Sample records for einstein program assessment

  1. Interprofessional student education: exchange program between Albert Einstein College of Medicine and Pacific College of Oriental Medicine.

    PubMed

    Anderson, Belinda J; Herron, Patrick D; Downie, Sherry A; Myers, Daniel C; Milan, Felise B; Olson, Todd R; Kligler, Ben E; Sierpina, Victor S; Kreitzer, Mary Jo

    2012-01-01

    The growing popularity of complementary and alternative medicine (CAM), of which estimated 38% of adults in the United States used in 2007, has engendered changes in medical school curricula to increase students' awareness of it. Exchange programs between conventional medical schools and CAM institutions are recognized as an effective method of interprofessional education. The exchange program between Albert Einstein College of Medicine (Einstein, Yeshiva University) and Pacific College of Oriental Medicine, New York campus (PCOM-NY) is in its fifth year and is part of a broader relationship between the schools encompassing research, clinical training, interinstitutional faculty and board appointments, and several educational activities. The Einstein/PCOM-NY student education exchange program is part of the Einstein Introduction to Clinical Medicine Program and involves students from Einstein learning about Chinese medicine through a lecture, the experience of having acupuncture, and a four-hour preceptorship at the PCOM outpatient clinic. The students from PCOM learn about allopathic medicine training through an orientation lecture, a two-and-a-half-hour dissection laboratory session along side Einstein student hosts, and a tour of the clinical skills center at the Einstein campus. In the 2011/2012 offering of the exchange program, the participating Einstein and PCOM students were surveyed to assess the educational outcomes. The data indicate that the exchange program was highly valued by all students and provided a unique learning experience. Survey responses from the Einstein students indicated the need for greater emphasis on referral information, which has been highlighted in the literature as an important medical curriculum integrative medicine competency. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. The NASA Beyond Einstein Program

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.

    2004-01-01

    The Laser Interferometer Space Antenna (LISA) mission is part of NASA s Beyond Einstein program. This program seeks to answer the questions What Powered the Big Bang?, What happens at the edge of a Black Hole?, and What is Dark Energy?. LISA IS the first mission to be launched in this new program. This paper will give an overview of the Beyond Einstein program, its current status and where LISA fits in.

  3. Computer program for the computation of total sediment discharge by the modified Einstein procedure

    USGS Publications Warehouse

    Stevens, H.H.

    1985-01-01

    Two versions of a computer program to compute total sediment discharge by the modified Einstein procedure are presented. The FORTRAN 77 language version is for use on the PRIME computer, and the BASIC language version is for use on most microcomputers. The program contains built-in limitations and input-output options that closely follow the original modified Einstein procedure. Program documentation and listings of both versions of the program are included. (USGS)

  4. The NASA Beyond Einstein Program

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.

    2006-01-01

    Einstein's legacy is incomplete, his theory of General relativity raises -- but cannot answer --three profound questions: What powered the big bang? What happens to space, time, and matter at the edge of a black hole? and What is the mysterious dark energy pulling the Universe apart? The Beyond Einstein program within NASA's Office of Space Science aims to answer these questions, employing a series of missions linked by powerful new technologies and complementary approaches towards shared science goals. The Beyond Einstein program has three linked elements which advance science and technology towards two visions; to detect directly gravitational wave signals from the earliest possible moments of the BIg Bang, and to image the event horizon of a black hole. The central element is a pair of Einstein Great Observatories, Constellation-X and LISA. Constellation-X is a powerful new X-ray observatory dedicated to X-Ray Spectroscopy. LISA is the first spaced based gravitational wave detector. These powerful facilities will blaze new paths to the questions about black holes, the Big Bang and dark energy. The second element is a series of competitively selected Einstein Probes, each focused on one of the science questions and includes a mission dedicated resolving the Dark Energy mystery. The third element is a program of technology development, theoretical studies and education. The Beyond Einstein program is a new element in the proposed NASA budget for 2004. This talk will give an overview of the program and the missions contained within it.

  5. 2011 Einstein Fellows Chosen

    NASA Astrophysics Data System (ADS)

    2011-03-01

    ASA has announced the selection of the 2011 Einstein Fellows who will conduct research related to NASA's Physics of the Cosmos program, which aims to expand our knowledge of the origin, evolution, and fate of the Universe. The Einstein Fellowship provides support to the awardees for three years, and the Fellows may pursue their research at a host university or research center of their choosing in the United States. The new Fellows will begin their programs in the fall of 2011. The new Einstein Fellows and their host institutions are listed below: * Akos Bogdan (Smithsonian Astrophysical Observatory, Cambridge, Mass.) * Samuel Gralla (University of Maryland, College Park, Md.) * Philip Hopkins (University of California at Berkeley) * Matthew Kunz (Princeton University, Princeton, N.J.) * Laura Lopez (Massachusetts Institute of Technology, Cambridge, Mass.) * Amy Reines (National Radio Astronomy Observatory, Charlottesville, Virg.) * Rubens Reis (University of Michigan, Ann Arbor) * Ken Shen (Lawrence Berkeley National Laboratory, Berkeley, Calif.) * Jennifer Siegal-Gaskins (California Institute of Technology, Pasadena) * Lorenzo Sironi (Harvard University, Cambridge, Mass.) NASA has two other astrophysics theme-based fellowship programs: the Sagan Fellowship Program, which supports research into exoplanet exploration, and the Hubble Fellowship Program, which supports research into cosmic origins. More information on the Einstein Fellowships can be found at: http://cxc.harvard.edu/fellows/

  6. The Einstein-Brazil Fogarty: A decade of synergy.

    PubMed

    Nosanchuk, Joshua D; Nosanchuk, Murphy D; Rodrigues, Marcio L; Nimrichter, Leonardo; Carvalho, Antonio C Campos de; Weiss, Louis M; Spray, David C; Tanowitz, Herbert B

    2015-01-01

    A rich, collaborative program funded by the US NIH Fogarty program in 2004 has provided for a decade of remarkable opportunities for scientific advancement through the training of Brazilian undergraduate, graduate and postdoctoral students from the Federal University and Oswaldo Cruz Foundation systems at Albert Einstein College of Medicine. The focus of the program has been on the development of trainees in the broad field of Infectious Diseases, with a particular focus on diseases of importance to the Brazilian population. Talented trainees from various regions in Brazil came to Einstein to learn techniques and study fungal, parasitic and bacterial pathogens. In total, 43 trainees enthusiastically participated in the program. In addition to laboratory work, these students took a variety of courses at Einstein, presented their results at local, national and international meetings, and productively published their findings. This program has led to a remarkable synergy of scientific discovery for the participants during a time of rapid acceleration of the scientific growth in Brazil. This collaboration between Brazilian and US scientists has benefitted both countries and serves as a model for future training programs between these countries.

  7. The Einstein-Brazil Fogarty: A decade of synergy

    PubMed Central

    Nosanchuk, Joshua D.; Nosanchuk, Murphy D.; Rodrigues, Marcio L.; Nimrichter, Leonardo; de Carvalho, Antonio C. Campos; Weiss, Louis M.; Spray, David C.; Tanowitz, Herbert B.

    2015-01-01

    Abstract A rich, collaborative program funded by the US NIH Fogarty program in 2004 has provided for a decade of remarkable opportunities for scientific advancement through the training of Brazilian undergraduate, graduate and postdoctoral students from the Federal University and Oswaldo Cruz Foundation systems at Albert Einstein College of Medicine. The focus of the program has been on the development of trainees in the broad field of Infectious Diseases, with a particular focus on diseases of importance to the Brazilian population. Talented trainees from various regions in Brazil came to Einstein to learn techniques and study fungal, parasitic and bacterial pathogens. In total, 43 trainees enthusiastically participated in the program. In addition to laboratory work, these students took a variety of courses at Einstein, presented their results at local, national and international meetings, and productively published their findings. This program has led to a remarkable synergy of scientific discovery for the participants during a time of rapid acceleration of the scientific growth in Brazil. This collaboration between Brazilian and US scientists has benefitted both countries and serves as a model for future training programs between these countries. PMID:26691452

  8. Beyond Einstein: Exploring the Extreme Universe

    NASA Technical Reports Server (NTRS)

    Barbier, Louis M.

    2005-01-01

    This paper will give an overview of the NASA Universe Division Beyond Einstein program. The Beyond Einstein program consists of a series of exploratory missions to investigate some of the most important and pressing problems in modern-day astrophysics - including searches for Dark Energy and studies of the earliest times in the universe, during the inflationary period after the Big Bang. A variety of new technologies are being developed both in the science instrumentation these missions will carry and in the spacecraft that will carry those instruments.

  9. From the Classroom to Washington: Einsteins on Education Reform

    ERIC Educational Resources Information Center

    Hughes, Kent H., Ed.; Byers, Elizabeth A., Ed.

    2010-01-01

    The Woodrow Wilson International Center for Scholars was delighted to host a group of current and former Albert Einstein Distinguished Educator Fellows as they celebrated the 20th anniversary of the fellowship program. Outstanding math and science teachers in America's K-12 schools, the Einstein Fellows spend a year (or sometimes two) working on…

  10. Cyberspace: Devolution and Recovery

    DTIC Science & Technology

    2011-03-23

    time of the source of the burst and we do not know if it was accidental, an act of God , or a malicious attack. 28 The remainder of a speech like...Security 15 Mailing List, Federal Vulnerability Knowledgebase (VKB), US-CERT Portal, US-CERT Einstein Program, Internet Health and Status Service...The US-CERT portal is a website dedicated to sharing relevant information with participants. The Einstein Program is a program that allows for the

  11. Einstein's Universe.

    ERIC Educational Resources Information Center

    Carlson, Eric; Wald, Robert

    1979-01-01

    Presents a guide to be used by students and teachers in conjunction with a television program about Einstein. Provides general information about special and general relativity, and the universe. Includes questions for discussion after each section and a bibliography. (MA)

  12. A complete public archive for the Einstein IPC

    NASA Technical Reports Server (NTRS)

    Helfand, David J.

    1995-01-01

    This report documents progress made in the period 24 Sept. 1993 - 23 Sept. 1995 on the project described in our proposal 'A Complete Public Archive for the Einstein IPC' which was approved under the Astrophysics Data Program in 1992. We have completed most of the principal objectives of the original proposal; a NFE was recently approved so that costs for publications in press can be covered and we can complete the public record for the Einstein IPC database.

  13. Beyond Einstein

    NASA Astrophysics Data System (ADS)

    Hertz, P.

    2003-03-01

    The Structure and Evolution of the Universe (SEU) theme within NASA's Office of Space Science seeks to explore and understand the dynamic transformations of energy in the Universe - the entire web of biological and physical interactions that determine the evolution of our cosmic habitat. This search for understanding will enrich the human spirit and inspire a new generation of explorers, scientists, and engineers. To that end, NASA's strategic planning process has generated a new Roadmap to enable those goals. Called "Beyond Einstein", this Roadmap identifies three science objectives for the SEU theme: (1) Find out what powered the Big Bang; (2) Observe how black holes manipulate space, time, and matter; and (3) Identify the mysterious dark energy pullingthe Universe apart. These objectives can be realized through a combination of large observatories (Constellation-X, LISA), moderate sized, PI-led missions (the Einstein Probes), and a contuinuing program of technology development, research and analysis, and education/public outreach. In this presentation, NASA's proposed Beyond Einstein Program will be described. The full Roadmap is available at http://universe.nasa.gov/.

  14. Einstein coefficients and oscillator strengths for low lying state of CO molecules

    NASA Astrophysics Data System (ADS)

    Swer, S.; Syiemiong, A.; Ram, M.; Jha, A. K.; Saxena, A.

    2018-04-01

    Einstein Coefficients and Oscillator Strengths for different state of CO molecule have been calculated using LEROY'S LEVEL program and MOLCAS ab initio code. Using the wave function derived from Morse potential and transition dipole moment obtained from ab initio calculation, The potential energy functions were computed for these states using the spectroscopic constants. The Morse potential of these states and electronic transition dipole moment of the transition calculated in a recent ab initio study have been used in LEVEL program to produce transition dipole matrix element for a large number of bands. Einstein Coefficients have also been used to compute the radiative lifetimes of several vibrational levels and the calculated values are compared with other theoretical results and experimental values.

  15. The Einstein All-Sky Slew Survey

    NASA Technical Reports Server (NTRS)

    Elvis, Martin S.

    1992-01-01

    The First Einstein IPC Slew Survey produced a list of 819 x-ray sources, with f(sub x) approximately 10(exp -12) - 10(exp -10) erg/sq cm s and positional accuracy of approximately 1.2 feet (90 percent radius). The aim of this program was to identify these x-ray sources.

  16. The abundances of major elements in Cas A and Tycho supernova remnants

    NASA Technical Reports Server (NTRS)

    Gorenstein, P.

    1995-01-01

    The objective of this program was to map the abundances of major elements such as O, Si, S, and Fe in the supernova remnants, Tycho and Cas A. The approach was based upon using archival cosmic X-ray data from several space missions, notably, the Einstein Observatory, EXOSAT, ROSAT, BBSRT, and ASCA. Two of the missions, Einstein and ROSAT, had high resolution telescopes that provided excellent images, but no spectral information. Two missions with much poorer resolution telescopes, BBXRT and ASCA, gave good spectral information through pulse height of signals in their cooled solid state detector, but rather crude spatial information. Our goal was to extract spectral information from the combined analysis of the Einstein and ROSAT images of Cas A and Tycho and to verify or refine the spectral map by checking its agreement with the BBSRT or ASCA spectra results for larger regions. In particular, we note that the Einstein and ROSAT telescopes have different spectral responses. The Einstein bandwidth includes the 2-4 keV region which is absent from ROSAT. Hence, by forming linear combinations of the Einstein and ROSAT images, we are able to resolve the contributions of the 0.5-2 keV band from the 2-4 keV band. The former contains lines of O and Fe while the latter is dominated by Si and S. We correct for the expansion that has taken place in the remnants during the ten-year interval between the Einstein and ROSAT measurements, but we must assume that no significant spectral changes have occurred during that time. The analysis of the Tycho SNR was completed and the results have been published. A copy of the paper is included. The analysis of Cas A has proved to be more complicated. It is continuing with support from another program. Part of the problem may be due to difficulties in the aspect information which is needed to precisely register the ROSAT and Einstein images.

  17. Celebrating Einstein

    NASA Astrophysics Data System (ADS)

    Key, Joey; Yunes, Nicolas

    2013-04-01

    The Gravity Group at Montana State University (MSU) hosted Celebrating Einstein, a free public arts and multimedia event celebrating Einstein and his ideas in Bozeman, Montana April 2-6, 2013. The products of our efforts are now available to any party interested in hosting a similar event. Celebrating Einstein is a truly interdisciplinary effort including art, film, dance, music, physics, history, and education. Events included a black hole immersive art installation, a series of public talks by physicists, and Einstein lessons in the public schools leading up to a live free public multimedia performance including a professional dance company, a live interview with a renowned physicist, and an original score composed for the MSU student symphony to be performed with an original film produced by the Science and Natural History film program at MSU. This project is funded by the Montana Space Grant Consortium, Montana State University, and the National Science Foundation.

  18. [ISO 9002 at the Center of Pediatric Intensive Care at the Albert Einstein Israeli Hospital].

    PubMed

    Gé Lacerda, D P; Rocha, M L; Santos, R P

    2000-01-01

    This study shows the process of implementation of a quality program in Pediatric Intensive Therapy Center of "Hospital Israelita Albert Einstein" which resulted in the certification of this service for the Standards ISO 9002/94. It points out the nurse's role as a leader in this process.

  19. Beyond Einstein: from the Big Bang to black holes

    NASA Astrophysics Data System (ADS)

    White, Nicholas E.; Diaz, Alphonso V.

    2004-01-01

    How did the Universe begin? Does time have a beginning and an end? Does space have edges? Einstein's theory of relativity replied to these ancient questions with three startling predictions: that the Universe is expanding from a Big Bang; that black holes so distort space and time that time stops at their edges; and that a dark energy could be pulling space apart, sending galaxies forever beyond the edge of the visible Universe. Observations confirm these remarkable predictions, the last finding only four years ago. Yet Einstein's legacy is incomplete. His theory raises - but cannot answer - three profound questions: What powered the Big Bang? What happens to space, time and matter at the edge of a black hole? and, What is the mysterious dark energy pulling the Universe apart? The Beyond Einstein program within NASA's office of space science aims to answer these questions, employing a series of missions linked by powerful new technologies and complementary approaches to shared science goals. The program also serves as a potent force with which to enhance science education and science literacy.

  20. Einstein and Millikan

    NASA Astrophysics Data System (ADS)

    Erwin, Charlotte

    2005-03-01

    Albert Einstein traveled to America by boat during the great depression to consult with scientists at the California Institute of Technology. He was a theoretical physicist, a Nobel Prize winner, and a 20th century folk hero. Few members of the general public understood his theories, but they idolized him all the same. The invitation came from physicist Robert Millikan, who had initiated a visiting-scholars program at Caltech shortly after he became head of the school in 1921. Einstein's visits to the campus in 1931, 1932, and 1933 capped Millikan's campaign to make Caltech one of the physics capitals of the world. Mount Wilson astronomer Edwin Hubble's discovery that redshifts are proportional to their distances from the observer challenged Einstein's cosmological picture of a static universe. The big question at Caltech in 1931 was whether Einstein would give up his cosmological constant and accept the idea of an expanding universe. By day, Einstein discussed his theory and its interpretation at length with Richard Tolman, Hubble, and the other scientists on the campus. By night, Einstein filled his travel diary with his personal impressions. During his third visit, Einstein sidestepped as long as possible the question of whether conditions in Germany might prevent his return there. After the January 30 announcement that Hitler had become chancellor of Germany, the question could no longer be evaded. He postponed his return trip for a few weeks and then went to Belgium for several months instead of to Berlin. In the fall of 1933, Albert Einstein returned to the United States as an emigre and became a charter member of Abraham Flexner's new Institute for Advanced Study in Princeton, New Jersey. Why did Einstein go to Princeton and not Pasadena?

  1. Recent Progress at NASA in LlSA Formulation and Technology Development

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin

    2007-01-01

    Over the last year, the NASA portion of the LISA team has been focused its effort on advancing the formulation of the mission and responding to a major National Academy review. This talk will describe advances in, and the current state of: the baseline mission architecture, the performance requirements, the technology development and plans for final integration and test. Interesting results stimulated by the NASINRC Beyond Einstein Program Assessment Review will also be described.

  2. Albert Einstein Distinguished Educators Fellowship Act of 1994. Report To Accompany S. 2104. 103D Congress, 2d Session, Senate.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Senate Committee on Energy and Natural Resources.

    This document contains the text of the "Albert Einstein Distinguished Educators Fellowship Act of 1994" (S. 2104) along with related analysis. The bill establishes a Department of Energy (DOE) fellowship program for math and science teachers that provides them opportunities to work at DOE labs in order to enhance coordination and…

  3. Albert Einstein Distinguished Educator Fellowship Act of 1994. Hearing on S. 2104 To Establish within the National Laboratories of the Department of Energy a National Albert Einstein Distinguished Educator Fellowship Program, before the Subcommittee on Energy Research and Development of the Committee on Energy and Natural Resources. United States Senate, One Hundred Third Congress, Second Session.

    ERIC Educational Resources Information Center

    Congress of the U.S., Washington, DC. Senate Committee on Energy and Natural Resources.

    These hearings addressed proposed Bill S. 2104 to create a Department of Energy (DOE) fellowship program for math and science teachers that would provide them opportunities to work at DOE labs in order to enhance coordination and communication among the educational community, the Congress, and the Executive Agencies responsible for developing and…

  4. Structure, Function, and Applications of the Georgetown-Einstein (GE) Breast Cancer Simulation Model.

    PubMed

    Schechter, Clyde B; Near, Aimee M; Jayasekera, Jinani; Chandler, Young; Mandelblatt, Jeanne S

    2018-04-01

    The Georgetown University-Albert Einstein College of Medicine breast cancer simulation model (Model GE) has evolved over time in structure and function to reflect advances in knowledge about breast cancer, improvements in early detection and treatment technology, and progress in computing resources. This article describes the model and provides examples of model applications. The model is a discrete events microsimulation of single-life histories of women from multiple birth cohorts. Events are simulated in the absence of screening and treatment, and interventions are then applied to assess their impact on population breast cancer trends. The model accommodates differences in natural history associated with estrogen receptor (ER) and human epidermal growth factor receptor 2 (HER2) biomarkers, as well as conventional breast cancer risk factors. The approach for simulating breast cancer natural history is phenomenological, relying on dates, stage, and age of clinical and screen detection for a tumor molecular subtype without explicitly modeling tumor growth. The inputs to the model are regularly updated to reflect current practice. Numerous technical modifications, including the use of object-oriented programming (C++), and more efficient algorithms, along with hardware advances, have increased program efficiency permitting simulations of large samples. The model results consistently match key temporal trends in US breast cancer incidence and mortality. The model has been used in collaboration with other CISNET models to assess cancer control policies and will be applied to evaluate clinical trial design, recurrence risk, and polygenic risk-based screening.

  5. A brief dietary assessment predicts executive dysfunction in an elderly cohort: results from the Einstein Aging Study

    USDA-ARS?s Scientific Manuscript database

    Objectives: To examine the association between diet and executive function, episodic memory and global verbal cognition in the Einstein Aging Study (EAS) cohort and determine whether race modifies this relationship. Design: Cross-sectional. Setting: Community. Participants: EAS participants without ...

  6. A complete public archive for the Einstein IPC

    NASA Technical Reports Server (NTRS)

    Helfand, David J.

    1993-01-01

    This report documents progress made in the period 29 September 1992 and 28 September 1993, on the project described in our proposal 'A Complete Public Archive for the Einstein IPC,' which was approved under the Astrophysics Data Program last year. All of the principal first-year objectives were achieved and we expect to continue our efforts over the next two years toward the goal of transferring the entire activity to the HEASARC.

  7. The Impact of Infant-Directed Videos on Parent-Child Interaction

    ERIC Educational Resources Information Center

    Pempek, Tiffany A.; Demers, Lindsay B.; Hanson, Katherine G.; Kirkorian, Heather L.; Anderson, Daniel R.

    2011-01-01

    This study assessed whether infant-directed videos designed to promote parent-child interactions actually support such engagement. Parents watched videos from the "Baby Einstein" or the "Sesame Beginnings" series for 2 weeks at home with their 12- or 18-month-old infants. "Baby Einstein" encourages parents to label objects and actions; "Sesame…

  8. LISA and NASA's Physics of the Cosmos Theme

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin T.

    2008-01-01

    In the past year, the LISA Project at NASA has completed a major review and has thoroughly reviewed its cost estimates. This talk will summarize the conclusions of the Beyond Einstein Program Assessment, and review the main conclusions of the cost estimation work done at NASA, including reduced mission concepts. Astro2010, the decadal review which sets priorities for astronomy and astrophysics projects in the U.S., is getting organized. Preparing for and participating in Astro2010 will be a crucial activity for the NASA side of the LISA Project in thc next 18 months.

  9. [Two traditions in the scientific learning of the world. A case study of creation and reception of quantum mechanics over the period 1925-1927, on the bases of discussion between Werner Heisenberg and Albert Einstein].

    PubMed

    Krajniak, Wiktor

    2014-01-01

    The purpose of this article is the analyses of discussion between Albert Einstein and Werner Heisenberg in the period 1925-1927. Their disputes, relating to the sources of scientific knowledge, its methods and the value of knowledge acquired in this way, are part of the characteristic for the European science discourse between rationalism and empirism. On the basis of some sources and literature on the subject, the epistemological positions of both scholars in the period were reconstructed. This episode, yet poorly known, is a unique example of scientific disputes, whose range covers a broad spectrum of methodological problems associated with the historical development of science. The conducted analysis sheds some light on the source of popularity of logical empirism in the first half of the 20th century. A particular emphasis is placed on the impact of the neopositivist ideas which reflect Heisenberg's research program, being the starting point for the Copenhagen interpretation of quantum mechanics. The main assumption of logical empirism, concerning acquisition of scientific knowledge only by means of empirical procedures and logical analysis of the language of science, in view of the voiced by Einstein arguments, bears little relationship with actual testing practices in the historical aspect of the development of science. The criticism of Heisenberg's program, carried out by Einstein, provided arguments for the main critics of the neopositivist ideal and contributed to the bankruptcy of the idea of logical empirism, thereby starting a period of critical rationalism prosperity, arising from criticism of neopositivism and alluding to Einstein's ideas.

  10. Line profile variation in delta-Orionis A, l-Orionis A, and 15 Monocerotis

    NASA Technical Reports Server (NTRS)

    Grady, C. A.; Snow, T. P.; Cash, W. C.

    1984-01-01

    The results of a monitoring program with IUE and Einstein are presented for three stars, delta-Ori A, l-Ori A, and 15 Mon. Line profile variability is observed in the UV profiles accessible to IUE and the relation between the variation in the different ions suggests that the ionization level is varying in the winds of these stars. This is consistent with Einstein observations of soft X-ray variability for two of the stars.

  11. The Einstein Genome Gateway using WASP - a high throughput multi-layered life sciences portal for XSEDE.

    PubMed

    Golden, Aaron; McLellan, Andrew S; Dubin, Robert A; Jing, Qiang; O Broin, Pilib; Moskowitz, David; Zhang, Zhengdong; Suzuki, Masako; Hargitai, Joseph; Calder, R Brent; Greally, John M

    2012-01-01

    Massively-parallel sequencing (MPS) technologies and their diverse applications in genomics and epigenomics research have yielded enormous new insights into the physiology and pathophysiology of the human genome. The biggest hurdle remains the magnitude and diversity of the datasets generated, compromising our ability to manage, organize, process and ultimately analyse data. The Wiki-based Automated Sequence Processor (WASP), developed at the Albert Einstein College of Medicine (hereafter Einstein), uniquely manages to tightly couple the sequencing platform, the sequencing assay, sample metadata and the automated workflows deployed on a heterogeneous high performance computing cluster infrastructure that yield sequenced, quality-controlled and 'mapped' sequence data, all within the one operating environment accessible by a web-based GUI interface. WASP at Einstein processes 4-6 TB of data per week and since its production cycle commenced it has processed ~ 1 PB of data overall and has revolutionized user interactivity with these new genomic technologies, who remain blissfully unaware of the data storage, management and most importantly processing services they request. The abstraction of such computational complexity for the user in effect makes WASP an ideal middleware solution, and an appropriate basis for the development of a grid-enabled resource - the Einstein Genome Gateway - as part of the Extreme Science and Engineering Discovery Environment (XSEDE) program. In this paper we discuss the existing WASP system, its proposed middleware role, and its planned interaction with XSEDE to form the Einstein Genome Gateway.

  12. [The Einstein sign].

    PubMed

    Treska, V

    2003-02-01

    Untreated rupture of an aneurysm of the abdominal aorta is fatal in almost 100% of the patients. In the majority of cases the assessment of a correct, early diagnosis is simple (hypotension, backache, abdominal pain, pulsating resistance in the abdomen) and makes a prompt surgical or endovascular operation possible. In some instances however rupture of aneurysms of the abdominal aorta simulates other clinical conditions (acute cholecystitis, acute diverculitis of the sigmoid) which may delay the correct diagnosis and reduce the patient's chance of survival. The author describes, based on historical documents, the treacherous course of the disease in the scientific genius Albert Einstein where rupture of an aneurysm simulated acute cholecystitis, and in the world literature this symptomatology was subsequently described as Einstein's sign.

  13. A Second Year Evaluation of the ESEA Title III Urban Leadership Program.

    ERIC Educational Resources Information Center

    Frerichs, Allen H.

    The Urban Leadership Program, funded under Title III of the Elementary and Secondary Education Act, was carried out among sixth graders at the Albert Einstein School in Chicago, Illinois. The primary purpose of the program was to develop skills and competence to prepare participants for survival and success in a large urban environment. A…

  14. Comparison of rotational temperature derived from ground-based OH airglow observations with TIMED/SABER to evaluate the Einstein Coefficients

    NASA Astrophysics Data System (ADS)

    Liu, W.; Xu, J.; Smith, A. K.; Yuan, W.

    2017-12-01

    Ground-based observations of the OH(9-4, 8-3, 6-2, 5-1, 3-0) band airglows over Xinglong, China (40°24'N, 117°35'E) from December 2011 to 2014 are used to calculate rotational temperatures. The temperatures are calculated using five commonly used Einstein coefficient datasets. The kinetic temperature from TIMED/SABER is completely independent of the OH rotational temperature. SABER temperatures are weighted vertically by weighting functions calculated for each emitting vibrational state from two SABER OH volume emission rate profiles. By comparing the ground-based OH rotational temperature with SABER's, five Einstein coefficient datasets are evaluated. The results show that temporal variations of the rotational temperatures are well correlated with SABER's; the linear correlation coefficients are higher than 0.72, but the slopes of the fit between the SABER and rotational temperatures are not equal to 1. The rotational temperatures calculated using each set of Einstein coefficients produce a different bias with respect to SABER; these are evaluated over each of vibrational levels to assess the best match. It is concluded that rotational temperatures determined using any of the available Einstein coefficient datasets have systematic errors. However, of the five sets of coefficients, the rotational temperature derived with the Langhoff et al.'s (1986) set is most consistent with SABER. In order to get a set of optimal Einstein coefficients for rotational temperature derivation, we derive the relative values from ground-based OH spectra and SABER temperatures statistically using three year data. The use of a standard set of Einstein coefficients will be beneficial for comparing rotational temperatures observed at different sites.

  15. The Einstein All-Sky IPC slew survey

    NASA Technical Reports Server (NTRS)

    Elvis, Martin; Plummer, David; Fabbiano, G.

    1989-01-01

    The construction of the Einstein All-Sky Imaging Proportional Counter (IPC) slew survey is considered. It contains approximately 1000 sources between 10(exp -12) and 10(exp -10) erg/sq cm/s with a concentration toward the ecliptic poles and away from the galactic plane. Several sizable samples of bright soft X-ray selected objects for follow-up ROSAT and ASTRO-D observations and statistical study are presented. The survey source list is expected to be available by late 1989. Both paper and remote access online data base versions are to be available. An identification program is considered.

  16. The Einstein Center for Epigenomics: studying the role of epigenomic dysregulation in human disease.

    PubMed

    McLellan, Andrew S; Dubin, Robert A; Jing, Qiang; Maqbool, Shahina B; Olea, Raul; Westby, Gael; Broin, Pilib Ó; Fazzari, Melissa J; Zheng, Deyou; Suzuki, Masako; Greally, John M

    2009-10-01

    There is increasing interest in the role of epigenetic and transcriptional dysregulation in the pathogenesis of a range of human diseases, not just in the best-studied example of cancer. It is, however, quite difficult for an individual investigator to perform these studies, as they involve genome-wide molecular assays combined with sophisticated computational analytical approaches of very large datasets that may be generated from various resources and technologies. In 2008, the Albert Einstein College of Medicine in New York, USA established a Center for Epigenomics to facilitate the research programs of its investigators, providing shared resources for genome-wide assays and for data analysis. As a result, several avenues of research are now expanding, with cancer epigenomics being complemented by studies of the epigenomics of infectious disease and a neuroepigenomics program.

  17. Beyond Einstein: From the Big Bang to Black Holes

    NASA Astrophysics Data System (ADS)

    White, N.

    Beyond Einstein is a science-driven program of missions, education and outreach, and technology, to address three questions: What powered the Big Bang? What happens to space, time, and matter at the edge of a Black Hole? What is the mysterious Dark Energy pulling the universe apart? To address the science objectives, Beyond Einstein contains several interlinked elements. The strategic missions Constellation-X and LISA primarily investigate the nature of black holes. Constellation-X is a spectroscopic observatory that uses X-ray emitting atoms as clocks to follow the fate of matter falling into black holes. LISA will be the first space-based gravitational wave observatory uses gravitational waves to measure the dynamic structure of space and time around black holes. Moderate sized probes that are fully competed, peer-reviewed missions (300M-450M) launched every 3-5 years to address the focussed science goals: 1) Determine the nature of the Dark Energy that dominates the universe, 2) Search for the signature of the beginning of the Big Bang in the microwave background and 3) Take a census of Black Holes of all sizes and ages in the universe. The final element is a Technology Program to enable ultimate Vision Missions (after 2015) to directly detect gravitational waves echoing from the beginning of the Big Bang, and to directly image matter near the event horizon of a Black Hole. An associated Education and Public Outreach Program will inspire the next generation of scientists, and support national science standards and benchmarks.

  18. NASA Strategic Roadmap: Origin, Evolution, Structure, and Destiny of the Universe

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.

    2005-01-01

    The NASA strategic roadmap on the Origin, Evolution, Structure and Destiny of the Universe is one of 13 roadmaps that outline NASA s approach to implement the vision for space exploration. The roadmap outlines a program to address the questions: What powered the Big Bang? What happens close to a Black Hole? What is Dark Energy? How did the infant universe grow into the galaxies, stars and planets, and set the stage for life? The roadmap builds upon the currently operating and successful missions such as HST, Chandra and Spitzer. The program contains two elements, Beyond Einstein and Pathways to Life, performed in three phases (2005-2015, 2015-2025 and >2025) with priorities set by inputs received from reviews undertaken by the National Academy of Sciences and technology readiness. The program includes the following missions: 2005-2015 GLAST, JWST and LISA; 2015-2025 Constellation-X and a series of Einstein Probes; and >2025 a number of ambitious vision missions which will be prioritized by results from the previous two phases.

  19. A Comparison of Developmental Assessments of the Newborn and Young Infant

    ERIC Educational Resources Information Center

    Majnemer, Annette; Snider, Laurie

    2005-01-01

    Neonatal neurobehavioral assessments describe a newborn's spontaneous behavioural repertoire and observable responses to environmental stimuli. Infant developmental assessments document the range of developmental skills that emerge and develop over the first years of life. This review highlights two neonatal assessments (Einstein Neonatal…

  20. Documenting the Physical Universe:Preserving the Record of SLAC from 1962 to 2005

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deken, Jean Marie; /SLAC

    2006-03-10

    Since 1905, Albert Einstein's ''miraculous year'', modern physics has advanced explosively. In 2005, the World Year of Physics, a session at the SAA Annual meeting discusses three institutional initiatives--Einstein's collected papers, an international geophysical program, and a research laboratory--to examine how physics and physicists are documented and how that documentation is being collected, preserved, and used. This paper provides a brief introduction to the research laboratory (SLAC), discusses the origins of the SLAC Archives and History Office, its present-day operations, and the present and future challenges it faces in attempting to preserve an accurate historical record of SLAC's activities.

  1. Einstein and Einstein A: A Study in Crater Morphology

    NASA Image and Video Library

    2017-12-08

    NASA image release May 14, 2010 Einstein and Einstein A: A Study in Crater Morphology Located on the western limb of the Moon, Einstein and Einstein A craters (16.3oN, 271.3oE ) are only visible to Earth-based observers during certain lunar lighting and orientation conditions. Einstein A is younger than Einstein, as indicated by the fact that it lies squarely in the middle of the floor of Einstein. When viewed in topographic data, these two craters reveal much about the relative age and shape of an impact crater. To understand further, let's first take a look at Einstein. Einstein is a fairly large crater that spans 198 km across. A crater's size alone however cannot reveal much about age. ÊEinstein's relative age can be determined by examining the frequency and distribution of impact craters overprinted on its rim and floor. Younger craters have had fewer impacts, which enables them to retain their original morphology. Einstein A reveals most of its original structure, including a raised rim and ejecta blanket, and is therefore a relatively young crater as compared to Einstein, whose original structure has been somewhat degraded over time by smaller impacts. The Einstein craters were named after famed physicist, philosopher, and scientist Albert Einstein (1879-1955). To learn more go to: www.nasa.gov/mission_pages/LRO/multimedia/lroimages/lola-... NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  2. The good pharmacy practice on Einstein Program at Paraisópolis Community

    PubMed Central

    de Oliveira, Lara Tânia de Assumpção Domingues Gonçalves; da Silva, Camila Pontes; Guedes, Maria das Vitorias; Sousa, Ana Célia de Oliveira; Sarno, Flávio

    2016-01-01

    ABSTRACT Objectives: To describe indicators and processes developed and implemented for pharmaceutical assistance at the Einstein Program at Paraisópolis Community pharmacy. Methods: This was a descriptive study of retrospective data from January 2012 to December 2015. Data were obtained from spreadsheets developed for monitoring the productivity and care quality provided at the pharmacy. The evaluated variables were pharmaceutical assistance to prescription, pharmaceutical intervention, orientation (standard and pharmaceutical) and pharmaceutical orientation rate. Results: The pharmacy assisted, on average, 2,308 prescriptions monthly, dispensing 4,871 items, including medications, materials and food supplements. Since March 2015, virtually, the pharmacist analyzed all prescriptions, prior to dispensing. In the analyzed period, there was an increase in monthly pharmaceutical interventions from 7 to 32 on average, and, although there was a decrease in the number of standard orientation, the pharmaceutical orientation had an increase, causing a rise of pharmaceutical orientation rate from 4 to 11%. Conclusion: The processes developed and implemented at the program pharmacy sought to follow the good pharmacy practice, and help patients to make the best use of their medications. PMID:27759833

  3. Fortran programs for the time-dependent Gross-Pitaevskii equation in a fully anisotropic trap

    NASA Astrophysics Data System (ADS)

    Muruganandam, P.; Adhikari, S. K.

    2009-10-01

    Here we develop simple numerical algorithms for both stationary and non-stationary solutions of the time-dependent Gross-Pitaevskii (GP) equation describing the properties of Bose-Einstein condensates at ultra low temperatures. In particular, we consider algorithms involving real- and imaginary-time propagation based on a split-step Crank-Nicolson method. In a one-space-variable form of the GP equation we consider the one-dimensional, two-dimensional circularly-symmetric, and the three-dimensional spherically-symmetric harmonic-oscillator traps. In the two-space-variable form we consider the GP equation in two-dimensional anisotropic and three-dimensional axially-symmetric traps. The fully-anisotropic three-dimensional GP equation is also considered. Numerical results for the chemical potential and root-mean-square size of stationary states are reported using imaginary-time propagation programs for all the cases and compared with previously obtained results. Also presented are numerical results of non-stationary oscillation for different trap symmetries using real-time propagation programs. A set of convenient working codes developed in Fortran 77 are also provided for all these cases (twelve programs in all). In the case of two or three space variables, Fortran 90/95 versions provide some simplification over the Fortran 77 programs, and these programs are also included (six programs in all). Program summaryProgram title: (i) imagetime1d, (ii) imagetime2d, (iii) imagetime3d, (iv) imagetimecir, (v) imagetimesph, (vi) imagetimeaxial, (vii) realtime1d, (viii) realtime2d, (ix) realtime3d, (x) realtimecir, (xi) realtimesph, (xii) realtimeaxial Catalogue identifier: AEDU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEDU_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 122 907 No. of bytes in distributed program, including test data, etc.: 609 662 Distribution format: tar.gz Programming language: FORTRAN 77 and Fortran 90/95 Computer: PC Operating system: Linux, Unix RAM: 1 GByte (i, iv, v), 2 GByte (ii, vi, vii, x, xi), 4 GByte (iii, viii, xii), 8 GByte (ix) Classification: 2.9, 4.3, 4.12 Nature of problem: These programs are designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in one-, two- or three-space dimensions with a harmonic, circularly-symmetric, spherically-symmetric, axially-symmetric or anisotropic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Solution method: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation, in either imaginary or real time, over small time steps. The method yields the solution of stationary and/or non-stationary problems. Additional comments: This package consists of 12 programs, see "Program title", above. FORTRAN77 versions are provided for each of the 12 and, in addition, Fortran 90/95 versions are included for ii, iii, vi, viii, ix, xii. For the particular purpose of each program please see the below. Running time: Minutes on a medium PC (i, iv, v, vii, x, xi), a few hours on a medium PC (ii, vi, viii, xii), days on a medium PC (iii, ix). Program summary (1)Title of program: imagtime1d.F Title of electronic file: imagtime1d.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 1 GByte Programming language used: Fortran 77 Typical running time: Minutes on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in one-space dimension with a harmonic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems. Program summary (2)Title of program: imagtimecir.F Title of electronic file: imagtimecir.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 1 GByte Programming language used: Fortran 77 Typical running time: Minutes on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in two-space dimensions with a circularly-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems. Program summary (3)Title of program: imagtimesph.F Title of electronic file: imagtimesph.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 1 GByte Programming language used: Fortran 77 Typical running time: Minutes on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with a spherically-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems. Program summary (4)Title of program: realtime1d.F Title of electronic file: realtime1d.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 2 GByte Programming language used: Fortran 77 Typical running time: Minutes on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in one-space dimension with a harmonic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems. Program summary (5)Title of program: realtimecir.F Title of electronic file: realtimecir.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 2 GByte Programming language used: Fortran 77 Typical running time: Minutes on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in two-space dimensions with a circularly-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems. Program summary (6)Title of program: realtimesph.F Title of electronic file: realtimesph.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 2 GByte Programming language used: Fortran 77 Typical running time: Minutes on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with a spherically-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems. Program summary (7)Title of programs: imagtimeaxial.F and imagtimeaxial.f90 Title of electronic file: imagtimeaxial.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 2 GByte Programming language used: Fortran 77 and Fortran 90 Typical running time: Few hours on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with an axially-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems. Program summary (8)Title of program: imagtime2d.F and imagtime2d.f90 Title of electronic file: imagtime2d.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 2 GByte Programming language used: Fortran 77 and Fortran 90 Typical running time: Few hours on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in two-space dimensions with an anisotropic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems. Program summary (9)Title of program: realtimeaxial.F and realtimeaxial.f90 Title of electronic file: realtimeaxial.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 4 GByte Programming language used: Fortran 77 and Fortran 90 Typical running time Hours on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with an axially-symmetric trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems. Program summary (10)Title of program: realtime2d.F and realtime2d.f90 Title of electronic file: realtime2d.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 4 GByte Programming language used: Fortran 77 and Fortran 90 Typical running time: Hours on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in two-space dimensions with an anisotropic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems. Program summary (11)Title of program: imagtime3d.F and imagtime3d.f90 Title of electronic file: imagtime3d.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum RAM memory: 4 GByte Programming language used: Fortran 77 and Fortran 90 Typical running time: Few days on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with an anisotropic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in imaginary time over small time steps. The method yields the solution of stationary problems. Program summary (12)Title of program: realtime3d.F and realtime3d.f90 Title of electronic file: realtime3d.tar.gz Catalogue identifier: Program summary URL: Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computers: PC/Linux, workstation/UNIX Maximum Ram Memory: 8 GByte Programming language used: Fortran 77 and Fortran 90 Typical running time: Days on a medium PC Unusual features: None Nature of physical problem: This program is designed to solve the time-dependent Gross-Pitaevskii nonlinear partial differential equation in three-space dimensions with an anisotropic trap. The Gross-Pitaevskii equation describes the properties of a dilute trapped Bose-Einstein condensate. Method of solution: The time-dependent Gross-Pitaevskii equation is solved by the split-step Crank-Nicolson method by discretizing in space and time. The discretized equation is then solved by propagation in real time over small time steps. The method yields the solution of stationary and non-stationary problems.

  4. Implications of Einstein-Weyl Causality on Quantum Mechanics

    NASA Astrophysics Data System (ADS)

    Bendaniel, David

    A fundamental physical principle that has consequences for the topology of space-time is the principle of Einstein-Weyl causality. This also has quantum mechanical manifestations. Borchers and Sen have rigorously investigated the mathematical implications of Einstein-Weyl causality and shown the denumerable space-time Q2 would be implied. They were left with important philosophical paradoxes regarding the nature of the physical real line E, e.g., whether E = R, the real line of mathematics. In order to remove these paradoxes an investigation into a constructible foundation is suggested. We have pursued such a program and find it indeed provides a dense, denumerable space-time and, moreover, an interesting connection with quantum mechanics. We first show that this constructible theory contains polynomial functions which are locally homeomorphic with a dense, denumerable metric space R* and are inherently quantized. Eigenfunctions governing fields can then be effectively obtained by computational iteration. Postulating a Lagrangian for fields in a compactified space-time, we get a general description of which the Schrodinger equation is a special case. From these results we can then also show that this denumerable space-time is relational (in the sense that space is not infinitesimally small if and only if it contains a quantized field) and, since Q2 is imbedded in R*2, it directly fulfills the strict topological requirements for Einstein-Weyl causality. Therefore, the theory predicts that E = R*.

  5. Relativity and the TRS-80.

    ERIC Educational Resources Information Center

    Levin, Sidney

    1984-01-01

    Presents the listing (TRS-80) for a computer program which derives the relativistic equation (employing as a model the concept of a moving clock which emits photons at regular intervals) and calculates transformations of time, mass, and length with increasing velocities (Einstein-Lorentz transformations). (JN)

  6. The Einstein Dossiers: Science and Politics - Einstein's Berlin Period with an Appendix on Einstein's FBI File

    NASA Astrophysics Data System (ADS)

    Grundmann, Siegfried

    In 1919 the Prussian Ministry of Science, Arts and Culture opened a dossier on "Einstein's Theory of Relativity." It was rediscovered by the author in 1961 and is used in conjunction with numerous other subsequently identified 'Einstein' files as the basis of this fascinating book. In particular, the author carefully scrutinizes Einstein's FBI file from 1950-55 against mostly unpublished material from European including Soviet sources and presents hitherto unknown documentation on Einstein's alleged contacts with the German Communist Party and the Comintern.

  7. Einstein's physical strategy, energy conservation, symmetries, and stability: "But Grossmann & I believed that the conservation laws were not satisfied"

    NASA Astrophysics Data System (ADS)

    Pitts, J. Brian

    2016-05-01

    Recent work on the history of General Relativity by Renn et al. shows that Einstein found his field equations partly by a physical strategy including the Newtonian limit, the electromagnetic analogy, and energy conservation. Such themes are similar to those later used by particle physicists. How do Einstein's physical strategy and the particle physics derivations compare? What energy-momentum complex(es) did he use and why? Did Einstein tie conservation to symmetries, and if so, to which? How did his work relate to emerging knowledge (1911-1914) of the canonical energy-momentum tensor and its translation-induced conservation? After initially using energy-momentum tensors hand-crafted from the gravitational field equations, Einstein used an identity from his assumed linear coordinate covariance xμ‧ = Mνμ xν to relate it to the canonical tensor. Usually he avoided using matter Euler-Lagrange equations and so was not well positioned to use or reinvent the Herglotz-Mie-Born understanding that the canonical tensor was conserved due to translation symmetries, a result with roots in Lagrange, Hamilton and Jacobi. Whereas Mie and Born were concerned about the canonical tensor's asymmetry, Einstein did not need to worry because his Entwurf Lagrangian is modeled not so much on Maxwell's theory (which avoids negative-energies but gets an asymmetric canonical tensor as a result) as on a scalar theory (the Newtonian limit). Einstein's theory thus has a symmetric canonical energy-momentum tensor. But as a result, it also has 3 negative-energy field degrees of freedom (later called "ghosts" in particle physics). Thus the Entwurf theory fails a 1920s-1930s a priori particle physics stability test with antecedents in Lagrange's and Dirichlet's stability work; one might anticipate possible gravitational instability. This critique of the Entwurf theory can be compared with Einstein's 1915 critique of his Entwurf theory for not admitting rotating coordinates and not getting Mercury's perihelion right. One can live with absolute rotation but cannot live with instability. Particle physics also can be useful in the historiography of gravity and space-time, both in assessing the growth of objective knowledge and in suggesting novel lines of inquiry to see whether and how Einstein faced the substantially mathematical issues later encountered in particle physics. This topic can be a useful case study in the history of science on recently reconsidered questions of presentism, whiggism and the like. Future work will show how the history of General Relativity, especially Noether's work, sheds light on particle physics.

  8. From Einstein's theorem to Bell's theorem: a history of quantum non-locality

    NASA Astrophysics Data System (ADS)

    Wiseman, H. M.

    2006-04-01

    In this Einstein Year of Physics it seems appropriate to look at an important aspect of Einstein's work that is often down-played: his contribution to the debate on the interpretation of quantum mechanics. Contrary to physics ‘folklore’, Bohr had no defence against Einstein's 1935 attack (the EPR paper) on the claimed completeness of orthodox quantum mechanics. I suggest that Einstein's argument, as stated most clearly in 1946, could justly be called Einstein's reality locality completeness theorem, since it proves that one of these three must be false. Einstein's instinct was that completeness of orthodox quantum mechanics was the falsehood, but he failed in his quest to find a more complete theory that respected reality and locality. Einstein's theorem, and possibly Einstein's failure, inspired John Bell in 1964 to prove his reality locality theorem. This strengthened Einstein's theorem (but showed the futility of his quest) by demonstrating that either reality or locality is a falsehood. This revealed the full non-locality of the quantum world for the first time.

  9. Suicide Postvention: Crisis or Opportunity?

    ERIC Educational Resources Information Center

    Carter, Bonnie Frank; Brooks, Allan

    1990-01-01

    Describes program of suicide postvention which provides assistance to the survivors of a suicide. The clinical process of school-based postvention (as developed by Youth Suicide Prevention Services in the Department of Psychiatry at Albert Einstein Medical Center, Philadelphia, Pennsylvania) is presented. Includes case presentation of postvention…

  10. Einstein and Besso: Not a Partnership of Equals

    NASA Astrophysics Data System (ADS)

    Janssen, Michel

    2005-04-01

    In the 1905 special relativity paper Einstein famously acknowledged the help of his friend and colleague Michele Besso. Besso had been an ideal sounding board for Einstein's ideas. During the years that Einstein developed general relativity, Besso was a good deal more than a sounding board. He collaborated with Einstein on calculations of the perihelion motion of Mercury in 1913. His contributions were substantial and would have warranted co-authorship of Einstein's famous paper on Mercury's perihelion of November 1915, in which Besso is not mentioned at all. Besso also alerted Einstein to problems with the early version of general relativity that Einstein had worked out together with Marcel Grossmann. Einstein essentially ignored Besso's warnings. In addition, Besso went out of his way during this period to act as a mediator between a not always appreciative Einstein, living in Berlin with his cousin Elsa who would become his second wife, and his estranged first wife Mileva, living in Zurich with the couple's two young sons. This period is much better documented than the period leading up to the 1905 paper and consequently much more revealing about the nature of the relationship between Einstein and Besso.

  11. Hidden multiparticle excitation in a weakly interacting Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Watabe, Shohei

    2018-03-01

    We investigate multiparticle excitation effect on a collective density excitation as well as a single-particle excitation in a weakly interacting Bose-Einstein condensate (BEC). We find that although the weakly interacting BEC offers weak multiparticle excitation spectrum at low temperatures, this multiparticle excitation effect may not remain hidden, but emerges as bimodality in the density response function through the single-particle excitation. Identification of spectra in the BEC between the single-particle excitation and the density excitation is also assessed at nonzero temperatures, which has been known to be unique nature in the BEC at absolute zero temperature.

  12. Integrating Basic Science and Clinical Teaching for Third-Year Medical Students.

    ERIC Educational Resources Information Center

    Croen, Lila G.; And Others

    1986-01-01

    A 2-month program for third-year students at Yeshiva's Albert Einstein College of Medicine that provides a model for integrating basic sciences and clinical training is described. It demonstrates the importance of lifelong learning in a field that constantly changes. (Author/MLW)

  13. The CfA Einstein Observatory extended deep X-ray survey

    NASA Technical Reports Server (NTRS)

    Primini, F. A.; Murray, S. S.; Huchra, J.; Schild, R.; Burg, R.

    1991-01-01

    All IPC exposures in the Einstein Extended Deep X-ray Survey program have been reanalyzed. The current survey covers about 2.3 sq deg with a typical limiting sensitivity of about 5 x 10 to the -14th ergs/sq cm/s in the energy range from 0.8-3.5 keV. A total of 25 IPC sources are detected above a threshold of 4.5 sigma. A total of 18 are detected independently in the HRI, leading to the identification of six with stars and 11 with extragalactic objects. The remaining sources are classified as extragalactic. The population of identified extragalactic objects is dominated by QSOs, with one or two possible clusters. The basic conclusions of the original survey remain unchanged.

  14. What about Albert Einstein? Using Biographies to Promote Students' Scientific Thinking

    ERIC Educational Resources Information Center

    Fingon, Joan C.; Fingon, Shallon D.

    2009-01-01

    Who hasn't heard of Einstein? Science educators everywhere are familiar with Einstein's genius and general theory of relativity. Students easily recognize Einstein's image by his white flyaway hair and bushy mustache. It is well known that Einstein was a brilliant physicist and an abstract thinker who often used his creativity and imagination in…

  15. Einstein's Cosmos (German Title: Einsteins Kosmos)

    NASA Astrophysics Data System (ADS)

    Duerbeck, Hilmar W.; Dick, Wolfgang R.

    The different contributions of the present volume illuminate the interaction between Einstein and his colleagues when the foundations of modern cosmology were laid: First, the relativistic effects in the solar system, the gravitational redshift in the solar spectrum, and Einstein's relations with Freundlich and Eddington. Second, the cosmological models of Einstein, de Sitter, Friedmann, and Lemaître, which were discussed controversely till the end of the 1920s. Other scientists have also widened or critically questioned Einstein's insight and knowledge: Schwarzschild, Selety, Silberstein, and Mandl, whose life and work is discussed in separate articles. In those days, politics more than ever in history had influenced the lifes of scientists. Therefore, some comments on the ``political cosmos'' that has influenced decisively Einstein's life are also given. A special role in popularizing Einstein's world view was played by Archenhold Observatory in Berlin. A list of Einstein memorial places and a bibliographic list conclude the present book. All papers are written in German, and have English abstracts.

  16. Saving Space and Time: The Tractor That Einstein Built

    NASA Technical Reports Server (NTRS)

    2006-01-01

    In 1984, NASA initiated the Gravity Probe B (GP-B) program to test two unverified predictions of Albert Einstein s theory of general relativity, hypotheses about the ways space, time, light, and gravity relate to each other. To test these predictions, the Space Agency and researchers at Stanford University developed an experiment that would check, with extreme precision, tiny changes in the spin direction of four gyroscopes contained in an Earth satellite orbiting at a 400-mile altitude directly over the Earth s poles. When the program first began, the researchers assessed using Global Positioning System (GPS) technology to control the attitude of the GP-B spacecraft accurately. At that time, the best GPS receivers could only provide accuracy to nearly 1 meter, but the GP-B spacecraft required a system 100 times more accurate. To address this concern, researchers at Stanford designed high-performance, attitude-determining hardware that used GPS signals, perfecting a high-precision form of GPS called Carrier-Phase Differential GPS that could provide continuous real-time position, velocity, time, and attitude sensor information for all axes of a vehicle. The researchers came to the realization that controlling the GP-B spacecraft with this new system was essentially no different than controlling an airplane. Their thinking took a new direction: If this technology proved successful, the airlines and the Federal Aviation Administration (FAA) were ready commercial markets. They set out to test the new technology, the "Integrity Beacon Landing System," using it to automatically land a commercial Boeing 737 over 100 times successfully through Real-Time Kinematic (RTK) GPS technology. The thinking of the researchers shifted again, from automatically landing aircraft, to automating precision farming and construction equipment.

  17. Spotlight on advances in VTE management: CALLISTO and EINSTEIN CHOICE.

    PubMed

    Bach, Miriam; Bauersachs, Rupert

    2016-09-28

    Venous thromboembolism (VTE) is associated with numerous complications and high mortality rates. Patients with cancer are at high risk of developing cancer-associated thrombosis (CAT), and VTE recurrence is common. Evidence supporting use of non-vitamin K antagonist (VKA) oral anticoagulants (NOACs) in patients with cancer is lacking - direct comparisons between NOACs and low-molecular-weight heparin (LMWH) are needed, along with patient-reported outcomes. Cancer Associated thrombosis - expLoring soLutions for patients through Treatment and Prevention with RivarOxaban (CALLISTO) is an international research programme exploring the potential of the direct, oral factor Xa inhibitor rivaroxaban for the prevention and treatment of CAT, supplementing existing data from EINSTEIN DVT and EINSTEIN PE. Here, we focus on four CALLISTO studies: A Study to Evaluate the Efficacy and Safety of Rivaroxaban Venous Thromboembolism Prophylaxis in Ambulatory Cancer Participants receiving Chemotherapy (CASSINI), Anticoagulation Therapy in SELECTeD Cancer Patients at Risk of Recurrence of Venous Thromboembolism (SELECT-D), Rivaroxaban in the Treatment of Venous Thromboembolism in Cancer Patients - a Randomized Phase III Study (CONKO-011) and a database analysis. Optimal anticoagulation duration for VTE treatment has always been unclear. Following favourable results for rivaroxaban 20 mg once-daily (Q. D.) for secondary VTE prevention (EINSTEIN EXT), EINSTEIN CHOICE is assessing rivaroxaban safety and (20 mg Q. D. or 10 mg Q. D.) vs acetylsalicylic acid (ASA), and will investigate whether an alternative rivaroxaban dose (10 mg Q. D.) could offer long-term VTE protection. It is anticipated that results from these studies will provide important answers and expand upon current evidence for rivaroxaban in VTE management.

  18. BOOK REVIEW: Einsteins Kosmos. Untersuchungen zur Geschichte der Kosmologie Relativitatstheorie und zu Einsteins Wirken und Nachwirken

    NASA Astrophysics Data System (ADS)

    Sterken, C.; Duerbeck, H. W.; Dick, W. R.

    2006-12-01

    This book collects about 15 papers (most of them by one single author) on Einstein and the history of general relativity (GR) and the foundations of relativistic cosmology. The matter not only deals with Einstein and his times, but also with pre-GR ideas, and with the interplay of Einstein and his colleagues (opposing as well as supporting personalities). As the title indicates, all papers are written in German, but they include comprehensive Abstracts both in German and English. The book is illustrated with quite a number classical - but also some far more original though not less beautiful - photographs and facsimiles of documents. The book is edited very well, though the style of references is not quite homogeneous. There is no Index. K. Hentschel covers Einstein's argumentation for the existence of graviational redshift, and the initial search for empirical support. The error analysis of observational evidence supporting relativistic light deflection is discussed in a paper by P. Brosche. In particular, H. Duerbeck and P. Flin - in their description of the life and work of Silberstein, who was quite sceptic on the significance of the observational verifications a la Eddington - include the transcription of two most revealing letters by Silberstein to Sommerfeld (1919) and to Einstein (1934). In the first letter, Silberstein clearly shows his scientific maturity and integrity by scrutinising the observational evidence supporting light deflection, presented at a joint meeting of the Royal Society and the Royal Astronomical Society. The second letter, which is more a personal letter, includes lots of political references and connotations. Some of Einstein's political views are also revealed by D.B. Herrmann on the basis of his own correspondence with E.G. Straus, a collaborator of Einstein's. In a consequent paper, S. Grundmann gives remarks on Herrmann's contribution and illustrates Einstein's attitude towards Marx, Engels, Lenin and Stalin. M. Schemmel discusses Schwarzschild's cosmological speculations, and wonders why some people do immediately grasp the meaning and consequence of newly proposed doctrines, whereas the bulk of the contemporaneous scientists respond in a rather low profile. T. Jung reviews Einstein's contribution to cosmology, leading to the Friedmann-Einstein and Einstein-de Sitter universes (with a detailed Appendix on the Friedmann-Lemaitre cosmology), and also presents the cosmological work of Selety, and his correspondence with Einstein. In a subsequent paper, H.-J. Schmidt comments on Einstein's criticism on de Sitter's solution of the Einstein field equations. Controversies with Einstein are elaborated by G. Singer (on Friedmann) and by K. Roessler (on Lemaitre). J. Renn and T. Sauer discuss Mandl's role in the publication history of Einstein's papers, notably Einstein's short paper on gravitational lensing. Finally, the book concludes with a contribution by D.B. Herrmann about the relationship between Einstein and Archenhold Observatory (where Einstein gave his first Berlin popular lecture in 1915), the transcription of H.-J. Treder's 1979 public address at the Einstein memorial plaque, and an inventory list of about 50 Einstein memorabilia - monuments, busts, plaques - compiled by W.R. Dick. This book is based on ideas approached in a historical context from the individual perspective of the authors. It is a real treasure trove of information and basic references on the history of GR, and it also covers quite some grounds with mathematical equations.

  19. Reassessing the Ritz-Einstein debate on the radiation asymmetry in classical electrodynamics

    NASA Astrophysics Data System (ADS)

    Frisch, Mathias; Pietsch, Wolfgang

    2016-08-01

    We investigate the debate between Walter Ritz and Albert Einstein on the origin and nature of the radiation asymmetry. We argue that Ritz's views on the radiation asymmetry were far richer and nuanced than the oft-cited joint letter with Einstein (Ritz & Einstein, 1909) suggests, and that Einstein's views in 1909 on the asymmetry are far more ambiguous than is commonly recognized. Indeed, there is strong evidence that Einstein ultimately came to agree with Ritz that elementary radiation processes in classical electrodynamics are non-symmetric and fully retarded.

  20. Getting to the Point in Pinpoint Landing

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Assisted by Langley Research Center's Small Business Technology Transfer (STTR) Program, IntegriNautics has developed a commercialized precision landing system. The idea finds its origins in Stanford University work on a satellite test of Einstein's General Theory of Relativity, where Stanford has designed a new high-performance altitude-determining hardware.

  1. Chandra X-ray Center

    Science.gov Websites

    NHFP/Einstein Postdoctoral Fellows Selected NASA has announced the selection of the 2018 NASA Hubble . NASA press release Read the full CXC announcement here. 4/3/2018 Accretion in Stellar Systems August 8 Calibration Database User Community Chandra Users' Committee (CUC) NASA Hubble Fellowship Program

  2. On Life Support

    ERIC Educational Resources Information Center

    Watson, Jamal

    2006-01-01

    The Hispanic Center of Excellence, which is located on the campus of the Albert Einstein Medical Center in the Bronx, is just one of the few federally funded programs in the country charged with producing new Hispanic physicians. Recently, the Office of Management and Budget, a federal department that assists President Bush in overseeing the…

  3. New Concepts for the Administrative Training of Psychiatric Chief Residents

    ERIC Educational Resources Information Center

    Griffith, Ezra; And Others

    1978-01-01

    In 1976 a new organizational structure was established in the Lincoln Psychiatric Residency Program of the Albert Einstein College of Medicine in which the chief resident was given responsibility for the residents in all years of training. Problems and benefits of this broad area of control are addressed. (LBH)

  4. Being the Family's Therapist: An Integrative Approach.

    ERIC Educational Resources Information Center

    Zimmerman, James K.; La Sorsa, Valerie A.

    There is strong justification in the counseling literature for bridging individual and family perspectives. The Adolescent Depression and Suicide Program at Montefiore Center/Albert Einstein College of Medicine (New York) is a brief treatment, outpatient clinic designed to provide mental health services for suicidal adolescents and their families.…

  5. Albert Einstein and his mentor Max Talmey. The seventh Charles B. Snyder Lecture.

    PubMed

    Ravin, J G

    1997-01-01

    While he was a student at the Munich medical school, Max Talmey strongly influenced the education of Albert Einstein. Their association occurred during five years of Einstein's second decade. They lost contact for many years after each left Munich. Talmey emigrated to the United States and practiced medicine, mainly ophthalmology, in New York City. He made significant contributions to medicine, to the popularization of Einstein's work, and to the development of international languages. The relationship of Talmey and Einstein was rekindled when Einstein visited and later moved to the United States.

  6. In the limelight of stars. Einstein, Mandl, and the origins of gravitational lens research (German Title: Im Rampenlicht der Sterne. Einstein, Mandl und die Ursprünge der Gravitationslinsenforschung)

    NASA Astrophysics Data System (ADS)

    Renn, Jürgen; Sauer, Tilman

    Einstein's paper on gravitational lensing from 1936 was published only as a result of insistent prodding by the Czech amateur scientist Rudi Mandl. We discuss Mandl's role for the publication history of Einstein's paper and point out striking similarities between Mandl's situation in 1936 and Einstein's own position in 1912. At that time, Einstein himself had already considered the idea of gravitational lensing, as had been discovered some years ago through the identification of research notes from that period. Other early discussions of gravitational lensing by Lodge, Chwolson, Tikhov, Zwicky, Russell, and others were either only perceived or only written after Mandl had succeeded to persuade Einstein into publication.

  7. Einstein's cosmology review of 1933: a new perspective on the Einstein-de Sitter model of the cosmos

    NASA Astrophysics Data System (ADS)

    O'Raifeartaigh, Cormac; O'Keeffe, Michael; Nahm, Werner; Mitton, Simon

    2015-09-01

    We present a first English translation and analysis of a little-known review of relativistic cosmology written by Albert Einstein in late 1932. The article, which was published in 1933 in a book of Einstein papers translated into French, contains a substantial review of static and dynamic relativistic models of the cosmos, culminating in a discussion of the Einstein-de Sitter model. The article offers a valuable contemporaneous insight into Einstein's cosmology in the early 1930s and confirms that his interest lay in the development of the simplest model of the cosmos that could account for observation. The article also confirms that Einstein did not believe that simplified relativistic models could give an accurate description of the early universe.

  8. Numerical simulation code for self-gravitating Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Madarassy, Enikő J. M.; Toth, Viktor T.

    2013-04-01

    We completed the development of simulation code that is designed to study the behavior of a conjectured dark matter galactic halo that is in the form of a Bose-Einstein Condensate (BEC). The BEC is described by the Gross-Pitaevskii equation, which can be solved numerically using the Crank-Nicholson method. The gravitational potential, in turn, is described by Poisson’s equation, that can be solved using the relaxation method. Our code combines these two methods to study the time evolution of a self-gravitating BEC. The inefficiency of the relaxation method is balanced by the fact that in subsequent time iterations, previously computed values of the gravitational field serve as very good initial estimates. The code is robust (as evidenced by its stability on coarse grids) and efficient enough to simulate the evolution of a system over the course of 109 years using a finer (100×100×100) spatial grid, in less than a day of processor time on a contemporary desktop computer. Catalogue identifier: AEOR_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOR_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 5248 No. of bytes in distributed program, including test data, etc.: 715402 Distribution format: tar.gz Programming language: C++ or FORTRAN. Computer: PCs or workstations. Operating system: Linux or Windows. Classification: 1.5. Nature of problem: Simulation of a self-gravitating Bose-Einstein condensate by simultaneous solution of the Gross-Pitaevskii and Poisson equations in three dimensions. Solution method: The Gross-Pitaevskii equation is solved numerically using the Crank-Nicholson method; Poisson’s equation is solved using the relaxation method. The time evolution of the system is governed by the Gross-Pitaevskii equation; the solution of Poisson’s equation at each time step is used as an initial estimate for the next time step, which dramatically increases the efficiency of the relaxation method. Running time: Depends on the chosen size of the problem. On a typical personal computer, a 100×100×100 grid can be solved with a time span of 10 Gyr in approx. a day of running time.

  9. Personal Recollections of Albert Einstein

    NASA Astrophysics Data System (ADS)

    Moszkowski, Steven

    2005-03-01

    My grandparents were good friends of Albert Einstein in Berlin. Later my parents also were on friendly terms with him. I had the opportunity to meet Einstein four times after my parents and I came to the United States in 1940. My parents and I, on occasion, had correspondence with Einstein and took a few photos of him. Albert Einstein had considerable influence on my development and style of doing physics, as I will discuss.

  10. Einstein, race, and the myth of the cultural icon

    NASA Astrophysics Data System (ADS)

    Jerome, Fred

    2004-12-01

    The most remarkable aspect of Einstein's 1946 address at Lincoln University is that it has vanished from Einstein's recorded history. Its disappearance into a historical black hole symbolizes what seems to happen in the creation of a cultural icon. It is but one of many political statements by Einstein to have met such a fate, though his civil rights activism is most glaringly mission. One explanation for this historical amnesia is that those who shape our official memories felt that Einstein's "controversial" friends like Paul Robeson and activities like co-chairing the anti-lynching crusade might tarnish Einstein as an icon. That icon, sanctified by Time magazine when it dubbed Einstein "Person of the Century" at the end of 1999, is a myth, albeit a marvelous one. Yet it is not so much the motive for the omission but the consequence of it that should concern us. Americans and the millions of Einstein fans around the world are left unaware that he was an outspoken, passionate, committed antiracist.

  11. Rediscovering Einstein's legacy: How Einstein anticipates Kuhn and Feyerabend on the nature of science.

    PubMed

    Oberheim, Eric

    2016-06-01

    Thomas Kuhn and Paul Feyerabend promote incommensurability as a central component of their conflicting accounts of the nature of science. This paper argues that in so doing, they both develop Albert Einstein's views, albeit in different directions. Einstein describes scientific revolutions as conceptual replacements, not mere revisions, endorsing 'Kant-on-wheels' metaphysics in light of 'world change'. Einstein emphasizes underdetermination of theory by evidence, rational disagreement in theory choice, and the non-neutrality of empirical evidence. Einstein even uses the term 'incommensurable' specifically to apply to challenges posed to comparatively evaluating scientific theories in 1949, more than a decade before Kuhn and Feyerabend. This analysis shows how Einstein anticipates substantial components of Kuhn and Feyerabend's views, and suggests that there are strong reasons to suspect that Kuhn and Feyerabend were directly inspired by Einstein's use of the term 'incommensurable', as well as his more general methodological and philosophical reflections. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Einstein as Evaluator?

    ERIC Educational Resources Information Center

    Caulley, Darrel N.

    1982-01-01

    Like any other person, Albert Einstein was an informal evaluator, engaged in placing value on various aspects of his life, work, and the world. Based on Einstein's own statements, this paper speculates about what Einstein would have been like as a connoisseur evaluator, a conceptual evaluator, or a responsive evaluator. (Author/BW)

  13. Stability of the Einstein static universe in Einstein-Cartan theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Atazadeh, K., E-mail: atazadeh@azaruniv.ac.ir

    The existence and stability of the Einstein static solution have been built in the Einstein-Cartan gravity. We show that this solution in the presence of perfect fluid with spin density satisfying the Weyssenhoff restriction is cyclically stable around a center equilibrium point. Thus, study of this solution is interesting because it supports non-singular emergent cosmological models in which the early universe oscillates indeterminately about an initial Einstein static solution and is thus past eternal.

  14. Proceedings of the 2003 NASA/JPL Workshop on Fundamental Physics in Space

    NASA Technical Reports Server (NTRS)

    Strayer, Don (Editor)

    2003-01-01

    The 2003 Fundamental Physics workshop included presentations ranging from forces acting on RNA to properties of clouds of degenerate Fermi atoms, to techniques to probe for a added space-time dimensions, and to flight hardware for low temperature experiments, amongst others. Mark Lee from NASA Headquarters described the new strategic plan that NASA has developed under Administrator Sean O'Keefe's leadership. Mark explained that the Fundamental Physics community now needs to align its research program and the roadmap describing the long-term goals of the program with the NASA plan. Ulf Israelsson of JPL discussed how the rewrite of the roadmap will be implemented under the leadership of the Fundamental Physics Discipline Working Group (DWG). Nick Bigelow, chair of the DWG, outlined how investigators can contribute to the writing of the roadmap. Results of measurements on very cold clouds of Fermi atoms near a Feshbach resonance were described by three investigators. Also, new measurements relating to tests of Einstein equivalence were discussed. Investigators also described methods to test other aspects of Einstein's relativity theories.

  15. Einstein's Jury: Trial by Telescope

    NASA Astrophysics Data System (ADS)

    Crelinsten, Jeffrey

    2007-03-01

    While Einstein's theory of relativity ultimately laid the foundation for modern studies of the universe, it took a long time to be accepted. Between 1905 and 1930, relativity was poorly understood and Einstein worked hard to try to make it more accessible to scientists and scientifically literate laypeople. Its acceptance was largely due to the astronomy community, which undertook precise measurements to test Einstein's astronomical predictions. The well-known 1919 British eclipse expeditions that made Einstein famous did not convince most scientists to accept relativity. The 1920s saw numerous attempts to measure light-bending, as well as solar line displacements and even ether-drift. How astronomers approached the ``Einstein problem'' in these early years before and after the First World War, and how the public reacted to what they reported, helped to shape attitudes we hold today about Einstein and his ideas.

  16. Investigating Student Understanding for a Statistical Analysis of Two Thermally Interacting Solids

    NASA Astrophysics Data System (ADS)

    Loverude, Michael E.

    2010-10-01

    As part of an ongoing research and curriculum development project for upper-division courses in thermal physics, we have developed a sequence of tutorials in which students apply statistical methods to examine the behavior of two interacting Einstein solids. In the sequence, students begin with simple results from probability and develop a means for counting the states in a single Einstein solid. The students then consider the thermal interaction of two solids, and observe that the classical equilibrium state corresponds to the most probable distribution of energy between the two solids. As part of the development of the tutorial sequence, we have developed several assessment questions to probe student understanding of various aspects of this system. In this paper, we describe the strengths and weaknesses of student reasoning, both qualitative and quantitative, to assess the readiness of students for one tutorial in the sequence.

  17. Einstein as a Missionary of Science

    NASA Astrophysics Data System (ADS)

    Renn, Jürgen

    2013-10-01

    The paper reviews Einstein's engagement as a mediator and popularizer of science. It discusses the formative role of popular scientific literature for the young Einstein, showing that not only his broad scientific outlook but also his internationalist political views were shaped by these readings. Then, on the basis of recent detailed studies, Einstein's travels and their impact on the dissemination of relativity theory are examined. These activities as well as Einstein's own popular writings are interpreted in the context of his understanding of science as part of human culture.

  18. Astrophysical observations: lensing and eclipsing Einstein's theories.

    PubMed

    Bennett, Charles L

    2005-02-11

    Albert Einstein postulated the equivalence of energy and mass, developed the theory of special relativity, explained the photoelectric effect, and described Brownian motion in five papers, all published in 1905, 100 years ago. With these papers, Einstein provided the framework for understanding modern astrophysical phenomena. Conversely, astrophysical observations provide one of the most effective means for testing Einstein's theories. Here, I review astrophysical advances precipitated by Einstein's insights, including gravitational redshifts, gravitational lensing, gravitational waves, the Lense-Thirring effect, and modern cosmology. A complete understanding of cosmology, from the earliest moments to the ultimate fate of the universe, will require developments in physics beyond Einstein, to a unified theory of gravity and quantum physics.

  19. Astronomers' Race to Test Relativity, 1911-1930

    NASA Astrophysics Data System (ADS)

    Crelinsten, Jeffrey

    2006-11-01

    Einstein's theory of relativity changed our notions of space and time and has dramatically altered the way we look at the universe and our place in it. Yet to this day a working knowledge of the theory is beyond most people. In today's popular culture, Einstein is a remote, loveable genius and his theory is incomprehensible. While Einstein's theory ultimately laid the foundation for modern studies of the universe, it took a long time to be accepted. Between 1905 and 1930, relativity was poorly understood and Einstein worked hard to try to make it more accessible to scientists and scientifically literate laypeople. Its acceptance was largely due to the astronomy community, which undertook precise measurements to test Einstein's astronomical predictions. How astronomers approached the ``Einstein problem'' in these early years and how the public reacted to what they reported helped to shape attitudes we hold today about Einstein and his ideas.

  20. Series expansion of the modified Einstein Procedure

    Treesearch

    Seema Chandrakant Shah-Fairbank

    2009-01-01

    This study examines calculating total sediment discharge based on the Modified Einstein Procedure (MEP). A new procedure based on the Series Expansion of the Modified Einstein Procedure (SEMEP) has been developed. This procedure contains four main modifications to MEP. First, SEMEP solves the Einstein integrals quickly and accurately based on a series expansion. Next,...

  1. Einstein for Schools and the General Public

    ERIC Educational Resources Information Center

    Johansson, K. E.; Kozma, C; Nilsson, Ch

    2006-01-01

    In April 2005 the World Year of Physics (Einstein Year in the UK and Ireland) was celebrated with an Einstein week in Stockholm House of Science. Seven experiments illustrated Einstein's remarkable work in 1905 on Brownian motion, the photoelectric effect and special relativity. Thirteen school classes with 260 pupils, 30 teachers and 25 members…

  2. Conceptual Development of Einstein's Mass-Energy Relationship

    ERIC Educational Resources Information Center

    Wong, Chee Leong; Yap, Kueh Chin

    2005-01-01

    Einstein's special theory of relativity was published in 1905. It stands as one of the greatest intellectual achievements in the history of human thought. Einstein described the equivalence of mass and energy as "the most important upshot of the special theory of relativity" (Einstein, 1919). In this paper, we will discuss the evolution of the…

  3. EPR before EPR: A 1930 Einstein-Bohr thought Experiment Revisited

    ERIC Educational Resources Information Center

    Nikolic, Hrvoje

    2012-01-01

    In 1930, Einstein argued against the consistency of the time-energy uncertainty relation by discussing a thought experiment involving a measurement of the mass of the box which emitted a photon. Bohr seemingly prevailed over Einstein by arguing that Einstein's own general theory of relativity saves the consistency of quantum mechanics. We revisit…

  4. 78 FR 12337 - Published Privacy Impact Assessments on the Web

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-22

    ... system for intrusion detection, analysis, intrusion prevention, and information sharing capabilities that... equivalent protection to participating Federal civilian agencies pending deployment of EINSTEIN intrusion...-008 Homeland Security Information Network R3 User Accounts (HSIN). Component: Operations Coordination...

  5. A Program of Ground-Based Astronomy to Complement Einstein Observations.

    DTIC Science & Technology

    1982-11-30

    Astronomy D T I C i CO-,,, Uv I,. WA TOPE: -. Gary A. Cbanan Assistant Professor of Phy.3[cs i t0V.l.., 1982 %30𔃼 0 ii CONTENTS Page A. REPORT DOCUMENTATION...block number) A total of eight ground-based astronomical observing programs were carried out in pursuit of a multiwavelength approach to a number of...astro- physical problems. Synthesis of these results with existing X-ray data led to considerable progress on problems of the emission mechanisms and

  6. Posing Einstein's Question: Questioning Einstein's Pose.

    ERIC Educational Resources Information Center

    Topper, David; Vincent, Dwight E.

    2000-01-01

    Discusses the events surrounding a famous picture of Albert Einstein in which he poses near a blackboard containing a tensor form of his 10 field equations for pure gravity with a question mark after it. Speculates as to the content of Einstein's lecture and the questions he might have had about the equation. (Contains over 30 references.) (WRM)

  7. Hidden symmetries on Kerr-NUT-(A)dS metrics of Einstein-Sasaki type

    NASA Astrophysics Data System (ADS)

    Visinescu, Mihai

    2013-01-01

    The hidden symmetries of higher dimensional Euclideanised Kerr-NUT-(A)dS metrics are investigated. In certain scaling limits these metrics are related to the Einstein-Sasaki ones. The complete set of Killing-Yano tensors of the Einstein-Sasaki spaces are presented. For this purpose the Killing forms of the Calabi-Yau cone over the Einstein-Sasaki manifold are constructed. Two new Killing forms on Einstein-Sasaki manifolds are identified associated with the complex volume form of the cone manifolds. As a concrete example we present the complete set of Killing-Yano tensors on the five-dimensional Einstein-Sasaki Y(p, q) spaces. The corresponding hidden symmetries are not anomalous and the geodesic equations are superintegrable.

  8. Einstein Inflationary Probe (EIP)

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary

    2004-01-01

    I will discuss plans to develop a concept for the Einstein Inflation Probe: a mission to detect gravity waves from inflation via the unique signature they impart to the cosmic microwave background (CMB) polarization. A sensitive CMB polarization satellite may be the only way to probe physics at the grand-unified theory (GUT) scale, exceeding by 12 orders of magnitude the energies studied at the Large Hadron Collider. A detection of gravity waves would represent a remarkable confirmation of the inflationary paradigm and set the energy scale at which inflation occurred when the universe was a fraction of a second old. Even a strong upper limit to the gravity wave amplitude would be significant, ruling out many common models of inflation, and pointing to inflation occurring at much lower energy, if at all. Measuring gravity waves via the CMB polarization will be challenging. We will undertake a comprehensive study to identify the critical scientific requirements for the mission and their derived instrumental performance requirements. At the core of the study will be an assessment of what is scientifically and experimentally optimal within the scope and purpose of the Einstein Inflation Probe.

  9. Bloch oscillations of a Bose-Einstein condensate in a cavity-induced optical lattice

    NASA Astrophysics Data System (ADS)

    Georges, Ch.; Vargas, J.; Keßler, H.; Klinder, J.; Hemmerich, A.

    2017-12-01

    This article complements previous work on the nondestructive observation of Bloch oscillations of a Bose-Einstein condensate in an optical lattice formed inside a high-finesse optical cavity [H. Keßler et al., New J. Phys. 18, 102001 (2016), 10.1088/1367-2630/18/10/102001]. We present measurements showing that the observed Bloch frequency is independent of the atom number and hence the cooperative coupling strength, the intracavity lattice depth, and the detuning between the external pump light and the effective cavity resonance. We find that in agreement with theoretical predictions, despite the atom-cavity dynamics, the value of the Bloch frequency agrees with that expected in conventional optical lattices, where it solely depends on the sizes of the force and the lattice constant. We also show that Bloch oscillations are observed in a self-organized two-dimensional lattice, which is formed if, instead of axially pumping the cavity through one of its mirrors, the Bose-Einstein condensate is irradiated by an optical standing wave oriented perpendicularly with respect to the cavity axis. For this case, however, excessive decoherence prevents a meaningful quantitative assessment.

  10. Power law of shear viscosity in Einstein-Maxwell-Dilaton-Axion model

    NASA Astrophysics Data System (ADS)

    Ling, Yi; Xian, Zhuoyu; Zhou, Zhenhua

    2017-02-01

    We construct charged black hole solutions with hyperscaling violation in the infrared (IR) region in Einstein-Maxwell-Dilaton-Axion theory and investigate the temperature behavior of the ratio of holographic shear viscosity to the entropy density. When translational symmetry breaking is relevant in the IR, the power law of the ratio is verified numerically at low temperature T, namely, η/s ˜ T κ , where the values of exponent κ coincide with the analytical results. We also find that the exponent κ is not affected by irrelevant current, but is reduced by the relevant current. Supported by National Natural Science Foundation of China (11275208, 11575195), Opening Project of Shanghai Key Laboratory of High Temperature Superconductors (14DZ2260700) and Jiangxi Young Scientists (JingGang Star) Program and 555 Talent Project of Jiangxi Province

  11. Non-destructive imaging of spinor Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Samson, E.; Vinit, Anshuman; Raman, Chandra

    2013-05-01

    We present a non-destructive differential imaging technique that enables the observation of the spatial distribution of the magnetization in a spinor Bose-Einstein condensate (BEC) through a Faraday rotation protocol. In our procedure, we utilize a linearly polarized, far-detuned laser beam as our imaging probe, and upon interaction with the condensate, the beam's polarization direction undergoes Faraday rotation. A differential measurement of the orthogonal polarization components of the rotated beam provides a spatial map of the net magnetization density within the BEC. The non-destructive aspect of this method allows for continuous imaging of the condensate. This imaging technique will prove useful in experimental BEC studies, such as spatially resolved magnetometry using ultracold atoms, and non-destructive imaging of non-equilibrium behavior of antiferromagnetic spinor condensates. This work was supported by the DARPA QuASAR program through a grant from ARO.

  12. A review of the contributions of Albert Einstein to earth sciences--in commemoration of the World Year of Physics.

    PubMed

    Martínez-Frías, Jesús; Hochberg, David; Rull, Fernando

    2006-02-01

    The World Year of Physics (2005) is an international celebration to commemorate the 100th anniversary of Einstein's "Annus Mirabilis." The United Nations has officially declared 2005 as the International Year of Physics. However, the impact of Einstein's ideas was not restricted to physics. Among numerous other disciplines, Einstein also made significant and specific contributions to Earth Sciences. His geosciences-related letters, comments, and scientific articles are dispersed, not easily accessible, and are poorly known. The present review attempts to integrate them as a tribute to Einstein in commemoration of this centenary. These contributions can be classified into three basic areas: geodynamics, geological (planetary) catastrophism, and fluvial geomorphology. Regarding geodynamics, Einstein essentially supported Hapgood's very controversial theory called Earth Crust Displacement. With respect to geological (planetary) catastrophism, it is shown how the ideas of Einstein about Velikovsky's proposals evolved from 1946 to 1955. Finally, in relation to fluvial geodynamics, the review incorporates the elegant work in which Einstein explains the formation of meandering rivers. A general analysis of his contributions is also carried out from today's perspective. Given the interdisciplinarity and implications of Einstein's achievements to multiple fields of knowledge, we propose that the year 2005 serve, rather than to confine his universal figure within a specific scientific area, to broaden it for a better appreciation of this brilliant scientist in all of his dimensions.

  13. [Photoeffects, Einstein's light quanta and the history of their acceptance].

    PubMed

    Wiederkehr, Karl Heinrich

    2006-01-01

    It is generally supposed, that the discovery of the efficacy-quantum by Planck was the impetus to Einstein's hypothesis of lightquanta. With its help Einstein could explain the external light-electrical effect. But even years before Einstein had worked at the photoeffect and already made experiments on it. For that reason the article gives a short survey about the history of the lightelectric effects. Lenard's basical work about the release of the photoelectrons is dealt with in detail, without which Einstein would scarcely have found his lightquanta. Furthermore it is shown how difficult it was for the physicists to give up--at least partially--the traditional view of the undulation-nature of light, and how they searched to explain the great energies of the photoelectrons. On the other side it is set forth how Einstein's formula of lightquanta was gradually confirmed. The tragical development of Einstein's personal relations with Johannes Stark and Philipp Lenard are briefly described. Stark was one of the few who supported Einstein's ideas at the beginning. Only with the Compton-effect, which could only be quantitatively interpreted by means of lightquanta and the special theory of relativity 1923, the way was free for the general acceptance of the lightquanta. Einstein did not agree to the obtained dualism of undulation and corpuscle; he had a different solution in mind about the fusion of the two forms of appearance of light.

  14. Einstein 1905-1955: His Approach to Physics

    NASA Astrophysics Data System (ADS)

    Damour, Thibault

    We review Einstein's epistemological conceptions, and indicate their philosophical roots. The particular importance of the ideas of Hume, Kant, Mach, and Poincaré is highlighted. The specific characteristics of Einstein's approach to physics are underlined. Lastly, we consider the practical application of Einstein's methodological principles to the two theories of relativity, and to quantum theory. We emphasize a Kantian approach to quantum theory.

  15. Einstein and Planck

    NASA Astrophysics Data System (ADS)

    Heilbron, John

    2005-03-01

    As an editor of the Annalen der Physik, Max Planck published Einstein's early papers on thermodynamics and on special relativity, which Planck probably was the first major physicist to appreciate. They respected one another not only as physicists but also, for their inspired creation of world pictures, as artists. Planck helped to establish Einstein in a sinecure at the center of German physics, Berlin. Despite their differences in scientific style, social life, politics, and religion, they became fast friends. Their mutual admiration survived World War I, during which Einstein advocated pacifism and Planck signed the infamous Manifesto of the 93 Intellectuals supporting the German invasion of Belgium. It also survived the Weimar Republic, which Einstein favored and Planck disliked. Physics drew them together, as both opposed the Copenhagen Interpretation; so did common decency, as Planck helped to protect Einstein from anti-semitic attacks. Their friendship did not survive the Nazis. As a standing secretary of the Berlin Academy, Planck had to advise Einstein to resign from it before his colleagues, outraged at his criticism of the new Germany from the safety of California, expelled him. Einstein never forgave his old friend and former fellow artist for not protesting publicly against his expulsion and denigration, and other enormities of National Socialism. .

  16. [Activities of System Studies and Simulation, Inc.

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Contents include the following: 1. Launch Vehicle Interface Work Performed: a. S3 provided to KSC the new launch inclination targets needed for the April '04 launch date. 2. Prelaunch operations work performed: a. S3 updated the staffing plan for MSFC on-console personnel\\during the Final Countdown prior to launch. 3. Software Assessment Work Performed: a. S3 evaluated and recommended approval for Program Control Board (PCB) proposed change 649 for ground software changes, as well as change 650 and 650A for Stored Program Commands. 4. Education and Public Outreach Work Performed: a. S3 continues to coordinate the effort for the design and fabrication of scale models of the GP-3 for use at the launch site, education forums, and management/technical briefings. S3 also prepared a Change Request for additional funds needed for fabrication of additional scale models. S3 drafted the planned uses of these models, including the possibility of participation in the Boston, MA showings of the traveling Einstein Exhibit. 5. Program Management Support Work Performed: a. S3 prepared the input for and closed three MSFC Centerwide Action Item Tracking Systems (CAITS) actions during this period.

  17. Ferroelectricity by Bose-Einstein condensation in a quantum magnet.

    PubMed

    Kimura, S; Kakihata, K; Sawada, Y; Watanabe, K; Matsumoto, M; Hagiwara, M; Tanaka, H

    2016-09-26

    The Bose-Einstein condensation is a fascinating phenomenon, which results from quantum statistics for identical particles with an integer spin. Surprising properties, such as superfluidity, vortex quantization or Josephson effect, appear owing to the macroscopic quantum coherence, which spontaneously develops in Bose-Einstein condensates. Realization of Bose-Einstein condensation is not restricted in fluids like liquid helium, a superconducting phase of paired electrons in a metal and laser-cooled dilute alkali atoms. Bosonic quasi-particles like exciton-polariton and magnon in solids-state systems can also undergo Bose-Einstein condensation in certain conditions. Here, we report that the quantum coherence in Bose-Einstein condensate of the magnon quasi particles yields spontaneous electric polarization in the quantum magnet TlCuCl 3 , leading to remarkable magnetoelectric effect. Very soft ferroelectricity is realized as a consequence of the O(2) symmetry breaking by magnon Bose-Einstein condensation. The finding of this ferroelectricity will open a new window to explore multi-functionality of quantum magnets.

  18. Franz Selety (1893-1933?). His cosmological investigations and the correspondence with Einstein (German Title: Franz Selety (1893-1933?). Seine kosmologischen Arbeiten und der Briefwechsel mit Einstein)

    NASA Astrophysics Data System (ADS)

    Jung, Tobias

    In 1922, Franz Selety, university-bred philosopher and self-educated physicist and cosmologist, developed a molecular hierarchical, spatially infinite, Newtonian cosmological model. His considerations were based on his earlier philosophical work published in 1914 as well as on the early correspondence with Einstein in 1917. Historically, the roots of hierarchical models can be seen in 18th century investigations by Thomas Wright of Durham, Immanuel Kant and Johann Heinrich Lambert. Those investigations were taken up by Edmund Fournier d'Albe and Carl Charlier at the beginning of the 20th century. Selety's cosmological model was criticized by Einstein mainly due to its spatial infiniteness which in Einstein's opinion seemed to contradict Mach's principle. This criticism sheds light on Einstein's conviction that with his first cosmological model, namely the static, spatially infinite, though unbounded Einstein Universe of 1917, the appropriate cosmological theory already had been established.

  19. Castles in the Air: The Einstein-De Sitter Debate, 1916-1918

    NASA Astrophysics Data System (ADS)

    Midwinter, Charles; Janssen, Michel

    2011-03-01

    The Einstein De Sitter debate marked the birth of modern cosmology and the infamous cosmological constant. For Einstein, the controversy was essentially a philosophical one. Einstein's insistence on a static Universe and Mach's Principle guided him in the construction of his own cosmological model, and compelled him to criticize De Sitter's. For De Sitter, the debate began as idle conjecture. Before long, however, he began to wonder if the "spacious castles" he and Einstein had constructed might actually represent physical reality. We plan to write a volume that reproduces the documents relevant to the debate. Our commentary will retrace and explain the arguments of the historical players, complete with calculations. For the first time readers will be able to follow the arguments of Einstein and De Sitter in a detailed exploration of the first two relativistic cosmological models. Readers will see how Einstein's flawed criticisms of De Sitter were supported by Herman Weyl, and finally how Felix Klein settled the whole matter with a coordinate transformation.

  20. Book Review: Book review

    NASA Astrophysics Data System (ADS)

    Wegener, Daan

    Writing a biography of a complex personality and mastermind like Albert Einstein is a daunting task for any historian of science. Yet the sheer temptation of writing his biography has apparently helped to overcome scholarly scruples, as biographies of Einstein have appeared quite regularly on the market. One of them is Einstein: his Life and Universe by journalist Walter Isaacson. It is a best-seller, which is one of the reasons the book deserves a critical evaluation. Isaacson is a man of considerable repute: he has been the chairman of CNN and managing editor of Time magazine. Isaacson's Einstein is written in a style that is accessible to a wide audience. Scholars who are already familiar with Einstein's physics may still enjoy the parts of the book that deal with the relation between Einstein and the press. Indeed, the breadth of its scope is the book's major merit, as it connects the personal, scientific, public and political dimensions of Einstein's life. In this review, I discuss Isaacson's treatment of these dimensions one-by-one.

  1. Was Einstein Really a Pacifist? Einstein's Independent, Forward-Thinking, Flexible, and Self-Defined Pacifism

    NASA Astrophysics Data System (ADS)

    Holmes, Virginia Iris

    2005-03-01

    Perhaps motivated by an admiration for Einstein and a desire to identify with him, combined with a majority world-view in opposition to pacifism, skeptics may often question whether Einstein was really a pacifist. They might point to the fact that his dramatic contributions to the field of physics at the beginning of the twentieth century made nuclear weapons possible, as well as his 1939 letter to President Franklin D. Roosevelt urging him to develop such weapons before the Nazis would, as examples of at least an inconsistent stance on pacifism across time on Einstein's part. However, as this paper will show, Einstein's pacifism began early in his life, was a deep-seated conviction that he expressed repeatedly across the years, and was an independent pacifism that flowed from his own responses to events around him and contained some original and impressively forward-thinking elements. Moreover, in calling himself a pacifist, as Einstein did, he defined pacifism in his own terms, not according to the standards of others, and this self-defined pacifism included the flexibility to designate the Nazis as a special case that had to be opposed through the use of military violence, in his view. As early as during his childhood, Einstein already disliked competitive games, because of the necessity of winners and losers, and disliked military discipline. In his late thirties, living in Germany during the First World War with a prestigious academic position in Berlin, yet retaining his identity as a Swiss citizen, Einstein joined a small group of four intellectuals who signed the pacifist ``Appeal to the Europeans'' in response to the militarist ``Manifesto to the Civilized World'' signed by 93 German intellectuals. In private, throughout that War, Einstein repeatedly expressed his disgust and sense of alienation at the ``war-enthusiasm'' sentiment of the majority. In the aftermath of the War, Einstein was involved in a German private commission to investigate German war crimes and the publication that it produced, and throughout the Weimar period of 1918 to 1933 Einstein continued to take public and private stances as a pacifist. As did many pacifists, Einstein also linked his advocacy for peace with a concern for social justice, which included opposition to antisemitism and advocacy for Zionism, and in 1929, after violent clashes between Jews and Arabs in Palestine, in which hundreds died on both sides, Einstein made some impressively forward-thinking statements about Jewish-Arab conciliation, and even published in an Arab newspaper his own proposal to set up a joint Jewish-Arab council for purposes of conflict resolution. But Einstein's pacifism was not forever obliterated by the Nazi era and the Holocaust, despite his well-known encouragement to Roosevelt to develop the bomb. In the United States, where he lived from 1933 on, in the first ten years after World War II, also the last decade of his life, Einstein inspired American pacifists with his strong stances against war and nuclear weapons.

  2. Mistaken Identity and Mirror Images: Albert and Carl Einstein, Leiden and Berlin, Relativity and Revolution

    NASA Astrophysics Data System (ADS)

    van Dongen, Jeroen

    2012-06-01

    Albert Einstein accepted a "special" visiting professorship at the University of Leiden in the Netherlands in February 1920. Although his appointment should have been a mere formality, it took until October of that year before Einstein could occupy his special chair. Why the delay? The explanation involves a case of mistaken identity with Carl Einstein, Dadaist art, and a particular Dutch fear of revolutions. But what revolutions was one afraid of? The story of Einstein's Leiden chair throws new light on the reception of relativity and its creator in the Netherlands and in Germany.

  3. Low temperature heat capacities and thermodynamic functions described by Debye-Einstein integrals.

    PubMed

    Gamsjäger, Ernst; Wiessner, Manfred

    2018-01-01

    Thermodynamic data of various crystalline solids are assessed from low temperature heat capacity measurements, i.e., from almost absolute zero to 300 K by means of semi-empirical models. Previous studies frequently present fit functions with a large amount of coefficients resulting in almost perfect agreement with experimental data. It is, however, pointed out in this work that special care is required to avoid overfitting. Apart from anomalies like phase transformations, it is likely that data from calorimetric measurements can be fitted by a relatively simple Debye-Einstein integral with sufficient precision. Thereby, reliable values for the heat capacities, standard enthalpies, and standard entropies at T  = 298.15 K are obtained. Standard thermodynamic functions of various compounds strongly differing in the number of atoms in the formula unit can be derived from this fitting procedure and are compared to the results of previous fitting procedures. The residuals are of course larger when the Debye-Einstein integral is applied instead of using a high number of fit coefficients or connected splines, but the semi-empiric fit coefficients keep their meaning with respect to physics. It is suggested to use the Debye-Einstein integral fit as a standard method to describe heat capacities in the range between 0 and 300 K so that the derived thermodynamic functions are obtained on the same theory-related semi-empiric basis. Additional fitting is recommended when a precise description for data at ultra-low temperatures (0-20 K) is requested.

  4. Stationary axisymmetric four dimensional space-time endowed with Einstein metric

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasanuddin; Departments of Physics, Tanjungpura University, Jl Ahmad Yani Pontianak 78124 Indonesia bobby@fi.itb.ac.id; Azwar, A.

    In this paper, we construct Ernst equation from vacuum Einstein field equation for both zero and non-zero cosmological constant. In particular, we consider the case where the space-time admits axisymmetric using Boyer-Lindquist coordinates. This is called Kerr-Einstein solution describing a spinning black hole. Finally, we give a short discussion about the dynamics of photons on Kerr-Einstein space-time.

  5. A comparative analysis of perspectives of Mileva Maric Einstein

    NASA Astrophysics Data System (ADS)

    Barnett, Carol C.

    This dissertation examines the controversy surrounding Mileva Maric Einstein and the allegations subsequent to the publication of love letters during the time that Mileva Maric and Albert Einstein were students and during the early years of their marriage. It also examines the role of women in science from a historical perspective. Chapter One surveys the history of women in science from antiquity to the late nineteenth century and the patterns of gender related and restricting practices such as education, publication, the problem of mentoring and the issue of the lack of historical recognition. Chapter Two provides a comparative analyses between the lives of Mileva Maric Einstein and Marie Sklodowska Curie. Both had very similar social and educational backgrounds yet Marie Curie was able to work and publish jointly with her husband and received (although belatedly) international recognition for her work. On the other hand, Mileva Maric Einstein was never able to complete her degree and lived a life of obscurity and unfulfilled professional dreams. Both highly educated and intelligent women, but with drastically different outcomes in their professional and personal lives. Chapter Three examines the one book devoted to the life of Mileva Maric Einstein, Im Schatten Albert Einsteins: Das Tragische Leben der Mileva Einstein-Maric (In The Shadow of Albert Einstein: The Tragic Life of Mileva Maric), by Desanka Trbuhovic-Gjuric, Paul Haupt Publishers, 1985. It addresses the subjective as well as constructive and destructive criticisms of the various critical camps and provides examples of the statements made by the author which prompted a controversy within the academic and scientific communities. Appropriate responses are provided from various members of the scientific community to reflect the diversity of opinion and the intensity of the debate. Chapter Four addresses the problem of historicity and various interpretations of evidence which might suggest that the role of Mileva Maric was indeed more than just emotional spousal support for the scientific ideas of Albert Einstein. This chapter also details various lines and quotes from the book on Maric Einstein and also from the love letters shared between she and Albert Einstein to provide an indepth account of what evidence we have of possible professional collaboration.

  6. Coherence, Abstraction, and Personal Involvement: Albert Einstein, Physicist and Humanist.

    ERIC Educational Resources Information Center

    Ne'eman, Yuval

    1979-01-01

    Reviews Einstein's main contributions to physics, and analyzes the importance of a coherent body of theory. Einstein's involvement in nonscientific issues such as nuclear disarmament is also included. (HM)

  7. A modification of Einstein-Schrödinger theory that contains both general relativity and electrodynamics

    NASA Astrophysics Data System (ADS)

    Shifflett, J. A.

    2008-08-01

    We modify the Einstein-Schrödinger theory to include a cosmological constant Λ z which multiplies the symmetric metric, and we show how the theory can be easily coupled to additional fields. The cosmological constant Λ z is assumed to be nearly cancelled by Schrödinger’s cosmological constant Λ b which multiplies the nonsymmetric fundamental tensor, such that the total Λ = Λ z + Λ b matches measurement. The resulting theory becomes exactly Einstein-Maxwell theory in the limit as | Λ z | → ∞. For | Λ z | ~ 1/(Planck length)2 the field equations match the ordinary Einstein and Maxwell equations except for extra terms which are < 10-16 of the usual terms for worst-case field strengths and rates-of-change accessible to measurement. Additional fields can be included in the Lagrangian, and these fields may couple to the symmetric metric and the electromagnetic vector potential, just as in Einstein-Maxwell theory. The ordinary Lorentz force equation is obtained by taking the divergence of the Einstein equations when sources are included. The Einstein-Infeld-Hoffmann (EIH) equations of motion match the equations of motion for Einstein-Maxwell theory to Newtonian/Coulombian order, which proves the existence of a Lorentz force without requiring sources. This fixes a problem of the original Einstein-Schrödinger theory, which failed to predict a Lorentz force. An exact charged solution matches the Reissner-Nordström solution except for additional terms which are ~10-66 of the usual terms for worst-case radii accessible to measurement. An exact electromagnetic plane-wave solution is identical to its counterpart in Einstein-Maxwell theory.

  8. Einstein's philosophy of physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seeger, R.J.

    1979-09-01

    Sources of Einstein's philosophical ideas are discussed. Einstein was indebted to Mach and Poincare, and espoused more or less a logical empiricism. He looked upon Nature as real, rational, and understandable, at least to an extent. (RWR)

  9. Einstein Session of the Pontifical Academy.

    ERIC Educational Resources Information Center

    Science, 1980

    1980-01-01

    The texts of four speeches, given at the 1979 Einstein Session of the Pontifical Academy held in Rome, are presented. Each address relates to some aspect of the life and times of Albert Einstein. (SA)

  10. The Einstein tower : an intertexture of dynamic construction, relativity theory and astronomy

    NASA Astrophysics Data System (ADS)

    Hentschel, Klaus; Hentschel, Ann M.

    This book focuses on the `Einstein Tower', an architecturally historic observatory built in Potsdam in 1920 to allow the German astronomer Erwin Finlay Freundlich to attempt to verify experimentally Einstein's general theory of relativity. Freundlich, who was the first German astronomer to show a genuine interest in Einstein's theory, managed to interest his architect friend Erich Mendelsohn in designing this unique building. To develop a full historical picture, the book interweaves several descriptive levels: the biography of Freundlich; the social context in which he interacted with teachers, co-workers, students, his patrons (including Einstein), and scientific opponents; the cognitive aspects of his attempts to verify Einstein's theory; the political milieu within the Berlin scientific research community; and a cross-national comparison of astrophysics. This is an interesting account of this unconventional tale in the history of science.

  11. Albert Einstein's Magic Mountain: An Aarau Education*

    NASA Astrophysics Data System (ADS)

    Hunziker, Herbert

    2015-03-01

    For economic reasons, the electrotechnical factory J. Einstein & Cie. (co-owned by Albert Einstein's father Hermann) had to be closed in the summer of 1894. While Albert's parents emigrated to Italy to build a new existence, he remained in Munich to complete his studies at the Gymnasium. Left behind, however, he had a difficult time with what he considered the rigid educational practices at the Munich Luitpold-Gymnasium and quit without a diploma. The present article discusses Einstein's richly winding path to the Aargau Cantonal School (Switzerland), especially its history and educational philosophy during the time of his stay in Aarau. There, Einstein met some outstanding teachers, who could serve him as models of scholars and human beings. In spite of Einstein's distinct independence of mind, these personalities may well have had a significant influence on the alignment of his inner compass.

  12. What Costs Do Reveal and Moving beyond the Cost Debate: Reply to Einstein and McDaniel (2010)

    ERIC Educational Resources Information Center

    Smith, Rebekah E.

    2010-01-01

    Einstein et al. (2005) predicted no cost to an ongoing task when a prospective memory task met certain criteria. Smith, Hunt, McVay, and McConnell (2007) used prospective memory tasks that met these criteria and found a cost to the ongoing task, contrary to Einstein et al.'s prediction. Einstein and McDaniel (2010) correctly noted that there are…

  13. Renormalization of Einstein gravity through a derivative-dependent field redefinition

    NASA Astrophysics Data System (ADS)

    Slovick, Brian

    2018-01-01

    This work explores an alternative solution to the problem of renormalizability in Einstein gravity. In the proposed approach, Einstein gravity is transformed into the renormalizable theory of four-derivative gravity by applying a local field redefinition containing an infinite number of higher derivatives. It is also shown that the current-current amplitude is invariant with the field redefinition, and thus the unitarity of Einstein gravity is preserved.

  14. Universal Themes of Bose-Einstein Condensation

    NASA Astrophysics Data System (ADS)

    Proukakis, Nick P.; Snoke, David W.; Littlewood, Peter B.

    2017-04-01

    Foreword; List of contributors; Preface; Part I. Introduction: 1. Universality and Bose-Einstein condensation: perspectives on recent work D. W. Snoke, N. P. Proukakis, T. Giamarchi and P. B. Littlewood; 2. A history of Bose-Einstein condensation of atomic hydrogen T. Greytak and D. Kleppner; 3. Twenty years of atomic quantum gases: 1995-2015 W. Ketterle; 4. Introduction to polariton condensation P. B. Littlewood and A. Edelman; Part II. General Topics: Editorial notes; 5. The question of spontaneous symmetry breaking in condensates D. W. Snoke and A. J. Daley; 6. Effects of interactions on Bose-Einstein condensation R. P. Smith; 7. Formation of Bose-Einstein condensates M. J. Davis, T. M. Wright, T. Gasenzer, S. A. Gardiner and N. P. Proukakis; 8. Quenches, relaxation and pre-thermalization in an isolated quantum system T. Langen and J. Schmiedmayer; 9. Ultracold gases with intrinsic scale invariance C. Chin; 10. Berezinskii-Kosterlitz-Thouless phase of a driven-dissipative condensate N. Y. Kim, W. H. Nitsche and Y. Yamamoto; 11. Superfluidity and phase correlations of driven dissipative condensates J. Keeling, L. M. Sieberer, E. Altman, L. Chen, S. Diehl and J. Toner; 12. BEC to BCS crossover from superconductors to polaritons A. Edelman and P. B. Littlewood; Part III. Condensates in Atomic Physics: Editorial notes; 13. Probing and controlling strongly correlated quantum many-body systems using ultracold quantum gases I. Bloch; 14. Preparing and probing chern bands with cold atoms N. Goldman, N. R. Cooper and J. Dalibard; 15. Bose-Einstein condensates in artificial gauge fields L. J. LeBlanc and I. B. Spielman; 16. Second sound in ultracold atomic gases L. Pitaevskii and S. Stringari; 17. Quantum turbulence in atomic Bose-Einstein condensates N. G. Parker, A. J. Allen, C. F. Barenghi and N. P. Proukakis; 18. Spinor-dipolar aspects of Bose-Einstein condensation M. Ueda; Part IV. Condensates in Condensed Matter Physics: Editorial notes; 19. Bose-Einstein condensation of photons and grand-canonical condensate fluctuations J. Klaers and M. Weitz; 20. Laser operation and Bose-Einstein condensation: analogies and differences A. Chiocchetta, A. Gambassi and I. Carusotto; 21. Vortices in resonant polariton condensates in semiconductor microcavities D. N. Krizhanovskii, K. Guda, M. Sich, M. S. Skolnick, L. Dominici and D. Sanvitto; 22. Optical control of polariton condensates G. Christmann, P. G. Savvidis and J. J. Baumberg; 23. Disorder, synchronization and phase-locking in non-equilibrium Bose-Einstein condensates P. R. Eastham and B. Rosenow; 24. Collective topological excitations in 1D polariton quantum fluids H. Terças, D. D. Solnyshkov and G. Malpuech; 25. Microscopic theory of Bose-Einstein condensation of magnons at room temperature H. Salman, N. G. Berloff and S. O. Demokritov; 26. Spintronics and magnon Bose-Einstein condensation R. A. Duine, A. Brataas, S. A. Bender and Y. Tserkovnyak; 27. Spin-superfluidity and spin-current mediated non-local transport H. Chen and A. H. MacDonald; 28. Bose-Einstein condensation in quantum magnets C. Kollath, T. Giamarchi and C. Rüegg; Part V. Condensates in Astrophysics and Cosmology: Editorial notes; 29. Bose-Einstein condensates in neutron stars C. J. Pethick, T. Schäfer and A. Schwenk; 30. A simulated cosmological metric: the superfluid 3He condensate G. R. Pickett; 31. Cosmic axion Bose-Einstein condensation N. Banik and P. Sikivie; 32. Graviton BECs: a new approach to quantum gravity G. Dvali and C. Gomez; Universal Bose-Einstein condensation workshop; Index.

  15. Influence on the Lifetime of 87Rb Bose–Einstein Condensation for Far-Detuning Single-Frequency Lasers with Different Phase Noises

    NASA Astrophysics Data System (ADS)

    Peng, Peng; Huang, Liang-hui; Li, Dong-hao; Wang, Peng-jun; Meng, Zeng-ming; Zhang, Jing

    2018-06-01

    Not Available Supported by the National Key Research and Development Program of China under Grant Nos 2016YFA0301600 and 2016YFA0301602, the National Natural Science Foundation of China under Grant Nos 11234008, 11474188 and 11704234, and the Fund for Shanxi ‘1331 Project’ Key Subjects Construction.

  16. A Complete Public Archive for the Einstein Imaging Proportional Counter

    NASA Technical Reports Server (NTRS)

    Helfand, David J.

    1996-01-01

    Consistent with our proposal to the Astrophysics Data Program in 1992, we have completed the design, construction, documentation, and distribution of a flexible and complete archive of the data collected by the Einstein Imaging Proportional Counter. Along with software and data delivered to the High Energy Astrophysics Science Archive Research Center at Goddard Space Flight Center, we have compiled and, where appropriate, published catalogs of point sources, soft sources, hard sources, extended sources, and transient flares detected in the database along with extensive analyses of the instrument's backgrounds and other anomalies. We include in this document a brief summary of the archive's functionality, a description of the scientific catalogs and other results, a bibliography of publications supported in whole or in part under this contract, and a list of personnel whose pre- and post-doctoral education consisted in part in participation in this project.

  17. Going Beyond Einstein with the Constellation-X Mission

    NASA Technical Reports Server (NTRS)

    White, Nicholas

    2007-01-01

    The Constellation-X mission will address the questions: "What happens to matter close to a black hole?" and "What is Dark Energy?" These questions are central to the NASA Beyond Einstein Program, where Constellation-X plays a central role. The mission will address these questions by using high throughput X-ray spectroscopy to observe the effects of strong gravity close to the event horizon of black holes, and to observe the formation and evolution of clusters of galaxies in order to precisely determine Cosmological parameters. To achieve these primary science goals requires a factor of 25-100 increase in sensitivity for high resolution X-ray spectroscopy.'The mission will also perform routine high-resolution X-ray spectroscopy of faint 2nd extended X-ray source populations. This will provide diagnostic information such as density, elemental abundances, velocity; and ionization state for a wide range of astrophysical problems, including new constraints on the Neutron Star equation of state.

  18. The role of prehealth student volunteers at a student-run free clinic in New York, United States.

    PubMed

    Shabbir, Syed H; Santos, Maria Teresa M

    2015-01-01

    The medical student-run Einstein Community Health Outreach Clinic provides free healthcare to the uninsured adult population of New York, the United States. During the summer, prehealth student volunteers are recruited to assist with clinic operations. We designed a survey study to identify the baseline characteristics of the volunteers between June and August of 2013 and 2014 in order to evaluate the influence of working in a medical student-run free clinic on their education, impressions, and career goals. A total of 38 volunteers (response rate, 83%) participated in the study. The volunteers were demographically diverse and interested in primary care specialties and community service. After the Einstein Community Health Outreach program, the volunteers showed an improved understanding of the healthcare process and issues relevant to uninsured patients. They also developed favorable attitudes towards primary care medicine and an increased level of interest in pursuing careers in primary care.

  19. Symmetry as Bias: Rediscovering Special Relativity

    NASA Technical Reports Server (NTRS)

    Lowry, Michael R.

    1992-01-01

    This paper describes a rational reconstruction of Einstein's discovery of special relativity, validated through an implementation: the Erlanger program. Einstein's discovery of special relativity revolutionized both the content of physics and the research strategy used by theoretical physicists. This research strategy entails a mutual bootstrapping process between a hypothesis space for biases, defined through different postulated symmetries of the universe, and a hypothesis space for physical theories. The invariance principle mutually constrains these two spaces. The invariance principle enables detecting when an evolving physical theory becomes inconsistent with its bias, and also when the biases for theories describing different phenomena are inconsistent. Structural properties of the invariance principle facilitate generating a new bias when an inconsistency is detected. After a new bias is generated. this principle facilitates reformulating the old, inconsistent theory by treating the latter as a limiting approximation. The structural properties of the invariance principle can be suitably generalized to other types of biases to enable primal-dual learning.

  20. Conversations With Albert Einstein. II

    ERIC Educational Resources Information Center

    Shankland, R. S.

    1973-01-01

    Discusses Einstein's views on the role of Michelson-Morley, Fizeau, and Miller experiments in the development of relativity and his attitude toward the theories of new quantum mechanics. Indicates that Einstein's opposition to quantum mechanics is beyond dispute. (CC)

  1. Annotations to D.B. Herrmann's contribution ``On Albert Einstein's political views'' (German Title: Anmerkungen zu D.B. Herrmanns Beitrag ``Über Albert Einsteins politische Ansichten'')

    NASA Astrophysics Data System (ADS)

    Grundmann, Siegfried

    Referring to the Straus-Herrmann correspondence, we deal only with one aspect of the ``political Einstein'': his attitude towards Marx, Engels, Lenin and Stalin (who were in the past sometimes called the ``classics of Marxism-Leninism''). Einstein revered Marx, but condemned Stalin as a criminal. He also resisted attempts to be misused by representatives of ``dialectic materialism''.

  2. [Never forget this in making your drawings and equations! A conversation with Albert Einstein on learning, teaching and the secrets of the world].

    PubMed

    Brunner, A

    2009-03-01

    Albert Einstein, the genius--this aspect often has been noted. A neglected aspect is Einstein's role as student and teacher. For this reason, Einstein's notes have been looked at once again. The selected original quotes are composed into the format of a fictive dialogue. The original context and coherence of his comments have thereby been respected carefully.

  3. α-quantized Einstein masses for leptons, quarks, hadrons, gauge bosons, and Higgs constants

    NASA Astrophysics Data System (ADS)

    Mac Gregor, Malcolm

    2011-11-01

    The Einstein particle mass ɛi is defined by the equation ɛi = Ei / c^2. The basic particle ground states have unique additive Einstein masses (energies), and they interleave in α-quantized (α-1 = 137) energy plots to form distinctive excitation patterns. The ɛu,d,s,c,b,t Einstein masses are constituent-quark masses. Particle generation proceeds via ``α-boosted'' boson, fermion, and gauge-boson ``unit masses,'' which are ``bundled'' together to form particles and quarks. The Einstein mass equations extend throughout the entire range of particle masses. Lederman and HillootnotetextL. M. Lederman and C. T. Hill, Symmetry (Prometheus Books, Amherst, 2004), p. 282. note that the scalar Higgs and Fermi fields are at the 175 GeV energy scale of the top quark t, and they suggest the Higgs coupling constant equation ge=me/mt = 0.0000029, which matches the Einstein mass expression ge=α^2/18.

  4. Extensions of the Einstein-Schrodinger non-symmetric theory of gravity

    NASA Astrophysics Data System (ADS)

    Shifflett, James A.

    We modify the Einstein-Schrödinger theory to include a cosmological constant L z which multiplies the symmetric metric. The cosmological constant L z is assumed to be nearly cancelled by Schrödinger's cosmological constant L b which multiplies the nonsymmetric fundamental tensor, such that the total L = L z + L b matches measurement. The resulting theory becomes exactly Einstein-Maxwell theory in the limit as |L z | [arrow right] oo. For |L z | ~ 1/(Planck length) 2 the field equations match the ordinary Einstein and Maxwell equations except for extra terms which are < 10 -16 of the usual terms for worst-case field strengths and rates-of-change accessible to measurement. Additional fields can be included in the Lagrangian, and these fields may couple to the symmetric metric and the electromagnetic vector potential, just as in Einstein-Maxwell theory. The ordinary Lorentz force equation is obtained by taking the divergence of the Einstein equations when sources are included. The Einstein- Infeld-Hoffmann (EIH) equations of motion match the equations of motion for Einstein-Maxwell theory to Newtonian/Coulombian order, which proves the existence of a Lorentz force without requiring sources. An exact charged solution matches the Reissner-Nordström solution except for additional terms which are ~ 10 -66 of the usual terms for worst-case radii accessible to measurement. An exact electromagnetic plane-wave solution is identical to its counterpart in Einstein-Maxwell theory. Peri-center advance, deflection of light and time delay of light have a fractional difference of < 10 -56 compared to Einstein-Maxwell theory for worst-case parameters. When a spin-1/2 field is included in the Lagrangian, the theory gives the ordinary Dirac equation, and the charged solution results in fractional shifts of < 10 -50 in Hydrogen atom energy levels. Newman-Penrose methods are used to derive an exact solution of the connection equations, and to show that the charged solution is Petrov type- D like the Reissner-Nordström solution. The Newman-Penrose asymptotically flat [Special characters omitted.] (1/ r 2 ) expansion of the field equations is shown to match Einstein-Maxwell theory. Finally we generalize the theory to non-Abelian fields, and show that a special case of the resulting theory closely approximates Einstein-Weinberg-Salam theory.

  5. On static black holes solutions in Einstein and Einstein-Gauss-Bonnet gravity with topology [Formula: see text].

    PubMed

    Dadhich, Naresh; Pons, Josep M

    We study static black hole solutions in Einstein and Einstein-Gauss-Bonnet gravity with the topology of the product of two spheres, [Formula: see text], in higher dimensions. There is an unusual new feature of the Gauss-Bonnet black hole: the avoidance of a non-central naked singularity prescribes a mass range for the black hole in terms of [Formula: see text]. For an Einstein-Gauss-Bonnet black hole a limited window of negative values for [Formula: see text] is also permitted. This topology encompasses black strings, branes, and generalized Nariai metrics. We also give new solutions with the product of two spheres of constant curvature.

  6. When champions meet: Rethinking the Bohr-Einstein debate

    NASA Astrophysics Data System (ADS)

    Landsman, N. P.

    Einstein's philosophy of physics (as clarified by Fine, Howard, and Held) was predicated on his Trennungsprinzip, a combination of separability and locality, without which he believed objectification, and thereby "physical thought" and "physical laws', to be impossible. Bohr's philosophy (as elucidated by Hooker, Scheibe, Folse, Howard, Held, and others), on the other hand, was grounded in a seemingly different doctrine about the possibility of objective knowledge, namely the necessity of classical concepts. In fact, it follows from Raggio's Theorem in algebraic quantum theory that-within an appropriate class of physical theories-suitable mathematical translations of the doctrines of Bohr and Einstein are equivalent. Thus-upon our specific formalization-quantum mechanics accommodates Einstein's Trennungsprinzip if and only if it is interpreted à la Bohr through classical physics. Unfortunately, the protagonists themselves failed to discuss their differences in this constructive way, since their debate was dominated by Einstein's ingenious but ultimately flawed attempts to establish the "incompleteness" of quantum mechanics. This aspect of their debate may still be understood and appreciated, however, as reflecting a much deeper and insurmountable disagreement between Bohr and Einstein about the knowability of Nature. Using the theological controversy on the knowability of God as a analogy, we can say that Einstein was a Spinozist, whereas Bohr could be said to be on the side of Maimonides. Thus Einstein's off-the-cuff characterization of Bohr as a 'Talmudic philosopher' was spot-on.

  7. Centenarian Einstein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2006-05-02

    Commemoration of Albert Einstein with 4 speakers to honor his memory: Professor Weisskopf speaks about the scientifically engaged man. Daniel Amati speaks about the climate of the domain of physics during the 1920s, and Sergio Fubini speaks about the scientific hour of Einstein and Berob.

  8. Centenarian Einstein

    ScienceCinema

    None

    2018-05-18

    Commemoration of Albert Einstein with 4 speakers to honor his memory: Professor Weisskopf speaks about the scientifically engaged man. Daniel Amati speaks about the climate of the domain of physics during the 1920s, and Sergio Fubini speaks about the scientific hour of Einstein and Berob.

  9. Albert Einstein 1879-1955.

    ERIC Educational Resources Information Center

    Physics Today, 1979

    1979-01-01

    Celebrates the centennial of Einstein's birth with an eight-page pictorial biography and two special articles: (1) Einstein the catalyst; and (2) Unitary field theories. His special and general theories of relativity and his contributions to quantum physics and other topics are also presented. (HM)

  10. Einstein's 1917 static model of the universe: a centennial review

    NASA Astrophysics Data System (ADS)

    O'Raifeartaigh, Cormac; O'Keeffe, Michael; Nahm, Werner; Mitton, Simon

    2017-08-01

    We present a historical review of Einstein's 1917 paper ` Cosmological Considerations in the General Theory of Relativity' to mark the centenary of a key work that set the foundations of modern cosmology. We find that the paper followed as a natural next step after Einstein's development of the general theory of relativity and that the work offers many insights into his thoughts on relativity, astronomy and cosmology. Our review includes a description of the observational and theoretical background to the paper; a paragraph-by-paragraph guided tour of the work; a discussion of Einstein's views of issues such as the relativity of inertia, the curvature of space and the cosmological constant. Particular attention is paid to little-known aspects of the paper such as Einstein's failure to test his model against observation, his failure to consider the stability of the model and a mathematical oversight concerning his interpretation of the role of the cosmological constant. We recall the response of theorists and astronomers to Einstein's cosmology in the context of the alternate models of the universe proposed by Willem de Sitter, Alexander Friedman and Georges Lemaître. Finally, we consider the relevance of the Einstein World in today's `emergent' cosmologies.

  11. The collected papers of Albert Einstein. Volume 2. The Swiss years: Writings, 1900-1909

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stachel, J.; Cassidy, D.C.; Renn, J.

    1989-01-01

    This second volume of the papers of Albert Einstein chronologically presents published articles, unpublished papers, research and lecture notes, reviews, and patent applications for the period 1900-1909 during which time Einstein had a two-year period of short-term employment and a permanent position at the Swiss Patent Office in Bern. There are 62 published documents reproduced. The writings of this period deal with seven general themes: molecular forces, the foundation of statistical physics, the quantum hypothesis, determining molecular dimensions, Brownian movement, the theory of relativity, and the electrodynamics of moving media. The book also presents all available letters written by Einsteinmore » along with all significant letters sent to him and many important third-party letters written about him. The editors have added substantial introduction and a set of eight editorial notes that place Einstein's writings within their immediate scientific context. Footnotes to Einstein texts designed to illuminate the sources of scientific problems that Einstein confronted and the ideas and techniques with which he addressed them have been added by the editors. A comprehensive index to Einstein's early writings is provided.« less

  12. Competition between Bose-Einstein Condensation and Spin Dynamics.

    PubMed

    Naylor, B; Brewczyk, M; Gajda, M; Gorceix, O; Maréchal, E; Vernac, L; Laburthe-Tolra, B

    2016-10-28

    We study the impact of spin-exchange collisions on the dynamics of Bose-Einstein condensation by rapidly cooling a chromium multicomponent Bose gas. Despite relatively strong spin-dependent interactions, the critical temperature for Bose-Einstein condensation is reached before the spin degrees of freedom fully thermalize. The increase in density due to Bose-Einstein condensation then triggers spin dynamics, hampering the formation of condensates in spin-excited states. Small metastable spinor condensates are, nevertheless, produced, and they manifest in strong spin fluctuations.

  13. Einstein on Race and Racism, presented by Fred Jerome and Rodger Taylor

    NASA Astrophysics Data System (ADS)

    Jerome, Fred; Taylor, Rodger

    2007-10-01

    It is little-known that physicist Albert Einstein strongly held the view that ``Racism is America's worst disease.'' Einstein was active in the fight against racism from the 1930's until his death in 1955. Included among his friends were a number of important Afro-American figures, including the educator W.E.B. DuBois, the actor and basso profundo singer Paul Robeson, and the soprano Marian Anderson. Based on the authors' work ``Einstein on Race and Racism.''

  14. The cerebral cortex of Albert Einstein: a description and preliminary analysis of unpublished photographs.

    PubMed

    Falk, Dean; Lepore, Frederick E; Noe, Adrianne

    2013-04-01

    Upon his death in 1955, Albert Einstein's brain was removed, fixed and photographed from multiple angles. It was then sectioned into 240 blocks, and histological slides were prepared. At the time, a roadmap was drawn that illustrates the location within the brain of each block and its associated slides. Here we describe the external gross neuroanatomy of Einstein's entire cerebral cortex from 14 recently discovered photographs, most of which were taken from unconventional angles. Two of the photographs reveal sulcal patterns of the medial surfaces of the hemispheres, and another shows the neuroanatomy of the right (exposed) insula. Most of Einstein's sulci are identified, and sulcal patterns in various parts of the brain are compared with those of 85 human brains that have been described in the literature. To the extent currently possible, unusual features of Einstein's brain are tentatively interpreted in light of what is known about the evolution of higher cognitive processes in humans. As an aid to future investigators, these (and other) features are correlated with blocks on the roadmap (and therefore histological slides). Einstein's brain has an extraordinary prefrontal cortex, which may have contributed to the neurological substrates for some of his remarkable cognitive abilities. The primary somatosensory and motor cortices near the regions that typically represent face and tongue are greatly expanded in the left hemisphere. Einstein's parietal lobes are also unusual and may have provided some of the neurological underpinnings for his visuospatial and mathematical skills, as others have hypothesized. Einstein's brain has typical frontal and occipital shape asymmetries (petalias) and grossly asymmetrical inferior and superior parietal lobules. Contrary to the literature, Einstein's brain is not spherical, does not lack parietal opercula and has non-confluent Sylvian and inferior postcentral sulci.

  15. Moving Clocks Do Not Always Appear to Slow down: Don't Neglect the Doppler Effect

    ERIC Educational Resources Information Center

    Wang, Frank

    2013-01-01

    In popular accounts of the time dilation effect in Einstein's special relativity, one often encounters the statement that moving clocks run slow. For instance, in the acclaimed PBS program "NOVA," Professor Brian Greene says, "[I]f I walk toward that guy... he'll perceive my watch ticking slower." Also in his earlier piece for The New York Times,…

  16. The happiest thought of Einstein's life.

    NASA Astrophysics Data System (ADS)

    Heller, M.

    It is a commonly told story that Einstein formulated his famous principle of equivalence when thinking about what happens in a freely falling elevator, and that it was an original idea of his genius distinguished by the rare capability to see deep problems in the most ordinary things. In the reading of Einstein's and Ernst Mach's works the author has discovered that it was not a physicist in an elevator which led to the principle of equivalence but rather somebody falling from a roof; moreover, the idea behind the principle was not invented by Einstein himself but rather read by him from the book by Mach entitled The Science of Mechanics. The influence this book had on young Einstein is very well known.

  17. Astronomical and Cosmological Symbolism in Art Dedicated to Newton and Einstein

    NASA Astrophysics Data System (ADS)

    Sinclair, R.

    2013-04-01

    Separated by two and a half centuries, Isaac Newton (1642-1727) and Albert Einstein (1879-1955) had profound impacts on our understanding of the universe. Newton established our understanding of universal gravitation, which was recast almost beyond recognition by Einstein. Both discovered basic patterns behind astronomical phenomena and became the best-known scientists of their respective periods. I will describe here how artists of the 18th and 20th centuries represented the achievements of Newton and Einstein. Representations of Newton express reverence, almost an apotheosis, portraying him as the creator of the universe. Einstein, in a different age, is represented often as a comic figure, and only rarely do we find art that hints at the profound view of the universe he developed.

  18. Einstein's conversion from his static to an expanding universe

    NASA Astrophysics Data System (ADS)

    Nussbaumer, Harry

    2014-02-01

    In 1917 Einstein initiated modern cosmology by postulating, based on general relativity, a homogenous, static, spatially curved universe. To counteract gravitational contraction he introduced the cosmological constant. In 1922 Alexander Friedman showed that Albert Einstein's fundamental equations also allow dynamical worlds, and in 1927 Georges Lemaître, backed by observational evidence, concluded that our universe was expanding. Einstein impetuously rejected Friedman's as well as Lemaître's findings. However, in 1931 he retracted his former static model in favour of a dynamic solution. This investigation follows Einstein on his hesitating path from a static to the expanding universe. Contrary to an often advocated belief the primary motive for his switch was not observational evidence, but the realisation that his static model was unstable.

  19. Columbia's Bridge to the Ph.D. Program: A research-focused initiative facilitating the transition to graduate school

    NASA Astrophysics Data System (ADS)

    Agüeros, Marcel A.

    2015-01-01

    Columbia University's Bridge to the Ph.D. in the Natural Sciences Program aims to enhance the participation of students from underrepresented groups in Ph.D. programs. To achieve this, the Bridge Program provides an intensive research, coursework, and mentoring experience to post-baccalaureates seeking to strengthen their graduate school applications and to prepare for the transition into graduate school. To date, 20 Bridge Program alumni --- including four in astronomy --- have gone on to Ph.D. programs at Columbia, the University of Michigan, Johns Hopkins, the University of Washington, Albert Einstein, Yale, and SUNY-Albany, among others. In this talk, I will touch on some of the connections between Pre-MAP and the Bridge Program, and particularly how my involvement in the former prepared me to lead the latter.

  20. Einstein Up in Smoke

    NASA Astrophysics Data System (ADS)

    Lisle, John

    2016-01-01

    Albert Einstein's biographers have not explained why he developed the abdominal aortic aneurysm that led to his death. Early conjectures proposed that it was caused by syphilis, without accurate evidence. The present article gives evidence to the contrary, and argues that the principal cause of Einstein's death was smoking.

  1. Einstein's First Steps Toward General Relativity: Gedanken Experiments and Axiomatics

    NASA Astrophysics Data System (ADS)

    Miller, A. I.

    1999-03-01

    Albert Einstein's 1907 Jahrbuch paper is an extraordinary document because it contains his first steps toward generalizing the 1905 relativity theory to include gravitation. Ignoring the apparent experimental disconfirmation of the 1905 relativity theory and his unsuccessful attempts to generalize the mass-energy equivalence, Einstein boldly raises the mass-energy equivalence to an axiom, invokes equality between gravitational and inertial masses, and then postulates the equivalence between a uniform gravitational field and an oppositely directed constant acceleration, the equivalence principle. How did this come about? What is at issue is scientific creativity. This necessitates broadening historical analysis to include aspects of cognitive science such as the role of visual imagery in Einstein's thinking, and the relation between conscious and unconscious modes of thought in problem solving. This method reveals the catalysts that sparked a Gedanken experiment that occurred to Einstein while working on the Jahrbuch paper. A mental model is presented to further explore Einstein's profound scientific discovery.

  2. What Costs Do Reveal and Moving Beyond the Cost Debate: Reply to Einstein and McDaniel (in press)

    PubMed Central

    Smith, Rebekah E.

    2010-01-01

    Einstein et al., (2005) predicted no cost to an ongoing task when a prospective memory task meet certain criteria. Smith et al. (2007) used prospective memory tasks that met these criteria and found a cost to the ongoing task, contrary to Einstein et al.'s prediction. Einstein and McDaniel (in press) correctly note that there are limitations to using ongoing task performance as a measure of the processes that contribute to prospective memory performance, however, the alternatives suggested by Einstein and McDaniel all focus on ongoing task performance and therefore do not move beyond the cost debate. This article describes why the Smith et al. findings are important, provides recommendations for issues to consider when investigating cost, and discusses individual cost measures. Finally, noting the blurry distinction between Einstein and McDaniel's description of the reflexive associative processes and preparatory attentional processes and difficulties in extending the multiprocess view to nonlaboratory tasks, suggestions are made for moving beyond the cost debate. PMID:20852726

  3. Nambu at Work

    NASA Astrophysics Data System (ADS)

    Freund, Peter G. O.

    Yoichiro Nambu, whose life and seminal contributions to Physics we celebrate here, went in 1952 to the Institute for Advanced Study in Princeton. Shortly after his arrival there, J. Robert Oppenheimer, the Institute's director, put Yoichiro and the other new arrivals on notice that though Albert Einstein was a professor at the Institute, and therefore had an office there, nobody was to disturb the great man without first receiving special permission personally from Oppie. Most people would spend a year or two in the same building with Einstein and then spend a whole lifetime regretting not to have met him. Yoichiro decided that he will meet Einstein, no matter what Oppie says. He knew Bruria Kaufmann, Einstein's assistant at that time, and with her help got to visit the great physicist. Einstein was very friendly and visibly happy that finally one of the young people had bothered to visit him. Einstein asked Yoichiro what was going on in particle physics, and was rather skeptical about separate nucleon and meson fields for which he saw no deeper reason...

  4. Endogenous Estradiol Is Associated with Verbal Memory in Nondemented Older Men

    ERIC Educational Resources Information Center

    Zimmerman, Molly E.; Lipton, Richard B.; Santoro, Nanette; McConnell, Daniel S.; Derby, Carol A.; Katz, Mindy J.; Baigi, Khosrow; Saunders-Pullman, Rachel

    2011-01-01

    This study examined the relationship between endogenous hormones and cognitive function in nondemented, ethnically-diverse community-dwelling older men enrolled in the Einstein Aging Study (EAS). All eligible participants (185 men, mean age = 81 years) received neuropsychological assessment (Free and Cued Selective Reminding Test (FCSRT), Logical…

  5. Quantum Mechanics of the Einstein-Hopf Model.

    ERIC Educational Resources Information Center

    Milonni, P. W.

    1981-01-01

    The Einstein-Hopf model for the thermodynamic equilibrium between the electromagnetic field and dipole oscillators is considered within the framework of quantum mechanics. Both the wave and particle aspects of the Einstein fluctuation formula are interpreted in terms of the fundamental absorption and emission processes. (Author/SK)

  6. Einstein and the "Crucial" Experiment

    ERIC Educational Resources Information Center

    Holton, Gerald

    1969-01-01

    Examines the widespread view that it was the crucial Michelson-Morley experiment that led Einstein to formulate the special relativity theory. From Einstein's writings, evidence is presented that no such direct genetic connection exists. The author suggests that the historian of science must resist the experimenticist's fallacy of imposing a…

  7. Assessment of current cybersecurity practices in the public domain : cyber indications and warnings domain.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamlet, Jason R.; Keliiaa, Curtis M.

    This report assesses current public domain cyber security practices with respect to cyber indications and warnings. It describes cybersecurity industry and government activities, including cybersecurity tools, methods, practices, and international and government-wide initiatives known to be impacting current practice. Of particular note are the U.S. Government's Trusted Internet Connection (TIC) and 'Einstein' programs, which are serving to consolidate the Government's internet access points and to provide some capability to monitor and mitigate cyber attacks. Next, this report catalogs activities undertaken by various industry and government entities. In addition, it assesses the benchmarks of HPC capability and other HPC attributes thatmore » may lend themselves to assist in the solution of this problem. This report draws few conclusions, as it is intended to assess current practice in preparation for future work, however, no explicit references to HPC usage for the purpose of analyzing cyber infrastructure in near-real-time were found in the current practice. This report and a related SAND2010-4766 National Cyber Defense High Performance Computing and Analysis: Concepts, Planning and Roadmap report are intended to provoke discussion throughout a broad audience about developing a cohesive HPC centric solution to wide-area cybersecurity problems.« less

  8. Einstein as a Missionary of Science

    ERIC Educational Resources Information Center

    Renn, Jürgen

    2013-01-01

    The paper reviews Einstein's engagement as a mediator and popularizer of science. It discusses the formative role of popular scientific literature for the young Einstein, showing that not only his broad scientific outlook but also his internationalist political views were shaped by these readings. Then, on the basis of recent detailed…

  9. Einstein for Everyone

    ScienceCinema

    Piccioni, Robert

    2018-04-25

    Young Einstein was a rebel who seemed doomed to fail. How did he overcome rejection to become the most famous scientist in history? We will discuss and explain all his theories in plain English and without math, and we will discover how Einstein's achievements impact our lives through DVDs, GPS, iPods, computers and green energy.

  10. Einstein for Everyone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piccioni, Robert

    2010-10-05

    Young Einstein was a rebel who seemed doomed to fail. How did he overcome rejection to become the most famous scientist in history? We will discuss and explain all his theories in plain English and without math, and we will discover how Einstein's achievements impact our lives through DVDs, GPS, iPods, computers and green energy.

  11. Einsteins Spuren in den Archiven der Wissenschaft: Physikgeschichte

    NASA Astrophysics Data System (ADS)

    Marx, Werner

    2005-07-01

    Die Erwähnungen und Zitierungen von Einsteins Arbeiten dokumentieren lediglich den quantifizierbaren Anteil von Einsteins Beitrag zur Physik. Gleichwohl belegen sie die außergewöhnliche Resonanz und Langzeitwirkung seiner Arbeiten. Die Häufigkeit der Zitierungen entspricht nicht der allgemeinen Einschätzung ihrer Bedeutung. Insbesondere die Pionierarbeiten werden inzwischen als bekannt vorausgesetzt und nicht mehr explizit zitiert. Interessanterweise ist seine nach 1945 meist zitierte Arbeit nicht eine der Pionierarbeiten zur Quantenphysik oder Relativitätstheorie, sondern jene aus dem Jahr 1935 zum berühmten Einstein-Podolsky-Rosen-Paradoxon.

  12. Einstein: A Historical Perspective

    NASA Astrophysics Data System (ADS)

    Kormos-Buchwald, Diana

    2015-04-01

    In late 1915, Albert Einstein (1879-1955) completed as series of papers on a generalized theory of gravitation that were to constitute a major conceptual change in the history of modern physics and the crowning achievement of his scientific career. But this accomplishment came after a decade of intense intellectual struggle and was received with muted enthusiasm. Einstein's previously unpublished writings and massive correspondence, edited by the Einstein Papers Project, provide vivid insights into the historical, personal, and scientific context of the formulation, completion, and reception of GR during the first decades of the 20th century.

  13. Non-naturally reductive Einstein metrics on exceptional Lie groups

    NASA Astrophysics Data System (ADS)

    Chrysikos, Ioannis; Sakane, Yusuke

    2017-06-01

    Given an exceptional compact simple Lie group G we describe new left-invariant Einstein metrics which are not naturally reductive. In particular, we consider fibrations of G over flag manifolds with a certain kind of isotropy representation and we construct the Einstein equation with respect to the induced left-invariant metrics. Then we apply a technique based on Gröbner bases and classify the real solutions of the associated algebraic systems. For the Lie group G2 we obtain the first known example of a left-invariant Einstein metric, which is not naturally reductive. Moreover, for the Lie groups E7 and E8, we conclude that there exist non-isometric non-naturally reductive Einstein metrics, which are Ad(K) -invariant by different Lie subgroups K.

  14. How History Helped Einstein in Special Relativity

    NASA Astrophysics Data System (ADS)

    Martinez, Alberto

    2013-04-01

    I will discuss how the German intellectual movement known as ``critical history'' motivated several physicists in the late 1900s to radically analyze the fundamental principles of mechanics, leading eventually to Einstein's special theory of relativity. Eugen Karl Dühring, Johann Bernhard Stallo, Ludwig Lange, and Ernst Mach wrote critical histories of mechanics, some of which emphasized notions of relativity and observation, in opposition to old metaphysical concepts that seemed to infect the foundations of physics. This strand of critical history included the ``genetic method'' of analyzing how concepts develop over time, in our minds, by way of ordinary experiences, which by 1904 was young Albert Einstein's favorite approach for examining fundamental notions. Thus I will discuss how history contributed in Einstein's path to relativity, as well as comment more generally on Einstein's views on history.

  15. Einstein Critical-Slowing-Down is Siegel CyberWar Denial-of-Access Queuing/Pinning/ Jamming/Aikido Via Siegel DIGIT-Physics BEC ``Intersection''-BECOME-UNION Barabasi Network/GRAPH-Physics BEC: Strutt/Rayleigh-Siegel Percolation GLOBALITY-to-LOCALITY Phase-Transition Critical-Phenomenon

    NASA Astrophysics Data System (ADS)

    Buick, Otto; Falcon, Pat; Alexander, G.; Siegel, Edward Carl-Ludwig

    2013-03-01

    Einstein[Dover(03)] critical-slowing-down(CSD)[Pais, Subtle in The Lord; Life & Sci. of Albert Einstein(81)] is Siegel CyberWar denial-of-access(DOA) operations-research queuing theory/pinning/jamming/.../Read [Aikido, Aikibojitsu & Natural-Law(90)]/Aikido(!!!) phase-transition critical-phenomenon via Siegel DIGIT-Physics (Newcomb[Am.J.Math. 4,39(1881)]-{Planck[(1901)]-Einstein[(1905)])-Poincare[Calcul Probabilités(12)-p.313]-Weyl [Goett.Nachr.(14); Math.Ann.77,313 (16)]-{Bose[(24)-Einstein[(25)]-Fermi[(27)]-Dirac[(1927)]}-``Benford''[Proc.Am.Phil.Soc. 78,4,551 (38)]-Kac[Maths.Stat.-Reasoning(55)]-Raimi[Sci.Am. 221,109 (69)...]-Jech[preprint, PSU(95)]-Hill[Proc.AMS 123,3,887(95)]-Browne[NYT(8/98)]-Antonoff-Smith-Siegel[AMS Joint-Mtg.,S.-D.(02)] algebraic-inversion to yield ONLY BOSE-EINSTEIN QUANTUM-statistics (BEQS) with ZERO-digit Bose-Einstein CONDENSATION(BEC) ``INTERSECTION''-BECOME-UNION to Barabasi[PRL 876,5632(01); Rev.Mod.Phys.74,47(02)...] Network /Net/GRAPH(!!!)-physics BEC: Strutt/Rayleigh(1881)-Polya(21)-``Anderson''(58)-Siegel[J.Non-crystalline-Sol.40,453(80)

  16. Horizon structure of rotating Einstein-Born-Infeld black holes and shadow

    NASA Astrophysics Data System (ADS)

    Atamurotov, Farruh; Ghosh, Sushant G.; Ahmedov, Bobomurat

    2016-05-01

    We investigate the horizon structure of the rotating Einstein-Born-Infeld solution which goes over to the Einstein-Maxwell's Kerr-Newman solution as the Born-Infeld parameter goes to infinity (β → ∞). We find that for a given β , mass M, and charge Q, there exist a critical spinning parameter aE and rHE, which corresponds to an extremal Einstein-Born-Infeld black hole with degenerate horizons, and aE decreases and rHE increases with increase of the Born-Infeld parameter β , while a

  17. An astrophysics data program investigation of a synoptic study of quasar continua

    NASA Technical Reports Server (NTRS)

    Elvis, Martin

    1991-01-01

    A summary of the program is presented. The major product of the program, an atlas of quasar energy distributions, is presented in the appendices along with papers written as a result of this research. The topics covered in the papers include: (1) accurate galactic N(sub h) values toward quasars and active galactic nuclei (AGN); (2) weak bump quasars; (3) millimeter measurements of hard x ray selected active galaxies- implications for the nature of the continuous spectrum; (3) persistence and change in the soft x ray spectrum of the quasar PG1211+143; (4) the soft x ray excess in einstein quasar spectra; and (5) EXOSAT x ray spectra of quasars.

  18. Ionized Absorbers in AGN

    NASA Technical Reports Server (NTRS)

    Mathur, S.

    1999-01-01

    As a part of this program, we observed three AGN:PKS2251 + 113, PG0043 = 039 and PLH909. Two objects show signatures of absorbtion in their UV spectra. Based on our earlier modeling of X-ray warm absorbents, we expected to observe X-ray observation in these objects. The third, PLH909, is known to have soft excess in EINSTEIN data. Attachment: "Exploratory ASCA observation of broad absorption line quasi-stellar objects".

  19. What Einstein Can Teach Us about Education

    ERIC Educational Resources Information Center

    Hayes, Denis

    2007-01-01

    People are more likely to associate Einstein with complex scientific theories and mathematical calculations than with education theory. In fact, Einstein's own experiences of schooling and his reflections on the meaning of life and the significance of education are profound and oddly relevant to the situation that pertains in England today. It is…

  20. Compliance of the Stokes-Einstein model and breakdown of the Stokes-Einstein-Debye model for a urea-based supramolecular polymer of high viscosity.

    PubMed

    Świergiel, Jolanta; Bouteiller, Laurent; Jadżyn, Jan

    2014-11-14

    Impedance spectroscopy was used for the study of the static and dynamic behavior of the electrical conductivity of a hydrogen-bonded supramolecular polymer of high viscosity. The experimental data are discussed in the frame of the Stokes-Einstein and Stokes-Einstein-Debye models. It was found that the translational movement of the ions is due to normal Brownian diffusion, which was revealed by a fulfillment of Ohm's law by the electric current and a strictly exponential decay of the current after removing the electric stimulus. The dependence of the dc conductivity on the viscosity of the medium fulfills the Stokes-Einstein model quite well. An extension of the model, by including in it the conductivity relaxation time, is proposed in this paper. A breakdown of the Stokes-Einstein-Debye model is revealed by the relations of the dipolar relaxation time to the viscosity and to the dc ionic conductivity. The importance of the C=O···H-N hydrogen bonds in that breakdown is discussed.

  1. Derivation of Einstein-Cartan theory from general relativity

    NASA Astrophysics Data System (ADS)

    Petti, Richard

    2015-04-01

    General relativity cannot describe exchange of classical intrinsic angular momentum and orbital angular momentum. Einstein-Cartan theory fixes this problem in the least invasive way. In the late 20th century, the consensus view was that Einstein-Cartan theory requires inclusion of torsion without adequate justification, it has no empirical support (though it doesn't conflict with any known evidence), it solves no important problem, and it complicates gravitational theory with no compensating benefit. In 1986 the author published a derivation of Einstein-Cartan theory from general relativity, with no additional assumptions or parameters. Starting without torsion, Poincaré symmetry, classical or quantum spin, or spinors, it derives torsion and its relation to spin from a continuum limit of general relativistic solutions. The present work makes the case that this computation, combined with supporting arguments, constitutes a derivation of Einstein-Cartan theory from general relativity, not just a plausibility argument. This paper adds more and simpler explanations, more computational details, correction of a factor of 2, discussion of limitations of the derivation, and discussion of some areas of gravitational research where Einstein-Cartan theory is relevant.

  2. q-deformed Einstein's model to describe specific heat of solid

    NASA Astrophysics Data System (ADS)

    Guha, Atanu; Das, Prasanta Kumar

    2018-04-01

    Realistic phenomena can be described more appropriately using generalized canonical ensemble, with proper parameter sets involved. We have generalized the Einstein's theory for specific heat of solid in Tsallis statistics, where the temperature fluctuation is introduced into the theory via the fluctuation parameter q. At low temperature the Einstein's curve of the specific heat in the nonextensive Tsallis scenario exactly lies on the experimental data points. Consequently this q-modified Einstein's curve is found to be overlapping with the one predicted by Debye. Considering only the temperature fluctuation effect(even without considering more than one mode of vibration is being triggered) we found that the CV vs T curve is as good as obtained by considering the different modes of vibration as suggested by Debye. Generalizing the Einstein's theory in Tsallis statistics we found that a unique value of the Einstein temperature θE along with a temperature dependent deformation parameter q(T) , can well describe the phenomena of specific heat of solid i.e. the theory is equivalent to Debye's theory with a temperature dependent θD.

  3. In it for the long-term: defining the mentor-protégé relationship in a clinical research training program.

    PubMed

    Santoro, Nanette; McGinn, Aileen P; Cohen, Hillel W; Kaskel, Frederick; Marantz, Paul R; Mulvihill, Michael; Schoenbaum, Ellie

    2010-06-01

    To define the characteristics of effective mentor-protégé relationships in a Clinical Research Training Program (CRTP) and to assess the agreement among mentors and protégés regarding those attributes. The authors administered an anonymous survey to protégés who completed the Albert Einstein College of Medicine's CRTP during its first seven years (2000-2006) and their mentors. Statements included aspects of mentoring thought to be important within the program, such as availability (Statement 1) and oversight of the thesis process (Statements 2-4). Additional statements were related both to career development (e.g., looking out for the best interests of the scholar and assisting in negotiations for a faculty position after program completion [Statements 5 and 6]) and to the expectation that the mentor would continue to be a resource for the protégé in years to come (Statement 7). The authors assessed overall agreement among mentors and protégés, using matched pair analysis. Overall response was 70.7% (133/188), with fewer matched pairs (n = 50, 50%). Seventy-five percent of respondents agreed strongly or somewhat with all statements. Analysis indicated significant agreement with Statements 2, 4, 6, and 7. Median scores from protégés did not differ whether their mentor responded (paired) or not (unpaired); however, mentor-protégé pairs had significantly greater agreement with Statements 3-7 than unpaired mentors and protégés (P < .01). Mentors and protégés seemed to agree that mentors within a CRTP demonstrated effective mentor attributes, including fostering a long-term relationship with the protégé.

  4. Defying the Definition of Insanity: Assessing the Robust Nature of University Outreach in the Community Using Carnegie Community Engagement Classification and Lynch Outreach Assessment Model (LOAM)

    ERIC Educational Resources Information Center

    Lynch-Alexander, Erin

    2017-01-01

    Duplicating processes and procedure with anticipation of deviating outcomes is the defining trait of insanity as attributed to a quote by Albert Einstein. It is the antithesis to innovation, which is what is needed in higher education to create impactful changes in the outreach we should be providing to the community. What is important for those…

  5. Induced matter brane gravity and Einstein static universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heydarzade, Y.; Darabi, F., E-mail: heydarzade@azaruniv.edu, E-mail: f.darabi@azaruniv.edu

    We investigate stability of the Einstein static universe against the scalar, vector and tensor perturbations in the context of induced matter brane gravity. It is shown that in the framework of this model, the Einstein static universe has a positive spatial curvature. In contrast to the classical general relativity, it is found that a stable Einstein static universe against the scalar perturbations does exist provided that the variation of time dependent geometrical equation of state parameter is proportional to the minus of the variation of the scale factor, δ ω{sub g}(t) = −Cδ a(t). We obtain neutral stability against the vector perturbations, and themore » stability against the tensor perturbations is guaranteed due to the positivity of the spatial curvature of the Einstein static universe in induced matter brane gravity.« less

  6. Why did Einstein reject the November tensor in 1912-1913, only to come back to it in November 1915?

    NASA Astrophysics Data System (ADS)

    Weinstein, Galina

    2018-05-01

    The question of Einstein's rejection of the November tensor is re-examined in light of conflicting answers by several historians. I discuss these conflicting conjectures in view of three questions that should inform our thinking: Why did Einstein reject the November tensor in 1912, only to come back to it in 1915? Why was it hard for Einstein to recognize that the November tensor is a natural generalization of Newton's law of gravitation? Why did it take him three years to realize that the November tensor is not incompatible with Newton's law? I first briefly describe Einstein's work in the Zurich Notebook. I then discuss a number of interpretive conjectures formulated by historians and what may be inferred from them. Finally, I offer a new combined conjecture that answers the above questions.

  7. Bringing Imagination Back to Science

    ERIC Educational Resources Information Center

    Linfield, Rachel Sparks

    2007-01-01

    Albert Einstein once said, "Imagination is more important than knowledge." In order to develop his theories, he had to use his imagination and go beyond the facts generally accepted. He needed time to think and to imagine. Knowledge has a valuable part to play, but the current emphasis in England on end-of-key-stage assessments and…

  8. Entanglement Equilibrium and the Einstein Equation.

    PubMed

    Jacobson, Ted

    2016-05-20

    A link between the semiclassical Einstein equation and a maximal vacuum entanglement hypothesis is established. The hypothesis asserts that entanglement entropy in small geodesic balls is maximized at fixed volume in a locally maximally symmetric vacuum state of geometry and quantum fields. A qualitative argument suggests that the Einstein equation implies the validity of the hypothesis. A more precise argument shows that, for first-order variations of the local vacuum state of conformal quantum fields, the vacuum entanglement is stationary if and only if the Einstein equation holds. For nonconformal fields, the same conclusion follows modulo a conjecture about the variation of entanglement entropy.

  9. Hidden Symmetries of Euclideanised Kerr-NUT-(A)dS Metrics in Certain Scaling Limits

    NASA Astrophysics Data System (ADS)

    Visinescu, Mihai; Vîlcu, Eduard

    2012-08-01

    The hidden symmetries of higher dimensional Kerr-NUT-(A)dS metrics are investigated. In certain scaling limits these metrics are related to the Einstein-Sasaki ones. The complete set of Killing-Yano tensors of the Einstein-Sasaki spaces are presented. For this purpose the Killing forms of the Calabi-Yau cone over the Einstein-Sasaki manifold are constructed. Two new Killing forms on Einstein-Sasaki manifolds are identified associated with the complex volume form of the cone manifolds. Finally the Killing forms on mixed 3-Sasaki manifolds are briefly described.

  10. All ASD complex and real 4-dimensional Einstein spaces with Λ≠0 admitting a nonnull Killing vector

    NASA Astrophysics Data System (ADS)

    Chudecki, Adam

    2016-12-01

    Anti-self-dual (ASD) 4-dimensional complex Einstein spaces with nonzero cosmological constant Λ equipped with a nonnull Killing vector are considered. It is shown that any conformally nonflat metric of such spaces can be always brought to a special form and the Einstein field equations can be reduced to the Boyer-Finley-Plebański equation (Toda field equation). Some alternative forms of the metric are discussed. All possible real slices (neutral, Euclidean and Lorentzian) of ASD complex Einstein spaces with Λ≠0 admitting a nonnull Killing vector are found.

  11. Nonlocality of the original Einstein-Podolsky-Rosen state

    NASA Astrophysics Data System (ADS)

    Cohen, O.

    1997-11-01

    We examine the properties and behavior of the original Einstein-Podolsky-Rosen (EPR) wave function [Phys. Rev. 47, 777 (1935)] and related Gaussian-correlated wave functions. We assess the degree of entanglement of these wave functions and consider an argument of Bell [Ann. (N.Y.) Acad. Sci. 480, 263 (1986)] based on the Wigner phase-space distribution [Phys. Rev. 40, 749 (1932)], which implies that the original EPR correlations can accommodate a local hidden-variable description. We extend Bell's analysis to the related Gaussian wave functions. We then show that it is possible to identify definite nonlocal aspects for the original EPR state and related states. We describe possible experiments that would demonstrate these nonlocal features through violations of Bell inequalities. The implications of our results, and in particular their relevance for the causal interpretation of quantum mechanics, are considered.

  12. Scattering amplitudes in $$\\mathcal{N}=2 $$ Maxwell-Einstein and Yang-Mills/Einstein supergravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiodaroli, Marco; Gunaydin, Murat; Johansson, Henrik

    We expose a double-copy structure in the scattering amplitudes of the generic Jordan family of N = 2 Maxwell-Einstein and Yang-Mills/Einstein supergravity theories in four and five dimensions. The Maxwell-Einstein supergravity amplitudes are obtained through the color/kinematics duality as a product of two gauge-theory factors; one originating from pure N = 2 super-Yang-Mills theory and the other from the dimensional reduction of a bosonic higher-dimensional pure Yang-Mills theory. We identify a specific symplectic frame in four dimensions for which the on-shell fields and amplitudes from the double-copy construction can be identified with the ones obtained from the supergravity Lagrangian andmore » Feynman-rule computations. The Yang-Mills/Einstein supergravity theories are obtained by gauging a compact subgroup of the isometry group of their Maxwell-Einstein counterparts. For the generic Jordan family this process is identified with the introduction of cubic scalar couplings on the bosonic gauge-theory side, which through the double copy are responsible for the non-abelian vector interactions in the supergravity theory. As a demonstration of the power of this structure, we present explicit computations at treelevel and one loop. Lastly, the double-copy construction allows us to obtain compact expressions for the supergravity superamplitudes, which are naturally organized as polynomials in the gauge coupling constant.« less

  13. Implementing competency based admissions at the Albert Einstein College of Medicine.

    PubMed

    Kerrigan, Noreen; Akabas, Myles H; Betzler, Thomas F; Castaldi, Maria; Kelly, Mary S; Levy, Adam S; Reichgott, Michael J; Ruberman, Louise; Dolan, Siobhan M

    2016-01-01

    The Albert Einstein College of Medicine (Einstein) was founded in 1955 during an era of limited access to medical school for women, racial minorities, and many religious and ethnic groups. Located in the Bronx, NY, Einstein seeks to educate physicians in an environment of state-of-the-art scientific inquiry while simultaneously fulfilling a deep commitment to serve its community by providing the highest quality clinical care. A founding principle of Einstein, the basis upon which Professor Einstein agreed to allow the use of his name, was that admission to the student body would be based entirely on merit. To accomplish this, Einstein has long used a 'holistic' approach to the evaluation of its applicants, actively seeking a diverse student body. More recently, in order to improve its ability to identify students with the potential to be outstanding physicians, who will both advance medical knowledge and serve the pressing health needs of a diverse community, the Committee on Admissions reexamined and restructured the requirements for admission. These have now been categorized as four 'Admissions Competencies' that an applicant must demonstrate. They include: 1) cocurricular activities and relevant experiences; 2) communication skills; 3) personal and professional development; and 4) knowledge. The purpose of this article is to describe the process that resulted in the introduction and implementation of this competency based approach to the admission process.

  14. Scattering amplitudes in $$\\mathcal{N}=2 $$ Maxwell-Einstein and Yang-Mills/Einstein supergravity

    DOE PAGES

    Chiodaroli, Marco; Gunaydin, Murat; Johansson, Henrik; ...

    2015-01-15

    We expose a double-copy structure in the scattering amplitudes of the generic Jordan family of N = 2 Maxwell-Einstein and Yang-Mills/Einstein supergravity theories in four and five dimensions. The Maxwell-Einstein supergravity amplitudes are obtained through the color/kinematics duality as a product of two gauge-theory factors; one originating from pure N = 2 super-Yang-Mills theory and the other from the dimensional reduction of a bosonic higher-dimensional pure Yang-Mills theory. We identify a specific symplectic frame in four dimensions for which the on-shell fields and amplitudes from the double-copy construction can be identified with the ones obtained from the supergravity Lagrangian andmore » Feynman-rule computations. The Yang-Mills/Einstein supergravity theories are obtained by gauging a compact subgroup of the isometry group of their Maxwell-Einstein counterparts. For the generic Jordan family this process is identified with the introduction of cubic scalar couplings on the bosonic gauge-theory side, which through the double copy are responsible for the non-abelian vector interactions in the supergravity theory. As a demonstration of the power of this structure, we present explicit computations at treelevel and one loop. Lastly, the double-copy construction allows us to obtain compact expressions for the supergravity superamplitudes, which are naturally organized as polynomials in the gauge coupling constant.« less

  15. Women in physics in Bangladesh

    NASA Astrophysics Data System (ADS)

    Choudhury, Shamima K.

    2013-03-01

    Bangladesh has had a glorious physics tradition since the beginning of the last century, when the physicist S.N. Bose published a groundbreaking paper with Albert Einstein on Bose-Einstein statistics. However, women in Bangladesh traditionally have not been able to make their way in the realm of science in general and physics in particular. Since Bangladesh achieved independence in 1971, the situation has gradually changed and more and more women choose physics as an academic discipline. The percentage of women students in physics rose from 10% in 1970 to almost 30% in 2010. In recent years, women physicists have actively participated in many activities promoting science and technology, creating awareness among the public about the importance of physics education. The present status of women physicists in academic, research, and administrative programs in the government and private sectors in Bangladesh is reported. The greater inclusion of women scientists, particularly physicists, in policy-making roles on important issues of global and national interest is suggested.

  16. Einstein Observations of X-ray emission from A stars

    NASA Astrophysics Data System (ADS)

    Golub, L.; Harnden, F. R., Jr.; Maxson, C. W.; Rosner, R.; Vaiana, G. S.; Cash, W., Jr.; Snow, T. P., Jr.

    1983-08-01

    Results are reported from the combined CfA Stellar Survey of selected bright A stars and an Einstein Guest Observer program for Ap and Am stars. In an initial report of results from the CfA Stellar Surveys by Vaiana et al. (1981) it was noted that the spread in observed X-ray luminosities among the few A stars observed was quite large. The reasons for this large spread was studied by Pallavicini et al. (1981). It was found that the X-ray emission from normal stars is related very strongly to bolometric luminosity for early-type stars and to rotation rate for late-type stars. However, an exception to this rule has been the apparently anomalous behavior of A star X-ray emission, for which the large spread in luminosity showed no apparent correlation with either bolometric luminosity or stellar rotation rate. In the present study, it is shown that the level of emission from normal A stars agrees with the correlation observed for O and B stars.

  17. Books on Einstein--Collectors' Delight

    ERIC Educational Resources Information Center

    Khoon, Koh Aik; Jalal, Azman; Abd-Shukor, R.; Yatim, Baharudin; Talib, Ibrahim Abu; Daud, Abdul Razak; Samat, Supian

    2009-01-01

    A survey of thirteen books on Einstein is presented. Its gives an idea on how much is written about the man and how frequent are the publications. The year 2005 saw the most publications. It is the centenary for the Miraculous Year. Interestingly some books can just sustain their readers' interest with just words. Einstein comes alive with the…

  18. On the Classical Roots of the Einstein-Podolsky-Rosen Paradox

    ERIC Educational Resources Information Center

    Lando, A.; Bringuier, E.

    2008-01-01

    The 1935 debate opposing Einstein, Podolsky and Rosen to Bohr elicited so many comments and developments, both theoretical and experimental, until this day, that the main point at stake at that time can be overlooked by modern readers, especially students. This paper draws the reader's attention to the historical background of Einstein's paper and…

  19. A Demonstration of Einstein's Equivalence of Gravity and Acceleration

    ERIC Educational Resources Information Center

    Newburgh, Ronald

    2008-01-01

    In 1907, Einstein described a "Gedankenexperiment" in which he showed that free fall in a gravitational field is indistinguishable from a body at rest in an elevator accelerated upwards in zero gravity. This paper describes an apparatus, which is simple to make and simple to operate, that acts as an observable footnote to Einstein's example. It…

  20. When Art Meets Einstein

    ERIC Educational Resources Information Center

    Science Scope, 2006

    2006-01-01

    This article deals with a pale blue sculpture entitled "A New World View", as an homage to the most famous scientist in modern history, Albert Einstein. It has 32 bas-relief squares composed of glass and steel that represent one aspect of the life and legacy of Albert Einstein. Images of children's faces peer out from behind the glass squares,…

  1. Bose-Einstein condensation in an ultra-hot gas of pumped magnons.

    PubMed

    Serga, Alexander A; Tiberkevich, Vasil S; Sandweg, Christian W; Vasyuchka, Vitaliy I; Bozhko, Dmytro A; Chumak, Andrii V; Neumann, Timo; Obry, Björn; Melkov, Gennadii A; Slavin, Andrei N; Hillebrands, Burkard

    2014-03-11

    Bose-Einstein condensation of quasi-particles such as excitons, polaritons, magnons and photons is a fascinating quantum mechanical phenomenon. Unlike the Bose-Einstein condensation of real particles (like atoms), these processes do not require low temperatures, since the high densities of low-energy quasi-particles needed for the condensate to form can be produced via external pumping. Here we demonstrate that such a pumping can create remarkably high effective temperatures in a narrow spectral region of the lowest energy states in a magnon gas, resulting in strikingly unexpected transitional dynamics of Bose-Einstein magnon condensate: the density of the condensate increases immediately after the external magnon flow is switched off and initially decreases if it is switched on again. This behaviour finds explanation in a nonlinear 'evaporative supercooling' mechanism that couples the low-energy magnons overheated by pumping with all the other thermal magnons, removing the excess heat, and allowing Bose-Einstein condensate formation.

  2. The Einstein-Vlasov System/Kinetic Theory.

    PubMed

    Andréasson, Håkan

    2011-01-01

    The main purpose of this article is to provide a guide to theorems on global properties of solutions to the Einstein-Vlasov system. This system couples Einstein's equations to a kinetic matter model. Kinetic theory has been an important field of research during several decades in which the main focus has been on non-relativistic and special relativistic physics, i.e., to model the dynamics of neutral gases, plasmas, and Newtonian self-gravitating systems. In 1990, Rendall and Rein initiated a mathematical study of the Einstein-Vlasov system. Since then many theorems on global properties of solutions to this system have been established. This paper gives introductions to kinetic theory in non-curved spacetimes and then the Einstein-Vlasov system is introduced. We believe that a good understanding of kinetic theory in non-curved spacetimes is fundamental to a good comprehension of kinetic theory in general relativity.

  3. Covariant Conformal Decomposition of Einstein Equations

    NASA Astrophysics Data System (ADS)

    Gourgoulhon, E.; Novak, J.

    It has been shown1,2 that the usual 3+1 form of Einstein's equations may be ill-posed. This result has been previously observed in numerical simulations3,4. We present a 3+1 type formalism inspired by these works to decompose Einstein's equations. This decomposition is motivated by the aim of stable numerical implementation and resolution of the equations. We introduce the conformal 3-``metric'' (scaled by the determinant of the usual 3-metric) which is a tensor density of weight -2/3. The Einstein equations are then derived in terms of this ``metric'', of the conformal extrinsic curvature and in terms of the associated derivative. We also introduce a flat 3-metric (the asymptotic metric for isolated systems) and the associated derivative. Finally, the generalized Dirac gauge (introduced by Smarr and York5) is used in this formalism and some examples of formulation of Einstein's equations are shown.

  4. Gravitational Wave Astronomy: Opening a New Window on the Universe for Students, Educators and the Public

    NASA Astrophysics Data System (ADS)

    Cavaglia, Marco; Hendry, M.; Ingram, D.; Milde, S.; Pandian, S. R.; Reitze, D.; Riles, K.; Schutz, B.; Stuver, A. L.; Summerscales, T.; Ugolini, D.; Thacker, J.; Vallisneri, M.; Zermeno, A.

    2008-05-01

    The nascent field of gravitational wave astronomy offers many opportunities for effective and inspirational astronomy outreach. Gravitational waves, the `ripples in spacetime' predicted by Einstein's general theory of relativity, are produced by some of the most energetic and dramatic phenomena in the cosmos, including black holes, neutron stars and supernovae - and their discovery should help to address a number of fundamental questions in physics, from the evolution of stars and galaxies to the origin of dark energy and the nature of spacetime itself. Moreover, the cutting-edge technology developed to search for gravitational waves is pushing back the frontiers of many fields, from lasers and materials science to high performance computing, and thus provides a powerful showcase for the attractions and challenges of a career in science and engineering. For several years a worldwide network of ground-based laser interferometric gravitational wave detectors, built and run by the LIGO Scientific Collaboration, has been fully operational. These detectors are already among the most sensitive scientific instruments on the planet but in the next few years their sensitivity will achieve further significant improvement. Those developments promise to open an exciting new window on the Universe, heralding the arrival of gravitational wave astronomy as a revolutionary, new observational field. In this poster we describe the extensive program of public outreach activities already undertaken by the LIGO Scientific Collaboration, and a number of special events which we are planning for IYA2009. These activities include: * programs at Science Centers and Observatory Visitor Centers * programs on gravitational wave astronomy for the classroom, across the K-12 spectrum * interdisciplinary events linking gravitational wave astronomy to music and the visual arts * research experiences for schools and citizens through the highly successful `Einstein@Home' program.

  5. Einstein A coefficients for rovibronic lines of the A2Π → X2Σ+ and B2Σ+ → X2Σ+ transitions of CaH and CaD

    NASA Astrophysics Data System (ADS)

    Alavi, S. Fatemeh; Shayesteh, Alireza

    2018-02-01

    Calcium monohydride is an important diatomic molecule appearing in the spectra of sunspots and M dwarfs. We report complete line lists with Einstein A coefficients for the A2Π-X2Σ+ and B2Σ+-X2Σ+ electronic transitions of CaH and CaD radicals. The most recent ab initio transition dipole moments and potential energy curves were used for the calculation of vibronic band intensities, taking the Herman-Wallis effect into account, and the rotational line strengths were calculated using the PGOPHER program of Western. For the A2Π and B2Σ+ excited states of CaH and CaD, new off-diagonal electronic matrix elements were included in the Hamiltonian matrix, and new sets of spectroscopic constants were determined in order to accurately reproduce the line positions and relative intensities of the observed branches in laboratory spectra. For both CaH and CaD isotopologues, Einstein A coefficients were calculated for all possible rovibronic transitions from the v΄ = 0-3 vibrational levels of the A2Π state and the v΄ = 0-2 vibrational levels of the B2Σ+ state to the v″ = 0-4 vibrational levels of the X2Σ+ ground state. The line lists and intensities reported here can be used to accurately determine the amounts of CaH and CaD in stellar environments.

  6. Genomic Basis of Prostate Cancer Health Disparity Among African American Men

    DTIC Science & Technology

    2015-10-01

    Harry Ostrer, M.D. RECIPIENT: Albert Einstein College of Medicine Bronx, NY 10461 REPORT DATE: October 2015 TYPE OF REPORT: Final report...Funding Support: Department of Defense National Institutes of Health Albert Einstein College of Medicine Montefiore Medical Center Name: Alexander...agency and compliance with research regulations. Funding Support: Department of Defense National Institutes of Health Albert Einstein College of

  7. Einstein's Approach to Statistical Mechanics: The 1902-04 Papers

    NASA Astrophysics Data System (ADS)

    Peliti, Luca; Rechtman, Raúl

    2017-05-01

    We summarize the papers published by Einstein in the Annalen der Physik in the years 1902-1904 on the derivation of the properties of thermal equilibrium on the basis of the mechanical equations of motion and of the calculus of probabilities. We point out the line of thought that led Einstein to an especially economical foundation of the discipline, and to focus on fluctuations of the energy as a possible tool for establishing the validity of this foundation. We also sketch a comparison of Einstein's approach with that of Gibbs, suggesting that although they obtained similar results, they had different motivations and interpreted them in very different ways.

  8. Mass-induced instability of SAdS black hole in Einstein-Ricci cubic gravity

    NASA Astrophysics Data System (ADS)

    Myung, Yun Soo

    2018-05-01

    We perform the stability analysis of Schwarzschild-AdS (SAdS) black hole in the Einstein-Ricci cubic gravity. It shows that the Ricci tensor perturbations exhibit unstable modes for small black holes. We call this the mass-induced instability of SAdS black hole because the instability of small black holes arises from the massiveness in the linearized Einstein-Ricci cubic gravity, but not a feature of higher-order derivative theory giving ghost states. Also, we point out that the correlated stability conjecture holds for the SAdS black hole by computing the Wald entropy of SAdS black hole in Einstein-Ricci cubic gravity.

  9. New non-naturally reductive Einstein metrics on exceptional simple Lie groups

    NASA Astrophysics Data System (ADS)

    Chen, Huibin; Chen, Zhiqi; Deng, Shaoqiang

    2018-01-01

    In this article, we construct several non-naturally reductive Einstein metrics on exceptional simple Lie groups, which are found through the decomposition arising from generalized Wallach spaces. Using the decomposition corresponding to the two involutions, we calculate the non-zero coefficients in the formulas of the components of Ricci tensor with respect to the given metrics. The Einstein metrics are obtained as solutions of a system of polynomial equations, which we manipulate by symbolic computations using Gröbner bases. In particular, we discuss the concrete numbers of non-naturally reductive Einstein metrics for each case up to isometry and homothety.

  10. Multiparticle dynamics in an expanding universe

    NASA Astrophysics Data System (ADS)

    Anderson, James L.

    1995-11-01

    Approximate equations of motion for multiparticle systems in an expanding Einstein-deSitter universe are derived from the Einstein-Maxwell field equations using the Einstein-Infeld-Hoffmann surface integral method. At the Newtonian level of approximation one finds that, in comoving coordinates, both the Newtonian gravitational and Coulomb interactions in these equations are multiplied by the inverse third power of the scale factor R(t) appearing in the Einstein-deSitter field and they acquire a cosmic ``drag'' term. Nevertheless, both the period and luminosity size of bound two-body systems whose period is small compared to the Hubble time are found to be independent of t.

  11. Test of Einstein-Podolsky-Rosen Steering Based on the All-Versus-Nothing Proof

    PubMed Central

    Wu, Chunfeng; Chen, Jing-Ling; Ye, Xiang-Jun; Su, Hong-Yi; Deng, Dong-Ling; Wang, Zhenghan; Oh, C. H.

    2014-01-01

    In comparison with entanglement and Bell nonlocality, Einstein-Podolsky-Rosen steering is a newly emerged research topic and in its incipient stage. Although Einstein-Podolsky-Rosen steering has been explored via violations of steering inequalities both theoretically and experimentally, the known inequalities in the literatures are far from well-developed. As a result, it is not yet possible to observe Einstein-Podolsky-Rosen steering for some steerable mixed states. Recently, a simple approach was presented to identify Einstein-Podolsky-Rosen steering based on all-versus-nothing argument, offering a strong condition to witness the steerability of a family of two-qubit (pure or mixed) entangled states. In this work, we show that the all-versus-nothing proof of Einstein-Podolsky-Rosen steering can be tested by measuring the projective probabilities. Through the bound of probabilities imposed by local-hidden-state model, the proposed test shows that steering can be detected by the all-versus-nothing argument experimentally even in the presence of imprecision and errors. Our test can be implemented in many physical systems and we discuss the possible realizations of our scheme with non-Abelian anyons and trapped ions. PMID:24598858

  12. Test of Einstein-Podolsky-Rosen steering based on the all-versus-nothing proof.

    PubMed

    Wu, Chunfeng; Chen, Jing-Ling; Ye, Xiang-Jun; Su, Hong-Yi; Deng, Dong-Ling; Wang, Zhenghan; Oh, C H

    2014-03-06

    In comparison with entanglement and Bell nonlocality, Einstein-Podolsky-Rosen steering is a newly emerged research topic and in its incipient stage. Although Einstein-Podolsky-Rosen steering has been explored via violations of steering inequalities both theoretically and experimentally, the known inequalities in the literatures are far from well-developed. As a result, it is not yet possible to observe Einstein-Podolsky-Rosen steering for some steerable mixed states. Recently, a simple approach was presented to identify Einstein-Podolsky-Rosen steering based on all-versus-nothing argument, offering a strong condition to witness the steerability of a family of two-qubit (pure or mixed) entangled states. In this work, we show that the all-versus-nothing proof of Einstein-Podolsky-Rosen steering can be tested by measuring the projective probabilities. Through the bound of probabilities imposed by local-hidden-state model, the proposed test shows that steering can be detected by the all-versus-nothing argument experimentally even in the presence of imprecision and errors. Our test can be implemented in many physical systems and we discuss the possible realizations of our scheme with non-Abelian anyons and trapped ions.

  13. Experiment Prevails Over Observation in Geophysical Science

    NASA Astrophysics Data System (ADS)

    Galvin, C.

    2006-05-01

    Thomson and Tait gave their name to a text (T and T') that sums up nineteenth century mechanics. T and T' says that scientists gain knowledge of the natural universe and the laws that regulate it through Experience. T and T' divides Experience into Observation and Experiment. The posthumous (1912) edition of T and T' appeared seven years before Eddington's expeditions to observe the eclipse of 29 May 1919 that demonstrated the bending of starlight predicted by Einstein's general theory of relativity. During the 2005 centenary of young Einstein's remarkably productive year, Eddington's (1919) result was frequently remembered, but the description in 2005 of what Eddington did in 1919 often differed from what Eddington said that he did. In his words then, Eddington observed; in words from scientists, historians of science, and philosophers of science during 2005, Eddington often experimented. In 1912, T and T' had distinguished Observation from Experiment with an apt contrast: ""When, as in astronomy, we endeavour to ascertain these causes by simply watching, we observe; when, as in our laboratories, we interfere arbitrarily with the causes or circumstances of a phenomenon, we are said to experiment"". (italics in T and T'). Eddington himself conformed to this distinction in his report (Physical Society of London, 1920). In its Preface, he states that observations were made at each of two stations, and concludes that ""I think it may now be stated that Einstein's law of gravitation is definitely established by observation..."". Chapter V of that report deals with The Crucial Phenomena. In this chapter, some form of the word observe (noun, verb, adjective, adverb) appears 13 times. In this chapter, experiment appears only as experimental, and then only twice. Einstein's prediction, with Eddington's observations, profoundly impressed contemporary philosophers of science. Karl Popper, then aged 17, considered Eddington's findings to effect a turning point in his career, but during that career, Popper painted himself into a philosophical corner by disallowing observation as contaminated with psychological problems and by advocating an aggressive deductive application of crucial experiments. As a result, in a 1974 review of what he really meant, Popper at least twice remembered ""Eddington's famous eclipse experiments of 1919."" The Web in 2006 lists NASA and NOAA acronyms for recent and ongoing research programs with geophysical content. A significant subset of these acronyms end in E or in EX, meaning experiment, but the scientific work done in the associated programs is actually observation. Experiment stands for actual Observation. This reversal in meaning recognizes the higher status of Experiment compared to Observation in the competition for government grants.

  14. BOOK REVIEW: The Legacy of Albert Einstein: A Collection of Essays in Celebration of the Year of Physics

    NASA Astrophysics Data System (ADS)

    Straumann, Norbert

    2007-10-01

    During the 'World Year of Physics' much has been written on the epoch-making 1905 papers of Albert Einstein and his later great contributions to physics. Why another book on the enormous impact of Einstein's work on 20th-century physics? The short answer is that the present collection of 13 relatively short essays on the legacy of Einstein by outstanding scientists is very pleasant to read and should be of interest to physicists of all branches. Beside looking back, most articles present later and topical developments, whose initiation began with the work of Einstein. During the year 2005, the growing recognition among physicists, historians, and philosophers of Einstein's revolutionary role in quantum theory was often emphasized. It is truly astonishing that most active physicists were largely unaware of this before. Fortunately, the article 'Einstein and the quantum' by V Singh puts the subject in perspective and describes all the main steps, beginning with the truly revolutionary 1905 paper on the light-quantum hypothesis and ending with Einstein's extension of the particle-wave duality to atoms and other particles in 1924 1925. The only point which, in my opinion, is not sufficiently emphasized in the discussion of the 1916 1917 papers on absorption and emission of radiation is the part on the momentum transfer in each elementary process. Einstein's result that there is a directed recoil hν/c—also for spontaneous emission—in complete contrast to classical theory, was particularly important to him. I enjoyed reading the articles on Brownian motion (S Majumdar), Bose Einstein condensation (N Kumar) and strongly correlated electrons (T Ramakrishnan), which are all written for non-experts. Connected with Einstein's most lasting work—general relativity—there are two articles on cosmology. The one by J Narlikar gives a brief historical account of the development that was initiated by the 1917 paper of Einstein. S Sarkar's essay emphasizes the remarkable recent observational progress in cosmology and the emergence of the 'cosmic concordance model', with dark matter and dark energy as the dominant components of the current universe. Their discovery is widely considered as the most direct evidence for fundamental physics beyond the standard model of particle physics. In an introductory section Sarkar recalls the main reasons why the cosmological constant (vacuum energy) problem is of a very profound nature. In spite of some interesting ideas, no satisfactory solution is in sight. The article by B Sathyapakhash on gravitational radiation provides a readable introduction to the status of current detectors and astronomical sources of gravitational radiation. Of great cosmological interest are planned searches for a stochastic background of gravitational waves that is expected to have been produced by quantum processes in the very early universe. More than the first third of the book is devoted to current speculative attempts at creating a quantum theory of gravity, possibly within a unified coherent description of the known four fundamental interactions. Thanks to the enormously large value of the Planck energy in comparison to elementary particle masses, physicists may maintain for a long time, with success, a schizophrenic attitude in working within the framework of our present understanding, based on quantum field theory and classical general relativity. That physics cannot stay with that was already pointed out by Einstein in 1916, as A Ashtekar recalls in his essay. 'Einstein and the search for unification' by D Gross is the first article of the present book. In this he describes the reasons why, for those working in speculative areas, 'Einstein remains an inspiration for his foresight, and his unyielding determination and courage'. This inspiration is also manifest in the essays by M Atiyah, A Sen, and A Dabholkar on string theory. Hopefully, this book will find many readers, especially among graduate students, who can get valuable impressions of what is interesting in physics and what some of the main open problems for future research are.

  15. The Stokes-Einstein relation at moderate Schmidt number.

    PubMed

    Balboa Usabiaga, Florencio; Xie, Xiaoyi; Delgado-Buscalioni, Rafael; Donev, Aleksandar

    2013-12-07

    The Stokes-Einstein relation for the self-diffusion coefficient of a spherical particle suspended in an incompressible fluid is an asymptotic result in the limit of large Schmidt number, that is, when momentum diffuses much faster than the particle. When the Schmidt number is moderate, which happens in most particle methods for hydrodynamics, deviations from the Stokes-Einstein prediction are expected. We study these corrections computationally using a recently developed minimally resolved method for coupling particles to an incompressible fluctuating fluid in both two and three dimensions. We find that for moderate Schmidt numbers the diffusion coefficient is reduced relative to the Stokes-Einstein prediction by an amount inversely proportional to the Schmidt number in both two and three dimensions. We find, however, that the Einstein formula is obeyed at all Schmidt numbers, consistent with linear response theory. The mismatch arises because thermal fluctuations affect the drag coefficient for a particle due to the nonlinear nature of the fluid-particle coupling. The numerical data are in good agreement with an approximate self-consistent theory, which can be used to estimate finite-Schmidt number corrections in a variety of methods. Our results indicate that the corrections to the Stokes-Einstein formula come primarily from the fact that the particle itself diffuses together with the momentum. Our study separates effects coming from corrections to no-slip hydrodynamics from those of finite separation of time scales, allowing for a better understanding of widely observed deviations from the Stokes-Einstein prediction in particle methods such as molecular dynamics.

  16. An Examination of the Documentary Film "Einstein and Eddington" in Terms of Nature of Science Themes, Philosophical Movements, and Concepts

    ERIC Educational Resources Information Center

    Kapucu, Munise Seçkin

    2016-01-01

    This study aims to examine nature of science themes, philosophical movements, and overall concepts covered in the documentary film, "Einstein and Eddington". A qualitative research method was used. In this study, the documentary film "Einstein and Eddington," the viewing time of which is 1 hour and 28 minutes, was used as the…

  17. Sensing spontaneous collapse and decoherence with interfering Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Schrinski, Björn; Hornberger, Klaus; Nimmrichter, Stefan

    2017-12-01

    We study how matter-wave interferometry with Bose-Einstein condensates is affected by hypothetical collapse models and by environmental decoherence processes. Motivated by recent atom fountain experiments with macroscopic arm separations, we focus on the observable signatures of first-order and higher-order coherence for different two-mode superposition states, and on their scaling with particle number. This can be used not only to assess the impact of environmental decoherence on many-body coherence, but also to quantify the extent to which macrorealistic collapse models are ruled out by such experiments. We find that interference fringes of phase-coherently split condensates are most strongly affected by decoherence, whereas the quantum signatures of independent interfering condensates are more immune against macrorealistic collapse. A many-body enhanced decoherence effect beyond the level of a single atom can be probed if higher-order correlations are resolved in the interferogram.

  18. Measurement of Bose-Einstein correlations in e^+e^->W^+W^- events at LEP [rapid communication] L3 Collaboration, P. Achard, O. Adriani, M. Aguilar-Benitez, J. Alcaraz, G. Alemanni, J. Allaby, A. Aloisio, M.G. Alviggi, H. Anderhub, V.P. Andreev, F. Anselmo, A. Arefiev, T. Azemoon, T. Aziz,

    NASA Astrophysics Data System (ADS)

    Bagnaia, P.; Bajo, A.; Baksay, G.; Baksay, L.; Baldew, S. V.; Banerjee, S.; Banerjee, S.; Barczyk, A.; Barillere, R.; Bartalini, P.; Basile, M.; Batalova, N.; Battiston, R.; Bay, A.; Becattini, F.; Becker, U.; Behner, F.; Bellucci, L.; Berbeco, R.; Berdugo, J.; Berges, P.; Bertucci, B.; Betev, B. L.; Biasini, M.; Biglietti, M.; Biland, A.; Blaising, J. J.; Blyth, S. C.; Bobbink, G. J.; Bohm, A.; Boldizsar, L.; Borgia, B.; Bottai, S.; Bourilkov, D.; Bourquin, M.; Braccini, S.; Branson, J. G.; Brochu, F.; Burger, J. D.; Burger, W. J.; Cai, X. D.; Capell, M.; Romeo, G. Cara; Carlino, G.; Cartacci, A.; Casaus, J.; Cavallari, F.; Cavallo, N.; Cecchi, C.; Cerrada, M.; Chamizo, M.; Chang, Y. H.; Chemarin, M.; Chen, A.; Chen, G.; Chen, G. M.; Chen, H. F.; Chen, H. S.; Chiefari, G.; Cifarelli, L.; Cindolo, F.; Clare, I.; Clare, R.; Coignet, G.; Colino, N.; Costantini, S.; de la Cruz, B.; Cucciarelli, S.; van Dalen, J. A.; de Asmundis, R.; Deglon, P.; Debreczeni, J.; Degre, A.; Dehmelt, K.; Deiters, K.; della Volpe, D.; Delmeire, E.; Denes, P.; DeNotaristefani, F.; De Salvo, A.; Diemoz, M.; Dierckxsens, M.; Dionisi, C.; Dittmar, M.; Doria, A.; Dova, M. T.; Duchesneau, D.; Echenard, B.; Eline, A.; El Mamouni, H.; Engler, A.; Eppling, F. J.; Ewers, A.; Extermann, P.; Falagan, M. A.; Falciano, S.; Favara, A.; Fay, J.; Fedin, O.; Felcini, M.; Ferguson, T.; Fesefeldt, H.; Fiandrini, E.; Field, J. H.; Filthaut, F.; Fisher, P. H.; Fisher, W.; Fisk, I.; Forconi, G.; Freudenreich, K.; Furetta, C.; Galaktionov, Y.; Ganguli, S. N.; Garcia-Abia, P.; Gataullin, M.; Gentile, S.; Giagu, S.; Gong, Z. F.; Grenier, G.; Grimm, O.; Gruenewald, M. W.; Guida, M.; van Gulik, R.; Gupta, V. K.; Gurtu, A.; Gutay, L. J.; Haas, D.; Hakobyan, R. S.; Hatzifotiadou, D.; Hebbeker, T.; Herve, A.; Hirschfelder, J.; Hofer, H.; Hohlmann, M.; Holzner, G.; Hou, S. R.; Hu, Y.; Jin, B. N.; Jones, L. W.; de Jong, P.; Josa-Mutuberra, I.; Kafer, D.; Kaur, M.; Kienzle-Focacci, M. N.; Kim, J. K.; Kirkby, J.; Kittel, W.; Klimentov, A.; Konig, A. C.; Kopal, M.; Koutsenko, V.; Kraber, M.; Kraemer, R. W.; Krenz, W.; Kruger, A.; Kunin, A.; Ladron de Guevara, P.; Laktineh, I.; Landi, G.; Lebeau, M.; Lebedev, A.; Lebrun, P.; Lecomte, P.; Lecoq, P.; Le Coultre, P.; Le Goff, J. M.; Leiste, R.; Levtchenko, M.; Levtchenko, P.; Li, C.; Likhoded, S.; Lin, C. H.; Lin, W. T.; Linde, F. L.; Lista, L.; Liu, Z. A.; Lohmann, W.; Longo, E.; Lu, Y. S.; Lubelsmeyer, K.; Luci, C.; Luminari, L.; Lustermann, W.; Ma, W. G.; Malgeri, L.; Malinin, A.; Mana, C.; Mangeol, D.; Mans, J.; Martin, J. P.; Marzano, F.; Mazumdar, K.; McNeil, R. R.; Mele, S.; Merola, L.; Meschini, M.; Metzger, W. J.; Mihul, A.; Milcent, H.; Mirabelli, G.; Mnich, J.; Mohanty, G. B.; Muanza, G. S.; Muijs, A. J. M.; Musicar, B.; Musy, M.; Nagy, S.; Natale, S.; Napolitano, M.; Nessi-Tedaldi, F.; Newman, H.; Niessen, T.; Nisati, A.; Nowak, H.; Ofierzynski, R.; Organtini, G.; Palomares, C.; Pandoulas, D.; Paolucci, P.; Paramatti, R.; Passaleva, G.; Patricelli, S.; Paul, T.; Pauluzzi, M.; Paus, C.; Pauss, F.; Pedace, M.; Pensotti, S.; Perret-Gallix, D.; Petersen, B.; Piccolo, D.; Pierella, F.; Pioppi, M.; Piroue, P. A.; Pistolesi, E.; Plyaskin, V.; Pohl, M.; Pojidaev, V.; Pothier, J.; Prokofiev, D. O.; Prokofiev, D.; Quartieri, J.; Rahal-Callot, G.; Rahaman, M. A.; Raics, P.; Raja, N.; Ramelli, R.; Rancoita, P. G.; Ranieri, R.; Raspereza, A.; Razis, P.; Ren, D.; Rescigno, M.; Reucroft, S.; Riemann, S.; Riles, K.; Roe, B. P.; Romero, L.; Rosca, A.; Rosier-Lees, S.; Roth, S.; Rosenbleck, C.; Roux, B.; Rubio, J. A.; Ruggiero, G.; Rykaczewski, H.; Sakharov, A.; Saremi, S.; Sarkar, S.; Salicio, J.; Sanchez, E.; Sanders, M. P.; Schafer, C.; Schegelsky, V.; Schmidt-Kaerst, S.; Schmitz, D.; Schopper, H.; Schotanus, D. J.; Schwering, G.; Sciacca, C.; Servoli, L.; Shevchenko, S.; Shivarov, N.; Shoutko, V.; Shumilov, E.; Shvorob, A.; Siedenburg, T.; Son, D.; Souga, C.; Spillantini, P.; Steuer, M.; Stickland, D. P.; Stoyanov, B.; Straessner, A.; Sudhakar, K.; Sultanov, G.; Sun, L. Z.; Sushkov, S.; Suter, H.; Swain, J. D.; Szillasi, Z.; Tang, X. W.; Tarjan, P.; Tauscher, L.; Taylor, L.; Tellili, B.; Teyssier, D.; Timmermans, C.; Ting, C. C.; Ting, S. M.; Tonwar, S. C.; Toth, J.; Tully, C.; Tung, K. L.; Ulbricht, J.; Valente, E.; Van de Walle, R. T.; Vasquez, R.; Veszpremi, V.; Vesztergombi, G.; Vetlitsky, I.; Vicinanza, D.; Viertel, G.; Villa, S.; Vivargent, M.; Vlachos, S.; Vodopianov, I.; Vogel, H.; Vogt, H.; Vorobiev, I.; Vorobyov, A. A.; Wadhwa, M.; Wallraff, W.; Wang, X. L.; Wang, Z. M.; Weber, M.; Wienemann, P.; Wilkens, H.; Wynhoff, S.; Xia, L.; Xu, Z. Z.; Yamamoto, J.; Yang, B. Z.; Yang, C. G.; Yang, H. J.; Yang, M.; Yeh, S. C.; Zalite, A.; Zalite, Y.; Zhang, Z. P.; Zhao, J.; Zhu, G. Y.; Zhu, R. Y.; Zhuang, H. L.; Zichichi, A.; Zimmermann, B.; Zoller, M.

    2002-11-01

    Bose-Einstein correlations in W-pair production at LEP are investigated in a data sample of 629 pb^-1 collected by the L3 detector at centre-of-mass energies of 189-209 GeV. Bose-Einstein correlations between pions within a W decay are observed and found to be in good agreement with those in light-quark Z decay. No evidence is found for Bose-Einstein correlations between hadrons coming from different W's in the same event.

  19. The Einstein/CFA stellar survey - Overview of the data and interpretation of results

    NASA Technical Reports Server (NTRS)

    Vaiana, G. S.

    1981-01-01

    Results are presented from an extensive survey of stellar X-ray emission, using the Einstein Observatory. Over 140 stars have been detected to date, throughout the H-R diagram, thus showing that soft X-ray emission is the norm rather than the exception for stars in general. This finding is strongly at odds with pre-Einstein expectations based on standard acoustic theories of coronal heating. Typical examples of stellar X-ray detections and an overview of the survey data are presented. In combination with recent results from solar X-ray observations, the new Einstein data argue for the general applicability of magnetic field-related coronal heating mechanisms.

  20. Einstein and a century of time

    NASA Astrophysics Data System (ADS)

    Raine, D. J.

    2005-09-01

    In a world overabundant in information, a subject is defined by its iconography. Physics is the falling apple, the planetary atom, the laser, the mushroom cloud and the image of the later Einstein - images that represent, respectively, gravity, atomic theory, quantum theory, mass-energy and the scientist who had a hand in all four. It is therefore appropriate that World Year of Physics is called Einstein Year in the UK. Of course one can argue that progress in science depends on the contributions of many people; that there are other geniuses in physics, even some colourful personalities. Nevertheless there are fundamental reasons why Einstein's early achievements stand out even in their company. When at last the thought came to him that 'time itself was suspect', Einstein had found a new insight into the nature of the physical universe. It is this: that the universal properties of material objects tell us about the nature of space and time, and it is through these properties, not philosophical logic or common sense, that we discover the structure of spacetime. The later Einstein turned this successful formula on its head and sought to use the properties of spacetime to define those of material objects, thereby seeking to abolish matter entirely in favour of geometry. Before I introduce this special feature of European Journal of Physics I will say a few words about what is not here. Like all great geniuses Einstein can be seen as the climax of what went before him and the initiation of what was to follow. Looking back we can see the influence of Mach's positivism, according to which the role of science is to relate observations to other observations; hence only observations can tell us what is 'real'. But Einstein also grew up with the family electromechanical businesses, which testifies to the reality of the Maxwellian electromagnetic fields: thus only theory can tell us what is real! As is well known, Einstein himself refused to accept the full consequences of this pivotal insight into the role of theory when it came to quantum mechanics. Much has been written about this and we do not add to it in this collection. Quantum theory is a consistent description of nature whatever Einstein may think of 'god' for making it so. Many of us would side with Einstein in hoping it will yet turn out not to be a complete description. This will not happen, as Einstein hoped throughout his later work, from a return to classical field theory. But quantum behaviour is a universal property of matter and may therefore be expected, according to Einstein's way of thought, to have a geometrical origin. The advent of non-commutative quantum geometries may turn out to be a step in this direction. My own introduction to Einstein's physics was through what has come to be known as Mach's principle. My research supervisor, Dennis Sciama, in what he always claimed was probably Einstein's last significant scientific conversation, talked with him on this subject, during which Einstein explained that he had abandoned the idea of Mach's principle. This principle had been a guiding thought in the development of general relativity, but superfluous to its final exposition. It can be interpreted variously as the determination of the local compass of inertia by the distant stars, the non-rotation of the Universe or, more restrictedly, as requiring a critical density universe (to generate the right amount of inertia). This last formulation amounts to Gρτ2 approx 1, where ρ is the density of the Universe at time τ. This appears to be a classical expression, which would probably be sufficient to relegate Mach's principle to mere historical interest along with the classical unified field theories. It is also usually considered to be accounted for by inflation, which drives the Universe to Ω=1. However, we can also think of the expression as saying that the Universe has a Planck mass in a Planck volume at the Planck time: G=(hc / G)1/2(c3 / Gh)3/2(Gh / c5)=1. This suggests that Mach's principle may yet have a surprising role in expressing the fact that the Universe contains sufficient matter to exist as a classical system: that is, that it contains sufficient material degrees of freedom to allow quantum decoherence to occur. It would at least be a nice irony if Mach's principle turned out to be a necessary quantum condition for the existence of a classical universe! Coming now to the papers in this special feature, these include several that treat historical aspects of relativity. Brown offers us a novel insight into Einstein's ambivalence about the status of special relativity in providing a mechanism for the contraction hypothesis. Trainer looks at the way in which Einstein presented a brief account of relativity in a lecture that he gave in Glasgow in 1933. Galvangno and Giribet look at Einstein's approach to the representation of particles within general relativity, or variants thereof, while Battimelli provides an account of attempts at unification of electromagnetism and relativity from the point of view of the origin of mass. In their contribution, Guerra and de Abreu look again at the relationship between the constancy of the speed of light and the nature of time that was central to Einstein's thinking. Next we come to a group of papers that look at educational issues. Einstein's equation E = mc2 is now iconic even if general knowledge quizzes that ask what the c stands for miss the entire point of the equation! Thomas starts from the way in which perceptions of relativity still focus on this equation as the essential ingredient of nuclear power and the need to disabuse even students of physics of this notion. He also looks at how we can in fact demonstrate the significance of the equation to a lay audience. I have added a short note on friction, another topic that confuses teachers and students alike, that throws up problems to which the solutions are contained in Einstein's Brownian motion paper. The Open University in the UK has been teaching relativity to distance-learners for forty years; Lambourne writes about the experience that has been gained. Finally, I have always been intrigued by the opprobrium that Einstein seems to attract from crank authors. I no longer regularly receive such nonsense to referee, I assume because the internet is now awash with 'publication' opportunities for anti-Einstein articles. I do believe however that the work of these authors throws light on the way science works and I have tried to illustrate this thesis briefly in the final paper of this collection.

  1. The Evolution of Hyperedge Cardinalities and Bose-Einstein Condensation in Hypernetworks.

    PubMed

    Guo, Jin-Li; Suo, Qi; Shen, Ai-Zhong; Forrest, Jeffrey

    2016-09-27

    To depict the complex relationship among nodes and the evolving process of a complex system, a Bose-Einstein hypernetwork is proposed in this paper. Based on two basic evolutionary mechanisms, growth and preference jumping, the distribution of hyperedge cardinalities is studied. The Poisson process theory is used to describe the arrival process of new node batches. And, by using the Poisson process theory and a continuity technique, the hypernetwork is analyzed and the characteristic equation of hyperedge cardinalities is obtained. Additionally, an analytical expression for the stationary average hyperedge cardinality distribution is derived by employing the characteristic equation, from which Bose-Einstein condensation in the hypernetwork is obtained. The theoretical analyses in this paper agree with the conducted numerical simulations. This is the first study on the hyperedge cardinality in hypernetworks, where Bose-Einstein condensation can be regarded as a special case of hypernetworks. Moreover, a condensation degree is also discussed with which Bose-Einstein condensation can be classified.

  2. Einstein's steady-state theory: an abandoned model of the cosmos

    NASA Astrophysics Data System (ADS)

    O'Raifeartaigh, Cormac; McCann, Brendan; Nahm, Werner; Mitton, Simon

    2014-09-01

    We present a translation and analysis of an unpublished manuscript by Albert Einstein in which he attempted to construct a `steady-state' model of the universe. The manuscript, which appears to have been written in early 1931, demonstrates that Einstein once explored a cosmic model in which the mean density of matter in an expanding universe is maintained constant by the continuous formation of matter from empty space. This model is very different to previously known Einsteinian models of the cosmos (both static and dynamic) but anticipates the later steady-state cosmology of Hoyle, Bondi and Gold in some ways. We find that Einstein's steady-state model contains a fundamental flaw and suggest that it was abandoned for this reason. We also suggest that he declined to explore a more sophisticated version because he found such theories rather contrived. The manuscript is of historical interest because it reveals that Einstein debated between steady-state and evolving models of the cosmos decades before a similar debate took place in the cosmological community.

  3. It’s About Time -- Understanding China’s Strategic Patience

    DTIC Science & Technology

    2012-03-18

    Einstein and Stephen 3 Hawking, made conceptualizing time easier to accept by linking time with space. Time and space are inherently linked together...same regardless of how you were moving - exactly as experiments and mathematics of the day showed them to be. In 1905, Albert Einstein published...speeds relative to each other. Einstein explained that when two objects are moving at independent constant speeds, emphasizing the relative motion

  4. Scalar field coupling to Einstein tensor in regular black hole spacetime

    NASA Astrophysics Data System (ADS)

    Zhang, Chi; Wu, Chen

    2018-02-01

    In this paper, we study the perturbation property of a scalar field coupling to Einstein's tensor in the background of the regular black hole spacetimes. Our calculations show that the the coupling constant η imprints in the wave equation of a scalar perturbation. We calculated the quasinormal modes of scalar field coupling to Einstein's tensor in the regular black hole spacetimes by the 3rd order WKB method.

  5. Einstein-Cartan Gravity with Torsion Field Serving as an Origin for the Cosmological Constant or Dark Energy Density

    NASA Astrophysics Data System (ADS)

    Ivanov, A. N.; Wellenzohn, M.

    2016-09-01

    We analyse the Einstein-Cartan gravity in its standard form { R }=R+{{ K }}2, where { R } {and} R are the Ricci scalar curvatures in the Einstein-Cartan and Einstein gravity, respectively, and {{ K }}2 is the quadratic contribution of torsion in terms of the contorsion tensor { K }. We treat torsion as an external (or background) field and show that its contribution to the Einstein equations can be interpreted in terms of the torsion energy-momentum tensor, local conservation of which in a curved spacetime with an arbitrary metric or an arbitrary gravitational field demands a proportionality of the torsion energy-momentum tensor to a metric tensor, a covariant derivative of which vanishes owing to the metricity condition. This allows us to claim that torsion can serve as an origin for the vacuum energy density, given by the cosmological constant or dark energy density in the universe. This is a model-independent result that may explain the small value of the cosmological constant, which is a long-standing problem in cosmology. We show that the obtained result is valid also in the Poincaré gauge gravitational theory of Kibble, where the Einstein-Hilbert action can be represented in the same form: { R }=R+{{ K }}2.

  6. POWER AND THERMAL TECHNOLOGIES FOR AIR AND SPACE-SCIENTIFIC RESEARCH PROGRAM Delivery Order 0018: Single Ion Conducting Solid-State Lithium Electrochemical Technologies (Task 4)

    DTIC Science & Technology

    2010-08-01

    a mathematical equation relates the cathode reaction reversible electric potential to the lithium content of the cathode electrode. Based on the...Transport of Lithium in the Cell Cathode Active Material The Nernst -Einstein relation linking the lithium-ion mass diffusivity and its ionic...transient, isothermal and isobaric conditions. The differential model equation describing the lithium diffusion and accumulation in a spherical, active

  7. On the Correlations between the Particles in the EPR-Paradoxon

    NASA Astrophysics Data System (ADS)

    Treder, H.-J.

    The Einstein-Podolsky-Rosen gedanken-experiment does not imply non-local interactions or an action-at-a-distance.Contrary, the EPR proves the measurements at one particle does not have influences at canonical variables of the other particles if the quantum-mechanical commutation relations are true.But, the EPR implices correlations between the particles which come in by subjective knowledge. These correlations are a priori informations about the relative motion or, complementarily, about the motion of the center of mass. The impression of an action-at-a-distance is produced by the use of usual particle coordinates in the EPR-arrangements.The discussion of the Einstein-Podolsky-Rosen gedanken-experiment (EPR) has been going on over fifty years. EINSTEIN, PODOLSKY, and ROSEN formulated their famous paradox in 1935, and in the discussion between N. BOHR (1935, 1949) and A. EINSTEIN (1936, 1948); A. EINSTEIN (1948) made his point that the EPR implied an action-at-a-distance for quantum-mechanical particles (without obvious classical interactions). His argument is the starting point for the recent discussion about EPR and causality (see A. Aspect, 1981).Translated AbstractÜber die Korrelationen zwischen den Partikeln beim EPR-ParadoxonDas Gedankenexperiment von EINSTEIN, PODOLSKY und ROSEN über die anscheinend paradoxen Beziehungen zwischen beliebig weit entfernten Partikeln gemäß der quantenmechanischen Theorie der Messungen führt tatsächlich nicht auf nichtlokale Wechselwirkungen.Das Einstein-Podolsky-Rosen-Paradoxon zeigt vielmehr, daß die Messung an einem Teilchen keinerlei Einfluß auf die Meßwerte an anderen Partikeln hat, wenn die quantenmechanischen Vertauschungsregeln erfüllt sind.Dagegen weist das Einstein-Podolsky-Rosensche Gedankenexperiment Korrelationen zwischen den Teilchen auf, die die Folge einer a-priori-Kenntnis über die Werte von Hamilton-Jacobischen Zwei-Partikeln-Koordinaten von nicht-wechselwirkenden Teilchen sind.

  8. Record bid for Einstein letter

    NASA Astrophysics Data System (ADS)

    Jeandron, Michelle

    2008-06-01

    A letter written by Albert Einstein the year before his death has sold for the staggering amount of £170 000 at an auction in London last month. The previously unrecorded letter, which has spent the past 50 years in a private collection, includes a discussion of Einstein's views on religion, bringing new material to the debate about whether or not he believed in God. The lot had been expected to fetch between £6000-£8000.

  9. NAVO MSRC Navigator. Fall 2008

    DTIC Science & Technology

    2008-01-01

    arrival of our two new HPC systems, DAVINCI (IBM P6) and EINSTEIN (Cray XT5), and our new mass storage server, NEWTON (Sun M5000). “The most...will run on both DAVINCI and EINSTEIN, providing researchers with the capability of running jobs of up to 4,256 and 12,736 cores in size...are expected to double as EINSTEIN and DAVINCI are brought online. We have also strengthened the backbone of our Disaster Recovery infrastructure, as

  10. E=mc2 in theory and in practice

    NASA Astrophysics Data System (ADS)

    Friedlander, Michael W.

    2009-02-01

    Einstein and Oppenheimer are forever linked by that famous equation. Einstein derived it and Oppenheimer oversaw its terrible application. The Meaning of Genius is the subtitle that Silvan Schweber has chosen for his study of these two very different giants. Schweber is a theoretical physicist whose years at the Institute for Advanced Study in Princeton overlapped with those of Einstein and Oppenheimer, for whom he provides a perceptive comparison in his book's introductory chapter.

  11. Einstein gravity with torsion induced by the scalar field

    NASA Astrophysics Data System (ADS)

    Özçelik, H. T.; Kaya, R.; Hortaçsu, M.

    2018-06-01

    We couple a conformal scalar field in (2+1) dimensions to Einstein gravity with torsion. The field equations are obtained by a variational principle. We could not solve the Einstein and Cartan equations analytically. These equations are solved numerically with 4th order Runge-Kutta method. From the numerical solution, we make an ansatz for the rotation parameter in the proposed metric, which gives an analytical solution for the scalar field for asymptotic regions.

  12. Learning and Teaching: Where Does Einstein's Concept of Learning about "Service of Our Fellow Man" Enter into Our Discussions about Student Achievement?

    ERIC Educational Resources Information Center

    Manthey, George

    2005-01-01

    The author of this paper discusses the significance of Albert Einstein's concept of learning about "service of our fellow man" into the discussions about student achievement. Albert Einstein wrote in 1954 of what he considered an evil of modern life--that the "individual feels more than ever dependent on society, but it is not felt in the positive…

  13. Cosmological perturbations during the Bose-Einstein condensation of dark matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freitas, R.C.; Gonçalves, S.V.B., E-mail: rodolfo.camargo@pq.cnpq.br, E-mail: sergio.vitorino@pq.cnpq.br

    In the present work, we analyze the evolution of the scalar and tensorial perturbations and the quantities relevant for the physical description of the Universe, as the density contrast of the scalar perturbations and the gravitational waves energy density during the Bose-Einstein condensation of dark matter. The behavior of these parameters during the Bose-Einstein phase transition of dark matter is analyzed in details. To study the cosmological dynamics and evolution of scalar and tensorial perturbations in a Universe with and without cosmological constant we use both analytical and numerical methods. The Bose-Einstein phase transition modifies the evolution of gravitational wavesmore » of cosmological origin, as well as the process of large-scale structure formation.« less

  14. Generalized Einstein relation for the mutual diffusion coefficient of a binary fluid mixture.

    PubMed

    Felderhof, B U

    2017-08-21

    The method employed by Einstein to derive his famous relation between the diffusion coefficient and the friction coefficient of a Brownian particle is used to derive a generalized Einstein relation for the mutual diffusion coefficient of a binary fluid mixture. The expression is compared with the one derived by de Groot and Mazur from irreversible thermodynamics and later by Batchelor for a Brownian suspension. A different result was derived by several other workers in irreversible thermodynamics. For a nearly incompressible solution, the generalized Einstein relation agrees with the expression derived by de Groot and Mazur. The two expressions also agree to first order in solute density. For a Brownian suspension, the result derived from the generalized Smoluchowski equation agrees with both expressions.

  15. Hidden simplicity of the gravity action

    DOE PAGES

    Cheung, Clifford; Remmen, Grant N.

    2017-09-01

    We derive new representations of the Einstein-Hilbert action in which graviton perturbation theory is immensely simplified. To accomplish this, we recast the Einstein-Hilbert action as a theory of purely cubic interactions among gravitons and a single auxiliary field. The corresponding equations of motion are the Einstein field equations rewritten as two coupled first-order differential equations. Since all Feynman diagrams are cubic, we are able to derive new off-shell recursion relations for tree-level graviton scattering amplitudes. With a judicious choice of gauge fixing, we then construct an especially compact form for the Einstein-Hilbert action in which all graviton interactions are simplymore » proportional to the graviton kinetic term. Our results apply to graviton perturbations about an arbitrary curved background spacetime.« less

  16. Hidden simplicity of the gravity action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheung, Clifford; Remmen, Grant N.

    We derive new representations of the Einstein-Hilbert action in which graviton perturbation theory is immensely simplified. To accomplish this, we recast the Einstein-Hilbert action as a theory of purely cubic interactions among gravitons and a single auxiliary field. The corresponding equations of motion are the Einstein field equations rewritten as two coupled first-order differential equations. Since all Feynman diagrams are cubic, we are able to derive new off-shell recursion relations for tree-level graviton scattering amplitudes. With a judicious choice of gauge fixing, we then construct an especially compact form for the Einstein-Hilbert action in which all graviton interactions are simplymore » proportional to the graviton kinetic term. Our results apply to graviton perturbations about an arbitrary curved background spacetime.« less

  17. The digital computer as a metaphor for the perfect laboratory experiment: Loophole-free Bell experiments

    NASA Astrophysics Data System (ADS)

    De Raedt, Hans; Michielsen, Kristel; Hess, Karl

    2016-12-01

    Using Einstein-Podolsky-Rosen-Bohm experiments as an example, we demonstrate that the combination of a digital computer and algorithms, as a metaphor for a perfect laboratory experiment, provides solutions to problems of the foundations of physics. Employing discrete-event simulation, we present a counterexample to John Bell's remarkable "proof" that any theory of physics, which is both Einstein-local and "realistic" (counterfactually definite), results in a strong upper bound to the correlations that are being measured in Einstein-Podolsky-Rosen-Bohm experiments. Our counterexample, which is free of the so-called detection-, coincidence-, memory-, and contextuality loophole, violates this upper bound and fully agrees with the predictions of quantum theory for Einstein-Podolsky-Rosen-Bohm experiments.

  18. Einstein, Ethics and the Atomic Bomb

    NASA Astrophysics Data System (ADS)

    Rife, Patricia

    2005-03-01

    Einstein voiced his ethical views against war as well as fascism via venues and alliances with a variety of organizations still debated today. In 1939, he signed a letter to President Roosevelt (drafted by younger colleagues Szilard, Wigner and others) warning the U.S.government about the danger of Nazi Germany gaining control of uranium in the Belgian-controlled Congo in order to develop atomic weapons, based on the discovery of fission by Otto Hahn and Lise Meitner. In 1945, he became a member of the Princeton-based ``Emergency Committee for Atomic Scientists'' organized by Bethe, Condon, Bacher, Urey, Szilard and Weisskopf. Rare Einstein slides will illustrate Dr.Rife's presentation on Albert Einstein's philosophic and ethical convictions about peace, and public stance against war (1914-1950).

  19. Normal versus anomalous self-diffusion in two-dimensional fluids: memory function approach and generalized asymptotic Einstein relation.

    PubMed

    Shin, Hyun Kyung; Choi, Bongsik; Talkner, Peter; Lee, Eok Kyun

    2014-12-07

    Based on the generalized Langevin equation for the momentum of a Brownian particle a generalized asymptotic Einstein relation is derived. It agrees with the well-known Einstein relation in the case of normal diffusion but continues to hold for sub- and super-diffusive spreading of the Brownian particle's mean square displacement. The generalized asymptotic Einstein relation is used to analyze data obtained from molecular dynamics simulations of a two-dimensional soft disk fluid. We mainly concentrated on medium densities for which we found super-diffusive behavior of a tagged fluid particle. At higher densities a range of normal diffusion can be identified. The motion presumably changes to sub-diffusion for even higher densities.

  20. Normal versus anomalous self-diffusion in two-dimensional fluids: Memory function approach and generalized asymptotic Einstein relation

    NASA Astrophysics Data System (ADS)

    Shin, Hyun Kyung; Choi, Bongsik; Talkner, Peter; Lee, Eok Kyun

    2014-12-01

    Based on the generalized Langevin equation for the momentum of a Brownian particle a generalized asymptotic Einstein relation is derived. It agrees with the well-known Einstein relation in the case of normal diffusion but continues to hold for sub- and super-diffusive spreading of the Brownian particle's mean square displacement. The generalized asymptotic Einstein relation is used to analyze data obtained from molecular dynamics simulations of a two-dimensional soft disk fluid. We mainly concentrated on medium densities for which we found super-diffusive behavior of a tagged fluid particle. At higher densities a range of normal diffusion can be identified. The motion presumably changes to sub-diffusion for even higher densities.

  1. Classes of exact Einstein Maxwell solutions

    NASA Astrophysics Data System (ADS)

    Komathiraj, K.; Maharaj, S. D.

    2007-12-01

    We find new classes of exact solutions to the Einstein Maxwell system of equations for a charged sphere with a particular choice of the electric field intensity and one of the gravitational potentials. The condition of pressure isotropy is reduced to a linear, second order differential equation which can be solved in general. Consequently we can find exact solutions to the Einstein Maxwell field equations corresponding to a static spherically symmetric gravitational potential in terms of hypergeometric functions. It is possible to find exact solutions which can be written explicitly in terms of elementary functions, namely polynomials and product of polynomials and algebraic functions. Uncharged solutions are regainable with our choice of electric field intensity; in particular we generate the Einstein universe for particular parameter values.

  2. Einstein-Weyl spaces and third-order differential equations

    NASA Astrophysics Data System (ADS)

    Tod, K. P.

    2000-08-01

    The three-dimensional null-surface formalism of Tanimoto [M. Tanimoto, "On the null surface formalism," Report No. gr-qc/9703003 (1997)] and Forni et al. [Forni et al., "Null surfaces formation in 3D," J. Math Phys. (submitted)] are extended to describe Einstein-Weyl spaces, following Cartan [E. Cartan, "Les espaces généralisées et l'integration de certaines classes d'equations différentielles," C. R. Acad. Sci. 206, 1425-1429 (1938); "La geometria de las ecuaciones diferenciales de tercer order," Rev. Mat. Hispano-Am. 4, 1-31 (1941)]. In the resulting formalism, Einstein-Weyl spaces are obtained from a particular class of third-order differential equations. Some examples of the construction which include some new Einstein-Weyl spaces are given.

  3. Albert Einstein and Friedrich Dessauer: Political Views and Political Practice

    NASA Astrophysics Data System (ADS)

    Goenner, Hubert

    In this case study I compare the political views of the physicists Albert Einstein and Friedrich Dessauer between the first and second world wars, and I investigate their translation into concrete political practice. Both departed from their roles as experts in physics in favor of political engagement. The essence of Einstein's political practice seems to have been a form of political participation in exerting moral influence on people and organizations through public declarations and appeals in isolation from political mass movements. Dessauer exerted political influence both through public office (as a member of Parliament for the Catholic Center Party) and by acquiring a newspaper. The different political practice of both Einstein and Dessauer were unsuccessful in thwarting the Nazi takeover.

  4. Schwinger's Approach to Einstein's Gravity

    NASA Astrophysics Data System (ADS)

    Milton, Kim

    2012-05-01

    Albert Einstein was one of Julian Schwinger's heroes, and Schwinger was greatly honored when he received the first Einstein Prize (together with Kurt Godel) for his work on quantum electrodynamics. Schwinger contributed greatly to the development of a quantum version of gravitational theory, and his work led directly to the important work of (his students) Arnowitt, Deser, and DeWitt on the subject. Later in the 1960's and 1970's Schwinger developed a new formulation of quantum field theory, which he dubbed Source Theory, in an attempt to get closer contact to phenomena. In this formulation, he revisited gravity, and in books and papers showed how Einstein's theory of General Relativity emerged naturally from one physical assumption: that the carrier of the gravitational force is a massless, helicity-2 particle, the graviton. (There has been a minor dispute whether gravitational theory can be considered as the massless limit of a massive spin-2 theory; Schwinger believed that was the case, while Van Dam and Veltman concluded the opposite.) In the process, he showed how all of the tests of General Relativity could be explained simply, without using the full machinery of the theory and without the extraneous concept of curved space, including such effects as geodetic precession and the Lense-Thirring effect. (These effects have now been verified by the Gravity Probe B experiment.) This did not mean that he did not accept Einstein's equations, and in his book and full article on the subject, he showed how those emerge essentially uniquely from the assumption of the graviton. So to speak of Schwinger versus Einstein is misleading, although it is true that Schwinger saw no necessity to talk of curved spacetime. In this talk I will lay out Schwinger's approach, and the connection to Einstein's theory.

  5. Bose-Einstein condensation. Twenty years after

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagnato, V. S.; Frantzeskakis, D. J.; Kevrekidis, P. G.

    The aim of this introductory article is two-fold. First, we aim to offer a general introduction to the theme of Bose-Einstein condensates, and briefly discuss the evolution of a number of relevant research directions during the last two decades. Second, we introduce and present the articles that appear in this Special Volume of Romanian Reports in Physics celebrating the conclusion of the second decade since the experimental creation of Bose-Einstein condensation in ultracold gases of alkali-metal atoms.

  6. PEOPLE IN PHYSICS: Albert Einstein's personal papers: a physics teaching resource

    NASA Astrophysics Data System (ADS)

    Derman, Samuel

    2000-01-01

    The concept of `Einstein the man' is put forward as a way of generating interest in the study of physics amongst students. Einstein provides an instantly recognizable face for science and thus a gateway into the subject through discussion of the man. Supporting this is the great volume of archive material which is available to students, teachers and the general public and in particular the archives of the Jewish National & University Library in Jerusalem.

  7. Einstein and Rastall theories of gravitation in comparison

    NASA Astrophysics Data System (ADS)

    Darabi, F.; Moradpour, H.; Licata, I.; Heydarzade, Y.; Corda, C.

    2018-01-01

    We profit by a recent paper of Visser claiming that Rastall gravity is equivalent to Einstein gravity to compare the two gravitational theories in a general way. Our conclusions are different from Visser's ones. We indeed argue that these two theories are not equivalent. In fact, Rastall theory of gravity is an "open" theory when compared to Einstein general theory of relativity. Thus, it is ready to accept the challenges of observational cosmology and quantum gravity.

  8. Bose-Einstein condensation. Twenty years after

    DOE PAGES

    Bagnato, V. S.; Frantzeskakis, D. J.; Kevrekidis, P. G.; ...

    2015-02-23

    The aim of this introductory article is two-fold. First, we aim to offer a general introduction to the theme of Bose-Einstein condensates, and briefly discuss the evolution of a number of relevant research directions during the last two decades. Second, we introduce and present the articles that appear in this Special Volume of Romanian Reports in Physics celebrating the conclusion of the second decade since the experimental creation of Bose-Einstein condensation in ultracold gases of alkali-metal atoms.

  9. Nonequilibrium Bose-Einstein condensation of hot magnons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vannucchi, Fabio Stucchi; Vasconcellos, Aurea Rosas; Luzzi, Roberto

    We present an analysis of the emergence of a nonequilibrium Bose-Einstein-type condensation of magnons in radio-frequency pumped magnetic thin films, which has recently been experimentally observed. A complete description of all the nonequilibrium processes involved is given. It is demonstrated that the phenomenon is another example of the emergence of Bose-Einstein-type condensation in nonequilibrium many-boson systems embedded in a thermal bath, a phenomenon evidenced decades ago by the renowned late Herbert Froehlich.

  10. Gödel metrics with chronology protection in Horndeski gravities

    NASA Astrophysics Data System (ADS)

    Geng, Wei-Jian; Li, Shou-Long; Lü, H.; Wei, Hao

    2018-05-01

    Gödel universe, one of the most interesting exact solutions predicted by General Relativity, describes a homogeneous rotating universe containing naked closed time-like curves (CTCs). It was shown that such CTCs are the consequence of the null energy condition in General Relativity. In this paper, we show that the Gödel-type metrics with chronology protection can emerge in Einstein-Horndeski gravity. We construct such exact solutions also in Einstein-Horndeski-Maxwell and Einstein-Horndeski-Proca theories.

  11. Bohr's Electron was Problematic for Einstein: String Theory Solved the Problem

    NASA Astrophysics Data System (ADS)

    Webb, William

    2013-04-01

    Neils Bohr's 1913 model of the hydrogen electron was problematic for Albert Einstein. Bohr's electron rotates with positive kinetic energies +K but has addition negative potential energies - 2K. The total net energy is thus always negative with value - K. Einstein's special relativity requires energies to be positive. There's a Bohr negative energy conflict with Einstein's positive energy requirement. The two men debated the problem. Both would have preferred a different electron model having only positive energies. Bohr and Einstein couldn't find such a model. But Murray Gell-Mann did! In the 1960's, Gell-Mann introduced his loop-shaped string-like electron. Now, analysis with string theory shows that the hydrogen electron is a loop of string-like material with a length equal to the circumference of the circular orbit it occupies. It rotates like a lariat around its centered proton. This loop-shape has no negative potential energies: only positive +K relativistic kinetic energies. Waves induced on loop-shaped electrons propagate their energy at a speed matching the tangential speed of rotation. With matching wave speed and only positive kinetic energies, this loop-shaped electron model is uniquely suited to be governed by the Einstein relativistic equation for total mass-energy. Its calculated photon emissions are all in excellent agreement with experimental data and, of course, in agreement with those -K calculations by Neils Bohr 100 years ago. Problem solved!

  12. [The meeting of Einstein with Cajal (Madrid, 1923): a lost tide of fortune].

    PubMed

    Montes-Santiago, J

    The year 2005 was the centennial year of the Albert Einstein's transcendental works that changed forever the humans thoughts on the universe. It is also celebrated the 50th anniversary of his death. It was proclaimed 'World Year of Physics' and a multiplicity of celebrations have exhaustively analyzed Einstein's cardinals contributions. However, among these, the meeting of Einstein with another titanic of science, Santiago Ramon y Cajal, has passed some unnoticed. In this study the circumstances of this meeting are evoked. The parallelisms between the lives of both prominent figures awarded with the Nobel Prize are highlighted. They are the 'classic' authors most widely cited in the current scientific literature. The events and persons who made possible that shining but forgotten interview are detailed. Such a meeting took place in Madrid, on the occasion of the Einstein's trip to Spain in 1923. That travel exceeded his primary scientific nature, reaching the category of a social phenomenon and was widely covered by the printed mass media at that time. Finally, the curious coincidence of the invocation of Cajal's theories to justify the genius of the German physicist nearly 75 years after their meeting is mentioned. Although it was a brief meeting and the circumstances surrounding it largely unknown, it produced a great impression to Einstein and constitutes a supreme instant in the history of the 20th century.

  13. The Einstein-Vlasov System/Kinetic Theory.

    PubMed

    Andréasson, Håkan

    2005-01-01

    The main purpose of this article is to provide a guide to theorems on global properties of solutions to the Einstein-Vlasov system. This system couples Einstein's equations to a kinetic matter model. Kinetic theory has been an important field of research during several decades in which the main focus has been on nonrelativistic and special relativistic physics, i.e. to model the dynamics of neutral gases, plasmas, and Newtonian self-gravitating systems. In 1990, Rendall and Rein initiated a mathematical study of the Einstein-Vlasov system. Since then many theorems on global properties of solutions to this system have been established. The Vlasov equation describes matter phenomenologically, and it should be stressed that most of the theorems presented in this article are not presently known for other such matter models (i.e. fluid models). This paper gives introductions to kinetic theory in non-curved spacetimes and then the Einstein-Vlasov system is introduced. We believe that a good understanding of kinetic theory in non-curved spacetimes is fundamental to good comprehension of kinetic theory in general relativity.

  14. The Einstein-Vlasov System/Kinetic Theory.

    PubMed

    Andréasson, Håkan

    2002-01-01

    The main purpose of this article is to provide a guide to theorems on global properties of solutions to the Einstein-Vlasov system. This system couples Einstein's equations to a kinetic matter model. Kinetic theory has been an important field of research during several decades in which the main focus has been on nonrelativistic and special relativistic physics, i.e. to model the dynamics of neutral gases, plasmas, and Newtonian self-gravitating systems. In 1990, Rendall and Rein initiated a mathematical study of the Einstein-Vlasov system. Since then many theorems on global properties of solutions to this system have been established. The Vlasov equation describes matter phenomenologically, and it should be stressed that most of the theorems presented in this article are not presently known for other such matter models (i.e. fluid models). This paper gives introductions to kinetic theory in non-curved spacetimes and then the Einstein-Vlasov system is introduced. We believe that a good understanding of kinetic theory in non-curved spacetimes is fundamental to good comprehension of kinetic theory in general relativity.

  15. Left-invariant Einstein metrics on S3 ×S3

    NASA Astrophysics Data System (ADS)

    Belgun, Florin; Cortés, Vicente; Haupt, Alexander S.; Lindemann, David

    2018-06-01

    The classification of homogeneous compact Einstein manifolds in dimension six is an open problem. We consider the remaining open case, namely left-invariant Einstein metrics g on G = SU(2) × SU(2) =S3 ×S3. Einstein metrics are critical points of the total scalar curvature functional for fixed volume. The scalar curvature S of a left-invariant metric g is constant and can be expressed as a rational function in the parameters determining the metric. The critical points of S, subject to the volume constraint, are given by the zero locus of a system of polynomials in the parameters. In general, however, the determination of the zero locus is apparently out of reach. Instead, we consider the case where the isotropy group K of g in the group of motions is non-trivial. When K ≇Z2 we prove that the Einstein metrics on G are given by (up to homothety) either the standard metric or the nearly Kähler metric, based on representation-theoretic arguments and computer algebra. For the remaining case K ≅Z2 we present partial results.

  16. Diffusion coefficients in organic-water solutions and comparison with Stokes-Einstein predictions

    NASA Astrophysics Data System (ADS)

    Evoy, E.; Kamal, S.; Bertram, A. K.

    2017-12-01

    Diffusion coefficients of organic species in particles containing secondary organic material (SOM) are necessary for predicting the growth and reactivity of these particles in the atmosphere. Previously, the Stokes-Einstein equation combined with viscosity measurements have been used to predict these diffusion coefficients. However, the accuracy of the Stokes-Einstein equation for predicting diffusion coefficients in SOM-water particles has not been quantified. To test the Stokes-Einstein equation, diffusion coefficients of fluorescent organic probe molecules were measured in citric acid-water and sorbitol-water solutions. These solutions were used as proxies for SOM-water particles found in the atmosphere. Measurements were performed as a function of water activity, ranging from 0.26-0.86, and as a function of viscosity ranging from 10-3 to 103 Pa s. Diffusion coefficients were measured using fluorescence recovery after photobleaching. The measured diffusion coefficients were compared with predictions made using the Stokes-Einstein equation combined with literature viscosity data. Within the uncertainties of the measurements, the measured diffusion coefficients agreed with the predicted diffusion coefficients, in all cases.

  17. Analysis and interpretation of diffuse x-ray emission using data from the Einstein satellite

    NASA Technical Reports Server (NTRS)

    Helfand, David J.

    1991-01-01

    An ambitious program to create a powerful and accessible archive of the HEAO-2 Imaging Proportional Counter (IPC) database was outlined. The scientific utility of that database for studies of diffuse x ray emissions was explored. Technical and scientific accomplishments are reviewed. Three papers were presented which have major new scientific findings relevant to the global structure of the interstellar medium and the origin of the cosmic x ray background. An all-sky map of diffuse x ray emission was constructed.

  18. Optical polarimetry and photometry of X-ray selected BL Lacertae objects

    NASA Technical Reports Server (NTRS)

    Jannuzi, Buell T.; Smith, Paul S.; Elston, Richard

    1993-01-01

    We present the data from 3 years of monitoring the optical polarization and apparent brightness of 37 X-ray-selected BL Lacertae objects. The monitored objects include a complete sample drawn from the Einstein Extended Medium Sensitivity Survey. We confirm the BL Lac identifications for 15 of these 22 objects. We include descriptions of the objects and samples in our monitoring program and of the existing complete samples of BL Lac objects, highly polarized quasars, optically violent variable quasars, and blazars.

  19. Progress Towards a Space-Based Gravitational-Wave Observatory Since 2010

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin T.

    2015-01-01

    Laser Interferometer Space Antenna (LISA): Focus of all work since 1993; Unchanged since 1997; Project in Phase A since 2004; Extensive formulation work and products; Reviewed and recommended in many major reviews: AANM (NRC, 2001), TRIP (HQ, 2003), Connecting Quarks with the Cosmos (NRC, 2003), AETD (GSFC, 2005). Beyond Einstein Program: (NRC, 2007), NWNH (NRC, 2010): Second in large space projects after WFIRST. Recommended for a new start. Contingent on Lisa Pathfinder success and a roughly 50-50 European partnership.

  20. The Goddard program of gamma ray transient astronomy

    NASA Technical Reports Server (NTRS)

    Cline, T. L.; Desai, U. D.; Teegarden, B. J.

    1980-01-01

    Gamma ray burst studies are reviewed. The past results, present status and future expectations are outlined regarding endeavors using experiments on balloons, IMP-6 and -7, OGO-3, ISEE-1 and -3, Helios-2, Solar Maximum Mission, the Einstein Observatory, Solar Polar and the Gamma Ray Observatory, and with the interplanetary gamma ray burst networks, to which some of these spacecraft sensors contribute. Additional emphasis is given to the recent discovery of a new type of gamma ray transient, detected on 1979 March 5.

  1. Breakdown of the Stokes-Einstein Relation for the Rotational Diffusivity of Polymer Grafted Nanoparticles in Polymer Melts.

    PubMed

    Maldonado-Camargo, Lorena; Rinaldi, Carlos

    2016-11-09

    We report observations of breakdown of the Stokes-Einstein relation for the rotational diffusivity of polymer-grafted spherical nanoparticles in polymer melts. The rotational diffusivity of magnetic nanoparticles coated with poly(ethylene glycol) dispersed in poly(ethylene glycol) melts was determined through dynamic magnetic susceptibility measurements of the collective rotation of the magnetic nanoparticles due to imposed time-varying magnetic torques. These measurements clearly demonstrate the existence of a critical molecular weight for the melt polymer, below which the Stokes-Einstein relation accurately describes the rotational diffusivity of the polymer-grafted nanoparticles and above which the Stokes-Einstein relation ceases to apply. This critical molecular weight was found to correspond to a chain contour length that approximates the hydrodynamic diameter of the nanoparticles.

  2. Bose-Einstein correlations of same-sign charged pions in the forward region in pp collisions at √{s}=7 TeV

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Alfonso Albero, A.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreassi, G.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Archilli, F.; d'Argent, P.; Arnau Romeu, J.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Babuschkin, I.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baker, S.; Balagura, V.; Baldini, W.; Baranov, A.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Baryshnikov, F.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Beiter, A.; Bel, L. J.; Beliy, N.; Bellee, V.; Belloli, N.; Belous, K.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Beranek, S.; Berezhnoy, A.; Bernet, R.; Berninghoff, D.; Bertholet, E.; Bertolin, A.; Betancourt, C.; Betti, F.; Bettler, M.-O.; van Beuzekom, M.; Bezshyiko, Ia.; Bifani, S.; Billoir, P.; Birnkraut, A.; Bitadze, A.; Bizzeti, A.; Bjørn, M.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Boettcher, T.; Bondar, A.; Bondar, N.; Bonivento, W.; Bordyuzhin, I.; Borgheresi, A.; Borghi, S.; Borisyak, M.; Borsato, M.; Bossu, F.; Boubdir, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Britton, T.; Brodzicka, J.; Brundu, D.; Buchanan, E.; Burr, C.; Bursche, A.; Buytaert, J.; Byczynski, W.; Cadeddu, S.; Cai, H.; Calabrese, R.; Calladine, R.; Calvi, M.; Calvo Gomez, M.; Camboni, A.; Campana, P.; Campora Perez, D. H.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cavallero, G.; Cenci, R.; Chamont, D.; Charles, M.; Charpentier, Ph.; Chatzikonstantinidis, G.; Chefdeville, M.; Chen, S.; Cheung, S. F.; Chitic, S.-G.; Chobanova, V.; Chrzaszcz, M.; Chubykin, A.; Ciambrone, P.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collins, P.; Colombo, T.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombs, G.; Coquereau, S.; Corti, G.; Corvo, M.; Costa Sobral, C. M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Currie, R.; D'Ambrosio, C.; Da Cunha Marinho, F.; Dall'Occo, E.; Dalseno, J.; Davis, A.; De Aguiar Francisco, O.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Serio, M.; De Simone, P.; Dean, C. T.; Decamp, D.; Del Buono, L.; Dembinski, H.-P.; Demmer, M.; Dendek, A.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Nezza, P.; Dijkstra, H.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Douglas, L.; Dovbnya, A.; Dreimanis, K.; Dufour, L.; Dujany, G.; Durante, P.; Dzhelyadin, R.; Dziewiecki, M.; Dziurda, A.; Dzyuba, A.; Easo, S.; Ebert, M.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Farley, N.; Farry, S.; Fazzini, D.; Federici, L.; Ferguson, D.; Fernandez, G.; Fernandez Declara, P.; Fernandez Prieto, A.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fini, R. A.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fleuret, F.; Fohl, K.; Fontana, M.; Fontanelli, F.; Forshaw, D. C.; Forty, R.; Franco Lima, V.; Frank, M.; Frei, C.; Fu, J.; Funk, W.; Furfaro, E.; Färber, C.; Gabriel, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; Garcia Martin, L. M.; García Pardiñas, J.; Garra Tico, J.; Garrido, L.; Garsed, P. J.; Gascon, D.; Gaspar, C.; Gavardi, L.; Gazzoni, G.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianì, S.; Gibson, V.; Girard, O. G.; Giubega, L.; Gizdov, K.; Gligorov, V. V.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gorelov, I. V.; Gotti, C.; Govorkova, E.; Grabowski, J. P.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greim, R.; Griffith, P.; Grillo, L.; Gruber, L.; Gruberg Cazon, B. R.; Grünberg, O.; Gushchin, E.; Guz, Yu.; Gys, T.; Göbel, C.; Hadavizadeh, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hamilton, B.; Han, X.; Hancock, T. H.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; Hasse, C.; Hatch, M.; He, J.; Hecker, M.; Heinicke, K.; Heister, A.; Hennessy, K.; Henrard, P.; Henry, L.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hombach, C.; Hopchev, P. H.; Huard, Z. C.; Hulsbergen, W.; Humair, T.; Hushchyn, M.; Hutchcroft, D.; Ibis, P.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jalocha, J.; Jans, E.; Jawahery, A.; Jezabek, M.; Jiang, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Karacson, M.; Kariuki, J. M.; Karodia, S.; Kazeev, N.; Kecke, M.; Kelsey, M.; Kenzie, M.; Ketel, T.; Khairullin, E.; Khanji, B.; Khurewathanakul, C.; Kirn, T.; Klaver, S.; Klimaszewski, K.; Klimkovich, T.; Koliiev, S.; Kolpin, M.; Komarov, I.; Kopecna, R.; Koppenburg, P.; Kosmyntseva, A.; Kotriakhova, S.; Kozeiha, M.; Kravchuk, L.; Kreps, M.; Krokovny, P.; Kruse, F.; Krzemien, W.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kuonen, A. K.; Kurek, K.; Kvaratskheliya, T.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lanfranchi, G.; Langenbruch, C.; Latham, T.; Lazzeroni, C.; Le Gac, R.; Leflat, A.; Lefrançois, J.; Lefèvre, R.; Lemaitre, F.; Lemos Cid, E.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, P.-R.; Li, T.; Li, Y.; Li, Z.; Likhomanenko, T.; Lindner, R.; Lionetto, F.; Lisovskyi, V.; Liu, X.; Loh, D.; Loi, A.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Lusiani, A.; Lyu, X.; Machefert, F.; Maciuc, F.; Macko, V.; Mackowiak, P.; Maddrell-Mander, S.; Maev, O.; Maguire, K.; Maisuzenko, D.; Majewski, M. W.; Malde, S.; Malecki, B.; Malinin, A.; Maltsev, T.; Manca, G.; Mancinelli, G.; Manning, P.; Marangotto, D.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marinangeli, M.; Marino, P.; Marks, J.; Martellotti, G.; Martin, M.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massacrier, L. M.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Mauri, A.; Maurice, E.; Maurin, B.; Mazurov, A.; McCann, M.; McNab, A.; McNulty, R.; Mead, J. V.; Meadows, B.; Meaux, C.; Meier, F.; Meinert, N.; Melnychuk, D.; Merk, M.; Merli, A.; Michielin, E.; Milanes, D. A.; Millard, E.; Minard, M.-N.; Minzoni, L.; Mitzel, D. S.; Mogini, A.; Molina Rodriguez, J.; Mombächer, T.; Monroy, I. A.; Monteil, S.; Morandin, M.; Morello, M. J.; Morgunova, O.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Mulder, M.; Müller, D.; Müller, J.; Müller, K.; Müller, V.; Naik, P.; Nakada, T.; Nandakumar, R.; Nandi, A.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, T. D.; Nguyen-Mau, C.; Nieswand, S.; Niet, R.; Nikitin, N.; Nikodem, T.; Nogay, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Oldeman, R.; Onderwater, C. J. G.; Ossowska, A.; Otalora Goicochea, J. M.; Owen, P.; Oyanguren, A.; Pais, P. R.; Palano, A.; Palutan, M.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parker, W.; Parkes, C.; Passaleva, G.; Pastore, A.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petrov, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pikies, M.; Pinci, D.; Pisani, F.; Pistone, A.; Piucci, A.; Placinta, V.; Playfer, S.; Plo Casasus, M.; Polci, F.; Poli Lener, M.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Pomery, G. J.; Ponce, S.; Popov, A.; Popov, D.; Poslavskii, S.; Potterat, C.; Price, E.; Prisciandaro, J.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Pullen, H.; Punzi, G.; Qian, W.; Quagliani, R.; Quintana, B.; Rachwal, B.; Rademacker, J. H.; Rama, M.; Ramos Pernas, M.; Rangel, M. S.; Raniuk, I.; Ratnikov, F.; Raven, G.; Ravonel Salzgeber, M.; Reboud, M.; Redi, F.; Reichert, S.; dos Reis, A. C.; Remon Alepuz, C.; Renaudin, V.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Robert, A.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Rogozhnikov, A.; Roiser, S.; Rollings, A.; Romanovskiy, V.; Romero Vidal, A.; Ronayne, J. W.; Rotondo, M.; Rudolph, M. S.; Ruf, T.; Ruiz Valls, P.; Ruiz Vidal, J.; Saborido Silva, J. J.; Sadykhov, E.; Sagidova, N.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santimaria, M.; Santovetti, E.; Sarpis, G.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schael, S.; Schellenberg, M.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schreiner, H. F.; Schubert, K.; Schubiger, M.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sepulveda, E. S.; Sergi, A.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Siddi, B. G.; Silva Coutinho, R.; Silva de Oliveira, L.; Simi, G.; Simone, S.; Sirendi, M.; Skidmore, N.; Skwarnicki, T.; Smith, E.; Smith, I. T.; Smith, J.; Smith, M.; Soares Lavra, l.; Sokoloff, M. D.; Soler, F. J. P.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Stefko, P.; Stefkova, S.; Steinkamp, O.; Stemmle, S.; Stenyakin, O.; Stepanova, M.; Stevens, H.; Stone, S.; Storaci, B.; Stracka, S.; Stramaglia, M. E.; Straticiuc, M.; Straumann, U.; Sun, J.; Sun, L.; Sutcliffe, W.; Swientek, K.; Syropoulos, V.; Szczekowski, M.; Szumlak, T.; Szymanski, M.; T'Jampens, S.; Tayduganov, A.; Tekampe, T.; Tellarini, G.; Teubert, F.; Thomas, E.; van Tilburg, J.; Tilley, M. J.; Tisserand, V.; Tobin, M.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Toriello, F.; Tourinho Jadallah Aoude, R.; Tournefier, E.; Traill, M.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tully, A.; Tuning, N.; Ukleja, A.; Usachov, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagner, A.; Vagnoni, V.; Valassi, A.; Valat, S.; Valenti, G.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vecchi, S.; van Veghel, M.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Venkateswaran, A.; Verlage, T. A.; Vernet, M.; Vesterinen, M.; Viana Barbosa, J. V.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Viemann, H.; Vilasis-Cardona, X.; Vitti, M.; Volkov, V.; Vollhardt, A.; Voneki, B.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Vázquez Sierra, C.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wang, J.; Ward, D. R.; Wark, H. M.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wicht, J.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Williams, T.; Wilson, F. F.; Wimberley, J.; Winn, M.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wraight, K.; Wyllie, K.; Xie, Y.; Xu, Z.; Yang, Z.; Yang, Z.; Yao, Y.; Yin, H.; Yu, J.; Yuan, X.; Yushchenko, O.; Zarebski, K. A.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zheng, Y.; Zhu, X.; Zhukov, V.; Zonneveld, J. B.; Zucchelli, S.

    2017-12-01

    Bose-Einstein correlations of same-sign charged pions, produced in proton-proton collisions at a 7 TeV centre-of-mass energy, are studied using a data sample collected by the LHCb experiment. The signature for Bose-Einstein correlations is observed in the form of an enhancement of pairs of like-sign charged pions with small four-momentum difference squared. The charged-particle multiplicity dependence of the Bose-Einstein correlation parameters describing the correlation strength and the size of the emitting source is investigated, determining both the correlation radius and the chaoticity parameter. The measured correlation radius is found to increase as a function of increasing charged-particle multiplicity, while the chaoticity parameter is seen to decrease. [Figure not available: see fulltext.

  3. Einstein-Podolsky-Rosen entanglement and steering in two-well Bose-Einstein-condensate ground states

    NASA Astrophysics Data System (ADS)

    He, Q. Y.; Drummond, P. D.; Olsen, M. K.; Reid, M. D.

    2012-08-01

    We consider how to generate and detect Einstein-Podolsky-Rosen (EPR) entanglement and the steering paradox between groups of atoms in two separated potential wells in a Bose-Einstein condensate. We present experimental criteria for this form of entanglement and propose experimental strategies for detecting entanglement using two- or four-mode ground states. These approaches use spatial and/or internal modes. We also present higher-order criteria that act as signatures to detect the multiparticle entanglement present in this system. We point out the difference between spatial entanglement using separated detectors and other types of entanglement that do not require spatial separation. The four-mode approach with two spatial and two internal modes results in an entanglement signature with spatially separated detectors, conceptually similar to the original EPR paradox.

  4. Bose-Einstein condensation in microgravity.

    PubMed

    van Zoest, T; Gaaloul, N; Singh, Y; Ahlers, H; Herr, W; Seidel, S T; Ertmer, W; Rasel, E; Eckart, M; Kajari, E; Arnold, S; Nandi, G; Schleich, W P; Walser, R; Vogel, A; Sengstock, K; Bongs, K; Lewoczko-Adamczyk, W; Schiemangk, M; Schuldt, T; Peters, A; Könemann, T; Müntinga, H; Lämmerzahl, C; Dittus, H; Steinmetz, T; Hänsch, T W; Reichel, J

    2010-06-18

    Albert Einstein's insight that it is impossible to distinguish a local experiment in a "freely falling elevator" from one in free space led to the development of the theory of general relativity. The wave nature of matter manifests itself in a striking way in Bose-Einstein condensates, where millions of atoms lose their identity and can be described by a single macroscopic wave function. We combine these two topics and report the preparation and observation of a Bose-Einstein condensate during free fall in a 146-meter-tall evacuated drop tower. During the expansion over 1 second, the atoms form a giant coherent matter wave that is delocalized on a millimeter scale, which represents a promising source for matter-wave interferometry to test the universality of free fall with quantum matter.

  5. Length of stay and economic consequences with rivaroxaban vs enoxaparin/vitamin K antagonist in patients with DVT and PE: findings from the North American EINSTEIN clinical trial program.

    PubMed

    Bookhart, Brahim K; Haskell, Lloyd; Bamber, Luke; Wang, Maria; Schein, Jeff; Mody, Samir H

    2014-10-01

    Venous thromboembolism (VTE) (deep vein thrombosis [DVT] and pulmonary embolism [(PE]) represents a substantial economic burden to the healthcare system. Using data from the randomized EINSTEIN DVT and PE trials, this North American sub-group analysis investigated the potential of rivaroxaban to reduce the length of initial hospitalization in patients with acute symptomatic DVT or PE. A post-hoc analysis of hospitalization and length-of-stay (LOS) data was conducted in the North American sub-set of patients from the randomized, open-label EINSTEIN trial program. Patients received either rivaroxaban (15 mg twice daily for 3 weeks followed by 20 mg once daily; n = 405) or dose-adjusted subcutaneous enoxaparin overlapping with (guideline-recommended 'bridging' therapy) and followed by a vitamin K antagonist (VKA) (international normalized ratio = 2.0-3.0; n = 401). The open-label study design allowed for the comparison of LOS between treatment arms under conditions reflecting normal clinical practice. LOS was evaluated using investigator records of dates of admission and discharge. Analyses were carried out in the intention-to-treat population using parametric tests. Costs were applied to the LOS based on weighted mean cost per day for DVT and PE diagnoses obtained from the Healthcare Cost and Utilization Project dataset. Of 382 patients hospitalized, 321 (84%), had acute symptomatic PE; few DVT patients required hospitalization. Similar rates of VTE patients were hospitalized in the rivaroxaban and enoxaparin/VKA treatment groups, 189/405 (47%) and 193/401 (48%), respectively. In hospitalized VTE patients, rivaroxaban treatment produced a 1.6-day mean reduction in LOS (median = 1 day) compared with enoxaparin/VKA (mean = 4.5 vs 6.1; median = 3 vs 4), translating to total costs that were $3419 lower in rivaroxaban-treated patients. In hospitalized North American patients with VTE, treatment with rivaroxaban produced a statistically significant reduction in LOS. When treating DVT and PE patients, clinicians should consider newer anti-coagulants with less complex treatment regimens.

  6. H + O3 Fourier-transform infrared emission and laser absorption studies of OH(X2Pi) radical - An experimental dipole moment function and state-to-state Einstein A coefficients

    NASA Technical Reports Server (NTRS)

    Nelson, David D., Jr.; Schiffman, Aram; Nesbitt, David J.; Orlando, John J.; Burkholder, James B.

    1990-01-01

    FTIR emission/absorption spectroscopy is used to measure the relative intensities of 88 pairs of rovibrational transitions of OH(X2Pi) distributed over 16 vibrational bands. The experimental technique used to obtain the Einstein A ratios is discussed. The dipole moment function which follows from the intensity ratios along with Einstein A coefficients calculated from mu(r) is presented.

  7. Hidden symmetries on toric Sasaki-Einstein spaces

    NASA Astrophysics Data System (ADS)

    Slesar, V.; Visinescu, M.; Vîlcu, G. E.

    2015-05-01

    We describe the construction of Killing-Yano tensors on toric Sasaki-Einstein manifolds. We use the fact that the metric cones of these spaces are Calabi-Yau manifolds. The description of the Calabi-Yau manifolds in terms of toric data, using the Delzant approach to toric geometries, allows us to find explicitly the complex coordinates and write down the Killing-Yano tensors. As a concrete example we present the complete set of special Killing forms on the five-dimensional homogeneous Sasaki-Einstein manifold T 1,1.

  8. Two characteristic temperatures for a Bose-Einstein condensate of a finite number of particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Idziaszek, Z.; Institut fuer Theoretische Physik, Universitaet Hannover, D-30167 Hannover,; Rzazewski, K.

    2003-09-01

    We consider two characteristic temperatures for a Bose-Einstein condensate, which are related to certain properties of the condensate statistics. We calculate them for an ideal gas confined in power-law traps and show that they approach the critical temperature in the limit of large number of particles. The considered characteristic temperatures can be useful in the studies of Bose-Einstein condensates of a finite number of atoms indicating the point of a phase transition.

  9. Einstein Equations from Varying Complexity

    NASA Astrophysics Data System (ADS)

    Czech, Bartłomiej

    2018-01-01

    A recent proposal equates the circuit complexity of a quantum gravity state with the gravitational action of a certain patch of spacetime. Since Einstein's equations follow from varying the action, it should be possible to derive them by varying complexity. I present such a derivation for vacuum solutions of pure Einstein gravity in three-dimensional asymptotically anti-de Sitter space. The argument relies on known facts about holography and on properties of tensor network renormalization, an algorithm for coarse-graining (and optimizing) tensor networks.

  10. News

    NASA Astrophysics Data System (ADS)

    2005-01-01

    Einstein year: Einstein is brought back to life for a year of educational events Workshop: Students reach out for the Moon Event: Masterclasses go with a bang Workshop: Students search for asteroids on Einstein's birthday Scotland: Curriculum for Excellence takes holistic approach Conference: Reporting from a mattress in Nachod Conference: 'Change' is key objective at ICPE conference 2005 Lecture: Institute of Physics Schools Lecture series Conference: Experience showcase science in Warwick National network: Science Learning Centre opens Meeting: 30th Stirling Physics Meeting breaks records Competition: Win a digital camera! Forthcoming Events

  11. Einstein's Biggest Blunder: A Cosmic Mystery Story

    ScienceCinema

    Krauss, Lawrence

    2018-01-11

    The standard model of cosmology built up over 20 years is no longer accepted as accurate. New data suggest that most of the energy density of the universe may be contained in empty space. Remarkably, this is exactly what would be expected if Einstein's cosmological constant really exists. If it does, its origin is the biggest mystery in physics and presents huge challenges for the fundamental theories of elementary particles and fields. Krauss explains Einstein's concept and describes its possible implications.

  12. Differential invariants and exact solutions of the Einstein equations

    NASA Astrophysics Data System (ADS)

    Lychagin, Valentin; Yumaguzhin, Valeriy

    2017-06-01

    In this paper (cf. Lychagin and Yumaguzhin, in Anal Math Phys, 2016) a class of totally geodesics solutions for the vacuum Einstein equations is introduced. It consists of Einstein metrics of signature (1,3) such that 2-dimensional distributions, defined by the Weyl tensor, are completely integrable and totally geodesic. The complete and explicit description of metrics from these class is given. It is shown that these metrics depend on two functions in one variable and one harmonic function.

  13. Bianchi type-I magnetized cosmological models for the Einstein-Boltzmann equation with the cosmological constant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayissi, Raoul Domingo, E-mail: raoulayissi@yahoo.fr; Noutchegueme, Norbert, E-mail: nnoutch@yahoo.fr

    Global solutions regular for the Einstein-Boltzmann equation on a magnetized Bianchi type-I cosmological model with the cosmological constant are investigated. We suppose that the metric is locally rotationally symmetric. The Einstein-Boltzmann equation has been already considered by some authors. But, in general Bancel and Choquet-Bruhat [Ann. Henri Poincaré XVIII(3), 263 (1973); Commun. Math. Phys. 33, 83 (1973)], they proved only the local existence, and in the case of the nonrelativistic Boltzmann equation. Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academymore » of Science, 2000), Vol. 52] obtained a global existence result, for the relativistic Boltzmann equation coupled with the Einstein equations and using the Yosida operator, but confusing unfortunately with the nonrelativistic case. Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)] and Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], have obtained a global solution in time, but still using the Yosida operator and considering only the uncharged case. Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)] also proved a global existence of solutions to the Maxwell-Boltzmann system using the characteristic method. In this paper, we obtain using a method totally different from those used in the works of Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)], Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)], and Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] the global in time existence and uniqueness of a regular solution to the Einstein-Maxwell-Boltzmann system with the cosmological constant. We define and we use the weighted Sobolev separable spaces for the Boltzmann equation; some special spaces for the Einstein equations, then we clearly display all the proofs leading to the global existence theorems.« less

  14. Bianchi type-I magnetized cosmological models for the Einstein-Boltzmann equation with the cosmological constant

    NASA Astrophysics Data System (ADS)

    Ayissi, Raoul Domingo; Noutchegueme, Norbert

    2015-01-01

    Global solutions regular for the Einstein-Boltzmann equation on a magnetized Bianchi type-I cosmological model with the cosmological constant are investigated. We suppose that the metric is locally rotationally symmetric. The Einstein-Boltzmann equation has been already considered by some authors. But, in general Bancel and Choquet-Bruhat [Ann. Henri Poincaré XVIII(3), 263 (1973); Commun. Math. Phys. 33, 83 (1973)], they proved only the local existence, and in the case of the nonrelativistic Boltzmann equation. Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] obtained a global existence result, for the relativistic Boltzmann equation coupled with the Einstein equations and using the Yosida operator, but confusing unfortunately with the nonrelativistic case. Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)] and Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], have obtained a global solution in time, but still using the Yosida operator and considering only the uncharged case. Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)] also proved a global existence of solutions to the Maxwell-Boltzmann system using the characteristic method. In this paper, we obtain using a method totally different from those used in the works of Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)], Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)], and Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] the global in time existence and uniqueness of a regular solution to the Einstein-Maxwell-Boltzmann system with the cosmological constant. We define and we use the weighted Sobolev separable spaces for the Boltzmann equation; some special spaces for the Einstein equations, then we clearly display all the proofs leading to the global existence theorems.

  15. Beyond Einstein: From the Big Bang to Black Holes

    NASA Technical Reports Server (NTRS)

    2005-01-01

    How did the Universe begin? Does time have a beginning and an end? Does space have edges? The questions are clear and simple. They are as old as human curiosity. But the answers have always seemed beyond the reach of science. Until now. In their attempts to understand how space, time, and matter are connected, Einstein and his successors made three predictions. First, space is expanding from a Big Bang; second, space and time can tie themselves into contorted knots called black holes where time actually comes to a halt; third, space itself contains some kind of energy that is pull- ing the Universe apart. Each of these three predictions seemed so fantastic when it was made that everyone, including Einstein himself, regarded them as unlikely. Incredibly, all three have turned out to be true. Yet Einstein's legacy is one of deep mystery, because his theories are silent on three questions raised by his fantastic predictions: (1) What powered the Big Bang? (2) What happens to space, time, and matter at the edge of a black hole? (3) What is the mysterious dark energy pulling the Universe apart? The answers to these questions-which lie at the crux of where our current theories fail us-will lead to a profound, new understanding of the nature of time and space. To find answers, however, we must venture beyond Einstein. The answers require new theories, such as the inflationary Universe and new insights in high-energy particle theory. Like Einstein s theories, these make fantastic predictions that seem hard to believe: unseen dimensions and entire universes beyond our own. We must find facts to confront and guide these new theories. Powerful new technologies now make this possible. And NASA and its partners are developing an armada of space-based observatories to chart the path to discovery. Here is where the Beyond Einstein story begins. By exploring the three questions that are Einstein s legacy, we begin the next revolution in understanding our Universe. We plot our way forward using clues from observations and from new ideas connecting the worlds of the very small and the very large, from the atom out through the deepest reaches of the cosmos.

  16. Forming a Bose-Einstein Condensate

    NASA Image and Video Library

    2014-09-26

    This sequence of false-color images shows the formation of a Bose-Einstein condensate in the Cold Atom Laboratory prototype at NASA Jet Propulsion Laboratory as the temperature gets progressively closer to absolute zero.

  17. Einstein and General Relativity: Historical Perspectives.

    ERIC Educational Resources Information Center

    Chandrasekhar, S.

    1979-01-01

    This paper presented in the 1978 Oppenheimer Memorial Lecture at Los Alamos Scientific Laboratories on August 17, 1978, discusses Einstein's contributions to physics, in particular, his discovery of the general theory of relativity. (HM)

  18. General Motors sued for 'denigrating' Einstein's image

    NASA Astrophysics Data System (ADS)

    Gwynne, Peter

    2010-07-01

    The US car giant General Motors (GM) has played down the consequences of a lawsuit against it for using the likeness of Albert Einstein in an advertisement for its Terrain sports utility vehicle (SUV).

  19. Einstein in Wyoming.

    ERIC Educational Resources Information Center

    Elliot, Ian

    1996-01-01

    Describes "Einstein's Adventurarium," a science center housed in an empty shopping mall in Gillette, Wyoming, created through school, business, and city-county government partnership. Describes how interactive exhibits allow exploration of life sciences, physics, and paleontology. (KDFB)

  20. Space, time and spooky action

    NASA Astrophysics Data System (ADS)

    Robinson, Andrew

    2017-04-01

    Albert Einstein's persistent opposition to quantum mechanics is a familiar, if still somewhat surprising, fact to all physicists, as David Bodanis observes in his latest book Einstein's Greatest Mistake: the Life of a Flawed Genius.

  1. On the asymptotically Poincaré-Einstein 4-manifolds with harmonic curvature

    NASA Astrophysics Data System (ADS)

    Hu, Xue

    2018-06-01

    In this paper, we discuss the mass aspect tensor and the rigidity of an asymptotically Poincaré-Einstein (APE) 4-manifold with harmonic curvature. We prove that the trace-free part of the mass aspect tensor of an APE 4-manifold with harmonic curvature and normalized Einstein conformal infinity is zero. As to the rigidity, we first show that a complete noncompact Riemannian 4-manifold with harmonic curvature and positive Yamabe constant as well as a L2-pinching condition is Einstein. As an application, we then obtain that an APE 4-manifold with harmonic curvature and positive Yamabe constant is isometric to the hyperbolic space provided that the L2-norm of the traceless Ricci tensor or the Weyl tensor is small enough and the conformal infinity is a standard round 3-sphere.

  2. Spatial entanglement patterns and Einstein-Podolsky-Rosen steering in Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Fadel, Matteo; Zibold, Tilman; Décamps, Boris; Treutlein, Philipp

    2018-04-01

    Many-particle entanglement is a fundamental concept of quantum physics that still presents conceptual challenges. Although nonclassical states of atomic ensembles were used to enhance measurement precision in quantum metrology, the notion of entanglement in these systems was debated because the correlations among the indistinguishable atoms were witnessed by collective measurements only. Here, we use high-resolution imaging to directly measure the spin correlations between spatially separated parts of a spin-squeezed Bose-Einstein condensate. We observe entanglement that is strong enough for Einstein-Podolsky-Rosen steering: We can predict measurement outcomes for noncommuting observables in one spatial region on the basis of corresponding measurements in another region with an inferred uncertainty product below the Heisenberg uncertainty bound. This method could be exploited for entanglement-enhanced imaging of electromagnetic field distributions and quantum information tasks.

  3. A Staged Reading of the Play: TRANSCENDENCE: Relativity and Its Discontents by Robert Marc Friedman

    NASA Astrophysics Data System (ADS)

    Friedman, Robert Marc

    2015-04-01

    TRANSCENDENCE explores aspects of Einstein's life and his general theory of relativity at the time of the theory's creation and initial reception. While being faithful to historical scholarship, the play creates its own theatrical reality aiming to engage emotions and intellect. Those who strive for transcendence must nevertheless also confront the harsh realities of living in specific time-bound social contexts. Universal constants that anchor physical theory in an objective reality, as Einstein believed, do not readily have equivalents in notions of identity, duty, loyalty, and excellence. In November 1915 after toiling for years in Zurich, Prague, and now Berlin, Einstein achieved his general theory of relativity. When in 1919 British astronomers announced evidence for the bending of starlight by the sun as Einstein had predicted, he soon surprisingly found himself an international celebrity. Expectations arose that he would be called to Stockholm. But the Nobel Committee for Physics refused to acknowledge ``speculations'' such Einstein's. The dismissal of relativity entailed principled and biased opposition, and not simply mistakes in evaluation. Several committee members agreed that Einstein must not receive a Prize. Join us for a dramatic staged reading of TRANSCENDENCE, a play by the science historian Robert Marc Friedman (http://www.hf.uio.no/iakh/english/people/aca/robertfr/index.html) and directed by James Glossman, Lecturer in Directing and Shakespeare, Johns Hopkins University. After the performance, the playwright, director and actors will be available for a talk-back audience discussion.

  4. NASA Announces 2009 Astronomy and Astrophysics Fellows

    NASA Astrophysics Data System (ADS)

    2009-02-01

    WASHINGTON -- NASA has selected fellows in three areas of astronomy and astrophysics for its Einstein, Hubble, and Sagan Fellowships. The recipients of this year's post-doctoral fellowships will conduct independent research at institutions around the country. "The new fellows are among the best and brightest young astronomers in the world," said Jon Morse, director of the Astrophysics Division in NASA's Science Mission Directorate in Washington. "They already have contributed significantly to studies of how the universe works, the origin of our cosmos and whether we are alone in the cosmos. The fellowships will serve as a springboard for scientific leadership in the years to come, and as an inspiration for the next generation of students and early career researchers." Each fellowship provides support to the awardees for three years. The fellows may pursue their research at any host university or research center of their choosing in the United States. The new fellows will begin their programs in the fall of 2009. "I cannot tell you how much I am looking forward to spending the next few years conducting research in the U.S., thanks to the fellowships," said Karin Oberg, a graduate student in Leiden, The Netherlands. Oberg will study the evolution of water and ices during star formation when she starts her fellowship at the Smithsonian Astrophysical Observatory in Cambridge, Mass. People Who Read This Also Read... Milky Way's Super-efficient Particle Accelerators Caught in The Act Cosmic Heavyweights in Free-for-all Galaxies Coming of Age in Cosmic Blobs Cassiopeia A Comes Alive Across Time and Space A diverse group of 32 young scientists will work on a wide variety of projects, such as understanding supernova hydrodynamics, radio transients, neutron stars, galaxy clusters and the intercluster medium, supermassive black holes, their mergers and the associated gravitational waves, dark energy, dark matter and the reionization process. Other research topics include searching for transits among hot Neptunes and super-Earths, microlensing planets through modeling algorithms, conducting high-contrast imaging surveys to detect planetary-mass companions, interferometrically imaging of the inner regions of protoplanetary disks, and modeling of super-Earth planetary atmospheres. The 10 fellows in the Einstein program conduct research broadly related to the mission of NASA's Physics of the Cosmos Program. Its science goals include understanding the origin and destiny of the universe, the nature of gravity, phenomena near black holes, and extreme states of matter. The Chandra X-ray Center in Cambridge, Mass., administers the Einstein Fellowships for NASA. The 17 awardees of the Hubble Fellowship pursue research associated with NASA's Cosmic Origins Program. The missions in this program examine the origins of galaxies, stars, and planetary systems, and the evolution of these structures with cosmic time. The Space Telescope Science Institute in Baltimore, Md., administers the Hubble Fellowships for NASA. The Sagan Fellowship, created in September 2008, supports five scientists whose research is aligned with NASA's Exoplanet Exploration Program. The primary goal of this program is to discover and characterize planetary systems and Earth-like planets around other stars. The NASA Exoplanet Science Institute, which is operated at the California Institute of Technology in coordination with NASA's Jet Propulsion Laboratory in Pasadena, Calif., administers the Sagan Fellowship Program

  5. BOOK REVIEW: A Student's Guide to Einstein's Major Papers A Student's Guide to Einstein's Major Papers

    NASA Astrophysics Data System (ADS)

    Janssen, Michel

    2013-12-01

    The core of this volume is formed by four chapters (2-5) with detailed reconstructions of the arguments and derivations in four of Einstein's most important papers, the three main papers of his annus mirabilis 1905 (on the light quantum, Brownian motion, and special relativity) and his first systematic exposition of general relativity of 1916. The derivations are given in sufficient detail and in sufficiently modernized notation (without any serious distortion of the originals) for an undergraduate physics major to read and understand them with far less effort than it would take him or her to understand (English translations of) Einstein's original papers. Each of these four papers is accompanied by a detailed introduction, which covers the conceptual development of the relevant field prior to Einstein's contribution to it and corrects some of the myths surrounding these papers that still have not been fully eradicated among physicists. (One quibble: though Kennedy correctly points out that the goal of the light quantum paper was not to explain the photoelectric effect, it is also not quite right to say that 'it was written to explain the Wien region of blackbody radiation' (p. xv). Einstein used this explanatory feat as the central argument for his light quantum hypothesis.) These four chapters then are the most valuable part of the volume. They could be used, independently of one another, but preferably in conjunction with Einstein's original texts, in courses on quantum mechanics, statistical mechanics, electrodynamics, and general relativity, respectively, to add a historical component to such courses. As a historian of science embedded in a physics department who is regularly called upon to give guest lectures in such courses on the history of their subjects, I can highly recommend the volume for this purpose. However, I would not adopt this volume as (one of) the central text(s) for a course on the history of modern physics. For one thing, chapter 1, which in just 26 pages (not counting six pages of notes and references) covers everything from Copernicus, Galileo, Kepler and Newton to Maxwell and Lorentz to Einstein's early biography to a cardboard version of Popper versus Kuhn, is too superficial to be useful for such a course. To a lesser extent, this is also true for chapter 6, which compresses the development of quantum theory after Einstein's 1905 paper into 20 pages (plus seven pages of notes and references) and for chapter 7, a brief epilogue. However, this is not my main worry. One could easily supplement or even replace the bookends of the volume with other richer sources and use this volume mainly for its excellent detailed commentaries on some Einstein classics in the four chapters in between. My more serious reservation about the use of the volume as a whole in a history of physics course, ironically, comes from the exact same feature that made me whole-heartedly recommend its core chapters for physics courses. This is especially true for the chapters on special and general relativity. How useful is it for a student to go through, in as much detail as this volume provides, the Lorentz transformation of Maxwell's equations in vector form? I can see how a student in an E&M class (with a section on special relativity) might benefit from this exercise. The clumsiness of the calculations in vector form by Lorentz and Einstein could help a student encountering Maxwell's equations in tensor form for the first time appreciate the advantages of the latter formalism. Similarly, it would be useful for a student in a GR class to go through the basics of tensor calculus in the old-fashioned but not inelegant mathematical introduction of Einstein's 1916 review article on general relativity. This could reinforce mastery of material that a student in a GR class will have to learn anyway (though Einstein's presentation of the mathematics of both special and general relativity in The Meaning of Relativity would seem to be more suitable for these purposes). It is not so clear what benefit a student in a history of physics course rather than a E&M course or a GR course would derive from the exhaustive coverage of the papers on special and general relativity in this volume. In the case of the history of special relativity, it would seem to make sense to leave out the details of the Lorentz transformation of Maxwell's equations to make room for a discussion, even if only qualitatively, of Minkowski's four-dimensional formalism and Minkowski diagrams. In the case of the history of general relativity, coverage of tensor calculus could profitably be curtailed to make room for discussion of how Einstein found his field equations or how GR failed to make all motion relative. Chapter 3 on Brownian motion also contains its share of detailed calculations that may be useful for students in a class on Stat Mech but not for those in a class on history of physics. Chapter 2 on the light quantum paper does not suffer from this problem. However, whereas the other three papers covered in detail in the volume can serve as representative of Einstein's broader efforts in those fields, the light quantum paper is only the first in a series of remarkable contributions that Einstein made to early quantum theory. Several of these contributions (specific heat, wave-particle duality, stimulated emission, Bose--Einstein statistics) are covered very briefly in chapter 6. I would have liked to see a presentation of Einstein's 1917 derivation of the Planck law for the spectral distribution of black-body radiation with the famous A and B coefficients as detailed and as easy to follow as many less important derivations in the chapters on relativity and Brownian motion. This derivation is much easier yet much more illuminating than, say, the original proofs of the Lorentz invariance of Maxwell's equations. I hope the author will consider such changes in emphasis for a second edition, for his reconstructions and commentaries certainly do open up these four classic Einstein papers to interested undergraduates in physics and other disciplines in ways that the scholarly literature on Einstein does not.

  6. Einstein's Jury -The Race to Test Relativity

    NASA Astrophysics Data System (ADS)

    Crelinsten, Jeffrey

    2006-12-01

    It is common belief that Einstein’s general theory of relativity won worldwide acceptance after British astronomers announced in November 1919 that the sun’s gravitational field bends starlight by an amount predicted by Einstein. This paper demonstrates that the case for Einstein was not settled until much later and that there was considerable confusion and debate about relativity during this period. Most astronomers considered Einstein’s general theory too metaphysical and abstruse, and many tried to find more conventional explanations of the astronomical observations. Two American announcements before the British results appeared had been contrary to Einstein’s prediction. They came from Lick and Mt. Wilson observatories, which enjoyed international reputations as two of the most advanced astrophysical research establishments in the world. Astronomers at these renowned institutions were instrumental in swaying the court of scientific opinion during the decade of the 1920s, which saw numerous attempts to measure light-bending, as well as solar line displacements and even ether-drift. How astronomers approached the “Einstein problem” in these early years before and after the First World War, and how the public reacted to what they reported, helped to shape attitudes we hold today about Einstein and his ideas.

  7. BOOK REVIEW: Once Upon Einstein

    NASA Astrophysics Data System (ADS)

    Giannetto, E.

    2007-07-01

    Thibault Damour is a theoretical physicist, and a member of the French Academy of Sciences. This book is the translation, by Eric Novak, of the original French Si Einstein m'etait conté (Le Cherche Midi, 2005). It is neither a book of theoretical physics nor a biography of Einstein. It is not a book of history nor philosophy of science. In Damour's words it was written to encourage the reader to share with Einstein `those times when he understood some part of the hidden order of the universe'. It is a relatively short book, written in a very fluent style, but it deals with all the major problems and achievements of Einstein's works. Starting from special relativity, it continues with general relativity, quantum theories, unified field theory and a brief overview of the actual research related to Einstein's legacy. It is essentially a popular science book with some related exploration in history and philosophy to interpret physical theories. The most important problem discussed by Damour is the nature of time. On this subject, there is a very interesting short paragraph (pp 33--35) dedicated to the reception of the relativity idea by the great writer Marcel Proust and its counterpart within À la Recherche du Temps Perdu. A correct discussion of the implications of a relativistic time should imply the distinction of the different possible interpretations of this concept. Damour seems to conclude that only one interpretation is possible: `time does not exist', flowing of time is an illusion. One has to know that Einstein's ideas on time were related to Spinoza's perspective of a knowledge sub specie aeternitatis. However, other interpretations are possible and are related to the idea of time as an actuality. Damour speaks about the controversy between Einstein and Bergson, but Bergson is considered as a philosopher who did not understand relativity. This philosophical problem of relativistic time is indeed related to a historical problem briefly discussed by Damour (pp 17--21, 48--52 and related endnotes): had Henri Poincaré constructed a special relativistic dynamics before Einstein? There is a long debate on this subject in the literature. Damour's answer is negative and his conclusions seem related to the conservation of a myth of Einstein, that is, the rise of special relativity is considered as a creatio ex nihilo within Einstein's mind and Einstein is considered as the only genius able to conceive the relativity of time. Poincaré's texts are undervalued and misunderstood by Damour's cutting quotations from their context. Damour never quotes La Science et l'Hypothèse (1902): we know it was read by Einstein and here Poincaré first (within chapters already published as separate papers in 1900) stated the relativity of time and of simultaneity. Damour never quotes Poincaré's paper published on 5 June 1905, La dynamique de l'èlectron, which presents the first relativistic dynamics, invariant by Lorentz transformations. Poincaré's (July 1905) introduction of a quadrimensional space-time is considered by Damour only a mathematical artifice (p 51) and Damour never said that Minkowski took this idea from Poincaré! Poincaré's interpretation of relativistic time implies that it is not an illusion but a complex net of different real flows related to different processes. Poincaré and Einstein had different conceptions of Nature at the root of special relativity: respectively an electromagnetic conception (Poincaré) and a semi-mechanist one (Einstein). Thus, the (philosophical) meaning of relativity can be very different from the one presented by Damour. Furthermore, Damour accepts Kantian philosophy as a key to understanding relativity and quantum theories. This perspective seems to me very anachronistic and based on a misunderstanding: an interpretation of 20th century physical theories (relativity and quantum physics) is given within the framework of an 18th century philosophical perspective, created to give a foundation to Newton's theory. Relativity and quantum physics imply a breakdown of Kantian philosophy (see, for instance, G Bachelard's La Philosophie du Non). Relativity of space and time was considered possible only by overcoming the epistemological obstacle of Kantian idealistic foundation of Euclidean geometry and of Newton's absolute space and time. Relativity and quantum theories turn up not only the hierarchy between mathematics and physics, but also between epistemology (and logic) and physics: quantum physics implies not only a new conception of an indeterminate and unpredictable Nature, but a quantum logic too, that is, it implies a change in our way of thinking and knowing. When will the revolutionary impact of 20th century physics be reduced (by physicists themselves) to an already given philosophical framework?

  8. Geometrical relationship for the Einstein and Ricci tensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sida, D.W.

    1976-08-01

    Components of the Ricci and Einstein tensors are expressed in terms of the Gaussian curvatures of elementary two-spaces formed by the orthogonal coordinate planes, and the results are applied to some standard metrics.

  9. Einstein/Roosevelt Letters: A Unit.

    ERIC Educational Resources Information Center

    Bodle, Walter S.

    1985-01-01

    The letters in this unit of study intended for secondary students are facsimile reproductions of the correspondence between Albert Einstein and President Roosevelt on the possibility of constructing an atomic bomb. Classroom activities are also suggested. (RM)

  10. Einstein, the Universe, and All That: An Introduction to Relativity

    NASA Technical Reports Server (NTRS)

    Prescod-Weinstein, Chandra

    2011-01-01

    Black holes) an expanding universe) space and time inextricably tied together) GPS ... What was this Einstein guy thinking?!? In this tutorial) I'll give an overview of Einstein's theories of relativity and the wild things they say about our Universe. What really happens when a particle crosses an event horizon? What is the future of the Universe? And how can we know it? Wh I'll try to touch on these questions and in so doing) give the talks in the Cosmology) Gravitation and Relativity sessions some context.

  11. HST image of Gravitational Lens G2237 + 305 or 'Einstein Cross'

    NASA Technical Reports Server (NTRS)

    1990-01-01

    European Space Agency (ESA) Faint Object Camera (FOC) science image was taken from the Hubble Space Telescope (HST) of Gravitational Lens G2237 + 305 or 'Einstein Cross'. The gravitational lens G2237 + 305 or 'Einstein Cross' shows four images of a very distant quasar which has been multiple-imaged by a relatively nearby galaxy acting as a gravitational lens. The angular separation between the upper and lower images is 1.6 arc seconds. Photo was released from Goddard Space Flight Center (GSFC) 09-12-90.

  12. Equivalence of Einstein and Jordan frames in quantized anisotropic cosmological models

    NASA Astrophysics Data System (ADS)

    Pandey, Sachin; Pal, Sridip; Banerjee, Narayan

    2018-06-01

    The present work shows that the mathematical equivalence of the Jordan frame and its conformally transformed version, the Einstein frame, so as far as Brans-Dicke theory is concerned, survives a quantization of cosmological models, arising as solutions to the Brans-Dicke theory. We work with the Wheeler-deWitt quantization scheme and take up quite a few anisotropic cosmological models as examples. We effectively show that the transformation from the Jordan to the Einstein frame is a canonical one and hence two frames furnish equivalent description of same physical scenario.

  13. Einstein and the Quantum: The Secret Life of EPR

    NASA Astrophysics Data System (ADS)

    Fine, Arthur

    2006-05-01

    Locality, separation and entanglement -- 1930s style. Starting with Solvay 1927, we'll explore the background to the 1935 paper by Einstein, Podolsky and Rosen: how it was composed, the actual argument and principles used, and how the paper was received by Schroedinger, and others. We'll also look at Bohr's response: the extent to which Bohr connects with what Einstein was after in EPR and the extent to which EPR marks a shift in Bohr's thinking about the quantum theory. Time permitting, we will contrast EPR with Bell's theorem.

  14. Integrability of geodesics and action-angle variables in Sasaki-Einstein space T^{1,1}

    NASA Astrophysics Data System (ADS)

    Visinescu, Mihai

    2016-09-01

    We briefly describe the construction of Stäkel-Killing and Killing-Yano tensors on toric Sasaki-Einstein manifolds without working out intricate generalized Killing equations. The integrals of geodesic motions are expressed in terms of Killing vectors and Killing-Yano tensors of the homogeneous Sasaki-Einstein space T^{1,1}. We discuss the integrability of geodesics and construct explicitly the action-angle variables. Two pairs of frequencies of the geodesic motions are resonant giving way to chaotic behavior when the system is perturbed.

  15. AHF: Array-Based Half-Facet Data Structure for Mixed-Dimensional and Non-manifold Meshes

    DTIC Science & Technology

    2013-10-13

    19a. NAME OF RESPONSIBLE PERSON 19b. TELEPHONE NUMBER James Glimm V. Dyedov, N. Ray, D. Einstein , X. Jiao, T.J. Tautges 611102 c. THIS PAGE The...Ray, D. Einstein , X. Jiao, and T. Tautges mesh data structures. Examples of such new demanding applications include coupled multiphysics simulations and...be composed of a union of topologically 1-D, 2-D, 4 V. Dyedov, N. Ray, D. Einstein , X. Jiao, and T. Tautges and 3-D objects, such as a mixture of

  16. On a remarkable electromagnetic field in the Einstein Universe

    NASA Astrophysics Data System (ADS)

    Kopiński, Jarosław; Natário, José

    2017-06-01

    We present a time-dependent solution of the Maxwell equations in the Einstein universe, whose electric and magnetic fields, as seen by the stationary observers, are aligned with the Clifford parallels of the 3-sphere S^3. The conformal equivalence between Minkowski's spacetime and (a region of) the Einstein cylinder is then exploited in order to obtain a knotted, finite energy, radiating solution of the Maxwell equations in flat spacetime. We also discuss similar electromagnetic fields in expanding closed Friedmann models, and compute the matter content of such configurations.

  17. Quantum noise of a Bose-Einstein condensate in an optical cavity, correlations, and entanglement

    NASA Astrophysics Data System (ADS)

    Szirmai, G.; Nagy, D.; Domokos, P.

    2010-04-01

    A Bose-Einstein condensate of ultracold atoms inside the field of a laser-driven optical cavity exhibits dispersive optical bistability. We describe this system by using mean-field approximation and by analyzing the correlation functions of the linearized quantum fluctuations around the mean-field solution. The entanglement and the statistics of the atom-field quadratures are given in the stationary state. It is shown that the mean-field solution, that is, the Bose-Einstein condensate, is robust against entanglement generation for most of the phase diagram.

  18. Albert Einstein and LD: an evaluation of the evidence.

    PubMed

    Thomas, M

    2000-01-01

    Historical figures suspected of having learning disabilities are often subjected to retrospective diagnoses. One such figure is Albert Einstein. Several organizations that promote the interests of individuals with learning disabilities claim that Einstein had a learning disability. A review of biographical sources, however, provides little or no evidence to support this claim. The claim derives its force not from evidence but from a powerful belief--that the greatest among us suffer from some impairment--and from an equally powerful desire to enhance the status of a marginalized group by including within it exceptional individuals.

  19. NASA's Postdoctoral Fellowship Programs

    NASA Astrophysics Data System (ADS)

    Beichman, Charles A.; Gelino, D. M.; Allen, R. J.; Prestwich, A. H.

    2013-01-01

    The three named fellowships --- the Einstein, Hubble and Sagan programs --- are among the most prestigious postdoctoral positions in astronomy. Their policies are closely coordinated to ensure the highest scientific quality, the broadest possible access to a diverse community of recent PhD graduates, and flexibility in completing the 3 year appointments in light of individual personal circumstances. We will discuss practical details related to "family-friendly" best practices such as no-cost extensions and the ability to transfer the host institution in response to "two body problems." We note, however, that the terms of the NASA fellowships are such that fellows become employees of their host institutions which set specific policies on issues such as parental leave. We look forward to participating in the discussion at this special session and conveying to NASA any suggestions for improving the fellowship program.

  20. The good pharmacy practice on Einstein Program at Paraisópolis Community.

    PubMed

    Oliveira, Lara Tânia de Assumpção Domingues Gonçalves de; Silva, Camila Pontes da; Guedes, Maria das Vitorias; Sousa, Ana Célia de Oliveira; Sarno, Flávio

    2016-01-01

    To describe indicators and processes developed and implemented for pharmaceutical assistance at the Einstein Program at Paraisópolis Community pharmacy. This was a descriptive study of retrospective data from January 2012 to December 2015. Data were obtained from spreadsheets developed for monitoring the productivity and care quality provided at the pharmacy. The evaluated variables were pharmaceutical assistance to prescription, pharmaceutical intervention, orientation (standard and pharmaceutical) and pharmaceutical orientation rate. The pharmacy assisted, on average, 2,308 prescriptions monthly, dispensing 4,871 items, including medications, materials and food supplements. Since March 2015, virtually, the pharmacist analyzed all prescriptions, prior to dispensing. In the analyzed period, there was an increase in monthly pharmaceutical interventions from 7 to 32 on average, and, although there was a decrease in the number of standard orientation, the pharmaceutical orientation had an increase, causing a rise of pharmaceutical orientation rate from 4 to 11%. The processes developed and implemented at the program pharmacy sought to follow the good pharmacy practice, and help patients to make the best use of their medications. Descrever os indicadores e os processos desenvolvidos e implantados para assistência farmacêutica na farmácia do Programa Einstein na Comunidade de Paraisópolis. Tratase de um estudo descritivo de dados retrospectivos de janeiro de 2012 a dezembro de 2015. Os dados foram obtidos de planilhas desenvolvidas para acompanhamento da produtividade e da qualidade de assistência prestada na farmácia. As variáveis avaliadas foram: atenção farmacêutica à prescrição, intervenção farmacêutica, orientação (padrão e farmacêutica) e taxa de orientação farmacêutica. A farmácia atendeu, em média, 2.308 prescrições ao mês, dispensando 4.871 itens, incluindo medicamentos, materiais e suplementos alimentares. Desde março de 2015, praticamente todas as prescrições foram analisadas pelo farmacêutico antes da dispensação. Houve incremento nas intervenções farmacêuticas mensais, de 7 para 32 em média e, apesar de ter havido diminuição no número de orientações padrão, a orientação farmacêutica aumentou, fazendo com que a taxa de orientação subisse de 4 para 11%. Os indicadores e os processos desenvolvidos e implantados na farmácia do programa procuraram seguir as boas práticas de farmácia e ajudar os pacientes a fazerem melhor uso de seus medicamentos.

  1. An astrophysics data program investigation of cluster evolution

    NASA Technical Reports Server (NTRS)

    Kellogg, Edwin M.

    1990-01-01

    A preliminary status report is given on studies using the Einstein x ray observations of distant clusters of galaxies that are also candidates for gravitational lenses. The studies will determine the location and surface brightness distribution of the x ray emission from clusters associated with selected gravitational lenses. The x ray emission comes from hot gas that traces out the total gravitational potential in the cluster, so its distribution is approximately the same as the mass distribution causing gravitational lensing. Core radii and x ray virial masses can be computed for several of the brighter Einstein sources, and preliminary results are presented on A2218. Preliminary status is also reported on a study of the optical data from 0024+16. A provisional value of 1800 to 2200 km/s for the equivalent velocity dispersion is obtained. The ultimate objective is to extract the mass of the gravitational lens, and perhaps more detailed information on the distribution of matter as warranted. A survey of the Einstein archive shows that the clusters A520, A1704, 3C295, A2397, A1722, SC5029-247, A3186 and A370 have enough x ray counts observed to warrant more detailed optical observations of arcs for comparison. Mass estimates for these clusters can therefore be obtained from three independent sources: the length scale (core radius) that characterizes the density dropoff of the x ray emitting hot gas away from its center, the velocity dispersion of the galaxies moving in the cluster potential, and gravitational bending of light by the total cluster mass. This study will allow the comparison of these three techniques and ultimately improve the knowledge of cluster masses.

  2. Bose-Einstein condensates form in heuristics learned by ciliates deciding to signal 'social' commitments.

    PubMed

    Clark, Kevin B

    2010-03-01

    Fringe quantum biology theories often adopt the concept of Bose-Einstein condensation when explaining how consciousness, emotion, perception, learning, and reasoning emerge from operations of intact animal nervous systems and other computational media. However, controversial empirical evidence and mathematical formalism concerning decoherence rates of bioprocesses keep these frameworks from satisfactorily accounting for the physical nature of cognitive-like events. This study, inspired by the discovery that preferential attachment rules computed by complex technological networks obey Bose-Einstein statistics, is the first rigorous attempt to examine whether analogues of Bose-Einstein condensation precipitate learned decision making in live biological systems as bioenergetics optimization predicts. By exploiting the ciliate Spirostomum ambiguum's capacity to learn and store behavioral strategies advertising mating availability into heuristics of topologically invariant computational networks, three distinct phases of strategy use were found to map onto statistical distributions described by Bose-Einstein, Fermi-Dirac, and classical Maxwell-Boltzmann behavior. Ciliates that sensitized or habituated signaling patterns to emit brief periods of either deceptive 'harder-to-get' or altruistic 'easier-to-get' serial escape reactions began testing condensed on initially perceived fittest 'courting' solutions. When these ciliates switched from their first strategy choices, Bose-Einstein condensation of strategy use abruptly dissipated into a Maxwell-Boltzmann computational phase no longer dominated by a single fittest strategy. Recursive trial-and-error strategy searches annealed strategy use back into a condensed phase consistent with performance optimization. 'Social' decisions performed by ciliates showing no nonassociative learning were largely governed by Fermi-Dirac statistics, resulting in degenerate distributions of strategy choices. These findings corroborate previous work demonstrating ciliates with improving expertise search grouped 'courting' assurances at quantum efficiencies and verify efficient processing by primitive 'social' intelligences involves network forms of Bose-Einstein condensation coupled to preceding thermodynamic-sensitive computational phases. 2009 Elsevier Ireland Ltd. All rights reserved.

  3. The Adolescence of Relativity: Einstein, Minkowski, and the Philosophy of Space and Time

    NASA Astrophysics Data System (ADS)

    Dieks, Dennis

    An often repeated account of the genesis of special relativity tells us that relativity theory was to a considerable extent the fruit of an operationalist philosophy of science. Indeed, Einstein's 1905 paper stresses the importance of rods and clocks for giving concrete physical content to spatial and temporal notions. I argue, however, that it would be a mistake to read too much into this. Einstein's operationalist remarks should be seen as serving rhetoric purposes rather than as attempts to promulgate a particular philosophical position - in fact, Einstein never came close to operationalism in any of his philosophical writings. By focussing on what could actually be measured with rods and clocks Einstein shed doubt on the empirical status of a number of pre-relativistic concepts, with the intention to persuade his readers that the applicability of these concepts was not obvious. This rhetoric manoeuvre has not always been rightly appreciated in the philosophy of physics. Thus, the influence of operationalist misinterpretations, according to which associated operations strictly define what a concept means, can still be felt in present-day discussions about the conventionality of simultaneity.The standard story continues by pointing out that Minkowski in 1908 supplanted Einstein's approach with a realist spacetime account that has no room for a foundational role of rods and clocks: relativity theory became a description of a four-dimensional "absolute world." As it turns out, however, it is not at all clear that Minkowski was proposing a substantivalist position with respect to spacetime. On the contrary, it seems that from a philosophical point of view Minkowski's general position was not very unlike the one in the back of Einstein's mind. However, in Minkowski's formulation of special relativity it becomes more explicit that the content of spatiotemporal concepts relates to considerations about the form of physical laws. If accepted, this position has important consequences for the discussion about the conventionality of simultaneity.

  4. Ground state of the time-independent Gross Pitaevskii equation

    NASA Astrophysics Data System (ADS)

    Dion, Claude M.; Cancès, Eric

    2007-11-01

    We present a suite of programs to determine the ground state of the time-independent Gross-Pitaevskii equation, used in the simulation of Bose-Einstein condensates. The calculation is based on the Optimal Damping Algorithm, ensuring a fast convergence to the true ground state. Versions are given for the one-, two-, and three-dimensional equation, using either a spectral method, well suited for harmonic trapping potentials, or a spatial grid. Program summaryProgram title: GPODA Catalogue identifier: ADZN_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZN_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 5339 No. of bytes in distributed program, including test data, etc.: 19 426 Distribution format: tar.gz Programming language: Fortran 90 Computer: ANY (Compilers under which the program has been tested: Absoft Pro Fortran, The Portland Group Fortran 90/95 compiler, Intel Fortran Compiler) RAM: From <1 MB in 1D to ˜10 MB for a large 3D grid Classification: 2.7, 4.9 External routines: LAPACK, BLAS, DFFTPACK Nature of problem: The order parameter (or wave function) of a Bose-Einstein condensate (BEC) is obtained, in a mean field approximation, by the Gross-Pitaevskii equation (GPE) [F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 71 (1999) 463]. The GPE is a nonlinear Schrödinger-like equation, including here a confining potential. The stationary state of a BEC is obtained by finding the ground state of the time-independent GPE, i.e., the order parameter that minimizes the energy. In addition to the standard three-dimensional GPE, tight traps can lead to effective two- or even one-dimensional BECs, so the 2D and 1D GPEs are also considered. Solution method: The ground state of the time-independent of the GPE is calculated using the Optimal Damping Algorithm [E. Cancès, C. Le Bris, Int. J. Quantum Chem. 79 (2000) 82]. Two sets of programs are given, using either a spectral representation of the order parameter [C.M. Dion, E. Cancès, Phys. Rev. E 67 (2003) 046706], suitable for a (quasi) harmonic trapping potential, or by discretizing the order parameter on a spatial grid. Running time: From seconds in 1D to a few hours for large 3D grids

  5. Interstellar Scattering and the Einstein Ring PKS 1830-211

    NASA Technical Reports Server (NTRS)

    Jones, D. L.; Preston, R. A.; Murphy, D. W.; Meier, D. L.; Jauncey, D. L.; Reynolds, J. E.; Tziomis, A. K.

    1995-01-01

    High frequency (22 GHz) data have been used two resolve two compact components of the strong gravitational lens PKS 1830-211. The two bright components are at opposite sides of a one arcsecond diameter Einstein ring.

  6. Einstein: The Gourmet of Creativity.

    ERIC Educational Resources Information Center

    Greenberg, Joel

    1979-01-01

    Reports a psychiatrist's analysis of Einstein's personal account of how he developed the theory of relativity. The psychiatrist cites Janusian thinking, actively conceiving two or more opposite concepts simultaneously, as a characteristic of much creative thought in general. (MA)

  7. Modified Einstein and Navier-Stokes Equations

    NASA Astrophysics Data System (ADS)

    Bulyzhenkov, I. É.

    2018-05-01

    The appearance of inertial rest mass-energy is associated with the kinematic slowing-down of time and with the vortex state of the elementary massive space with zero integral of its kinetic and potential energies. An analog of the Einstein equation is found for moving densities of a non-empty metric space in the concept of the Einstein-Infeld material field. The vector consequences of this tensor equation for a metric medium of overlapping elementary carriers of continuous mass-energies allow us to modify the Navier-Stokes equation under inertial motion of the matter of the nonlocal field in the nonrelativistic limit. The nonlocality of massenergy generates kinematic accelerations of feedback to Newtonian acceleration, which impedes asymptotic divergence of energy fluxes. Stabilization of inertial media by dynamic Bernoulli pressure corresponds to nonlocal self-organization of Einstein-Infeld non-empty space and invalidates Newtonian localization of masses in empty space.

  8. The Einstein database of IPC x-ray observations of optically selected and radio-selected quasars, 1.

    NASA Technical Reports Server (NTRS)

    Wilkes, Belinda J.; Tananbaum, Harvey; Worrall, D. M.; Avni, Yoram; Oey, M. S.; Flanagan, Joan

    1994-01-01

    We present the first volume of the Einstein quasar database. The database includes estimates of the X-ray count rates, fluxes, and luminosities for 514 quasars and Seyfert 1 galaxies observed with the Imaging Proportional Counter (IPC) aboard the Einstein Observatory. All were previously known optically selected or radio-selected objects, and most were the targets of the X-ray observations. The X-ray properties of the Active Galactic Nuclei (AGNs) have been derived by reanalyzing the IPC data in a systematic manner to provide a uniform database for general use by the astronomical community. We use the database to extend earlier quasar luminosity studies which were made using only a subset of the currently available data. The database can be accessed on internet via the SAO Einstein on-line system ('Einline') and is available in ASCII format on magnetic tape and DOS diskette.

  9. Quasi-local conserved charges in the Einstein-Maxwell theory

    NASA Astrophysics Data System (ADS)

    Setare, M. R.; Adami, H.

    2017-05-01

    In this paper we consider the Einstein-Maxwell theory and define a combined transformation composed of diffeomorphism and U(1) gauge transformation. For generality, we assume that the generator χ of such transformation is field-dependent. We define the extended off-shell ADT current and then off-shell ADT charge such that they are conserved off-shell for the asymptotically field-dependent symmetry generator χ. Then, we define the conserved charge corresponding to the asymptotically field-dependent symmetry generator χ. We apply the presented method to find the conserved charges of the asymptotically AdS3 spacetimes in the context of the Einstein-Maxwell theory in three dimensions. Although the usual proposal for the quasi local charges provides divergent global charges for the Einstein-Maxwell theory with negative cosmological constant in three dimensions, here we avoid this problem by introducing proposed combined transformation χ

  10. 'But one must not legalize the mentioned sin': Phenomenological vs. dynamical treatments of rods and clocks in Einstein's thought

    NASA Astrophysics Data System (ADS)

    Giovanelli, Marco

    2014-11-01

    This paper offers a historical overview of Einstein's vacillating attitude towards 'phenomenological' and 'dynamical' treatments of rods and clocks in relativity theory. In Einstein's view, a realistic microscopic model of rods and clocks was needed to account for the very existence of measuring devices of identical construction that always measure the same unit of time and the same unit of length. It will be shown that the empirical meaningfulness of both relativity theories depends on what, following Max Born, one might call the 'principle of the physical identity of the units of measure'. In an attempt to justify the validity of such a principle, Einstein was forced by different interlocutors, in particular Hermann Weyl and Wolfgang Pauli, to deal with the genuine epistemological, rather than the physical question of whether a theory should be required to describe the material devices needed for its own verification.

  11. Modified Einstein and Navier–Stokes Equations

    NASA Astrophysics Data System (ADS)

    Bulyzhenkov, I. É.

    2018-05-01

    The appearance of inertial rest mass-energy is associated with the kinematic slowing-down of time and with the vortex state of the elementary massive space with zero integral of its kinetic and potential energies. An analog of the Einstein equation is found for moving densities of a non-empty metric space in the concept of the Einstein-Infeld material field. The vector consequences of this tensor equation for a metric medium of overlapping elementary carriers of continuous mass-energies allow us to modify the Navier-Stokes equation under inertial motion of the matter of the nonlocal field in the nonrelativistic limit. The nonlocality of massenergy generates kinematic accelerations of feedback to Newtonian acceleration, which impedes asymptotic divergence of energy fluxes. Stabilization of inertial media by dynamic Bernoulli pressure corresponds to nonlocal self-organization of Einstein-Infeld non-empty space and invalidates Newtonian localization of masses in empty space.

  12. Radiating black hole solutions in Einstein-Gauss-Bonnet gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dominguez, Alfredo E.; Instituto Universitario Aeronautico, Avenida Fuerza Aerea km 6.5.; Gallo, Emanuel

    2006-03-15

    In this paper, we find some new exact solutions to the Einstein-Gauss-Bonnet equations. First, we prove a theorem which allows us to find a large family of solutions to the Einstein-Gauss-Bonnet gravity in n-dimensions. This family of solutions represents dynamic black holes and contains, as particular cases, not only the recently found Vaidya-Einstein-Gauss-Bonnet black hole, but also other physical solutions that we think are new, such as the Gauss-Bonnet versions of the Bonnor-Vaidya (de Sitter/anti-de Sitter) solution, a global monopole, and the Husain black holes. We also present a more general version of this theorem in which less restrictive conditionsmore » on the energy-momentum tensor are imposed. As an application of this theorem, we present the exact solution describing a black hole radiating a charged null fluid in a Born-Infeld nonlinear electrodynamics.« less

  13. Bridging the knowledge gap: An analysis of Albert Einstein's popularized presentation of the equivalence of mass and energy.

    PubMed

    Kapon, Shulamit

    2014-11-01

    This article presents an analysis of a scientific article written by Albert Einstein in 1946 for the general public that explains the equivalence of mass and energy and discusses the implications of this principle. It is argued that an intelligent popularization of many advanced ideas in physics requires more than the simple elimination of mathematical formalisms and complicated scientific conceptions. Rather, it is shown that Einstein developed an alternative argument for the general public that bypasses the core of the formal derivation of the equivalence of mass and energy to provide a sense of derivation based on the history of science and the nature of scientific inquiry. This alternative argument is supported and enhanced by variety of explanatory devices orchestrated to coherently support and promote the reader's understanding. The discussion centers on comparisons to other scientific expositions written by Einstein for the general public. © The Author(s) 2013.

  14. New exact perfect fluid solutions of Einstein's equations. II

    NASA Astrophysics Data System (ADS)

    Uggla, Claes; Rosquist, Kjell

    1990-12-01

    A family of new spatially homogeneous Bianchi type VIh perfect fluid solutions of the Einstein equations is presented. The fluid flow is orthogonal to the spatially homogeneous hypersurfaces, and the pressure is proportional to the energy density.

  15. The creativity of Einstein and astronomy

    NASA Technical Reports Server (NTRS)

    Zeldovich, Y. B.

    1980-01-01

    A discussion of Einstein's scientific achievements for the 100th anniversary of his birth is presented. His works dealing with thermodynamics are described, along with his quantum theory of radiation. Most of the article discusses his general theory of relativity.

  16. Dutch museum marks Einstein anniversary

    NASA Astrophysics Data System (ADS)

    van Calmthout, Matijn

    2016-01-01

    A new painting of Albert Einstein's field equation from his 1915 general theory of relativity was unveiled in a ceremony in November 2015 by the Dutch physicist Robbert Dijkgraaf, who is director of the Princeton Institute for Advanced Study in the US.

  17. From Newton to Einstein.

    ERIC Educational Resources Information Center

    Ryder, L. H.

    1987-01-01

    Discusses the history of scientific thought in terms of the theories of inertia and absolute space, relativity and gravitation. Describes how Sir Isaac Newton used the work of earlier scholars in his theories and how Albert Einstein used Newton's theories in his. (CW)

  18. Multiple Intelligences and the Artistic Imagination: A Case Study of Einstein and Picasso.

    ERIC Educational Resources Information Center

    Newbold, Clair T.

    1999-01-01

    Argues that Albert Einstein and Pablo Picasso possessed similar artistic thought processes, maintaining that their influential discoveries (relativity theory and cubist painting), which launched 20th-century modernism, were amazingly similar in concept. (SR)

  19. Weyl gravity revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Álvarez, Enrique; González-Martín, Sergio, E-mail: enrique.alvarez@uam.es, E-mail: sergio.gonzalez.martin@csic.es

    2017-02-01

    The on shell equivalence of first order and second order formalisms for the Einstein-Hilbert action does not hold for those actions quadratic in curvature. It would seem that by considering the connection and the metric as independent dynamical variables, there are no quartic propagators for any dynamical variable. This suggests that it is possible to get both renormalizability and unitarity along these lines. We have studied a particular instance of those theories, namely Weyl gravity. In this first paper we show that it is not possible to implement this program with the Weyl connection alone.

  20. Numerical modeling of exciton-polariton Bose-Einstein condensate in a microcavity

    NASA Astrophysics Data System (ADS)

    Voronych, Oksana; Buraczewski, Adam; Matuszewski, Michał; Stobińska, Magdalena

    2017-06-01

    A novel, optimized numerical method of modeling of an exciton-polariton superfluid in a semiconductor microcavity was proposed. Exciton-polaritons are spin-carrying quasiparticles formed from photons strongly coupled to excitons. They possess unique properties, interesting from the point of view of fundamental research as well as numerous potential applications. However, their numerical modeling is challenging due to the structure of nonlinear differential equations describing their evolution. In this paper, we propose to solve the equations with a modified Runge-Kutta method of 4th order, further optimized for efficient computations. The algorithms were implemented in form of C++ programs fitted for parallel environments and utilizing vector instructions. The programs form the EPCGP suite which has been used for theoretical investigation of exciton-polaritons. Catalogue identifier: AFBQ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AFBQ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: BSD-3 No. of lines in distributed program, including test data, etc.: 2157 No. of bytes in distributed program, including test data, etc.: 498994 Distribution format: tar.gz Programming language: C++ with OpenMP extensions (main numerical program), Python (helper scripts). Computer: Modern PC (tested on AMD and Intel processors), HP BL2x220. Operating system: Unix/Linux and Windows. Has the code been vectorized or parallelized?: Yes (OpenMP) RAM: 200 MB for single run Classification: 7, 7.7. Nature of problem: An exciton-polariton superfluid is a novel, interesting physical system allowing investigation of high temperature Bose-Einstein condensation of exciton-polaritons-quasiparticles carrying spin. They have brought a lot of attention due to their unique properties and potential applications in polariton-based optoelectronic integrated circuits. This is an out-of-equilibrium quantum system confined within a semiconductor microcavity. It is described by a set of nonlinear differential equations similar in spirit to the Gross-Pitaevskii (GP) equation, but their unique properties do not allow standard GP solving frameworks to be utilized. Finding an accurate and efficient numerical algorithm as well as development of optimized numerical software is necessary for effective theoretical investigation of exciton-polaritons. Solution method: A Runge-Kutta method of 4th order was employed to solve the set of differential equations describing exciton-polariton superfluids. The method was fitted for the exciton-polariton equations and further optimized. The C++ programs utilize OpenMP extensions and vector operations in order to fully utilize the computer hardware. Running time: 6h for 100 ps evolution, depending on the values of parameters

  1. Quantum equivalence of f (R) gravity and scalar-tensor theories in the Jordan and Einstein frames

    NASA Astrophysics Data System (ADS)

    Ohta, Nobuyoshi

    2018-03-01

    The f(R) gravity and scalar-tensor theory are known to be equivalent at the classical level. We study if this equivalence is valid at the quantum level. There are two descriptions of the scalar-tensor theory in the Jordan and Einstein frames. It is shown that these three formulations of the theories give the same determinant or effective action on shell, and thus they are equivalent at the quantum one-loop level on shell in arbitrary dimensions. We also compute the one-loop divergence in f(R) gravity on an Einstein space.

  2. Non-local Effects of Conformal Anomaly

    NASA Astrophysics Data System (ADS)

    Meissner, Krzysztof A.; Nicolai, Hermann

    2018-03-01

    It is shown that the nonlocal anomalous effective actions corresponding to the quantum breaking of the conformal symmetry can lead to observable modifications of Einstein's equations. The fact that Einstein's general relativity is in perfect agreement with all observations including cosmological or recently observed gravitational waves imposes strong restrictions on the field content of possible extensions of Einstein's theory: all viable theories should have vanishing conformal anomalies. It is shown that a complete cancellation of conformal anomalies in D=4 for both the C^2 invariant and the Euler (Gauss-Bonnet) invariant can only be achieved for N-extended supergravity multiplets with N ≥ 5.

  3. Complete integrability of geodesics in toric Sasaki-Einstein spaces

    NASA Astrophysics Data System (ADS)

    Visinescu, Mihai

    2016-01-01

    We describe a method for constructing Killing-Yano tensors on toric Sasaki- Einstein manifolds using their geometrical properties. We take advantage of the fact that the metric cones of these spaces are Calabi-Yau manifolds. The complete list of special Killing forms can be extracted making use of the description of the Calabi-Yau manifolds in terms of toric data. This general procedure for toric Sasaki-Einstein manifolds is exemplified in the case of the 5-dimensional spaces Yp,q and T1,1. Finally we discuss the integrability of geodesic motion in these spaces.

  4. Dark soliton interaction of spinor Bose-Einstein condensates in an optical lattice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Zaidong; Li Qiuyan

    2007-08-15

    We study the magnetic soliton dynamics of spinor Bose-Einstein condensates in an optical lattice which results in an effective Hamiltonian of anisotropic pseudospin chain. An equation of nonlinear Schroedinger type is derived and exact magnetic soliton solutions are obtained analytically by means of Hirota method. Our results show that the critical external field is needed for creating the magnetic soliton in spinor Bose-Einstein condensates. The soliton size, velocity and shape frequency can be controlled in practical experiment by adjusting the magnetic field. Moreover, the elastic collision of two solitons is investigated in detail.

  5. Pair-correlation function of a metastable helium Bose-Einstein condensate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zin, Pawel; Trippenbach, Marek; Gajda, Mariusz

    2004-02-01

    The pair-correlation function is one of the basic quantities to characterize the coherence properties of a Bose-Einstein condensate. We calculate this function in the experimentally important case of a zero temperature Bose-Einstein condensate in a metastable triplet helium state using the variational method with a pair-excitation ansatz. We compare our result with a pair-correlation function obtained for the hard-sphere potential with the same scattering length. Both functions are practically indistinguishable for distances greater than the scattering length. At smaller distances, due to interatomic interactions, the helium condensate shows strong correlations.

  6. Robinson-Trautman solutions to Einstein's equations

    NASA Astrophysics Data System (ADS)

    Davidson, William

    2017-02-01

    Solutions to Einstein's equations in the form of a Robinson-Trautman metric are presented. In particular, we derive a pure radiation solution which is non-stationary and involves a mass m, The resulting spacetime is of Petrov Type II A special selection of parametric values throws up the feature of the particle `rocket', a Type D metric. A suitable transformation of the complex coordinates allows the metrics to be expressed in real form. A modification, by setting m to zero, of the Type II metric thereby converting it to Type III, is then shown to admit a null Einstein-Maxwell electromagnetic field.

  7. Gravitation. [Book on general relativity

    NASA Technical Reports Server (NTRS)

    Misner, C. W.; Thorne, K. S.; Wheeler, J. A.

    1973-01-01

    This textbook on gravitation physics (Einstein's general relativity or geometrodynamics) is designed for a rigorous full-year course at the graduate level. The material is presented in two parallel tracks in an attempt to divide key physical ideas from more complex enrichment material to be selected at the discretion of the reader or teacher. The full book is intended to provide competence relative to the laws of physics in flat space-time, Einstein's geometric framework for physics, applications with pulsars and neutron stars, cosmology, the Schwarzschild geometry and gravitational collapse, gravitational waves, experimental tests of Einstein's theory, and mathematical concepts of differential geometry.

  8. Spatial interference patterns in the dynamics of a 2D Bose-Einstein condensate

    NASA Astrophysics Data System (ADS)

    Bera, Jayanta; Roy, Utpal

    2018-05-01

    Bose-Einstein condensate has become a highly tunable physical system, which is proven to mimic a number of interesting physical phenomena in condensed matter physics. We study the dynamics of a two-dimensional Bose Einstein condensate (BEC) in the presence of a flat harmonic confinement and time-dependent sharp potential peak. Condensate density can be meticulously controlled with time by tuning the physically relevant parameters: frequency of the harmonic trap, width of the peaks, frequency of their oscillations, initial density etc. By engineering various trap profile, we solve the system, numerically, and explore the resulting spatial interference patters.

  9. Modeling Bose-Einstein correlations via elementary emitting cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Utyuzh, Oleg; Wilk, Grzegorz; Wlodarczyk, Zbigniew

    2007-04-01

    We propose a method of numerical modeling Bose-Einstein correlations by using the notion of the elementary emitting cell (EEC). They are intermediary objects containing identical bosons and are supposed to be produced independently during the hadronization process. Only bosons in the EEC, which represents a single quantum state here, are subjected to the effects of Bose-Einstein (BE) statistics, which forces them to follow a geometrical distribution. There are no such effects between particles from different EECs. We illustrate our proposition by calculating a representative number of typical distributions and discussing their sensitivity to EECs and their characteristics.

  10. The gendering of Albert Einstein and Marie Curie in children's biographies: some tensions

    NASA Astrophysics Data System (ADS)

    Wilson, Rachel E.; Jarrard, Amber R.; Tippins, Deborah J.

    2009-12-01

    Few twentieth century scientists have generated as much interest as Albert Einstein and Marie Currie. Their lives are centrally depicted in numerous children's biographies of famous scientists. Yet their stories reflect interesting paradoxes and tacit sets of unexplored sociocultural assumptions about gender in science education and the larger society. Trevor Owens' analysis of common Einstein and Currie biographies for children provides a context for us to consider a deeper reading of these scientists' stories in ways that can be both empowering and liberating. In the process, we consider some interesting tensions surrounding the gendered nature of their stories.

  11. Multiphase Simulated Annealing Based on Boltzmann and Bose-Einstein Distribution Applied to Protein Folding Problem.

    PubMed

    Frausto-Solis, Juan; Liñán-García, Ernesto; Sánchez-Hernández, Juan Paulo; González-Barbosa, J Javier; González-Flores, Carlos; Castilla-Valdez, Guadalupe

    2016-01-01

    A new hybrid Multiphase Simulated Annealing Algorithm using Boltzmann and Bose-Einstein distributions (MPSABBE) is proposed. MPSABBE was designed for solving the Protein Folding Problem (PFP) instances. This new approach has four phases: (i) Multiquenching Phase (MQP), (ii) Boltzmann Annealing Phase (BAP), (iii) Bose-Einstein Annealing Phase (BEAP), and (iv) Dynamical Equilibrium Phase (DEP). BAP and BEAP are simulated annealing searching procedures based on Boltzmann and Bose-Einstein distributions, respectively. DEP is also a simulated annealing search procedure, which is applied at the final temperature of the fourth phase, which can be seen as a second Bose-Einstein phase. MQP is a search process that ranges from extremely high to high temperatures, applying a very fast cooling process, and is not very restrictive to accept new solutions. However, BAP and BEAP range from high to low and from low to very low temperatures, respectively. They are more restrictive for accepting new solutions. DEP uses a particular heuristic to detect the stochastic equilibrium by applying a least squares method during its execution. MPSABBE parameters are tuned with an analytical method, which considers the maximal and minimal deterioration of problem instances. MPSABBE was tested with several instances of PFP, showing that the use of both distributions is better than using only the Boltzmann distribution on the classical SA.

  12. Bose-Einstein correlation within the framework of hadronic mechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burande, Chandrakant S.

    The Bose-Einstein correlation is the phenomenon in which protons and antiprotons collide at extremely high energies; coalesce one into the other resulting into the fireball of finite dimension. They annihilate each other and produces large number of mesons that remain correlated at distances very large compared to the size of the fireball. It was believed that Einstein’s special relativity and relativistic quantum mechanics are the valid frameworks to represent this phenomenon. Although, these frameworks are incomplete and require arbitrary parameters (chaoticity) to fit the experimental data which are prohibited by the basic axioms of relativistic quantum mechanics, such as thatmore » for the vacuum expectation values. Moreover, correlated mesons can not be treated as a finite set of isolated point-like particles because it is non-local event due to overlapping of wavepackets. Therefore, the Bose-Einstein correlation is incompatible with the axiom of expectation values of quantum mechanics. In contrary, relativistic hadronic mechanics constructed by Santilli allows an exact representation of the experimental data of the Bose-Einstein correlation and restore the validity of the Lorentz and Poincare symmetries under nonlocal and non-Hamiltonian internal effects. Further, F. Cardone and R. Mignani observed that the Bose-Einstein two-point correlation function derived by Santilli is perfectly matched with experimental data at high energy.« less

  13. Twistor-strings and gravity tree amplitudes

    NASA Astrophysics Data System (ADS)

    Adamo, Tim; Mason, Lionel

    2013-04-01

    Recently we discussed how Einstein supergravity tree amplitudes might be obtained from the original Witten and Berkovits twistor-string theory when external conformal gravitons are restricted to be Einstein gravitons. Here we obtain a more systematic understanding of the relationship between conformal and Einstein gravity amplitudes in that twistor-string theory. We show that although it does not in general yield Einstein amplitudes, we can nevertheless obtain some partial twistor-string interpretation of the remarkable formulae recently been found by Hodges and generalized to all tree amplitudes by Cachazo and Skinner. The Hodges matrix and its higher degree generalizations encode the world sheet correlators of the twistor string. These matrices control both Einstein amplitudes and those of the conformal gravity arising from the Witten and Berkovits twistor-string. Amplitudes in the latter case arise from products of the diagonal elements of the generalized Hodges matrices and reduced determinants give the former. The reduced determinants arise if the contractions in the worldsheet correlator are restricted to form connected trees at MHV. The (generalized) Hodges matrices arise as weighted Laplacian matrices for the graph of possible contractions in the correlators and the reduced determinants of these weighted Laplacian matrices give the sum of the connected tree contributions by an extension of the matrix-tree theorem.

  14. New Information about Albert Einstein's Brain.

    PubMed

    Falk, Dean

    2009-01-01

    In order to glean information about hominin (or other) brains that no longer exist, details of external neuroanatomy that are reproduced on endocranial casts (endocasts) from fossilized braincases may be described and interpreted. Despite being, of necessity, speculative, such studies can be very informative when conducted in light of the literature on comparative neuroanatomy, paleontology, and functional imaging studies. Albert Einstein's brain no longer exists in an intact state, but there are photographs of it in various views. Applying techniques developed from paleoanthropology, previously unrecognized details of external neuroanatomy are identified on these photographs. This information should be of interest to paleoneurologists, comparative neuroanatomists, historians of science, and cognitive neuroscientists. The new identifications of cortical features should also be archived for future scholars who will have access to additional information from improved functional imaging technology. Meanwhile, to the extent possible, Einstein's cerebral cortex is investigated in light of available data about variation in human sulcal patterns. Although much of his cortical surface was unremarkable, regions in and near Einstein's primary somatosensory and motor cortices were unusual. It is possible that these atypical aspects of Einstein's cerebral cortex were related to the difficulty with which he acquired language, his preference for thinking in sensory impressions including visual images rather than words, and his early training on the violin.

  15. Fundamental Physics

    NASA Image and Video Library

    2003-02-09

    This image depicts the formation of multiple whirlpools in a sodium gas cloud. Scientists who cooled the cloud and made it spin created the whirlpools in a Massachusetts Institute of Technology laboratory, as part of NASA-funded research. This process is similar to a phenomenon called starquakes that appear as glitches in the rotation of pulsars in space. MIT's Wolgang Ketterle and his colleagues, who conducted the research under a grant from the Biological and Physical Research Program through NASA's Jet Propulsion Laboratory, Pasadena, Calif., cooled the sodium gas to less than one millionth of a degree above absolute zero (-273 Celsius or -460 Fahrenheit). At such extreme cold, the gas cloud converts to a peculiar form of matter called Bose-Einstein condensate, as predicted by Albert Einstein and Satyendra Bose of India in 1927. No physical container can hold such ultra-cold matter, so Ketterle's team used magnets to keep the cloud in place. They then used a laser beam to make the gas cloud spin, a process Ketterle compares to stroking a ping-pong ball with a feather until it starts spirning. The spinning sodium gas cloud, whose volume was one- millionth of a cubic centimeter, much smaller than a raindrop, developed a regular pattern of more than 100 whirlpools.

  16. Neutral signature Walker-CSI metrics

    NASA Astrophysics Data System (ADS)

    Coley, A.; Musoke, N.

    2015-03-01

    We will construct explicit examples of four-dimensional neutral signature Einstein Walker spaces for which all of the polynomial scalar curvature invariants are constant. We show that these Einstein Walker spaces are Kundt. We then investigate the mathematical properties of the spaces, including holonomy and universality.

  17. A Conceptual Derivation of Einstein's Postulates of Special Relativity.

    ERIC Educational Resources Information Center

    Bearden, Thomas E.

    This document presents a discussion and conceptual derivation of Einstein's postulates of special relativity. The perceptron approach appears to be a fundamentally new manner of regarding physical phenomena and it is hoped that physicists will interest themselves in the concept. (Author)

  18. Albert Einstein and the Quantum Riddle

    ERIC Educational Resources Information Center

    Lande, Alfred

    1974-01-01

    Derives a systematic structure contributing to the solution of the quantum riddle in Einstein's sense by deducing quantum mechanics from the postulates of symmetry, correspondence, and covariance. Indicates that the systematic presentation is in agreement with quantum mechanics established by Schroedinger, Born, and Heisenberg. (CC)

  19. A new unified theory of electromagnetic and gravitational interactions

    NASA Astrophysics Data System (ADS)

    Li, Li-Xin

    2016-12-01

    In this paper we present a new unified theory of electromagnetic and gravitational interactions. By considering a four-dimensional spacetime as a hypersurface embedded in a five-dimensional bulk spacetime, we derive the complete set of field equations in the four-dimensional spacetime from the fivedimensional Einstein field equation. Besides the Einstein field equation in the four-dimensional spacetime, an electromagnetic field equation is obtained: ∇a F ab - ξ R b a A a = -4π J b with ξ = -2, where F ab is the antisymmetric electromagnetic field tensor defined by the potential vector A a , R ab is the Ricci curvature tensor of the hypersurface, and J a is the electric current density vector. The electromagnetic field equation differs from the Einstein-Maxwell equation by a curvature-coupled term ξ R b a A a , whose presence addresses the problem of incompatibility of the Einstein-Maxwell equation with a universe containing a uniformly distributed net charge, as discussed in a previous paper by the author [L.-X. Li, Gen. Relativ. Gravit. 48, 28 (2016)]. Hence, the new unified theory is physically different from Kaluza-Klein theory and its variants in which the Einstein-Maxwell equation is derived. In the four-dimensional Einstein field equation derived in the new theory, the source term includes the stress-energy tensor of electromagnetic fields as well as the stress-energy tensor of other unidentified matter. Under certain conditions the unidentified matter can be interpreted as a cosmological constant in the four-dimensional spacetime. We argue that, the electromagnetic field equation and hence the unified theory presented in this paper can be tested in an environment with a high mass density, e.g., inside a neutron star or a white dwarf, and in the early epoch of the universe.

  20. Thermodynamic properties of charged three-dimensional black holes in the scalar-tensor gravity theory

    NASA Astrophysics Data System (ADS)

    Dehghani, M.

    2018-02-01

    Making use of the suitable transformation relations, the action of three-dimensional Einstein-Maxwell-dilaton gravity theory has been obtained from that of scalar-tensor modified gravity theory coupled to the Maxwell's electrodynamics as the matter field. Two new classes of the static three-dimensional charged dilatonic black holes, as the exact solutions to the coupled scalar, electromagnetic and gravitational field equations, have been obtained in the Einstein frame. Also, it has been found that the scalar potential can be written in the form of a generalized Liouville-type potential. The conserved black hole charge and masses as well as the black entropy, temperature, and electric potential have been calculated from the geometrical and thermodynamical approaches, separately. Through comparison of the results arisen from these two alternative approaches, the validity of the thermodynamical first law has been proved for both of the new black hole solutions in the Einstein frame. Making use of the canonical ensemble method, a black hole stability or phase transition analysis has been performed. Regarding the black hole heat capacity, with the black hole charge as a constant, the points of type-1 and type-2 phase transitions have been determined. Also, the ranges of the black hole horizon radius at which the Einstein black holes are thermally stable have been obtained for both of the new black hole solutions. Then making use of the inverse transformation relations, two new classes of the string black hole solutions have been obtained from their Einstein counterpart. The thermodynamics and thermal stability of the new string black hole solutions have been investigated. It has been found that thermodynamic properties of the new charged black holes are identical in the Einstein and Jordan frames.

  1. An Out-of-Math Experience: Einstein, Relativity, and the Developmental Mathematics Student.

    ERIC Educational Resources Information Center

    Fiore, Greg

    2000-01-01

    Discusses Einstein's special relativity theory and some of the developmental mathematics involved. Presents motivational classroom materials used in discussing relative-motion problems, evaluating a radical expression, graphing with asymptotes, interpreting a graph, studying variation, and solving literal and radical equations. (KHR)

  2. On Einstein, Light Quanta, Radiation, and Relativity in 1905

    ERIC Educational Resources Information Center

    Miller, Arthur I.

    1976-01-01

    Analyzes section 8 of Einstein's relativity paper of 1905, "On the Electrodynamics of Moving Bodies," in its historical context. Relates this section to the rest of the relativity paper, to the genesis of relativity theory, and to contemporaneous work on radiation theory. (Author/MLH)

  3. Education for Einstein's World.

    ERIC Educational Resources Information Center

    Barry, Marie Myles

    Einstein, translated into a philosophy of education, views the factors governing man's qualities--his genes, his parents, his neighborhood, his church, his country, his world--as relative forces in his development, susceptible to infinite growth, and depending upon various combinations of experience. These experiences, in turn, depend upon nature…

  4. Exact solutions for coupled Einstein, Dirac, Maxwell, and zero-mass scalar fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patra, A.C.; Ray, D.

    1987-12-01

    Coupled equations for Einstein, Maxwell, Dirac, and zero-mass scalar fields studied by Krori, Bhattacharya, and Nandi are integrated for plane-symmetric time-independent case. It is shown that solutions do not exist for the plane-symmetric time-dependent case.

  5. Albert Einstein's Personal Papers: A Physics Teaching Resource.

    ERIC Educational Resources Information Center

    Derman, Samuel

    2000-01-01

    Presents the concept of using Einstein the man as a way of generating interest in the study of physics among students. Finds that it provides an instantly recognizable face for science, thus a gateway to the subject through the discussion of the man. (Author/CCM)

  6. Spatial entanglement patterns and Einstein-Podolsky-Rosen steering in Bose-Einstein condensates.

    PubMed

    Fadel, Matteo; Zibold, Tilman; Décamps, Boris; Treutlein, Philipp

    2018-04-27

    Many-particle entanglement is a fundamental concept of quantum physics that still presents conceptual challenges. Although nonclassical states of atomic ensembles were used to enhance measurement precision in quantum metrology, the notion of entanglement in these systems was debated because the correlations among the indistinguishable atoms were witnessed by collective measurements only. Here, we use high-resolution imaging to directly measure the spin correlations between spatially separated parts of a spin-squeezed Bose-Einstein condensate. We observe entanglement that is strong enough for Einstein-Podolsky-Rosen steering: We can predict measurement outcomes for noncommuting observables in one spatial region on the basis of corresponding measurements in another region with an inferred uncertainty product below the Heisenberg uncertainty bound. This method could be exploited for entanglement-enhanced imaging of electromagnetic field distributions and quantum information tasks. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  7. Bell Inequality, Einstein-Podolsky-Rosen Steering, and Quantum Metrology with Spinor Bose-Einstein Condensates.

    PubMed

    Wasak, Tomasz; Chwedeńczuk, Jan

    2018-04-06

    We propose an experiment, where the Bell inequality is violated in a many-body system of massive particles. The source of correlated atoms is a spinor F=1 Bose-Einstein condensate residing in an optical lattice. We characterize the complete procedure-the local operations, the measurements, and the inequality-necessary to run the Bell test. We show how the degree of violation of the Bell inequality depends on the strengths of the two-body correlations and on the number of scattered pairs. We show that the system can be used to demonstrate the Einstein-Podolsky-Rosen paradox. Also, the scattered pairs are an excellent many-body resource for the quantum-enhanced metrology. Our results apply to any multimode system where the spin-changing collision drives the scattering into separate regions. The presented inquiry shows that such a system is versatile as it can be used for the tests of nonlocality, quantum metrology, and quantum information.

  8. The Media of Relativity: Einstein and Telecommunications Technologies.

    PubMed

    Canales, Jimena

    2015-07-01

    How are fundamental constants, such as "c" for the speed of light, related to the technological environments that produce them? Relativistic cosmology, developed first by Albert Einstein, depended on military and commercial innovations in telecommunications. Prominent physicists (Hans Reichenbach, Max Born, Paul Langevin, Louis de Broglie, and Léon Brillouin, among others) worked in radio units during WWI and incorporated battlefield lessons into their research. Relativity physicists, working at the intersection of physics and optics by investigating light and electricity, responded to new challenges by developing a novel scientific framework. Ideas about lengths and solid bodies were overhauled because the old Newtonian mechanics assumed the possibility of "instantaneous signaling at a distance." Einstein's universe, where time and space dilated, where the shortest path between two points was often curved and non-Euclidean, followed the rules of electromagnetic "signal" transmission. For these scientists, light's constant speed in the absence of a gravitational field-a fundamental tenet of Einstein's theory-was a lesson derived from communication technologies.

  9. Validity of the Stokes-Einstein relation in liquids: simple rules from the excess entropy.

    PubMed

    Pasturel, A; Jakse, N

    2016-12-07

    It is becoming common practice to consider that the Stokes-Einstein relation D/T~ η -1 usually works for liquids above their melting temperatures although there is also experimental evidence for its failure. Here we investigate numerically this commonly-invoked assumption for simple liquid metals as well as for their liquid alloys. Using ab initio molecular dynamics simulations we show how entropy scaling relationships developed by Rosenfeld can be used to predict the conditions for the validity of the Stokes-Einstein relation in the liquid phase. Specifically, we demonstrate the Stokes-Einstein relation may break down in the liquid phase of some liquid alloys mainly due to the presence of local structural ordering as evidenced in their partial two-body excess entropies. Our findings shed new light on the understanding of transport properties of liquid materials and will trigger more experimental and theoretical studies since excess entropy and its two-body approximation are readily obtainable from standard experiments and simulations.

  10. Virtually Being Einstein Results in an Improvement in Cognitive Task Performance and a Decrease in Age Bias

    PubMed Central

    Banakou, Domna; Kishore, Sameer; Slater, Mel

    2018-01-01

    The brain's body representation is amenable to rapid change, even though we tend to think of our bodies as relatively fixed and stable. For example, it has been shown that a life-sized body perceived in virtual reality as substituting the participant's real body, can be felt as if it were their own, and that the body type can induce perceptual, attitudinal and behavioral changes. Here we show that changes can also occur in cognitive processing and specifically, executive functioning. Fifteen male participants were embodied in a virtual body that signifies super-intelligence (Einstein) and 15 in a (Normal) virtual body of similar age to their own. The Einstein body participants performed better on a cognitive task than the Normal body, considering prior cognitive ability (IQ), with the improvement greatest for those with low self-esteem. Einstein embodiment also reduced implicit bias against older people. Hence virtual body ownership may additionally be used to enhance executive functioning. PMID:29942270

  11. Bell Inequality, Einstein-Podolsky-Rosen Steering, and Quantum Metrology with Spinor Bose-Einstein Condensates

    NASA Astrophysics Data System (ADS)

    Wasak, Tomasz; Chwedeńczuk, Jan

    2018-04-01

    We propose an experiment, where the Bell inequality is violated in a many-body system of massive particles. The source of correlated atoms is a spinor F =1 Bose-Einstein condensate residing in an optical lattice. We characterize the complete procedure—the local operations, the measurements, and the inequality—necessary to run the Bell test. We show how the degree of violation of the Bell inequality depends on the strengths of the two-body correlations and on the number of scattered pairs. We show that the system can be used to demonstrate the Einstein-Podolsky-Rosen paradox. Also, the scattered pairs are an excellent many-body resource for the quantum-enhanced metrology. Our results apply to any multimode system where the spin-changing collision drives the scattering into separate regions. The presented inquiry shows that such a system is versatile as it can be used for the tests of nonlocality, quantum metrology, and quantum information.

  12. Virtually Being Einstein Results in an Improvement in Cognitive Task Performance and a Decrease in Age Bias.

    PubMed

    Banakou, Domna; Kishore, Sameer; Slater, Mel

    2018-01-01

    The brain's body representation is amenable to rapid change, even though we tend to think of our bodies as relatively fixed and stable. For example, it has been shown that a life-sized body perceived in virtual reality as substituting the participant's real body, can be felt as if it were their own, and that the body type can induce perceptual, attitudinal and behavioral changes. Here we show that changes can also occur in cognitive processing and specifically, executive functioning. Fifteen male participants were embodied in a virtual body that signifies super-intelligence (Einstein) and 15 in a (Normal) virtual body of similar age to their own. The Einstein body participants performed better on a cognitive task than the Normal body, considering prior cognitive ability (IQ), with the improvement greatest for those with low self-esteem. Einstein embodiment also reduced implicit bias against older people. Hence virtual body ownership may additionally be used to enhance executive functioning.

  13. FROM THE HISTORY OF PHYSICS: The Einstein formula: E0=mc2. "Isn't the Lord laughing?"

    NASA Astrophysics Data System (ADS)

    Okun, L. B.

    2008-05-01

    The article traces the way Einstein formulated the relation between energy and mass in his work from 1905 to 1955. Einstein emphasized quite often that the mass m of a body is equivalent to its rest energy E0. At the same time, he frequently resorted to the less clear-cut statement of the equivalence of energy and mass. As a result, Einstein's formula E0=mc2 still remains much less known than its popular form, E=mc2, in which E is the total energy equal to the sum of the rest energy and the kinetic energy of a freely moving body. One of the consequences of this is the widespread fallacy that the mass of a body increases when its velocity increases and even that this is an experimental fact. As wrote the playwright A N Ostrovsky "Something must exist for people, something so austere, so lofty, so sacrosanct that it would make profaning it unthinkable."

  14. Simplified methods for computing total sediment discharge with the modified Einstein procedure

    USGS Publications Warehouse

    Colby, Bruce R.; Hubbell, David Wellington

    1961-01-01

    A procedure was presented in 1950 by H. A. Einstein for computing the total discharge of sediment particles of sizes that are in appreciable quantities in the stream bed. This procedure was modified by the U.S. Geological Survey and adapted to computing the total sediment discharge of a stream on the basis of samples of bed sediment, depth-integrated samples of suspended sediment, streamflow measurements, and water temperature. This paper gives simplified methods for computing total sediment discharge by the modified Einstein procedure. Each of four homographs appreciably simplifies a major step in the computations. Within the stated limitations, use of the homographs introduces much less error than is present in either the basic data or the theories on which the computations of total sediment discharge are based. The results are nearly as accurate mathematically as those that could be obtained from the longer and more complex arithmetic and algebraic computations of the Einstein procedure.

  15. Cerebral cortex astroglia and the brain of a genius: A propos of A. Einstein's

    PubMed Central

    Colombo, Jorge A.; Reisin, Hernán D.; Miguel-Hidalgo, José J.; Rajkowska, Grazyna

    2010-01-01

    The glial fibrillary acidic protein immunoreactive astroglial layout of the cerebral cortex from Albert Einstein and other four age-matched human cases lacking any known neurological disease was analyzed using quantification of geometrical features mathematically defined. Several parameters (parallelism, relative depth, tortuosity) describing the primate-specific interlaminar glial processes did not show individually distinctive characteristics in any of the samples analyzed. However, A. Einstein's astrocytic processes showed larger sizes and higher numbers of interlaminar terminal masses, reaching sizes of 15 μm in diameter. These bulbous endings are of unknown significance and they have been described occurring in Alzheimer's disease. These observations are placed in the context of the general discussion regarding the proposal – by other authors – that structural, postmortem characteristics of the aged brain of Albert Einstein may serve as markers of his cognitive performance, a proposal to which the authors of this paper do not subscribe, and argue against. PMID:16675021

  16. Focus on quantum Einstein gravity Focus on quantum Einstein gravity

    NASA Astrophysics Data System (ADS)

    Ambjorn, Jan; Reuter, Martin; Saueressig, Frank

    2012-09-01

    The gravitational asymptotic safety program summarizes the attempts to construct a consistent and predictive quantum theory of gravity within Wilson's generalized framework of renormalization. Its key ingredient is a non-Gaussian fixed point of the renormalization group flow which controls the behavior of the theory at trans-Planckian energies and renders gravity safe from unphysical divergences. Provided that the fixed point comes with a finite number of ultraviolet-attractive (relevant) directions, this construction gives rise to a consistent quantum field theory which is as predictive as an ordinary, perturbatively renormalizable one. This opens up the exciting possibility of establishing quantum Einstein gravity as a fundamental theory of gravity, without introducing supersymmetry or extra dimensions, and solely based on quantization techniques that are known to work well for the other fundamental forces of nature. While the idea of gravity being asymptotically safe was proposed by Steven Weinberg more than 30 years ago [1], the technical tools for investigating this scenario only emerged during the last decade. Here a key role is played by the exact functional renormalization group equation for gravity, which allows the construction of non-perturbative approximate solutions for the RG-flow of the gravitational couplings. Most remarkably, all solutions constructed to date exhibit a suitable non-Gaussian fixed point, lending strong support to the asymptotic safety conjecture. Moreover, the functional renormalization group also provides indications that the central idea of a non-Gaussian fixed point providing a safe ultraviolet completion also carries over to more realistic scenarios where gravity is coupled to a suitable matter sector like the standard model. These theoretical successes also triggered a wealth of studies focusing on the consequences of asymptotic safety in a wide range of phenomenological applications covering the physics of black holes, early time cosmology and the big bang, as well as TeV-scale gravity models testable at the Large Hadron Collider. On different grounds, Monte-Carlo studies of the gravitational partition function based on the discrete causal dynamical triangulations approach provide an a priori independent avenue towards unveiling the non-perturbative features of gravity. As a highlight, detailed simulations established that the phase diagram underlying causal dynamical triangulations contains a phase where the triangulations naturally give rise to four-dimensional, macroscopic universes. Moreover, there are indications for a second-order phase transition that naturally forms the discrete analog of the non-Gaussian fixed point seen in the continuum computations. Thus there is a good chance that the discrete and continuum computations will converge to the same fundamental physics. This focus issue collects a series of papers that outline the current frontiers of the gravitational asymptotic safety program. We hope that readers get an impression of the depth and variety of this research area as well as our excitement about the new and ongoing developments. References [1] Weinberg S 1979 General Relativity, an Einstein Centenary Survey ed S W Hawking and W Israel (Cambridge: Cambridge University Press)

  17. On the Einstein-Podolsky-Rosen Paradox

    NASA Astrophysics Data System (ADS)

    McWeeny, Roy

    Central to the EPR paradox is a [`]thought experiment' in which two spins are initially coupled to a state with S = 0 and are then separated to a large distance, at which they can be separately observed. Quantum mechanics apparently predicts that the two spins remain forever coupled, but this conflicts with Einstein's principle of [`]locality' or [`]separability', according to which spatially well separated systems must be independent, no matter how strongly they have interacted in the past. It is now widely held that Einstein was wrong and that [`]non-locality' follows inevitably from quantum mechanics i.e. that even distant systems are never truly separable.

  18. A family of solutions to the Einstein-Maxwell system of equations describing relativistic charged fluid spheres

    NASA Astrophysics Data System (ADS)

    Komathiraj, K.; Sharma, Ranjan

    2018-05-01

    In this paper, we present a formalism to generate a family of interior solutions to the Einstein-Maxwell system of equations for a spherically symmetric relativistic charged fluid sphere matched to the exterior Reissner-Nordström space-time. By reducing the Einstein-Maxwell system to a recurrence relation with variable rational coefficients, we show that it is possible to obtain closed-form solutions for a specific range of model parameters. A large class of solutions obtained previously are shown to be contained in our general class of solutions. We also analyse the physical viability of our new class of solutions.

  19. On the existence of the field line solutions of the Einstein-Maxwell equations

    NASA Astrophysics Data System (ADS)

    Vancea, Ion V.

    The main result of this paper is the proof that there are local electric and magnetic field configurations expressed in terms of field lines on an arbitrary hyperbolic manifold. This electromagnetic field is described by (dual) solutions of the Maxwell’s equations of the Einstein-Maxwell theory. These solutions have the following important properties: (i) they are general, in the sense that the knot solutions are particular cases of them and (ii) they reduce to the electromagnetic fields in the field line representation in the flat space-time. Also, we discuss briefly the real representation of these electromagnetic configurations and write down the corresponding Einstein equations.

  20. Complete integrability of geodesic motion in Sasaki-Einstein toric Yp,q spaces

    NASA Astrophysics Data System (ADS)

    Babalic, Elena Mirela; Visinescu, Mihai

    2015-09-01

    We construct explicitly the constants of motion for geodesics in the five-dimensional Sasaki-Einstein spaces Yp,q. To carry out this task, we use the knowledge of the complete set of Killing vectors and Killing-Yano tensors on these spaces. In spite of the fact that we generate a multitude of constants of motion, only five of them are functionally independent implying the complete integrability of geodesic flow on Yp,q spaces. In the particular case of the homogeneous Sasaki-Einstein manifold T1,1 the integrals of motion have simpler forms and the relations between them are described in detail.

  1. Efficiency and its bounds for a quantum Einstein engine at maximum power.

    PubMed

    Yan, H; Guo, Hao

    2012-11-01

    We study a quantum thermal engine model for which the heat transfer law is determined by Einstein's theory of radiation. The working substance of the quantum engine is assumed to be a two-level quantum system of which the constituent particles obey Maxwell-Boltzmann (MB), Fermi-Dirac (FD), or Bose-Einstein (BE) distributions, respectively, at equilibrium. The thermal efficiency and its bounds at maximum power of these models are derived and discussed in the long and short thermal contact time limits. The similarity and difference between these models are discussed. We also compare the efficiency bounds of this quantum thermal engine to those of its classical counterpart.

  2. Static Einstein-Maxwell Black Holes with No Spatial Isometries in AdS Space.

    PubMed

    Herdeiro, Carlos A R; Radu, Eugen

    2016-11-25

    We explicitly construct static black hole solutions to the fully nonlinear, D=4, Einstein-Maxwell-anti-de Sitter (AdS) equations that have no continuous spatial symmetries. These black holes have a smooth, topologically spherical horizon (section), but without isometries, and approach, asymptotically, global AdS spacetime. They are interpreted as bound states of a horizon with the Einstein-Maxwell-AdS solitons recently discovered, for appropriate boundary data. In sharp contrast to the uniqueness results for a Minkowski electrovacuum, the existence of these black holes shows that single, equilibrium, black hole solutions in an AdS electrovacuum admit an arbitrary multipole structure.

  3. Einstein: His Impact on Accelerators; His Impact on theWorld

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sessler, A.

    2005-07-30

    The impact of the work of Albert Einstein on accelerator physics is described. Because of the limit of time, and also because the audience knows the details, the impact is described in broad strokes. Nevertheless, it is seen how his work has affected many different aspects of accelerator physics. In the second half of the talk, Albert Einstein's impact on the world will be discussed; namely his work on world peace (including his role as a pacifist, in the atomic bomb, and in arms control) and his efforts as a humanitarian (including his efforts on social justice, anti-racism, and civilmore » rights).« less

  4. The Origin of Gravitational Lensing: A Postscript to Einstein's 1936 Science Paper

    PubMed

    Renn; Sauer; Stachel

    1997-01-10

    Gravitational lensing, now taken as an important astrophysical consequence of the general theory of relativity, was found even before this theory was formulated but was discarded as a speculative idea without any chance of empirical confirmation. Reconstruction of some of Einstein's research notes dating back to 1912 reveals that he explored the possibility of gravitational lensing 3 years before completing his general theory of relativity. On the basis of preliminary insights into this theory, Einstein had already derived the basic features of the lensing effect. When he finally published the very same results 24 years later, it was only in response to prodding by an amateur scientist.

  5. [THE ROLE OF PHILOSOPHICAL REFLECTIONS OF STANISLAW ZAREMBA IN THE CONTEXT OF A DISPUTE ON THE FOUNDATIONS OF THE THEORY OF RELATIVITY].

    PubMed

    Polak, Paweł

    2014-01-01

    The aim of this paper is to present the philosophical background of Stanisław Zaremba's critique of Einstein's theory of relativity. In the 1920s, Zaremba was the most prominent Polish opponent of this theory. His papers influenced some discussions related to Einstein's theory, especially in France and in Poland. This paper takes also into account the development of Zaremba's critique. The analysis of his papers shows that he never became a follower of the Einstein's theory of relativity. Such a statement compels us to confront it with the previous interpretations of Zaremba's thought.

  6. Gravitomagnetism: From Einstein's 1912 Paper to the Satellites LAGEOS and Gravity Probe B

    NASA Astrophysics Data System (ADS)

    Pfister, Herbert

    The first concrete calculations of (linear) gravitomagnetic effects were performed by Einstein in 1912-1913. Einstein also directly and decisively contributed to the "famous" papers by Thirring (and Lense) from 1918. Generalizations to strong fields were performed not earlier than in 1966 by Brill and Cohen. Extensions to higher orders of the angular velocity ω by Pfister and Braun (1985-1989) led to a solution of the centrifugal force problem and to a quasiglobal principle of equivalence. The difficulties but also the recent successes to measure gravitomagnetic effects are reviewed, and cosmological and Machian aspects of gravitomagnetism are discussed.

  7. Human dynamics: Darwin and Einstein correspondence patterns.

    PubMed

    Oliveira, João Gama; Barabási, Albert-László

    2005-10-27

    In an era when letters were the main means of exchanging scientific ideas and results, Charles Darwin (1809-82) and Albert Einstein (1879-1955) were notably prolific correspondents. But did their patterns of communication differ from those associated with the instant-access e-mail of modern times? Here we show that, although the means have changed, the communication dynamics have not: Darwin's and Einstein's patterns of correspondence and today's electronic exchanges follow the same scaling laws. However, the response times of their surface-mail communication is described by a different scaling exponent from e-mail communication, providing evidence for a new class of phenomena in human dynamics.

  8. Spatial Bose-Einstein Condensation.

    ERIC Educational Resources Information Center

    Masut, Remo; Mullin, William J.

    1979-01-01

    Analyzes three examples of spatial Bose-Einstein condensations in which the particles macroscopically occupy the lowest localized state of an inhomogeneous external potential. The three cases are (1) a box with a small square potential well inside, (2) a harmonic oscillator potential, and (3) randomly sized trapping potentials caused by…

  9. Approaching Bose-Einstein Condensation

    ERIC Educational Resources Information Center

    Ferrari, Loris

    2011-01-01

    Bose-Einstein condensation (BEC) is discussed at the level of an advanced course of statistical thermodynamics, clarifying some formal and physical aspects that are usually not covered by the standard pedagogical literature. The non-conventional approach adopted starts by showing that the continuum limit, in certain cases, cancels out the crucial…

  10. Kranc: a Mathematica package to generate numerical codes for tensorial evolution equations

    NASA Astrophysics Data System (ADS)

    Husa, Sascha; Hinder, Ian; Lechner, Christiane

    2006-06-01

    We present a suite of Mathematica-based computer-algebra packages, termed "Kranc", which comprise a toolbox to convert certain (tensorial) systems of partial differential evolution equations to parallelized C or Fortran code for solving initial boundary value problems. Kranc can be used as a "rapid prototyping" system for physicists or mathematicians handling very complicated systems of partial differential equations, but through integration into the Cactus computational toolkit we can also produce efficient parallelized production codes. Our work is motivated by the field of numerical relativity, where Kranc is used as a research tool by the authors. In this paper we describe the design and implementation of both the Mathematica packages and the resulting code, we discuss some example applications, and provide results on the performance of an example numerical code for the Einstein equations. Program summaryTitle of program: Kranc Catalogue identifier: ADXS_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXS_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Distribution format: tar.gz Computer for which the program is designed and others on which it has been tested: General computers which run Mathematica (for code generation) and Cactus (for numerical simulations), tested under Linux Programming language used: Mathematica, C, Fortran 90 Memory required to execute with typical data: This depends on the number of variables and gridsize, the included ADM example requires 4308 KB Has the code been vectorized or parallelized: The code is parallelized based on the Cactus framework. Number of bytes in distributed program, including test data, etc.: 1 578 142 Number of lines in distributed program, including test data, etc.: 11 711 Nature of physical problem: Solution of partial differential equations in three space dimensions, which are formulated as an initial value problem. In particular, the program is geared towards handling very complex tensorial equations as they appear, e.g., in numerical relativity. The worked out examples comprise the Klein-Gordon equations, the Maxwell equations, and the ADM formulation of the Einstein equations. Method of solution: The method of numerical solution is finite differencing and method of lines time integration, the numerical code is generated through a high level Mathematica interface. Restrictions on the complexity of the program: Typical numerical relativity applications will contain up to several dozen evolution variables and thousands of source terms, Cactus applications have shown scaling up to several thousand processors and grid sizes exceeding 500 3. Typical running time: This depends on the number of variables and the grid size: the included ADM example takes approximately 100 seconds on a 1600 MHz Intel Pentium M processor. Unusual features of the program: based on Mathematica and Cactus

  11. Einstein Meets Hilbert: At the Crossroads of Physics and Mathematics

    NASA Astrophysics Data System (ADS)

    Rowe, David E.

    One of the most famous episodes in the early history of general relativity involves the ``race'' in November 1915 between Albert Einstein and David Hilbert to uncover the ``correct'' form for the ten gravitational field equations. In light of recent archival findings, however, this story now has become a topic of renewed interest and controversy among historians of physics and mathematics. Drawing on recent studies and newly found sources, the present essay takes up this familiar tale from a new perspective, one that has seldom received due attention in the standard literature, namely, the mathematical issues at the heart of Einstein's theory. Told from this angle, the leading actors are Einstein's collaborator Marcel Grossmann, his critic Tullio Levi-Civita, his competitor David Hilbert, and several other mathematicians, many of them connected with Hilbert's Göttingen colleagues such as Hermann Weyl, Felix Klein, and Emmy Noether. As Einstein was the first to admit, Göttingen was far more important than Berlin as an active center for research in general relativity. Any account which, like this one, tries to understand both the actions and motives of the leading players must confront the problem of interpreting the rather sparse documentary evidence available. The interpretation offered herein, whatever its merits, aims first and foremost to show how mathematical issues deeply permeated the early history of general relativity.

  12. Concerning Dice and Divinity

    NASA Astrophysics Data System (ADS)

    Appleby, D. M.

    2007-02-01

    Einstein initially objected to the probabilistic aspect of quantum mechanics—the idea that God is playing at dice. Later he changed his ground, and focussed instead on the point that the Copenhagen Interpretation leads to what Einstein saw as the abandonment of physical realism. We argue here that Einstein's initial intuition was perfectly sound, and that it is precisely the fact that quantum mechanics is a fundamentally probabilistic theory which is at the root of all the controversies regarding its interpretation. Probability is an intrinsically logical concept. This means that the quantum state has an essentially logical significance. It is extremely difficult to reconcile that fact with Einstein's belief, that it is the task of physics to give us a vision of the world apprehended sub specie aeternitatis. Quantum mechanics thus presents us with a simple choice: either to follow Einstein in looking for a theory which is not probabilistic at the fundamental level, or else to accept that physics does not in fact put us in the position of God looking down on things from above. There is a widespread fear that the latter alternative must inevitably lead to a greatly impoverished, positivistic view of physical theory. It appears to us, however, that the truth is just the opposite. The Einsteinian vision is much less attractive than it seems at first sight. In particular, it is closely connected with philosophical reductionism.

  13. Gravitational waves in Einstein-æther and generalized TeVeS theory after GW170817

    NASA Astrophysics Data System (ADS)

    Gong, Yungui; Hou, Shaoqi; Liang, Dicong; Papantonopoulos, Eleftherios

    2018-04-01

    In this work we discuss the polarization contents of Einstein-æther theory and the generalized tensor-vector-scalar (TeVeS) theory, as both theories have a normalized timelike vector field. We derive the linearized equations of motion around the flat spacetime background using the gauge-invariant variables to easily separate physical degrees of freedom. We find the plane wave solutions and identify the polarizations by examining the geodesic deviation equations. We find that there are five polarizations in Einstein-æther theory and six polarizations in the generalized TeVeS theory. In particular, the transverse breathing mode is mixed with the pure longitudinal mode. We also discuss the experimental tests of the extra polarizations in Einstein-æther theory using pulsar timing arrays combined with the gravitational-wave speed bound derived from the observations on GW 170817 and GRB 170817A. It turns out that it might be difficult to use pulsar timing arrays to distinguish different polarizations in Einstein-æther theory. The same speed bound also forces one of the propagating modes in the generalized TeVeS theory to travel much faster than the speed of light. Since the strong coupling problem does not exist in some parameter subspaces, the generalized TeVeS theory is excluded in these parameter subspaces.

  14. Observational limitations of Bose-Einstein photon statistics and radiation noise in thermal emission

    NASA Astrophysics Data System (ADS)

    Lee, Y.-J.; Talghader, J. J.

    2018-01-01

    For many decades, theory has predicted that Bose-Einstein statistics are a fundamental feature of thermal emission into one or a few optical modes; however, the resulting Bose-Einstein-like photon noise has never been experimentally observed. There are at least two reasons for this: (1) Relationships to describe the thermal radiation noise for an arbitrary mode structure have yet to be set forth, and (2) the mode and detector constraints necessary for the detection of such light is extremely hard to fulfill. Herein, photon statistics and radiation noise relationships are developed for systems with any number of modes and couplings to an observing space. The results are shown to reproduce existing special cases of thermal emission and are then applied to resonator systems to discuss physically realizable conditions under which Bose-Einstein-like thermal statistics might be observed. Examples include a single isolated cavity and an emitter cavity coupled to a small detector space. Low-mode-number noise theory shows major deviations from solely Bose-Einstein or Poisson treatments and has particular significance because of recent advances in perfect absorption and subwavelength structures both in the long-wave infrared and terahertz regimes. These microresonator devices tend to utilize a small volume with few modes, a regime where the current theory of thermal emission fluctuations and background noise, which was developed decades ago for free-space or single-mode cavities, has no derived solutions.

  15. Albert Einstein and Wernher von Braun - the two great German-American physicists seen in a historical perspective.

    NASA Astrophysics Data System (ADS)

    Winterberg, Friedwardt

    2008-04-01

    It was Albert Einstein who for the first time changed our view of the universe to be a non-euclidean curved space-time. And it was Wernher von Braun who blazed the trail to take us into this universe, leaving for the first time the gravitational field of our planet earth, with the landing a man on the moon the greatest event in human history. Both these great physicists did this on the shoulders of giants. Albert Einstein on the shoulders of his landsman, the mathematician Bernhard Riemann, and Wernher von Braun on the shoulders of Goddard and Oberth. Both Einstein and von Braun made a Faustian pact with the devil, von Braun by accepting research funds from Hitler, and Einstein by urging Roosvelt to build the atom bomb (against Hitler). Both of these great men later regretted the use of their work for the killing of innocent bystanders, even though in the end the invention of nuclear energy and space flight is for the benefit of man. Their example serves as a warning for all of us. It can be formulated as follows: ``Can I in good conscience accept research funds from the military to advance scientific knowledge, for weapons developed against an abstract enemy I never have met in person?'' Weapons if used do not differentiate between the scientist, who invented these weapons, and the non-scientist.

  16. Detecting protein folding by thermal fluctuations of microcantilevers

    PubMed Central

    Aguilar-Sandoval, Felipe; Bellon, Ludovic; Melo, Francisco

    2017-01-01

    The accurate characterization of proteins in both their native and denatured states is essential to effectively understand protein function, folding and stability. As a proof of concept, a micro rheological method is applied, based on the characterization of thermal fluctuations of a micro cantilever immersed in a bovine serum albumin solution, to assess changes in the viscosity associated with modifications in the protein’s structure under the denaturant effect of urea. Through modeling the power spectrum density of the cantilever’s fluctuations over a broad frequency band, it is possible to implement a fitting procedure to accurately determine the viscosity of the fluid, even at low volumes. Increases in viscosity during the denaturant process are identified using the assumption that the protein is a hard sphere, with a hydrodynamic radius that increases during unfolding. This is modeled accordingly through the Einstein-Batchelor formula. The Einstein-Batchelor formula estimates are verified through dynamic light scattering, which measures the hydrodynamic radius of proteins. Thus, this methodology is proven to be suitable for the study of protein folding in samples of small size at vanishing shear stresses. PMID:29267316

  17. Einstein's Riddle as a Tool for Profiling Students

    ERIC Educational Resources Information Center

    Özeke, Vildan; Akçapina, Gökhan

    2016-01-01

    There are many computer games, learning environments, online tutoring systems or computerized tools which keeps the track of the user while learning or engaging in the activities. This paper presents results from an exploratory study and aims to group students regarding their behavior data while solving the Einstein's riddle. 45 undergraduate…

  18. Einstein's Mirror

    ERIC Educational Resources Information Center

    Gjurchinovski, Aleksandar; Skeparovski, Aleksandar

    2008-01-01

    Reflection of light from a plane mirror in uniform rectilinear motion is a century-old problem, intimately related to the foundations of special relativity. The problem was first investigated by Einstein in his famous 1905 paper by using the Lorentz transformations to switch from the mirror's rest frame to the frame where the mirror moves at a…

  19. Einstein Observations of Galactic supernova remnants

    NASA Technical Reports Server (NTRS)

    Seward, Frederick D.

    1990-01-01

    This paper summarizes the observations of Galactic supernova remnants with the imaging detectors of the Einstein Observatory. X-ray surface brightness contours of 47 remnants are shown together with gray-scale pictures. Count rates for these remnants have been derived and are listed for the HRI, IPC, and MPC detectors.

  20. An Exact Solution of Einstein-Maxwell Gravity Coupled to a Scalar Field

    NASA Technical Reports Server (NTRS)

    Turyshev, S. G.

    1995-01-01

    The general solution to low-energy string theory representing static spherically symmetric solution of the Einstein-Maxwell gravity with a massless scalar field has been found. Some of the partial cases appear to coincide with known solutions to black holes, naked singularities, and gravity and electromagnetic fields.

  1. Molecular Volumes and the Stokes-Einstein Equation

    ERIC Educational Resources Information Center

    Edward, John T.

    1970-01-01

    Examines the limitations of the Stokes-Einstein equation as it applies to small solute molecules. Discusses molecular volume determinations by atomic increments, molecular models, molar volumes of solids and liquids, and molal volumes. Presents an empirical correction factor for the equation which applies to molecular radii as small as 2 angstrom…

  2. Einstein Revisited

    ERIC Educational Resources Information Center

    Fine, Leonard

    2005-01-01

    A brief description on the work and life of the great physicist scientist Albert Einstein is presented. The photoelectric paper written by him in 1905 led him to the study of fluctuations in the energy density of radiation and from there to the incomplete nature of the equipartition theorem of classical mechanics, which failed to account for…

  3. Bose-Einstein correlations: A study of an invariance group

    NASA Astrophysics Data System (ADS)

    Bialas, A.; Zalewski, K.

    2005-08-01

    A group of transformations changing the phases of the elements of the single-particle density matrix, but leaving unchanged the predictions for identical particles concerning the momentum distributions, momentum correlations etc., is identified. Its implications for the determinations of the interaction regions from studies of Bose-Einstein correlations are discussed.

  4. Oral rivaroxaban versus enoxaparin with vitamin K antagonist for the treatment of symptomatic venous thromboembolism in patients with cancer (EINSTEIN-DVT and EINSTEIN-PE): a pooled subgroup analysis of two randomised controlled trials.

    PubMed

    Prins, Martin H; Lensing, Anthonie W A; Brighton, Tim A; Lyons, Roger M; Rehm, Jeffrey; Trajanovic, Mila; Davidson, Bruce L; Beyer-Westendorf, Jan; Pap, Ákos F; Berkowitz, Scott D; Cohen, Alexander T; Kovacs, Michael J; Wells, Philip S; Prandoni, Paolo

    2014-10-01

    Patients with venous thromboembolism and cancer have a substantial risk of recurrent venous thromboembolism and bleeding during anticoagulant therapy. Although monotherapy with low-molecular-weight heparin is recommended in these patients, in clinical practice many patients with venous thromboembolism and cancer do not receive this treatment. We aimed to assess the efficacy and safety of a single-drug regimen with oral rivaroxaban compared with enoxaparin followed by vitamin K antagonists, in the subgroup of patients with cancer enrolled in the EINSTEIN-DVT and EINSTEIN-PE randomised controlled trials. We did a subgroup analysis of patients with active cancer (either at baseline or diagnosed during the study), a history of cancer, or no cancer who were enrolled in the EINSTEIN-DVT and EINSTEIN-PE trials. Eligible patients with deep-vein thrombosis (EINSTEIN-DVT) or pulmonary embolism (EINSTEIN-PE) were randomly assigned in a 1:1 ratio to receive rivaroxaban (15 mg twice daily for 21 days, followed by 20 mg once daily) or standard therapy (enoxaparin 1·0 mg/kg twice daily and warfarin or acenocoumarol; international normalised ratio 2·0-3·0). Randomisation with a computerised voice-response system was stratified according to country and intended treatment duration (3, 6, or 12 months). The prespecified primary efficacy and safety outcomes of both the trials and this subanalysis were symptomatic recurrent venous thromboembolism and clinically relevant bleeding, respectively. We did efficacy and mortality analyses in the intention-to-treat population, and bleeding analyses for time spent receiving treatment plus 2 days in the safety population (all patients who received at least one dose of study drug). The EINSTEIN-DVT and EINSTEIN-PE studies are registered at ClinicalTrials.gov, numbers NCT00440193 and NCT00439777. In patients with active cancer (diagnosed at baseline or during treatment), recurrent venous thromboembolism occurred in 16 (5%) of 354 patients allocated to rivaroxaban and 20 (7%) of 301 patients allocated to enoxaparin and vitamin K antagonist (hazard ratio [HR] 0·67, 95% CI 0·35 to 1·30). Clinically relevant bleeding occurred in 48 (14%) of 353 patients receiving rivaroxaban and in 49 (16%) of 298 patients receiving standard therapy (HR 0·80, 95% CI 0·54 to 1·20). Major bleeding occurred in eight (2%) of 353 patients receiving rivaroxaban and in 15 (5%) of 298 patients receiving standard therapy (HR 0·42, 95% CI 0·18 to 0·99). The overall frequency of recurrent venous thromboembolism in patients with only a history of cancer (five [2%] of 233 patients in the rivaroxaban group vs five [2%] of 236 in the standard therapy group; HR 0·98, 95% CI 0·28-3·43) was similar to that of patients without cancer (65 [2%] of 3563 vs 70 [2%] of 3594, respectively; HR 0·93, 95% CI 0·66-1·30), but the frequency was increased in patients with active cancer at baseline (six [2%] of 258 vs eight [4%] of 204, respectively; HR 0·62, 95% CI 0·21-1·79) and most markedly increased in patients whose diagnosis of cancer was made during the study (ten [10%] of 96 vs 12 [12%] of 97, respectively; HR 0·80, 95% CI 0·34-1·88). The overall frequency of major bleeding in patients with only a history of cancer (one [<1%] patient in the rivaroxaban group vs four [2%] patients in the standard therapy group; HR 0·23, 95% CI 0·03-2·06) was similar to that of patients without cancer (31 [1%] vs 53 [1%], respectively; HR 0·58, 95% CI 0·37-0·91), but was increased in patients with active cancer at baseline (five [2%] vs eight [4%], respectively; HR 0·47, 95% CI 0·15-1·45) and was highest in those with cancer diagnosed during the study (three [3%] vs seven [7%], respectively; HR 0·33, 95% CI 0·08-1·31). In patients with active cancer and venous thromboembolism, rivaroxaban had similar efficacy to prevent recurrence of venous thromboembolism and reduced the number major bleeding events compared with treatment with enoxaparin and a vitamin K antagonist, although there was no difference between groups for clinically relevant bleeding. Based on these results, a head-to-head comparison of rivaroxaban with long-term low-molecular-weight heparin in patients with cancer is warranted. Bayer HealthCare Pharmaceuticals and Janssen Research & Development. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Space Time Theories Confirmed

    NASA Image and Video Library

    2011-05-04

    Seated from left, Bill Danchi, Senior Astrophysicist and Program Scientist at NASA Headquarters, Francis Everitt, Principal Investigator for the Gravity Probe B Mission at Stanford University, Rex Geveden, President of Teledyne Brown Engineering, Colleen Hartman, a research professor at George Washington University, and Clifford Will, Professor of Physics at Washington University in St. Louis, Mo., conduct a press conference, Wednesday, May 4, 2011, to discuss NASA's Gravity Probe B (GP-B) mission which has confirmed two key predictions derived from Albert Einstein's general theory of relativity, which the spacecraft was designed to test. at NASA Headquarters in Washington. Photo Credit: (NASA/Paul E. Alers)

  6. Pediatric Psychosomatic Medicine: Creating a Template for Training

    PubMed Central

    Walker, Audrey; Pao, Maryland; Nguyen, Ngoc

    2012-01-01

    There is a critical public health problem in the United States today, the problem of childhood psychiatric disorders in youngsters with physical illnesses. Currently there is a pressing need for well-trained pediatric psychosomatic medicine practitioners as well as advanced training in the field. Yet, this training does not currently exist. This article will present the innovative Montefiore Medical Center/Albert Einstein College of Medicine (MMC/AECOM) program as a model for a training curriculum, clinical training experience, and clinical research training setting in this important and rapidly expanding area of need in pediatric mental health. PMID:22658325

  7. MAXIM: The Blackhole Imager

    NASA Technical Reports Server (NTRS)

    Gendreau, Keith; Cash, Webster; Gorenstein, Paul; Windt, David; Kaaret, Phil; Reynolds, Chris

    2004-01-01

    The Beyond Einstein Program in NASA's Office of Space Science Structure and Evolution of the Universe theme spells out the top level scientific requirements for a Black Hole Imager in its strategic plan. The MAXIM mission will provide better than one tenth of a microarcsecond imaging in the X-ray band in order to satisfy these requirements. We will overview the driving requirements to achieve these goals and ultimately resolve the event horizon of a supermassive black hole. We will present the current status of this effort that includes a study of a baseline design as well as two alternative approaches.

  8. X ray absorption by dark nebulae (HEAO-2 guest investigator program)

    NASA Technical Reports Server (NTRS)

    Sanders, W. T.

    1991-01-01

    A study is described of data obtained from the Imaging Proportional Counter (IPC) x ray detector aboard the HEAO-2 satellite (Einstein Observatory). The research project involved a search for absorption of diffuse low energy x ray background emission by galactic dark nebulae. The commonly accepted picture that the bulk of the C band emission originates locally, closer that a few hundred parsec, and the bulk of the M band emission originates farther away than a few hundred parsec, was tested. The idea was to look for evidence of absorption of the diffuse background radiation by nearby interstellar clouds.

  9. Watching Galaxy Evolution in High Definition

    NASA Technical Reports Server (NTRS)

    Rigby, Jane

    2011-01-01

    As Einstein predicted, mass deflects light. In hundreds of known cases, "gravitational lenses" have deflected, distorted, and amplified images of galaxies or quasars behind them. As such, gravitational lensing is a way to "cheat" at studying how galaxies evolve, because lensing can magnify galaxies by factors of 10--100 times, transforming them from objects we can barely detect to bright objects we can study in detail. I'll summarize new results from a comprehensive program, using multi-wavelength, high-quality spectroscopy, to study how galaxies formed stars at redshifts of 1--3, the epoch when most of the Universe's stars were formed.

  10. Watching Galaxy Evolution in High Definition

    NASA Technical Reports Server (NTRS)

    Rigby, Jane R.

    2012-01-01

    As Einstein predicted, mass deflects light. In hundreds of known cases, "gravitational lenses" have deflected, distorted, and amplified images of galaxies or quasars behind them. As such, gravitational lensing is a way to "cheat" at studying how galaxies evolve, because lensing can magnify galaxies by factors of 10-100 times, transforming them from objects we can barely detect to bright objects we can study in detail. I'll summarize new results from a comprehensive program, using multi-wavelength, high-quality spectroscopy, to study how galaxies formed stars at redshifts of 1-3, the epoch when most of the Universe's stars were formed.

  11. Einstein coefficients for rotational lines of the (0,0) band of the NO A2sigma(+)-X2Pi system

    NASA Technical Reports Server (NTRS)

    Reisel, John R.; Carter, Campbell D.; Laurendeau, Normand M.

    1992-01-01

    A summary of the spectroscopic equations necessary for prediction of the molecular transition energies and the Einstein A and B coefficients for rovibronic lines of the gamma(0,0) band of nitric oxide (NO) is presented. The calculated molecular transition energies are all within 0.57/cm of published experimental values; in addition, over 95 percent of the calculated energies give agreement with measured results within 0.25/cm. Einstein coefficients are calculated from the band A00 value and the known Hoenl-London factors and are tabulated for individual rovibronic transitions in the NO A2sigma(+)-X2Pi(0,0) band.

  12. Cosmological reconstruction and Om diagnostic analysis of Einstein-Aether theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pasqua, Antonio; Chattopadhyay, Surajit; Momeni, Davood

    In this paper, we analyze the cosmological models in Einstein-Aether gravity, which is a modified theory of gravity in which a time-like vector field breaks the Lorentz symmetry. We use this formalism to analyse different cosmological models with different behavior of the scale factor. In this analysis, we use a certain functional dependence of the Dark Energy (DE) on the Hubble parameter H . It will be demonstrated that the Aether vector field has a non-trivial effect on these cosmological models. We also perform the Om diagnostic in Einstein-Aether gravity and we fit the parameters of the cosmological models usingmore » recent observational data.« less

  13. Scalar field as a Bose-Einstein condensate?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Castellanos, Elías; Escamilla-Rivera, Celia; Macías, Alfredo

    We discuss the analogy between a classical scalar field with a self-interacting potential, in a curved spacetime described by a quasi-bounded state, and a trapped Bose-Einstein condensate. In this context, we compare the Klein-Gordon equation with the Gross-Pitaevskii equation. Moreover, the introduction of a curved background spacetime endows, in a natural way, an equivalence to the Gross-Pitaevskii equation with an explicit confinement potential. The curvature also induces a position dependent self-interaction parameter. We exploit this analogy by means of the Thomas-Fermi approximation, commonly used to describe the Bose-Einstein condensate, in order to analyze the quasi bound scalar field distribution surroundingmore » a black hole.« less

  14. Introduction

    NASA Astrophysics Data System (ADS)

    Bub, Jeffrey; Fuchs, Christopher A.

    The great debate between Einstein and Bohr on the interpretation of quantum mechanics culminated with the Einstein-Podolsky-Rosen (EPR) paper in 1935, "Can quantum-mechanical description of physical reality be considered complete?" (Einstein, Podolsky, & Rosen, 1935, and Bohr's reply, 1935). EPR showed that composite quantum systems, consisting of widely separated subsystems, could exist in certain quantum states that they thought spelled trouble for the Copenhagen interpretation. Specifically, they argued that for such states, the correlations between the outcomes of measurements on the subsystems were incompatible with the assumption that the quantum state was a complete description of the system. They concluded that quantum mechanics was an incomplete theory-that the quantum state could not be the whole story about a system.

  15. 5D Super Yang-Mills on Y p, q Sasaki-Einstein Manifolds

    NASA Astrophysics Data System (ADS)

    Qiu, Jian; Zabzine, Maxim

    2015-01-01

    On any simply connected Sasaki-Einstein five dimensional manifold one can construct a super Yang-Mills theory which preserves at least two supersymmetries. We study the special case of toric Sasaki-Einstein manifolds known as Y p, q manifolds. We use the localisation technique to compute the full perturbative part of the partition function. The full equivariant result is expressed in terms of a certain special function which appears to be a curious generalisation of the triple sine function. As an application of our general result we study the large N behaviour for the case of single hypermultiplet in adjoint representation and we derive the N 3-behaviour in this case.

  16. Thermodynamics of "exotic" Bañados-Teitelboim-Zanelli black holes.

    PubMed

    Townsend, Paul K; Zhang, Baocheng

    2013-06-14

    A number of three-dimensional (3D) gravity models, such as 3D conformal gravity, admit "exotic" black hole solutions: the metric is the same as the Bañados-Teitelboim-Zanelli metric of 3D Einstein gravity but with reversed roles for mass and angular momentum, and an entropy proportional to the length of the inner horizon instead of the event horizon. Here we show that the Bañados-Teitelboim-Zanelli solutions of the exotic 3D Einstein gravity (with parity-odd action but Einstein field equations) are exotic black holes, and we investigate their thermodynamics. The first and second laws of black hole thermodynamics still apply, and the entropy still has a statistical interpretation.

  17. [Albert Einstein and his abdominal aortic aneurysm].

    PubMed

    Cervantes Castro, Jorge

    2011-01-01

    The interesting case of Albert Einstein's abdominal aortic aneurysm is presented. He was operated on at age 69 and, finding that the large aneurysm could not be removed, the surgeon elected to wrap it with cellophane to prevent its growth. However, seven years later the aneurysm ruptured and caused the death of the famous scientist.

  18. The Gendering of Albert Einstein and Marie Curie in Children's Biographies: Some Tensions

    ERIC Educational Resources Information Center

    Wilson, Rachel E.; Jarrard, Amber R.; Tippins, Deborah J.

    2009-01-01

    Few twentieth century scientists have generated as much interest as Albert Einstein and Marie Currie. Their lives are centrally depicted in numerous children's biographies of famous scientists. Yet their stories reflect interesting paradoxes and tacit sets of unexplored sociocultural assumptions about gender in science education and the larger…

  19. Going to School with Madame Curie and Mr. Einstein: Gender Roles in Children's Science Biographies

    ERIC Educational Resources Information Center

    Owens, Trevor

    2009-01-01

    One of the first places children encounter science and scientists is children's literature. Children's books about science and scientists have, however, received limited scholarly attention. By exploring the history of children's biographies of Marie Curie and Albert Einstein, the two most written about scientist in children's literature, this…

  20. Static Solutions of Einstein's Equations with Cylindrical Symmetry

    ERIC Educational Resources Information Center

    Trendafilova, C. S.; Fulling, S. A.

    2011-01-01

    In analogy with the standard derivation of the Schwarzschild solution, we find all static, cylindrically symmetric solutions of the Einstein field equations for vacuum. These include not only the well-known cone solution, which is locally flat, but others in which the metric coefficients are powers of the radial coordinate and the spacetime is…

  1. The Einstein Suite: A Web-Based Tool for Rapid and Collaborative Engineering Design and Analysis

    NASA Technical Reports Server (NTRS)

    Palmer, Richard S.

    1997-01-01

    Taken together the components of the Einstein Suite provide two revolutionary capabilities - they have the potential to change the way engineering and financial engineering are performed by: (1) providing currently unavailable functionality, and (2) providing a 10-100 times improvement over currently available but impractical or costly functionality.

  2. Microwave and Millimeter Wave Magnetoelectric Interactions in Engineered Multiferroics and Dual Electric and Magnetic Field Tunable Devices

    DTIC Science & Technology

    2008-01-16

    Einstein condensation of quasi-equilibrium magnons at room temperature under pumping”, Nature 443, 430-433 (2006). 30. V.E.Demidov, U.-F. Hansen...and A.N. Slavin, “Bose-Einstein condensation of quasi-equilibrium magnons at room temperature under pumping”, Nature 443, 430-433 (2006). 34

  3. Gravitational red shift tests and a spectroscopy in Japan

    NASA Astrophysics Data System (ADS)

    Yokoo, Hiromitsu

    Japanese astronomers and physicians tried to test the Einstein theory by gravitational red shift tests at 1920's. Spectroscopists in Japan contributed to Stark broadening of spectrum lines. Rikiti Kinoshita (1877 - 1935) probably started experiments according to Voigt's prediction earlier than Stark. Tokyo Astronomical Observatory constructed and used another Einstein Tower in Mitaka.

  4. Killing Forms on the Five-Dimensional Einstein-Sasaki Y(p, q) Spaces

    NASA Astrophysics Data System (ADS)

    Visinescu, Mihai

    2012-12-01

    We present the complete set of Killing-Yano tensors on the five-dimensional Einstein-Sasaki Y(p, q) spaces. Two new Killing-Yano tensors are identified, associated with the complex volume form of the Calabi-Yau metric cone. The corresponding hidden symmetries are not anomalous and the geodesic equations are superintegrable.

  5. Einstein Slew Survey: Data analysis innovations

    NASA Technical Reports Server (NTRS)

    Elvis, Martin S.; Plummer, David; Schachter, Jonathan F.; Fabbiano, G.

    1992-01-01

    Several new methods were needed in order to make the Einstein Slew X-ray Sky Survey. The innovations which enabled the Slew Survey to be done are summarized. These methods included experimental approach to large projects, parallel processing on a LAN, percolation source detection, minimum action identifications, and rapid dissemination of the whole data base.

  6. Quantum Interactive Dualism: The Libet and Einstein-Podolsky-RosenCausal Anomalies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stapp, Henry P.

    2006-02-20

    The "free will" data of Benjamin Libet and the predictionsof quantum theory considered by Einstein, Podolsky,and Rosen, both posepuzzles within aconceptual framework that, simultaneously, is compatiblewith the theory of relativity and allows human subjects to freely choosehow they will act. The quantum theoretic resolutions of these puzzles aredescribed.

  7. Gravity Probe B: Examining Einstein's Spacetime with Gyroscopes. An Educator's Guide with Activities in Space Science.

    ERIC Educational Resources Information Center

    Range, Shannon K'doah; Mullins, Jennifer

    This teaching guide introduces a relativity gyroscope experiment aiming to test two unverified predictions of Albert Einstein's general theory of relativity. An introduction to the theory includes the following sections: (1) "Spacetime, Curved Spacetime, and Frame-Dragging"; (2) "'Seeing' Spacetime with Gyroscopes"; (3)…

  8. Albert Einstein and LD: An Evaluation of the Evidence.

    ERIC Educational Resources Information Center

    Thomas, Marlin

    2000-01-01

    This article refutes claims that Albert Einstein had a learning disability and argues the claim derives its force not from evidence but from belief that the greatest among us suffer from some impairment and from desire to enhance the status of a marginalized group by including exceptional individuals. (Contains references.) (Author/CR)

  9. Entropy density of an adiabatic relativistic Bose-Einstein condensate star

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khaidir, Ahmad Firdaus; Kassim, Hasan Abu; Yusof, Norhasliza

    Inspired by recent works, we investigate how the thermodynamics parameters (entropy, temperature, number density, energy density, etc) of Bose-Einstein Condensate star scale with the structure of the star. Below the critical temperature in which the condensation starts to occur, we study how the entropy behaves with varying temperature till it reaches its own stability against gravitational collapse and singularity. Compared to photon gases (pressure is described by radiation) where the chemical potential, μ is zero, entropy of photon gases obeys the Stefan-Boltzmann Law for a small values of T while forming a spiral structure for a large values of Tmore » due to general relativity. The entropy density of Bose-Einstein Condensate is obtained following the similar sequence but limited under critical temperature condition. We adopt the scalar field equation of state in Thomas-Fermi limit to study the characteristics of relativistic Bose-Einstein condensate under varying temperature and entropy. Finally, we obtain the entropy density proportional to (σT{sup 3}-3T) which obeys the Stefan-Boltzmann Law in ultra-relativistic condition.« less

  10. Explicit formulae for Yang-Mills-Einstein amplitudes from the double copy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiodaroli, Marco; Günaydin, Murat; Johansson, Henrik

    Using the double-copy construction of Yang-Mills-Einstein theories formulated in our earlier work, we obtain compact presentations for single-trace Yang-Mills-Einstein tree amplitudes with up to five external gravitons and an arbitrary number of gluons. These are written as linear combinations of color-ordered Yang-Mills trees, where the coefficients are given by color/kinematics-satisfying numerators in a Yang-Mills + φ 3 theory. The construction outlined in this paper holds in general dimension and extends straightforwardly to supergravity theories. For one, two, and three external gravitons, our expressions give identical or simpler presentations of amplitudes already constructed through string-theory considerations or the scattering equations formalism.more » Our results are based on color/kinematics duality and gauge invariance, and strongly hint at a recursive structure underlying the single-trace amplitudes with an arbitrary number of gravitons. We also present explicit expressions for all-loop single-graviton Einstein-Yang-Mills amplitudes in terms of Yang-Mills amplitudes and, through gauge invariance, derive new all-loop amplitude relations for Yang-Mills theory.« less

  11. Bounce universe from string-inspired Gauss-Bonnet gravity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bamba, Kazuharu; Makarenko, Andrey N.; Myagky, Alexandr N.

    2015-04-01

    We explore cosmology with a bounce in Gauss-Bonnet gravity where the Gauss-Bonnet invariant couples to a dynamical scalar field. In particular, the potential and and Gauss-Bonnet coupling function of the scalar field are reconstructed so that the cosmological bounce can be realized in the case that the scale factor has hyperbolic and exponential forms. Furthermore, we examine the relation between the bounce in the string (Jordan) and Einstein frames by using the conformal transformation between these conformal frames. It is shown that in general, the property of the bounce point in the string frame changes after the frame is movedmore » to the Einstein frame. Moreover, it is found that at the point in the Einstein frame corresponding to the point of the cosmological bounce in the string frame, the second derivative of the scale factor has an extreme value. In addition, it is demonstrated that at the time of the cosmological bounce in the Einstein frame, there is the Gauss-Bonnet coupling function of the scalar field, although it does not exist in the string frame.« less

  12. Focus: the elusive icon: Einstein, 1905-2005. Introduction.

    PubMed

    Galison, Peter

    2004-12-01

    As Einstein's portrait comes increasingly to resemble an icon, we lose more than detail--his writings and actions lose all reference. This is as true for his physics as it is for his philosophy and his politics; the best of recent work aims to remove Einstein's interventions from the abstract sphere of Delphic pronouncements and to insert them in the stream of real events, real arguments. Politically, this means attending to McCarthyism, Paul Robeson, the Arab-Israeli conflict. Philosophically, it means tying his concerns, for example, to late nineteenth-century neo-Kantian debates and to his own struggles inside science. And where physics is concerned, it means attending both in the narrow to his responses to others' work and his reactions to his own sometimes misfired early work on, for example, general relativity and to the wider context of technological developments. Einstein remains and will remain a magnet for historians, philosophers, and scientists; the essays assembled here represent a strong sampling--but only a sampling--of a fascinating new generation of work on this perennial figure.

  13. Einstein Revisited - Gravity in Curved Spacetime Without Event Horizons

    NASA Astrophysics Data System (ADS)

    Leiter, Darryl

    2000-04-01

    In terms of covariant derivatives with respect to flat background spacetimes upon which the physical curved spacetime is imposed (1), covariant conservation of energy momentum requires, via the Bianchi Identity, that the Einstein tensor be equated to the matter energy momentum tensor. However the Einstein tensor covariantly splits (2) into two tensor parts: (a) a term proportional to the gravitational stress energy momentum tensor, and (b) an anti-symmetric tensor which obeys a covariant 4-divergence identity called the Freud Identity. Hence covariant conservation of energy momentum requires, via the Freud Identity, that the Freud tensor be equal to a constant times the matter energy momentum tensor. The resultant field equations (3) agree with the Einstein equations to first order, but differ in higher orders (4) such that black holes are replaced by "red holes" i.e., dense objects collapsed inside of their photon orbits with no event horizons. (1) Rosen, N., (1963), Ann. Phys. v22, 1; (2) Rund, H., (1991), Alg. Grps. & Geom. v8, 267; (3) Yilmaz, Hl, (1992), Nuo. Cim. v107B, 946; (4) Roberstson, S., (1999),Ap.J. v515, 365.

  14. Dynamical preparation of Einstein-Podolsky-Rosen entanglement in two-well Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Opanchuk, B.; He, Q. Y.; Reid, M. D.; Drummond, P. D.

    2012-08-01

    We propose to generate Einstein-Podolsky-Rosen (EPR) entanglement between groups of atoms in a two-well Bose-Einstein condensate using a dynamical process similar to that employed in quantum optics. A local nonlinear S-wave scattering interaction has the effect of creating spin squeezing at each well, while a tunneling coupling, analogous to a beam splitter in optics, introduces an interference between these fields that causes interwell entanglement. We consider two internal modes at each well so that the entanglement can be detected by measuring a reduction in the variances of the sums of local Schwinger spin observables. As is typical of continuous variable (CV) entanglement, the entanglement is predicted to increase with atom number. It becomes sufficiently strong at higher numbers of atoms so that the EPR paradox and steering nonlocality can be realized. The entanglement is predicted using an analytical approach and, for larger atom numbers, using stochastic simulations based on a truncated Wigner function approximation. We find generally that strong tunneling is favorable, and that entanglement persists and is even enhanced in the presence of realistic nonlinear losses.

  15. Exact solutions with AdS asymptotics of Einstein and Einstein-Maxwell gravity minimally coupled to a scalar field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cadoni, Mariano; Serra, Matteo; Mignemi, Salvatore

    We propose a general method for solving exactly the static field equations of Einstein and Einstein-Maxwell gravity minimally coupled to a scalar field. Our method starts from an ansatz for the scalar field profile, and determines, together with the metric functions, the corresponding form of the scalar self-interaction potential. Using this method we prove a new no-hair theorem about the existence of hairy black-hole and black-brane solutions and derive broad classes of static solutions with radial symmetry of the theory, which may play an important role in applications of the AdS/CFT correspondence to condensed matter and strongly coupled QFTs. Thesemore » solutions include: (1) four- or generic (d+2)-dimensional solutions with planar, spherical or hyperbolic horizon topology; (2) solutions with anti-de Sitter, domain wall and Lifshitz asymptotics; (3) solutions interpolating between an anti-de Sitter spacetime in the asymptotic region and a domain wall or conformal Lifshitz spacetime in the near-horizon region.« less

  16. Explicit formulae for Yang-Mills-Einstein amplitudes from the double copy

    DOE PAGES

    Chiodaroli, Marco; Günaydin, Murat; Johansson, Henrik; ...

    2017-07-03

    Using the double-copy construction of Yang-Mills-Einstein theories formulated in our earlier work, we obtain compact presentations for single-trace Yang-Mills-Einstein tree amplitudes with up to five external gravitons and an arbitrary number of gluons. These are written as linear combinations of color-ordered Yang-Mills trees, where the coefficients are given by color/kinematics-satisfying numerators in a Yang-Mills + φ 3 theory. The construction outlined in this paper holds in general dimension and extends straightforwardly to supergravity theories. For one, two, and three external gravitons, our expressions give identical or simpler presentations of amplitudes already constructed through string-theory considerations or the scattering equations formalism.more » Our results are based on color/kinematics duality and gauge invariance, and strongly hint at a recursive structure underlying the single-trace amplitudes with an arbitrary number of gravitons. We also present explicit expressions for all-loop single-graviton Einstein-Yang-Mills amplitudes in terms of Yang-Mills amplitudes and, through gauge invariance, derive new all-loop amplitude relations for Yang-Mills theory.« less

  17. Remarks on the "Non-canonicity Puzzle": Lagrangian Symmetries of the Einstein-Hilbert Action

    NASA Astrophysics Data System (ADS)

    Kiriushcheva, N.; Komorowski, P. G.; Kuzmin, S. V.

    2012-07-01

    Given the non-canonical relationship between variables used in the Hamiltonian formulations of the Einstein-Hilbert action (due to Pirani, Schild, Skinner (PSS) and Dirac) and the Arnowitt-Deser-Misner (ADM) action, and the consequent difference in the gauge transformations generated by the first-class constraints of these two formulations, the assumption that the Lagrangians from which they were derived are equivalent leads to an apparent contradiction that has been called "the non-canonicity puzzle". In this work we shall investigate the group properties of two symmetries derived for the Einstein-Hilbert action: diffeomorphism, which follows from the PSS and Dirac formulations, and the one that arises from the ADM formulation. We demonstrate that unlike the diffeomorphism transformations, the ADM transformations (as well as others, which can be constructed for the Einstein-Hilbert Lagrangian using Noether's identities) do not form a group. This makes diffeomorphism transformations unique (the term "canonical" symmetry might be suggested). If the two Lagrangians are to be called equivalent, canonical symmetry must be preserved. The interplay between general covariance and the canonicity of the variables used is discussed.

  18. Focus: The elusive icon: Einstein, 1905-2005 - Introduction

    NASA Astrophysics Data System (ADS)

    Galison, Peter

    2004-12-01

    As Einstein's portrait comes increasingly to resemble an icon, we lose more than detail - his writings and actions lose all reference. This is as true for his physics as it is for his philosophy and his politics; the best of recent work aims to remove Einstein's interventions from the abstract sphere of Delphic pronouncements and to insert them in the stream of real events, real arguments. Politically, this means attending to McCarthyism, Paul Robeson, the Arab-Israeli conflict. Philosophically, it means tying his concerns, for example, to late nineteenth-century neo-Kantian debates and to his own struggles inside science. And where physics is concerned, it means attending both in the narrow to his reponses to others' work and his reactions to this own sometimes misfired early work on, for example, general relativity and to the wider context of technological developments. Einstein remains and will remain a magnet for historians, philosophers, and scientists; the essays assembled here represent a strong sampling - but only a sampling - of a fascinating new generation of work on this perennial figure.

  19. Bose-Einstein condensation of paraxial light

    NASA Astrophysics Data System (ADS)

    Klaers, J.; Schmitt, J.; Damm, T.; Vewinger, F.; Weitz, M.

    2011-10-01

    Photons, due to the virtually vanishing photon-photon interaction, constitute to very good approximation an ideal Bose gas, but owing to the vanishing chemical potential a (free) photon gas does not show Bose-Einstein condensation. However, this is not necessarily true for a lower-dimensional photon gas. By means of a fluorescence induced thermalization process in an optical microcavity one can achieve a thermal photon gas with freely adjustable chemical potential. Experimentally, we have observed thermalization and subsequently Bose-Einstein condensation of the photon gas at room temperature. In this paper, we give a detailed description of the experiment, which is based on a dye-filled optical microcavity, acting as a white-wall box for photons. Thermalization is achieved in a photon number-conserving way by photon scattering off the dye molecules, and the cavity mirrors both provide an effective photon mass and a confining potential-key prerequisites for the Bose-Einstein condensation of photons. The experimental results are in good agreement with both a statistical and a simple rate equation model, describing the properties of the thermalized photon gas.

  20. Einstein girls: Exploring STEM careers, interest, and identity in an online mentoring community

    NASA Astrophysics Data System (ADS)

    Scott, Jill Rice

    The purpose of this project was to create and study an online mentoring community that connected fifth and sixth grade girls and female STEM mentors. The project was designed to give girls who were interested in science the chance to communicate online with women who were successful STEM professionals. The community provided the girls a venue to ask the women questions about their careers, their interests, and their science identities. Through this venue the girls were able to explore various STEM careers, be exposed to role models, and potentially increase their interest in science for the future. Mentoring has been shown to have a positive impact on girls and help improve their attitudes toward science and interests in STEM. The project examined the nature of the online mentoring process as well as the participants' perceptions of the opportunities and constraints of the community. The girls were members of an afterschool academy and the mentoring took place through the Internet using a secure educational social networking program. The program spanned a four-week period between April and May 2013. The main purpose of this study was formative since online mentoring is a relatively new area of research. This investigation produced detailed accounts of activities between the girls and the mentors. Findings revealed that the participants approached the community uniquely and explored many aspects of career exploration, STEM interest, and science identity. The participants also identified what they perceived as the opportunities afforded by the community as well as the constraints posed by the community. The research represented by this study was practitioner research with the work connecting theory with practice. The knowledge gained through the intentional reflection on and study of the Einstein Girls online mentoring community was useful in the production of knowledge that is transformative for the researcher's professional practice and transferable to other settings. The results of this study are most applicable to online mentoring programs with similar contexts and demographics, but are also applicable to other online mentoring communities. Findings from this study have direct implications in the design and operation of future online mentoring programs.

  1. Effective temperatures and the breakdown of the Stokes-Einstein relation for particle suspensions.

    PubMed

    Mendoza, Carlos I; Santamaría-Holek, I; Pérez-Madrid, A

    2015-09-14

    The short- and long-time breakdown of the classical Stokes-Einstein relation for colloidal suspensions at arbitrary volume fractions is explained here by examining the role that confinement and attractive interactions play in the intra- and inter-cage dynamics executed by the colloidal particles. We show that the measured short-time diffusion coefficient is larger than the one predicted by the classical Stokes-Einstein relation due to a non-equilibrated energy transfer between kinetic and configuration degrees of freedom. This transfer can be incorporated in an effective kinetic temperature that is higher than the temperature of the heat bath. We propose a Generalized Stokes-Einstein relation (GSER) in which the effective temperature replaces the temperature of the heat bath. This relation then allows to obtain the diffusion coefficient once the viscosity and the effective temperature are known. On the other hand, the temporary cluster formation induced by confinement and attractive interactions of hydrodynamic nature makes the long-time diffusion coefficient to be smaller than the corresponding one obtained from the classical Stokes-Einstein relation. Then, the use of the GSER allows to obtain an effective temperature that is smaller than the temperature of the heat bath. Additionally, we provide a simple expression based on a differential effective medium theory that allows to calculate the diffusion coefficient at short and long times. Comparison of our results with experiments and simulations for suspensions of hard and porous spheres shows an excellent agreement in all cases.

  2. Quasi-topological Ricci polynomial gravities

    NASA Astrophysics Data System (ADS)

    Li, Yue-Zhou; Liu, Hai-Shan; Lü, H.

    2018-02-01

    Quasi-topological terms in gravity can be viewed as those that give no contribution to the equations of motion for a special subclass of metric ansätze. They therefore play no rôle in constructing these solutions, but can affect the general perturbations. We consider Einstein gravity extended with Ricci tensor polynomial invariants, which admits Einstein metrics with appropriate effective cosmological constants as its vacuum solutions. We construct three types of quasi-topological gravities. The first type is for the most general static metrics with spherical, toroidal or hyperbolic isometries. The second type is for the special static metrics where g tt g rr is constant. The third type is the linearized quasitopological gravities on the Einstein metrics. We construct and classify results that are either dependent on or independent of dimensions, up to the tenth order. We then consider a subset of these three types and obtain Lovelock-like quasi-topological gravities, that are independent of the dimensions. The linearized gravities on Einstein metrics on all dimensions are simply Einstein and hence ghost free. The theories become quasi-topological on static metrics in one specific dimension, but non-trivial in others. We also focus on the quasi-topological Ricci cubic invariant in four dimensions as a specific example to study its effect on holography, including shear viscosity, thermoelectric DC conductivities and butterfly velocity. In particular, we find that the holographic diffusivity bounds can be violated by the quasi-topological terms, which can induce an extra massive mode that yields a butterfly velocity unbound above.

  3. Cooling Flow Spectra in Ginga Galaxy Clusters

    NASA Technical Reports Server (NTRS)

    White, Raymond E., III

    1997-01-01

    The primary focus of this research project has been a joint analysis of Ginga LAC and Einstein SSS X-ray spectra of the hot gas in galaxy clusters with cooling flows is reported. We studied four clusters (A496, A1795, A2142 & A2199) and found their central temperatures to be cooler than in the exterior, which is expected from their having cooling flows. More interestingly, we found central metal abundance enhancements in two of the clusters, A496 and A2142. We have been assessing whether the abundance gradients (or lack thereof) in intracluster gas is correlated with galaxy morphological gradients in the host clusters. In rich, dense galaxy clusters, elliptical and SO galaxies are generally found in the cluster cores, while spiral galaxies are found in the outskirts. If the metals observed in clusters came from proto-ellipticals and proto-S0s blowing winds, then the metal distribution in intracluster gas may still reflect the distribution of their former host galaxies. In a research project which was inspired by the success of the Ginga LAC/Einstein SSS work, we analyzed X-ray spectra from the HEAO-A2 MED and the Einstein SSS to look for temperature gradients in cluster gas. The HEAO-A2 MED was also a non-imaging detector with a large field of view compared to the SSS, so we used the differing fields of view of the two instruments to extract spatial information. We found some evidence of cool gas in the outskirts of clusters, which may indicate that the nominally isothermal mass density distributions in these clusters are steepening in the outer parts of these clusters.

  4. Black hole nonmodal linear stability under odd perturbations: The Reissner-Nordström case

    NASA Astrophysics Data System (ADS)

    Fernández Tío, Julián M.; Dotti, Gustavo

    2017-06-01

    Following a program on black hole nonmodal linear stability initiated by one of the authors [Phys. Rev. Lett. 112, 191101 (2014), 10.1103/PhysRevLett.112.191101], we study odd linear perturbations of the Einstein-Maxwell equations around a Reissner-Nordström anti-de Sitter black hole. We show that all the gauge invariant information in the metric and Maxwell field perturbations is encoded in the spacetime scalars F =δ (Fαβ *Fα β) and Q =δ (1/48 Cαβ γ δ *Cα β γ δ), where Cα β γ δ is the Weyl tensor, Fα β is the Maxwell field, a star denotes Hodge dual, and δ means first order variation, and that the linearized Einstein-Maxwell equations are equivalent to a coupled system of wave equations for F and Q . For a non-negative cosmological constant we prove that F and Q are pointwise bounded on the outer static region. The fields are shown to diverge as the Cauchy horizon is approached from the inner dynamical region, providing evidence supporting strong cosmic censorship. In the asymptotically anti-de Sitter case the dynamics depends on the boundary condition at the conformal timelike boundary, and there are instabilities if Robin boundary conditions are chosen.

  5. Many body effects in a widely tunable Bose-Fermi mixture

    NASA Astrophysics Data System (ADS)

    Ahamdi, Peyman; Wu, Cheng-Hsun; Santiago, Ibon; Park, Jee Woo; Zwierlein, Martin

    2011-05-01

    A Bose-Einstein condensate immersed in the Fermi sea provides a rich platform for the study of many body effects such as polaron physics, boson-induced superfluidity and models of high-tc superconductivity. Few bosonic impurities in a Fermi sea form bosonic polarons, dressed quasi-particles that can condense, while few fermionic impurities in a Bose condensate might dress into heavy fermions with an immense increase of the effective mass. In an atom trap, both extremes of boson-fermion imbalance can in principle be realized in one and the same sample. Recently we have realized a Bose Einstein condensate of 41K immersed in a Fermi sea of 40K at T /TF = 0.3 and detected a wide Feshbach resonance between them. The mixture's lifetime is long enough so that bosonic polarons should form at an expected binding energy of about 0.6 TF. In this talk I will summarize our observations and the progress we have made to detect polaron physics in Bose-Fermi mixtures. This work was supported by the NSF, AFOSR-MURI, AFOSR-YIP, ARO-MURI, a grant from the Army Research Office with funding from the DARPA OLE program, the David and Lucille Packard Foundation and the Alfred P. Sloan Foundation.

  6. Artist's Rendering of Multiple Whirlpools in a Sodium Gas Cloud

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This image depicts the formation of multiple whirlpools in a sodium gas cloud. Scientists who cooled the cloud and made it spin created the whirlpools in a Massachusetts Institute of Technology laboratory, as part of NASA-funded research. This process is similar to a phenomenon called starquakes that appear as glitches in the rotation of pulsars in space. MIT's Wolgang Ketterle and his colleagues, who conducted the research under a grant from the Biological and Physical Research Program through NASA's Jet Propulsion Laboratory, Pasadena, Calif., cooled the sodium gas to less than one millionth of a degree above absolute zero (-273 Celsius or -460 Fahrenheit). At such extreme cold, the gas cloud converts to a peculiar form of matter called Bose-Einstein condensate, as predicted by Albert Einstein and Satyendra Bose of India in 1927. No physical container can hold such ultra-cold matter, so Ketterle's team used magnets to keep the cloud in place. They then used a laser beam to make the gas cloud spin, a process Ketterle compares to stroking a ping-pong ball with a feather until it starts spirning. The spinning sodium gas cloud, whose volume was one- millionth of a cubic centimeter, much smaller than a raindrop, developed a regular pattern of more than 100 whirlpools.

  7. Einstein-Podolsky-Rosen correlations and Bell correlations in the simplest scenario

    NASA Astrophysics Data System (ADS)

    Quan, Quan; Zhu, Huangjun; Fan, Heng; Yang, Wen-Li

    2017-06-01

    Einstein-Podolsky-Rosen (EPR) steering is an intermediate type of quantum nonlocality which sits between entanglement and Bell nonlocality. A set of correlations is Bell nonlocal if it does not admit a local hidden variable (LHV) model, while it is EPR nonlocal if it does not admit a local hidden variable-local hidden state (LHV-LHS) model. It is interesting to know what states can generate EPR-nonlocal correlations in the simplest nontrivial scenario, that is, two projective measurements for each party sharing a two-qubit state. Here we show that a two-qubit state can generate EPR-nonlocal full correlations (excluding marginal statistics) in this scenario if and only if it can generate Bell-nonlocal correlations. If full statistics (including marginal statistics) is taken into account, surprisingly, the same scenario can manifest the simplest one-way steering and the strongest hierarchy between steering and Bell nonlocality. To illustrate these intriguing phenomena in simple setups, several concrete examples are discussed in detail, which facilitates experimental demonstration. In the course of study, we introduce the concept of restricted LHS models and thereby derive a necessary and sufficient semidefinite-programming criterion to determine the steerability of any bipartite state under given measurements. Analytical criteria are further derived in several scenarios of strong theoretical and experimental interest.

  8. Excess Noise Depletion of a Bose-Einstein Condensate in an Optical Cavity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szirmai, G.; Nagy, D.; Domokos, P.

    2009-02-27

    Quantum fluctuations of a cavity field coupled into the motion of ultracold bosons can be strongly amplified by a mechanism analogous to the Petermann excess noise factor in lasers with unstable cavities. For a Bose-Einstein condensate in a stable optical resonator, the excess noise effect amounts to a significant depletion on long time scales.

  9. Examining the Enigmatic Einstein

    ERIC Educational Resources Information Center

    Khoon, Koh Aik

    2007-01-01

    Albert Einstein is the icon of scientific genius. His is one the most recognizable faces in the history of mankind. This paper takes a cursory look at the man who is commonly perceived to be the epitome of eccentricity. We manage to sum up his salient traits which are associated with his name. The traits are based on anecdotal evidence. This…

  10. A Riddle about the World Year of Physics

    ERIC Educational Resources Information Center

    Chang, Wheijen

    2004-01-01

    In order to propogate information on the World Year of Physics (WYP) and to promote students' appreciation of the significance of this event, the author devised a riddle about Einstein and implemented it at two high schools in Taiwan, with 95 students which were mainly based on Einstein's publications in 1905. During the game 81% of the students…

  11. Little Bayesians or Little Einsteins? Probability and Explanatory Virtue in Children's Inferences

    ERIC Educational Resources Information Center

    Johnston, Angie M.; Johnson, Samuel G. B.; Koven, Marissa L.; Keil, Frank C.

    2017-01-01

    Like scientists, children seek ways to explain causal systems in the world. But are children scientists in the strict Bayesian tradition of maximizing posterior probability? Or do they attend to other explanatory considerations, as laypeople and scientists--such as Einstein--do? Four experiments support the latter possibility. In particular, we…

  12. The Light-Velocity Postulate: The Essential Difference between the Theories of Lorentz-Poincare and Einstein

    ERIC Educational Resources Information Center

    Abiko, Seiya

    2005-01-01

    Einstein, who had already developed the light-quantum theory, knew the inadequacy of Maxwell's theory in the microscopic sphere. Therefore, in writing his paper on special relativity, he had to set up the light-velocity postulate independently of the relativity postulate in order to make the electromagnetic foundation of physics compatible with…

  13. The Creative Power of Formal Analogies in Physics: The Case of Albert Einstein

    ERIC Educational Resources Information Center

    Gingras, Yves

    2015-01-01

    In order to show how formal analogies between different physical systems play an important conceptual work in physics, this paper analyzes the evolution of Einstein's thoughts on the structure of radiation from the point of view of the formal analogies he used as "lenses" to "see" through the "black box" of Planck's…

  14. Soliton resonance in bose-einstein condensate

    NASA Technical Reports Server (NTRS)

    Zak, Michail; Kulikov, I.

    2002-01-01

    A new phenomenon in nonlinear dispersive systems, including a Bose-Einstein Condensate (BEC), has been described. It is based upon a resonance between an externally induced soliton and 'eigen-solitons' of the homogeneous cubic Schrodinger equation. There have been shown that a moving source of positive /negative potential induces bright /dark solitons in an attractive / repulsive Bose condensate.

  15. How Einstein Discovered "E[subscript 0] = mc[squared]"

    ERIC Educational Resources Information Center

    Hecht, Eugene

    2012-01-01

    This paper traces Einstein's discovery of "the equivalence of mass [m] and energy ["E[subscript 0]"]." He came to that splendid insight in 1905 while employed by the Bern Patent Office, at which time he was not an especially ardent reader of physics journals. How then did the young savant, working outside of academia in semi-isolation, realize…

  16. Einstein versus the Simple Pendulum Formula: Does Gravity Slow All Clocks?

    ERIC Educational Resources Information Center

    Puri, Avinash

    2015-01-01

    According to the Newtonian formula for a simple pendulum, the period of a pendulum is inversely proportional to the square root of "g", the gravitational field strength. Einstein's theory of general relativity leads to the result that time slows down where gravity is intense. The two claims look contradictory and can muddle student and…

  17. Bell's Theorem and Einstein's "Spooky Actions" from a Simple Thought Experiment

    ERIC Educational Resources Information Center

    Kuttner, Fred; Rosenblum, Bruce

    2010-01-01

    In 1964 John Bell proved a theorem allowing the experimental test of whether what Einstein derided as "spooky actions at a distance" actually exist. We will see that they "do". Bell's theorem can be displayed with a simple, nonmathematical thought experiment suitable for a physics course at "any" level. And a simple, semi-classical derivation of…

  18. Qubit Residence Time Measurements with a Bose-Einstein Condensate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sokolovski, D.

    2009-06-12

    We show that an electrostatic qubit located near a Bose-Einstein condensate trapped in a symmetric double-well potential can be used to measure the duration the qubit has spent in one of its quantum states. The strong, medium, and weak measurement regimes are analyzed. The analogy between the residence and the traversal (tunnelling) times is highlighted.

  19. Equivalence principles and electromagnetism

    NASA Technical Reports Server (NTRS)

    Ni, W.-T.

    1977-01-01

    The implications of the weak equivalence principles are investigated in detail for electromagnetic systems in a general framework. In particular, it is shown that the universality of free-fall trajectories (Galileo weak equivalence principle) does not imply the validity of the Einstein equivalence principle. However, the Galileo principle plus the universality of free-fall rotation states does imply the Einstein principle.

  20. Time symmetry breaking in Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Mendonça, J. T.; Gammal, A.

    2017-09-01

    We consider different processes leading to time symmetry breaking in a Bose-Einstein condensate. Our approach provides a global description of time symmetry breaking, based on the equations of a thermal condensate. This includes quenching and expansion of the condensate, the Kibble-Zurek mechanism associated with the creation of vorticity, the dynamical Casimir effect and the formation of time crystals.

  1. R&D Nuggets

    Science.gov Websites

    Origin of the Chemical Elements and Their Discoveries [added 1/2007] National Laboratories and Other to the content of DOE R&D Accomplishments. Celebrating Einstein - series of articles about Albert Einstein and his work [added 3/2005] Compact Portable Electric Power Sources [added 1/2007] History of the

  2. Nonminimal Einstein-Yang-Mills-Higgs theory: Associated, color, and color-acoustic metrics for the Wu-Yang monopole model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balakin, A. B.; Zayats, A. E.; Dehnen, H.

    2007-12-15

    We discuss a nonminimal Einstein-Yang-Mills-Higgs model with uniaxial anisotropy in the group space associated with the Higgs field. We apply this theory to the problem of propagation of color and color-acoustic waves in the gravitational background related to the nonminimal regular Wu-Yang monopole.

  3. Productive Learning: Science, Art, and Einstein's Relativity in Educational Reform

    ERIC Educational Resources Information Center

    Glazek, Stanislaw D.; Sarason, Seymour B.

    2006-01-01

    Why do people, college-bound or even in college, stay away in droves from courses in science, especially physics? Why do people know so little about the significance of Einstein's contributions which require dramatic changes in how we understand ourselves, our world, and the entire universe? Why have educational reforms failed? In this book, two…

  4. Albert Einstein: Radical Pacifist and Democrat

    NASA Astrophysics Data System (ADS)

    Jayaraman, T.

    We draw attention here to the radical political grounding of Einstein's pacifism. We also drescribe some less commonly known aspects of his commitment to civil liberties, particularly in the context of the anti-l hysteria and anti-racism current in the United States of the late 1940s and 1950s. We also examine briefly his views on socialism.

  5. Spatially covariant theories of gravity: disformal transformation, cosmological perturbations and the Einstein frame

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujita, Tomohiro; Gao, Xian; Yokoyama, Jun'ichi, E-mail: tomofuji@stanford.edu, E-mail: gao@th.phys.titech.ac.jp, E-mail: yokoyama@resceu.s.u-tokyo.ac.jp

    We investigate the cosmological background evolution and perturbations in a general class of spatially covariant theories of gravity, which propagates two tensor modes and one scalar mode. We show that the structure of the theory is preserved under the disformal transformation. We also evaluate the primordial spectra for both the gravitational waves and the curvature perturbation, which are invariant under the disformal transformation. Due to the existence of higher spatial derivatives, the quadratic Lagrangian for the tensor modes itself cannot be transformed to the form in the Einstein frame. Nevertheless, there exists a one-parameter family of frames in which themore » spectrum of the gravitational waves takes the standard form in the Einstein frame.« less

  6. Transition from fractional to classical Stokes-Einstein behaviour in simple fluids.

    PubMed

    Coglitore, Diego; Edwardson, Stuart P; Macko, Peter; Patterson, Eann A; Whelan, Maurice

    2017-12-01

    An optical technique for tracking single particles has been used to evaluate the particle diameter at which diffusion transitions from molecular behaviour described by the fractional Stokes-Einstein relationship to particle behaviour described by the classical Stokes-Einstein relationship. The results confirm a prior prediction from molecular dynamic simulations that there is a particle size at which transition occurs and show it is inversely dependent on concentration and viscosity but independent of particle density. For concentrations in the range 5 × 10 -3 to 5 × 10 -6  mg ml -1 and viscosities from 0.8 to 150 mPa s, the transition was found to occur in the diameter range 150-300 nm.

  7. Transformations between Jordan and Einstein frames: Bounces, antigravity, and crossing singularities

    NASA Astrophysics Data System (ADS)

    Kamenshchik, Alexander Yu.; Pozdeeva, Ekaterina O.; Vernov, Sergey Yu.; Tronconi, Alessandro; Venturi, Giovanni

    2016-09-01

    We study the relation between the Jordan-Einstein frame transition and the possible description of the crossing of singularities in flat Friedmann universes, using the fact that the regular evolution in one frame can correspond to crossing singularities in the other frame. We show that some interesting effects arise in simple models such as one with a massless scalar field or another wherein the potential is constant in the Einstein frame. The dynamics in these models and in their conformally coupled counterparts are described in detail, and a method for the continuation of such cosmological evolutions beyond the singularity is developed. We compare our approach with some other, recently developed, approaches to the problem of the crossing of singularities.

  8. Einstein contra Aristotle: The sound from the heavens

    NASA Astrophysics Data System (ADS)

    Neves, J. C. S.

    2017-09-01

    In "On the Heavens" Aristotle criticizes the Pythagorean point of view which claims the existence of a cosmic music and a cosmic sound. According to the Pythagorean argument, there exists a cosmic music produced by stars and planets. These celestial bodies generate sound in its movements, and the music appears due to the cosmic harmony. For Aristotle, there is no sound produced by celestial bodies. Then, there is no music as well. However, recently, LIGO (Laser Interferometer Gravitational-Waves Observatory) has detected the gravitational waves predicted by Einstein. In some sense, a sound originated from black holes has been heard. That is, Einstein or the General Relativity and LIGO appear to be with the Pythagoreanism and against the master of the Lyceum.

  9. Particlelike solutions of the Einstein-Dirac equations

    NASA Astrophysics Data System (ADS)

    Finster, Felix; Smoller, Joel; Yau, Shing-Tung

    1999-05-01

    The coupled Einstein-Dirac equations for a static, spherically symmetric system of two fermions in a singlet spinor state are derived. Using numerical methods, we construct an infinite number of solitonlike solutions of these equations. The stability of the solutions is analyzed. For weak coupling (i.e., small rest mass of the fermions), all the solutions are linearly stable (with respect to spherically symmetric perturbations), whereas for stronger coupling, both stable and unstable solutions exist. For the physical interpretation, we discuss how the energy of the fermions and the (ADM) mass behave as functions of the rest mass of the fermions. Although gravitation is not renormalizable, our solutions of the Einstein-Dirac equations are regular and well behaved even for strong coupling.

  10. Quintessence background for 5D Einstein-Gauss-Bonnet black holes

    NASA Astrophysics Data System (ADS)

    Ghosh, Sushant G.; Amir, Muhammed; Maharaj, Sunil D.

    2017-08-01

    As we know that the Lovelock theory is an extension of the general relativity to the higher-dimensions, in this theory the first- and the second-order terms correspond to general relativity and the Einstein-Gauss-Bonnet gravity, respectively. We obtain a 5D black hole solution in Einstein-Gauss-Bonnet gravity surrounded by the quintessence matter, and we also analyze their thermodynamical properties. Owing to the quintessence corrected black hole, the thermodynamic quantities have also been corrected except for the black hole entropy, and a phase transition is achievable. The phase transition for the thermodynamic stability is characterized by a discontinuity in the specific heat at r=r_C, with the stable (unstable) branch for r < (>) r_C.

  11. Stability of Einstein static universe in gravity theory with a non-minimal derivative coupling

    NASA Astrophysics Data System (ADS)

    Huang, Qihong; Wu, Puxun; Yu, Hongwei

    2018-01-01

    The emergent mechanism provides a possible way to resolve the big-bang singularity problem by assuming that our universe originates from the Einstein static (ES) state. Thus, the existence of a stable ES solution becomes a very crucial prerequisite for the emergent scenario. In this paper, we study the stability of an ES universe in gravity theory with a non-minimal coupling between the kinetic term of a scalar field and the Einstein tensor. We find that the ES solution is stable under both scalar and tensor perturbations when the model parameters satisfy certain conditions, which indicates that the big-bang singularity can be avoided successfully by the emergent mechanism in the non-minimally kinetic coupled gravity.

  12. Cost of Einstein-Podolsky-Rosen steering in the context of extremal boxes

    NASA Astrophysics Data System (ADS)

    Das, Debarshi; Datta, Shounak; Jebaratnam, C.; Majumdar, A. S.

    2018-02-01

    Einstein-Podolsky-Rosen steering is a form of quantum nonlocality, which is weaker than Bell nonlocality, but stronger than entanglement. Here we present a method to check Einstein-Podolsky-Rosen steering in the scenario where the steering party performs two black-box measurements and the trusted party performs projective qubit measurements corresponding to two arbitrary mutually unbiased bases. This method is based on decomposing the measurement correlations in terms of extremal boxes of the steering scenario. In this context, we propose a measure of steerability called steering cost. We show that our steering cost is a convex steering monotone. We illustrate our method to check steerability with two families of measurement correlations and find out their steering cost.

  13. A critical view of the quest for brain structural markers of Albert Einstein's special talents (a pot of gold under the rainbow).

    PubMed

    Colombo, Jorge A

    2018-06-01

    Assertions regarding attempts to link glial and macrostructural brain events with cognitive performance regarding Albert Einstein, are critically reviewed. One basic problem arises from attempting to draw causal relationships regarding complex, delicately interactive functional processes involving finely tuned molecular and connectivity phenomena expressed in cognitive performance, based on highly variable brain structural events of a single, aged, formalin fixed brain. Data weaknesses and logical flaws are considered. In other instances, similar neuroanatomical observations received different interpretations and conclusions, as those drawn, e.g., from schizophrenic brains. Observations on white matter events also raise methodological queries. Additionally, neurocognitive considerations on other intellectual aptitudes of A. Einstein were simply ignored.

  14. How Does The Universe Work? The Physics Of The Cosmos Program (PCOS)

    NASA Astrophysics Data System (ADS)

    Sambruna, Rita M.

    2011-09-01

    The Physics of the Cosmos (PCOS) program incorporates cosmology, high-energy astrophysics, and fundamental physics projects aimed at addressing central questions about the nature of complex astrophysical phenomena such as black holes, neutron stars, dark energy, and gravitational waves. Its overarching theme is, How does the Universe work? PCOS includes a suite of operating (Chandra, Fermi, Planck, XMM-Newton, INTEGRAL) and future missions across the electromagnetic spectrum and beyond, which are in concept development and/or formulation. The PCOS program directly supports development of intermediate TRL (4-6) technology relevant to future missions through the Strategic Astrophysics Technology (SAT) program, as well as data analysis, theory, and experimental astrophysics via other R&A avenues (e.g., ADAP, ATP). The Einstein Fellowship is a vital and vibrant PCOS component funded by the program. PCOS receives community input via its Program Analysis Group, the PhysPAG (www.pcos.gsfc.nasa.gov/physpag.php), whose membership and meetings are open to the community at large. In this poster, we describe the detailed science questions addressed within PCOS, with special emphasis on future opportunities. Details about the PhysPAG operations and functions will be provided, as well as an update on future meetings.

  15. Gamma Ray Bursts as Cosmological Probes with EXIST

    NASA Astrophysics Data System (ADS)

    Hartmann, Dieter; EXIST Team

    2006-12-01

    The EXIST mission, studied as a Black Hole Finder Probe within NASA's Beyond Einstein Program, would, in its current design, trigger on 1000 Gamma Ray Bursts (GRBs) per year (Grindlay et al, this meeting). The redshift distribution of these GRBs, using results from Swift as a guide, would probe the z > 7 epoch at an event rate of > 50 per year. These bursts trace early cosmic star formation history, point to a first generation of stellar objects that reionize the universe, and provide bright beacons for absorption line studies with groundand space-based observatories. We discuss how EXIST, in conjunction with other space missions and future large survey programs such as LSST, can be utilized to advance our understanding of cosmic chemical evolution, the structure and evolution of the baryonic cosmic web, and the formation of stars in low metallicity environments.

  16. Bose-Einstein condensation of light: general theory.

    PubMed

    Sob'yanin, Denis Nikolaevich

    2013-08-01

    A theory of Bose-Einstein condensation of light in a dye-filled optical microcavity is presented. The theory is based on the hierarchical maximum entropy principle and allows one to investigate the fluctuating behavior of the photon gas in the microcavity for all numbers of photons, dye molecules, and excitations at all temperatures, including the whole critical region. The master equation describing the interaction between photons and dye molecules in the microcavity is derived and the equivalence between the hierarchical maximum entropy principle and the master equation approach is shown. The cases of a fixed mean total photon number and a fixed total excitation number are considered, and a much sharper, nonparabolic onset of a macroscopic Bose-Einstein condensation of light in the latter case is demonstrated. The theory does not use the grand canonical approximation, takes into account the photon polarization degeneracy, and exactly describes the microscopic, mesoscopic, and macroscopic Bose-Einstein condensation of light. Under certain conditions, it predicts sub-Poissonian statistics of the photon condensate and the polarized photon condensate, and a universal relation takes place between the degrees of second-order coherence for these condensates. In the macroscopic case, there appear a sharp jump in the degrees of second-order coherence, a sharp jump and kink in the reduced standard deviations of the fluctuating numbers of photons in the polarized and whole condensates, and a sharp peak, a cusp, of the Mandel parameter for the whole condensate in the critical region. The possibility of nonclassical light generation in the microcavity with the photon Bose-Einstein condensate is predicted.

  17. Gravitational quasinormal modes of static Einstein-Gauss-Bonnet anti-de Sitter black holes

    NASA Astrophysics Data System (ADS)

    Ma, Hong; Li, Jin

    2018-04-01

    In this paper, we describe quasinormal modes (QNMs) for gravitational perturbations of Einstein-Gauss-Bonnet black holes (BHs) in higher dimensional spacetimes, and derive the corresponding parameters of such black holes in three types of spacetime (flat, de Sitter (dS) and anti-de Sitter (AdS)). Our attention is concentrated on discussing the (in)stability of Einstein-Gauss-Bonnet AdS BHs through the temporal evolution of all types of gravitational perturbation fields (tensor, vector and scalar). It is concluded that the potential functions in vector and scalar gravitational perturbations have negative regions, which suppress quasinormal ringing. Furthermore, the influences of the Gauss-Bonnet coupling parameter α, the number of dimensions n and the angular momentum quantum number l on the Einstein-Gauss-Bonnet AdS BHs quasinormal spectrum are analyzed. The QNM frequencies have greater oscillation and lower damping rate with the growth of α. This indicates that QNM frequencies become increasingly unstable with large α. Meanwhile, the dynamic evolutions of the perturbation field are compliant with the results of computation from the Horowitz and Hubeny method. Because the number of extra dimensions is connected with the string scale, the relationship between α and properties of Einstein-Gauss-Bonnet AdS BHs might be beneficial for the exploitation of string theory and extra-dimensional brane worlds. Supported by FAPESP (2012/08934-0), National Natural Science Foundation of China (11205254, 11178018, 11375279, 11605015), the Natural Science Foundation Project of CQ CSTC (2011BB0052), and the Fundamental Research Funds for the Central Universities (106112016CDJXY300002, 106112017CDJXFLX0014, CDJRC10300003)

  18. The particle problem in classical gravity: a historical note on 1941

    NASA Astrophysics Data System (ADS)

    Galvagno, Mariano; Giribet, Gastón

    2005-11-01

    This historical note is mainly based on a relatively unknown paper published by Albert Einstein in Revista de la Universidad Nacional de Tucumán in 1941. Taking the ideas of this work as a leitmotiv, we review the discussions about the particle problem in the theory of gravitation within the historical context by means of the study of seminal works on the subject. The revision shows how the digressions regarding the structure of matter and the concise problem of finding regular solutions of the pure field equations turned out to be intrinsically unified in the beginning of the programme towards a final theory of fields. The paper mentioned (Einstein 1941a Rev. Univ. Nac. Tucumán A 2 11) represents the basis of the one written by Einstein in collaboration with Wolfgang Pauli in 1943, in which, following analogous lines, the proof of the non-existence of regular particle-type solutions was generalized to the case of cylindrical geometries in Kaluza-Klein theory (Einstein and Pauli 1943 Ann. Math. 44 131). Besides, other generalizations were subsequently presented. The (non-)existence of such solutions in classical unified field theory was undoubtedly an important criterion leading Einstein's investigations. This aspect was investigated with expertness by Jeroen van Dongen in a recent work, though restricting the scope to the particular case of Kaluza-Klein theory (van Dongen 2002 Stud. Hist. Phil. Mod. Phys. 33 185). Here, we discuss the particle problem within a more general context, presenting in this way a complement to previous reviews.

  19. Attractor cosmology from nonminimally coupled gravity

    NASA Astrophysics Data System (ADS)

    Odintsov, S. D.; Oikonomou, V. K.

    2018-03-01

    By using a bottom-up reconstruction technique for nonminimally coupled scalar-tensor theories, we realize the Einstein frame attractor cosmologies in the Ω (ϕ )-Jordan frame. For our approach, what is needed for the reconstruction method to work is the functional form of the nonminimal coupling Ω (ϕ ) and of the scalar-to-tensor ratio, and also the assumption of the slow-roll inflation in the Ω (ϕ )-Jordan frame. By appropriately choosing the scalar-to-tensor ratio, we demonstrate that the observational indices of the attractor cosmologies can be realized directly in the Ω (ϕ )-Jordan frame. We investigate the special conditions that are required to hold true in for this realization to occur, and we provide the analytic form of the potential in the Ω (ϕ )-Jordan frame. Also, by performing a conformal transformation, we find the corresponding Einstein frame canonical scalar-tensor theory, and we calculate in detail the corresponding observational indices. The result indicates that although the spectral index of the primordial curvature perturbations is the same in the Jordan and Einstein frames, at leading order in the e -foldings number, the scalar-to-tensor ratio differs. We discuss the possible reasons behind this discrepancy, and we argue that the difference is due to some approximation we performed to the functional form of the potential in the Einstein frame, in order to obtain analytical results, and also due to the difference in the definition of the e -foldings number in the two frames, which is also pointed out in the related literature. Finally, we find the F (R ) gravity corresponding to the Einstein frame canonical scalar-tensor theory.

  20. Critical remarks on Bruno Thuring's polemic against Einstein.

    NASA Astrophysics Data System (ADS)

    Kerschbaum, F.; Lackner, K.; Posch, T.

    2005-08-01

    Bruno Thüring (1905-1989) was among those scientists who joined the campaign against Einstein's Theories of Relativity which was undertaken in the name of so-called "German Physics". Thüring served as director of Vienna's University Observatory between 1940-45; hence, we present biographical information on his scientific and administrative activities in Vienna, partly based on interviews with time-witnesses. It is one of Thüring's basic convictions that Einstein's work cannot be understood without an analysis of the developments of physics and philosophy in the 19th century. While this is true generally, Thüring's account of these developments is rather superficial. For example, Thüring considers Kant's idea of the a priori status of geometry as a wholly sufficient epistemological foundation of mechanics, while both post-Kantian idealism and positivism were a mere backdrop to the development of knowledge - a view which can hardly stand critical examination. Concerning the impact of Einstein's theories on physics, Thüring argues that the principles of special and general relativity be nothing else but arbitrary decisions (as opposed to real insights). Hence these principles would never be verified or falsified by any experiment. The Michelson-Moreley experiment, e.g., would not prove the principles of special relativity. Thüring considers Einstein's interpretation of this experiment as premature and as an arbitrary judgement on a very particular and subaltern phenomenon which would not justify the conclusion that the velocity of the Earth with respect to the luminiferous aether be immeasurable by just any experimental technique.

  1. Einstein's Symphony: A Gravitational Wave Voyage Through Space and Time

    NASA Astrophysics Data System (ADS)

    Shapiro Key, Joey; Yunes, Nico; Grimberg, Irene

    2015-01-01

    Einstein's Symphony: A Gravitational Wave Voyage Through Space and Time is a gravitational wave astronomy planetarium show in production by a collaboration of scientists, filmmakers, and artisits from the Center for Gravitational Wave Astonomy (CGWA) at the University of Texas at Brownsville (UTB) and Montana State University (MSU). The project builds on the success of the interdisciplinary Celebrating Einstein collaboration. The artists and scientists who created the A Shout Across Time original film and the Black (W)hole immersive art installation for Celebrating Einstein are teaming with the Museum of the Rockies Taylor Planetarium staff and students to create a new full dome Digistar planetarium show that will be freely and widely distributed to planetaria in the US and abroad. The show uses images and animations filmed and collected for A Shout Across Time and for Black (W)hole as well as new images and animations and a new soundtrack composed and produced by the MSU School of Music to use the full capability of planetarium sound systems. The planetarium show will be narrated with ideas drawn from the Celebrating Einstein danced lecture on gravitational waves that the collaboration produced. The combination of products, resources, and team members assembled for this project allows us to create an original planetarium show for a fraction of the cost of a typical show. In addition, STEM education materials for G6-12 students and teachers will be provided to complement and support the show. This project is supported by the Texas Space Grant Consortium (TSGC), Montana Space Grant Consortium (MSGC), and the American Physical Society (APS).

  2. Non-CMC solutions to the Einstein constraint equations on asymptotically Euclidean manifolds with apparent horizon boundaries

    NASA Astrophysics Data System (ADS)

    Holst, Michael; Meier, Caleb

    2015-01-01

    In this article we further develop the solution theory for the Einstein constraint equations on an n-dimensional, asymptotically Euclidean manifold M with interior boundary Σ. Building on recent results for both the asymptotically Euclidean and compact with boundary settings, we show the existence of far-from-CMC and near-CMC solutions to the conformal formulation of the Einstein constraints when nonlinear Robin boundary conditions are imposed on Σ, similar to those analyzed previously by Dain (2004 Class. Quantum Grav. 21 555-73), by Maxwell (2004, 2005 Commun. Math. Phys. 253 561-83), and by Holst and Tsogtgerel (2013 Class. Quantum Grav. 30 205011) as a model of black holes in various CMC settings, and by Holst et al (2013 Non-CMC solutions to the einstein constraint equations with apparent horizon boundaries arXiv:1310.2302v1) in the setting of far-from-CMC solutions on compact manifolds with boundary. These ‘marginally trapped surface’ Robin conditions ensure that the expansion scalars along null geodesics perpendicular to the boundary region Σ are non-positive, which is considered the correct mathematical model for black holes in the context of the Einstein constraint equations. Assuming a suitable form of weak cosmic censorship, the results presented in this article guarantee the existence of initial data that will evolve into a space-time containing an arbitrary number of black holes. A particularly important feature of our results are the minimal restrictions we place on the mean curvature, giving both near- and far-from-CMC results that are new.

  3. Inflation in Einstein-Cartan theory with energy-momentum tensor with spin

    NASA Technical Reports Server (NTRS)

    Fennelly, A. J.; Bradas, James C.; Smalley, Larry L.

    1988-01-01

    Generalized, or power-law, inflation is shown to necessarily exist for a simple, anisotropic (Bianchi Type I) cosmology in the Einstein-Cartan gravitational theory with the Ray-Smalley (RS) improved energy-momentum tensor with spin. Formal solution of the EC field equations with the fluid equations of motion explicitly shows inflation caused by the RS spin angular kinetic energy density.

  4. Exact Solution of the Two-Level System and the Einstein Solid in the Microcanonical Formalism

    ERIC Educational Resources Information Center

    Bertoldi, Dalia S.; Bringa, Eduardo M.; Miranda, E. N.

    2011-01-01

    The two-level system and the Einstein model of a crystalline solid are taught in every course of statistical mechanics and they are solved in the microcanonical formalism because the number of accessible microstates can be easily evaluated. However, their solutions are usually presented using the Stirling approximation to deal with factorials. In…

  5. Focal/Nonfocal Cue Effects in Prospective Memory: Monitoring Difficulty or Different Retrieval Processes?

    ERIC Educational Resources Information Center

    Scullin, Michael K.; McDaniel, Mark A.; Shelton, Jill T.; Lee, Ji Hae

    2010-01-01

    We investigated whether focal/nonfocal effects (e.g., Einstein et al., 2005) in prospective memory (PM) are explained by cue differences in monitoring difficulty. In Experiment 1, we show that syllable cues (used in Einstein et al., 2005) are more difficult to monitor for than are word cues; however, initial-letter cues (in words) are similar in…

  6. Creativity: A Cure for the Common Curriculum

    ERIC Educational Resources Information Center

    Berrett, Dan

    2013-01-01

    Einstein was blessed with a rare genius. He also understood the intellectual weight of a flight of fancy. He turned over the idea in his mind for a decade before concluding that the light beam next to him would appear to be at rest even though it was traveling at the speed of light. While it may be tempting to focus on Einstein's cognitive…

  7. On-chip generation of Einstein-Podolsky-Rosen states with arbitrary symmetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gräfe, Markus; Heilmann, René; Nolte, Stefan

    We experimentally demonstrate a method for integrated-optical generation of two-photon Einstein-Podolsky-Rosen states featuring arbitrary symmetries. In our setting, we employ detuned directional couplers to impose a freely tailorable phase between the two modes of the state. Our results allow to mimic the quantum random walk statistics of bosons, fermions, and anyons, particles with fractional exchange statistics.

  8. Seeing and Experiencing Relativity--A New Tool for Teaching?

    ERIC Educational Resources Information Center

    Kortemeyer, Gerd; Fish, Jordan; Hacker, Jesse; Kienle, Justin; Kobylarek, Alexander; Sigler, Michael; Wierenga, Bert; Cheu, Ryan; Kim, Ebae; Sherin, Zach; Sidhu, Sonny; Tan, Philip

    2013-01-01

    "What would you see if you were riding a beam of light?" This thought experiment, which Einstein reports to have "conducted" at the age of 16, of course has no sensible answer: as Einstein published a decade later, you could never reach the speed of light. But it does make sense to ask what you would see if you were traveling…

  9. NAVO MSRC Navigator. Spring 2008

    DTIC Science & Technology

    2008-01-01

    EINSTEIN and DAVINCI Come to the MSRC The Porthole 19 Visitors to the Naval Oceanographic Office Major Shared Resource Center Navigator Tools and...traditionally considered one of the leading track guidance tools for forecasters. As an example, we consider the case of Hurricane Figure 2. The...MSRC NAVIGATOR EINSTEIN and DAVINCI Come to the MSRC Christine Cuicchi, Computational Science and Applications Lead, NAVO MSRC The Technology

  10. Enhanced factoring with a bose-einstein condensate.

    PubMed

    Sadgrove, Mark; Kumar, Sanjay; Nakagawa, Ken'ichi

    2008-10-31

    We present a novel method to realize analog sum computation with a Bose-Einstein condensate in an optical lattice potential subject to controlled phase jumps. We use the method to implement the Gauss sum algorithm for factoring numbers. By exploiting higher order quantum momentum states, we are able to improve the algorithm's accuracy beyond the limits of the usual classical implementation.

  11. Einstein's Tea Leaves and Pressure Systems in the Atmosphere

    ERIC Educational Resources Information Center

    Tandon, Amit; Marshall, John

    2010-01-01

    Tea leaves gather in the center of the cup when the tea is stirred. In 1926 Einstein explained the phenomenon in terms of a secondary, rim-to-center circulation caused by the fluid rubbing against the bottom of the cup. This explanation can be connected to air movement in atmospheric pressure systems to explore, for example, why low-pressure…

  12. On the breakdown of asymptotic Poincare invariance in D = 3 Einstein gravity

    NASA Technical Reports Server (NTRS)

    Deser, S.

    1985-01-01

    It is shown through a series of calculations that neither momentum nor boosts are definable for finite energy solutions of Einstein gravity in D = 3. The contrast between the effects of Lorentz transformations on the corresponding metrics for D = 3 and D = 4 gravity is demonstrated, and some comparisons with the vector gauge treatment of the problem are offered.

  13. The Foundations of Einstein's Theory of Gravitation

    NASA Astrophysics Data System (ADS)

    Freundlich, Erwin; Brose, Translated by Henry L.; Einstein, Preface by Albert; Turner, Introduction by H. H.

    2011-06-01

    Introduction; 1. The special theory of relativity as a stepping-stone to the general theory of relativity; 2. Two fundamental postulates in the mathematical formulation of physical laws; 3. Concerning the fulfilment of the two postulates; 4. The difficulties in the principles of classical mechanics; 5. Einstein's theory of gravitation; 6. The verification of the new theory by actual experience; Appendix; Index.

  14. The art of space-time

    NASA Astrophysics Data System (ADS)

    Cartlidge, Edwin

    2018-01-01

    The Museo Na­zionale delle Arti del XXI Secolo (MAXXI; National Museum of 21st Century Arts) in Rome has chosen Einstein as the figurehead of its latest exhibition, enti­tled Gravity. Imaging the Uni­verse After Einstein. Running until 29 April 2018, the exhibition explores "the meeting point of the current understanding of the cos­mos and contemporary art and thinking."

  15. A new geometric invariant on initial data for the Einstein equations.

    PubMed

    Dain, Sergio

    2004-12-03

    For a given asymptotically flat initial data set for Einstein equations a new geometric invariant is constructed. This invariant measures the departure of the data set from the stationary regime; it vanishes if and only if the data are stationary. In vacuum, it can be interpreted as a measure of the total amount of radiation contained in the data.

  16. The Discrepancy between Einstein Mass and Dynamical Mass for SIS and Power-law Mass Models

    NASA Astrophysics Data System (ADS)

    Li, Rui; Wang, Jiancheng; Shu, Yiping; Xu, Zhaoyi

    2018-03-01

    We investigate the discrepancy between the two-dimensional projected lensing mass and the dynamical mass for an ensemble of 97 strong gravitational lensing systems discovered by the Sloan Lens ACS Survey, the BOSS Emission-Line Lens Survey (BELLS), and the BELLS for GALaxy-Lyα EmitteR sYstems Survey. We fit the lensing data to obtain the Einstein mass and use the velocity dispersion of the lensing galaxies provided by the Sloan Digital Sky Survey to get the projected dynamical mass within the Einstein radius by assuming the power-law mass approximation. The discrepancy is found to be obvious and quantified by Bayesian analysis. For the singular isothermal sphere mass model, we obtain that the Einstein mass is 20.7% more than the dynamical mass, and the discrepancy increases with the redshift of the lensing galaxies. For the more general power-law mass model, the discrepancy still exists within a 1σ credible region. We suspect the main reason for this discrepancy is mass contamination, including all invisible masses along the line of sight. In addition, the measurement errors and the approximation of the mass models could also contribute to the discrepancy.

  17. A Computer Vision Approach to Identify Einstein Rings and Arcs

    NASA Astrophysics Data System (ADS)

    Lee, Chien-Hsiu

    2017-03-01

    Einstein rings are rare gems of strong lensing phenomena; the ring images can be used to probe the underlying lens gravitational potential at every position angles, tightly constraining the lens mass profile. In addition, the magnified images also enable us to probe high-z galaxies with enhanced resolution and signal-to-noise ratios. However, only a handful of Einstein rings have been reported, either from serendipitous discoveries or or visual inspections of hundred thousands of massive galaxies or galaxy clusters. In the era of large sky surveys, an automated approach to identify ring pattern in the big data to come is in high demand. Here, we present an Einstein ring recognition approach based on computer vision techniques. The workhorse is the circle Hough transform that recognise circular patterns or arcs in the images. We propose a two-tier approach by first pre-selecting massive galaxies associated with multiple blue objects as possible lens, than use Hough transform to identify circular pattern. As a proof-of-concept, we apply our approach to SDSS, with a high completeness, albeit with low purity. We also apply our approach to other lenses in DES, HSC-SSP, and UltraVISTA survey, illustrating the versatility of our approach.

  18. Einstein's Years in Switzerland

    NASA Astrophysics Data System (ADS)

    Plendl, Hans S.

    2005-11-01

    Albert Einstein left Germany, the country of his birth, in 1894 and moved to Switzerland in 1895. He studied, worked and taught there, except for a year's stay in Prague, until1914. That year he returned to Germany, where he lived until his emigration to the United States in 1933. In 1905, while living with his wife Mileva and their first son Hans Albert in Bern and working as a technical expert at the Swiss Patent Office, he published his dissertation on the determination of molecular dimensions, his papers on Brownian Motion that helped to establish the Kinetic Theory of Heat and on the Photo-Electric Effect that validated the Quantum Theory of Light, and the two papers introducing the Special Theory of Relativity. How the young Einstein could help to lay the foundations of these theories while still working on his dissertation, holding a full-time job and helping to raise a family has evoked much discussion among his biographers. In this contribution, the extent to which living within Swiss society and culture could have made this feat possible will be examined. Old and recent photos of places in Switzerland where Einstein has lived and worked will be shown.

  19. Boundary stress tensor and asymptotically AdS3 non-Einstein spaces at the chiral point

    NASA Astrophysics Data System (ADS)

    Giribet, Gaston; Goya, Andrés; Leston, Mauricio

    2011-09-01

    Chiral gravity admits asymptotically AdS3 solutions that are not locally equivalent to AdS3; meaning that solutions do exist which, while obeying the strong boundary conditions usually imposed in general relativity, happen not to be Einstein spaces. In topologically massive gravity (TMG), the existence of non-Einstein solutions is particularly connected to the question about the role played by complex saddle points in the Euclidean path integral. Consequently, studying (the existence of) nonlocally AdS3 solutions to chiral gravity is relevant to understanding the quantum theory. Here, we discuss a special family of nonlocally AdS3 solutions to chiral gravity. In particular, we show that such solutions persist when one deforms the theory by adding the higher-curvature terms of the so-called new massive gravity. Moreover, the addition of higher-curvature terms to the gravity action introduces new nonlocally AdS3 solutions that have no analogues in TMG. Both stationary and time-dependent, axially symmetric solutions that asymptote AdS3 space without being locally equivalent to it appear. Defining the boundary stress tensor for the full theory, we show that these non-Einstein geometries have associated vanishing conserved charges.

  20. General Relativity and Gravitation

    NASA Astrophysics Data System (ADS)

    Ashtekar, Abhay; Berger, Beverly; Isenberg, James; MacCallum, Malcolm

    2015-07-01

    Part I. Einstein's Triumph: 1. 100 years of general relativity George F. R. Ellis; 2. Was Einstein right? Clifford M. Will; 3. Cosmology David Wands, Misao Sasaki, Eiichiro Komatsu, Roy Maartens and Malcolm A. H. MacCallum; 4. Relativistic astrophysics Peter Schneider, Ramesh Narayan, Jeffrey E. McClintock, Peter Mészáros and Martin J. Rees; Part II. New Window on the Universe: 5. Receiving gravitational waves Beverly K. Berger, Karsten Danzmann, Gabriela Gonzalez, Andrea Lommen, Guido Mueller, Albrecht Rüdiger and William Joseph Weber; 6. Sources of gravitational waves. Theory and observations Alessandra Buonanno and B. S. Sathyaprakash; Part III. Gravity is Geometry, After All: 7. Probing strong field gravity through numerical simulations Frans Pretorius, Matthew W. Choptuik and Luis Lehner; 8. The initial value problem of general relativity and its implications Gregory J. Galloway, Pengzi Miao and Richard Schoen; 9. Global behavior of solutions to Einstein's equations Stefanos Aretakis, James Isenberg, Vincent Moncrief and Igor Rodnianski; Part IV. Beyond Einstein: 10. Quantum fields in curved space-times Stefan Hollands and Robert M. Wald; 11. From general relativity to quantum gravity Abhay Ashtekar, Martin Reuter and Carlo Rovelli; 12. Quantum gravity via unification Henriette Elvang and Gary T. Horowitz.

  1. Three Bright X-ray Sources in NGC 1313

    NASA Astrophysics Data System (ADS)

    Colbert, E.; Petre, R.; Schlegel, E.

    1992-12-01

    Three bright X-ray sources were detected in a recent (April/May 1991) ROSAT PSPC observation of the nearby (D ~ 4.5 Mpc) face--on barred spiral galaxy NGC 1313. Two of the sources were at positions coincident with X-ray sources detected by Fabbiano & Trinchieri (ApJ 315, 1987) in a previous (Jan 1980) Einstein IPC observation. The position of the brightest Einstein source is near the center of NGC 1313, and the second Einstein source is ~ 7' south of the ``nuclear'' source, in the outskirts of the spiral arms. A third bright X-ray source was detected in the ROSAT observation ~ 7' southwest of the ``nuclear'' source. We present X-ray spectra and X-ray images for the three bright sources found in the ROSAT observation of NGC 1313, and compare with previous Einstein results. Spectral analysis of these sources require them to have very large soft X-ray luminosities ( ~ 10(40) erg s(-1) ) when compared with typical X-ray sources in our Galaxy. Feasible explanations for the X-ray emission are presented. The third X-ray source is positively identified with the recently discovered (Ryder et. al., ApJ 1992) peculiar type-II supernova 1978K.

  2. Bose-Einstein condensation of photons in a 'white-wall' photon box

    NASA Astrophysics Data System (ADS)

    Klärs, Jan; Schmitt, Julian; Vewinger, Frank; Weitz, Martin

    2011-01-01

    Bose-Einstein condensation, the macroscopic ground state occupation of a system of bosonic particles below a critical temperature, has been observed in cold atomic gases and solid-state physics quasiparticles. In contrast, photons do not show this phase transition usually, because in Planck's blackbody radiation the particle number is not conserved and at low temperature the photons disappear in the walls of the system. Here we report on the realization of a photon Bose-Einstein condensate in a dye-filled optical microcavity, which acts as a "white-wall" photon box. The cavity mirrors provide a trapping potential and a non-vanishing effective photon mass, making the system formally equivalent to a two-dimensional gas of trapped massive bosons. Thermalization of the photon gas is reached in a number conserving way by multiple scattering off the dye molecules. Signatures for a BEC upon increased photon density are: a spectral distribution that shows Bose-Einstein distributed photon energies with a macroscopically populated peak on top of a broad thermal wing, the observed threshold of the phase transition showing the predicted absolute value and scaling with resonator geometry, and condensation appearing at the trap centre even for a spatially displaced pump spot.

  3. On dynamical systems approaches and methods in f ( R ) cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alho, Artur; Carloni, Sante; Uggla, Claes, E-mail: aalho@math.ist.utl.pt, E-mail: sante.carloni@tecnico.ulisboa.pt, E-mail: claes.uggla@kau.se

    We discuss dynamical systems approaches and methods applied to flat Robertson-Walker models in f ( R )-gravity. We argue that a complete description of the solution space of a model requires a global state space analysis that motivates globally covering state space adapted variables. This is shown explicitly by an illustrative example, f ( R ) = R + α R {sup 2}, α > 0, for which we introduce new regular dynamical systems on global compactly extended state spaces for the Jordan and Einstein frames. This example also allows us to illustrate several local and global dynamical systems techniquesmore » involving, e.g., blow ups of nilpotent fixed points, center manifold analysis, averaging, and use of monotone functions. As a result of applying dynamical systems methods to globally state space adapted dynamical systems formulations, we obtain pictures of the entire solution spaces in both the Jordan and the Einstein frames. This shows, e.g., that due to the domain of the conformal transformation between the Jordan and Einstein frames, not all the solutions in the Jordan frame are completely contained in the Einstein frame. We also make comparisons with previous dynamical systems approaches to f ( R ) cosmology and discuss their advantages and disadvantages.« less

  4. On the validity of Stokes-Einstein and Stokes-Einstein-Debye relations in ionic liquids and ionic-liquid mixtures.

    PubMed

    Köddermann, Thorsten; Ludwig, Ralf; Paschek, Dietmar

    2008-09-15

    Stokes-Einstein (SE) and Stokes-Einstein-Debye (SED) relations in the neat ionic liquid (IL) [C(2)mim][NTf(2)] and IL/chloroform mixtures are studied by means of molecular dynamics (MD) simulations. For this purpose, we simulate the translational diffusion coefficients of the cations and anions, the rotational correlation times of the C(2)--H bond in the cation C(2)mim(+), and the viscosities of the whole system. We find that the SE and SED relations are not valid for the pure ionic liquid, nor for IL/chloroform mixtures down to the miscibility gap (at 50 wt % IL). The deviations from both relations could be related to dynamical heterogeneities described by the non-Gaussian parameter alpha(t). If alpha(t) is close to zero, at a concentration of 1 wt % IL in chloroform, both relations become valid. Then, the effective radii and volumes calculated from the SE and SED equations can be related to the structures found in the MD simulations, such as aggregates of ion pairs. Overall, similarities are observed between the dynamical properties of supercooled water and those of ionic liquids.

  5. Properties of atomic pairs produced in the collision of Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Ziń, Paweł; Wasak, Tomasz

    2018-04-01

    During a collision of Bose-Einstein condensates correlated pairs of atoms are emitted. The scattered massive particles, in analogy to photon pairs in quantum optics, might be used in the violation of Bell's inequalities, demonstration of Einstein-Podolsky-Rosen correlations, or sub-shot-noise atomic interferometry. Usually, a theoretical description of the collision relies either on stochastic numerical methods or on analytical treatments involving various approximations. Here, we investigate elastic scattering of atoms from colliding elongated Bose-Einstein condensates within the Bogoliubov method, carefully controlling performed approximations at every stage of the analysis. We derive expressions for the one- and two-particle correlation functions. The obtained formulas, which relate the correlation functions to the condensate wave function, are convenient for numerical calculations. We employ the variational approach for condensate wave functions to obtain analytical expressions for the correlation functions, whose properties we analyze in detail. We also present a useful semiclassical model of the process and compare its results with the quantum one. The results are relevant for recent experiments with excited helium atoms, as well as for planned experiments aimed at investigating the nonclassicality of the system.

  6. G. Einstein matrix and nano-biophotonic treatment

    NASA Astrophysics Data System (ADS)

    Przybyl-Einstein, George; Moratin, Holdy; Garcia, Eduardo

    2005-04-01

    The publication is presenting the Einstein Matrix Treatment Method and initial results for blood borne diseases on example of hepatitis, HIV and arthritis. The initial research was conducted at Einstein Clinical Laboratories S.A. on limited funds. The treatment and method is strongly recommended for specific viruses bacteria in blood borne diseases but also for treatment of none specific viruses and bacteria in emergency treatments as SARS or ANTHRAX to safe life of the human. In the past years the Individual's Safety is in jeopardy by natural viral infections as well as by engineering cultured viruses and bacteria. Viruses mutate and become more resistant to current known medical treatment, in many cases partially efficient. This event required new testing method to investigate the possibility of treatments and to create new vaccine for non-specific viral and bacteria or viruses infections that causes death to thousands adults and children. The authors present in this paper the possibility of treatment of the non-specific viral, bacterial infections of the blood in human body. This treatment has safe procedure and no known side effect up to this time for patients that were treated at Einstein Clinical Laboratories SA.

  7. A numerical approach to finding general stationary vacuum black holes

    NASA Astrophysics Data System (ADS)

    Adam, Alexander; Kitchen, Sam; Wiseman, Toby

    2012-08-01

    The Harmonic Einstein equation is the vacuum Einstein equation supplemented by a gauge fixing term which we take to be that of DeTurck. For static black holes analytically continued to Riemannian manifolds without boundary at the horizon, this equation has previously been shown to be elliptic, and Ricci flow and Newton’s method provide good numerical algorithms to solve it. Here we extend these techniques to the arbitrary cohomogeneity stationary case which must be treated in Lorentzian signature. For stationary spacetimes with globally timelike Killing vector the Harmonic Einstein equation is elliptic. In the presence of horizons and ergo-regions it is less obviously so. Motivated by the Rigidity theorem we study a class of stationary black hole spacetimes which is general enough to include many interesting higher dimensional solutions. We argue the Harmonic Einstein equation consistently truncates to this class of spacetimes giving an elliptic problem. The Killing horizons and axes of rotational symmetry are boundaries for this problem and we determine boundary conditions there. As a simple example we numerically construct 4D rotating black holes in a cavity using Anderson’s boundary conditions. We demonstrate both Newton’s method and Ricci flow to find these Lorentzian solutions.

  8. Memory Binding Test Predicts Incident Dementia: Results from the Einstein Aging Study.

    PubMed

    Mowrey, Wenzhu B; Lipton, Richard B; Katz, Mindy J; Ramratan, Wendy S; Loewenstein, David A; Zimmerman, Molly E; Buschke, Herman

    2018-01-01

    The Memory Binding Test (MBT) demonstrated good cross-sectional discriminative validity and predicted incident aMCI. To assess whether the MBT predicts incident dementia better than a conventional list learning test in a longitudinal community-based study. As a sub-study in the Einstein Aging Study, 309 participants age≥70 initially free of dementia were administered the MBT and followed annually for incident dementia for up to 13 years. Based on previous work, poor memory binding was defined using an optimal empirical cut-score of≤17 on the binding measure of the MBT, Total Items in the Paired condition (TIP). Cox proportional hazards models were used to assess predictive validity adjusting for covariates. We compared the predictive validity of MBT TIP to that of the free and cued selective reminding test free recall score (FCSRT-FR; cut-score:≤24) and the single list recall measure of the MBT, Cued Recalled from List 1 (CR-L1; cut-score:≤12). Thirty-five of 309 participants developed incident dementia. When assessing each test alone, the hazard ratio (HR) for dementia was significant for MBT TIP (HR = 8.58, 95% CI: (3.58, 20.58), p < 0.0001), FCSRT-FR (HR = 4.19, 95% CI: (1.94, 9.04), p = 0.0003) and MBT CR-L1 (HR = 2.91, 95% CI: (1.37, 6.18), p = 0.006). MBT TIP remained a significant predictor of dementia (p = 0.0002) when adjusting for FCSRT-FR or CR-L1. Older adults with poor memory binding as measured by the MBT TIP were at increased risk for incident dementia. This measure outperforms conventional episodic memory measures of free and cued recall, supporting the memory binding hypothesis.

  9. Black-hole universe: time evolution.

    PubMed

    Yoo, Chul-Moon; Okawa, Hirotada; Nakao, Ken-ichi

    2013-10-18

    Time evolution of a black hole lattice toy model universe is simulated. The vacuum Einstein equations in a cubic box with a black hole at the origin are numerically solved with periodic boundary conditions on all pairs of faces opposite to each other. Defining effective scale factors by using the area of a surface and the length of an edge of the cubic box, we compare them with that in the Einstein-de Sitter universe. It is found that the behavior of the effective scale factors is well approximated by that in the Einstein-de Sitter universe. In our model, if the box size is sufficiently larger than the horizon radius, local inhomogeneities do not significantly affect the global expansion law of the Universe even though the inhomogeneity is extremely nonlinear.

  10. Spacetime and gravitation.

    NASA Astrophysics Data System (ADS)

    Kopczyński, W.; Trautman, A.

    This book is a revised translation of the Polish original "Czasoprzestrzeń i grawitacja", Warszawa (Poland), Państwowe Wydawnictwo Naukowe, 1984. Ideas about space and time are at the root of one's understanding of nature, both at the intuitive level of everyday experience and in the framework of sophisticated physical theories. These ideas have led to the development of geometry and its applications to physics. The contemporary physical theory of space and time, including its extention to the phenomena of gravitation, is Einstein's theory of relativity. The book is a short introduction to this theory. A great deal of emphasis is given to the geometrical aspects of relativity theory and its comparison with the Newtonian view of the world. There are short chapters on the origins of Einstein's theory, gravitational waves, cosmology, spinors and the Einstein-Cartan theory.

  11. Can the Stark-Einstein law resolve the measurement problem from an animate perspective?

    PubMed

    Thaheld, Fred H

    2015-09-01

    Analysis of the Stark-Einstein law as it applies to the retinal molecule, which is part of the rhodopsin molecule within the rod cells of the retina, reveals that it may provide the solution to the measurement problem from an animate perspective. That it represents a natural boundary where the Schrödinger equation or wave function automatically goes from linear to nonlinear while remaining in a deterministic state. It will be possible in the near future to subject this theory to empirical tests as has been previously proposed. This analysis provides a contrast to the many decades well studied and debated inanimate measurement problem and would represent an addition to the Stark-Einstein law involving information carried by the photon. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Characteristics of sediment transport at selected sites along the Missouri River, 2011–12

    USGS Publications Warehouse

    Rus, David L.; Galloway, Joel M.; Alexander, Jason S.

    2015-10-22

    The Modified-Einstein Procedure tended to predict greater total-sediment loads when compared to measured values. These differences may be the result of sediment deficits in the Missouri River that lead to an overprediction by the Modified-Einstein Procedure, the unsampled zone above the streambed that leads to an underprediction by the suspended sampler, or general uncertainty in the sampling approach. The differences between total-sediment load obtained through measurements and that estimated from applied theoretical procedures such as the Modified-Einstein Procedure pose a challenge for reliably characterizing total-sediment transport. Though it is not clear which of the two techniques is more accurate, the general tendency of the two to be within an order of magnitude of one another may be adequate for many sediment studies.

  13. Andrei Sakharov Prize

    NASA Astrophysics Data System (ADS)

    Xu, Liangying

    2008-04-01

    Ever since my youth, the writings of Einstein had always enlightened my life. However, I later began to follow Marxism and threw myself into the Chinese revolution. Yet, ironically, after the victory of the revolution I myself became a target of the revolutionary dictatorship. Started from 1962 I collected, edited and translated ``Collected Works of Einstein'' in the countryside. Fourteen years later the three-volume collected works were published in China, which created immense impacts to Chinese intellectuals. It was Einstein's thoughts on human rights and democracy that awakened me. Since then I have devoted myself to the fight for human rights and to the cause of democratic enlightenment in China. My goal is to transform an autocratic China that tramples human rights into a democratic and free modern China that respects human rights.

  14. Hairy AdS black holes with a toroidal horizon in 4D Einstein-nonlinear σ-model system

    NASA Astrophysics Data System (ADS)

    Astorino, Marco; Canfora, Fabrizio; Giacomini, Alex; Ortaggio, Marcello

    2018-01-01

    An exact hairy asymptotically locally AdS black hole solution with a flat horizon in the Einstein-nonlinear sigma model system in (3+1) dimensions is constructed. The ansatz for the nonlinear SU (2) field is regular everywhere and depends explicitly on Killing coordinates, but in such a way that its energy-momentum tensor is compatible with a metric with Killing fields. The solution is characterized by a discrete parameter which has neither topological nor Noether charge associated with it and therefore represents a hair. A U (1) gauge field interacting with Einstein gravity can also be included. The thermodynamics is analyzed. Interestingly, the hairy black hole is always thermodynamically favoured with respect to the corresponding black hole with vanishing Pionic field.

  15. Einstein's osmotic equilibrium of colloidal suspensions in conservative force fields

    NASA Astrophysics Data System (ADS)

    Fu, Jinxin; Ou-Yang, H. Daniel

    2014-09-01

    Predicted by Einstein in his 1905 paper on Brownian motion, colloidal particles in suspension reach osmotic equilibrium under gravity. The idea was demonstrated by J.B. Perrin to win Nobel Prize in Physics in 1926. We show Einstein's equation for osmotic equilibrium can be applied to colloids in a conservative force field generated by optical gradient forces. We measure the osmotic equation of state of 100nm Polystyrene latex particles in the presence of KCl salt and PEG polymer. We also obtain the osmotic compressibility, which is important for determining colloidal stability and the internal chemical potential, which is useful for predicting the phase transition of colloidal systems. This generalization allows for the use of any conservative force fields for systems ranging from colloidal systems to macromolecular solutions.

  16. Cosmological Constant: A Lesson from Bose-Einstein Condensates

    NASA Astrophysics Data System (ADS)

    Finazzi, Stefano; Liberati, Stefano; Sindoni, Lorenzo

    2012-02-01

    The cosmological constant is one of the most pressing problems in modern physics. We address this issue from an emergent gravity standpoint, by using an analogue gravity model. Indeed, the dynamics of the emergent metric in a Bose-Einstein condensate can be described by a Poisson-like equation with a vacuum source term reminiscent of a cosmological constant. The direct computation of this term shows that in emergent gravity scenarios this constant may be naturally much smaller than the naive ground-state energy of the emergent effective field theory. This suggests that a proper computation of the cosmological constant would require a detailed understanding about how Einstein equations emerge from the full microscopic quantum theory. In this light, the cosmological constant appears as a decisive test bench for any quantum or emergent gravity scenario.

  17. Double-black-hole solutions of the Einstein-Maxwell-dilaton theory in five dimensions

    NASA Astrophysics Data System (ADS)

    Stelea, Cristian

    2018-01-01

    We describe a solution-generating technique that maps a static charged solution of the Einstein-Maxwell theory in four (or five) dimensions to a five-dimensional solution of the Einstein-Maxwell-Dilaton theory. As examples of this technique first we show how to construct the dilatonic version of the Reissner-Nordström solution in five dimensions and then we consider the more general case of the double black hole solutions and describe some of their properties. We found that in the general case the value of the conical singularities in between the black holes is affected by the dilaton's coupling constant to the gauge field and only in the particular case when all charges are proportional to the masses this dependence cancels out.

  18. Nonsingular solutions and instabilities in Einstein-scalar-Gauss-Bonnet cosmology

    NASA Astrophysics Data System (ADS)

    Sberna, Laura; Pani, Paolo

    2017-12-01

    It is generically believed that higher-order curvature corrections to the Einstein-Hilbert action might cure the curvature singularities that plague general relativity. Here we consider Einstein-scalar-Gauss-Bonnet gravity, the only four-dimensional, ghost-free theory with quadratic curvature terms. For any choice of the coupling function and of the scalar potential, we show that the theory does not allow for bouncing solutions in the flat and open Friedmann universe. For the case of a closed universe, using a reverse-engineering method, we explicitly provide a bouncing solution which is nevertheless linearly unstable in the scalar gravitational sector. Moreover, we show that the expanding, singularity-free, early-time cosmologies allowed in the theory are unstable. These results rely only on analyticity and finiteness of cosmological variables at early times.

  19. Cosmological constant: a lesson from Bose-Einstein condensates.

    PubMed

    Finazzi, Stefano; Liberati, Stefano; Sindoni, Lorenzo

    2012-02-17

    The cosmological constant is one of the most pressing problems in modern physics. We address this issue from an emergent gravity standpoint, by using an analogue gravity model. Indeed, the dynamics of the emergent metric in a Bose-Einstein condensate can be described by a Poisson-like equation with a vacuum source term reminiscent of a cosmological constant. The direct computation of this term shows that in emergent gravity scenarios this constant may be naturally much smaller than the naive ground-state energy of the emergent effective field theory. This suggests that a proper computation of the cosmological constant would require a detailed understanding about how Einstein equations emerge from the full microscopic quantum theory. In this light, the cosmological constant appears as a decisive test bench for any quantum or emergent gravity scenario.

  20. General relativity at 75: how right was einstein?

    PubMed

    Will, C M

    1990-11-09

    The status of experimental tests of general relativity is reviewed on the occasion of its 75th anniversary. Einstein's equivalence principle is well supported by experiments such as the Eötvös experiment, tests of special relativity, and the gravitational redshift experiment. Tests of general relativity have reached high precision, including the light deflection and the perihelion advance of Mercury, proposed by Einstein 75 years ago, and new tests such as the Shapiro time delay and the Nordtvedt effect in lunar motion. Gravitational wave damping has been detected to an accuracy of 1 percent on the basis of measurements of the binary pulsar. The status of the "fifth force" is discussed, along with the frontiers of experimental relativity, including proposals for testing relativistic gravity with advanced technology and spacecraft.

  1. Stability of anti-de sitter space in Einstein-Gauss-Bonnet gravity.

    PubMed

    Deppe, Nils; Kolly, Allison; Frey, Andrew; Kunstatter, Gabor

    2015-02-20

    Recently it has been argued that in Einstein gravity anti-de Sitter spacetime is unstable against the formation of black holes for a large class of arbitrarily small perturbations. We examine the effects of including a Gauss-Bonnet term. In five dimensions, spherically symmetric Einstein-Gauss-Bonnet gravity has two key features: Choptuik scaling exhibits a radius gap, and the mass function goes to a finite value as the horizon radius vanishes. These suggest that black holes will not form dynamically if the total mass-energy content of the spacetime is too small, thereby restoring the stability of anti-de Sitter spacetime in this context. We support this claim with numerical simulations and uncover a rich structure in horizon radii and formation times as a function of perturbation amplitude.

  2. The detection of X-ray variability in O stars

    NASA Technical Reports Server (NTRS)

    Snow, T. P., Jr.; Cash, W.; Grady, C. A.

    1981-01-01

    Seven O stars known to have strong, and sometimes variable, stellar winds have been observed repeatedly with the Imaging Proportional Counter on the Einstein Observatory, in a program designed to determine whether the X-ray fluxes from these stars are variable. In three cases, definite changes were seen, either on a time scale of a year (Iota Ori and Delta Ori) or five days (15 Mon). In two of these cases, the X-ray spectrum was harder when the overall flux was higher, indicating that some of the fluctuations may take place in a hot (approximately 10 to the 7th K) emitting region at the bottom of the winds.

  3. Duly noted: Lessons from a two-site intervention to assess and improve the quality of clinical documentation in the electronic health record.

    PubMed

    Fanucchi, Laura; Yan, Donglin; Conigliaro, Rosemarie L

    2016-07-06

    Communication errors are identified as a root cause contributing to a majority of sentinel events. The clinical note is a cornerstone of physician communication, yet there are few published interventions on teaching note writing in the electronic health record (EHR). This is a prospective, two-site, quality improvement project to assess and improve the quality of clinical documentation in the EHR using a validated assessment tool. Internal Medicine (IM) residents at the University of Kentucky College of Medicine (UK) and Montefiore Medical Center/Albert Einstein College of Medicine (MMC) received one of two interventions during an inpatient ward month: either a lecture, or a lecture and individual feedback on progress notes. A third group of residents in each program served as control. Notes were evaluated with the Physician Documentation Quality Instrument 9 (PDQI-9). Due to a significant difference in baseline PDQI-9 scores at MMC, the sites were not combined. Of 75 residents at the UK site, 22 were eligible, 20 (91%) enrolled, 76 notes in total were scored. Of 156 residents at MMC, 22 were eligible, 18 (82%) enrolled, 40 notes in total were scored. Note quality did not improve as measured by the PDQI-9. This educational quality improvement project did not improve the quality of clinical documentation as measured by the PDQI-9. This project underscores the difficulty in improving note quality. Further efforts should explore more effective educational tools to improve the quality of clinical documentation in the EHR.

  4. Initial boundary-value problem for the spherically symmetric Einstein equations with fluids with tangential pressure.

    PubMed

    Brito, Irene; Mena, Filipe C

    2017-08-01

    We prove that, for a given spherically symmetric fluid distribution with tangential pressure on an initial space-like hypersurface with a time-like boundary, there exists a unique, local in time solution to the Einstein equations in a neighbourhood of the boundary. As an application, we consider a particular elastic fluid interior matched to a vacuum exterior.

  5. Weinberg's nonlinear quantum mechanics and the Einstein-Podolsky-Rosen paradox

    NASA Technical Reports Server (NTRS)

    Polchinski, Joseph

    1991-01-01

    The constraints imposed on observables by the requirement that transmission not occur in the Einstein-Podolsky-Rosen (EPR) experiment are determined, leading to a different treatment of separated systems from that originally proposed by Weinberg (1989). It is found that forbidding EPR communication in nonlinear quantum mechanics necessarily leads to another sort of unusual communication: that between different branches of the wave function.

  6. Scalar hair around charged black holes in Einstein-Gauss-Bonnet gravity

    NASA Astrophysics Data System (ADS)

    Grandi, Nicolás; Landea, Ignacio Salazar

    2018-02-01

    We explore charged black hole solutions in Einstein-Gauss-Bonnet gravity in five dimensions, with a charged scalar hair. We interpret such hairy black holes as the final state of the superradiant instability previously reported for this system. We explore the relation of the hairy black hole solutions with the nonbackreacting quasibound states and scalar clouds, as well as with the boson star solutions.

  7. Solutions to horava gravity.

    PubMed

    Lü, H; Mei, Jianwei; Pope, C N

    2009-08-28

    Recently Horava proposed a nonrelativistic renormalizable theory of gravitation, which reduces to Einstein's general relativity at large distances, and that may provide a candidate for a UV completion of Einstein's theory. In this Letter, we derive the full set of equations of motion, and then we obtain spherically symmetric solutions and discuss their properties. We also obtain solutions for the Friedmann-Lemaître-Robertson-Walker cosmological metric.

  8. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1978-11-13

    The launch of an Atlas/Centaur launch vehicle is shown in this photograph. The Atlas/Centaur, launched on November 13, 1978, carried the High Energy Astronomy Observatory (HEAO)-2 into the required orbit. The second observatory, the HEAO-2 (nicknamed the Einstein Observatory in honor of the centernial of the birth of Albert Einstein) carried the first telescope capable of producing actual photographs of x-ray objects.

  9. The Use of Thought Experiments in Teaching Physics to Upper Secondary-Level Students: Two Examples from the Theory of Relativity

    ERIC Educational Resources Information Center

    Velentzas, Athanasios; Halkia, Krystallia

    2013-01-01

    The present study focuses on the way thought experiments (TEs) can be used as didactical tools in teaching physics to upper secondary-level students. A qualitative study was designed to investigate to what extent the TEs called "Einstein's elevator" and "Einstein's train" can function as tools in teaching basic concepts of the…

  10. Seeking an African Einstein

    NASA Astrophysics Data System (ADS)

    Durrani, Matin

    2008-07-01

    A new postgraduate centre for maths and computer science is set to open in the Nigerian capital of Abuja this month as part of an ambitious plan to find the "next Einstein" in Africa. The centre will provide advanced training to graduate students from across Africa in maths and related fields. It will seek to attract the best young African scientists and nurture their talents as problem-solvers and teachers.

  11. Chapter 5. Hidden Symmetry and Exact Solutions in Einstein Gravity

    NASA Astrophysics Data System (ADS)

    Yasui, Y.; Houri, T.

    Conformal Killing-Yano tensors are introduced as ageneralization of Killing vectors. They describe symmetries of higher-dimensional rotating black holes. In particular, a rank-2 closed conformal Killing-Yano tensor generates the tower of both hidden symmetries and isometries. We review a classification of higher-dimensional spacetimes admitting such a tensor, and present exact solutions to the Einstein equations for these spacetimes.

  12. Mark XIV Torpedo Case Study

    DTIC Science & Technology

    2011-02-26

    Bureau of Ordnance in the meantime had corresponded with Albert Einstein at Princeton University on a variety of issues including torpedo detonation... Einstein was paid $25/day as a consultant and quickly understood the problem. The contact exploder’s firing pin located in the very front warhead...were finally identified and corrected. In all seriousness, God only knows how many submariners died as a result of those defective torpedoes, which

  13. Asymptotically flat, stable black hole solutions in Einstein-Yang-Mills-Chern-Simons theory.

    PubMed

    Brihaye, Yves; Radu, Eugen; Tchrakian, D H

    2011-02-18

    We construct finite mass, asymptotically flat black hole solutions in d=5 Einstein-Yang-Mills-Chern-Simons theory. Our results indicate the existence of a second order phase transition between Reissner-Nordström solutions and the non-Abelian black holes which generically are thermodynamically preferred. Some of the non-Abelian configurations are also stable under linear, spherically symmetric perturbations.

  14. Heterotic reduction of Courant algebroid connections and Einstein-Hilbert actions

    NASA Astrophysics Data System (ADS)

    Jurčo, Branislav; Vysoký, Jan

    2016-08-01

    We discuss Levi-Civita connections on Courant algebroids. We define an appropriate generalization of the curvature tensor and compute the corresponding scalar curvatures in the exact and heterotic case, leading to generalized (bosonic) Einstein-Hilbert type of actions known from supergravity. In particular, we carefully analyze the process of the reduction for the generalized metric, connection, curvature tensor and the scalar curvature.

  15. Book Review: Einstein studies in Russia. Yuri Balashov and Vladimir Vizgin (Eds.); Birkhäuser, Basel, 2002, 315pp, US 59.95, ISBN 0-8176-4263-3

    NASA Astrophysics Data System (ADS)

    Pechenkin, A. A.

    Most of the articles included here were first published in Russian in the series Einstein Studies (Einshteinovskii sbornik) (ES) between 1974 and 1990. ES was established in 1966 with support from the Nobel Prize-winning physicist Igor E. Tamm, who became one of the editors,

  16. Cosmic censorship in quantum Einstein gravity

    NASA Astrophysics Data System (ADS)

    Bonanno, A.; Koch, B.; Platania, A.

    2017-05-01

    We study the quantum gravity modification of the Kuroda-Papapetrou model induced by the running of the Newton’s constant at high energy in quantum Einstein gravity. We argue that although the antiscreening character of the gravitational interaction favours the formation of a naked singularity, quantum gravity effects turn the classical singularity into a ‘whimper’ singularity which remains naked for a finite amount of advanced time.

  17. The Launch of an Atlas/Centaur Launch Vehicle

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The launch of an Atlas/Centaur launch vehicle is shown in this photograph. The Atlas/Centaur, launched on November 13, 1978, carried the High Energy Astronomy Observatory (HEAO)-2 into the required orbit. The second observatory, the HEAO-2 (nicknamed the Einstein Observatory in honor of the centernial of the birth of Albert Einstein) carried the first telescope capable of producing actual photographs of x-ray objects.

  18. Cost comparison of continued anticoagulation with rivaroxaban versus placebo based on the 1-year EINSTEIN-Extension trial efficacy and safety results.

    PubMed

    Wells, Philip S; Lensing, Anthonie W A; Haskell, Lloyd; Levitan, Bennett; Laliberté, François; Durkin, Michael; Ashton, Veronica; Xiao, Yongling; Crivera, Concetta; Lejeune, Dominique; Schein, Jeff; Lefebvre, Patrick

    2018-06-01

    The EINSTEIN-Extension trial (EINSTEIN-EXT) found that continued treatment with rivaroxaban for an additional 6 or 12 months (vs placebo) after 6-12 months of initial anticoagulation significantly reduced the risk of recurrent venous thromboembolism (VTE) with a small non-significant increased risk of major bleeding (none fatal or in critical site). This study aimed to compare total healthcare cost between rivaroxaban and placebo, based on the EINSTEIN-EXT event rates. Total healthcare cost was calculated as the sum of treatment and clinical event costs from a US managed care perspective. Treatment duration and event rates were obtained from the EINSTEIN-EXT study. Adjustment on treatment duration was made by assuming a 10% non-adherence rate. Drug costs were based on wholesale acquisition costs. Cost estimates for clinical events (i.e. recurrent deep vein thrombosis [DVT], recurrent pulmonary embolism, major bleeding, clinically relevant non-major bleeding) were determined from the literature. Results were examined over a ±20% range of each cost component and over 95% confidence intervals (CIs) of event rate differences in deterministic (one-way) and probabilistic sensitivity analyses (PSA). Total healthcare cost was $1,454 lower for rivaroxaban-treated (vs placebo-treated) patients in the base-case, with a lower clinical event cost fully offsetting drug cost. The cost savings of recurrent DVT alone (-$3,102) was greater than drug cost ($2,723). Total healthcare cost remained lower for rivaroxaban in the majority (73%) of PSA (cost difference [95% CI] = -$1,454 [-$2,396, $1,231]). This study was conducted over the 1-year observation period of the EINSTEIN-EXT trial, which limited "real-world" applicability and examination of long-term economic impact. Assumptions on drug and clinical event costs were US-based and, thus, not applicable to other healthcare systems. Total healthcare costs were estimated to be lower for patients continuing rivaroxaban therapy compared to those receiving placebo in VTE patients who had completed 6-12 months of VTE treatment.

  19. A novel Ru/TiO2 hybrid nanocomposite catalyzed photoreduction of CO2 to methanol under visible light

    NASA Astrophysics Data System (ADS)

    Kumar, Pawan; Joshi, Chetan; Labhsetwar, Nitin; Boukherroub, Rabah; Jain, Suman L.

    2015-09-01

    A novel in situ synthesized Ru(bpy)3/TiO2 hybrid nanocomposite is developed for the photoreduction of CO2 into methanol under visible light irradiation. The prepared composite was characterized by means of SEM, TEM, XRD, DT-TGA, XPS, UV-Vis and FT-IR techniques. The photocatalytic activity of the synthesized hybrid catalyst was tested for the photoreduction of CO2 under visible light using triethylamine as a sacrificial donor. The methanol yield for the Ru(bpy)3/TiO2 hybrid nanocomposite was found to be 1876 μmol g-1 cat (φMeOH 0.024 mol Einstein-1) that was much higher in comparison with the in situ synthesized TiO2, 828 μmol g-1 cat (φMeOH 0.010 mol Einstein-1) and the homogeneous Ru(bpy)3Cl2 complex, 385 μmol g-1 cat (φMeOH 0.005 mol Einstein-1).A novel in situ synthesized Ru(bpy)3/TiO2 hybrid nanocomposite is developed for the photoreduction of CO2 into methanol under visible light irradiation. The prepared composite was characterized by means of SEM, TEM, XRD, DT-TGA, XPS, UV-Vis and FT-IR techniques. The photocatalytic activity of the synthesized hybrid catalyst was tested for the photoreduction of CO2 under visible light using triethylamine as a sacrificial donor. The methanol yield for the Ru(bpy)3/TiO2 hybrid nanocomposite was found to be 1876 μmol g-1 cat (φMeOH 0.024 mol Einstein-1) that was much higher in comparison with the in situ synthesized TiO2, 828 μmol g-1 cat (φMeOH 0.010 mol Einstein-1) and the homogeneous Ru(bpy)3Cl2 complex, 385 μmol g-1 cat (φMeOH 0.005 mol Einstein-1). Electronic supplementary information (ESI) available: GC chromatograms of reaction products and calibration curve for methanol analysis. See DOI: 10.1039/c5nr03712c

  20. Bose-Einstein condensation of the classical axion field in cosmology?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, Sacha; Elmer, Martin, E-mail: s.davidson@ipnl.in2p3.fr, E-mail: m.elmer@ipnl.in2p3.fr

    The axion is a motivated cold dark matter candidate, which it would be interesting to distinguish from weakly interacting massive particles. Sikivie has suggested that axions could behave differently during non-linear galaxy evolution, if they form a Bose-Einstein condensate, and argues that ''gravitational thermalisation'' drives them to a Bose-Einstein condensate during the radiation dominated era. Using classical equations of motion during linear structure formation, we explore whether the gravitational interactions of axions can generate enough entropy. At linear order in G{sub N}, we interpret that the principle activities of gravity are to expand the Universe and grow density fluctuations. Tomore » quantify the rate of entropy creation we use the anisotropic stress to estimate a short dissipation scale for axions which does not confirm previous estimates of their gravitational thermalisation rate.« less

Top