Sample records for einsteinium

  1. Einsteinium

    NASA Astrophysics Data System (ADS)

    Haire, Richard G.

    The discovery of einsteinium, element 99, came about during the analyses of nuclear products produced in and then recovered from test debris following a thermonuclear explosion (weapon test device, ‘Mike', November 1952) at Eniwetok Atoll in the Pacific Ocean. The uranium present in this device was subjected to a very intense neutron flux (integrated fluence of about 1024neutrons) in an extremely short time frame (few nanoseconds), which allowed a large number of multiple neutron captures with a minimal degree of decay of the products formed. Nuclei were formed with usually high neutron/proton ratios (very ‘heavy' uranium isotopes), which then rapidly beta-decayed into new, transuranium isotopes through element 100. Scientists from several U.S. Government laboratories separated and analyzed extensively the debris samplings in the following weeks. From these investigations came the discovery and identification of einsteinium and fermium. The first element was named in honor of Albert Einstein, and assigned the symbol, E (later changed to the current symbol, Es). Additional details and discussions about the discovery of this element and the scientists involved are given in several references (Thompson et al., 1954; Ghiorso et al., 1955; Fields et al., 1956; Hyde et al., 1964; Seaborg and Loveland, 1990).

  2. Chemical Properties of Elements 99 and 100 [Einsteinium and Fermium

    DOE R&D Accomplishments Database

    Seaborg, G. T.; Thompson, S. G.; Harvey, B. G.; Choppin, G. R.

    1954-07-23

    A description of some of the chemical properties and of the methods used in the separations of elements 99 [Einsteinium] and 100 [Fermium] are given. The new elements exhibit the properties expected for the tenth and eleventh actinide elements. Attempts to produce an oxidation state greater than III of element 99 have been unsuccessful. In normal aqueous media only the III state of element 100 appears to exist. The relative spacings of the elution peaks of the new elements in some separations with ion exchange resin columns are the same as the relative spacings of the homologous lanthanide elements. The results of experiments involving cation exchange resins with very concentrated hydrochloric acid eluant show that the new elements, like the earlier actinides, are more strongly complexed than the lanthanides. The new elements also exist partially as anions in concentrated hydrochloric acid, as do earlier actinide elements, and they may be partially separated from each other by means of ion exchange resins. With some eluants interesting reversals of elution positions are observed in the region Bk-Cf-99-100, indicating complex ion formation involving unusual factors.

  3. BAG PASSOUT SEALER FOR WATER-SHIELDED CAVE FACILITY (Engineering Materials)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1963-10-31

    The water-shielded cave facility is used in processing irradiated slugs for recovery of americium, curium, berkelium, californium, einsteinium, and fermium. The remotely operated, plastic-bag passout sealer is used in removing isotopic fractions for storage in the rear or for removing radioactive waste for placement in the waste storage containers. The unit is accessible by both the primary inclosure master-slaves and the service area master-slaves. (F.L.S.)

  4. Handbook of Basic Atomic Spectroscopic Data

    National Institute of Standards and Technology Data Gateway

    SRD 108 Handbook of Basic Atomic Spectroscopic Data (Web, free access)   This handbook provides a selection of the most important and frequently used atomic spectroscopic data. The compilation includes data for the neutral and singly-ionized atoms of all elements hydrogen through einsteinium (Z = 1-99). The wavelengths, intensities, and spectrum assignments are given for each element, and the data for the approximately 12,000 lines of all elements are also collected into a single table.

  5. Systematization of actinides using cluster analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kopyrin, A.A.; Terent`eva, T.N.; Khramov, N.N.

    1994-11-01

    A representation of the actinides in multidimensional property space is proposed for systematization of these elements using cluster analysis. Literature data for their atomic properties are used. Owing to the wide variation of published ionization potentials, medians are used to estimate them. Vertical dendograms are used for classification on the basis of distances between the actinides in atomic-property space. The properties of actinium and lawrencium are furthest removed from the main group. Thorium and mendelevium exhibit individualized properties. A cluster based on the einsteinium-fermium pair is joined by californium.

  6. Approximating the r-Process on Earth with Thermonuclear Explosions. Lessons Learned and Unanswered Questions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, Stephen Allan

    2016-01-28

    During the astrophysical r-process, multiple neutron captures occur so rapidly on target nuclei that their daughter nuclei generally do not have time to undergo radioactive decay before another neutron is captured. The r-process can be approximately simulated on Earth in certain types of thermonuclear explosions through an analogous process of rapid neutron captures known as the "prompt capture" process. Between 1952 and 1969, 23 nuclear tests were fielded by the US which were involved (at least partially) with the "prompt capture" process. Of these tests, 15 were at least partially successful. Some of these tests were conducted under the Plowsharemore » Peaceful Nuclear Explosion Program as scientific research experiments. It is now known that the USSR conducted similar nuclear tests during 1966 to 1979. The elements einsteinium and fermium were first discovered by this process. The most successful tests achieved 19 successive neutron captures on the initial target nuclei. A review of the US program, target nuclei used, heavy element yields, scientific achievements of the program, and how some of the results have been used by the astrophysical community is given. Finally, some unanswered questions concerning very neutron-rich nuclei that could potentially have been answered with additional nuclear experiments is presented.« less

Top