conventional list learning test in a longitudinal community-based study. As a sub-study in the Einstein Aging Study, 309 participants age≥70 initially free of dementia were administered the MBT and followed annually for incident dementia for up to 13 years. Based on previous work, poor memory binding was defined using an optimal empirical cut-score of≤17 on the binding measure of the MBT, Total Items in the Paired condition (TIP). Cox proportional hazards models were used to assess predictive validity adjusting for covariates. We compared the predictive validity of MBT TIP to that of the free and cued selective reminding test free recall score (FCSRT-FR; cut-score:≤24) and the single list recall measure of the MBT, Cued Recalled from List 1 (CR-L1; cut-score:≤12). Thirty-five of 309 participants developed incident dementia. When assessing each test alone, the hazard ratio (HR) for dementia was significant for MBT TIP (HR = 8.58, 95% CI: (3.58, 20.58), p < 0.0001), FCSRT-FR (HR = 4.19, 95% CI: (1.94, 9.04), p = 0.0003) and MBT CR-L1 (HR = 2.91, 95% CI: (1.37, 6.18), p = 0.006). MBT TIP remained a significant predictor of dementia (p = 0.0002) when adjusting for FCSRT-FR or CR-L1. Older adults with poor memory binding as measured by the MBT TIP were at increased risk for incident dementia. This measure outperforms conventional episodic memory measures of free and cued recall, supporting the memory binding hypothesis.

  1. Entropy density of an adiabatic relativistic Bose-Einstein condensate star

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khaidir, Ahmad Firdaus; Kassim, Hasan Abu; Yusof, Norhasliza

    Inspired by recent works, we investigate how the thermodynamics parameters (entropy, temperature, number density, energy density, etc) of Bose-Einstein Condensate star scale with the structure of the star. Below the critical temperature in which the condensation starts to occur, we study how the entropy behaves with varying temperature till it reaches its own stability against gravitational collapse and singularity. Compared to photon gases (pressure is described by radiation) where the chemical potential, μ is zero, entropy of photon gases obeys the Stefan-Boltzmann Law for a small values of T while forming a spiral structure for a large values of Tmore » due to general relativity. The entropy density of Bose-Einstein Condensate is obtained following the similar sequence but limited under critical temperature condition. We adopt the scalar field equation of state in Thomas-Fermi limit to study the characteristics of relativistic Bose-Einstein condensate under varying temperature and entropy. Finally, we obtain the entropy density proportional to (σT{sup 3}-3T) which obeys the Stefan-Boltzmann Law in ultra-relativistic condition.« less

  2. A review of the contributions of Albert Einstein to earth sciences--in commemoration of the World Year of Physics.

    PubMed

    Martínez-Frías, Jesús; Hochberg, David; Rull, Fernando

    2006-02-01

    The World Year of Physics (2005) is an international celebration to commemorate the 100th anniversary of Einstein's "Annus Mirabilis." The United Nations has officially declared 2005 as the International Year of Physics. However, the impact of Einstein's ideas was not restricted to physics. Among numerous other disciplines, Einstein also made significant and specific contributions to Earth Sciences. His geosciences-related letters, comments, and scientific articles are dispersed, not easily accessible, and are poorly known. The present review attempts to integrate them as a tribute to Einstein in commemoration of this centenary. These contributions can be classified into three basic areas: geodynamics, geological (planetary) catastrophism, and fluvial geomorphology. Regarding geodynamics, Einstein essentially supported Hapgood's very controversial theory called Earth Crust Displacement. With respect to geological (planetary) catastrophism, it is shown how the ideas of Einstein about Velikovsky's proposals evolved from 1946 to 1955. Finally, in relation to fluvial geodynamics, the review incorporates the elegant work in which Einstein explains the formation of meandering rivers. A general analysis of his contributions is also carried out from today's perspective. Given the interdisciplinarity and implications of Einstein's achievements to multiple fields of knowledge, we propose that the year 2005 serve, rather than to confine his universal figure within a specific scientific area, to broaden it for a better appreciation of this brilliant scientist in all of his dimensions.

  3. [Photoeffects, Einstein's light quanta and the history of their acceptance].

    PubMed

    Wiederkehr, Karl Heinrich

    2006-01-01

    It is generally supposed, that the discovery of the efficacy-quantum by Planck was the impetus to Einstein's hypothesis of lightquanta. With its help Einstein could explain the external light-electrical effect. But even years before Einstein had worked at the photoeffect and already made experiments on it. For that reason the article gives a short survey about the history of the lightelectric effects. Lenard's basical work about the release of the photoelectrons is dealt with in detail, without which Einstein would scarcely have found his lightquanta. Furthermore it is shown how difficult it was for the physicists to give up--at least partially--the traditional view of the undulation-nature of light, and how they searched to explain the great energies of the photoelectrons. On the other side it is set forth how Einstein's formula of lightquanta was gradually confirmed. The tragical development of Einstein's personal relations with Johannes Stark and Philipp Lenard are briefly described. Stark was one of the few who supported Einstein's ideas at the beginning. Only with the Compton-effect, which could only be quantitatively interpreted by means of lightquanta and the special theory of relativity 1923, the way was free for the general acceptance of the lightquanta. Einstein did not agree to the obtained dualism of undulation and corpuscle; he had a different solution in mind about the fusion of the two forms of appearance of light.

  4. Einstein 1905-1955: His Approach to Physics

    NASA Astrophysics Data System (ADS)

    Damour, Thibault

    We review Einstein's epistemological conceptions, and indicate their philosophical roots. The particular importance of the ideas of Hume, Kant, Mach, and Poincaré is highlighted. The specific characteristics of Einstein's approach to physics are underlined. Lastly, we consider the practical application of Einstein's methodological principles to the two theories of relativity, and to quantum theory. We emphasize a Kantian approach to quantum theory.

  5. Einstein and Planck

    NASA Astrophysics Data System (ADS)

    Heilbron, John

    2005-03-01

    As an editor of the Annalen der Physik, Max Planck published Einstein's early papers on thermodynamics and on special relativity, which Planck probably was the first major physicist to appreciate. They respected one another not only as physicists but also, for their inspired creation of world pictures, as artists. Planck helped to establish Einstein in a sinecure at the center of German physics, Berlin. Despite their differences in scientific style, social life, politics, and religion, they became fast friends. Their mutual admiration survived World War I, during which Einstein advocated pacifism and Planck signed the infamous Manifesto of the 93 Intellectuals supporting the German invasion of Belgium. It also survived the Weimar Republic, which Einstein favored and Planck disliked. Physics drew them together, as both opposed the Copenhagen Interpretation; so did common decency, as Planck helped to protect Einstein from anti-semitic attacks. Their friendship did not survive the Nazis. As a standing secretary of the Berlin Academy, Planck had to advise Einstein to resign from it before his colleagues, outraged at his criticism of the new Germany from the safety of California, expelled him. Einstein never forgave his old friend and former fellow artist for not protesting publicly against his expulsion and denigration, and other enormities of National Socialism. .

  6. Ferroelectricity by Bose-Einstein condensation in a quantum magnet.

    PubMed

    Kimura, S; Kakihata, K; Sawada, Y; Watanabe, K; Matsumoto, M; Hagiwara, M; Tanaka, H

    2016-09-26

    The Bose-Einstein condensation is a fascinating phenomenon, which results from quantum statistics for identical particles with an integer spin. Surprising properties, such as superfluidity, vortex quantization or Josephson effect, appear owing to the macroscopic quantum coherence, which spontaneously develops in Bose-Einstein condensates. Realization of Bose-Einstein condensation is not restricted in fluids like liquid helium, a superconducting phase of paired electrons in a metal and laser-cooled dilute alkali atoms. Bosonic quasi-particles like exciton-polariton and magnon in solids-state systems can also undergo Bose-Einstein condensation in certain conditions. Here, we report that the quantum coherence in Bose-Einstein condensate of the magnon quasi particles yields spontaneous electric polarization in the quantum magnet TlCuCl 3 , leading to remarkable magnetoelectric effect. Very soft ferroelectricity is realized as a consequence of the O(2) symmetry breaking by magnon Bose-Einstein condensation. The finding of this ferroelectricity will open a new window to explore multi-functionality of quantum magnets.

  7. Franz Selety (1893-1933?). His cosmological investigations and the correspondence with Einstein (German Title: Franz Selety (1893-1933?). Seine kosmologischen Arbeiten und der Briefwechsel mit Einstein)

    NASA Astrophysics Data System (ADS)

    Jung, Tobias

    In 1922, Franz Selety, university-bred philosopher and self-educated physicist and cosmologist, developed a molecular hierarchical, spatially infinite, Newtonian cosmological model. His considerations were based on his earlier philosophical work published in 1914 as well as on the early correspondence with Einstein in 1917. Historically, the roots of hierarchical models can be seen in 18th century investigations by Thomas Wright of Durham, Immanuel Kant and Johann Heinrich Lambert. Those investigations were taken up by Edmund Fournier d'Albe and Carl Charlier at the beginning of the 20th century. Selety's cosmological model was criticized by Einstein mainly due to its spatial infiniteness which in Einstein's opinion seemed to contradict Mach's principle. This criticism sheds light on Einstein's conviction that with his first cosmological model, namely the static, spatially infinite, though unbounded Einstein Universe of 1917, the appropriate cosmological theory already had been established.

  8. Castles in the Air: The Einstein-De Sitter Debate, 1916-1918

    NASA Astrophysics Data System (ADS)

    Midwinter, Charles; Janssen, Michel

    2011-03-01

    The Einstein De Sitter debate marked the birth of modern cosmology and the infamous cosmological constant. For Einstein, the controversy was essentially a philosophical one. Einstein's insistence on a static Universe and Mach's Principle guided him in the construction of his own cosmological model, and compelled him to criticize De Sitter's. For De Sitter, the debate began as idle conjecture. Before long, however, he began to wonder if the "spacious castles" he and Einstein had constructed might actually represent physical reality. We plan to write a volume that reproduces the documents relevant to the debate. Our commentary will retrace and explain the arguments of the historical players, complete with calculations. For the first time readers will be able to follow the arguments of Einstein and De Sitter in a detailed exploration of the first two relativistic cosmological models. Readers will see how Einstein's flawed criticisms of De Sitter were supported by Herman Weyl, and finally how Felix Klein settled the whole matter with a coordinate transformation.

  9. Book Review: Book review

    NASA Astrophysics Data System (ADS)

    Wegener, Daan

    Writing a biography of a complex personality and mastermind like Albert Einstein is a daunting task for any historian of science. Yet the sheer temptation of writing his biography has apparently helped to overcome scholarly scruples, as biographies of Einstein have appeared quite regularly on the market. One of them is Einstein: his Life and Universe by journalist Walter Isaacson. It is a best-seller, which is one of the reasons the book deserves a critical evaluation. Isaacson is a man of considerable repute: he has been the chairman of CNN and managing editor of Time magazine. Isaacson's Einstein is written in a style that is accessible to a wide audience. Scholars who are already familiar with Einstein's physics may still enjoy the parts of the book that deal with the relation between Einstein and the press. Indeed, the breadth of its scope is the book's major merit, as it connects the personal, scientific, public and political dimensions of Einstein's life. In this review, I discuss Isaacson's treatment of these dimensions one-by-one.

  10. Efficiency and its bounds for a quantum Einstein engine at maximum power.

    PubMed

    Yan, H; Guo, Hao

    2012-11-01

    We study a quantum thermal engine model for which the heat transfer law is determined by Einstein's theory of radiation. The working substance of the quantum engine is assumed to be a two-level quantum system of which the constituent particles obey Maxwell-Boltzmann (MB), Fermi-Dirac (FD), or Bose-Einstein (BE) distributions, respectively, at equilibrium. The thermal efficiency and its bounds at maximum power of these models are derived and discussed in the long and short thermal contact time limits. The similarity and difference between these models are discussed. We also compare the efficiency bounds of this quantum thermal engine to those of its classical counterpart.

  11. Was Einstein Really a Pacifist? Einstein's Independent, Forward-Thinking, Flexible, and Self-Defined Pacifism

    NASA Astrophysics Data System (ADS)

    Holmes, Virginia Iris

    2005-03-01

    Perhaps motivated by an admiration for Einstein and a desire to identify with him, combined with a majority world-view in opposition to pacifism, skeptics may often question whether Einstein was really a pacifist. They might point to the fact that his dramatic contributions to the field of physics at the beginning of the twentieth century made nuclear weapons possible, as well as his 1939 letter to President Franklin D. Roosevelt urging him to develop such weapons before the Nazis would, as examples of at least an inconsistent stance on pacifism across time on Einstein's part. However, as this paper will show, Einstein's pacifism began early in his life, was a deep-seated conviction that he expressed repeatedly across the years, and was an independent pacifism that flowed from his own responses to events around him and contained some original and impressively forward-thinking elements. Moreover, in calling himself a pacifist, as Einstein did, he defined pacifism in his own terms, not according to the standards of others, and this self-defined pacifism included the flexibility to designate the Nazis as a special case that had to be opposed through the use of military violence, in his view. As early as during his childhood, Einstein already disliked competitive games, because of the necessity of winners and losers, and disliked military discipline. In his late thirties, living in Germany during the First World War with a prestigious academic position in Berlin, yet retaining his identity as a Swiss citizen, Einstein joined a small group of four intellectuals who signed the pacifist ``Appeal to the Europeans'' in response to the militarist ``Manifesto to the Civilized World'' signed by 93 German intellectuals. In private, throughout that War, Einstein repeatedly expressed his disgust and sense of alienation at the ``war-enthusiasm'' sentiment of the majority. In the aftermath of the War, Einstein was involved in a German private commission to investigate German war crimes and the publication that it produced, and throughout the Weimar period of 1918 to 1933 Einstein continued to take public and private stances as a pacifist. As did many pacifists, Einstein also linked his advocacy for peace with a concern for social justice, which included opposition to antisemitism and advocacy for Zionism, and in 1929, after violent clashes between Jews and Arabs in Palestine, in which hundreds died on both sides, Einstein made some impressively forward-thinking statements about Jewish-Arab conciliation, and even published in an Arab newspaper his own proposal to set up a joint Jewish-Arab council for purposes of conflict resolution. But Einstein's pacifism was not forever obliterated by the Nazi era and the Holocaust, despite his well-known encouragement to Roosevelt to develop the bomb. In the United States, where he lived from 1933 on, in the first ten years after World War II, also the last decade of his life, Einstein inspired American pacifists with his strong stances against war and nuclear weapons.

  12. Mistaken Identity and Mirror Images: Albert and Carl Einstein, Leiden and Berlin, Relativity and Revolution

    NASA Astrophysics Data System (ADS)

    van Dongen, Jeroen

    2012-06-01

    Albert Einstein accepted a "special" visiting professorship at the University of Leiden in the Netherlands in February 1920. Although his appointment should have been a mere formality, it took until October of that year before Einstein could occupy his special chair. Why the delay? The explanation involves a case of mistaken identity with Carl Einstein, Dadaist art, and a particular Dutch fear of revolutions. But what revolutions was one afraid of? The story of Einstein's Leiden chair throws new light on the reception of relativity and its creator in the Netherlands and in Germany.

  13. Stationary axisymmetric four dimensional space-time endowed with Einstein metric

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasanuddin; Departments of Physics, Tanjungpura University, Jl Ahmad Yani Pontianak 78124 Indonesia bobby@fi.itb.ac.id; Azwar, A.

    In this paper, we construct Ernst equation from vacuum Einstein field equation for both zero and non-zero cosmological constant. In particular, we consider the case where the space-time admits axisymmetric using Boyer-Lindquist coordinates. This is called Kerr-Einstein solution describing a spinning black hole. Finally, we give a short discussion about the dynamics of photons on Kerr-Einstein space-time.

  14. A comparative analysis of perspectives of Mileva Maric Einstein

    NASA Astrophysics Data System (ADS)

    Barnett, Carol C.

    This dissertation examines the controversy surrounding Mileva Maric Einstein and the allegations subsequent to the publication of love letters during the time that Mileva Maric and Albert Einstein were students and during the early years of their marriage. It also examines the role of women in science from a historical perspective. Chapter One surveys the history of women in science from antiquity to the late nineteenth century and the patterns of gender related and restricting practices such as education, publication, the problem of mentoring and the issue of the lack of historical recognition. Chapter Two provides a comparative analyses between the lives of Mileva Maric Einstein and Marie Sklodowska Curie. Both had very similar social and educational backgrounds yet Marie Curie was able to work and publish jointly with her husband and received (although belatedly) international recognition for her work. On the other hand, Mileva Maric Einstein was never able to complete her degree and lived a life of obscurity and unfulfilled professional dreams. Both highly educated and intelligent women, but with drastically different outcomes in their professional and personal lives. Chapter Three examines the one book devoted to the life of Mileva Maric Einstein, Im Schatten Albert Einsteins: Das Tragische Leben der Mileva Einstein-Maric (In The Shadow of Albert Einstein: The Tragic Life of Mileva Maric), by Desanka Trbuhovic-Gjuric, Paul Haupt Publishers, 1985. It addresses the subjective as well as constructive and destructive criticisms of the various critical camps and provides examples of the statements made by the author which prompted a controversy within the academic and scientific communities. Appropriate responses are provided from various members of the scientific community to reflect the diversity of opinion and the intensity of the debate. Chapter Four addresses the problem of historicity and various interpretations of evidence which might suggest that the role of Mileva Maric was indeed more than just emotional spousal support for the scientific ideas of Albert Einstein. This chapter also details various lines and quotes from the book on Maric Einstein and also from the love letters shared between she and Albert Einstein to provide an indepth account of what evidence we have of possible professional collaboration.

  15. Teaching Einsteinian Physics at Schools: Part 1, Models and Analogies for Relativity

    ERIC Educational Resources Information Center

    Kaur, Tejinder; Blair, David; Moschilla, John; Stannard, Warren; Zadnik, Marjan

    2017-01-01

    The Einstein-First project aims to change the paradigm of school science teaching through the introduction of modern Einsteinian concepts of space and time, gravity and quanta at an early age. These concepts are rarely taught to school students despite their central importance to modern science and technology. The key to implementing the…

  16. Baby, It's You: International Capital Discovers the under Threes

    ERIC Educational Resources Information Center

    Hughes, Patrick

    2005-01-01

    Well-established international entertainment firms such as Disney and Fisher-Price are joining new start-up firms such as Baby Einstein to create a 'Baby' market of products (including toys, games and videos) specifically targeted at children aged 0-3 years. Despite its novelty, the "Baby" market mirrors older markets that…

  17. Physics Does Thrive under the Strangest of Circumstances

    ERIC Educational Resources Information Center

    Khoon, Koh Aik; Abd-Shukor, R.; Jalal, Azman; Talib, Ibrahim Abu; Daud, Abdul Razak; Samat, Supian; Yatim, Baharudin; Radiman, Shahidan

    2008-01-01

    Albert Einstein had famously said that Nature is subtle but not malicious. He should know better because he had unravelled some of the secrets of Nature at a relatively young age as an obscure patent clerk working in isolation. This paper tells of stories of other scientists who had also made ground-breaking discoveries in forced or self-imposed…

  18. Coherence, Abstraction, and Personal Involvement: Albert Einstein, Physicist and Humanist.

    ERIC Educational Resources Information Center

    Ne'eman, Yuval

    1979-01-01

    Reviews Einstein's main contributions to physics, and analyzes the importance of a coherent body of theory. Einstein's involvement in nonscientific issues such as nuclear disarmament is also included. (HM)

  19. Interprofessional student education: exchange program between Albert Einstein College of Medicine and Pacific College of Oriental Medicine.

    PubMed

    Anderson, Belinda J; Herron, Patrick D; Downie, Sherry A; Myers, Daniel C; Milan, Felise B; Olson, Todd R; Kligler, Ben E; Sierpina, Victor S; Kreitzer, Mary Jo

    2012-01-01

    The growing popularity of complementary and alternative medicine (CAM), of which estimated 38% of adults in the United States used in 2007, has engendered changes in medical school curricula to increase students' awareness of it. Exchange programs between conventional medical schools and CAM institutions are recognized as an effective method of interprofessional education. The exchange program between Albert Einstein College of Medicine (Einstein, Yeshiva University) and Pacific College of Oriental Medicine, New York campus (PCOM-NY) is in its fifth year and is part of a broader relationship between the schools encompassing research, clinical training, interinstitutional faculty and board appointments, and several educational activities. The Einstein/PCOM-NY student education exchange program is part of the Einstein Introduction to Clinical Medicine Program and involves students from Einstein learning about Chinese medicine through a lecture, the experience of having acupuncture, and a four-hour preceptorship at the PCOM outpatient clinic. The students from PCOM learn about allopathic medicine training through an orientation lecture, a two-and-a-half-hour dissection laboratory session along side Einstein student hosts, and a tour of the clinical skills center at the Einstein campus. In the 2011/2012 offering of the exchange program, the participating Einstein and PCOM students were surveyed to assess the educational outcomes. The data indicate that the exchange program was highly valued by all students and provided a unique learning experience. Survey responses from the Einstein students indicated the need for greater emphasis on referral information, which has been highlighted in the literature as an important medical curriculum integrative medicine competency. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. A modification of Einstein-Schrödinger theory that contains both general relativity and electrodynamics

    NASA Astrophysics Data System (ADS)

    Shifflett, J. A.

    2008-08-01

    We modify the Einstein-Schrödinger theory to include a cosmological constant Λ z which multiplies the symmetric metric, and we show how the theory can be easily coupled to additional fields. The cosmological constant Λ z is assumed to be nearly cancelled by Schrödinger’s cosmological constant Λ b which multiplies the nonsymmetric fundamental tensor, such that the total Λ = Λ z + Λ b matches measurement. The resulting theory becomes exactly Einstein-Maxwell theory in the limit as | Λ z | → ∞. For | Λ z | ~ 1/(Planck length)2 the field equations match the ordinary Einstein and Maxwell equations except for extra terms which are < 10-16 of the usual terms for worst-case field strengths and rates-of-change accessible to measurement. Additional fields can be included in the Lagrangian, and these fields may couple to the symmetric metric and the electromagnetic vector potential, just as in Einstein-Maxwell theory. The ordinary Lorentz force equation is obtained by taking the divergence of the Einstein equations when sources are included. The Einstein-Infeld-Hoffmann (EIH) equations of motion match the equations of motion for Einstein-Maxwell theory to Newtonian/Coulombian order, which proves the existence of a Lorentz force without requiring sources. This fixes a problem of the original Einstein-Schrödinger theory, which failed to predict a Lorentz force. An exact charged solution matches the Reissner-Nordström solution except for additional terms which are ~10-66 of the usual terms for worst-case radii accessible to measurement. An exact electromagnetic plane-wave solution is identical to its counterpart in Einstein-Maxwell theory.

  1. Einstein's philosophy of physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seeger, R.J.

    1979-09-01

    Sources of Einstein's philosophical ideas are discussed. Einstein was indebted to Mach and Poincare, and espoused more or less a logical empiricism. He looked upon Nature as real, rational, and understandable, at least to an extent. (RWR)

  2. Einstein Session of the Pontifical Academy.

    ERIC Educational Resources Information Center

    Science, 1980

    1980-01-01

    The texts of four speeches, given at the 1979 Einstein Session of the Pontifical Academy held in Rome, are presented. Each address relates to some aspect of the life and times of Albert Einstein. (SA)

  3. The Einstein tower : an intertexture of dynamic construction, relativity theory and astronomy

    NASA Astrophysics Data System (ADS)

    Hentschel, Klaus; Hentschel, Ann M.

    This book focuses on the `Einstein Tower', an architecturally historic observatory built in Potsdam in 1920 to allow the German astronomer Erwin Finlay Freundlich to attempt to verify experimentally Einstein's general theory of relativity. Freundlich, who was the first German astronomer to show a genuine interest in Einstein's theory, managed to interest his architect friend Erich Mendelsohn in designing this unique building. To develop a full historical picture, the book interweaves several descriptive levels: the biography of Freundlich; the social context in which he interacted with teachers, co-workers, students, his patrons (including Einstein), and scientific opponents; the cognitive aspects of his attempts to verify Einstein's theory; the political milieu within the Berlin scientific research community; and a cross-national comparison of astrophysics. This is an interesting account of this unconventional tale in the history of science.

  4. THE EINSTEIN-HOME SEARCH FOR RADIO PULSARS AND PSR J2007+2722 DISCOVERY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, B.; Knispel, B.; Aulbert, C.

    Einstein-Home aggregates the computer power of hundreds of thousands of volunteers from 193 countries, to search for new neutron stars using data from electromagnetic and gravitational-wave detectors. This paper presents a detailed description of the search for new radio pulsars using Pulsar ALFA survey data from the Arecibo Observatory. The enormous computing power allows this search to cover a new region of parameter space; it can detect pulsars in binary systems with orbital periods as short as 11 minutes. We also describe the first Einstein-Home discovery, the 40.8 Hz isolated pulsar PSR J2007+2722, and provide a full timing model. PSRmore » J2007+2722's pulse profile is remarkably wide with emission over almost the entire spin period. This neutron star is most likely a disrupted recycled pulsar, about as old as its characteristic spin-down age of 404 Myr. However, there is a small chance that it was born recently, with a low magnetic field. If so, upper limits on the X-ray flux suggest but cannot prove that PSR J2007+2722 is at least {approx}100 kyr old. In the future, we expect that the massive computing power provided by volunteers should enable many additional radio pulsar discoveries.« less

  5. What Costs Do Reveal and Moving beyond the Cost Debate: Reply to Einstein and McDaniel (2010)

    ERIC Educational Resources Information Center

    Smith, Rebekah E.

    2010-01-01

    Einstein et al. (2005) predicted no cost to an ongoing task when a prospective memory task met certain criteria. Smith, Hunt, McVay, and McConnell (2007) used prospective memory tasks that met these criteria and found a cost to the ongoing task, contrary to Einstein et al.'s prediction. Einstein and McDaniel (2010) correctly noted that there are…

  6. Renormalization of Einstein gravity through a derivative-dependent field redefinition

    NASA Astrophysics Data System (ADS)

    Slovick, Brian

    2018-01-01

    This work explores an alternative solution to the problem of renormalizability in Einstein gravity. In the proposed approach, Einstein gravity is transformed into the renormalizable theory of four-derivative gravity by applying a local field redefinition containing an infinite number of higher derivatives. It is also shown that the current-current amplitude is invariant with the field redefinition, and thus the unitarity of Einstein gravity is preserved.

  7. Universal Themes of Bose-Einstein Condensation

    NASA Astrophysics Data System (ADS)

    Proukakis, Nick P.; Snoke, David W.; Littlewood, Peter B.

    2017-04-01

    Foreword; List of contributors; Preface; Part I. Introduction: 1. Universality and Bose-Einstein condensation: perspectives on recent work D. W. Snoke, N. P. Proukakis, T. Giamarchi and P. B. Littlewood; 2. A history of Bose-Einstein condensation of atomic hydrogen T. Greytak and D. Kleppner; 3. Twenty years of atomic quantum gases: 1995-2015 W. Ketterle; 4. Introduction to polariton condensation P. B. Littlewood and A. Edelman; Part II. General Topics: Editorial notes; 5. The question of spontaneous symmetry breaking in condensates D. W. Snoke and A. J. Daley; 6. Effects of interactions on Bose-Einstein condensation R. P. Smith; 7. Formation of Bose-Einstein condensates M. J. Davis, T. M. Wright, T. Gasenzer, S. A. Gardiner and N. P. Proukakis; 8. Quenches, relaxation and pre-thermalization in an isolated quantum system T. Langen and J. Schmiedmayer; 9. Ultracold gases with intrinsic scale invariance C. Chin; 10. Berezinskii-Kosterlitz-Thouless phase of a driven-dissipative condensate N. Y. Kim, W. H. Nitsche and Y. Yamamoto; 11. Superfluidity and phase correlations of driven dissipative condensates J. Keeling, L. M. Sieberer, E. Altman, L. Chen, S. Diehl and J. Toner; 12. BEC to BCS crossover from superconductors to polaritons A. Edelman and P. B. Littlewood; Part III. Condensates in Atomic Physics: Editorial notes; 13. Probing and controlling strongly correlated quantum many-body systems using ultracold quantum gases I. Bloch; 14. Preparing and probing chern bands with cold atoms N. Goldman, N. R. Cooper and J. Dalibard; 15. Bose-Einstein condensates in artificial gauge fields L. J. LeBlanc and I. B. Spielman; 16. Second sound in ultracold atomic gases L. Pitaevskii and S. Stringari; 17. Quantum turbulence in atomic Bose-Einstein condensates N. G. Parker, A. J. Allen, C. F. Barenghi and N. P. Proukakis; 18. Spinor-dipolar aspects of Bose-Einstein condensation M. Ueda; Part IV. Condensates in Condensed Matter Physics: Editorial notes; 19. Bose-Einstein condensation of photons and grand-canonical condensate fluctuations J. Klaers and M. Weitz; 20. Laser operation and Bose-Einstein condensation: analogies and differences A. Chiocchetta, A. Gambassi and I. Carusotto; 21. Vortices in resonant polariton condensates in semiconductor microcavities D. N. Krizhanovskii, K. Guda, M. Sich, M. S. Skolnick, L. Dominici and D. Sanvitto; 22. Optical control of polariton condensates G. Christmann, P. G. Savvidis and J. J. Baumberg; 23. Disorder, synchronization and phase-locking in non-equilibrium Bose-Einstein condensates P. R. Eastham and B. Rosenow; 24. Collective topological excitations in 1D polariton quantum fluids H. Terças, D. D. Solnyshkov and G. Malpuech; 25. Microscopic theory of Bose-Einstein condensation of magnons at room temperature H. Salman, N. G. Berloff and S. O. Demokritov; 26. Spintronics and magnon Bose-Einstein condensation R. A. Duine, A. Brataas, S. A. Bender and Y. Tserkovnyak; 27. Spin-superfluidity and spin-current mediated non-local transport H. Chen and A. H. MacDonald; 28. Bose-Einstein condensation in quantum magnets C. Kollath, T. Giamarchi and C. Rüegg; Part V. Condensates in Astrophysics and Cosmology: Editorial notes; 29. Bose-Einstein condensates in neutron stars C. J. Pethick, T. Schäfer and A. Schwenk; 30. A simulated cosmological metric: the superfluid 3He condensate G. R. Pickett; 31. Cosmic axion Bose-Einstein condensation N. Banik and P. Sikivie; 32. Graviton BECs: a new approach to quantum gravity G. Dvali and C. Gomez; Universal Bose-Einstein condensation workshop; Index.

  8. The reception of relativity in China.

    PubMed

    Hu, Danian

    2007-09-01

    Having introduced the theory of relativity from Japan, the Chinese quickly and enthusiastically embraced it during the May Fourth Movement, virtually without controversy. This unique passion for and openness to relativity, which helped advance the study of theoretical physics in China in the 1930s, was gradually replaced by imported Soviet criticism after 1949. During the Cultural Revolution, radical Chinese ideologues sponsored organized campaigns against Einstein and relativity, inflicting serious damage on Chinese science and scientific education. China's economic reforms in the late 1970s empowered scientists and presented them with the opportunity to rehabilitate Einstein and call for social democracy. Einstein has since become the symbol in China of the unity of science and democracy, the two eminent objectives of the May Fourth Movement that remain to be achieved in full. Using the reception of relativity as a case study, the essay also discusses issues involving the historical study of modern Chinese science.

  9. Validity of the Stokes-Einstein relation in liquids: simple rules from the excess entropy.

    PubMed

    Pasturel, A; Jakse, N

    2016-12-07

    It is becoming common practice to consider that the Stokes-Einstein relation D/T~ η -1 usually works for liquids above their melting temperatures although there is also experimental evidence for its failure. Here we investigate numerically this commonly-invoked assumption for simple liquid metals as well as for their liquid alloys. Using ab initio molecular dynamics simulations we show how entropy scaling relationships developed by Rosenfeld can be used to predict the conditions for the validity of the Stokes-Einstein relation in the liquid phase. Specifically, we demonstrate the Stokes-Einstein relation may break down in the liquid phase of some liquid alloys mainly due to the presence of local structural ordering as evidenced in their partial two-body excess entropies. Our findings shed new light on the understanding of transport properties of liquid materials and will trigger more experimental and theoretical studies since excess entropy and its two-body approximation are readily obtainable from standard experiments and simulations.

  10. Conversations With Albert Einstein. II

    ERIC Educational Resources Information Center

    Shankland, R. S.

    1973-01-01

    Discusses Einstein's views on the role of Michelson-Morley, Fizeau, and Miller experiments in the development of relativity and his attitude toward the theories of new quantum mechanics. Indicates that Einstein's opposition to quantum mechanics is beyond dispute. (CC)

  11. Annotations to D.B. Herrmann's contribution ``On Albert Einstein's political views'' (German Title: Anmerkungen zu D.B. Herrmanns Beitrag ``Über Albert Einsteins politische Ansichten'')

    NASA Astrophysics Data System (ADS)

    Grundmann, Siegfried

    Referring to the Straus-Herrmann correspondence, we deal only with one aspect of the ``political Einstein'': his attitude towards Marx, Engels, Lenin and Stalin (who were in the past sometimes called the ``classics of Marxism-Leninism''). Einstein revered Marx, but condemned Stalin as a criminal. He also resisted attempts to be misused by representatives of ``dialectic materialism''.

  12. [Never forget this in making your drawings and equations! A conversation with Albert Einstein on learning, teaching and the secrets of the world].

    PubMed

    Brunner, A

    2009-03-01

    Albert Einstein, the genius--this aspect often has been noted. A neglected aspect is Einstein's role as student and teacher. For this reason, Einstein's notes have been looked at once again. The selected original quotes are composed into the format of a fictive dialogue. The original context and coherence of his comments have thereby been respected carefully.

  13. α-quantized Einstein masses for leptons, quarks, hadrons, gauge bosons, and Higgs constants

    NASA Astrophysics Data System (ADS)

    Mac Gregor, Malcolm

    2011-11-01

    The Einstein particle mass ɛi is defined by the equation ɛi = Ei / c^2. The basic particle ground states have unique additive Einstein masses (energies), and they interleave in α-quantized (α-1 = 137) energy plots to form distinctive excitation patterns. The ɛu,d,s,c,b,t Einstein masses are constituent-quark masses. Particle generation proceeds via ``α-boosted'' boson, fermion, and gauge-boson ``unit masses,'' which are ``bundled'' together to form particles and quarks. The Einstein mass equations extend throughout the entire range of particle masses. Lederman and HillootnotetextL. M. Lederman and C. T. Hill, Symmetry (Prometheus Books, Amherst, 2004), p. 282. note that the scalar Higgs and Fermi fields are at the 175 GeV energy scale of the top quark t, and they suggest the Higgs coupling constant equation ge=me/mt = 0.0000029, which matches the Einstein mass expression ge=α^2/18.

  14. Extensions of the Einstein-Schrodinger non-symmetric theory of gravity

    NASA Astrophysics Data System (ADS)

    Shifflett, James A.

    We modify the Einstein-Schrödinger theory to include a cosmological constant L z which multiplies the symmetric metric. The cosmological constant L z is assumed to be nearly cancelled by Schrödinger's cosmological constant L b which multiplies the nonsymmetric fundamental tensor, such that the total L = L z + L b matches measurement. The resulting theory becomes exactly Einstein-Maxwell theory in the limit as |L z | [arrow right] oo. For |L z | ~ 1/(Planck length) 2 the field equations match the ordinary Einstein and Maxwell equations except for extra terms which are < 10 -16 of the usual terms for worst-case field strengths and rates-of-change accessible to measurement. Additional fields can be included in the Lagrangian, and these fields may couple to the symmetric metric and the electromagnetic vector potential, just as in Einstein-Maxwell theory. The ordinary Lorentz force equation is obtained by taking the divergence of the Einstein equations when sources are included. The Einstein- Infeld-Hoffmann (EIH) equations of motion match the equations of motion for Einstein-Maxwell theory to Newtonian/Coulombian order, which proves the existence of a Lorentz force without requiring sources. An exact charged solution matches the Reissner-Nordström solution except for additional terms which are ~ 10 -66 of the usual terms for worst-case radii accessible to measurement. An exact electromagnetic plane-wave solution is identical to its counterpart in Einstein-Maxwell theory. Peri-center advance, deflection of light and time delay of light have a fractional difference of < 10 -56 compared to Einstein-Maxwell theory for worst-case parameters. When a spin-1/2 field is included in the Lagrangian, the theory gives the ordinary Dirac equation, and the charged solution results in fractional shifts of < 10 -50 in Hydrogen atom energy levels. Newman-Penrose methods are used to derive an exact solution of the connection equations, and to show that the charged solution is Petrov type- D like the Reissner-Nordström solution. The Newman-Penrose asymptotically flat [Special characters omitted.] (1/ r 2 ) expansion of the field equations is shown to match Einstein-Maxwell theory. Finally we generalize the theory to non-Abelian fields, and show that a special case of the resulting theory closely approximates Einstein-Weinberg-Salam theory.

  15. When champions meet: Rethinking the Bohr-Einstein debate

    NASA Astrophysics Data System (ADS)

    Landsman, N. P.

    Einstein's philosophy of physics (as clarified by Fine, Howard, and Held) was predicated on his Trennungsprinzip, a combination of separability and locality, without which he believed objectification, and thereby "physical thought" and "physical laws', to be impossible. Bohr's philosophy (as elucidated by Hooker, Scheibe, Folse, Howard, Held, and others), on the other hand, was grounded in a seemingly different doctrine about the possibility of objective knowledge, namely the necessity of classical concepts. In fact, it follows from Raggio's Theorem in algebraic quantum theory that-within an appropriate class of physical theories-suitable mathematical translations of the doctrines of Bohr and Einstein are equivalent. Thus-upon our specific formalization-quantum mechanics accommodates Einstein's Trennungsprinzip if and only if it is interpreted à la Bohr through classical physics. Unfortunately, the protagonists themselves failed to discuss their differences in this constructive way, since their debate was dominated by Einstein's ingenious but ultimately flawed attempts to establish the "incompleteness" of quantum mechanics. This aspect of their debate may still be understood and appreciated, however, as reflecting a much deeper and insurmountable disagreement between Bohr and Einstein about the knowability of Nature. Using the theological controversy on the knowability of God as a analogy, we can say that Einstein was a Spinozist, whereas Bohr could be said to be on the side of Maimonides. Thus Einstein's off-the-cuff characterization of Bohr as a 'Talmudic philosopher' was spot-on.

  16. Bose-Einstein condensates form in heuristics learned by ciliates deciding to signal 'social' commitments.

    PubMed

    Clark, Kevin B

    2010-03-01

    Fringe quantum biology theories often adopt the concept of Bose-Einstein condensation when explaining how consciousness, emotion, perception, learning, and reasoning emerge from operations of intact animal nervous systems and other computational media. However, controversial empirical evidence and mathematical formalism concerning decoherence rates of bioprocesses keep these frameworks from satisfactorily accounting for the physical nature of cognitive-like events. This study, inspired by the discovery that preferential attachment rules computed by complex technological networks obey Bose-Einstein statistics, is the first rigorous attempt to examine whether analogues of Bose-Einstein condensation precipitate learned decision making in live biological systems as bioenergetics optimization predicts. By exploiting the ciliate Spirostomum ambiguum's capacity to learn and store behavioral strategies advertising mating availability into heuristics of topologically invariant computational networks, three distinct phases of strategy use were found to map onto statistical distributions described by Bose-Einstein, Fermi-Dirac, and classical Maxwell-Boltzmann behavior. Ciliates that sensitized or habituated signaling patterns to emit brief periods of either deceptive 'harder-to-get' or altruistic 'easier-to-get' serial escape reactions began testing condensed on initially perceived fittest 'courting' solutions. When these ciliates switched from their first strategy choices, Bose-Einstein condensation of strategy use abruptly dissipated into a Maxwell-Boltzmann computational phase no longer dominated by a single fittest strategy. Recursive trial-and-error strategy searches annealed strategy use back into a condensed phase consistent with performance optimization. 'Social' decisions performed by ciliates showing no nonassociative learning were largely governed by Fermi-Dirac statistics, resulting in degenerate distributions of strategy choices. These findings corroborate previous work demonstrating ciliates with improving expertise search grouped 'courting' assurances at quantum efficiencies and verify efficient processing by primitive 'social' intelligences involves network forms of Bose-Einstein condensation coupled to preceding thermodynamic-sensitive computational phases. 2009 Elsevier Ireland Ltd. All rights reserved.

  17. Centenarian Einstein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2006-05-02

    Commemoration of Albert Einstein with 4 speakers to honor his memory: Professor Weisskopf speaks about the scientifically engaged man. Daniel Amati speaks about the climate of the domain of physics during the 1920s, and Sergio Fubini speaks about the scientific hour of Einstein and Berob.

  18. Centenarian Einstein

    ScienceCinema

    None

    2018-05-18

    Commemoration of Albert Einstein with 4 speakers to honor his memory: Professor Weisskopf speaks about the scientifically engaged man. Daniel Amati speaks about the climate of the domain of physics during the 1920s, and Sergio Fubini speaks about the scientific hour of Einstein and Berob.

  19. Albert Einstein 1879-1955.

    ERIC Educational Resources Information Center

    Physics Today, 1979

    1979-01-01

    Celebrates the centennial of Einstein's birth with an eight-page pictorial biography and two special articles: (1) Einstein the catalyst; and (2) Unitary field theories. His special and general theories of relativity and his contributions to quantum physics and other topics are also presented. (HM)

  20. Studies of compact objects with Einstein - Review and prospects

    NASA Technical Reports Server (NTRS)

    Grindlay, Jonathan E.

    1990-01-01

    X-ray images and spectra of a wide range of systems containing compact objects were obtained with the Einstein X-ray Observatory. Accreting white dwarfs, neutron stars and black holes were observed in binary systems in the Galaxy, and new constraints were derived for their formation, nature and evolution. Massive black holes were studied in active galactic nuclei, and X-ray spectra (and evolution) of AGN have led to a new model for the diffuse X-ray background.

  1. Einstein's 1917 static model of the universe: a centennial review

    NASA Astrophysics Data System (ADS)

    O'Raifeartaigh, Cormac; O'Keeffe, Michael; Nahm, Werner; Mitton, Simon

    2017-08-01

    We present a historical review of Einstein's 1917 paper ` Cosmological Considerations in the General Theory of Relativity' to mark the centenary of a key work that set the foundations of modern cosmology. We find that the paper followed as a natural next step after Einstein's development of the general theory of relativity and that the work offers many insights into his thoughts on relativity, astronomy and cosmology. Our review includes a description of the observational and theoretical background to the paper; a paragraph-by-paragraph guided tour of the work; a discussion of Einstein's views of issues such as the relativity of inertia, the curvature of space and the cosmological constant. Particular attention is paid to little-known aspects of the paper such as Einstein's failure to test his model against observation, his failure to consider the stability of the model and a mathematical oversight concerning his interpretation of the role of the cosmological constant. We recall the response of theorists and astronomers to Einstein's cosmology in the context of the alternate models of the universe proposed by Willem de Sitter, Alexander Friedman and Georges Lemaître. Finally, we consider the relevance of the Einstein World in today's `emergent' cosmologies.

  2. The collected papers of Albert Einstein. Volume 2. The Swiss years: Writings, 1900-1909

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stachel, J.; Cassidy, D.C.; Renn, J.

    1989-01-01

    This second volume of the papers of Albert Einstein chronologically presents published articles, unpublished papers, research and lecture notes, reviews, and patent applications for the period 1900-1909 during which time Einstein had a two-year period of short-term employment and a permanent position at the Swiss Patent Office in Bern. There are 62 published documents reproduced. The writings of this period deal with seven general themes: molecular forces, the foundation of statistical physics, the quantum hypothesis, determining molecular dimensions, Brownian movement, the theory of relativity, and the electrodynamics of moving media. The book also presents all available letters written by Einsteinmore » along with all significant letters sent to him and many important third-party letters written about him. The editors have added substantial introduction and a set of eight editorial notes that place Einstein's writings within their immediate scientific context. Footnotes to Einstein texts designed to illuminate the sources of scientific problems that Einstein confronted and the ideas and techniques with which he addressed them have been added by the editors. A comprehensive index to Einstein's early writings is provided.« less

  3. Einstein on Race and Racism, presented by Fred Jerome and Rodger Taylor

    NASA Astrophysics Data System (ADS)

    Jerome, Fred; Taylor, Rodger

    2007-10-01

    It is little-known that physicist Albert Einstein strongly held the view that ``Racism is America's worst disease.'' Einstein was active in the fight against racism from the 1930's until his death in 1955. Included among his friends were a number of important Afro-American figures, including the educator W.E.B. DuBois, the actor and basso profundo singer Paul Robeson, and the soprano Marian Anderson. Based on the authors' work ``Einstein on Race and Racism.''

  4. The cerebral cortex of Albert Einstein: a description and preliminary analysis of unpublished photographs.

    PubMed

    Falk, Dean; Lepore, Frederick E; Noe, Adrianne

    2013-04-01

    Upon his death in 1955, Albert Einstein's brain was removed, fixed and photographed from multiple angles. It was then sectioned into 240 blocks, and histological slides were prepared. At the time, a roadmap was drawn that illustrates the location within the brain of each block and its associated slides. Here we describe the external gross neuroanatomy of Einstein's entire cerebral cortex from 14 recently discovered photographs, most of which were taken from unconventional angles. Two of the photographs reveal sulcal patterns of the medial surfaces of the hemispheres, and another shows the neuroanatomy of the right (exposed) insula. Most of Einstein's sulci are identified, and sulcal patterns in various parts of the brain are compared with those of 85 human brains that have been described in the literature. To the extent currently possible, unusual features of Einstein's brain are tentatively interpreted in light of what is known about the evolution of higher cognitive processes in humans. As an aid to future investigators, these (and other) features are correlated with blocks on the roadmap (and therefore histological slides). Einstein's brain has an extraordinary prefrontal cortex, which may have contributed to the neurological substrates for some of his remarkable cognitive abilities. The primary somatosensory and motor cortices near the regions that typically represent face and tongue are greatly expanded in the left hemisphere. Einstein's parietal lobes are also unusual and may have provided some of the neurological underpinnings for his visuospatial and mathematical skills, as others have hypothesized. Einstein's brain has typical frontal and occipital shape asymmetries (petalias) and grossly asymmetrical inferior and superior parietal lobules. Contrary to the literature, Einstein's brain is not spherical, does not lack parietal opercula and has non-confluent Sylvian and inferior postcentral sulci.

  5. Einstein's physical strategy, energy conservation, symmetries, and stability: "But Grossmann & I believed that the conservation laws were not satisfied"

    NASA Astrophysics Data System (ADS)

    Pitts, J. Brian

    2016-05-01

    Recent work on the history of General Relativity by Renn et al. shows that Einstein found his field equations partly by a physical strategy including the Newtonian limit, the electromagnetic analogy, and energy conservation. Such themes are similar to those later used by particle physicists. How do Einstein's physical strategy and the particle physics derivations compare? What energy-momentum complex(es) did he use and why? Did Einstein tie conservation to symmetries, and if so, to which? How did his work relate to emerging knowledge (1911-1914) of the canonical energy-momentum tensor and its translation-induced conservation? After initially using energy-momentum tensors hand-crafted from the gravitational field equations, Einstein used an identity from his assumed linear coordinate covariance xμ‧ = Mνμ xν to relate it to the canonical tensor. Usually he avoided using matter Euler-Lagrange equations and so was not well positioned to use or reinvent the Herglotz-Mie-Born understanding that the canonical tensor was conserved due to translation symmetries, a result with roots in Lagrange, Hamilton and Jacobi. Whereas Mie and Born were concerned about the canonical tensor's asymmetry, Einstein did not need to worry because his Entwurf Lagrangian is modeled not so much on Maxwell's theory (which avoids negative-energies but gets an asymmetric canonical tensor as a result) as on a scalar theory (the Newtonian limit). Einstein's theory thus has a symmetric canonical energy-momentum tensor. But as a result, it also has 3 negative-energy field degrees of freedom (later called "ghosts" in particle physics). Thus the Entwurf theory fails a 1920s-1930s a priori particle physics stability test with antecedents in Lagrange's and Dirichlet's stability work; one might anticipate possible gravitational instability. This critique of the Entwurf theory can be compared with Einstein's 1915 critique of his Entwurf theory for not admitting rotating coordinates and not getting Mercury's perihelion right. One can live with absolute rotation but cannot live with instability. Particle physics also can be useful in the historiography of gravity and space-time, both in assessing the growth of objective knowledge and in suggesting novel lines of inquiry to see whether and how Einstein faced the substantially mathematical issues later encountered in particle physics. This topic can be a useful case study in the history of science on recently reconsidered questions of presentism, whiggism and the like. Future work will show how the history of General Relativity, especially Noether's work, sheds light on particle physics.

  6. Mark XIV Torpedo Case Study

    DTIC Science & Technology

    2011-02-26

    Bureau of Ordnance in the meantime had corresponded with Albert Einstein at Princeton University on a variety of issues including torpedo detonation... Einstein was paid $25/day as a consultant and quickly understood the problem. The contact exploder’s firing pin located in the very front warhead...were finally identified and corrected. In all seriousness, God only knows how many submariners died as a result of those defective torpedoes, which

  7. Cosmic censorship in quantum Einstein gravity

    NASA Astrophysics Data System (ADS)

    Bonanno, A.; Koch, B.; Platania, A.

    2017-05-01

    We study the quantum gravity modification of the Kuroda-Papapetrou model induced by the running of the Newton’s constant at high energy in quantum Einstein gravity. We argue that although the antiscreening character of the gravitational interaction favours the formation of a naked singularity, quantum gravity effects turn the classical singularity into a ‘whimper’ singularity which remains naked for a finite amount of advanced time.

  8. The happiest thought of Einstein's life.

    NASA Astrophysics Data System (ADS)

    Heller, M.

    It is a commonly told story that Einstein formulated his famous principle of equivalence when thinking about what happens in a freely falling elevator, and that it was an original idea of his genius distinguished by the rare capability to see deep problems in the most ordinary things. In the reading of Einstein's and Ernst Mach's works the author has discovered that it was not a physicist in an elevator which led to the principle of equivalence but rather somebody falling from a roof; moreover, the idea behind the principle was not invented by Einstein himself but rather read by him from the book by Mach entitled The Science of Mechanics. The influence this book had on young Einstein is very well known.

  9. Einstein's conversion from his static to an expanding universe

    NASA Astrophysics Data System (ADS)

    Nussbaumer, Harry

    2014-02-01

    In 1917 Einstein initiated modern cosmology by postulating, based on general relativity, a homogenous, static, spatially curved universe. To counteract gravitational contraction he introduced the cosmological constant. In 1922 Alexander Friedman showed that Albert Einstein's fundamental equations also allow dynamical worlds, and in 1927 Georges Lemaître, backed by observational evidence, concluded that our universe was expanding. Einstein impetuously rejected Friedman's as well as Lemaître's findings. However, in 1931 he retracted his former static model in favour of a dynamic solution. This investigation follows Einstein on his hesitating path from a static to the expanding universe. Contrary to an often advocated belief the primary motive for his switch was not observational evidence, but the realisation that his static model was unstable.

  10. Cost comparison of continued anticoagulation with rivaroxaban versus placebo based on the 1-year EINSTEIN-Extension trial efficacy and safety results.

    PubMed

    Wells, Philip S; Lensing, Anthonie W A; Haskell, Lloyd; Levitan, Bennett; Laliberté, François; Durkin, Michael; Ashton, Veronica; Xiao, Yongling; Crivera, Concetta; Lejeune, Dominique; Schein, Jeff; Lefebvre, Patrick

    2018-06-01

    The EINSTEIN-Extension trial (EINSTEIN-EXT) found that continued treatment with rivaroxaban for an additional 6 or 12 months (vs placebo) after 6-12 months of initial anticoagulation significantly reduced the risk of recurrent venous thromboembolism (VTE) with a small non-significant increased risk of major bleeding (none fatal or in critical site). This study aimed to compare total healthcare cost between rivaroxaban and placebo, based on the EINSTEIN-EXT event rates. Total healthcare cost was calculated as the sum of treatment and clinical event costs from a US managed care perspective. Treatment duration and event rates were obtained from the EINSTEIN-EXT study. Adjustment on treatment duration was made by assuming a 10% non-adherence rate. Drug costs were based on wholesale acquisition costs. Cost estimates for clinical events (i.e. recurrent deep vein thrombosis [DVT], recurrent pulmonary embolism, major bleeding, clinically relevant non-major bleeding) were determined from the literature. Results were examined over a ±20% range of each cost component and over 95% confidence intervals (CIs) of event rate differences in deterministic (one-way) and probabilistic sensitivity analyses (PSA). Total healthcare cost was $1,454 lower for rivaroxaban-treated (vs placebo-treated) patients in the base-case, with a lower clinical event cost fully offsetting drug cost. The cost savings of recurrent DVT alone (-$3,102) was greater than drug cost ($2,723). Total healthcare cost remained lower for rivaroxaban in the majority (73%) of PSA (cost difference [95% CI] = -$1,454 [-$2,396, $1,231]). This study was conducted over the 1-year observation period of the EINSTEIN-EXT trial, which limited "real-world" applicability and examination of long-term economic impact. Assumptions on drug and clinical event costs were US-based and, thus, not applicable to other healthcare systems. Total healthcare costs were estimated to be lower for patients continuing rivaroxaban therapy compared to those receiving placebo in VTE patients who had completed 6-12 months of VTE treatment.

  11. Einstein Up in Smoke

    NASA Astrophysics Data System (ADS)

    Lisle, John

    2016-01-01

    Albert Einstein's biographers have not explained why he developed the abdominal aortic aneurysm that led to his death. Early conjectures proposed that it was caused by syphilis, without accurate evidence. The present article gives evidence to the contrary, and argues that the principal cause of Einstein's death was smoking.

  12. Einstein's First Steps Toward General Relativity: Gedanken Experiments and Axiomatics

    NASA Astrophysics Data System (ADS)

    Miller, A. I.

    1999-03-01

    Albert Einstein's 1907 Jahrbuch paper is an extraordinary document because it contains his first steps toward generalizing the 1905 relativity theory to include gravitation. Ignoring the apparent experimental disconfirmation of the 1905 relativity theory and his unsuccessful attempts to generalize the mass-energy equivalence, Einstein boldly raises the mass-energy equivalence to an axiom, invokes equality between gravitational and inertial masses, and then postulates the equivalence between a uniform gravitational field and an oppositely directed constant acceleration, the equivalence principle. How did this come about? What is at issue is scientific creativity. This necessitates broadening historical analysis to include aspects of cognitive science such as the role of visual imagery in Einstein's thinking, and the relation between conscious and unconscious modes of thought in problem solving. This method reveals the catalysts that sparked a Gedanken experiment that occurred to Einstein while working on the Jahrbuch paper. A mental model is presented to further explore Einstein's profound scientific discovery.

  13. What Costs Do Reveal and Moving Beyond the Cost Debate: Reply to Einstein and McDaniel (in press)

    PubMed Central

    Smith, Rebekah E.

    2010-01-01

    Einstein et al., (2005) predicted no cost to an ongoing task when a prospective memory task meet certain criteria. Smith et al. (2007) used prospective memory tasks that met these criteria and found a cost to the ongoing task, contrary to Einstein et al.'s prediction. Einstein and McDaniel (in press) correctly note that there are limitations to using ongoing task performance as a measure of the processes that contribute to prospective memory performance, however, the alternatives suggested by Einstein and McDaniel all focus on ongoing task performance and therefore do not move beyond the cost debate. This article describes why the Smith et al. findings are important, provides recommendations for issues to consider when investigating cost, and discusses individual cost measures. Finally, noting the blurry distinction between Einstein and McDaniel's description of the reflexive associative processes and preparatory attentional processes and difficulties in extending the multiprocess view to nonlaboratory tasks, suggestions are made for moving beyond the cost debate. PMID:20852726

  14. Transformations between Jordan and Einstein frames: Bounces, antigravity, and crossing singularities

    NASA Astrophysics Data System (ADS)

    Kamenshchik, Alexander Yu.; Pozdeeva, Ekaterina O.; Vernov, Sergey Yu.; Tronconi, Alessandro; Venturi, Giovanni

    2016-09-01

    We study the relation between the Jordan-Einstein frame transition and the possible description of the crossing of singularities in flat Friedmann universes, using the fact that the regular evolution in one frame can correspond to crossing singularities in the other frame. We show that some interesting effects arise in simple models such as one with a massless scalar field or another wherein the potential is constant in the Einstein frame. The dynamics in these models and in their conformally coupled counterparts are described in detail, and a method for the continuation of such cosmological evolutions beyond the singularity is developed. We compare our approach with some other, recently developed, approaches to the problem of the crossing of singularities.

  15. Einstein coefficients and oscillator strengths for low lying state of CO molecules

    NASA Astrophysics Data System (ADS)

    Swer, S.; Syiemiong, A.; Ram, M.; Jha, A. K.; Saxena, A.

    2018-04-01

    Einstein Coefficients and Oscillator Strengths for different state of CO molecule have been calculated using LEROY'S LEVEL program and MOLCAS ab initio code. Using the wave function derived from Morse potential and transition dipole moment obtained from ab initio calculation, The potential energy functions were computed for these states using the spectroscopic constants. The Morse potential of these states and electronic transition dipole moment of the transition calculated in a recent ab initio study have been used in LEVEL program to produce transition dipole matrix element for a large number of bands. Einstein Coefficients have also been used to compute the radiative lifetimes of several vibrational levels and the calculated values are compared with other theoretical results and experimental values.

  16. Stability of Einstein static universe in gravity theory with a non-minimal derivative coupling

    NASA Astrophysics Data System (ADS)

    Huang, Qihong; Wu, Puxun; Yu, Hongwei

    2018-01-01

    The emergent mechanism provides a possible way to resolve the big-bang singularity problem by assuming that our universe originates from the Einstein static (ES) state. Thus, the existence of a stable ES solution becomes a very crucial prerequisite for the emergent scenario. In this paper, we study the stability of an ES universe in gravity theory with a non-minimal coupling between the kinetic term of a scalar field and the Einstein tensor. We find that the ES solution is stable under both scalar and tensor perturbations when the model parameters satisfy certain conditions, which indicates that the big-bang singularity can be avoided successfully by the emergent mechanism in the non-minimally kinetic coupled gravity.

  17. Experimental study of the role of trap symmetry in an atom-chip interferometer above the Bose–Einstein condensation threshold

    NASA Astrophysics Data System (ADS)

    Dupont-Nivet, M.; Demur, R.; Westbrook, C. I.; Schwartz, S.

    2018-04-01

    We report the experimental study of an atom-chip interferometer using ultracold rubidium 87 atoms above the Bose–Einstein condensation threshold. The observed dependence of the contrast decay time with temperature and with the degree of symmetry of the traps during the interferometer sequence is in good agreement with theoretical predictions published in Dupont-Nivet et al (2016 New J. Phys. 18 113012). These results pave the way for precision measurements with trapped thermal atoms.

  18. Transport properties and Stokes-Einstein relation in Al-rich liquid alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jakse, N.; Pasturel, A.

    We use ab initio molecular dynamics simulations to study the transport properties and the validity of the Stokes-Einstein relation in Al-rich liquid alloys with Ni, Cu, and Zn as alloying elements. First, we show that the composition and temperature dependence of their transport properties present different behaviors, which can be related to their local structural ordering. Then, we evidence that the competition between the local icosahedral ordering and the local chemical ordering may cause the breakdown of the Stokes–Einstein relation even in the liquid phase. We demonstrate that this breakdown can be captured by entropy-scaling relationships developed by Rosenfeld andmore » using the two-body excess entropy. Our findings provide a unique framework to study the relation between structure, thermodynamics, and dynamics in metallic melts and pave the way towards the explanation of various complex transport properties in metallic melts.« less

  19. Transport properties and Stokes-Einstein relation in Al-rich liquid alloys

    NASA Astrophysics Data System (ADS)

    Jakse, N.; Pasturel, A.

    2016-06-01

    We use ab initio molecular dynamics simulations to study the transport properties and the validity of the Stokes-Einstein relation in Al-rich liquid alloys with Ni, Cu, and Zn as alloying elements. First, we show that the composition and temperature dependence of their transport properties present different behaviors, which can be related to their local structural ordering. Then, we evidence that the competition between the local icosahedral ordering and the local chemical ordering may cause the breakdown of the Stokes-Einstein relation even in the liquid phase. We demonstrate that this breakdown can be captured by entropy-scaling relationships developed by Rosenfeld and using the two-body excess entropy. Our findings provide a unique framework to study the relation between structure, thermodynamics, and dynamics in metallic melts and pave the way towards the explanation of various complex transport properties in metallic melts.

  20. Quantum Mechanics of the Einstein-Hopf Model.

    ERIC Educational Resources Information Center

    Milonni, P. W.

    1981-01-01

    The Einstein-Hopf model for the thermodynamic equilibrium between the electromagnetic field and dipole oscillators is considered within the framework of quantum mechanics. Both the wave and particle aspects of the Einstein fluctuation formula are interpreted in terms of the fundamental absorption and emission processes. (Author/SK)

  1. Einstein and the "Crucial" Experiment

    ERIC Educational Resources Information Center

    Holton, Gerald

    1969-01-01

    Examines the widespread view that it was the crucial Michelson-Morley experiment that led Einstein to formulate the special relativity theory. From Einstein's writings, evidence is presented that no such direct genetic connection exists. The author suggests that the historian of science must resist the experimenticist's fallacy of imposing a…

  2. Einstein Meets Hilbert: At the Crossroads of Physics and Mathematics

    NASA Astrophysics Data System (ADS)

    Rowe, David E.

    One of the most famous episodes in the early history of general relativity involves the ``race'' in November 1915 between Albert Einstein and David Hilbert to uncover the ``correct'' form for the ten gravitational field equations. In light of recent archival findings, however, this story now has become a topic of renewed interest and controversy among historians of physics and mathematics. Drawing on recent studies and newly found sources, the present essay takes up this familiar tale from a new perspective, one that has seldom received due attention in the standard literature, namely, the mathematical issues at the heart of Einstein's theory. Told from this angle, the leading actors are Einstein's collaborator Marcel Grossmann, his critic Tullio Levi-Civita, his competitor David Hilbert, and several other mathematicians, many of them connected with Hilbert's Göttingen colleagues such as Hermann Weyl, Felix Klein, and Emmy Noether. As Einstein was the first to admit, Göttingen was far more important than Berlin as an active center for research in general relativity. Any account which, like this one, tries to understand both the actions and motives of the leading players must confront the problem of interpreting the rather sparse documentary evidence available. The interpretation offered herein, whatever its merits, aims first and foremost to show how mathematical issues deeply permeated the early history of general relativity.

  3. The Einstein-Brazil Fogarty: A decade of synergy.

    PubMed

    Nosanchuk, Joshua D; Nosanchuk, Murphy D; Rodrigues, Marcio L; Nimrichter, Leonardo; Carvalho, Antonio C Campos de; Weiss, Louis M; Spray, David C; Tanowitz, Herbert B

    2015-01-01

    A rich, collaborative program funded by the US NIH Fogarty program in 2004 has provided for a decade of remarkable opportunities for scientific advancement through the training of Brazilian undergraduate, graduate and postdoctoral students from the Federal University and Oswaldo Cruz Foundation systems at Albert Einstein College of Medicine. The focus of the program has been on the development of trainees in the broad field of Infectious Diseases, with a particular focus on diseases of importance to the Brazilian population. Talented trainees from various regions in Brazil came to Einstein to learn techniques and study fungal, parasitic and bacterial pathogens. In total, 43 trainees enthusiastically participated in the program. In addition to laboratory work, these students took a variety of courses at Einstein, presented their results at local, national and international meetings, and productively published their findings. This program has led to a remarkable synergy of scientific discovery for the participants during a time of rapid acceleration of the scientific growth in Brazil. This collaboration between Brazilian and US scientists has benefitted both countries and serves as a model for future training programs between these countries.

  4. The Einstein-Brazil Fogarty: A decade of synergy

    PubMed Central

    Nosanchuk, Joshua D.; Nosanchuk, Murphy D.; Rodrigues, Marcio L.; Nimrichter, Leonardo; de Carvalho, Antonio C. Campos; Weiss, Louis M.; Spray, David C.; Tanowitz, Herbert B.

    2015-01-01

    Abstract A rich, collaborative program funded by the US NIH Fogarty program in 2004 has provided for a decade of remarkable opportunities for scientific advancement through the training of Brazilian undergraduate, graduate and postdoctoral students from the Federal University and Oswaldo Cruz Foundation systems at Albert Einstein College of Medicine. The focus of the program has been on the development of trainees in the broad field of Infectious Diseases, with a particular focus on diseases of importance to the Brazilian population. Talented trainees from various regions in Brazil came to Einstein to learn techniques and study fungal, parasitic and bacterial pathogens. In total, 43 trainees enthusiastically participated in the program. In addition to laboratory work, these students took a variety of courses at Einstein, presented their results at local, national and international meetings, and productively published their findings. This program has led to a remarkable synergy of scientific discovery for the participants during a time of rapid acceleration of the scientific growth in Brazil. This collaboration between Brazilian and US scientists has benefitted both countries and serves as a model for future training programs between these countries. PMID:26691452

  5. Einstein as a Missionary of Science

    ERIC Educational Resources Information Center

    Renn, Jürgen

    2013-01-01

    The paper reviews Einstein's engagement as a mediator and popularizer of science. It discusses the formative role of popular scientific literature for the young Einstein, showing that not only his broad scientific outlook but also his internationalist political views were shaped by these readings. Then, on the basis of recent detailed…

  6. Einstein for Everyone

    ScienceCinema

    Piccioni, Robert

    2018-04-25

    Young Einstein was a rebel who seemed doomed to fail. How did he overcome rejection to become the most famous scientist in history? We will discuss and explain all his theories in plain English and without math, and we will discover how Einstein's achievements impact our lives through DVDs, GPS, iPods, computers and green energy.

  7. Einstein for Everyone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piccioni, Robert

    2010-10-05

    Young Einstein was a rebel who seemed doomed to fail. How did he overcome rejection to become the most famous scientist in history? We will discuss and explain all his theories in plain English and without math, and we will discover how Einstein's achievements impact our lives through DVDs, GPS, iPods, computers and green energy.

  8. Einsteins Spuren in den Archiven der Wissenschaft: Physikgeschichte

    NASA Astrophysics Data System (ADS)

    Marx, Werner

    2005-07-01

    Die Erwähnungen und Zitierungen von Einsteins Arbeiten dokumentieren lediglich den quantifizierbaren Anteil von Einsteins Beitrag zur Physik. Gleichwohl belegen sie die außergewöhnliche Resonanz und Langzeitwirkung seiner Arbeiten. Die Häufigkeit der Zitierungen entspricht nicht der allgemeinen Einschätzung ihrer Bedeutung. Insbesondere die Pionierarbeiten werden inzwischen als bekannt vorausgesetzt und nicht mehr explizit zitiert. Interessanterweise ist seine nach 1945 meist zitierte Arbeit nicht eine der Pionierarbeiten zur Quantenphysik oder Relativitätstheorie, sondern jene aus dem Jahr 1935 zum berühmten Einstein-Podolsky-Rosen-Paradoxon.

  9. Einstein: A Historical Perspective

    NASA Astrophysics Data System (ADS)

    Kormos-Buchwald, Diana

    2015-04-01

    In late 1915, Albert Einstein (1879-1955) completed as series of papers on a generalized theory of gravitation that were to constitute a major conceptual change in the history of modern physics and the crowning achievement of his scientific career. But this accomplishment came after a decade of intense intellectual struggle and was received with muted enthusiasm. Einstein's previously unpublished writings and massive correspondence, edited by the Einstein Papers Project, provide vivid insights into the historical, personal, and scientific context of the formulation, completion, and reception of GR during the first decades of the 20th century.

  10. Non-naturally reductive Einstein metrics on exceptional Lie groups

    NASA Astrophysics Data System (ADS)

    Chrysikos, Ioannis; Sakane, Yusuke

    2017-06-01

    Given an exceptional compact simple Lie group G we describe new left-invariant Einstein metrics which are not naturally reductive. In particular, we consider fibrations of G over flag manifolds with a certain kind of isotropy representation and we construct the Einstein equation with respect to the induced left-invariant metrics. Then we apply a technique based on Gröbner bases and classify the real solutions of the associated algebraic systems. For the Lie group G2 we obtain the first known example of a left-invariant Einstein metric, which is not naturally reductive. Moreover, for the Lie groups E7 and E8, we conclude that there exist non-isometric non-naturally reductive Einstein metrics, which are Ad(K) -invariant by different Lie subgroups K.

  11. How History Helped Einstein in Special Relativity

    NASA Astrophysics Data System (ADS)

    Martinez, Alberto

    2013-04-01

    I will discuss how the German intellectual movement known as ``critical history'' motivated several physicists in the late 1900s to radically analyze the fundamental principles of mechanics, leading eventually to Einstein's special theory of relativity. Eugen Karl Dühring, Johann Bernhard Stallo, Ludwig Lange, and Ernst Mach wrote critical histories of mechanics, some of which emphasized notions of relativity and observation, in opposition to old metaphysical concepts that seemed to infect the foundations of physics. This strand of critical history included the ``genetic method'' of analyzing how concepts develop over time, in our minds, by way of ordinary experiences, which by 1904 was young Albert Einstein's favorite approach for examining fundamental notions. Thus I will discuss how history contributed in Einstein's path to relativity, as well as comment more generally on Einstein's views on history.

  12. Einstein Critical-Slowing-Down is Siegel CyberWar Denial-of-Access Queuing/Pinning/ Jamming/Aikido Via Siegel DIGIT-Physics BEC ``Intersection''-BECOME-UNION Barabasi Network/GRAPH-Physics BEC: Strutt/Rayleigh-Siegel Percolation GLOBALITY-to-LOCALITY Phase-Transition Critical-Phenomenon

    NASA Astrophysics Data System (ADS)

    Buick, Otto; Falcon, Pat; Alexander, G.; Siegel, Edward Carl-Ludwig

    2013-03-01

    Einstein[Dover(03)] critical-slowing-down(CSD)[Pais, Subtle in The Lord; Life & Sci. of Albert Einstein(81)] is Siegel CyberWar denial-of-access(DOA) operations-research queuing theory/pinning/jamming/.../Read [Aikido, Aikibojitsu & Natural-Law(90)]/Aikido(!!!) phase-transition critical-phenomenon via Siegel DIGIT-Physics (Newcomb[Am.J.Math. 4,39(1881)]-{Planck[(1901)]-Einstein[(1905)])-Poincare[Calcul Probabilités(12)-p.313]-Weyl [Goett.Nachr.(14); Math.Ann.77,313 (16)]-{Bose[(24)-Einstein[(25)]-Fermi[(27)]-Dirac[(1927)]}-``Benford''[Proc.Am.Phil.Soc. 78,4,551 (38)]-Kac[Maths.Stat.-Reasoning(55)]-Raimi[Sci.Am. 221,109 (69)...]-Jech[preprint, PSU(95)]-Hill[Proc.AMS 123,3,887(95)]-Browne[NYT(8/98)]-Antonoff-Smith-Siegel[AMS Joint-Mtg.,S.-D.(02)] algebraic-inversion to yield ONLY BOSE-EINSTEIN QUANTUM-statistics (BEQS) with ZERO-digit Bose-Einstein CONDENSATION(BEC) ``INTERSECTION''-BECOME-UNION to Barabasi[PRL 876,5632(01); Rev.Mod.Phys.74,47(02)...] Network /Net/GRAPH(!!!)-physics BEC: Strutt/Rayleigh(1881)-Polya(21)-``Anderson''(58)-Siegel[J.Non-crystalline-Sol.40,453(80)

  13. Helping All Students Become Einstein's Using Bibliotherapy When Teaching Mathematics to Prepare Students for a STEM World

    ERIC Educational Resources Information Center

    Furner, Joseph M.

    2017-01-01

    Today, being confident and having a sound understanding of mathematics is critical in an age of STEM. Teachers must play in important role in seeing that all students display their confidence in their ability to do mathematics. This paper explains the process of using bibliotherapy when teaching mathematics to address both the math anxious or the…

  14. Holographic superconductors in Einstein-æther gravity

    NASA Astrophysics Data System (ADS)

    Lin, Kai; Wu, Yumei

    2017-11-01

    In this paper, we apply Anti-de Sitter (AdS) black hole solution of the Einstein-æther theory to the study of the holographic superconductor and show that the AdS black hole solution can be rewritten in some very simple forms, from which it is easy to identify the locations of various killing horizons. Then, we investigate the different effects of these horizons on the holographic superconductor.

  15. Theoretical Dipole Moment for the X211 State of NO

    NASA Technical Reports Server (NTRS)

    Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.; Partridge, Harry; Arnold, James O. (Technical Monitor)

    1994-01-01

    The dipole moment function for the X(sup 2)II state of NO is studied as a function of the completeness in both the one- and n-particle spaces. Einstein coefficients are presented that are significantly more accurate than previous tabulations for the higher vibrational levels. The theoretical values give considerable insight into the limitations of recently published ratios of Einstein coefficients measured by spectrally resolved infrared chemiluminescence.

  16. The Einstein-Hilbert gravitation with minimum length

    NASA Astrophysics Data System (ADS)

    Louzada, H. L. C.

    2018-05-01

    We study the Einstein-Hilbert gravitation with the deformed Heisenberg algebra leading to the minimum length, with the intention to find and estimate the corrections in this theory, clarifying whether or not it is possible to obtain, by means of the minimum length, a theory, in D=4, which is causal, unitary and provides a massive graviton. Therefore, we will calculate and analyze the dispersion relationships of the considered theory.

  17. Exact solutions to quadratic gravity

    NASA Astrophysics Data System (ADS)

    Pravda, V.; Pravdová, A.; Podolský, J.; Švarc, R.

    2017-04-01

    Since all Einstein spacetimes are vacuum solutions to quadratic gravity in four dimensions, in this paper we study various aspects of non-Einstein vacuum solutions to this theory. Most such known solutions are of traceless Ricci and Petrov type N with a constant Ricci scalar. Thus we assume the Ricci scalar to be constant which leads to a substantial simplification of the field equations. We prove that a vacuum solution to quadratic gravity with traceless Ricci tensor of type N and aligned Weyl tensor of any Petrov type is necessarily a Kundt spacetime. This will considerably simplify the search for new non-Einstein solutions. Similarly, a vacuum solution to quadratic gravity with traceless Ricci type III and aligned Weyl tensor of Petrov type II or more special is again necessarily a Kundt spacetime. Then we study the general role of conformal transformations in constructing vacuum solutions to quadratic gravity. We find that such solutions can be obtained by solving one nonlinear partial differential equation for a conformal factor on any Einstein spacetime or, more generally, on any background with vanishing Bach tensor. In particular, we show that all geometries conformal to Kundt are either Kundt or Robinson-Trautman, and we provide some explicit Kundt and Robinson-Trautman solutions to quadratic gravity by solving the above mentioned equation on certain Kundt backgrounds.

  18. From the Classroom to Washington: Einsteins on Education Reform

    ERIC Educational Resources Information Center

    Hughes, Kent H., Ed.; Byers, Elizabeth A., Ed.

    2010-01-01

    The Woodrow Wilson International Center for Scholars was delighted to host a group of current and former Albert Einstein Distinguished Educator Fellows as they celebrated the 20th anniversary of the fellowship program. Outstanding math and science teachers in America's K-12 schools, the Einstein Fellows spend a year (or sometimes two) working on…

  19. What Einstein Can Teach Us about Education

    ERIC Educational Resources Information Center

    Hayes, Denis

    2007-01-01

    People are more likely to associate Einstein with complex scientific theories and mathematical calculations than with education theory. In fact, Einstein's own experiences of schooling and his reflections on the meaning of life and the significance of education are profound and oddly relevant to the situation that pertains in England today. It is…

  20. Derivation of Einstein-Cartan theory from general relativity

    NASA Astrophysics Data System (ADS)

    Petti, Richard

    2015-04-01

    General relativity cannot describe exchange of classical intrinsic angular momentum and orbital angular momentum. Einstein-Cartan theory fixes this problem in the least invasive way. In the late 20th century, the consensus view was that Einstein-Cartan theory requires inclusion of torsion without adequate justification, it has no empirical support (though it doesn't conflict with any known evidence), it solves no important problem, and it complicates gravitational theory with no compensating benefit. In 1986 the author published a derivation of Einstein-Cartan theory from general relativity, with no additional assumptions or parameters. Starting without torsion, Poincaré symmetry, classical or quantum spin, or spinors, it derives torsion and its relation to spin from a continuum limit of general relativistic solutions. The present work makes the case that this computation, combined with supporting arguments, constitutes a derivation of Einstein-Cartan theory from general relativity, not just a plausibility argument. This paper adds more and simpler explanations, more computational details, correction of a factor of 2, discussion of limitations of the derivation, and discussion of some areas of gravitational research where Einstein-Cartan theory is relevant.

  1. q-deformed Einstein's model to describe specific heat of solid

    NASA Astrophysics Data System (ADS)

    Guha, Atanu; Das, Prasanta Kumar

    2018-04-01

    Realistic phenomena can be described more appropriately using generalized canonical ensemble, with proper parameter sets involved. We have generalized the Einstein's theory for specific heat of solid in Tsallis statistics, where the temperature fluctuation is introduced into the theory via the fluctuation parameter q. At low temperature the Einstein's curve of the specific heat in the nonextensive Tsallis scenario exactly lies on the experimental data points. Consequently this q-modified Einstein's curve is found to be overlapping with the one predicted by Debye. Considering only the temperature fluctuation effect(even without considering more than one mode of vibration is being triggered) we found that the CV vs T curve is as good as obtained by considering the different modes of vibration as suggested by Debye. Generalizing the Einstein's theory in Tsallis statistics we found that a unique value of the Einstein temperature θE along with a temperature dependent deformation parameter q(T) , can well describe the phenomena of specific heat of solid i.e. the theory is equivalent to Debye's theory with a temperature dependent θD.

  2. Can the Stark-Einstein law resolve the measurement problem from an animate perspective?

    PubMed

    Thaheld, Fred H

    2015-09-01

    Analysis of the Stark-Einstein law as it applies to the retinal molecule, which is part of the rhodopsin molecule within the rod cells of the retina, reveals that it may provide the solution to the measurement problem from an animate perspective. That it represents a natural boundary where the Schrödinger equation or wave function automatically goes from linear to nonlinear while remaining in a deterministic state. It will be possible in the near future to subject this theory to empirical tests as has been previously proposed. This analysis provides a contrast to the many decades well studied and debated inanimate measurement problem and would represent an addition to the Stark-Einstein law involving information carried by the photon. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. Characteristics of sediment transport at selected sites along the Missouri River, 2011–12

    USGS Publications Warehouse

    Rus, David L.; Galloway, Joel M.; Alexander, Jason S.

    2015-10-22

    The Modified-Einstein Procedure tended to predict greater total-sediment loads when compared to measured values. These differences may be the result of sediment deficits in the Missouri River that lead to an overprediction by the Modified-Einstein Procedure, the unsampled zone above the streambed that leads to an underprediction by the suspended sampler, or general uncertainty in the sampling approach. The differences between total-sediment load obtained through measurements and that estimated from applied theoretical procedures such as the Modified-Einstein Procedure pose a challenge for reliably characterizing total-sediment transport. Though it is not clear which of the two techniques is more accurate, the general tendency of the two to be within an order of magnitude of one another may be adequate for many sediment studies.

  4. Induced matter brane gravity and Einstein static universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heydarzade, Y.; Darabi, F., E-mail: heydarzade@azaruniv.edu, E-mail: f.darabi@azaruniv.edu

    We investigate stability of the Einstein static universe against the scalar, vector and tensor perturbations in the context of induced matter brane gravity. It is shown that in the framework of this model, the Einstein static universe has a positive spatial curvature. In contrast to the classical general relativity, it is found that a stable Einstein static universe against the scalar perturbations does exist provided that the variation of time dependent geometrical equation of state parameter is proportional to the minus of the variation of the scale factor, δ ω{sub g}(t) = −Cδ a(t). We obtain neutral stability against the vector perturbations, and themore » stability against the tensor perturbations is guaranteed due to the positivity of the spatial curvature of the Einstein static universe in induced matter brane gravity.« less

  5. Why did Einstein reject the November tensor in 1912-1913, only to come back to it in November 1915?

    NASA Astrophysics Data System (ADS)

    Weinstein, Galina

    2018-05-01

    The question of Einstein's rejection of the November tensor is re-examined in light of conflicting answers by several historians. I discuss these conflicting conjectures in view of three questions that should inform our thinking: Why did Einstein reject the November tensor in 1912, only to come back to it in 1915? Why was it hard for Einstein to recognize that the November tensor is a natural generalization of Newton's law of gravitation? Why did it take him three years to realize that the November tensor is not incompatible with Newton's law? I first briefly describe Einstein's work in the Zurich Notebook. I then discuss a number of interpretive conjectures formulated by historians and what may be inferred from them. Finally, I offer a new combined conjecture that answers the above questions.

  6. Entanglement Equilibrium and the Einstein Equation.

    PubMed

    Jacobson, Ted

    2016-05-20

    A link between the semiclassical Einstein equation and a maximal vacuum entanglement hypothesis is established. The hypothesis asserts that entanglement entropy in small geodesic balls is maximized at fixed volume in a locally maximally symmetric vacuum state of geometry and quantum fields. A qualitative argument suggests that the Einstein equation implies the validity of the hypothesis. A more precise argument shows that, for first-order variations of the local vacuum state of conformal quantum fields, the vacuum entanglement is stationary if and only if the Einstein equation holds. For nonconformal fields, the same conclusion follows modulo a conjecture about the variation of entanglement entropy.

  7. Hidden Symmetries of Euclideanised Kerr-NUT-(A)dS Metrics in Certain Scaling Limits

    NASA Astrophysics Data System (ADS)

    Visinescu, Mihai; Vîlcu, Eduard

    2012-08-01

    The hidden symmetries of higher dimensional Kerr-NUT-(A)dS metrics are investigated. In certain scaling limits these metrics are related to the Einstein-Sasaki ones. The complete set of Killing-Yano tensors of the Einstein-Sasaki spaces are presented. For this purpose the Killing forms of the Calabi-Yau cone over the Einstein-Sasaki manifold are constructed. Two new Killing forms on Einstein-Sasaki manifolds are identified associated with the complex volume form of the cone manifolds. Finally the Killing forms on mixed 3-Sasaki manifolds are briefly described.

  8. All ASD complex and real 4-dimensional Einstein spaces with Λ≠0 admitting a nonnull Killing vector

    NASA Astrophysics Data System (ADS)

    Chudecki, Adam

    2016-12-01

    Anti-self-dual (ASD) 4-dimensional complex Einstein spaces with nonzero cosmological constant Λ equipped with a nonnull Killing vector are considered. It is shown that any conformally nonflat metric of such spaces can be always brought to a special form and the Einstein field equations can be reduced to the Boyer-Finley-Plebański equation (Toda field equation). Some alternative forms of the metric are discussed. All possible real slices (neutral, Euclidean and Lorentzian) of ASD complex Einstein spaces with Λ≠0 admitting a nonnull Killing vector are found.

  9. Position and Momentum Entanglement of Dipole-Dipole Interacting Atoms in Optical Lattices

    NASA Astrophysics Data System (ADS)

    Opatrný, T.; Kolář, M.; Kurizki, G.

    We consider a possible realization of the position- and momentum-correlated atomic pairs that are confined to adjacent sites of two mutually shifted optical lattices and are entangled via laser-induced dipole-dipole interactions. The Einstein-Podolsky-Rosen (EPR) "paradox" [Einstein 1935] with translational variables is then modified by lattice-diffraction effects. We study a possible mechanism of creating such diatom entangled states by varying the effective mass of the atoms.

  10. Evolution of a dark soliton in a parabolic potential: Application to Bose-Einstein condensates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brazhnyi, V.A.; Konotop, V.V.

    2003-10-01

    Evolution of a dark soliton in a one-dimensional Bose-Einstein condensate trapped by a harmonic potential is studied analytically and numerically. In the case of a deep soliton, main characteristics of its motion such as frequency and amplitude of oscillations are calculated by means of the perturbation theory which in the leading order results in a Newtonian dynamics, corrections to which are computed as well.

  11. Bose-Einstein condensation and independent production of pions

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Zalewski, K.

    1998-09-01

    The influence of the HBT effect on the momentum spectra of independently produced pions is studied using the method developed earlier for discussion of multiplicity distributions. It is shown that in this case all the spectra and multiparticle correlation functions are expressible in terms of one function of two momenta. It is also shown that at the critical point all pions are attracted into one quantum state and thus form a Bose-Einstein condensate.

  12. Scattering amplitudes in $$\\mathcal{N}=2 $$ Maxwell-Einstein and Yang-Mills/Einstein supergravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiodaroli, Marco; Gunaydin, Murat; Johansson, Henrik

    We expose a double-copy structure in the scattering amplitudes of the generic Jordan family of N = 2 Maxwell-Einstein and Yang-Mills/Einstein supergravity theories in four and five dimensions. The Maxwell-Einstein supergravity amplitudes are obtained through the color/kinematics duality as a product of two gauge-theory factors; one originating from pure N = 2 super-Yang-Mills theory and the other from the dimensional reduction of a bosonic higher-dimensional pure Yang-Mills theory. We identify a specific symplectic frame in four dimensions for which the on-shell fields and amplitudes from the double-copy construction can be identified with the ones obtained from the supergravity Lagrangian andmore » Feynman-rule computations. The Yang-Mills/Einstein supergravity theories are obtained by gauging a compact subgroup of the isometry group of their Maxwell-Einstein counterparts. For the generic Jordan family this process is identified with the introduction of cubic scalar couplings on the bosonic gauge-theory side, which through the double copy are responsible for the non-abelian vector interactions in the supergravity theory. As a demonstration of the power of this structure, we present explicit computations at treelevel and one loop. Lastly, the double-copy construction allows us to obtain compact expressions for the supergravity superamplitudes, which are naturally organized as polynomials in the gauge coupling constant.« less

  13. Implementing competency based admissions at the Albert Einstein College of Medicine.

    PubMed

    Kerrigan, Noreen; Akabas, Myles H; Betzler, Thomas F; Castaldi, Maria; Kelly, Mary S; Levy, Adam S; Reichgott, Michael J; Ruberman, Louise; Dolan, Siobhan M

    2016-01-01

    The Albert Einstein College of Medicine (Einstein) was founded in 1955 during an era of limited access to medical school for women, racial minorities, and many religious and ethnic groups. Located in the Bronx, NY, Einstein seeks to educate physicians in an environment of state-of-the-art scientific inquiry while simultaneously fulfilling a deep commitment to serve its community by providing the highest quality clinical care. A founding principle of Einstein, the basis upon which Professor Einstein agreed to allow the use of his name, was that admission to the student body would be based entirely on merit. To accomplish this, Einstein has long used a 'holistic' approach to the evaluation of its applicants, actively seeking a diverse student body. More recently, in order to improve its ability to identify students with the potential to be outstanding physicians, who will both advance medical knowledge and serve the pressing health needs of a diverse community, the Committee on Admissions reexamined and restructured the requirements for admission. These have now been categorized as four 'Admissions Competencies' that an applicant must demonstrate. They include: 1) cocurricular activities and relevant experiences; 2) communication skills; 3) personal and professional development; and 4) knowledge. The purpose of this article is to describe the process that resulted in the introduction and implementation of this competency based approach to the admission process.

  14. Scattering amplitudes in $$\\mathcal{N}=2 $$ Maxwell-Einstein and Yang-Mills/Einstein supergravity

    DOE PAGES

    Chiodaroli, Marco; Gunaydin, Murat; Johansson, Henrik; ...

    2015-01-15

    We expose a double-copy structure in the scattering amplitudes of the generic Jordan family of N = 2 Maxwell-Einstein and Yang-Mills/Einstein supergravity theories in four and five dimensions. The Maxwell-Einstein supergravity amplitudes are obtained through the color/kinematics duality as a product of two gauge-theory factors; one originating from pure N = 2 super-Yang-Mills theory and the other from the dimensional reduction of a bosonic higher-dimensional pure Yang-Mills theory. We identify a specific symplectic frame in four dimensions for which the on-shell fields and amplitudes from the double-copy construction can be identified with the ones obtained from the supergravity Lagrangian andmore » Feynman-rule computations. The Yang-Mills/Einstein supergravity theories are obtained by gauging a compact subgroup of the isometry group of their Maxwell-Einstein counterparts. For the generic Jordan family this process is identified with the introduction of cubic scalar couplings on the bosonic gauge-theory side, which through the double copy are responsible for the non-abelian vector interactions in the supergravity theory. As a demonstration of the power of this structure, we present explicit computations at treelevel and one loop. Lastly, the double-copy construction allows us to obtain compact expressions for the supergravity superamplitudes, which are naturally organized as polynomials in the gauge coupling constant.« less

  15. Sonic horizon formation for oscillating Bose-Einstein condensates in isotropic harmonic potential

    PubMed Central

    Wang, Ying; Zhou, Yu; Zhou, Shuyu

    2016-01-01

    We study the sonic horizon phenomena of the oscillating Bose-Einstein condensates in isotropic harmonic potential. Based on the Gross-Pitaevskii equation model and variational method, we derive the original analytical formula for the criteria and lifetime of the formation of the sonic horizon, demonstrating pictorially the interaction parameter dependence for the occur- rence of the sonic horizon and damping effect of the system distribution width. Our analytical results corroborate quantitatively the particular features of the sonic horizon reported in previous numerical study. PMID:27922129

  16. Causality and a -theorem constraints on Ricci polynomial and Riemann cubic gravities

    NASA Astrophysics Data System (ADS)

    Li, Yue-Zhou; Lü, H.; Wu, Jun-Bao

    2018-01-01

    In this paper, we study Einstein gravity extended with Ricci polynomials and derive the constraints on the coupling constants from the considerations of being ghost-free, exhibiting an a -theorem and maintaining causality. The salient feature is that Einstein metrics with appropriate effective cosmological constants continue to be solutions with the inclusion of such Ricci polynomials and the causality constraint is automatically satisfied. The ghost-free and a -theorem conditions can only be both met starting at the quartic order. We also study these constraints on general Riemann cubic gravities.

  17. The Weak-Coupling of Bose-Einstein Condensates

    NASA Astrophysics Data System (ADS)

    Zhou, Xiao-Ji; Ma, Zao-Yuan; Chen, Xu-Zong; Wang, Yi-Qiu

    2003-04-01

    The coherent characteristics of four trapped Bose-Einstein condensates (BEC) conjunct one by one in a ring shape which is divided by two far off-resonant lasers, are studied. Four coupled Gross-Pitaevskii equations are used to describe the dynamics of the system. Two kinds of self-trapping effects are discussed in the coupled BECs, and the phase diagrams for different initial conditions and different coupling strengths are discussed. This study can be used to determine interaction parameters between atoms in BEC. The project supported by National Natural Science Foundation of China under Grant No. 60271003

  18. Books on Einstein--Collectors' Delight

    ERIC Educational Resources Information Center

    Khoon, Koh Aik; Jalal, Azman; Abd-Shukor, R.; Yatim, Baharudin; Talib, Ibrahim Abu; Daud, Abdul Razak; Samat, Supian

    2009-01-01

    A survey of thirteen books on Einstein is presented. Its gives an idea on how much is written about the man and how frequent are the publications. The year 2005 saw the most publications. It is the centenary for the Miraculous Year. Interestingly some books can just sustain their readers' interest with just words. Einstein comes alive with the…

  19. On the Classical Roots of the Einstein-Podolsky-Rosen Paradox

    ERIC Educational Resources Information Center

    Lando, A.; Bringuier, E.

    2008-01-01

    The 1935 debate opposing Einstein, Podolsky and Rosen to Bohr elicited so many comments and developments, both theoretical and experimental, until this day, that the main point at stake at that time can be overlooked by modern readers, especially students. This paper draws the reader's attention to the historical background of Einstein's paper and…

  20. A Demonstration of Einstein's Equivalence of Gravity and Acceleration

    ERIC Educational Resources Information Center

    Newburgh, Ronald

    2008-01-01

    In 1907, Einstein described a "Gedankenexperiment" in which he showed that free fall in a gravitational field is indistinguishable from a body at rest in an elevator accelerated upwards in zero gravity. This paper describes an apparatus, which is simple to make and simple to operate, that acts as an observable footnote to Einstein's example. It…

  1. When Art Meets Einstein

    ERIC Educational Resources Information Center

    Science Scope, 2006

    2006-01-01

    This article deals with a pale blue sculpture entitled "A New World View", as an homage to the most famous scientist in modern history, Albert Einstein. It has 32 bas-relief squares composed of glass and steel that represent one aspect of the life and legacy of Albert Einstein. Images of children's faces peer out from behind the glass squares,…

  2. Quasi-topological Ricci polynomial gravities

    NASA Astrophysics Data System (ADS)

    Li, Yue-Zhou; Liu, Hai-Shan; Lü, H.

    2018-02-01

    Quasi-topological terms in gravity can be viewed as those that give no contribution to the equations of motion for a special subclass of metric ansätze. They therefore play no rôle in constructing these solutions, but can affect the general perturbations. We consider Einstein gravity extended with Ricci tensor polynomial invariants, which admits Einstein metrics with appropriate effective cosmological constants as its vacuum solutions. We construct three types of quasi-topological gravities. The first type is for the most general static metrics with spherical, toroidal or hyperbolic isometries. The second type is for the special static metrics where g tt g rr is constant. The third type is the linearized quasitopological gravities on the Einstein metrics. We construct and classify results that are either dependent on or independent of dimensions, up to the tenth order. We then consider a subset of these three types and obtain Lovelock-like quasi-topological gravities, that are independent of the dimensions. The linearized gravities on Einstein metrics on all dimensions are simply Einstein and hence ghost free. The theories become quasi-topological on static metrics in one specific dimension, but non-trivial in others. We also focus on the quasi-topological Ricci cubic invariant in four dimensions as a specific example to study its effect on holography, including shear viscosity, thermoelectric DC conductivities and butterfly velocity. In particular, we find that the holographic diffusivity bounds can be violated by the quasi-topological terms, which can induce an extra massive mode that yields a butterfly velocity unbound above.

  3. Gravitational Physics: the birth of a new era

    NASA Astrophysics Data System (ADS)

    Sakellariadou, Mairi

    2017-11-01

    We live the golden age of cosmology, while the era of gravitational astronomy has finally begun. Still, fundamental puzzles remain. Standard cosmology is formulated within the framework of Einstein's General theory of Relativity. Notwithstanding, General Relativity is not adequate to explain the earliest stages of cosmic existence, and cannot provide an explanation for the Big Bang itself. Modern early universe cosmology is in need of a rigorous underpinning in Quantum Gravity.

  4. Montefiore-Einstein Center for the Aging Brain: Preliminary Data.

    PubMed

    Verghese, Joe; Malik, Rubina; Zwerling, Jessica

    2016-11-01

    Given the multifaceted nature of dementia care management, an interdisciplinary comprehensive clinical approach is necessary. We describe our one-year experience with outpatient based dementia care at the Montefiore-Einstein Center for the Aging Brain (CAB) involving an multispecialty team of geriatricians, neurologists, and neuropsychologists, supported by geriatric psychiatrists, physiatrists, and social services. The goals of the CAB is to maximize dementia outcomes, including regular monitoring of patient's health and cognition, education and support to patients, their families and caregivers; initiation of pharmacological and non-pharmacological treatments as appropriate, and the facilitation of access to clinical trials. The CAB follows a consultative model where patients referred to the center receive a comprehensive three step evaluation and management plan from Geriatric, Neuropsychology and Neurology specialists that is shared with patient, caregivers and primary care physicians. Of the 366 patients seen for cognitive complaints in our first year, 71% were women with a mean age of 74 years. Self-identified ethnicity of patients included Caucasian (26%), African-American (25%), Hispanic (18%) and multiracial (5%). Common final diagnoses assigned at the CAB included mild cognitive impairment syndromes (31%), Alzheimer's disease (20%), mixed dementia (11%), vascular dementia (9%), Frontotemporal dementia (4%) and dementia with Lewy bodies (4%). Our one-year progress report indicates that an interdisciplinary clinical dementia care model is feasible in the outpatient setting as well as highly accepted by patients, caregivers and referring physicians. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.

  5. Bose-Einstein condensation in an ultra-hot gas of pumped magnons.

    PubMed

    Serga, Alexander A; Tiberkevich, Vasil S; Sandweg, Christian W; Vasyuchka, Vitaliy I; Bozhko, Dmytro A; Chumak, Andrii V; Neumann, Timo; Obry, Björn; Melkov, Gennadii A; Slavin, Andrei N; Hillebrands, Burkard

    2014-03-11

    Bose-Einstein condensation of quasi-particles such as excitons, polaritons, magnons and photons is a fascinating quantum mechanical phenomenon. Unlike the Bose-Einstein condensation of real particles (like atoms), these processes do not require low temperatures, since the high densities of low-energy quasi-particles needed for the condensate to form can be produced via external pumping. Here we demonstrate that such a pumping can create remarkably high effective temperatures in a narrow spectral region of the lowest energy states in a magnon gas, resulting in strikingly unexpected transitional dynamics of Bose-Einstein magnon condensate: the density of the condensate increases immediately after the external magnon flow is switched off and initially decreases if it is switched on again. This behaviour finds explanation in a nonlinear 'evaporative supercooling' mechanism that couples the low-energy magnons overheated by pumping with all the other thermal magnons, removing the excess heat, and allowing Bose-Einstein condensate formation.

  6. Covariant Conformal Decomposition of Einstein Equations

    NASA Astrophysics Data System (ADS)

    Gourgoulhon, E.; Novak, J.

    It has been shown1,2 that the usual 3+1 form of Einstein's equations may be ill-posed. This result has been previously observed in numerical simulations3,4. We present a 3+1 type formalism inspired by these works to decompose Einstein's equations. This decomposition is motivated by the aim of stable numerical implementation and resolution of the equations. We introduce the conformal 3-``metric'' (scaled by the determinant of the usual 3-metric) which is a tensor density of weight -2/3. The Einstein equations are then derived in terms of this ``metric'', of the conformal extrinsic curvature and in terms of the associated derivative. We also introduce a flat 3-metric (the asymptotic metric for isolated systems) and the associated derivative. Finally, the generalized Dirac gauge (introduced by Smarr and York5) is used in this formalism and some examples of formulation of Einstein's equations are shown.

  7. Celebrating Einstein

    NASA Astrophysics Data System (ADS)

    Key, Joey; Yunes, Nicolas

    2013-04-01

    The Gravity Group at Montana State University (MSU) hosted Celebrating Einstein, a free public arts and multimedia event celebrating Einstein and his ideas in Bozeman, Montana April 2-6, 2013. The products of our efforts are now available to any party interested in hosting a similar event. Celebrating Einstein is a truly interdisciplinary effort including art, film, dance, music, physics, history, and education. Events included a black hole immersive art installation, a series of public talks by physicists, and Einstein lessons in the public schools leading up to a live free public multimedia performance including a professional dance company, a live interview with a renowned physicist, and an original score composed for the MSU student symphony to be performed with an original film produced by the Science and Natural History film program at MSU. This project is funded by the Montana Space Grant Consortium, Montana State University, and the National Science Foundation.

  8. Genomic Basis of Prostate Cancer Health Disparity Among African American Men

    DTIC Science & Technology

    2015-10-01

    Harry Ostrer, M.D. RECIPIENT: Albert Einstein College of Medicine Bronx, NY 10461 REPORT DATE: October 2015 TYPE OF REPORT: Final report...Funding Support: Department of Defense National Institutes of Health Albert Einstein College of Medicine Montefiore Medical Center Name: Alexander...agency and compliance with research regulations. Funding Support: Department of Defense National Institutes of Health Albert Einstein College of

  9. Celebrating 50 Years of Laser

    NASA Astrophysics Data System (ADS)

    Rebel, Heinigerd

    2010-11-01

    When thinking of an innovation that has truly changed our world, it is the laser. Right after discovery back in 1960, it is immediately propelled to a public star. People loved the mystery around this new kind of light. It was soon recognized as a symbol of our entry into the future: The Laser Age has started. Newspapers speculated about ``death rays'' as new weapons. It did not take long time until it appeared in Science fiction movies. However reality was much more beneficial and even more diverse. This device has managed to exceed the wildest predictions of the early laser pioneers when it comes to its applications. Today lasers are not a weird scientist's toy, but are commonly used in our everyday life. Of course, nothing of that was foreseen in the early 1950s. Important fundamentals of lasers have been laid already in 1917 by Albert Einstein, introducing the Einstein coefficient of stimulated emission, and subsequent experimental work by Rudolf Ladenburg, Willis Lamb, Alfred Kastler and others.

  10. Celebrating 50 Years of Laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rebel, Heinigerd

    2010-11-24

    When thinking of an innovation that has truly changed our world, it is the laser. Right after discovery back in 1960, it is immediately propelled to a public star. People loved the mystery around this new kind of light. It was soon recognized as a symbol of our entry into the future: The Laser Age has started. Newspapers speculated about ''death rays'' as new weapons. It did not take long time until it appeared in Science fiction movies. However reality was much more beneficial and even more diverse. This device has managed to exceed the wildest predictions of the earlymore » laser pioneers when it comes to its applications. Today lasers are not a weird scientist's toy, but are commonly used in our everyday life.Of course, nothing of that was foreseen in the early 1950s. Important fundamentals of lasers have been laid already in 1917 by Albert Einstein, introducing the Einstein coefficient of stimulated emission, and subsequent experimental work by Rudolf Ladenburg, Willis Lamb, Alfred Kastler and others.« less

  11. Einstein's Approach to Statistical Mechanics: The 1902-04 Papers

    NASA Astrophysics Data System (ADS)

    Peliti, Luca; Rechtman, Raúl

    2017-05-01

    We summarize the papers published by Einstein in the Annalen der Physik in the years 1902-1904 on the derivation of the properties of thermal equilibrium on the basis of the mechanical equations of motion and of the calculus of probabilities. We point out the line of thought that led Einstein to an especially economical foundation of the discipline, and to focus on fluctuations of the energy as a possible tool for establishing the validity of this foundation. We also sketch a comparison of Einstein's approach with that of Gibbs, suggesting that although they obtained similar results, they had different motivations and interpreted them in very different ways.

  12. Mass-induced instability of SAdS black hole in Einstein-Ricci cubic gravity

    NASA Astrophysics Data System (ADS)

    Myung, Yun Soo

    2018-05-01

    We perform the stability analysis of Schwarzschild-AdS (SAdS) black hole in the Einstein-Ricci cubic gravity. It shows that the Ricci tensor perturbations exhibit unstable modes for small black holes. We call this the mass-induced instability of SAdS black hole because the instability of small black holes arises from the massiveness in the linearized Einstein-Ricci cubic gravity, but not a feature of higher-order derivative theory giving ghost states. Also, we point out that the correlated stability conjecture holds for the SAdS black hole by computing the Wald entropy of SAdS black hole in Einstein-Ricci cubic gravity.

  13. New non-naturally reductive Einstein metrics on exceptional simple Lie groups

    NASA Astrophysics Data System (ADS)

    Chen, Huibin; Chen, Zhiqi; Deng, Shaoqiang

    2018-01-01

    In this article, we construct several non-naturally reductive Einstein metrics on exceptional simple Lie groups, which are found through the decomposition arising from generalized Wallach spaces. Using the decomposition corresponding to the two involutions, we calculate the non-zero coefficients in the formulas of the components of Ricci tensor with respect to the given metrics. The Einstein metrics are obtained as solutions of a system of polynomial equations, which we manipulate by symbolic computations using Gröbner bases. In particular, we discuss the concrete numbers of non-naturally reductive Einstein metrics for each case up to isometry and homothety.

  14. Multiparticle dynamics in an expanding universe

    NASA Astrophysics Data System (ADS)

    Anderson, James L.

    1995-11-01

    Approximate equations of motion for multiparticle systems in an expanding Einstein-deSitter universe are derived from the Einstein-Maxwell field equations using the Einstein-Infeld-Hoffmann surface integral method. At the Newtonian level of approximation one finds that, in comoving coordinates, both the Newtonian gravitational and Coulomb interactions in these equations are multiplied by the inverse third power of the scale factor R(t) appearing in the Einstein-deSitter field and they acquire a cosmic ``drag'' term. Nevertheless, both the period and luminosity size of bound two-body systems whose period is small compared to the Hubble time are found to be independent of t.

  15. Test of Einstein-Podolsky-Rosen Steering Based on the All-Versus-Nothing Proof

    PubMed Central

    Wu, Chunfeng; Chen, Jing-Ling; Ye, Xiang-Jun; Su, Hong-Yi; Deng, Dong-Ling; Wang, Zhenghan; Oh, C. H.

    2014-01-01

    In comparison with entanglement and Bell nonlocality, Einstein-Podolsky-Rosen steering is a newly emerged research topic and in its incipient stage. Although Einstein-Podolsky-Rosen steering has been explored via violations of steering inequalities both theoretically and experimentally, the known inequalities in the literatures are far from well-developed. As a result, it is not yet possible to observe Einstein-Podolsky-Rosen steering for some steerable mixed states. Recently, a simple approach was presented to identify Einstein-Podolsky-Rosen steering based on all-versus-nothing argument, offering a strong condition to witness the steerability of a family of two-qubit (pure or mixed) entangled states. In this work, we show that the all-versus-nothing proof of Einstein-Podolsky-Rosen steering can be tested by measuring the projective probabilities. Through the bound of probabilities imposed by local-hidden-state model, the proposed test shows that steering can be detected by the all-versus-nothing argument experimentally even in the presence of imprecision and errors. Our test can be implemented in many physical systems and we discuss the possible realizations of our scheme with non-Abelian anyons and trapped ions. PMID:24598858

  16. Test of Einstein-Podolsky-Rosen steering based on the all-versus-nothing proof.

    PubMed

    Wu, Chunfeng; Chen, Jing-Ling; Ye, Xiang-Jun; Su, Hong-Yi; Deng, Dong-Ling; Wang, Zhenghan; Oh, C H

    2014-03-06

    In comparison with entanglement and Bell nonlocality, Einstein-Podolsky-Rosen steering is a newly emerged research topic and in its incipient stage. Although Einstein-Podolsky-Rosen steering has been explored via violations of steering inequalities both theoretically and experimentally, the known inequalities in the literatures are far from well-developed. As a result, it is not yet possible to observe Einstein-Podolsky-Rosen steering for some steerable mixed states. Recently, a simple approach was presented to identify Einstein-Podolsky-Rosen steering based on all-versus-nothing argument, offering a strong condition to witness the steerability of a family of two-qubit (pure or mixed) entangled states. In this work, we show that the all-versus-nothing proof of Einstein-Podolsky-Rosen steering can be tested by measuring the projective probabilities. Through the bound of probabilities imposed by local-hidden-state model, the proposed test shows that steering can be detected by the all-versus-nothing argument experimentally even in the presence of imprecision and errors. Our test can be implemented in many physical systems and we discuss the possible realizations of our scheme with non-Abelian anyons and trapped ions.

  17. Einstein's Years in Switzerland

    NASA Astrophysics Data System (ADS)

    Plendl, Hans S.

    2005-11-01

    Albert Einstein left Germany, the country of his birth, in 1894 and moved to Switzerland in 1895. He studied, worked and taught there, except for a year's stay in Prague, until1914. That year he returned to Germany, where he lived until his emigration to the United States in 1933. In 1905, while living with his wife Mileva and their first son Hans Albert in Bern and working as a technical expert at the Swiss Patent Office, he published his dissertation on the determination of molecular dimensions, his papers on Brownian Motion that helped to establish the Kinetic Theory of Heat and on the Photo-Electric Effect that validated the Quantum Theory of Light, and the two papers introducing the Special Theory of Relativity. How the young Einstein could help to lay the foundations of these theories while still working on his dissertation, holding a full-time job and helping to raise a family has evoked much discussion among his biographers. In this contribution, the extent to which living within Swiss society and culture could have made this feat possible will be examined. Old and recent photos of places in Switzerland where Einstein has lived and worked will be shown.

  18. Boundary stress tensor and asymptotically AdS3 non-Einstein spaces at the chiral point

    NASA Astrophysics Data System (ADS)

    Giribet, Gaston; Goya, Andrés; Leston, Mauricio

    2011-09-01

    Chiral gravity admits asymptotically AdS3 solutions that are not locally equivalent to AdS3; meaning that solutions do exist which, while obeying the strong boundary conditions usually imposed in general relativity, happen not to be Einstein spaces. In topologically massive gravity (TMG), the existence of non-Einstein solutions is particularly connected to the question about the role played by complex saddle points in the Euclidean path integral. Consequently, studying (the existence of) nonlocally AdS3 solutions to chiral gravity is relevant to understanding the quantum theory. Here, we discuss a special family of nonlocally AdS3 solutions to chiral gravity. In particular, we show that such solutions persist when one deforms the theory by adding the higher-curvature terms of the so-called new massive gravity. Moreover, the addition of higher-curvature terms to the gravity action introduces new nonlocally AdS3 solutions that have no analogues in TMG. Both stationary and time-dependent, axially symmetric solutions that asymptote AdS3 space without being locally equivalent to it appear. Defining the boundary stress tensor for the full theory, we show that these non-Einstein geometries have associated vanishing conserved charges.

  19. On the validity of Stokes-Einstein and Stokes-Einstein-Debye relations in ionic liquids and ionic-liquid mixtures.

    PubMed

    Köddermann, Thorsten; Ludwig, Ralf; Paschek, Dietmar

    2008-09-15

    Stokes-Einstein (SE) and Stokes-Einstein-Debye (SED) relations in the neat ionic liquid (IL) [C(2)mim][NTf(2)] and IL/chloroform mixtures are studied by means of molecular dynamics (MD) simulations. For this purpose, we simulate the translational diffusion coefficients of the cations and anions, the rotational correlation times of the C(2)--H bond in the cation C(2)mim(+), and the viscosities of the whole system. We find that the SE and SED relations are not valid for the pure ionic liquid, nor for IL/chloroform mixtures down to the miscibility gap (at 50 wt % IL). The deviations from both relations could be related to dynamical heterogeneities described by the non-Gaussian parameter alpha(t). If alpha(t) is close to zero, at a concentration of 1 wt % IL in chloroform, both relations become valid. Then, the effective radii and volumes calculated from the SE and SED equations can be related to the structures found in the MD simulations, such as aggregates of ion pairs. Overall, similarities are observed between the dynamical properties of supercooled water and those of ionic liquids.

  20. A numerical approach to finding general stationary vacuum black holes

    NASA Astrophysics Data System (ADS)

    Adam, Alexander; Kitchen, Sam; Wiseman, Toby

    2012-08-01

    The Harmonic Einstein equation is the vacuum Einstein equation supplemented by a gauge fixing term which we take to be that of DeTurck. For static black holes analytically continued to Riemannian manifolds without boundary at the horizon, this equation has previously been shown to be elliptic, and Ricci flow and Newton’s method provide good numerical algorithms to solve it. Here we extend these techniques to the arbitrary cohomogeneity stationary case which must be treated in Lorentzian signature. For stationary spacetimes with globally timelike Killing vector the Harmonic Einstein equation is elliptic. In the presence of horizons and ergo-regions it is less obviously so. Motivated by the Rigidity theorem we study a class of stationary black hole spacetimes which is general enough to include many interesting higher dimensional solutions. We argue the Harmonic Einstein equation consistently truncates to this class of spacetimes giving an elliptic problem. The Killing horizons and axes of rotational symmetry are boundaries for this problem and we determine boundary conditions there. As a simple example we numerically construct 4D rotating black holes in a cavity using Anderson’s boundary conditions. We demonstrate both Newton’s method and Ricci flow to find these Lorentzian solutions.

  1. Onsager vortex formation in two-component Bose–Einstein condensates in two-dimensional traps

    NASA Astrophysics Data System (ADS)

    Han, Junsik; Tsubota, Makoto

    2018-03-01

    We study numerically the dynamics of quantized vortices in two-dimensional one-component and two-component Bose–Einstein condensates (BECs) trapped by a harmonic and box potentials. In two-component miscible BECs, we confirmed the tendency of the formation of Onsager vortices in both traps. The vortices in one component separate spatially from those in the other component, which comes from their intercomponent-coupling. We also discuss the decay of the number of vortices.

  2. Physical process first law and increase of horizon entropy for black holes in Einstein-Gauss-Bonnet gravity.

    PubMed

    Chatterjee, Ayan; Sarkar, Sudipta

    2012-03-02

    We establish the physical process version of the first law by studying small perturbations of a stationary black hole with a regular bifurcation surface in Einstein-Gauss-Bonnet gravity. Our result shows that when the stationary black hole is perturbed by a matter stress energy tensor and finally settles down to a new stationary state, the Wald entropy increases as long as the matter satisfies the null energy condition.

  3. Nonlinear Schrödinger equations for Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Galati, Luigi; Zheng, Shijun

    2013-10-01

    The Gross-Pitaevskii equation, or more generally the nonlinear Schrödinger equation, models the Bose-Einstein condensates in a macroscopic gaseous superfluid wave-matter state in ultra-cold temperature. We provide analytical study of the NLS with L2 initial data in order to understand propagation of the defocusing and focusing waves for the BEC mechanism in the presence of electromagnetic fields. Numerical simulations are performed for the two-dimensional GPE with anisotropic quadratic potentials.

  4. Greybody factors for a minimally coupled scalar field in a three-dimensional Einstein-power-Maxwell black hole background

    NASA Astrophysics Data System (ADS)

    Panotopoulos, Grigoris; Rincón, Ángel

    2018-04-01

    In the present work we study the propagation of a probe minimally coupled scalar field in Einstein-power-Maxwell charged black hole background in (1 +2 ) dimensions. We find analytical expressions for the reflection coefficient as well as for the absorption cross section in the low energy regime, and we show graphically their behavior as functions of the frequency for several values of the free parameters of the theory.

  5. Einstein and Lorentz: The structure of a scientific revolution

    NASA Astrophysics Data System (ADS)

    Brouwer, W.

    1980-06-01

    In a course entitled ''Revolutions in Physics'' a number of episodes in the history of physics are examined, in order to test the theories of Kuhn, Popper, Lakatos, and others, with regard to any common structure exhibited by the various revolutions that physics has undergone. The conflict between Lorentz's Electron Theory and Einstein's Special Relativity becomes a major focal point in the second half of the course for the models of scientific revolutions that are studied.

  6. Nucleation and growth of vortices in a rotating Bose-Einstein condensate.

    PubMed

    Vorov, O K; Isacker, P Van; Hussein, M S; Bartschat, K

    2005-12-02

    An analytic solution of the Gross-Pitaevskii equation for a rotating Bose-Einstein condensate of trapped atoms describes the onset of vorticity when the rotational speed is increased, starting with the entry of the first vortex and followed by the formation of growing symmetric Wigner molecules. It explains the staircase of angular momentum jumps and the behavior of the bosonic occupancies observed in numerical studies. The similarity of this behavior and mesoscopic superconductors is discussed.

  7. BOOK REVIEW: The Legacy of Albert Einstein: A Collection of Essays in Celebration of the Year of Physics

    NASA Astrophysics Data System (ADS)

    Straumann, Norbert

    2007-10-01

    During the 'World Year of Physics' much has been written on the epoch-making 1905 papers of Albert Einstein and his later great contributions to physics. Why another book on the enormous impact of Einstein's work on 20th-century physics? The short answer is that the present collection of 13 relatively short essays on the legacy of Einstein by outstanding scientists is very pleasant to read and should be of interest to physicists of all branches. Beside looking back, most articles present later and topical developments, whose initiation began with the work of Einstein. During the year 2005, the growing recognition among physicists, historians, and philosophers of Einstein's revolutionary role in quantum theory was often emphasized. It is truly astonishing that most active physicists were largely unaware of this before. Fortunately, the article 'Einstein and the quantum' by V Singh puts the subject in perspective and describes all the main steps, beginning with the truly revolutionary 1905 paper on the light-quantum hypothesis and ending with Einstein's extension of the particle-wave duality to atoms and other particles in 1924 1925. The only point which, in my opinion, is not sufficiently emphasized in the discussion of the 1916 1917 papers on absorption and emission of radiation is the part on the momentum transfer in each elementary process. Einstein's result that there is a directed recoil hν/c—also for spontaneous emission—in complete contrast to classical theory, was particularly important to him. I enjoyed reading the articles on Brownian motion (S Majumdar), Bose Einstein condensation (N Kumar) and strongly correlated electrons (T Ramakrishnan), which are all written for non-experts. Connected with Einstein's most lasting work—general relativity—there are two articles on cosmology. The one by J Narlikar gives a brief historical account of the development that was initiated by the 1917 paper of Einstein. S Sarkar's essay emphasizes the remarkable recent observational progress in cosmology and the emergence of the 'cosmic concordance model', with dark matter and dark energy as the dominant components of the current universe. Their discovery is widely considered as the most direct evidence for fundamental physics beyond the standard model of particle physics. In an introductory section Sarkar recalls the main reasons why the cosmological constant (vacuum energy) problem is of a very profound nature. In spite of some interesting ideas, no satisfactory solution is in sight. The article by B Sathyapakhash on gravitational radiation provides a readable introduction to the status of current detectors and astronomical sources of gravitational radiation. Of great cosmological interest are planned searches for a stochastic background of gravitational waves that is expected to have been produced by quantum processes in the very early universe. More than the first third of the book is devoted to current speculative attempts at creating a quantum theory of gravity, possibly within a unified coherent description of the known four fundamental interactions. Thanks to the enormously large value of the Planck energy in comparison to elementary particle masses, physicists may maintain for a long time, with success, a schizophrenic attitude in working within the framework of our present understanding, based on quantum field theory and classical general relativity. That physics cannot stay with that was already pointed out by Einstein in 1916, as A Ashtekar recalls in his essay. 'Einstein and the search for unification' by D Gross is the first article of the present book. In this he describes the reasons why, for those working in speculative areas, 'Einstein remains an inspiration for his foresight, and his unyielding determination and courage'. This inspiration is also manifest in the essays by M Atiyah, A Sen, and A Dabholkar on string theory. Hopefully, this book will find many readers, especially among graduate students, who can get valuable impressions of what is interesting in physics and what some of the main open problems for future research are.

  8. The Study of Bose-Einstein correlation in deep inelastic mu - nucleon and mu - nucleus scattering at 465-GeV/C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Rurngsheng

    1994-01-01

    The Bose-Einstein correlation between two like-sign charged pions was studied in deep inelastic muon nucleon and nucleus interactions. The goals for this study were to measure nuclear effects on the size and shape of the pion emission source and the dependence of these values on the event kinematical variables. Two parametrization models (Goldhaber and Kopylov-Podgorestskii) have been used for this study. The Goldhaber parametrization gives the radius ofthe pion emission region ofrg = 0.63 ± 0.04 fm and for the chaoticity parameter .A = 0.39 ± 0.03. Using the Kopylov-Podgorestskii parameterization yields rk = 1.8 ± 0.72 ±, .A =more » 0.34 ± 0.05 and for the pion source lifetime of T= 0.75 ± 0.18 fm. A double enhancement which represents two source size distribution was observed with a smaller size of 0.51 ± 0.06 ± 0.04 fm and a bigger second size of 1.53 ± 0.39 ± 0.28 fm. The results of this analysis show the Goldhaber parametrization is preferable to explain the source distribution. The Goldhaber parametrization was used for the further studies. The data are compatible with an oblate shape of the pion emission region with not any nuclear effect on the source size and the shape. A decreasing source size has been observed with increasing Zbj as well as with increasing Q2. No dependence for Bose-Einstein effect on other kinematical variables, v and W 2 , is seen. No nuclear effect for the dependence on event kinematical variables, Zbj, W 2, v, and Q2 has been found. This thesis is based on the data collected in the 1990-91 Fermilab experiment E665 fixed target run period and the reconstruction is completed in 1993. The organization of this thesis is as follow: The first chapter describes a brief introduction of experimental and theoretical approach for studying the Bose-Einstein correlation and the evidence from other experiments. Chapter two describes the experimental apparatus which used to gather the data for this analysis. The procedure used to reconstruct raw data into events with kinematical variables and the simulation of Monte-Carlo events is described in chapter three. Chapter four describes the selection of events and tracks used for the Bose-Einstein correlation analysis and the Monte-Carlo studies for understanding the quality of data. The analysis of Bose-Einstein correlation and the results of the analysis along with the conclusions are described in chapter five.« less

  9. Einstein Inflationary Probe (EIP)

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary

    2004-01-01

    I will discuss plans to develop a concept for the Einstein Inflation Probe: a mission to detect gravity waves from inflation via the unique signature they impart to the cosmic microwave background (CMB) polarization. A sensitive CMB polarization satellite may be the only way to probe physics at the grand-unified theory (GUT) scale, exceeding by 12 orders of magnitude the energies studied at the Large Hadron Collider. A detection of gravity waves would represent a remarkable confirmation of the inflationary paradigm and set the energy scale at which inflation occurred when the universe was a fraction of a second old. Even a strong upper limit to the gravity wave amplitude would be significant, ruling out many common models of inflation, and pointing to inflation occurring at much lower energy, if at all. Measuring gravity waves via the CMB polarization will be challenging. We will undertake a comprehensive study to identify the critical scientific requirements for the mission and their derived instrumental performance requirements. At the core of the study will be an assessment of what is scientifically and experimentally optimal within the scope and purpose of the Einstein Inflation Probe.

  10. Beyond Einstein: From the Big Bang to Black Holes

    NASA Astrophysics Data System (ADS)

    White, N.

    Beyond Einstein is a science-driven program of missions, education and outreach, and technology, to address three questions: What powered the Big Bang? What happens to space, time, and matter at the edge of a Black Hole? What is the mysterious Dark Energy pulling the universe apart? To address the science objectives, Beyond Einstein contains several interlinked elements. The strategic missions Constellation-X and LISA primarily investigate the nature of black holes. Constellation-X is a spectroscopic observatory that uses X-ray emitting atoms as clocks to follow the fate of matter falling into black holes. LISA will be the first space-based gravitational wave observatory uses gravitational waves to measure the dynamic structure of space and time around black holes. Moderate sized probes that are fully competed, peer-reviewed missions (300M-450M) launched every 3-5 years to address the focussed science goals: 1) Determine the nature of the Dark Energy that dominates the universe, 2) Search for the signature of the beginning of the Big Bang in the microwave background and 3) Take a census of Black Holes of all sizes and ages in the universe. The final element is a Technology Program to enable ultimate Vision Missions (after 2015) to directly detect gravitational waves echoing from the beginning of the Big Bang, and to directly image matter near the event horizon of a Black Hole. An associated Education and Public Outreach Program will inspire the next generation of scientists, and support national science standards and benchmarks.

  11. Measurement of Bose-Einstein correlations in e^+e^->W^+W^- events at LEP [rapid communication] L3 Collaboration, P. Achard, O. Adriani, M. Aguilar-Benitez, J. Alcaraz, G. Alemanni, J. Allaby, A. Aloisio, M.G. Alviggi, H. Anderhub, V.P. Andreev, F. Anselmo, A. Arefiev, T. Azemoon, T. Aziz,

    NASA Astrophysics Data System (ADS)

    Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay, L.; Baldew, S. V.; Banerjee, S.; Banerjee, S.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B. L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J. J.; Blyth, S. C.; Bobbink, G. J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J. G.; Brochu, F.; Burger, J. D.; Burger, W. J.; Cai, X. D.; Capell, M.; Romeo, G. Cara; Carlino, G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y. H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G. M.; Chen, H. F.; Chen, H. S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de la Cruz, B.; Cucciarelli, S.; van Dalen, J. A.; de Asmundis, R.; Deglon, P.; Debreczeni, J.; Degre, A.; Dehmelt, K.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M. T.; Duchesneau, D.; Echenard, B.; Eline, A.; El Mamouni, H.; Engler, A.; Eppling, F. J.; Ewers, A.; Extermann, P.; Falagan, M. A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J. H.; Filthaut, F.; Fisher, P. H.; Fisher, W.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Y.; Ganguli, S. N.; Garcia-Abia, P.; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z. F.; Grenier, G.; Grimm, O.; Gruenewald, M. W.; Guida, M.; van Gulik, R.; Gupta, V. K.; Gurtu, A.; Gutay, L. J.; Haas, D.; Hakobyan, R. S.; Hatzifotiadou, D.; Hebbeker, T.; Herve, A.; Hirschfelder, J.; Hofer, H.; Hohlmann, M.; Holzner, G.; Hou, S. R.; Hu, Y.; Jin, B. N.; Jones, L. W.; de Jong, P.; Josa-Mutuberra, I.; Kafer, D.; Kaur, M.; Kienzle-Focacci, M. N.; Kim, J. K.; Kirkby, J.; Kittel, W.; Klimentov, A.; Konig, A. C.; Kopal, M.; Koutsenko, V.; Kraber, M.; Kraemer, R. W.; Krenz, W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Le Goff, J. M.; Leiste, R.; Levtchenko, M.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C. H.; Lin, W. T.; Linde, F. L.; Lista, L.; Liu, Z. A.; Lohmann, W.; Longo, E.; Lu, Y. S.; Lubelsmeyer, K.; Luci, C.; Luminari, L.; Lustermann, W.; Ma, W. G.; Malgeri, L.; Malinin, A.; Mana, C.; Mangeol, D.; Mans, J.; Martin, J. P.; Marzano, F.; Mazumdar, K.; McNeil, R. R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W. J.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G. B.; Muanza, G. S.; Muijs, A. J. M.; Musicar, B.; Musy, M.; Nagy, S.; Natale, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Niessen, T.; Nisati, A.; Nowak, H.; Ofierzynski, R.; Organtini, G.; Palomares, C.; Pandoulas, D.; Paolucci, P.; Paramatti, R.; Passaleva, G.; Patricelli, S.; Paul, T.; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Pioppi, M.; Piroue, P. A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Pothier, J.; Prokofiev, D. O.; Prokofiev, D.; Quartieri, J.; Rahal-Callot, G.; Rahaman, M. A.; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P. G.; Ranieri, R.; Raspereza, A.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, K.; Roe, B. P.; Romero, L.; Rosca, A.; Rosier-Lees, S.; Roth, S.; Rosenbleck, C.; Roux, B.; Rubio, J. A.; Ruggiero, G.; Rykaczewski, H.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Sanders, M. P.; Schafer, C.; Schegelsky, V.; Schmidt-Kaerst, S.; Schmitz, D.; Schopper, H.; Schotanus, D. J.; Schwering, G.; Sciacca, C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Siedenburg, T.; Son, D.; Souga, C.; Spillantini, P.; Steuer, M.; Stickland, D. P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L. Z.; Sushkov, S.; Suter, H.; Swain, J. D.; Szillasi, Z.; Tang, X. W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, C.; Ting, C. C.; Ting, S. M.; Tonwar, S. C.; Toth, J.; Tully, C.; Tung, K. L.; Ulbricht, J.; Valente, E.; Van de Walle, R. T.; Vasquez, R.; Veszpremi, V.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobiev, I.; Vorobyov, A. A.; Wadhwa, M.; Wallraff, W.; Wang, X. L.; Wang, Z. M.; Weber, M.; Wienemann, P.; Wilkens, H.; Wynhoff, S.; Xia, L.; Xu, Z. Z.; Yamamoto, J.; Yang, B. Z.; Yang, C. G.; Yang, H. J.; Yang, M.; Yeh, S. C.; Zalite, A.; Zalite, Y.; Zhang, Z. P.; Zhao, J.; Zhu, G. Y.; Zhu, R. Y.; Zhuang, H. L.; Zichichi, A.; Zimmermann, B.; Zoller, M.

    2002-11-01

    Bose-Einstein correlations in W-pair production at LEP are investigated in a data sample of 629 pb^-1 collected by the L3 detector at centre-of-mass energies of 189-209 GeV. Bose-Einstein correlations between pions within a W decay are observed and found to be in good agreement with those in light-quark Z decay. No evidence is found for Bose-Einstein correlations between hadrons coming from different W's in the same event.

  12. The Einstein/CFA stellar survey - Overview of the data and interpretation of results

    NASA Technical Reports Server (NTRS)

    Vaiana, G. S.

    1981-01-01

    Results are presented from an extensive survey of stellar X-ray emission, using the Einstein Observatory. Over 140 stars have been detected to date, throughout the H-R diagram, thus showing that soft X-ray emission is the norm rather than the exception for stars in general. This finding is strongly at odds with pre-Einstein expectations based on standard acoustic theories of coronal heating. Typical examples of stellar X-ray detections and an overview of the survey data are presented. In combination with recent results from solar X-ray observations, the new Einstein data argue for the general applicability of magnetic field-related coronal heating mechanisms.

  13. Spectral Cauchy Characteristic Extraction: Gravitational Waves and Gauge Free News

    NASA Astrophysics Data System (ADS)

    Handmer, Casey; Szilagyi, Bela; Winicour, Jeff

    2015-04-01

    We present a fast, accurate spectral algorithm for the characteristic evolution of the full non-linear vacuum Einstein field equations in the Bondi framework. Developed within the Spectral Einstein Code (SpEC), we demonstrate how spectral Cauchy characteristic extraction produces gravitational News without confounding gauge effects. We explain several numerical innovations and demonstrate speed, stability, accuracy, exponential convergence, and consistency with existing methods. We highlight its capability to deliver physical insights in the study of black hole binaries.

  14. Extragalactic counterparts to Einstein slew survey sources

    NASA Technical Reports Server (NTRS)

    Schachter, Jonathan F.; Elvis, Martin; Plummer, David; Remillard, Ron

    1992-01-01

    The Einstein slew survey consists of 819 bright X-ray sources, of which 636 (or 78 percent) are identified with counterparts in standard catalogs. The importance of bright X-ray surveys is stressed, and the slew survey is compared to the Rosat all sky survey. Statistical techniques for minimizing confusion in arcminute error circles in digitized data are discussed. The 238 slew survey active galactic nuclei, clusters, and BL Lacertae objects identified to date and their implications for logN-logS and source evolution studies are described.

  15. Characterization of nonequilibrium states of trapped Bose–Einstein condensates

    NASA Astrophysics Data System (ADS)

    Yukalov, V. I.; Novikov, A. N.; Bagnato, V. S.

    2018-06-01

    The generation of different nonequilibrium states in trapped Bose–Einstein condensates is studied by numerically solving the nonlinear Schrödinger equation. Inducing nonequilibrium states by shaking a trap creates the following states: weak nonequilibrium, the state of vortex germs, the state of vortex rings, the state of straight vortex lines, the state of deformed vortices, vortex turbulence, grain turbulence, and wave turbulence. A characterization of nonequilibrium states is advanced by introducing effective temperature, Fresnel number, and Mach number.

  16. Simple waves in a two-component Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Ivanov, S. K.; Kamchatnov, A. M.

    2018-04-01

    We study the dynamics of so-called simple waves in a two-component Bose-Einstein condensate. The evolution of the condensate is described by Gross-Pitaevskii equations which can be reduced for these simple wave solutions to a system of ordinary differential equations which coincide with those derived by Ovsyannikov for the two-layer fluid dynamics. We solve the Ovsyannikov system for two typical situations of large and small difference between interspecies and intraspecies nonlinear interaction constants. Our analytic results are confirmed by numerical simulations.

  17. Making two dysprosium atoms rotate —Einstein-de Haas effect revisited

    NASA Astrophysics Data System (ADS)

    Górecki, Wojciech; Rzążewski, Kazimierz

    2016-10-01

    We present a numerical study of the behaviour of two magnetic dipolar atoms trapped in a harmonic potential and exhibiting the standard Einstein-de Haas effect while subject to a time-dependent homogeneous magnetic field. Using a simplified description of the short-range interaction and the full expression for the dipole-dipole forces we show that under experimentally realisable conditions two dysprosium atoms may be pumped to a high (l > 20) value of the relative orbital angular momentum.

  18. Addendum to ''Thin-shell wormholes supported by ordinary matter in Einstein-Gauss-Bonnet gravity''

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simeone, Claudio

    2011-04-15

    Thin-shell wormholes are constructed starting from the exotic branch of the Wiltshire spherically symmetric solution of Einstein-Gauss-Bonnet gravity. The energy-momentum tensor of the shell is studied, and it is shown that configurations supported by matter satisfying the energy conditions exist for certain values of the parameters. Differing from the previous result associated with the normal branch of the Wiltshire solution, this is achieved for small positive values of the Gauss-Bonnet parameter and for vanishing charge.

  19. The particle problem in classical gravity: a historical note on 1941

    NASA Astrophysics Data System (ADS)

    Galvagno, Mariano; Giribet, Gastón

    2005-11-01

    This historical note is mainly based on a relatively unknown paper published by Albert Einstein in Revista de la Universidad Nacional de Tucumán in 1941. Taking the ideas of this work as a leitmotiv, we review the discussions about the particle problem in the theory of gravitation within the historical context by means of the study of seminal works on the subject. The revision shows how the digressions regarding the structure of matter and the concise problem of finding regular solutions of the pure field equations turned out to be intrinsically unified in the beginning of the programme towards a final theory of fields. The paper mentioned (Einstein 1941a Rev. Univ. Nac. Tucumán A 2 11) represents the basis of the one written by Einstein in collaboration with Wolfgang Pauli in 1943, in which, following analogous lines, the proof of the non-existence of regular particle-type solutions was generalized to the case of cylindrical geometries in Kaluza-Klein theory (Einstein and Pauli 1943 Ann. Math. 44 131). Besides, other generalizations were subsequently presented. The (non-)existence of such solutions in classical unified field theory was undoubtedly an important criterion leading Einstein's investigations. This aspect was investigated with expertness by Jeroen van Dongen in a recent work, though restricting the scope to the particular case of Kaluza-Klein theory (van Dongen 2002 Stud. Hist. Phil. Mod. Phys. 33 185). Here, we discuss the particle problem within a more general context, presenting in this way a complement to previous reviews.

  20. Einstein and a century of time

    NASA Astrophysics Data System (ADS)

    Raine, D. J.

    2005-09-01

    In a world overabundant in information, a subject is defined by its iconography. Physics is the falling apple, the planetary atom, the laser, the mushroom cloud and the image of the later Einstein - images that represent, respectively, gravity, atomic theory, quantum theory, mass-energy and the scientist who had a hand in all four. It is therefore appropriate that World Year of Physics is called Einstein Year in the UK. Of course one can argue that progress in science depends on the contributions of many people; that there are other geniuses in physics, even some colourful personalities. Nevertheless there are fundamental reasons why Einstein's early achievements stand out even in their company. When at last the thought came to him that 'time itself was suspect', Einstein had found a new insight into the nature of the physical universe. It is this: that the universal properties of material objects tell us about the nature of space and time, and it is through these properties, not philosophical logic or common sense, that we discover the structure of spacetime. The later Einstein turned this successful formula on its head and sought to use the properties of spacetime to define those of material objects, thereby seeking to abolish matter entirely in favour of geometry. Before I introduce this special feature of European Journal of Physics I will say a few words about what is not here. Like all great geniuses Einstein can be seen as the climax of what went before him and the initiation of what was to follow. Looking back we can see the influence of Mach's positivism, according to which the role of science is to relate observations to other observations; hence only observations can tell us what is 'real'. But Einstein also grew up with the family electromechanical businesses, which testifies to the reality of the Maxwellian electromagnetic fields: thus only theory can tell us what is real! As is well known, Einstein himself refused to accept the full consequences of this pivotal insight into the role of theory when it came to quantum mechanics. Much has been written about this and we do not add to it in this collection. Quantum theory is a consistent description of nature whatever Einstein may think of 'god' for making it so. Many of us would side with Einstein in hoping it will yet turn out not to be a complete description. This will not happen, as Einstein hoped throughout his later work, from a return to classical field theory. But quantum behaviour is a universal property of matter and may therefore be expected, according to Einstein's way of thought, to have a geometrical origin. The advent of non-commutative quantum geometries may turn out to be a step in this direction. My own introduction to Einstein's physics was through what has come to be known as Mach's principle. My research supervisor, Dennis Sciama, in what he always claimed was probably Einstein's last significant scientific conversation, talked with him on this subject, during which Einstein explained that he had abandoned the idea of Mach's principle. This principle had been a guiding thought in the development of general relativity, but superfluous to its final exposition. It can be interpreted variously as the determination of the local compass of inertia by the distant stars, the non-rotation of the Universe or, more restrictedly, as requiring a critical density universe (to generate the right amount of inertia). This last formulation amounts to Gρτ2 approx 1, where ρ is the density of the Universe at time τ. This appears to be a classical expression, which would probably be sufficient to relegate Mach's principle to mere historical interest along with the classical unified field theories. It is also usually considered to be accounted for by inflation, which drives the Universe to Ω=1. However, we can also think of the expression as saying that the Universe has a Planck mass in a Planck volume at the Planck time: G=(hc / G)1/2(c3 / Gh)3/2(Gh / c5)=1. This suggests that Mach's principle may yet have a surprising role in expressing the fact that the Universe contains sufficient matter to exist as a classical system: that is, that it contains sufficient material degrees of freedom to allow quantum decoherence to occur. It would at least be a nice irony if Mach's principle turned out to be a necessary quantum condition for the existence of a classical universe! Coming now to the papers in this special feature, these include several that treat historical aspects of relativity. Brown offers us a novel insight into Einstein's ambivalence about the status of special relativity in providing a mechanism for the contraction hypothesis. Trainer looks at the way in which Einstein presented a brief account of relativity in a lecture that he gave in Glasgow in 1933. Galvangno and Giribet look at Einstein's approach to the representation of particles within general relativity, or variants thereof, while Battimelli provides an account of attempts at unification of electromagnetism and relativity from the point of view of the origin of mass. In their contribution, Guerra and de Abreu look again at the relationship between the constancy of the speed of light and the nature of time that was central to Einstein's thinking. Next we come to a group of papers that look at educational issues. Einstein's equation E = mc2 is now iconic even if general knowledge quizzes that ask what the c stands for miss the entire point of the equation! Thomas starts from the way in which perceptions of relativity still focus on this equation as the essential ingredient of nuclear power and the need to disabuse even students of physics of this notion. He also looks at how we can in fact demonstrate the significance of the equation to a lay audience. I have added a short note on friction, another topic that confuses teachers and students alike, that throws up problems to which the solutions are contained in Einstein's Brownian motion paper. The Open University in the UK has been teaching relativity to distance-learners for forty years; Lambourne writes about the experience that has been gained. Finally, I have always been intrigued by the opprobrium that Einstein seems to attract from crank authors. I no longer regularly receive such nonsense to referee, I assume because the internet is now awash with 'publication' opportunities for anti-Einstein articles. I do believe however that the work of these authors throws light on the way science works and I have tried to illustrate this thesis briefly in the final paper of this collection.

  1. Einstein's steady-state theory: an abandoned model of the cosmos

    NASA Astrophysics Data System (ADS)

    O'Raifeartaigh, Cormac; McCann, Brendan; Nahm, Werner; Mitton, Simon

    2014-09-01

    We present a translation and analysis of an unpublished manuscript by Albert Einstein in which he attempted to construct a `steady-state' model of the universe. The manuscript, which appears to have been written in early 1931, demonstrates that Einstein once explored a cosmic model in which the mean density of matter in an expanding universe is maintained constant by the continuous formation of matter from empty space. This model is very different to previously known Einsteinian models of the cosmos (both static and dynamic) but anticipates the later steady-state cosmology of Hoyle, Bondi and Gold in some ways. We find that Einstein's steady-state model contains a fundamental flaw and suggest that it was abandoned for this reason. We also suggest that he declined to explore a more sophisticated version because he found such theories rather contrived. The manuscript is of historical interest because it reveals that Einstein debated between steady-state and evolving models of the cosmos decades before a similar debate took place in the cosmological community.

  2. The NASA Beyond Einstein Program

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.

    2004-01-01

    The Laser Interferometer Space Antenna (LISA) mission is part of NASA s Beyond Einstein program. This program seeks to answer the questions What Powered the Big Bang?, What happens at the edge of a Black Hole?, and What is Dark Energy?. LISA IS the first mission to be launched in this new program. This paper will give an overview of the Beyond Einstein program, its current status and where LISA fits in.

  3. It’s About Time -- Understanding China’s Strategic Patience

    DTIC Science & Technology

    2012-03-18

    Einstein and Stephen 3 Hawking, made conceptualizing time easier to accept by linking time with space. Time and space are inherently linked together...same regardless of how you were moving - exactly as experiments and mathematics of the day showed them to be. In 1905, Albert Einstein published...speeds relative to each other. Einstein explained that when two objects are moving at independent constant speeds, emphasizing the relative motion

  4. Einstein-Cartan Gravity with Torsion Field Serving as an Origin for the Cosmological Constant or Dark Energy Density

    NASA Astrophysics Data System (ADS)

    Ivanov, A. N.; Wellenzohn, M.

    2016-09-01

    We analyse the Einstein-Cartan gravity in its standard form { R }=R+{{ K }}2, where { R } {and} R are the Ricci scalar curvatures in the Einstein-Cartan and Einstein gravity, respectively, and {{ K }}2 is the quadratic contribution of torsion in terms of the contorsion tensor { K }. We treat torsion as an external (or background) field and show that its contribution to the Einstein equations can be interpreted in terms of the torsion energy-momentum tensor, local conservation of which in a curved spacetime with an arbitrary metric or an arbitrary gravitational field demands a proportionality of the torsion energy-momentum tensor to a metric tensor, a covariant derivative of which vanishes owing to the metricity condition. This allows us to claim that torsion can serve as an origin for the vacuum energy density, given by the cosmological constant or dark energy density in the universe. This is a model-independent result that may explain the small value of the cosmological constant, which is a long-standing problem in cosmology. We show that the obtained result is valid also in the Poincaré gauge gravitational theory of Kibble, where the Einstein-Hilbert action can be represented in the same form: { R }=R+{{ K }}2.

  5. Transcritical flow of a Bose-Einstein condensate through a penetrable barrier

    NASA Astrophysics Data System (ADS)

    Leszczyszyn, A. M.; El, G. A.; Gladush, Yu. G.; Kamchatnov, A. M.

    2009-06-01

    The problem of the transcritical flow of a Bose-Einstein condensate through a wide repulsive penetrable barrier is studied analytically using the combination of the locally steady “hydraulic” solution of the one-dimensional Gross-Pitaevskii equation and the solutions of the Whitham modulation equations describing the resolution of the upstream and downstream discontinuities through dispersive shocks. It is shown that within the physically reasonable range of parameters, the downstream dispersive shock is attached to the barrier and effectively represents the train of very slow dark solitons, which can be observed in experiments. The rate of the soliton emission, the amplitudes of the solitons in the train, and the drag force are determined in terms of the Bose-Einstein condensate oncoming flow velocity and the strength of the potential barrier. Good agreement with direct numerical solutions is demonstrated. Connection with recent experiments is discussed.

  6. From Einstein-Podolsky-Rosen paradox to quantum nonlocality: experimental investigation of quantum correlations

    NASA Astrophysics Data System (ADS)

    Xu, Jin-Shi; Li, Chuan-Feng; Guo, Guang-Can

    2016-11-01

    In 1935, Einstein, Podolsky and Rosen published their influential paper proposing a now famous paradox (the EPR paradox) that threw doubt on the completeness of quantum mechanics. Two fundamental concepts: entanglement and steering, were given in the response to the EPR paper by Schrodinger, which both reflect the nonlocal nature of quantum mechanics. In 1964, John Bell obtained an experimentally testable inequality, in which its violation contradicts the prediction of local hidden variable models and agrees with that of quantum mechanics. Since then, great efforts have been made to experimentally investigate the nonlocal feature of quantum mechanics and many distinguished quantum properties were observed. In this work, along with the discussion of the development of quantum nonlocality, we would focus on our recent experimental efforts in investigating quantum correlations and their applications with optical systems, including the study of entanglement-assisted entropic uncertainty principle, Einstein-Podolsky-Rosen steering and the dynamics of quantum correlations.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gergely, Laszlo A.

    We study the possibility of brane-world generalization of the Einstein-Straus Swiss-cheese cosmological model. We find that the modifications induced by the brane-world scenario are excessively restrictive. At a first glance only the motion of the boundary is modified and the fluid in the exterior region is allowed to have pressure. The general relativistic Einstein-Straus model emerges in the low density limit. However by imposing that the central mass in the Schwarzschild voids is constant, a combination of the junction conditions and modified cosmological evolution leads to the conclusion that the brane is flat. Thus no generic Swiss-cheese universe can existmore » on the brane. The conclusion is not altered by the introduction of a cosmological constant in the FLRW regions. This shows that although allowed in the low density limit, the Einstein-Straus universe cannot emerge from cosmological evolution in the brane-world scenario.« less

  8. X-ray studies of quasars with the Einstein Observatory

    NASA Technical Reports Server (NTRS)

    Tananbaum, H.; Branduardi, G.; Fabbiano, G.; Feigelson, E.; Giacconi, R.; Henry, J. P.; Avni, Y.; Elvis, M.; Pye, J. P.; Soltan, A.

    1979-01-01

    Results of an investigation of the X-ray properties of quasars conducted using the Einstein Observatory (HEAO 2) are reported. The positions, fluxes and luminosities of 35 known quasars were observed by the Einstein high-resolution imaging detector and the imaging proportional counter. Assuming optical redshifts as valid distance indicators, 0.5-4.5 keV X-ray luminosities ranging from 10 to the 43rd to 10 to the 47 ergs/sec are obtained, with evidence of very little cold gas absorption. Flux variability on a time scale of less than 10,000 sec is observed for the quasar OX 169, which implies a mass between 8 x 10 to the 5th and 2 x 10 to the 8th solar masses for the black hole assumed to be responsible for the emission. Preliminary results of the quasar survey also indicate that quasars contribute significantly to the diffuse X-ray background.

  9. Nonholonomic relativistic diffusion and exact solutions for stochastic Einstein spaces

    NASA Astrophysics Data System (ADS)

    Vacaru, S. I.

    2012-03-01

    We develop an approach to the theory of nonholonomic relativistic stochastic processes in curved spaces. The Itô and Stratonovich calculus are formulated for spaces with conventional horizontal (holonomic) and vertical (nonholonomic) splitting defined by nonlinear connection structures. Geometric models of the relativistic diffusion theory are elaborated for nonholonomic (pseudo) Riemannian manifolds and phase velocity spaces. Applying the anholonomic deformation method, the field equations in Einstein's gravity and various modifications are formally integrated in general forms, with generic off-diagonal metrics depending on some classes of generating and integration functions. Choosing random generating functions we can construct various classes of stochastic Einstein manifolds. We show how stochastic gravitational interactions with mixed holonomic/nonholonomic and random variables can be modelled in explicit form and study their main geometric and stochastic properties. Finally, the conditions when non-random classical gravitational processes transform into stochastic ones and inversely are analyzed.

  10. Remembrance of Things Future: Prospective Memory in Laboratory, Workplace, and Everyday Settings

    NASA Technical Reports Server (NTRS)

    Dismukes, R. Key

    2010-01-01

    In this review, oriented to the human factors community, I will summarize and provide a perspective on recent research and theory on prospective memory. This will not be an exhaustive review of literature, which is already available in two excellent recent books that provide a wealth of detail on the current state of experimental research (Kliegel, McCaniel, & Einstein, 2008; McDaniel & Einstein, 2007; also see Brandimonte, Einstein, & McDaniel, 1996, for a still relevant overview of the field as it was emerging). Rather, I will explore the limits of existing experimental paradigms and theory, Vvilich, in my opinion, fail to capture some critical aspects of performance outside the laboratory. I will also review the relatively few studies in workplace and everyday settings and will discuss several studies that attempt to bridge between the bulk of experimental studies and these few naturalistic studies. Finally, I will describe countermeasures that can reduce vulnerability to forgetting to perform intended tasks, and I will propose a research agenda that would extend existing experimental and theoretical approaches and would support human factors practitioners by generating information on a wide range of issues relevant to prospective memory performance in natural settings.

  11. On the Correlations between the Particles in the EPR-Paradoxon

    NASA Astrophysics Data System (ADS)

    Treder, H.-J.

    The Einstein-Podolsky-Rosen gedanken-experiment does not imply non-local interactions or an action-at-a-distance.Contrary, the EPR proves the measurements at one particle does not have influences at canonical variables of the other particles if the quantum-mechanical commutation relations are true.But, the EPR implices correlations between the particles which come in by subjective knowledge. These correlations are a priori informations about the relative motion or, complementarily, about the motion of the center of mass. The impression of an action-at-a-distance is produced by the use of usual particle coordinates in the EPR-arrangements.The discussion of the Einstein-Podolsky-Rosen gedanken-experiment (EPR) has been going on over fifty years. EINSTEIN, PODOLSKY, and ROSEN formulated their famous paradox in 1935, and in the discussion between N. BOHR (1935, 1949) and A. EINSTEIN (1936, 1948); A. EINSTEIN (1948) made his point that the EPR implied an action-at-a-distance for quantum-mechanical particles (without obvious classical interactions). His argument is the starting point for the recent discussion about EPR and causality (see A. Aspect, 1981).Translated AbstractÜber die Korrelationen zwischen den Partikeln beim EPR-ParadoxonDas Gedankenexperiment von EINSTEIN, PODOLSKY und ROSEN über die anscheinend paradoxen Beziehungen zwischen beliebig weit entfernten Partikeln gemäß der quantenmechanischen Theorie der Messungen führt tatsächlich nicht auf nichtlokale Wechselwirkungen.Das Einstein-Podolsky-Rosen-Paradoxon zeigt vielmehr, daß die Messung an einem Teilchen keinerlei Einfluß auf die Meßwerte an anderen Partikeln hat, wenn die quantenmechanischen Vertauschungsregeln erfüllt sind.Dagegen weist das Einstein-Podolsky-Rosensche Gedankenexperiment Korrelationen zwischen den Teilchen auf, die die Folge einer a-priori-Kenntnis über die Werte von Hamilton-Jacobischen Zwei-Partikeln-Koordinaten von nicht-wechselwirkenden Teilchen sind.

  12. The abundances of major elements in Cas A and Tycho supernova remnants

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.

    1995-01-01

    The objective of this program was to map the abundances of major elements such as O, Si, S, and Fe in the supernova remnants, Tycho and Cas A. The approach was based upon using archival cosmic X-ray data from several space missions, notably, the Einstein Observatory, EXOSAT, ROSAT, BBSRT, and ASCA. Two of the missions, Einstein and ROSAT, had high resolution telescopes that provided excellent images, but no spectral information. Two missions with much poorer resolution telescopes, BBXRT and ASCA, gave good spectral information through pulse height of signals in their cooled solid state detector, but rather crude spatial information. Our goal was to extract spectral information from the combined analysis of the Einstein and ROSAT images of Cas A and Tycho and to verify or refine the spectral map by checking its agreement with the BBSRT or ASCA spectra results for larger regions. In particular, we note that the Einstein and ROSAT telescopes have different spectral responses. The Einstein bandwidth includes the 2-4 keV region which is absent from ROSAT. Hence, by forming linear combinations of the Einstein and ROSAT images, we are able to resolve the contributions of the 0.5-2 keV band from the 2-4 keV band. The former contains lines of O and Fe while the latter is dominated by Si and S. We correct for the expansion that has taken place in the remnants during the ten-year interval between the Einstein and ROSAT measurements, but we must assume that no significant spectral changes have occurred during that time. The analysis of the Tycho SNR was completed and the results have been published. A copy of the paper is included. The analysis of Cas A has proved to be more complicated. It is continuing with support from another program. Part of the problem may be due to difficulties in the aspect information which is needed to precisely register the ROSAT and Einstein images.

  13. Dynamics of a thermo-responsive microgel colloid near to the glass transition

    NASA Astrophysics Data System (ADS)

    Di, Xiaojun; Peng, Xiaoguang; McKenna, Gregory B.

    2014-02-01

    In a previous study, we used diffusing wave spectroscopy (DWS) to investigate the aging signatures of a thermo-sensitive colloidal glass and compared them with those of molecular glasses from the perspective of the Kovacs temperature-jump, volume recovery experiments [X. Di, K. Z. Win, G. B. McKenna, T. Narita, F. Lequeux, S. R. Pullela, and Z. Cheng, Phys. Rev. Lett. 106, 095701 (2011)]. In order to further look into the glassy behavior of colloidal systems, we have synthesized a new core/shell particle with lower temperature sensitivity and studied the aging signatures of concentrated systems, again following Kovacs' protocol. Similar signatures of aging to those observed previously were seen in this new system. Moreover, a systematic study of the temperature dependence of the dynamics of the new system for different weight concentrations was performed and the dynamic fragility index m was determined. We have also explored the use of the properties determined from the DWS measurements to obtain macroscopic rheological parameters - storage modulus G'(ω) and loss modulus G″(ω) - using a generalized Stokes-Einstein approach. The micro-rheological and macro-rheological values are in reasonable agreement.

  14. Record bid for Einstein letter

    NASA Astrophysics Data System (ADS)

    Jeandron, Michelle

    2008-06-01

    A letter written by Albert Einstein the year before his death has sold for the staggering amount of £170 000 at an auction in London last month. The previously unrecorded letter, which has spent the past 50 years in a private collection, includes a discussion of Einstein's views on religion, bringing new material to the debate about whether or not he believed in God. The lot had been expected to fetch between £6000-£8000.

  15. NAVO MSRC Navigator. Fall 2008

    DTIC Science & Technology

    2008-01-01

    arrival of our two new HPC systems, DAVINCI (IBM P6) and EINSTEIN (Cray XT5), and our new mass storage server, NEWTON (Sun M5000). “The most...will run on both DAVINCI and EINSTEIN, providing researchers with the capability of running jobs of up to 4,256 and 12,736 cores in size...are expected to double as EINSTEIN and DAVINCI are brought online. We have also strengthened the backbone of our Disaster Recovery infrastructure, as

  16. Einstein gravity with torsion induced by the scalar field

    NASA Astrophysics Data System (ADS)

    Özçelik, H. T.; Kaya, R.; Hortaçsu, M.

    2018-06-01

    We couple a conformal scalar field in (2+1) dimensions to Einstein gravity with torsion. The field equations are obtained by a variational principle. We could not solve the Einstein and Cartan equations analytically. These equations are solved numerically with 4th order Runge-Kutta method. From the numerical solution, we make an ansatz for the rotation parameter in the proposed metric, which gives an analytical solution for the scalar field for asymptotic regions.

  17. Learning and Teaching: Where Does Einstein's Concept of Learning about "Service of Our Fellow Man" Enter into Our Discussions about Student Achievement?

    ERIC Educational Resources Information Center

    Manthey, George

    2005-01-01

    The author of this paper discusses the significance of Albert Einstein's concept of learning about "service of our fellow man" into the discussions about student achievement. Albert Einstein wrote in 1954 of what he considered an evil of modern life--that the "individual feels more than ever dependent on society, but it is not felt in the positive…

  18. Generalized Einstein relation for the mutual diffusion coefficient of a binary fluid mixture.

    PubMed

    Felderhof, B U

    2017-08-21

    The method employed by Einstein to derive his famous relation between the diffusion coefficient and the friction coefficient of a Brownian particle is used to derive a generalized Einstein relation for the mutual diffusion coefficient of a binary fluid mixture. The expression is compared with the one derived by de Groot and Mazur from irreversible thermodynamics and later by Batchelor for a Brownian suspension. A different result was derived by several other workers in irreversible thermodynamics. For a nearly incompressible solution, the generalized Einstein relation agrees with the expression derived by de Groot and Mazur. The two expressions also agree to first order in solute density. For a Brownian suspension, the result derived from the generalized Smoluchowski equation agrees with both expressions.

  19. Hidden simplicity of the gravity action

    DOE PAGES

    Cheung, Clifford; Remmen, Grant N.

    2017-09-01

    We derive new representations of the Einstein-Hilbert action in which graviton perturbation theory is immensely simplified. To accomplish this, we recast the Einstein-Hilbert action as a theory of purely cubic interactions among gravitons and a single auxiliary field. The corresponding equations of motion are the Einstein field equations rewritten as two coupled first-order differential equations. Since all Feynman diagrams are cubic, we are able to derive new off-shell recursion relations for tree-level graviton scattering amplitudes. With a judicious choice of gauge fixing, we then construct an especially compact form for the Einstein-Hilbert action in which all graviton interactions are simplymore » proportional to the graviton kinetic term. Our results apply to graviton perturbations about an arbitrary curved background spacetime.« less

  20. Hidden simplicity of the gravity action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, Clifford; Remmen, Grant N.

    We derive new representations of the Einstein-Hilbert action in which graviton perturbation theory is immensely simplified. To accomplish this, we recast the Einstein-Hilbert action as a theory of purely cubic interactions among gravitons and a single auxiliary field. The corresponding equations of motion are the Einstein field equations rewritten as two coupled first-order differential equations. Since all Feynman diagrams are cubic, we are able to derive new off-shell recursion relations for tree-level graviton scattering amplitudes. With a judicious choice of gauge fixing, we then construct an especially compact form for the Einstein-Hilbert action in which all graviton interactions are simplymore » proportional to the graviton kinetic term. Our results apply to graviton perturbations about an arbitrary curved background spacetime.« less

  1. The digital computer as a metaphor for the perfect laboratory experiment: Loophole-free Bell experiments

    NASA Astrophysics Data System (ADS)

    De Raedt, Hans; Michielsen, Kristel; Hess, Karl

    2016-12-01

    Using Einstein-Podolsky-Rosen-Bohm experiments as an example, we demonstrate that the combination of a digital computer and algorithms, as a metaphor for a perfect laboratory experiment, provides solutions to problems of the foundations of physics. Employing discrete-event simulation, we present a counterexample to John Bell's remarkable "proof" that any theory of physics, which is both Einstein-local and "realistic" (counterfactually definite), results in a strong upper bound to the correlations that are being measured in Einstein-Podolsky-Rosen-Bohm experiments. Our counterexample, which is free of the so-called detection-, coincidence-, memory-, and contextuality loophole, violates this upper bound and fully agrees with the predictions of quantum theory for Einstein-Podolsky-Rosen-Bohm experiments.

  2. Einstein, Ethics and the Atomic Bomb

    NASA Astrophysics Data System (ADS)

    Rife, Patricia

    2005-03-01

    Einstein voiced his ethical views against war as well as fascism via venues and alliances with a variety of organizations still debated today. In 1939, he signed a letter to President Roosevelt (drafted by younger colleagues Szilard, Wigner and others) warning the U.S.government about the danger of Nazi Germany gaining control of uranium in the Belgian-controlled Congo in order to develop atomic weapons, based on the discovery of fission by Otto Hahn and Lise Meitner. In 1945, he became a member of the Princeton-based ``Emergency Committee for Atomic Scientists'' organized by Bethe, Condon, Bacher, Urey, Szilard and Weisskopf. Rare Einstein slides will illustrate Dr.Rife's presentation on Albert Einstein's philosophic and ethical convictions about peace, and public stance against war (1914-1950).

  3. Normal versus anomalous self-diffusion in two-dimensional fluids: memory function approach and generalized asymptotic Einstein relation.

    PubMed

    Shin, Hyun Kyung; Choi, Bongsik; Talkner, Peter; Lee, Eok Kyun

    2014-12-07

    Based on the generalized Langevin equation for the momentum of a Brownian particle a generalized asymptotic Einstein relation is derived. It agrees with the well-known Einstein relation in the case of normal diffusion but continues to hold for sub- and super-diffusive spreading of the Brownian particle's mean square displacement. The generalized asymptotic Einstein relation is used to analyze data obtained from molecular dynamics simulations of a two-dimensional soft disk fluid. We mainly concentrated on medium densities for which we found super-diffusive behavior of a tagged fluid particle. At higher densities a range of normal diffusion can be identified. The motion presumably changes to sub-diffusion for even higher densities.

  4. Normal versus anomalous self-diffusion in two-dimensional fluids: Memory function approach and generalized asymptotic Einstein relation

    NASA Astrophysics Data System (ADS)

    Shin, Hyun Kyung; Choi, Bongsik; Talkner, Peter; Lee, Eok Kyun

    2014-12-01

    Based on the generalized Langevin equation for the momentum of a Brownian particle a generalized asymptotic Einstein relation is derived. It agrees with the well-known Einstein relation in the case of normal diffusion but continues to hold for sub- and super-diffusive spreading of the Brownian particle's mean square displacement. The generalized asymptotic Einstein relation is used to analyze data obtained from molecular dynamics simulations of a two-dimensional soft disk fluid. We mainly concentrated on medium densities for which we found super-diffusive behavior of a tagged fluid particle. At higher densities a range of normal diffusion can be identified. The motion presumably changes to sub-diffusion for even higher densities.

  5. Classes of exact Einstein Maxwell solutions

    NASA Astrophysics Data System (ADS)

    Komathiraj, K.; Maharaj, S. D.

    2007-12-01

    We find new classes of exact solutions to the Einstein Maxwell system of equations for a charged sphere with a particular choice of the electric field intensity and one of the gravitational potentials. The condition of pressure isotropy is reduced to a linear, second order differential equation which can be solved in general. Consequently we can find exact solutions to the Einstein Maxwell field equations corresponding to a static spherically symmetric gravitational potential in terms of hypergeometric functions. It is possible to find exact solutions which can be written explicitly in terms of elementary functions, namely polynomials and product of polynomials and algebraic functions. Uncharged solutions are regainable with our choice of electric field intensity; in particular we generate the Einstein universe for particular parameter values.

  6. Einstein-Weyl spaces and third-order differential equations

    NASA Astrophysics Data System (ADS)

    Tod, K. P.

    2000-08-01

    The three-dimensional null-surface formalism of Tanimoto [M. Tanimoto, "On the null surface formalism," Report No. gr-qc/9703003 (1997)] and Forni et al. [Forni et al., "Null surfaces formation in 3D," J. Math Phys. (submitted)] are extended to describe Einstein-Weyl spaces, following Cartan [E. Cartan, "Les espaces généralisées et l'integration de certaines classes d'equations différentielles," C. R. Acad. Sci. 206, 1425-1429 (1938); "La geometria de las ecuaciones diferenciales de tercer order," Rev. Mat. Hispano-Am. 4, 1-31 (1941)]. In the resulting formalism, Einstein-Weyl spaces are obtained from a particular class of third-order differential equations. Some examples of the construction which include some new Einstein-Weyl spaces are given.

  7. My Half-Hour with Einstein

    NASA Astrophysics Data System (ADS)

    Romer, Robert H.

    2005-04-01

    Midway during my first year as a Princeton graduate student (1952-53), I was given a letter of introduction to Einstein. Over a year later I finally worked up my courage to use it and -- as a result -- enjoyed a one-on-one conversation with him in the study of his home on Mercer Street. I will describe how my chance to meet Einstein arose and what I can remember of our memorable (to me if not to him) conversation. Among other things, we discussed the bomb, the new state of Israel, fossil horse brains, and evolution. (``Has there really been enough time for all those changes?'') We talked about the Einstein-Rosen-Podolsky problem - though not by that name, and I believe that it was the ``Bohm version'' that he asked me about. (``Do you really believe that if someone here measured the spin of an atom, it could affect the simultaneous measurement of the spin of another atom way over there?'') My major recollection is of my wish that I had been better prepared. As Ehrenfest once wrote: ``Nothing is shabbier than the feeling: now God has granted me the opportunity to meet this man, and I sat before him open-mouthed; how much I might have asked him -- but nothing at all occurred to me.''

  8. Calibrating First-Order Strong Lensing Mass Estimates in Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Reed, Brendan; Remolian, Juan; Sharon, Keren; Li, Nan; SPT Clusters Cooperation

    2018-01-01

    We investigate methods to reduce the statistical and systematic errors inherent to using the Einstein Radius as a first-order mass estimate in strong lensing galaxy clusters. By finding an empirical universal calibration function, we aim to enable a first-order mass estimate of large cluster data sets in a fraction of the time and effort of full-scale strong lensing mass modeling. We use 74 simulated cluster data from the Argonne National Laboratory in a lens redshift slice of [0.159, 0.667] with various source redshifts in the range of [1.23, 2.69]. From the simulated density maps, we calculate the exact mass enclosed within the Einstein Radius. We find that the mass inferred from the Einstein Radius alone produces an error width of ~39% with respect to the true mass. We explore an array of polynomial and exponential correction functions with dependence on cluster redshift and projected radii of the lensed images, aiming to reduce the statistical and systematic uncertainty. We find that the error on the the mass inferred from the Einstein Radius can be reduced significantly by using a universal correction function. Our study has implications for current and future large galaxy cluster surveys aiming to measure cluster mass, and the mass-concentration relation.

  9. Schwinger's Approach to Einstein's Gravity

    NASA Astrophysics Data System (ADS)

    Milton, Kim

    2012-05-01

    Albert Einstein was one of Julian Schwinger's heroes, and Schwinger was greatly honored when he received the first Einstein Prize (together with Kurt Godel) for his work on quantum electrodynamics. Schwinger contributed greatly to the development of a quantum version of gravitational theory, and his work led directly to the important work of (his students) Arnowitt, Deser, and DeWitt on the subject. Later in the 1960's and 1970's Schwinger developed a new formulation of quantum field theory, which he dubbed Source Theory, in an attempt to get closer contact to phenomena. In this formulation, he revisited gravity, and in books and papers showed how Einstein's theory of General Relativity emerged naturally from one physical assumption: that the carrier of the gravitational force is a massless, helicity-2 particle, the graviton. (There has been a minor dispute whether gravitational theory can be considered as the massless limit of a massive spin-2 theory; Schwinger believed that was the case, while Van Dam and Veltman concluded the opposite.) In the process, he showed how all of the tests of General Relativity could be explained simply, without using the full machinery of the theory and without the extraneous concept of curved space, including such effects as geodetic precession and the Lense-Thirring effect. (These effects have now been verified by the Gravity Probe B experiment.) This did not mean that he did not accept Einstein's equations, and in his book and full article on the subject, he showed how those emerge essentially uniquely from the assumption of the graviton. So to speak of Schwinger versus Einstein is misleading, although it is true that Schwinger saw no necessity to talk of curved spacetime. In this talk I will lay out Schwinger's approach, and the connection to Einstein's theory.

  10. Comparison of rotational temperature derived from ground-based OH airglow observations with TIMED/SABER to evaluate the Einstein Coefficients

    NASA Astrophysics Data System (ADS)

    Liu, W.; Xu, J.; Smith, A. K.; Yuan, W.

    2017-12-01

    Ground-based observations of the OH(9-4, 8-3, 6-2, 5-1, 3-0) band airglows over Xinglong, China (40°24'N, 117°35'E) from December 2011 to 2014 are used to calculate rotational temperatures. The temperatures are calculated using five commonly used Einstein coefficient datasets. The kinetic temperature from TIMED/SABER is completely independent of the OH rotational temperature. SABER temperatures are weighted vertically by weighting functions calculated for each emitting vibrational state from two SABER OH volume emission rate profiles. By comparing the ground-based OH rotational temperature with SABER's, five Einstein coefficient datasets are evaluated. The results show that temporal variations of the rotational temperatures are well correlated with SABER's; the linear correlation coefficients are higher than 0.72, but the slopes of the fit between the SABER and rotational temperatures are not equal to 1. The rotational temperatures calculated using each set of Einstein coefficients produce a different bias with respect to SABER; these are evaluated over each of vibrational levels to assess the best match. It is concluded that rotational temperatures determined using any of the available Einstein coefficient datasets have systematic errors. However, of the five sets of coefficients, the rotational temperature derived with the Langhoff et al.'s (1986) set is most consistent with SABER. In order to get a set of optimal Einstein coefficients for rotational temperature derivation, we derive the relative values from ground-based OH spectra and SABER temperatures statistically using three year data. The use of a standard set of Einstein coefficients will be beneficial for comparing rotational temperatures observed at different sites.

  11. A complete public archive for the Einstein IPC

    NASA Technical Reports Server (NTRS)

    Helfand, David J.

    1995-01-01

    This report documents progress made in the period 24 Sept. 1993 - 23 Sept. 1995 on the project described in our proposal 'A Complete Public Archive for the Einstein IPC' which was approved under the Astrophysics Data Program in 1992. We have completed most of the principal objectives of the original proposal; a NFE was recently approved so that costs for publications in press can be covered and we can complete the public record for the Einstein IPC database.

  12. Bose-Einstein condensation. Twenty years after

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagnato, V. S.; Frantzeskakis, D. J.; Kevrekidis, P. G.

    The aim of this introductory article is two-fold. First, we aim to offer a general introduction to the theme of Bose-Einstein condensates, and briefly discuss the evolution of a number of relevant research directions during the last two decades. Second, we introduce and present the articles that appear in this Special Volume of Romanian Reports in Physics celebrating the conclusion of the second decade since the experimental creation of Bose-Einstein condensation in ultracold gases of alkali-metal atoms.

  13. Computer program for the computation of total sediment discharge by the modified Einstein procedure

    USGS Publications Warehouse

    Stevens, H.H.

    1985-01-01

    Two versions of a computer program to compute total sediment discharge by the modified Einstein procedure are presented. The FORTRAN 77 language version is for use on the PRIME computer, and the BASIC language version is for use on most microcomputers. The program contains built-in limitations and input-output options that closely follow the original modified Einstein procedure. Program documentation and listings of both versions of the program are included. (USGS)

  14. Einstein and Rastall theories of gravitation in comparison

    NASA Astrophysics Data System (ADS)

    Darabi, F.; Moradpour, H.; Licata, I.; Heydarzade, Y.; Corda, C.

    2018-01-01

    We profit by a recent paper of Visser claiming that Rastall gravity is equivalent to Einstein gravity to compare the two gravitational theories in a general way. Our conclusions are different from Visser's ones. We indeed argue that these two theories are not equivalent. In fact, Rastall theory of gravity is an "open" theory when compared to Einstein general theory of relativity. Thus, it is ready to accept the challenges of observational cosmology and quantum gravity.

  15. Bose-Einstein condensation. Twenty years after

    DOE PAGES

    Bagnato, V. S.; Frantzeskakis, D. J.; Kevrekidis, P. G.; ...

    2015-02-23

    The aim of this introductory article is two-fold. First, we aim to offer a general introduction to the theme of Bose-Einstein condensates, and briefly discuss the evolution of a number of relevant research directions during the last two decades. Second, we introduce and present the articles that appear in this Special Volume of Romanian Reports in Physics celebrating the conclusion of the second decade since the experimental creation of Bose-Einstein condensation in ultracold gases of alkali-metal atoms.

  16. Nonequilibrium Bose-Einstein condensation of hot magnons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vannucchi, Fabio Stucchi; Vasconcellos, Aurea Rosas; Luzzi, Roberto

    We present an analysis of the emergence of a nonequilibrium Bose-Einstein-type condensation of magnons in radio-frequency pumped magnetic thin films, which has recently been experimentally observed. A complete description of all the nonequilibrium processes involved is given. It is demonstrated that the phenomenon is another example of the emergence of Bose-Einstein-type condensation in nonequilibrium many-boson systems embedded in a thermal bath, a phenomenon evidenced decades ago by the renowned late Herbert Froehlich.

  17. Gödel metrics with chronology protection in Horndeski gravities

    NASA Astrophysics Data System (ADS)

    Geng, Wei-Jian; Li, Shou-Long; Lü, H.; Wei, Hao

    2018-05-01

    Gödel universe, one of the most interesting exact solutions predicted by General Relativity, describes a homogeneous rotating universe containing naked closed time-like curves (CTCs). It was shown that such CTCs are the consequence of the null energy condition in General Relativity. In this paper, we show that the Gödel-type metrics with chronology protection can emerge in Einstein-Horndeski gravity. We construct such exact solutions also in Einstein-Horndeski-Maxwell and Einstein-Horndeski-Proca theories.

  18. Bohr's Electron was Problematic for Einstein: String Theory Solved the Problem

    NASA Astrophysics Data System (ADS)

    Webb, William

    2013-04-01

    Neils Bohr's 1913 model of the hydrogen electron was problematic for Albert Einstein. Bohr's electron rotates with positive kinetic energies +K but has addition negative potential energies - 2K. The total net energy is thus always negative with value - K. Einstein's special relativity requires energies to be positive. There's a Bohr negative energy conflict with Einstein's positive energy requirement. The two men debated the problem. Both would have preferred a different electron model having only positive energies. Bohr and Einstein couldn't find such a model. But Murray Gell-Mann did! In the 1960's, Gell-Mann introduced his loop-shaped string-like electron. Now, analysis with string theory shows that the hydrogen electron is a loop of string-like material with a length equal to the circumference of the circular orbit it occupies. It rotates like a lariat around its centered proton. This loop-shape has no negative potential energies: only positive +K relativistic kinetic energies. Waves induced on loop-shaped electrons propagate their energy at a speed matching the tangential speed of rotation. With matching wave speed and only positive kinetic energies, this loop-shaped electron model is uniquely suited to be governed by the Einstein relativistic equation for total mass-energy. Its calculated photon emissions are all in excellent agreement with experimental data and, of course, in agreement with those -K calculations by Neils Bohr 100 years ago. Problem solved!

  19. Hypergeometric Equation in Modeling Relativistic Isotropic Sphere

    NASA Astrophysics Data System (ADS)

    Thirukkanesh, S.; Ragel, F. C.

    2014-04-01

    We study the Einstein system of equations in static spherically symmetric spacetimes. We obtained classes of exact solutions to the Einstein system by transforming the condition for pressure isotropy to a hypergeometric equation choosing a rational form for one of the gravitational potentials. The solutions are given in simple form that is a desirable requisite to study the behavior of relativistic compact objects in detail. A physical analysis indicate that our models satisfy all the fundamental requirements of realistic star and match smoothly with the exterior Schwarzschild metric. The derived masses and densities are consistent with the previously reported experimental and theoretical studies describing strange stars. The models satisfy the standard energy conditions required by normal matter.

  20. Bose-Einstein condensate of rigid rotor molecules

    NASA Astrophysics Data System (ADS)

    Jones, Evan; Smith, Joseph; Rittenhouse, Seth; Peden, Brandon; Wilson, Ryan

    2017-04-01

    We study the ground state phases of a quasi-two-dimensional Bose-Einstein condensate (BEC) of dipolar rigid rotor molecules subject to a DC electric field. In the high-field limit, this system acquires the properties of the fully polarized dipolar BEC, which exhibits a roton-maxon excitation spectrum, and has been thoroughly studied in the theoretical literature. In the weak-field limit, however, qualitatively new physics emerges due to the competition between the (weak) applied field and internal electric fields, which are produced by the molecules themselves. We characterize the ground states of this system, and study its unique dielectric properties. We gratefully acknowledge support from the National Science Foundation under Grant No. PHYS-1516421.

  1. [Two traditions in the scientific learning of the world. A case study of creation and reception of quantum mechanics over the period 1925-1927, on the bases of discussion between Werner Heisenberg and Albert Einstein].

    PubMed

    Krajniak, Wiktor

    2014-01-01

    The purpose of this article is the analyses of discussion between Albert Einstein and Werner Heisenberg in the period 1925-1927. Their disputes, relating to the sources of scientific knowledge, its methods and the value of knowledge acquired in this way, are part of the characteristic for the European science discourse between rationalism and empirism. On the basis of some sources and literature on the subject, the epistemological positions of both scholars in the period were reconstructed. This episode, yet poorly known, is a unique example of scientific disputes, whose range covers a broad spectrum of methodological problems associated with the historical development of science. The conducted analysis sheds some light on the source of popularity of logical empirism in the first half of the 20th century. A particular emphasis is placed on the impact of the neopositivist ideas which reflect Heisenberg's research program, being the starting point for the Copenhagen interpretation of quantum mechanics. The main assumption of logical empirism, concerning acquisition of scientific knowledge only by means of empirical procedures and logical analysis of the language of science, in view of the voiced by Einstein arguments, bears little relationship with actual testing practices in the historical aspect of the development of science. The criticism of Heisenberg's program, carried out by Einstein, provided arguments for the main critics of the neopositivist ideal and contributed to the bankruptcy of the idea of logical empirism, thereby starting a period of critical rationalism prosperity, arising from criticism of neopositivism and alluding to Einstein's ideas.

  2. Left-invariant Einstein metrics on S3 ×S3

    NASA Astrophysics Data System (ADS)

    Belgun, Florin; Cortés, Vicente; Haupt, Alexander S.; Lindemann, David

    2018-06-01

    The classification of homogeneous compact Einstein manifolds in dimension six is an open problem. We consider the remaining open case, namely left-invariant Einstein metrics g on G = SU(2) × SU(2) =S3 ×S3. Einstein metrics are critical points of the total scalar curvature functional for fixed volume. The scalar curvature S of a left-invariant metric g is constant and can be expressed as a rational function in the parameters determining the metric. The critical points of S, subject to the volume constraint, are given by the zero locus of a system of polynomials in the parameters. In general, however, the determination of the zero locus is apparently out of reach. Instead, we consider the case where the isotropy group K of g in the group of motions is non-trivial. When K ≇Z2 we prove that the Einstein metrics on G are given by (up to homothety) either the standard metric or the nearly Kähler metric, based on representation-theoretic arguments and computer algebra. For the remaining case K ≅Z2 we present partial results.

  3. Diffusion coefficients in organic-water solutions and comparison with Stokes-Einstein predictions

    NASA Astrophysics Data System (ADS)

    Evoy, E.; Kamal, S.; Bertram, A. K.

    2017-12-01

    Diffusion coefficients of organic species in particles containing secondary organic material (SOM) are necessary for predicting the growth and reactivity of these particles in the atmosphere. Previously, the Stokes-Einstein equation combined with viscosity measurements have been used to predict these diffusion coefficients. However, the accuracy of the Stokes-Einstein equation for predicting diffusion coefficients in SOM-water particles has not been quantified. To test the Stokes-Einstein equation, diffusion coefficients of fluorescent organic probe molecules were measured in citric acid-water and sorbitol-water solutions. These solutions were used as proxies for SOM-water particles found in the atmosphere. Measurements were performed as a function of water activity, ranging from 0.26-0.86, and as a function of viscosity ranging from 10-3 to 103 Pa s. Diffusion coefficients were measured using fluorescence recovery after photobleaching. The measured diffusion coefficients were compared with predictions made using the Stokes-Einstein equation combined with literature viscosity data. Within the uncertainties of the measurements, the measured diffusion coefficients agreed with the predicted diffusion coefficients, in all cases.

  4. The Use of Thought Experiments in Teaching Physics to Upper Secondary-Level Students: Two examples from the theory of relativity

    NASA Astrophysics Data System (ADS)

    Velentzas, Athanasios; Halkia, Krystallia

    2013-12-01

    The present study focuses on the way thought experiments (TEs) can be used as didactical tools in teaching physics to upper secondary-level students. A qualitative study was designed to investigate to what extent the TEs called 'Einstein's elevator' and 'Einstein's train' can function as tools in teaching basic concepts of the theory of relativity to upper secondary-level students. The above TEs were used in the form they are presented by Einstein himself and by Landau and Rumer in books that popularize theories of physics. The research sample consisted of 40 Greek students, divided into 11 groups of three to four students each. The findings of this study reveal that the use of TEs in teaching the theory of relativity can help students realize situations which refer to a world beyond their everyday experience and develop syllogisms according to the theory. In this way, students can grasp physics laws and principles which demand a high degree of abstract thinking, such as the principle of equivalence and the consequences of the constancy of the speed of light to concepts of time and space.

  5. Studying scientific thought experiments in their context: Albert Einstein and electromagnetic induction

    NASA Astrophysics Data System (ADS)

    Potters, Jan; Leuridan, Bert

    2017-05-01

    This article concerns the way in which philosophers study the epistemology of scientific thought experiments. Starting with a general overview of the main contemporary philosophical accounts, we will first argue that two implicit assumptions are present therein: first, that the epistemology of scientific thought experiments is solely concerned with factual knowledge of the world; and second, that philosophers should account for this in terms of the way in which individuals in general contemplate these thought experiments in thought. Our goal is to evaluate these assumptions and their implications using a particular case study: Albert Einstein's magnet-conductor thought experiment. We will argue that an analysis of this thought experiment based on these assumptions - as John Norton (1991) provides - is, in a sense, both misguided (the thought experiment by itself did not lead Einstein to factual knowledge of the world) and too narrow (to understand the thought experiment's epistemology, its historical context should also be taken into account explicitly). Based on this evaluation we propose an alternative philosophical approach to the epistemology of scientific thought experiments which is more encompassing while preserving what is of value in the dominant view.

  6. Cerebral Small Vessel Disease and Motoric Cognitive Risk Syndrome: Results from the Kerala-Einstein Study.

    PubMed

    Wang, Nan; Allali, Gilles; Kesavadas, Chandrasekharan; Noone, Mohan L; Pradeep, Vayyattu G; Blumen, Helena M; Verghese, Joe

    2016-01-01

    The contribution of cerebral small vessel disease to cognitive decline, especially in non-Caucasian populations, is not well established. We examined the relationship between cerebral small vessel disease and motoric cognitive risk syndrome (MCR), a recently described pre-dementia syndrome, in Indian seniors. 139 participants (mean age 66.6 ± 5.4 y, 33.1% female) participating in the Kerala-Einstein study in Southern India were examined in a cross-sectional study. The presence of cerebral small vessel disease (lacunar infarcts and cerebral microbleeds (CMB)) and white matter hyperintensities on MRI was ascertained by raters blinded to clinical information. MCR was defined by the presence of cognitive complaints and slow gait in older adults without dementia or mobility disability. Thirty-eight (27.3%) participants met MCR criteria. The overall prevalence of lacunar infarcts and CMB was 49.6% and 9.4% , respectively. Lacunar infarcts in the frontal lobe, but no other brain regions, were associated with MCR even after adjusting for vascular risk factors and presence of white matter hyperintensities (adjusted Odds Ratio (aOR): 4.67, 95% CI: 1.69-12.94). Frontal lacunar infarcts were associated with slow gait (aOR: 3.98, 95% CI: 1.46-10.79) and poor performance on memory test (β: -1.24, 95% CI: -2.42 to -0.05), but not with cognitive complaints or non-memory tests. No association of CMB was found with MCR, individual MCR criterion or cognitive tests. Frontal lacunar infarcts are associated with MCR in Indian seniors, perhaps, by contributing to slow gait and poor memory function.

  7. Gluon transport equation with effective mass and dynamical onset of Bose–Einstein condensation

    DOE PAGES

    Blaizot, Jean-Paul; Jiang, Yin; Liao, Jinfeng

    2016-05-01

    In this paper we study the transport equation describing a dense system of gluons, in the small scattering angle approximation, taking into account medium-generated effective masses of the gluons. We focus on the case of overpopulated systems that are driven to Bose–Einstein condensation on their way to thermalization. Lastly, the presence of a mass modifies the dispersion relation of the gluon, as compared to the massless case, but it is shown that this does not change qualitatively the scaling behavior in the vicinity of the onset.

  8. Gluon transport equation with effective mass and dynamical onset of Bose–Einstein condensation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaizot, Jean-Paul; Jiang, Yin; Liao, Jinfeng

    In this paper we study the transport equation describing a dense system of gluons, in the small scattering angle approximation, taking into account medium-generated effective masses of the gluons. We focus on the case of overpopulated systems that are driven to Bose–Einstein condensation on their way to thermalization. Lastly, the presence of a mass modifies the dispersion relation of the gluon, as compared to the massless case, but it is shown that this does not change qualitatively the scaling behavior in the vicinity of the onset.

  9. Calabi-Yau Volumes and Reflexive Polytopes

    NASA Astrophysics Data System (ADS)

    He, Yang-Hui; Seong, Rak-Kyeong; Yau, Shing-Tung

    2018-04-01

    We study various geometrical quantities for Calabi-Yau varieties realized as cones over Gorenstein Fano varieties, obtained as toric varieties from reflexive polytopes in various dimensions. Focus is made on reflexive polytopes up to dimension 4 and the minimized volumes of the Sasaki-Einstein base of the corresponding Calabi-Yau cone are calculated. By doing so, we conjecture new bounds for the Sasaki-Einstein volume with respect to various topological quantities of the corresponding toric varieties. We give interpretations about these volume bounds in the context of associated field theories via the AdS/CFT correspondence.

  10. Thermodynamic measurement of the sound velocity of a Bose gas across the transition to Bose–Einstein condensation

    NASA Astrophysics Data System (ADS)

    Fritsch, A. R.; Tavares, P. E. S.; Vivanco, F. A. J.; Telles, G. D.; Bagnato, V. S.; Henn, E. A. L.

    2018-05-01

    We present an alternative method for determining the sound velocity in atomic Bose–Einstein condensates, based on thermodynamic global variables. The total number of trapped atoms was as a function of temperature carefully studied across the phase transition, at constant volume. It allowed us to evaluate the sound velocity resulting in consistent values from the quantum to classical regime, in good agreement with previous results found in literature. We also provide some insight about the dominant sound mode (thermal or superfluid) across a wide temperature range.

  11. Soliton-sound interactions in quasi-one-dimensional Bose-Einstein condensates.

    PubMed

    Parker, N G; Proukakis, N P; Leadbeater, M; Adams, C S

    2003-06-06

    Longitudinal confinement of dark solitons in quasi-one-dimensional Bose-Einstein condensates leads to sound emission and reabsorption. We perform quantitative studies of the dynamics of a soliton oscillating in a tight dimple trap, embedded in a weaker harmonic trap. The dimple depth provides a sensitive handle to control the soliton-sound interaction. In the limit of no reabsorption, the power radiated is found to be proportional to the soliton acceleration squared. An experiment is proposed to detect sound emission as a change in amplitude and frequency of soliton oscillations.

  12. Chaos enhancing tunneling in a coupled Bose-Einstein condensate with a double driving.

    PubMed

    Rong, Shiguang; Hai, Wenhua; Xie, Qiongtao; Zhu, Qianquan

    2009-09-01

    We study the effects of chaotic dynamics on atomic tunneling between two weakly coupled Bose-Einstein condensates driven by a double-frequency periodic field. Under the Melnikov's chaos criterion, we divide the parameter space into three parts of different types, regular region, low-chaoticity region, and high-chaoticity region, and give the accurate boundaries between the different regions. It is found that the atomic tunneling can be enhanced in the presence of chaos. Particularly, in the high-chaoticity regions, the chaos-induced inversion of the population imbalance is observed numerically.

  13. Dynamical structure of pure Lovelock gravity

    NASA Astrophysics Data System (ADS)

    Dadhich, Naresh; Durka, Remigiusz; Merino, Nelson; Miskovic, Olivera

    2016-03-01

    We study the dynamical structure of pure Lovelock gravity in spacetime dimensions higher than four using the Hamiltonian formalism. The action consists of a cosmological constant and a single higher-order polynomial in the Riemann tensor. Similarly to the Einstein-Hilbert action, it possesses a unique constant curvature vacuum and charged black hole solutions. We analyze physical degrees of freedom and local symmetries in this theory. In contrast to the Einstein-Hilbert case, the number of degrees of freedom depends on the background and can vary from zero to the maximal value carried by the Lovelock theory.

  14. Albert Einstein and Mościcki's Patent Application

    NASA Astrophysics Data System (ADS)

    Gołab-Meyer, Zofia

    2006-04-01

    Much was said and written during the 2005 World Year of Physics about Einstein's work in the Bern, Switzerland, Patent Office (Fig. 1). He took the post (Technical Expert 3rd Class) there after completing his studies at the Zurich Polytechnic (later called ETH) in 1900 and being unsuccessful in his attempts to obtain a university position. However, little seems to be known of the patent applications he examined during his five years at the office in Bern. This paper discusses one of those applications—one that was submitted by a rather remarkable individual.

  15. Quantum computational complexity, Einstein's equations and accelerated expansion of the Universe

    NASA Astrophysics Data System (ADS)

    Ge, Xian-Hui; Wang, Bin

    2018-02-01

    We study the relation between quantum computational complexity and general relativity. The quantum computational complexity is proposed to be quantified by the shortest length of geodesic quantum curves. We examine the complexity/volume duality in a geodesic causal ball in the framework of Fermi normal coordinates and derive the full non-linear Einstein equation. Using insights from the complexity/action duality, we argue that the accelerated expansion of the universe could be driven by the quantum complexity and free from coincidence and fine-tunning problems.

  16. Breakdown of the Stokes-Einstein Relation for the Rotational Diffusivity of Polymer Grafted Nanoparticles in Polymer Melts.

    PubMed

    Maldonado-Camargo, Lorena; Rinaldi, Carlos

    2016-11-09

    We report observations of breakdown of the Stokes-Einstein relation for the rotational diffusivity of polymer-grafted spherical nanoparticles in polymer melts. The rotational diffusivity of magnetic nanoparticles coated with poly(ethylene glycol) dispersed in poly(ethylene glycol) melts was determined through dynamic magnetic susceptibility measurements of the collective rotation of the magnetic nanoparticles due to imposed time-varying magnetic torques. These measurements clearly demonstrate the existence of a critical molecular weight for the melt polymer, below which the Stokes-Einstein relation accurately describes the rotational diffusivity of the polymer-grafted nanoparticles and above which the Stokes-Einstein relation ceases to apply. This critical molecular weight was found to correspond to a chain contour length that approximates the hydrodynamic diameter of the nanoparticles.

  17. Einstein-Podolsky-Rosen entanglement and steering in two-well Bose-Einstein-condensate ground states

    NASA Astrophysics Data System (ADS)

    He, Q. Y.; Drummond, P. D.; Olsen, M. K.; Reid, M. D.

    2012-08-01

    We consider how to generate and detect Einstein-Podolsky-Rosen (EPR) entanglement and the steering paradox between groups of atoms in two separated potential wells in a Bose-Einstein condensate. We present experimental criteria for this form of entanglement and propose experimental strategies for detecting entanglement using two- or four-mode ground states. These approaches use spatial and/or internal modes. We also present higher-order criteria that act as signatures to detect the multiparticle entanglement present in this system. We point out the difference between spatial entanglement using separated detectors and other types of entanglement that do not require spatial separation. The four-mode approach with two spatial and two internal modes results in an entanglement signature with spatially separated detectors, conceptually similar to the original EPR paradox.

  18. Bose-Einstein condensation in microgravity.

    PubMed

    van Zoest, T; Gaaloul, N; Singh, Y; Ahlers, H; Herr, W; Seidel, S T; Ertmer, W; Rasel, E; Eckart, M; Kajari, E; Arnold, S; Nandi, G; Schleich, W P; Walser, R; Vogel, A; Sengstock, K; Bongs, K; Lewoczko-Adamczyk, W; Schiemangk, M; Schuldt, T; Peters, A; Könemann, T; Müntinga, H; Lämmerzahl, C; Dittus, H; Steinmetz, T; Hänsch, T W; Reichel, J

    2010-06-18

    Albert Einstein's insight that it is impossible to distinguish a local experiment in a "freely falling elevator" from one in free space led to the development of the theory of general relativity. The wave nature of matter manifests itself in a striking way in Bose-Einstein condensates, where millions of atoms lose their identity and can be described by a single macroscopic wave function. We combine these two topics and report the preparation and observation of a Bose-Einstein condensate during free fall in a 146-meter-tall evacuated drop tower. During the expansion over 1 second, the atoms form a giant coherent matter wave that is delocalized on a millimeter scale, which represents a promising source for matter-wave interferometry to test the universality of free fall with quantum matter.

  19. Hidden symmetries on toric Sasaki-Einstein spaces

    NASA Astrophysics Data System (ADS)

    Slesar, V.; Visinescu, M.; Vîlcu, G. E.

    2015-05-01

    We describe the construction of Killing-Yano tensors on toric Sasaki-Einstein manifolds. We use the fact that the metric cones of these spaces are Calabi-Yau manifolds. The description of the Calabi-Yau manifolds in terms of toric data, using the Delzant approach to toric geometries, allows us to find explicitly the complex coordinates and write down the Killing-Yano tensors. As a concrete example we present the complete set of special Killing forms on the five-dimensional homogeneous Sasaki-Einstein manifold T 1,1.

  20. Einstein Equations from Varying Complexity

    NASA Astrophysics Data System (ADS)

    Czech, Bartłomiej

    2018-01-01

    A recent proposal equates the circuit complexity of a quantum gravity state with the gravitational action of a certain patch of spacetime. Since Einstein's equations follow from varying the action, it should be possible to derive them by varying complexity. I present such a derivation for vacuum solutions of pure Einstein gravity in three-dimensional asymptotically anti-de Sitter space. The argument relies on known facts about holography and on properties of tensor network renormalization, an algorithm for coarse-graining (and optimizing) tensor networks.

  1. News

    NASA Astrophysics Data System (ADS)

    2005-01-01

    Einstein year: Einstein is brought back to life for a year of educational events Workshop: Students reach out for the Moon Event: Masterclasses go with a bang Workshop: Students search for asteroids on Einstein's birthday Scotland: Curriculum for Excellence takes holistic approach Conference: Reporting from a mattress in Nachod Conference: 'Change' is key objective at ICPE conference 2005 Lecture: Institute of Physics Schools Lecture series Conference: Experience showcase science in Warwick National network: Science Learning Centre opens Meeting: 30th Stirling Physics Meeting breaks records Competition: Win a digital camera! Forthcoming Events

  2. Einstein's Biggest Blunder: A Cosmic Mystery Story

    ScienceCinema

    Krauss, Lawrence

    2018-01-11

    The standard model of cosmology built up over 20 years is no longer accepted as accurate. New data suggest that most of the energy density of the universe may be contained in empty space. Remarkably, this is exactly what would be expected if Einstein's cosmological constant really exists. If it does, its origin is the biggest mystery in physics and presents huge challenges for the fundamental theories of elementary particles and fields. Krauss explains Einstein's concept and describes its possible implications.

  3. Differential invariants and exact solutions of the Einstein equations

    NASA Astrophysics Data System (ADS)

    Lychagin, Valentin; Yumaguzhin, Valeriy

    2017-06-01

    In this paper (cf. Lychagin and Yumaguzhin, in Anal Math Phys, 2016) a class of totally geodesics solutions for the vacuum Einstein equations is introduced. It consists of Einstein metrics of signature (1,3) such that 2-dimensional distributions, defined by the Weyl tensor, are completely integrable and totally geodesic. The complete and explicit description of metrics from these class is given. It is shown that these metrics depend on two functions in one variable and one harmonic function.

  4. Einstein Observatory survey of X-ray emission from solar-type stars - The late F and G dwarf stars

    NASA Technical Reports Server (NTRS)

    Maggio, A.; Sciortino, S.; Vaiana, G. S.; Majer, P.; Bookbinder, J.

    1987-01-01

    Results of a volume-limited X-ray survey of stars of luminosity classes IV and V in the spectral range F7-G9 observed with the Einstein Observatory are presented. Using survival analysis techniques, the stellar X-ray luminosity function in the 0.15-4.0 keV energy band for both single and multiple sources. It is shown that the difference in X-ray luminosity between these two classes of sources is consistent with the superposition of individual components in multiple-component systems, whose X-ray properties are similar to those of the single-component sources. The X-ray emission of the stars in our sample is well correlated with their chromospheric CA II H-K line emission and with their projected equatorial rotational velocity. Comparison of the X-ray luminosity function constructed for the sample of the dG stars of the local population with the corresponding functions derived elsewhere for the Hyades, the Pleiades, and the Orion Ic open cluster confirms that the level of X-ray emission decreases with stellar age.

  5. The association of visual memory with hippocampal volume.

    PubMed

    Zammit, Andrea R; Ezzati, Ali; Katz, Mindy J; Zimmerman, Molly E; Lipton, Michael L; Sliwinski, Martin J; Lipton, Richard B

    2017-01-01

    In this study we investigated the role of hippocampal volume (HV) in visual memory. Participants were a subsample of older adults (> = 70 years) from the Einstein Aging Study. Visual performance was measured using the Complex Figure (CF) copy and delayed recall tasks from the Repeatable Battery for the Assessment of Neuropsychological Status. Linear regressions were fitted to study associations between HV and visual tasks. Participants' (n = 113, mean age = 78.9 years) average scores on the CF copy and delayed recall were 17.4 and 11.6, respectively. CF delayed recall was associated with total (β = .031, p = 0.001) and left (β = 0.031, p = 0.001) and right HVs (β = 0.24, p = 0.012). CF delayed recall remained significantly associated with left HV even after we also included right HV (β = 0.27, p = 0.025) and the CF copy task (β = 0.30, p = 0.009) in the model. CF copy did not show any significant associations with HV. Our results suggest that left HV contributes in retrieval of visual memory in older adults.

  6. Bianchi type-I magnetized cosmological models for the Einstein-Boltzmann equation with the cosmological constant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayissi, Raoul Domingo, E-mail: raoulayissi@yahoo.fr; Noutchegueme, Norbert, E-mail: nnoutch@yahoo.fr

    Global solutions regular for the Einstein-Boltzmann equation on a magnetized Bianchi type-I cosmological model with the cosmological constant are investigated. We suppose that the metric is locally rotationally symmetric. The Einstein-Boltzmann equation has been already considered by some authors. But, in general Bancel and Choquet-Bruhat [Ann. Henri Poincaré XVIII(3), 263 (1973); Commun. Math. Phys. 33, 83 (1973)], they proved only the local existence, and in the case of the nonrelativistic Boltzmann equation. Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academymore » of Science, 2000), Vol. 52] obtained a global existence result, for the relativistic Boltzmann equation coupled with the Einstein equations and using the Yosida operator, but confusing unfortunately with the nonrelativistic case. Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)] and Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], have obtained a global solution in time, but still using the Yosida operator and considering only the uncharged case. Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)] also proved a global existence of solutions to the Maxwell-Boltzmann system using the characteristic method. In this paper, we obtain using a method totally different from those used in the works of Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)], Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)], and Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] the global in time existence and uniqueness of a regular solution to the Einstein-Maxwell-Boltzmann system with the cosmological constant. We define and we use the weighted Sobolev separable spaces for the Boltzmann equation; some special spaces for the Einstein equations, then we clearly display all the proofs leading to the global existence theorems.« less

  7. Bianchi type-I magnetized cosmological models for the Einstein-Boltzmann equation with the cosmological constant

    NASA Astrophysics Data System (ADS)

    Ayissi, Raoul Domingo; Noutchegueme, Norbert

    2015-01-01

    Global solutions regular for the Einstein-Boltzmann equation on a magnetized Bianchi type-I cosmological model with the cosmological constant are investigated. We suppose that the metric is locally rotationally symmetric. The Einstein-Boltzmann equation has been already considered by some authors. But, in general Bancel and Choquet-Bruhat [Ann. Henri Poincaré XVIII(3), 263 (1973); Commun. Math. Phys. 33, 83 (1973)], they proved only the local existence, and in the case of the nonrelativistic Boltzmann equation. Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] obtained a global existence result, for the relativistic Boltzmann equation coupled with the Einstein equations and using the Yosida operator, but confusing unfortunately with the nonrelativistic case. Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)] and Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], have obtained a global solution in time, but still using the Yosida operator and considering only the uncharged case. Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)] also proved a global existence of solutions to the Maxwell-Boltzmann system using the characteristic method. In this paper, we obtain using a method totally different from those used in the works of Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)], Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)], and Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] the global in time existence and uniqueness of a regular solution to the Einstein-Maxwell-Boltzmann system with the cosmological constant. We define and we use the weighted Sobolev separable spaces for the Boltzmann equation; some special spaces for the Einstein equations, then we clearly display all the proofs leading to the global existence theorems.

  8. Beyond Einstein: From the Big Bang to Black Holes

    NASA Technical Reports Server (NTRS)

    2005-01-01

    How did the Universe begin? Does time have a beginning and an end? Does space have edges? The questions are clear and simple. They are as old as human curiosity. But the answers have always seemed beyond the reach of science. Until now. In their attempts to understand how space, time, and matter are connected, Einstein and his successors made three predictions. First, space is expanding from a Big Bang; second, space and time can tie themselves into contorted knots called black holes where time actually comes to a halt; third, space itself contains some kind of energy that is pull- ing the Universe apart. Each of these three predictions seemed so fantastic when it was made that everyone, including Einstein himself, regarded them as unlikely. Incredibly, all three have turned out to be true. Yet Einstein's legacy is one of deep mystery, because his theories are silent on three questions raised by his fantastic predictions: (1) What powered the Big Bang? (2) What happens to space, time, and matter at the edge of a black hole? (3) What is the mysterious dark energy pulling the Universe apart? The answers to these questions-which lie at the crux of where our current theories fail us-will lead to a profound, new understanding of the nature of time and space. To find answers, however, we must venture beyond Einstein. The answers require new theories, such as the inflationary Universe and new insights in high-energy particle theory. Like Einstein s theories, these make fantastic predictions that seem hard to believe: unseen dimensions and entire universes beyond our own. We must find facts to confront and guide these new theories. Powerful new technologies now make this possible. And NASA and its partners are developing an armada of space-based observatories to chart the path to discovery. Here is where the Beyond Einstein story begins. By exploring the three questions that are Einstein s legacy, we begin the next revolution in understanding our Universe. We plot our way forward using clues from observations and from new ideas connecting the worlds of the very small and the very large, from the atom out through the deepest reaches of the cosmos.

  9. Forming a Bose-Einstein Condensate

    NASA Image and Video Library

    2014-09-26

    This sequence of false-color images shows the formation of a Bose-Einstein condensate in the Cold Atom Laboratory prototype at NASA Jet Propulsion Laboratory as the temperature gets progressively closer to absolute zero.

  10. Compactifications of deformed conifolds, branes and the geometry of qubits

    NASA Astrophysics Data System (ADS)

    Cvetič, M.; Gibbons, G. W.; Pope, C. N.

    2016-01-01

    We present three families of exact, cohomogeneity-one Einstein metrics in (2 n + 2) dimensions, which are generalizations of the Stenzel construction of Ricci-flat metrics to those with a positive cosmological constant. The first family of solutions are Fubini-Study metrics on the complex projective spaces C{P}^{n+1} , written in a Stenzel form, whose principal orbits are the Stiefel manifolds {V}_2(R}^{n+2})=SO(n+2)/SO(n) divided by {Z}_2 . The second family are also Einstein-Kähler metrics, now on the Grassmannian manifolds {G}_2({{R}}^{n+3})=SO(n+3)/((SO(n+1)× SO(2)), whose principal orbits are the Stiefel manifolds {V}_2({{R}}^{n+2}) (with no {{Z}}_2 factoring in this case). The third family are Einstein metrics on the product manifolds S n+1 × S n+1, and are Kähler only for n = 1. Some of these metrics are believed to play a role in studies of consistent string theory compactifications and in the context of the AdS/CFT correspondence. We also elaborate on the geometric approach to quantum mechanics based on the Kähler geometry of Fubini-Study metrics on {C}{{P}}^{n+1} , and we apply the formalism to study the quantum entanglement of qubits.

  11. Compactifications of deformed conifolds, branes and the geometry of qubits $\\mathfrak S

    DOE PAGES

    Cvetič, M.; Gibbons, G. W.; Pope, C. N.

    2016-01-22

    We present three families of exact, cohomogeneity-one Einstein metrics in (2n + 2) dimensions, which are generalizations of the Stenzel construction of Ricci-flat metrics to those with a positive cosmological constant. The first family of solutions are Fubini-Study metrics on the complex projective spaces CP n+1, written in a Stenzel form, whose principal orbits are the Stiefel manifolds V 2(more » $$\\mathbb R^{2+3}$$) = SO(n+2)/SO(n) divided by Z 2. The second family are also Einstein-Kahler metrics, now on the Grassmannian manifolds G 2(R n+3) = SO(n+3)/((SO(n+1)×SO(2)), whose principal orbits are the Stiefel manifolds V 2($$\\mathbb R^{2+3}$$) (with no Z 2 factoring in this case). Furthermore, the third family are Einstein metrics on the product manifolds S n+1 × S n+1, and are Kahler only for n = 1. Some of these metrics are believed to play a role in studies of consistent string theory compactifications and in the context of the AdS/CFT correspondence. Also, we elaborate on the geometric approach to quantum mechanics based on the Kahler geometry of Fubini-Study metrics on $$\\mathbb CP^{n+1}$$, and we apply the formalism to study the quantum entanglement of qubits.« less

  12. Use of prestudy heparin did not influence the efficacy and safety of rivaroxaban in patients treated for symptomatic venous thromboem-bolism in the EINSTEIN DVT and EINSTEIN PE studies.

    PubMed

    Prandoni, Paolo; Prins, Martin H; Cohen, Alexander T; Müller, Katharina; Pap, Ákos F; Tewes, Miriam C; Lensing, Anthonie W A

    2015-02-01

    In the EINSTEIN DVT and EINSTEIN PE studies, the majority of patients received heparins to bridge the period during venous thromboembolism (VTE) diagnosis confirmation and the start of the study. In contrast to vitamin K antagonists (VKAs), rivaroxaban may not require initial heparin treatment. To evaluate the effect of prestudy heparin on the efficacy and safety of rivaroxaban relative to enoxaparin/VKA, the 3-month incidence of recurrent VTE, and the 14-day incidence of major and nonmajor clinically relevant bleeding were compared in patients who did and did not receive prestudy heparin. Of the 8,281 patients randomized, 6,937 (83.8%) received prestudy heparin (mean ± SD duration = rivaroxaban: 1.04 [± 0.74] days; enoxaparin 1.03 [± 0.42] days), and 1,344 (16.2%) did not. In patients who did not receive prestudy heparin, the incidences of recurrent VTE were similar in rivaroxaban (15 of 649, 2.3%) and enoxaparin/VKA (13 of 695, 1.9%) patients (adjusted hazard ratio [HR] = 1.11; 95% confidence interval [CI] = 0.52 to 2.37). The incidences of recurrent VTE were also similar in rivaroxaban (54 of 3,501, 1.5%) and enoxaparin/VKA (69 of 3,436, 2.0%) patients who did receive prestudy heparin (adjusted HR = 0.74; 95% CI = 0.52 to 1.06; pinteraction  = 0.32). The incidences of major or nonmajor clinically relevant bleeding with rivaroxaban were not significantly different from those with enoxaparin/VKA, either with (105 of 3,485, 3.0% vs. 104 of 3,428, 3.0%; adjusted HR = 0.98; 95% CI = 0.75 to 1.29) or without (24 of 645, 3.7% vs. 30 of 688, 4.4%; adjusted HR = 0.81; 95% CI = 0.46 to 1.40; pinteraction  = 0.68) prestudy heparin. Although the majority of patients in the EINSTEIN studies received prestudy heparin, there were no notable differences in treatment effect of rivaroxaban versus enoxaparin/VKA in those who did and did not receive it. © 2015 by the Society for Academic Emergency Medicine.

  13. Einstein and General Relativity: Historical Perspectives.

    ERIC Educational Resources Information Center

    Chandrasekhar, S.

    1979-01-01

    This paper presented in the 1978 Oppenheimer Memorial Lecture at Los Alamos Scientific Laboratories on August 17, 1978, discusses Einstein's contributions to physics, in particular, his discovery of the general theory of relativity. (HM)

  14. General Motors sued for 'denigrating' Einstein's image

    NASA Astrophysics Data System (ADS)

    Gwynne, Peter

    2010-07-01

    The US car giant General Motors (GM) has played down the consequences of a lawsuit against it for using the likeness of Albert Einstein in an advertisement for its Terrain sports utility vehicle (SUV).

  15. Einstein in Wyoming.

    ERIC Educational Resources Information Center

    Elliot, Ian

    1996-01-01

    Describes "Einstein's Adventurarium," a science center housed in an empty shopping mall in Gillette, Wyoming, created through school, business, and city-county government partnership. Describes how interactive exhibits allow exploration of life sciences, physics, and paleontology. (KDFB)

  16. Space, time and spooky action

    NASA Astrophysics Data System (ADS)

    Robinson, Andrew

    2017-04-01

    Albert Einstein's persistent opposition to quantum mechanics is a familiar, if still somewhat surprising, fact to all physicists, as David Bodanis observes in his latest book Einstein's Greatest Mistake: the Life of a Flawed Genius.

  17. On the asymptotically Poincaré-Einstein 4-manifolds with harmonic curvature

    NASA Astrophysics Data System (ADS)

    Hu, Xue

    2018-06-01

    In this paper, we discuss the mass aspect tensor and the rigidity of an asymptotically Poincaré-Einstein (APE) 4-manifold with harmonic curvature. We prove that the trace-free part of the mass aspect tensor of an APE 4-manifold with harmonic curvature and normalized Einstein conformal infinity is zero. As to the rigidity, we first show that a complete noncompact Riemannian 4-manifold with harmonic curvature and positive Yamabe constant as well as a L2-pinching condition is Einstein. As an application, we then obtain that an APE 4-manifold with harmonic curvature and positive Yamabe constant is isometric to the hyperbolic space provided that the L2-norm of the traceless Ricci tensor or the Weyl tensor is small enough and the conformal infinity is a standard round 3-sphere.

  18. Spatial entanglement patterns and Einstein-Podolsky-Rosen steering in Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Fadel, Matteo; Zibold, Tilman; Décamps, Boris; Treutlein, Philipp

    2018-04-01

    Many-particle entanglement is a fundamental concept of quantum physics that still presents conceptual challenges. Although nonclassical states of atomic ensembles were used to enhance measurement precision in quantum metrology, the notion of entanglement in these systems was debated because the correlations among the indistinguishable atoms were witnessed by collective measurements only. Here, we use high-resolution imaging to directly measure the spin correlations between spatially separated parts of a spin-squeezed Bose-Einstein condensate. We observe entanglement that is strong enough for Einstein-Podolsky-Rosen steering: We can predict measurement outcomes for noncommuting observables in one spatial region on the basis of corresponding measurements in another region with an inferred uncertainty product below the Heisenberg uncertainty bound. This method could be exploited for entanglement-enhanced imaging of electromagnetic field distributions and quantum information tasks.

  19. The Einstein Genome Gateway using WASP - a high throughput multi-layered life sciences portal for XSEDE.

    PubMed

    Golden, Aaron; McLellan, Andrew S; Dubin, Robert A; Jing, Qiang; O Broin, Pilib; Moskowitz, David; Zhang, Zhengdong; Suzuki, Masako; Hargitai, Joseph; Calder, R Brent; Greally, John M

    2012-01-01

    Massively-parallel sequencing (MPS) technologies and their diverse applications in genomics and epigenomics research have yielded enormous new insights into the physiology and pathophysiology of the human genome. The biggest hurdle remains the magnitude and diversity of the datasets generated, compromising our ability to manage, organize, process and ultimately analyse data. The Wiki-based Automated Sequence Processor (WASP), developed at the Albert Einstein College of Medicine (hereafter Einstein), uniquely manages to tightly couple the sequencing platform, the sequencing assay, sample metadata and the automated workflows deployed on a heterogeneous high performance computing cluster infrastructure that yield sequenced, quality-controlled and 'mapped' sequence data, all within the one operating environment accessible by a web-based GUI interface. WASP at Einstein processes 4-6 TB of data per week and since its production cycle commenced it has processed ~ 1 PB of data overall and has revolutionized user interactivity with these new genomic technologies, who remain blissfully unaware of the data storage, management and most importantly processing services they request. The abstraction of such computational complexity for the user in effect makes WASP an ideal middleware solution, and an appropriate basis for the development of a grid-enabled resource - the Einstein Genome Gateway - as part of the Extreme Science and Engineering Discovery Environment (XSEDE) program. In this paper we discuss the existing WASP system, its proposed middleware role, and its planned interaction with XSEDE to form the Einstein Genome Gateway.

  20. A Staged Reading of the Play: TRANSCENDENCE: Relativity and Its Discontents by Robert Marc Friedman

    NASA Astrophysics Data System (ADS)

    Friedman, Robert Marc

    2015-04-01

    TRANSCENDENCE explores aspects of Einstein's life and his general theory of relativity at the time of the theory's creation and initial reception. While being faithful to historical scholarship, the play creates its own theatrical reality aiming to engage emotions and intellect. Those who strive for transcendence must nevertheless also confront the harsh realities of living in specific time-bound social contexts. Universal constants that anchor physical theory in an objective reality, as Einstein believed, do not readily have equivalents in notions of identity, duty, loyalty, and excellence. In November 1915 after toiling for years in Zurich, Prague, and now Berlin, Einstein achieved his general theory of relativity. When in 1919 British astronomers announced evidence for the bending of starlight by the sun as Einstein had predicted, he soon surprisingly found himself an international celebrity. Expectations arose that he would be called to Stockholm. But the Nobel Committee for Physics refused to acknowledge ``speculations'' such Einstein's. The dismissal of relativity entailed principled and biased opposition, and not simply mistakes in evaluation. Several committee members agreed that Einstein must not receive a Prize. Join us for a dramatic staged reading of TRANSCENDENCE, a play by the science historian Robert Marc Friedman (http://www.hf.uio.no/iakh/english/people/aca/robertfr/index.html) and directed by James Glossman, Lecturer in Directing and Shakespeare, Johns Hopkins University. After the performance, the playwright, director and actors will be available for a talk-back audience discussion.

  1. Unimodular Einstein-Cartan gravity: Dynamics and conservation laws

    NASA Astrophysics Data System (ADS)

    Bonder, Yuri; Corral, Cristóbal

    2018-04-01

    Unimodular gravity is an interesting approach to address the cosmological constant problem, since the vacuum energy density of quantum fields does not gravitate in this framework, and the cosmological constant appears as an integration constant. These features arise as a consequence of considering a constrained volume element 4-form that breaks the diffeomorphisms invariance down to volume preserving diffeomorphisms. In this work, the first-order formulation of unimodular gravity is presented by considering the spin density of matter fields as a source of spacetime torsion. Even though the most general matter Lagrangian allowed by the symmetries is considered, dynamical restrictions arise on their functional dependence. The field equations are obtained and the conservation laws associated with the symmetries are derived. It is found that, analogous to torsion-free unimodular gravity, the field equation for the vierbein is traceless; nevertheless, torsion is algebraically related to the spin density as in standard Einstein-Cartan theory. The particular example of massless Dirac spinors is studied, and comparisons with standard Einstein-Cartan theory are shown.

  2. On the existence of topological dyons and dyonic black holes in anti-de Sitter Einstein-Yang-Mills theories with compact semisimple gauge groups

    NASA Astrophysics Data System (ADS)

    Baxter, J. Erik

    2018-05-01

    Here we study the global existence of "hairy" dyonic black hole and dyon solutions to four-dimensional, anti-de Sitter Einstein-Yang-Mills theories for a general simply connected and semisimple gauge group G, for the so-called topologically symmetric systems, concentrating here on the regular case. We generalise here cases in the literature which considered purely magnetic spherically symmetric solutions for a general gauge group and topological dyonic solutions for s u (N ) . We are able to establish the global existence of non-trivial solutions to all such systems, both near existing embedded solutions and as |Λ| → ∞. In particular, we can identify non-trivial solutions where the gauge field functions have no zeroes, which in the s u (N ) case proved important to stability. We believe that these are the most general analytically proven solutions in 4D anti-de Sitter Einstein-Yang-Mills systems to date.

  3. Relativity in Transylvania and Patusan: Finding the roots of Einstein's theories of relativity in "Dracula" and "Lord Jim"

    NASA Astrophysics Data System (ADS)

    Tatum, Brian Shane

    This thesis investigates the similarities in the study of time and space in literature and science during the modern period. Specifically, it focuses on the portrayal of time and space within Bram Stoker's Dracula (1897) and Joseph Conrad's Lord Jim (1899-1900), and compares the ideas presented with those later scientifically formulated by Albert Einstein in his special and general theories of relativity (1905-1915). Although both novels precede Einstein's theories, they reveal advanced complex ideas of time and space very similar to those later argued by the iconic physicist. These ideas follow a linear progression including a sense of temporal dissonance, the search for a communal sense of the present, the awareness and expansion of the individual's sense of the present, and the effect of mass on surrounding space. This approach enhances readings of Dracula and Lord Jim, illuminating the fascination with highly refined notions of time and space within modern European culture.

  4. Criticality in third order lovelock gravity and butterfly effect

    NASA Astrophysics Data System (ADS)

    Qaemmaqami, Mohammad M.

    2018-01-01

    We study third order Lovelock Gravity in D=7 at the critical point which three (A)dS vacua degenerate into one. We see there is not propagating graviton at the critical point. And also we compute the butterfly velocity for this theory at the critical point by considering the shock wave solutions near horizon, this is important to note that although there is no propagating graviton at the critical point, due to boundary gravitons the butterfly velocity is non-zero. Finally we observe that the butterfly velocity for third order Lovelock Gravity at the critical point in D=7 is less than the butterfly velocity for Einstein-Gauss-Bonnet Gravity at the critical point in D=7 which is less than the butterfly velocity in D = 7 for Einstein Gravity, vB^{E.H}>vB^{E.G.B}>vB^{3rd Lovelock} . Maybe we can conclude that by adding higher order curvature corrections to Einstein Gravity the butterfly velocity decreases.

  5. Delayed collapses of Bose-Einstein condensates in relation to anti-de Sitter gravity.

    PubMed

    Biasi, Anxo F; Mas, Javier; Paredes, Angel

    2017-03-01

    We numerically investigate spherically symmetric collapses in the Gross-Pitaevskii equation with attractive nonlinearity in a harmonic potential. Even below threshold for direct collapse, the wave function bounces off from the origin and may eventually become singular after a number of oscillations in the trapping potential. This is reminiscent of the evolution of Einstein gravity sourced by a scalar field in anti de Sitter space where collapse corresponds to black-hole formation. We carefully examine the long time evolution of the wave function for continuous families of initial states in order to sharpen out this qualitative coincidence which may bring new insights in both directions. On the one hand, we comment on possible implications for the so-called Bosenova collapses in cold atom Bose-Einstein condensates. On the other hand, Gross-Pitaevskii provides a toy model to study the relevance of either the resonance conditions or the nonlinearity for the problem of anti de Sitter instability.

  6. Einstein Equations Under Polarized U (1) Symmetry in an Elliptic Gauge

    NASA Astrophysics Data System (ADS)

    Huneau, Cécile; Luk, Jonathan

    2018-06-01

    We prove local existence of solutions to the Einstein-null dust system under polarized U (1) symmetry in an elliptic gauge. Using in particular the previous work of the first author on the constraint equations, we show that one can identify freely prescribable data, solve the constraints equations, and construct a unique local in time solution in an elliptic gauge. Our main motivation for this work, in addition to merely constructing solutions in an elliptic gauge, is to provide a setup for our companion paper in which we study high frequency backreaction for the Einstein equations. In that work, the elliptic gauge we consider here plays a crucial role to handle high frequency terms in the equations. The main technical difficulty in the present paper, in view of the application in our companion paper, is that we need to build a framework consistent with the solution being high frequency, and therefore having large higher order norms. This difficulty is handled by exploiting a reductive structure in the system of equations.

  7. BOOK REVIEW: A Student's Guide to Einstein's Major Papers A Student's Guide to Einstein's Major Papers

    NASA Astrophysics Data System (ADS)

    Janssen, Michel

    2013-12-01

    The core of this volume is formed by four chapters (2-5) with detailed reconstructions of the arguments and derivations in four of Einstein's most important papers, the three main papers of his annus mirabilis 1905 (on the light quantum, Brownian motion, and special relativity) and his first systematic exposition of general relativity of 1916. The derivations are given in sufficient detail and in sufficiently modernized notation (without any serious distortion of the originals) for an undergraduate physics major to read and understand them with far less effort than it would take him or her to understand (English translations of) Einstein's original papers. Each of these four papers is accompanied by a detailed introduction, which covers the conceptual development of the relevant field prior to Einstein's contribution to it and corrects some of the myths surrounding these papers that still have not been fully eradicated among physicists. (One quibble: though Kennedy correctly points out that the goal of the light quantum paper was not to explain the photoelectric effect, it is also not quite right to say that 'it was written to explain the Wien region of blackbody radiation' (p. xv). Einstein used this explanatory feat as the central argument for his light quantum hypothesis.) These four chapters then are the most valuable part of the volume. They could be used, independently of one another, but preferably in conjunction with Einstein's original texts, in courses on quantum mechanics, statistical mechanics, electrodynamics, and general relativity, respectively, to add a historical component to such courses. As a historian of science embedded in a physics department who is regularly called upon to give guest lectures in such courses on the history of their subjects, I can highly recommend the volume for this purpose. However, I would not adopt this volume as (one of) the central text(s) for a course on the history of modern physics. For one thing, chapter 1, which in just 26 pages (not counting six pages of notes and references) covers everything from Copernicus, Galileo, Kepler and Newton to Maxwell and Lorentz to Einstein's early biography to a cardboard version of Popper versus Kuhn, is too superficial to be useful for such a course. To a lesser extent, this is also true for chapter 6, which compresses the development of quantum theory after Einstein's 1905 paper into 20 pages (plus seven pages of notes and references) and for chapter 7, a brief epilogue. However, this is not my main worry. One could easily supplement or even replace the bookends of the volume with other richer sources and use this volume mainly for its excellent detailed commentaries on some Einstein classics in the four chapters in between. My more serious reservation about the use of the volume as a whole in a history of physics course, ironically, comes from the exact same feature that made me whole-heartedly recommend its core chapters for physics courses. This is especially true for the chapters on special and general relativity. How useful is it for a student to go through, in as much detail as this volume provides, the Lorentz transformation of Maxwell's equations in vector form? I can see how a student in an E&M class (with a section on special relativity) might benefit from this exercise. The clumsiness of the calculations in vector form by Lorentz and Einstein could help a student encountering Maxwell's equations in tensor form for the first time appreciate the advantages of the latter formalism. Similarly, it would be useful for a student in a GR class to go through the basics of tensor calculus in the old-fashioned but not inelegant mathematical introduction of Einstein's 1916 review article on general relativity. This could reinforce mastery of material that a student in a GR class will have to learn anyway (though Einstein's presentation of the mathematics of both special and general relativity in The Meaning of Relativity would seem to be more suitable for these purposes). It is not so clear what benefit a student in a history of physics course rather than a E&M course or a GR course would derive from the exhaustive coverage of the papers on special and general relativity in this volume. In the case of the history of special relativity, it would seem to make sense to leave out the details of the Lorentz transformation of Maxwell's equations to make room for a discussion, even if only qualitatively, of Minkowski's four-dimensional formalism and Minkowski diagrams. In the case of the history of general relativity, coverage of tensor calculus could profitably be curtailed to make room for discussion of how Einstein found his field equations or how GR failed to make all motion relative. Chapter 3 on Brownian motion also contains its share of detailed calculations that may be useful for students in a class on Stat Mech but not for those in a class on history of physics. Chapter 2 on the light quantum paper does not suffer from this problem. However, whereas the other three papers covered in detail in the volume can serve as representative of Einstein's broader efforts in those fields, the light quantum paper is only the first in a series of remarkable contributions that Einstein made to early quantum theory. Several of these contributions (specific heat, wave-particle duality, stimulated emission, Bose--Einstein statistics) are covered very briefly in chapter 6. I would have liked to see a presentation of Einstein's 1917 derivation of the Planck law for the spectral distribution of black-body radiation with the famous A and B coefficients as detailed and as easy to follow as many less important derivations in the chapters on relativity and Brownian motion. This derivation is much easier yet much more illuminating than, say, the original proofs of the Lorentz invariance of Maxwell's equations. I hope the author will consider such changes in emphasis for a second edition, for his reconstructions and commentaries certainly do open up these four classic Einstein papers to interested undergraduates in physics and other disciplines in ways that the scholarly literature on Einstein does not.

  8. 2011 Einstein Fellows Chosen

    NASA Astrophysics Data System (ADS)

    2011-03-01

    ASA has announced the selection of the 2011 Einstein Fellows who will conduct research related to NASA's Physics of the Cosmos program, which aims to expand our knowledge of the origin, evolution, and fate of the Universe. The Einstein Fellowship provides support to the awardees for three years, and the Fellows may pursue their research at a host university or research center of their choosing in the United States. The new Fellows will begin their programs in the fall of 2011. The new Einstein Fellows and their host institutions are listed below: * Akos Bogdan (Smithsonian Astrophysical Observatory, Cambridge, Mass.) * Samuel Gralla (University of Maryland, College Park, Md.) * Philip Hopkins (University of California at Berkeley) * Matthew Kunz (Princeton University, Princeton, N.J.) * Laura Lopez (Massachusetts Institute of Technology, Cambridge, Mass.) * Amy Reines (National Radio Astronomy Observatory, Charlottesville, Virg.) * Rubens Reis (University of Michigan, Ann Arbor) * Ken Shen (Lawrence Berkeley National Laboratory, Berkeley, Calif.) * Jennifer Siegal-Gaskins (California Institute of Technology, Pasadena) * Lorenzo Sironi (Harvard University, Cambridge, Mass.) NASA has two other astrophysics theme-based fellowship programs: the Sagan Fellowship Program, which supports research into exoplanet exploration, and the Hubble Fellowship Program, which supports research into cosmic origins. More information on the Einstein Fellowships can be found at: http://cxc.harvard.edu/fellows/

  9. Einstein's Jury -The Race to Test Relativity

    NASA Astrophysics Data System (ADS)

    Crelinsten, Jeffrey

    2006-12-01

    It is common belief that Einstein’s general theory of relativity won worldwide acceptance after British astronomers announced in November 1919 that the sun’s gravitational field bends starlight by an amount predicted by Einstein. This paper demonstrates that the case for Einstein was not settled until much later and that there was considerable confusion and debate about relativity during this period. Most astronomers considered Einstein’s general theory too metaphysical and abstruse, and many tried to find more conventional explanations of the astronomical observations. Two American announcements before the British results appeared had been contrary to Einstein’s prediction. They came from Lick and Mt. Wilson observatories, which enjoyed international reputations as two of the most advanced astrophysical research establishments in the world. Astronomers at these renowned institutions were instrumental in swaying the court of scientific opinion during the decade of the 1920s, which saw numerous attempts to measure light-bending, as well as solar line displacements and even ether-drift. How astronomers approached the “Einstein problem” in these early years before and after the First World War, and how the public reacted to what they reported, helped to shape attitudes we hold today about Einstein and his ideas.

  10. BOOK REVIEW: Once Upon Einstein

    NASA Astrophysics Data System (ADS)

    Giannetto, E.

    2007-07-01

    Thibault Damour is a theoretical physicist, and a member of the French Academy of Sciences. This book is the translation, by Eric Novak, of the original French Si Einstein m'etait conté (Le Cherche Midi, 2005). It is neither a book of theoretical physics nor a biography of Einstein. It is not a book of history nor philosophy of science. In Damour's words it was written to encourage the reader to share with Einstein `those times when he understood some part of the hidden order of the universe'. It is a relatively short book, written in a very fluent style, but it deals with all the major problems and achievements of Einstein's works. Starting from special relativity, it continues with general relativity, quantum theories, unified field theory and a brief overview of the actual research related to Einstein's legacy. It is essentially a popular science book with some related exploration in history and philosophy to interpret physical theories. The most important problem discussed by Damour is the nature of time. On this subject, there is a very interesting short paragraph (pp 33--35) dedicated to the reception of the relativity idea by the great writer Marcel Proust and its counterpart within À la Recherche du Temps Perdu. A correct discussion of the implications of a relativistic time should imply the distinction of the different possible interpretations of this concept. Damour seems to conclude that only one interpretation is possible: `time does not exist', flowing of time is an illusion. One has to know that Einstein's ideas on time were related to Spinoza's perspective of a knowledge sub specie aeternitatis. However, other interpretations are possible and are related to the idea of time as an actuality. Damour speaks about the controversy between Einstein and Bergson, but Bergson is considered as a philosopher who did not understand relativity. This philosophical problem of relativistic time is indeed related to a historical problem briefly discussed by Damour (pp 17--21, 48--52 and related endnotes): had Henri Poincaré constructed a special relativistic dynamics before Einstein? There is a long debate on this subject in the literature. Damour's answer is negative and his conclusions seem related to the conservation of a myth of Einstein, that is, the rise of special relativity is considered as a creatio ex nihilo within Einstein's mind and Einstein is considered as the only genius able to conceive the relativity of time. Poincaré's texts are undervalued and misunderstood by Damour's cutting quotations from their context. Damour never quotes La Science et l'Hypothèse (1902): we know it was read by Einstein and here Poincaré first (within chapters already published as separate papers in 1900) stated the relativity of time and of simultaneity. Damour never quotes Poincaré's paper published on 5 June 1905, La dynamique de l'èlectron, which presents the first relativistic dynamics, invariant by Lorentz transformations. Poincaré's (July 1905) introduction of a quadrimensional space-time is considered by Damour only a mathematical artifice (p 51) and Damour never said that Minkowski took this idea from Poincaré! Poincaré's interpretation of relativistic time implies that it is not an illusion but a complex net of different real flows related to different processes. Poincaré and Einstein had different conceptions of Nature at the root of special relativity: respectively an electromagnetic conception (Poincaré) and a semi-mechanist one (Einstein). Thus, the (philosophical) meaning of relativity can be very different from the one presented by Damour. Furthermore, Damour accepts Kantian philosophy as a key to understanding relativity and quantum theories. This perspective seems to me very anachronistic and based on a misunderstanding: an interpretation of 20th century physical theories (relativity and quantum physics) is given within the framework of an 18th century philosophical perspective, created to give a foundation to Newton's theory. Relativity and quantum physics imply a breakdown of Kantian philosophy (see, for instance, G Bachelard's La Philosophie du Non). Relativity of space and time was considered possible only by overcoming the epistemological obstacle of Kantian idealistic foundation of Euclidean geometry and of Newton's absolute space and time. Relativity and quantum theories turn up not only the hierarchy between mathematics and physics, but also between epistemology (and logic) and physics: quantum physics implies not only a new conception of an indeterminate and unpredictable Nature, but a quantum logic too, that is, it implies a change in our way of thinking and knowing. When will the revolutionary impact of 20th century physics be reduced (by physicists themselves) to an already given philosophical framework?

  11. Geometrical relationship for the Einstein and Ricci tensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sida, D.W.

    1976-08-01

    Components of the Ricci and Einstein tensors are expressed in terms of the Gaussian curvatures of elementary two-spaces formed by the orthogonal coordinate planes, and the results are applied to some standard metrics.

  12. Einstein's Universe.

    ERIC Educational Resources Information Center

    Carlson, Eric; Wald, Robert

    1979-01-01

    Presents a guide to be used by students and teachers in conjunction with a television program about Einstein. Provides general information about special and general relativity, and the universe. Includes questions for discussion after each section and a bibliography. (MA)

  13. Einstein, the Universe, and All That: An Introduction to Relativity

    NASA Technical Reports Server (NTRS)

    Prescod-Weinstein, Chandra

    2011-01-01

    Black holes) an expanding universe) space and time inextricably tied together) GPS ... What was this Einstein guy thinking?!? In this tutorial) I'll give an overview of Einstein's theories of relativity and the wild things they say about our Universe. What really happens when a particle crosses an event horizon? What is the future of the Universe? And how can we know it? Wh I'll try to touch on these questions and in so doing) give the talks in the Cosmology) Gravitation and Relativity sessions some context.

  14. HST image of Gravitational Lens G2237 + 305 or 'Einstein Cross'

    NASA Technical Reports Server (NTRS)

    1990-01-01

    European Space Agency (ESA) Faint Object Camera (FOC) science image was taken from the Hubble Space Telescope (HST) of Gravitational Lens G2237 + 305 or 'Einstein Cross'. The gravitational lens G2237 + 305 or 'Einstein Cross' shows four images of a very distant quasar which has been multiple-imaged by a relatively nearby galaxy acting as a gravitational lens. The angular separation between the upper and lower images is 1.6 arc seconds. Photo was released from Goddard Space Flight Center (GSFC) 09-12-90.

  15. Equivalence of Einstein and Jordan frames in quantized anisotropic cosmological models

    NASA Astrophysics Data System (ADS)

    Pandey, Sachin; Pal, Sridip; Banerjee, Narayan

    2018-06-01

    The present work shows that the mathematical equivalence of the Jordan frame and its conformally transformed version, the Einstein frame, so as far as Brans-Dicke theory is concerned, survives a quantization of cosmological models, arising as solutions to the Brans-Dicke theory. We work with the Wheeler-deWitt quantization scheme and take up quite a few anisotropic cosmological models as examples. We effectively show that the transformation from the Jordan to the Einstein frame is a canonical one and hence two frames furnish equivalent description of same physical scenario.

  16. Einstein and the Quantum: The Secret Life of EPR

    NASA Astrophysics Data System (ADS)

    Fine, Arthur

    2006-05-01

    Locality, separation and entanglement -- 1930s style. Starting with Solvay 1927, we'll explore the background to the 1935 paper by Einstein, Podolsky and Rosen: how it was composed, the actual argument and principles used, and how the paper was received by Schroedinger, and others. We'll also look at Bohr's response: the extent to which Bohr connects with what Einstein was after in EPR and the extent to which EPR marks a shift in Bohr's thinking about the quantum theory. Time permitting, we will contrast EPR with Bell's theorem.

  17. Integrability of geodesics and action-angle variables in Sasaki-Einstein space T^{1,1}

    NASA Astrophysics Data System (ADS)

    Visinescu, Mihai

    2016-09-01

    We briefly describe the construction of Stäkel-Killing and Killing-Yano tensors on toric Sasaki-Einstein manifolds without working out intricate generalized Killing equations. The integrals of geodesic motions are expressed in terms of Killing vectors and Killing-Yano tensors of the homogeneous Sasaki-Einstein space T^{1,1}. We discuss the integrability of geodesics and construct explicitly the action-angle variables. Two pairs of frequencies of the geodesic motions are resonant giving way to chaotic behavior when the system is perturbed.

  18. AHF: Array-Based Half-Facet Data Structure for Mixed-Dimensional and Non-manifold Meshes

    DTIC Science & Technology

    2013-10-13

    19a. NAME OF RESPONSIBLE PERSON 19b. TELEPHONE NUMBER James Glimm V. Dyedov, N. Ray, D. Einstein , X. Jiao, T.J. Tautges 611102 c. THIS PAGE The...Ray, D. Einstein , X. Jiao, and T. Tautges mesh data structures. Examples of such new demanding applications include coupled multiphysics simulations and...be composed of a union of topologically 1-D, 2-D, 4 V. Dyedov, N. Ray, D. Einstein , X. Jiao, and T. Tautges and 3-D objects, such as a mixture of

  19. On a remarkable electromagnetic field in the Einstein Universe

    NASA Astrophysics Data System (ADS)

    Kopiński, Jarosław; Natário, José

    2017-06-01

    We present a time-dependent solution of the Maxwell equations in the Einstein universe, whose electric and magnetic fields, as seen by the stationary observers, are aligned with the Clifford parallels of the 3-sphere S^3. The conformal equivalence between Minkowski's spacetime and (a region of) the Einstein cylinder is then exploited in order to obtain a knotted, finite energy, radiating solution of the Maxwell equations in flat spacetime. We also discuss similar electromagnetic fields in expanding closed Friedmann models, and compute the matter content of such configurations.

  20. Quantum noise of a Bose-Einstein condensate in an optical cavity, correlations, and entanglement

    NASA Astrophysics Data System (ADS)

    Szirmai, G.; Nagy, D.; Domokos, P.

    2010-04-01

    A Bose-Einstein condensate of ultracold atoms inside the field of a laser-driven optical cavity exhibits dispersive optical bistability. We describe this system by using mean-field approximation and by analyzing the correlation functions of the linearized quantum fluctuations around the mean-field solution. The entanglement and the statistics of the atom-field quadratures are given in the stationary state. It is shown that the mean-field solution, that is, the Bose-Einstein condensate, is robust against entanglement generation for most of the phase diagram.

  1. Albert Einstein and LD: an evaluation of the evidence.

    PubMed

    Thomas, M

    2000-01-01

    Historical figures suspected of having learning disabilities are often subjected to retrospective diagnoses. One such figure is Albert Einstein. Several organizations that promote the interests of individuals with learning disabilities claim that Einstein had a learning disability. A review of biographical sources, however, provides little or no evidence to support this claim. The claim derives its force not from evidence but from a powerful belief--that the greatest among us suffer from some impairment--and from an equally powerful desire to enhance the status of a marginalized group by including within it exceptional individuals.

  2. Three-dimensional skyrmions in spin-2 Bose–Einstein condensates

    NASA Astrophysics Data System (ADS)

    Tiurev, Konstantin; Ollikainen, Tuomas; Kuopanportti, Pekko; Nakahara, Mikio; Hall, David S.; Möttönen, Mikko

    2018-05-01

    We introduce topologically stable three-dimensional skyrmions in the cyclic and biaxial nematic phases of a spin-2 Bose–Einstein condensate. These skyrmions exhibit exceptionally high mapping degrees resulting from the versatile symmetries of the corresponding order parameters. We show how these structures can be created in existing experimental setups and study their temporal evolution and lifetime by numerically solving the three-dimensional Gross–Pitaevskii equations for realistic parameter values. Although the biaxial nematic and cyclic phases are observed to be unstable against transition towards the ferromagnetic phase, their lifetimes are long enough for the skyrmions to be imprinted and detected experimentally.

  3. Black holes in higher derivative gravity.

    PubMed

    Lü, H; Perkins, A; Pope, C N; Stelle, K S

    2015-05-01

    Extensions of Einstein gravity with higher-order derivative terms arise in string theory and other effective theories, as well as being of interest in their own right. In this Letter we study static black-hole solutions in the example of Einstein gravity with additional quadratic curvature terms. A Lichnerowicz-type theorem simplifies the analysis by establishing that they must have vanishing Ricci scalar curvature. By numerical methods we then demonstrate the existence of further black-hole solutions over and above the Schwarzschild solution. We discuss some of their thermodynamic properties, and show that they obey the first law of thermodynamics.

  4. Onsager Vortex Formation in Two-component Bose-Einstein Condensates

    NASA Astrophysics Data System (ADS)

    Han, Junsik; Tsubota, Makoto

    2018-06-01

    We numerically study the dynamics of quantized vortices in two-dimensional two-component Bose-Einstein condensates (BECs) trapped by a box potential. For one-component BECs in a box potential, it is known that quantized vortices form Onsager vortices, which are clusters of same-sign vortices. We confirm that the vortices of the two components spatially separate from each other — even for miscible two-component BECs — suppressing the formation of Onsager vortices. This phenomenon is caused by the repulsive interaction between vortices belonging to different components, hence, suggesting a new possibility for vortex phase separation.

  5. The Einstein All-Sky IPC slew survey

    NASA Technical Reports Server (NTRS)

    Elvis, Martin; Plummer, David; Fabbiano, G.

    1989-01-01

    The construction of the Einstein All-Sky Imaging Proportional Counter (IPC) slew survey is considered. It contains approximately 1000 sources between 10(exp -12) and 10(exp -10) erg/sq cm/s with a concentration toward the ecliptic poles and away from the galactic plane. Several sizable samples of bright soft X-ray selected objects for follow-up ROSAT and ASTRO-D observations and statistical study are presented. The survey source list is expected to be available by late 1989. Both paper and remote access online data base versions are to be available. An identification program is considered.

  6. Stability under scalar perturbations and quasinormal modes of 4D Einstein-Born-Infeld dilaton spacetime: exact spectrum

    NASA Astrophysics Data System (ADS)

    Destounis, Kyriakos; Panotopoulos, Grigoris; Rincón, Ángel

    2018-02-01

    We study the stability under scalar perturbations, and we compute the quasinormal modes of the Einstein-Born-Infeld dilaton spacetime in 1+3 dimensions. Solving the full radial equation in terms of hypergeometric functions, we provide an exact analytical expression for the spectrum. We find that the frequencies are purely imaginary, and we confirm our results by computing them numerically. Although the scalar field that perturbs the black hole is electrically neutral, an instability similar to that seen in charged scalar perturbations of the Reissner-Nordström black hole is observed.

  7. Propagation of a dark soliton in a disordered Bose-Einstein condensate.

    PubMed

    Bilas, Nicolas; Pavloff, Nicolas

    2005-09-23

    We consider the propagation of a dark soliton in a quasi-1D Bose-Einstein condensate in presence of a random potential. This configuration involves nonlinear effects and disorder, and we argue that, contrarily to the study of stationary transmission coefficients through a nonlinear disordered slab, it is a well-defined problem. It is found that a dark soliton decays algebraically, over a characteristic length which is independent of its initial velocity, and much larger than both the healing length and the 1D scattering length of the system. We also determine the characteristic decay time.

  8. Rotational fluxons of Bose-Einstein condensates in coplanar double-ring traps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brand, J.; Institute of Natural Sciences, Massey University; Haigh, T. J.

    Rotational analogs to magnetic fluxons in conventional Josephson junctions are predicted to emerge in the ground state of rotating tunnel-coupled annular Bose-Einstein condensates (BECs). Such topological condensate-phase structures can be manipulated by external potentials. We determine conditions for observing macroscopic quantum tunneling of a fluxon. Rotational fluxons in double-ring BECs can be created, manipulated, and controlled by external potentials in different ways than is possible in the solid-state system, thus rendering them a promising candidate system for studying and utilizing quantum properties of collective many-particle degrees of freedom.

  9. Dark-soliton dynamics in Bose-Einstein condensates at finite temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, B.; Proukakis, N. P.; Barenghi, C. F.

    2007-05-15

    The dynamics of a dark soliton in an elongated Bose-Einstein condensate is studied at finite temperatures. In addition to accurately reproducing all stages of the decay of the soliton observed in the experiment of Burger et al. [Phys. Rev. Lett. 83, 5198 (1999)], our numerical simulations reveal the existence of an experimentally accessible parameter regime for which phase-imprinted dark solitons can execute at least one full axial oscillation prior to their decay. The dependence of the decay time scale on temperature and initial soliton depth is analyzed and the role of interatomic collisions quantified.

  10. Bright-type and dark-type vector solitons of the (2 + 1)-dimensional spatially modulated quintic nonlinear Schrödinger equation in nonlinear optics and Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Wu, Hong-Yu; Jiang, Li-Hong

    2018-03-01

    We study a (2 + 1) -dimensional N -coupled quintic nonlinear Schrödinger equation with spatially modulated nonlinearity and transverse modulation in nonlinear optics and Bose-Einstein condensate, and obtain bright-type and dark-type vector multipole as well as vortex soliton solutions. When the modulation depth q is fixed as 0 and 1, we can construct vector multipole and vortex solitons, respectively. Based on these solutions, we investigate the form and phase characteristics of vector multipole and vortex solitons.

  11. Propagation of a Dark Soliton in a Disordered Bose-Einstein Condensate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bilas, Nicolas; Pavloff, Nicolas

    2005-09-23

    We consider the propagation of a dark soliton in a quasi-1D Bose-Einstein condensate in presence of a random potential. This configuration involves nonlinear effects and disorder, and we argue that, contrarily to the study of stationary transmission coefficients through a nonlinear disordered slab, it is a well-defined problem. It is found that a dark soliton decays algebraically, over a characteristic length which is independent of its initial velocity, and much larger than both the healing length and the 1D scattering length of the system. We also determine the characteristic decay time.

  12. Splitting Times of Doubly Quantized Vortices in Dilute Bose-Einstein Condensates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huhtamaeki, J. A. M.; Pietilae, V.; Virtanen, S. M. M.

    2006-09-15

    Recently, the splitting of a topologically created doubly quantized vortex into two singly quantized vortices was experimentally investigated in dilute atomic cigar-shaped Bose-Einstein condensates [Y. Shin et al., Phys. Rev. Lett. 93, 160406 (2004)]. In particular, the dependency of the splitting time on the peak particle density was studied. We present results of theoretical simulations which closely mimic the experimental setup. We show that the combination of gravitational sag and time dependency of the trapping potential alone suffices to split the doubly quantized vortex in time scales which are in good agreement with the experiments.

  13. A Rapidly Expanding Bose-Einstein Condensate: An Expanding Universe in the Lab

    NASA Astrophysics Data System (ADS)

    Eckel, S.; Kumar, A.; Jacobson, T.; Spielman, I. B.; Campbell, G. K.

    2018-04-01

    We study the dynamics of a supersonically expanding, ring-shaped Bose-Einstein condensate both experimentally and theoretically. The expansion redshifts long-wavelength excitations, as in an expanding universe. After expansion, energy in the radial mode leads to the production of bulk topological excitations—solitons and vortices—driving the production of a large number of azimuthal phonons and, at late times, causing stochastic persistent currents. These complex nonlinear dynamics, fueled by the energy stored coherently in one mode, are reminiscent of a type of "preheating" that may have taken place at the end of inflation.

  14. Segregated nodal domains of two-dimensional multispecies Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Chang, Shu-Ming; Lin, Chang-Shou; Lin, Tai-Chia; Lin, Wen-Wei

    2004-09-01

    In this paper, we study the distribution of m segregated nodal domains of the m-mixture of Bose-Einstein condensates under positive and large repulsive scattering lengths. It is shown that components of positive bound states may repel each other and form segregated nodal domains as the repulsive scattering lengths go to infinity. Efficient numerical schemes are created to confirm our theoretical results and discover a new phenomenon called verticillate multiplying, i.e., the generation of multiple verticillate structures. In addition, our proposed Gauss-Seidel-type iteration method is very effective in that it converges linearly in 10-20 steps.

  15. The Adolescence of Relativity: Einstein, Minkowski, and the Philosophy of Space and Time

    NASA Astrophysics Data System (ADS)

    Dieks, Dennis

    An often repeated account of the genesis of special relativity tells us that relativity theory was to a considerable extent the fruit of an operationalist philosophy of science. Indeed, Einstein's 1905 paper stresses the importance of rods and clocks for giving concrete physical content to spatial and temporal notions. I argue, however, that it would be a mistake to read too much into this. Einstein's operationalist remarks should be seen as serving rhetoric purposes rather than as attempts to promulgate a particular philosophical position - in fact, Einstein never came close to operationalism in any of his philosophical writings. By focussing on what could actually be measured with rods and clocks Einstein shed doubt on the empirical status of a number of pre-relativistic concepts, with the intention to persuade his readers that the applicability of these concepts was not obvious. This rhetoric manoeuvre has not always been rightly appreciated in the philosophy of physics. Thus, the influence of operationalist misinterpretations, according to which associated operations strictly define what a concept means, can still be felt in present-day discussions about the conventionality of simultaneity.The standard story continues by pointing out that Minkowski in 1908 supplanted Einstein's approach with a realist spacetime account that has no room for a foundational role of rods and clocks: relativity theory became a description of a four-dimensional "absolute world." As it turns out, however, it is not at all clear that Minkowski was proposing a substantivalist position with respect to spacetime. On the contrary, it seems that from a philosophical point of view Minkowski's general position was not very unlike the one in the back of Einstein's mind. However, in Minkowski's formulation of special relativity it becomes more explicit that the content of spatiotemporal concepts relates to considerations about the form of physical laws. If accepted, this position has important consequences for the discussion about the conventionality of simultaneity.

  16. Dynamics of vortex dipoles in anisotropic Bose-Einstein condensates

    DOE PAGES

    Goodman, Roy H.; Kevrekidis, P. G.; Carretero-González, R.

    2015-04-14

    We study the motion of a vortex dipole in a Bose-Einstein condensate confined to an anisotropic trap. We focus on a system of ODEs describing the vortices' motion, which is in turn a reduced model of the Gross-Pitaevskii equation describing the condensate's motion. Using a sequence of canonical changes of variables, we reduce the dimension and simplify the equations of motion. In this study, we uncover two interesting regimes. Near a family of periodic orbits known as guiding centers, we find that the dynamics is essentially that of a pendulum coupled to a linear oscillator, leading to stochastic reversals inmore » the overall direction of rotation of the dipole. Near the separatrix orbit in the isotropic system, we find other families of periodic, quasi-periodic, and chaotic trajectories. In a neighborhood of the guiding center orbits, we derive an explicit iterated map that simplifies the problem further. Numerical calculations are used to illustrate the phenomena discovered through the analysis. Using the results from the reduced system, we are able to construct complex periodic orbits in the original, PDE, mean-field model for Bose-Einstein condensates, which corroborates the phenomenology observed in the reduced dynamical equations.« less

  17. Dynamics of vortex dipoles in anisotropic Bose-Einstein condensates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodman, Roy H.; Kevrekidis, P. G.; Carretero-González, R.

    We study the motion of a vortex dipole in a Bose-Einstein condensate confined to an anisotropic trap. We focus on a system of ODEs describing the vortices' motion, which is in turn a reduced model of the Gross-Pitaevskii equation describing the condensate's motion. Using a sequence of canonical changes of variables, we reduce the dimension and simplify the equations of motion. In this study, we uncover two interesting regimes. Near a family of periodic orbits known as guiding centers, we find that the dynamics is essentially that of a pendulum coupled to a linear oscillator, leading to stochastic reversals inmore » the overall direction of rotation of the dipole. Near the separatrix orbit in the isotropic system, we find other families of periodic, quasi-periodic, and chaotic trajectories. In a neighborhood of the guiding center orbits, we derive an explicit iterated map that simplifies the problem further. Numerical calculations are used to illustrate the phenomena discovered through the analysis. Using the results from the reduced system, we are able to construct complex periodic orbits in the original, PDE, mean-field model for Bose-Einstein condensates, which corroborates the phenomenology observed in the reduced dynamical equations.« less

  18. The Creative Power of Formal Analogies in Physics: The Case of Albert Einstein

    NASA Astrophysics Data System (ADS)

    Gingras, Yves

    2015-07-01

    In order to show how formal analogies between different physical systems play an important conceptual work in physics, this paper analyzes the evolution of Einstein's thoughts on the structure of radiation from the point of view of the formal analogies he used as "lenses" to "see" through the "black box" of Planck's blackbody radiation law. A comparison is also made with his 1925 paper on the quantum gas where he used the same formal methods. Changes of formal points of view are most of the time taken for granted or passed over in silence in studies on the mathematization of physics as if they had no special significance. Revisiting Einstein's classic papers on the nature of light and matter from the angle of the various theoretical tools he used, namely entropy and energy fluctuation calculations, helps explain why he was in a unique position to make visible the particle structure of radiation and the dual (particle and wave) nature of light and matter. Finally, this case study calls attention to the more general question of the surprising creative power of formal analogies and their frequent use in theoretical physics. This aspect of intellectual creation can be useful in the teaching of physics.

  19. Interstellar Scattering and the Einstein Ring PKS 1830-211

    NASA Technical Reports Server (NTRS)

    Jones, D. L.; Preston, R. A.; Murphy, D. W.; Meier, D. L.; Jauncey, D. L.; Reynolds, J. E.; Tziomis, A. K.

    1995-01-01

    High frequency (22 GHz) data have been used two resolve two compact components of the strong gravitational lens PKS 1830-211. The two bright components are at opposite sides of a one arcsecond diameter Einstein ring.

  20. Einstein: The Gourmet of Creativity.

    ERIC Educational Resources Information Center

    Greenberg, Joel

    1979-01-01

    Reports a psychiatrist's analysis of Einstein's personal account of how he developed the theory of relativity. The psychiatrist cites Janusian thinking, actively conceiving two or more opposite concepts simultaneously, as a characteristic of much creative thought in general. (MA)

  1. Modified Einstein and Navier-Stokes Equations

    NASA Astrophysics Data System (ADS)

    Bulyzhenkov, I. É.

    2018-05-01

    The appearance of inertial rest mass-energy is associated with the kinematic slowing-down of time and with the vortex state of the elementary massive space with zero integral of its kinetic and potential energies. An analog of the Einstein equation is found for moving densities of a non-empty metric space in the concept of the Einstein-Infeld material field. The vector consequences of this tensor equation for a metric medium of overlapping elementary carriers of continuous mass-energies allow us to modify the Navier-Stokes equation under inertial motion of the matter of the nonlocal field in the nonrelativistic limit. The nonlocality of massenergy generates kinematic accelerations of feedback to Newtonian acceleration, which impedes asymptotic divergence of energy fluxes. Stabilization of inertial media by dynamic Bernoulli pressure corresponds to nonlocal self-organization of Einstein-Infeld non-empty space and invalidates Newtonian localization of masses in empty space.

  2. Quasi-local conserved charges in the Einstein-Maxwell theory

    NASA Astrophysics Data System (ADS)

    Setare, M. R.; Adami, H.

    2017-05-01

    In this paper we consider the Einstein-Maxwell theory and define a combined transformation composed of diffeomorphism and U(1) gauge transformation. For generality, we assume that the generator χ of such transformation is field-dependent. We define the extended off-shell ADT current and then off-shell ADT charge such that they are conserved off-shell for the asymptotically field-dependent symmetry generator χ. Then, we define the conserved charge corresponding to the asymptotically field-dependent symmetry generator χ. We apply the presented method to find the conserved charges of the asymptotically AdS3 spacetimes in the context of the Einstein-Maxwell theory in three dimensions. Although the usual proposal for the quasi local charges provides divergent global charges for the Einstein-Maxwell theory with negative cosmological constant in three dimensions, here we avoid this problem by introducing proposed combined transformation χ

  3. 'But one must not legalize the mentioned sin': Phenomenological vs. dynamical treatments of rods and clocks in Einstein's thought

    NASA Astrophysics Data System (ADS)

    Giovanelli, Marco

    2014-11-01

    This paper offers a historical overview of Einstein's vacillating attitude towards 'phenomenological' and 'dynamical' treatments of rods and clocks in relativity theory. In Einstein's view, a realistic microscopic model of rods and clocks was needed to account for the very existence of measuring devices of identical construction that always measure the same unit of time and the same unit of length. It will be shown that the empirical meaningfulness of both relativity theories depends on what, following Max Born, one might call the 'principle of the physical identity of the units of measure'. In an attempt to justify the validity of such a principle, Einstein was forced by different interlocutors, in particular Hermann Weyl and Wolfgang Pauli, to deal with the genuine epistemological, rather than the physical question of whether a theory should be required to describe the material devices needed for its own verification.

  4. Modified Einstein and Navier–Stokes Equations

    NASA Astrophysics Data System (ADS)

    Bulyzhenkov, I. É.

    2018-05-01

    The appearance of inertial rest mass-energy is associated with the kinematic slowing-down of time and with the vortex state of the elementary massive space with zero integral of its kinetic and potential energies. An analog of the Einstein equation is found for moving densities of a non-empty metric space in the concept of the Einstein-Infeld material field. The vector consequences of this tensor equation for a metric medium of overlapping elementary carriers of continuous mass-energies allow us to modify the Navier-Stokes equation under inertial motion of the matter of the nonlocal field in the nonrelativistic limit. The nonlocality of massenergy generates kinematic accelerations of feedback to Newtonian acceleration, which impedes asymptotic divergence of energy fluxes. Stabilization of inertial media by dynamic Bernoulli pressure corresponds to nonlocal self-organization of Einstein-Infeld non-empty space and invalidates Newtonian localization of masses in empty space.

  5. Radiating black hole solutions in Einstein-Gauss-Bonnet gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dominguez, Alfredo E.; Instituto Universitario Aeronautico, Avenida Fuerza Aerea km 6.5.; Gallo, Emanuel

    2006-03-15

    In this paper, we find some new exact solutions to the Einstein-Gauss-Bonnet equations. First, we prove a theorem which allows us to find a large family of solutions to the Einstein-Gauss-Bonnet gravity in n-dimensions. This family of solutions represents dynamic black holes and contains, as particular cases, not only the recently found Vaidya-Einstein-Gauss-Bonnet black hole, but also other physical solutions that we think are new, such as the Gauss-Bonnet versions of the Bonnor-Vaidya (de Sitter/anti-de Sitter) solution, a global monopole, and the Husain black holes. We also present a more general version of this theorem in which less restrictive conditionsmore » on the energy-momentum tensor are imposed. As an application of this theorem, we present the exact solution describing a black hole radiating a charged null fluid in a Born-Infeld nonlinear electrodynamics.« less

  6. Bridging the knowledge gap: An analysis of Albert Einstein's popularized presentation of the equivalence of mass and energy.

    PubMed

    Kapon, Shulamit

    2014-11-01

    This article presents an analysis of a scientific article written by Albert Einstein in 1946 for the general public that explains the equivalence of mass and energy and discusses the implications of this principle. It is argued that an intelligent popularization of many advanced ideas in physics requires more than the simple elimination of mathematical formalisms and complicated scientific conceptions. Rather, it is shown that Einstein developed an alternative argument for the general public that bypasses the core of the formal derivation of the equivalence of mass and energy to provide a sense of derivation based on the history of science and the nature of scientific inquiry. This alternative argument is supported and enhanced by variety of explanatory devices orchestrated to coherently support and promote the reader's understanding. The discussion centers on comparisons to other scientific expositions written by Einstein for the general public. © The Author(s) 2013.

  7. Diffusion coefficients of organic molecules in sucrose-water solutions and comparison with Stokes-Einstein predictions

    NASA Astrophysics Data System (ADS)

    Chenyakin, Yuri; Ullmann, Dagny A.; Evoy, Erin; Renbaum-Wolff, Lindsay; Kamal, Saeid; Bertram, Allan K.

    2017-02-01

    The diffusion coefficients of organic species in secondary organic aerosol (SOA) particles are needed to predict the growth and reactivity of these particles in the atmosphere. Previously, viscosity measurements, along with the Stokes-Einstein relation, have been used to estimate the diffusion rates of organics within SOA particles or proxies of SOA particles. To test the Stokes-Einstein relation, we have measured the diffusion coefficients of three fluorescent organic dyes (fluorescein, rhodamine 6G and calcein) within sucrose-water solutions with varying water activity. Sucrose-water solutions were used as a proxy for SOA material found in the atmosphere. Diffusion coefficients were measured using fluorescence recovery after photobleaching. For the three dyes studied, the diffusion coefficients vary by 4-5 orders of magnitude as the water activity varied from 0.38 to 0.80, illustrating the sensitivity of the diffusion coefficients to the water content in the matrix. At the lowest water activity studied (0.38), the average diffusion coefficients were 1.9 × 10-13, 1.5 × 10-14 and 7.7 × 10-14 cm2 s-1 for fluorescein, rhodamine 6G and calcein, respectively. The measured diffusion coefficients were compared with predictions made using literature viscosities and the Stokes-Einstein relation. We found that at water activity ≥ 0.6 (which corresponds to a viscosity of ≤ 360 Pa s and Tg/T ≤ 0.81), predicted diffusion rates agreed with measured diffusion rates within the experimental uncertainty (Tg represents the glass transition temperature and T is the temperature of the measurements). When the water activity was 0.38 (which corresponds to a viscosity of 3.3 × 106 Pa s and a Tg/T of 0.94), the Stokes-Einstein relation underpredicted the diffusion coefficients of fluorescein, rhodamine 6G and calcein by a factor of 118 (minimum of 10 and maximum of 977), a factor of 17 (minimum of 3 and maximum of 104) and a factor of 70 (minimum of 8 and maximum of 494), respectively. This disagreement is significantly smaller than the disagreement observed when comparing measured and predicted diffusion coefficients of water in sucrose-water mixtures.

  8. New exact perfect fluid solutions of Einstein's equations. II

    NASA Astrophysics Data System (ADS)

    Uggla, Claes; Rosquist, Kjell

    1990-12-01

    A family of new spatially homogeneous Bianchi type VIh perfect fluid solutions of the Einstein equations is presented. The fluid flow is orthogonal to the spatially homogeneous hypersurfaces, and the pressure is proportional to the energy density.

  9. The creativity of Einstein and astronomy

    NASA Technical Reports Server (NTRS)

    Zeldovich, Y. B.

    1980-01-01

    A discussion of Einstein's scientific achievements for the 100th anniversary of his birth is presented. His works dealing with thermodynamics are described, along with his quantum theory of radiation. Most of the article discusses his general theory of relativity.

  10. From Newton to Einstein.

    ERIC Educational Resources Information Center

    Ryder, L. H.

    1987-01-01

    Discusses the history of scientific thought in terms of the theories of inertia and absolute space, relativity and gravitation. Describes how Sir Isaac Newton used the work of earlier scholars in his theories and how Albert Einstein used Newton's theories in his. (CW)

  11. Oral rivaroxaban versus enoxaparin with vitamin K antagonist for the treatment of symptomatic venous thromboembolism in patients with cancer (EINSTEIN-DVT and EINSTEIN-PE): a pooled subgroup analysis of two randomised controlled trials.

    PubMed

    Prins, Martin H; Lensing, Anthonie W A; Brighton, Tim A; Lyons, Roger M; Rehm, Jeffrey; Trajanovic, Mila; Davidson, Bruce L; Beyer-Westendorf, Jan; Pap, Ákos F; Berkowitz, Scott D; Cohen, Alexander T; Kovacs, Michael J; Wells, Philip S; Prandoni, Paolo

    2014-10-01

    Patients with venous thromboembolism and cancer have a substantial risk of recurrent venous thromboembolism and bleeding during anticoagulant therapy. Although monotherapy with low-molecular-weight heparin is recommended in these patients, in clinical practice many patients with venous thromboembolism and cancer do not receive this treatment. We aimed to assess the efficacy and safety of a single-drug regimen with oral rivaroxaban compared with enoxaparin followed by vitamin K antagonists, in the subgroup of patients with cancer enrolled in the EINSTEIN-DVT and EINSTEIN-PE randomised controlled trials. We did a subgroup analysis of patients with active cancer (either at baseline or diagnosed during the study), a history of cancer, or no cancer who were enrolled in the EINSTEIN-DVT and EINSTEIN-PE trials. Eligible patients with deep-vein thrombosis (EINSTEIN-DVT) or pulmonary embolism (EINSTEIN-PE) were randomly assigned in a 1:1 ratio to receive rivaroxaban (15 mg twice daily for 21 days, followed by 20 mg once daily) or standard therapy (enoxaparin 1·0 mg/kg twice daily and warfarin or acenocoumarol; international normalised ratio 2·0-3·0). Randomisation with a computerised voice-response system was stratified according to country and intended treatment duration (3, 6, or 12 months). The prespecified primary efficacy and safety outcomes of both the trials and this subanalysis were symptomatic recurrent venous thromboembolism and clinically relevant bleeding, respectively. We did efficacy and mortality analyses in the intention-to-treat population, and bleeding analyses for time spent receiving treatment plus 2 days in the safety population (all patients who received at least one dose of study drug). The EINSTEIN-DVT and EINSTEIN-PE studies are registered at ClinicalTrials.gov, numbers NCT00440193 and NCT00439777. In patients with active cancer (diagnosed at baseline or during treatment), recurrent venous thromboembolism occurred in 16 (5%) of 354 patients allocated to rivaroxaban and 20 (7%) of 301 patients allocated to enoxaparin and vitamin K antagonist (hazard ratio [HR] 0·67, 95% CI 0·35 to 1·30). Clinically relevant bleeding occurred in 48 (14%) of 353 patients receiving rivaroxaban and in 49 (16%) of 298 patients receiving standard therapy (HR 0·80, 95% CI 0·54 to 1·20). Major bleeding occurred in eight (2%) of 353 patients receiving rivaroxaban and in 15 (5%) of 298 patients receiving standard therapy (HR 0·42, 95% CI 0·18 to 0·99). The overall frequency of recurrent venous thromboembolism in patients with only a history of cancer (five [2%] of 233 patients in the rivaroxaban group vs five [2%] of 236 in the standard therapy group; HR 0·98, 95% CI 0·28-3·43) was similar to that of patients without cancer (65 [2%] of 3563 vs 70 [2%] of 3594, respectively; HR 0·93, 95% CI 0·66-1·30), but the frequency was increased in patients with active cancer at baseline (six [2%] of 258 vs eight [4%] of 204, respectively; HR 0·62, 95% CI 0·21-1·79) and most markedly increased in patients whose diagnosis of cancer was made during the study (ten [10%] of 96 vs 12 [12%] of 97, respectively; HR 0·80, 95% CI 0·34-1·88). The overall frequency of major bleeding in patients with only a history of cancer (one [<1%] patient in the rivaroxaban group vs four [2%] patients in the standard therapy group; HR 0·23, 95% CI 0·03-2·06) was similar to that of patients without cancer (31 [1%] vs 53 [1%], respectively; HR 0·58, 95% CI 0·37-0·91), but was increased in patients with active cancer at baseline (five [2%] vs eight [4%], respectively; HR 0·47, 95% CI 0·15-1·45) and was highest in those with cancer diagnosed during the study (three [3%] vs seven [7%], respectively; HR 0·33, 95% CI 0·08-1·31). In patients with active cancer and venous thromboembolism, rivaroxaban had similar efficacy to prevent recurrence of venous thromboembolism and reduced the number major bleeding events compared with treatment with enoxaparin and a vitamin K antagonist, although there was no difference between groups for clinically relevant bleeding. Based on these results, a head-to-head comparison of rivaroxaban with long-term low-molecular-weight heparin in patients with cancer is warranted. Bayer HealthCare Pharmaceuticals and Janssen Research & Development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Oral rivaroxaban versus standard therapy for the treatment of symptomatic venous thromboembolism: a pooled analysis of the EINSTEIN-DVT and PE randomized studies.

    PubMed

    Prins, Martin H; Lensing, Anthonie Wa; Bauersachs, Rupert; van Bellen, Bonno; Bounameaux, Henri; Brighton, Timothy A; Cohen, Alexander T; Davidson, Bruce L; Decousus, Hervé; Raskob, Gary E; Berkowitz, Scott D; Wells, Philip S

    2013-09-20

    Standard treatment for venous thromboembolism (VTE) consists of a heparin combined with vitamin K antagonists. Direct oral anticoagulants have been investigated for acute and extended treatment of symptomatic VTE; their use could avoid parenteral treatment and/or laboratory monitoring of anticoagulant effects. A prespecified pooled analysis of the EINSTEIN-DVT and EINSTEIN-PE studies compared the efficacy and safety of rivaroxaban (15 mg twice-daily for 21 days, followed by 20 mg once-daily) with standard-therapy (enoxaparin 1.0 mg/kg twice-daily and warfarin or acenocoumarol). Patients were treated for 3, 6, or 12 months and followed for suspected recurrent VTE and bleeding. The prespecified noninferiority margin was 1.75. A total of 8282 patients were enrolled; 4151 received rivaroxaban and 4131 received standard-therapy. The primary efficacy outcome occurred in 86 (2.1%) rivaroxaban-treated patients compared with 95 (2.3%) standard-therapy-treated patients (hazard ratio, 0.89; 95% confidence interval [CI], 0.66-1.19; pnoninferiority < 0.001). Major bleeding was observed in 40 (1.0%) and 72 (1.7%) patients in the rivaroxaban and standard-therapy groups, respectively (hazard ratio, 0.54; 95% CI, 0.37-0.79; p = 0.002). In key subgroups, including fragile patients, cancer patients, patients presenting with large clots, and those with a history of recurrent VTE, the efficacy and safety of rivaroxaban were similar compared with standard-therapy. The single-drug approach with rivaroxaban resulted in similar efficacy to standard-therapy and was associated with a significantly lower rate of major bleeding. Efficacy and safety results were consistent among key patient subgroups. ClinicalTrials.gov, NCT00439777; EINSTEIN-DVT: ClinicalTrials.gov, NCT00440193.

  13. Black-Hole Solutions to Einstein's Equations in the Presence of Matter and Modifications of Gravitation in Extra Dimensions

    NASA Astrophysics Data System (ADS)

    Goutéraux, B.

    2010-11-01

    In this thesis, we wish to examine the black-hole solutions of modified gravity theories inspired by String Theory or Cosmology. Namely, these modifications will take the guise of additional gauge and scalar fields for the so-called Einstein-Maxwell-Dilaton theories with an exponential Liouville potential; and of extra spatial dimensions for Einstein-Gauss-Bonnet theories. The black-hole solutions of EMD theories as well as their integrability are reviewed. One of the main results is that a master equation is obtained in the case of planar horizon topology, which allows to completely integrate the problem for s special relationship between the couplings. We also classify existing solutions. We move on to the study of Gauss-Bonnet black holes, focusing on the six-dimensional case. It is found that the Gauss-Bonnet coupling exposes the Weyl tensor of the horizon to the dynamics, severely restricting the Einstein spaces admissible and effectively lifting some of the degeneracy on the horizon topology. We then turn to the study of the thermodynamic properties of black holes, in General Relativity as well as in EMD theories. For the latter, phase transitions may be found in the canonical ensemble, which resemble the phase transitions for Reissner-Nordström black holes. Generically, we find that the thermodynamic properties (stability, order of phase transitions) depend crucially on the values of the EMD coupling constants. Finally, we interpret our planar EMD solutions holographically as Infra-Red geometries through the AdS/CFT correspondence, taking into account various validity constraints. We also compute AC and DC conductivities as applications to Condensed Matter Systems, and find some properties characteristic of strange metal behaviour.

  14. Two doses of rivaroxaban versus aspirin for prevention of recurrent venous thromboembolism. Rationale for and design of the EINSTEIN CHOICE study.

    PubMed

    Weitz, Jeffrey I; Bauersachs, Rupert; Beyer-Westendorf, Jan; Bounameaux, Henri; Brighton, Timothy A; Cohen, Alexander T; Davidson, Bruce L; Holberg, Gerlind; Kakkar, Ajay; Lensing, Anthonie W A; Prins, Martin; Haskell, Lloyd; van Bellen, Bonno; Verhamme, Peter; Wells, Philip S; Prandoni, Paolo

    2015-08-31

    Patients with unprovoked venous thromboembolism (VTE) are at high risk for recurrence. Although rivaroxaban is effective for extended VTE treatment at a dose of 20 mg once daily, use of the 10 mg dose may further improve its benefit-to-risk ratio. Low-dose aspirin also reduces rates of recurrent VTE, but has not been compared with anticoagulant therapy. The EINSTEIN CHOICE study is a multicentre, randomised, double-blind, active-controlled, event-driven study comparing the efficacy and safety of two once daily doses of rivaroxaban (20 and 10 mg) with aspirin (100 mg daily) for the prevention of recurrent VTE in patients who completed 6-12 months of anticoagulant therapy for their index acute VTE event. All treatments will be given for 12 months. The primary efficacy objective is to determine whether both doses of rivaroxaban are superior to aspirin for the prevention of symptomatic recurrent VTE, while the principal safety outcome is the incidence of major bleeding. The trial is anticipated to enrol 2,850 patients from 230 sites in 31 countries over a period of 27 months. In conclusion, the EINSTEIN CHOICE study will provide new insights into the optimal antithrombotic strategy for extended VTE treatment by comparing two doses of rivaroxaban with aspirin (clinicaltrials.gov NCT02064439).

  15. Non-local Effects of Conformal Anomaly

    NASA Astrophysics Data System (ADS)

    Meissner, Krzysztof A.; Nicolai, Hermann

    2018-03-01

    It is shown that the nonlocal anomalous effective actions corresponding to the quantum breaking of the conformal symmetry can lead to observable modifications of Einstein's equations. The fact that Einstein's general relativity is in perfect agreement with all observations including cosmological or recently observed gravitational waves imposes strong restrictions on the field content of possible extensions of Einstein's theory: all viable theories should have vanishing conformal anomalies. It is shown that a complete cancellation of conformal anomalies in D=4 for both the C^2 invariant and the Euler (Gauss-Bonnet) invariant can only be achieved for N-extended supergravity multiplets with N ≥ 5.

  16. Complete integrability of geodesics in toric Sasaki-Einstein spaces

    NASA Astrophysics Data System (ADS)

    Visinescu, Mihai

    2016-01-01

    We describe a method for constructing Killing-Yano tensors on toric Sasaki- Einstein manifolds using their geometrical properties. We take advantage of the fact that the metric cones of these spaces are Calabi-Yau manifolds. The complete list of special Killing forms can be extracted making use of the description of the Calabi-Yau manifolds in terms of toric data. This general procedure for toric Sasaki-Einstein manifolds is exemplified in the case of the 5-dimensional spaces Yp,q and T1,1. Finally we discuss the integrability of geodesic motion in these spaces.

  17. Pair-correlation function of a metastable helium Bose-Einstein condensate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zin, Pawel; Trippenbach, Marek; Gajda, Mariusz

    2004-02-01

    The pair-correlation function is one of the basic quantities to characterize the coherence properties of a Bose-Einstein condensate. We calculate this function in the experimentally important case of a zero temperature Bose-Einstein condensate in a metastable triplet helium state using the variational method with a pair-excitation ansatz. We compare our result with a pair-correlation function obtained for the hard-sphere potential with the same scattering length. Both functions are practically indistinguishable for distances greater than the scattering length. At smaller distances, due to interatomic interactions, the helium condensate shows strong correlations.

  18. Robinson-Trautman solutions to Einstein's equations

    NASA Astrophysics Data System (ADS)

    Davidson, William

    2017-02-01

    Solutions to Einstein's equations in the form of a Robinson-Trautman metric are presented. In particular, we derive a pure radiation solution which is non-stationary and involves a mass m, The resulting spacetime is of Petrov Type II A special selection of parametric values throws up the feature of the particle `rocket', a Type D metric. A suitable transformation of the complex coordinates allows the metrics to be expressed in real form. A modification, by setting m to zero, of the Type II metric thereby converting it to Type III, is then shown to admit a null Einstein-Maxwell electromagnetic field.

  19. Gravitation. [Book on general relativity

    NASA Technical Reports Server (NTRS)

    Misner, C. W.; Thorne, K. S.; Wheeler, J. A.

    1973-01-01

    This textbook on gravitation physics (Einstein's general relativity or geometrodynamics) is designed for a rigorous full-year course at the graduate level. The material is presented in two parallel tracks in an attempt to divide key physical ideas from more complex enrichment material to be selected at the discretion of the reader or teacher. The full book is intended to provide competence relative to the laws of physics in flat space-time, Einstein's geometric framework for physics, applications with pulsars and neutron stars, cosmology, the Schwarzschild geometry and gravitational collapse, gravitational waves, experimental tests of Einstein's theory, and mathematical concepts of differential geometry.

  20. Modeling Bose-Einstein correlations via elementary emitting cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Utyuzh, Oleg; Wilk, Grzegorz; Wlodarczyk, Zbigniew

    2007-04-01

    We propose a method of numerical modeling Bose-Einstein correlations by using the notion of the elementary emitting cell (EEC). They are intermediary objects containing identical bosons and are supposed to be produced independently during the hadronization process. Only bosons in the EEC, which represents a single quantum state here, are subjected to the effects of Bose-Einstein (BE) statistics, which forces them to follow a geometrical distribution. There are no such effects between particles from different EECs. We illustrate our proposition by calculating a representative number of typical distributions and discussing their sensitivity to EECs and their characteristics.

  1. The gendering of Albert Einstein and Marie Curie in children's biographies: some tensions

    NASA Astrophysics Data System (ADS)

    Wilson, Rachel E.; Jarrard, Amber R.; Tippins, Deborah J.

    2009-12-01

    Few twentieth century scientists have generated as much interest as Albert Einstein and Marie Currie. Their lives are centrally depicted in numerous children's biographies of famous scientists. Yet their stories reflect interesting paradoxes and tacit sets of unexplored sociocultural assumptions about gender in science education and the larger society. Trevor Owens' analysis of common Einstein and Currie biographies for children provides a context for us to consider a deeper reading of these scientists' stories in ways that can be both empowering and liberating. In the process, we consider some interesting tensions surrounding the gendered nature of their stories.

  2. Multiphase Simulated Annealing Based on Boltzmann and Bose-Einstein Distribution Applied to Protein Folding Problem.

    PubMed

    Frausto-Solis, Juan; Liñán-García, Ernesto; Sánchez-Hernández, Juan Paulo; González-Barbosa, J Javier; González-Flores, Carlos; Castilla-Valdez, Guadalupe

    2016-01-01

    A new hybrid Multiphase Simulated Annealing Algorithm using Boltzmann and Bose-Einstein distributions (MPSABBE) is proposed. MPSABBE was designed for solving the Protein Folding Problem (PFP) instances. This new approach has four phases: (i) Multiquenching Phase (MQP), (ii) Boltzmann Annealing Phase (BAP), (iii) Bose-Einstein Annealing Phase (BEAP), and (iv) Dynamical Equilibrium Phase (DEP). BAP and BEAP are simulated annealing searching procedures based on Boltzmann and Bose-Einstein distributions, respectively. DEP is also a simulated annealing search procedure, which is applied at the final temperature of the fourth phase, which can be seen as a second Bose-Einstein phase. MQP is a search process that ranges from extremely high to high temperatures, applying a very fast cooling process, and is not very restrictive to accept new solutions. However, BAP and BEAP range from high to low and from low to very low temperatures, respectively. They are more restrictive for accepting new solutions. DEP uses a particular heuristic to detect the stochastic equilibrium by applying a least squares method during its execution. MPSABBE parameters are tuned with an analytical method, which considers the maximal and minimal deterioration of problem instances. MPSABBE was tested with several instances of PFP, showing that the use of both distributions is better than using only the Boltzmann distribution on the classical SA.

  3. Bose-Einstein correlation within the framework of hadronic mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burande, Chandrakant S.

    The Bose-Einstein correlation is the phenomenon in which protons and antiprotons collide at extremely high energies; coalesce one into the other resulting into the fireball of finite dimension. They annihilate each other and produces large number of mesons that remain correlated at distances very large compared to the size of the fireball. It was believed that Einstein’s special relativity and relativistic quantum mechanics are the valid frameworks to represent this phenomenon. Although, these frameworks are incomplete and require arbitrary parameters (chaoticity) to fit the experimental data which are prohibited by the basic axioms of relativistic quantum mechanics, such as thatmore » for the vacuum expectation values. Moreover, correlated mesons can not be treated as a finite set of isolated point-like particles because it is non-local event due to overlapping of wavepackets. Therefore, the Bose-Einstein correlation is incompatible with the axiom of expectation values of quantum mechanics. In contrary, relativistic hadronic mechanics constructed by Santilli allows an exact representation of the experimental data of the Bose-Einstein correlation and restore the validity of the Lorentz and Poincare symmetries under nonlocal and non-Hamiltonian internal effects. Further, F. Cardone and R. Mignani observed that the Bose-Einstein two-point correlation function derived by Santilli is perfectly matched with experimental data at high energy.« less

  4. Twistor-strings and gravity tree amplitudes

    NASA Astrophysics Data System (ADS)

    Adamo, Tim; Mason, Lionel

    2013-04-01

    Recently we discussed how Einstein supergravity tree amplitudes might be obtained from the original Witten and Berkovits twistor-string theory when external conformal gravitons are restricted to be Einstein gravitons. Here we obtain a more systematic understanding of the relationship between conformal and Einstein gravity amplitudes in that twistor-string theory. We show that although it does not in general yield Einstein amplitudes, we can nevertheless obtain some partial twistor-string interpretation of the remarkable formulae recently been found by Hodges and generalized to all tree amplitudes by Cachazo and Skinner. The Hodges matrix and its higher degree generalizations encode the world sheet correlators of the twistor string. These matrices control both Einstein amplitudes and those of the conformal gravity arising from the Witten and Berkovits twistor-string. Amplitudes in the latter case arise from products of the diagonal elements of the generalized Hodges matrices and reduced determinants give the former. The reduced determinants arise if the contractions in the worldsheet correlator are restricted to form connected trees at MHV. The (generalized) Hodges matrices arise as weighted Laplacian matrices for the graph of possible contractions in the correlators and the reduced determinants of these weighted Laplacian matrices give the sum of the connected tree contributions by an extension of the matrix-tree theorem.

  5. Low temperature heat capacities and thermodynamic functions described by Debye-Einstein integrals.

    PubMed

    Gamsjäger, Ernst; Wiessner, Manfred

    2018-01-01

    Thermodynamic data of various crystalline solids are assessed from low temperature heat capacity measurements, i.e., from almost absolute zero to 300 K by means of semi-empirical models. Previous studies frequently present fit functions with a large amount of coefficients resulting in almost perfect agreement with experimental data. It is, however, pointed out in this work that special care is required to avoid overfitting. Apart from anomalies like phase transformations, it is likely that data from calorimetric measurements can be fitted by a relatively simple Debye-Einstein integral with sufficient precision. Thereby, reliable values for the heat capacities, standard enthalpies, and standard entropies at T  = 298.15 K are obtained. Standard thermodynamic functions of various compounds strongly differing in the number of atoms in the formula unit can be derived from this fitting procedure and are compared to the results of previous fitting procedures. The residuals are of course larger when the Debye-Einstein integral is applied instead of using a high number of fit coefficients or connected splines, but the semi-empiric fit coefficients keep their meaning with respect to physics. It is suggested to use the Debye-Einstein integral fit as a standard method to describe heat capacities in the range between 0 and 300 K so that the derived thermodynamic functions are obtained on the same theory-related semi-empiric basis. Additional fitting is recommended when a precise description for data at ultra-low temperatures (0-20 K) is requested.

  6. Is Electromagnetic Gravity Control Possible?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vargas, Jose G.; Torr, Douglas G.

    2004-02-04

    We study the interplay of Einstein's Gravitation (GR) and Maxwell's Electromagnetism, where the distribution of energy-momentum is not presently known (The Feynman Lectures, Vol 2, Chapter 27, section 4). As Feynman himself stated, one might in principle use Einstein's equations of GR to find such a distribution. GR (born in 1915) presently uses the Levi-Civita connection, LCC (the LCC was born two years after GR as a new concept, and not just as the pre-existing Christoffel symbols that represent it). Around 1927, Einstein proposed for physics an alternative to the LCC that constitutes a far more sensible and powerful affinemore » enrichment of metric Riemannian geometry. It is called teleparallelism (TP). Its Finslerian version (i.e. in the space-time-velocity arena) permits an unequivocal identification of the EM field as a geometric quantity. This in turn permits one to identify a completely geometric set of Einstein equations from curvature equations. From their right hand side, one may obtain the actual distribution of EM energy-momentum. It is consistent with Maxwell's equations, since these also are implied by the equations of structure of TP. We find that the so-far-unknown terms in this distribution amount to a total differential and do not, therefore, alter the value of the total EM energy-momentum. And yet these extra terms are at macroscopic distances enormously larger than the standard quadratic terms. This allows for the generation of measurable gravitational fields by EM fields. We thus answer affirmatively the question of the title.« less

  7. Crystal structure and low-energy Einstein mode in ErV{sub 2}Al{sub 20} intermetallic cage compound

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winiarski, Michał J., E-mail: mwiniarski@mif.pg.gda.pl; Klimczuk, Tomasz

    Single crystals of a new ternary aluminide ErV{sub 2}Al{sub 20} were grown using a self-flux method. The crystal structure was determined by powder X-ray diffraction measurements and Rietveld refinement, and physical properties were studied by means of electrical resistivity, magnetic susceptibility and specific heat measurements. These measurements reveal that ErV{sub 2}Al{sub 20} is a Curie-Weiss paramagnet down to 1.95 K with an effective magnetic moment μ{sub eff} =9.27(1) μ{sub B} and Curie-Weiss temperature Θ{sub CW} =−0.55(4) K. The heat capacity measurements show a broad anomaly at low temperatures that is attributed to the presence of a low-energy Einstein mode withmore » characteristic temperature Θ{sub E} =44 K, approximately twice as high as in the isostructural ‘Einstein solid’ VAl{sub 10.1}. - Graphical abstract: A low-energy Einstein mode is observed in a novel intermetallic cage compound ErV{sub 2}Al{sub 20} by specific heat and resistivity measurements. - Highlights: • Single crystals of a new compound ErV{sub 2}Al{sub 20} were grown by self-flux method. • Crystal structure is reported, based on powder x-ray diffraction. • ErV{sub 2}Al{sub 20} is a Curie-Weiss paramagnet. • Low-energy ‘rattling’ phonon mode (Θ{sub E}=44 K) is found in specific heat measurements.« less

  8. Understanding Dark Energy

    NASA Astrophysics Data System (ADS)

    Greyber, Howard

    2009-11-01

    By careful analysis of the data from the WMAP satellite, scientists were surprised to determine that about 70% of the matter in our universe is in some unknown form, and labeled it Dark Energy. Earlier, in 1998, two separate international groups of astronomers studying Ia supernovae were even more surprised to be forced to conclude that an amazing smooth transition occurred, from the expected slowing down of the expansion of our universe (due to normal positive gravitation) to an accelerating expansion of the universe that began at at a big bang age of the universe of about nine billion years. In 1918 Albert Einstein stated that his Lambda term in his theory of general relativity was ees,``the energy of empty space,'' and represented a negative pressure and thus a negative gravity force. However my 2004 ``Strong'' Magnetic Field model (SMF) for the origin of magnetic fields at Combination Time (Astro-ph0509223 and 0509222) in our big bang universe produces a unique topology for Superclusters, having almost all the mass, visible and invisible, i.e. from clusters of galaxies down to particles with mass, on the surface of an ellipsoid surrounding a growing very high vacuum. If I hypothesize, with Einstein, that there exists a constant ees force per unit volume, then, gradually, as the universe expands from Combination Time, two effects occur (a) the volume of the central high vacuum region increases, and (b) the density of positive gravity particles in the central region of each Supercluster in our universe decreases dramatically. Thus eventually Einstein's general relativity theory's repulsive gravity of the central very high vacuum region becomes larger than the positive gravitational attraction of all the clusters of galaxies, galaxies, quasars, stars and plasma on the Supercluster shell, and the observed accelerating expansion of our universe occurs. This assumes that our universe is made up mostly of such Superclusters. It is conceivable that the high vacuum region between Superclusters also plays a role in adding extra repulsive gravity force. Note that cosmologist Stephen Hawking comments on his website that ``There is no reason to rule out negative pressure. This is just tension.''

  9. Book Review: The future of spacetime. Stephen William Hawking (ed.); Kip S. Thorne, Igor Novikov, Timothy Ferris, Alan Lightman, and Richard Price, W.W. Norton & Company, 2002, 224 pp., US 25.95, ISBN 0393020223

    NASA Astrophysics Data System (ADS)

    Smeenk, Chris

    2003-12-01

    The study of Einstein's theory of general relativity experienced a renaissance beginning in the early 1960s. Prior to this resurgence of interest, general relativity was isolated from mainstream physics-admired for its elegance, perhaps, but only from a distance. The generation of students who risked their careers by entering this neglected field has now reached the age of festschrifts. In June of 2000, Caltech hosted ;Kipfest,; a conference in honor of Kip Thorne's 60th birthday. Thorne started graduate school at Princeton in 1962 and began research in general relativity under John Wheeler's guidance in the heady early days of the renaissance. Since then, he has played a prominent role in general relativity: as co-author of the influential textbook Gravitation, as a leader in research regarding astrophysical applications of Einstein's theory, and as a co-founder and chief advocate for the Laser Interferometer Gravitational Wave Observatory (LIGO), to mention a few aspects of his far-reaching work. ;Kipfest; included 14 speakers discussing fields to which Thorne has contributed. But the conference also reflected Thorne's long-standing commitment to communicating science to a general audience: Igor Novikov, Stephen Hawking, Timothy Ferris, and Alan Lightman gave popular talks at ;Kipfest,; with Thorne himself tricked into delivering a fifth. The Future of Spacetime gathers adaptations of these five lectures, along with a lengthy introductory essay by Richard Price.

  10. Harmonic spinors on a family of Einstein manifolds

    NASA Astrophysics Data System (ADS)

    Franchetti, Guido

    2018-06-01

    The purpose of this paper is to study harmonic spinors defined on a 1-parameter family of Einstein manifolds which includes Taub–NUT, Eguchi–Hanson and with the Fubini–Study metric as particular cases. We discuss the existence of and explicitly solve for spinors harmonic with respect to the Dirac operator twisted by a geometrically preferred connection. The metrics examined are defined, for generic values of the parameter, on a non-compact manifold with the topology of and extend to as edge-cone metrics. As a consequence, the subtle boundary conditions of the Atiyah–Patodi–Singer index theorem need to be carefully considered in order to show agreement between the index of the twisted Dirac operator and the result obtained by counting the explicit solutions.

  11. Emergence of running dark energy from polynomial f( R) theory in Palatini formalism

    NASA Astrophysics Data System (ADS)

    Szydłowski, Marek; Stachowski, Aleksander; Borowiec, Andrzej

    2017-09-01

    We consider FRW cosmology in f(R)= R+ γ R^2+δ R^3 modified framework. The Palatini approach reduces its dynamics to the simple generalization of Friedmann equation. Thus we study the dynamics in two-dimensional phase space with some details. After reformulation of the model in the Einstein frame, it reduces to the FRW cosmological model with a homogeneous scalar field and vanishing kinetic energy term. This potential determines the running cosmological constant term as a function of the Ricci scalar. As a result we obtain the emergent dark energy parametrization from the covariant theory. We study also singularities of the model and demonstrate that in the Einstein frame some undesirable singularities disappear.

  12. Regular and Chaotic Spatial Distribution of Bose-Einstein Condensed Atoms in a Ratchet Potential

    NASA Astrophysics Data System (ADS)

    Li, Fei; Xu, Lan; Li, Wenwu

    2018-02-01

    We study the regular and chaotic spatial distribution of Bose-Einstein condensed atoms with a space-dependent nonlinear interaction in a ratchet potential. There exists in the system a space-dependent atomic current that can be tuned via Feshbach resonance technique. In the presence of the space-dependent atomic current and a weak ratchet potential, the Smale-horseshoe chaos is studied and the Melnikov chaotic criterion is obtained. Numerical simulations show that the ratio between the intensities of optical potentials forming the ratchet potential, the wave vector of the laser producing the ratchet potential or the wave vector of the modulating laser can be chosen as the controlling parameters to result in or avoid chaotic spatial distributional states.

  13. The Einstein Center for Epigenomics: studying the role of epigenomic dysregulation in human disease.

    PubMed

    McLellan, Andrew S; Dubin, Robert A; Jing, Qiang; Maqbool, Shahina B; Olea, Raul; Westby, Gael; Broin, Pilib Ó; Fazzari, Melissa J; Zheng, Deyou; Suzuki, Masako; Greally, John M

    2009-10-01

    There is increasing interest in the role of epigenetic and transcriptional dysregulation in the pathogenesis of a range of human diseases, not just in the best-studied example of cancer. It is, however, quite difficult for an individual investigator to perform these studies, as they involve genome-wide molecular assays combined with sophisticated computational analytical approaches of very large datasets that may be generated from various resources and technologies. In 2008, the Albert Einstein College of Medicine in New York, USA established a Center for Epigenomics to facilitate the research programs of its investigators, providing shared resources for genome-wide assays and for data analysis. As a result, several avenues of research are now expanding, with cancer epigenomics being complemented by studies of the epigenomics of infectious disease and a neuroepigenomics program.

  14. Neutral signature Walker-CSI metrics

    NASA Astrophysics Data System (ADS)

    Coley, A.; Musoke, N.

    2015-03-01

    We will construct explicit examples of four-dimensional neutral signature Einstein Walker spaces for which all of the polynomial scalar curvature invariants are constant. We show that these Einstein Walker spaces are Kundt. We then investigate the mathematical properties of the spaces, including holonomy and universality.

  15. A Conceptual Derivation of Einstein's Postulates of Special Relativity.

    ERIC Educational Resources Information Center

    Bearden, Thomas E.

    This document presents a discussion and conceptual derivation of Einstein's postulates of special relativity. The perceptron approach appears to be a fundamentally new manner of regarding physical phenomena and it is hoped that physicists will interest themselves in the concept. (Author)

  16. Albert Einstein and the Quantum Riddle

    ERIC Educational Resources Information Center

    Lande, Alfred

    1974-01-01

    Derives a systematic structure contributing to the solution of the quantum riddle in Einstein's sense by deducing quantum mechanics from the postulates of symmetry, correspondence, and covariance. Indicates that the systematic presentation is in agreement with quantum mechanics established by Schroedinger, Born, and Heisenberg. (CC)

  17. Bulk viscosity of strongly interacting matter in the relaxation time approximation

    DOE PAGES

    Czajka, Alina; Hauksson, Sigtryggur; Shen, Chun; ...

    2018-04-24

    Here, we show how thermal mean field effects can be incorporated consistently in the hydrodynamical modeling of heavy-ion collisions. The nonequilibrium correction to the distribution function resulting from a temperature-dependent mass is obtained in a procedure which automatically satisfies the Landau matching condition and is thermodynamically consistent. The physics of the bulk viscosity is studied here for Boltzmann and Bose-Einstein gases within the Chapman-Enskog and 14-moment approaches in the relaxation time approximation. Constant and temperature-dependent masses are considered in turn. It is shown that, in the small mass limit, both methods lead to the same value of the ratio ofmore » the bulk viscosity to its relaxation time. The inclusion of a temperature-dependent mass leads to the emergence of the β λ function in that ratio, and it is of the expected parametric form for the Boltzmann gas, while for the Bose-Einstein case it is affected by the infrared cutoff. This suggests that the relaxation time approximation may be too crude to obtain a reliable form of ς/τ R for gases obeying Bose-Einstein statistics.« less

  18. Einstein@Home all-sky search for periodic gravitational waves in LIGO S5 data

    NASA Astrophysics Data System (ADS)

    Aasi, J.; Abadie, J.; Abbott, B. P.; Abbott, R.; Abbott, T. D.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R.; Affeldt, C.; Agathos, M.; Agatsuma, K.; Ajith, P.; Allen, B.; Allocca, A.; Amador Ceron, E.; Amariutei, D.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Ast, S.; Aston, S. M.; Astone, P.; Atkinson, D.; Aufmuth, P.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P.; Ballardin, G.; Ballmer, S.; Bao, Y.; Barayoga, J. C. B.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Basti, A.; Batch, J.; Bauchrowitz, J.; Bauer, Th. S.; Bebronne, M.; Beck, D.; Behnke, B.; Bejger, M.; Beker, M. G.; Bell, A. S.; Bell, C.; Belopolski, I.; Benacquista, M.; Berliner, J. M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bhadbade, T.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Bock, O.; Bodiya, T. P.; Bogan, C.; Bond, C.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Boschi, V.; Bose, S.; Bosi, L.; Bouhou, B.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Branchesi, M.; Brau, J. E.; Breyer, J.; Briant, T.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet-Castell, J.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cagnoli, G.; Calloni, E.; Camp, J. B.; Campsie, P.; Cannon, K.; Canuel, B.; Cao, J.; Capano, C. D.; Carbognani, F.; Carbone, L.; Caride, S.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chalermsongsak, T.; Charlton, P.; Chassande-Mottin, E.; Chen, W.; Chen, X.; Chen, Y.; Chincarini, A.; Chiummo, A.; Cho, H. S.; Chow, J.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Chung, S.; Ciani, G.; Clara, F.; Clark, D. E.; Clark, J. A.; Clayton, J. H.; Cleva, F.; Coccia, E.; Cohadon, P.-F.; Colacino, C. N.; Colla, A.; Colombini, M.; Conte, A.; Conte, R.; Cook, D.; Corbitt, T. R.; Cordier, M.; Cornish, N.; Corsi, A.; Costa, C. A.; Coughlin, M.; Coulon, J.-P.; Couvares, P.; Coward, D. M.; Cowart, M.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Cutler, R. M.; Dahl, K.; Damjanic, M.; Danilishin, S. L.; D'Antonio, S.; Danzmann, K.; Dattilo, V.; Daudert, B.; Daveloza, H.; Davier, M.; Daw, E. J.; Day, R.; Dayanga, T.; De Rosa, R.; DeBra, D.; Debreczeni, G.; Degallaix, J.; Del Pozzo, W.; Dent, T.; Dergachev, V.; DeRosa, R.; Dhurandhar, S.; Di Fiore, L.; Di Lieto, A.; Di Palma, I.; Di Paolo Emilio, M.; Di Virgilio, A.; Díaz, M.; Dietz, A.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorsher, S.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Du, Z.; Dumas, J.-C.; Dwyer, S.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Endrőczi, G.; Engel, R.; Etzel, T.; Evans, K.; Evans, M.; Evans, T.; Factourovich, M.; Fafone, V.; Fairhurst, S.; Farr, B. F.; Favata, M.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Ferrini, F.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Fisher, R. P.; Flaminio, R.; Foley, S.; Forsi, E.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Franco, S.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M. A.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fujimoto, M.-K.; Fulda, P. J.; Fyffe, M.; Gair, J.; Galimberti, M.; Gammaitoni, L.; Garcia, J.; Garufi, F.; Gáspár, M. E.; Gelencser, G.; Gemme, G.; Genin, E.; Gennai, A.; Gergely, L. Á.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gil-Casanova, S.; Gill, C.; Gleason, J.; Goetz, E.; González, G.; Gorodetsky, M. L.; Goßler, S.; Gouaty, R.; Graef, C.; Graff, P. B.; Granata, M.; Grant, A.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Griffo, C.; Grote, H.; Grover, K.; Grunewald, S.; Guidi, G. M.; Guido, C.; Gupta, R.; Gustafson, E. K.; Gustafson, R.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Hartman, M. T.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Heefner, J.; Heidmann, A.; Heitmann, H.; Hello, P.; Hendry, M. A.; Heng, I. S.; Heptonstall, A. W.; Herrera, V.; Heurs, M.; Hewitson, M.; Hild, S.; Hoak, D.; Hodge, K. A.; Holt, K.; Holtrop, M.; Hong, T.; Hooper, S.; Hough, J.; Howell, E. J.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Izumi, K.; Jacobson, M.; James, E.; Jang, Y. J.; Jaranowski, P.; Jesse, E.; Johnson, W. W.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kasprzack, M.; Kasturi, R.; Katsavounidis, E.; Katzman, W.; Kaufer, H.; Kaufman, K.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Keitel, D.; Kelley, D.; Kells, W.; Keppel, D. G.; Keresztes, Z.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, B. K.; Kim, C.; Kim, H.; Kim, K.; Kim, N.; Kim, Y. M.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kline, J.; Kokeyama, K.; Kondrashov, V.; Koranda, S.; Korth, W. Z.; Kowalska, I.; Kozak, D.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kurdyumov, R.; Kwee, P.; Lam, P. K.; Landry, M.; Langley, A.; Lantz, B.; Lastzka, N.; Lawrie, C.; Lazzarini, A.; Leaci, P.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Leong, J. R.; Leonor, I.; Leroy, N.; Letendre, N.; Lhuillier, V.; Li, J.; Li, T. G. F.; Lindquist, P. E.; Litvine, V.; Liu, Y.; Liu, Z.; Lockerbie, N. A.; Lodhia, D.; Logue, J.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J.; Lubinski, M.; Lück, H.; Lundgren, A. P.; Macarthur, J.; Macdonald, E.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Maksimovic, I.; Malvezzi, V.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markosyan, A.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; Mazzolo, G.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIver, J.; Meadors, G. D.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menéndez, D. F.; Mercer, R. A.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mingarelli, C. M. F.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohapatra, S. R. P.; Moraru, D.; Moreno, G.; Morgado, N.; Morgia, A.; Mori, T.; Morriss, S. R.; Mosca, S.; Mossavi, K.; Mours, B.; Mow-Lowry, C. M.; Mueller, C. L.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murphy, D.; Murray, P. G.; Mytidis, A.; Nash, T.; Naticchioni, L.; Necula, V.; Nelson, J.; Neri, I.; Newton, G.; Nguyen, T.; Nishizawa, A.; Nitz, A.; Nocera, F.; Nolting, D.; Normandin, M. E.; Nuttall, L.; Ochsner, E.; O'Dell, J.; Oelker, E.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Oldenberg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ott, C. D.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Palladino, L.; Palomba, C.; Pan, Y.; Paoletti, F.; Paoletti, R.; Papa, M. A.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Pedraza, M.; Penn, S.; Perreca, A.; Persichetti, G.; Phelps, M.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pierro, V.; Pihlaja, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Pöld, J.; Postiglione, F.; Poux, C.; Prato, M.; Predoi, V.; Prestegard, T.; Price, L. R.; Prijatelj, M.; Principe, M.; Privitera, S.; Prix, R.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Rácz, I.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Ramet, C.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Roberts, M.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Rodriguez, C.; Rodruck, M.; Rolland, L.; Rollins, J. G.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Röver, C.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Salemi, F.; Sammut, L.; Sandberg, V.; Sankar, S.; Sannibale, V.; Santamaría, L.; Santiago-Prieto, I.; Santostasi, G.; Saracco, E.; Sathyaprakash, B. S.; Saulson, P. R.; Savage, R. L.; Schilling, R.; Schnabel, R.; Schofield, R. M. S.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Seifert, F.; Sellers, D.; Sentenac, D.; Sergeev, A.; Shaddock, D. A.; Shaltev, M.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sidery, T. L.; Siemens, X.; Sigg, D.; Simakov, D.; Singer, A.; Singer, L.; Sintes, A. M.; Skelton, G. R.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, R. J. E.; Smith-Lefebvre, N. D.; Somiya, K.; Sorazu, B.; Speirits, F. C.; Sperandio, L.; Stefszky, M.; Steinert, E.; Steinlechner, J.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S. E.; Stroeer, A. S.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Szeifert, G.; Tacca, M.; Taffarello, L.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, R.; ter Braack, A. P. M.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Tomlinson, C.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C. V.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Tse, M.; Ugolini, D.; Vahlbruch, H.; Vajente, G.; van den Brand, J. F. J.; Van Den Broeck, C.; van der Putten, S.; van Veggel, A. A.; Vass, S.; Vasuth, M.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A. E.; Vinet, J.-Y.; Vitale, S.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A.; Wade, L.; Wade, M.; Waldman, S. J.; Wallace, L.; Wan, Y.; Wang, M.; Wang, X.; Wanner, A.; Ward, R. L.; Was, M.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Welborn, T.; Wen, L.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wiesner, K.; Wilkinson, C.; Willems, P. A.; Williams, L.; Williams, R.; Willke, B.; Wimmer, M.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Wittel, H.; Woan, G.; Wooley, R.; Worden, J.; Yablon, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yancey, C. C.; Yang, H.; Yeaton-Massey, D.; Yoshida, S.; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zendri, J.-P.; Zhang, F.; Zhang, L.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.; Anderson, D. P.

    2013-02-01

    This paper presents results of an all-sky search for periodic gravitational waves in the frequency range [50,1190]Hz and with frequency derivative range of ˜[-20,1.1]×10-10Hzs-1 for the fifth LIGO science run (S5). The search uses a noncoherent Hough-transform method to combine the information from coherent searches on time scales of about one day. Because these searches are very computationally intensive, they have been carried out with the Einstein@Home volunteer distributed computing project. Postprocessing identifies eight candidate signals; deeper follow-up studies rule them out. Hence, since no gravitational wave signals have been found, we report upper limits on the intrinsic gravitational wave strain amplitude h0. For example, in the 0.5 Hz-wide band at 152.5 Hz, we can exclude the presence of signals with h0 greater than 7.6×10-25 at a 90% confidence level. This search is about a factor 3 more sensitive than the previous Einstein@Home search of early S5 LIGO data.

  19. Bulk viscosity of strongly interacting matter in the relaxation time approximation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Czajka, Alina; Hauksson, Sigtryggur; Shen, Chun

    Here, we show how thermal mean field effects can be incorporated consistently in the hydrodynamical modeling of heavy-ion collisions. The nonequilibrium correction to the distribution function resulting from a temperature-dependent mass is obtained in a procedure which automatically satisfies the Landau matching condition and is thermodynamically consistent. The physics of the bulk viscosity is studied here for Boltzmann and Bose-Einstein gases within the Chapman-Enskog and 14-moment approaches in the relaxation time approximation. Constant and temperature-dependent masses are considered in turn. It is shown that, in the small mass limit, both methods lead to the same value of the ratio ofmore » the bulk viscosity to its relaxation time. The inclusion of a temperature-dependent mass leads to the emergence of the β λ function in that ratio, and it is of the expected parametric form for the Boltzmann gas, while for the Bose-Einstein case it is affected by the infrared cutoff. This suggests that the relaxation time approximation may be too crude to obtain a reliable form of ς/τ R for gases obeying Bose-Einstein statistics.« less

  20. A noncompact Weyl-Einstein-Yang-Mills model: A semiclassical quantum gravity

    NASA Astrophysics Data System (ADS)

    Dengiz, Suat

    2017-08-01

    We construct and study perturbative unitarity (i.e., ghost and tachyon analysis) of a 3 + 1-dimensional noncompact Weyl-Einstein-Yang-Mills model. The model describes a local noncompact Weyl's scale plus SU(N) phase invariant Higgs-like field,conformally coupled to a generic Weyl-invariant dynamical background. Here, the Higgs-like sector generates the Weyl's conformal invariance of system. The action does not admit any dimensionful parameter and genuine presence of de Sitter vacuum spontaneously breaks the noncompact gauge symmetry in an analogous manner to the Standard Model Higgs mechanism. As to flat spacetime, the dimensionful parameter is generated within the dimensional transmutation in quantum field theories, and thus the symmetry is radiatively broken through the one-loop Effective Coleman-Weinberg potential. We show that the mere expectation of reducing to Einstein's gravity in the broken phases forbids anti-de Sitter space to be its stable vacua. The model is unitary in de Sitter and flat vacua around which a massless graviton, N2 - 1 massless scalar bosons, N massless Dirac fermions, N2 - 1 Proca-type massive Abelian and non-Abelian vector bosons are generically propagated.

  1. Bulk viscosity of strongly interacting matter in the relaxation time approximation

    NASA Astrophysics Data System (ADS)

    Czajka, Alina; Hauksson, Sigtryggur; Shen, Chun; Jeon, Sangyong; Gale, Charles

    2018-04-01

    We show how thermal mean field effects can be incorporated consistently in the hydrodynamical modeling of heavy-ion collisions. The nonequilibrium correction to the distribution function resulting from a temperature-dependent mass is obtained in a procedure which automatically satisfies the Landau matching condition and is thermodynamically consistent. The physics of the bulk viscosity is studied here for Boltzmann and Bose-Einstein gases within the Chapman-Enskog and 14-moment approaches in the relaxation time approximation. Constant and temperature-dependent masses are considered in turn. It is shown that, in the small mass limit, both methods lead to the same value of the ratio of the bulk viscosity to its relaxation time. The inclusion of a temperature-dependent mass leads to the emergence of the βλ function in that ratio, and it is of the expected parametric form for the Boltzmann gas, while for the Bose-Einstein case it is affected by the infrared cutoff. This suggests that the relaxation time approximation may be too crude to obtain a reliable form of ζ /τR for gases obeying Bose-Einstein statistics.

  2. A new unified theory of electromagnetic and gravitational interactions

    NASA Astrophysics Data System (ADS)

    Li, Li-Xin

    2016-12-01

    In this paper we present a new unified theory of electromagnetic and gravitational interactions. By considering a four-dimensional spacetime as a hypersurface embedded in a five-dimensional bulk spacetime, we derive the complete set of field equations in the four-dimensional spacetime from the fivedimensional Einstein field equation. Besides the Einstein field equation in the four-dimensional spacetime, an electromagnetic field equation is obtained: ∇a F ab - ξ R b a A a = -4π J b with ξ = -2, where F ab is the antisymmetric electromagnetic field tensor defined by the potential vector A a , R ab is the Ricci curvature tensor of the hypersurface, and J a is the electric current density vector. The electromagnetic field equation differs from the Einstein-Maxwell equation by a curvature-coupled term ξ R b a A a , whose presence addresses the problem of incompatibility of the Einstein-Maxwell equation with a universe containing a uniformly distributed net charge, as discussed in a previous paper by the author [L.-X. Li, Gen. Relativ. Gravit. 48, 28 (2016)]. Hence, the new unified theory is physically different from Kaluza-Klein theory and its variants in which the Einstein-Maxwell equation is derived. In the four-dimensional Einstein field equation derived in the new theory, the source term includes the stress-energy tensor of electromagnetic fields as well as the stress-energy tensor of other unidentified matter. Under certain conditions the unidentified matter can be interpreted as a cosmological constant in the four-dimensional spacetime. We argue that, the electromagnetic field equation and hence the unified theory presented in this paper can be tested in an environment with a high mass density, e.g., inside a neutron star or a white dwarf, and in the early epoch of the universe.

  3. Thermodynamic properties of charged three-dimensional black holes in the scalar-tensor gravity theory

    NASA Astrophysics Data System (ADS)

    Dehghani, M.

    2018-02-01

    Making use of the suitable transformation relations, the action of three-dimensional Einstein-Maxwell-dilaton gravity theory has been obtained from that of scalar-tensor modified gravity theory coupled to the Maxwell's electrodynamics as the matter field. Two new classes of the static three-dimensional charged dilatonic black holes, as the exact solutions to the coupled scalar, electromagnetic and gravitational field equations, have been obtained in the Einstein frame. Also, it has been found that the scalar potential can be written in the form of a generalized Liouville-type potential. The conserved black hole charge and masses as well as the black entropy, temperature, and electric potential have been calculated from the geometrical and thermodynamical approaches, separately. Through comparison of the results arisen from these two alternative approaches, the validity of the thermodynamical first law has been proved for both of the new black hole solutions in the Einstein frame. Making use of the canonical ensemble method, a black hole stability or phase transition analysis has been performed. Regarding the black hole heat capacity, with the black hole charge as a constant, the points of type-1 and type-2 phase transitions have been determined. Also, the ranges of the black hole horizon radius at which the Einstein black holes are thermally stable have been obtained for both of the new black hole solutions. Then making use of the inverse transformation relations, two new classes of the string black hole solutions have been obtained from their Einstein counterpart. The thermodynamics and thermal stability of the new string black hole solutions have been investigated. It has been found that thermodynamic properties of the new charged black holes are identical in the Einstein and Jordan frames.

  4. PT -symmetric gain and loss in a rotating Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Haag, Daniel; Dast, Dennis; Cartarius, Holger; Wunner, Günter

    2018-03-01

    PT -symmetric quantum mechanics allows finding stationary states in mean-field systems with balanced gain and loss of particles. In this work we apply this method to rotating Bose-Einstein condensates with contact interaction which are known to support ground states with vortices. Due to the particle exchange with the environment transport phenomena through ultracold gases with vortices can be studied. We find that even strongly interacting rotating systems support stable PT -symmetric ground states, sustaining a current parallel and perpendicular to the vortex cores. The vortices move through the nonuniform particle density and leave or enter the condensate through its borders creating the required net current.

  5. Exact quantization of Einstein-Rosen waves coupled to massless scalar matter.

    PubMed

    Barbero G, J Fernando; Garay, Iñaki; Villaseñor, Eduardo J S

    2005-07-29

    We show in this Letter that gravity coupled to a massless scalar field with full cylindrical symmetry can be exactly quantized by an extension of the techniques used in the quantization of Einstein-Rosen waves. This system provides a useful test bed to discuss a number of issues in quantum general relativity, such as the emergence of the classical metric, microcausality, and large quantum gravity effects. It may also provide an appropriate framework to study gravitational critical phenomena from a quantum point of view, issues related to black hole evaporation, and the consistent definition of test fields and particles in quantum gravity.

  6. Communication: Visible line intensities of the triatomic hydrogen ion from experiment and theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petrignani, Annemieke; Berg, Max H.; Grussie, Florian

    2014-12-28

    The visible spectrum of H{sub 3}{sup +} is studied using high-sensitivity action spectroscopy in a cryogenic radiofrequency multipole trap. Advances are made to measure the weak ro-vibrational transitions from the lowest rotational states of H{sub 3}{sup +} up to high excitation energies providing visible line intensities and, after normalisation to an infrared calibration line, the corresponding Einstein B coefficients. Ab initio predictions for the Einstein B coefficients are obtained from a highly precise dipole moment surface of H{sub 3}{sup +} and found to be in excellent agreement, even in the region where states have been classified as chaotic.

  7. Quasinormal modes of scale dependent black holes in (1 +2 )-dimensional Einstein-power-Maxwell theory

    NASA Astrophysics Data System (ADS)

    Rincón, Ángel; Panotopoulos, Grigoris

    2018-01-01

    We study for the first time the stability against scalar perturbations, and we compute the spectrum of quasinormal modes of three-dimensional charged black holes in Einstein-power-Maxwell nonlinear electrodynamics assuming running couplings. Adopting the sixth order Wentzel-Kramers-Brillouin (WKB) approximation we investigate how the running of the couplings change the spectrum of the classical theory. Our results show that all modes corresponding to nonvanishing angular momentum are unstable both in the classical theory and with the running of the couplings, while the fundamental mode can be stable or unstable depending on the running parameter and the electric charge.

  8. Greybody factors for a spherically symmetric Einstein-Gauss-Bonnet-de Sitter black hole

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng-Yong; Li, Peng-Cheng; Chen, Bin

    2018-02-01

    We study the greybody factors of the scalar fields in spherically symmetric Einstein-Gauss-Bonnet-de Sitter black holes in higher dimensions. We derive the greybody factors analytically for both minimally and nonminimally coupled scalar fields. Moreover, we discuss the dependence of the greybody factor on various parameters including the angular momentum number, the nonminimally coupling constant, the spacetime dimension, the cosmological constant, and the Gauss-Bonnet coefficient in detail. We find that the nonminimal coupling may suppress the greybody factor and the Gauss-Bonnet coupling could enhance it, but they both suppress the energy emission rate of Hawking radiation.

  9. Stripes and honeycomb lattice of quantized vortices in rotating two-component Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Kasamatsu, Kenichi; Sakashita, Kouhei

    2018-05-01

    We study numerically the structure of a vortex lattice in rotating two-component Bose-Einstein condensates with equal atomic masses and equal intra- and intercomponent coupling strengths. The numerical simulations of the Gross-Pitaevskii equation show that the quantized vortices in this situation form lattice configuration accompanying vortex stripes, honeycomb lattices, and their complexes. This is a result of the degeneracy of the system for the SU(2) symmetric operation, which causes a continuous transformation between the above structures. In terms of the pseudospin representation, the complex lattice structures are identified as a hexagonal lattice of doubly winding half skyrmions.

  10. Sharp metric obstructions for quasi-Einstein metrics

    NASA Astrophysics Data System (ADS)

    Case, Jeffrey S.

    2013-02-01

    Using the tractor calculus to study smooth metric measure spaces, we adapt results of Gover and Nurowski to give sharp metric obstructions to the existence of quasi-Einstein metrics on suitably generic manifolds. We do this by introducing an analogue of the Weyl tractor W to the setting of smooth metric measure spaces. The obstructions we obtain can be realized as tensorial invariants which are polynomial in the Riemann curvature tensor and its divergence. By taking suitable limits of their tensorial forms, we then find obstructions to the existence of static potentials, generalizing to higher dimensions a result of Bartnik and Tod, and to the existence of potentials for gradient Ricci solitons.

  11. High-field instability of a field-induced triplon Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Rakhimov, Abdulla; Sherman, E. Ya.; Kim, Chul Koo

    2010-01-01

    We study properties of magnetic field-induced Bose-Einstein condensate of triplons as a function of temperature and the field within the Hartree-Fock-Bogoliubov approach including the anomalous density. We show that the magnetization is continuous across the transition, in agreement with the experiment. In sufficiently strong fields the condensate becomes unstable due to triplon-triplon repulsion. As a result, the system is characterized by two critical magnetic fields: one producing the condensate and the other destroying it. We show that nonparabolic triplon dispersion arising due to the gapped bare spectrum and the crystal structure has a strong influence on the phase diagram.

  12. Hawking's bid to save quantum theory from black holes

    NASA Astrophysics Data System (ADS)

    Cho, Adrian

    2018-03-01

    When Albert Einstein died in 1955, he had spent lonely decades trying in vain to unify the theories of gravity and electromagnetism. Stephen Hawking, the great British physicist who died last week at age 76, also worked until the end. But he focused on perhaps the most important problem in his area of physics, one his own work had posed: How do black holes preserve information encoded in the material that falls into them? Hawking realized in 1974 that through a subtle quantum effect a black hole can radiate energy and evaporate. But then a black hole should destroy any infalling information, which cannot come back out in the random radiation. Such information loss would wreck quantum mechanics, and Hawking spent much of his later years trying to figure out how a black hole could preserve information after all, even as the degenerative nerve disease amyotrophic lateral sclerosis rendered him immobile and able to speak only through a computerized voice synthesizer. Ironically, Hawking's disability may have helped him avoid the isolation that enveloped Einstein, as Hawking had to rely on collaborators to flesh out his ideas and so remained connected to his peers.

  13. Einstein-Home search for periodic gravitational waves in early S5 LIGO data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbott, B. P.; Abbott, R.; Adhikari, R.

    This paper reports on an all-sky search for periodic gravitational waves from sources such as deformed isolated rapidly spinning neutron stars. The analysis uses 840 hours of data from 66 days of the fifth LIGO science run (S5). The data were searched for quasimonochromatic waves with frequencies f in the range from 50 to 1500 Hz, with a linear frequency drift f (measured at the solar system barycenter) in the range -f/{tau}

  14. On Einstein, Light Quanta, Radiation, and Relativity in 1905

    ERIC Educational Resources Information Center

    Miller, Arthur I.

    1976-01-01

    Analyzes section 8 of Einstein's relativity paper of 1905, "On the Electrodynamics of Moving Bodies," in its historical context. Relates this section to the rest of the relativity paper, to the genesis of relativity theory, and to contemporaneous work on radiation theory. (Author/MLH)

  15. Education for Einstein's World.

    ERIC Educational Resources Information Center

    Barry, Marie Myles

    Einstein, translated into a philosophy of education, views the factors governing man's qualities--his genes, his parents, his neighborhood, his church, his country, his world--as relative forces in his development, susceptible to infinite growth, and depending upon various combinations of experience. These experiences, in turn, depend upon nature…

  16. Spatial entanglement patterns and Einstein-Podolsky-Rosen steering in Bose-Einstein condensates.

    PubMed

    Fadel, Matteo; Zibold, Tilman; Décamps, Boris; Treutlein, Philipp

    2018-04-27

    Many-particle entanglement is a fundamental concept of quantum physics that still presents conceptual challenges. Although nonclassical states of atomic ensembles were used to enhance measurement precision in quantum metrology, the notion of entanglement in these systems was debated because the correlations among the indistinguishable atoms were witnessed by collective measurements only. Here, we use high-resolution imaging to directly measure the spin correlations between spatially separated parts of a spin-squeezed Bose-Einstein condensate. We observe entanglement that is strong enough for Einstein-Podolsky-Rosen steering: We can predict measurement outcomes for noncommuting observables in one spatial region on the basis of corresponding measurements in another region with an inferred uncertainty product below the Heisenberg uncertainty bound. This method could be exploited for entanglement-enhanced imaging of electromagnetic field distributions and quantum information tasks. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  17. Bell Inequality, Einstein-Podolsky-Rosen Steering, and Quantum Metrology with Spinor Bose-Einstein Condensates.

    PubMed

    Wasak, Tomasz; Chwedeńczuk, Jan

    2018-04-06

    We propose an experiment, where the Bell inequality is violated in a many-body system of massive particles. The source of correlated atoms is a spinor F=1 Bose-Einstein condensate residing in an optical lattice. We characterize the complete procedure-the local operations, the measurements, and the inequality-necessary to run the Bell test. We show how the degree of violation of the Bell inequality depends on the strengths of the two-body correlations and on the number of scattered pairs. We show that the system can be used to demonstrate the Einstein-Podolsky-Rosen paradox. Also, the scattered pairs are an excellent many-body resource for the quantum-enhanced metrology. Our results apply to any multimode system where the spin-changing collision drives the scattering into separate regions. The presented inquiry shows that such a system is versatile as it can be used for the tests of nonlocality, quantum metrology, and quantum information.

  18. The Media of Relativity: Einstein and Telecommunications Technologies.

    PubMed

    Canales, Jimena

    2015-07-01

    How are fundamental constants, such as "c" for the speed of light, related to the technological environments that produce them? Relativistic cosmology, developed first by Albert Einstein, depended on military and commercial innovations in telecommunications. Prominent physicists (Hans Reichenbach, Max Born, Paul Langevin, Louis de Broglie, and Léon Brillouin, among others) worked in radio units during WWI and incorporated battlefield lessons into their research. Relativity physicists, working at the intersection of physics and optics by investigating light and electricity, responded to new challenges by developing a novel scientific framework. Ideas about lengths and solid bodies were overhauled because the old Newtonian mechanics assumed the possibility of "instantaneous signaling at a distance." Einstein's universe, where time and space dilated, where the shortest path between two points was often curved and non-Euclidean, followed the rules of electromagnetic "signal" transmission. For these scientists, light's constant speed in the absence of a gravitational field-a fundamental tenet of Einstein's theory-was a lesson derived from communication technologies.

  19. Bell Inequality, Einstein-Podolsky-Rosen Steering, and Quantum Metrology with Spinor Bose-Einstein Condensates

    NASA Astrophysics Data System (ADS)

    Wasak, Tomasz; Chwedeńczuk, Jan

    2018-04-01

    We propose an experiment, where the Bell inequality is violated in a many-body system of massive particles. The source of correlated atoms is a spinor F =1 Bose-Einstein condensate residing in an optical lattice. We characterize the complete procedure—the local operations, the measurements, and the inequality—necessary to run the Bell test. We show how the degree of violation of the Bell inequality depends on the strengths of the two-body correlations and on the number of scattered pairs. We show that the system can be used to demonstrate the Einstein-Podolsky-Rosen paradox. Also, the scattered pairs are an excellent many-body resource for the quantum-enhanced metrology. Our results apply to any multimode system where the spin-changing collision drives the scattering into separate regions. The presented inquiry shows that such a system is versatile as it can be used for the tests of nonlocality, quantum metrology, and quantum information.

  20. FROM THE HISTORY OF PHYSICS: The Einstein formula: E0=mc2. "Isn't the Lord laughing?"

    NASA Astrophysics Data System (ADS)

    Okun, L. B.

    2008-05-01

    The article traces the way Einstein formulated the relation between energy and mass in his work from 1905 to 1955. Einstein emphasized quite often that the mass m of a body is equivalent to its rest energy E0. At the same time, he frequently resorted to the less clear-cut statement of the equivalence of energy and mass. As a result, Einstein's formula E0=mc2 still remains much less known than its popular form, E=mc2, in which E is the total energy equal to the sum of the rest energy and the kinetic energy of a freely moving body. One of the consequences of this is the widespread fallacy that the mass of a body increases when its velocity increases and even that this is an experimental fact. As wrote the playwright A N Ostrovsky "Something must exist for people, something so austere, so lofty, so sacrosanct that it would make profaning it unthinkable."

  1. Beyond Einstein

    NASA Astrophysics Data System (ADS)

    Hertz, P.

    2003-03-01

    The Structure and Evolution of the Universe (SEU) theme within NASA's Office of Space Science seeks to explore and understand the dynamic transformations of energy in the Universe - the entire web of biological and physical interactions that determine the evolution of our cosmic habitat. This search for understanding will enrich the human spirit and inspire a new generation of explorers, scientists, and engineers. To that end, NASA's strategic planning process has generated a new Roadmap to enable those goals. Called "Beyond Einstein", this Roadmap identifies three science objectives for the SEU theme: (1) Find out what powered the Big Bang; (2) Observe how black holes manipulate space, time, and matter; and (3) Identify the mysterious dark energy pullingthe Universe apart. These objectives can be realized through a combination of large observatories (Constellation-X, LISA), moderate sized, PI-led missions (the Einstein Probes), and a contuinuing program of technology development, research and analysis, and education/public outreach. In this presentation, NASA's proposed Beyond Einstein Program will be described. The full Roadmap is available at http://universe.nasa.gov/.

  2. Simplified methods for computing total sediment discharge with the modified Einstein procedure

    USGS Publications Warehouse

    Colby, Bruce R.; Hubbell, David Wellington

    1961-01-01

    A procedure was presented in 1950 by H. A. Einstein for computing the total discharge of sediment particles of sizes that are in appreciable quantities in the stream bed. This procedure was modified by the U.S. Geological Survey and adapted to computing the total sediment discharge of a stream on the basis of samples of bed sediment, depth-integrated samples of suspended sediment, streamflow measurements, and water temperature. This paper gives simplified methods for computing total sediment discharge by the modified Einstein procedure. Each of four homographs appreciably simplifies a major step in the computations. Within the stated limitations, use of the homographs introduces much less error than is present in either the basic data or the theories on which the computations of total sediment discharge are based. The results are nearly as accurate mathematically as those that could be obtained from the longer and more complex arithmetic and algebraic computations of the Einstein procedure.

  3. Neurological Gait Abnormalities And Risk Of Falls In Older Adults

    PubMed Central

    Verghese, Joe; Ambrose, Anne F; Lipton, Richard B; Wang, Cuiling

    2009-01-01

    Objective To estimate the validity of neurological gait evaluations in predicting falls in older adults. Methods We studied 632 adults age 70 and over (mean age 80.6 years, 62% women) enrolled in the Einstein Aging Study whose walking patterns were evaluated by study clinicians using a clinical gait rating scale. Association of neurological gaits and six subtypes (hemiparetic, frontal, Parkinsonian, unsteady, neuropathic, and spastic) with incident falls was studied using generalized estimation equation procedures adjusted for potential confounders, and reported as risk ratio with 95% confidence intervals (CI). Results Over a mean follow-up of 21 months, 244 (39%) subjects fell. Mean fall rate was 0.47 falls per person year. At baseline, 120 subjects were diagnosed with neurological gaits. Subjects with neurological gaits were at increased risk of falls (risk ratio 1.49, 95% CI 1.11 – 2.00). Unsteady (risk ratio 1.52, 95% CI 1.04 – 2.22), and neuropathic gait (risk ratio 1.94, 95% CI 1.07 – 3.11) were the two gait subtypes that predicted risk of falls. The results remained significant after accounting for disability and cognitive status, and also with injurious falls as the outcome. Conclusions Neurological gaits and subtypes are independent predictors of falls in older adults. Neurological gait assessments will help clinicians identify and institute preventive measures in older adults at high risk for falls. PMID:19784714

  4. On the Einstein-Podolsky-Rosen Paradox

    NASA Astrophysics Data System (ADS)

    McWeeny, Roy

    Central to the EPR paradox is a [`]thought experiment' in which two spins are initially coupled to a state with S = 0 and are then separated to a large distance, at which they can be separately observed. Quantum mechanics apparently predicts that the two spins remain forever coupled, but this conflicts with Einstein's principle of [`]locality' or [`]separability', according to which spatially well separated systems must be independent, no matter how strongly they have interacted in the past. It is now widely held that Einstein was wrong and that [`]non-locality' follows inevitably from quantum mechanics i.e. that even distant systems are never truly separable.

  5. A family of solutions to the Einstein-Maxwell system of equations describing relativistic charged fluid spheres

    NASA Astrophysics Data System (ADS)

    Komathiraj, K.; Sharma, Ranjan

    2018-05-01

    In this paper, we present a formalism to generate a family of interior solutions to the Einstein-Maxwell system of equations for a spherically symmetric relativistic charged fluid sphere matched to the exterior Reissner-Nordström space-time. By reducing the Einstein-Maxwell system to a recurrence relation with variable rational coefficients, we show that it is possible to obtain closed-form solutions for a specific range of model parameters. A large class of solutions obtained previously are shown to be contained in our general class of solutions. We also analyse the physical viability of our new class of solutions.

  6. On the existence of the field line solutions of the Einstein-Maxwell equations

    NASA Astrophysics Data System (ADS)

    Vancea, Ion V.

    The main result of this paper is the proof that there are local electric and magnetic field configurations expressed in terms of field lines on an arbitrary hyperbolic manifold. This electromagnetic field is described by (dual) solutions of the Maxwell’s equations of the Einstein-Maxwell theory. These solutions have the following important properties: (i) they are general, in the sense that the knot solutions are particular cases of them and (ii) they reduce to the electromagnetic fields in the field line representation in the flat space-time. Also, we discuss briefly the real representation of these electromagnetic configurations and write down the corresponding Einstein equations.

  7. Complete integrability of geodesic motion in Sasaki-Einstein toric Yp,q spaces

    NASA Astrophysics Data System (ADS)

    Babalic, Elena Mirela; Visinescu, Mihai

    2015-09-01

    We construct explicitly the constants of motion for geodesics in the five-dimensional Sasaki-Einstein spaces Yp,q. To carry out this task, we use the knowledge of the complete set of Killing vectors and Killing-Yano tensors on these spaces. In spite of the fact that we generate a multitude of constants of motion, only five of them are functionally independent implying the complete integrability of geodesic flow on Yp,q spaces. In the particular case of the homogeneous Sasaki-Einstein manifold T1,1 the integrals of motion have simpler forms and the relations between them are described in detail.

  8. Static Einstein-Maxwell Black Holes with No Spatial Isometries in AdS Space.

    PubMed

    Herdeiro, Carlos A R; Radu, Eugen

    2016-11-25

    We explicitly construct static black hole solutions to the fully nonlinear, D=4, Einstein-Maxwell-anti-de Sitter (AdS) equations that have no continuous spatial symmetries. These black holes have a smooth, topologically spherical horizon (section), but without isometries, and approach, asymptotically, global AdS spacetime. They are interpreted as bound states of a horizon with the Einstein-Maxwell-AdS solitons recently discovered, for appropriate boundary data. In sharp contrast to the uniqueness results for a Minkowski electrovacuum, the existence of these black holes shows that single, equilibrium, black hole solutions in an AdS electrovacuum admit an arbitrary multipole structure.

  9. Einstein: His Impact on Accelerators; His Impact on theWorld

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sessler, A.

    2005-07-30

    The impact of the work of Albert Einstein on accelerator physics is described. Because of the limit of time, and also because the audience knows the details, the impact is described in broad strokes. Nevertheless, it is seen how his work has affected many different aspects of accelerator physics. In the second half of the talk, Albert Einstein's impact on the world will be discussed; namely his work on world peace (including his role as a pacifist, in the atomic bomb, and in arms control) and his efforts as a humanitarian (including his efforts on social justice, anti-racism, and civilmore » rights).« less

  10. The Origin of Gravitational Lensing: A Postscript to Einstein's 1936 Science Paper

    PubMed

    Renn; Sauer; Stachel

    1997-01-10

    Gravitational lensing, now taken as an important astrophysical consequence of the general theory of relativity, was found even before this theory was formulated but was discarded as a speculative idea without any chance of empirical confirmation. Reconstruction of some of Einstein's research notes dating back to 1912 reveals that he explored the possibility of gravitational lensing 3 years before completing his general theory of relativity. On the basis of preliminary insights into this theory, Einstein had already derived the basic features of the lensing effect. When he finally published the very same results 24 years later, it was only in response to prodding by an amateur scientist.

  11. [THE ROLE OF PHILOSOPHICAL REFLECTIONS OF STANISLAW ZAREMBA IN THE CONTEXT OF A DISPUTE ON THE FOUNDATIONS OF THE THEORY OF RELATIVITY].

    PubMed

    Polak, Paweł

    2014-01-01

    The aim of this paper is to present the philosophical background of Stanisław Zaremba's critique of Einstein's theory of relativity. In the 1920s, Zaremba was the most prominent Polish opponent of this theory. His papers influenced some discussions related to Einstein's theory, especially in France and in Poland. This paper takes also into account the development of Zaremba's critique. The analysis of his papers shows that he never became a follower of the Einstein's theory of relativity. Such a statement compels us to confront it with the previous interpretations of Zaremba's thought.

  12. Gravitomagnetism: From Einstein's 1912 Paper to the Satellites LAGEOS and Gravity Probe B

    NASA Astrophysics Data System (ADS)

    Pfister, Herbert

    The first concrete calculations of (linear) gravitomagnetic effects were performed by Einstein in 1912-1913. Einstein also directly and decisively contributed to the "famous" papers by Thirring (and Lense) from 1918. Generalizations to strong fields were performed not earlier than in 1966 by Brill and Cohen. Extensions to higher orders of the angular velocity ω by Pfister and Braun (1985-1989) led to a solution of the centrifugal force problem and to a quasiglobal principle of equivalence. The difficulties but also the recent successes to measure gravitomagnetic effects are reviewed, and cosmological and Machian aspects of gravitomagnetism are discussed.

  13. Human dynamics: Darwin and Einstein correspondence patterns.

    PubMed

    Oliveira, João Gama; Barabási, Albert-László

    2005-10-27

    In an era when letters were the main means of exchanging scientific ideas and results, Charles Darwin (1809-82) and Albert Einstein (1879-1955) were notably prolific correspondents. But did their patterns of communication differ from those associated with the instant-access e-mail of modern times? Here we show that, although the means have changed, the communication dynamics have not: Darwin's and Einstein's patterns of correspondence and today's electronic exchanges follow the same scaling laws. However, the response times of their surface-mail communication is described by a different scaling exponent from e-mail communication, providing evidence for a new class of phenomena in human dynamics.

  14. Seizures in the elderly: Impact on mental status, mood and sleep

    PubMed Central

    Haut, Sheryl R.; Katz, Mindy; Masur, Jonathan; Lipton, Richard B.

    2009-01-01

    Co-morbidities of epilepsy have not been well explored in the elderly. Herein, we examined mental status, mood, and sleep in elderly patients with epilepsy, compared to age and gender matched community controls without epilepsy from the Einstein Aging Study. Testing included a mental status test, the Blessed Information Memory and Concentration (BIMC) test; Prime-MD Patient Health Questionnaire (PHQ) Depression and Anxiety Modules; and Medical Outcomes Study Sleep Scale. Persons with epilepsy (n=31) had higher mean BIMC scores than controls (n=31, BIMC 6.3 vs.1.2; p<0.0001). Mean PHQ Depression scores were higher for cases than controls indicating more depressive symptoms (4.2 vs. 0.8; p=0.006); six cases (18%) and no controls met screening criteria for depression. Mean PHQ Anxiety scores were also higher for cases than controls (3.7 vs. 0.0; p=0.001). Cases demonstrated poorer sleep scores in the categories of somnolence (p=0.009) and shortness of breath/headache (p=0.021). Thus, co-morbidities of epilepsy in this elderly population included decreased mental status, a higher prevalence of depression and anxiety, and poorer sleep health when compared to age mates without epilepsy. Mental status impairment was not related to anti-epileptic medication or mood disturbance. Further investigation will explore these associations prospectively. PMID:19189862

  15. Well-posedness, linear perturbations, and mass conservation for the axisymmetric Einstein equations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dain, Sergio; Ortiz, Omar E.; Facultad de Matematica, Astronomia y Fisica, FaMAF, Universidad Nacional de Cordoba, Instituto de Fisica Enrique Gaviola, IFEG, CONICET, Ciudad Universitaria

    2010-02-15

    For axially symmetric solutions of Einstein equations there exists a gauge which has the remarkable property that the total mass can be written as a conserved, positive definite, integral on the spacelike slices. The mass integral provides a nonlinear control of the variables along the whole evolution. In this gauge, Einstein equations reduce to a coupled hyperbolic-elliptic system which is formally singular at the axis. As a first step in analyzing this system of equations we study linear perturbations on a flat background. We prove that the linear equations reduce to a very simple system of equations which provide, thoughmore » the mass formula, useful insight into the structure of the full system. However, the singular behavior of the coefficients at the axis makes the study of this linear system difficult from the analytical point of view. In order to understand the behavior of the solutions, we study the numerical evolution of them. We provide strong numerical evidence that the system is well-posed and that its solutions have the expected behavior. Finally, this linear system allows us to formulate a model problem which is physically interesting in itself, since it is connected with the linear stability of black hole solutions in axial symmetry. This model can contribute significantly to solve the nonlinear problem and at the same time it appears to be tractable.« less

  16. Spatial Bose-Einstein Condensation.

    ERIC Educational Resources Information Center

    Masut, Remo; Mullin, William J.

    1979-01-01

    Analyzes three examples of spatial Bose-Einstein condensations in which the particles macroscopically occupy the lowest localized state of an inhomogeneous external potential. The three cases are (1) a box with a small square potential well inside, (2) a harmonic oscillator potential, and (3) randomly sized trapping potentials caused by…

  17. Approaching Bose-Einstein Condensation

    ERIC Educational Resources Information Center

    Ferrari, Loris

    2011-01-01

    Bose-Einstein condensation (BEC) is discussed at the level of an advanced course of statistical thermodynamics, clarifying some formal and physical aspects that are usually not covered by the standard pedagogical literature. The non-conventional approach adopted starts by showing that the continuum limit, in certain cases, cancels out the crucial…

  18. Concerning Dice and Divinity

    NASA Astrophysics Data System (ADS)

    Appleby, D. M.

    2007-02-01

    Einstein initially objected to the probabilistic aspect of quantum mechanics—the idea that God is playing at dice. Later he changed his ground, and focussed instead on the point that the Copenhagen Interpretation leads to what Einstein saw as the abandonment of physical realism. We argue here that Einstein's initial intuition was perfectly sound, and that it is precisely the fact that quantum mechanics is a fundamentally probabilistic theory which is at the root of all the controversies regarding its interpretation. Probability is an intrinsically logical concept. This means that the quantum state has an essentially logical significance. It is extremely difficult to reconcile that fact with Einstein's belief, that it is the task of physics to give us a vision of the world apprehended sub specie aeternitatis. Quantum mechanics thus presents us with a simple choice: either to follow Einstein in looking for a theory which is not probabilistic at the fundamental level, or else to accept that physics does not in fact put us in the position of God looking down on things from above. There is a widespread fear that the latter alternative must inevitably lead to a greatly impoverished, positivistic view of physical theory. It appears to us, however, that the truth is just the opposite. The Einsteinian vision is much less attractive than it seems at first sight. In particular, it is closely connected with philosophical reductionism.

  19. Gravitational waves in Einstein-æther and generalized TeVeS theory after GW170817

    NASA Astrophysics Data System (ADS)

    Gong, Yungui; Hou, Shaoqi; Liang, Dicong; Papantonopoulos, Eleftherios

    2018-04-01

    In this work we discuss the polarization contents of Einstein-æther theory and the generalized tensor-vector-scalar (TeVeS) theory, as both theories have a normalized timelike vector field. We derive the linearized equations of motion around the flat spacetime background using the gauge-invariant variables to easily separate physical degrees of freedom. We find the plane wave solutions and identify the polarizations by examining the geodesic deviation equations. We find that there are five polarizations in Einstein-æther theory and six polarizations in the generalized TeVeS theory. In particular, the transverse breathing mode is mixed with the pure longitudinal mode. We also discuss the experimental tests of the extra polarizations in Einstein-æther theory using pulsar timing arrays combined with the gravitational-wave speed bound derived from the observations on GW 170817 and GRB 170817A. It turns out that it might be difficult to use pulsar timing arrays to distinguish different polarizations in Einstein-æther theory. The same speed bound also forces one of the propagating modes in the generalized TeVeS theory to travel much faster than the speed of light. Since the strong coupling problem does not exist in some parameter subspaces, the generalized TeVeS theory is excluded in these parameter subspaces.

  20. Observational limitations of Bose-Einstein photon statistics and radiation noise in thermal emission

    NASA Astrophysics Data System (ADS)

    Lee, Y.-J.; Talghader, J. J.

    2018-01-01

    For many decades, theory has predicted that Bose-Einstein statistics are a fundamental feature of thermal emission into one or a few optical modes; however, the resulting Bose-Einstein-like photon noise has never been experimentally observed. There are at least two reasons for this: (1) Relationships to describe the thermal radiation noise for an arbitrary mode structure have yet to be set forth, and (2) the mode and detector constraints necessary for the detection of such light is extremely hard to fulfill. Herein, photon statistics and radiation noise relationships are developed for systems with any number of modes and couplings to an observing space. The results are shown to reproduce existing special cases of thermal emission and are then applied to resonator systems to discuss physically realizable conditions under which Bose-Einstein-like thermal statistics might be observed. Examples include a single isolated cavity and an emitter cavity coupled to a small detector space. Low-mode-number noise theory shows major deviations from solely Bose-Einstein or Poisson treatments and has particular significance because of recent advances in perfect absorption and subwavelength structures both in the long-wave infrared and terahertz regimes. These microresonator devices tend to utilize a small volume with few modes, a regime where the current theory of thermal emission fluctuations and background noise, which was developed decades ago for free-space or single-mode cavities, has no derived solutions.

  1. Albert Einstein and Wernher von Braun - the two great German-American physicists seen in a historical perspective.

    NASA Astrophysics Data System (ADS)

    Winterberg, Friedwardt

    2008-04-01

    It was Albert Einstein who for the first time changed our view of the universe to be a non-euclidean curved space-time. And it was Wernher von Braun who blazed the trail to take us into this universe, leaving for the first time the gravitational field of our planet earth, with the landing a man on the moon the greatest event in human history. Both these great physicists did this on the shoulders of giants. Albert Einstein on the shoulders of his landsman, the mathematician Bernhard Riemann, and Wernher von Braun on the shoulders of Goddard and Oberth. Both Einstein and von Braun made a Faustian pact with the devil, von Braun by accepting research funds from Hitler, and Einstein by urging Roosvelt to build the atom bomb (against Hitler). Both of these great men later regretted the use of their work for the killing of innocent bystanders, even though in the end the invention of nuclear energy and space flight is for the benefit of man. Their example serves as a warning for all of us. It can be formulated as follows: ``Can I in good conscience accept research funds from the military to advance scientific knowledge, for weapons developed against an abstract enemy I never have met in person?'' Weapons if used do not differentiate between the scientist, who invented these weapons, and the non-scientist.

  2. On the histories of relativity. The propagation and elaboration of relativity theory in participant histories in Germany, 1905 - 1911.

    NASA Astrophysics Data System (ADS)

    Staley, R.

    1998-06-01

    This essay explores the history and historiography of relativity through a study of the earliest, participant, histories of the subject. The author argues that participant histories from Einstein, Planck, Minkowski, and others provided an important means of shaping understandings of relativity - at a time when the theory was subject to major controversy and debate. One feature of the study is thus a detailed investigation of the use of historical resources in scientific research. Second, the accounts discussed provide a means of surveying the development of relativity in Germany. The study offers a new perspective on the complex process through which a plurality of approaches - many relativities with many histories - could become singular - one theory, one history - and through which the work of Einstein came to be sharply distinguished from that of others.

  3. The Einstein All-Sky Slew Survey

    NASA Technical Reports Server (NTRS)

    Elvis, Martin S.

    1992-01-01

    The First Einstein IPC Slew Survey produced a list of 819 x-ray sources, with f(sub x) approximately 10(exp -12) - 10(exp -10) erg/sq cm s and positional accuracy of approximately 1.2 feet (90 percent radius). The aim of this program was to identify these x-ray sources.

  4. Einstein's Mirror

    ERIC Educational Resources Information Center

    Gjurchinovski, Aleksandar; Skeparovski, Aleksandar

    2008-01-01

    Reflection of light from a plane mirror in uniform rectilinear motion is a century-old problem, intimately related to the foundations of special relativity. The problem was first investigated by Einstein in his famous 1905 paper by using the Lorentz transformations to switch from the mirror's rest frame to the frame where the mirror moves at a…

  5. Einstein Observations of Galactic supernova remnants

    NASA Technical Reports Server (NTRS)

    Seward, Frederick D.

    1990-01-01

    This paper summarizes the observations of Galactic supernova remnants with the imaging detectors of the Einstein Observatory. X-ray surface brightness contours of 47 remnants are shown together with gray-scale pictures. Count rates for these remnants have been derived and are listed for the HRI, IPC, and MPC detectors.

  6. An Exact Solution of Einstein-Maxwell Gravity Coupled to a Scalar Field

    NASA Technical Reports Server (NTRS)

    Turyshev, S. G.

    1995-01-01

    The general solution to low-energy string theory representing static spherically symmetric solution of the Einstein-Maxwell gravity with a massless scalar field has been found. Some of the partial cases appear to coincide with known solutions to black holes, naked singularities, and gravity and electromagnetic fields.

  7. Molecular Volumes and the Stokes-Einstein Equation

    ERIC Educational Resources Information Center

    Edward, John T.

    1970-01-01

    Examines the limitations of the Stokes-Einstein equation as it applies to small solute molecules. Discusses molecular volume determinations by atomic increments, molecular models, molar volumes of solids and liquids, and molal volumes. Presents an empirical correction factor for the equation which applies to molecular radii as small as 2 angstrom…

  8. Exact ground-state correlation functions of an atomic-molecular Bose–Einstein condensate model

    NASA Astrophysics Data System (ADS)

    Links, Jon; Shen, Yibing

    2018-05-01

    We study the ground-state properties of an atomic-molecular Bose–Einstein condensate model through an exact Bethe Ansatz solution. For a certain range of parameter choices, we prove that the ground-state Bethe roots lie on the positive real-axis. We then use a continuum limit approach to obtain a singular integral equation characterising the distribution of these Bethe roots. Solving this equation leads to an analytic expression for the ground-state energy. The form of the expression is consistent with the existence of a line of quantum phase transitions, which has been identified in earlier studies. This line demarcates a molecular phase from a mixed phase. Certain correlation functions, which characterise these phases, are then obtained through the Hellmann–Feynman theorem.

  9. Generating a fractal butterfly Floquet spectrum in a class of driven SU(2) systems

    NASA Astrophysics Data System (ADS)

    Wang, Jiao; Gong, Jiangbin

    2010-02-01

    A scheme for generating a fractal butterfly Floquet spectrum, first proposed by Wang and Gong [Phys. Rev. A 77, 031405(R) (2008)], is extended to driven SU(2) systems such as a driven two-mode Bose-Einstein condensate. A class of driven systems without a link with the Harper-model context is shown to have an intriguing butterfly Floquet spectrum. The found butterfly spectrum shows remarkable deviations from the known Hofstadter’s butterfly. In addition, the level crossings between Floquet states of the same parity and between Floquet states of different parities are studied and highlighted. The results are relevant to studies of fractal statistics, quantum chaos, and coherent destruction of tunneling, as well as the validity of mean-field descriptions of Bose-Einstein condensates.

  10. An extensive study of Bose-Einstein condensation in liquid helium using Tsallis statistics

    NASA Astrophysics Data System (ADS)

    Guha, Atanu; Das, Prasanta Kumar

    2018-05-01

    Realistic scenario can be represented by general canonical ensemble way better than the ideal one, with proper parameter sets involved. We study the Bose-Einstein condensation phenomena of liquid helium within the framework of Tsallis statistics. With a comparatively high value of the deformation parameter q(∼ 1 . 4) , the theoretically calculated value of the critical temperature (Tc) of the phase transition of liquid helium is found to agree with the experimentally determined value (Tc = 2 . 17 K), although they differs from each other for q = 1 (undeformed scenario). This throws a light on the understanding of the phenomenon and connects temperature fluctuation(non-equilibrium conditions) with the interactions between atoms qualitatively. More interactions between atoms give rise to more non-equilibrium conditions which is as expected.

  11. Generating a fractal butterfly Floquet spectrum in a class of driven SU(2) systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang Jiao; Temasek Laboratories, National University of Singapore, Singapore 117542; Gong Jiangbin

    2010-02-15

    A scheme for generating a fractal butterfly Floquet spectrum, first proposed by Wang and Gong [Phys. Rev. A 77, 031405(R) (2008)], is extended to driven SU(2) systems such as a driven two-mode Bose-Einstein condensate. A class of driven systems without a link with the Harper-model context is shown to have an intriguing butterfly Floquet spectrum. The found butterfly spectrum shows remarkable deviations from the known Hofstadter's butterfly. In addition, the level crossings between Floquet states of the same parity and between Floquet states of different parities are studied and highlighted. The results are relevant to studies of fractal statistics, quantummore » chaos, and coherent destruction of tunneling, as well as the validity of mean-field descriptions of Bose-Einstein condensates.« less

  12. Raychaudhuri equation in the self-consistent Einstein-Cartan theory with spin-density

    NASA Technical Reports Server (NTRS)

    Fennelly, A. J.; Krisch, Jean P.; Ray, John R.; Smalley, Larry L.

    1988-01-01

    The physical implications of the Raychaudhuri equation for a spinning fluid in a Riemann-Cartan spacetime is developed and discussed using the self-consistent Lagrangian based formulation for the Einstein-Cartan theory. It was found that the spin-squared terms contribute to expansion (inflation) at early times and may lead to a bounce in the final collapse. The relationship between the fluid's vorticity and spin angular velocity is clarified and the effect of the interaction terms between the spin angular velocity and the spin in the Raychaudhuri equation investigated. These results should prove useful for studies of systems with an intrinsic spin angular momentum in extreme astrophysical or cosmological problems.

  13. Dynamics of nonautonomous rogue waves in Bose-Einstein condensate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Li-Chen, E-mail: zhaolichen3@163.com

    2013-02-15

    We study rogue waves of Bose-Einstein condensate (BEC) analytically in a time-dependent harmonic trap with a complex potential. Properties of the nonautonomous rogue waves are investigated analytically. It is reported that there are possibilities to 'catch' rogue waves through manipulating nonlinear interaction properly. The results provide many possibilities to manipulate rogue waves experimentally in a BEC system. - Highlights: Black-Right-Pointing-Pointer One more generalized rogue wave solutions are presented. Black-Right-Pointing-Pointer Present one possible way to catch a rouge wave. Black-Right-Pointing-Pointer Properties of rogue waves are investigated analytically for the first time. Black-Right-Pointing-Pointer Provide many possibilities to manipulate rogue waves in BEC.

  14. Strong binary pulsar constraints on Lorentz violation in gravity.

    PubMed

    Yagi, Kent; Blas, Diego; Yunes, Nicolás; Barausse, Enrico

    2014-04-25

    Binary pulsars are excellent laboratories to test the building blocks of Einstein's theory of general relativity. One of these is Lorentz symmetry, which states that physical phenomena appear the same for all inertially moving observers. We study the effect of violations of Lorentz symmetry in the orbital evolution of binary pulsars and find that it induces a much more rapid decay of the binary's orbital period due to the emission of dipolar radiation. The absence of such behavior in recent observations allows us to place the most stringent constraints on Lorentz violation in gravity, thus verifying one of the cornerstones of Einstein's theory much more accurately than any previous gravitational observation.

  15. A conformal approach for the analysis of the non-linear stability of radiation cosmologies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luebbe, Christian, E-mail: c.luebbe@ucl.ac.uk; Department of Mathematics, University of Leicester, University Road, LE1 8RH; Valiente Kroon, Juan Antonio, E-mail: j.a.valiente-kroon@qmul.ac.uk

    2013-01-15

    The conformal Einstein equations for a trace-free (radiation) perfect fluid are derived in terms of the Levi-Civita connection of a conformally rescaled metric. These equations are used to provide a non-linear stability result for de Sitter-like trace-free (radiation) perfect fluid Friedman-Lemaitre-Robertson-Walker cosmological models. The solutions thus obtained exist globally towards the future and are future geodesically complete. - Highlights: Black-Right-Pointing-Pointer We study the Einstein-Euler system in General Relativity using conformal methods. Black-Right-Pointing-Pointer We analyze the structural properties of the associated evolution equations. Black-Right-Pointing-Pointer We establish the non-linear stability of pure radiation cosmological models.

  16. Thermodynamics and Dynamics of Bose condensation in a quasi-homogeneous gas

    NASA Astrophysics Data System (ADS)

    Navon, Nir; Schmidutz, Tobias; Gotlibovych, Igor; Gaunt, Alexander; Robert-de-Saint-Vincent, Martin; Smith, Robert; Hadzibabic, Zoran

    2014-05-01

    We present an experimental study of the thermodynamics and dynamics of Bose-Einstein condensation (BEC) in an optical-box trap. We first characterize the critical point for BEC, and observe saturation of the thermal component in a partially condensed cloud, in agreement with Einstein's textbook picture of a purely statistical phase transition. We also observed the quantum Joule-Thomson effect, namely isoenthalpic cooling of a non-interacting gas. We then investigate the dynamics of Bose condensation in the box potential following a rapid temperature quench through the phase transition, and focus on the time-evolution of the condensed fraction, the coherence length and the mean-field shift, that we probe via Bragg spectroscopy.

  17. Domain wall suppression in trapped mixtures of Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Pepe, Francesco V.; Facchi, Paolo; Florio, Giuseppe; Pascazio, Saverio

    2012-08-01

    The ground-state energy of a binary mixture of Bose-Einstein condensates can be estimated for large atomic samples by making use of suitably regularized Thomas-Fermi density profiles. By exploiting a variational method on the trial densities the energy can be computed by explicitly taking into account the normalization condition. This yields analytical results and provides the basis for further improvement of the approximation. As a case study, we consider a binary mixture of 87Rb atoms in two different hyperfine states in a double-well potential and discuss the energy crossing between density profiles with different numbers of domain walls, as the number of particles and the interspecies interaction vary.

  18. Condensate oscillations in a Penrose tiling lattice

    NASA Astrophysics Data System (ADS)

    Akdeniz, Z.; Vignolo, P.

    2017-07-01

    We study the dynamics of a Bose-Einstein condensate subject to a particular Penrose tiling lattice. In such a lattice, the potential energy at each site depends on the neighbour sites, accordingly to the model introduced by Sutherland [16]. The Bose-Einstein wavepacket, initially at rest at the lattice symmetry center, is released. We observe a very complex time-evolution that strongly depends on the symmetry center (two choices are possible), on the potential energy landscape dispersion, and on the interaction strength. The condensate-width oscillates at different frequencies and we can identify large-frequency reshaping oscillations and low-frequency rescaling oscillations. We discuss in which conditions these oscillations are spatially bounded, denoting a self-trapping dynamics.

  19. Perfect fluids in the Einstein-Cartan theory

    NASA Technical Reports Server (NTRS)

    Ray, J. R.; Smalley, L. J.

    1982-01-01

    It is pointed out that whereas most of the discussion of the Einstein-Cartan (EC) theory involves the relationship between gravitation and elementary particles, it is possible that the theory, if correct, may be important in certain extreme astrophysical and cosmological problems. The latter would include something like the collapse of a spinning star or an early universe with spin. A set of equations that describe a macroscopic perfect fluid in the EC theory is derived and examined. The equations are derived starting from the fundamental variational principle for a perfect fluid in general relativity. A brief review of the study by Ray (1972) is included, and the results for the EC theory are presented.

  20. X-ray studies of quasars with the Einstein Observatory. II

    NASA Technical Reports Server (NTRS)

    Zamorani, G.; Maccacaro, T.; Henry, J. P.; Tananbaum, H.; Soltan, A.; Liebert, J.; Stocke, J.; Strittmatter, P. A.; Weymann, R. J.; Smith, M. G.

    1981-01-01

    X-ray observations of 107 quasars have been carried out with the Einstein Observatory, and 79 have been detected. A correlation between optical emission and X-ray emission is found; and for radio-loud quasars, the data show a correlation between radio emission and X-ray emission. For a given optical luminosity, the average X-ray emission of radio-loud quasars is about three times higher than that of radio-quiet quasars. The data also suggest that the ratio of X-ray to optical luminosity is decreasing with increasing redshift and/or optical luminosity. The data support the picture in which luminosity evolution, rather than pure density evolution, describes the quasar behavior as a function of redshift.

  1. Elastic scattering losses from colliding Bose-Einstein condensates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zin Pawel; Chwedenczuk, Jan; Trippenbach, Marek

    2006-03-15

    Bragg diffraction divides a Bose-Einstein condensate into two overlapping components, moving with respect to each other with high momentum. Elastic collisions between atoms from distinct wave packets can significantly deplete the condensate. Recently, Zin et al. [Phys. Rev. Lett. 94, 200401 (2005)] introduced a model of two counterpropagating atomic Gaussian wave packets incorporating the dynamics of the incoherent scattering processes. Here we study the properties of this model in detail, including the nature of the transition from spontaneous to stimulated scattering. Within the first-order approximation, we derive analytical expressions for the density matrix and anomalous density that provide excellent insightmore » into correlation properties of scattered atoms.« less

  2. Monogamy of Einstein-Podolsky-Rosen Steering in the Background of an Asymptotically Flat Black Hole

    NASA Astrophysics Data System (ADS)

    Wang, Jieci; Jing, Jiliang; Fan, Heng

    2018-03-01

    We study the behavior of monogamy deficit and monogamy asymmetry for Einstein-Podolsky-Rosen steering of Gaussian states under the influence of the Hawking effect. We demonstrate that the monogamy of quantum steering shows an extreme scenario in the curved spacetime: the first part of a tripartite system cannot individually steer two other parties, but it can steer the collectivity of the remaining two parties. We also find that the monogamy deficit of Gaussian steering, a quantifier of genuine tripartite steering, are generated due to the influence of the Hawking thermal bath. Our results elucidate the structure of quantum steering in tripartite quantum systems in curved spacetime.

  3. Einstein coefficients for rotational lines of the (0,0) band of the NO A2sigma(+)-X2Pi system

    NASA Technical Reports Server (NTRS)

    Reisel, John R.; Carter, Campbell D.; Laurendeau, Normand M.

    1992-01-01

    A summary of the spectroscopic equations necessary for prediction of the molecular transition energies and the Einstein A and B coefficients for rovibronic lines of the gamma(0,0) band of nitric oxide (NO) is presented. The calculated molecular transition energies are all within 0.57/cm of published experimental values; in addition, over 95 percent of the calculated energies give agreement with measured results within 0.25/cm. Einstein coefficients are calculated from the band A00 value and the known Hoenl-London factors and are tabulated for individual rovibronic transitions in the NO A2sigma(+)-X2Pi(0,0) band.

  4. Cosmological reconstruction and Om diagnostic analysis of Einstein-Aether theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasqua, Antonio; Chattopadhyay, Surajit; Momeni, Davood

    In this paper, we analyze the cosmological models in Einstein-Aether gravity, which is a modified theory of gravity in which a time-like vector field breaks the Lorentz symmetry. We use this formalism to analyse different cosmological models with different behavior of the scale factor. In this analysis, we use a certain functional dependence of the Dark Energy (DE) on the Hubble parameter H . It will be demonstrated that the Aether vector field has a non-trivial effect on these cosmological models. We also perform the Om diagnostic in Einstein-Aether gravity and we fit the parameters of the cosmological models usingmore » recent observational data.« less

  5. Scalar field as a Bose-Einstein condensate?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castellanos, Elías; Escamilla-Rivera, Celia; Macías, Alfredo

    We discuss the analogy between a classical scalar field with a self-interacting potential, in a curved spacetime described by a quasi-bounded state, and a trapped Bose-Einstein condensate. In this context, we compare the Klein-Gordon equation with the Gross-Pitaevskii equation. Moreover, the introduction of a curved background spacetime endows, in a natural way, an equivalence to the Gross-Pitaevskii equation with an explicit confinement potential. The curvature also induces a position dependent self-interaction parameter. We exploit this analogy by means of the Thomas-Fermi approximation, commonly used to describe the Bose-Einstein condensate, in order to analyze the quasi bound scalar field distribution surroundingmore » a black hole.« less

  6. Introduction

    NASA Astrophysics Data System (ADS)

    Bub, Jeffrey; Fuchs, Christopher A.

    The great debate between Einstein and Bohr on the interpretation of quantum mechanics culminated with the Einstein-Podolsky-Rosen (EPR) paper in 1935, "Can quantum-mechanical description of physical reality be considered complete?" (Einstein, Podolsky, & Rosen, 1935, and Bohr's reply, 1935). EPR showed that composite quantum systems, consisting of widely separated subsystems, could exist in certain quantum states that they thought spelled trouble for the Copenhagen interpretation. Specifically, they argued that for such states, the correlations between the outcomes of measurements on the subsystems were incompatible with the assumption that the quantum state was a complete description of the system. They concluded that quantum mechanics was an incomplete theory-that the quantum state could not be the whole story about a system.

  7. Thermodynamics of "exotic" Bañados-Teitelboim-Zanelli black holes.

    PubMed

    Townsend, Paul K; Zhang, Baocheng

    2013-06-14

    A number of three-dimensional (3D) gravity models, such as 3D conformal gravity, admit "exotic" black hole solutions: the metric is the same as the Bañados-Teitelboim-Zanelli metric of 3D Einstein gravity but with reversed roles for mass and angular momentum, and an entropy proportional to the length of the inner horizon instead of the event horizon. Here we show that the Bañados-Teitelboim-Zanelli solutions of the exotic 3D Einstein gravity (with parity-odd action but Einstein field equations) are exotic black holes, and we investigate their thermodynamics. The first and second laws of black hole thermodynamics still apply, and the entropy still has a statistical interpretation.

  8. [The Einstein sign].

    PubMed

    Treska, V

    2003-02-01

    Untreated rupture of an aneurysm of the abdominal aorta is fatal in almost 100% of the patients. In the majority of cases the assessment of a correct, early diagnosis is simple (hypotension, backache, abdominal pain, pulsating resistance in the abdomen) and makes a prompt surgical or endovascular operation possible. In some instances however rupture of aneurysms of the abdominal aorta simulates other clinical conditions (acute cholecystitis, acute diverculitis of the sigmoid) which may delay the correct diagnosis and reduce the patient's chance of survival. The author describes, based on historical documents, the treacherous course of the disease in the scientific genius Albert Einstein where rupture of an aneurysm simulated acute cholecystitis, and in the world literature this symptomatology was subsequently described as Einstein's sign.

  9. Studies into the nature of cosmic acceleration: Dark energy or a modification to gravity on cosmological scales

    NASA Astrophysics Data System (ADS)

    Dossett, Jason Nicholas

    Since its discovery more than a decade ago, the problem of cosmic acceleration has become one of the largest in cosmology and physics as a whole. An unknown dark energy component of the universe is often invoked to explain this observation. Mathematically, this works because inserting a cosmic fluid with a negative equation of state into Einstein's equations provides an accelerated expansion. There are, however, alternative explanations for the observed cosmic acceleration. Perhaps the most promising of the alternatives is that, on the very largest cosmological scales, general relativity needs to be extended or a new, modified gravity theory must be used. Indeed, many modified gravity models are not only able to replicate the observed accelerated expansion without dark energy, but are also more compatible with a unified theory of physics. Thus it is the goal of this dissertation to develop and study robust tests that will be able to distinguish between these alternative theories of gravity and the need for a dark energy component of the universe. We will study multiple approaches using the growth history of large-scale structure in the universe as a way to accomplish this task. These approaches include studying what is known as the growth index parameter, a parameter that describes the logarithmic growth rate of structure in the universe, which describes the rate of formation of clusters and superclusters of galaxies over the entire age of the universe. We will explore the effectiveness of this parameter to distinguish between general relativity and modifications to gravity physics given realistic expectations of results from future experiments. Next, we will explore the modified growth formalism wherein deviations from the growth expected in general relativity are parameterized via changes to the growth equations, i.e. the perturbed Einstein's equations. We will also explore the impact of spatial curvature on these tests. Finally, we will study how dark energy with some unusual properties will affect the conclusiveness of these tests.

  10. Do We Really Have an Age/H_0 Conflict?

    NASA Astrophysics Data System (ADS)

    Baum, W. A.

    1997-12-01

    Two independent methods for estimating the age of the universe can both be linked to the absolute magnitudes of the RR Lyrae stars, one based on stellar evolution in globular clusters and the other based on the Hubble Constant derived from globular clusters as distance indicators. The latter has recently been extracted from HST-WFPC2 data for globular clusters in the Coma Cluster galaxy IC 4051 (Baum et al. 1997, AJ, 113, 1483). If RR Lyrae stars are brighter than we have previously thought, the stellar-evolution age estimate is shortened whereas the Hubble age is increased, so we can ask a very simple question: For what RR Lyrae magnitude zero point would the stellar-evolution age coincide with the Hubble age, and is it a reasonable value? Allowing 1 Gyr for globular clusters to have formed, and assuming a classical Einstein-deSitter universe with Lambda = 0, I find the two ages to coincide if M_V(RR) ~ 0.16[Fe/H] + 0.46, which (among other things) puts the Large Magellanic Cloud at (m-M) = 18.78 +/- 0.17 mag. The implied age of the universe is 11.0 +/- 1.4 Gyr, and the corresponding H_0 = 59 +/- 8 km/s per Mpc.

  11. The Gendering of Albert Einstein and Marie Curie in Children's Biographies: Some Tensions

    ERIC Educational Resources Information Center

    Wilson, Rachel E.; Jarrard, Amber R.; Tippins, Deborah J.

    2009-01-01

    Few twentieth century scientists have generated as much interest as Albert Einstein and Marie Currie. Their lives are centrally depicted in numerous children's biographies of famous scientists. Yet their stories reflect interesting paradoxes and tacit sets of unexplored sociocultural assumptions about gender in science education and the larger…

  12. Going to School with Madame Curie and Mr. Einstein: Gender Roles in Children's Science Biographies

    ERIC Educational Resources Information Center

    Owens, Trevor

    2009-01-01

    One of the first places children encounter science and scientists is children's literature. Children's books about science and scientists have, however, received limited scholarly attention. By exploring the history of children's biographies of Marie Curie and Albert Einstein, the two most written about scientist in children's literature, this…

  13. Static Solutions of Einstein's Equations with Cylindrical Symmetry

    ERIC Educational Resources Information Center

    Trendafilova, C. S.; Fulling, S. A.

    2011-01-01

    In analogy with the standard derivation of the Schwarzschild solution, we find all static, cylindrically symmetric solutions of the Einstein field equations for vacuum. These include not only the well-known cone solution, which is locally flat, but others in which the metric coefficients are powers of the radial coordinate and the spacetime is…

  14. The Einstein Suite: A Web-Based Tool for Rapid and Collaborative Engineering Design and Analysis

    NASA Technical Reports Server (NTRS)

    Palmer, Richard S.

    1997-01-01

    Taken together the components of the Einstein Suite provide two revolutionary capabilities - they have the potential to change the way engineering and financial engineering are performed by: (1) providing currently unavailable functionality, and (2) providing a 10-100 times improvement over currently available but impractical or costly functionality.

  15. Microwave and Millimeter Wave Magnetoelectric Interactions in Engineered Multiferroics and Dual Electric and Magnetic Field Tunable Devices

    DTIC Science & Technology

    2008-01-16

    Einstein condensation of quasi-equilibrium magnons at room temperature under pumping”, Nature 443, 430-433 (2006). 30. V.E.Demidov, U.-F. Hansen...and A.N. Slavin, “Bose-Einstein condensation of quasi-equilibrium magnons at room temperature under pumping”, Nature 443, 430-433 (2006). 34

  16. Gravitational red shift tests and a spectroscopy in Japan

    NASA Astrophysics Data System (ADS)

    Yokoo, Hiromitsu

    Japanese astronomers and physicians tried to test the Einstein theory by gravitational red shift tests at 1920's. Spectroscopists in Japan contributed to Stark broadening of spectrum lines. Rikiti Kinoshita (1877 - 1935) probably started experiments according to Voigt's prediction earlier than Stark. Tokyo Astronomical Observatory constructed and used another Einstein Tower in Mitaka.

  17. Killing Forms on the Five-Dimensional Einstein-Sasaki Y(p, q) Spaces

    NASA Astrophysics Data System (ADS)

    Visinescu, Mihai

    2012-12-01

    We present the complete set of Killing-Yano tensors on the five-dimensional Einstein-Sasaki Y(p, q) spaces. Two new Killing-Yano tensors are identified, associated with the complex volume form of the Calabi-Yau metric cone. The corresponding hidden symmetries are not anomalous and the geodesic equations are superintegrable.

  18. Einstein Slew Survey: Data analysis innovations

    NASA Technical Reports Server (NTRS)

    Elvis, Martin S.; Plummer, David; Schachter, Jonathan F.; Fabbiano, G.

    1992-01-01

    Several new methods were needed in order to make the Einstein Slew X-ray Sky Survey. The innovations which enabled the Slew Survey to be done are summarized. These methods included experimental approach to large projects, parallel processing on a LAN, percolation source detection, minimum action identifications, and rapid dissemination of the whole data base.

  19. Quantum Interactive Dualism: The Libet and Einstein-Podolsky-RosenCausal Anomalies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stapp, Henry P.

    2006-02-20

    The "free will" data of Benjamin Libet and the predictionsof quantum theory considered by Einstein, Podolsky,and Rosen, both posepuzzles within aconceptual framework that, simultaneously, is compatiblewith the theory of relativity and allows human subjects to freely choosehow they will act. The quantum theoretic resolutions of these puzzles aredescribed.

  20. Gravity Probe B: Examining Einstein's Spacetime with Gyroscopes. An Educator's Guide with Activities in Space Science.

    ERIC Educational Resources Information Center

    Range, Shannon K'doah; Mullins, Jennifer

    This teaching guide introduces a relativity gyroscope experiment aiming to test two unverified predictions of Albert Einstein's general theory of relativity. An introduction to the theory includes the following sections: (1) "Spacetime, Curved Spacetime, and Frame-Dragging"; (2) "'Seeing' Spacetime with Gyroscopes"; (3)…

  1. Albert Einstein and LD: An Evaluation of the Evidence.

    ERIC Educational Resources Information Center

    Thomas, Marlin

    2000-01-01

    This article refutes claims that Albert Einstein had a learning disability and argues the claim derives its force not from evidence but from belief that the greatest among us suffer from some impairment and from desire to enhance the status of a marginalized group by including exceptional individuals. (Contains references.) (Author/CR)

  2. Explicit formulae for Yang-Mills-Einstein amplitudes from the double copy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiodaroli, Marco; Günaydin, Murat; Johansson, Henrik

    Using the double-copy construction of Yang-Mills-Einstein theories formulated in our earlier work, we obtain compact presentations for single-trace Yang-Mills-Einstein tree amplitudes with up to five external gravitons and an arbitrary number of gluons. These are written as linear combinations of color-ordered Yang-Mills trees, where the coefficients are given by color/kinematics-satisfying numerators in a Yang-Mills + φ 3 theory. The construction outlined in this paper holds in general dimension and extends straightforwardly to supergravity theories. For one, two, and three external gravitons, our expressions give identical or simpler presentations of amplitudes already constructed through string-theory considerations or the scattering equations formalism.more » Our results are based on color/kinematics duality and gauge invariance, and strongly hint at a recursive structure underlying the single-trace amplitudes with an arbitrary number of gravitons. We also present explicit expressions for all-loop single-graviton Einstein-Yang-Mills amplitudes in terms of Yang-Mills amplitudes and, through gauge invariance, derive new all-loop amplitude relations for Yang-Mills theory.« less

  3. Beyond Einstein: from the Big Bang to black holes

    NASA Astrophysics Data System (ADS)

    White, Nicholas E.; Diaz, Alphonso V.

    2004-01-01

    How did the Universe begin? Does time have a beginning and an end? Does space have edges? Einstein's theory of relativity replied to these ancient questions with three startling predictions: that the Universe is expanding from a Big Bang; that black holes so distort space and time that time stops at their edges; and that a dark energy could be pulling space apart, sending galaxies forever beyond the edge of the visible Universe. Observations confirm these remarkable predictions, the last finding only four years ago. Yet Einstein's legacy is incomplete. His theory raises - but cannot answer - three profound questions: What powered the Big Bang? What happens to space, time and matter at the edge of a black hole? and, What is the mysterious dark energy pulling the Universe apart? The Beyond Einstein program within NASA's office of space science aims to answer these questions, employing a series of missions linked by powerful new technologies and complementary approaches to shared science goals. The program also serves as a potent force with which to enhance science education and science literacy.

  4. Bounce universe from string-inspired Gauss-Bonnet gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bamba, Kazuharu; Makarenko, Andrey N.; Myagky, Alexandr N.

    2015-04-01

    We explore cosmology with a bounce in Gauss-Bonnet gravity where the Gauss-Bonnet invariant couples to a dynamical scalar field. In particular, the potential and and Gauss-Bonnet coupling function of the scalar field are reconstructed so that the cosmological bounce can be realized in the case that the scale factor has hyperbolic and exponential forms. Furthermore, we examine the relation between the bounce in the string (Jordan) and Einstein frames by using the conformal transformation between these conformal frames. It is shown that in general, the property of the bounce point in the string frame changes after the frame is movedmore » to the Einstein frame. Moreover, it is found that at the point in the Einstein frame corresponding to the point of the cosmological bounce in the string frame, the second derivative of the scale factor has an extreme value. In addition, it is demonstrated that at the time of the cosmological bounce in the Einstein frame, there is the Gauss-Bonnet coupling function of the scalar field, although it does not exist in the string frame.« less

  5. Focus: the elusive icon: Einstein, 1905-2005. Introduction.

    PubMed

    Galison, Peter

    2004-12-01

    As Einstein's portrait comes increasingly to resemble an icon, we lose more than detail--his writings and actions lose all reference. This is as true for his physics as it is for his philosophy and his politics; the best of recent work aims to remove Einstein's interventions from the abstract sphere of Delphic pronouncements and to insert them in the stream of real events, real arguments. Politically, this means attending to McCarthyism, Paul Robeson, the Arab-Israeli conflict. Philosophically, it means tying his concerns, for example, to late nineteenth-century neo-Kantian debates and to his own struggles inside science. And where physics is concerned, it means attending both in the narrow to his responses to others' work and his reactions to his own sometimes misfired early work on, for example, general relativity and to the wider context of technological developments. Einstein remains and will remain a magnet for historians, philosophers, and scientists; the essays assembled here represent a strong sampling--but only a sampling--of a fascinating new generation of work on this perennial figure.

  6. Einstein Revisited - Gravity in Curved Spacetime Without Event Horizons

    NASA Astrophysics Data System (ADS)

    Leiter, Darryl

    2000-04-01

    In terms of covariant derivatives with respect to flat background spacetimes upon which the physical curved spacetime is imposed (1), covariant conservation of energy momentum requires, via the Bianchi Identity, that the Einstein tensor be equated to the matter energy momentum tensor. However the Einstein tensor covariantly splits (2) into two tensor parts: (a) a term proportional to the gravitational stress energy momentum tensor, and (b) an anti-symmetric tensor which obeys a covariant 4-divergence identity called the Freud Identity. Hence covariant conservation of energy momentum requires, via the Freud Identity, that the Freud tensor be equal to a constant times the matter energy momentum tensor. The resultant field equations (3) agree with the Einstein equations to first order, but differ in higher orders (4) such that black holes are replaced by "red holes" i.e., dense objects collapsed inside of their photon orbits with no event horizons. (1) Rosen, N., (1963), Ann. Phys. v22, 1; (2) Rund, H., (1991), Alg. Grps. & Geom. v8, 267; (3) Yilmaz, Hl, (1992), Nuo. Cim. v107B, 946; (4) Roberstson, S., (1999),Ap.J. v515, 365.

  7. Dynamical preparation of Einstein-Podolsky-Rosen entanglement in two-well Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Opanchuk, B.; He, Q. Y.; Reid, M. D.; Drummond, P. D.

    2012-08-01

    We propose to generate Einstein-Podolsky-Rosen (EPR) entanglement between groups of atoms in a two-well Bose-Einstein condensate using a dynamical process similar to that employed in quantum optics. A local nonlinear S-wave scattering interaction has the effect of creating spin squeezing at each well, while a tunneling coupling, analogous to a beam splitter in optics, introduces an interference between these fields that causes interwell entanglement. We consider two internal modes at each well so that the entanglement can be detected by measuring a reduction in the variances of the sums of local Schwinger spin observables. As is typical of continuous variable (CV) entanglement, the entanglement is predicted to increase with atom number. It becomes sufficiently strong at higher numbers of atoms so that the EPR paradox and steering nonlocality can be realized. The entanglement is predicted using an analytical approach and, for larger atom numbers, using stochastic simulations based on a truncated Wigner function approximation. We find generally that strong tunneling is favorable, and that entanglement persists and is even enhanced in the presence of realistic nonlinear losses.

  8. Exact solutions with AdS asymptotics of Einstein and Einstein-Maxwell gravity minimally coupled to a scalar field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cadoni, Mariano; Serra, Matteo; Mignemi, Salvatore

    We propose a general method for solving exactly the static field equations of Einstein and Einstein-Maxwell gravity minimally coupled to a scalar field. Our method starts from an ansatz for the scalar field profile, and determines, together with the metric functions, the corresponding form of the scalar self-interaction potential. Using this method we prove a new no-hair theorem about the existence of hairy black-hole and black-brane solutions and derive broad classes of static solutions with radial symmetry of the theory, which may play an important role in applications of the AdS/CFT correspondence to condensed matter and strongly coupled QFTs. Thesemore » solutions include: (1) four- or generic (d+2)-dimensional solutions with planar, spherical or hyperbolic horizon topology; (2) solutions with anti-de Sitter, domain wall and Lifshitz asymptotics; (3) solutions interpolating between an anti-de Sitter spacetime in the asymptotic region and a domain wall or conformal Lifshitz spacetime in the near-horizon region.« less

  9. Explicit formulae for Yang-Mills-Einstein amplitudes from the double copy

    DOE PAGES

    Chiodaroli, Marco; Günaydin, Murat; Johansson, Henrik; ...

    2017-07-03

    Using the double-copy construction of Yang-Mills-Einstein theories formulated in our earlier work, we obtain compact presentations for single-trace Yang-Mills-Einstein tree amplitudes with up to five external gravitons and an arbitrary number of gluons. These are written as linear combinations of color-ordered Yang-Mills trees, where the coefficients are given by color/kinematics-satisfying numerators in a Yang-Mills + φ 3 theory. The construction outlined in this paper holds in general dimension and extends straightforwardly to supergravity theories. For one, two, and three external gravitons, our expressions give identical or simpler presentations of amplitudes already constructed through string-theory considerations or the scattering equations formalism.more » Our results are based on color/kinematics duality and gauge invariance, and strongly hint at a recursive structure underlying the single-trace amplitudes with an arbitrary number of gravitons. We also present explicit expressions for all-loop single-graviton Einstein-Yang-Mills amplitudes in terms of Yang-Mills amplitudes and, through gauge invariance, derive new all-loop amplitude relations for Yang-Mills theory.« less

  10. Remarks on the "Non-canonicity Puzzle": Lagrangian Symmetries of the Einstein-Hilbert Action

    NASA Astrophysics Data System (ADS)

    Kiriushcheva, N.; Komorowski, P. G.; Kuzmin, S. V.

    2012-07-01

    Given the non-canonical relationship between variables used in the Hamiltonian formulations of the Einstein-Hilbert action (due to Pirani, Schild, Skinner (PSS) and Dirac) and the Arnowitt-Deser-Misner (ADM) action, and the consequent difference in the gauge transformations generated by the first-class constraints of these two formulations, the assumption that the Lagrangians from which they were derived are equivalent leads to an apparent contradiction that has been called "the non-canonicity puzzle". In this work we shall investigate the group properties of two symmetries derived for the Einstein-Hilbert action: diffeomorphism, which follows from the PSS and Dirac formulations, and the one that arises from the ADM formulation. We demonstrate that unlike the diffeomorphism transformations, the ADM transformations (as well as others, which can be constructed for the Einstein-Hilbert Lagrangian using Noether's identities) do not form a group. This makes diffeomorphism transformations unique (the term "canonical" symmetry might be suggested). If the two Lagrangians are to be called equivalent, canonical symmetry must be preserved. The interplay between general covariance and the canonicity of the variables used is discussed.

  11. Focus: The elusive icon: Einstein, 1905-2005 - Introduction

    NASA Astrophysics Data System (ADS)

    Galison, Peter

    2004-12-01

    As Einstein's portrait comes increasingly to resemble an icon, we lose more than detail - his writings and actions lose all reference. This is as true for his physics as it is for his philosophy and his politics; the best of recent work aims to remove Einstein's interventions from the abstract sphere of Delphic pronouncements and to insert them in the stream of real events, real arguments. Politically, this means attending to McCarthyism, Paul Robeson, the Arab-Israeli conflict. Philosophically, it means tying his concerns, for example, to late nineteenth-century neo-Kantian debates and to his own struggles inside science. And where physics is concerned, it means attending both in the narrow to his reponses to others' work and his reactions to this own sometimes misfired early work on, for example, general relativity and to the wider context of technological developments. Einstein remains and will remain a magnet for historians, philosophers, and scientists; the essays assembled here represent a strong sampling - but only a sampling - of a fascinating new generation of work on this perennial figure.

  12. Bose-Einstein condensation of paraxial light

    NASA Astrophysics Data System (ADS)

    Klaers, J.; Schmitt, J.; Damm, T.; Vewinger, F.; Weitz, M.

    2011-10-01

    Photons, due to the virtually vanishing photon-photon interaction, constitute to very good approximation an ideal Bose gas, but owing to the vanishing chemical potential a (free) photon gas does not show Bose-Einstein condensation. However, this is not necessarily true for a lower-dimensional photon gas. By means of a fluorescence induced thermalization process in an optical microcavity one can achieve a thermal photon gas with freely adjustable chemical potential. Experimentally, we have observed thermalization and subsequently Bose-Einstein condensation of the photon gas at room temperature. In this paper, we give a detailed description of the experiment, which is based on a dye-filled optical microcavity, acting as a white-wall box for photons. Thermalization is achieved in a photon number-conserving way by photon scattering off the dye molecules, and the cavity mirrors both provide an effective photon mass and a confining potential-key prerequisites for the Bose-Einstein condensation of photons. The experimental results are in good agreement with both a statistical and a simple rate equation model, describing the properties of the thermalized photon gas.

  13. Effective temperatures and the breakdown of the Stokes-Einstein relation for particle suspensions.

    PubMed

    Mendoza, Carlos I; Santamaría-Holek, I; Pérez-Madrid, A

    2015-09-14

    The short- and long-time breakdown of the classical Stokes-Einstein relation for colloidal suspensions at arbitrary volume fractions is explained here by examining the role that confinement and attractive interactions play in the intra- and inter-cage dynamics executed by the colloidal particles. We show that the measured short-time diffusion coefficient is larger than the one predicted by the classical Stokes-Einstein relation due to a non-equilibrated energy transfer between kinetic and configuration degrees of freedom. This transfer can be incorporated in an effective kinetic temperature that is higher than the temperature of the heat bath. We propose a Generalized Stokes-Einstein relation (GSER) in which the effective temperature replaces the temperature of the heat bath. This relation then allows to obtain the diffusion coefficient once the viscosity and the effective temperature are known. On the other hand, the temporary cluster formation induced by confinement and attractive interactions of hydrodynamic nature makes the long-time diffusion coefficient to be smaller than the corresponding one obtained from the classical Stokes-Einstein relation. Then, the use of the GSER allows to obtain an effective temperature that is smaller than the temperature of the heat bath. Additionally, we provide a simple expression based on a differential effective medium theory that allows to calculate the diffusion coefficient at short and long times. Comparison of our results with experiments and simulations for suspensions of hard and porous spheres shows an excellent agreement in all cases.

  14. Correlations of occupation numbers in the canonical ensemble and application to a Bose-Einstein condensate in a one-dimensional harmonic trap

    NASA Astrophysics Data System (ADS)

    Giraud, Olivier; Grabsch, Aurélien; Texier, Christophe

    2018-05-01

    We study statistical properties of N noninteracting identical bosons or fermions in the canonical ensemble. We derive several general representations for the p -point correlation function of occupation numbers n1⋯np ¯. We demonstrate that it can be expressed as a ratio of two p ×p determinants involving the (canonical) mean occupations n1¯, ..., np¯, which can themselves be conveniently expressed in terms of the k -body partition functions (with k ≤N ). We draw some connection with the theory of symmetric functions and obtain an expression of the correlation function in terms of Schur functions. Our findings are illustrated by revisiting the problem of Bose-Einstein condensation in a one-dimensional harmonic trap, for which we get analytical results. We get the moments of the occupation numbers and the correlation between ground-state and excited-state occupancies. In the temperature regime dominated by quantum correlations, the distribution of the ground-state occupancy is shown to be a truncated Gumbel law. The Gumbel law, describing extreme-value statistics, is obtained when the temperature is much smaller than the Bose-Einstein temperature.

  15. Reflections on curiosity.

    PubMed

    van Bemmel, J H

    2008-01-01

    The purpose of this article is to show that curiosity is the driving force behind all scientific endeavors. The second purpose is to show that all science is constrained on its underlying assumptions. Three examples are used to illustrate the above theses: one from cosmology, the second from biomedical research, and the third from the formalization of human reasoning in a computer. The three examples are supported by quotes from Albert Einstein. Research in cosmology shows that the horizon of our knowledge is continuously expanding but that major scientific questions remain to be solved. The second example from biomedicine explains that the more we discover of the details of living phenomena, the more complex they appear to be. The example involving human reasoning makes clear that the brain is still largely unknown territory. Like Einstein, who said he held 'humble admiration of the illimitable superior spirit who reveals himself in the slight details we are able to perceive with our frail and feeble mind', I have a deep admiration for the Architect who reveals himself in the details that we are privileged to study in our research. As Albert Einstein said: The important thing is not to stop questioning. Curiosity has its own reason for existing.

  16. Generalized wave operators, weighted Killing fields, and perturbations of higher dimensional spacetimes

    NASA Astrophysics Data System (ADS)

    Araneda, Bernardo

    2018-04-01

    We present weighted covariant derivatives and wave operators for perturbations of certain algebraically special Einstein spacetimes in arbitrary dimensions, under which the Teukolsky and related equations become weighted wave equations. We show that the higher dimensional generalization of the principal null directions are weighted conformal Killing vectors with respect to the modified covariant derivative. We also introduce a modified Laplace–de Rham-like operator acting on tensor-valued differential forms, and show that the wave-like equations are, at the linear level, appropriate projections off shell of this operator acting on the curvature tensor; the projection tensors being made out of weighted conformal Killing–Yano tensors. We give off shell operator identities that map the Einstein and Maxwell equations into weighted scalar equations, and using adjoint operators we construct solutions of the original field equations in a compact form from solutions of the wave-like equations. We study the extreme and zero boost weight cases; extreme boost corresponding to perturbations of Kundt spacetimes (which includes near horizon geometries of extreme black holes), and zero boost to static black holes in arbitrary dimensions. In 4D our results apply to Einstein spacetimes of Petrov type D and make use of weighted Killing spinors.

  17. Revisiting Einstein's Happiest Thought: On Ernst Mach and the Early History of Relativity

    NASA Astrophysics Data System (ADS)

    Staley, Richard

    2016-03-01

    This paper argues we should distinguish three phases in the formation of relativity. The first involved relational approaches to perception, and physiological and geometrical space and time in the 1860s and 70s. The second concerned electrodynamics and mechanics (special relativity). The third concerned mechanics, gravitation, and physical and geometrical space and time. Mach's early work on the Doppler effect, together with studies of visual and motor perception linked physiology, physics and psychology, and offered new approaches to physiological space and time. These informed the critical conceptual attacks on Newtonian absolutes that Mach famously outlined in The Science of Mechanics. Subsequently Mach identified a growing group of ``relativists,'' and his critiques helped form a foundation for later work in electrodynamics (in which he did not participate). Revisiting Mach's early work will suggest he was still more important to the development of new approaches to inertia and gravitation than has been commonly appreciated. In addition to what Einstein later called ``Mach's principle,'' I will argue that a thought experiment on falling bodies in Mach's Science of Mechanics also provided a point of inspiration for the happy thought that led Einstein to the equivalence principle.

  18. Can a supersonically expanding Bose-Einstein Condensates be used to study cosmological inflation?

    NASA Astrophysics Data System (ADS)

    Banik, Swarnav; Eckel, Stephen; Kumar, Avinash; Jacobson, Ted; Spielman, Ian; Campbell, Gretchen

    2017-04-01

    The massive scale of the universe makes the experimental study of cosmological inflation difficult. This has led to an interest in developing analogous systems using table top experiments. Here, we present the basic features of an expanding universe by drawing parallels with an expanding toroidal Bose Einstein Condensate (BEC) of 23Na atoms. The toroidal BEC serves as the background vacuum and phonons are the analogue to photons in the expanding universe. We study the dynamics of phonons in both non-expanding and expanding condensates and measure dissipation using the structure factor. We demonstrate red shifting of phonons and quasi-particle production similar to pre-heating after the inflation of universe. At the end of expansion, we also observe spontaneous non-zero winding numbers in the ring. Using Monte-Carlo simulations, we predict the widths of the resulting winding number distribution, which agree well with our experimental findings.

  19. Spin coefficients and gauge fixing in the Newman-Penrose formalism

    NASA Astrophysics Data System (ADS)

    Nerozzi, Andrea

    2017-03-01

    Since its introduction in 1962, the Newman-Penrose formalism has been widely used in analytical and numerical studies of Einstein's equations, like for example for the Teukolsky master equation, or as a powerful wave extraction tool in numerical relativity. Despite the many applications, Einstein's equations in the Newman-Penrose formalism appear complicated and not easily applicable to general studies of spacetimes, mainly because physical and gauge degrees of freedom are mixed in a nontrivial way. In this paper we approach the whole formalism with the goal of expressing the spin coefficients as functions of tetrad invariants once a particular tetrad is chosen. We show that it is possible to do so, and give for the first time a general recipe for the task, as well as an indication of the quantities and identities that are required.

  20. Bose-Einstein condensation, spontaneous symmetry breaking, and gauge theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapusta, J.I.

    1981-07-15

    Bosonic chemical potentials for a variety of relativistic field theories are introduced via the methods of functional integrals with the aim of studying the relationship between Bose-Einstein condensation and spontaneous symmetry breaking. The models studied include the noninteracting and the self-interacting charged scalar field, scalar electrodynamics and the Higgs model, and the Weinberg-Salam model. In general the chemical potential acts as an effective symmetry-breaking parameter although the phase diagrams for the two cases (m/sup 2/<0 and m/sup 2/>0) look very different. It is found that the symmetry-restoring temperature in the Weinberg-Salam model increases with increasing electric charge density. Finally, themore » analysis of Jakobsen, Kon, and Segal of a conserved isotropic total angular momentum for the cosmic background radiation is shown to be erroneous.« less

Top