Science.gov

Sample records for eis field investigation

  1. EIS Data on the Chandra Deep Field South Released

    NASA Astrophysics Data System (ADS)

    2001-03-01

    The purpose of this note is to announce that the ESO Imaging Survey programme has released a full set of optical/infrared data covering the socalled Chandra Deep Field South (CDF-S) rapidly becoming a favoured target for cosmological studies in the southern hemisphere. The field was originally selected for deep X-ray observations with Chandra and XMM. The former have already been completed producing the deepest high-resolution X-ray image ever taken with a total integration time of one million seconds. The data obtained by EIS include J and Ks infrared observations of an area of 0.1 square degree nearly matching the Chandra image down to JAB ~ 23.4 and KAB ~ 22.6 and UU'BVRI optical observations over 0.25 square degree, matching the XMM field of view, reaching 5 s limiting magnitudes of U'AB = 26.0, UAB = 25.7, BAB = 26.4, VAB = 25.4, RA B = 25.5 and IA B = 24.7 mag, as measured within a 2 ´ FWHM aperture.

  2. The Europa Imaging System (EIS): Investigating Europa's geology, ice shell, and current activity

    NASA Astrophysics Data System (ADS)

    Turtle, Elizabeth; Thomas, Nicolas; Fletcher, Leigh; Hayes, Alexander; Ernst, Carolyn; Collins, Geoffrey; Hansen, Candice; Kirk, Randolph L.; Nimmo, Francis; McEwen, Alfred; Hurford, Terry; Barr Mlinar, Amy; Quick, Lynnae; Patterson, Wes; Soderblom, Jason

    2016-07-01

    NASA's Europa Mission, planned for launch in 2022, will perform more than 40 flybys of Europa with altitudes at closest approach as low as 25 km. The instrument payload includes the Europa Imaging System (EIS), a camera suite designed to transform our understanding of Europa through global decameter-scale coverage, topographic and color mapping, and unprecedented sub- meter-scale imaging. EIS combines narrow-angle and wide-angle cameras to address these science goals: • Constrain the formation processes of surface features by characterizing endogenic geologic structures, surface units, global cross-cutting relationships, and relationships to Europa's subsurface structure and potential near-surface water. • Search for evidence of recent or current activity, including potential plumes. • Characterize the ice shell by constraining its thickness and correlating surface features with subsurface structures detected by ice penetrating radar. • Characterize scientifically compelling landing sites and hazards by determining the nature of the surface at scales relevant to a potential lander. EIS Narrow-angle Camera (NAC): The NAC, with a 2.3°° x 1.2°° field of view (FOV) and a 10-μμrad instantaneous FOV (IFOV), achieves 0.5-m pixel scale over a 2-km-wide swath from 50-km altitude. A 2-axis gimbal enables independent targeting, allowing very high-resolution stereo imaging to generate digital topographic models (DTMs) with 4-m spatial scale and 0.5-m vertical precision over the 2-km swath from 50-km altitude. The gimbal also makes near-global (>95%) mapping of Europa possible at ≤50-m pixel scale, as well as regional stereo imaging. The NAC will also perform high-phase-angle observations to search for potential plumes. EIS Wide-angle Camera (WAC): The WAC has a 48°° x 24°° FOV, with a 218-μμrad IFOV, and is designed to acquire pushbroom stereo swaths along flyby ground-tracks. From an altitude of 50 km, the WAC achieves 11-m pixel scale over a 44-km

  3. [Investigations on leishmaniases at the E.I. Martsinovsky Institute of Medical Parasitology and Tropical Medicine].

    PubMed

    Kellina, O I; Strelkova, M V

    2010-01-01

    The paper assesses the investigations on leishmaniases at the E.I. Martsinovsky Institute of Medical Parasitology and Tropical Medicine in 1920 to 2009. The analysis includes papers on biology, ecology, taxonomy, and experimental transmission of the agents of leishmaniases via the bites of sand flies, the principle in the control of zoonotic cutaneous leishmaniasis (ZCL) during the agricultural development of extensive territories in the Karshin steppe, on quantitative approaches in the epidemiology of ZCL, a search for Russian effective medicaments to treat patients with this disease and the development of criteria for selecting L. major strains for individual and mass vaccinations against ZCL, the revision of Leishmania circulating in great gerbil populations, and the description of the new species L. turanica, an important parasite for L. major persistence from one transmission season to the next. The first investigations on leishmaniasis were made by Prof. E.I. Martsinovsky, the founder and the first director of the Institute in the early 20th century.

  4. [Investigations on leishmaniases at the E.I. Martsinovsky Institute of Medical Parasitology and Tropical Medicine].

    PubMed

    Kellina, O I; Strelkova, M V

    2010-01-01

    The paper assesses the investigations on leishmaniases at the E.I. Martsinovsky Institute of Medical Parasitology and Tropical Medicine in 1920 to 2009. The analysis includes papers on biology, ecology, taxonomy, and experimental transmission of the agents of leishmaniases via the bites of sand flies, the principle in the control of zoonotic cutaneous leishmaniasis (ZCL) during the agricultural development of extensive territories in the Karshin steppe, on quantitative approaches in the epidemiology of ZCL, a search for Russian effective medicaments to treat patients with this disease and the development of criteria for selecting L. major strains for individual and mass vaccinations against ZCL, the revision of Leishmania circulating in great gerbil populations, and the description of the new species L. turanica, an important parasite for L. major persistence from one transmission season to the next. The first investigations on leishmaniasis were made by Prof. E.I. Martsinovsky, the founder and the first director of the Institute in the early 20th century. PMID:21400708

  5. Mars Observer magnetic fields investigation

    NASA Technical Reports Server (NTRS)

    Acuna, M. H.; Connerney, J. E. P.; Wasilewski, P.; Lin, R. P.; Anderson, K. A.; Carlson, C. W.; Mcfadden, J.; Curtis, D. W.; Reme, H.; Cros, A.

    1992-01-01

    The magnetic fields experiment designed for the Mars Observer mission will provide definitive measurements of the Martian magnetic field from the transition and mapping orbits planned for the Mars Observer. The paper describes the instruments (which include a classical magnetometer and an electron reflection magnetometer) and techniques designed to investigate the nature of the Martian magnetic field and the Mars-solar wind interaction, the mapping of crustal magnetic fields, and studies of the Martian ionosphere, which are activities included in the Mars Observer mission objectives. Attention is also given to the flight software incorporated in the on-board data processor, and the procedures of data processing and analysis.

  6. The MAVEN Magnetic Field Investigation

    NASA Astrophysics Data System (ADS)

    Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.

    2015-12-01

    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a resolution of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05 %. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers—multiple rotations about the spacecraft x and z axes—to characterize spacecraft fields and/or instrument offsets in flight.

  7. The MAVEN Magnetic Field Investigation

    NASA Technical Reports Server (NTRS)

    Connerney, J. E. P.; Espley, J.; Lawton, P.; Murphy, S.; Odom, J.; Oliversen, R.; Sheppard, D.

    2014-01-01

    The MAVEN magnetic field investigation is part of a comprehensive particles and fields subsystem that will measure the magnetic and electric fields and plasma environment of Mars and its interaction with the solar wind. The magnetic field instrumentation consists of two independent tri-axial fluxgate magnetometer sensors, remotely mounted at the outer extremity of the two solar arrays on small extensions ("boomlets"). The sensors are controlled by independent and functionally identical electronics assemblies that are integrated within the particles and fields subsystem and draw their power from redundant power supplies within that system. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 65,536 nT per axis) with a quantization uncertainty of 0.008 nT in the most sensitive dynamic range and an accuracy of better than 0.05%. Both magnetometers sample the ambient magnetic field at an intrinsic sample rate of 32 vector samples per second. Telemetry is transferred from each magnetometer to the particles and fields package once per second and subsequently passed to the spacecraft after some reformatting. The magnetic field data volume may be reduced by averaging and decimation, when necessary to meet telemetry allocations, and application of data compression, utilizing a lossless 8-bit differencing scheme. The MAVEN magnetic field experiment may be reconfigured in flight to meet unanticipated needs and is fully hardware redundant. A spacecraft magnetic control program was implemented to provide a magnetically clean environment for the magnetic sensors and the MAVEN mission plan provides for occasional spacecraft maneuvers - multiple rotations about the spacecraft x and z axes - to characterize spacecraft fields and/or instrument offsets in flight.

  8. Field investigation of keyblock stability

    SciTech Connect

    Yow, J.L. Jr.

    1985-04-01

    Discontinuities in a rock mass can intersect an excavation surface to form discrete blocks (keyblocks) which can be unstable. This engineering problem is divided into two parts: block identification, and evaluation of block stability. One stable keyblock and thirteen fallen keyblocks were observed in field investigations at the Nevada Test Site. Nine blocks were measured in detail sufficient to allow back-analysis of their stability. Measurements included block geometry, and discontinuity roughness and compressive strength. Back-analysis correctly predicted stability or failure in all but two cases. These two exceptions involved situations that violated the stress assumptions of the stability calculations. Keyblock faces correlated well with known joint set orientations. The effect of tunnel orientation on keyblock frequency was apparent. Back-analysis of physical models successfully predicted block pullout force for two-dimensional models of unit thickness. Two-dimensional (2D) and three-dimensional (3D) analytic models for the stability of simple pyramidal keyblocks were examined. Calculated stability is greater for 3D analyses than for 2D analyses. Calculated keyblock stability increases with larger in situ stress magnitudes, larger lateral stress ratios, and larger shear strengths. Discontinuity stiffness controls block displacement more strongly than it does stability itself. Large keyblocks are less stable than small ones, and stability increases as blocks become more slender. Rock mass temperature decreases reduce the confining stress magnitudes and can lead to failure. The pattern of stresses affecting each block face explains conceptually the occurrence of pyramidal keyblocks that are truncated near their apex.

  9. Why does self-reported emotional intelligence predict job performance? A meta-analytic investigation of mixed EI.

    PubMed

    Joseph, Dana L; Jin, Jing; Newman, Daniel A; O'Boyle, Ernest H

    2015-03-01

    Recent empirical reviews have claimed a surprisingly strong relationship between job performance and self-reported emotional intelligence (also commonly called trait EI or mixed EI), suggesting self-reported/mixed EI is one of the best known predictors of job performance (e.g., ρ = .47; Joseph & Newman, 2010b). Results further suggest mixed EI can robustly predict job performance beyond cognitive ability and Big Five personality traits (Joseph & Newman, 2010b; O'Boyle, Humphrey, Pollack, Hawver, & Story, 2011). These criterion-related validity results are problematic, given the paucity of evidence and the questionable construct validity of mixed EI measures themselves. In the current research, we update and reevaluate existing evidence for mixed EI, in light of prior work regarding the content of mixed EI measures. Results of the current meta-analysis demonstrate that (a) the content of mixed EI measures strongly overlaps with a set of well-known psychological constructs (i.e., ability EI, self-efficacy, and self-rated performance, in addition to Conscientiousness, Emotional Stability, Extraversion, and general mental ability; multiple R = .79), (b) an updated estimate of the meta-analytic correlation between mixed EI and supervisor-rated job performance is ρ = .29, and (c) the mixed EI-job performance relationship becomes nil (β = -.02) after controlling for the set of covariates listed above. Findings help to establish the construct validity of mixed EI measures and further support an intuitive theoretical explanation for the uncommonly high association between mixed EI and job performance--mixed EI instruments assess a combination of ability EI and self-perceptions, in addition to personality and cognitive ability. PMID:25243996

  10. The magnetic field investigation on Cluster

    NASA Technical Reports Server (NTRS)

    Balogh, A.; Cowley, S. W. H.; Southwood, D. J.; Musmann, G.; Luhr, H.; Neubauer, F. M.; Glassmeier, K.-H.; Riedler, W.; Heyn, M. F.; Acuna, M. H.

    1988-01-01

    The magnetic field investigation of the Cluster four-spacecraft mission is designed to provide intercalibrated measurements of the B magnetic field vector. The instrumentation and data processing of the mission are discussed. The instrumentation is identical on the four spacecraft. It consists of two triaxial fluxgate sensors and of a failure tolerant data processing unit. The combined analysis of the four spacecraft data will yield such parameters as the current density vector, wave vectors, and the geometry and structure of discontinuities.

  11. Synthetic turf field investigation in Connecticut.

    PubMed

    Simcox, Nancy J; Bracker, Anne; Ginsberg, Gary; Toal, Brian; Golembiewski, Brian; Kurland, Tara; Hedman, Curtis

    2011-01-01

    The primary purpose of this study was to characterize the concentrations of volatile organic compounds (VOC), semivolatile organic compounds (SVOC), rubber-related chemicals such as benzothiazole (BZT) and nitrosamine, and particulate matter (PM(10)) in air at synthetic turf crumb rubber fields. Both new and older fields were evaluated under conditions of active use. Three types of fields were targeted: four outdoor crumb rubber fields, one indoor facility with crumb rubber turf, and an outdoor natural grass field. Background samples were collected at each field on grass. Personal air sampling was conducted for VOC, BZT, nitrosamines, and other chemicals. Stationary air samples were collected at different heights to assess the vertical profile of release. Air monitoring for PM(10) was conducted at one height. Bulk samples of turf grass and crumb rubber were analyzed, and meteorological data were recorded. Results showed that personal concentrations were higher than stationary concentrations and were higher on turf than in background samples for certain VOC. In some cases, personal VOC concentrations from natural grass fields were as high as those on turf. Naphthalene, BZT, and butylated hydroxytoluene (BHT) were detected in greater concentration at the indoor field compared to the outdoor fields. Nitrosamine air levels were below reporting levels. PM(10) air concentrations were not different between on-field and upwind locations. All bulk lead (Pb) samples were below the public health target of 400 ppm. More research is needed to better understand air quality at indoor facilities. These field investigation data were incorporated into a separate human health risk assessment.

  12. Investigation on Preferential Corrosion of Welded Carbon Steel Under Flowing Conditions by EIS

    NASA Astrophysics Data System (ADS)

    Alawadhi, K.; Aloraier, A. S.; Joshi, S.; Alsarraf, J.; Swilem, S.

    2013-08-01

    Carbon steels are used extensively in construction of oil and gas pipes but they exhibit poor corrosion-resistance properties because of internal corrosion. In this research, a rotating cylinder electrode apparatus was designed so that electrodes machined from the weld metal, heat-affected zone, and parent material of a welded X65 pipeline steel could be tested in high shear stress conditions using electromechanical impedance spectroscopy. The aim was to investigate the cause of the severe localized corrosion that sometimes occurs at welds in carbon steel pipelines carrying hydrocarbons and inhibited brine solutions saturated with carbon dioxide. It was concluded that the surface films play an important role in effective inhibition, and this inhibition is more effective on a clean surface rather than on a precorroded one.

  13. Position-Specific Mass Shift Analysis: A Systematic Method for Investigating the EI-MS Fragmentation Mechanism of epi-Isozizaene.

    PubMed

    Rabe, Patrick; Klapschinski, Tim A; Dickschat, Jeroen S

    2016-07-15

    The EI-MS fragmentation mechanism of the bacterial sesquiterpene epi-isozizaene was investigated through enzymatic conversion of all 15 synthetic ((13) C1 )FPP isotopomers with the epi-isozizaene synthase from Streptomyces albus and GC-MS and GC-QTOF analysis including MS-MS. A systematic method, which we wish to call position-specific mass shift analysis, for the identification of the full set of fragmentation reactions was developed.

  14. Position-Specific Mass Shift Analysis: A Systematic Method for Investigating the EI-MS Fragmentation Mechanism of epi-Isozizaene.

    PubMed

    Rabe, Patrick; Klapschinski, Tim A; Dickschat, Jeroen S

    2016-07-15

    The EI-MS fragmentation mechanism of the bacterial sesquiterpene epi-isozizaene was investigated through enzymatic conversion of all 15 synthetic ((13) C1 )FPP isotopomers with the epi-isozizaene synthase from Streptomyces albus and GC-MS and GC-QTOF analysis including MS-MS. A systematic method, which we wish to call position-specific mass shift analysis, for the identification of the full set of fragmentation reactions was developed. PMID:27123899

  15. Field investigation of the drift shadow

    USGS Publications Warehouse

    Su, G.W.; Kneafsey, T.J.; Ghezzehei, T.A.; Cook, P.J.; Marshall, B.D.

    2006-01-01

    The "Drift Shadow" is defined as the relatively drier region that forms below subsurface cavities or drifts in unsaturated rock. Its existence has been predicted through analytical and numerical models of unsaturated flow. However, these theoretical predictions have not been demonstrated empirically to date. In this project we plan to test the drift shadow concept through field investigations and compare our observations to simulations. Based on modeling studies we have an identified a suitable site to perform the study at an inactive mine in a sandstone formation. Pretest modeling studies and preliminary characterization of the site are being used to develop the field scale tests.

  16. FIELD INVESTIGATIONS OF THE DRIFT SHADOW

    SciTech Connect

    G. W. Su, T. J. Kneafsey, T. A. Ghezzehei, B. D. Marshall, and P. J. Cook

    2006-01-15

    The ''Drift Shadow'' is defined as the relatively drier region that forms below subsurface cavities or drifts in unsaturated rock. Its existence has been predicted through analytical and numerical models of unsaturated flow. However, these theoretical predictions have not been demonstrated empirically to date. In this project they plan to test the drift shadow concept through field investigations and compare our observations to simulations. Based on modeling studies they have an identified suitable site to perform the study at an inactive mine in a sandstone formation. Pretest modeling studies and preliminary characterization of the site are being used to develop the field scale tests.

  17. Polypyrrole nanostructures and their field emission investigations

    NASA Astrophysics Data System (ADS)

    Harpale, Kashmira; More, Mahendra A.; Koinkar, Pankaj M.; Patil, Sandip S.; Sonawane, Kishor M.

    2015-03-01

    Polypyrrole (PPy) nanostructures have been synthesized on indium doped tin oxide (ITO) substrates by a facile electrochemical route employing cyclic voltammetry (CV) mode. The morphology of the PPy thin films was observed to be influenced by the monomer concentration. Furthermore, FTIR revealed formation of electrically conducting state of PPy. Field emission investigations of the PPy nanostructures were carried out at base pressure of 1×10-8mbar. The values of turn-on field, corresponding to emission current density of 1 μA/cm2 were observed to be 0.6, 1.0 and 1.2 V/μm for the PPy films characterized with rod-like, cauliflower and granular morphology, respectively. In case of PPy nanorods maximum current density of 1.2 mA/cm2 has been drawn at electric field of 1 V/μm. The low turn on field, extraction of very high emission current density at relatively lower applied field and good emission stability propose the PPy nanorods as a promising material for field emission based devices.

  18. The Europa Imaging System (EIS), a Camera Suite to investigate Europa's Geology, Ice Shell, and Potential for Current Activity

    NASA Astrophysics Data System (ADS)

    Turtle, E. P.; McEwen, A. S.; Osterman, S. N.; Boldt, J. D.; Strohbehn, K.; EIS Science Team

    2016-10-01

    EIS NAC and WAC use identical rad-hard rapid-readout 4k × 2k CMOS detectors for imaging during close (≤25 km) fast ( 4.5 km/s) Europa flybys. NAC achieves 0.5 m/pixel over a 2-km swath from 50 km, and WAC provides context pushbroom stereo imaging.

  19. Planar dipolar polymer brush: field theoretical investigations

    NASA Astrophysics Data System (ADS)

    Mahalik, Jyoti; Kumar, Rajeev; Sumpter, Bobby

    2015-03-01

    Physical properties of polymer brushes bearing monomers with permanent dipole moments and immersed in a polar solvent are investigated using self-consistent field theory (SCFT). It is found that mismatch between the permanent dipole moments of the monomer and the solvent plays a significant role in determining the height of the polymer brush. Sign as well as magnitude of the mismatch determines the extent of collapse of the polymer brush. The mismatch in the dipole moments also affects the force-distance relations and interpenetration of polymers in opposing planar brushes. In particular, an attractive force between the opposing dipolar brushes is predicted for stronger mismatch parameter. Furthermore, effects of added monovalent salt on the structure of dipolar brushes will also be presented. This investigation highlights the significance of dipolar interactions in affecting the physical properties of polymer brushes. Csmd division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, TN 37831, USA.

  20. Hurricane Ike: Field Investigation Survey (Invited)

    NASA Astrophysics Data System (ADS)

    Ewing, L.

    2009-12-01

    Hurricane Ike made landfall at 2:10 a.m. on September 13, 2008, as a Category 2 hurricane. The eye of the hurricane crossed over the eastern end of Galveston Island and a large region of the Texas and Louisiana coast experienced extreme winds, waves and water levels, resulting in large impacts from overtopping, overwash, wind and wave forces and flooding. Major damage stretched from Freeport to the southwest and to Port Arthur to the northeast. The effects of the hurricane force winds were felt well inland in Texas and Louisiana and the storm continued to the interior of the US, causing more damage and loss of life. Through the support of the Coasts, Oceans, Ports and Rivers Institute (COPRI) of the American Society of Civil Engineers (ASCE) a team of 14 coastal scientists and engineers inspected the upper Texas coast in early October 2008. The COPRI team surveyed Hurricane Ike’s effects on coastal landforms, structures, marinas, shore protection systems, and other infrastructure. Damages ranges from very minor to complete destruction, depending upon location and elevation. Bolivar Peninsula, to the right of the hurricane path, experienced severe damage and three peninsula communities were completely destroyed. Significant flood and wave damage also was observed in Galveston Island and Brazoria County that were both on the left side of the hurricane path. Beach erosion and prominent overwash fans were observed throughout much of the field investigation area. The post-storm damage survey served to confirm expected performance under extreme conditions, as well as to evaluate recent development trends and conditions unique to each storm. Hurricane Ike confirmed many previously reported observations. One of the main conclusions from the inspection of buildings was that elevation was a key determinant for survival. Elevation is also a major factor in the stability and effectiveness of shore protection. The Galveston Seawall was high enough to provide protection from

  1. The Electron Losses and Fields Investigation

    NASA Astrophysics Data System (ADS)

    Bingley, L.; Angelopoulos, V.; Caron, R.; Zarifian, A.; Miller, J.; Gildemeister, A.; Schoen, B.; Tsai, E.; Berger, S.; Zhang, F.; Subramanian, A.; Chung, M.; Runov, A.; Cruce, P. R.

    2015-12-01

    The Electron Losses and Fields Investigation (ELFIN), is a joint NASA/NSF funded project at the University of California, Los Angeles focusing on eliminating the current deficit in the understanding of the innate physical processes behind geomagnetic storms. Set to launch in 2017, the mission takes advantage of a 3U+ CubeSat design to reduce cost and complexity traditionally associated with a space weather mission of this kind. This mission seeks to quantify the precipitation of relativistic electrons from the radiation belts using a pair of energetic particle detectors (EPDs). The spacecraft will also fly a fluxgate magnetometer (FGM) for determining the pitch angle distribution of the particles, which in conjunction with the EPDs will provide insight to the mechanisms responsible for their loss. Electromagnetic Ion Cyclotron (EMIC) waves are thought to be a significant contributor to the precipitation of electrons trapped in the magnetosphere; however without direct measurement to verify the exact energy range of the particles with high angular resolution, the precise role of these waves is as yet undetermined. ELFIN is unique as it is the first spacecraft that will perform direct pitch angle measurements of the high-energy electrons at the region in the ionosphere where the particles are being lost. Together with correlative measurements from THEMIS, Van Allen Probes and the upcoming ERG mission, ELFIN will provide a unique dataset of magnetospheric wave-particle interactions that will be able to contribute to a marked increase in the fidelity of current space weather models.

  2. FIELD INVESTIGATION OF THE DRIFT SHADOW

    SciTech Connect

    G.W. Su; T.J. Kneafsey

    2006-02-01

    A drift shadow is an area immediately beneath an underground void that, in theory, will be relatively drier than the surrounding rock mass. Numerical and analytical models of water flow through unsaturated rock predict the existence of a drift shadow, but field tests confirming the existence of the drift shadow have yet to be performed. Proving the existence of drift shadows and understanding their hydrologic and transport characteristics could provide a better understanding of how contaminants move in the subsurface if released from waste emplacement drifts such as the proposed nuclear waste repository at Yucca Mountain, Nevada. We describe the field program that will be used to investigate the existence of a drift shadow--and the corresponding hydrological process at the Hazel-Atlas silica-sand mine located at the Black Diamond Mines Regional Preserve in Antioch, California. The location and configuration of this mine makes it an excellent site to observe and measure drift shadow characteristics. The mine is located in a porous sandstone unit of the Domengine formation, an approximately 230 meter thick series of interbedded Eocene-age shales, coals, and massive-bedded sandstones. The mining method used at the mine required the development of two parallel drifts, one above the other, driven along the strike of the mined sandstone stratum. This configuration provides the opportunity to introduce water into the rock mass in the upper drift and to observe and measure its flow around the underlying drift. The passive and active hydrologic tests to be performed are described. In the passive method, cores will be obtained in a radial pattern around a drift and will be sectioned and analyzed for in-situ water content using a gravimetric technique, as well as analyzed for chemistry. With the active hydrologic test, water will be introduced into the upper drift of the two parallel drifts and the flow of the water will be tracked as it passes near the bottom drift

  3. Field investigation of the drift shadow

    SciTech Connect

    Su, Grace W.; Kneafsey, Timothy J.; Ghezzehei, Teamrat A.; Marshall, Brian D.; Cook, Paul J.

    2005-09-08

    A drift shadow is an area immediately beneath an undergroundvoidthat, in theory, will be relatively drier than the surrounding rockmass. Numerical and analytical models of water flow through unsaturatedrock predict the existence of a drift shadow, but field tests confirmingits existence have yet to be performed. Proving the existence of driftshadows and understanding their hydrologic and transport characteristicscould provide a better understanding of how contaminants move in thesubsurface if released from waste emplacement drifts such as the proposednuclear waste repository at Yucca Mountain, Nevada. We describe the fieldprogram that will be used to investigate the existence of a drift shadowand the corresponding hydrological process at the Hazel-Atlas silica-sandmine located at the Black Diamond Mines Regional Preserve in Antioch,California. The location and configuration of this mine makes it anexcellent site to observe and measure drift shadow characteristics. Themine is located in a porous sandstone unit of the Domengine Formation, anapproximately 230 meter thick series of interbedded Eocene-age shales,coals, and massive-bedded sandstones. The mining method used at the minerequired the development of two parallel drifts, one above the other,driven along the strike of the mined sandstone stratum. Thisconfiguration provides the opportunity to introduce water into the rockmass in the upper drift and to observe and measure its flow around theunderlying drift. The passive and active hydrologic tests to be performedare described. In the passive method, cores will be obtained in a radialpattern around a drift and will be sectioned and analyzed for in-situwater content and chemical constituents. With the active hydrologic test,water will be introduced into the upper drift of the two parallel driftsand the flow of the water will be tracked as it passes near the bottomdrift. Tensiometers, electrical resistance probes, neutron probes, andground penetrating radar may be

  4. Experimental investigation of strong field trident production

    SciTech Connect

    Esberg, J.; Kirsebom, K.; Knudsen, H.; Thomsen, H. D.; Uggerhoej, E.; Uggerhoej, U. I.; Sona, P.; Mangiarotti, A.; Ketel, T. J.; Dizdar, A.; Dalton, M. M.; Ballestrero, S.; Connell, S. H.

    2010-10-01

    We show by experiment that an electron impinging on an electric field that is of critical magnitude in its rest frame, may produce an electron-positron pair. Our measurements address higher-order QED, using the strong electric fields obtainable along particular crystallographic directions in single crystals. For the amorphous material our data are in good agreement with theory, whereas a discrepancy with theory on the magnitude of the trident enhancement is found in the precisely aligned case where the strong electric field acts.

  5. Magnetic Field Investigations During ROSETTA's Steins Flyby

    NASA Astrophysics Data System (ADS)

    Glassmeier, K.; Auster, H.; Richter, I.; Motschmann, U.; RPC/ROMAP Teams

    2009-05-01

    During the recent Steins flyby of the ROSETTA spacecraft magnetic field measurements have been made with both, the RPC orbiter magnetometer and the ROMAP lander magnetometer. These combined magnetic field measurements allow a detailed examination of any magnetic signatures caused either directly by the asteroid or indirectly by Steins different modes of interaction with the solar wind. Comparing our measurements with simulation results show that Steins does not possess a significant remanent magnetization. The magnetization is estimated at less than 1 mAm2/kg. This is significantly different from results at Braille and Gaspra.

  6. Stream temperature investigations: field and analytic methods

    USGS Publications Warehouse

    Bartholow, J.M.

    1989-01-01

    Alternative public domain stream and reservoir temperature models are contrasted with SNTEMP. A distinction is made between steady-flow and dynamic-flow models and their respective capabilities. Regression models are offered as an alternative approach for some situations, with appropriate mathematical formulas suggested. Appendices provide information on State and Federal agencies that are good data sources, vendors for field instrumentation, and small computer programs useful in data reduction.

  7. Some results of Moon's gravitational field investigations

    NASA Astrophysics Data System (ADS)

    Haigel, Y. I.; Zazulyak, P. M.

    2016-10-01

    The task of studying the gravitational field of the moon is important for long-term planning of its research using manned and robotic spacecrafts. Determination of harmonic expansion coefficients of selenopotential may not be reliable because of their construction based on different data and different methods of mathematical processing. With mutual comparative assessment of selenopotential models we can get some information about the reliability determination harmonic coefficients.

  8. Investigations of low-dimensional field theories

    NASA Astrophysics Data System (ADS)

    Shifrin, Leonid

    Spontaneous chiral symmetry breaking plays an important role in the low-energy dynamics of QCD. The nonzero chiral condensate is related to the non-zero density of small Dirac eigenvalues through the Banks-Casher relation. Further, the low-energy QCD Dirac spectrum has to satisfy a family of universal consistency relations called Leutwyler-Smilga (LS) spectral sum rules. We discuss these sum rules in the closely related to QCD but much simpler 2-dimensional Schwinger model. The dynamics of the two theories share chiral anomaly, topologically non-trivial vacuum, instantons, dynamical mass generation and confinement. While LS sum rules are the same for both theories, in the Schwinger model it is possible to achieve a more detailed microscopic understanding of them. We give three different derivations of LS sum rules in the Schwinger Model. The first is based on the clustering property of fermionic correlators and is also valid for 1-flavor QCD. The second is an exact microscopic (field theory) derivation. The third relies on 2D bosonization. Next, we discuss the clustering property for the multi-flavor QCD. It is shown that standard clustering is violated in the chiral limit, and a modified clustering relation is derived. Then we consider multi-flavor Schwinger model, and discuss the spectral density and mass dependence of the chiral condensate in the thermodynamic limit. The relation to Random Fermion models used in condensed matter physics is also discussed here. Relations with the Random Matrix Theory and the so called spectral duality are discussed next. Finally, we comment briefly on the remaining unsolved problems and relevance to lattice studies.

  9. Investigating High Field Gravity using Astrophysical Techniques

    SciTech Connect

    Bloom, Elliott D.; /SLAC

    2008-02-01

    The purpose of these lectures is to introduce particle physicists to astrophysical techniques. These techniques can help us understand certain phenomena important to particle physics that are currently impossible to address using standard particle physics experimental techniques. As the subject matter is vast, compromises are necessary in order to convey the central ideas to the reader. Many general references are included for those who want to learn more. The paragraphs below elaborate on the structure of these lectures. I hope this discussion will clarify my motivation and make the lectures easier to follow. The lectures begin with a brief review of more theoretical ideas. First, elements of general relativity are reviewed, concentrating on those aspects that are needed to understand compact stellar objects (white dwarf stars, neutron stars, and black holes). I then review the equations of state of these objects, concentrating on the simplest standard models from astrophysics. After these mathematical preliminaries, Sec. 2(c) discusses 'The End State of Stars'. Most of this section also uses the simplest standard models. However, as these lectures are for particle physicists, I also discuss some of the more recent approaches to the equation of state of very dense compact objects. These particle-physics-motivated equations of state can dramatically change how we view the formation of black holes. Section 3 focuses on the properties of the objects that we want to characterize and measure. X-ray binary systems and Active Galactic Nuclei (AGN) are stressed because the lectures center on understanding very dense stellar objects, black hole candidates (BHCs), and their accompanying high gravitational fields. The use of x-ray timing and gamma-ray experiments is also introduced in this section. Sections 4 and 5 review information from x-ray and gamma-ray experiments. These sections also discuss the current state of the art in x-ray and gamma-ray satellite experiments and

  10. [Field investigations of the air pollution level of populated territories].

    PubMed

    Vinokurov, M V

    2014-01-01

    The assessment and management of air quality of settlements is one of the priorities in the field of environmental protection. In the management of air quality the backbone factor is the methodology of the organization, performance and interpretation of data of field investigations. The present article is devoted to the analysis of the existing methodological approaches and practical aspects of their application in the organization and performance of field investigations with the aim to confirm the adequacy of the boundaries of the sanitary protection zone in the old industrial regions, hygienic evaluation of the data of field investigations of the air pollution level.

  11. “Playing around” with Field-Effect Sensors on the Basis of EIS Structures, LAPS and ISFETs

    PubMed Central

    Schöning, Michael J.

    2005-01-01

    Microfabricated semiconductor devices are becoming increasingly relevant, also for the detection of biological and chemical quantities. Especially, the “marriage” of biomolecules and silicon technology often yields successful new sensor concepts. The fabrication techniques of such silicon-based chemical sensors and biosensors, respectively, will have a distinct impact in different fields of application such as medicine, food technology, environment, chemistry and biotechnology as well as information processing. Moreover, scientists and engineers are interested in the analytical benefits of miniaturised and microfabricated sensor devices. This paper gives a survey on different types of semiconductor-based field-effect structures that have been recently developed in our laboratory.

  12. EIS and XPS investigations on the corrosion mechanism of ternary Zn-Co-Mo alloy coatings in NaCl solution

    NASA Astrophysics Data System (ADS)

    Winiarski, J.; Tylus, W.; Szczygieł, B.

    2016-02-01

    The changes in composition of the corrosion products of electrodeposited ternary Zn-Co-Mo alloy coatings on AISI 1015 steel during exposure to 0.5 mol dm-3 NaCl solution were investigated. XPS studies demonstrated that at the initial stage of corrosion on the surface of Zn-Co-Mo coating zinc hydroxide layer is formed. Hydroxyl groups react with chloride and carbonate ions which lead to the formation of zinc hydroxy carbonates and zinc hydroxy chlorides. The share of these compounds in the oxidation products is initially large. However, with time zinc hydroxy compounds slowly changes to zinc oxide, which is more stable corrosion product. It was estimated that after 24 h of exposure to NaCl solution nearly 60% of zinc detected on the surface of Zn-Co-Mo coating was present in the ZnO form, 18% in the form of zinc hydroxy chloride, and more than 21% as zinc hydroxy carbonate. XPS analyses revealed that the amount of zinc hydroxy chloride increases as the exposure time lengthens and it is significantly higher than at the surface of binary Zn-Co coating. The presence of crystalline zinc chloride hydroxide as a stable product of corrosion of ternary Zn-Co-Mo alloy coating in a 0.5 mol dm-3 NaCl solution was confirmed by XRD analysis. According to XRD and FTIR other zinc corrosion products like: ZnO, Zn(OH)2 and Zn5(CO3)2(OH)6 were also present. The results of XPS and EIS measurements allow us to assume that in the presence of Mo in the alloy, on the surface of ternary Zn-Co-Mo alloy (3.4 wt.% Co, 2.7 wt.% Mo) coating more zinc hydroxy chloride is formed, which favors higher corrosion resistance of this coating.

  13. Investigations of Magnetically Enhanced RIE Reactors with Rotating Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Babaeva, Natalia Yu.; Kushner, Mark J.

    2008-10-01

    In Magnetically Enhanced Reactive Ion Etching (MERIE) reactors, a magnetic field parallel to the substrate enables higher plasma densities and control of ion energy distributions. Since it is difficult to make the B-field uniform across the wafer, the B-field is often azimuthally rotated at a few Hz to average out non-uniformities. The rotation is slow enough that the plasma is in quasi-equilibrium with the instantaneous B-field. For the pressures (10's mTorr or less) and B-fields (10's - 100's G) of interest, electrons are magnetized whereas ions are usually not. The orientation and intersection of the B-field with the wafer are important, as intersecting field lines provide a low resistance path for electron current to the substrate. We report on a modeling study of plasma properties in MERIE reactors having rotating B-fields by investigating a series of quasi-steady states of B-field profiles. To resolve side-to-side variations, computations are performed in Cartesian coordinates. The model, nonPDPSIM, was improved with full tensor conductivities in the fluid portions of the code and v x B forces in the kinetic portions. Results are discussed while varying the orientation and strength of the B-field for electropositive (argon) and electronegative (Ar/CxFy, Ar/Cl2) gas mixtures.

  14. Shemya AFB, Alaska 1992 IRP field investigation report

    SciTech Connect

    Not Available

    1993-02-01

    The US Air Force is currently investigating 22 sites on Shemya Air Force Base (AFB) to determine if past spill and disposal activities have caused environmental damage. These investigations are being carried out under the Air Force's Installation Restoration Program (IRP). As a part of the IRP program, field investigations were performed in 1992 to obtain the information needed to assess what future actions willneed to be carried out at each site. The island's drinking water supply was also investigated. Activities completed at 10 selected sites during the 1992 field investigation included surface sampling to determine the lateral extent of contamination, subsurface sampling to determine the vertical extent of contamination, and the installation of well points and monitoring wells to determine the direction of groundwater flow and if the groundwater has been affected by a site. In addition, geophysical surveys were performed at most sites to identify site boundaries and check for the presence of buried metal to be avoided during drilling activities.

  15. Experiments to investigate particulate materials in reduced gravity fields

    NASA Technical Reports Server (NTRS)

    Bowden, M.; Eden, H. F.; Felsenthal, P.; Glaser, P. E.; Wechsler, A. E.

    1967-01-01

    Study investigates agglomeration and macroscopic behavior in reduced gravity fields of particles of known properties by measuring and correlating thermal and acoustical properties of particulate materials. Experiment evaluations provide a basis for a particle behavior theory and measure bulk properties of particulate materials in reduced gravity.

  16. Streamlining the EIS Process

    ERIC Educational Resources Information Center

    Josephson, Julian

    1977-01-01

    A new publication service abstracts, indexes, and prepares microfiche of environmental impact statements (EIS). This new service is designed to streamline the EIS process by reducing the cost and time of preparation, by eliminating redundancy of similar statements, and by working with the government to standardize the preparation process. (MA)

  17. Investigating the QED vacuum with ultra-intense laser fields

    NASA Astrophysics Data System (ADS)

    King, B.; Di Piazza, A.

    2014-05-01

    In view of the increasingly stronger available laser fields it is becoming feasible to employ them to probe the nonlinear dielectric properties of the vacuum as predicted by quantum electrodynamics (QED) and to test QED in the presence of intense laser beams. First, we discuss vacuum-polarization effects that arise in the collision of a high-energy proton beam with a strong laser field. In addition, we investigate the process of light-by-light diffraction mediated by the virtual electron-positrons of the vacuum. A strong laser beam "diffracts" a probe laser field due to vacuum polarization effects, and changes its polarization. This change of the polarization is shown to be in principle measurable. Also, the possibility of generating harmonics by exploiting vacuum-polarization effects in the collision in vacuum of two ultra-strong laser beams is discussed. Moreover, when two strong parallel laser beams collide with a probe electromagnetic field, each photon of the probe may interact through the "polarized" quantum vacuum with the photons of the other two fields. Analogously to "ordinary" double-slit set-ups involving matter, the vacuum-scattered probe photons produce a diffraction pattern, which is the envisaged observable to measure the quantum interaction between the probe and strong field photons. We have shown that the diffraction pattern becomes visible in a few operating hours, if the strong fields have an intensity exceeding 1024W/cm2.

  18. Shemya AFB, Alaska 1992 IRP field investigation report

    SciTech Connect

    Not Available

    1993-02-01

    The US Air Force is currently investigating 22 sites on Shemya Air Force Base (AFB) to determine if past spill and disposal activities have caused environmental damage. These investigations are being carried out under the Air Force's Installation Restoration Program (IRP). Field investigations were performed in 1992 to obtain the information needed to assess what future actions will need to be carried out at each site. The island's drinking water supply was also investigated. Activities completed at 10 selected sites during the 1992 field investigation included surface sampling to determine the lateral extent of contamination, subsurface sampling to determine the vertical extent of contamination, and the installation of well points and monitoring wells to determine the direction of groundwater flow and if the groundwater has been affected by a site. In addition, geophysical surveys were performed at most sites to identify site boundaries and check for the presence of buried metal to be avoided during drilling activities. This report, appendix A, contains the analytical results.

  19. Field investigation to assess nutrient emission from paddy field to surface water in river catchment

    NASA Astrophysics Data System (ADS)

    Kogure, Kanami; Aichi, Masaatsu; Zessner, Matthias

    2015-04-01

    In order to maintain good river environment, it is remarkably important to understand and to control nutrient behavior such as Nitrogen and Phosphorus. Our former research dealing with nutrient emission analysis in the Tone River basin area in Japan, in addition to urban and industrial waste water, nutrient emission from agricultural activity is dominant pollution source into the river system. Japanese style agriculture produces large amount of rice and paddy field occupies large areas in Japanese river basin areas. While paddy field can deteriorate river water quality by outflow of fertilizer, it is also suggested that paddy field has water purification function. As we carried out investigation in the Tone River Basin area, data were obtained which dissolved nitrogen concentration is lower in discharging water from paddy field than inflowing water into the field. Regarding to nutrient emission impact from paddy field, sufficient data are required to discuss quantitatively seasonal change of material behavior including flooding season and dry season, difference of climate condition, soil type, and rice species, to evaluate year round comprehensive impact from paddy field to the river system. In this research, field survey in paddy field and data collection relating rice production were carried out as a preliminary investigation to assess how Japanese style paddy field contributes year round on surface water quality. Study sites are three paddy fields located in upper reach of the Tone River basin area. The fields are flooded from June to September. In 2014, field investigations were carried out three times in flooding period and twice in dry period. To understand characteristics of each paddy field and seasonal tendency accompanying weather of agricultural event, short term investigations were conducted and we prepare for further long term investigation. Each study site has irrigation water inflow and outflow. Two sites have tile drainage system under the field and

  20. Interpretation and communication of the results of medical field investigations.

    PubMed

    Schulte, P A; Singal, M

    1989-07-01

    Since the controversy over cytogenetic test results at the Love Canal in New York State, there has been increasing concern about the communication of medical test results to participants in field studies. To identify the range of issues that arise and to present examples of practices that might be useful for consideration, we have drawn from 15 years of experience in interpreting and communicating the results of medical field investigations by the National Institute for Occupational Safety and Health. The investigations were qualitatively characterized according to study type and design, substances involved, language used in the notification of results, and the nature of the efforts to put results in perspective. Based on this evaluation, the following recommendations are made: (1) provide a comprehensible consent form, (2) interpret results for study participants, (3) use clear language, (4) be explicit about uncertainty of findings, (5) where appropriate, indicate the need for medical follow-up, (6) provide results promptly, (7) provide overall study results, (8) evaluate the impact of the notification, (9) train investigators in the practice of communicating results. PMID:2769455

  1. Investigating oiled birds from oil field waste pits

    SciTech Connect

    Gregory, D.G.; Edwards, W.C. )

    1991-10-01

    Procedures and results of investigations concerning the oiling of inland raptors, migratory water-fowl and other birds are presented. Freon washings from the oiled birds and oil from the pits were analyzed by gas chromatography. In most instances the source of the oil could be established by chromatographic procedures. The numbers of birds involved (including many on the endangered species list) suggested the need for netting or closing oil field waste pits and mud disposal pits. Maintaining a proper chain of custody was important.

  2. An investigation of swirl flow field in pneumatic conveying duct

    NASA Astrophysics Data System (ADS)

    Huang, Xijun; Dong, Jinzhong

    1992-10-01

    The swirl flow field of a pneumatic conveying system is investigated experimentally. The swirl is imparted to the flow by the use of swirl vanes. A five-hole probe is used for measuring the tangential angle of flow, axial velocity, static pressure of flow, and swirl number in the flow sections of a conveying system. It is shown that the existence of a central screw conveyer produces the contrary swirl flow under some of the swirl vane angle conditions. The larger axial velocity is produced in the outer annular layer of flow. The maximum value of the swirl number in the flow sections agrees with a simplified theoretical relation.

  3. Shemya AFB, Alaska 1992 IRP field investigation report

    SciTech Connect

    Not Available

    1993-02-01

    The US Air Force is currently investigating 22 sites on Shemya Air Force Base (AFB) to determine if past spill and disposal activities have caused environmental damage. These investigations are being carried out under the Air Force's Installation Restoration Program (IRP). Field investigations were performed in 1992 to obtain the information needed to assess what future actions will need to be carried out at each site. The island's drinking water supply was also investigated. Activities completed at 10 selected sites included surface sampling to determine the lateral extent of contamination, subsurface sampling to determine the vertical extent of contamination, and the installation of well points and monitoring wells to determine the direction of groundwater flow and if the groundwater has been affected by a site. Geophysical surveys were performed at most sites to identify site boundaries and check for the presence of buried metal to be avoided during drilling activities. This report, appendices B, C, and D contains information on the following: geophysical contour maps and profile plots; human health risk assessment; and ecological risk assessment.

  4. Shemya AFB, Alaska 1992 IRP field investigation report

    SciTech Connect

    Not Available

    1993-02-01

    The US Air Force is currently investigating 22 sites on Shemya Air Force Base (AFB) to determine if past spill and disposal activities have caused environmental damage. These investigations are being carried out under the Air Force's Installation Restoration Program (IRP). Field investigations were performed in 1992 to obtain the information needed to assess what future actions will need to be carried out at each site. The island's drinking water supply was also investigated. Activities completed at 10 selected sites included surface sampling to determine the lateral extent of contamination, subsurface sampling to determine the vertical extent of contamination, and the installation of well points and monitoring wells to determine the direction of groundwater flow and if the groundwater has been affected by a site. In addition, geophysical surveys were performed at most sites to identify site boundaries and check for the presence of buried metal, to be avoided during drilling activities. This report contains appendices E and F with information on the following: soil boring logs, and data validation of samples analyzed.

  5. Investigation of a supersonic cruise fighter model flow field

    NASA Technical Reports Server (NTRS)

    Reubush, D. E.; Bare, E. A.

    1985-01-01

    An investigation was conducted in the Langley 16-Foot Transonic Tunnel to survey the flow field around a model of a supersonic cruise fighter configuration. Local values of angle of attack, side flow, Mach number, and total pressure ratio were measured with a single multi-holed probe in three survey areas on a model previously used for nacelle/nozzle integration investigations. The investigation was conducted at Mach numbers of 0.6, 0.9, and 1.2, and at angles of attack from 0 deg to 10 deg. The purpose of the investigation was to provide a base of experimental data with which theoretically determined data can be compared. To that end the data are presented in tables as well as graphically, and a complete description of the model geometry is included as fuselage cross sections and wing span stations. Measured local angles of attack were generally greater than free stream angle of attack above the wing and generally smaller below. There were large spanwise local angle-of-attack and side flow gradients above the wing at the higher free stream angles of attack.

  6. Investigation of the Arcjet near Field Plume Using Electrostatic Probes

    NASA Technical Reports Server (NTRS)

    Sankovic, John M.

    1990-01-01

    The near field plume of a 1 kW class arcjet thruster was investigated using electrostatic probes of various geometries. The electron number densities and temperatures were determined in a simulated hydrazine plume at axial distances between 3 cm (1.2 in.) and 15 cm (5.9 in.) and radial distances extending to 10 cm (3.9 in.) off centerline. Values of electron number densities obtained using cylindrical and spherical probes of different geometries agreed very well. The electron density on centerline followed a source flow approximation for axial distances as near as 3 cm (1.2 in.) from the nozzle exit plane. The model agreed well with previously obtained data in the far field. The effects of propellant mass flow rate and input power level were also studied. Cylindrical probes were used to obtain ion streamlines by changing the probe orientation with respect to the flow. The effects of electrical configuration on the plasma characteristics of the plume were also investigated by using a segmented anode/nozzle thruster. The results showed that the electrical configuration in the nozzle affected the distribution of electrons in the plume.

  7. Investigation of the arcjet plume near field using electrostatic probes

    NASA Technical Reports Server (NTRS)

    Sankovic, John M.

    1990-01-01

    The near field plum of a 1 kW class arcjet thruster was investigated using electrostatic probes of various geometries. The electron number densities and temperatures were determined in a simulated hydrazine plume at axial distances between 3 cm (1.2 in) and 15 cm (5.9 in) and radial distances extending to 10 cm (3.9 in) off centerline. Values of electron number densities obtained using cylindrical and spherical probes of different geometries agreed very well. The electron density on centerline followed a source flow approximation for axial distances as near as 3 cm (1.2 in) from the nozzle exit plane. The model agreed well with previously obtained data in the far field. The effects of propellant mass flow rate and input power level were also studied. Cylindrical probes were used to obtain ion streamlines by changing the probe orientation with respect to the flow. The effects of electrical configuration on the plasma characteristics of the plume were also investigated by using a segmented anode/nozzle thruster. The results showed that the electrical configuration in the nozzle affected the distribution of electrons in the plume.

  8. FINESSE: Field Investigations to Enable Solar System Science and Exploration

    NASA Technical Reports Server (NTRS)

    Heldmann, Jennifer; Lim, Darlene; Colaprete, Anthony

    2015-01-01

    The FINESSE (Field Investigations to Enable Solar System Science and Exploration) team is focused on a science and exploration field-based research program aimed at generating strategic knowledge in preparation for the human and robotic exploration of the Moon, near-Earth asteroids (NEAs) and Phobos and Deimos. We follow the philosophy that "science enables exploration and exploration enables science." 1) FINESSE Science: Understand the effects of volcanism and impacts as dominant planetary processes on the Moon, NEAs, and Phobos & Deimos. 2) FINESSE Exploration: Understand which exploration concepts of operations (ConOps) and capabilities enable and enhance scientific return. To accomplish these objectives, we are conducting an integrated research program focused on scientifically-driven field exploration at Craters of the Moon National Monument and Preserve in Idaho and at the West Clearwater Lake Impact Structure in northern Canada. Field deployments aimed at reconnaissance geology and data acquisition were conducted in 2014 at Craters of the Moon National Monument and Preserve. Targets for data acquisition included selected sites at Kings Bowl eruptive fissure, lava field and blowout crater, Inferno Chasm vent and outflow channel, North Crater lava flow and Highway lava flow. Field investigation included (1) differential GPS (dGPS) measurements of lava flows, channels (and ejecta block at Kings Bowl); (2) LiDAR imaging of lava flow margins, surfaces and other selected features; (3) digital photographic documentation; (4) sampling for geochemical and petrographic analysis; (5) UAV aerial imagery of Kings Bowl and Inferno Chasm features; and (6) geologic assessment of targets and potential new targets. Over the course of the 5-week field FINESSE campaign to the West Clearwater Impact Structure (WCIS) in 2014, the team focused on several WCIS research topics, including impactites, central uplift formation, the impact-generated hydrothermal system, multichronometer

  9. Investigations on the Incompletely Developed Plane Diagonal-Tension Field

    NASA Technical Reports Server (NTRS)

    Kuhn, Paul

    1940-01-01

    This report presents the results of an investigation on the incompletely developed diagonal-tension field. Actual diagonal-tension beams work in an intermediate stage between pure shear and pure diagonal tension; the theory developed by wagner for diagonal tension is not directly applicable. The first part of the paper reviews the most essential items of the theory of pure diagonal tension as well as previous attempts to formulate a theory of incomplete diagonal tension. The second part of the paper describes strain measurement made by the N. A. C. A. to obtain the necessary coefficients for the proposed theory. The third part of the paper discusses the stress analysis of diagonal-tension beams by means of the proposed theory.

  10. Investigation of the asymmetric distributions of RF transmission and reception fields at high static field.

    PubMed

    Watanabe, Hidehiro

    2012-01-01

    When radiofrequency (RF) transmission field represents B(1)(+), the reception field represents B(1)(-)*. The distribution of those maps demonstrates asymmetric features at high field magnetic resonance (MR) imaging. Both maps are in mirror symmetry to one another. Almost symmetric distribution of the B(1) field was expected on the laboratory frame in a symmetric sample loaded inside the RF coil designed to achieve a homogeneous B(1) field. Then, a simple change was made in the coordinate transformation equation of RF fields between the rotating and laboratory frames in both linear and quadrature modes to investigate the source of this feature of asymmetry. The magnitude of rotating frame components, B(1)(+) and B(1)(-), consists of the magnitude and the phase difference of the laboratory frame components. The rotating frame components differ in the sign of the sinusoidal phase difference. B(1)(+) is equal to B(1)(-) at lower field because phase changes that depend on position can be ignored. At higher fields, the magnitude component has a symmetric profile, and distribution in the phase component is antisymmetric. Thus, the distributions of B(1)(+) and B(1)(-) maps demonstrate mirror symmetry. Maps of magnitude and phase components were examined in the laboratory frame. Their maps were computed from B(1)(+) and B(1)(-) maps of the human brain and of a spherical saline phantom measured at 4.7T. It was concluded from these analytical and experimental results that the asymmetric and mirror symmetric distributions in B(1)(+) and B(1)(-) are derived from the phase difference in the laboratory frame. PMID:22790299

  11. Continuous field investigation assessing nitrogen and phosphorus emission from irrigated paddy field

    NASA Astrophysics Data System (ADS)

    Kogure, Kanami; Aichi, Masaatsu; Zessner, Matthias

    2016-04-01

    In order to maintain good river environment, it is very important to understand and to control nutrient behavior such as Nitrogen and Phosphorus. Other than urban and industrial waste water, nutrient emission from agricultural activity is dominant pollution source into the river system. Rice is one of the staple products of Asia and paddy field occupies large areas in Asian countries. Rice is also widely cultivated in Japan. Paddy field occupies large areas in Japanese river basin areas. While paddy field can deteriorate river water quality by discharging fertilizer, it is also suggested that paddy field has water purification function. Regarding to nutrient emission from paddy field, existing monitored data are insufficient so as to discuss quantitatively seasonal change of material behavior including flooding season and dry season and to evaluate year round comprehensive impact from paddy field to the river system. These are not sufficient data for discussion of material flow and emission impact quantitatively as well as qualitatively. We have carried out field investigation in paddy fields in middle reach of the Tone River Basin. The aim of the survey is understanding of water and nutrient balance in paddy field. In order to understand emission impact from paddy field to river system, all input and output flow are measured to calculate nutrient balance in paddy field. Therefore we observed quantity of water flow into/from paddy field, water quality change of inflow and outflow during flooding season. We set focus on a monitoring paddy field IM, and monitored continuously water and nutrient behavior. By measuring water quality and flow rate of inflow, outflow, infiltrating water, ground water and depth of flooding water, we tried to quantitatively understand N and P cycle around paddy field including seasonal tendency, change accompanying with rainy events and occurred according to agricultural events like fertilization. At the beginning of flooding season, we

  12. Field Theoretical Investigation of Fluctuation-Induced Phenomena

    NASA Astrophysics Data System (ADS)

    Langsjoen, Luke Schell

    This thesis presents a field-theoretical investigation of the emergent properties of random fluctuations. We resolve a long-standing dilemma involving the ultraviolet divergences that often occur in Casimir calculations. We show that all formally divergent terms in the Casimir energy orgininate from geometrical properties of the boundary in question. Any material boundary will become transparent to sufficiently high-energy modes, and the formally divergent component of the energy is derived as an expansion in powers of this cutoff frequency. We demonstrate that the Casimir self-energy of a smooth boundary in two dimensions is a sum of two Weyl terms (exhibiting quadratic and logarithmic cutoff dependence), a geometrical term that is independent of the cutoff, and a non-geometrical intrinsic term. As by-products we resolve the puzzle of the divergent Casimir force on a ring and correct the sign of the coefficient of linear tension of a Dirichlet line predicted in earlier treatments. Next, we compute the generic mode sum that quantifies the effect on the spectrum of a harmonic field when a spherical shell is inserted into vacuum. We demonstrate that in the case of a scalar field obeying Dirichlet or Neumann boundary conditions on the shell surface the Casimir self-energy is cutoff-dependent while in the case of the electromagnetic field perturbed by a conductive shell the Casimir self-energy is universal. We also discuss generalized Casimir effects, for example an analog of the non-relativistic Casimir effect which can be realized in ferromagnets due to zero-point excitation of spin waves. We introduce a unique model for the Casimir effect of a boundary of finite thickness, with preliminary results. We present a calculation of the energy of N spinless non-interacting fermions confined to a one-dimensional interval. These results are shown to reinforce those obtained in the previous work of Kolomeisky et.al., [89]. Finally, we examine the classical Euler buckling

  13. Remedial investigation report for J-Field, Aberdeen Proving Ground, Maryland. Volume 1: Remedial investigation results

    SciTech Connect

    Yuen, C. R.; Martino, L. E.; Biang, R. P.; Chang, Y. S.; Dolak, D.; Van Lonkhuyzen, R. A.; Patton, T. L.; Prasad, S.; Quinn, J.; Rosenblatt, D. H.; Vercellone, J.; Wang, Y. Y.

    2000-03-14

    This report presents the results of the remedial investigation (RI) conducted at J-Field in the Edgewood Area of Aberdeen Proving Ground (APG), a U.S. Army installation located in Harford County, Maryland. Since 1917, activities in the Edgewood Area have included the development, manufacture, and testing of chemical agents and munitions and the subsequent destruction of these materials at J-Field by open burning and open detonation. These activities have raised concerns about environmental contamination at J-Field. This RI was conducted by the Environmental Conservation and Restoration Division, Directorate of Safety, Health and Environmental Division of APG, pursuant to requirements outlined under the Comprehensive Environmental Response, Compensation, and Liability Act, as amended (CERCLA). The RI was accomplished according to the procedures developed by the U.S. Environmental Protection Agency (EPA 1988). The RI provides a comprehensive evaluation of the site conditions, nature of contaminants present, extent of contamination, potential release mechanisms and migration pathways, affected populations, and risks to human health and the environment. This information will be used as the basis for the design and implementation of remedial actions to be performed during the remedial action phase, which will follow the feasibility study (FS) for J-Field.

  14. A field investigation and numerical simulation of coastal fog

    NASA Technical Reports Server (NTRS)

    Mack, E. J.; Eadie, W. J.; Rogers, C. W.; Kocmond, W. C.; Pilie, R. J.

    1973-01-01

    A field investigation of the microphysical and micrometeorological features of fogs occurring near Los Angeles and Vandenberg, California was conducted. Observations of wind speed and direction, temperature, dew point, vertical wind velocity, dew deposition, drop-size distribution, liquid water content, and haze and cloud nucleus concentration were obtained. These observations were initiated in late evening prior to fog formation and continued until the time of dissipation in both advection and radiation fogs. Data were also acquired in one valley fog and several dense haze situations. The behavior of these parameters prior to and during fog are discussed in detail. A two-dimensional numerical model was developed to investigate the formation and dissipation of advection fogs under the influence of horizontal variations in surface temperature. The model predicts the evolution of potential temperature, water vapor content, and liquid water content in a vertical plane as determined by vertical turbulent transfer and horizontal advection. Results are discussed from preliminary numerical experiments on the formation of warm-air advection fog and dissipation by natural and artificial heating from the surface.

  15. Radiocolloids in leachate from the NRC field lysimeter investigations

    SciTech Connect

    Brey, R.R.; Butikofer, T.; McConnell, J.W.; Rogers, R.D.

    1998-12-31

    An investigation of colloidal particles has been completed on leachate samples collected from sand and soil-filled lysimeters (of the Field Lysimeter Investigation: Low-Level Waste Data Base Development Program) in which low-level radioactive waste forms were buried. An array of analytical techniques including: gamma spectroscopy, liquid scintillation spectrometry, gross alpha and beta particle proportional counting, energy dispersive X-ray analysis (EDX), neutron activation analysis (NAA), X-ray fluorescence analysis (XRF), proton induced X-ray emission analysis (PIXE), gravimetric analysis, and scanning electron microscopy (SEM), were performed on samples thought to contain colloidal particles to determine particle composition and the nature of their association with radioactive material. Several different types of particles ranging in size from 0.02 to 20 {micro}m were identified within the leachate including crystalline calcium hydroxide particles, rounded siliceous grains, angular weathered soil, and spherical particles apparently composed of an organic polymer. The primary radioactive material associated with these particles was Sr-90. About 2% of the total Sr-90 activity in the leachate is associated with colloidal particles. This information indicates that colloidal particles play a role in radioactive material transport through lysimeter soils.

  16. Field site investigation: Effect of mine seismicity on groundwater hydrology

    SciTech Connect

    Ofoegbu, G.I.; Hsiung, S.; Chowdhury, A.H.; Philip, J.

    1995-04-01

    The results of a field investigation on the groundwater-hydrologic effect of mining-induced earthquakes are presented in this report. The investigation was conducted at the Lucky Friday Mine, a silver-lead-zinc mine in the Coeur d`Alene Mining District of Idaho. The groundwater pressure in sections of three fracture zones beneath the water table was monitored over a 24-mo period. The fracture zones were accessed through a 360-m-long inclined borehole, drilled from the 5,700 level station of the mine. The magnitude, source location, and associated ground motions of mining-induced seismic events were also monitored during the same period, using an existing seismic instrumentation network for the mine, augmented with additional instruments installed specifically for the project by the center for Nuclear Waste Regulatory Analyses (CNWRA). More than 50 seismic events of Richter magnitude 1.0 or larger occurred during the monitoring period. Several of these events caused the groundwater pressure to increase, whereas a few caused it to decrease. Generally, the groundwater pressure increased as the magnitude of seismic event increased; for an event of a given magnitude, the groundwater pressure increased by a smaller amount as the distance of the observation point from the source of the event increased. The data was examined using regression analysis. Based on these results, it is suggested that the effect of earthquakes on groundwater flow may be better understood through mechanistic modeling. The mechanical processes and material behavior that would need to be incorporated in such a model are examined. They include a description of the effect of stress change on the permeability and water storage capacity of a fracture rock mass; transient fluid flow; and the generation and transmission of seismic waves through the rock mass.

  17. First results of the MAVEN magnetic field investigation

    NASA Astrophysics Data System (ADS)

    Connerney, J. E. P.; Espley, J. R.; DiBraccio, G. A.; Gruesbeck, J. R.; Oliversen, R. J.; Mitchell, D. L.; Halekas, J.; Mazelle, C.; Brain, D.; Jakosky, B. M.

    2015-11-01

    Two Mars Atmosphere and Volatile EvolutioN magnetic field sensors sample the ambient magnetic field at the outer edge of each solar array. We characterized relatively minor spacecraft-generated magnetic fields using in-flight subsystem tests and spacecraft maneuvers. Dynamic spacecraft fields associated with the power subsystem (≤1 nT) are compensated for using spacecraft engineering telemetry to identify active solar array circuits and monitor their electrical current production. Static spacecraft magnetic fields are monitored using spacecraft roll maneuvers. Accuracy of measurement of the environmental magnetic field is demonstrated by comparison with field directions deduced from the symmetry properties of the electron distribution function measured by the Solar Wind Electron Analyzer. We map the bow shock, magnetic pileup boundary, the V × B convection electric field and ubiquitous proton cyclotron, and 1 Hz waves in the ion foreshock region.

  18. Results of investigations at the Ahuachapan geothermal field, El Salvador

    SciTech Connect

    Dennis, B.; Goff, F.; Van Eeckhout, E.; Hanold, B.

    1990-04-01

    Well logging operations were performed in eight of the geothermal wells at Ahuachapan. High-temperature downhole instruments, including a temperature/rabbit, caliper, fluid velocity spinner/temperature/pressure (STP), and fluid sampler, were deployed in each well. The caliper tool was used primarily to determine if chemical deposits were present in well casings or liners and to investigate a suspected break in the casing in one well. STP logs were obtained from six of the eight wells at various flow rates ranging from 30 to 80 kg/s. A static STP log was also run with the wells shut-in to provide data to be used in the thermodynamic analysis of several production wells. The geochemical data obtained show a system configuration like that proposed by C. Laky and associates in 1989. Our data indicate recharge to the system from the volcanic highlands south of the field. Additionally, our data indicate encroachment of dilute fluids into deeper production zones because of overproduction. 17 refs., 50 figs., 10 tabs.

  19. Theoretical investigation of bacteria polarizability under direct current electric fields.

    PubMed

    Dingari, Naga Neehar; Buie, Cullen R

    2014-04-22

    We present a theoretical model to investigate the influence of soft polyelectrolyte layers on bacteria polarizability. We resolve soft-layer electrokinetics by considering the pH-dependent dissociation of ionogenic groups and specific interactions of ionogenic groups with the bulk electrolyte to go beyond approximating soft-layer electrokinetics as surface conduction. We model the electrokinetics around a soft particle by modified Poisson-Nernst-Planck equations (PNP) to account for the effects of ion transport in the soft layer and electric double layer. Fluid flow is modeled by modified Stokes equations accounting for soft-layer permeability. Two test cases are presented to demonstrate our model: fibrillated and unfibrillated Streptococcus salivarius bacteria. We show that electrolytic and pH conditions significantly influence the extent of soft-particle polarizability in dc fields. Comparison with an approximate analytical model based on Dukhin-Shilov theory for soft particles shows the importance of resolving soft-layer electrokinetics. Insights from this study can be useful in understanding the parameters that influence soft-particle dielectrophoresis in lab-on-a-chip devices.

  20. Limited field investigation for the 200-UP-1 operable unit

    SciTech Connect

    1996-11-01

    The 200-UP-1 Groundwater Operable Unit is located in the southern portion of the 200 West Area on the Hanford Site in Washington State. The operable unit is located adjacent to the 200-ZP-1 Groundwater Operable Unit and underlies a significant part of seven source operable units: 200-RO-1, 200-RO-2, 200-RO-3, 200-RO-4, 200-SS-2, 200-UP-2, and 200-UP-3. Remedial efforts in the 100-ZP-1 Operable Unit focus on addressing volatile organic contamination in the aquifer. The focus of the 200-UP-1 limited field investigation (LFI) is on contaminated aquifer soils and groundwater within its boundary, with the exception of uranium and technetium-99 plumes, which are addressed by an existing 200-UP-1 interim remedial measure (IRM). The LFI approach is driven by general and specific data needs required to refine the site conceptual model and conduct a risk assessment. Activities supporting the LFI include drilling, well construction, sampling and analysis, data validation, geologic and geophysical logging, aquifer testing, measuring depth to water, and evaluating geodetic survey and existing analytical data.

  1. Near-field scanning optical microscopy investigations of conjugated polymers

    NASA Astrophysics Data System (ADS)

    Dearo, Jessie Ann

    The Near-Field Scanning Optical Microscopy (NSOM) studies of novel, optically active, conjugated polymers are presented. NSOM is a relatively new technique which produces super resolution (˜50--100 nm) optical images simultaneously with topography. The conjugated polymer poly(p-phenylene vinylene) (PPV) and derivatives of PPV are organic semiconductor-like materials with interesting and unique optical properties. Derivatives of PPV have been used in LEDs and have potential in other optoelectronic devices. NSOM provides a tool for investigation of the photoluminescence, absorption/reflection, photo-dynamics and photoconductivity of films of PPV and PPV derivatives on the length scale that these properties are fundamentally defined. The NSOM experiments have revealed mesoscale domains (˜100 nm) of varying photoluminescence emission and average molecular order in drop cast films of PPV. NSOM of stretch-oriented PPV have shown domains of perpendicular molecular orientation with low photoluminescence emission. Near-field photoconductivity experiments of stretch-oriented PPV have correlated the mesoscale topography with the photoconductivity properties of the polymer. NSOM experiments of films of poly(2-methoxy, 5-(2'-(ethyl(hexyloxy)-p-phenylene vinylene) (MEH-PPV) have shown that there is mesoscale spatial inhomogeneity in the photo-oxidation process which reduces photoluminescence emission. NSOM has also been used to create nanoscale photo-patterning in MEH-PPV films. The NSOM experiments of blended films of MEH-PPV in polystyrene have shown mesoscale phase separation directly correlated to variations in the optical properties of the film. Derivatives of PPV, stretch-oriented in polyethylene, show photoluminescence intensity variations perpendicular and parallel to the stretch-direction correlated to topography features. As a complement to the NSOM studies of conjugated polymers, single polymer molecule experiments of MEH-PPV are also presented. The

  2. Investigation of precipitation characteristics during NASA GV field projects

    NASA Astrophysics Data System (ADS)

    Dolan, B.; Rutledge, S. A.; Petersen, W. A.; Wolff, D. B.

    2014-12-01

    The availability of high quality rain gage networks for extended periods of time during NASA ground validation (GV) field projects supporting the Global Precipitation Measurement Mission (GPM) allow for extensive analysis of precipitation characteristics over a variety of locations and meteorological regimes. Changes in drop size distribution (DSD) parameters (e.g. D0, Nw, LWC) over the course of a six week deployment are shown for the MC3E, IFloodS, and IPHEx experiments. During MC3E, median drop diameters (D0) progressively increased from late April through mid-May, coupled with a decrease in the normalized gamma number concentration (Nw). The environmental characteristics, such as CAPE, shear and moisture, that are most correlated with this change in DSD are investigated. It is hypothesized that increasing storm strength leads to larger precipitation particles that consume the available water at the expense of smaller particles, leading to increased D0 and lower Nw. In stratiform regions, stronger storms could lead to enhanced convergence and strong mesoscale ascent, resulting in the growth of larger ice particles and aggregates, also increasing D0 and lowering Nw. Changes in DSD are also examined from the perspective of polarimetric radar. The NASA S-band NPOL research radar is used to analyze changes in the DSD using the so-called self-consistency relationship between the ratio of specific differential phase (Kdp) to linear horizontal reflectivity (Zh) as a function of differential reflectivity (Zdr). The ability to detect changes in drop size distribution parameters from a high spatial and temporal resolution platform such as a radar would be useful for rainfall estimation. Changes in the self-consistency relationship during MC3E indicate an increase in Zdr from late April to mid-May, associated with a decrease in the ratio of Kdp/Zh. The polarimetric data from NPOL are also used to infer bulk microphysics in the column leading to changes in the drop size

  3. Regional Ecorisk Field investigation, upper Clark Fork River Basin

    SciTech Connect

    Pastorok, R.; LaTier, A.; Ginn, T.

    1995-12-31

    The Regional Ecorisk Field Investigation was conducted at the Clark Fork River Superfund Site (Montana) to evaluate the relationships between plant communities and tailings deposits in riparian habitats and to evaluate food-chain transfer of trace elements to selected wildlife species. Stations were selected to represent a range of vegetation biomass (or cover) values and apparent impact of trace elements, with some areas of lush vegetation, some areas of mostly unvegetated soil (e.g., < 30 percent plant cover), and a gradient in between. For the evaluation of risk to wildlife, bioaccumulation of metals was evaluated in native or naturalized plants, terrestrial invertebrates, and the deer mouse (Peromyscus maniculatus). Potential reproductive effects in the deer mouse were evaluated by direct measurements. For other wildlife species, bioaccumulation data were interpreted in the context of food web exposure models. Total biomass and species richness of riparian plant communities are related to tailings content of soil as indicated by pH and metals concentrations. Risk to populations of omnivorous small mammals such as the deer mouse was not significant. Relative abundance and reproductive condition of the deer mouse were normal, even in areas of high metals enrichment. Based on exposure models and site-specific tissue residue data for dietary species, risk to local populations of predators such as red fox and American kestrel that feed on deer mice and terrestrial invertebrates is not significant. Risk to herbivores related to metals bioaccumulation in plant tissues is not significant. Population level effects in deer and other large wildlife are not expected because of the large home ranges of such species and compensatory demographic factors.

  4. First Results of the MAVEN Magnetic Field Investigation

    NASA Astrophysics Data System (ADS)

    Connerney, J. E. P.; Espley, J. R.; DiBraccio, G. A.; Gruesbeck, J.; Mitchell, D. L.; Halekas, J. S.; Mazelle, C. X.; Brain, D.; Jakosky, B. M.; Oliversen, R. J.

    2015-12-01

    The MAVEN spacecraft approaches the end of its first year in orbit, systematically mapping the interaction region about Mars with a focus on atmospheric escape. The comprehensive instrument suite aboard MAVEN has busied itself in mapping the magnetosphere, magnetosheath, magnetotail, and extended atmospheric corona in near-Mars space. MAVEN carries two magnetic field sensors (fluxgate magnetometers) as part of the particles and fields package (PFP); they sample the ambient magnetic field from a vantage point on at the outer edge of each solar array. We characterized relatively minor spacecraft-generated magnetic fields using a series of in-flight subsystem tests and spacecraft maneuvers. Dynamic spacecraft fields (≤ 1 nT) associated with the operation of specific solar array circuits are compensated for using spacecraft engineering telemetry to identify active circuits and monitor their electrical current production. Static spacecraft magnetic fields are monitored using spacecraft roll maneuvers. Accuracy of measurement of the environmental magnetic field is demonstrated by comparison with field directions deduced from the symmetry properties of the electron distribution function measured by the Solar Wind Electron Analyzer (SWEA). We compile magnetometer observations to characterize intense crustal magnetic fields, the solar wind interaction with Mars, and ubiquitous proton cyclotron and 1-Hz waves in the upstream solar wind (ion foreshock region). The figure below compiles observations of magnetic fluctuations obtained by MAVEN in near-Mars space. The map of magnetic fluctuations reveals the statistical extent of the magnetosheath, confined between the bow shock and the magnetic pile-up region.

  5. Laboratory and field investigations of marsh edge erosion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This chapter presents the laboratory experiments and field observations of marsh edge erosion. The marsh retreat rate in a field study site in Terrebonne Bay, Louisiana, was measured using GPS systems and aerial photographs. The wave environment was also measured in order to correlate the marsh edge...

  6. OpenEIS Algorithms

    2013-07-29

    The OpenEIS Algorithm package seeks to provide a low-risk path for building owners, service providers and managers to explore analytical methods for improving building control and operational efficiency. Users of this software can analyze building data, and learn how commercial implementations would provide long-term value. The code also serves as a reference implementation for developers who wish to adapt the algorithms for use in commercial tools or service offerings.

  7. Investigation of Spherical-Wave-Initiated Flow Fields Around Bodies

    NASA Technical Reports Server (NTRS)

    McFarland, Donald R.

    1959-01-01

    Measurements of the velocity flow fields and vortex movements have been made about various simple blunt models undergoing spherical blast waves with a positive overpressure of 4 pounds per square inch. A bullet-optical method was used to determine flow velocities and is applied to velocity fields in which the gradients are largely normal to the free-stream direction. The velocity flow fields are shown at various flow times following passage of the blast front for different models. Vortex movements with time are compared for square-bar models of various aspect ratios. Corner sharpness had no discernible effect on the overall disturbed velocity fields or vortex movements for the square-box models used.

  8. Theoretical investigation of hyperfine field parameters through mossbauer gamma ray

    SciTech Connect

    Ali, Sikander; Hashim, Mohd

    2012-06-05

    When a Mossbauer gamma-ray emitting or absorbing nucleus is placed in a crystalline environment, the quadrupole moment of the nucleus interacts with the electric field gradient set up by the ligands around it. In the transition |7/2>{yields}|5/2> twelve lines are obtained. Applying the multipole radiation field theory and density matrix formalism, the determinant of coherency matrix, intensity and degree of polarization have been calculated for each line.

  9. Investigation of the light field of a semiconductor diode laser.

    PubMed

    Ankudinov, A V; Yanul, M L; Slipchenko, S O; Shelaev, A V; Dorozhkin, P S; Podoskin, A A; Tarasov, I S

    2014-10-20

    Scanning near-field optical microscopy was applied to study, with sub-wavelength spatial resolution, the near- and the far-field distributions of propagating modes from a high-power laser diode. Simple modeling was also performed and compared with experimental results. The simulated distributions were consistent with the experiment and permitted clarification of the configuration of the transverse modes of the laser. PMID:25401675

  10. Magnetic field investigations during ROSETTA's 2867 Šteins flyby

    NASA Astrophysics Data System (ADS)

    Auster, H. U.; Richter, I.; Glassmeier, K. H.; Berghofer, G.; Carr, C. M.; Motschmann, U.

    2010-07-01

    During the 2867 Šteins flyby of the ROSETTA spacecraft on September 5, 2008 magnetic field measurements have been made with both the RPC orbiter magnetometer and the ROMAP lander magnetometer. These combined magnetic field measurements allow a detailed examination of any magnetic signatures caused either directly by the asteroid or indirectly by Šteins' different modes of interaction with the solar wind. Comparing measurements with simulation results show that Šteins does not posses a significant remanent magnetization. The magnetization is estimated at less than 10 -3 A m 2/kg. This is significantly different from results at 9969 Braille and 951 Gaspra.

  11. Extending methods: using Bourdieu's field analysis to further investigate taste

    NASA Astrophysics Data System (ADS)

    Schindel Dimick, Alexandra

    2015-06-01

    In this commentary on Per Anderhag, Per-Olof Wickman and Karim Hamza's article Signs of taste for science, I consider how their study is situated within the concern for the role of science education in the social and cultural production of inequality. Their article provides a finely detailed methodology for analyzing the constitution of taste within science education classrooms. Nevertheless, because the authors' socially situated methodology draws upon Bourdieu's theories, it seems equally important to extend these methods to consider how and why students make particular distinctions within a relational context—a key aspect of Bourdieu's theory of cultural production. By situating the constitution of taste within Bourdieu's field analysis, researchers can explore the ways in which students' tastes and social positionings are established and transformed through time, space, place, and their ability to navigate the field. I describe the process of field analysis in relation to the authors' paper and suggest that combining the authors' methods with a field analysis can provide a strong methodological and analytical framework in which theory and methods combine to create a detailed understanding of students' interest in relation to their context.

  12. Investigating completion strategies; Cormorant Field, U. K. North Sea

    SciTech Connect

    Stiles, J.H. Jr. ); Valenti, N.P. )

    1990-03-01

    This paper describes studies that evaluate various completion strategies for new subsea wells in the Cormorant field, U.K. North Sea. These studies, which complement work done by the field operator, include detailed reservoir description work to define oil-in-place (OIP) and permeability distribution and a waterflood simulation for a representative reservoir cross section. Wellbore, flowline, and pipeline hydraulics for the complex production/injection system are included to model well rates more accurately. The results provide general insight into the nature of displacement during waterflooding of a stratified section with a limited number of wells. They also provide specific guidance on dual vs. single completions; perforating, testing, and stimulation sequence; and the benefits of partially perforating high-permeability sands.

  13. Structural investigations of Great Basin geothermal fields: Applications and implications

    SciTech Connect

    Faulds, James E; Hinz, Nicholas H.; Coolbaugh, Mark F

    2010-11-01

    Because fractures and faults are commonly the primary pathway for deeply circulating hydrothermal fluids, structural studies are critical to assessing geothermal systems and selecting drilling targets for geothermal wells. Important tools for structural analysis include detailed geologic mapping, kinematic analysis of faults, and estimations of stress orientations. Structural assessments are especially useful for evaluating geothermal fields in the Great Basin of the western USA, where regional extension and transtension combine with high heat flow to generate abundant geothermal activity in regions having little recent volcanic activity. The northwestern Great Basin is one of the most geothermally active areas in the USA. The prolific geothermal activity is probably due to enhanced dilation on N- to NNE-striking normal faults induced by a transfer of NW-directed dextral shear from the Walker Lane to NW-directed extension. Analysis of several geothermal fields suggests that most systems occupy discrete steps in normal fault zones or lie in belts of intersecting, overlapping, and/or terminating faults. Most fields are associated with steeply dipping faults and, in many cases, with Quaternary faults. The structural settings favoring geothermal activity are characterized by subvertical conduits of highly fractured rock along fault zones oriented approximately perpendicular to the WNW-trending least principal stress. Features indicative of these settings that may be helpful in guiding exploration for geothermal resources include major steps in normal faults, interbasinal highs, groups of relatively low discontinuous ridges, and lateral jogs or terminations of mountain ranges.

  14. Investigation of back surface fields effect on bifacial solar cells

    NASA Astrophysics Data System (ADS)

    Sepeai, Suhaila; Sulaiman, M. Y.; Sopian, Kamaruzzaman; Zaidi, Saleem H.

    2012-11-01

    A bifacial solar cell, in contrast with a conventional monofacial solar cell, produces photo-generated current from both front and back sides. Bifacial solar cell is an attractive candidate for enhancing photovoltaic (PV) market competitiveness as well as supporting the current efforts to increase efficiency and lower material costs. This paper reports on the fabrication of bifacial solar cells using phosphorus-oxytrichloride (POCl3) emitter formation on p-type, nanotextured silicon (Si) wafer. Backside surface field was formed through Al-diffusion using conventional screen-printing process. Bifacial solar cells with a structure of n+pp+ with and without back surface field (BSF) were fabricated in which silicon nitride (SiN) anti reflection and passivation films were coated on both sides, followed by screen printing of Argentum (Ag) and Argentum/Aluminum (Ag/Al) on front and back contacts, respectively. Bifacial solar cells without BSF exhibited open circuit voltage (VOC) of 535 mV for front and 480 mV for back surface. With Al-alloyed BSF bifacial solar cells, the VOC improved to 580 mV for the front surface and 560 mV for the back surface. Simulation of bifacial solar cells using PC1D and AFORS software demonstrated good agreement with experimental results. Simulations showed that best bifacial solar cells are achieved through a combination of high lifetime wafer, low recombination back surface field, reduced contact resistance, and superior surface passivation.

  15. Spectral investigation of nonlinear local field effects in Ag nanoparticles

    SciTech Connect

    Sato, Rodrigo Takeda, Yoshihiko; Ohnuma, Masato; Oyoshi, Keiji

    2015-03-21

    The capability of Ag nanoparticles to modulate their optical resonance condition, by optical nonlinearity, without an external feedback system was experimentally demonstrated. These optical nonlinearities were studied in the vicinity of the localized surface plasmon resonance (LSPR), using femtosecond pump-and-probe spectroscopy with a white-light continuum probe. Transient transmission changes ΔT/T exhibited strong photon energy and particle size dependence and showed a complex and non-monotonic change with increasing pump light intensity. Peak position and change of sign redshift with increasing pump light intensity demonstrate the modulation of the LSPR. These features are discussed in terms of the intrinsic feedback via local field enhancement.

  16. ASTEROSEISMIC INVESTIGATION OF KNOWN PLANET HOSTS IN THE KEPLER FIELD

    SciTech Connect

    Christensen-Dalsgaard, J.; Kjeldsen, H.; Arentoft, T.; Frandsen, S.; Quirion, P.-O.; Brown, T. M.; Gilliland, R. L.; Borucki, W. J.; Koch, D.; Jenkins, J. M.

    2010-04-20

    In addition to its great potential for characterizing extra-solar planetary systems, the Kepler Mission is providing unique data on stellar oscillations. A key aspect of Kepler asteroseismology is the application to solar-like oscillations of main-sequence stars. As an example, we here consider an initial analysis of data for three stars in the Kepler field for which planetary transits were known from ground-based observations. For one of these, HAT-P-7, we obtain a detailed frequency spectrum and hence strong constraints on the stellar properties. The remaining two stars show definite evidence for solar-like oscillations, yielding a preliminary estimate of their mean densities.

  17. A Field Course Investigation of a Pembrokeshire River.

    ERIC Educational Resources Information Center

    Bailey, R. G.

    1978-01-01

    The river was investigated at six stations from source to estuary. Modifications of water quality and aquatic communities are related to man's activities in the river basin. The organization of the exercise and the method employed are described. (Author/BB)

  18. Echoes from the Field: An Ethnographic Investigation of Outdoor Science Field Trips

    ERIC Educational Resources Information Center

    Boxerman, Jonathan Zvi

    2013-01-01

    As popular as field trips are, one might think they have been well-studied. Nonetheless, field trips have not been heavily studied, and little research has mapped what actually transpires during field trips. Accordingly, to address this research gap, I asked two related research questions. The first question is a descriptive one: What happens on…

  19. Echoes from the Field: An Ethnographic Investigation of Outdoor Science Field Trips

    NASA Astrophysics Data System (ADS)

    Boxerman, Jonathan Zvi

    As popular as field trips are, one might think they have been well-studied. Nonetheless, field trips have not been heavily studied, and little research has mapped what actually transpires during field trips. Accordingly, to address this research gap, I asked two related research questions. The first question is a descriptive one: What happens on field trips? The second question is explanatory: What field trip events are memorable and why? I employed design research and ethnographic methodologies to study learning in naturally occurring contexts. I collaborated with middle-school science teachers to design and implement more than a dozen field trips. The field trips were nested in particular biology and earth sciences focal units. Students were tasked with making scientific observations in the field and then analyzing this data during classroom activities. Audio and video recording devices captured what happened during the field trips, classroom activities and discussions, and the interviews. I conducted comparative microanalysis of videotaped interactions. I observed dozens of events during the field trips that reverberated across time and place. I characterize the features of these events and the objects that drew interest. Then, I trace the residue across contexts. This study suggests that field trips could be more than one-off experiences and have the potential to be resources to seed and enrich learning and to augment interest in the practice of science.

  20. Field Investigations of Evaporation from a Bare Soil

    NASA Astrophysics Data System (ADS)

    Evett, Steven Roy

    Selected components of the water and energy balances at the surface of a bare clay loam were measured at 57 locations in a 1 ha field. Spatial and temporal variability of these components were also studied. Components included evaporation, irrigation, moisture storage, sensible heat flux and long wave radiation. Sub-studies were conducted on irrigation uniformity under low pressure sprinklers; and, on steel versus plastic microlysimeters (ML) of various lengths. An energy balance model of evaporation, requiring minimal inputs, was developed and validated giving an r ^2 value of 0.78. Model improvements included an easy method of accurately estimating soil surface temperature at many points in a field, and an empirically fitted transfer coefficient function for the sensible heat flux from the reference dry soil. The omission of soil heat flux and reflected shortwave radiation terms was shown to reduce model accuracy. Steel ML underestimated cumulative evaporation compared to plastic ML at 20 and 30 cm lengths. Cumulative evaporation increased with ML length. The 10 and 20 cm ML were too short for use over multiple days but 30 cm ML may not be long enough for extended periods. Daily net soil heat flux for steel ML averaged 44% higher than that for both plastic ML and undisturbed field soil. Christiansen's uniformity coefficient (UCC) was close to 0.83 for each of 3 irrigations when measured by both catch cans and by profile water contents. But UCC for the change in storage due to irrigation averaged only 0.43 indicating than the high uniformity of profile water contents was more due to surface and subsurface redistribution than to the uniformity of application. Profile water contents and catch can depths were time invariant across at least 3 irrigations. Midday soil surface temperatures and daily evaporation were somewhat less time invariant. Variogram plots for evaporation and surface temperature showed mostly random behavior. Relative variograms represented well

  1. First Investigation on the Radiation Field of the Spherical Hohlraum.

    PubMed

    Huo, Wen Yi; Li, Zhichao; Chen, Yao-Hua; Xie, Xuefei; Lan, Ke; Liu, Jie; Ren, Guoli; Li, Yongsheng; Liu, Yonggang; Jiang, Xiaohua; Yang, Dong; Li, Sanwei; Guo, Liang; Zhang, Huan; Hou, Lifei; Du, Huabing; Peng, Xiaoshi; Xu, Tao; Li, Chaoguang; Zhan, Xiayu; Yuan, Guanghui; Zhang, Haijun; Jiang, Baibin; Huang, Lizhen; Du, Kai; Zhao, Runchang; Li, Ping; Wang, Wei; Su, Jingqin; Ding, Yongkun; He, Xian-Tu; Zhang, Weiyan

    2016-07-01

    The first spherical hohlraum energetics experiment is accomplished on the SGIII-prototype laser facility. In the experiment, the radiation temperature is measured by using an array of flat-response x-ray detectors (FXRDs) through a laser entrance hole at four different angles. The radiation temperature and M-band fraction inside the hohlraum are determined by the shock wave technique. The experimental observations indicate that the radiation temperatures measured by the FXRDs depend on the observation angles and are related to the view field. According to the experimental results, the conversion efficiency of the vacuum spherical hohlraum is in the range from 60% to 80%. Although this conversion efficiency is less than the conversion efficiency of the near vacuum hohlraum on the National Ignition Facility, it is consistent with that of the cylindrical hohlraums used on the NOVA and the SGIII-prototype at the same energy scale. PMID:27447512

  2. Experimental investigations of hard photon emission from strong crystalline fields

    NASA Astrophysics Data System (ADS)

    Medenwaldt, R.; Møller, S. P.; Jensen, B. N.; Strakhovenko, V. M.; Uggerhøj, E.; Worm, T.; Elsener, K.; Sona, P.; Connell, S. H.; Sellschop, J. P. F.; Avakian, R. O.; Avetisian, A. E.; Taroian, S. P.

    1992-05-01

    For the first time very pronounced high-energy photon peaks have been measured in the radiation emission from 70, 150 and 240 GeV electrons incident at 0.1-1.0 mrad to the axis in diamond and Si crystals. The energy of the photons in the peaks is 0.7-0.8 times the particle energy with yields of 50 times the Bethe-Heitler one (in diamond). The peaks consist of single photons and are caused by the influence of strong crystalline fields on emission of coherent bremsstrahlung, emitted when the ultrarelativistic electrons cross the rows of atoms in a crystal plane. The effect should be envisaged as a source for nearly monoenergetic photons in the multihundred GeV-region.

  3. Results of investigation at the Ahuachapan Geothermal Field, El Salvador

    SciTech Connect

    Fink, J.B. )

    1990-04-01

    The Ahuachapan Geothermal Field (AGF) is a 95 megawatt geothemal-sourced power-plant operated by the Comision Ejecutiva Hidroelectrica del Rio Lempa (CEL) of El Salvador. During the past decade, as part of an effort to increase in situ thermal reserves in order to realize the full generation capacity of the AGF, extensive surface geophysical coverage has been obtained over the AGF and the prospective Chipilapa area to the east. The geophysical surveys were performed to determine physical property characteristics of the known reservoir and then to search for similar characteristics in the Chipilapa area. A secondary objective was to evaluate the surface recharge area in the highlands to the south of the AGF. The principal surface electrical geophysical methods used during this period were DC resistivity and magnetotellurics. Three available data sets have been reinterpreted using drillhole control to help form geophysical models of the area. The geophysical models are compared with the geologic interpretations.

  4. First Investigation on the Radiation Field of the Spherical Hohlraum

    NASA Astrophysics Data System (ADS)

    Huo, Wen Yi; Li, Zhichao; Chen, Yao-Hua; Xie, Xuefei; Lan, Ke; Liu, Jie; Ren, Guoli; Li, Yongsheng; Liu, Yonggang; Jiang, Xiaohua; Yang, Dong; Li, Sanwei; Guo, Liang; Zhang, Huan; Hou, Lifei; Du, Huabing; Peng, Xiaoshi; Xu, Tao; Li, Chaoguang; Zhan, Xiayu; Yuan, Guanghui; Zhang, Haijun; Jiang, Baibin; Huang, Lizhen; Du, Kai; Zhao, Runchang; Li, Ping; Wang, Wei; Su, Jingqin; Ding, Yongkun; He, Xian-Tu; Zhang, Weiyan

    2016-07-01

    The first spherical hohlraum energetics experiment is accomplished on the SGIII-prototype laser facility. In the experiment, the radiation temperature is measured by using an array of flat-response x-ray detectors (FXRDs) through a laser entrance hole at four different angles. The radiation temperature and M -band fraction inside the hohlraum are determined by the shock wave technique. The experimental observations indicate that the radiation temperatures measured by the FXRDs depend on the observation angles and are related to the view field. According to the experimental results, the conversion efficiency of the vacuum spherical hohlraum is in the range from 60% to 80%. Although this conversion efficiency is less than the conversion efficiency of the near vacuum hohlraum on the National Ignition Facility, it is consistent with that of the cylindrical hohlraums used on the NOVA and the SGIII-prototype at the same energy scale.

  5. Field investigation of FGD system chemistry. Final report

    SciTech Connect

    Litherland, S.T.; Colley, J.D.; Glover, R.L.; Maller, G.; Behrens, G.P.

    1984-12-01

    Three full-scale wet limestone FGD systems were investigated to gain a better understanding of FGD system operation and chemistry. The three plants which participated in the program were South Mississippi Electric Power Association's R. D. Morrow Station, Colorado-Ute Electric Association's Craig Station, and Central Illinois Light Company's Duck Creek Station. Each FGD system was characterized with respect to SO/sub 2/ removal, liquid and solid phase chemistry, and calcium sulfite and calcium sulfate relative saturation. Mist eliminator chemistry and performance were documented at Morrow and Duck Creek. Solutions to severe mist eliminator scaling and pluggage were demonstrated at Duck Creek. A technical and econ

  6. Development of Point Doppler Velocimetry for Flow Field Investigations

    NASA Technical Reports Server (NTRS)

    Cavone, Angelo A.; Meyers, James F.; Lee, Joseph W.

    2006-01-01

    A Point Doppler Velocimeter (pDv) has been developed using a vapor-limited iodine cell as the sensing medium. The iodine cell is utilized to directly measure the Doppler shift frequency of laser light scattered from submicron particles suspended within a fluid flow. The measured Doppler shift can then be used to compute the velocity of the particles, and hence the fluid. Since this approach does not require resolution of scattered light from individual particles, the potential exists to obtain temporally continuous signals that could be uniformly sampled in the manner as a hot wire anemometer. This leads to the possibility of obtaining flow turbulence power spectra without the limitations of fringe-type laser velocimetry. The development program consisted of a methodical investigation of the technology coupled with the solution of practical engineering problems to produce a usable measurement system. The paper outlines this development along with the evaluation of the resulting system as compared to primary standards and other measurement technologies.

  7. Invited Reaction: Developing Emotional Intelligence (EI) Abilities through Team-Based Learning

    ERIC Educational Resources Information Center

    Leimbach, Michael P.; Maringka, Jane

    2010-01-01

    The preceding article (Clarke, 2010) examines an important and interesting question; that is, under what conditions can learning contribute to the development of emotional intelligence (EI)? Despite the controversy surrounding the definition and construct of EI, its prevalence for the human resources development (HRD) field and its implications…

  8. A Comparative Model of Field Investigations: Aligning School Science Inquiry with the Practices of Contemporary Science

    ERIC Educational Resources Information Center

    Windschitl, Mark; Dvornich, Karen; Ryken, Amy E.; Tudor, Margaret; Koehler, Gary

    2007-01-01

    Field investigations are not characterized by randomized and manipulated control group experiments; however, most school science and high-stakes tests recognize only this paradigm of investigation. Scientists in astronomy, genetics, field biology, oceanography, geology, and meteorology routinely select naturally occurring events and conditions and…

  9. OpenEIS. Users Guide

    SciTech Connect

    Kim, Woohyun; Lutes, Robert G.; Katipamula, Srinivas; Haack, Jereme N.; Carpenter, Brandon J.; Akyol, Bora A.; Monson, Kyle E.; Allwardt, Craig H.; Kang, Timothy; Sharma, Poorva

    2015-02-28

    This document is a users guide for OpenEIS, a software code designed to provide standard methods for authoring, sharing, testing, using and improving algorithms for operational building energy efficiency.

  10. Remedial investigation sampling and analysis plan for J-Field, Aberdeen Proving Ground, Maryland. Volume 1: Field Sampling Plan

    SciTech Connect

    Benioff, P.; Biang, R.; Dolak, D.; Dunn, C.; Martino, L.; Patton, T.; Wang, Y.; Yuen, C.

    1995-03-01

    The Environmental Management Division (EMD) of Aberdeen Proving Ground (APG), Maryland, is conducting a remedial investigation and feasibility study (RI/FS) of the J-Field area at APG pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. J-Field is within the Edgewood Area of APG in Harford County, Maryland (Figure 1. 1). Since World War II activities in the Edgewood Area have included the development, manufacture, testing, and destruction of chemical agents and munitions. These materials were destroyed at J-Field by open burning and open detonation (OB/OD). Considerable archival information about J-Field exists as a result of efforts by APG staff to characterize the hazards associated with the site. Contamination of J-Field was first detected during an environmental survey of the Edgewood Area conducted in 1977 and 1978 by the US Army Toxic and Hazardous Materials Agency (USATHAMA) (predecessor to the US Army Environmental Center [AEC]). As part of a subsequent USATHAMA -environmental survey, 11 wells were installed and sampled at J-Field. Contamination at J-Field was also detected during a munitions disposal survey conducted by Princeton Aqua Science in 1983. The Princeton Aqua Science investigation involved the installation and sampling of nine wells and the collection and analysis of surficial and deep composite soil samples. In 1986, a Resource Conservation and Recovery Act (RCRA) permit (MD3-21-002-1355) requiring a basewide RCRA Facility Assessment (RFA) and a hydrogeologic assessment of J-Field was issued by the US Environmental Protection Agency (EPA). In 1987, the US Geological Survey (USGS) began a two-phased hydrogeologic assessment in data were collected to model, groundwater flow at J-Field. Soil gas investigations were conducted, several well clusters were installed, a groundwater flow model was developed, and groundwater and surface water monitoring programs were established that continue today.

  11. GRACE gravity field modeling with an investigation on correlation between nuisance parameters and gravity field coefficients

    NASA Astrophysics Data System (ADS)

    Zhao, Qile; Guo, Jing; Hu, Zhigang; Shi, Chuang; Liu, Jingnan; Cai, Hua; Liu, Xianglin

    2011-05-01

    The GRACE (Gravity Recovery And Climate Experiment) monthly gravity models have been independently produced and published by several research institutions, such as Center for Space Research (CSR), GeoForschungsZentrum (GFZ), Jet Propulsion Laboratory (JPL), Centre National d’Etudes Spatiales (CNES) and Delft Institute of Earth Observation and Space Systems (DEOS). According to their processing standards, above institutions use the traditional variational approach except that the DEOS exploits the acceleration approach. The background force models employed are rather similar. The produced gravity field models generally agree with one another in the spatial pattern. However, there are some discrepancies in the gravity signal amplitude between solutions produced by different institutions. In particular, 10%-30% signal amplitude differences in some river basins can be observed. In this paper, we implemented a variant of the traditional variational approach and computed two sets of monthly gravity field solutions using the data from January 2005 to December 2006. The input data are K-band range-rates (KBRR) and kinematic orbits of GRACE satellites. The main difference in the production of our two types of models is how to deal with nuisance parameters. This type of parameters is necessary to absorb low-frequency errors in the data, which are mainly the aliasing and instrument errors. One way is to remove the nuisance parameters before estimating the geopotential coefficients, called NPARB approach in the paper. The other way is to estimate the nuisance parameters and geopotential coefficients simultaneously, called NPESS approach. These two types of solutions mainly differ in geopotential coefficients from degree 2 to 5. This can be explained by the fact that the nuisance parameters and the gravity field coefficients are highly correlated, particularly at low degrees. We compare these solutions with the official and published ones by means of spectral analysis. It is

  12. RAPID ARSENITE OXIDATION BY THERMUS AQUATICUS AND THERMUS THERMOPHILUS: FIELD AND LABORATORY INVESTIGATIONS. (R826189)

    EPA Science Inventory

    Thermus aquaticus and Thermus thermophilus, common inhabitants of terrestrial hot springs and thermally polluted domestic and industrial waters, have been found to rapidly oxidize arsenite to arsenate. Field investigations at a hot spring in Yellowstone National Park revealed ...

  13. Comparison of field-scale herbicide runoff and volatilization losses: an eight-year field investigation.

    PubMed

    Gish, Timothy J; Prueger, John H; Daughtry, Craig S T; Kustas, William P; McKee, Lynn G; Russ, Andrew L; Hatfield, Jerry L

    2011-01-01

    An 8-yr study was conducted to better understand factors influencing year-to-year variability in field-scale herbicide volatilization and surface runoff losses. The 21-ha research site is located at the USDA-ARS Beltsville Agricultural Research Center in Beltsville, MD. Site location, herbicide formulations, and agricultural management practices remained unchanged throughout the duration of the study. Metolachlor [2-chloro--(2-ethyl-6-methylphenyl)--(2-methoxy-1-methylethyl) acetamide] and atrazine [6-chloro--ethyl--(1-methylethyl)-1,3,5-triazine-2,4-diamine] were coapplied as a surface broadcast spray. Herbicide runoff was monitored from a month before application through harvest. A flux gradient technique was used to compute volatilization fluxes for the first 5 d after application using herbicide concentration profiles and turbulent fluxes of heat and water vapor as determined from eddy covariance measurements. Results demonstrated that volatilization losses for these two herbicides were significantly greater than runoff losses ( < 0.007), even though both have relatively low vapor pressures. The largest annual runoff loss for metolachlor never exceeded 2.5%, whereas atrazine runoff never exceeded 3% of that applied. On the other hand, herbicide cumulative volatilization losses after 5 d ranged from about 5 to 63% of that applied for metolachlor and about 2 to 12% of that applied for atrazine. Additionally, daytime herbicide volatilization losses were significantly greater than nighttime vapor losses ( < 0.05). This research confirmed that vapor losses for some commonly used herbicides frequently exceeds runoff losses and herbicide vapor losses on the same site and with the same management practices can vary significantly year to year depending on local environmental conditions.

  14. [Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio]. Volume 5, Field Investigation report

    SciTech Connect

    Not Available

    1992-03-01

    An environmental investigation of ground water conditions has been undertaken at Wright-Patterson Air Force Base (WPAFB), Ohio to obtain data to assist in the evaluation of a potential removal action to prevent, to the extent practicable, migration of the contaminated ground water across Base boundaries. Field investigations were limited to the central section of the southwestern boundary of Area C and the Springfield Pike boundary of Area B. Further, the study was limited to a maximum depth of 150 feet below grade. Three primary activities of the field investigation were: (1) installation of 22 monitoring wells, (2) collection and analysis of ground water from 71 locations, (3) measurement of ground water elevations at 69 locations. Volatile organic compounds including trichloroethylene, perchloroethylene, and/or vinyl chloride were detected in concentrations exceeding Maximum Contaminant Levels (MCL) at three locations within the Area C investigation area. Ground water at the Springfield Pike boundary of Area B occurs in two primary units, separated by a thicker-than-expected clay layers. One well within Area B was determined to exceed the MCL for trichloroethylene.

  15. Deuterium NMR investigations of field-induced director alignment in nematic liquid crystals.

    PubMed

    Sugimura, Akihiko; Luckhurst, Geoffrey R

    2016-05-01

    There have been many investigations of the alignment of nematic liquid crystals by either a magnetic and/or an electric field. The basic features of the important hydrodynamic processes for low molar mass nematics have been characterized for the systems in their equilibrium and non-equilibrium states. These have been created using electric and magnetic fields to align the director and deuterium nuclear magnetic resonance ((2)H NMR) spectroscopy has been used to explore this alignment. Theoretical models based on continuum theory have been developed to complement the experiments and found to describe successfully the static and the dynamic phenomena observed. Such macroscopic behaviour has been investigated with (2)H NMR spectroscopy, in which an electric field in addition to the magnetic field of the spectrometer is used to rotate the director and produce a non-equilibrium state. This powerful technique has proved to be especially valuable for the investigation of nematic liquid crystals. Since the quadrupolar splitting for deuterons observed in the liquid crystal phase is determined by the angle between the director and the magnetic field, time-resolved and time-averaged (2)H NMR spectroscopies can be employed to investigate the dynamic director alignment process in a thin nematic film following the application or removal of an electric field. In this article, we describe some seminal studies to illustrate the field-induced static and dynamic director alignment for low molar mass nematics.

  16. Investigation of the effects of magnetic field exposure on human melatonin. Interim report

    SciTech Connect

    Graham, C.; Cook, M.R.; Cohen, H.D.

    1994-08-01

    Several rodent studies have suggested that magnetic field exposure may alter the daily pattern of melatonin secretion. This study investigated melatonin levels in mean exposed overnight to magnetic fields of 10 mG and 200 mG. The study also assessed the potential effects of exposure on a number of performance and self-reported endpoints in the subjects. Investigation of this area is important, as altered diurnal melatonin cycles have been linked to a variety of endpoints, including reproductive outcome, neurobehavioral function, and carcinogenesis. The results of this investigation did not support the a priori hypothesis that exposure to 60-Hz magnetic fields of 10 mG and 200 mG alters nighttime melatonin levels in a population of adult males. However, the data suggested the possibility of differential sensitivity to magnetic fields based on an individual`s baseline melatonin level.

  17. 32 CFR 989.19 - Draft EIS.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... review of draft EIS (40 CFR 1502.19 and 1506.6): (1) The public comment period for the draft EIS is at... summary to the public with an attached list of locations (such as public libraries) where the entire draft... proponent in preparation of a preliminary draft EIS (PDEIS) (40 CFR 1502.9) based on the scope of...

  18. 32 CFR 989.19 - Draft EIS.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... proponent in preparation of a preliminary draft EIS (PDEIS) (40 CFR 1502.9) based on the scope of issues... recommended in the CEQ regulations (40 CFR 1502.10 and 1502.11). The CEQ regulations indicate that EISs... review of draft EIS (40 CFR 1502.19 and 1506.6): (1) The public comment period for the draft EIS is...

  19. 32 CFR 989.19 - Draft EIS.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... proponent in preparation of a preliminary draft EIS (PDEIS) (40 CFR 1502.9) based on the scope of issues... recommended in the CEQ regulations (40 CFR 1502.10 and 1502.11). The CEQ regulations indicate that EISs... review of draft EIS (40 CFR 1502.19 and 1506.6): (1) The public comment period for the draft EIS is...

  20. 32 CFR 989.19 - Draft EIS.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... proponent in preparation of a preliminary draft EIS (PDEIS) (40 CFR 1502.9) based on the scope of issues... recommended in the CEQ regulations (40 CFR 1502.10 and 1502.11). The CEQ regulations indicate that EISs... review of draft EIS (40 CFR 1502.19 and 1506.6): (1) The public comment period for the draft EIS is...

  1. 32 CFR 989.19 - Draft EIS.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... proponent in preparation of a preliminary draft EIS (PDEIS) (40 CFR 1502.9) based on the scope of issues... recommended in the CEQ regulations (40 CFR 1502.10 and 1502.11). The CEQ regulations indicate that EISs... review of draft EIS (40 CFR 1502.19 and 1506.6): (1) The public comment period for the draft EIS is...

  2. Investigation of electric field distribution on FAC-IR-300 ionization chamber

    NASA Astrophysics Data System (ADS)

    Mohammadi, S. M.; Tavakoli-Anbaran, H.; Zeinali, H. Z.

    2016-07-01

    One of the important parameters for establishing charge particle equilibrium (CPE) conditions of free-air ionization chamber is an electric field distribution. In this paper, electric field distribution inside the ionization chamber was investigated by finite element method. For this purpose, the effects of adding guard plate and guard strips on the electric field distribution in the ionization chamber were studied. it is necessary to apply a lead box around the ionization chamber body to avoid of scattered radiation effects on the ionization chamber operation, but the lead box changes the electric field distribution. In the following, the effect of lead box on the electric field distribution was studied. Finally, electric field distribution factor (kfield) was calculated by the simulation. The results of the simulation showed that presence of the guard plate and guard strips, and applying a suitable potential to lead box, a convergence of kfield to 1 was achieved.

  3. Technology transfer opportunities: new development: computerized field manual provides valuable resource for hydrologic investigations

    USGS Publications Warehouse

    Chapel, Paul

    1996-01-01

    The U.S. Geological Survey (USGS) is known throughout the world for conducting quality scientific investigation is hydrologic environments. Proper and consistent field techniques have been an integral part of this good research. Over the past few decades, the USGS has developed and published detailed, standard protocols for conducting studies in most aspects of the hydrologic environment. These protocols have been published in a number of diverse documents. The wealth of information contained in these diverse documents can benefit other scientists in industry, government, and academia that are involved in conducting hydrologic studies. Scientists at the USGS have brought together many of the most important of the field protocols in a user-friendly, graphical-interfaced field manual that will be useful in both the field and in the office. This electronic field manual can assist hydrologists and other scientists in conducting and documenting their field activities in a manner that is recognized standard throughout the hydrologic community.

  4. Numerical Investigation of Near-Field Plasma Flows in Magnetic Nozzles

    NASA Technical Reports Server (NTRS)

    Sankaran, Kamesh; Polzin, Kurt A.

    2009-01-01

    The development and application of a multidimensional numerical simulation code for investigating near-field plasma processes in magnetic nozzles are presented. The code calculates the time-dependent evolution of all three spatial components of both the magnetic field and velocity in a plasma flow, and includes physical models of relevant transport phenomena. It has been applied to an investigation of the behavior of plasma flows found in high-power thrusters, employing a realistic magnetic nozzle configuration. Simulation of a channel-flow case where the flow was super-Alfvenic has demonstrated that such a flow produces adequate back-emf to significantly alter the shape of the total magnetic field, preventing the flow from curving back to the magnetic field coil in the near-field region. Results from this simulation can be insightful in predicting far-field behavior and can be used as a set of self-consistent boundary conditions for far-field simulations. Future investigations will focus on cases where the inlet flow is sub-Alfvenic and where the flow is allowed to freely expand in the radial direction once it is downstream of the coil.

  5. Experimental Investigation of Effectiveness of Magnetic Field on Food Freezing Process

    NASA Astrophysics Data System (ADS)

    Suzuki, Toru; Takeuchi, Yuri; Masuda, Kazunori; Watanabe, Manabu; Shirakashi, Ryo; Fukuda, Yutaka; Tsuruta, Takaharu; Yamamoto, Kazutaka; Koga, Nobumitsu; Hiruma, Naoya; Ichioka, Jun; Takai, Kiyoshi

    Recently, several food refrigeration equipments that utilize magnetic field have attracted much attention from food production companies, consumers and mass media. However, the effectiveness of the freezers is not scientifically examined. Therefore, the effectiveness should be clarified by experiments or theoretical considerations. In this study, the effect of weak magnetic field (about 0.0005 T) on freezing process of several kinds of foods was investigated by using a specially designed freezer facilitated with magnetic field generator. The investigation included the comparison of freezing curves, drip amount, physicochemical evaluations on color and texture, observation of microstructure, and sensory evaluation. From the results of the control experiments, it can be concluded that weak magnetic field around 0.0005 T provided no significant difference on temperature history during freezing and on the qualities of frozen foods, within our experimental conditions.

  6. Remedial investigation report for J-Field, Aberdeen Proving Ground, Maryland. Volume 3: Ecological risk assessment

    SciTech Connect

    Hlohowskyj, I.; Hayse, J.; Kuperman, R.; Van Lonkhuyzen, R.

    2000-02-25

    The Environmental Management Division of the U.S. Army Aberdeen Proving Ground (APG), Maryland, is conducting a remedial investigation (RI) and feasibility study (FS) of the J-Field area at APG, pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. As part of that activity, Argonne National Laboratory (ANL) conducted an ecological risk assessment (ERA) of the J-Field site. This report presents the results of that assessment.

  7. Investigating damage fields in a particulate composite material using real-time x-ray technique

    SciTech Connect

    Liu, C.T.; Tang, B.

    1993-12-31

    The damage fields in an edge-cracked sheet specimen subjected to a constant crosshead speed were investigated using the real-time x-ray technique. The specimen was made from polybutadiene rubber embedded with hard particles. The x-ray data were analyzed to delineate the damage field near the crack tip and to generate contour plots of the damage intensity. The experimental data were analyzed and the results are discussed.

  8. Guided resonances on lithium niobate for extremely small electric field detection investigated by accurate sensitivity analysis.

    PubMed

    Qiu, Wentao; Ndao, Abdoulaye; Lu, Huihui; Bernal, Maria-Pilar; Baida, Fadi Issam

    2016-09-01

    We present a theoretical study of guided resonances (GR) on a thin film lithium niobate rectangular lattice photonic crystal by band diagram calculations and 3D Finite Difference Time Domain (FDTD) transmission investigations which cover a broad range of parameters. A photonic crystal with an active zone as small as 13μm×13μm×0.7μm can be easily designed to obtain a resonance Q value in the order of 1000. These resonances are then employed in electric field (E-field) sensing applications exploiting the electro optic (EO) effect of lithium niobate. A local field factor that is calculated locally for each FDTD cell is proposed to accurately estimate the sensitivity of GR based E-field sensor. The local field factor allows well agreement between simulations and reported experimental data therefore providing a valuable method in optimizing the GR structure to obtain high sensitivities. When these resonances are associated with sub-picometer optical spectrum analyzer and high field enhancement antenna design, an E-field probe with a sensitivity of 50 μV/m could be achieved. The results of our simulations could be also exploited in other EO based applications such as EEG (Electroencephalography) or ECG (Electrocardiography) probe and E-field frequency detector with an 'invisible' probe to the field being detected etc. PMID:27607627

  9. Investigation of spatial distribution of radiocesium in a paddy field as a potential sink.

    PubMed

    Tanaka, Kazuya; Iwatani, Hokuto; Takahashi, Yoshio; Sakaguchi, Aya; Yoshimura, Kazuya; Onda, Yuichi

    2013-01-01

    Surface soils, under various land uses, were contaminated by radionuclides that were released by the Fukushima Daiichi Nuclear Power Plant accident. Because paddy fields are one of the main land uses in Japan, we investigated the spatial distribution of radiocesium and the influence of irrigation water in a paddy field during cultivation. Soil core samples collected at a paddy field in Fukushima showed that plowing had disturbed the original depth distribution of radiocesium. The horizontal distribution of radiocesium did not show any evidence for significant influence of radiocesium from irrigation water, and its accumulation within the paddy field, since the original amount of radiocesium was much larger than was added into the paddy field by irrigation water. However, it is possible that rainfall significantly increases the loading of radiocesium.

  10. Investigation of different magnetic field configurations using an electrical, modular Zeeman slower

    SciTech Connect

    Ohayon, Ben; Ron, Guy

    2015-10-15

    We present a method of constructing an automatically reconfigurable, modular, electronic Zeeman slower, which is remotely controlled. This setup is used to investigate the ability of different magnetic field profiles to slow thermal atoms to the capture velocity of a magneto-optical-trap. We show that a simple numerical optimization process yields better results than the commonly used approach for deciding on the appropriate field and comes close to the optimum field, found by utilizing a fast feedback loop which uses a genetic algorithm. Our new numerical method is easily adaptable to a variety of existing slower designs and may be beneficial where feedback is unavailable.

  11. Experimental Investigation of Pool Boiling Heat Transfer Enhancement in Microgravity in the Presence of Electric Fields

    NASA Technical Reports Server (NTRS)

    Herman, C.

    2000-01-01

    The research carried out in the Heat Transfer Laboratory of the Johns Hopkins University was motivated by previous studies indicating that in terrestrial applications nucleate boiling heat transfer can be increased by a factor of 50 when compared to values obtained for the same system without electric fields. Imposing an external electric field holds the promise to improve pool boiling heat transfer in low gravity, since a phase separation force other than gravity is introduced. The influence of electric fields on bubble formation has been investigated both experimentally and theoretically.

  12. Investigation of the electric field below 80 km from a parachute-deployed payload

    NASA Technical Reports Server (NTRS)

    Bering, E. A.; Benbrook, J. R.; Sheldon, W. R.

    1977-01-01

    An experimental investigation of the atmospheric electric field from rocket-boosted parachute-deployed payloads has been conducted. Data from two prototype flights; a drop test from a high-altitude balloon on July 10, 1973; and a rocket test on July 24, 1974, indicate that measurements of the ambient electric field from parachuted payloads are possible under appropriate circumstances. However, intermittent anomalous charging of the payloads, probes, and parachute has sometimes prevented measurement of the ambient field. No good explanation of this anomalous behavior has been found. This charging process needs to be understood or prevented before fully reliable operation of this and other related instruments can be achieved.

  13. Theoretical investigation of boundary contours of ground-state atoms in uniform electric fields

    NASA Astrophysics Data System (ADS)

    Shi, Hua; Zhao, Dong-Xia; Yang, Zhong-Zhi

    2015-12-01

    The boundary contours were investigated for first 54 ground-state atoms of the periodic table when they are in uniform electric fields of strengths 106, 107 and 108 V/m. The atomic characteristic boundary model in combination with an ab-initio method was employed. Some regularities of the deformation of atoms, ΔR, in above electric fields are revealed. Furthermore, atomic polarisabilities of the first 54 elements of the periodic table are shown to correlate strongly with the mean variation rate of atomic radial size divided by the strength of the electric field F, ?, which provides a predictive method of calculating atomic polarisabilities of 54 atoms.

  14. MO-G-BRF-09: Investigating Magnetic Field Dose Effects in Mice: A Monte Carlo Study

    SciTech Connect

    Rubinstein, A; Guindani, M; Followill, D; Melancon, A; Hazle, J; Court, L

    2014-06-15

    Purpose: In MRI-linac treatments, radiation dose distributions are affected by magnetic fields, especially at high-density/low-density interfaces. Radiobiological consequences of magnetic field dose effects are presently unknown; therefore, preclinical studies are needed to ensure the safe clinical use of MRI-linacs. This study investigates the optimal combination of beam energy and magnetic field strength needed for preclinical murine studies. Methods: The Monte Carlo code MCNP6 was used to simulate the effects of a magnetic field when irradiating a mouse-sized lung phantom with a 1.0cmx1.0cm photon beam. Magnetic field effects were examined using various beam energies (225kVp, 662keV[Cs-137], and 1.25MeV[Co-60]) and magnetic field strengths (0.75T, 1.5T, and 3T). The resulting dose distributions were compared to Monte Carlo results for humans with various field sizes and patient geometries using a 6MV/1.5T MRI-linac. Results: In human simulations, the addition of a 1.5T magnetic field caused an average dose increase of 49% (range:36%–60%) to lung at the soft tissue-to-lung interface and an average dose decrease of 30% (range:25%–36%) at the lung-to-soft tissue interface. In mouse simulations, the magnetic fields had no effect on the 225kVp dose distribution. The dose increases for the Cs-137 beam were 12%, 33%, and 49% for 0.75T, 1.5T, and 3.0T magnetic fields, respectively while the dose decreases were 7%, 23%, and 33%. For the Co-60 beam, the dose increases were 14%, 45%, and 41%, and the dose decreases were 18%, 35%, and 35%. Conclusion: The magnetic field dose effects observed in mouse phantoms using a Co-60 beam with 1.5T or 3T fields and a Cs-137 beam with a 3T field compare well with those seen in simulated human treatments with an MRI-linac. These irradiator/magnet combinations are suitable for preclinical studies investigating potential biological effects of delivering radiation therapy in the presence of a magnetic field. Partially funded by Elekta.

  15. Multi-Criteria Decision Analysis Framework in the Selection of an Enterprise Integration (EI) Approach That Best Satisfies Organizational Requirements

    ERIC Educational Resources Information Center

    Ngeru, James

    2012-01-01

    In the past few decades, adoption of Enterprise Integration (EI) through initiatives such as Service Oriented Architecture (SOA), Enterprise Application Integration (EAI) and Enterprise Resource Planning (ERP) has consistently dominated most of organizations' top strategic priorities. Additionally, the field of EI has generated a vast amount…

  16. An X-ray Investigation of the NGC 346 Field in the SMC (2): The Field Population

    NASA Technical Reports Server (NTRS)

    Naze, Y.; Hartwell, J. M.; Stevens, I. R.; Manfroid, J.; Marchenko. S.; Corcoran, M. F.; Moffat, A. F. J.; Skalkowski, G.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    We present results from a Chandra observation of the NGC 346 cluster, the ionizing source of N66, the most luminous H II region and the largest star formation region in the SMC. In the first part of this investigation, we have analysed the X-ray properties of the cluster itself and the remarkable star HD 5980. But the field contains additional objects of interest. In total, 79 X-ray point sources were detected in the Chandra observation and we investigate here their characteristics in details. The sources possess rather high HRs, and their cumulative luminosity function is steeper than the SMC's trend. Their absorption columns suggest that most of the sources belong to NGC 346. Using new UBVRI imaging with the ESO 2.2m telescope, we also discovered possible counterparts for 36 of these X-ray sources. Finally, some objects show X-ray and/or optical variability, and thus need further monitoring.

  17. Distinguishing among Declarative, Descriptive and Causal Questions to Guide Field Investigations and Student Assessment

    ERIC Educational Resources Information Center

    Odom, Arthur Louis; Bell, Clare V.

    2011-01-01

    Teachers as well as students often have difficulty formulating good research questions because not all questions lend themselves to scientific investigation. The following is a guide for high-school and college life-science teachers to help students define question types central to biological field studies. The mayfly nymph was selected as the…

  18. 77 FR 16852 - Notice of Reclassification of Five Regional Offices to Investigative Field Offices: Seattle, WA...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-22

    ...: Seattle, WA; New Orleans, LA; Baltimore, MD; Tampa, FL; and Detroit, MI; Closure of Two Investigative..., Washington; New Orleans, Louisiana; Baltimore, Maryland; Tampa, Florida; and Detroit, Michigan regional..., Louisiana; Baltimore, Maryland; Tampa, Florida; and Detroit, Michigan regional offices as field offices...

  19. Field Investigations of Lactate-Stimulated Bioreduction of Cr(VI) at Hanford 100H

    SciTech Connect

    T. C. Hazen; B. Faybishenko; D. Joyner; S. Borglin; E. Brodie; S. Hubbard; K. Williams; J. Peterson; J. Wan; T. Tokunaga; M. Firestone; P. E. Long; Resch, C.T.; Newcomer, D.; Koenigsberg, S.; Willet, A. C. T. Resch, and D. Newcomer , S. Koenigsberg and A. Willet Field Investigations of Lactate-Stimulated Bioreduction of Cr at Hanford 100H

    2005-04-20

    The overall objective of this paper is to carry out field investigations to assess the potential for immobilizing and detoxifying chromium-contaminated groundwater using lactate-stimulated bioreduction of Cr(VI) to Cr(III) at the Hanford 100H site.

  20. An X-ray Investigation of the NGC 346 Field in the SMC (2): The Field Population

    NASA Technical Reports Server (NTRS)

    Naze, Y.; Hartwell, J. M.; Stevens, I. R.; Manfroid, J.; Marchenko, S.; Corcoran, M. F.; Moffat, A. F. J.; Skalkowski, G.

    2003-01-01

    We present results from a Chandra observation of the NGC 346 cluster, which is the ionizing source of N66, the most luminous HII region and the largest star formation region in the SMC. In the first part of this investigation, we have analysed the X-ray properties of the cluster itself and the remarkable star HD 5980. But the field contains additional objects of interest. In total, 79 X-ray point sources were detected in the Chandra observation: this is more than five times the number of sources detected by previous X-ray surveys. We investigate here their characteristics in detail. The sources possess rather high hardness ratios, and their cumulative luminosity function is steeper than that for the rest of the SMC at higher .luminosities. Their absorption columns suggest that most of the sources belong to NGC346. Using new UBV RI imaging with the ESO 2.2m telescope, we also discovered possible counterparts for 36 of these X-ray sources and estimated a B spectral type for a large number of these counterparts. This tends to suggest that most of the X-ray sources in the field are in fact X-ray binaries. Finally, some objects show X-ray and/or optical variability, with a need for further monitoring.

  1. Investigation of flow and solute transport at the field scale through heterogeneous deformable porous media

    NASA Astrophysics Data System (ADS)

    Chang, Ching-Min; Yeh, Hund-Der

    2016-09-01

    This work describes an investigation of the spatial statistical structure of specific discharge field and solute transport process of a nonreactive solute at the field scale through a heterogeneous deformable porous medium. The flow field is driven by a vertical gradient in the excess pore water pressure induced by a step increase in load applied on the upper part of a finite-thickness aquifer. The non-stationary spectral representation is adopted to characterize the spatial covariance of the specific discharge field necessary for the development of the solute particle trajectory statistics using the Lagrangian formalism. We show that the statistics of the specific discharge and particle trajectory derived herein are non-stationary and functions of the coefficient of soil compressibility, μ. The effect of μ on the relative variation of specific discharge and the solute particle trajectory statistics are analyzed upon evaluating our expressions.

  2. An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences.

    PubMed

    Nagel, H H; Enkelmann, W

    1986-05-01

    A mapping between one frame from an image sequence and the preceding or following frame can be represented as a displacement vector field. In most situations, the mere gray value variations do not provide sufficient information in order to estimate such a displacement vector field. Supplementary constraints are necessary, for example the postulate that a displacement vector field varies smoothly as a function of the image position. Taken as a general requirement, this creates difficulties at gray value transitions which correspond to occluding contours. Nagel therefore introduced the ``oriented smoothness'' requirement which restricts variations of the displacement vector field only in directions with small or no variation of gray values. This contribution reports results of an investigation about how such an ``oriented smoothness'' constraint may be formulated and evaluated. PMID:21869357

  3. Electric-field induced mutation of DNA: a theoretical investigation of the GC base pair.

    PubMed

    Cerón-Carrasco, José P; Jacquemin, Denis

    2013-04-01

    It is known that intense external electric fields affect the proton transfer (PT) reactions in simple chemical systems, such as hydrated chlorhydric acid or formic acid dimer. Accordingly, electric fields might be used to modulate the PT reactions responsible for the spontaneous mutation mechanism in DNA. In this contribution, we investigate the effect of these fields on the tautomeric equilibria of the guanine-cytosine (GC) base pair in order to gain further insight into this hypothesis. This task is performed with both density functional theory (DFT) and second-order Møller-Plesset (MP2) approaches. Our results demonstrate that electric fields not only drastically alter the rate constants of PT but also tune the mechanism of the PT reactions in the GC base pair. PMID:23338206

  4. An investigation into the induced electric fields from transcranial magnetic stimulation

    NASA Astrophysics Data System (ADS)

    Hadimani, Ravi; Lee, Erik; Duffy, Walter; Waris, Mohammed; Siddiqui, Waquar; Islam, Faisal; Rajamani, Mahesh; Nathan, Ryan; Jiles, David; David C Jiles Team; Walter Duffy Collaboration

    Transcranial magnetic stimulation (TMS) is a promising tool for noninvasive brain stimulation that has been approved by the FDA for the treatment of major depressive disorder. To stimulate the brain, TMS uses large, transient pulses of magnetic field to induce an electric field in the head. This transient magnetic field is large enough to cause the depolarization of cortical neurons and initiate a synaptic signal transmission. For this study, 50 unique head models were created from MRI images. Previous simulation studies have primarily used a single head model, and thus give a limited image of the induced electric field from TMS. This study uses finite element analysis simulations on 50 unique, heterogeneous head models to better investigate the relationship between TMS and the electric field induced in brain tissues. Results showed a significant variation in the strength of the induced electric field in the brain, which can be reasonably predicted by the distance from the TMS coil to the stimulated brain. Further, it was seen that some models had high electric field intensities in over five times as much brain volume as other models.

  5. Field investigation source area ST58 old Quartermaster service station, Eielson Air Force Base, Alaska

    SciTech Connect

    Liikala, T.L.; Evans, J.C.

    1995-01-01

    Source area ST58 is the site of the old Quartermaster service station at Eielson Air Force Base, Alaska. The source area is one of several Source Evaluation Report sites being investigated by Pacific Northwest Laboratory for the US Air Force as candidates for no further remedial action, interim removal action, or a remedial investigation/feasibility study under a Federal Facilities Agreement. The purpose of this work was to characterize source area ST58 and excavate the most contaminated soils for use in composting treatability studies. A field investigation was conducted to determine the nature and extent of soil contamination. The field investigation entailed a records search; grid node location, surface geophysical, and soil gas surveys; and test pit soil sampling. Soil excavation followed based on the results of the field investigation. The site was backfilled with clean soil. Results from this work indicate close spatial correlation between screening instruments, used during the field investigation and soil excavation, and laboratory analyses. Gasoline was identified as the main subsurface contaminant based on the soil gas surveys and test pit soil sampling. A center of contamination was located near the northcentral portion of the source area, and a center was located in the northwestern comer. The contamination typically occurred near or below a former soil horizon probably as a result of surface spills and leaks from discontinuities and/or breaks in the underground piping. Piping locations were delineated during the surface geophysical surveys and corresponded very well to unscaled drawings of the site. The high subsurface concentrations of gasoline detected in the northwestern comer of the source area probably reflect ground-water contamination and/or possibly floating product.

  6. The magnetic field investigation on the Ulysses mission - Instrumentation and preliminary scientific results

    NASA Technical Reports Server (NTRS)

    Balogh, A.; Beek, T. J.; Forsyth, R. J.; Hedgecock, P. C.; Marquedant, R. J.; Smith, E. J.; Southwood, D. J.; Tsurutani, B. T.

    1992-01-01

    A fundamental feature of the heliosphere is the three-dimensional structure of the interplanetary magnetic field. The magnetic field investigation on Ulysses, the first space probe to explore the out-of-ecliptic and polar heliosphere, aims at determining the large-scale features and gradients of the field, as well as the heliolatitude dependence of interplanetary phenomena so far only observed near the ecliptic plane. The Ulysses magnetometer uses two sensors, one a Vector Helium Magnetometer, the other a Fluxgate Magnetometer. Onboard data processing yields measurements of the magnetic field vector with a time resolution up to 2 vectors/second and a sensitivity of about 10 pT. Since the switch-on of the instrument in flight on 25 October 1990, a steady stream of observations has been made, indicating that at this phase of the solar cycle the field is generally disturbed: several shock waves and a large number of discontinuities have been observed, as well as several periods with apparently intense wave activity. The paper gives a brief summary of the scientific objectives of the investigation, followed by a detailed description of the instrument and its characteristics. Examples of wave bursts, interplanetary shocks and crossings of the heliospheric current sheet are given to illustrate the observations made with the instrument.

  7. Low-temperature scanning system for near- and far-field optical investigations.

    PubMed

    Kazantsev, D V; Dal Savio, C; Pierz, K; Güttler, B; Danzebrink, H-U

    2003-03-01

    A combined system for far- and near-field optical spectroscopy consisting of a compact scanning near-field optical microscope and a dedicated spectrometer was realized. The set-up allows the optical investigation of samples at temperatures from 10 to 300 K. The sample positioning range is as large as 5 x 5 x 5 mm3 and the spatial resolution is in the range of 1.5 micro m in the far-field optical microscopy mode at low temperatures. In the scanning near-field optical microscope mode the resolution is defined by the microfabricated cantilever probe, which is placed in the focus of a double-mirror objective. The tip-to-sample distance in the scanning near-field optical microscope is controlled by a beam deflection system in dynamic scanning force microscopy mode. After a description of the apparatus, scanning force topography images of self-assembled InAs quantum dots on a GaAs substrate with a density of less than one dot per square micrometre are shown, followed by the first spectroscopic investigations of such a sample. The presented results demonstrate the potential of the system.

  8. Investigation of mechanosensation in C. elegans using light field calcium imaging

    PubMed Central

    Shaw, Michael; Elmi, Muna; Pawar, Vijay; Srinivasan, Mandayam A.

    2016-01-01

    We describe a new experimental approach to investigate touch sensation in the model organism C. elegans using light field deconvolution microscopy. By combining fast volumetric image acquisition with controlled indentation of the organism using a high sensitivity force transducer, we are able to simultaneously measure activity in multiple touch receptor neurons expressing the calcium ion indicator GCaMP6s. By varying the applied mechanical stimulus we show how this method can be used to quantify touch sensitivity in C. elegans. We describe some of the challenges of performing light field calcium imaging in moving samples and demonstrate that they can be overcome by simple data processing. PMID:27446713

  9. Aqueous foams: a field of investigation at the frontier between chemistry and physics.

    PubMed

    Langevin, Dominique

    2008-03-14

    This paper reviews the properties of aqueous foams. The current state of knowledge is summarized briefly and the interdisciplinary aspects of this field of investigation are emphasized. Many phenomena are controlled by physical laws, but they are highly dependent upon the chemicals used as foam stabilizers: surfactants, polymers, particles. Most of the existing work is related to surfactants and polymer foams, and little is known yet for particle foams although research in this field is becoming popular. This article presents the general concepts used to describe the monolayers and the films and also some of the recent advances being made in this area.

  10. Determination of satellite valley position in GaN emitter from photoexcited field emission investigations

    NASA Astrophysics Data System (ADS)

    Semenenko, M.; Yilmazoglu, O.; Hartnagel, H. L.; Pavlidis, D.

    2011-01-01

    Argon plasma etched GaN field-emitter rods with nanometer-scale diameter were fabricated on GaN grown on an n+-GaN substrate. Their electron field emission properties were investigated both without and under illumination by using light sources with various wavelengths. The Fowler-Nordheim current-voltage characteristics of the cathodes show a change in slope for illuminated cathodes. The electron affinity difference ΔE between the different valleys in the conduction band has been ascertained and is in the range from 1.18 up to 1.21 eV.

  11. The Alaska earthquake, March 27, 1964: field investigations and reconstruction effort

    USGS Publications Warehouse

    Hansen, Wallace R.; Eckel, Edwin B.; Schaem, William E.; Lyle, Robert E.; George, Warren; Chance, Genie

    1966-01-01

    One of the greatest geotectonic events of our time occurred in southern Alaska late in the afternoon of March 27, 1964. Beneath a leaden sky, the chill of evening was just settling over the Alaskan countryside. Light snow was falling on some communities. It was Good Friday, schools were closed, and the business day was ending. Suddenly without warning half of Alaska was rocked and jarred by the most violent earthquake to occur in North America this century. The descriptive summary that follows is based on the work of many investigators. A large and still-growing scientific literature has accumulated since the earthquake, and this literature has been freely drawn upon here. In particular, the writers have relied upon the findings of their colleagues in the Geological Survey. Some of these findings have been published, but some are still being prepared for publication. Moreover, some field investigations are still in progress. This is the first in a series of six reports that the U.S. Geological Survey published on the results of a comprehensive geologic study that began, as a reconnaissance survey, within 24 hours after the March 27, 1964, Magnitude 9.2 Great Alaska Earthquake and extended, as detailed investigations, through several field seasons. The 1964 Great Alaska earthquake was the largest earthquake in the U.S. since 1700. Professional Paper 541, in 1 part, describes Field Investigations and Reconstruction Effort.

  12. Laboratory experiments investigating magnetic field production via the Weibel instability in interpenetrating plasma flows

    NASA Astrophysics Data System (ADS)

    Huntington, Channing; Fiuza, Frederico; Ross, James Steven; Zylstra, Alex; Pollock, Brad; Drake, R. Paul; Froula, Dustin; Gregori, Gianluca; Kugland, Nathan; Kuranz, Carolyn; Levy, Matthew; Li, Chikang; Meinecke, Jena; Petrasso, Richard; Remington, Bruce; Ryutov, Dmitri; Sakawa, Youichi; Spitkovsky, Anatoly; Takabe, Hideke; Turnbull, David; Park, Hye-Sook

    2015-08-01

    Astrophysical collisionless shocks are often associated with the presence of strong magnetic fields in a plasma flow. The magnetic fields required for shock formation may either be initially present, for example in supernova remnants or young galaxies, or they may be self-generated in systems such as gamma-ray bursts (GRBs). In the case of GRB outflows, the intense magnetic fields are greater than those seeded by the GRB progenitor or produced by misaligned density and temperature gradients in the plasma flow (the Biermann-battery effect). The Weibel instability is one candidate mechanism for the generation of sufficiently strong fields to create a collisionless shock. Despite their crucial role in astrophysical systems, observation of the magnetic fields produced by Weibel instabilities in experiments has been challenging. Using a proton probe to directly image electromagnetic fields, we present evidence of Weibel-generated magnetic fields that grow in opposing, initially unmagnetized plasma flows from laser-driven laboratory experiments. Three-dimensional particle-in-cell simulations reveal that the instability efficiently extracts energy from the plasma flows, and that the self-generated magnetic energy reaches a few percent of the total energy in the system. This result demonstrates an experimental platform suitable for the investigation of a wide range of astrophysical phenomena, including collisionless shock formation in supernova remnants, large-scale magnetic field amplification, and the radiation signature from gamma-ray bursts.This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  13. Optical near-field excitation at commercial scanning probe microscopy tips: a theoretical and experimental investigation.

    PubMed

    Huber, Christoph; Trügler, Andreas; Hohenester, Ulrich; Prior, Yehiam; Kautek, Wolfgang

    2014-02-14

    A systematic study of the influence of the excitation angle, the light polarization and the coating thickness of commercial SPM tips on the field enhancement in an apertureless scanning near-field optical microscope is presented. A new method to optimize the alignment of the electric field vector along the major tip axis by measuring the resonance frequency was developed. The simulations were performed with a MNPBEM toolbox based on the Boundary Element Method (BEM). The influence of the coating thickness was investigated for the first time. Coatings below 40 nm showed a drastic influence both on the resonance wavelength and the enhancement. A shift to higher angles of incidence for the maximum enhancement could be observed for greater tip radii.

  14. DDFT calibration and investigation of an anisotropic phase-field crystal model.

    PubMed

    Choudhary, Muhammad Ajmal; Li, Daming; Emmerich, Heike; Löwen, Hartmut

    2011-07-01

    The anisotropic phase-field crystal model recently proposed and used by Prieler et al (2009 J. Phys.: Condens. Matter 21 464110) is derived from microscopic density functional theory for anisotropic particles with fixed orientation. Its morphology diagram is also explored. In particular we have investigated the influence of anisotropy and undercooling on the process of nucleation and microstructure formation from the atomic to the microscale. To that end numerical simulations were performed varying those dimensionless parameters which represent anisotropy and undercooling in our anisotropic phase-field crystal model. The results from these numerical simulations are summarized in terms of a morphology diagram of the stable state phases. These stable phases are also investigated with respect to their kinetics and characteristic morphological features.

  15. Investigation of ginkgo biloba leave extracts as corrosion and Oil field microorganism inhibitors.

    PubMed

    Chen, Gang; Zhang, Min; Zhao, Jingrui; Zhou, Rui; Meng, Zuchao; Zhang, Jie

    2013-05-07

    Ginkgo biloba (Ginkgoaceae), originating from China, now distributes all over the world. Wide application of Ginkgo biloba extracts is determined by the main active substances, flavonoids and terpenoids, which indicates its extracts suitable to be used as an effective corrosion inhibitor. The extracts of Ginkgo biloba leave have been investigated on the corrosion inhibition of Q235A steel with weight loss and potentiodynamic polarisation techniques. The inhibition efficiency of the extracts varies with extract concentration. The extracts inhibit corrosion mainly by adsorption mechanism. Potentiodynamic polarisation studies show that extracts are mixed type inhibitors. The antibacterial activity of the extracts against oil field microorganism (SRB, IB and TGB) was also investigated.

  16. Investigation of Electromagnetic Field Threat to Fuel Tank Wiring of a Transport Aircraft

    NASA Technical Reports Server (NTRS)

    Ely, Jay J.; Nguyen, Truong X.; Dudley, Kenneth L.; Scearce, Stephen A.; Beck, Fred B.; Deshpande, Manohar D.; Cockrell, C. R.

    2000-01-01

    National Transportation Safety Board investigators have questioned whether an electrical discharge in the Fuel Quantity Indication System (FQIS) may have initiated the TWA-800 center wing tank explosion. Because the FQIS was designed to be incapable of producing such a discharge on its own, attention has been directed to mechanisms of outside electromagnetic influence. To support the investigation, the NASA Langley Research Center was tasked to study the potential for radiated electromagnetic fields from external radio frequency (RF) transmitters and passenger carried portable electronic devices (PEDs) to excite the FQIS enough to cause arcing, sparking or excessive heating within the fuel tank.

  17. Shemya AFB, Alaska 1992 IRP field investigation report. Volume 2, Appendix A: Final report

    SciTech Connect

    Not Available

    1993-02-01

    The US Air Force is currently investigating 22 sites on Shemya Air Force Base (AFB) to determine if past spill and disposal activities have caused environmental damage. These investigations are being carried out under the Air Force`s Installation Restoration Program (IRP). Field investigations were performed in 1992 to obtain the information needed to assess what future actions will need to be carried out at each site. The island`s drinking water supply was also investigated. Activities completed at 10 selected sites during the 1992 field investigation included surface sampling to determine the lateral extent of contamination, subsurface sampling to determine the vertical extent of contamination, and the installation of well points and monitoring wells to determine the direction of groundwater flow and if the groundwater has been affected by a site. In addition, geophysical surveys were performed at most sites to identify site boundaries and check for the presence of buried metal to be avoided during drilling activities. This report, appendix A, contains the analytical results.

  18. Shemya AFB, Alaska 1992 IRP field investigation report. Volume 1: Final report

    SciTech Connect

    Not Available

    1993-02-01

    The US Air Force is currently investigating 22 sites on Shemya Air Force Base (AFB) to determine if past spill and disposal activities have caused environmental damage. These investigations are being carried out under the Air Force`s Installation Restoration Program (IRP). As a part of the IRP program, field investigations were performed in 1992 to obtain the information needed to assess what future actions willneed to be carried out at each site. The island`s drinking water supply was also investigated. Activities completed at 10 selected sites during the 1992 field investigation included surface sampling to determine the lateral extent of contamination, subsurface sampling to determine the vertical extent of contamination, and the installation of well points and monitoring wells to determine the direction of groundwater flow and if the groundwater has been affected by a site. In addition, geophysical surveys were performed at most sites to identify site boundaries and check for the presence of buried metal to be avoided during drilling activities.

  19. Initial Results from the Vector Electric Field Investigation on the C/NOFS Satellite

    NASA Technical Reports Server (NTRS)

    Pfaff, R.; Rowland, D.; Acuna, M.; Le, G.; Farrell, W.; Holzworth, R.; Wilson, G.; Burke, W.; Freudenreich, H.; Bromund, K.; Liebrecht, C.; Martin, S.; Kujawski, J.; Uribe, P.; Fourre, R.; McCarthy, M.; Maynard, N.; Berthelier, J.-J.; Steigies, C.

    2009-01-01

    Initial results are presented from the Vector Electric Field Investigation (VEFI) on the Air Force Communication/Navigation Outage Forecasting System (C/NOFS) satellite, a mission designed to understand, model, and forecast the presence of equatorial ionospheric irregularities. The VEFI instrument includes a vector DC electric field detector, a fixed-bias Langmuir probe operating in the ion saturation regime, a flux gate magnetometer, an optical lightning detector, and associated electronics including a burst memory. The DC electric field detector has revealed zonal and meridional electric fields that undergo a diurnal variation, typically displaying eastward and outward-directed fields during the day and westward and downward-directed fields at night. In general, the measured DC electric field amplitudes are in the 0.5-2 mV/m range, corresponding to I3 x B drifts of the order of 30-150 m/s. What is surprising is the high degree of large-scale (10's to 100's of km) structure in the DC electric field, particularly at night, regardless of whether well-defined spread-F plasma density depletions are present. The spread-F density depletions and corresponding electric fields that have been detected thus far have displayed a preponderance to appear between midnight and dawn. Associated with the narrow plasma depletions that are detected are broad spectra of electric field and plasma density irregularities for which a full vector set of measurements is available for detailed study. On some occasions, localized regions of low frequency (< 8 Hz) magnetic field broadband irregularities have been detected, suggestive of filamentary currents, although there is no one-to-one correspondence of these waves with the observed plasma density depletions, at least within the data examined thus far. Finally, the data set includes a wide range of ELF/VLF/HF waves corresponding to a variety of plasma waves, in particular banded ELF hiss, whistlers, and lower hybrid wave turbulence

  20. Quantitative investigation of cellular growth in directional solidification by phase-field simulation.

    PubMed

    Wang, Zhijun; Wang, Jincheng; Li, Junjie; Yang, Gencang; Zhou, Yaohe

    2011-10-01

    Using a quantitative phase-field model, a systematic investigation of cellular growth in directional solidification is carried out with emphasis on the selection of cellular tip undercooling, tip radius, and cellular spacing. Previous analytical models of cellular growth are evaluated according to the phase-field simulation results. The results show that cellular tip undercooling and tip radius not only depend on the pulling velocity and thermal gradient, but also depend on the cellular interaction related to the cellular spacing. The cellular interaction results in a finite stable range of cellular spacing. The lower limit is determined by the submerging mechanism while the upper limit comes from the tip splitting instability corresponding to the absence of the cellular growth solution, both of which can be obtained from phase-field simulation. Further discussions on the phase-field results also present an analytical method to predict the lower limit. Phase-field simulations on cell elimination between cells with equal spacing validate the finite range of cellular spacing and give deep insight into the cellular doublon and oscillatory instability between cell elimination and tip splitting.

  1. Results of investigations at the Zunil geothermal field, Guatemala: Well logging and brine geochemistry

    SciTech Connect

    Adams, A.; Dennis, B.; Van Eeckhout, E.; Goff, F.; Lawton, R.; Trujillo, P.E.; Counce, D.; Archuleta, J. ); Medina, V. . Unidad de Desarollo Geotermico)

    1991-07-01

    The well logging team from Los Alamos and its counterpart from Central America were tasked to investigate the condition of four producing geothermal wells in the Zunil Geothermal Field. The information obtained would be used to help evaluate the Zunil geothermal reservoir in terms of possible additional drilling and future power plant design. The field activities focused on downhole measurements in four production wells (ZCQ-3, ZCQ-4, ZCQ-5, and ZCQ-6). The teams took measurements of the wells in both static (shut-in) and flowing conditions, using the high-temperature well logging tools developed at Los Alamos National Laboratory. Two well logging missions were conducted in the Zunil field. In October 1988 measurements were made in well ZCQ-3, ZCQ-5, and ZCQ-6. In December 1989 the second field operation logged ZCQ-4 and repeated logs in ZCQ-3. Both field operations included not only well logging but the collecting of numerous fluid samples from both thermal and nonthermal waters. 18 refs., 22 figs., 7 tabs.

  2. Experimental Investigation of Porous-floor Effects on Cavity Flow Fields at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Wilcox, Floyd J., Jr.

    1990-01-01

    An experimental investigation was conducted to determine the effectiveness of a passive-venting system to modify the flow field characteristics of a rectangular-box cavity at supersonic speeds. The passive-venting system consists of a porous floor with a vent chamber beneath the floor. For certain cavity length-to-height ratios, this configuration allowed high-pressure air at the rear of the cavity to vent to the forward part of the cavity, thereby modifying the cavity flow field. The wind-tunnel model consisted of a flat plate that housed a cavity mounted on a balance such that only the cavity drag was measured. The cavity height remained constant, and the length varied with rectangular-block inserts. Both solid-and porous-floor cavities were tested for comparison at Mach numbers of 1.60, 1.90, 2.16, and 2.86. These results showed that the passive-venting system did modify the cavity flow field. In order to determine the type flow field which existed for the porous-floor configuration, pressures were measured inside the cavity at the same conditions and for the same configurations as those used in the drag tests. Pressure data were also obtained with stores mounted in the cavity. These results, along with Schlieren photographs and the tabulated data, are presented to document the porous-floor cavity flow field.

  3. Effect of synthesis parameters on morphology of polyaniline (PANI) and field emission investigation of PANI nanotubes

    SciTech Connect

    Bankar, Prashant K.; More, Mahendra A.; Patil, Sandip S.

    2015-06-24

    Polyaniline (PANI) nanostructures have been synthesized by simple chemical oxidation route at different monomer concentration along with variation in synthesis temperature. The effect of variation of synthesis parameters has been revealed using different characterization techniques. The structural and morphological characterization of the synthesized PANI nanostructures was carried out by scanning electron microscopy (SEM), transmission electron microscopy (TEM), whereas Fourier Transform Infrared spectroscopy (FTIR) has been used to reveal the chemical properties. With the variation in the synthesis temperature and monomer concentration, various morphologies characterized by formation of PANI nanoparticles, nanofibres, nanotubes and nanospheres, are revealed from the SEM analysis. The FTIR analysis reveals the formation of conducting state of PANI under prevailing experimental conditions. The field emission investigation of the conducting PANI nanotubes was performed in all metal UHV system at base pressure of 1x10{sup −8} mbar. The turn on field required to draw emission of 1 nA current was observed to be ∼ 2.2 V/μm and threshold field (corresponding to emission current density of 1 µA/cm2) was found to be 3.2 V/μm. The emission current was observed to be stable for more than three hours at a preset value 1 µA. The simple synthesis route and good field emission characteristics indicate potential of PANI nanofibres as a promising emitter for field emission based micro/nano devices.

  4. Electric Fields and Waves Instrument on the RBSP Spacecraft: Investigating the Dynamic of the Inner Magnetosphere

    NASA Astrophysics Data System (ADS)

    Wygant, J. R.; Bonnell, J. W.; Goetz, K.; Ergun, R. E.; Mozer, F.; Cattell, C. A.; Strangeway, R. J.; Hudson, M. K.; Bale, S. D.; Chaston, C. C.; Baker, D. N.; Li, X.; Mann, I. R.; Donovan, E.; Foster, J. C.; Albert, J. M.; Kersten, K.; Breneman, A. W.; Dombeck, J. P.; Malaspina, D.; Krasnoselskikh, V.; Agapitov, O. V.; Kletzing, C.; Kurth, W. S.

    2012-12-01

    The Electric Fields and Waves (EFW) Instruments on the two RBSP spacecraft provide measurements of the three dimensional quasi-static electric field in the inner magentosphere in order to investigate the mechanisms responsible for the energization and loss of energetic particles. Some of the processes of immediate interest include the effects of impacts on the magnetosphere by intense interplanetary shocks, the effects of large scale convection, acceleration by injection events, energization by large scale ULF waves, and coherent and stochastic acceleration by intense lower hydrid, whistler mode, and kinetic Alfven waves. We will present, for the first time, deep within in the inner magnetosphere, examples of two spacecraft measurements of electric fields associated with energetic particle acceleration from the RBSP spacedraft during the first three months after launch. These will be discussed with in the context of RBSP science goals and measurements from previous missions. The electric field measurement uses two pairs of spherical sensors at the ends of orthogonal spin plane booms with tip to tip separations of 100 m. The spin axis measurement uses spheres at the ends of oppositely oriented stacers with an adjustable tip to tip separation of 12-14 m. The most accurate measurement of the electric field is from the spin plane sensors with are roughly orthogoal to the x gse axis and which will have an accuracy of <0.3 mV/m (after ground analysis and calibraiton) and a dynamic range of ~400 mV/m. Wave electric field from the EFW sensors as well as wave magnetic field signal from the EMFISIS search coil sensors will nominally be sampled at 512 samples/s. (with a capabitity of 12 ksamples/s) into a 32 gigabyte burst memory in order to provide high time resolution information on selected intervals of dynamically signficant waves and plasma structures.

  5. Investigation of Particle Sampling Bias in the Shear Flow Field Downstream of a Backward Facing Step

    NASA Technical Reports Server (NTRS)

    Meyers, James F.; Kjelgaard, Scott O.; Hepner, Timothy E.

    1990-01-01

    The flow field about a backward facing step was investigated to determine the characteristics of particle sampling bias in the various flow phenomena. The investigation used the calculation of the velocity:data rate correlation coefficient as a measure of statistical dependence and thus the degree of velocity bias. While the investigation found negligible dependence within the free stream region, increased dependence was found within the boundary and shear layers. Full classic correction techniques over-compensated the data since the dependence was weak, even in the boundary layer and shear regions. The paper emphasizes the necessity to determine the degree of particle sampling bias for each measurement ensemble and not use generalized assumptions to correct the data. Further, it recommends the calculation of the velocity:data rate correlation coefficient become a standard statistical calculation in the analysis of all laser velocimeter data.

  6. Original Size of the Sudbury Structure: Evidence from Field Investigations and Imaging Radar

    NASA Technical Reports Server (NTRS)

    Lowmman, Paul D., Jr.

    1999-01-01

    This paper summarizes results of continuing studies of the original size of the Sudbury impact structure, including imaging radar and field investigations of supposed "Sudbury breccia" north of the Sudbury Igneous Comples (SIC). Imaging radar acquired from Canada Centre for Remote Sensing (CCRS) aircraft, European Space Agency Remote Sensing Satellite (ERS-1), and RADARSAT shows no evidence of outer rings concentric with the North Range. Illumination directions are such that these rings, presumably extension fractures, would be conspicuous by look azimuth highlighting if they existed. Field mapping supports this interpretation, showing that supposed ring fractures occupied by Huronian sediments are essentially synclines older than the 1850 Ma impact and are not related to the impact. Field investigations of "Sudbury breccia" north of the SIC shows that most if not all of it is inside or along contacts with diabase dykes of the Sudbury Swarm (ca. 1238 Ma), and hence is far too young to be related to the impact. A recently-discovered occurrence of "Sudbury breccia" south of the SIC, near Creighton, is similarly associated with a NW-trending diabase dyke cutting the SIC, supporting the post-impact age of the breccia. It is concluded that the original north rim of the Sudbury crater was not more than 5 to 10 km north of the present North Range SIC contact, and that published estimates of the crater size (ca 200 km diameter) are incorrect.

  7. Synthesis of bismuth tungstate (Bi2WO6) nanoflakes and their field emission investigation

    NASA Astrophysics Data System (ADS)

    Kolhe, P. S.; Bankar, P. K.; Gavhane, D. S.; Sonawane, K. M.; Maiti, N.; More, M. A.

    2016-05-01

    The nanoflakes of Bismuth Tungstate (Bi2WO6) were successfully synthesized by a one-step facile hydrothermal route without using any templates or surfactants and field emission investigations of the Bi2WO6 nanoflakes emitter are reported. Structural and morphological analysis of as-synthesized Bi2WO6 nanoflakes has been carried out using X-ray diffraction (XRD) and scanning electron microscope (SEM). Moreover, the field emission characteristics of the Bi2WO6 nanoflakes are found to be superior to the other semiconductor emitters. The synthesized Bi2WO6 nanoflakes emitter delivers current density of ~222.35 μA/cm2 at an applied electric field of ~7.2 V/μm. The emission current stability investigated at pre-set value of ~2 μA is observed to be fairly good. These observed results demonstrate potential candidate of the Bi2WO6 cathode as an electron source for practical applications in vacuum microelectronic device.

  8. Gating capacitive field-effect sensors by the charge of nanoparticle/molecule hybrids.

    PubMed

    Poghossian, Arshak; Bäcker, Matthias; Mayer, Dirk; Schöning, Michael J

    2015-01-21

    The semiconductor field-effect platform is a powerful tool for chemical and biological sensing with direct electrical readout. In this work, the field-effect capacitive electrolyte-insulator-semiconductor (EIS) structure - the simplest field-effect (bio-)chemical sensor - modified with citrate-capped gold nanoparticles (AuNPs) has been applied for a label-free electrostatic detection of charged molecules by their intrinsic molecular charge. The EIS sensor detects the charge changes in AuNP/molecule inorganic/organic hybrids induced by the molecular adsorption or binding events. The feasibility of the proposed detection scheme has been exemplarily demonstrated by realizing capacitive EIS sensors consisting of an Al-p-Si-SiO2-silane-AuNP structure for the label-free detection of positively charged cytochrome c and poly-d-lysine molecules as well as for monitoring the layer-by-layer formation of polyelectrolyte multilayers of poly(allylamine hydrochloride)/poly(sodium 4-styrene sulfonate), representing typical model examples of detecting small proteins and macromolecules and the consecutive adsorption of positively/negatively charged polyelectrolytes, respectively. For comparison, EIS sensors without AuNPs have been investigated, too. The adsorption of molecules on the surface of AuNPs has been verified via the X-ray photoelectron spectroscopy method. In addition, a theoretical model of the functioning of the capacitive field-effect EIS sensor functionalized with AuNP/charged-molecule hybrids has been discussed.

  9. Investigating Non-Equilibrium Fluctuations of Nanocolloids in a Magnetic Field Using Direct Imaging Methods

    NASA Astrophysics Data System (ADS)

    Rice, Ashley; Oprisan, Ana; Oprisan, Sorinel; Rice-Oprisan College of Charleston Team

    Nanoparticles of iron oxide have a high surface area and can be controlled by an external magnetic field. Since they have a fast response to the applied magnetic field, these systems have been used for numerous in vivo applications, such as MRI contrast enhancement, tissue repair, immunoassay, detoxification of biological fluids, hyperthermia, drug delivery, and cell separation. We performed three direct imaging experiments in order to investigate the concentration-driven fluctuations using magnetic nanoparticles in the absence and in the presence of magnetic field. Our direct imaging experimental setup involved a glass cell filled with magnetic nanocolloidal suspension and water with the concentration gradient oriented against the gravitational field and a superluminescent diode (SLD) as the light source. Nonequilibrium concentration-driven fluctuations were recorded using a direct imaging technique. We used a dynamic structure factor algorithm for image processing in order to compute the structure factor and to find the power law exponents. We saw evidence of large concentration fluctuations and permanent magnetism. Further research will use the correlation time to approximate the diffusion coefficient for the free diffusion experiment. Funded by College of Charleston Department of Undergraduate Research and Creative Activities SURF grant.

  10. Stud arc welding in a magnetic field - Investigation of the influences on the arc motion

    NASA Astrophysics Data System (ADS)

    Hartz-Behrend, K.; Marqués, J. L.; Forster, G.; Jenicek, A.; Müller, M.; Cramer, H.; Jilg, A.; Soyer, H.; Schein, J.

    2014-11-01

    Stud arc welding is widely used in the construction industry. For welding of studs with a diameter larger than 14 mm a ceramic ferrule is usually necessary in order to protect the weld pool. Disadvantages of using such a ferrule are that more metal is molten than necessary for a high quality welded joint and that the ferrule is a consumable generally thrown away after the welding operation. Investigations show that the ferrule can be omitted when the welding is carried out in a radially symmetric magnetic field within a shielding gas atmosphere. Due to the Lorentz force the arc is laterally shifted so that a very uniform and controlled melting of the stud contact surface as well as of the work piece can be achieved. In this paper a simplified physical model is presented describing how the parameters welding current, flux density of the magnetic field, radius of the arc and mass density of the shielding gas influence the velocity of the arc motion. The resulting equation is subsequently verified by comparing it to optical measurements of the arc motion. The proposed model can be used to optimize the required field distribution for the magnetic field stud welding process.

  11. Investigating the active hydrothermal field of Kolumbo Volcano using CTD profiling

    NASA Astrophysics Data System (ADS)

    Eleni Christopoulou, Maria; Mertzimekis, Theo; Nomikou, Paraskevi; Papanikolaou, Dimitrios; Carey, Steve

    2014-05-01

    The submarine Kolumbo volcano NE of Santorini Island and the unique active hydrothermal vent field on its crater field (depth ~ 500 m) have been recently explored in multiple cruises aboard E/V Nautilus. ROV explorations showed the existence of extensive vent activity and almost completely absence of vent-specific macrofauna. Gas discharges have been found to be 99%-rich in CO2, which is sequestered at the bottom of the crater due to a special combination of physicochemical and geomorphological factors. The dynamic conditions existing along the water column in the crater have been studied in detail by means of temperature, salinity and conductivity depth profiles for the first time. CTD sensors aboard the ROV Hercules were employed to record anomalies in those parameters in an attempt to investigate several active and inactive vent locations. Temporal CTD monitoring inside and outside of the crater was carried out over a period of two years. Direct comparison between the vent field and locations outside the main cone, where no hydrothermal activity is known to exist, showed completely different characteristics. CTD profiles above the active vent field (NNE side) are correlated to Kolumbo's cone morphology. The profiles suggest the existence of four distinct zones of physicochemical properties in the water column. The layer directly above the chimneys exhibit gas discharges highly enriched in CO2. Continuous gas motoring is essential to identify the onset of geological hazards in the region.

  12. Experimental investigation of electron transport across a magnetic field barrier in electropositive and electronegative plasmas

    NASA Astrophysics Data System (ADS)

    Thomas, M. B.; Rafalskyi, D.; Lafleur, T.; Aanesland, A.

    2016-08-01

    In this paper we experimentally investigate the \\mathbf{E}× \\mathbf{B} drift of electrons in low temperature plasmas containing a magnetic field barrier; a plasma configuration commonly used in gridded negative ion sources. A planar Langmuir probe array is developed to quantify the \\mathbf{E}× \\mathbf{B} drift of electrons over the cross-section of the ion-extraction region of an ion–ion plasma source. The drift is studied as a function of pressure using both electropositive plasmas (Ar), as well electronegative plasmas (Ar and SF6 mixtures), and is demonstrated to result from an interaction of the applied magnetic field and the electric fields in the sheath and pre-sheath near the transverse boundaries. The drift enhances electron transport across the magnetic field by more than two orders of magnitude compared with simple collisional transport, and is found to be strongly dependant on pressure. The lowest pressure resulted in the highest influence of the drift across the extraction area and is found to be 30%.

  13. Experimental investigation of electron transport across a magnetic field barrier in electropositive and electronegative plasmas

    NASA Astrophysics Data System (ADS)

    Thomas, M. B.; Rafalskyi, D.; Lafleur, T.; Aanesland, A.

    2016-08-01

    In this paper we experimentally investigate the \\mathbf{E}× \\mathbf{B} drift of electrons in low temperature plasmas containing a magnetic field barrier; a plasma configuration commonly used in gridded negative ion sources. A planar Langmuir probe array is developed to quantify the \\mathbf{E}× \\mathbf{B} drift of electrons over the cross-section of the ion-extraction region of an ion-ion plasma source. The drift is studied as a function of pressure using both electropositive plasmas (Ar), as well electronegative plasmas (Ar and SF6 mixtures), and is demonstrated to result from an interaction of the applied magnetic field and the electric fields in the sheath and pre-sheath near the transverse boundaries. The drift enhances electron transport across the magnetic field by more than two orders of magnitude compared with simple collisional transport, and is found to be strongly dependant on pressure. The lowest pressure resulted in the highest influence of the drift across the extraction area and is found to be 30%.

  14. Investigation of well redevelopment techniques for the MWD Well Field, Savannah River Site, South Carolina

    SciTech Connect

    Kroening, D.E.; Snipes, D.S.; Falta, R.W.; Benson, S.M. . Dept. of Earth Sciences); Janssen, J. )

    1994-03-01

    Clemson University, in cooperation with the Savannah River Site (SRS) is investigating well treatment techniques at the Mixed Waste Disposal (MWD) Well Field at SRS. This well field consists of fifteen wells screened in three aquifers with a downward trending head gradient. Based on aquifer performance tests of the MWD wells, it has been determined that many of the wells exhibit low well efficiencies and high skin factors, indicative of damaged wells. Bacterial investigations show that the biological activity in these wells is low, probably due to a high pH environment. Evaluation of the Calcite Saturation Index for each well indicates that nearly all of the MWD wells have the potential for precipitating calcite and calcite deposits have been observed on downhole equipment. The calcite deposits may occur due to the dissolution of the grout mixtures by waters infiltrating down the well annulus driven by the downward head gradient with subsequent precipitation of calcite in the higher pH sand pack. Well rehabilitation techniques currently under investigation include acidification, hydraulic fracturing and traditional physical methods. In addition to treating the wells at MWD, the authors plan to perform aquifer performance tests and evaluate post-treatment skin factors. Further research into the long term effects of well treatment will be conducted, focusing on long term chemical changes brought about by the treatments.

  15. Investigating the motion of particles in an ultrasonic acoustic wave field using PIV/PTV

    NASA Astrophysics Data System (ADS)

    Nobes, David S.; Setayeshgar, Alireza; Lipsett, Michael G.; Koch, Charles R.

    2012-05-01

    The influence of a multi-wavelength acoustic standing wave field on the motion of micron-sized particles is experimentally investigated using particle image velocimetry/particle tracking velocimetry (PIV/PTV) to examine existing theories describing the radiation force on particles. An ultrasonic acoustic wave is introduced into a column chamber containing a mixture of distilled water and a disperse population of spherical particles. In this system the acoustic field is aligned with gravity to form horizontal bands of particles, which are also influenced by buoyancy and drag forces. Accounting for these forces with the acoustic radiation pressure, the motion of an individual particle is modeled. There is a good agreement between the pattern of the particles motion in experimental results and the predicted single particle motion; however, due to the concentration of particles in the experiment, a difference is observed in the maximum value of the velocity of the particles in the experiment and in the single particle model.

  16. Experimental investigation of interactions between the temperature field and biofouling in a synthetic treated sewage stream.

    PubMed

    Yang, Qianpeng; Wilson, D Ian; Chen, Xiaodong; Shi, Lin

    2013-01-01

    Biofouling causes significant losses in efficiency in heat exchangers recovering waste heat from treated sewage. The influence of the temperature field on biofouling was investigated using a flat plate heat exchanger which simulated the channels in a plate and frame unit. The test surface was a 316 stainless steel plate, and a solution of Bacillus sp. and Aeromonas sp. was used as a model process liquid. The test cell was operated under co-current, counter-current, and constant wall temperature configurations, which gave different temperature distributions. Biofouling was monitored via changes in heat transfer and biofilm thickness. The effect of uniform temperature on biofouling formation was similar to the effect of uniform temperature on planktonic growth of the organisms. Further results showed that the temperature field, and particularly the wall temperature, influenced the rate of biofouling strongly. The importance of wall temperature suggests that fouling could be mitigated by using different configurations in summer and winter. PMID:23668358

  17. Design and implementation of epidemiological field investigation method based on mobile collaboration

    NASA Astrophysics Data System (ADS)

    Zhang, Lihui; Wang, Dongchuan; Huang, Mingxiang; Gong, Jianhua; Fang, Liqun; Cao, Wuchun

    2008-10-01

    With the development of mobile technologies and the integration with the spatial information technologies, it becomes possible to provide a potential to develop new techno-support solutions to Epidemiological Field Investigation especially for the disposal of emergent public health events. Based on mobile technologies and virtual geographic environment, the authors have designed a model for collaborative work in four communication patterns, namely, S2S (Static to Static), M2S (Mobile to Static), S2M (Static to Mobile), and M2M (Mobile to Mobile). Based on the model mentioned above, this paper stresses to explore mobile online mapping regarding mobile collaboration and conducts an experimental case study of HFRS (Hemorrhagic Fever with Renal Syndrome) fieldwork, and then develops a prototype system of emergent response disposition information system to test the effectiveness and usefulness of field survey based on mobile collaboration.

  18. Ground-based complex for detection and investigation of fast optical transients in wide field

    NASA Astrophysics Data System (ADS)

    Molinari, Emilio; Beskin, Grigory; Bondar, Sergey; Karpov, Sergey; Plokhotnichenko, Vladimir; de-Bur, Vjacheslav; Greco, Guiseppe; Bartolini, Corrado; Guarnieri, Adriano; Piccioni, Adalberto

    2008-07-01

    To study short stochastic optical flares of different objects (GRBs, SNs, etc) of unknown localizations as well as NEOs it is necessary to monitor large regions of sky with high time resolution. We developed a system which consists of wide-field camera (FOW is 400-600 sq.deg.) using TV-CCD with time resolution of 0.13 s to record and classify optical transients, and a fast robotic telescope aimed to perform their spectroscopic and photometric investigation just after detection. Such two telescope complex TORTOREM combining wide-field camera TORTORA and robotic telescope REM operated from May 2006 at La Silla ESO observatory. Some results of its operation, including first fast time resolution study of optical transient accompanying GRB and discovery of its fine time structure, are presented. Prospects for improving the complex efficiency are given.

  19. Experimental investigation of interactions between the temperature field and biofouling in a synthetic treated sewage stream.

    PubMed

    Yang, Qianpeng; Wilson, D Ian; Chen, Xiaodong; Shi, Lin

    2013-01-01

    Biofouling causes significant losses in efficiency in heat exchangers recovering waste heat from treated sewage. The influence of the temperature field on biofouling was investigated using a flat plate heat exchanger which simulated the channels in a plate and frame unit. The test surface was a 316 stainless steel plate, and a solution of Bacillus sp. and Aeromonas sp. was used as a model process liquid. The test cell was operated under co-current, counter-current, and constant wall temperature configurations, which gave different temperature distributions. Biofouling was monitored via changes in heat transfer and biofilm thickness. The effect of uniform temperature on biofouling formation was similar to the effect of uniform temperature on planktonic growth of the organisms. Further results showed that the temperature field, and particularly the wall temperature, influenced the rate of biofouling strongly. The importance of wall temperature suggests that fouling could be mitigated by using different configurations in summer and winter.

  20. Use of percolation theory and Latin hypercube sampling in field-scale solute transport investigations

    SciTech Connect

    Luxmoore, R.J.; Jardine, P.M.; Gardner, R.H. ); Wilson, G.V. . Dept. of Plant and Soil Science)

    1990-01-01

    Investigations of rain-fed solute transport have been conducted at a forested hillslope site by using an in situ soil pedon and a subsurface hydrologic monitoring facility. Complementary solute transport studies on undisturbed soil columns taken from the field site have not provided data that can be directly applied to the field situation. Scaling up from columns to pedons and from pedons to hillslopes is being evaluated with percolation theory and Latin hypercube sampling methods. Percolation theory provides a means of identifying mobile zones and stagnant zones for given soil structural attributes which can be compared with column dye tracing results. The generation of frequency distributions of backwater and backbone porosities for a range of total soil porosities and pore arrangements may provide a stochastic representation of soil systems suitable for scaling up from the column scale to the pedon using the Latin hypercube sampling method. 9 refs.

  1. Investigating the impact of electromagnetic fields on human cells: A thermodynamic perspective

    NASA Astrophysics Data System (ADS)

    Lucia, Umberto; Ponzetto, Antonio; Deisboeck, Thomas S.

    2016-02-01

    The consequences of the interactions of electromagnetic waves, as used in conventional MRI technology, with human cells are not fully understood. To analyze these interactions, a novel thermodynamic approach is presented that is based on the relationship between electromagnetic and thermodynamic quantities. The theoretical results indicate that the waves' impact is largest at high magnetic field strengths and at low frequencies. This is the first step towards a clinically useful framework to quantitatively assess MRI impact including a potential trade-off between the desired increase in spatial resolution that higher magnetic field strengths yield for diagnostic purposes and the danger this may pose for cell membranes, and by extension, for the tissues investigated.

  2. Investigation of Switching Fields of Magnetic Nanoparticles With Magnetic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Collins, S.; Grutter, P.; Zhu, X.; Beauvais, J.; Beerens, J.

    2004-03-01

    Magnetic quantum cellular automata (MQCA) has been proposed as an alternate paradigm for computing. This requires a thorough understanding of switching behavior of magnetic nanoparticles. Both experimental [1] and theoretical [2] investigations into MQCA rely on particle shape anisotropies as an intrinsic part of their architectures for input or control structures, while requiring other elements to be strictly uniform so that their switching behavior is consistent. We have patterned elliptical particles with and without characteristic edge flaws using electron beam lithography. Magnetic force microscopy with an in-situ magnetic field was then performed to produce an ensemble hysteresis loop. Particles with atypical switching fields were identified and further examined in a scanning electron microscope to search for any edge defects or characteristic edge roughness which could account for their atypical switching behavior. [1] R. Cowburn et al, Science 287, 1466 (2000) [2] G. Csaba et al, Int. J. Circ. Theor. Appl. 31, 67 (2003)

  3. Experimental and Computational Investigation of a Plasma Ion Accelerator with Multiple Magnetic Field Cusps

    NASA Astrophysics Data System (ADS)

    Young, Christopher; Cappelli, Mark

    2011-10-01

    A cusped-field discharge produces efficient ionization by trapping electrons from an external cathode through magnetic mirroring between adjacent magnetic cusps. These discharges have applications in space propulsion, particularly at low power (under 200W). However, the underlying physics driving electron transport and ionization in these devices is still poorly understood. In the current study, the plasma potential of a 40-250 W cylindrical cusped-field discharge is characterized using a floating emissive probe. The potential exhibits a spatial structure that mimics visible light emission; elevated potential is observed in a surrounding conical region downstream of the discharge channel, concomitant with ion emission. The experimentally measured plasma potential is used in single-electron particle simulations to investigate transport processes associated with electron migration from the external cathode to the anode at the base of the discharge channel. A cusped-field discharge produces efficient ionization by trapping electrons from an external cathode through magnetic mirroring between adjacent magnetic cusps. These discharges have applications in space propulsion, particularly at low power (under 200W). However, the underlying physics driving electron transport and ionization in these devices is still poorly understood. In the current study, the plasma potential of a 40-250 W cylindrical cusped-field discharge is characterized using a floating emissive probe. The potential exhibits a spatial structure that mimics visible light emission; elevated potential is observed in a surrounding conical region downstream of the discharge channel, concomitant with ion emission. The experimentally measured plasma potential is used in single-electron particle simulations to investigate transport processes associated with electron migration from the external cathode to the anode at the base of the discharge channel. The authors acknowledge support from the Air Force Office of

  4. Limited field investigation report for the 100-DR-1 Operable Unit

    SciTech Connect

    Not Available

    1994-06-01

    This limited field investigation (LFI) report summarizes the data collection and analysis activities conducted during the 100-DR-1 Source Operable Unite LFI and the associated qualitative risk assessment (QRA), and makes recommendations on the continued candidacy of high-priority sites for interim remedial measures (IRM). The results and recommendations presented in this report are generally independent of future land use scenarios. The 100-DR-1 Operable Unit is one of four operable units associated with the 100 D/DR Area at the Hanford Site. The 100-DR-1 Operable Unit encompasses approximately 1.5 km{sup 2} (0.59 mi{sup 2}) and is located immediately adjacent to the Columbia River shoreline. In general, it contains waste facilities associated with the original plant facilities constructed to support D Reactor facilities, as well as cooling water retention basin systems for both D and DR Reactors. The 100-DR-1 LFI began the investigative phase of the remedial investigation for a select number of high-priority sites. The LFI was performed to provide additional data needed to support selection, design and implementation of IRM, if needed. The LFI included data compilation, nonintrusive investigations, intrusive investigations, summarization of 100 Area aggregate studies, and data evaluation.

  5. An investigation of magnetic field effects on plume density and temperature profiles of an applied-field MPD thruster

    NASA Technical Reports Server (NTRS)

    Bullock, S. Ray; Myers, R. M.

    1994-01-01

    Applied-field magnetoplasmadynamic (MPD) thruster performance is below levels required for primary propulsion missions. While MPD thruster performance has been found to increase with the magnitude of the applied-field strength, there is currently little understanding of the impact of applied-field shape on thruster performance. The results of a study in which a single applied-field thruster was operated using three solenoidal magnets with diameters of 12.7, 15.2, and 30.4-cm are presented. Thruster voltage and anode power deposition were measured for each applied field shape over a range of field strengths. Plume electron number density and temperature distributions were measured using a Langmuir probe in an effort to determine the effect of field shape on plume confinement by the diverging magnetic-field for each of the three magnetic field shapes. Results show that the dependence of the measured thruster characteristics on field shape were non-monotonic and that the field shape had a significant effect on the plume density and temperature profiles.

  6. Investigation of defect-induced abnormal body current in fin field-effect-transistors

    SciTech Connect

    Liu, Kuan-Ju; Tsai, Jyun-Yu; Lu, Ying-Hsin; Liu, Xi-Wen; Chang, Ting-Chang; Chen, Ching-En; Yang, Ren-Ya; Cheng, Osbert; Huang, Cheng-Tung

    2015-08-24

    This letter investigates the mechanism of abnormal body current at the linear region in n-channel high-k/metal gate stack fin field effect transistors. Unlike body current, which is generated by impact ionization at high drain voltages, abnormal body current was found to increase with decreasing drain voltages. Notably, the unusual body leakage only occurs in three-dimensional structure devices. Based on measurements under different operation conditions, the abnormal body current can be attributed to fin surface defect-induced leakage current, and the mechanism is electron tunneling to the fin via the defects, resulting in holes left at the body terminal.

  7. Investigation of Molecular Exchange Using DEXSY with Ultra-High Pulsed Field Gradients

    NASA Astrophysics Data System (ADS)

    Gratz, Marcel; Galvosas, Petrik

    2008-12-01

    Diffusion exchange spectroscopy has been employed for the investigation of water exchange between different regions of a cosmetic lotion as well as for the exchange of n-pentane between the inter- and intra-crystalline space in zeolite NaX. We successfully combined this two-dimensional (2D) NMR experiment with methods for the application of ultra-high pulsed field gradients of up to 35 T/m, resulting in observation times and mixing times as short as 2 ms and 2.8 ms, respectively.

  8. Investigation of Molecular Exchange Using DEXSY with Ultra-High Pulsed Field Gradients

    SciTech Connect

    Gratz, Marcel; Galvosas, Petrik

    2008-12-05

    Diffusion exchange spectroscopy has been employed for the investigation of water exchange between different regions of a cosmetic lotion as well as for the exchange of n-pentane between the inter- and intra-crystalline space in zeolite NaX. We successfully combined this two-dimensional (2D) NMR experiment with methods for the application of ultra-high pulsed field gradients of up to 35 T/m, resulting in observation times and mixing times as short as 2 ms and 2.8 ms, respectively.

  9. Investigations of the Sheath Effect on the Resultant Magnetic Field of a Cylindrical Monopole Plasma Antenna

    NASA Astrophysics Data System (ADS)

    Moses, E. Emetere

    2015-02-01

    The functionality of the plasma antenna has been narrowed to types and brand names only. The physics of its operation has been neglected and has stagnated technological innovations. The magnetic field in the sheath and plasma were investigated. Notable specifications were worked out in the proposed improved cylindrical monopole plasma antenna. The occurrence of femto spin demagnetization was discovered between the duration of switch on and switch off of the antenna. This phenomenon seems transient because magnetization is highest at the switch on/off point.

  10. [Effect on Fermi Resonance by Some External Fields: Investigation of Fermi Resonance According to Raman Spectra].

    PubMed

    Jiang, Xiu-lan; Sun, Cheng-lin; Zhou, Mi; Li, Dong-fei; Men, Zhi-wei; Li, Zuo-wei; Gao, Shu-qin

    2015-03-01

    Fermi resonance is a phenomenon of molecular vibrational coupling and energy transfer occurred between different groups of a single molecule or neighboring molecules. Many properties of Fermi resonance under different external fields, the investigation method of Raman spectroscopy as well as the application of Fermi resonance, etc need to be developed and extended further. In this article the research results and development about Fermi resonance obtained by Raman spectral technique were introduced systematically according to our work and the results by other researchers. Especially, the results of the behaviors of intramolecular and intermolecular Fermi resonance of some molecules under some external fields such as molecular field, pressure field and temperature field, etc were investigated and demonstrated in detail according to the Raman spectra obtained by high pressure DAC technique, temperature variation technique as well as the methods we planed originally in our group such as solution concentration variation method and LCOF resonance Raman spectroscopic technique, and some novel properties of Fermi resonance were found firstly. Concretely, (1) Under molecular field. a. The Raman spectra of C5H5 N in CH3 OH and H2O indicates that solvent effect can influence Fermi resonance distinctly; b. The phenomena of the asymmetric movement of the Fermi resonance doublets as well as the fundamental involved is tuned by the Fermi resonance which had not been found by other methods were found firstly by our variation solution concentration method; c. The Fermi resonance properties can be influenced distinctly by the molecular group reorganization induced by the hydrogen bond and anti-hydrogen bond in solution; d. Fermi resonance can occurred between C7 H8 and m-C8H10, and the Fermi resonance properties behave quite differently with the solution concentration; (2) Under pressure field. a. The spectral lines shift towards high wavenumber with increasing pressure, and

  11. Investigation of Fully Three-Dimensional Helical RF Field Effects on TWT Beam/Circuit Interaction

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.

    2000-01-01

    A fully three-dimensional (3D), time-dependent, helical traveling wave-tube (TWT) interaction model has been developed using the electromagnetic particle-in-cell (PIC) code MAFIA. The model includes a short section of helical slow-wave circuit with excitation fed by RF input/output couplers, and electron beam contained by periodic permanent magnet (PPM) focusing. All components of the model are simulated in three dimensions allowing the effects of the fully 3D helical fields on RF circuit/beam interaction to be investigated for the first time. The development of the interaction model is presented, and predicted TWT performance using 2.5D and 3D models is compared to investigate the effect of conventional approximations used in TWT analyses.

  12. Flux-gate magnetic field sensor based on yttrium iron garnet films for magnetocardiography investigations

    NASA Astrophysics Data System (ADS)

    Vetoshko, P. M.; Gusev, N. A.; Chepurnova, D. A.; Samoilova, E. V.; Syvorotka, I. I.; Syvorotka, I. M.; Zvezdin, A. K.; Korotaeva, A. A.; Belotelov, V. I.

    2016-08-01

    A new type of f lux-gate vector magnetometer based on epitaxial yttrium iron garnet films has been developed and constructed for magnetocardiography (MCG) investigations. The magnetic field sensor can operate at room temperature and measure MCG signals at a distance of about 1 mm from the thoracic cage. The high sensitivity of the sensor, better than 100 fT/Hz1/2, is demonstrated by the results of MCG measurements on rats. The main MCG pattern details and R-peak on a level of 10 pT are observed without temporal averaging, which allows heart rate anomalies to be studied. The proposed magnetic sensors can be effectively used in MCG investigations.

  13. Use of pulsed-field gel electrophoresis to investigate an outbreak of Serratia marcescens.

    PubMed Central

    Shi, Z Y; Liu, P Y; Lau, Y J; Lin, Y H; HU, B S

    1997-01-01

    Pulsed-field gel electrophoresis (PFGE) typing was applied to the epidemiological investigation of 20 Serratia marcescens isolates collected from urine specimens of 17 patients and three urinals over a 2-month period. Twenty-five epidemiologically unrelated strains were also tested to determine the discriminatory power of PFGE. The PFGE fingerprints of each isolate were consistent in three different tests. The 20 outbreak isolates had an identical PFGE fingerprint pattern, while the epidemiologically unrelated strains demonstrated unique PFGE fingerprint patterns. The source of the outbreak was inadequately disinfected urinals. We conclude that PFGE served as a highly discriminatory and reproducible method for the epidemiological investigation of the outbreak of S. marcescens infection addressed by this study. PMID:8968940

  14. Experimental Investigation of Pool Boiling Heat Transfer Enhancement in Microgravity in the Presence of Electric Fields

    NASA Technical Reports Server (NTRS)

    Herman, Cila

    1996-01-01

    compared to values obtained for the same system without electric fields. Imposing an external electric field holds the promise to improve pool boiling heat transfer in low gravity, since a phase separation force other than gravity is introduced. The goal of our research is to experimentally investigate the potential of EHD and the mechanisms responsible for EHD heat transfer enhancement in boiling in low gravity conditions.

  15. Shemya AFB, Alaska 1992 IRP field investigation report. Volume 4, Appendixes E and F: Final report

    SciTech Connect

    Not Available

    1993-02-01

    The US Air Force is currently investigating 22 sites on Shemya Air Force Base (AFB) to determine if past spill and disposal activities have caused environmental damage. These investigations are being carried out under the Air Force`s Installation Restoration Program (IRP). Field investigations were performed in 1992 to obtain the information needed to assess what future actions will need to be carried out at each site. The island`s drinking water supply was also investigated. Activities completed at 10 selected sites included surface sampling to determine the lateral extent of contamination, subsurface sampling to determine the vertical extent of contamination, and the installation of well points and monitoring wells to determine the direction of groundwater flow and if the groundwater has been affected by a site. In addition, geophysical surveys were performed at most sites to identify site boundaries and check for the presence of buried metal, to be avoided during drilling activities. This report contains appendices E and F with information on the following: soil boring logs, and data validation of samples analyzed.

  16. Experimental investigations of the unsteady rotating flow field in a cylindrical vessel

    NASA Astrophysics Data System (ADS)

    Denk, V.; Dürholt, A.

    1991-12-01

    The rotating flow field in a cylindrical vessel — the so-called whirlpool — is widely used in food engineering as a method for separating particles out of a suspension (Cup-of-tea-method). However many of these whirlpools do not operate adequately or fail entirely. In order to solve this problem, the first step was to investigate the flow field and its time dependency which has not been sufficiently understood until now. The rotating flow in a cylindrical vessel — induced by a fluid jet during the filling period of this vessel — is slowed down by fluid friction after the closing of the inlet valve. The velocity fields to be found mainly near, and pressure distributions at the bottom of the vessel, are measured during this unsteady flow. The results, especially those which describe vortex systems, are used to improve the separation system. This paper is restricted to the hydrodynamic aspect. Therefore success in industrial applications can only be indicated.

  17. Metabolic Investigation in Gluconacetobacter xylinus and Its Bacterial Cellulose Production under a Direct Current Electric Field.

    PubMed

    Liu, Miao; Zhong, Cheng; Zhang, Yu Ming; Xu, Ze Ming; Qiao, Chang Sheng; Jia, Shi Ru

    2016-01-01

    The effects of a direct current (DC) electric field on the growth and metabolism of Gluconacetobacter xylinus were investigated in static culture. When a DC electric field at 10 mA was applied using platinum electrodes to the culture broth, bacterial cellulose (BC) production was promoted in 12 h but was inhibited in the last 12 h as compared to the control (without DC electric field). At the cathode, the presence of the hydrogen generated a strong reductive environment that is beneficial to cell growth. As compared to the control, the activities of glycolysis and tricarboxylic acid cycle, as well as BC productivity were observed to be slightly higher in the first 12 h. However, due to the absence of sufficient oxygen, lactic acid was accumulated from pyruvic acid at 18 h, which was not in favor of BC production. At the anode, DC inhibited cell growth in 6 h when compared to the control. The metabolic activity in G. xylinus was inhibited through the suppression of the tricarboxylic acid cycle and glycolysis. At 18-24 h, cell density was observed to decrease, which might be due to the electrolysis of water that significantly dropped the pH of cultural broth far beyond the optimal range. Meanwhile, metabolites for self-protection were accumulated, for instance proline, glutamic acid, gluconic acid, and fatty acids. Notably, the accumulation of gluconic acid and lactic acid made it a really tough acid stress to cells at the anode and finally led to depression of cell growth.

  18. Investigating the impact of visuohaptic simulations for the conceptual understanding of electric field for distributed charges

    NASA Astrophysics Data System (ADS)

    Shaikh, Uzma Abdul Sattar

    The present study assessed the benefits of a multisensory intervention on the conceptual understanding of electric field for distributed charges in engineering and technology undergraduate students. A novel visuohaptic intervention was proposed, which focused on exploring the forces around the different electric field configurations for distributed charges namely point, infinitely long line and uniformly charged ring. The before and after effects of the visuohaptic intervention are compared, wherein the intervention includes instructional scaffolding. Three single-group studies were conducted to investigate the effect among three different populations: (a) Undergraduate engineering students, (b) Undergraduate technology students and (c) Undergraduate engineering technology students from a different demographic setting. The findings from the three studies suggests that the haptic modality intervention provides beneficial effects by allowing students to improve their conceptual understanding of electric field for distributed charges, although students from groups (b) and (c) showed a statistically significant increase in the conceptual understanding. The findings also indicate a positive learning perception among all the three groups.

  19. Investigation of the flow field inside flat-plate collector tube using PIV technique

    SciTech Connect

    Sookdeo, Steven; Siddiqui, Kamran

    2010-06-15

    The thermofluid process inside the tube of flat-plate collectors is complex because the non-uniform heating of the tube results in the formation of stably and unstably stratified layers of fluid that interact with each other. The measurement and investigation of the flow behaviour inside the collector tube is very challenging. We report on a novel application of the particle image velocimetry (PIV) technique to remotely measure the velocity field inside the collector tube. The two-dimensional velocity fields were measured in the midplane of a collector tube for the Reynolds number range of 150-900 at unheated and four different heating conditions. We have presented and discussed in detail the technique implementation and the associated challenges. The results have shown that the collector heating significantly alters the structure and magnitude of the mean velocity field and influences the heat transfer to the fluid. It is observed that the collector heating causes a significant asymmetry in the mean velocity profiles over the given range of Reynolds numbers and heating conditions. (author)

  20. Experimental Investigation on Liquid Metal Flow Distribution in Insulating Manifold under Uniform Magnetic Field

    NASA Astrophysics Data System (ADS)

    Miura, Masato; Ueki, Yoshitaka; Yokomine, Takehiko; Kunugi, Tomoaki

    2012-11-01

    Magnetohydrodynamics (MHD) problem which is caused by interaction between electrical conducting fluid flow and the magnetic field is one of the biggest problem in the liquid metal blanket of the fusion reactor. In the liquid metal blanket concept, it is necessary to distribute liquid metal flows uniformly in the manifold because imbalance of flow rates should affect the heat transfer performance directly, which leads to safety problem. While the manifold is insulated electrically as well as the flow duct, the 3D-MHD effect on the flowing liquid metal in the manifold is more apparent than that in straight duct. With reference to the flow distribution in this concept, the liquid metal flow in the electrical insulating manifold under the uniform transverse magnetic field is investigated experimentally. In this study, GaInSn is selected as working fluid. The experimental system includes the electrical magnet and the manifold test section which is made of acrylic resin for perfectly electrical insulation. The liquid metal flows in a non-symmetric 180°-turn with manifold, which consists of one upward channel and two downward channels. The flow rates in each channel are measured by electromagnetic flow meters for several combinations Reynolds number and Hartman number. The effects of magnetic field on the uniformity of flow distribution are cleared.

  1. Experimental and computational investigation of the NASA low-speed centrifugal compressor flow field

    NASA Technical Reports Server (NTRS)

    Hathaway, Michael D.; Chriss, Randall M.; Wood, Jerry R.; Strazisar, Anthony J.

    1993-01-01

    An experimental and computational investigation of the NASA Lewis Research Center's low-speed centrifugal compressor (LSCC) flow field was conducted using laser anemometry and Dawes' three-dimensional viscous code. The experimental configuration consisted of a backswept impeller followed by a vaneless diffuser. Measurements of the three-dimensional velocity field were acquired at several measurement planes through the compressor. The measurements describe both the throughflow and secondary velocity field along each measurement plane. In several cases the measurements provide details of the flow within the blade boundary layers. Insight into the complex flow physics within centrifugal compressors is provided by the computational fluid dynamics analysis (CFD), and assessment of the CFD predictions is provided by comparison with the measurements. Five-hole probe and hot-wire surveys at the inlet and exit to the impeller as well as surface flow visualization along the impeller blade surfaces provided independent confirmation of the laser measurement technique. The results clearly document the development of the throughflow velocity wake that is characteristic of unshrouded centrifugal compressors.

  2. An experimental field protocol for investigating the postmortem interval using multidisciplinary indicators.

    PubMed

    Schoenly, K; Griest, K; Rhine, S

    1991-09-01

    This article proposes an experimental field protocol for investigating the postmortem interval using specially designed apparatus and human and pig cadavers. We further propose that this goal can only be achieved by a multidisciplinary group, comprised of forensic entomologists, pathologists, and anthropologists. The apparatus and collecting methods described by the authors establish the means by which data can be collected on several fronts simultaneously: the sequential arrival and variety of insects in the decay process, the character and manner of soft tissue decomposition, the sequence and nature of bone exposure and order of disarticulation of skeletal remains, and the influence of climate and season on decay rates and arthropod succession. A central feature of this protocol involves the construction and use of a dual-functioning insect trap that allows separate but simultaneous capture of arriving and emerging populations while successional and decompositional processes of the cadaver are left intact. Results of trap performance tests in an arid climate and preliminary arthropod data collected from field-exposed pig carcasses are presented. The use of this protocol could provide important and badly needed baseline data for both medical investigators and law enforcement personnel, information that is critical to understanding the causes, manner, and time of death, which the law requires to be ascertained. PMID:1955831

  3. Field and Laboratory Investigations on Seismic Properties of Unconsolidated Saline Permafrost

    NASA Astrophysics Data System (ADS)

    Dou, Shan

    Saline permafrost is mechanically weak and very sensitive to temperature disturbances, which makes its degradation particularly worrisome in a warming climate. For the purposes of hazard mitigation and prevention, it is crucial to gain knowledge about the properties and distributions of saline permafrost. However, one major challenge is that saline permafrost is hard to access, as it often is covered with a surficial layer of non-saline permafrost. Seismic methods are cost-effective methods for detecting and delineating saline permafrost, but research on seismic properties of unconsolidated saline permafrost is lacking. The body of work comprising this dissertation is the first systematic study to investigate seismic properties of unconsolidated saline permafrost. Encompassing field and laboratory components, the study reveals pervasive presence of saline permafrost across the Barrow Environmental Observatory (BEO) in Alaska, and illustrates saline permafrost's striking vulnerability to temperature disturbances. Besides these findings regarding the distributions and properties of saline permafrost, other key deliverables of this dissertation include 1) rich seismic datasets for field and laboratory investigations of unconsolidated saline permafrost, 2) full-wavefield-based workflow for delineating irregularly dispersive media, and 3) improved microstructural realization regarding pore-scale distributions of ice in saturated frozen sediments. Through this work we hope to call attention to the possibly ubiquitous presence of saline permafrost along the polar coasts. Considering the potentially large impact of saline permafrost degradation in a warming climate, we advocate future research needs in regional-scale mapping of saline permafrost and assessing its influences in climate modeling.

  4. An investigation into field effects of consciousness from the perspectives of Maharishi's Vedic Science and physics

    NASA Astrophysics Data System (ADS)

    Kleinschnitz, Kurt Warren

    1997-05-01

    A long-range field effect of consciousness has been reported repeatedly in the scientific literature over the past twenty years. This phenomenon is called the Maharishi Effect, after Maharishi Mahesh Yogi, the first to predict it. The Maharishi Effect is the phenomenon of improved societal trends resulting from the practice of the Transcendental Meditationoler program or group practice of the TM-Sidhioler program by a small fraction of a population. The Maharishi Effect is fundamentally a phenomenon of radiation of evolutionary influence arising from the enlivenment of pure consciousness, the unified field of natural law, in the perspective of Maharishi's Vedic Science. This perspective is corroborated by forty-three published or presented papers reporting on results of Maharishi Effect interventions world-wide at city, national, international, and global scales. Present day standard- model physics and physiology do not account for the outcomes of the research on the Maharishi Effect. Because the observed societal impact of the Maharishi Effect influence must be based in an impact on the individual, and investigators report detection of the effect in individual physiological measurements, a simple robust indicator for the effect might aid physiologists and physicists in the effort to extend their sciences to include such field effects of consciousness. Thus, this dissertation reports on two experiments investigating simple, robust, objective indicators for the effect. The dissertation concludes on a practical note with a description of the promise, available through concerted utilization of the knowledge and technologies of consciousness in Maharishi's Vedic Science, for enhanced national and global security in the face of unprecedented nuclear, biological, and genetic threats for which the modern sciences offer few sensible solutions. ftnolerTranscendental Meditation and TM-Sidhi are service marks registered in the United States Patent and Trademark Office

  5. Laboratory and Field Investigations of Dynamic Effects in Soil Water Retention Curve

    NASA Astrophysics Data System (ADS)

    Chiu, Yung-Chia; Tseng, Yen-Huiang; Ye, Jiun-Yan

    2015-04-01

    The unsaturated soil is a multi-phase system and the embedded physical mechanisms and chemical reactions are very complicated. The characteristics of groundwater flow and mechanisms of mass transport are still ambiguous so far. In order to fully understand the flow and transport in the unsaturated zone, the soil water retention curve plays an important role in description of water flow. However, the measurements and calculations of soil water retention curve are usually obtained under the static condition or steady state (equilibrium), in which the dynamic effects (non-equilibrium) are not considered, and the obtained relationship between capillary pressure and saturation is skeptical. Therefore, the sandbox experiments and field tests will be conducted to discuss the dynamic effects in the soil water retention curve and hysteresis effect in this study. In the laboratory, the relations between capillary pressure, saturation, the rate of change of water content, and dynamic constant are evaluated through different setting of boundary conditions and different sizes of particles. In the field, the tests are conducted to describe the soil water retention curve through the rain simulator and artificial evaporation. Besides, the dynamic dewpoint potentiameter is used to analyze the hysteresis effect of soil samples, and its results are compared with the results obtained from sandbox and field experiments. Finally, through a series of experiments, the relationship between capillary pressure and saturation under the dynamic effects is established, and the associated theories and mechanisms are discussed. The works developed in this study can provide as reference tools for the hydrogeological investigation and contaminated site remediation in the future. Keywords: capillary pressure, saturation, soil water retention curve, hysteresis, sandbox experiment, field test

  6. OpenEIS. Developer Guide

    SciTech Connect

    Lutes, Robert G.; Neubauer, Casey C.; Haack, Jereme N.; Carpenter, Brandon J.; Monson, Kyle E.; Allwardt, Craig H.; Sharma, Poorva; Akyol, Bora A.

    2015-03-31

    The Department of Energy’s (DOE’s) Building Technologies Office (BTO) is supporting the development of an open-source software tool for analyzing building energy and operational data: OpenEIS (open energy information system). This tool addresses the problems of both owners of building data and developers of tools to analyze this data. Building owners and managers have data but lack the tools to analyze it while tool developers lack data in a common format to ease development of reusable data analysis tools. This document is intended for developers of applications and explains the mechanisms for building analysis applications, accessing data, and displaying data using a visualization from the included library. A brief introduction to the visualizations can be used as a jumping off point for developers familiar with JavaScript to produce their own. Several example applications are included which can be used along with this document to implement algorithms for performing energy data analysis.

  7. Investigations on field-ion image formation and field evaporation sequences of DO3-ordered Fe3Al.

    PubMed

    Frommeyer, Georg; Liu, Zhi-Guo; Wesemann, Jürgen; Wanderka, Nelja

    2002-07-01

    The field-ion image formation of DO3-ordered Fe3Al was reinvestigated performing the atomic plane counting technique and the analysis of field evaporation sequences of different crystallographic plane sets with supporting atom probe microanalysis. For comparative studies a hypostoichiometric iron aluminide with B2 ordering was also imaged in the field-ion microscopy (FIM). The results show that Al atoms are the brightly imaging species. However, on DO3 superlattice plane sets, such as (222) and (226), iron atom layers have been imaged with atomic resolution. The B2-ordered iron aluminide does not exhibit prominent (222) and (226) poles in the FIM image. Video controlled field evaporation sequences of different atomic planes and image analysis lead to the conclusion that preferential field desorption of Fe atoms and the stronger field-ionization of Al atoms are the important mechanism for the formation of field-ion images of Fe3Al. The B2-ordered iron aluminide exhibits preferentially double layer field evaporation, and topmost Fe atom layers are not visible in the FIM.

  8. Field Demonstration of Slim-hole Borehole Nuclear Magnetic Resonance (NMR) Logging Tool for Groundwater Investigations

    NASA Astrophysics Data System (ADS)

    Walsh, D.; Turner, P.; Frid, I.; Shelby, R.; Grunewald, E. D.; Magnuson, E.; Butler, J. J.; Johnson, C. D.; Cannia, J. C.; Woodward, D. A.; Williams, K. H.; Lane, J. W.

    2010-12-01

    Nuclear magnetic resonance (NMR) methods provide estimates of free and bound water content and hydraulic conductivity, which are critically important for groundwater investigations. Borehole NMR tools have been available and widely used in the oil industry for decades, but only recently have been designed for small diameter boreholes typical of groundwater investigations. Field tests of an 89-mm-diameter borehole NMR logging tool are presented. This borehole NMR logging tool was developed for economical NMR logging of 100- to 200-mm-diameter boreholes, and specifically for characterizing hydraulic properties in the top 200 m of the subsurface. The tool has a vertical resolution of 0.5 m, a minimum echo spacing of 2.0 ms, and a radial depth of investigation of 178 to 203 mm, which typically is beyond the annulus of observation wells. It takes about 15 minutes to collect a data sample for each 0.5-m interval. The borehole NMR logging tool was field tested during spring 2010, in PVC-cased wells at sites in East Haddam and Storrs, Connecticut; Cape Cod, Massachusetts; Lexington, Nebraska; Lawrence, Kansas; and Rifle, Colorado. NMR logging yielded estimates of bound water, free water, and total-water content, as well as continuous distributions of water content versus transverse relaxation time (T2) at all depth levels. The derived water-content data were compared to the available ground-truth hydrogeologic data from each well, including drilling logs, neutron and other geophysical logs, and direct measurements of hydraulic conductivity. The results indicate that the borehole NMR logging tool provides information on porosity, pore-size distribution, and estimated hydraulic conductivity that cannot be duplicated by any other single geophysical logging tool.

  9. Alzheimer's disease research: scientific productivity and impact of the top 100 investigators in the field.

    PubMed

    Sorensen, Aaron A

    2009-01-01

    The online availability of scientific-literature databases and natural-language-processing (NLP) algorithms has enabled large-scale bibliometric studies within the field of scientometrics. Using NLP techniques and Thomson ISI reports, an initial analysis of the role of Alzheimer's disease (AD) within the neurosciences as well as a summary of the various research foci within the AD scientific community are presented. Citation analyses and productivity filters are applied to post-1984, AD-specific subsets of the PubMed and Thomson ISI Web-of-Science literature bases to algorithmically identify a pool of the top AD researchers. From the initial pool of AD investigators, top-100 rankings are compiled to assess productivity and impact. One of the impact and productivity metrics employed is an AD-specific H-index. Within the AD-specific H-index ranking, there are many cases of multiple AD investigators with similar or identical H-indices. In order to facilitate differentiation among investigators with equal or near-equal H indices, two derivatives of the H-index are proposed: the Second-Tier H-index and the Scientific Following H-index. Winners of two prestigious AD-research awards are highlighted, membership to the Institute of Medicine of the US National Academy of Sciences is acknowledged, and an analysis of highly-productive, high-impact, AD-research collaborations is presented.

  10. Source evaluation report phase 2 investigation: Limited field investigation. Final report: United States Air Force Environmental Restoration Program, Eielson Air Force Base, Alaska

    SciTech Connect

    Not Available

    1994-10-01

    This report describes the limited field investigation work done to address issues and answer unresolved questions regarding a collection of potential contaminant sources at Eielson Air Force Base (AFB), near Fairbanks, Alaska. These sources were listed in the Eielson AFB Federal Facility Agreement supporting the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) cleanup of the base. The limited field investigation began in 1993 to resolve all remaining technical issues and provide the data and analysis required to evaluate the environmental hazard associated with these sites. The objective of the limited field investigation was to allow the remedial project managers to sort each site into one of three categories: requiring remedial investigation/feasibility study, requiring interim removal action, or requiring no further remedial action.

  11. Experimental Investigation of Pool Boiling Heat Transfer Enhancement in Microgravity in the Presence of Electric Fields

    NASA Technical Reports Server (NTRS)

    Herman, Cila

    1999-01-01

    In boiling high heat fluxes are possible driven by relatively small temperature differences, which make its use increasingly attractive in aerospace applications. The objective of the research is to develop ways to overcome specific problems associated with boiling in the low gravity environment by substituting the buoyancy force with the electric force to enhance bubble removal from the heated surface. Previous studies indicate that in terrestrial applications nucleate boiling heat transfer can be increased by a factor of 50, as compared to values obtained for the same system without electric fields. The goal of our research is to experimentally explore the mechanisms responsible for EHD heat transfer enhancement in boiling in low gravity conditions, by visualizing the temperature distributions in the vicinity of the heated surface and around the bubble during boiling using real-time holographic interferometry (HI) combined with high-speed cinematography. In the first phase of the project the influence of the electric field on a single bubble is investigated. Pool boiling is simulated by injecting a single bubble through a nozzle into the subcooled liquid or into the thermal boundary layer developed along the flat heater surface. Since the exact location of bubble formation is known, the optical equipment can be aligned and focused accurately, which is an essential requirement for precision measurements of bubble shape, size and deformation, as well as the visualization of temperature fields by HI. The size of the bubble and the frequency of bubble departure can be controlled by suitable selection of nozzle diameter and mass flow rate of vapor. In this approach effects due to the presence of the electric field can be separated from effects caused by the temperature gradients in the thermal boundary layer. The influence of the thermal boundary layer can be investigated after activating the heater at a later stage of the research. For the visualization experiments a

  12. The Impact of Engineering Integrated Science (EIS) Curricula on First-Year Technical High School Students' Attitudes toward Science and Perceptions of Engineering

    ERIC Educational Resources Information Center

    Nam, Younkyeong; Lee, Sun-Ju; Paik, Seoung-Hey

    2016-01-01

    This study investigated how engineering integrated science (EIS) curricula affect first-year technical high school students' attitudes toward science and perceptions of engineering. The effect of the EIS participation period on students' attitudes toward science was also investigated via experimental study design. Two engineering integrated…

  13. NMR investigation of field-induced magnetic order in barium manganese oxide

    NASA Astrophysics Data System (ADS)

    Suh, Steve

    the triangular Mn5+ magnetic lattice of Ba3Mn2O8 coupled with interdimer interaction is predicted to result in incommensurate spin structure when the symmetry axis of Ba3Mn2O8 is aligned parallel to the field. Because of single ion anisotropy of the system, Ba3Mn 2O8 has phase diagram that depends on its alignment with respect to the external field[5]. This means that the microscopic spin structure is different depending on whether the material's symmetry axis is aligned parallel or perpendicular to the field. Also, since we are dealing with S = 1, we have potential to investigate spin-gap closure due to singlet and triplet states as well as triplet and quintet states if we are able to access high enough fields (15T to 30T). Measurements at National High Magnetic Field Laboratory (NHMFL), gives us a superficial taste of what it is like to be in the phase created by triplet and quintet gap closure. The temperature range allowed by the Oxford dilution refrigerator system at Brown Lab, UCLA is from 1K down to 30mK. The magnetic field range allowed by the superconducting magnet at Brown Lab, UCLA is from 0T up to 12T. This combination of temperature and field range allows us to investigate the first quantum critical point (Hc1) in detail with various NMR measurements. Normal state frequency shift as a function of temperature near Hc1 reveals behavior consistent with dilute hardcore bose gas. Analysis of the lineshapes of NMR spectra going into spin order BEC phase as a function of field, we directly observe incommensurate nature of spin order and deduce development of order parameter consistent with mean-field theory. Finally, we verify that the language of dilute 3D Bosons also applies to Ba3Mn2O8 through T1 measurements. From critical behavior inferred in T1 measurements, we complete phase boundary diagram at low temperatures and apply general concept of softening in Goldstone mode near Hc1 to describe our T 1 dependence as a function of temperature.

  14. Investigation of drift effect on silicon nanowire field effect transistor based pH sensor

    NASA Astrophysics Data System (ADS)

    Kim, Sihyun; Kwon, Dae Woong; Lee, Ryoongbin; Kim, Dae Hwan; Park, Byung-Gook

    2016-06-01

    It is widely accepted that the operation mechanism of pH-sensitive ion sensitive field effect transistor (ISFET) can be divided into three categories; reaction of surface sites, chemical modification of insulator surface, and ionic diffusion into the bulk of insulator. The first mechanism is considered as the main operation mechanism of pH sensors due to fast response, while the others with relatively slow responses disturb accurate pH detection. In this study, the slow responses (often called drift effects) are investigated in silicon nanowire (SiNW) pH-sensitive ISFETs. Based on the dependence on the channel type of SiNW, liquid gate bias, and pH, it is clearly revealed that the drift of n-type SiNW results from H+ diffusion into the insulator whereas that of p-type SiNW is caused by chemical modification (hydration) of the insulator.

  15. Experimental Investigations on Ballistic Transport in Multi-Bridged Channel Field Effect Transistors

    NASA Astrophysics Data System (ADS)

    Jung, Young Chai; Hong, Byoung Hak; Choi, Luryi; Hwang, Sung Woo; Cho, Keun Hwi; Lee, Sung-Young; Kim, Dong-Won; Park, Donggun

    2011-04-01

    Electrical characteristics of multi bridged channel field effect transistor (MBCFET) with various channel lengths (L) ranging from 500 to 48 nm have been investigated. The current--voltage characteristics do not show any sign of short channel effect due to surrounding gate structures. The gate bias power law of the drain saturation current, mobility, and ballistic efficiency as functions of L show mixed features of drift-diffusion and ballistic transport. The channel resistance shows anomalous decrease when L≤ 60 nm, which is related with the transconductance overshoot resulted in ballistic transport at small VDS. Temperature (T) dependence of the 100 nm device shows another type of transport region when T < 40 K, which can be interpreted as the one-dimensional quantum ballistic regime.

  16. Experimental Investigations on Ballistic Transport in Multi-Bridged Channel Field Effect Transistors

    NASA Astrophysics Data System (ADS)

    Chai Jung, Young; Hong, Byoung Hak; Choi, Luryi; Hwang, Sung Woo; Cho, Keun Hwi; Lee, Sung-Young; Kim, Dong-Won; Park, Donggun

    2011-04-01

    Electrical characteristics of multi bridged channel field effect transistor (MBCFET) with various channel lengths (L) ranging from 500 to 48 nm have been investigated. The current-voltage characteristics do not show any sign of short channel effect due to surrounding gate structures. The gate bias power law of the drain saturation current, mobility, and ballistic efficiency as functions of L show mixed features of drift-diffusion and ballistic transport. The channel resistance shows anomalous decrease when L≤60 nm, which is related with the transconductance overshoot resulted in ballistic transport at small VDS. Temperature (T) dependence of the 100 nm device shows another type of transport region when T < 40 K, which can be interpreted as the one-dimensional quantum ballistic regime.

  17. Numerical investigation of cone angle effect on the flow field and separation efficiency of deoiling hydrocyclones

    NASA Astrophysics Data System (ADS)

    Saidi, Maysam; Maddahian, Reza; Farhanieh, Bijan

    2013-02-01

    In this study, the effect of cone angle on the flow field and separation efficiency of deoiling hydrocyclones is investigated taking advantage of large eddy simulation. The dynamic Smagorinsky is employed to determine the residual stress tensor of the continuous phase. The method of Lagrangian particle tracking with an optimized search algorithm (closest cell) is applied to evaluate the separation efficiency of deoiling hydrocyclone. Simulations are performed on a 35-mm deoiling hydrocyclone with the three different cone angles of 6, 10 and 20 degree. The numerical results revealed that the changes in the cone angle would affect the velocity and pressure distribution inside hydrocyclone, and lead to changes in the separation efficiency. However, the large cone angle increases the tangential velocity and pressure gradient inside the hydrocyclone, but reduces the separation efficiency. The reasons behind the decrease in the separation efficiency are the flow structure and reduction of oil droplets residence time in hydrocyclones with large cone angles.

  18. Qualitative investigation of fresh human scalp hair with full-field optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Choi, Woo June; Pi, Long-Quan; Min, Gihyeon; Lee, Won-Soo; Lee, Byeong Ha

    2012-03-01

    We have investigated depth-resolved cellular structures of unmodified fresh human scalp hairs with ultrahigh-resolution full-field optical coherence tomography (FF-OCT). The Linnik-type white light interference microscope has been home-implemented to observe the micro-internal layers of human hairs in their natural environment. In hair shafts, FF-OCT has qualitatively revealed the cellular hair compartments of cuticle and cortex layers involved in keratin filaments and melanin granules. No significant difference between black and white hair shafts was observed except for absence of only the melanin granules in the white hair, reflecting that the density of the melanin granules directly affects the hair color. Anatomical description of plucked hair bulbs was also obtained with the FF-OCT in three-dimensions. We expect this approach will be useful for evaluating cellular alteration of natural hairs on cosmetic assessment or diagnosis of hair diseases.

  19. Investigation of an Optimum Detection Scheme for a Star-Field Mapping System

    NASA Technical Reports Server (NTRS)

    Aldridge, M. D.; Credeur, L.

    1970-01-01

    An investigation was made to determine the optimum detection scheme for a star-field mapping system that uses coded detection resulting from starlight shining through specially arranged multiple slits of a reticle. The computer solution of equations derived from a theoretical model showed that the greatest probability of detection for a given star and background intensity occurred with the use of a single transparent slit. However, use of multiple slits improved the system's ability to reject the detection of undesirable lower intensity stars, but only by decreasing the probability of detection for lower intensity stars to be mapped. Also, it was found that the coding arrangement affected the root-mean-square star-position error and that detection is possible with error in the system's detected spin rate, though at a reduced probability.

  20. Rapid arsenite oxidation by Thermus aquaticus and Thermus thermophilus: Field and laboratory investigations

    USGS Publications Warehouse

    Gihring, T.M.; Druschel, G.K.; McCleskey, R.B.; Hamers, R.J.; Banfield, J.F.

    2001-01-01

    Thermus aquaticus and Thermus thermophilus, common inhabitants of terrestrial hot springs and thermally polluted domestic and industrial waters, have been found to rapidly oxidize arsenite to arsenate. Field investigations at a hot spring in Yellowstone National Park revealed conserved total arsenic transport and rapid arsenite oxidation occurring within the drainage channel. This environment was heavily colonized by Thermus aquaticus. In laboratory experiments, arsenite oxidation by cultures of Thermus aquaticus YT1 (previously isolated from Yellowstone National Park) and Thermus thermophilus HB8 was accelerated by a factor of over 100 relative to abiotic controls. Thermus aquaticus and Thermus thermophilus may therefore play a large and previously unrecognized role in determining arsenic speciation and bioavailability in thermal environments.

  1. Small estuarine fishes feed on large trematode cercariae: Lab and field investigations

    USGS Publications Warehouse

    Kaplan, A.T.; Rebhal, S.; Lafferty, K.D.; Kuris, A.M.

    2009-01-01

    In aquatic ecosystems, dense populations of snails can shed millions of digenean trematode cercariae every day. These short-lived, free-living larvae are rich in energy and present a potential resource for consumers. We investigated whether estuarine fishes eat cercariae shed by trematodes of the estuarine snail Cerithidea californica. In aquaria we presented cercariae from 10 native trematode species to 6 species of native estuarine fishes. Many of these fishes readily engorged on cercariae. To determine if fishes ate cercariae in the field, we collected the most common fish species, Fundulus parvipinnis (California killifish), from shallow water on rising tides when snails shed cercariae. Of 61 killifish, 3 had recognizable cercariae in their gut. Because cercariae are common in this estuary, they could be frequent sources of energy for small fishes. In turn, predation on cercariae by fishes (and other predators) could also reduce the transmission success of trematodes. ?? 2009 American Society of Parasitologists.

  2. Remedial Investigation Work Plan for J-Field, Aberdeen Proving Ground, Maryland

    SciTech Connect

    Benioff, P.; Biang, R.; Dolak, D.; Dunn, C.; Haffenden, R.; Martino, L.; Patton, T.; Wang, Y.; Yuen, C.

    1995-03-01

    The purpose of an RI/FS is to characterize the nature and extent of the risks posed by contaminants present at a site and to develop and evaluate options for remedial actions. The overall objective of the RI is to provide a comprehensive evaluation of site conditions, types and quantities of contaminants present, release mechanisms and migration pathways, target populations, and risks to human health and the environment. The information developed during the RI provides the basis for the design and implementation of remedial actions during the FS. The purpose of this RI Work Plan is to define the tasks that will direct the remedial investigation of the J-Field site at APG.

  3. Investigation of pulsed field deletions at the chromosome 16 TSC2 locus

    SciTech Connect

    Brook-Carter, P.T.; Thompson, P.; Nellist, M.

    1994-09-01

    Tuberous sclerosis loci map at 9q34 near to the Abelson oncogene, and at 16p13.3 in the candidate region for type 1 adult polycystic kidney disease (PKD1). Five TSC-associated pulsed field deletions were found in the gene-rich PKD1 candidate region at 16p13.3, leading to the cloning and characterization of the TSC2 gene. One deletion detected in a TSC patient with polycystic kidneys (WS-53) also involved a gene proximal and adjacent to the TSC2 gene. This gene has now been shown to be the causative gene in type 1 adult polycystic kidney disease. Polycystic reneal disease is well recognized in association with TSC. We are therefore investigating other TSC patients with this complication to determine whether mutations affecting both the TSC2 and PKD1 genes account for this phenotypic variant of TSC.

  4. Investigation of electric field induction of superconductivity at complex oxide interfaces

    NASA Astrophysics Data System (ADS)

    Haraldsen, J. T.; Wolfle, P.; Balatsky, A. V.

    2012-02-01

    We examine the modified electronic states and change in carrier density at the interfaces of complex oxide films produced by an external electric field. Using a Ginzburg-Landau formalism and ab-initio calculations, we show that linear coupling of an electric potential can influence the superconducting order parameter and induce a transition to a superconducting phase. Further, we examine the correlation between carrier density and the superconducting critical temperature Tc by investigating capacitance and density of states with changing electric potential. We will discuss implications of this work in the context of interfaces formed by LaAlO3 and SrTiO3 thin films. This approach points to an alternative path to superconducting devices with tunable transition temperature. Work was carried out under the help and support of the National Nuclear Security Administration of the U.S. Department of Energy at Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396.

  5. PIXELS: Using field-based learning to investigate students' concepts of pixels and sense of scale

    NASA Astrophysics Data System (ADS)

    Pope, A.; Tinigin, L.; Petcovic, H. L.; Ormand, C. J.; LaDue, N.

    2015-12-01

    Empirical work over the past decade supports the notion that a high level of spatial thinking skill is critical to success in the geosciences. Spatial thinking incorporates a host of sub-skills such as mentally rotating an object, imagining the inside of a 3D object based on outside patterns, unfolding a landscape, and disembedding critical patterns from background noise. In this study, we focus on sense of scale, which refers to how an individual quantified space, and is thought to develop through kinesthetic experiences. Remote sensing data are increasingly being used for wide-reaching and high impact research. A sense of scale is critical to many areas of the geosciences, including understanding and interpreting remotely sensed imagery. In this exploratory study, students (N=17) attending the Juneau Icefield Research Program participated in a 3-hour exercise designed to study how a field-based activity might impact their sense of scale and their conceptions of pixels in remotely sensed imagery. Prior to the activity, students had an introductory remote sensing lecture and completed the Sense of Scale inventory. Students walked and/or skied the perimeter of several pixel types, including a 1 m square (representing a WorldView sensor's pixel), a 30 m square (a Landsat pixel) and a 500 m square (a MODIS pixel). The group took reflectance measurements using a field radiometer as they physically traced out the pixel. The exercise was repeated in two different areas, one with homogenous reflectance, and another with heterogeneous reflectance. After the exercise, students again completed the Sense of Scale instrument and a demographic survey. This presentation will share the effects and efficacy of the field-based intervention to teach remote sensing concepts and to investigate potential relationships between students' concepts of pixels and sense of scale.

  6. Metabolic Investigation in Gluconacetobacter xylinus and Its Bacterial Cellulose Production under a Direct Current Electric Field

    PubMed Central

    Liu, Miao; Zhong, Cheng; Zhang, Yu Ming; Xu, Ze Ming; Qiao, Chang Sheng; Jia, Shi Ru

    2016-01-01

    The effects of a direct current (DC) electric field on the growth and metabolism of Gluconacetobacter xylinus were investigated in static culture. When a DC electric field at 10 mA was applied using platinum electrodes to the culture broth, bacterial cellulose (BC) production was promoted in 12 h but was inhibited in the last 12 h as compared to the control (without DC electric field). At the cathode, the presence of the hydrogen generated a strong reductive environment that is beneficial to cell growth. As compared to the control, the activities of glycolysis and tricarboxylic acid cycle, as well as BC productivity were observed to be slightly higher in the first 12 h. However, due to the absence of sufficient oxygen, lactic acid was accumulated from pyruvic acid at 18 h, which was not in favor of BC production. At the anode, DC inhibited cell growth in 6 h when compared to the control. The metabolic activity in G. xylinus was inhibited through the suppression of the tricarboxylic acid cycle and glycolysis. At 18–24 h, cell density was observed to decrease, which might be due to the electrolysis of water that significantly dropped the pH of cultural broth far beyond the optimal range. Meanwhile, metabolites for self-protection were accumulated, for instance proline, glutamic acid, gluconic acid, and fatty acids. Notably, the accumulation of gluconic acid and lactic acid made it a really tough acid stress to cells at the anode and finally led to depression of cell growth. PMID:27014248

  7. Metabolic Investigation in Gluconacetobacter xylinus and Its Bacterial Cellulose Production under a Direct Current Electric Field.

    PubMed

    Liu, Miao; Zhong, Cheng; Zhang, Yu Ming; Xu, Ze Ming; Qiao, Chang Sheng; Jia, Shi Ru

    2016-01-01

    The effects of a direct current (DC) electric field on the growth and metabolism of Gluconacetobacter xylinus were investigated in static culture. When a DC electric field at 10 mA was applied using platinum electrodes to the culture broth, bacterial cellulose (BC) production was promoted in 12 h but was inhibited in the last 12 h as compared to the control (without DC electric field). At the cathode, the presence of the hydrogen generated a strong reductive environment that is beneficial to cell growth. As compared to the control, the activities of glycolysis and tricarboxylic acid cycle, as well as BC productivity were observed to be slightly higher in the first 12 h. However, due to the absence of sufficient oxygen, lactic acid was accumulated from pyruvic acid at 18 h, which was not in favor of BC production. At the anode, DC inhibited cell growth in 6 h when compared to the control. The metabolic activity in G. xylinus was inhibited through the suppression of the tricarboxylic acid cycle and glycolysis. At 18-24 h, cell density was observed to decrease, which might be due to the electrolysis of water that significantly dropped the pH of cultural broth far beyond the optimal range. Meanwhile, metabolites for self-protection were accumulated, for instance proline, glutamic acid, gluconic acid, and fatty acids. Notably, the accumulation of gluconic acid and lactic acid made it a really tough acid stress to cells at the anode and finally led to depression of cell growth. PMID:27014248

  8. Investigation of the effects of oil field traffic on low volume roadways

    SciTech Connect

    Mason, J.M. Jr.

    1981-01-01

    The farm to market roads in Texas are designed to provide service for relatively low traffic volumes and infrequent heavy vehicles. Efforts to increase domestic oil production have increased the demand placed on the rural highway system. These roads were not initially constructed to endure the impact of oil field traffic. This dissertation identifies oil field traffic and provides an estimate of annual cost associated with a reduced pavement life. Identification of oil field traffic through site specific observation provides the basis for the investigation. The study includes a description of traffic during the development of an oil well, an estimation of reduction in pavement life under these operating conditions, a description of associated roadway damage, and an estimation of increased annual pavement cost due to oil well traffic. Three main components of the analysis procedure include a pavement analysis, traffic analysis, and an estimate of the potential traffic generated by an oil well and placed on a section of F.M. roadway. A resurfacing interval for a bituminous surface treated pavement is then determined by comparing the estimated cumulative traffic demand with the terminal structural capability of the intended use pavement section. Comparison of the resurfacing intervals demonstrates the reduction in pavement life; a further comparison is made of the respective annual cost per mile of roadway. The difference between the estimated annual costs constitutes a unit capital loss due to increased traffic. A computational example of the analysis procedure is provided. Specific assumptions and limitations are also discussed. The results of the analysis are summarized in a chart and table format.

  9. Investigation of Acoustic Fields for the Cassini Spacecraft: Reverberant Versus Launch Environments

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Anne M.; Himelblau, Harry

    2000-01-01

    The characterization and understanding of the acoustic field within a launch vehicle's payload fairing (PLF) is critical to the qualification of a spacecraft and ultimately to the success of its mission. Acoustic measurements taken recently for the Cassini mission have allowed unique opportunities to advance the aerospace industry's knowledge in this field. Prior to its launch, the expected liftoff acoustic environment of the spacecraft was investigated in a full-scale acoustic test of a Titan IV PLF and Cassini simulator in a reverberant test chamber. A major goal of this acoustic ground test was to quantify and verify the noise reduction performance of special barrier blankets that were designed especially to reduce the Cassirii acoustic environment. This paper will describe both the ground test and flight measurements, and compare the Cassini acoustic environment measured during launch with that measured earlier in the ground test. Special emphasis will be given to the noise reduction performance of the barrier blankets and to the acoustic coherence measured within the PLF.

  10. Design and performance of an acidic precipitation delivery system for field investigations with plants.

    PubMed

    Lauver, T L; Laurence, J A; Kohut, R J

    1990-01-01

    An acidic precipitation delivery system is described that was designed and constructed for use in a field investigation of the response of red spruce saplings (Picea rubens Sarg.) to the interactive stresses of ozone and acid rain. The system utilizes hydraulic, solid-cone spray nozzles to produce simulated rainfall with droplet size distributions approximating natural rain events, which are of low intensity, i.e., about 1-1.5 cm hr(-1), and are relatively uniform in distribution of volume over a 2.4 m diameter plot. Three different pH treatments (3.1, 4.1, 5.1) were dispensed randomly to each of three treatment subplots located in twelve open-top field chambers and three ambient control chambers. Storage capacity of the system permitted a 2.3 hr rain event. Construction materials used were chosen for resistance to the corrosive nature of the rain simulant, stability to ambient UV radiation, and resistance to penetration by sunlight. Simulated events were not synchronized to ambient events, but were scheduled to prevent moisture deficits.

  11. Limited field investigation report for the 100-HR-3 operable unit

    SciTech Connect

    Not Available

    1994-09-01

    This limited field investigation (LFI) was conducted to assess the applicability of interim remedial measures (IRM) for reducing human health and environmental risks within the 100-HR-3 Groundwater Operable Unit. The 100-HR-3 Operable Unit is comprised of three subareas; the 100 D Area, the 100 H Area and those portions of the 600 Area between the two reactor areas. The operable unit is one of seven operable units associated with the 100 D and H Areas. Operable units 100-DR-1, 100-DR-2, 100-DR-3, 100-HR-1, 100-HR-2 and 100-IU-4 address contaminant sources while 100-HR-3 addresses contamination present in the underlying groundwater. The primary method of field investigation used during this LFI was the installation and sampling of monitoring wells. Samples were collected from the groundwater and soils, and submitted for laboratory analysis. Boreholes were surveyed for radiological contamination using downhole geophysical techniques to further delineate the locations and levels of contaminants. All samples were screened to ascertain the presence of volatile organic compounds and radionuclides. Analytical data were subjected to validation; all round one, two and three and a minimum of 10% of round four data associated with the LFI were validated. A screening method was used to identify contaminants of potential concern (COPC). This screening method eliminated from further consideration, constituents that were below background. Constituents which are considered non-toxic to humans were eliminated from the human health evaluation. Data consistency and blank contamination were also evaluated in the screening process. These COPC were then evaluated further in the qualitative risk assessment (QRA). A human health QRA was performed using conservative (maximum equilibrated contaminant levels from the LFI) analyses.

  12. Investigation on critical breakdown electric field of hot carbon dioxide for gas circuit breaker applications

    NASA Astrophysics Data System (ADS)

    Sun, Hao; Rong, Mingzhe; Wu, Yi; Chen, Zhexin; Yang, Fei; Murphy, Anthony B.; Zhang, Hantian

    2015-02-01

    Sulfur hexafluoride (SF6) gas is widely used in high-voltage circuit breakers, but due to its high global warming potential, substitutes are being sought. CO2 has been investigated as a candidate based on its arc interruption performance. The hot gas in the circuit breaker after current zero, with a complicated species composition caused by the dissociation and many other reactions, will lead to the electrical breakdown, which is one of the major concerns in assessing the arc interruption performance. Despite this, little research has been reported on the dielectric strength of hot CO2. In this paper, the dielectric properties of hot CO2 related to the dielectric recovery phase of the circuit breaker were investigated in the temperature range from 300 to 4000 K and in the pressure range from 0.01 to 1.0 MPa. Under the assumptions of local thermodynamic equilibrium (LTE) and local chemical equilibrium (LCE), the equilibrium compositions of hot CO2 were obtained based on Gibbs free energy minimization. The cross sections for interactions between electrons and the species are presented. The critical reduced electric field strength of CO2 was determined by balancing electron generation and loss. These were evaluated using the electron energy distribution function (EEDF) derived from the two-term Boltzmann transport equation. The result indicates that unlike SF6 or air, in hot CO2 the reduced critical electric field strength does not change monotonically with increasing heavy-particle temperature from 300 to 4000 K. CO2 has a superior dielectric strength to pure SF6 above 2500 K at 0.5 MPa, which means it has the potential to improve the interruption performance of the circuit breakers, while reducing the global warming effect. Good agreement was found with published experimental results and calculations for CO2 at room temperature, and with previous calculations for hot CO2.

  13. Investigation of CO2 induced biogeochemical reactions and active microorganisms of two German gas fields

    NASA Astrophysics Data System (ADS)

    Hoth, N.; Kassahun, A.; Seifert, J.; Krüger, M.; Bretschneider, H.; Gniese, C.; Frerichs, J.; Simon, A.; Simon, E.; Muschalle, T.

    2009-04-01

    The BMBF-Geotechnologien project "RECOBIO 2" continues the investigation of the long-term biogeochemical transformation of stored CO2. In addition to the Upper Carboniferous gas reservoir Schneeren (Westphalian C) the almost depleted Altmark gas field (Permian - Upper Rotliegend) is also investigated. Both sandstone reservoirs belong to the North German Basin and are operated by the GDF SUEZ E&P Germany (GDF SUEZ). The reservoirs differ in depth, initial and current fluid pressure as well as reservoir temperature, which is a biogeochemical important parameter. While the uplifted horst structure of Schneeren (approx. depth 2700 m) has a temperature level of 80 - 90 °C, the Altmark gas field (approx. depth 3300 m) shows temperatures around 120 °C. The Altmark site is known to be favourable for underground CO2-storage by enhanced gas recovery (EGR). This EGR process is operated by GDF SUEZ at the small and hydraulic isolated reservoir block "Altensalzwedel". This pilot test is accompanied by the scientific large-scale project CLEAN. In addition the RECOBIO2 project characterises the biogeochemical situation of the both large reservoir blocks of the Altmark gas field - „Salzwedel/ Peckensen" and „Heidberg/ Mellin". The produced formation waters of these reservoir blocks were sampled on different wellheads. The redox potentials are partly very low (Eh up to -300 mV) with slightly acidic pH-values (5,5 to 6). The high saline and (nearly) sulphate free formation waters of Na/Ca-Cl type have very high loads of Zn, Pb, Hg and As. In combination to the analysed DOC levels the talk discusses the importance of metal organic complexes. Also results of fluid geochemical calculations will be presented. Furthermore the diversity of bacteria and archaea of the formation waters as well as the potentials of CH4-, CO2-formation and sulphate reduction will be shown. Therefore the cultivation experiments were carried out with different substrates (H2/CO2, acetate, methanol). It

  14. 32 CFR 989.20 - Final EIS.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... that it is a final EIS (40 CFR 1503.4(c)), to HQ USAF/A7CI for filing with the EPA (40 CFR 1506.9). If... analysis is required. (b) The EPF processes all necessary supplements to EISs (40 CFR 1502.9) in the same... approval of HQ USAF/A7CI and SAF/IEE, prepare a document containing only comments on the Draft EIS,...

  15. 32 CFR 989.20 - Final EIS.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... that it is a final EIS (40 CFR 1503.4(c)), to HQ USAF/A7CI for filing with the EPA (40 CFR 1506.9). If... analysis is required. (b) The EPF processes all necessary supplements to EISs (40 CFR 1502.9) in the same... approval of HQ USAF/A7CI and SAF/IEI, prepare a document containing only comments on the Draft EIS,...

  16. 32 CFR 989.20 - Final EIS.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... that it is a final EIS (40 CFR 1503.4(c)), to HQ USAF/A7CI for filing with the EPA (40 CFR 1506.9). If... analysis is required. (b) The EPF processes all necessary supplements to EISs (40 CFR 1502.9) in the same... approval of HQ USAF/A7CI and SAF/IEE, prepare a document containing only comments on the Draft EIS,...

  17. 32 CFR 989.20 - Final EIS.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... that it is a final EIS (40 CFR 1503.4(c)), to HQ USAF/A7CI for filing with the EPA (40 CFR 1506.9). If... analysis is required. (b) The EPF processes all necessary supplements to EISs (40 CFR 1502.9) in the same... approval of HQ USAF/A7CI and SAF/IEE, prepare a document containing only comments on the Draft EIS,...

  18. 32 CFR 989.20 - Final EIS.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... that it is a final EIS (40 CFR 1503.4(c)), to HQ USAF/A7CI for filing with the EPA (40 CFR 1506.9). If... analysis is required. (b) The EPF processes all necessary supplements to EISs (40 CFR 1502.9) in the same... approval of HQ USAF/A7CI and SAF/IEE, prepare a document containing only comments on the Draft EIS,...

  19. Limited field investigation report for the 100-BC-5 Operable Unit

    SciTech Connect

    Not Available

    1994-07-01

    This limited field investigation (LFI) was conducted to assess the applicability of interim remedial measures (IRM) for reducing human health and environmental risks within the 100-BC-5 Groundwater Operable Unit. The 100-BC-5 Operable Unit is one of three operable units associated with the 100 B/C Area. Operable units 1 and 2 address contaminant sources while 100-BC-5 addresses contamination present in the underlying groundwater. The primary method of investigation used during this LFI was the installation of monitoring wells. Samples were collected from the groundwater and soils and submitted for laboratory analysis. Boreholes were surveyed for radiological contamination using downhole geophysical techniques to further delineate the locations and levels of contaminants. All samples were screened to ascertain the presence of volatile organic compounds and radionuclides. Analytical data were subjected to validation; all first round and 10% of the subsequent rounds of data associated with the LFI were validated. The screening method was used to identify contaminants of potential concern (COPC). This screening method eliminated from further consideration constituents that were below background. Constituents considered nontoxic to humans were eliminated from the human health evaluation. Inconsistency and blank contamination were also evaluated in the screening process. These COPC were evaluated further in the qualitative risk assessment (QRA). Tritium and strontium-90 were identified as contaminants of concern at 100-BC-5 because the concentrations exceeded potential applicable or relevant and appropriate requirements. The QRA determined that the risk is low for all of the site contaminants.

  20. Field Investigation of Natural Attenuation of a Petroleum Hydrocarbon Contaminated Aquifer, Gyeonggi Province, Korea

    NASA Astrophysics Data System (ADS)

    Yang, J.; Lee, K.; Bae, G.

    2004-12-01

    In remediation of a petroleum hydrocarbon contaminated aquifer, natural attenuation may be significant as a remedial alternative. Therefore, natural attenuation should be investigated in the field in order to effectively design and evaluate the remediation strategy at the contaminated site. This study focused on evaluating the natural attenuation for benzene, toluene, ethylbenzene, and xylene (BTEX) at a contaminated site in South Korea. At the study site, the aquifer is composed of a high permeable gravel layer and relatively low permeable sandy-silt layers. Groundwater level vertically fluctuated between 1m and 2m throughout the year (April, 2003~June, 2004) and showed direct response to rainfall events. Chemical analyses of sampled groundwater were performed to investigate the concentrations of various chemical species which are associated with the natural attenuation processes. To evaluate the degree of the biodegradation, the expressed biodegradation capacity (EBC) analysis was done using aerobic respiration, nitrate reduction, manganese reduction, ferric iron reduction, and sulfate reduction as an indicator. High EBC value of sulfate indicate that anaerobic biodegradation by sulfate reduction was a dominant process of mineralization of BTEX at this site. The EBC values decrease sensitively when heavy rainfall occurs due to the dilution and inflow of electron acceptors through a gravel layer. The first-order biodegradation rates of BTEX were estimated by means of the Buscheck and Alcantar method (1995). Results show that the natural attenuation rate of benzene was the highest among the BTEX.

  1. An experimental investigation of velocity fields in divergent glottal models of the human vocal tract

    NASA Astrophysics Data System (ADS)

    Erath, Byron D.; Plesniak, Michael W.

    2005-09-01

    In speech, sound production arises from fluid-structure interactions within the larynx as well as viscous flow phenomena that is most likely to occur during the divergent orientation of the vocal folds. Of particular interest are the flow mechanisms that influence the location of flow separation points on the vocal folds walls. Physiologically scaled pulsatile flow fields in 7.5 times real size static divergent glottal models were investigated. Three divergence angles were investigated using phase-averaged particle image velocimetry (PIV). The pulsatile glottal jet exhibited a bi-modal stability toward both glottal walls, although there was a significant amount of variance in the angle the jet deflected from the midline. The attachment of the Coanda effect to the glottal model walls occurred when the pulsatile velocity was a maximum, and the acceleration of the waveform was zero. The location of the separation and reattachment points of the flow from the glottal models was a function of the velocity waveform and divergence angle. Acoustic analogies show that a dipole sound source contribution arising from the fluid interaction (Coanda jet) with the vocal fold walls is expected. [Work funded by NIH Grant RO1 DC03577.

  2. Limited field investigation report for the 100-KR-4 Operable Unit

    SciTech Connect

    Not Available

    1994-07-01

    This limited field investigation (LFI) was conducted to optimize the use of interim remedial measures (IRM) for expediting clean up while maintaining a technically sound and cost-effective program. The 100-KR-4 Operable Unit is one of four operable units associated with the 100 K Area. Operable units KR-1, KR-2 and KR-3 address contaminant sources while 100-KR-4 addresses contamination present in the underlying groundwater. The IRM decision process for groundwater operable units is based on three aspects: (1) Is the concentration greater than Hanford background? (2) Does the concentration present a medium or high human-health risk? (3) Does the concentration exceed an ecologically based applicable, relevant and appropriate requirements (ARAR) or present an environmental hazard quotient > I? The primary methods of investigation used during this LFI were the installation of monitoring wells and sampling of groundwater. The samples collected from the groundwater and soils were submitted for laboratory analysis. Boreholes were surveyed for radiological contamination using downhole geophysical techniques to further delineate the location and degree of contamination. All soil samples were screened to ascertain the presence of volatile organic compounds and radionuclides. Analytical data were subjected to validation; all first round and a minimum of 10% of subsequent round data were validated.

  3. Comparing field investigations with laboratory models to predict landfill leachate emissions

    SciTech Connect

    Fellner, Johann; Brunner, Paul H.

    2009-06-15

    Investigations into laboratory reactors and landfills are used for simulating and predicting emissions from municipal solid waste landfills. We examined water flow and solute transport through the same waste body for different volumetric scales (laboratory experiment: 0.08 m{sup 3}, landfill: 80,000 m{sup 3}), and assessed the differences in water flow and leachate emissions of chloride, total organic carbon and Kjeldahl nitrogen. The results indicate that, due to preferential pathways, the flow of water in field-scale landfills is less uniform than in laboratory reactors. Based on tracer experiments, it can be discerned that in laboratory-scale experiments around 40% of pore water participates in advective solute transport, whereas this fraction amounts to less than 0.2% in the investigated full-scale landfill. Consequences of the difference in water flow and moisture distribution are: (1) leachate emissions from full-scale landfills decrease faster than predicted by laboratory experiments, and (2) the stock of materials remaining in the landfill body, and thus the long-term emission potential, is likely to be underestimated by laboratory landfill simulations.

  4. Investigating microbial transformations of soil organic matter: synthesizing knowledge from disparate fields to guide new experimentation

    NASA Astrophysics Data System (ADS)

    Billings, S. A.; Tiemann, L. K.; Ballantyne, F., IV; Lehmeier, C. A.; Min, K.

    2015-04-01

    Discerning why some soil organic matter (SOM) leaves soil profiles relatively quickly while other compounds, especially at depth, can be retained for decades to millennia is challenging for a multitude of reasons. Simultaneous with soil-specific advances, multiple other disciplines have enhanced their knowledge bases in ways potentially useful for future investigations of SOM decay. In this article, we highlight observations highly relevant for those investigating SOM decay and retention but often emanating from disparate fields and residing in literature seldom cited in SOM research. We focus on recent work in two key areas. First, we turn to experimental approaches using natural and artificial aquatic environments to investigate patterns of microbially mediated OM transformations as environmental conditions change, and highlight how aquatic microbial responses to environmental change can reveal processes likely important to OM decay and retention in soils. Second, we emphasize the importance of establishing intrinsic patterns of decay kinetics for purified substrates commonly found in soils to develop baseline rates. These decay kinetics - which represent the upper limit of the reaction rates - can then be compared to substrate decay kinetics observed in natural samples, which integrate intrinsic decay reaction rates and edaphic factors essential to the site under study but absent in purified systems. That comparison permits the site-specific factors to be parsed from the fundamental decay kinetics, an important advance in our understanding of SOM decay (and thus persistence) in natural systems. We then suggest ways in which empirical observations from aquatic systems and purified substrate-enzyme reaction kinetics can be used to advance recent theoretical efforts in SOM-focused research. Finally, we suggest how the observations in aquatic and purified substrate-enzyme systems could be used to help unravel the puzzles presented by oft-observed patterns of SOM

  5. Limited field investigation report for the 100-HR-1 Operable Unit

    SciTech Connect

    Not Available

    1994-08-01

    This limited field investigation (LFI) report summarizes the data collection and analysis activities conducted during the 100-HR-1 Source Operable Unit LFI and the associated qualitative risk assessment (QRA) (WHC 1993a), and makes recommendations on the continued candidacy of high-priority sites for interim remedial measures (IRM). The results and recommendations presented in this report are generally independent of future land use scenarios. A LFI Report is required, in accordance with the HPPS, when waste sites are to be considered for IRMs. The LFI is an integral part of the remedial investigation/feasibility study (RI/FS) or Resource Conservation and Recovery Act (RCRA) facility investigation/corrective measures study (RFI/CMS) and process and functions as a focused RI or RFI for selection of IRMs. The purpose of the report is to identify those sites that are recommended to remain as candidates for IRMs, provide a preliminary summary of site characterization studies, refine the conceptual model as needed, identify contaminant- and location-specific applicable or relevant and appropriate requirements (ARA), and provide a qualitative assessment of the risks associated with the sites. This assessment includes consideration of whether contaminant concentrations pose an unacceptable risk that warrants action through IRMs. The 100-HR-1 unit encompasses approximately 100 acres adjacent to the Columbia River shoreline. It contains waste units associated with the original plant facilities constructed to support the H Reactor. The area also contains evaporation basins which received liquid process wastes and nonroutine deposits of chemical wastes from the 300 Area, where fuel elements for the N Reactor were produced.

  6. [Environmental investigation of ground water contamination at Wright- Patterson Air Force Base, Ohio]. Volume 4, Health and Safety Plan (HSP); Phase 1, Task 4 Field Investigation report: Draft

    SciTech Connect

    Not Available

    1991-10-01

    This Health and Safety Plan (HSP) was developed for the Environmental Investigation of Ground-water Contamination Investigation at Wright-Patterson Air Force Base near Dayton, Ohio, based on the projected scope of work for the Phase 1, Task 4 Field Investigation. The HSP describes hazards that may be encountered during the investigation, assesses the hazards, and indicates what type of personal protective equipment is to be used for each task performed. The HSP also addresses the medical monitoring program, decontamination procedures, air monitoring, training, site control, accident prevention, and emergency response.

  7. Investigating short-term exposure to electromagnetic fields on reproductive capacity of invertebrates in the field situation.

    PubMed

    Vijver, Martina G; Bolte, John F B; Evans, Tracy R; Tamis, Wil L M; Peijnenburg, Willie J G M; Musters, C J M; de Snoo, Geert R

    2014-01-01

    Organisms are exposed to electromagnetic fields from the introduction of wireless networks that send information all over the world. In this study we examined the impact of exposure to the fields from mobile phone base stations (GSM 900 MHz) on the reproductive capacity of small, virgin, invertebrates. A field experiment was performed exposing four different invertebrate species at different distances from a radiofrequency electromagnetic fields (RF EMF) transmitter for a 48-h period. The control groups were isolated from EMF exposure by use of Faraday cages. The response variables as measured in the laboratory were fecundity and number of offspring. Results showed that distance was not an adequate proxy to explain dose-response regressions. No significant impact of the exposure matrices, measures of central tendency and temporal variability of EMF, on reproductive endpoints was found. Finding no impact on reproductive capacity does not fully exclude the existence of EMF impact, since mechanistically models hypothesizing non-thermal-induced biological effects from RF exposure are still to be developed. The exposure to RF EMF is ubiquitous and is still increasing rapidly over large areas. We plea for more attention toward the possible impacts of EMF on biodiversity.

  8. Structural Controls on Groundwater Flow in Basement Terrains: Geophysical, Remote Sensing, and Field Investigations in Sinai

    NASA Astrophysics Data System (ADS)

    Mohamed, Lamees; Sultan, Mohamed; Ahmed, Mohamed; Zaki, Abotalib; Sauck, William; Soliman, Farouk; Yan, Eugene; Elkadiri, Racha; Abouelmagd, Abdou

    2015-09-01

    An integrated [very low frequency (VLF) electromagnetic, magnetic, remote sensing, field, and geographic information system (GIS)] study was conducted over the basement complex in southern Sinai (Feiran watershed) for a better understanding of the structural controls on the groundwater flow. The increase in satellite-based radar backscattering values following a large precipitation event (34 mm on 17-18 January 2010) was used to identify water-bearing features, here interpreted as preferred pathways for surface water infiltration. Findings include: (1) spatial analysis in a GIS environment revealed that the distribution of the water-bearing features (conductive features) corresponds to that of fractures, faults, shear zones, dike swarms, and wadi networks; (2) using VLF (43 profiles), magnetic (7 profiles) techniques, and field observations, the majority (85 %) of the investigated conductive features were determined to be preferred pathways for groundwater flow; (3) northwest-southeast- to north-south-trending conductive features that intersect the groundwater flow (southeast to northwest) at low angles capture groundwater flow, whereas northeast-southwest to east-west features that intersect the flow at high angles impound groundwater upstream and could provide potential productive well locations; and (4) similar findings are observed in central Sinai: east-west-trending dextral shear zones (Themed and Sinai Hinge Belt) impede south to north groundwater flow as evidenced by the significant drop in hydraulic head (from 467 to 248 m above mean sea level) across shear zones and by reorientation of regional flow (south-north to southwest-northeast). The adopted integrated methodologies could be readily applied to similar highly fractured basement arid terrains elsewhere.

  9. Investigation of a direct effect of nanosecond pulse electric fields on mitochondria

    NASA Astrophysics Data System (ADS)

    Estlack, Larry E.; Roth, Caleb C.; Cerna, Cesario Z.; Wilmink, Gerald J.; Ibey, Bennett L.

    2014-03-01

    The unique cellular response to nanosecond pulsed electric field (nsPEF) exposure, as compared to longer pulse exposure, has been theorized to be due to permeabilization of intracellular organelles including the mitochondria. In this investigation, we utilized a high-throughput oxygen and pH sensing system (Seahorse® XF24 extracellular flux analyzer) to assess the mitochondrial activity of Jurkat and U937 cells after nsPEF. The XF Analyzer uses a transient micro-chamber of only a few μL in specialized cell culture micro-plates to enable oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) to be monitored in real-time. We found that for nsPEF exposures of 10 pulses at 10-ns pulse width and at 50 kV/cm e-field, we were able to cause an increase in OCR in both U937 and Jurkat cells. We also found that high pulse numbers (>100) caused a significant decrease in OCR. Higher amplitude 150 kV/cm exposures had no effect on U937 cells and yet they had a deleterious effect on Jurkat cells, matching previously published 24 hour survival data. These results suggest that the exposures were modulating metabolic activity in cells possibly due to direct effects on the mitochondria themselves. To validate this hypothesis, we isolated mitochondria from U937 cells and exposed them similarly and found no significant change in metabolic activity for any pulse number. In a final experiment, we removed calcium from the buffer solution that the cells were exposed in and found that no significant enhancement in metabolic activity was observed. These results suggest that direct permeabilization of the mitochondria is unlikely a primary effect of nsPEF exposure and calcium-mediated intracellular pathway activation is likely responsible for observed pulse-induced mitochondrial effects.

  10. Investigating microbial transformations of soil organic matter: synthesizing knowledge from disparate fields to guide new experimentation

    NASA Astrophysics Data System (ADS)

    Billings, S. A.; Tiemann, L. K.; Ballantyne, F., IV; Lehmeier, C.; Min, K.

    2014-12-01

    Investigators of soil organic matter (SOM) transformations struggle with a deceptively simple-sounding question: "Why does some SOM leave the soil profile relatively quickly, while other compounds, especially those at depth, appear to be retained on timescales ranging from the decadal to the millennial?" This question is important on both practical and academic levels, but addressing it is challenging for a multitude of reasons. Simultaneous with soil-specific advances, multiple other disciplines have enhanced their knowledge bases in ways potentially useful for future investigations of SOM decay. In this article, we highlight observations highly relevant for those investigating SOM decay and retention but often emanating from disparate fields and residing in literature seldom cited in SOM research. We focus on recent work in two key areas. First, we turn to experimental approaches using natural and artificial aquatic environments to investigate patterns of microbially-mediated OM transformations as environmental conditions change, and highlight how aquatic microbial responses to environmental change can reveal processes likely important to OM decay and retention in soils. Second, we emphasize the importance of establishing intrinsic patterns of decay kinetics for purified substrates commonly found in soils to develop baseline rates. These decay kinetics - which represent the upper limit of the reaction rates - can then be compared to substrate decay kinetics observed in natural samples, which integrate intrinsic decay reaction rates and edaphic factors essential to the site under study but absent in purified systems. That comparison permits the site-specific factors to be parsed from the fundamental decay kinetics, an important advance in our understanding of SOM decay (and thus persistence) in natural systems. We then suggest ways in which empirical observations from aquatic systems and purified enzyme-substrate reaction kinetics can be used to advance recent

  11. Full-field Strain Methods for Investigating Failure Mechanisms in Triaxial Braided Composites

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.; Binienda, Wieslaw K.; Goldberg, Robert K.; Roberts, Gary D.

    2008-01-01

    Composite materials made with triaxial braid architecture and large tow size carbon fibers are beginning to be used in many applications, including composite aircraft and engine structures. Recent advancements in braiding technology have led to commercially viable manufacturing approaches for making large structures with complex shape. Although the large unit cell size of these materials is an advantage for manufacturing efficiency, the fiber architecture presents some challenges for materials characterization, design, and analysis. In some cases, the static load capability of structures made using these materials has been higher than expected based on material strength properties measured using standard coupon tests. A potential problem with using standard tests methods for these materials is that the unit cell size can be an unacceptably large fraction of the specimen dimensions. More detailed investigation of deformation and failure processes in large unit cell size triaxial braid composites is needed to evaluate the applicability of standard test methods for these materials and to develop alternative testing approaches. In recent years, commercial equipment has become available that enables digital image correlation to be used on a more routine basis for investigation of full field 3D deformation in materials and structures. In this paper, some new techniques that have been developed to investigate local deformation and failure using digital image correlation techniques are presented. The methods were used to measure both local and global strains during standard straight-sided coupon tensile tests on composite materials made with 12 and 24 k yarns and a 0/+60/-60 triaxial braid architecture. Local deformation and failure within fiber bundles was observed, and this local failure had a significant effect on global stiffness and strength. The matrix material had a large effect on local damage initiation for the two matrix materials used in this investigation

  12. Compound specific isotope analysis to investigate pesticide degradation in lysimeter experiments at field conditions

    NASA Astrophysics Data System (ADS)

    Ryabenko, Evgenia; Elsner, Martin; Bakkour, Rani; Hofstetter, Thomas; Torrento, Clara; Hunkeler, Daniel

    2015-04-01

    The frequent detection of organic micropollutants such as pesticides, consumer care products or pharmaceuticals in water is an increasing concern for human and ecosystem health. Degradation analysis of these compounds can be challenging in complex systems due to the fact that metabolites are not always found and mass balances frequently cannot be closed. Many abiotic and biotic degradation pathways cause, however, distinct isotope fractionation, where light isotopes are transferred preferentially from the reactant to the product pool (normal isotope fractionation). Compound-specific isotope analysis (CSIA) of multiple elements is a particularly powerful method to evaluate organic micropollutant transformation, because it can even give pathway-specific isotope fractionation (1,2). Available CSIA field studies, however, have focused almost exclusively on volatile petroleum and chlorinated hydrocarbons, which are present in high concentrations in the environment and can be extracted easily from water for GC-IRMS analysis. In the case of micropollutants, such as pesticides, CSIA in more challenging since it needs to be conducted at lower concentrations and requires pre-concentration, purification and high chromatographic performance (3). In this study we used lysimeters experiments to analyze transformation of atrazine, acetochlor, metolachlor and chloridazone by studying associated isotope fractionation. The project combines a) analytical method development for CSIA, b) identification of pathways of micropollutant degradation and c) quantification of transformation processes under field condition. The pesticides were applied both, at the soil surface and below the top soil under field-relevant concentrations in May 2014. After typical irrigation of the lysimeters, seepage water was collected in 50L bottles and stored for further SPE and CSIA. Here we present the very first result of a) analytical method development, b) improvement of SPE methods for complex pesticide

  13. Sources and Radiation Patterns of Volcano-Acoustic Signals Investigated with Field-Scale Chemical Explosions

    NASA Astrophysics Data System (ADS)

    Bowman, D. C.; Lees, J. M.; Taddeucci, J.; Graettinger, A. H.; Sonder, I.; Valentine, G.

    2014-12-01

    We investigate the processes that give rise to complex acoustic signals during volcanic blasts by monitoring buried chemical explosions with infrasound and audio range microphones, strong motion sensors, and high speed imagery. Acoustic waveforms vary with scaled depth of burial (SDOB, units in meters per cube root of joules), ranging from high amplitude, impulsive, gas expansion dominated signals at low SDOB to low amplitude, longer duration, ground motion dominated signals at high SDOB. Typically, the sudden upward acceleration of the substrate above the blast produces the first acoustic arrival, followed by a second pulse due to the eruption of pressurized gas at the surface. Occasionally, a third overpressure occurs when displaced material decelerates upon impact with the ground. The transition between ground motion dominated and gas release dominated acoustics ranges between 0.0038-0.0018 SDOB, respectively. For example, one explosion registering an SDOB=0.0031 produced two overpressure pulses of approximately equal amplitude, one due to ground motion, the other to gas release. Recorded volcano infrasound has also identified distinct ground motion and gas release components during explosions at Sakurajima, Santiaguito, and Karymsky volcanoes. Our results indicate that infrasound records may provide a proxy for the depth and energy of these explosions. Furthermore, while magma fragmentation models indicate the possibility of several explosions during a single vulcanian eruption (Alidibirov, Bull Volc., 1994), our results suggest that a single explosion can also produce complex acoustic signals. Thus acoustic records alone cannot be used to distinguish between single explosions and multiple closely-spaced blasts at volcanoes. Results from a series of lateral blasts during the 2014 field experiment further indicates whether vent geometry can produce directional acoustic radiation patterns like those observed at Tungarahua volcano (Kim et al., GJI, 2012). Beside

  14. The SERMON project: 48 new field Blazhko stars and an investigation of modulation-period distribution

    NASA Astrophysics Data System (ADS)

    Skarka, M.; Liška, J.; Auer, R. F.; Prudil, Z.; Juráňová, A.; Sódor, Á.

    2016-08-01

    Aims: We investigated 1234 fundamental mode RR Lyrae stars observed by the All Sky Automated Survey (ASAS) to identify the Blazhko (BL) effect. A sample of 1547 BL stars from the literature was collected to compare the modulation-period distribution with stars newly identified in our sample. Methods: A classical frequency spectra analysis was performed using Period04 software. Data points from each star from the ASAS database were analysed individually to avoid confusion with artificial peaks and aliases. Statistical methods were used in the investigation of the modulation-period distribution. Results: Altogether we identified 87 BL stars (48 new detections), 7 candidate stars, and 22 stars showing long-term period variations. The distribution of modulation periods of newly identified BL stars corresponds well to the distribution of modulation periods of stars located in the Galactic field, Galactic bulge, Large Magellanic Cloud, and globular cluster M5 collected from the literature. As a very important by-product of this comparison, we found that pulsation periods of BL stars follow Gaussian distribution with the mean period of 0.54 ± 0.07 d, while the modulation periods show log-normal distribution with centre at log (Pm [d]) = 1.78 ± 0.30 dex. This means that 99.7% of all known modulated stars have BL periods between 7.6 and 478 days. We discuss the identification of long modulation periods and show, that a significant percentage of stars showing long-term period variations could be classified as BL stars.

  15. Field Investigation of a New Recharge Approach for ASR Projects in Near-Surface Aquifers.

    PubMed

    Liu, Gaisheng; Knobbe, Steven; Reboulet, Edward C; Whittemore, Donald O; Händel, Falk; Butler, James J

    2016-05-01

    Aquifer storage and recovery (ASR) is the artificial recharge and temporary storage of water in an aquifer when water is abundant, and recovery of all or a portion of that water when it is needed. One key limiting factor that still hinders the effectiveness of ASR is the high costs of constructing, maintaining, and operating the artificial recharge systems. Here we investigate a new recharge method for ASR in near-surface unconsolidated aquifers that uses small-diameter, low-cost wells installed with direct-push (DP) technology. The effectiveness of a DP well for ASR recharge is compared with that of a surface infiltration basin at a field site in north-central Kansas. The performance of the surface basin was poor at the site due to the presence of a shallow continuous clay layer, identified with DP profiling methods, that constrained the downward movement of infiltrated water and significantly reduced the basin recharge capacity. The DP well penetrated through this clay layer and was able to recharge water by gravity alone at a much higher rate. Most importantly, the costs of the DP well, including both the construction and land costs, were only a small fraction of those for the infiltration basin. This low-cost approach could significantly expand the applicability of ASR as a water resources management tool to entities with limited fiscal resources, such as many small municipalities and rural communities. The results of this investigation demonstrate the great potential of DP wells as a new recharge option for ASR projects in near-surface unconsolidated aquifers.

  16. Schmallenberg virus infection in South American camelids: Field and experimental investigations.

    PubMed

    Schulz, Claudia; Beer, Martin; Hoffmann, Bernd

    2015-11-18

    During the first epizootic wave of the novel, teratogenic Schmallenberg virus (SBV, Orthobunyavirus) in ruminants in Northern Europe, serological evidence of a previous SBV-infection demonstrated that South American camelids (SAC) are also susceptible to SBV. However, their potential role in SBV spread remains unknown. To investigate the prevalence and course of SBV-infection in SAC, a German field study and an animal trial with three llamas and three alpacas were conducted. From September 2012 to December 2013, 313 of 502 SAC (62.35%) were found SBV seropositive, but negative for SBV-RNA. The estimated between-district (94.23% of 52) and median within-district (71.43%) and herd (73.13%) SBV seroprevalence in German SAC was similar to the seroprevalence reported in cattle herds and sheep flocks at the time. An age of >1 year was found a statistically significant risk factor for SBV-infection, which could be explained by the spatio-temporal spread of SBV in Germany during the study period. No clinical signs or an increase of abortion and congenital malformation associated with SBV-infection in SAC were reported by the study participants. Similar to SBV-infected ruminants, SBV-RNAemia in experimentally SBV-infected SAC was detected for a short time between days 3 and 7 after infection (dpi), and seroconversion occurred between 9 and 21 dpi. Despite the similar virological and serological results, the lack of clinical signs and congenital malformation associated with SBV-infection suggests that SBV causes subclinical infection in SAC. However, their role as reservoirs in the spread of SBV has to be further investigated.

  17. A qualitative investigation into patients’ views on visual field testing for glaucoma monitoring

    PubMed Central

    Glen, Fiona C; Baker, Helen; Crabb, David P

    2014-01-01

    Objectives To investigate the views and experiences of patients regarding their glaucoma follow-up, particularly towards the type and frequency of visual field (VF) testing. Design A qualitative investigation using focus groups. The group discussion used broad open questions around the topics in a prompt guide relating to experiences of glaucoma follow-up, and in particular, VF monitoring. All the groups were taped, transcribed and coded using manual and computer-aided methods. Setting Three National Health Service (NHS) hospitals in England; two focus groups took place at each hospital. Participants 28 patients (mean (SD) age: 74 (9) years; 54% women) diagnosed with glaucoma for at least 2 years. Each focus group consisted of 3–6 patients. Primary and secondary outcomes (1) Attitudes and experiences of patients with glaucoma regarding VF testing. (2) Patients’ opinions about successful follow-up in glaucoma. Results These patients did not enjoy the VF test but they recognised the importance of regular monitoring for preserving their vision. These patients would agree to more frequent VF testing on their clinician's recommendation. A number of themes recurred throughout the focus groups representing perceived barriers to follow-up care. The testing environment, waiting times, efficiency of appointment booking and travel to the clinic were all perceived to influence the general clinical experience and the quality of assessment data. Patients were also concerned about aspects of patient–doctor communication, and often received little to no feedback about their results. Conclusions Patients trust the clinician to make the best decisions for their glaucoma follow-up. However, patients highlighted a number of issues that could compromise the effectiveness of VF testing. Addressing patient-perceived barriers could be an important step for devising optimal strategies for follow-up care. PMID:24413347

  18. Field Investigation of a New Recharge Approach for ASR Projects in Near-Surface Aquifers.

    PubMed

    Liu, Gaisheng; Knobbe, Steven; Reboulet, Edward C; Whittemore, Donald O; Händel, Falk; Butler, James J

    2016-05-01

    Aquifer storage and recovery (ASR) is the artificial recharge and temporary storage of water in an aquifer when water is abundant, and recovery of all or a portion of that water when it is needed. One key limiting factor that still hinders the effectiveness of ASR is the high costs of constructing, maintaining, and operating the artificial recharge systems. Here we investigate a new recharge method for ASR in near-surface unconsolidated aquifers that uses small-diameter, low-cost wells installed with direct-push (DP) technology. The effectiveness of a DP well for ASR recharge is compared with that of a surface infiltration basin at a field site in north-central Kansas. The performance of the surface basin was poor at the site due to the presence of a shallow continuous clay layer, identified with DP profiling methods, that constrained the downward movement of infiltrated water and significantly reduced the basin recharge capacity. The DP well penetrated through this clay layer and was able to recharge water by gravity alone at a much higher rate. Most importantly, the costs of the DP well, including both the construction and land costs, were only a small fraction of those for the infiltration basin. This low-cost approach could significantly expand the applicability of ASR as a water resources management tool to entities with limited fiscal resources, such as many small municipalities and rural communities. The results of this investigation demonstrate the great potential of DP wells as a new recharge option for ASR projects in near-surface unconsolidated aquifers. PMID:26313764

  19. A laboratory investigation of the variability of cloud reflected radiance fields

    NASA Technical Reports Server (NTRS)

    Mckee, T. B.; Cox, S. K.

    1986-01-01

    A method to determine the radiative properties of complex cloud fields was developed. A Cloud field optical simulator (CFOS) was constructed to simulate the interaction of cloud fields with visible radiation. The CFOS was verified by comparing experimental results from it with calculations performed with a Monte Carlo radiative transfer model. A software library was developed to process, reduce, and display CFOS data. The CFSOS was utilized to study the reflected radiane patterns from simulated cloud fields.

  20. Phase-Sensitive Near Field Investigation of Bloch Surface Wave Propagation in Curved Waveguides

    NASA Astrophysics Data System (ADS)

    Wu, X.; Barakat, E.; Yu, L.; Sun, L.; Wang, J.; Tan, Q.; Herzig, H. P.

    2014-10-01

    Bloch surface waves (BSWs) are electromagnetic surface waves excited in the band gap of a one dimensional dielectric photonic crystal. They are confined at the interface of two media. Due to the use of dielectric material, the losses are very low, which allows the propagation of BSWs over long distances. Another advantage is the possibility of operating within a broad range of wavelengths. In this paper, we study and demonstrate the propagation of light in ultra-thin curved polymer waveguides having different radii fabricated on a BSWs sustaining multilayer. A phase-sensitive multi-parameter near-field optical measurement system (MH-SNOM), which combines heterodyne interferometry and SNOM, is used for the experimental characterization. Propagating properties, bending loss, mode conversion and admixture are investigated. We experimentally show that when light goes through the curved part of the waveguide, energy can be converted into different modes. The superposition and interference of different modes lead to a periodically alternating bright and dark beat phenomenon along the propagation direction. Experimental optical phase and amplitude distributions in the curved waveguide show a very good agreement with simulation results.

  1. Numerical investigations on electric field characteristics with respect to capacitive detection of free-flying droplets.

    PubMed

    Ernst, Andreas; Mutschler, Klaus; Tanguy, Laurent; Paust, Nils; Zengerle, Roland; Koltay, Peter

    2012-01-01

    In this paper a multi-disciplinary simulation of a capacitive droplet sensor based on an open plate capacitor as transducing element is presented. The numerical simulations are based on the finite volume method (FVM), including calculations of an electric field which changes according to the presence of a liquid droplet. The volume of fluid (VOF) method is applied for the simulation of the ejection process of a liquid droplet out of a dispenser nozzle. The simulations were realised using the computational fluid dynamic (CFD) software CFD ACE+. The investigated capacitive sensing principle enables to determine the volume of a micro droplet passing the sensor capacitor due to the induced change in capacity. It could be found that single droplets in the considered volume range of 5 nL < V(drop) < 100 nL lead to a linear change of the capacity up to ΔQ < 30 fC. The sensitivity of the focused capacitor geometry was evaluated to be S(i) = 0.3 fC/nL. The simulation results are validated by experiments which exhibit good agreement.

  2. Formation mechanism of gas bubble superlattice in UMo metal fuels: Phase-field modeling investigation

    NASA Astrophysics Data System (ADS)

    Hu, Shenyang; Burkes, Douglas E.; Lavender, Curt A.; Senor, David J.; Setyawan, Wahyu; Xu, Zhijie

    2016-10-01

    Nano-gas bubble superlattices are often observed in irradiated UMo nuclear fuels. However, the formation mechanism of gas bubble superlattices is not well understood. A number of physical processes may affect the gas bubble nucleation and growth; hence, the morphology of gas bubble microstructures including size and spatial distributions. In this work, a phase-field model integrating a first-passage Monte Carlo method to investigate the formation mechanism of gas bubble superlattices was developed. Six physical processes are taken into account in the model: 1) heterogeneous generation of gas atoms, vacancies, and interstitials informed from atomistic simulations; 2) one-dimensional (1-D) migration of interstitials; 3) irradiation-induced dissolution of gas atoms; 4) recombination between vacancies and interstitials; 5) elastic interaction; and 6) heterogeneous nucleation of gas bubbles. We found that the elastic interaction doesn't cause the gas bubble alignment, and fast 1-D migration of interstitials along <110> directions in the body-centered cubic U matrix causes the gas bubble alignment along <110> directions. It implies that 1-D interstitial migration along [110] direction should be the primary mechanism of a fcc gas bubble superlattice which is observed in bcc UMo alloys. Simulations also show that fission rates, saturated gas concentration, and elastic interaction all affect the morphology of gas bubble microstructures.

  3. Investigation of mechanical field weakening of axial flux permanent magnet motor

    NASA Astrophysics Data System (ADS)

    Syaifuddin Mohd, M.; Aziz, A. Rashid A.; Syafiq Mohd, M.

    2015-12-01

    An investigation of axial flux permanent magnet motor (AFPM) characteristics was conducted with a proposed mechanical field weakening control mechanisms (by means of stator-rotor force manipulation) on the motor through modeling and experimentation. By varying the air gap between at least two bistable positions, the peak torque and top speed of the motor can be extended. The motor high efficiency region can also be extended to cover greater part of the motor operating points. An analytical model of the motor had been developed to study the correlation between the total attraction force (between the rotor and the stator) and the operating parameters of the motor. The test results shows that the motor output complies with the prediction of the research hypothesis and it is likely that a spring locking mechanism can be built to dynamically adjust the air gap of the motor to increase the operating range and could be applied in electric drivetrain applications to improve overall efficiency of electric and hybrid electric vehicles.

  4. Investigation of dielectric pocket induced variations in tunnel field effect transistor

    NASA Astrophysics Data System (ADS)

    Upasana; Narang, Rakhi; Saxena, Manoj; Gupta, Mridula

    2016-04-01

    The performance of conventional Tunnel FETs struggling from ambipolar issues, insufficient on-current, lower transconductance value, higher delay and lower cut off frequency has been improved by introducing several material and device engineering concepts in past few years. Keeping this in view, another interesting and reliable option i.e. Dielectric Pocket TFET (featuring a dielectric pocket placement near tunneling junction) has been comprehensively and qualitatively demonstrated using ATLAS device simulator. The architecture has been explored in terms of various device electrostatic parameters such as potential, energy band profile, electron and hole concentration, electric field variation and band to band generation rate (GBTB) near the tunneling junction where the Dielectric Pocket (DP) has been introduced. Subsequently, a detailed investigation by changing the position and dielectric constant of pocket at respective junctions has been made where DP induced variations in drain current, transconductance and parasitic capacitance have been examined. The work highlights major improvements over conventional TFET in terms of lower subthreshold swing and threshold voltage, higher drain current and transconductance, improved on-to-off current ratio, suppressed ambipolar conduction and improved dynamic power dissipation issues for low voltage analog and digital applications.

  5. Experimental investigation of image degradation created by a high-velocity flow field

    NASA Astrophysics Data System (ADS)

    Couch, L. L.; Kalin, David A.; McNeal, Terry

    1991-07-01

    A unique experimental apparatus has been designed and constructed to characterize aero-optical distortions related to the turbulent flow conditions experienced by a windowed hypersonic vehicle. Using this apparatus, a series of imaging tests was conducted with a classical mixing/shear layer traveling at approximately 600 mIs. The experimental setup consisted of a collimated 0.84 mm laser diode point source that was passed through the flow field and imaged onto a CCD array. During a one second stable flow period, 92.5 frames of images were collected. Several runs were made with the lasr diode operating in both continuous and pulsed (40is duration) modes. These images were used to investigate several effects such as, image blur, jitter, and strehl loss. For long integration periods, the image experienced an average image blur circle size increase of approximately 24 times from the "wind-off" case. The pulsed runs showed an increase in jitter of approximately 36.4 j.trad. In addition, during continuous runs, a strehl ratio of approximately 0.0026 was observed. These and other preliminary results correlated well with theoretical predictions.

  6. Geological and geophysical field investigations from a lunar base at Mare Smythii

    NASA Technical Reports Server (NTRS)

    Spudis, Paul D.; Hood, Lon L.

    1992-01-01

    Mare Smythii, located on the equator and east limb of the Moon, has a great variety of scientific and economic uses as the site for a permanent lunar base. Here a complex could be established that would combine the advantages of a nearside base (for ease of communications with Earth and normal operations) with those of a farside base (for shielding a radio astronomical observatory from the electromagnetic noise of Earth). The Mare Smythii region displays virtually the entire known range of geological processes and materials found on the Moon; from this site, a series of field traverses and investigations could be conducted that would provide data on and answers to fundamental questions in lunar geoscience. This endowment of geological materials also makes the Smythii region attractive for the mining of resources for use both on the Moon and in Earth-Moon space. We suggest that the main base complex be located at 0, 90 deg E, within the mare basalts of the Smythii basin; two additional outposts would be required, one at 0, 81 deg E to maintain constant communications with Earth, and and the other, at 0, 101 deg E on the lunar farside, to serve as a radio astronomical observatory. The bulk of lunar surface activities could be conducted by robotic teleoperations under the direct control of the human inhabitants of the base.

  7. Release and fate of fluorocarbons in a shredder residue landfill cell: 2. Field investigations.

    PubMed

    Scheutz, Charlotte; Fredenslund, Anders M; Nedenskov, Jonas; Kjeldsen, Peter

    2010-11-01

    The shredder residues from automobiles, home appliances and other metal containing products are often disposed in landfills, as recycling technologies for these materials are not common in many countries. Shredder waste contains rigid and soft foams from cushions and insulation panels blown with fluorocarbons. The objective of this study was to determine the gas composition, attenuation, and emission of fluorocarbons in a monofill shredder residue landfill cell by field investigation. Landfill gas generated within the shredder waste primarily consisted of CH(4) (27%) and N(2) (71%), without CO(2), indicating that the gas composition was governed by chemical reactions in combination with anaerobic microbial reactions. The gas generated also contained different fluorocarbons (up to 27 μg L(-1)). The presence of HCFC-21 and HCFC-31 indicated that anaerobic degradation of CFC-11 occurred in the landfill cell, as neither of these compounds has been produced for industrial applications. This study demonstrates that a landfill cell containing shredder waste has a potential for attenuating CFC-11 released from polyurethane (PUR) insulation foam in the cell via aerobic and anaerobic biodegradation processes. In deeper, anaerobic zones of the cell, reductive dechlorination of CFCs to HCFCs was evident, while in the shallow, oxic zones, there was a high potential for biooxidation of both methane and lesser chlorinated fluorocarbons. These findings correlated well with both laboratory results (presented in a companion paper) and surface emission measurements that, with the exception from a few hot spots, indicated that surface emissions were negative or below detection. PMID:20444588

  8. Root Throw and Sediment Transport in the Rocky Mountains of Western Canada: Field and Modelling Investigations

    NASA Astrophysics Data System (ADS)

    Gallaway, J.; Martin, Y. E.; Johnson, E. A.

    2007-12-01

    Sediment transport associated with root throw was investigated in Kootenay National Park in southeastern British Columbia. Tree toppling and root throw may result in sediment transport, as soil associated with the root wad is upheaved in the form of a root plate, which eventually disintegrates and deposits on the ground forming a mound. Although root throw is a widely recognized process, its role as an agent of sediment transport has not been widely considered. This study provides critical field data documenting the role of episodic root throw on sediment transport at a local scale (order of magnitude approximately 1 m). We then use these data in conjunction with a forest population dynamics model to consider the contribution of root throw to larger-scale sediment routing and its temporal dynamics. A detailed field measurement program documented characteristics associated with root throw in burned and pre- fire scenarios (e.g., root plate dimensions, direction of tree fall, root wad disintegration). Sediment transport rates due to root throw are relatively low; approximately two orders-of-magnitude lower than typical creep rates defined in the literature. However, in a landscape where larger mass movements are relatively uncommon, this small transport plays a role in sediment transfers, and contributes to soil mixing and formation of microtopography. In the post-fire scenario, an increase in root throw occurred as fire-killed trees toppled in the first years following the fire. The removal of vegetation also exposed root plates to erosion, and disintegration rates increased. A tree population model is developed to simulate tree recruitment, growth, mortality, and toppling rates over time scales greater than 1000 years. In the model, fire events occur as a stochastic disturbance which kills all trees, and recruits new trees. Thus, the model cycles through forest generations with lifespan determined by fire events. The number of trees at any time interval is the net

  9. Spectroscopic investigations of a field emission generated radiative zone: Mass spectroscopic measurements. Final Report

    SciTech Connect

    Mitterauer, J.

    1981-10-01

    In view of the application of liquid metal field ion sources as electric thrustors for space propulsion, the basic physical features of the field ionization mechanism were analyzed experimentally. An ultrahigh vacuum test chamber and a liquid metal ion source were built. Diagnostic methods, e.g., basic measurements of the emission characteristics, probe measurements of the ion current distribution, mass spectroscopic measurements of the particles emitted from the ion source, and spectroscopic measurements of the visible radiation accompanying field ionization, were developed. Experimental data which can be transferred to prototype field ion thrusters are presented, but experimental facilities limit conclusions regarding theoretical aspects of field ionization.

  10. A Further Investigation of the Effects of Extremely Low Frequency Magnetic Fields on Alkaline Phosphatase and Acetylcholinesterase.

    PubMed

    Silkstone, Gary; Wilson, Michael T

    2016-01-01

    Using a custom build spectrophotometer equipped with Helmholtz coils and designed to study the effects of magnetic fields on enzyme reactions in real-time we have investigated the influence of fields, from 100 μT to 10 mT and at a variety of field frequencies, on the membrane bound enzymes alkaline phosphatase and acetylcholinesterase. We have also employed other methods to apply a magnetic field, e.g. Biostim. In contrast to earlier reports we have been unable to detect any field effects on these enzymes under any field/frequency regime. We discuss possible reasons for the discrepancy between this and earlier work and note the particularly complex influence of small temperature changes that may confound analysis. PMID:26963611

  11. A Further Investigation of the Effects of Extremely Low Frequency Magnetic Fields on Alkaline Phosphatase and Acetylcholinesterase

    PubMed Central

    Silkstone, Gary; Wilson, Michael T.

    2016-01-01

    Using a custom build spectrophotometer equipped with Helmholtz coils and designed to study the effects of magnetic fields on enzyme reactions in real-time we have investigated the influence of fields, from 100 μT to 10 mT and at a variety of field frequencies, on the membrane bound enzymes alkaline phosphatase and acetylcholinesterase. We have also employed other methods to apply a magnetic field, e.g. Biostim. In contrast to earlier reports we have been unable to detect any field effects on these enzymes under any field/frequency regime. We discuss possible reasons for the discrepancy between this and earlier work and note the particularly complex influence of small temperature changes that may confound analysis. PMID:26963611

  12. Modeling Denitrification in Agroecosystems of Central Illinois: Investigations at Field and Watershed Scales

    NASA Astrophysics Data System (ADS)

    Hudson, R. J.; Valocchi, A. J.; Wente, S. P.; Hill, D. J.; Yue, F.; Lian, Y.; Singh, J. P.

    2002-12-01

    Midwestern agriculture-dominated watersheds containing artificially-drained soils are known to contribute disproportionately to nitrate loadings in the Mississippi-Atchafalaya River basin. The need to manage non-point nitrogen loads has lead to an intense interest in quantifying and modeling nitrogen sinks in these watersheds. That such sinks may be significant is suggested by the summertime depletion of nitrate to less than one-tenth the mean spring levels, which can exceed 1 mM. Due to the change in dominant hydrologic flowpath from drainage tiles to shallow groundwater over the same period, however, it has proved difficult to determine how much of the denitrification occurs in stream sediments versus in shallow groundwater. To investigate this question at the farm (100-ha) scale, we have developed a 3-dimensional model of the hydrology and biogeochemistry of tile-drained agricultural fields. The hydrology module simulates surface runoff, tile flow, and shallow groundwater flow using a mechanistic approach. The biogeochemistry module uses operator splitting to solve the coupled reaction and transport equations for solutes, gases, and soil components. Among the key questions we are examining is the appropriate level of complexity, e.g., which nitrogen species, terminal electron acceptors, and bacterial populations, to incorporate into the rate laws for microbial redox processes. The model is employed to investigate the nitrate levels in groundwater entering streams from different flowpath end-members and the dependence of these levels on temporal variables such as flow rate and season. At the watershed scale, we are employing a data-intensive, inverse approach to estimate nitrogen sources and sinks using 20-year long water quality data records from Illinois. Using a simple mechanistic model of nitrogen sinks within the NHD stream network and a dynamic nitrogen balance for the soil system, we are able to accurately model the observations and generate estimates of

  13. Field and laboratory rainfall simulation as a tool to investigate Quaternary badland geomorphic development

    NASA Astrophysics Data System (ADS)

    Kuhn, Nikolaus; Kasanin-Grubin, Milica; Yair, Aaron; Rorke, Brian; Schwanghart, Wolfgang

    2010-05-01

    Badlands are traditionally considered as natural analogue experiments of landscape development. Commonly, their morphology is linked to lithological properties of the bedrock. However, recent investigations indicate that the geomorphic development is sensitive to climate and in particular to precipitation characteristics. This sensitivity enables the combination of rainfall simulation experiments with numerical models to study the relevance of climate change for their long-term geomorphic development. In this study, the relevance of precipitation characteristics for the Quaternary landscape development in the Dinosaur Badlands in Alberta, Canada, and Zin Valley Badlands, Negev Desert, Israel is investigated. Runoff, erosion and weathering were simulated in the field and the laboratory to determine rates for modeling different precipitation regimes. Based on the results, a numerical model was developed and the effects of changing precipitation characteristics (rainfall, snow cover and melt) on long-term landscape development were simulated. In the Dinosoaur badlands, weathering and erosion experiments show that the balance between snowmelt induced weathering in the spring, summer rainfall, and erosion determines the rate of slope retreat. In the Zin Valley, on the other hand, the magnitude of the individual rainstorms determines whether a slope section is eroded or acts as a runoff and sediment sink. As a consequence, in the Zin Valley badland slopes experienced an auto-stabilization during the Quaternary. In the Dinosaur Badlands, on the other hand, Holocene climatic variations do not appear to have caused a permanent differentiation of patterns of erosion and deposition. Based on these results the reaction of badland slopes to changing precipitation characteristics was modeled. The model shows that both badland slope systems are currently fairly stable against climate change in the range of variations in rainfall characteristics experienced during the Holocene

  14. Geophysical investigations of well fields to characterize fractured-bedrock aquifers in southern New Hampshire

    USGS Publications Warehouse

    Degnan, James R.; Moore, Richard Bridge; Mack, Thomas J.

    2001-01-01

    Bedrock-fracture zones near high-yield bedrock wells in southern New Hampshire well fields were located and characterized using seven surface and six borehole geophysical survey methods. Detailed surveys of six sites with various methods provide an opportunity to integrate and compare survey results. Borehole geophysical surveys were conducted at three of the sites to confirm subsurface features. Hydrogeologic settings, including a variety of bedrock and surface geologic materials, were sought to gain an insight into the usefulness of the methods in varied terrains. Results from 15 survey lines, 8 arrays, and 3 boreholes were processed and interpreted from the 6 sites. The surface geophysical methods used provided physical properties of fractured bedrock. Seismic refraction and ground-penetrating radar (GPR) primarily were used to characterize the overburden materials, but in a few cases indicated bedrock-fracture zones. Magnetometer surveys were used to obtain background information about the bedrock to compare with other results, and to search for magnetic lows, which may result from weathered fractured rock. Electromagnetic terrain conductivity surveys (EM) and very-low-frequency electromagnetic surveys (VLF) were used as rapid reconnaissance techniques with the primary purpose of identifying electrical anomalies, indicating potential fracture zones in bedrock. Direct-current (dc) resistivity methods were used to gather detailed subsurface information about fracture depth and orientation. Two-dimensional (2-D) dc-resistivity surveys using dipole-dipole and Schlumberger arrays located and characterized the overburden, bedrock, and bedrock-fracture zones through analysis of data inversions. Azimuthal square array dc-resistivity survey results indicated orientations of conductive steep-dipping bedrock-fracture zones that were located and characterized by previously applied geophysical methods. Various available data sets were used for site selection

  15. Phase-field investigation on the non-equilibrium interface dynamics of rapid alloy solidification

    SciTech Connect

    Choi, Jeong

    2011-01-01

    The research program reported here is focused on critical issues that represent conspicuous gaps in current understanding of rapid solidification, limiting our ability to predict and control microstructural evolution (i.e. morphological dynamics and microsegregation) at high undercooling, where conditions depart significantly from local equilibrium. More specifically, through careful application of phase-field modeling, using appropriate thin-interface and anti-trapping corrections and addressing important details such as transient effects and a velocity-dependent (i.e. adaptive) numerics, the current analysis provides a reasonable simulation-based picture of non-equilibrium solute partitioning and the corresponding oscillatory dynamics associated with single-phase rapid solidification and show that this method is a suitable means for a self-consistent simulation of transient behavior and operating point selection under rapid growth conditions. Moving beyond the limitations of conventional theoretical/analytical treatments of non-equilibrium solute partitioning, these results serve to substantiate recent experimental findings and analytical treatments for single-phase rapid solidification. The departure from the equilibrium solid concentration at the solid-liquid interface was often observed during rapid solidification, and the energetic associated non-equilibrium solute partitioning has been treated in detail, providing possible ranges of interface concentrations for a given growth condition. Use of these treatments for analytical description of specific single-phase dendritic and cellular operating point selection, however, requires a model for solute partitioning under a given set of growth conditions. Therefore, analytical solute trapping models which describe the chemical partitioning as a function of steady state interface velocities have been developed and widely utilized in most of the theoretical investigations of rapid solidification. However, these

  16. Fast and Simple Detection of Yersinia pestis Applicable to Field Investigation of Plague Foci

    PubMed Central

    Simon, Stéphanie; Demeure, Christian; Lamourette, Patricia; Filali, Sofia; Plaisance, Marc; Créminon, Christophe; Volland, Hervé; Carniel, Elisabeth

    2013-01-01

    Yersinia pestis, the plague bacillus, has a rodent-flea-rodent life cycle but can also persist in the environment for various periods of time. There is now a convenient and effective test (F1-dipstick) for the rapid identification of Y. pestis from human patient or rodent samples, but this test cannot be applied to environmental or flea materials because the F1 capsule is mostly produced at 37°C. The plasminogen activator (PLA), a key virulence factor encoded by a Y. pestis-specific plasmid, is synthesized both at 20°C and 37°C, making it a good candidate antigen for environmental detection of Y. pestis by immunological methods. A recombinant PLA protein from Y. pestis synthesized by an Escherichia coli strain was used to produce monoclonal antibodies (mAbs). PLA-specific mAbs devoid of cross-reactions with other homologous proteins were further cloned. A pair of mAbs was selected based on its specificity, sensitivity, comprehensiveness, and ability to react with Y. pestis strains grown at different temperatures. These antibodies were used to develop a highly sensitive one-step PLA-enzyme immunoassay (PLA-EIA) and an immunostrip (PLA-dipstick), usable as a rapid test under field conditions. These two PLA-immunometric tests could be valuable, in addition to the F1-disptick, to confirm human plague diagnosis in non-endemic areas (WHO standard case definition). They have the supplementary advantage of allowing a rapid and easy detection of Y. pestis in environmental and flea samples, and would therefore be of great value for surveillance and epidemiological investigations of plague foci. Finally, they will be able to detect natural or genetically engineered F1-negative Y. pestis strains in human patients and environmental samples. PMID:23383008

  17. Investigating membrane nanoporation induced by bipolar pulsed electric fields via second harmonic generation

    NASA Astrophysics Data System (ADS)

    Moen, E. K.; Ibey, B. L.; Beier, H. T.; Armani, A. M.

    2016-09-01

    Electric pulses have become an effective tool for transporting cargo (DNA, drugs, etc.) across cell membranes. This enhanced transport is believed to occur through temporary pores formed in the plasma membrane. Traditionally, millisecond duration, monopolar (MP) pulses are used for electroporation, but bipolar (BP) pulses have proven equally effective as MP pulses with the added advantage of less cytotoxicity. With the goal of further reducing cytotoxic effects and inducing non-thermal, intra-cellular effects, researchers began investigating reduced pulse durations, pushing into the nanosecond regime. Cells exposed to these MP, nanosecond pulsed electric fields (nsPEFs) have shown increased repairable membrane permeability and selective channel activation. However, attempts to improve this further by moving to the BP pulse regime has proven unsuccessful. In the present work, we use second harmonic generation imaging to explore the structural effects of bipolar nsPEFs on the plasma membrane. By varying the temporal spacing between the pulse phases over several orders of magnitude and comparing the response to a single MP case, we systematically examine the disparity in cellular response. Our circuit-based model predicts that, as the temporal spacing increases several orders of magnitude, nanoporation increases and eventually exceeds the MP case. On the whole, our experimental data agree with this assertion; however, a detailed analysis of the data sets demonstrates that biological processes may play a larger role in the observed response than previously thought, dominating the effect for temporal spacing up to 5 μs. These findings could ultimately lead to understanding the biophysical mechanism underlying all electroporation.

  18. Investigation of electron-atom/molecule scattering resonances: Two complex multiconfigurational self-consistent field approaches

    SciTech Connect

    Samanta, Kousik; Yeager, Danny L.

    2015-01-22

    Resonances are temporarily bound states which lie in the continuum part of the Hamiltonian. If the electronic coordinates of the Hamiltonian are scaled (“dilated”) by a complex parameter, η = αe{sup iθ} (α, θ real), then its complex eigenvalues represent the scattering states (resonant and non-resonant) while the eigenvalues corresponding to the bound states and the ionization and the excitation thresholds remain real and unmodified. These make the study of these transient species amenable to the bound state methods. We developed a quadratically convergent multiconfigurational self-consistent field method (MCSCF), a well-established bound-state technique, combined with a dilated Hamiltonian to investigate resonances. This is made possible by the adoption of a second quantization algebra suitable for a set of “complex conjugate biorthonormal” spin orbitals and a modified step-length constraining algorithm to control the walk on the complex energy hypersurface while searching for the stationary point using a multidimensional Newton-Raphson scheme. We present our computational results for the {sup 2}PBe{sup −} shape resonances using two different computationally efficient methods that utilize complex scaled MCSCF (i.e., CMCSCF). These two methods are to straightforwardly use CMCSCF energy differences and to obtain energy differences using an approximation to the complex multiconfigurational electron propagator. It is found that, differing from previous computational studies by others, there are actually two {sup 2}PBe{sup −} shape resonances very close in energy. In addition, N{sub 2} resonances are examined using one of these methods.

  19. Geophysical Properties of Hard Rock for Investigation of Stress Fields in Deep Mines

    NASA Astrophysics Data System (ADS)

    Tibbo, M.; Young, R. P.; Schmitt, D. R.; Milkereit, B.

    2014-12-01

    A complication in geophysical monitoring of deep mines is the high-stress dependency of the physical properties of hard rocks. In-mine observations show anisotropic variability of the in situ P- and S-wave velocities and resistivity of the hard rocks that are likely related to stress field changes. As part of a comprehensive study in a deep, highly stressed mine located in Sudbury, Ontario, Canada, data from in situ monitoring of the seismicity, conductivity, stress, and stress dependent physical properties has been obtain. In-laboratory experiments are also being performed on borehole cores from the Sudbury mines. These experiments will measure the Norite borehole core's properties including elastic modulus, bulk modulus, P- and S-wave velocities, and density. Hydraulic fracturing has been successfully implemented in industries such as oil and gas and enhanced geothermal systems, and is currently being investigated as a potential method for preconditioning in mining. However, further research is required to quantify how hydraulic fractures propagate through hard, unfractured rock as well as naturally fractured rock typically found in mines. These in laboratory experiments will contribute to a hydraulic fracturing project evaluating the feasibility and effectiveness of hydraulic fracturing as a method of de-stressing hard rock mines. A tri-axial deformation cell equipped with 18 Acoustic Emission (AE) sensors will be used to bring the borehole cores to a tri-axial state of stress. The cores will then be injected with fluid until the the hydraulic fracture has propagated to the edge of the core, while AE waveforms will be digitized continuously at 10 MHz and 12-bit resolution for the duration of each experiment. These laboratory hydraulic fracture experiments will contribute to understanding how parameters including stress ratio, fluid injection rate, and viscosity, affect the fracturing process.

  20. Extensive lava flow fields on Venus: Preliminary investigation of source elevation and regional slope variations

    NASA Technical Reports Server (NTRS)

    Magee-Roberts, K.; Head, James W., III; Lancaster, M. G.

    1992-01-01

    Large-volume lava flow fields have been identified on Venus, the most areally extensive of which are known as fluctus and have been subdivided into six morphologic types. Sheetlike flow fields (Type 1) lack the numerous, closely spaced, discrete lava flow lobes that characterize digitate flow fields. Transitional flow fields (Type 2) are similar to sheetlike flow fields but contain one or more broad flow lobes. Digitate flow fields are divided further into divergent (Types 3-5) and subparallel (Type 6) classes on the basis of variations in the amount of downstream flow divergence. As a result of our previous analysis of the detailed morphology, stratigraphy, and tectonic associations of Mylitta Fluctus, we have formulated a number of questions to apply to all large flow fields on Venus. In particular, we would like to address the following: (1) eruption conditions and style of flow emplacement (effusion rate, eruption duration), (2) the nature of magma storage zones (presence of neutral buoyancy zones, deep or shallow crustal magma chambers), (3) the origin of melt and possible link to mantle plumes, and (4) the importance of large flow fields in plains evolution. To answer these questions we have begun to examine variations in flow field dimension and morphology; the distribution of large flow fields in terms of elevation above the mean planetary radius; links to regional tectonic or volcanic structures (e.g., associations with large shield edifices, coronae, or rift zones); statigraphic relationships between large flow fields, volcanic plains, shields, and coronae; and various models of flow emplacement in order to estimate eruption parameters. In this particular study, we have examined the proximal elevations and topographic slopes of 16 of the most distinctive flow fields that represent each of the 6 morphologic types.

  1. Experimental investigation of the visual field dependency in the erect and supine positions

    NASA Technical Reports Server (NTRS)

    Lichtenstein, J. H.; Saucer, R. T.

    1972-01-01

    The increasing utilization of simulators in many fields, in addition to aeronautics and space, requires the efficient use of these devices. It seemed that personnel highly influenced by the visual scene would make desirable subjects, particularly for those simulators without sufficient motion cues. In order to evaluate this concept, some measure of the degree of influence of the visual field on the subject in necessary. As part of this undertaking, 37 male and female subjects, including eight test pilots, were tested for their visual field dependency or independency. A version of Witkin's rod and frame apparatus was used for the tests. The results showed that nearly all the test subjects exhibited some degree of field dependency, the degree varying from very high field dependency to nearly zero field dependency in a normal distribution. The results for the test pilots were scattered throughout a range similar to the results for the bulk of male subjects. The few female subjects exhibited a higher field dependency than the male subjects. The male subjects exhibited a greater field dependency in the supine position than in the erect position, whereas the field dependency of the female subjects changed only slightly.

  2. Direct detection of enhanced ionization in CO and N2 in strong fields

    NASA Astrophysics Data System (ADS)

    Lai, Wei; Guo, Chunlei

    2014-09-01

    Enhanced ionization (EI) of molecules has been extensively studied over the past two decades as a common process in molecular dissociative ionization in strong laser fields. Direct evidence for EI has been found only in I2 and H2. However, in this work we perform a direct study of EI in CO and N2, and find enhanced ionization in an alternate dissociation channel in each of these two molecules following double ionization. Surprisingly, EI does not happen in the commonly seen dissociation channels that were previously assigned undergoing EI. Instead, EI occurs only in the alternate channels seen here with a lower kinetic-energy release.

  3. Seismic investigations of Antrim shale fracturing: vertical seismic profiling field work. [Rubblization

    SciTech Connect

    Turpening, R.M.; Liskow, A.; Thomson, F.J.

    1980-09-01

    Through the use of surface to downhole shear- and compressional-wave seismic techniques, the subsurface structure through the Antrim shale was studied in Sanilac County, Michigan. This report summarizes the field work, the field instrumentation and the data collection associated with this work.

  4. Investigations of a simulated geomagnetic field experienced by the International Space Station on attentional performance.

    PubMed

    Del Seppia, Cristina; Mezzasalma, Lorena; Messerotti, Mauro; Cordelli, Alessandro; Ghione, Sergio

    2009-01-01

    We have previously reported that the exposure to an abnormal magnetic field simulating the one encountered by the International Space Station (ISS) orbiting around the Earth may enhance autonomic response to emotional stimuli. Here we report the results of the second part of that study which tested whether this field also affects cognitive functions. Twenty-four volunteers participated in the study, 12 exposed to the natural geomagnetic field and 12 to the magnetic field encountered by ISS. The test protocol consisted of a set of eight tests chosen from a computerized test battery for the assessment of attentional performance. The duration of exposure was 90 min. No effect of exposure to ISS magnetic field was observed on attentional performance.

  5. Comparative investigation of three dose rate meters for their viability in pulsed radiation fields.

    PubMed

    Gotz, M; Karsch, L; Pawelke, J

    2015-06-01

    Pulsed radiation fields, characterized by microsecond pulse duration and correspondingly high pulse dose rates, are increasingly used in therapeutic, diagnostic and research applications. Yet, dose rate meters which are used to monitor radiation protection areas or to inspect radiation shielding are mostly designed, characterized and tested for continuous fields and show severe deficiencies in highly pulsed fields. Despite general awareness of the problem, knowledge of the specific limitations of individual instruments is very limited, complicating reliable measurements. We present here the results of testing three commercial dose rate meters, the RamION ionization chamber, the LB 1236-H proportional counter and the 6150AD-b scintillation counter, for their response in pulsed radiation fields of varied pulse dose and duration. Of these three the RamION proved reliable, operating in a pulsed radiation field within its specifications, while the other two instruments were only able to measure very limited pulse doses and pulse dose rates reliably. PMID:25978117

  6. Investigation of electron trajectories of an x-ray tube in magnetic fields of MR scanners

    SciTech Connect

    Wen Zhifei; Fahrig, Rebecca; Conolly, Steven; Pelc, Norbert J.

    2007-06-15

    A hybrid x-ray/MR system combining an x-ray fluoroscopic system and an open-bore magnetic resonance (MR) system offers advantages from both powerful imaging modalities and thus can benefit numerous image-guided interventional procedures. In our hybrid system configurations, the x-ray tube and detector are placed in the MR magnet and therefore experience a strong magnetic field. The electron beam inside the x-ray tube can be deflected by a misaligned magnetic field, which may damage the tube. Understanding the deflection process is crucial to predicting the electron beam deflection and avoiding potential damage to the x-ray tube. For this purpose, the motion of an electron in combined electric (E) and magnetic (B) fields was analyzed theoretically to provide general solutions that can be applied to different geometries. For two specific cases, a slightly misaligned strong field and a perpendicular weak field, computer simulations were performed with a finite-element method program. In addition, experiments were conducted using an open MRI magnet and an inserted electromagnet to quantitatively verify the relationship between the deflections and the field misalignment. In a strong (B>>E/c; c: speed of light) and slightly misaligned magnetic field, the deflection in the plane of E and B caused by electrons following the magnetic field lines is the dominant component compared to the deflection in the ExB direction due to the drift of electrons. In a weak magnetic field (B{<=}E/c), the main deflection is in the ExB direction and is caused by the perpendicular component of the magnetic field.

  7. Colloid-Facilitated Transport of Low-Solubility Radionuclides: A Field, Experimental, and Modeling Investigation

    SciTech Connect

    Kersting, A B; Reimus, P W; Abdel-Fattah, A; Allen, P G; Anghel, I; Benedict, F C; Esser, B K; Lu, N; Kung, K S; Nelson, J; Neu, M P; Reilly, S D; Smith, D K; Sylwester, E R; Wang, L; Ware, S D; Warren, RG; Williams, R W; Zavarin, M; Zhao, P

    2003-02-01

    rate of Pu transport. Currently, the role of colloids in facilitating the transport of low-solubility radionuclides is not understood well enough to effectively model contaminant transport. A fundamental understanding of the role that colloids may or may not play in the transport of low-solubility radionuclides is needed in order to predict contaminant transport, design remediation strategies and provide risk assessments. Ryan and Elimelech (1996) have argued that in order to evaluate the potential for colloids to transport radionuclides, several criteria must be met: (1) colloids must exist and be stable, (2) radionuclides must have a high sorption affinity for the colloids, and (3) colloids must be transported. Only then can we understand the conditions where colloids can and will facilitate transport of radionuclides. In this report we compile the results from a series of field, laboratory and modeling studies funded by the UGTA program in order to evaluate the potential for colloids to transport low-solubility radionuclides at the NTS. The studies presented in this report fall under three general areas of investigation: Characterization of natural colloids in groundwater at NTS, Pu sorption/desorption experiments on colloid minerals identified in NTS groundwater, and Transport of Pu-doped colloids through fractured rock core. Chapter 1 is a background review of our current understanding of colloids and their role in facilitating contaminant transport. Chapters 2, and 3 are field studies that focused on characterizing natural colloids at different hydrologic environments at the NTS and address Ryan and Elimelech's (1996) first criteria regarding the existence and stability of colloids. Chapters 4, 5 and 6 are laboratory experimental studies that investigate the sorption/desorption behavior of Pu and other low-solubility radionuclides on colloid minerals observed in NTS groundwater. These studies evaluate Ryan and Elimelech's (1996) second criteria that the affinity

  8. Controlled Field and Laboratory Experiments to Investigate soil-root Interactions and Streambank Stability.

    NASA Astrophysics Data System (ADS)

    Pollen, N. L.; Simon, A.

    2002-12-01

    Riparian vegetation has a number of mechanical and hydrologic effects on streambank stability, some of which are positive and some of which are negative. The mechanical reinforcement provided by root networks is one of the most important stabilizing factors, as roots are strong in tension but weak in compression and conversely soil is strong in compression but weak in tension. A soil that contains roots therefore has increased shear strength due to the production of a reinforced matrix, which is stronger than the soil or roots separately (Thorne, 1990). Quantification and understanding of the way the soil and roots interact individually and as a complete matrix is important if we are to predict the reinforcing effects of different types of riparian vegetation in streambank stabilizing schemes. Previous estimates of the contribution of root networks to soil strength have been attained either by using equations that sum root tensile and the soil shear strengths (eg. Wu et al., 1979), or by carrying out shear tests of root-permeated soils. However, neither of these methods alone allows a full investigation and understanding of the interactions that take place between the soil and the roots as a soil is sheared. These interactions are complex, and the simple addition of root tensile and soil shear strengths may therefore lead to overestimation of the increased strength provided to the soil by the roots, as the rate of mobilization of stress in the roots may not be the same as that of the soil (Waldron and Dakessian, 1981; Pollen et al., 2002). This paper describes a series of experiments that were carried out to test the material properties of roots, and soil samples from a streambank along Goodwin Creek, N. Mississippi. Results from field experiments carried out to measure root-tensile strengths, and stress-displacement characteristics of roots, were compared with laboratory shear tests of soil samples from Goodwin Creek. It was shown that the roots of different

  9. Investigation of scaling characteristics for defining design environments due to transient ground winds and near-field, nonlinear acoustic fields

    NASA Technical Reports Server (NTRS)

    Shih, C. C.

    1973-01-01

    In order to establish a foundation of scaling laws for the highly nonlinear waves associated with the launch vehicle, the basic knowledge of the relationships among the paramaters pertinent to the energy dissipation process associated with the propagation of nonlinear pressure waves in thermoviscous media is required. The problem of interest is to experimentally investigate the temporal and spacial velocity profiles of fluid flow in a 3-inch open-end pipe of various lengths, produced by the propagation of nonlinear pressure waves for various diaphragm burst pressures of a pressure wave generator. As a result, temporal and spacial characteristics of wave propagation for a parametric set of nonlinear pressure waves in the pipe containing air under atmospheric conditions were determined. Velocity measurements at five sections along the pipes of up to 210 ft. in length were made with hot-film anemometers for five pressure waves produced by a piston. The piston was derived with diaphragm burst pressures at 20, 40, 60, 80 and 100 psi in the driver chamber of the pressure wave generator.

  10. N-C isotopic investigation of a zeolite-amended agricultural field

    NASA Astrophysics Data System (ADS)

    Ferretti, Giacomo; Natali, Claudio; Faccini, Barbara; Di Giuseppe, Dario; Bianchini, Gianluca; Coltorti, Massimo

    2016-04-01

    In this study, a C and N isotopic investigation in the soil-plant system of the ZeoLIFE project experimental field have been carried out. Since many years, natural and NH4-enriched zeolites have been used as soil amendant in agricultural context in order to reduce N losses, increase NUE (Nitrogen Use Efficiency) and crop yield. Nevertheless up to now there are no studies that, using the stable isotopes approach, highlighted the interaction between zeolites and plants in agricultural systems. The main aims of this study is to verify if natural zeolites amendment can enhance chemical fertilization efficiency and if N transfer from NH4-enriched zeolites to plants really occurs. Plants grown following traditional cultivation methods (with no zeolite addition) and plants grown on soils amended with natural and NH4-enriched zeolites (the latter obtained after mixing with pig-slurry with a very high 15N) were compared for two cultivation cycles (maize and wheat). As widely known, plants grown under conventional farming systems (use of chemical fertilizers as urea) and plants grown under organic farming can be discriminated by the isotopic signatures of plant tissues. For both years the main results of the study reveals that plants grown on plots amended with natural zeolites generally have their nitrogen isotopic signature more similar to that of the chemical fertilizers employed during the cultivation with respect to the plants cultivated in the non-amended plot. This suggests an enhanced N uptake by the plant from this specific N source with respect to the non-amended plot. On the other hand, plants grown on NH4-enriched zeolites registered a higher 15N, approaching the pig-slurry isotopic signature, confirming that this material can constitute an N pool for plants at least for two cultivation cycles. The distinct agricultural practices seem to be reflected in the plant physiology as recorded by the carbon discrimination factor (13C) which generally increases

  11. Field Investigation of Flow Structure and Channel Morphology at Confluent-Meander Bends

    NASA Astrophysics Data System (ADS)

    Riley, J. D.; Rhoads, B. L.

    2007-12-01

    The movement of water and sediment through drainage networks is inevitably influenced by the convergence of streams and rivers at channel confluences. These focal components of fluvial systems produce a complex hydrodynamic environment, where rapid changes in flow structure and sediment transport occur to accommodate the merging of separate channel flows. The inherent geometric and hydraulic change at confluences also initiates the development of distinct geomorphic features, reflected in the bedform and shape of the channel. An underlying assumption of previous experimental and theoretical models of confluence dynamics has been that converging streams have straight channels with angular configurations. This generalized conceptualization was necessary to establish confluence planform as symmetrical or asymmetrical and to describe subsequent flow structure and geomorphic features at confluences. However, natural channels, particularly those of meandering rivers, curve and bend. This property and observation of channel curvature at natural junctions have led to the hypothesis that natural stream and river confluences tend to occur on the concave outer bank of meander bends. The resulting confluence planform, referred to as a confluent-meander bend, was observed over a century ago but has received little scientific attention. This paper examines preliminary data on three-dimensional flow structure and channel morphology at two natural confluent-meander bends of varying size and with differing tributary entrance locations. The large river confluence of the Vermilion River and Wabash River in west central Indiana and the comparatively small junction of the Little Wabash River and Big Muddy Creek in southeastern Illinois are the location of study sites for field investigation. Measurements of time-averaged three-dimensional velocity components were obtained at these confluences with an acoustic Doppler current profiler for flow events with differing momentum ratios. Bed

  12. Settling Velocity Specific SOC Distribution along Hillslopes - A field investigation in Denmark

    NASA Astrophysics Data System (ADS)

    Kuhn, N. J.; Hu, Y.

    2015-12-01

    The net effects of soil erosion by water, as a sink or source of atmospheric CO2, are decisively affected by the spatial re-distribution and stability of eroded soil organic carbon (SOC). The deposition position of eroded SOC, into terrestrial or aquatic systems, is actually decided by the transport distances of soil fractions where the SOC is stored. In theory, the transport distances of aggregated soil fractions are related to their settling velocities under given layer conditions. Yet, little field investigation has been conducted to examine the actual movement of eroded soil fractions along hillslopes, let alone the re-distribution pattern of functional SOC fractions. Eroding sandy soils and sediment were sampled after a series of rainfall events from different topographic positions along a slope on a freshly seeded cropland in Jutland, Denmark. All the soil samples from difference topographic positions along the slope were fractionated into five settling classes using a settling tube apparatus. The SOC content, 13C signature, and C:N ratios of all settling fractions were measured. Our results show that: 1) the spatial distribution of soil settling classes along the slope clearly shows a coarsening effect at the deposition area immediately below the eroding slope, followed by a fining trend on the deposition area at the slope tail. This proves the validity of the conceptual model in Starr et al. 2000 to predict SOC redistribution patterns along eroding hillslopes. 2) The isotopically enriched 13C on the slope back suggests greater decomposition rates possibly experienced by eroded SOC during transport, while the pronounced respiration rates at the slope tail indicate a great potential of CO2 emissions after deposition. Overall, our results illustrate that immediate deposition of fast settling soil fractions, and the thus induced preferential deposition of SOC at foot slope and potential CO2 emissions during transport, must be appropriately accounted for in

  13. Investigation of band termination in the lower fp shell within the cranked relativistic mean field model

    NASA Astrophysics Data System (ADS)

    Bhagwat, A.; Wyss, R.; Satuła, W.; Meng, J.; Gambhir, Y. K.

    2013-04-01

    The excitation energy difference (ΔE) between the terminating states built on the f7/2n and d3/2-1f7/2n+1 configurations (here, 'n' denotes the number of valence particles outside the 40Ca core and the particle hole excitation across the magic gap 20 is of proton type) in the lower fp shell are studied systematically within the framework of the cranked relativistic mean field model. The ΔE thus defined, depends predominantly on the f7/2 - d3/2 shell gap, and its evolution as a function of neutron - proton asymmetry. The latter, in turn, depends on the isoscalar - isovector balance in the spin - orbit potential. Therefore, a systematic investigation of the difference ΔE is expected to test quantitatively the predicted shell gaps as a function of isospin. We find that: 1) the conventional NL3 parameter set over estimates the ΔE values, implying that the said shell gap is over - estimated in this parametrization and 2) the largest deviation between the calculated and the experimental values of ΔE is obtained for the nucleus with the smallest asymmetry value in the set of nuclei considered, and that the deviation decreases with increasing asymmetry, indicating that the in RMF parametrization considered, the isoscalar - isovector balance in the spin - orbit potential requires improvement. We carry out a re - fit of the RMF parameters to attempt a remedy to these two problems. We find that in addition to the binding energies and charge radii, if a constraint is put on the f7/2 - d3/2 shell gap in the fit to the Lagrangian parameters, the overall agreement of ΔE with the experiment improves significantly, without disturbing the agreement already achieved for the bulk properties of the nuclei spanning the entire periodic table. At a finer level, however, it is found that the isoscalar - isovector balance in the spin orbit interaction is required to be improved further. A detailed work in this direction is in progress.

  14. a Field-Theoretical Investigation of 2-D Coulomb Systems with Short-Range Yukawa Repulsion.

    NASA Astrophysics Data System (ADS)

    Jargocki, Krzysztof Piotr

    The two-dimensional Coulomb gas, consisting of positive and negative charges, is an important system which, on one hand, is equivalent to the vortex sector of the planar X-Y model, and, on the other, to the sine-Gordon field theory. In most treatments the charged particles are assumed to have a repulsive hard core which prevents arbitrarily close approaches. In the present work a new regularization scheme based on a soft short-range Yukawa repulsion between the Coulomb gas particles is presented. This formulation is transcribed into a local sine-Gordon-like field theory involving two Bose fields, one the original massless sine -Gordon field corresponding to the long-range Coulomb interaction and an auxiliary massive field corresponding to the short -range Yukawa repulsion. The resulting Lagrangian is not Hermitian. Using the techniques of functional integration, an effective field theory involving the Coulomb field alone is obtained by integrating out the massive field. The resulting Lagrangian is now Hermitian. Then a generalization of Peierls' inequality is used to make a variational calculation of the ground state energy of the Coulomb system. Unlike in the pure sine-Gordon case the theory has a well-defined ground state energy for (beta)q('2) > 2 (or (beta)c('2) > 8(pi)). A new method is used to derive the Kosterlitz -Thouless renormalization group equations, starting with the original sine-Gordon-like theory. The equations are identical to those found previously by other authors. A wave function renormalization is found to be necessary in addition to the normal ordering discussed by Coleman. A fermionized version of the theory is obtained, using the dictionary provided by Kogut and Susskind, which involves two Fermi fields and an electromagnetic potential. Position -space correlation functions are calculated at the critical point. The effective potential is computed in the one -loop approximation. A nonlinear field theory with derivative couplings is found to

  15. Computational Investigation of Helical Traveling Wave Tube Transverse RF Field Forces

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Dayton, James A.

    1998-01-01

    In a previous study using a fully three-dimensional (3D) helical slow-wave circuit cold- test model it was found, contrary to classical helical circuit analyses, that transverse FF electric fields have significant amplitudes compared with the longitudinal component. The RF fields obtained using this helical cold-test model have been scaled to correspond to those of an actual TWT. At the output of the tube, RF field forces reach 61%, 26% and 132% for radial, azimuthal and longitudinal components, respectively, compared to radial space charge forces indicating the importance of considering them in the design of electron beam focusing.

  16. 33 CFR 230.13 - Environmental Impact Statement (EIS).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Environmental Impact Statement..., DEPARTMENT OF DEFENSE PROCEDURES FOR IMPLEMENTING NEPA § 230.13 Environmental Impact Statement (EIS). An EIS... combined with or integrated into the report in accordance with 40 CFR 1500.4(o) and 1506.4. An EIS...

  17. 33 CFR 230.13 - Environmental Impact Statement (EIS).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Environmental Impact Statement..., DEPARTMENT OF DEFENSE PROCEDURES FOR IMPLEMENTING NEPA § 230.13 Environmental Impact Statement (EIS). An EIS... combined with or integrated into the report in accordance with 40 CFR 1500.4(o) and 1506.4. An EIS...

  18. 33 CFR 230.13 - Environmental Impact Statement (EIS).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Environmental Impact Statement..., DEPARTMENT OF DEFENSE PROCEDURES FOR IMPLEMENTING NEPA § 230.13 Environmental Impact Statement (EIS). An EIS... combined with or integrated into the report in accordance with 40 CFR 1500.4(o) and 1506.4. An EIS...

  19. 33 CFR 230.13 - Environmental Impact Statement (EIS).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Environmental Impact Statement..., DEPARTMENT OF DEFENSE PROCEDURES FOR IMPLEMENTING NEPA § 230.13 Environmental Impact Statement (EIS). An EIS... combined with or integrated into the report in accordance with 40 CFR 1500.4(o) and 1506.4. An EIS...

  20. 33 CFR 230.13 - Environmental Impact Statement (EIS).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Environmental Impact Statement..., DEPARTMENT OF DEFENSE PROCEDURES FOR IMPLEMENTING NEPA § 230.13 Environmental Impact Statement (EIS). An EIS... combined with or integrated into the report in accordance with 40 CFR 1500.4(o) and 1506.4. An EIS...

  1. 12 CFR 1815.109 - Preparation of an EIS.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... prepared, it shall publish a notice of intent in the Federal Register in accordance with 40 CFR 1501.7 and... or have prepared the EIS. Procedures for preparing the EIS are set forth in 40 CFR part 1502 of the CEQ regulations. (b) The Fund may supplement a draft or final EIS at any time. The Fund shall...

  2. An investigation into the vector ellipticity of extremely low frequency magnetic fields from appliances in UK homes

    NASA Astrophysics Data System (ADS)

    Ainsbury, Elizabeth A.; Conein, Emma; Henshaw, Denis L.

    2005-07-01

    Elliptically polarized magnetic fields induce higher currents in the body compared with their plane polarized counterparts. This investigation examines the degree of vector ellipticity of extremely low frequency magnetic fields (ELF-MFs) in the home, with regard to the adverse health effects reportedly associated with ELF-MFs, for instance childhood leukaemia. Tri-axial measurements of the magnitude and phase of the 0-3000 Hz magnetic fields, produced by 226 domestic mains-fed appliances of 32 different types, were carried out in 16 homes in Worcestershire in the summer of 2004. Magnetic field strengths were low, with average (RMS) values of 0.03 ± 0.02 µT across all residences. In contrast, background field ellipticities were high, on average 47 ± 11%. Microwave and electric ovens produced the highest ellipticities: mean respective values of 21 ± 21% and 21 ± 17% were observed 20 cm away from these appliances. There was a negative correlation between field strength and field polarization, which we attribute to the higher relative field contribution close to each individual (single-phase) appliance. The measurements demonstrate that domestic magnetic fields are extremely complex and cannot simply be characterized by traditional measurements such as time-weighted average or peak exposure levels. We conclude that ellipticity should become a relevant metric for future epidemiological studies of health and ELF-MF exposure. This work is supported by the charity CHILDREN with LEUKAEMIA, registered charity number 298405.

  3. Experimental investigation on butane diffusion flames under the influence of magnetic field by using digital speckle pattern interferometry.

    PubMed

    Kumar, Manoj; Agarwal, Shilpi; Kumar, Varun; Khan, Gufran S; Shakher, Chandra

    2015-03-20

    In this paper, the effect of magnetic fields on the temperature and temperature profile of a diffusion flame obtained from a butane torch burner are investigated experimentally by using digital speckle pattern interferometry (DSPI). Experiments were conducted on a diffusion flame generated by a butane torch burner in the absence of a magnetic field and in the presence of uniform and nonuniform magnetic fields. A single DSPI fringe pattern was used to extract phase by using a Riesz transform and monogenic signal. Temperature inside the flame was determined experimentally both in the absence and in the presence of magnetic fields. Experimental results reveal that the maximum temperature of the flame is increased under the influence of an upward-decreasing magnetic gradient and decreased under an upward-increasing magnetic gradient while a negligible effect on temperature in a uniform magnetic field was observed. PMID:25968534

  4. Internal Electric Field Investigations of a Cadmium Zinc Telluride Detector Using Synchrotron X-ray Mapping and Pockels Effect Measurements

    SciTech Connect

    Yang, G.; Bolotnikov, A; Camarda, G; Cui, Y; Hossain, A; Yao, H; James, R

    2009-01-01

    Cadmium zinc telluride (CZT) has remained a major focus of research due to its promising application as a room-temperature nuclear radiation detector material. Among the several parameters that substantially affect the detectors' performance, an important one is the distribution of the internal electric field. Brookhaven National Laboratory (BNL) employed synchrotron x-ray microscale mapping and measurements of the Pockels effect to investigate the distribution of the internal electric field in a CZT strip detector. Direct evidence that dislocations can distort the internal electric field of the detector was obtained. Furthermore, it was found that 'star' defects in the CZT crystal, possibly ascribed to dislocation loop punching, cause charge trapping.

  5. The investigation of frequency response for the magnetic nanoparticulate assembly induced by time-varied magnetic field

    NASA Astrophysics Data System (ADS)

    Sun, Jianfei; Sui, Yunxia; Wang, Chunyu; Gu, Ning

    2011-07-01

    The field-induced assembly of γ-Fe2O3 nanoparticles under alternating magnetic field of different frequency was investigated. It was found that the assembly was dependent upon the difference between colloidal relaxation time and field period. The same experiments on DMSA-coated γ-Fe2O3 nanoparticles exhibited that the relaxation time may be mainly determined by the magnetic size rather than the physical size. Our results may be valuable for the knowledge of dynamic assembly of colloidal particles.

  6. Experimental Investigation of Cooling Capacity of 4K GM Cryocoolers in Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Morie, Takaaki; Shiraishi, Taisuke; Xu, Mingyao

    4K GM cryocoolers are inevitably exposed to the magnetic field inMRI systems. The cooling capacity of a 4K GM cryocooler is strongly dependent on the heat capacity of the magnetic regenerator materials, such as HoCu2, Er3Ni and Gd2O2S(GOS). In order to clarify the effect of the magnetic field on acryocooler's performance, we measured the cooling capacity of Sumitomo Heavy Industries, Ltd. (SHI) 1W 4K GM cryocoolers in magnetic fields up to 2.0 T. It is found that the impact of a magnetic field on the cooling capacity with a HoCu2/GOS hybrid regenerator is much smaller than that with a HoCu2 regenerator.

  7. Investigation of an electron string ion source with field emission cathode.

    PubMed

    Becker, R; Currell, F J; Donets, E D; Donets, E E; Kester, O; Quint, W; Ptitsin, V E

    2008-02-01

    The string mode of operation for an electron beam ion source uses axially oscillating electrons in order to reduce power consumption, also simplifying the construction by omitting the collector with cooling requirements and has been called electron string ion source (ESIS). We have started a project (supported by INTAS and GSI) to use Schottky field emitting cathode tips for generating the electron string. The emission from these specially conditioned tips is higher by orders of magnitude than the focused Brillouin current density at magnetic fields of some Tesla and electron energies of some keV. This may avoid the observed instabilities in the transition from axially oscillating electrons to the string state of the electron plasma, opening a much wider field of possible operating parameters for an ESIS. Besides the presentation of the basic features, we emphasize in this paper a method to avoid damaging of the field emission tip by backstreaming ions.

  8. Investigation of the structure of the electromagnetic field and related phenomena, generated by the Active Satellite

    NASA Technical Reports Server (NTRS)

    Alpert, Yakov L.

    1991-01-01

    The altitude dependencies of the moduli of the electric field E in the VLF and LF frequency bands (f sub B much less than F less than f sub B) and in the altitude range of the ionosphere Z equals (400 to 2500) km up to Z equals 6000 km (the bottom of the magnetosphere) were calculated by the linear theory. The amplitudes of the field have large maxima in four regions: the axis field (E sub o) close to the direction of the Earth's magnetic field line B sub o, beta approximately 0 degrees, the fields (E sub St), (E sub RevSt) and (E sub Res) in the Storey, Reversed Story and Resonance cones, beta approximately (0 approaches 20) degrees. Their maxima are very pronounced close to the low hybrid frequency F sub L. The nonlinear heating of the magnetoplasma under the action of an electric field Ee (sup iwt) was recently expanded by the macroscopic theory by the author. The velocities, collision frequencies and temperatures of all the constituents of a magnetoplasma - electrons, ions, and neutral particles - are taken into account. Formulae and numerical results are presented for the ionosphere in the frequency band F equals (1 to 10 exp 4) kHz and altitude range Z approximately (100 - 1000) km. Some results of calculations by the self consistent solution of the basis system of equations are also discussed.

  9. Structural Investigations of Afghanistan Deduced from Remote Sensing and Potential Field Data

    NASA Astrophysics Data System (ADS)

    Saibi, Hakim; Azizi, Masood; Mogren, Saad

    2016-08-01

    This study integrates potential gravity and magnetic field data with remotely sensed images and geological data in an effort to understand the subsurface major geological structures in Afghanistan. Integrated analysis of Landsat SRTM data was applied for extraction of geological lineaments. The potential field data were analyzed using gradient interpretation techniques, such as analytic signal (AS), tilt derivative (TDR), horizontal gradient of the tilt derivative (HG-TDR), Euler Deconvolution (ED) and power spectrum methods, and results were correlated with known geological structures. The analysis of remote sensing data and potential field data reveals the regional geological structural characteristics of Afghanistan. The power spectrum analysis of magnetic and gravity data suggests shallow basement rocks at around 1 to 1.5 km depth. The results of TDR of potential field data are in agreement with the location of the major regional fault structures and also the location of the basins and swells, except in the Helmand region (SW Afghanistan) where many high potential field anomalies are observed and attributed to batholiths and near-surface volcanic rocks intrusions. A high-resolution airborne geophysical survey in the data sparse region of eastern Afghanistan is recommended in order to have a complete image of the potential field anomalies.

  10. An Investigation of Perpendicular Gradients of Parallel Electric Field Associated with Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Sturner, A. P.; Ergun, R.; Newman, D. L.; Lapenta, G.

    2014-12-01

    Many observations of particle heating and acceleration throughout the universe have been associated with magnetic reconnection. Generalized Ohm's Law describes how particles move under ideal and non-ideal conditions; however, it is insufficient for describing how the magnetic field itself changes. Initial studies have shown that a curl of a parallel electric field is necessary for reconnection to occur. These analytic studies have demonstrated that perpendicular gradients in the parallel electric field drive a counter-twisting of the magnetic field on either side of the localized parallel electric field. This results in the slippage of magnetic flux tubes and a break down of the 'frozen-in' condition. In this presentation, we analyze results from self-consistent implicit kinetic particle-in-cell simulations. The strongest gradients of parallel electric fields in the simulations are along the separator and not at the X-point. We will present where in the simulation domain the 'frozen-in' condition breaks down and compare it with the location of these gradients, and discuss the implications.

  11. MAGNETIC FIELD CONFIGURATION AT THE GALACTIC CENTER INVESTIGATED BY WIDE-FIELD NEAR-INFRARED POLARIMETRY: TRANSITION FROM A TOROIDAL TO A POLOIDAL MAGNETIC FIELD

    SciTech Connect

    Nishiyama, Shogo; Yoshikawa, Tatsuhito; Nagata, Tetsuya; Hatano, Hirofumi; Nagayama, Takahiro; Tamura, Motohide; Matsunaga, Noriyuki; Suenaga, Takuya; Hough, James H.; Sugitani, Koji; Kato, Daisuke

    2010-10-10

    We present a large-scale view of the magnetic field (MF) in the central 2{sup 0} x 2{sup 0} region of our Galaxy. The polarization of point sources has been measured in the J, H, and K{sub S} bands using the near-infrared polarimetric camera SIRPOL on the 1.4 m Infrared Survey Facility telescope. Comparing the Stokes parameters between high extinction stars and relatively low extinction ones, we obtain polarization originating from magnetically aligned dust grains in the central few hundred parsecs of our Galaxy. We find that near the Galactic plane, the MF is almost parallel to the Galactic plane (i.e., toroidal configuration), but at high Galactic latitudes (|b | >0.{sup 0}4) the field is nearly perpendicular to the plane (i.e., poloidal configuration). This is the first detection of a smooth transition of the large-scale MF configuration in this region.

  12. [Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio]. Volume 3, Sampling and analysis plan (SAP): Phase 1, Task 4, Field Investigation: Draft

    SciTech Connect

    Not Available

    1991-10-01

    In April 1990, Wright-Patterson Air Force Base (WPAFB), initiated an investigation to evaluate a potential Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) removal action to prevent, to the extent practicable, the offsite migration of contaminated ground water from WPAFB. WPAFB retained the services of the Environmental Management Operations (EMO) and its principle subcontractor, International Technology Corporation (IT) to complete Phase 1 of the environmental investigation of ground-water contamination at WPAFB. Phase 1 of the investigation involves the short-term evaluation and potential design for a program to remove ground-water contamination that appears to be migrating across the western boundary of Area C, and across the northern boundary of Area B along Springfield Pike. Primarily, Task 4 of Phase 1 focuses on collection of information at the Area C and Springfield Pike boundaries of WPAFB. This Sampling and Analysis Plan (SAP) has been prepared to assist in completion of the Task 4 field investigation and is comprised of the Quality Assurance Project Plan (QAPP) and the Field Sampling Plan (FSP).

  13. [Environmental investigation of ground water contamination at Wright-Patterson Air Force Base, Ohio]. Volume 2, Work plan: Phase 1, Task 4, Field Investigation: Draft

    SciTech Connect

    Not Available

    1991-10-01

    In April 1990 Wright-Patterson Air Force Base (WPAFB) initiated an investigation to evaluate a potential CERCLA removal action to prevent, to the extent practicable, the migration of ground-water contamination in the Mad River Valley Aquifer within and across WPAFB boundaries. The action will be based on a Focused Feasibility Study with an Action Memorandum serving as a decision document that is subject to approval by the Ohio Environmental Protection Agency. The first phase (Phase 1) of this effort involves an investigation of ground-water contamination migrating across the southwest boundary of Area C and across Springfield Pike adjacent to Area B. Task 4 of Phase 1 is a field investigation to collect sufficient additional information to evaluate removal alternatives. The field investigation will provide information in the following specific areas of study: water-level data which will be used to permit calibration of the ground-water flow model to a unique time in history; and ground-water quality data which will be used to characterize the current chemical conditions of ground water.

  14. A comparison of normal and tangential magnetic field component measurements in biomagnetic investigations.

    PubMed

    Diekmann, V; Becker, W; Grözinger, B; Jürgens, R; Kornhuber, C

    1991-01-01

    Because of the way most available hardware gradiometers are designed and in view of the prediction, by theory, that the normal magnetic field component provides all available information on the intrinsic current source, MEG and MCG measurements generally consider only the field vector normal to the head or truck surface. However, when looking for single events, the information contained in the normal component often cannot be fully sampled, because the sensor array has limited dimensions and therefore covers only a fraction of the field's spatial extension. Simulation of a current dipole in a sphere using realistic parameters shows that there is a considerable area where the amplitude of the tangential field components is larger than that of the normal one. Measurements using a 28-channel magnetometer system with normal and tangential pick-up coils and a current dipole in a phantom model confirm this prediction; depending on dipole orientation, the signal-to-noise ratio (SNR) could improve by a factor of up to 20 if the total field was considered instead of only the normal component. MCG recordings with the same instrument demonstrated a broad area above the heart where the tangential SNR was clearly better than the normal one. Preliminary measurements indicate that tangential components can also be recorded in the MEG; it is suggested that they may help source localisation.

  15. A comparison of normal and tangential magnetic field component measurements in biomagnetic investigations.

    PubMed

    Diekmann, V; Becker, W; Grözinger, B; Jürgens, R; Kornhuber, C

    1991-01-01

    Because of the way most available hardware gradiometers are designed and in view of the prediction, by theory, that the normal magnetic field component provides all available information on the intrinsic current source, MEG and MCG measurements generally consider only the field vector normal to the head or truck surface. However, when looking for single events, the information contained in the normal component often cannot be fully sampled, because the sensor array has limited dimensions and therefore covers only a fraction of the field's spatial extension. Simulation of a current dipole in a sphere using realistic parameters shows that there is a considerable area where the amplitude of the tangential field components is larger than that of the normal one. Measurements using a 28-channel magnetometer system with normal and tangential pick-up coils and a current dipole in a phantom model confirm this prediction; depending on dipole orientation, the signal-to-noise ratio (SNR) could improve by a factor of up to 20 if the total field was considered instead of only the normal component. MCG recordings with the same instrument demonstrated a broad area above the heart where the tangential SNR was clearly better than the normal one. Preliminary measurements indicate that tangential components can also be recorded in the MEG; it is suggested that they may help source localisation. PMID:1778055

  16. Investigations and applications of field- and photo-emitted electron beams from a radio frequency gun

    NASA Astrophysics Data System (ADS)

    Panuganti, Sriharsha

    Production of quality electron bunches using efficient ways of generation is a crucial aspect of accelerator technology. Radio frequency electron guns are widely used to generate and rapidly accelerate electron beams to relativistic energies. In the current work, we primarily study the charge generation processes of photoemission and field emission inside an RF gun installed at Fermilab's High Brightness Electron Source Laboratory (HBESL). Specifically, we study and characterize second-order nonlinear photoemission from a Cesium Telluride (Cs2Te) semiconductor photocathode, and field emission from carbon based cathodes including diamond field emission array (DFEA) and carbon nanotube (CNT) cathodes located in the RF gun's cavity. Finally, we discuss the application experiments conducted at the facility to produce soft x-rays via inverse Compton scattering (ICS), and to generate uniformly filled ellipsoidal bunches and temporally-shaped electron beams from the Cs 2Te photocathode.

  17. An experimental investigation of circulation control flow fields using holographic interferometry

    NASA Technical Reports Server (NTRS)

    Bachalo, William D.

    1982-01-01

    Experiments are presented which were conducted on flow fields produced by a circulation control airfoil utilizing the Coanda effect at the trailing edge. The application of holographic interferometry to obtain both visualization and quantitative data on the flow field about a circulation control airfoil at transonic flow speed is covered. A brief description of the flow model and measurement techniques is given. The data reduction procedure, results, and interpretation are presented. The results have provided a good deal of information on the character of the flow field, particularly in the neighborhood of the trailing edge. As to the airfoil design, it is apparent that improved performance can be achieved if jet detachment is delayed. Another design improvement would involve the development of an optimum trailing-edge shape for the expected operating Mach and Reynolds number ranges.

  18. Simulation investigation of a Ku-band radial line oscillator operating at low guiding magnetic field

    SciTech Connect

    Dang, Fangchao Zhang, Xiaoping; Zhong, Huihuang; Li, Yangmei; Qi, Zumin

    2014-06-15

    A novel radial line oscillator operating at Ku-band with low guiding magnetic field is proposed in this paper. By using an oversized radial structure, the power handling capacity is enhanced significantly. Based on the small-signal theory, the π/2 mode in radial TM{sub 01} mode is selected as the working mode. Furthermore, a radial uniform guiding magnetic field, made up of four solenoids, is designed. As indicated in 2.5-dimensional fully electromagnetic particle-in-cell simulation, high power microwaves with a power of 2.2 GW and a frequency of 14.25 GHz are generated with over 40% efficiency when the electron beam voltage is 300 kV, the beam current 18 kA, and the guiding magnetic field is only 0.6 T. There is no angular non-asymmetric mode discovered in three-dimensional simulation.

  19. Impact-generated magnetic fields on the Moon : a magnetohydrodynamic numerical investigation

    NASA Astrophysics Data System (ADS)

    Oran, Rona; Shprits, Yuri; Weiss, Benjamin; Gombosi, Tamas

    2015-04-01

    Natural remanent magnetization has been identified in lunar rocks, the lunar crust, and a diversity of meteorites. Much of this magnetization is thought to have been produced by cooling a core dynamo mag-netic field. However, the identification of lunar crustal magnetic anomalies at the antipodes of four of the five youngest large (>600 km diameter) impact basins has motivated the alternative hypothesis that the lunar crust could have been magnetized by the impacts. In particular, it has been proposed that highly conducting ionized vapor produced by a basin-forming impact interacts with the ambient solar wind plasma surrounding the Moon to amplify the ambient solar wind magnetic field or any core dynamo field. In this picture, as the ionized vapor cloud expands around the Moon, it pushes and compresses the solar wind plasma into a small region at the antipodal point. The conservation of magnetic flux then leads to an enhanced magnetic field in the compressed plasma. This field can then be recorded as shock remanent magnetization by crustal materials at the antipodal point following the impact of converging basin ejecta. A key requirement for the impact-generated fields hypothesis is that the compressed field be suffi-ciently strong to explain the lunar paleointensities (at least tens of μT) and maintained at the antipodal point for a sufficiently long time (several hours) for the ejecta to arrive and impact the surface. Previous simulations of the expansion of the vapor cloud found that the enhanced field will be strong enough (per-haps reaching hundreds of μT) and will remain at the antipodal site for a sufficiently long time (>1 day) for the arrival of incoming ejecta. However, these studies did not include an explicit calculation of the interaction of the magnetized solar wind plasma with the vapor cloud. Rather, the cloud evolution under the lunar gravity was simulated in the purely hydrodynamic regime. The vapor cloud structure at certain times was used to

  20. Investigation of Near-Field Imaging Characteristics of Radial Polarization for Application to Optical Data Storage

    NASA Astrophysics Data System (ADS)

    Kim, Wan-Chin; Park, No-Cheol; Yoon, Yong-Joong; Choi, Hyun; Park, Young-Pil

    2007-07-01

    Radially polarized incident light can generate a more confined longitudinal electric field on a focal plane in near-field (NF) optics than focusing circularly polarized light. Using this phenomenon, it is feasible to reduce beam spot size on storage media to increase the areal density of optical data storage. A radially polarized beam generates a beam spot which is 20% more confined on the 1st surface of medium than that of circularly polarized light. However, the peak intensity of total electric field sharply decreases and its transverse component is much more dominant inside the media stack. This confirms that radially polarized optics can be a candidate not for an NF recording system but for an NF read-only memory (ROM) system. Potentially, the results could be useful to understand the effect of radial and circular polarizations inside and outside medium for various applications of NF optics.

  1. 63,65Cu NMR Method in a Local Field for Investigation of Copper Ore Concentrates

    NASA Astrophysics Data System (ADS)

    Gavrilenko, A. N.; Starykh, R. V.; Khabibullin, I. Kh.; Matukhin, V. L.

    2015-01-01

    To choose the most efficient method and ore beneficiation flow diagram, it is important to know physical and chemical properties of ore concentrates. The feasibility of application of the 63,65Cu nuclear magnetic resonance (NMR) method in a local field aimed at studying the properties of copper ore concentrates in the copper-iron-sulfur system is demonstrated. 63,65Cu NMR spectrum is measured in a local field for a copper concentrate sample and relaxation parameters (times T1 and T2) are obtained. The spectrum obtained was used to identify a mineral (chalcopyrite) contained in the concentrate. Based on the experimental data, comparative characteristics of natural chalcopyrite and beneficiated copper concentrate are given. The feasibility of application of the NMR method in a local field to explore mineral deposits is analyzed.

  2. An Exploration of the Relationship between Emotional Intelligence (EI) and the Multiple Mini-Interview (MMI)

    ERIC Educational Resources Information Center

    Yen, Wendy; Hovey, Richard; Hodwitz, Kathryn; Zhang, Su

    2011-01-01

    The present study explored the relationship between the Multiple Mini-Interview (MMI) admissions process and the Bar-On EQ-i emotional intelligence (EI) instrument in order to investigate the potential for the EQ-i to serve as a proxy measure to the MMI. Participants were 196 health science candidates who completed both the MMI and the EQ-i as…

  3. Solenoid Fringe Field Effects for the Neutrino Factory Linac - MAD-X Investigation

    SciTech Connect

    M. Aslaninejad,C. Bontoiu,J. Pasternak,J. Pozimski,Alex Bogacz

    2010-05-01

    International Design Study for the Neutrino Factory (IDS-NF) assumes the first stage of muon acceleration (up to 900 MeV) to be implemented with a solenoid based Linac. The Linac consists of three styles of cryo-modules, containing focusing solenoids and varying number of SRF cavities for acceleration. Fringe fields of the solenoids and the focusing effects in the SRF cavities have significant impact on the transverse beam dynamics. Using an analytical formula, the effects of fringe fields are studied in MAD-X. The resulting betatron functions are compared with the results of beam dynamics simulations using OptiM code.

  4. Field Summary Report for Remedial Investigation of Hanford Site Releases to the Columbia River, Hanford Site, Washington

    SciTech Connect

    L.C. Hulstrom

    2010-08-11

    This report summarizes field sampling activities conducted in support of WCH’s Remedial Investigation of Hanford Site Releases to the Columbia River. This work was conducted form 2008 through 2010. The work included preliminary mapping and measurement of Hanford Site contaminants in sediment, pore water, and surface water located in areas where groundwater upwelling were found.

  5. Field Summary Report for Remedial Investigation of Hanford Site Releases to the Coumbia River, Hanford Site, Washington

    SciTech Connect

    L.C. Hulstrom

    2010-11-10

    This report summarizes field sampling activities conducted in support of WCH’s Remedial Investigation of Hanford Site Releases to the Columbia River. This work was conducted form 2008 through 2010. The work included preliminary mapping and measurement of Hanford Site contaminants in sediment, pore water, and surface water located in areas where groundwater upwelling were found.

  6. SUPERFUND TREATABILITY CLEARINGHOUSE: SUMMARY REPORT ON THE FIELD INVESTIGATION OF THE SAPP BATTERY SITE JACKSON COUNTY, FLORIDA

    EPA Science Inventory

    This treatability study presents the results of field investigations at the Sapp Battery site in Florida, an abandoned battery recycling operation. The site is estimated to contain 14,300 cubic yards of soils with lead levels in excess of 1,000 ppm. The soils in the immediate v...

  7. Physics Laboratory Investigation of Vocational High School Field Stone and Concrete Construction Techniques in the Central Java Province (Indonesia)

    ERIC Educational Resources Information Center

    Purwandari, Ristiana Dyah

    2015-01-01

    The investigation aims in this study were to uncover the observations of infrastructures and physics laboratory in vocational high school for Stone and Concrete Construction Techniques Expertise Field or Teknik Konstruksi Batu dan Beton (TKBB)'s in Purwokerto Central Java Province, mapping the Vocational High School or Sekolah Menengah Kejuruan…

  8. Investigation of optimized end-bonding magnetoelectric heterostructure for sensitive magnetic field sensor.

    PubMed

    Lu, Caijiang; Xu, Changbao; Wang, Lei; Gao, Jipu; Gui, Junguo; Lin, Chenghui

    2014-11-01

    This paper reports an optimized end-bonding magnetoelectric (ME) heterostructure FeCuNbSiB-PZT-FeCuNbSiB (FPF) for sensitive magnetic field sensor. The heterostructure is made by attaching magnetostrictive Fe73.5Cu1Nb3Si13.5B9 (FeCuNbSiB) foils at the free ends of piezoelectric Pb(Zr1-x,Tix)O3 (PZT) plates. Due to the structural advantages, the FPF has ∼3.12 times larger resonance voltage coefficient (αME,r) than traditional FeCuNbSiB/PZT laminate. And compared with the Metglas-PZT-Metglas heterostructure, the FPF heterostructure has stronger ME responses for the excellent magnetic characteristics of FeCuNbSiB. In experiments, the FPF heterostructure is optimal designed through adjusting the thickness of PZT plate (tp) and the length of FeCuNbSiB foil (L). The results demonstrate that the maximum αME,r of 662.1 (V/cm Oe) is observed at 13 Oe DC bias magnetic field when L = 15 mm and tp = 0.6 mm. Based on the giant ME coupling, the DC magnetic field sensitivity for the optimized FPF heterostructure is 3.89 nT at resonant frequency. These results are very promising for the cheap room-temperature magnetic field sensing technology.

  9. How to Make a Field Trip a Hands-On Investigative Laboratory: Learning about Marine Invertebrates

    ERIC Educational Resources Information Center

    Burrowes, Patricia A.

    2007-01-01

    Research has shown that when students are given the opportunity to ask their own questions and design their own experiments, they become more interested in learning the answers. In this article, the author describes an effective method to do a field trip to the beach and gets her students to make observations about marine animals, come up with a…

  10. Investigation of exposure to Extremely Low Frequency (ELF) magnetic and electric fields: Ongoing animal studies

    SciTech Connect

    Anderson, L.E.

    1994-03-01

    There is now convincing evidence from a large number of laboratories, that exposure to extremely low frequency (ELF) magnetic and electric fields produces biological responses in animals. Many of the observed effects appear to be directly or indirectly associated with the neural or neuroendocrine systems. Such effects include increased neuronal excitability, chemical and hormonal changes in the nervous system, altered behavioral responses, some of which are related to sensing the presence of the field, and changes in endogenous biological rhythms. Additional indices of general physiological status appear relatively unaffected by exposure, although effects have occasionally been described in bone growth and fracture repair, reproduction and development, and immune system function. A major current emphasis in laboratory research is to determine whether or not the reported epidemiological studies that suggest an association between EMF exposure and risk of cancer are supported in studies using animal models. Three major challenges exist for ongoing research: (1) knowledge about the mechanisms underlying observed bioeffects is incomplete, (2) researchers do not as yet understand what physical aspects of exposure produce biological responses, and (3) health consequences resulting from ELF exposure are unknown. Although no animal studies clearly demonstrate deleterious effects of ELF fields, several are suggestive of potential health impacts. From the perspective of laboratory animal studies, this paper will discuss biological responses to ELF magnetic and/or electric field exposures.

  11. Investigations of self-reproduction of field diffracted by two-dimensional fractals

    NASA Astrophysics Data System (ADS)

    Maksimyak, Alexander P.; Shlamp, Katerina I.

    2015-11-01

    Diffraction of light on an amplitude and phase fractal objects of Serpinski carpet was calculated. It has been shown that for a phase fractal object and for an amplitude object in the field there are areas, analogical to the areas of selfreproduction of minimum element.

  12. An Investigation into the Contents and Aspects of College Students' Reflective Thoughts during Field Experience

    ERIC Educational Resources Information Center

    Su, Yuling

    2015-01-01

    Field experience makes a strong contribution to the learning of students. However, the procedure for conducting training sessions based on experiential teaching methods is relatively unclear, and the contents and aspects of students' reflections during such training are not well known. This study applied experiential teaching methods in a college…

  13. Setting a Neglected Variable in Science Education: Investigations Into Outdoor Field Trips. Final Report.

    ERIC Educational Resources Information Center

    Falk, John H.; Balling, John D.

    Reported are three studies of attitudes towards and effects of science education field trips. In the first study, 425 fifth and sixth graders participated in outdoor science activities in one of three types of settings. Results indicated that more learning took place when the number of available examples of concepts to be learned and setting…

  14. Investigating of the Field Emission Performance on Nano-Apex Carbon Fiber and Tungsten Tips

    NASA Astrophysics Data System (ADS)

    Mousa, Marwan S.; Alnawasreh, Shadi; Madanat, Mazen A.; Al-Rabadi, Anas N.

    2015-10-01

    Field electron emission measurements have been performed on carbon-based and tungsten microemitters. Several samples of both types of emitters with different apex radii have been obtained employing electrolytic etching techniques using sodium hydroxide (NaOH) solution with different molarities depending on the material used. A suitable, home-built, field electron microscope (FEM) with 10 mm tip to screen separation distance was used to electrically characterize the electron emitters. Measurements were carried out under ultra high vacuum (UHV) conditions with base pressure of 10-9 mbar. The current-voltage characteristics (I-V) presented as Fowler-Nordheim (FN) type plots, and field electron emission images have been recorded. In this work, initial comparison of the field electron emission performance of these micro and nanoemitters has been carried out, with the aim of obtaining a reliable, stable and long life powerful electron source. We compare the apex radii measured from the micrographs obtained from the SEM images to those extracted from the FN-type _I-V_plots for carbon fibers and tungsten tips.

  15. “Pheromonal Investigations of Green Lacewings (Neuroptera: Chrysopidae: Chrysopa spp.) in the Field and Laboratory”

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Field-collected male goldeneyed lacewings, Chrysopa oculata, release (1R,2S,5R,8R)-iridodial but, laboratory-reared C. oculata males did not produce iridodial, despite their healthy appearance and apparently normal fertility. Previous research showed that C. oculata males enter traps baited with iri...

  16. Numerical Investigation of Two-Phase Flows With Charged Droplets in Electrostatic Field

    NASA Technical Reports Server (NTRS)

    Kim, Sang-Wook

    1996-01-01

    A numerical method to solve two-phase turbulent flows with charged droplets in an electrostatic field is presented. The ensemble-averaged Navier-Stokes equations and the electrostatic potential equation are solved using a finite volume method. The transitional turbulence field is described using multiple-time-scale turbulence equations. The equations of motion of droplets are solved using a Lagrangian particle tracking scheme, and the inter-phase momentum exchange is described by the Particle-In-Cell scheme. The electrostatic force caused by an applied electrical potential is calculated using the electrostatic field obtained by solving a Laplacian equation and the force exerted by charged droplets is calculated using the Coulombic force equation. The method is applied to solve electro-hydrodynamic sprays. The calculated droplet velocity distributions for droplet dispersions occurring in a stagnant surrounding are in good agreement with the measured data. For droplet dispersions occurring in a two-phase flow, the droplet trajectories are influenced by aerodynamic forces, the Coulombic force, and the applied electrostatic potential field.

  17. Investigating the Impact of Field Trips on Teachers' Mathematical Problem Posing

    ERIC Educational Resources Information Center

    Courtney, Scott A.; Caniglia, Joanne; Singh, Rashmi

    2014-01-01

    This study examines the impact of field trip experiences on teachers' mathematical problem posing. Teachers from a large urban public school system in the Midwest participated in a professional development program that incorporated experiential learning with mathematical problem formulation experiences. During 2 weeks of summer 2011, 68 teachers…

  18. Integrated Laboratory and Field Investigations: Assessing Contaminant Risk to American Badgers

    EPA Science Inventory

    This manuscript provides an example of integrated laboratory and field approach to complete a toxicological ecological risk assessment at the landscape level. The core findings from the study demonstrate how radio telemetry data can allow for ranking the relative risks of contam...

  19. Investigations on proton exchange membrane fuel cells with different configurations and flow fields

    NASA Astrophysics Data System (ADS)

    Kazim, Ayoub Mohamed

    In this study, two mathematical models are developed. The first one is a simple mathematical approach that computes all transport and electrochemical parameters inside the different layers of a fuel cell regardless of its configuration. Through heat and mass transfer analogy, convective mass transfer coefficients at different Reynolds number are determined for both concentric cylindrical and conventional proton exchange membrane (PEM) fuel cells. Concentrations of oxygen and hydrogen are then determined at each layer of the fuel cell using steady-state diffusion analysis. The concentration equations are solved together with the electrochemical equations inside the fuel cell, to obtain the fuel cell voltage and power density. The results from this simple approach compared well with the existing numerical and experimental results. The second mathematical model is to study PEM fuel cell with conventional and non-conventional namely interdigitated flow fields. Through proper handling of the boundary conditions at the gas diffusion/catalyst layer interface, the numerical solution of the model resulted in the profiles of transport and electrochemical parameters in the cathode. Parameters such as pressure distribution, velocity profile, oxygen concentration, molar flux, current density, polarization and overall power density at different cell over-potentials in both flow fields were determined. The results demonstrates the superiority of interdigitated flow field over the conventional type in terms of overall performance and illustrated the importance of the convective term of the species equation in enhancing the reaction rates, leading to a significant improvement in the fuel cell performance. The effects of different parameters, such as cathode porosity, inlet oxygen mole fraction, and operating pressure on fuel cell performance have been studied using this 2-D mathematical model. Finally, a simple efficiency and economical analysis was formulated and implemented on

  20. Investigations About the Recording of the Palaeomagnetic Field in the Mono Basin, CA, in Siltstone from a Granitic Provenance

    NASA Astrophysics Data System (ADS)

    Liddicoat, Joseph; Coe, Robert

    2014-05-01

    For more than three decades, Reidar Lovlie did innovative laboratory and field experiments that advanced our understanding about how sediments acquire a remanent magnetization (Lovlie, 1979, and his subsequent publications about that research). The investigations we and our students have done with lacustrine sediments deposited during the late Pleistocene in the Mono Basin, CA, have benefited from those experiments. One of Lovlie's laboratory experiments that was especially useful in our investigation of the role of relative field intensity (RFI) during a rapidly changing field, the Mono Lake Excursion (MLE; Coe and Liddicoat, 1994), was his study of suspended magnetic grains in slowly curing epoxy resin as the field strength was varied (Lovlie, 1993). More recently we did comparative field and laboratory experiments with sediments from different depositional environments in the Mono Basin that help to explain the recording of the palaeomagnetic field in unweathered siltstone derived from a granitic provenance in the California Sierra Nevada. Our investigations are possible because inclination, declination, and RFI using alternating field and thermal demagnetization and intensity normalizing experiments of magnetic susceptibility (k), saturation isothermal remanent magnetization (SIRM), and anhysteretic remanent magnetization (ARM)(Lund et al., 2005) can be measured with precision for localities separated by as much as 15 kilometres using volcanic ash beds as marker horizons. In addition to making the comparison between localities in the Mono Basin that record the MLE, we have done that for a time interval following the MLE also in the Mono Basin where the palaeomagnetic directions are anomalous compared to secular variation (waveform Delta in Lund et al., 1988; Liddicoat and Coe, 2013). In that interval the RFI is nearly double the RFI during the MLE (Zimmerman et al., 2006), which again allows us to study RFI as a factor in the palaeomagnetic recording process in

  1. Laboratory and field investigations of particulate and carbon monoxide emissions from traditional and improved cookstoves

    NASA Astrophysics Data System (ADS)

    Roden, Christoph A.; Bond, Tami C.; Conway, Stuart; Osorto Pinel, Anibal Benjamin; MacCarty, Nordica; Still, Dean

    We implemented a program in which emission characterization is enabled through collaborations between academic, US and international non-governmental entities that focus on evaluation, dissemination, and in-use testing, of improved cookstoves. This effort resulted in a study of field and laboratory emissions from traditional and improved biofuel cookstoves. We found that field measured particulate emissions of actual cooking average three times those measured during simulated cooking in the laboratory. Emission factors are highly dependent on the care and skill of the operator and the resulting combustion; these do not appear to be accurately reproduced in laboratory settings. The single scattering albedo (SSA) of the emissions was very low in both lab and field measurements, averaging about 0.3 for lab tests and around 0.5 for field tests, indicating that the primary particles are climate warming. Over the course of three summers in Honduras, we measured field emissions from traditional cookstoves, relatively new improved cookstoves, and "broken-in" improved cookstoves. We found that well-designed improved cookstoves can significantly reduce PM and CO emission factors below traditional cookstoves. For improved stoves, the presence of a chimney generally resulted in lower emission factors but left the SSA unaffected. Traditional cookstoves had an average PM emission factor of 8.2 g kg -1 - significantly larger than previous studies. Particulate emission factors for improved cookstoves without and with chimneys averaged about 6.6 g kg -1 and 4.5 g kg -1, respectively. The elemental carbon (EC) fraction of PM varied significantly between individual tests, but averaged about 25% for each of the categories.

  2. The Functional Organization of Neocortical Networks Investigated in Slices with Local Field Recordings and Laser Scanning Photostimulation

    PubMed Central

    Erlandson, Melissa A.; Manzoni, Olivier J.; Bureau, Ingrid

    2015-01-01

    The organization of cortical networks can be investigated functionally in brain slices. Laser scanning photostimulation (LSPS) with glutamate-uncaging allows for a rapid survey of all connections impinging on single cells recorded in patch-clamp. We sought to develop a variant of the method that would allow for a more exhaustive mapping of neuronal networks at every experiment. We found that the extracellular field recordings could be used to detect synaptic responses evoked by LSPS. One to two electrodes were placed in all six cortical layers of barrel cortex successively and maps were computed from the size of synaptic negative local field potentials. The field maps displayed a laminar organization similar to the one observed in maps computed from excitatory postsynaptic currents recorded in patch-clamp mode. Thus, LSPS combined with field recording is an interesting alternative to obtain for every animal tested a comprehensive map of the excitatory intracortical network. PMID:26134668

  3. Investigation of Solar Wind Coupling to the High-Latitude Ionospheric Reverse Convection Electric Field during Large Positive IMF Bz

    NASA Astrophysics Data System (ADS)

    Clauer, C. R.; Deshpande, K.; Xu, Z.; Hartinger, M.; Weimer, D. R.; Nicolls, M. J.

    2015-12-01

    An empirical determination of the coupling function between the solar wind dynamo electric field and the high latitude ionospheric electric field is possible using the Weiner filter technique. We investigate the response of the high latitude reverse convection electric field measured by the Resolute Incoherent Scatter Radar (RISR) during periods of large northward IMF for two CME-related events 12-13 September 2014 and 22 - 23 June 2015. The technique provides the most general linear coupling function including frequency response and time delays. We find that the solar wind is strongly coupled to the high latitude reverse convection electric field. We discuss the details of this coupling as it relates to various parameters that may influence the coupling efficiency, such as solar wind mach number, plasma beta, ionospheric Pederson conductivity, etc.

  4. Magnetic fields end-face effect investigation of HTS bulk over PMG with 3D-modeling numerical method

    NASA Astrophysics Data System (ADS)

    Qin, Yujie; Lu, Yiyun

    2015-09-01

    In this paper, the magnetic fields end-face effect of high temperature superconducting (HTS) bulk over a permanent magnetic guideway (PMG) is researched with 3D-modeling numerical method. The electromagnetic behavior of the bulk is simulated using finite element method (FEM). The framework is formulated by the magnetic field vector method (H-method). A superconducting levitation system composed of one rectangular HTS bulk and one infinite long PMG is successfully investigated using the proposed method. The simulation results show that for finite geometrical HTS bulk, even the applied magnetic field is only distributed in x-y plane, the magnetic field component Hz which is along the z-axis can be observed interior the HTS bulk.

  5. Investigation of superparamagnetic (Fe3O4) nanoparticles and magnetic field exposures on CHO-K1 cell line

    NASA Astrophysics Data System (ADS)

    Coker, Zachary; Estlack, Larry; Hussain, Saber; Choi, Tae-Youl; Ibey, Bennett L.

    2016-03-01

    Rapid development in nanomaterial synthesis and functionalization has led to advanced studies in actuation and manipulation of cellular functions for biomedical applications. Often these actuation techniques employ externally applied magnetic fields to manipulate magnetic nanomaterials inside cell bodies in order to drive or trigger desired effects. While cellular interactions with low-frequency magnetic fields and nanoparticles have been extensively studied, the fundamental mechanisms behind these interactions remain poorly understood. Additionally, modern investigations on these concurrent exposure conditions have been limited in scope, and difficult to reproduce. This study presents an easily reproducible method of investigating the biological impact of concurrent magnetic field and nanoparticle exposure conditions using an in-vitro CHO-K1 cell line model, with the purpose of establishing grounds for in-depth fundamental studies of the mechanisms driving cellular-level interactions. Cells were cultured under various nanoparticle and magnetic field exposure conditions from 0 to 500 μg/ml nanoparticle concentrations, and DC, 50 Hz, or 100 Hz magnetic fields with 2.0 mT flux density. Cells were then observed by confocal fluorescence microscopy, and subject to biological assays to determine the effects of concurrent extreme-low frequency magnetic field and nanoparticle exposures on cellnanoparticle interactions, such as particle uptake and cell viability by MTT assay. Current results indicate little to no variation in effect on cell cultures based on magnetic field parameters alone; however, it is clear that deleterious synergistic effects of concurrent exposure conditions exist based on a significant decrease in cell viability when exposed to high concentrations of nanoparticles and concurrent magnetic field.

  6. ENVIRONMENTAL CARCINOGENESIS IN THE MUMMICHOG, FUNDULUS HETEROCLITUS: FIELD AND LABORATORY INVESTIGATIONS

    EPA Science Inventory

    The mummichog, Fundulus heteroclitus, is a small estuarine teleost inhabiting coastal embayments along much of the eastern seaboard of the US. We have been investigating an association between chemical contaminant exposure and adverse health impacts in this small cyprinodontid fi...

  7. Investigation of the structure of the electromagnetic field and related phenomena, generated by the active satellite

    NASA Technical Reports Server (NTRS)

    Alpert, Yakov L.

    1992-01-01

    A short review is given for the general frequency and angle distribution of the electric field radiated by an electric dipole E = E(sub 0)cos(omega)t, in a magnetoplasma. Detailed results of numerical calculations of (E) were made in the Very Low Frequency (VLF) and the Low Frequency (LF) bands 0.02f(sub b) is less than or equal to F is less than or equal to 0.5f(sub b) (F is approximately (4-500) kHz) in the ionosphere and magnetosphere in the altitude region Z = (800-6000) km; f(sub b) is the electron gyro-frequency of the plasmas in the discussed region f(sub b) is approximately equal to (1.1 to 0.2) MHz. The amplitudes of the electric field have large maxima in four regions: close to the direction of the Earth's magnetic field line (B(sub 0)), it is the so called Axis field (E(sub 0)) and in the Storey (E(sub St)), Reversed Storey (E(sub RevSt)), and Resonance (E(sub Res)) Cones. The maximal values of E(sub 0), E(sub Res), and E(sub RevSt) are very pronounced close to the low hybrid frequency, F approximately F(sub L). The flux of the electric field is concentrated in very narrow regions, the apex angles of the cones delta(beta) is approximately equal to (0.1 - 1) degree. The enhancement and focusing of the electric field is growing up, especially quickly at Z greater than 800 km. At Z is greater than 1000 up to 6000 km, the relative value of (E), in comparison with its value at Z = 800 km is about (10(exp 2) to 10(exp 4)) times larger. Thus, the flux of VLF and LF electromagnetic waves in the Earth magnetoplasma produces and is guided by very narrow pencil beams, similar, let us say, to laser beams.

  8. Mycobacterium tuberculosis EIS gene inhibits macrophage autophagy through up-regulation of IL-10 by increasing the acetylation of histone H3.

    PubMed

    Duan, Liang; Yi, Min; Chen, Juan; Li, Shengjin; Chen, Weixian

    2016-05-13

    Autophagy plays a crucial role in the progress of Mycobacterium tuberculosis (MTB) infection. Recently, MTB enhanced intracellular survival (EIS) protein was reported to be secreted from MTB cells and linked to the inhibition of autophagy and the intracellular persistence of the pathogen. Here, we investigated the mechanism of EIS-mediated inhibition of autophagy in a human phorbol myristate acetate (PMA)-treated THP-1 cell line as well as in murine macrophages. We confirmed that the presence of EIS led to the inhibition of rapamycin (Rapa)-induced autophagy, while IL-10 gene expression was increased and Akt/mTOR/p70S6K pathway was activated during the process. IL-10 gene silencing led to a significant recovery of EIS-mediated autophagy suppression and decreased activity of the Akt/mTOR/p70S6K pathway. IL-10 promoter activity was unaffected by EIS. Remarkably, EIS increased the acetylation level of histone H3 (Ac-H3), which binds to the SP1 and STAT3 region of the human IL-10 gene promoter sequence. Thus, EIS protein possibly increased IL-10 expression through the regulation of Ac-H3 of its promoter. Our data demonstrated that one possible mechanism of the MTB evasion of autophagy is that the EIS protein up-regulates IL-10 via Ac-H3 and thus activates Akt/mTOR/p70S6K pathway. PMID:27079235

  9. Investigation of Field Emitter Array Vacuum Microtriodes for Space Electronics Applications

    NASA Technical Reports Server (NTRS)

    Smith, Mark A.; Kapoor, Vik J.

    1997-01-01

    Research into processing techniques for fabrication of vacuum microelectronic devices has been carried out, with special emphasis being given to the growth of silicon dioxide thin films. Oxide films ranging from 30 nm to approximately 2 micrometers have been grown on single crystal silicon wafers. Metal-oxide-semiconductor capacitor test structures have been made from some of these oxide films, and current-versus-voltage plots for these structures have been measured. It has been observed that the rate of applied voltage across the oxide films produces marked differences in measured leakage current. Breakdown fields across two of the thinnest oxide films have been measured and are comparable with highest values reported in literature. Several silicon wafers were processed to make field- emitter array diodes, and were delivered to collaborators at NASA-Lewis Research Center for final fabrication steps and testing.

  10. Hydrogeology and soil gas at J-field, Aberdeen Proving Ground, Maryland. Water resources investigations

    SciTech Connect

    Hughes, W.B.

    1993-12-31

    Disposal of chemical warfare agents, munitions, and industrial chemicals in J-Field, Aberdeen Proving Ground, Maryland, has contaminated soil, ground water, and surface water. Seven exploratory borings and 38 observation wells were drilled to define the hydrogeologic framework at J-Field and to determine the type, extent, and movement of ground-water contaminants. Water in the surficial aquifer flows laterally from topographically high areas to discharge areas in marshes and streams, and vertically to the underlying confined aquifer. Analyses of soil-gas samples indicated high relative-flux values of chlorinated solvents, phthalates, and hydrocarbons at the toxic-materials disposal area, white-phosphorus disposal area, and riot-control-agent disposal area.

  11. Numerical investigation and optimization on mixing enhancement factors in supersonic jet-to-crossflow flow fields

    NASA Astrophysics Data System (ADS)

    Yan, Li; Huang, Wei; Li, Hao; Zhang, Tian-tian

    2016-10-01

    Sufficient mixing between the supersonic airstream and the injectant is critical for the design of scramjet engines. The information in the two-dimensional supersonic jet-to-crossflow flow field has been explored numerically and theoretically, and the numerical approach has been validated against the available experimental data in the open literature. The obtained results show that the extreme difference analysis approach can obtain deeper information than the variance analysis method, and the optimal strategy can be generated by the extreme difference analysis approach. The jet-to-crossflow pressure ratio is the most important influencing factor for the supersonic jet-to-crossflow flow field, following is the injection angle, and all the design variables have no remarkable impact on the separation length and the height of Mach disk in the range considered in the current study.

  12. MFE/Magnolia - A joint CNES/NASA mission for the earth magnetic field investigation

    NASA Technical Reports Server (NTRS)

    Runavot, Josette; Ousley, Gilbert W.

    1988-01-01

    The joint phase B study in the CNES/NASA MFE/Magnolia mission to study the earth's magnetic field are reported. The scientific objectives are summarized and the respective responsibilities of NASA and CNES are outlined. The MFE/Magnolia structure and power systems, mass and power budgets, attitude control system, instrument platform and boom, tape recorders, rf system, propellant system, and scientific instruments are described.

  13. Preliminary results of numerical investigations at SECARB Cranfield, MS field test site

    NASA Astrophysics Data System (ADS)

    Choi, J.; Nicot, J.; Meckel, T. A.; Chang, K.; Hovorka, S. D.

    2008-12-01

    The Southeast Regional Carbon Sequestration partnership sponsored by DOE has chosen the Cranfield, MS field as a test site for its Phase II experiment. It will provide information on CO2 storage in oil and gas fields, in particular on storage permanence, storage capacity, and pressure buildup as well as on sweep efficiency. The 10,300 ft-deep reservoir produced 38 MMbbl of oil and 677 MMSCF of gas from the 1940's to the 1960's and is being retrofitted by Denbury Resources for tertiary recovery. CO2 injection started in July 2008 with a scheduled ramp up during the next few months. The Cranfield modeling team selected the northern section of the field for development of a numerical model using the multiphase-flow, compositional CMG-GEM software. Model structure was determined through interpretation of logs from old and recently-drilled wells and geophysical data. PETREL was used to upscale and export permeability and porosity data to the GEM model. Preliminary sensitivity analyses determined that relative permeability parameters and oil composition had the largest impact on CO2 behavior. The first modeling step consisted in history-matching the total oil, gas, and water production out of the reservoir starting from its natural state to determine the approximate current conditions of the reservoir. The fact that pressure recovered in the 40 year interval since end of initial production helps in constraining boundary conditions. In a second step, the modeling focused on understanding pressure evolution and CO2 transport in the reservoir. The presentation will introduce preliminary results of the simulations and confirm/explain discrepancies with field measurements.

  14. The erosion of carbonate stone by acid rain: Laboratory and field investigations

    USGS Publications Warehouse

    Baedecker, P.A.; Reddy, M.M.

    1993-01-01

    One of the goals of research on the effects of acidic deposition on carbonate stone surfaces is to define the incremental impact of acidic deposition relative to natural weathering processes on the rate of carbonate stone erosion. If rain that impacts carbonate stone surfaces is resident on the surface long enough to approach chemical equilibrium, the incremental effect of hydrogen ion is expected to be small (i.e., 6% for a rain of pH 4.0). Under nonequilibrium (i.e., high flow rate) conditions, kinetic considerations suggest that the incremental effect of hydrogen ion deposition could be quite significant. Field run-off experiments involving the chemical analysis of rain collected from inclined stone slabs have been used to evaluate stone dissolution processes under ambient conditions of wet and dry deposition of acidic species. The stoichiometry of the reaction of stone with hydrogen ion is difficult to define from the field data due to scatter in the data attributed to hydrodynamic effects. Laboratory run-off experiments show that the stoichiometry is best defined by a reaction with H+ in which CO2 is released from the system. The baseline effect caused by water in equilibrium with atmospheric CO2 is identical in the field and in laboratory simulation. The experiments show that the solutions are close enough to equilibrium for the incremental effect of hydrogen ion to be minor (i.e., 24% for marble for a rain of pH 4.0) relative to dissolution due to water and carbonic acid reactions. Stone erosion rates based on physical measurement are approximately double the recession rates that are due to dissolution (estimated from the observed calcium content of the run-off solutions). The difference may reflect the loss of granular material not included in recession estimates based on the run-off data. Neither the field nor the laboratory run-off experiments indicate a pH dependence for the grain-removal process.

  15. Rover-Based Instrumentation and Scientific Investigations During the 2012 Analog Field Test on Mauna Kea Volcano, Hawaii

    NASA Technical Reports Server (NTRS)

    Graham, L. D.; Graff, T. G.

    2013-01-01

    Rover-based 2012 Moon and Mars Analog Mission Activities (MMAMA) were recently completed on Mauna Kea Volcano, Hawaii. Scientific investigations, scientific input, and operational constraints were tested in the context of existing project and protocols for the field activities designed to help NASA achieve the Vision for Space Exploration [1]. Several investigations were conducted by the rover mounted instruments to determine key geophysical and geochemical properties of the site, as well as capture the geological context of the area and the samples investigated. The rover traverse and associated science investigations were conducted over a three day period on the southeast flank of the Mauna Kea Volcano, Hawaii. The test area was at an elevation of 11,500 feet and is known as "Apollo Valley" (Fig. 1). Here we report the integration and operation of the rover-mounted instruments, as well as the scientific investigations that were conducted.

  16. Investigation of the interfacial tension of complex coacervates using field-theoretic simulations

    NASA Astrophysics Data System (ADS)

    Riggleman, Robert A.; Kumar, Rajeev; Fredrickson, Glenn H.

    2012-01-01

    Complex coacervation, a liquid-liquid phase separation that occurs when two oppositely charged polyelectrolytes are mixed in a solution, has the potential to be exploited for many emerging applications including wet adhesives and drug delivery vehicles. The ultra-low interfacial tension of coacervate systems against water is critical for such applications, and it would be advantageous if molecular models could be used to characterize how various system properties (e.g., salt concentration) affect the interfacial tension. In this article we use field-theoretic simulations to characterize the interfacial tension between a complex coacervate and its supernatant. After demonstrating that our model is free of ultraviolet divergences (calculated properties converge as the collocation grid is refined), we develop two methods for calculating the interfacial tension from field-theoretic simulations. One method relies on the mechanical interpretation of the interfacial tension as the interfacial pressure, and the second method estimates the change in free energy as the area between the two phases is changed. These are the first calculations of the interfacial tension from full field-theoretic simulation of which we are aware, and both the magnitude and scaling behaviors of our calculated interfacial tension agree with recent experiments.

  17. Investigation of the interfacial tension of complex coacervates using field-theoretic simulations

    SciTech Connect

    Kumar, Rajeev

    2012-01-01

    Complex coacervation, a liquid-liquid phase separation that occurs when two oppositely charged polyelectrolytes are mixed in a solution, has the potential to be exploited for many emerging applications including wet adhesives and drug delivery vehicles. The ultra-low interfacial tension of coacervate systems against water is critical for such applications, and it would be advantageous if molecular models could be used to characterize how various system properties (e.g., salt concentration) affect the interfacial tension. In this article we use field-theoretic simulations to characterize the interfacial tension between a complex coacervate and its supernatant. After demonstrating that our model is free of ultraviolet divergences (calculated properties converge as the collocation grid is refined), we develop two methods for calculating the interfacial tension from field-theoretic simulations. One method relies on the mechanical interpretation of the interfacial tension as the interfacial pressure, and the second method estimates the change in free energy as the area between the two phases is changed. These are the first calculations of the interfacial tension from full field theoretic simulation of which we are aware, and both the magnitude and scaling behaviors of our calculated interfacial tension agree with recent experiments.

  18. Control of electric field in 4H-SiC UMOSFET: Physical investigation

    NASA Astrophysics Data System (ADS)

    Jozi, Mohammad; Orouji, Ali A.; Fathipour, Morteza

    2016-09-01

    In this paper, we show how breakdown voltage (VBR) and the specific on-resistance (Ron) can be improved simply by controlling of the electric field in a power 4H-SiC UMOSFET. The key idea in this work is increasing the uniformity of the electric field profile by inserting a region with a graded doping density (GD region) in the drift region. The doping density of inserted region is decreased gradually from top to bottom, called Graded Doping Region UMOSFET (GDR-UMOSFET). The GD region results in a more uniform electric field profile in comparison with a conventional UMOSFET (C-UMOSFET) and a UMOSFET with an accumulation layer (AL-UMOSFET). This in turn improves breakdown voltage. Using two-dimensional two-carrier simulation, we demonstrate that the GDR-UMOSFET shows higher breakdown voltage and lower specific on-resistance. Our results show the maximum breakdown voltage of 1340 V is obtained for the GDR-UMOSFET with 10 μm drift region length, while at the same drift region length and approximated doping density, the maximum breakdown voltages of the C-UMOSFET and the AL-UMOSFET structures are 534 V and 703 V, respectively.

  19. Field and laboratory investigations into the persistence of glutaraldehyde and acrolein in natural gas storage operations

    SciTech Connect

    Morris, E.A. III; Pope, D.H.

    1994-12-31

    The persistence of biocides formulated in glutaraldehyde and acrolein were tested in different produced water environments using a calorimetric general aldehyde detection method based on metaphenylenediamine. The objective of Phase 1 (laboratory study) was to characterize the persistence of acrolein and glutaraldehyde in water samples representative of the environments to which the biocides has been applied. To validate the test results, some duplicate samples were analyzed using gas chromatographic (GC) methods and repeat trials were done on certain tests. The objective of Phase 2 (field assessment) was to compare the Phase 1 results on formation waters to actual field data. At the study site, monitoring of biocide residuals had been done by the chemical vendor at all treated wells. The data provided information on glutaraldehyde and acrolein residuals for one gas withdrawal (winter) season. The data were compiled so that persistence/degradation graphs could be constructed for the biocides in each formation. These field data were then compared to the Phase 1 results. The persistence of the biocides in each environment tested was shown to be unique, but repeatable.

  20. Experimental Investigation of Electron Cloud Containment in a Nonuniform Magnetic Field

    NASA Technical Reports Server (NTRS)

    Eninger, J. E.

    1974-01-01

    Dense clouds of electrons were generated and studied in an axisymmetric, nonuniform magnetic field created by a short solenoid. The operation of the experiment was similar to that of a low-pressure (approximately 0.000001 Torr) magnetron discharge. Discharge current characteristics are presented as a function of pressure, magnetic field strength, voltage, and cathode end-plate location. The rotation of the electron cloud is determined from the frequency of diocotron waves. In the space charge saturated regime of operation, the cloud is found to rotate as a solid body with frequency close to V sub a/phi sub a where V sub a is the anode voltage and phi suba is the total magnetic flux. This result indicates that, in regions where electrons are present, the magnetic field lines are electrostatic equipotentials (E bar, B bar = 0). Equilibrium electron density distributions suggested by this conditions are integrated with respect to total ionizing power and are found consistent with measured discharge currents.

  1. Theoretical investigation of single dopant in core/shell nanocrystal in magnetic field

    NASA Astrophysics Data System (ADS)

    Talbi, A.; Feddi, E.; Oukerroum, A.; Assaid, E.; Dujardin, F.; Addou, M.

    2015-09-01

    The control of single dopant or "solitary dopant" in semiconductors constitute a challenge to achieve new range of tunable optoelectronic devices. Knowing that the properties of doped monocrystals are very sensitive to different external perturbations, the aim of this study is to understand the effect of a magnetic field on the ground state energy of an off-center ionized donor in a core/shell quantum dot (CSQD). The binding energies with and without an applied magnetic field are determined by the Ritz variational method taking into account the electron-impurity correlation in the trial wave function deduced from the second-order perturbation. It has been found that the external magnetic field affects strongly the binding energy, and its effect varies as a function of the core radius and the shell thickness. We have shown the existence of a threshold ratio (a / b) crit which represents the limit between the tridimensional and the spherical surface confinement. In addition our analysis demonstrates the important influence of the position of ionized donor in the shell material.

  2. The investigation of active Martian dune fields using very high resolution photogrammetric measurements

    NASA Astrophysics Data System (ADS)

    Kim, Jungrack; Kim, Younghwi; Park, Minseong

    2016-10-01

    At the present time, arguments continue regarding the migration speeds of Martian dune fields and their correlation with atmospheric circulation. However, precisely measuring the spatial translation of Martian dunes has succeeded only a very few times—for example, in the Nili Patera study (Bridges et al. 2012) using change-detection algorithms and orbital imagery. Therefore, in this study, we developed a generic procedure to precisely measure the migration of dune fields with recently introduced 25-cm resolution orbital imagery specifically using a high-accuracy photogrammetric processor. The processor was designed to trace estimated dune migration, albeit slight, over the Martian surface by 1) the introduction of very high resolution ortho images and stereo analysis based on hierarchical geodetic control for better initial point settings; 2) positioning error removal throughout the sensor model refinement with a non-rigorous bundle block adjustment, which makes possible the co-alignment of all images in a time series; and 3) improved sub-pixel co-registration algorithms using optical flow with a refinement stage conducted on a pyramidal grid processor and a blunder classifier. Moreover, volumetric changes of Martian dunes were additionally traced by means of stereo analysis and photoclinometry. The established algorithms have been tested using high-resolution HIRISE time-series images over several Martian dune fields. Dune migrations were iteratively processed both spatially and volumetrically, and the results were integrated to be compared to the Martian climate model. Migrations over well-known crater dune fields appeared to be almost static for the considerable temporal periods and were weakly correlated with wind directions estimated by the Mars Climate Database (Millour et al. 2015). As a result, a number of measurements over dune fields in the Mars Global Dune Database (Hayward et al. 2014) covering polar areas and mid-latitude will be demonstrated

  3. Overview of NASA Finesse (Field Investigations to Enable Solar System Science and Exploration) Science and Exploration Project

    NASA Technical Reports Server (NTRS)

    Heldmann, J. L.; Lim, D.S.S.; Hughes, S.; Nawotniak, S. Kobs; Garry, B.; Sears, D.; Neish, C.; Osinski, G. R.; Hodges, K.; Downs, M.; Busto, J.; Cohen, B.; Caldwell, B.; Jones, A. J. P.; Johnson, S.; Kobayashi, L.; Colaprete, A.

    2016-01-01

    NASA's FINESSE (Field Investigations to Enable Solar System Science and Exploration) project was selected as a research team by NASA's Solar System Exploration Research Virtual Institute (SSERVI). SSERVI is a joint Institute supported by NASA's Science Mission Directorate (SMD) and Human Exploration and Operations Mission Directorate (HEOMD). As such, FINESSE is focused on a science and exploration field-based research program to generate strategic knowledge in preparation for human and robotic exploration of other planetary bodies including our Moon, Mars moons Phobos and Deimos, and near-Earth asteroids. FINESSE embodies the philosophy that "science enables exploration and exploration enables science".

  4. Investigation of MAGSAT and TRIAD magnetometer data to provide corrective information on high-latitude external fields

    NASA Technical Reports Server (NTRS)

    Potemra, T. A. (Principal Investigator)

    1981-01-01

    The compilation of a catalog of the MAGSAT-observed high altitude disturbances is discussed and an example of contents and format is given. The graphs allow the investigation of Birkeland current signatures which are superimposed upon the main geomagnetic field. An example of a display of the MAGSAT orbital tracks in a polar geomagnetic coordinate system with the locations, flow directions, and intensities of field aligned currents shown in color is also given. The display was generated using an interactive color graphics terminal.

  5. Experimental investigation of a Ka band high power millimeter wave generator operated at low guiding magnetic field

    SciTech Connect

    Zhu Jun; Shu Ting; Zhang Jun; Li Guolin; Zhang Zehai; Fan Yuwei

    2011-05-15

    An overmoded slow wave type Ka band generator is investigated experimentally to produce high power millimeter waves in this paper. The experiments were carried out at the TORCH-01 accelerator. The produced microwave frequency was measured by dispersive line method, and the power was estimated by integrating over the radiation pattern at far field. With relatively low guiding magnetic field of 0.8 T and diode voltage and beam current of 590 kV and 5.2 kA, respectively, a 33.56 GHz millimeter wave with an output power of 320 MW was generated, and the microwave mode was quasi-TM{sub 01} mode.

  6. Field Investigations of Lactate-Stimulated Bioreduction of Cr(VI) to Cr(III) at Hanford 100H

    SciTech Connect

    T.C. Hazen; B. Faybishenko; J. Wan; T.Tokunaga; S. Hubbard; M. Conrad; S. Borglin; D. Joyner; S. Koenigsberg; A. Willet

    2004-03-17

    The objective of this report is to perform field investigations to assess the potential for immobilizing and detoxifying chromium contaminated soils and groundwater using bioremediation at Site 100H at Hanford. Specific goals are: (1) Designing a field test to measure the effect of lactate biostimulation on microbial community activity, redox gradients, transport limitations, and other reducing agents in comparison with our previous NABIR laboratory work. (2) Establishing the rates and conditions that may cause are oxidation of Cr(III) to Cr(VI) following biostimulation. (3) Providing design criteria for full-scale deployment on in situ Cr(VI) bioreduction via lactate stimulation for use at DOE sites.

  7. Investigating runoff generation on compacted subsoil using a field rainfall simulator

    NASA Astrophysics Data System (ADS)

    Strouhal, Luděk; Zumr, David; Kavka, Petr

    2016-04-01

    Identifying and understanding the dominant runoff processes is vital for both hydrologic and soil erosion research and modelling. Although lateral subsurface stormflow and consecutive topsoil saturation are well known to be rather frequent, majority of the models still favour Hortonian runoff. Such results, especially on sloping arable land with compacted subsoil, often leads to incorrect conclusions. Within this contribution we present the results of field rainfall simulations at the experimental field in Bykovicky stream catchment and numerical simulations that quantitatively evaluate the effect of the subsurface runoff. At CTU in Prague a field rainfall simulator covering 16 m2 experimental plots has been used for erosion and hydrologic research since 2012. As the compacted subsoil layer was identified during the early experiments, the setup was extended to monitor also the shallow subsurface flow. Eight sprinkling experiments of various rainfall intensities and durations ranging from 23 to 162 mm/hour and 60 to 155 minutes respectively were conducted under various topsoil and vegetation conditions. The subsurface flow, surface runoff and soil moisture in three depths were monitored. While surface runoff did not form at lower intensities, subsurface flow was observed in every simulation and started quickly, in average 20-30 minutes after the start of the rainfall. The subsurface runoff made up a third or more of the total runoff, depending on rainfall intensity and duration. Selected scenarios were numerically modelled. Both experimental and model results support the conceptual model of runoff formation on this particular site and suggest the need of considering the lateral flow also on similar locations. This research has been supported by the research grants GP13-20388P, SGS14/180/OHK1/3T/11 and QJ1520265.

  8. Geologic and geophysical investigations of the Zuni-Bandera volcanic field, New Mexico

    SciTech Connect

    Ander, M.E.; Heiken, G.; Eichelberger, J.; Laughlin, A.W.; Huestis, S.

    1981-05-01

    A positive, northeast-trending gravity anomaly, 90 km long and 30 km wide, extends southwest from the Zuni uplift, New Mexico. The Zuni-Bandera volcanic field, an alignment of 74 basaltic vents, is parallel to the eastern edge of the anomaly. Lavas display a bimodal distribution of tholeiitic and alkalic compositions, and were erupted over a period from 4 Myr to present. A residual gravity profile taken perpendicular to the major axis of the anomaly was analyzed using linear programming and ideal body theory to obtain bounds on the density contrast, depth, and minimum thickness of the gravity body. Two-dimensionality was assumed. The limiting case where the anomalous body reaches the surface gives 0.1 g/cm/sup 3/ as the greatest lower bound on the maximum density contrast. If 0.4 g/cm/sup 3/ is taken as the geologically reasonable upper limit on the maximum density contrast, the least upper bound on the depth of burial is 3.5 km and minimum thickness is 2 km. A shallow mafic intrusion, emplaced sometime before Laramide deformation, is proposed to account for the positive gravity anomaly. Analysis of a magnetotelluric survey suggests that the intrusion is not due to recent basaltic magma associated with the Zuni-Bandera volcanic field. This large basement structure has controlled the development of the volcanic field; vent orientations have changed somewhat through time, but the trend of the volcanic chain followed the edge of the basement structure. It has also exhibited some control on deformation of the sedimentary section.

  9. Flow-Field Investigation of Gear-Flap Interaction on a Gulfstream Aircraft Model

    NASA Technical Reports Server (NTRS)

    Yao, Chung-Sheng; Jenkins, Luther N.; Bartram, Scott M.; Harris, Jerome; Khorrami, Mehdi R.; Mace, W. Derry

    2014-01-01

    Off-surface flow measurements of a high-fidelity 18% scale Gulfstream aircraft model in landing configuration with the main landing gear deployed are presented. Particle Image Velocimetry (PIV) and Laser Velocimetry (LV) were used to measure instantaneous velocities in the immediate vicinity of the main landing gear and its wake and near the inboard tip of the flap. These measurements were made during the third entry of a series of tests conducted in the NASA Langley Research Center (LaRC) 14- by 22-Foot Subsonic Tunnel (14 x 22) to obtain a comprehensive set of aeroacoustic measurements consisting of both aerodynamic and acoustic data. The majority of the off-body measurements were obtained at a freestream Mach number of 0.2, angle of attack of 3 degrees, and flap deflection angle of 39 degrees with the landing gear on. A limited amount of data was acquired with the landing gear off. LV was used to measure the velocity field in two planes upstream of the landing gear and to measure two velocity profiles in the landing gear wake. Stereo and 2-D PIV were used to measure the velocity field over a region extending from upstream of the landing gear to downstream of the flap trailing edge. Using a special traverse system installed under the tunnel floor, the velocity field was measured at 92 locations to obtain a comprehensive picture of the pertinent flow features and characteristics. The results clearly show distinct structures in the wake that can be associated with specific components on the landing gear and give insight into how the wake is entrained by the vortex at the inboard tip of the flap.

  10. Investigation of the 3-D actinic flux field in mountainous terrain

    NASA Astrophysics Data System (ADS)

    Wagner, J. E.; Angelini, F.; Blumthaler, M.; Fitzka, M.; Gobbi, G. P.; Kift, R.; Kreuter, A.; Rieder, H. E.; Simic, S.; Webb, A.; Weihs, P.

    2011-11-01

    During three field campaigns spectral actinic flux was measured from 290-500 nm under clear sky conditions in Alpine terrain and the associated O3- and NO2-photolysis frequencies were calculated and the measurement products were then compared with 1-D- and 3-D-model calculations. To do this 3-D-radiative transfer model was adapted for actinic flux calculations in mountainous terrain and the maps of the actinic flux field at the surface, calculated with the 3-D-radiative transfer model, are given. The differences between the 3-D- and 1-D-model results for selected days during the campaigns are shown, together with the ratios of the modeled actinic flux values to the measurements. In many cases the 1-D-model overestimates actinic flux by more than the measurement uncertainty of 10%. The results of using a 3-D-model generally show significantly lower values, and can underestimate the actinic flux by up to 30%. This case study attempts to quantify the impact of snow cover in combination with topography on spectral actinic flux. The impact of snow cover on the actinic flux was ~ 25% in narrow snow covered valleys, but for snow free areas there were no significant changes due snow cover in the surrounding area and it is found that the effect snow-cover at distances over 5 km from the point of interest was below 5%. Overall the 3-D-model can calculate actinic flux to the same accuracy as the 1-D-model for single points, but gives a much more realistic view of the surface actinic flux field in mountains as topography and obstruction of the horizon are taken into account.

  11. Integrated field and numerical modeling investigation of crustal flow mechanisms and trajectories in migmatite domes

    NASA Astrophysics Data System (ADS)

    Whitney, Donna; Teyssier, Christian; Rey, Patrice

    2016-04-01

    Integrated field-based and modeling studies provide information about the driving mechanisms and internal dynamics of migmatite domes, which are important structures for understanding the rheology of the lithosphere in orogens. Dome-forming processes range from extension (isostasy) driven flow to density (buoyancy) driven systems. Vertical flow (up or down) is on the scale of tens of km. End-member buoyancy-driven domes are typically Archean (e.g., Pilbara, Australia). Extension-driven systems include the migmatite domes in metamorphic core complexes of the northern North American Cordillera, as well as some domes in Variscan core complexes. The Entia dome of central Australia is a possible hybrid dome in which extension and density inversion were both involved in dome formation. The Entia is a "double dome", comprised of a steep high-strain zone bordered by high melt-fraction migmatite (subdomes). Field and numerical modeling studies show that these are characteristics of extension-driven domes, which form when flowing deep crust ascends beneath normal faults in the upper crust. Entia dome migmatite shows abundant evidence for extension, in addition to sequences of cascading, cuspate folds (well displayed in amphibolite) that are not present in the carapace of the dome, that do not have a consistent axial planar fabric, and that developed primarily at subsolidus conditions. We propose that these folds developed in mafic layers that had a density contrast with granodioritic migmatite, and that they formed during sinking of a denser layer above the rising migmatite subdomes. Extension-driven flow of partially molten (granodioritic) crust was therefore accompanied by sinking of a dense, mafic, mid-crustal layer, resulting in complex P-T-d paths of different lithologic units within the dome. This scenario is consistent with field and 2D modeling results, which together show how a combination of structural geology, metamorphic petrology, and modeling can illuminate the

  12. Experimental investigations of the role of laser field fluctuations in non-linear optical absorption processes

    SciTech Connect

    Smith, S.J.

    1985-01-01

    In the experimental program described, we deliberately broaden a well-stabilized single mode laser beam by introducing fluctuations to the laser frequency, in order to synthesize laser power spectra for which the fluctuations are well-characterized to all orders in a statistical sense. With this technique we are able to produce single mode laser fields which have nearly Lorentzian power spectra at one limit, essentially Gaussian power spectra at the other limit, and which may be varied continuously between these two limits. 16 refs., 6 figs.

  13. A theoretical investigation of the sound radiation fields associated with a Bellmouth inlet

    NASA Technical Reports Server (NTRS)

    Meyer, W. L.; Zinn, B. T.

    1983-01-01

    Analytical results are obtained by numerical integration of a cylindrically symmetric integral representation of the external solutions of the Helmholtz equation. The accuracy of this method is checked by comparisons of computed results with 'exact' solutions generated by the point source method. In all cases, the average error for the amplitude and phase of the points calculated in the field is found to be less than ten percent. Theoretical studies which model experiments run for the NASA Langely Bellmouth inlet configuration are presented and comparisons are made with the experimental results. In all cases very good agreement is obtained between the experimental and theoretically calculated values.

  14. A theoretical investigation of the sound radiation fields associated with a Bellmouth inlet

    NASA Astrophysics Data System (ADS)

    Meyer, W. L.; Zinn, B. T.

    1983-04-01

    Analytical results are obtained by numerical integration of a cylindrically symmetric integral representation of the external solutions of the Helmholtz equation. The accuracy of this method is checked by comparisons of computed results with 'exact' solutions generated by the point source method. In all cases, the average error for the amplitude and phase of the points calculated in the field is found to be less than ten percent. Theoretical studies which model experiments run for the NASA Langely Bellmouth inlet configuration are presented and comparisons are made with the experimental results. In all cases very good agreement is obtained between the experimental and theoretically calculated values.

  15. Laboratory and field investigations of wave attenuation by live marsh vegetation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wave attenuation by live marsh vegetation was investigated experimentally in this study. Laboratory experiments were conducted in a 20.6 m long, 0.69 m wide and 1.22 m deep wave flume under regular and random waves. The vegetation species used are Spartina alterniflora and Juncus roemerianus, which ...

  16. Development of KSC program for investigating and generating field failure rates. Volume 1: Summary and overview

    NASA Technical Reports Server (NTRS)

    Bean, E. E.; Bloomquist, C. E.

    1972-01-01

    A summary of the KSC program for investigating the reliability aspects of the ground support activities is presented. An analysis of unsatisfactory condition reports (RC), and the generation of reliability assessment of components based on the URC are discussed along with the design considerations for attaining reliable real time hardware/software configurations.

  17. Drifting Continents and Magnetic Fields. Crustal Evolution Education Project. Teacher's Guide [and] Student Investigation.

    ERIC Educational Resources Information Center

    Stoever, Edward C., Jr.

    Crustal Evolution Education Project (CEEP) modules were designed to: (1) provide students with the methods and results of continuing investigations into the composition, history, and processes of the earth's crust and the application of this knowledge to man's activities and (2) to be used by teachers with little or no previous background in the…

  18. Going Underground: A Field Investigation and Lab Activity on Karst Topography and Water Systems

    ERIC Educational Resources Information Center

    O'Dell, Gary; Gonzalez-Espada, Wilson

    2011-01-01

    Students learn science best with activities that mirror the way scientists work. This article describes how geologists investigate groundwater flow systems in areas of karst topography--geologic formations shaped by dissolving bedrock--and provides a way for students to replicate this research. Students also use electric current to model water…

  19. 77 FR 16850 - Notice of Reclassification of One Investigative Field Office to Regional Office: Denver, CO

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-22

    ... investigative resources, to promote more efficient responses to HUD or Congressional requests involving critical... other HUD programs; and 3. Improve management control and effectiveness, and reduce travel costs of management by reducing region size. 4. Return to the traditional Regional alignment of HUD OIG...

  20. Electric-field distribution in Au-semi-insulating GaAs contact investigated by positron-lifetime technique

    NASA Astrophysics Data System (ADS)

    Ling, C. C.; Shek, Y. F.; Huang, A. P.; Fung, S.; Beling, C. D.

    1999-02-01

    Positron-lifetime spectroscopy has been used to investigate the electric-field distribution occurring at the Au-semi-insulating GaAs interface. Positrons implanted from a 22Na source and drifted back to the interface are detected through their characteristic lifetime at interface traps. The relative intensity of this fraction of interface-trapped positrons reveals that the field strength in the depletion region saturates at applied biases above 50 V, an observation that cannot be reconciled with a simple depletion approximation model. The data, are, however, shown to be fully consistent with recent direct electric-field measurements and the theoretical model proposed by McGregor et al. [J. Appl. Phys. 75, 7910 (1994)] of an enhanced EL2+ electron-capture cross section above a critical electric field that causes a dramatic reduction of the depletion region's net charge density. Two theoretically derived electric field profiles, together with an experimentally based profile, are used to estimate a positron mobility of ~95+/-35 cm2 V-1 s-1 under the saturation field. This value is higher than previous experiments would suggest, and reasons for this effect are discussed.

  1. Gating capacitive field-effect sensors by the charge of nanoparticle/molecule hybrids

    NASA Astrophysics Data System (ADS)

    Poghossian, Arshak; Bäcker, Matthias; Mayer, Dirk; Schöning, Michael J.

    2014-12-01

    The semiconductor field-effect platform is a powerful tool for chemical and biological sensing with direct electrical readout. In this work, the field-effect capacitive electrolyte-insulator-semiconductor (EIS) structure - the simplest field-effect (bio-)chemical sensor - modified with citrate-capped gold nanoparticles (AuNPs) has been applied for a label-free electrostatic detection of charged molecules by their intrinsic molecular charge. The EIS sensor detects the charge changes in AuNP/molecule inorganic/organic hybrids induced by the molecular adsorption or binding events. The feasibility of the proposed detection scheme has been exemplarily demonstrated by realizing capacitive EIS sensors consisting of an Al-p-Si-SiO2-silane-AuNP structure for the label-free detection of positively charged cytochrome c and poly-d-lysine molecules as well as for monitoring the layer-by-layer formation of polyelectrolyte multilayers of poly(allylamine hydrochloride)/poly(sodium 4-styrene sulfonate), representing typical model examples of detecting small proteins and macromolecules and the consecutive adsorption of positively/negatively charged polyelectrolytes, respectively. For comparison, EIS sensors without AuNPs have been investigated, too. The adsorption of molecules on the surface of AuNPs has been verified via the X-ray photoelectron spectroscopy method. In addition, a theoretical model of the functioning of the capacitive field-effect EIS sensor functionalized with AuNP/charged-molecule hybrids has been discussed.The semiconductor field-effect platform is a powerful tool for chemical and biological sensing with direct electrical readout. In this work, the field-effect capacitive electrolyte-insulator-semiconductor (EIS) structure - the simplest field-effect (bio-)chemical sensor - modified with citrate-capped gold nanoparticles (AuNPs) has been applied for a label-free electrostatic detection of charged molecules by their intrinsic molecular charge. The EIS sensor

  2. Investigating yellow dung fly body size evolution in the field: Response to climate change?

    PubMed

    Blanckenhorn, Wolf U

    2015-08-01

    Uncovering genetic responses to selection in wild populations typically requires tracking individuals over generations and use of animal models. Our group monitored the body size of one Swiss Yellow Dung Fly (Scathophaga stercoraria; Diptera: Scathophagidae) field population over 15 years, including intermittent common-garden rearing in the laboratory to assess body size with minimized environmental and maximized genetic variation. Contrary to expectations based on repeated heritability and phenotypic selection assessments over the years (reported elsewhere), field body sizes declined by >10% and common-garden laboratory sizes by >5% from 1993 to 2009. Our results confirm the temperature-size rule (smaller when warmer) and, albeit entirely correlational, could be mediated by climate change, as over this period mean temperature at the site increased by 0.5°C, although alternative systematic environmental changes cannot be entirely excluded. Monitoring genetic responses to selection in wild invertebrate populations is thus possible, though indirect, and wild populations may evolve in directions not consistent with strongly positive directional selection favoring large body size. PMID:26174483

  3. Biosensing with microbial fuel cells and artificial neural networks: laboratory and field investigations.

    PubMed

    Feng, Yinghua; Harper, Willie F

    2013-11-30

    In this study microbial fuel cell-based biosensing was integrated with artificial neural networks (ANNs) in laboratory and field testing of water samples. Inoculation revealed two types of anode-respiring bacteria (ARB) induction profiles, a relatively slow gradual profile and a faster profile that was preceded by a significant lag time. During laboratory testing, the MFCs generated well-organized normally distributed profiles but during field experiments the peaks had irregular shapes and were smaller in magnitude. Generally, the COD concentration correlated better with peak area than with peak height. The ANN predicted the COD concentration (R(2) = 0.99) with one layer of hidden neurons and for concentrations as low as 5 mg acetate-COD/L. Adding 50 mM of 2-bromoethanesulfonate amplified the electrical signals when glucose was the substrate. This report is the first to identify two types of ARB induction profiles and to demonstrate the power of ANNs for interpreting a wide variety of electrical response peaks.

  4. Damage sensitivity investigations of EMI technique on different materials through coupled field analysis

    NASA Astrophysics Data System (ADS)

    Joshi, Bhrigu; Adhikari, Sailesh; Bhalla, Suresh

    2016-04-01

    This paper presents a comparative study through the piezoelectric coupled field analysis mode of finite element method (FEM) on detection of damages of varying magnitude, encompassing three different types of structural materials, using piezo impedance transducers. An aluminum block, a concrete block and a steel block of dimensions 48×48×10 mm were modelled in finite element software ANSYS. A PZT patch of 10×10×0.3 mm was also included in the model as surface bonded on the block. Coupled field analysis (CFA) was performed to obtain the admittance signatures of the piezo sensor in the frequency range of 0-250 kHz. The root mean square deviation (RMSD) index was employed to quantify the degree of variation of the signatures. It was found that concrete exhibited deviation in the signatures only with the change of damping values. However, the other two materials showed variation in the signatures even with changes in density and elasticity values in a small portion of the specimen. The comparative study shows that the PZT patches are more sensitive to damage detection in materials with low damping and the sensitivity typically decreases with increase in the damping.

  5. Investigation of Magnetic Field Geometry in Exploding Wire Z-Pinches via Proton Deflectometry

    NASA Astrophysics Data System (ADS)

    Mariscal, Derek; Beg, Farhat; Wei, Mingsheng; Chittenden, Jeremy; Presura, Radu

    2012-10-01

    It is often difficult to determine the configuration of B-fields within z-pinch plasma systems. Typical laser probing diagnostics are limited by the critical density, and electrical diagnostics are prone to failure as well as perturbation of the system. The use of proton beams launched by high intensity lasers, and the subsequent tracking of their deflected trajectories, will enable access to field measurements in previously inaccessible plasma densities.The experimental testing of this method is performed at the Nevada Test Facility (NTF) using the 10J 0.3ps Leopard laser coupled to the 1.6MA ZEBRA pulsed power generator. MHD simulations of the z-pinch plasmas are performed with the 3D resistive MHD code, GORGON. Protons are then injected and tracked through the plasma using the 3D PIC Large Scale Plasma code in order to produce possible proton image plane data. The first computational demonstration of protons propagating through single wire and x-pinch plasmas, along with comparison to recent experimental data will be presented.

  6. An investigation of in-flight near-field propeller noise generation and transmission

    NASA Astrophysics Data System (ADS)

    Bonneau, H.; Wilford, D. F.; Wood, L. K.

    1985-02-01

    In flight near field propeller noise measurements, made on a General Aviation turboprop aircraft, are reported for a range of propeller operating conditions, and are shown to be well defined and reproducible. Measurements have been made at 8 exterior microphones, 2 located on a wing mounted boom, and 6 embedded in, and flush with the aircraft fuselage. Interior noise levels are also presented. Measured propeller harmonic levels are compared to first principle calculations of near field noise, using a modified version of the Farassat computer program, in which the blade surface pressure is described using the known aerodynamic properties of the blade (NACA 16) airfoil sections. The first few; i.e., the dominant harmonic levels of propeller noise are shown to be well predicted, while higher harmonic levels are underpredicted. The transmission loss between exterior and interior noise levels is shown to be relatively constant for varying propeller operating conditions and at two different locations along the length of the fuselage. Interior noise levels are also shown for the aircraft in gliding flight at various forward velocities, with both engines at idle and propellers feathered. A method of interpolating these measurements is discussed, which allows the interior noise due only to the forward velocity of the aircraft, to be determined. The transmission loss for this component is also discussed. Finally, interior noise levels are presented for a series of ground static tests with engine mounts of various different stiffnessses.

  7. Investigation of the correlation between internal gradients and dephasing effect in inhomogeneous field

    NASA Astrophysics Data System (ADS)

    An, TianLin; Xiao, LiZhi; Li, Xin; Liu, HuaBing; Zhang, ZongFu

    2014-09-01

    Internal magnetic gradient plays a significant role in Nuclear Magnetic Resonance (NMR) measurements of fluid saturated porous media. The quantitative characterization and application of this physical phenomenon could effectively improve the accuracy of NMR measurements and interpretations. In this paper, by using the equivalent magnetic dipole method, the three-dimensional distribution of internal induced magnetic field and its gradients in the randomly packed water saturated glass beads are quantitatively characterized. By simulating the diffusive motion of water molecules in porous media with random walk method, the computational dephasing effects equation related to internal gradients is deduced. Thereafter, the echo amplitudes are obtained and the corresponding T 2- G spectrum is also inverted. For the sake of verifying the simulation results, an experiment is carried out using the Halbach core analyzing system ( B 0=0.18 T, G=2.3 T/m) to detect the induced internal field and gradients. The simulation results indicate the equivalent internal gradient is a distribution of 0.12-0.3 T/m, which matched well with the experimental results.

  8. Studies of dynamo field structure and related effects: DE satellite project guest investigator program

    NASA Technical Reports Server (NTRS)

    Coley, W. R.

    1986-01-01

    The establishment of the latitudinal and longitudinal structure of the low latitude dynamo electric (DE) field was initiated using data primarily from the Unified Abstract (UA) files of the Atmosphere Explorer E (AE-E) satellite. Mass plots of the vertical ion drift values were made for 1977, 1978, and 1979. The average diurnal variation of V sub v within 20 degrees of the dip equator is remarkably similar to that obtained at Jicamarca in the same years. The average meridional ion drift velocity vectors, obtained as a function of latitude by combining the average vertical and horizontal (nearly north-south) ion drift values from the AE-E, showed the expected variations with local time and season based on the well known equatorial fountain effect theory. The average diurnal variation of the vertical drift was found for four different ranges of dip latitude for a northern solstice season. The effect of the transequatorial neutral winds was as evident in this plotting format as in the meridional or fountain effect format. Finally, the average vertical drift velocity V sub v, not the east-west electric field E sub ew, was found to be approximately independent of longitude, as expected from the dynamo theory.

  9. The flow field investigations of no load conditions in axial flow fixed-blade turbine

    NASA Astrophysics Data System (ADS)

    Yang, J.; Gao, L.; Wang, Z. W.; Zhou, X. Z.; Xu, H. X.

    2014-03-01

    During the start-up process, the strong instabilities happened at no load operation in a low head axial flow fixed-blade turbine, with strong pressure pulsation and vibration. The rated speed can not reach until guide vane opening to some extent, and stable operation could not be maintained under the rated speed at some head, which had a negative impact on the grid-connected operation of the unit. In order to find the reason of this phenomenon, the unsteady flow field of the whole flow passage at no load conditions was carried out to analyze the detailed fluid field characteristics including the pressure pulsation and force imposed on the runner under three typical heads. The main hydraulic cause of no load conditions instability was described. It is recommended that the power station should try to reduce the no-load running time and go into the high load operation as soon as possible when connected to grid at the rated head. Following the recommendations, the plant operation practice proved the unstable degree of the unit was reduced greatly during start up and connect to the power grid.

  10. An Experimental Investigation of Steady and Unsteady Flow Field in an Axial Flow Turbine

    NASA Technical Reports Server (NTRS)

    Zaccaria, M.; Lakshminarayana, B.

    1997-01-01

    Measurements were made in a large scale single stage turbine facility. Within the nozzle passage measurements were made using a five hole probe, a two-component Laser Doppler Velocimeter (LDV), and a single sensor hot wire probe. These measurements showed weak secondary flows at midchord, and two secondary flow loss cores at the nozzle exit. The casing vortex loss core was the larger of the two. At the exit radial inward flow was found over the entire passage, and was more pronounced in the wake. Nozzle wake decay was found to be more rapid than for an isolated vane row due to the rotor's presence. The midspan rotor flow field was measured using a two-component LDV. Measurements were made from upstream of the rotor to a chord behind the rotor. The distortion of the nozzle wake as it passed through the rotor blade row was determined. The unsteadiness in the rotor flow field was determined. The decay of the rotor wake was also characterized.

  11. Biosorption of metal contaminants using immobilized biomass: Field studies. Report of Investigations/1993

    SciTech Connect

    Jeffers, T.H.; Bennett, P.G.; Corwin, R.R.

    1993-01-01

    The U.S. Bureau of Mines has developed porous beads containing immobilized biological materials such as sphagnum peat moss for extracting metal contaminants from waste waters. The beads, designated as BIO-FIX beads, have removed toxic metals from over 100 waters in laboratory tests. These waters include acid mine drainage (AMD) water from mining sites, metallurgical and chemical industry waste water, and contaminated ground water. Following the laboratory studies, cooperative field tests were conducted to evaluate the metal adsorption properties of the beads in column and low-maintenance circuits, determine bead stability in varied climatic situations, and demonstrate the beads' potential as a viable waste water treatment technique. Field results indicated that BIO-FIX beads readily adsorbed cadmium, lead, and other toxic metals from dilute waters; effluents frequently met drinking water standards and other discharge criteria. The beads exhibited excellent handling characteristics in both column and low-maintenance circuits, and continued to extract metal ions after repeated loading-elution cycles.

  12. Investigation of sounding rocket observations of field-aligned currents and electron temperature

    NASA Astrophysics Data System (ADS)

    Cohen, I. J.; Lessard, M.; Zettergren, M. D.; Moen, J.; Lynch, K. A.; Heavisides, J. M.

    2014-12-01

    Strangeway et al. [2005] and other authors have concluded that the establishment of the ambipolar field by the deposition of energy from soft electron precipitation is a significant driver of type-2 ion upflows. Likewise, Clemmons et al. [2008] and Zhang et al. [2012] proposed processes by which soft electron precipitation may play a role in heating neutrals and contribute to neutral upwelling. In both situations the thermal ionospheric electron population plays a crucial role in both generation of the ambipolar field and in collisional energy exchange with the atmosphere through a variety of processes. In this study we examine the dynamics of the electron population, specifically the temperature, in a slightly different context - focusing on the auroral downward current region (DCR). In many cases auroral DCRs may be depleted of plasma, which sets up interesting conditions involving thermoelectric heat fluxes (which flow upward - in the opposite direction from the current), adiabatic expansion due to the high (upward) speed of the electrons carrying the downward current, heat exchange from ions which have elevated temperatures due to frictional heating, and direct frictional heating of the electrons. A detailed understanding of the electron temperature in auroral DCRs is necessary to make quantitative statements about recombination, upflow, cavitation and a host of other processes relevant to ion outflow. In this study, we compare in situ rocket observations of electron temperature, density, and current densities with predictions from the Zettergren and Semeter [2012] model in an attempt to better understand the dynamics and relationships between these parameters in DCRs.

  13. Investigating yellow dung fly body size evolution in the field: Response to climate change?

    PubMed

    Blanckenhorn, Wolf U

    2015-08-01

    Uncovering genetic responses to selection in wild populations typically requires tracking individuals over generations and use of animal models. Our group monitored the body size of one Swiss Yellow Dung Fly (Scathophaga stercoraria; Diptera: Scathophagidae) field population over 15 years, including intermittent common-garden rearing in the laboratory to assess body size with minimized environmental and maximized genetic variation. Contrary to expectations based on repeated heritability and phenotypic selection assessments over the years (reported elsewhere), field body sizes declined by >10% and common-garden laboratory sizes by >5% from 1993 to 2009. Our results confirm the temperature-size rule (smaller when warmer) and, albeit entirely correlational, could be mediated by climate change, as over this period mean temperature at the site increased by 0.5°C, although alternative systematic environmental changes cannot be entirely excluded. Monitoring genetic responses to selection in wild invertebrate populations is thus possible, though indirect, and wild populations may evolve in directions not consistent with strongly positive directional selection favoring large body size.

  14. Theoretical investigation of non-equilibrium chemistry and optical radiation in hypersonic flow fields

    NASA Technical Reports Server (NTRS)

    Whiting, Ellis E.

    1990-01-01

    Future space vehicles returning from distant missions or high earth orbits may enter the upper regions of the atmosphere and use aerodynamic drag to reduce their velocity before they skip out of the atmosphere and enter low earth orbit. The Aeroassist Flight Experiment (AFE) is designed to explore the special problems encountered in such entries. A computer code was developed to calculate the radiative transport along line-or-sight in the general 3-D flow field about an arbitrary entry vehicle, if the temperatures and species concentrations along the line-of-sight are known. The radiative heating calculation at the stagnation point of the AFE vehicle along the entry trajectory was performed, including a detailed line-by-line accounting of the radiative transport in the vacuum ultraviolet (below 200 nm) by the atomic N and O lines. A method was developed for making measurements of the haze particles in the Titan atmosphere above 200 km altitude. Several other tasks of a continuing nature, to improve the technical ability to calculate the nonequilibrium gas dynamic flow field and radiative heating of entry vehicles, were completed or advanced.

  15. Structural investigation of naturally occurring peptides by electron capture dissociation and AMBER force field modelling

    NASA Astrophysics Data System (ADS)

    Polfer, Nick C.; Haselmann, Kim F.; Langridge-Smith, Pat R. R.; Barran, Perdita E.

    We present a detailed analysis of the relative yields in dissociation products of doubly protonated polypeptide cations obtained via electron capture dissociation (ECD). These experimental studies are complemented by molecular dynamics force field modelling, using the AMBER force field, to correlate with putative gas-phase conformations for these peptides. It is shown that the highest gas-phase basicity amino acid residue (i.e. arginine) is included in all the charged fragments. This is of particular use in determining the primary structure tryptic digest peptides, which will ordinarily posses a high basicity C-terminal residue (i.e. arginine or lysine). Further, these results suggest that the relative ECD dissociation pattern is related to the secondary structure of the peptide. In particular, the ECD fragmentation pattern in gonadatropin releasing hormone (GnRH) variants appears to depend on whether a β-turn or an extended α-helical structure is formed. In the peptide bradykinin, modelling suggests that the C-terminal arginine engages in much more extended solvation of the backbone than the N-terminal arginine. This strongly correlates with the observed dominance of c over z fragments. This work forms the first attempt at a systematic qualitative correlation of the low-energy structures of modelled gas-phase polypeptides, and their corresponding ECD dissociation pattern.

  16. Modeling and field experimental investigation of remediation by venting measures in the unsaturated soil zone

    SciTech Connect

    Lin, J.Y. ); Kinzelbach, W.K.H. )

    1993-10-01

    In the unsaturated soil zone, venting systems have proved to be an effective remediation method for contamination with volatile hydrocarbons. A new potential is opened up for this method by combining it with measures such as injection of hot gas or irrigation of the top soil to increase the radius of influence. A numerical 3-D model for air flow through variably saturated soil is presented which can serve as a design tool for locating and dimensioning of venting wells. It further allows rough estimates of the venting time and optimization of the technique. The user-friendly computer code AIR can be run on a fast PC. Two field applications are studied. In the first case, the measure consists of both injection and suction wells. The top soil is irrigated in order to reduce its conductivity. The efficiency of this measure in increasing the radius of influence is determined. In the second case, the functioning of a suction well is studied by using the natural radon gas in the soil as a tracer. The comparison of observations in the field with model computations offers a basis for the discussion of the limitations and design considerations of venting measures.

  17. An Investigation into Quantifying Micron-G Changes in a Gravitational Field of 1G

    NASA Technical Reports Server (NTRS)

    Gauthier, Richard R.; Gilbert, John A.

    1997-01-01

    This project called for the development of an accelerometer designed to be used in conjunction with gravity shielding experiments. The device had to measure local gravitational changes on the order of a few micro-G's (micron-G) with a spatial resolution greater than one measurement per ten square centimeters. Measurements had to be made at a minimum rate of two per second. Tasks included the design, development and demonstration of a prototype. The deliverable consisted of three copies of this final report. The study resulted in the development of a Transversely Suspended Accelerometer (TSA) which met all of the technical specifications. Different generations of the device were demonstrated to NASA/MSFC personnel as they were developed. The final prototype is available for further demonstration and future use. The study draws attention to the fact that the magnetic fields required to produce gravitational shielding may result in apparent decreases in the weights of suspended objects on the order of those attributed to the effect itself. This observation reinforces the need to quantify the influences of the magnetic field on any measurement device used to study gravitational shielding. This task was accomplished for the TSA.

  18. Numerical Investigation of Flow Fields in Inductively Coupled Plasma Wind Tunnels

    NASA Astrophysics Data System (ADS)

    Yu, Minghao; Yusuke, Takahashi; Hisashi, Kihara; Ken-ichi, Abe; Kazuhiko, Yamada; Takashi, Abe

    2014-10-01

    Numerical simulations of 10 kW and 110 kW inductively coupled plasma (ICP) wind tunnels were carried out to study physical properties of the flow inside the ICP torch and vacuum chamber with air as the working gas. Two-dimensional compressible axisymmetric Navier-Stokes (N-S) equations that took into account 11 species and 49 chemical reactions of air, were solved. A heat source model was used to describe the heating phenomenon instead of solving the electromagnetic equations. In the vacuum chamber, a four-temperature model was coupled with N-S equations. Numerical results for the 10 kW ICP wind tunnel are presented and discussed in detail as a representative case. It was found that the plasma flow in the vacuum chamber tended to be in local thermochemical equilibrium. To study the influence of operation conditions on the flow field, simulations were carried out for different chamber pressures and/or input powers. The computational results for the above two ICP wind tunnels were compared with corresponding experimental data. The computational and experimental results agree well, therefore the flow fields of ICP wind tunnels can be clearly understood.

  19. Investigating the fluid dynamics of rapid processes within microfluidic devices using bright-field microscopy.

    PubMed

    Pirbodaghi, Tohid; Vigolo, Daniele; Akbari, Samin; deMello, Andrew

    2015-05-01

    The widespread application of microfluidic devices in the biological and chemical sciences requires the implementation of complex designs and geometries, which in turn leads to atypical fluid dynamic phenomena. Accordingly, a complete understanding of fluid dynamics in such systems is key in the facile engineering of novel and efficient analytical tools. Herein, we present an accurate approach for studying the fluid dynamics of rapid processes within microfluidic devices using bright-field microscopy with white light illumination and a standard high-speed camera. Specifically, we combine Ghost Particle Velocimetry and the detection of moving objects in automated video surveillance to track submicron size tracing particles via cross correlation between the speckle patterns of successive images. The efficacy of the presented technique is demonstrated by measuring the flow field over a square pillar (80 μm × 80 μm) in a 200 μm wide microchannel at high volumetric flow rates. Experimental results are in excellent agreement with those obtained via computational fluid dynamics simulations. The method is subsequently used to study the dynamics of droplet generation at a flow focusing microfluidic geometry. A unique feature of the presented technique is the ability to perform velocimetry analysis of high-speed phenomena, which is not possible using micron-resolution particle image velocimetry (μPIV) approaches based on confocal or fluorescence microscopy. PMID:25812165

  20. Investigation on the reproduction performance versus acoustic contrast control in sound field synthesis.

    PubMed

    Bai, Mingsian R; Wen, Jheng-Ciang; Hsu, Hoshen; Hua, Yi-Hsin; Hsieh, Yu-Hao

    2014-10-01

    A sound reconstruction system is proposed for audio reproduction with extended sweet spot and reduced reflections. An equivalent source method (ESM)-based sound field synthesis (SFS) approach, with the aid of dark zone minimization is adopted in the study. Conventional SFS that is based on the free-field assumption suffers from synthesis error due to boundary reflections. To tackle the problem, the proposed system utilizes convex optimization in designing array filters with both reproduction performance and acoustic contrast taken into consideration. Control points are deployed in the dark zone to minimize the reflections from the walls. Two approaches are employed to constrain the pressure and velocity in the dark zone. Pressure matching error (PME) and acoustic contrast (AC) are used as performance measures in simulations and experiments for a rectangular loudspeaker array. Perceptual Evaluation of Audio Quality (PEAQ) is also used to assess the audio reproduction quality. The results show that the pressure-constrained (PC) method yields better acoustic contrast, but poorer reproduction performance than the pressure-velocity constrained (PVC) method. A subjective listening test also indicates that the PVC method is the preferred method in a live room.

  1. Investigation of uniformity field generated from freeform lens with UV LED exposure system

    NASA Astrophysics Data System (ADS)

    Ciou, F. Y.; Chen, Y. C.; Pan, C. T.; Lin, P. H.; Lin, P. H.; Hsu, F. T.

    2015-03-01

    In the exposure process, the intensity and uniformity of light in the exposure area directly influenced the precision of products. UV-LED (Ultraviolet Light-Emitting Diode) exposure system was established to reduce the radiation leakage and increase the energy efficiency for energy saving. It is a trend that conventional mercury lamp could be replaced with UV-LED exposure system. This study was based on the law of conservation of energy and law of refraction of optical field distributing on the target plane. With these, a freeform lens with uniform light field of main exposure area could be designed. The light outside the exposure area could be concentrated into the area to improve the intensity of light. The refraction index and UV transmittance of Polydimethylsiloxane (PDMS) is 1.43 at 385 nm wavelength and 85-90%, respectively. The PDMS was used to fabricate the optics lens for UV-LEDs. The average illumination and the uniformity could be obtained by increasing the number of UV-LEDs and the spacing of different arrangement modes. After exposure process with PDMS lens, about 5% inaccuracy was obtained. Comparing to 10% inaccuracy of general exposure system, it shows that it is available to replace conventional exposure lamp with using UV-LEDs.

  2. EI competencies as a related but different characteristic than intelligence

    PubMed Central

    Boyatzis, Richard E.; Batista-Foguet, Joan M.; Fernández-i-Marín, Xavier; Truninger, Margarida

    2015-01-01

    Amid the swarm of debate about emotional intelligence (EI) among academics are claims that cognitive intelligence, or general mental ability (g), is a stronger predictor of life and work outcomes as well as the counter claims that EI is their strongest predictor. Nested within the tempest in a teapot are scientific questions as to what the relationship is between g and EI. Using a behavioral approach to EI, we examined the relationship of a parametric measure of g as the person’s GMAT scores and collected observations from others who live and work with the person as to the frequency of his or her EI behavior, as well as the person’s self-assessment. The results show that EI, as seen by others, is slightly related to g, especially for males with assessment from professional relations. Further, we found that cognitive competencies are more strongly related to GMAT than EI competencies. For observations from personal relationships or self-assessment, there is no relationship between EI and GMAT. Observations from professional relations reveal a positive relationship between cognitive competencies and GMAT and EI and GMAT for males, but a negative relationship between EI and GMAT for females. PMID:25713545

  3. EI competencies as a related but different characteristic than intelligence.

    PubMed

    Boyatzis, Richard E; Batista-Foguet, Joan M; Fernández-I-Marín, Xavier; Truninger, Margarida

    2015-01-01

    Amid the swarm of debate about emotional intelligence (EI) among academics are claims that cognitive intelligence, or general mental ability (g), is a stronger predictor of life and work outcomes as well as the counter claims that EI is their strongest predictor. Nested within the tempest in a teapot are scientific questions as to what the relationship is between g and EI. Using a behavioral approach to EI, we examined the relationship of a parametric measure of g as the person's GMAT scores and collected observations from others who live and work with the person as to the frequency of his or her EI behavior, as well as the person's self-assessment. The results show that EI, as seen by others, is slightly related to g, especially for males with assessment from professional relations. Further, we found that cognitive competencies are more strongly related to GMAT than EI competencies. For observations from personal relationships or self-assessment, there is no relationship between EI and GMAT. Observations from professional relations reveal a positive relationship between cognitive competencies and GMAT and EI and GMAT for males, but a negative relationship between EI and GMAT for females. PMID:25713545

  4. Investigation of fast ion behavior using orbit following Monte-Carlo code in magnetic perturbed field in KSTAR

    NASA Astrophysics Data System (ADS)

    Shinohara, Kouji; Suzuki, Yasuhiro; Kim, Junghee; Kim, Jun Young; Jeon, Young Mu; Bierwage, Andreas; Rhee, Tongnyeol

    2016-11-01

    The fast ion dynamics and the associated heat load on the plasma facing components in the KSTAR tokamak were investigated with the orbit following Monte-Carlo (OFMC) code in several magnetic field configurations and realistic wall geometry. In particular, attention was paid to the effect of resonant magnetic perturbation (RMP) fields. Both the vacuum field approximation as well as the self-consistent field that includes the response of a stationary plasma were considered. In both cases, the magnetic perturbation (MP) is dominated by the toroidal mode number n  =  1, but otherwise its structure is strongly affected by the plasma response. The loss of fast ions increased significantly when the MP field was applied. Most loss particles hit the poloidal limiter structure around the outer mid-plane on the low field side, but the distribution of heat loads across the three limiters varied with the form of the MP. Short-timescale loss of supposedly well-confined co-passing fast ions was also observed. These losses started within a few poloidal transits after the fast ion was born deep inside the plasma on the high-field side of the magnetic axis. In the configuration studied, these losses are facilitated by the combination of two factors: (i) the large magnetic drift of fast ions across a wide range of magnetic surfaces due to a low plasma current, and (ii) resonant interactions between the fast ions and magnetic islands that were induced inside the plasma by the external RMP field. These effects are expected to play an important role in present-day tokamaks.

  5. Field investigation and analysis of buried pipelines under various seismic environments. Technical report

    SciTech Connect

    Wang, L.R.L.

    1982-08-01

    A research project is proposed in which the behavior of oil, water, sewer, and gas pipelines under various seismic environments, including seismic shaking and large ground deformation would be investigated. It is suggested that the investigation be conducted in the Beijing and Tangshan areas. Three major hazards to underground pipelines are identified: the effect of wave propagation; ground rupture and differential movement along fault lines; and soil liquefaction induced by ground shaking. Ruptures or severe distortions of the pipe are most often associated with fault movements, landslides, or ground squeeze associated with fault zones. A model is presented to evaluate the general longitudinal responses of buried pipelines, both segmented and continuous, subjected to ground shakings and vibrations. The results of these tests will be used to develop aseismic codes for buried pipelines.

  6. Investigating the effect of some parameters of the channel on the characteristics of tunneling carbon nanotube field-effect transistor

    NASA Astrophysics Data System (ADS)

    Valed Karimi, Najmeh; Pourasad, Yaghoub

    2016-08-01

    This paper studies p-i-n tunneling carbon nanotube field-effect transistor to investigate the effect of various parameters of the channel on the characteristics of tunneling carbon nanotube field-effect transistor. Tunneling carbon nanotube field-effect transistor (T-CNTFET) has been simulated using non-equilibrium Green's function (NEGF), and the transmission was conducted through inelastic scattering. Besides the evaluation of device performance, various parameters of the channel were also compared. One of the parameters is considered as the variable, while other parameters of the channel are constant. Then, improved characteristics were discussed by selection of some channel parameters. T-CNTFET with CNT (10, 0) with oxide thickness = 1 nm shows reduced sub-threshold swing (18 mV/decade).

  7. New observations of infiltration through fractured alluvium in Yucca Flat, Nevada Test Site: A preliminary field investigation

    SciTech Connect

    Kao, C.S.; Smith, D.K.; McKinnis, W.B.

    1994-02-01

    Regional tectonics coupled with the subsurface detonation of nuclear explosives has caused widespread fracturing of the alluvium of Yucca Flat. Fractures deeper than 30 meters have been observed in boreholes. Some of these fractures are large enough to capture significant amounts of runoff during storm events. Evidence of stream capture by fractures and observations of runoff flowing into open fractures give qualitative evidence of infiltration to depths greater than several meters and possibly to the saturated zone. Our field observations contradict the assumption that little infiltration occurs on Yucca Flat. The larger, hydrologically important fractures are associated with geologic faults or the regional stress field. Additional field studies are needed to investigate the impact of fractures on the transport of contaminants.

  8. Supersonic Flow Field Investigation Using a Fiber-optic based Doppler Global Velocimeter

    NASA Technical Reports Server (NTRS)

    Meyers, James F.; Lee, Joseph W.; Fletcher, Mark T.; Cavone, Angelo A.; AscencionGuerreroViramontes, J.

    2006-01-01

    A three-component fiber-optic based Doppler Global Velocimeter was constructed, evaluated and used to measure shock structures about a low-sonic boom model in a Mach 2 flow. The system was designed to have maximum flexibility in its ability to measure flows with restricted optical access and in various facilities. System layout is described along with techniques developed for production supersonic testing. System evaluation in the Unitary Plan Wind Tunnel showed a common acceptance angle of f4 among the three views with velocity measurement resolutions comparable with free-space systems. Flow field measurements of shock structures above a flat plate with an attached ellipsoid-cylinder store and a low-sonic boom model are presented to demonstrate the capabilities of the system during production testing.

  9. Epidemiological investigation of Salmonella tilene by pulsed-field gel electrophoresis and polymerase chain reaction

    PubMed Central

    Anand, Chandar M; Fonseca, Kevin; Longmore, Ken; Rennie, Robert; Chui, Linda; Lingley, Mike; Woodward, David

    1997-01-01

    Pulsed-field gel electrophoresis (PFGE) and DNA fingerprinting by the polymerase chain reaction (PCR) were performed on 11 isolates of Salmonella tilene. Five strains were from a cluster of human patients, six from sugar gliders and pygmy hedgehogs kept as family pets or from local pet retailers, and one isolate from the first North American case of S tilene described in Washington State in 1994. The PFGE restriction patterns showed all isolates to be similar. However, PCR using primers to the 16S and 23S rRNA genes of Escherichia coli demonstrated that the Washington State isolate differed from the rest of the other isolates, which were all similar based upon their DNA fingerprint. This study indicates that reliance on one technique alone may be insufficient to show nuances between strains that are, in many respects, closely related. PMID:22346526

  10. Investigation on cone jetting regimes of liquid droplets subjected to pyroelectric fields induced by laser blasts

    NASA Astrophysics Data System (ADS)

    Gennari, Oriella; Battista, Luigi; Silva, Benjamin; Grilli, Simonetta; Miccio, Lisa; Vespini, Veronica; Coppola, Sara; Orlando, Pierangelo; Aprin, Laurent; Slangen, Pierre; Ferraro, Pietro

    2015-02-01

    Electrical conductivity and viscosity play a major role in the tip jetting behaviour of liquids subjected to electrohydrodynamic (EHD) forces, thus influencing significantly the printing performance. Recently, we developed a nozzle- and electrode-free pyro-EHD system as a versatile alternative to conventional EHD configurations and we demonstrated different applications, including inkjet printing and three-dimensional lithography. However, only dielectric fluids have been used in all of those applications. Here, we present an experimental characterization of the pyro-EHD jetting regimes, induced by laser blasts, of sessile drops in case of dielectric and conductive liquids in order to extend the applicability of the system to a wider variety of fields including biochemistry and biotechnology where conductive aqueous solutions are typically used.

  11. Electromagnetic field of the Earth as a tool for astrophysical processes investigations

    NASA Astrophysics Data System (ADS)

    Grunskaya, L. V.; Isakevich, V. V.; Isakevich, D. V.; Rubay, D. V.

    Years of research have shown that all experimentally obtained time series of the electric and geomagnetic fields have components at frequencies infra low frequency gravitational-wave emission of a number of binary star systems: J 0700+6418, J 1012+5307, J 1537+1155, J 1959+2048, J 2130+1210, J 1915+160 with effective values 0,28 - 0,6 V/m. It is shown that all reviewed time series have non-coherent components on the axion frequency 5e-6 Hz with effective values of 0,71 - 1,36 V/m, and also at combination frequencies of this frequency with the frequency of the moon tides...

  12. Optimal approach to the investigation of the Earth's gravitational field by means of satellite gradiometry.

    NASA Astrophysics Data System (ADS)

    Petrovskaya, M. S.

    The conventional approach to the recovery of the Earth's gravitational field from satellite gradiometry observations is based on constructing, from the start, several boundary value (BV) relations, each of them corresponding to a separate observable component of the gravity gradient (GG) tensor or a certain combination of them. In particular, one of such projects, the ARISTOTELES mission, assumes that only the radial and across-track components are accessible (by technical reasons). The purpose of the present paper is mainly to discuss the principle aspects of the problem of the Earth's potential recovering from satellite gradiometry, to give an optimal formulation of the problem and derive the basic boundary value equation in different forms.

  13. Experimental investigation of the velocity field and skin friction for convecting vortex/boundary layer interactions

    NASA Astrophysics Data System (ADS)

    MacRorie, Michael; Pauley, Wayne R.

    1993-01-01

    The interaction between propagating spanwise vortices and a turbulent boundary layer was studied experimentally. The experimental techniques include hotwire anemometry and smoke visualization. The results focus on the relationship between the passage of vortex structures and the response of the boundary layer in terms of unsteady mean velocity, wall shear, and turbulence quantities. Both positive and negative circulation vortices were studied at three different heights above the test surface. The results indicate that the height of the vortex above the surface has an effect on the wall shear response. However, vortex height and strength are related in this experiment. A phase lag between the passage of the vortex center and the peak wall shear stress response is demonstrated. This phase lag was found to increase with streamwise distance. An examination of the response of the mean and turbulent velocity fields in the boundary layer shows that the phase lag is confined to a region close to the wall.

  14. Field investigation of techniques for remote laser sensing of oceanographic parameters

    NASA Technical Reports Server (NTRS)

    Houghton, W. M.; Exton, R. J.; Gregory, R. W.

    1983-01-01

    A laser fluorosensor, previously studied in the laboratory, was deployed at a pier in lower Chesapeake Bay for field testing. A Q-switched Nd:YAG laser doubled to 532 nm in conjunction with a gated optical multichannel analyzer (OMA) allow spectra with high signal-to-noise ratios to be recorded in full daylight at a distance of 20 m. As a test of the system a study was conducted of the spatial and temporal variations of the phytopigments phycoerythrin and chlorophyll. The phycoerythrin feature was resolved into two components, one attributable to cyanophytes and the other to cryptophytes. A comparison was also made with spectra obtained by the NASA airborne oceanographic lidar (AOL).

  15. Numerical and experimental investigation on flow field characteristics of organ pipe nozzle

    NASA Astrophysics Data System (ADS)

    Fang, Z. L.; Kang, Y.; Wang, X. C.; Li, D.; Hu, Y.; Huang, M.; Y Wang, X.

    2014-03-01

    As a new technology that is developed rapidly in recent decades, water jet technology is widely applied in coal, petroleum, chemical industry, aviation, construction, etc. Self-resonant cavitating jet, by playing cavitation, is capable of great destruction. As a typical kind of self-resonant cavitating nozzle, organ pipe nozzle has its special application. In this paper, the flow field of organ pipe nozzle was numerical simulated. Nozzles with different structures were manufactured according to simulation results; their performances were tested on different driving pressure under the condition of submerging. The results showed that working pressure, cavity length and cavity diameter had influence on the characteristics of organ pipe nozzle and it exited optimum parameters.

  16. Preliminary investigation of scale formation and fluid chemistry at the Dixie Valley Geothermal Field, Nevada

    SciTech Connect

    Bruton, C.J.; Counce, D.; Bergfeld, D.; Goff, F.; Johnson, S.D.; Moore, J.N.; Nimz, G.

    1997-06-27

    The chemistry of geothermal, production, and injection fluids at the Dixie Valley Geothermal Field, Nevada, was characterized to address an ongoing scaling problem and to evaluate the effects of reinjection into the reservoir. Fluids generally followed mixing-dilution trends. Recharge to the Dixie Valley system apparently originates from local sources. The low-pressure brine and injection waters were saturated with respect to amorphous silica, which correlated with the ongoing scaling problem. Local shallow ground water contains about 15% geothermal brine mixed with regional recharge. The elevated Ca, Mg, and HCO{sub 3} content of this water suggests that carbonate precipitation may occur if shallow groundwater is reinjected. Downhole reservoir fluids are close to equilibrium with the latest vein mineral assemblage of wairakite-epidote-quartz-calcite. Reinjection of spent geothermal brine is predicted to affect the region near the wellbore differently than it does the region farther away.

  17. Investigation of correlation properties of light fields by Fresnel diffraction from a step

    NASA Astrophysics Data System (ADS)

    Hosseini, S. R.; Tavassoly, M. T.

    2013-12-01

    We introduce a new method, based on Fresnel diffraction of light from a step, for the study of correlation properties (temporal and spatial) of optical fields. The method renders to measure wavelength, coherence length, and coherence width by recording the visibility of the diffraction fringes versus optical path difference and spacing of the interfering beams. In addition, the method permits to specify the spectral line shape, particularly, of lights with short coherence lengths and the spatial coherence behavior of the lights with short coherence widths. Since, in the introduced method the optical path difference can be varied by changing the light incident angle, practically, in an interval of 90º, a large volume of data is acquired which leads to reliable and accurate study of the subject. The method can be applied easily using modest equipment. We have applied the method to the study of correlation properties of the lights emitted by LED, incandescent bulb, and Hg lamp.

  18. Monte Carlo investigation of transient acoustic fields in partially or completely bounded medium. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Thanedar, B. D.

    1972-01-01

    A simple repetitive calculation was used to investigate what happens to the field in terms of the signal paths of disturbances originating from the energy source. The computation allowed the field to be reconstructed as a function of space and time on a statistical basis. The suggested Monte Carlo method is in response to the need for a numerical method to supplement analytical methods of solution which are only valid when the boundaries have simple shapes, rather than for a medium that is bounded. For the analysis, a suitable model was created from which was developed an algorithm for the estimation of acoustic pressure variations in the region under investigation. The validity of the technique was demonstrated by analysis of simple physical models with the aid of a digital computer. The Monte Carlo method is applicable to a medium which is homogeneous and is enclosed by either rectangular or curved boundaries.

  19. Investigating the Optical and Microphysical Properties of Particulate Matter during MEGAPOLI Field Campaigns

    NASA Astrophysics Data System (ADS)

    Hu, R.; Sokhi, R.; Chemel, C.; Vazhappilly-Francis, X.; Yu, Y.; Fisher, B.

    2010-09-01

    Particulate Matter (or aerosols) is one of major components affecting the air quality and climate change. Despite the abundance of PM in the atmosphere, the emissions, composition and transformation of PM are still poorly understood due partly to the large measurement uncertainties and chemical complexity, particularly a distinct lack of the optical and microphysical properties of PM over megacities. In this study, we use the global chemistry transport model (GEOS-Chem) and regional air quality model (WRF-CMAQ) to simulate the optical and microphysical properties of PM over megacities such as London and Paris. The intensive MEGAPOLI field campaigns were performed during summer 2009 in the Ile-de-France region and winter 2010 in Paris. Measurements have provided the detailed information on aerosol properties including size distribution, volatility, hygroscopicity, chemical composition and optical properties. We use the observational data from the intensive field campaigns to validate the simulations from global and regional air quality models. The model simulations of major aerosol species including sulphate, ammonium, nitrate and black carbon, particularly the organic compounds will be evaluated with measurement datasets. We analyses the effects of emissions, meteorology and chemistry on the aerosol properties over megacities. The impact of Megacity emissions on PM concentrations (PM10 and PM2.5) will be examined according to model simulations, particularly the factors such as speciation, temporal profile and contributions from the long range transport. We use the satellite observational data such as the Ozone Monitoring Instrument (OMI), the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Multi-angle Imaging SpectroRadiometer (MISR) for inter-comparison with the model simulations on regional and urban scales. The combining modeling and observations will improve our understanding of PM properties and the model prediction accuracy of PM episodes.

  20. A field investigation of the effect of fine sediment concentration on suspended bed material load

    NASA Astrophysics Data System (ADS)

    Lu, Jau-Yau; Su, Chih-Chiang; Huang, Hsien-Li

    2014-05-01

    The estimation of sediment transport rate has been an important issue for river planning and management. Landslide and debris flow occur frequently in the watershed in Taiwan due to the weak geology and frequent earthquakes. For example, the Chi-Chi Earthquake (Richter scale of 7.3) occurred in central Taiwan in 1999 caused a total landslide area of more than 100 km2. It was the second-deadliest quake in recorded history in Taiwan. In this study, four sets of field experiments (3 typhoons and one large rain storm) were conducted during typhoon seasons of 2012 and 2013 to collect the hydraulic and sediment data at the Tzu-Chiang Bridge of the lower Cho-Shui River after the river incision. The main objectives of this study are to increase our understanding of the variations of the sediment transport characteristics, and to evaluate the suitability of the commonly used sediment transport equations for the lower Cho-Shui River after the Chi-Chi Earthquake. After comparing with the field data collected by Tsang's during 2006-2007, it was found that the concentration of wash load plays an important role in the sediment-laden flow. High concentration of fine sediment tends to damp the turbulence of the flow, and to reduce the uniformities of both the velocity and sediment concentration (bed material load) profiles. In addition, commonly used suspended load sediment transport equations in general under-predicted the sediment load for the lower Cho-Shui River. With consideration of the effect of concentration of fine sediment on the suspended bed material load, Chiu et al.'s (2000) equation was modified and gave more reasonable sediment discharge estimations. Reference Chiu, C. L., Jin, W., and Chen, Y.C., 2000, Mathematical models of distribution of sediment concentration, J. Hydraulic Eng., ASCE, 126(1), 16-23.

  1. An investigation of the performance of a coaxial HPGe detector operating in a magnetic resonance imaging field

    NASA Astrophysics Data System (ADS)

    Harkness, L. J.; Boston, A. J.; Boston, H. C.; Cole, P.; Cresswell, J. R.; Filmer, F.; Jones, M.; Judson, D. S.; Nolan, P. J.; Oxley, D. C.; Sampson, J. A.; Scraggs, D. P.; Slee, M. J.; Bimson, W. E.; Kemp, G. J.; Groves, J.; Headspith, J.; Lazarus, I.; Simpson, J.; Cooper, R. J.

    2011-05-01

    Nuclear medical imaging modalities such as positron emission tomography and single photon emission computed tomography are used to probe physiological functions of the body by detecting gamma rays emitted from biologically targeted radiopharmaceuticals. A system which is capable of simultaneous data acquisition for nuclear medical imaging and magnetic resonance imaging is highly sought after by the medical imaging community. Such a device could provide a more complete medical insight into the functions of the body within a well-defined structural context. However, acquiring simultaneous nuclear/MRI sequences are technically challenging due to the conventional photomultiplier tube readout employed by most existing scintillator detector systems. A promising solution is a nuclear imaging device composed of semiconductor detectors that can be operated with a standard MRI scanner. However, the influence of placing a semiconductor detector such as high purity germanium (HPGe) within or close to the bore of an MRI scanner, where high magnetic fields are present, is not well understood. In this paper, the performance of a HPGe detector operating in a high strength static ( BS) MRI field along with fast switching gradient fields and radiofrequency from the MRI system has been assessed. The influence of the BS field on the energy resolution of the detector has been investigated for various positions and orientations of the detector within the magnetic field. The results have then been interpreted in terms of the influence of the BS field on the charge collection properties. MRI images have been acquired with the detector situated at the entrance of the MRI bore to investigate the effects of simultaneous data acquisition on detector performance and MRI imaging.

  2. Investigation of negative bias temperature instability dependence on fin width of silicon-on-insulator-fin-based field effect transistors

    SciTech Connect

    Young, Chadwin D. Wang, Zhe; Neugroschel, Arnost; Majumdar, Kausik; Matthews, Ken; Hobbs, Chris

    2015-01-21

    The fin width dependence of negative bias temperature instability (NBTI) of double-gate, fin-based p-type Field Effect Transistors (FinFETs) fabricated on silicon-on-insulator (SOI) wafers was investigated. The NBTI degradation increased as the fin width narrowed. To investigate this phenomenon, simulations of pre-stress conditions were employed to determine any differences in gate oxide field, fin band bending, and electric field profile as a function of the fin width. The simulation results were similar at a given gate stress bias, regardless of the fin width, although the threshold voltage was found to increase with decreasing fin width. Thus, the NBTI fin width dependence could not be explained from the pre-stress conditions. Different physics-based degradation models were evaluated using specific fin-based device structures with different biasing schemes to ascertain an appropriate model that best explains the measured NBTI dependence. A plausible cause is an accumulation of electrons that tunnel from the gate during stress into the floating SOI fin body. As the fin narrows, the sidewall device channel moves in closer proximity to the stored electrons, thereby inducing more band bending at the fin/dielectric interface, resulting in a higher electric field and hole concentration in this region during stress, which leads to more degradation. The data obtained in this work provide direct experimental proof of the effect of electron accumulation on the threshold voltage stability in FinFETs.

  3. Investigating membrane breakdown of neuronal cells exposed to nonuniform electric fields by finite-element modeling and experiments.

    PubMed

    Heida, Tjitske; Wagenaar, Joost B M; Rutten, Wim L C; Marani, Enrico

    2002-10-01

    High electric field strengths may induce high cell membrane potentials. At a certain breakdown level the membrane potential becomes constant due to the transition from an insulating state into a high conductivity and high permeability state. Pores are thought to be created through which molecules may be transported into and out of the cell interior. Membrane rupture may follow due to the expansion of pores or the creation of many small pores across a certain part of the membrane surface. In nonuniform electric fields, it is difficult to predict the electroporated membrane area. Therefore, in this study the induced membrane potential and the membrane area where this potential exceeds the breakdown level is investigated by finite-element modeling. Results from experiments in which the collapse of neuronal cells was detected were combined with the computed field strengths in order to investigate membrane breakdown and membrane rupture. It was found that in nonuniform fields membrane rupture is position dependent, especially at higher breakdown levels. This indicates that the size of the membrane site that is affected by electroporation determines rupture.

  4. Investigations in the field of recombinant DNA technology performed in the "Stefan S. Nicolau" Institute of Virology.

    PubMed

    Popa, L M; Repanovici, R; Iliescu, R

    1984-01-01

    A brief review is provided of the investigations in the field of recombinant DNA technology started in 1979 in the Central Laboratory for Nucleic Acids within the "Stefan S. Nicolau" Institute of Virology. The research efforts have been focused on the following main objectives: optimization of vector extraction, isolation and purification of restriction enzymes and of DNA ligase T4, transformation and transfection experiments, construction of recombinant DNA. PMID:6097023

  5. Performance Investigation and Characterization of Scramjet and Dual-Mode Scramjet Flow-Fields

    NASA Technical Reports Server (NTRS)

    Riggins, David W.

    2000-01-01

    The following compilation documents significant deliverables under this grant. Note that this summary is extracted from a larger report provided to the Hyper-X office last year at the conclusion of the grant. Current status is documented of the ongoing JANNAF (Joint-Army-Navy-NASA-AirForce) Scramjet Test standards activity from the standpoint of the Analysis SubGroup of which the PI was requested by NASA to be chairman. Also included are some representative contributions to date from the Principle investigator relating to this activity.

  6. Liquid wastes and industrial sludge. New investigation fields to recycle metals

    SciTech Connect

    Meux, E.; Leclerc, N.; Peneliau, F.; Muller, P.

    1999-07-01

    The aim of this work is to propose some alternatives to the landfilling of metallic hydroxide sludge coming from the classical physico-chemical treatment of liquid wastes containing metallic cations. A downstream treatment was investigated. It consists of a selective leaching of filter-press cakes. This chemical treatment allows the elimination of toxic metals from the sludge and produces an inertized residue. An upstream treatment was studied: the selective precipitation of metallic cations. In this case, it is possible to obtain zinc sulfide and iron oxide. These products meet the acceptance conditions for the zinc and steel industry.

  7. Functional investigations on human mesenchymal stem cells exposed to magnetic fields and labeled with clinically approved iron nanoparticles

    PubMed Central

    2010-01-01

    Background For clinical applications of mesenchymal stem cells (MSCs), labeling and tracking is crucial to evaluate cell distribution and homing. Magnetic resonance imaging (MRI) has been successfully established detecting MSCs labeled with superparamagnetic particles of iron oxide (SPIO). Despite initial reports that labeling of MSCs with SPIO is safe without affecting the MSC's biology, recent studies report on influences of SPIO-labeling on metabolism and function of MSCs. Exposition of cells and tissues to high magnetic fields is the functional principle of MRI. In this study we established innovative labeling protocols for human MSCs using clinically established SPIO in combination with magnetic fields and investigated on functional effects (migration assays, quantification of colony forming units, analyses of gene and protein expression and analyses on the proliferation capacity, the viability and the differentiation potential) of magnetic fields on unlabeled and labeled human MSCs. To evaluate the imaging properties, quantification of the total iron load per cell (TIL), electron microscopy, and MRI at 3.0 T were performed. Results Human MSCs labeled with SPIO permanently exposed to magnetic fields arranged and grew according to the magnetic flux lines. Exposure of MSCs to magnetic fields after labeling with SPIO significantly enhanced the TIL compared to SPIO labeled MSCs without exposure to magnetic fields resulting in optimized imaging properties (detection limit: 1,000 MSCs). Concerning the TIL and the imaging properties, immediate exposition to magnetic fields after labeling was superior to exposition after 24 h. On functional level, exposition to magnetic fields inhibited the ability of colony formation of labeled MSCs and led to an enhanced expression of lipoprotein lipase and peroxisome proliferator-activated receptor-γ in labeled MSCs under adipogenic differentiation, and to a reduced expression of alkaline phosphatase in unlabeled MSCs under

  8. Investigation of Finite Element-Abc Methods for Electromagnetic Field Simulation

    NASA Astrophysics Data System (ADS)

    Chatterjee, Arindam

    The demand for accurate characterization and design of complex, composite structures has necessitated the use of numerical techniques for their analysis. Since these structures are often not amenable to closed-form analytical expressions, numerical methods are the only recourse for analyzing these structures. However, a viable numerical method needs to be as efficient and economical as possible such that increasingly complex and large problems can be modeled with minimal computational resources. To this end, the method of finite elements in conjunction with absorbing boundary conditions (ABCs) is proposed in this thesis for solving large and complex three-dimensional problems in unbounded domains. The problem is first formulated using the variational as well as the weighted residual approach. The field variable is expanded in terms of edge-based finite elements on tetrahedra, for the sake of accurate modeling of field continuity and ease of imposing boundary conditions. Initially, the closed problem is solved by determining the eigenvalues of arbitrary, inhomogeneous metallic cavities. For the open problem, ABCs are used as boundary conditions on spherical mesh termination boundaries. The resulting matrix system is sparse symmetric and is found to converge rapidly when solved iteratively. Remarkably accurate results are obtained by placing the truncation boundary only 0.3 lambda from the farthest edge of the target. In order to solve very large problems, the code is optimized on vector as well as parallel architectures like the KSR1 and the Intel iPSC/860. Near-linear speedup is obtained on the KSR1 for the computationally intensive portions of the finite element code, allowing extremely rapid solution for problems involving about half a million unknowns. Since existing ABCs were applicable on spherical mesh termination boundaries, long, thin geometries could be solved only at enormous computational cost. New ABCs enforceable on mesh termination boundaries

  9. Theoretical investigation of the behavior of CuSe2O5 compound in high magnetic fields

    NASA Astrophysics Data System (ADS)

    Saghafi, Z.; Jahangiri, J.; Mahdavifar, S.; Hadipour, H.; Farjami Shayesteh, S.

    2016-01-01

    Based on the analytical and numerical approaches, we investigate thermodynamic properties of CuSe2O5 compound at high magnetic fields which is a candidate for the strong intra-chain interaction in quasi one-dimensional (1D) quantum magnets. Magnetic behavior of the system can be described by the 1D spin-1/2 XXZ model in the presence of the Dzyaloshinskii-Moriya (DM) interaction. Under these circumstances, there is one quantum critical field in this compound. Below the quantum critical field the spin chain system is in the gapless Luttinger liquid (LL) regime, whereas above it one observes a crossover to the gapped saturation magnetic phase. Indications on the thermodynamic curves confirm the occurrence of such a phase transition. The main characteristics of the LL phase are gapless and spin-spin correlation functions decay algebraic. The effects of zero-temperature quantum phase transition are observed even at rather high temperatures in comparison with the counterpart compounds. In addition, we calculate the Wilson ratio in the model. The Wilson ratio at a fixed temperature remains almost independent of the field in the LL region. In the vicinity of the quantum critical field, the Wilson ratio increases and exhibits anomalous enhancement.

  10. Remedial investigation sampling and analysis plan for J-Field, Aberdeen Proving Ground, Maryland: Volume 2, Quality Assurance Project Plan

    SciTech Connect

    Prasad, S.; Martino, L.; Patton, T.

    1995-03-01

    J-Field encompasses about 460 acres at the southern end of the Gunpowder Neck Peninsula in the Edgewood Area of APG (Figure 2.1). Since World War II, the Edgewood Area of APG has been used to develop, manufacture, test, and destroy chemical agents and munitions. These materials were destroyed at J-Field by open burning and open detonation (OB/OD). For the purposes of this project, J-Field has been divided into eight geographic areas or facilities that are designated as areas of concern (AOCs): the Toxic Burning Pits (TBP), the White Phosphorus Burning Pits (WPP), the Riot Control Burning Pit (RCP), the Robins Point Demolition Ground (RPDG), the Robins Point Tower Site (RPTS), the South Beach Demolition Ground (SBDG), the South Beach Trench (SBT), and the Prototype Building (PB). The scope of this project is to conduct a remedial investigation/feasibility study (RI/FS) and ecological risk assessment to evaluate the impacts of past disposal activities at the J-Field site. Sampling for the RI will be carried out in three stages (I, II, and III) as detailed in the FSP. A phased approach will be used for the J-Field ecological risk assessment (ERA).

  11. Investigation of surfactant-enhanced dissolution of entrapped nonaqueous phase liquid chemicals in a two-dimensional groundwater flow field.

    PubMed

    Saba, T; Illangasekare, T H; Ewing, J

    2001-09-01

    Because of their low solubility, waste chemicals in the form of nonaqueous phase liquids (NAPLs) that are entrapped in subsurface formations act as long-term sources of groundwater contamination. In the design of remediation schemes that use surfactants, it is necessary to estimate the mass transfer rate coefficients under multi-dimensional flow fields that exit at field sites. In this study, we investigate mass transfer under a two-dimensional flow field to obtain an understanding of the basic mechanisms of surfactant-enhanced dissolution and to quantify the mass transfer rates. Enhanced dissolution experiments in a two-dimensional test cell were conducted to measure rates of mass depletion from entrapped NAPLs to a flowing aqueous phase containing a surfactant. In situ measurement of transient saturation changes using a gamma attenuation system revealed dissolution patterns that are affected by the dimensionality of the groundwater flow field. Numerical modeling of local flow fields that changed with time, due to depletion of NAPL sources, enabled the examination of the basic mechanisms of NAPL dissolution in complex groundwater systems. Through nonlinear regression analysis, mass transfer rates were correlated to porous media properties, NAPL saturation and aqueous phase velocity. Results from the experiments and numerical analyses were used to identify deficiencies in existing methods of analysis that uses assumptions of one-dimensional flow, homogeneity of aquifer properties, local equilibrium and idealized transient mass transfer.

  12. Magma accumulation or second boiling - Investigating the ongoing deformation field at Montserrat, West Indies

    NASA Astrophysics Data System (ADS)

    Collinson, Amy; Neuberg, Jurgen; Pascal, Karen

    2016-04-01

    For over 20 years, Soufriere Hills Volcano, Montserrat has been in a state of volcanic unrest. Intermittent periods of dome building have been punctuated by explosive eruptions and dome collapse events, endangering the lives of the inhabitants of the island. The last episode of active magma extrusion was in February 2010, and the last explosive event (ash venting) in March 2012. Despite a lack of eruptive activity recently, the volcano continues to emit significant volumes of SO2 and shows an ongoing trend of island inflation. Through the aid of three-dimensional numerical modelling, using a finite element method, we explore the potential sources of the ongoing island inflation. We consider both magmatic (dykes and chamber) and tectonic sources. Whilst a magmatic source suggests the possibility for further eruption, a tectonic source may indicate cessation of volcanic activity. We show that a magmatic source is the most likely scenario, and illustrate the effect of different sources (shapes, characters and depths) on the surface displacement. Furthermore, through the inclusion of topographic data, we investigate how the topography may affect the displacement pattern at the surface. We investigate the conflicting scenarios of magma chamber resupply versus second boiling - crystallisation-induced degassing. Based on numerical modelling results, we suggest the required pressurisation is too high for crystallisation-induced degassing to be the dominant process - thereby suggesting magma accumulation may be ongoing. However, we show that second boiling may be a contributing factor, particularly when taking into account the local tectonics and regional stretching.

  13. Full-Field Strain Methods for Investigating Failure Mechanisms in Triaxial Braided Composites

    NASA Technical Reports Server (NTRS)

    Littell, Justin D.; Binienda, Wieslaw K.; Goldberg, Robert K.; Roberts, Gary D.

    2008-01-01

    Recent advancements in braiding technology have led to commercially viable manufacturing approaches for making large structures with complex shape out of triaxial braided composite materials. In some cases, the static load capability of structures made using these materials has been higher than expected based on material strength properties measured using standard coupon tests. A more detailed investigation of deformation and failure processes in large-unit-cell-size triaxial braid composites is needed to evaluate the applicability of standard test methods for these materials and to develop alternative testing approaches. This report presents some new techniques that have been developed to investigate local deformation and failure using digital image correlation techniques. The methods were used to measure both local and global strains during standard straight-sided coupon tensile tests on composite materials made with 12- and 24-k yarns and a 0 /+60 /-60 triaxial braid architecture. Local deformation and failure within fiber bundles was observed and correlations were made between these local failures and global composite deformation and strength.

  14. Geologic Investigations Spurred by Analog Testing at the 7504 Cone-SP Mountain Area of the San Francisco Volcanic Field

    NASA Technical Reports Server (NTRS)

    Eppler, Dean B.

    2015-01-01

    The SP Mountain area of the San Francisco Volcanic Field, AZ, has been used as an analog mission development site for NASA since 1998. This area consists of basaltic cinder cones, lava flows and maar craters that have been active since mid-Miocene, with the youngest events occurring within the last 10,000 years. The area has been used because its geologic and topographic resemblance to lunar and Martian terrains provides an ideal venue for testing hardware and science operations practices that might be employed on planetary surfaces, as well as training astronauts in field geology. Analog operations have often led to insights that spurred new scientific investigations. Most recently, an investigation of the 7504 cone was initiated due to perceptions that Apollo-style traverse plans executed during the Desert RATS 2010 mission had characterized the area incorrectly, leading to concerns that the Apollo traverse planning process was scientifically flawed. This investigation revealed a complex history of fissure eruptions of lava and cinders, cinder cone development, a cone-fill-and-spill episode, extensive rheomorphic lava flow initiation and emplacement, and cone sector collapse that led to a final lava flow. This history was not discernible on pre-RATS mission photogeology, although independent analysis of RATS 2010 data and samples develped a "75% complete solution" that validated the pre-RATS mission planning and Apollo traverse planning and execution. The study also pointed out that the development of scientific knowledge with time in a given field area is not linear, but may follow a functional form that rises steeply in the early period of an investigation but flattens out in the later period, asymptotically approaching a theoretical "complete knowledge" point that probably cannot be achieved. This implies that future human missions must be prepared to shift geographic areas of investigation regularly if significant science returns are to be forthcoming.

  15. Geologic Investigations Spurred by Analog Testing at the 7504 Cone-Sp Mountain Area of the San Francisco Volcanic Field

    NASA Astrophysics Data System (ADS)

    Bleacher, J. E.; Eppler, D. B.; Needham, D. H.; Evans, C. A.; Skinner, J. A.; Feng, W.

    2015-12-01

    The SP Mountain area of the San Francisco Volcanic Field, AZ, has been used as an analog mission development site for NASA since 1998. This area consists of basaltic cinder cones, lava flows and maar craters that have been active since mid-Miocene, with the youngest events occurring within the last 10,000 years. The area has been used because its geologic and topographic resemblance to lunar and Martian terrains provides an ideal venue for testing hardware and science operations practices that might be employed on planetary surfaces, as well as training astronauts in field geology. Analog operations have often led to insights that spurred new scientific investigations. Most recently, an investigation of the 7504 cone was initiated due to perceptions that Apollo-style traverse plans executed during the Desert RATS 2010 mission had characterized the area incorrectly, leading to concerns that the Apollo traverse planning process was scientifically flawed. This investigation revealed a complex history of fissure eruptions of lava and cinders, cinder cone development, a cone-fill-and-spill episode, extensive rheomorphic lava flow initiation and emplacement, and cone sector collapse that led to a final lava flow. This history was not discernible on pre-RATS mission photogeology, although independent analysis of RATS 2010 data and samples develped a "75% complete solution" that validated the pre-RATS mission planning and Apollo traverse planning and execution. The study also pointed out that the development of scientific knowledge with time in a given field area is not linear, but may follow a functional form that rises steeply in the early period of an investigation but flattens out in the later period, asymptotically approaching a theoretical "complete knowledge" point that probably cannot be achieved. This implies that future human missions must be prepared to shift geographic areas of investigation regularly if significant science returns are to be forthcoming.

  16. Investigation of thermal protection systems effects on viscid and inviscid flow fields for manned entry systems

    NASA Technical Reports Server (NTRS)

    Bartlett, E. P.; Morse, H. L.; Tong, H.

    1971-01-01

    Procedures and methods for predicting aerothermodynamic heating to delta orbiter shuttle vehicles were reviewed. A number of approximate methods were found to be adequate for large scale parameter studies, but are considered inadequate for final design calculations. It is recommended that final design calculations be based on a computer code which accounts for nonequilibrium chemistry, streamline spreading, entropy swallowing, and turbulence. It is further recommended that this code be developed with the intent that it can be directly coupled with an exact inviscid flow field calculation when the latter becomes available. A nonsimilar, equilibrium chemistry computer code (BLIMP) was used to evaluate the effects of entropy swallowing, turbulence, and various three dimensional approximations. These solutions were compared with available wind tunnel data. It was found study that, for wind tunnel conditions, the effect of entropy swallowing and three dimensionality are small for laminar boundary layers but entropy swallowing causes a significant increase in turbulent heat transfer. However, it is noted that even small effects (say, 10-20%) may be important for the shuttle reusability concept.

  17. Numerical investigation of submarine hydrodynamics and flow field in steady turn

    NASA Astrophysics Data System (ADS)

    Cao, Liu-shuai; Zhu, Jun; Wan, Wen-bin

    2016-03-01

    This paper presents numerical simulations of viscous flow past a submarine model in steady turn by solving the Reynolds-Averaged Navier-Stokes Equations (RANSE) for incompressible, steady flows. The rotating coordinate system was adopted to deal with the rotation problem. The Coriolis force and centrifugal force due to the computation in a bodyfixed rotating frame of reference were treated explicitly and added to momentum equations as source terms. Furthermore, velocities of entrances were coded to give the correct magnitude and direction needed. Two turbulence closure models (TCMs), the RNG κ - ɛ model with wall functions and curvature correction and the Shear Stress Transport (SST) κ - ω model without the use of wall functions, but with curvature correction and low- Re correction were introduced, respectively. Take DARPA SUBOFF model as the test case, a series of drift angle varying between 0° and 16° at a Reynolds number of 6.53×106 undergoing rotating arm test simulations were conducted. The computed forces and moment as a function of drift angle during the steady turn are mostly in close agreement with available experimental data. Though the difference between the pressure coefficients around the hull form was observed, they always show the same trend. It was demonstrated that using sufficiently fine grids and advanced turbulence models will lead to accurate prediction of the flow field as well as the forces and moments on the hull.

  18. Tunable Superconducting Gravity Gradiometer for Mars Climate, Atmosphere, and Gravity Field Investigation

    NASA Technical Reports Server (NTRS)

    Griggs, C. E.; Paik, H. J.; Moody, M. V.; Han, S.-C.; Rowlands, D. D.; Lemoine, F. G.; Shirron, P. J.

    2015-01-01

    We are developing a compact tensor superconducting gravity gradiometer (SGG) for obtaining gravimetric measurements from planetary orbits. A new and innovative design gives a potential sensitivity of approximately 10(sup -4) E Hz(sup - 1/2)( 1 E = 10(sup -9 S(sup -2) in the measurement band up to 0.1 Hz (suitale for short wavelength static gravity) and of approximately 10(sup -4) E Hz(sup - 1/2) in the frequency band less than 1 mHz (for long wavelength time-variable gravity) from the same device with a baseline just over 10 cm. The measurement band and sensitiy can be optimally tuned in-flight during the mission by changing resonance frequencies, which allows meaurements of both static and time-variable gravity fields from the same mission. Significant advances in the technologies needed for space-based cryogenic instruments have been made in the last decade. In particular, the use of cryocoolers will alleviate the previously severe constraint on mission lifetime imposed by the use of liquid helium, enabling mission durations in the 5 - 10 year range.

  19. Investigating Alfvénic wave propagation in coronal open-field regions.

    PubMed

    Morton, R J; Tomczyk, S; Pinto, R

    2015-01-01

    The physical mechanisms behind accelerating solar and stellar winds are a long-standing astrophysical mystery, although recent breakthroughs have come from models invoking the turbulent dissipation of Alfvén waves. The existence of Alfvén waves far from the Sun has been known since the 1970s, and recently the presence of ubiquitous Alfvénic waves throughout the solar atmosphere has been confirmed. However, the presence of atmospheric Alfvénic waves does not, alone, provide sufficient support for wave-based models; the existence of counter-propagating Alfvénic waves is crucial for the development of turbulence. Here, we demonstrate that counter-propagating Alfvénic waves exist in open coronal magnetic fields and reveal key observational insights into the details of their generation, reflection in the upper atmosphere and outward propagation into the solar wind. The results enhance our knowledge of Alfvénic wave propagation in the solar atmosphere, providing support and constraints for some of the recent Alfvén wave turbulence models. PMID:26213234

  20. Evaluating three trace metal contaminated sites: a field and laboratory investigation.

    PubMed

    Murray, P; Ge, Y; Hendershot, W H

    2000-01-01

    Selecting guidelines to evaluate elevated metals in urban brownfields is hindered by the lack of information for these sites on ecosystem structure and function. A study was performed to compare three trace metal-contaminated sites in the metropolitan Montreal area. The goal was to obtain an idea of the organisms that may be present on urban brownfields and to measure if elevated metals alter the presence and activity of the indigenous biota. Field and laboratory studies were conducted using simple methodologies to determine the extent to which microbial activity affected by trace metal content, to assess diversity of plant and soil invertebrate communities and to measure phytoaccumulation of trace metals. It was found that microbial activity, as measured by substrate-induced respiration (SIR) and nitrification, was not affected by the levels of soil Cd, Cu, Ni, Pb and Zn recorded on the sites. Seven of the 12 invertebrate groups collected were sampled on soils with similar Cd, Cu, Ni, Pb and Zn concentrations. Diversity of plant species increased as a function of the length of time the sites had been inactive. Levels of metals in plant tissue were influenced by soil characteristics and not by total soil Cd, Cu, Ni, Pb and Zn.

  1. Investigating Alfvénic wave propagation in coronal open-field regions

    PubMed Central

    Morton, R. J.; Tomczyk, S.; Pinto, R.

    2015-01-01

    The physical mechanisms behind accelerating solar and stellar winds are a long-standing astrophysical mystery, although recent breakthroughs have come from models invoking the turbulent dissipation of Alfvén waves. The existence of Alfvén waves far from the Sun has been known since the 1970s, and recently the presence of ubiquitous Alfvénic waves throughout the solar atmosphere has been confirmed. However, the presence of atmospheric Alfvénic waves does not, alone, provide sufficient support for wave-based models; the existence of counter-propagating Alfvénic waves is crucial for the development of turbulence. Here, we demonstrate that counter-propagating Alfvénic waves exist in open coronal magnetic fields and reveal key observational insights into the details of their generation, reflection in the upper atmosphere and outward propagation into the solar wind. The results enhance our knowledge of Alfvénic wave propagation in the solar atmosphere, providing support and constraints for some of the recent Alfvén wave turbulence models. PMID:26213234

  2. Investigation of radiation fields outside the Sub-critical Assembly in Dubna.

    PubMed

    Seltbor, P; Lopatkin, A; Gudowski, W; Shvetsov, V; Polanski, A

    2005-01-01

    The radiation fields outside the planned experimental Sub-critical Assembly in Dubna (SAD) have been studied in order to provide a basis for the design of the concrete shielding that cover the reactor core. The effective doses around the reactor, induced by leakage of neutrons and photons through the shielding, have been determined for a shielding thickness varying from 100 to 200 cm. It was shown that the neutron flux and the effective dose is higher above the shielding than at the side of it, owing to the higher fraction of high-energy spallation neutrons emitted in the direction of the incident beam protons. At the top, the effective dose was found to be -150 microSv s(-1) for a concrete thickness of 100 cm, while -2.5 microSv s(-1) for a concrete thickness of 200 cm. It was also shown that the high-energy neutrons (> 10 MeV), which are created in the proton-induced spallation interactions in the target, contribute for the major part of the effective doses outside the reactor. PMID:16604676

  3. Field investigation of arsenic in ceramic pot filter-treated drinking water.

    PubMed

    Archer, A R; Elmore, A C; Bell, E; Rozycki, C

    2011-01-01

    Ceramic pot filters (CPFs) is one of several household water treatment technologies that is used to treat drinking water in developing areas. The filters have the advantage of being able to be manufactured using primarily locally available materials and local labor. However, naturally-occurring arsenic present in the clay used to make the filters has the potential to contaminate the water in excess of the World Health Organization drinking water standard of 0.01 mg/L. A manufacturing facility in Guatemala routinely rinses filters to reduce arsenic concentrations prior to distribution to consumers. A systemic study was performed to evaluate the change in arsenic concentrations with increasing volumes of rinse water. Arsenic field kit results were compared to standard method laboratory results, and dissolved versus suspended arsenic concentrations in CPF-treated water were evaluated. The results of the study suggest that rinsing is an effective means of mitigating arsenic leached from the filters, and that even in the absence of a formal rinsing program, routine consumer use may result in the rapid decline of arsenic concentrations. More importantly, the results indicate that filter manufacturers should give strong consideration to implementing an arsenic testing program.

  4. Conformational properties, torsional potential, and vibrational force field for methacryloyl fluoride - An ab initio investigation

    NASA Technical Reports Server (NTRS)

    Laskowski, B. C.; Jaffe, R. L.; Komornicki, A.

    1985-01-01

    The structure, torsional potentials, vibrational spectra, and harmonic force fields for s-cis and s-trans isomers of methacryloyl fluoride are examined to understand the conformational properties of the molecules and their relationship to macroscopic polymer properties. The structure is found to be in good agreement with experiment. It is shown by calculations that the energy difference between the cis and the transisomers is less than 1 kcal/mol at both the split valence and the split valence polarized levels, with the trans form favored. Analysis of the torsional potentials indicates that a rigid rotor model provides a reasonable description of the motion of the COF group in the molecule. The torsional barrier to interconvert the s-trans to the s-cis form is found to be 7.0 kcal/mol. A fit of the data to a three-term Fourier series shows that it is possible to reproduce the experimentally derived barrier, even though a direct determination indicates that the barrier is higher.

  5. A field investigation of perceived behavioral control and blood alcohol content: a pattern-oriented approach.

    PubMed

    Smith, Ryan C; Coyle, Patrick T; Baldner, Conrad; Bray, Bethany C; Geller, E Scott

    2013-04-01

    As the first field study of perceived behavioral control (PBC) to assess alcohol consumption with a physiological measure (i.e., blood alcohol content; BAC), the research examined the impact of intoxication on alcohol-specific PBC (APBC). In total, 665 passersby were recruited into the study at several late-night drinking locations near a large university campus. After answering questions regarding personal demographics and APBC, participants were administered a breath alcohol test (Lifeloc FC-20; ±.005mL/L). The average BAC of drinking participants was .096mL/L. A latent class analysis (LCA) was performed to classify participants based on APBC responses. Three classes emerged: high PBC, high controllability, and low controllability. Class membership varied as a function of gender and Greek-life membership. Blood alcohol content was a significant predictor of class membership. Results show a link between alcohol consumption and APBC that varies based on gender and Greek-life status. These findings are discussed with regard to their implications for a variety of prevention interventions.

  6. Experimental investigation of heating phenomena in linac mechanical interfaces due to RF field penetration

    SciTech Connect

    Fazio, M.V.; Reid, D.W.; Potter, J.M.

    1981-01-01

    In a high duty-factor, high-current, drift-tube linear accelerator, a critical interface exists between the drift-tube stem and the tank wall. This interface must provide vacuum integrity and RF continuity, while simultaneously allowing alignment flexibility. Because of past difficulties with RF heating of vacuum bellows and RF joints encountered by others, a paucity of available information, and the high reliability requirement for the Fusion Materials Irradiation Test (FMIT) accelerator, a program was initiated to study the problem. Because RF heating is the common failure mode, an attempt was made to find a correlation between the drift-tube-stem/linac-tank interface geometry and RF field penetration from the tank into the interface region. Experiments were performed at 80 MHz on an RF structure designed to simulate the conditions to which a drift-tube stem and vacuum bellows are exposed in a drift-tube linac. Additional testing was performed on a 367-MHz model of the FMIT prototype drift-tube linac. Experimental results, and a method to predict excessive RF heating, is presented. An experimentally tested solution to the problem is discussed.

  7. Investigating Organic Field Effect Transistors with Reduced Graphene Oxide Electrodes of Different Reduction Efficiency

    NASA Astrophysics Data System (ADS)

    Kang, Narae; Khondaker, Saiful I.

    2014-03-01

    Organic field-effect transistors (OFETs) have received much attention owing to their flexibility, transparency, and low-cost of fabrication. One of the major limiting factors in fabricating high-performance OFET is the large injection barrier at metal electrodes/organic semiconductor interface, which results in low charge injection from metal electrodes to organic semiconductor. Graphene has been suggested as an alternative electrode material due to its high work function, extraordinary electronic properties and strong π- π interaction with organic molecule; all of which can reduce the injection barrier at the electrode/organic interface. In particular, due to its solubility, large scale production, and its chemical functionality, reduced graphene oxide (RGO) has been introduced as a promising electrode for OFETs. Its tunability of electrical and optical properties can make RGO a highly desired electrode material because the work function match is essential for better charge injection at electrode/organic interface. In this talk, we will discuss the fabrication of OFETs with RGO of different reduction efficiency as an electrode material. We will also present the electrical transport properties fabricated devices.

  8. Field investigation of duct system performance in California light commercial buildings

    SciTech Connect

    Delp, W.W.; Matson, N.E.; Tschudy, E.

    1997-12-09

    This paper discusses field measurements of duct system performance in fifteen systems located in eight northern California buildings. Light commercial buildings, one- and two-story with package roof-top HVAC units, make up approximately 50% of the non-residential building stock in the U.S. Despite this fact little is known about the performance of these package roof-top units and their associated ductwork. These simple systems use similar duct materials and construction techniques as residential systems (which are known to be quite leaky). This paper discusses a study to characterize the buildings, quantify the duct leakage, and analyze the performance of the ductwork in these types of buildings. The study tested fifteen systems in eight different buildings located in northern California. All of these buildings had the ducts located in the cavity between the drop ceiling and the roof deck. In 50% of these buildings, this cavity was functionally outside the building`s air and thermal barriers. The effective leakage area of the ducts in this study was approximately 2.6 times that in residential buildings. This paper looks at the thermal analysis of the ducts, from the viewpoint of efficiency and thermal comfort. This includes the length of a cycle, and whether the fan is always on or if it cycles with the cooling equipment. 66% of the systems had frequent on cycles of less than 10 minutes, resulting in non-steady-state operation.

  9. Influence of hydrogeochemical processes on zero-valent iron reactive barrier performance: a field investigation.

    PubMed

    Liang, Liyuan; Moline, Gerilynn R; Kamolpornwijit, Wiwat; West, Olivia R

    2005-08-01

    Geochemical and mineralogical changes were evaluated at a field Fe0-PRB at the Oak Ridge Y-12 site concerning operation performance during the treatment of U in high NO3- groundwater. In the 5-year study period, the Fe0 remained reactive as shown in pore-water monitoring data, where increases in pH and the removal of certain ionic species persisted. However, coring revealed varying degrees of cementation. After 3.8-year treatment, porosity reduction of up to 41.7% was obtained from mineralogical analysis on core samples collected at the upgradient gravel-Fe0 interface. Elsewhere, Fe0 filings were loose with some cementation. Fe0 corrosion and pore volume reduction at this site are more severe due to the presence of NO3- at a high level. Tracer tests indicate that hydraulic performance deteriorated: the flow distribution was heterogeneous and under the influence of interfacial cementation a large portion of water was diverted around the Fe0 and transported outside the PRB. Based on the equilibrium reductions of NO3- and SO4(2-) by Fe0 and mineral precipitation, geochemical modeling predicted a maximum of 49% porosity loss for 5 years of operation. Additionally, modeling showed a spatial distribution of mineral precipitate volumes, with the maximum advancing from the interface toward downgradient with time. This study suggests that water quality monitoring, coupled with hydraulic monitoring and geochemical modeling, can provide a low-cost method for assessing PRB performance.

  10. Influence of hydrogeochemical processes on zero-valent iron reactive barrier performance: A field investigation

    NASA Astrophysics Data System (ADS)

    Liang, Liyuan; Moline, Gerilynn R.; Kamolpornwijit, Wiwat; West, Olivia R.

    2005-08-01

    Geochemical and mineralogical changes were evaluated at a field Fe 0-PRB at the Oak Ridge Y-12 site concerning operation performance during the treatment of U in high NO 3- groundwater. In the 5-year study period, the Fe 0 remained reactive as shown in pore-water monitoring data, where increases in pH and the removal of certain ionic species persisted. However, coring revealed varying degrees of cementation. After 3.8-year treatment, porosity reduction of up to 41.7% was obtained from mineralogical analysis on core samples collected at the upgradient gravel-Fe 0 interface. Elsewhere, Fe 0 filings were loose with some cementation. Fe 0 corrosion and pore volume reduction at this site are more severe due to the presence of NO 3- at a high level. Tracer tests indicate that hydraulic performance deteriorated: the flow distribution was heterogeneous and under the influence of interfacial cementation a large portion of water was diverted around the Fe 0 and transported outside the PRB. Based on the equilibrium reductions of NO 3- and SO 42- by Fe 0 and mineral precipitation, geochemical modeling predicted a maximum of 49% porosity loss for 5 years of operation. Additionally, modeling showed a spatial distribution of mineral precipitate volumes, with the maximum advancing from the interface toward downgradient with time. This study suggests that water quality monitoring, coupled with hydraulic monitoring and geochemical modeling, can provide a low-cost method for assessing PRB performance.

  11. Influence of hydrogeochemical processes on zero-valent iron reactive barrier performance: a field investigation.

    PubMed

    Liang, Liyuan; Moline, Gerilynn R; Kamolpornwijit, Wiwat; West, Olivia R

    2005-11-01

    Geochemical and mineralogical changes were evaluated at a field Fe0-PRB at the Oak Ridge Y-12 site concerning operation performance during the treatment of U in high NO3- groundwater. In the 5-yr study period, the Fe0 remained reactive as shown in pore water monitoring data, where increases in pH and the removal of certain ionic species persisted. However, coring revealed varying degrees of cementation. After 3.8-yr treatment, porosity reduction of up to 41.7% was obtained from mineralogical analysis on core samples collected at the upgradient gravel-Fe0 interface. Elsewhere, Fe0 filings were loose with some cementation. Fe0 corrosion and pore volume reduction at this site are more severe due to the presence of NO3- at a high level. Tracer tests indicate that hydraulic performance deteriorated: the flow distribution was heterogeneous and under the influence of interfacial cementation a large portion of water was diverted around the Fe0 and transported outside the PRB. Based on the equilibrium reductions of NO3- and SO4(2-) by Fe0 and mineral precipitation, geochemical modeling predicted a maximum of 49% porosity loss for 5 yr of operation. Additionally, modeling showed a spatial distribution of mineral precipitate volumes, with the maximum advancing from the interface toward downgradient with time. This study suggests that water quality monitoring, coupled with hydraulic monitoring and geochemical modeling, can provide a low-cost method for assessing PRB performance.

  12. Characterising the structural heterogeneity of Irish hard rock aquifers: insights from field-scale geophysical investigations

    NASA Astrophysics Data System (ADS)

    Cassidy, R.; Comte, J.-C.; Nitsche, J.; Ofterdinger, U.; Flynn, R.

    2012-04-01

    In spite of extending over 65% of the Irish land surface, fluid movement in Irish hard rock aquifers, and the interaction between ground- and surface-water bodies, is poorly understood. Their management and protection is required under the Water Framework Directive, yet there have been few studies to date and conceptual models have not been developed specifically for an Irish context. Conceptualising flow in such aquifers requires a comprehensive, three-dimensional understanding of the structure and zonation of the overburden and bedrock units. Four general zones are recognised, extending from the (1) unconsolidated overburden, through a physically and chemically weathered (2) transition zone into the (3) shallow and (4) deep fractured bedrock. Beyond this simple, layered categorisation, however, little research has been undertaken to investigate the 3D continuity and possible variations of this model at the catchment-scale. In particular the roles played by bedrock lithology and the depositional history of the region (including the influence of the recent glaciation) with regard to the development of the weathered units, are of importance for the generalisation of the conceptual understanding for this region. Although providing accurate information at point locations in an aquifer, borehole (hydraulic, geophysical or hydrochemical) investigations are often insufficient to account for the catchment-scale variability in fractured rock and must be put in context within a larger scale of investigation. Surface geophysical methods provide a valuable tool in this respect, as the range of scales over which they can be applied provides a means of identifying relevant structural features across the relevant hydrogeological scales. A suite of geophysical methods were applied to the characterisation of aquifer structure at 3 sites, covering low- to high-grade metamorphic units in the North and West of Ireland. Electrical resistivity tomography along kilometre-scale transects

  13. Life under extreme energy limitation: a synthesis of laboratory- and field-based investigations.

    PubMed

    Lever, Mark A; Rogers, Karyn L; Lloyd, Karen G; Overmann, Jörg; Schink, Bernhard; Thauer, Rudolf K; Hoehler, Tori M; Jørgensen, Bo Barker

    2015-09-01

    The ability of microorganisms to withstand long periods with extremely low energy input has gained increasing scientific attention in recent years. Starvation experiments in the laboratory have shown that a phylogenetically wide range of microorganisms evolve fitness-enhancing genetic traits within weeks of incubation under low-energy stress. Studies on natural environments that are cut off from new energy supplies over geologic time scales, such as deeply buried sediments, suggest that similar adaptations might mediate survival under energy limitation in the environment. Yet, the extent to which laboratory-based evidence of starvation survival in pure or mixed cultures can be extrapolated to sustained microbial ecosystems in nature remains unclear. In this review, we discuss past investigations on microbial energy requirements and adaptations to energy limitation, identify gaps in our current knowledge, and outline possible future foci of research on life under extreme energy limitation.

  14. Field Investigations of Winter Transmission of Eastern Equine Encephalitis Virus in Florida

    PubMed Central

    Bingham, Andrea M.; Burkett-Cadena, Nathan D.; Hassan, Hassan K.; McClure, Christopher J. W.; Unnasch, Thomas R.

    2014-01-01

    Studies investigating winter transmission of Eastern equine encephalitis virus (EEEV) were conducted in Hillsborough County, Florida. The virus was detected in Culiseta melanura and Anopheles quadrimaculatus in February 2012 and 2013, respectively. During the winter months, herons were the most important avian hosts for all mosquito species encountered. In collections carried out in the summer of 2011, blood meals taken from herons were still common, but less frequently encountered than in winter, with an increased frequency of mammalian- and reptile-derived meals observed in the summer. Four wading bird species (Black-crowned Night Heron [Nycticorax nycticorax], Yellow-crowned Night Heron [Nyctanassa violacea], Anhinga [Anhinga anhinga], and Great Blue Heron [Ardea herodias]) were most frequently fed upon by Cs. melanura and Culex erraticus, suggesting that these species may participate in maintaining EEEV during the winter in Florida. PMID:25070997

  15. Field investigations of winter transmission of eastern equine encephalitis virus in Florida.

    PubMed

    Bingham, Andrea M; Burkett-Cadena, Nathan D; Hassan, Hassan K; McClure, Christopher J W; Unnasch, Thomas R

    2014-10-01

    Studies investigating winter transmission of Eastern equine encephalitis virus (EEEV) were conducted in Hillsborough County, Florida. The virus was detected in Culiseta melanura and Anopheles quadrimaculatus in February 2012 and 2013, respectively. During the winter months, herons were the most important avian hosts for all mosquito species encountered. In collections carried out in the summer of 2011, blood meals taken from herons were still common, but less frequently encountered than in winter, with an increased frequency of mammalian- and reptile-derived meals observed in the summer. Four wading bird species (Black-crowned Night Heron [Nycticorax nycticorax], Yellow-crowned Night Heron [Nyctanassa violacea], Anhinga [Anhinga anhinga], and Great Blue Heron [Ardea herodias]) were most frequently fed upon by Cs. melanura and Culex erraticus, suggesting that these species may participate in maintaining EEEV during the winter in Florida.

  16. A field investigation of phreatophyte-induced fluctuations in the water table

    USGS Publications Warehouse

    Butler, J.J.; Kluitenberg, G.J.; Whittemore, D.O.; Loheide, S.P.; Jin, W.; Billinger, M.A.; Zhan, X.

    2007-01-01

    Hydrographs from shallow wells in vegetated riparian zones frequently display a distinctive pattern of diurnal water table fluctuations produced by variations in plant water use. A multisite investigation assessed the major controls on these fluctuations and the ecohydrologic insights that can be gleaned from them. Spatial and temporal variations in the amplitude of the fluctuations are primarily a function of variations in (1) the meteorological drivers of plant water use, (2) vegetation density, type, and vitality, and (3) the specific yield of sediments in the vicinity of the water table. Past hydrologic conditions experienced by the riparian zone vegetation, either in previous years or earlier within the same growing season, are also an important control. Diurnal water table fluctuations can be considered a diagnostic indicator of groundwater consumption by phreatophytes at most sites, so the information embedded within these fluctuations should be more widely exploited in ecohydrologic studies. Copyright 2007 by the American Geophysical Union.

  17. Scale Dependence of Soil Permeability to Air: Measurement Method and Field Investigation

    SciTech Connect

    Garbesi, K.; Sextro, R.G.; Robinson, Arthur L.; Wooley, J.D.; Owens, J.A.; Nazaroff, W.W.

    1995-11-01

    This work investigates the dependence soil air-permeability on sampling scale in near-surface unsaturated soils. A new dual-probe dynamic pressure technique was developed to measure permeability in situ over different length scales and different spatial orientations in the soil. Soils at three sites were studied using the new technique. Each soil was found to have higher horizontal than vertical permeability. Significant scale dependence of permeability was also observed at each site. Permeability increased by a factor of 20 as sampling scale increased from 0.1 to 2 m in a sand soil vegetated with dry grass, and by a factor of 15 as sampling scale increased from 0.1 to 3.5 m in a sandy loam with mature Coast Live Oak trees (Quercus agrifolia). The results indicate that standard methods of permeability assessment can grossly underestimate advective transport of gas-phase contaminants through soils.

  18. Three-dimensional line-field Fourier domain optical coherence tomography for in vivo dermatological investigation.

    PubMed

    Yasuno, Yoshiaki; Endo, Takashi; Makita, Shuichi; Aoki, Gouki; Itoh, Masahide; Yatagai, Toyohiko

    2006-01-01

    We demonstrate 3-D optical coherence tomography using only 1-D mechanical scanning. This system uses the principle of Fourier domain optical coherence tomography for depth resolution, 1-D imaging for lateral vertical resolution, and mechanical scanning by a galvanometer for lateral horizontal resolution. An in vivo human fingerpad is investigated in three dimensions with an image size of 480 points (vertical) x 300 points (horizontal) x 1024 points (depth), which corresponds to 2.1 x 1.4 x 1.3 mm. The acquisition time for a single cross section is 1 ms and that for a single volume is 10 s. The system sensitivity is 75.6 dB at a probe beam power of 1.1 mW. PMID:16526891

  19. A field investigation into a suspected outbreak of pyrrolizidine alkaloid toxicosis in horses in western Queensland.

    PubMed

    Robinson, B; Gummow, B

    2015-03-01

    A disease outbreak investigation was conducted in western Queensland to investigate a rare suspected outbreak of pyrrolizidine alkaloid (PA) toxicosis in horses. Thirty five of 132 horses depastured on five properties on the Mitchell grass plains of western Queensland died in the first six months of 2010. Clinical-pathological findings were consistent with PA toxicosis. A local variety of Crotalaria medicaginea was the only hepatotoxic plant found growing on affected properties. Pathology reports and departure and arrival dates of two brood mares provided evidence of a pre wet season exposure period. All five affected properties experienced a very dry spring and early summer preceded by a large summer wet season. The outbreak was characterised as a point epidemic with a sudden peak of deaths in March followed by mortalities steadily declining until the end of June. The estimated morbidity (serum IGG>50IU/L) rate was 76%. Average crude mortality was 27% but higher in young horses (67%) and brood mares (44%). Logistic regression analysis showed that young horses and brood mares and those grazing denuded pastures in December were most strongly associated with dying whereas those fed hay and/or grain based supplements were less likely to die. This is the first detailed study of an outbreak of PA toxicosis in central western Queensland and the first to provide evidence that environmental determinants were associated with mortality, that the critical exposure period was towards the end of the dry season, that supplementary feeding is protective and that denuded pastures and the horses physiological protein requirement are risk factors.

  20. Investigating electrokinetics application for in-situ inorganic oil field scale control

    NASA Astrophysics Data System (ADS)

    Hashaykeh, Manal A. I. Albadawi

    Oil well scale formation and deposition is an expensive problem and could be a nightmare for any production engineer if the rate of deposition is rapid as in the case of North Sea oil fields. Inorganic scales accumulate in surface and subsurface equipment causing a reduction in oil production and severe damage for production equipment. The major components of most oil field scale deposits are BaSO4, CaSO4 and SrSO4, which are formed due to incompatible mixing of reservoir formation water and sea water flooded in secondary enhanced oil recovery (EOR) processes. This work focuses on BaSO4 scale as it is one of the toughest scale components to be removed either by chemical means or mechanical means. Scale control methods usually involve complicated treatment using chemical dissolution methods as primary attempt and mechanical scrapping or jetting methods in case of failure of the chemical means. In this work, we devised a novel in-situ scale control method benefiting from the application of direct current (DC) which involves some of the electrokinetic (EK) phenomena. The applications of EK has been proved in our laboratories yielding high efficiency in capturing barium and separating it from sulfate before reaching the production well, thus preventing deposition in the production wellbore or wellbore formation. This objective was evaluated in our lab designed EK apparatus in three parts. In part-1, an 18.5 cm unconsolidated sand core was used which produced inconsistent results. This problem was overcome in part-2, where the porous media involved 46 cm consolidated sandcore. This also partly fulfilled the purpose of upscaling. In part-3, the porous media was extended to a 100 cm spatial distance between the injection and production wells. For all the experiments the reservoir models were made of 125 µm uniform sand particles and followed a final consolidation pressure of 30 psi. The EK-reservoir model contains 2 basic junctions; one of them injecting a 500 ppm SO4 2

  1. Phreatic activity on Dominica (Lesser Antilles) - constraints from field investigations and experimental volcanology

    NASA Astrophysics Data System (ADS)

    Mayer, K.; Scheu, B.; Rott, S.; Dingwell, D. B.; Gilg, H. A.

    2015-12-01

    Dominica has one of the highest concentrations of potentially active volcanoes worldwide. In addition to this activity, abundant geothermal manifestations are observed at the surface, especially in the southern part of the Island. The Boiling Lake - Valley of Desolation area is one of the most vigorous ones, hosting hot springs, mud pools, fumaroles, and steam vents. Intense alteration and many, predominantly phreatic explosive features, of varying scales characterize the whole area. The most prominent manifestation of such a phreatic eruption is the Boiling Lake, a high temperature volcanic crater lake and popular tourist attraction. Thus phreatic activity is one of the main volcanic hazards on the Island, to date largely unpredictable in time and magnitude. The conditions causing these eruptions, as well as their trigger mechanisms and magnitude need to be better understood. Field mapping, together with the determination of in situ physical (density, humidity, permeability) and mechanical (strength, stiffness) properties yield the characterization of 3 main active areas with high probabilities for phreatic events. Rapid decompression experiments on samples from these areas gave insights into the fragmentation and ejection behavior. These experiments were flanked by chemical analyses and laboratory characterization (porosity, granulometry). The results show that hydrothermal alteration likely plays a crucial role in determining the probability of explosive events. High temperature acidic fluids, which lead to an intense alteration of the host rock's mineralogy, change the rock properties favoring the formation of a low permeability layer above the vent and increasing the likelihood of the site experiencing a steam-blast eruption. The contribution of these results to constraining the conditions for and the dynamics involved in phreatic eruptions provides valuable input to hazard assessment of these frequently visited sites on Dominica and similar hydrothermally

  2. Dielectric properties of concrete at S and X bands: a near-field investigation

    NASA Astrophysics Data System (ADS)

    Bois, Karl J.; Benally, Aaron D.; Nowak, Paul S.; Zoughi, Reza

    1999-10-01

    When inspecting concrete structures with microwaves (radars, embedded microwave sensors, modulated scattering techniques, etc.) the dielectric properties of the concrete are considered as a ground truth data and must be known. During the past three years, extensive microwave near-field measurements of the reflection properties of concrete specimens with varying water-to-cement (w/c) ratios, sand-to-cement (s/c) ratios and coarse aggregate-to-cement (ca/c) ratios have been conducted. These experiments were conducted using open-ended rectangular waveguide probes radiating into a half-space of these concrete specimens. These measurements were conducted at S- (2.6 - 3.95 GHz) and X-bands (8.2 - 12.4 GHz). Moreover, an electromagnetic model, which took into account the presence of higher-order modes at the waveguide aperture, was also used to model this process. Finally, a root finding technique was applied to calculate the effective dielectric properties of the concrete specimens. This paper presents the results of these measurements and calculations as they related to determining the dielectric properties of concrete. Since concrete is a heterogeneous material, the results from many locations in a specimen are reported rendering effective dielectric properties showing the mean and standard deviation of the measurements and calculations at these frequency bands. The results of the dielectric constant can also be used to predict the reflection properties of concrete when using a standoff distance (i.e. non-contact measurements) or when using other types of microwave sensors.

  3. [Fusion of field and laboratory studies on the investigation of arsenic].

    PubMed

    Kumagai, Yoshito

    2009-10-01

    Arsenic is ubiquitously distributed in nature throughout Earth's crust and thus the major source of exposure to this metalloid for the general population is naturally polluted drinking water from wells. In East Asia, more than 30 million people are chronically exposed to arsenic. Interestingly, the manifestations of vascular diseases caused by prolonged exposure to arsenic are consistent with those induced by impaired production of endothelium-derived nitric oxide (NO). However, no information has been available on the relation between NO synthesis and chronic arsenic poisoning in humans. A cross-sectional study in an endemic area of chronic arsenic poisoning in Inner Mongolia and experimental animal studies indicated that long-term exposure to arsenic by drinking water causes reduction of NO production in endothelial cells. Subsequent examinations with rabbits showed that decreased NO production during arsenic exposure is, at least in part, due to an "uncoupling" of endothelial NO synthase evoked by decreased levels of (6R)-5,6,7,8-tetrahydro-L-biopterin (BH(4)), a cofactor of the enzyme, leading to endothelial dysfunction. Furthermore, an intervention study in the area of chronic arsenic poisoning in Inner Mongolia suggested that decreased NO levels and peripheral vascular disease in arsenosis patients can be reversed by exposure cessation. In our cellular experiments, we found that arsenic exposure causes adaptive responses against oxidative stress and arsenic cytotoxicity through Nrf2 activation. This review summarizes the results of our recent studies on a fusion of field and laboratory studies on the chronic arsenic poisoning and cellular protection against the metalloid.

  4. Investigating the response of the electron temperature to field-aligned currents using SWARM observations

    NASA Astrophysics Data System (ADS)

    Zhu, J.; Ridley, A. J.; Luhr, H.

    2015-12-01

    A statistic study of the electron temperature (Te) response to field-aligned current (FAC) derived with measurements from the Swarm satellite A are presented in this study. Considering the variability in the widths and latitudes of FACs, simply superposing FACs by each orbit significantly reduces the size and smoothes over the FAC features. Therefore, in order to better represent the FACs patterns, a potential FAC region was extracted from every orbit, and normalized by its meridional width and maximum FAC magnitude. FACs were smoothed within a 20-second window, so as to remove any small variability due to Alfven waves. A potential FAC region was identified as a real FAC region by a logistic regression model. The FAC, as well as the corresponding filtered Te, were superposed at a normalized FAC region for each magnetic local time. The filtered Te was obtained by subtracting an 80-second (~5 degree) average from a 20-second (<1 degree) average in order to extract the variation with a comparable scale as the FACs. It was found that Te tended to increase in the upward-FAC region, while it decreased in the downward-FAC region, which was caused by the combination effects of the thermal advection due to the drift of electrons, and the thermoelectric heating by FACs on electrons. The correlation between Te and FAC was MLT dependent, and was influenced by season and geomagnetic disturbances. A linear relationship between Te and FAC was shown in the dusk sector (from noon to midnight), where 1uA/m2 of FAC increased Te by ~100K. The dawn sector (from midnight to noon) showed a weaker correlation between Te and FAC. The correlation between Te and the FAC was higher in winter than it was in summer, and was higher during low geomagnetic conditions (AE<120).

  5. Exploring wildfire impact on post-fire runoff water quality: field and laboratory investigation

    NASA Astrophysics Data System (ADS)

    Chen, L.; Acharya, K.; Miller, J.; Berli, M.

    2014-12-01

    Wildfire can have complex effects on physical and chemical properties of soil and post-fire runoff. Water quality issues in the post-fire runoff may have caused catastrophic events in aquatic ecosystem in the Virgin River in Southwestern U.S. To examined the mechanisms of the impact of wildfire on post-fire runoff water quality, field sampling and experiments were conducted on surfaces of various fuel types at a burned site in the Virgin River Watershed. Rainfall simulation tests were performed to generate runoff for water quality test including in-situ DO and pH measurement and laboratory tests on a number of water quality constituents. Soil/ash samples collected from burned surfaces were applied in a laboratory test to produce solutions of different concentrations and DO changes over a 24-hour period were measured. Results confirmed that, for runoff carrying large amounts of sediment or debris, DO values can be substantially reduced to a level close to or lower than 5 mg/L. Fire effects may enhance this trend, but is not necessarily a critical reason for the reduction of DO levels. Laboratory runoff and soil sample analysis show that the post-fire runoff in this watershed may contain a large amount of ammonia (NH3 and NH4+). The concentration of ammonia can be higher than the lethal level to many (if not all) fish species. Fire effects appear to have a significant impact on the ammonia level, which lead to an increase of several times to one order of magnitude in the ammonia concentration in the runoff or soil solution under burned conditions. These results provide information to better understand post-fire water quality in this and similar watersheds.

  6. On the importance of diffusion and compound-specific mixing for groundwater transport: an investigation from pore to field scale.

    PubMed

    Rolle, Massimo; Chiogna, Gabriele; Hochstetler, David L; Kitanidis, Peter K

    2013-10-01

    Mixing processes significantly affect and limit contaminant transport and transformation rates in the subsurface. The correct quantification of mixing in groundwater systems must account for diffusion, local-scale dispersion and the flow variability in heterogeneous flow fields (e.g., flow-focusing in high-conductivity and de-focusing in low-conductivity zones). Recent results of multitracer laboratory experiments revealed the significant effect of compound-specific diffusive properties on the physical displacement of dissolved species across a representative range of groundwater flow velocities. The goal of this study is to investigate the role of diffusion and compound-specific mixing for solute transport across a range of scales including: (i) pore-scale (~10⁻² m), (ii) laboratory bench-scale (~10⁰ m) and (iii) field-scale (~10² m). We investigate both conservative and mixing-controlled reactive transport using pore-scale modeling, flow-through laboratory experiments and simulations, and field-scale numerical modeling of complex heterogeneous hydraulic conductivity fields with statistical properties similar to the ones reported for the extensively investigated Borden aquifer (Ontario, Canada) and Columbus aquifer (Mississippi, USA, also known as MADE site). We consider different steady-state and transient transport scenarios. For the conservative cases we use as a metric of mixing the exponential of the Shannon entropy to quantify solute dilution either in a given volume (dilution index) or in a given solute flux (flux-related dilution index). The decrease in the mass and the mass-flux of the contaminant plumes is evaluated to quantify reactive mixing. The results show that diffusive processes, occurring at the small-scale of a pore channel, strongly affect conservative and reactive solute transport at larger macroscopic scales. The outcomes of our study illustrate the need to consider and properly account for compound-specific diffusion and mixing

  7. On the importance of diffusion and compound-specific mixing for groundwater transport: An investigation from pore to field scale

    NASA Astrophysics Data System (ADS)

    Rolle, Massimo; Chiogna, Gabriele; Hochstetler, David L.; Kitanidis, Peter K.

    2013-10-01

    Mixing processes significantly affect and limit contaminant transport and transformation rates in the subsurface. The correct quantification of mixing in groundwater systems must account for diffusion, local-scale dispersion and the flow variability in heterogeneous flow fields (e.g., flow-focusing in high-conductivity and de-focusing in low-conductivity zones). Recent results of multitracer laboratory experiments revealed the significant effect of compound-specific diffusive properties on the physical displacement of dissolved species across a representative range of groundwater flow velocities. The goal of this study is to investigate the role of diffusion and compound-specific mixing for solute transport across a range of scales including: (i) pore-scale (~ 10- 2 m), (ii) laboratory bench-scale (~ 100 m) and (iii) field-scale (~ 102 m). We investigate both conservative and mixing-controlled reactive transport using pore-scale modeling, flow-through laboratory experiments and simulations, and field-scale numerical modeling of complex heterogeneous hydraulic conductivity fields with statistical properties similar to the ones reported for the extensively investigated Borden aquifer (Ontario, Canada) and Columbus aquifer (Mississippi, USA, also known as MADE site). We consider different steady-state and transient transport scenarios. For the conservative cases we use as a metric of mixing the exponential of the Shannon entropy to quantify solute dilution either in a given volume (dilution index) or in a given solute flux (flux-related dilution index). The decrease in the mass and the mass-flux of the contaminant plumes is evaluated to quantify reactive mixing. The results show that diffusive processes, occurring at the small-scale of a pore channel, strongly affect conservative and reactive solute transport at larger macroscopic scales. The outcomes of our study illustrate the need to consider and properly account for compound-specific diffusion and mixing

  8. On the importance of diffusion and compound-specific mixing for groundwater transport: an investigation from pore to field scale.

    PubMed

    Rolle, Massimo; Chiogna, Gabriele; Hochstetler, David L; Kitanidis, Peter K

    2013-10-01

    Mixing processes significantly affect and limit contaminant transport and transformation rates in the subsurface. The correct quantification of mixing in groundwater systems must account for diffusion, local-scale dispersion and the flow variability in heterogeneous flow fields (e.g., flow-focusing in high-conductivity and de-focusing in low-conductivity zones). Recent results of multitracer laboratory experiments revealed the significant effect of compound-specific diffusive properties on the physical displacement of dissolved species across a representative range of groundwater flow velocities. The goal of this study is to investigate the role of diffusion and compound-specific mixing for solute transport across a range of scales including: (i) pore-scale (~10⁻² m), (ii) laboratory bench-scale (~10⁰ m) and (iii) field-scale (~10² m). We investigate both conservative and mixing-controlled reactive transport using pore-scale modeling, flow-through laboratory experiments and simulations, and field-scale numerical modeling of complex heterogeneous hydraulic conductivity fields with statistical properties similar to the ones reported for the extensively investigated Borden aquifer (Ontario, Canada) and Columbus aquifer (Mississippi, USA, also known as MADE site). We consider different steady-state and transient transport scenarios. For the conservative cases we use as a metric of mixing the exponential of the Shannon entropy to quantify solute dilution either in a given volume (dilution index) or in a given solute flux (flux-related dilution index). The decrease in the mass and the mass-flux of the contaminant plumes is evaluated to quantify reactive mixing. The results show that diffusive processes, occurring at the small-scale of a pore channel, strongly affect conservative and reactive solute transport at larger macroscopic scales. The outcomes of our study illustrate the need to consider and properly account for compound-specific diffusion and mixing

  9. Single-proton resonant states and the isospin dependence investigated by Green’s function relativistic mean field theory

    NASA Astrophysics Data System (ADS)

    Sun, T. T.; Niu, Z. M.; Zhang, S. Q.

    2016-08-01

    The relativistic mean field theory formulated with Green’s function method (RMF-GF) is applied to investigate single-proton resonant states and isospin dependence. The calculated energies and widths for the single-proton resonant states in {}120{{Sn}} are in good agreement with previous investigations. The single-proton resonant states of the Sn isotopes and the N = 82 isotones are systematically studied and it is shown that the calculated energies and widths decrease monotonically with the increase of neutron number while increase monotonically with the increase of proton number. To further examine the evolutions of the single-proton resonant states, their dependence on the depth, radius and diffuseness of nuclear potential is investigated with the help of an analytic Woods-Saxon potential, and it is found that the increase of radius plays the most important role in the cross phenomenon appearing in the single-proton resonant states of the Sn isotopes.

  10. Field detection capability of immunochemical assays during criminal investigations involving the use of TNT.

    PubMed

    Romolo, Francesco Saverio; Ferri, Elida; Mirasoli, Mara; D'Elia, Marcello; Ripani, Luigi; Peluso, Giuseppe; Risoluti, Roberta; Maiolini, Elisabetta; Girotti, Stefano

    2015-01-01

    The capability to collect timely information about the substances employed on-site at a crime scene is of fundamental importance during scientific investigations in crimes involving the use of explosives. TNT (2,4,6-trinitrotoluene) is one of the most employed explosives in the 20th century. Despite the growing use of improvised explosives, criminal use and access to TNT is not expected to decrease. Immunoassays are simple and selective analytical tests able to detect molecules and their immunoreactions can occur in portable formats for use on-site. This work demonstrates the application of three immunochemical assays capable of detecting TNT to typical forensic samples from experimental tests: an indirect competitive ELISA with chemiluminescent detection (CL-ELISA), a colorimetric lateral flow immunoassay (LFIA) based on colloidal gold nanoparticles label, and a chemiluminescent-LFIA (CL-LFIA). Under optimised working conditions, the LOD of the colorimetric LFIA and CL-LFIA were 1 μg mL(-1) and 0.05 μg mL(-1), respectively. The total analysis time for LFIAs was 15 min. ELISA proved to be a very effective laboratory approach, showing very good sensitivity (LOD of 0.4 ng mL(-1)) and good reproducibility (CV value about 7%). Samples tested included various materials involved in controlled explosions of improvised explosive devices (IEDs), as well as hand swabs collected after TNT handling tests. In the first group of tests, targets covered with six different materials (metal, plastic, cardboard, carpet fabric, wood and adhesive tape) were fixed on top of wooden poles (180 cm high). Samples of soil from the explosion area and different materials covering the targets were collected after each explosion and analysed. In the second group of tests, hand swabs were collected with and without hand washing after volunteers simulated the manipulation of small charges of TNT. The small amount of solution required for each assay allows for several analyses. Results of

  11. Field and flume investigations of the effects of logjams and woody debris on streambed morphology

    NASA Astrophysics Data System (ADS)

    Leung, V.; Montgomery, D. R.; McHenry, M. L.

    2014-12-01

    Interactions among wood debris, fluid flow and sediment transport in rivers are first-order controls on channel morphodynamics, affecting streambed morphology, sediment transport, sediment storage and aquatic habitat. Woody debris increases the hydraulic and topographic complexity in rivers, leading to a greater diversity of aquatic habitats and an increase in the number of large pools that are important fish habitat and breeding grounds. In the past decade, engineered logjams have become an increasingly used tool in river management for simultaneously decreasing the rate of riverbank migration and improving aquatic habitat. Sediment deposits around woody debris build up riverbanks and counteract bank migration caused by erosion. Previous experiments on flow visualization around model woody debris suggest the amount of sediment scour and deposition are primarily related to the presence of roots and the obstructional area of the woody debris. We present the results of fieldwork and sediment transport experiments of streambed morphology around stationary woody debris. Field surveys on the Hoh River and the Elwha River, WA, measure the local streambed morphology around logjams and individual pieces of woody debris. We quantified the amount of local scour and dam-removal related fine sediment deposition around natural and engineered logjams of varying sizes and construction styles, located in different geomorphic settings. We also quantified the amount of local scour around individual pieces of woody debris of varying sizes, geometries and orientations relative to flow. The flume experiments tested the effects of root geometry and log orientation of individual stationary trees on streambed morphology. The flume contained a deformable sediment bed of medium sand. We find that: 1) the presence of roots on woody debris leads to greater areas of both sediment scour and deposition; and 2) the amount of sediment scour and deposition are related to the wood debris cross

  12. Application of modeling of electromagnetic field and GPR measurements in investigations of antique tenement

    NASA Astrophysics Data System (ADS)

    Czaja, K.

    2012-04-01

    The article presents the results of Ground Penetrating Radar (GPR) measurements carried out in a historic tenement in Krakow. The aim of this study was to check if there is an empty space under the apartment's floor. Ground Penetrating Radar is a noninvasive geophysical method which is particularly important during the test of antique tenement. In the case of historic buildings it happens that architectural documentation is not sufficiently accurate or has been destroyed or lost. Moreover the GPR provides adequate accuracy and resolution of received data. Because of required resolution and depth range antennas with frequencies 500 MHz and 800 MHz were used for measurements. Six measuring profiles were determined from P1 to P6. In this presentation profiles P3 and P4 are the most important. Due to the ambiguity of the surveying results modeling attempt of electromagnetic field distribution in the medium was undertaken. Programme GPRMax2D v. 2.0 (author - Antonis Giannopoulos) was applied to create models. In this programme the GPR numerical analysis uses the finite - difference - time - domain method (FDTD). The FDTD approach to the numerical solution of Maxwell's equations consist of discretization both the space and the time continua. Under certain assumptions the solution is accurate. Increase the complexity of the shapes modeled objects does not increase the computation time. At the basis of echograms from profiles P3 and P4 geometry of the models was constructed. Few types of models for profiles P3 and P4 was prepared. The first of theme assumed a signal with 500 MHz frequency, second - 800 MHz frequency, third - 200 MHz frequency. Next models included partial buried the basement with moist sand. In order to obtain the best adjustment for measuring echograms parameters such as the size of objects, the dielectric constant and wave velocity was changed. Radargrams obtained as a result of the modeling were compared with processed measurements radargrams. Very

  13. Numerical investigation of the 3D flow field generated by a self-propelling manta ray

    NASA Astrophysics Data System (ADS)

    Pederzani, Jean-Noel; Haj-Hariri, Hossein

    2010-11-01

    A mixed Lagrangian-Eulerian approach is used to solve the three dimensional Navier-Stokes equation around a self-propelling manta ray. The motion of the manta ray is prescribed using a kinematic model fitted to actual biological data. The dependence of thrust production mechanism on Strouhal and Reynolds numbers is investigated. The vortex core structures are accurately plotted using the λ2 criteria; and a correlation between wake structures and propulsive performance is established. This insight is critical in understanding the key flow features that a bio-inspired autonomous vehicle should reproduce in order to swim efficiently. The solution method is implemented on a block-structured Cartesian grid using a volume of fluid approach. To enhance the computational efficiency, a parallel adaptive mesh refinement technique is used. The present method is validated for the flow around a sphere. A basic station keeping control problem for a pitching and lagging wing is also analyzed to show the capability of the code to aid in controller design and stability analysis.

  14. Field-scale investigation of infiltration into a compacted soil liner

    USGS Publications Warehouse

    Panno, Samuel V.; Herzog, Beverly L.; Cartwright, Keros; Rehfeldt, Kenneth R.; Krapac, Ivan G.; Hensel, Bruce R.

    1991-01-01

    The Illinois State Geological Survey constructed and instrumented an experimental compacted soil liner. Infiltration of water into the liner has been monitored for two years. The objectives of this investigation were to determine whether a soil liner could be constructed to meet the U.S. EPA's requirement for a saturated hydraulic conductivity of less than or equal to 1.0 ?? 10-7 cm/s, to quantify the areal variability of the hydraulic properties of the liner, and to determine the transit time for water and tracers through the liner. The liner measures 8m ?? 15m ?? 0.9m and was designed and constructed to simulate compacted soil liners built at waste disposal facilities. The surface of the liner was flooded to form a pond on April 12, 1988. Since flooding, infiltration has been monitored with four large-ring (LR) and 32 small-ring (SR) infiltrometers, and a water-balance (WB) method that accounted for total infiltration and evaporation. Ring-infiltrometer and WB data were analyzed using cumulative-infiltration curves to determine infiltration fluxes. The SR data are lognormally distributed, and the SR and LR data form two statistically distinct populations. Small-ring data are nearly identical with WB data; because there is evidence of leakage in the LRs, the SR and WB data are considered more reliable.

  15. Atom probe field-ion microscopy investigation of nickel base superalloy welds

    SciTech Connect

    Babu, S.S.; David, S.A.; Vitek, J.M.; Miller, M.K.

    1998-11-01

    Microstructure development and elemental partitioning between {gamma} and {gamma}{prime} were measured in PWA-1480 electron beam welds and CMSX-4 pulsed-laser welds. In PWA-1480 EB welds, eutectic {gamma}{prime} phases were observed along the dendritic boundaries. The elemental partitioning between {gamma} and {gamma}{prime} was found to be similar to that in PWA-1480 base metal. In CMSX-4 pulsed laser welds, negligible eutectic {gamma}{prime} was observed. In addition, fine and irregularly shaped {gamma}{prime} precipitates were observed. The elemental partitioning between {gamma} and {gamma}{prime} was found to be different from that measured in the base metal. Large concentration gradients were observed in the {gamma} phase. The {gamma}{prime} precipitation kinetics in CM247DS alloy was measured using dilatometry and showed differences with different cooling rates. The microstructural investigations showed that at large undercoolings the number density of {gamma}{prime} precipitates increased and led to a finer size. This supports the microstructure development observations in PWA-1480 and CMSX-4 welds. Thermodynamic and kinetic calculations for the Ni-Al-Cr alloy system showed that as the cooling rate increases, the {gamma}{prime} growth leads to large concentration gradients in the {gamma} phase. The calculations agree with the atom probe results from PWA-1480 and CMSX-4 welds.

  16. [Physical reproduction of cardiac sutures. A new field of investigation in cardiology].

    PubMed

    Mirochnik, N; Hagège, A; Zacouto, F; Guérot, C

    2000-10-01

    A new technique of physical reproduction of cardiac anatomy has been developed from volumetric data and its practical value assessed in cardiological practice. The acquisition of the volumetric data was by 3D echocardiography. Parallel and equidistant 2D views were selected from this information. The images were printed at a scale adjusted to the true dimensions of the structures of interest and then stuck on a support, the thickness of which was identical to the distance between the views, and the slices were superimposed while respecting the initial orientation. This technique has been adapted secondarily to modern industrial processes of rapid prototyping (3D printing and powdering) allowing automatic tooling of models. Several physical models have been made: whole heart in end diastole, mitral valve stenosis and prolapse, atrial septal defect with insertion of a percutaneous prosthetic device, great vessels at the base of the heart. There are many possible cardiological applications of physical models: investigation of complex cardiac disease, pre- and per-operative simulation of surgical procedures, elaboration of prosthetic material, physiopathological studies, teaching and training, patient information.

  17. A multidisciplinary approach of workload assessment in real-job situations: investigation in the field of aerospace activities.

    PubMed

    Mélan, Claudine; Cascino, Nadine

    2014-01-01

    The present contribution presents two field studies combining tools and methods from cognitive psychology and from occupational psychology in order to perform a thorough investigation of workload in employees. Cognitive load theory proposes to distinguish different load categories of working memory, in a context of instruction. Intrinsic load is inherent to the task, extraneous load refers to components of a learning environment that may be modified to reduce total load, and germane load enables schemas construction and thus efficient learning. We showed previously that this theoretical framework may be successfully extended to working memory tasks in non-instructional designs. Other theoretical models, issued from the field of occupational psychology, account for an individual's perception of work demands or requirements in the context of different psychosocial features of the (work) environment. Combining these approaches is difficult as workload assessment by job-perception questionnaires explore an individual's overall job-perception over a large time-period, whereas cognitive load investigations in working memory tasks are typically performed within short time-periods. We proposed an original methodology enabling investigation of workload and load factors in a comparable time-frame. We report two field studies investigating workload on different shift-phases and between work-shifts, with two custom-made tools. The first one enabled workload assessment by manipulating intrinsic load (task difficulty) and extraneous load (time pressure) in a working-memory task. The second tool was a questionnaire based on the theoretical concepts of work-demands, control, and psychosocial support. Two additional dimensions suspected to contribute to job-perception, i.e., work-family conflicts and availability of human and technical resources were also explored. Results of workload assessments were discussed in light of operators' alertness and job-performance.

  18. A multidisciplinary approach of workload assessment in real-job situations: investigation in the field of aerospace activities.

    PubMed

    Mélan, Claudine; Cascino, Nadine

    2014-01-01

    The present contribution presents two field studies combining tools and methods from cognitive psychology and from occupational psychology in order to perform a thorough investigation of workload in employees. Cognitive load theory proposes to distinguish different load categories of working memory, in a context of instruction. Intrinsic load is inherent to the task, extraneous load refers to components of a learning environment that may be modified to reduce total load, and germane load enables schemas construction and thus efficient learning. We showed previously that this theoretical framework may be successfully extended to working memory tasks in non-instructional designs. Other theoretical models, issued from the field of occupational psychology, account for an individual's perception of work demands or requirements in the context of different psychosocial features of the (work) environment. Combining these approaches is difficult as workload assessment by job-perception questionnaires explore an individual's overall job-perception over a large time-period, whereas cognitive load investigations in working memory tasks are typically performed within short time-periods. We proposed an original methodology enabling investigation of workload and load factors in a comparable time-frame. We report two field studies investigating workload on different shift-phases and between work-shifts, with two custom-made tools. The first one enabled workload assessment by manipulating intrinsic load (task difficulty) and extraneous load (time pressure) in a working-memory task. The second tool was a questionnaire based on the theoretical concepts of work-demands, control, and psychosocial support. Two additional dimensions suspected to contribute to job-perception, i.e., work-family conflicts and availability of human and technical resources were also explored. Results of workload assessments were discussed in light of operators' alertness and job-performance. PMID:25232346

  19. A multidisciplinary approach of workload assessment in real-job situations: investigation in the field of aerospace activities

    PubMed Central

    Mélan, Claudine; Cascino, Nadine

    2014-01-01

    The present contribution presents two field studies combining tools and methods from cognitive psychology and from occupational psychology in order to perform a thorough investigation of workload in employees. Cognitive load theory proposes to distinguish different load categories of working memory, in a context of instruction. Intrinsic load is inherent to the task, extraneous load refers to components of a learning environment that may be modified to reduce total load, and germane load enables schemas construction and thus efficient learning. We showed previously that this theoretical framework may be successfully extended to working memory tasks in non-instructional designs. Other theoretical models, issued from the field of occupational psychology, account for an individual’s perception of work demands or requirements in the context of different psychosocial features of the (work) environment. Combining these approaches is difficult as workload assessment by job-perception questionnaires explore an individual’s overall job-perception over a large time-period, whereas cognitive load investigations in working memory tasks are typically performed within short time-periods. We proposed an original methodology enabling investigation of workload and load factors in a comparable time-frame. We report two field studies investigating workload on different shift-phases and between work-shifts, with two custom-made tools. The first one enabled workload assessment by manipulating intrinsic load (task difficulty) and extraneous load (time pressure) in a working-memory task. The second tool was a questionnaire based on the theoretical concepts of work-demands, control, and psychosocial support. Two additional dimensions suspected to contribute to job-perception, i.e., work–family conflicts and availability of human and technical resources were also explored. Results of workload assessments were discussed in light of operators’ alertness and job-performance. PMID

  20. Investigation of Beam Instability Under the Effects of Long-Range Transverse Wake Fields in the Berkeley Future Light Source

    SciTech Connect

    Kur, Eugene; Zholents, Alexander A.

    2008-08-31

    An ultra-relativistic charged particle bunch moving through a resonator cavity leaves behind a wake field that will affect subsequent bunches (if the bunch is not ultra-relativistic, the wake field will not be exclusively behind it). If the initial bunch enters the cavity off-axis, it will produce a transverse wake field that can then kick later bunches off the axis. Thus, even bunches that were initially traveling on axis could be displaced and, in turn, produce their own transverse wake fields, affecting following bunches. The offsets obtained by bunches could increase along the bunch train, leading to the so-called multi-bunch beam break-up instability [1]. The purpose of our investigation is to see whether such instability will occur in the superconducting, 1.3 GHz, 2.5GeV linac (see Table 1) planned for the Berkeley future light source (BFLS). We assume an initial steady-state situation established for machine operation; i.e. a continuous process where every bunch follows the same trajectory through the linac, with only small deviations from the axis of the rf structures. We will look at a possible instability arising from a bunch having a small deviation from the established trajectory. Such a deviation would produce a wake field that is slightly different from the one produced by the bunches following the established trajectory. This could lead to subsequent bunches deviating further from the established trajectory. We will assume the deviations are small (at first) and so the difference in the wake field caused by a bunch not traveling along the established trajectory is well approximated by a long-range transverse dipole wake. We are concerned only with deviations from the established trajectory; thus, in our models, a transverse position of zero corresponds to the bunch traveling along the established trajectory. Under this assumption, only the additional long-range transverse dipole wake remains in our models.

  1. The role of high-resolution geomagnetic field models for investigating ionospheric currents at low Earth orbit satellites

    NASA Astrophysics Data System (ADS)

    Stolle, Claudia; Michaelis, Ingo; Rauberg, Jan

    2016-07-01

    Low Earth orbiting geomagnetic satellite missions, such as the Swarm satellite mission, are the only means to monitor and investigate ionospheric currents on a global scale and to make in situ measurements of F region currents. High-precision geomagnetic satellite missions are also able to detect ionospheric currents during quiet-time geomagnetic conditions that only have few nanotesla amplitudes in the magnetic field. An efficient method to isolate the ionospheric signals from satellite magnetic field measurements has been the use of residuals between the observations and predictions from empirical geomagnetic models for other geomagnetic sources, such as the core and lithospheric field or signals from the quiet-time magnetospheric currents. This study aims at highlighting the importance of high-resolution magnetic field models that are able to predict the lithospheric field and that consider the quiet-time magnetosphere for reliably isolating signatures from ionospheric currents during geomagnetically quiet times. The effects on the detection of ionospheric currents arising from neglecting the lithospheric and magnetospheric sources are discussed on the example of four Swarm orbits during very quiet times. The respective orbits show a broad range of typical scenarios, such as strong and weak ionospheric signal (during day- and nighttime, respectively) superimposed over strong and weak lithospheric signals. If predictions from the lithosphere or magnetosphere are not properly considered, the amplitude of the ionospheric currents, such as the midlatitude Sq currents or the equatorial electrojet (EEJ), is modulated by 10-15 % in the examples shown. An analysis from several orbits above the African sector, where the lithospheric field is significant, showed that the peak value of the signatures of the EEJ is in error by 5 % in average when lithospheric contributions are not considered, which is in the range of uncertainties of present empirical models of the EEJ.

  2. Geoscience Perspectives in Carbon Sequestration - Educational Training and Research Through Classroom, Field, and Laboratory Investigations

    SciTech Connect

    Wronkiewicz, David; Paul, Varum; Abousif, Alsedik; Ryback, Kyle

    2013-09-30

    The most effective mechanism to limit CO2 release from underground Geologic Carbon Sequestration (GCS) sites over multi-century time scales will be to convert the CO2 into solid carbonate minerals. This report describes the results from four independent research investigations on carbonate mineralization: 1) Colloidal calcite particles forming in Maramec Spring, Missouri, provide a natural analog to evaluate reactions that may occur in a leaking GCS site. The calcite crystals form as a result of physiochemical changes that occur as the spring water rises from a depth of more than 190'. The resultant pressure decrease induces a loss of CO2 from the water, rise in pH, lowering of the solubility of Ca2+ and CO32-, and calcite precipitation. Equilibrium modelling of the spring water resulted in a calculated undersaturated state with respect to calcite. The discontinuity between the observed occurrence of calcite and the model result predicting undersaturated conditions can be explained if bicarbonate ions (HCO3-) are directly involved in precipitation process rather than just carbonate ions (CO32-). 2) Sedimentary rocks in the Oronto Group of the Midcontinent Rift (MCR) system contain an abundance of labile Ca-, Mg-, and Fe-silicate minerals that will neutralize carbonic acid and provide alkaline earth ions for carbonate mineralization. One of the challenges in using MCR rocks for GCS results from their low porosity and permeability. Oronto Group samples were reacted with both CO2-saturated deionized water at 90°C, and a mildly acidic leachant solution in flow-through core-flooding reactor vessels at room temperature. Resulting leachate solutions often exceeded the saturation limit for calcite. Carbonate crystals were also detected in as little as six days of reaction with Oronto Group rocks at 90oC, as well as experiments with forsterite

  3. Supplement Analysis for the Wildlife Management Program EIS (DOE/EIS-0246/SA-17)

    SciTech Connect

    N /A

    2001-09-13

    BPA proposes to partially fund the acquisition of 7,630 acres of shrub-steppe, riparian, and wetland habitat in northern Franklin County, Washington. Title to the land will be transferred initially to The Conservation Fund and ultimately for inclusion as part of the National Wildlife Refuge System. Passive management practices will take place on the land until an official management plan is developed and approved for the property. Some short-term control of invasive, exotic plant species may occur as necessary prior to the approval of a management plan. The compliance checklist for this project was completed by Randy Hill with the U.S. Fish and Wildlife Service, Columbia National Wildlife Refuge and meets the standards and guidelines for the Wildlife Mitigation Program Environmental Impact Statement (EIS) and Record of Decision (ROD). A comprehensive management plan will be prepared for the property after it is acquired and will follow the guidelines and mitigation measures detailed in the Wildlife Mitigation Program EIS and ROD. No plant or animal species listed under the Endangered Species Act (ESA) will be affected by the fee-title purchase of the subject property. Mark Miller with the Eastern Washington Ecological Services Office of USFWS concurred with this finding on August 3, 2001. Section 7 consultation will be conducted by BPA and USFWS, as necessary, prior to the implementation of any restoration or enhancement activities on the site. In accordance with the National Historic Preservation Act of 1966 (NHPA) and USFWS policy, the addition of the Eagle Lakes property to the National Wildlife Refuge System does not constitute an undertaking as defined by the NHPA, or require compliance with Section 106 of the NHPA. Anan Raymond, Regional Archaeologist with USFWS Region 1 Cultural Resource Team, concurred with this finding on May 4, 2001. Compliance with NHPA, including cultural resources surveys, will be implemented, as necessary, once specific management

  4. Investigation of analog/RF performance of staggered heterojunctions based nanowire tunneling field-effect transistors

    NASA Astrophysics Data System (ADS)

    Chakraborty, Avik; Sarkar, Angsuman

    2015-04-01

    In this paper, the analog/RF performance of an III-V semiconductor based staggered hetero-tunnel-junction (HETJ) n-type nanowire (NW) tunneling FET (n-TFET) is investigated, for the first time. The device performance figure-of-merits governing the analog/RF performance such as transconductance (gm), transconductance-to-drive current ratio (gm/IDS), output resistance (Rout), intrinsic gain and unity-gain cutoff frequency (fT) have been studied. The analog/RF performance parameters is compared between HETJ NW TFET and a homojunction (HJ) NW n-type TFET of similar dimensions. In addition to enhanced ION and subthreshold swing, a significant improvement in the analog/RF performance parameters obtained by the HETJ n-TFET over HJ counterpart for use in analog/mixed signal System-on-Chip (SoC) applications is reported. Moreover, the analog/RF performance parameters of a III-V based staggered HETJ NW TFET is also compared with a heterojunction (HETJ) NW n-type MOSFET having same material as HETJ n-TFET and equal dimension in order to provide a systematic comparison between HETJ-TFET and HETJ-MOSFET for use in analog/mixed-signal applications. The results reveal that HETJ n-TFET provides higher Rout and hence, a higher intrinsic gain, an improved gm/IDS ratio, and reasonable fT at lower values of gate-overdrive voltage as compared to the HETJ NW n-MOSFET.

  5. Investigating the Seismicity and Stress Field of the Truckee -- Lake Tahoe Region, California -- Nevada

    NASA Astrophysics Data System (ADS)

    Seaman, Tyler

    The Lake Tahoe basin is located in a transtensional environment defined by east-dipping range--bounding normal faults, northeast--trending sinistral, and northwest-trending dextral strike-slip faults in the northern Walker Lane deformation belt. This region accommodates as much as 10 mm/yr of dextral shear between the Sierra Nevada and Basin and Range proper, or about 20% of Pacific-North American plate motion. There is abundant seismicity north of Lake Tahoe through the Truckee, California region as opposed to a lack of seismicity associated with the primary normal faults in the Tahoe basin (i.e., West Tahoe fault). This seismicity study is focused on the structural transition zone from north-striking east-dipping Sierran Range bounding normal faults into the northern Walker Lane right-lateral strike-slip domain. Relocations of earthquakes between 2000-2013 are performed by initially applying HYPOINVERSE mean sea level datum and station corrections to produce higher confidence absolute locations as input to HYPODD. HYPODD applies both phase and cross-correlation times for a final set of 'best' event relocations. Relocations of events in the upper brittle crust clearly align along well-imaged, often intersecting, high-angle structures of limited lateral extent. In addition, the local stress field is modeled from 679 manually determined short-period focal mechanism solutions, between 2000 and 2013, located within a fairly dense local seismic network. Short-period focal mechanisms were developed with the HASH algorithm and moment tensor solutions using long-period surface waves and the MTINV code. Resulting solutions show a 9:1 ratio of strike-slip to normal mechanisms in the transition zone study area. Stress inversions using the application SATSI (USGS Spatial And Temporal Stress Inversion) generally show a T-axis oriented primarily E-W that also rotates about 30 degrees counterclockwise, from a WNW-ESE trend to ENE-WSW, moving west to east across the California

  6. Quantitative geophysical investigations at the Diamond M field, Scurry County, Texas

    NASA Astrophysics Data System (ADS)

    Davogustto Cataldo, Oswaldo Ernesto

    The Diamond M field over the Horseshoe Atoll reservoir of west Texas has produced oil since 1942. Even with some 210 well penetrations, complex reservoir compartmentalization has justified an ongoing drilling program with three wells drilled within the last three years. Accurate reservoir characterization requires accurate description of the geometry, geological facies, and petrophysical property distribution ranging from core, through log to the seismic scale. The operator has conducted a careful logging and coring process including dipole sonic logs in addition to acquiring a modern 3D vertical phone - vertical vibrator "P-wave" seismic data volume and an equivalent size 2-component by 2-componet "S-wave" seismic data volume. I analyze these data at different scales, integrating them into a whole. I begin with core analysis of the petrophysical properties of the Horseshoe Atoll reservoir. Measuring porosity, permeability, NMR T2 relaxation and velocities (Vp and Vs) as a function of pressure and find that porosity measurements are consistent when measured with different techniques. When upscaled, these measurements are in excellent agreement with properties measured at the log scale. Together, these measurements provide a lithology-porosity template against which I correlate my seismic P- and S-impedance measurements. Careful examination of P- and S-impedances as well as density from prestack inversion of the P-wave survey of the original time migrated gathers showed lower vertical resolution for S-impedance and density. These latter two parameters are controlled by the far-offset data, which suffers from migration stretch. I address this shortcoming by applying a recently developed non-stretch NMO technique which not only improved the bandwidth of the data but also resulted in inversions that better match the S-impedance and density well log data. The operator hypothesized that 2C by 2C S-wave data would better delineate lithology than conventional P

  7. Investigation of fertility and in utero effects in rats chronically exposed to a high-intensity 60-Hz electric field

    SciTech Connect

    Seto, Y.J.; Majeau-Chargois, D.; Lymangrover, J.R.; Dunlap, W.P.; Walker, C.F.

    1984-11-01

    A study was undertaken to investigate subtle bioeffects in Sprague-Dawley rats chronically exposed to a 60-Hz electric field at 80 kV/m unperturbed intensity. The details of our exposure facility, artifact considerations, environmental conditions, and exposure protocol are reported in this paper. Results of electric field exposure on reproduction and prenatal and postnatal development of rats over four generations are discussed. Statistical analysis of data from 305 females, 213 pregnancies, and 2683 births revealed no effects of electric field exposure on fertility, fecundity, nurturing, survival, or sex ratio of off-spring. In the final generation, 51 pregnant females were euthanized between days 16 and 20 of gestation, and 681 fetuses were carefully examined for gross malformations. Statistical analysis indicated that exposure to the electric field produced no significant increase in gross malformations, nor were any differences noted in resorptions, orientation of fetus in utero, sex ratio, or differential frequencies of uterine horn implantation. A detailed discussion of statistical power and sensitivity is included.

  8. Investigation of an Iron-Oxidizing Microbial Mat Community Located near Aarhus, Denmark: Field Studies

    PubMed Central

    Emerson, David; Revsbech, Niels Peter

    1994-01-01

    We investigated the microbial community that developed at an iron seep where anoxic groundwater containing up to 250 μM Fe2+ flowed out of a rock wall and dense, mat-like aggregations of ferric hydroxides formed at the oxic-anoxic interface. In situ analysis with oxygen microelectrodes revealed that the oxygen concentrations in the mat were rarely more than 50% of air saturation and that the oxygen penetration depth was quite variable, ranging from <0.05 cm to several centimeters. The bulk pH of the mat ranged from 7.1 to 7.6. There appeared to be a correlation between the flow rates at different subsites of the mat and the morphotypes of the microorganisms and Fe oxides that developed. In subsites with low flow rates (<2 ml/s), the iron-encrusted sheaths of Leptothrix ochracea predominated. Miniature cores revealed that the top few millimeters of the mat consisted primarily of L. ochracea sheaths, only about 7% of which contained filaments of cells. Deeper in the mat, large particulate oxides developed, which were often heavily colonized by unicellular bacteria that were made visible by staining with acridine orange. Direct cell counts revealed that the number of bacteria increased from approximately 108 to 109 cells per cm3 and the total iron concentration increased from approximately 0.5 to 3 mmol/cm3 with depth in the mat. Primarily because of the growth of L. ochracea, the mat could accrete at rates of up to 3.1 mm/day at these subsites. The iron-encrusted stalks of Gallionella spp. prevailed in localized zones of the same low-flow-rate subsites, usually close to where the source water emanated from the wall. These latter zones had the lowest O2 concentrations (<10% of the ambient concentration), confirming the microaerobic nature of Gallionella spp. In subsites with high flow rates (>6 ml/s) particulate Fe oxides were dominant; direct counts revealed that up to 109 cells of primarily unicellular bacteria per cm3 were associated with these particulate oxides

  9. Investigation of an Iron-Oxidizing Microbial Mat Community Located near Aarhus, Denmark: Field Studies.

    PubMed

    Emerson, D; Revsbech, N P

    1994-11-01

    We investigated the microbial community that developed at an iron seep where anoxic groundwater containing up to 250 muM Fe flowed out of a rock wall and dense, mat-like aggregations of ferric hydroxides formed at the oxic-anoxic interface. In situ analysis with oxygen microelectrodes revealed that the oxygen concentrations in the mat were rarely more than 50% of air saturation and that the oxygen penetration depth was quite variable, ranging from <0.05 cm to several centimeters. The bulk pH of the mat ranged from 7.1 to 7.6. There appeared to be a correlation between the flow rates at different subsites of the mat and the morphotypes of the microorganisms and Fe oxides that developed. In subsites with low flow rates (<2 ml/s), the iron-encrusted sheaths of Leptothrix ochracea predominated. Miniature cores revealed that the top few millimeters of the mat consisted primarily of L. ochracea sheaths, only about 7% of which contained filaments of cells. Deeper in the mat, large particulate oxides developed, which were often heavily colonized by unicellular bacteria that were made visible by staining with acridine orange. Direct cell counts revealed that the number of bacteria increased from approximately 10 to 10 cells per cm and the total iron concentration increased from approximately 0.5 to 3 mmol/cm with depth in the mat. Primarily because of the growth of L. ochracea, the mat could accrete at rates of up to 3.1 mm/day at these subsites. The iron-encrusted stalks of Gallionella spp. prevailed in localized zones of the same low-flow-rate subsites, usually close to where the source water emanated from the wall. These latter zones had the lowest O(2) concentrations (<10% of the ambient concentration), confirming the microaerobic nature of Gallionella spp. In subsites with high flow rates (>6 ml/s) particulate Fe oxides were dominant; direct counts revealed that up to 10 cells of primarily unicellular bacteria per cm were associated with these particulate oxides. These

  10. Glycoconjugate microarray based on an evanescent-field fluorescence-assisted detection principle for investigation of glycan-binding proteins.

    PubMed

    Tateno, Hiroaki; Mori, Atsushi; Uchiyama, Noboru; Yabe, Rikio; Iwaki, Jun; Shikanai, Toshihide; Angata, Takashi; Narimatsu, Hisashi; Hirabayashi, Jun

    2008-10-01

    The extensive involvement of glycan-binding proteins (GBPs) as regulators in diverse biological phenomena provides a fundamental reason to investigate their glycan-binding specificities. Here, we developed a glycoconjugate microarray based on an evanescent-field fluorescence-assisted detection principle for investigation of GBPs. Eighty-nine selected multivalent glycoconjugates comprising natural glycoproteins, neo-glycoproteins, and polyacrylamide (PAA)-conjugated glycan epitopes were immobilized on an epoxy-activated glass slide. The GBP binding was monitored by an evanescent-field fluorescence-assisted scanner at equilibrium without washing steps. The detection principle also allows direct application of unpurified GBPs with the aid of specific antibodies. Model experiments using plant lectins (RCA120, ConA, and SNA), galectins (3 and 8), a C-type lectin (DC-SIGN) and a siglec (CD22) provided data consistent with previous work within 4 h using less than 40 ng of GBPs per analysis. As an application, serum profiling of antiglycan antibodies (IgG and IgM) was performed with Cy3-labeled secondary antibodies. Moreover, novel carbohydrate-binding ability was demonstrated for a human IL-18 binding protein. Thus, the developed glycan array is useful for investigation of various types of GBPs, with the added advantage of wash-free analysis.

  11. SU-C-304-03: Experimental Investigation On the Accuracy of Plastic Scintillation Dosimeters in Small Fields

    SciTech Connect

    Papaconstadopoulos, P; Archambault, L; Seuntjens, J

    2015-06-15

    Purpose: To investigate the accuracy of the Exradin W1 (SI) and of an “in-house” plastic scintillation dosimeter (CHUQ PSD) in small radiation fields. Methods: Output factor (OF) measurements with the W1 and CHUQ PSD were performed for field sizes of 0.5 x 0.5, 1 x 1 and 2 x 2 cm{sup 2}. Both detectors were placed parallel to the central axis (CAX) in water. The spectrum discrimination calibration method was performed in each set-up to account for the Cerenkov (CRV) signal created in the fiber. The OFs were compared to the expected field factors in water derived using i) Monte Carlo (MC) simulations of an accurate accelerator model and ii) microLion (PTW) and D1V diode (SI) OFs. MC-derived correction factors were applied to both the microLion and D1V OFs. For the CHUQ PSD the calibration was repeated in water (// CAX), solid water (perpendicular to CAX) and under a shielded configuration. The signal was collected using a spectrometer (wavelength range = 185–1100 nm). Spectral analysis was performed to evaluate potential changes of the spectral distributions under the various calibration set-up configurations. Results: The W1 OFs presented an over-response for the 0.5 x 0.5 cm{sup 2} in the range of 3 – 4.1% relative to the expected field factor. The CHUQ PSD presented an under-response in the range of 1.5 – 2.7%, without accounting for volume averaging. The CRV spectra under the various calibration procedures appeared similar to each other and only minor changes were observed to the respective OFs. Conclusion: The W1 and CHUQ PSD can be used in small fields down to a 1 x 1 cm{sup 2} field size. Discrepancies were encountered between the two detectors for the smallest field size of 0.5 x 0.5 cm{sup 2} with the CHUQ PSD exhibiting a closer agreement to the expected field factor. Funding sources: 1) Alexander S. Onassis Public Benefit Foundation in Greece and 2) CREATE Medical Physics Research Training Network grant of the Natural Sciences and Engineering

  12. Some learnings from post-event field investigations after the june 2013 floods in the Pyrenees region in France.

    NASA Astrophysics Data System (ADS)

    Payrastre, Olivier; Bonnifait, Laurent; Gaume, Eric; Le Boursicaut, Raphael

    2014-05-01

    In June 2013 catastrophic floods occurred in south of France in the Pyrenees mountainous area. These floods were due to the combination of a high initial discharge due to snowmelt with a significant rainfall event (up to 200mm rainfall), which effects may have been enhanced by an increase of snowmelt. Although the dynamics of this flood are not really similar, some of its features clearly remind what may be observed in the case of flash floods: significant contribution of relatively small watersheds, high solid transport, very limited information on the reality of flood magnitudes due to the small size of catchments contributing to the flood and the destruction of a significant part of the gauging network. This contribution presents the results of a post event field survey conducted in July 2013 in order to document this flood in terms of intensities of hydrologic reactions. The methods used are those described in Gaume et al. [2008, 2009], with a specific focus on the exploitation of videos from weatnesses. The dataset builded includes 31 peak discharge estimates, illustrating the relatively limited intensity of hydrologic reactions if compared to flash floods, but also providing some interesting complements for the consolidation of the methodology used for post-event field investigations: - several opportunities of comparison of the peak discharge estimates obtained from post event field investigations and from the gauging network, showing an overall good coherence - possibility of very significant flow velocities (up to 6 m/s-2) in the specific context observed here (slopes reaching up to 5%). - possibility to get information on flow surface velocities fields from videos provided by weatnesses. - significant influence of space-time rainfall distribution on the features of the flood, stressing the importance of a detailed information on the contribution of the sub-catchments. Gaume E., Borga M., 2008. Post flood field investigations after major flash floods

  13. Non-spherical sources of static gravitational fields: Investigating the boundaries of the no-hair theorem

    NASA Astrophysics Data System (ADS)

    Herrera, L.; Magli, G.; Malafarina, D.

    2005-08-01

    A new, globally regular model describing a static, non spherical gravitating object in General Relativity is presented. The model is composed by a vacuum Weyl-Levi-Civita special field - the so called gamma metric - generated by a regular static distribution of mass-energy. Standard requirements of physical reasonableness such as, energy, matching and regularity conditions are satisfied. The model is used as a toy in investigating various issues related to the directional behavior of naked singularities in static spacetimes and the black hole (Schwarzschild) limit.

  14. Field-induced alignment of a smectic-A phase: a time-resolved x-ray diffraction investigation.

    PubMed

    Bras, W; Emsley, J W; Levine, Y K; Luckhurst, G R; Seddon, J M; Timimi, B A

    2004-09-01

    The field-induced alignment of a smectic-A phase is, in principle, a complicated process involving the director rotation via the interaction with the field and the layer rotation via the molecular interactions. Time-resolved nuclear magnetic resonance spectroscopy has revealed this complexity in the case of the director alignment, but provides no direct information on the motion of the layers. Here we describe a time-resolved x-ray diffraction experiment using synchrotron radiation to solve the challenging problem of capturing the diffraction pattern on a time scale which is fast in comparison with that for the alignment of the smectic layers. We have investigated the alignment of the smectic-A phase of 4-octyl-4(')-cyanobiphenyl by a magnetic field. The experiment consists of creating a monodomain sample of the smectic-A phase by slow cooling from the nematic phase in a magnetic field with a flux density of 7 T. The sample is then turned quickly through an angle phi(0) about an axis parallel to the x-ray beam direction but orthogonal to the field. A sequence of two-dimensional small angle x-ray diffraction patterns are then collected at short time intervals. Experiments were carried out for different values of phi(0), and at different temperatures. The results show that the alignment behavior changes fundamentally when phi(0) exceeds 45 degrees, and that there is a sharp change in the alignment process when the temperature is less than 3 degrees C below the smectic-A-nematic transition. The results of the x-ray experiments are in broad agreement with the NMR results, but reveal major phenomena concerning the maintenance of the integrity of the smectic-A layer structure during the alignment process.

  15. Investigation on the comparability of the light spot hydrophone and the fiber optic hydrophone in lithotripter field measurements.

    PubMed

    Rad, Abtin Jamshidi; Ueberle, Friedrich; Krueger, Klaus

    2014-01-01

    Optical hydrophones are optimized pressure-pulse-sensors used for high-power shockwave sources, such as lithotripters. Recent investigation of Smith et al. ["A Comparison of light spot hydrophone and fiber optic probe hydrophone for lithotripter field characterization," Rev. Sci. Instrum. 83, 014301 (2012)] show discrepancies in the negative pressure peak and tensile pulse duration regarding measurements carried out with two optical hydrophones: the Light Spot Hydrophone (LSHD) and the fiber optic hydro-phone. It was assumed that the differences arise from cavitation effects at the end-face of the LSHD glass-block and filter characteristics of the trans-impedance amplifier of the LSHD. The present study investigates the transfer-function of the LSHD. It is shown that the filter characteristics of the amplifier cause discrepancies in the rarefaction pressure pulse fraction (depending on the energy settings of the source 15 ± 2%).

  16. Investigation on the comparability of the light spot hydrophone and the fiber optic hydrophone in lithotripter field measurements

    NASA Astrophysics Data System (ADS)

    Rad, Abtin Jamshidi; Ueberle, Friedrich; Krueger, Klaus

    2014-01-01

    Optical hydrophones are optimized pressure-pulse-sensors used for high-power shockwave sources, such as lithotripters. Recent investigation of Smith et al. ["A Comparison of light spot hydrophone and fiber optic probe hydrophone for lithotripter field characterization," Rev. Sci. Instrum. 83, 014301 (2012)] show discrepancies in the negative pressure peak and tensile pulse duration regarding measurements carried out with two optical hydrophones: the Light Spot Hydrophone (LSHD) and the fiber optic hydro-phone. It was assumed that the differences arise from cavitation effects at the end-face of the LSHD glass-block and filter characteristics of the trans-impedance amplifier of the LSHD. The present study investigates the transfer-function of the LSHD. It is shown that the filter characteristics of the amplifier cause discrepancies in the rarefaction pressure pulse fraction (depending on the energy settings of the source 15 ± 2%).

  17. Investigation of Wave Energy Converter Effects on Wave Fields: A Modeling Sensitivity Study in Monterey Bay CA.

    SciTech Connect

    Roberts, Jesse D.; Grace Chang; Jason Magalen; Craig Jones

    2014-08-01

    A n indust ry standard wave modeling tool was utilized to investigate model sensitivity to input parameters and wave energy converter ( WEC ) array deploym ent scenarios. Wave propagation was investigated d ownstream of the WECs to evaluate overall near - and far - field effects of WEC arrays. The sensitivity study illustrate d that b oth wave height and near - bottom orbital velocity we re subject to the largest pote ntial variations, each decreas ed in sensitivity as transmission coefficient increase d , as number and spacing of WEC devices decrease d , and as the deployment location move d offshore. Wave direction wa s affected consistently for all parameters and wave perio d was not affected (or negligibly affected) by varying model parameters or WEC configuration .

  18. Investigating the Transition Process when Moving from a Spiral Curriculum Alignment into a Field-Focus Science Curriculum Alignment in Middle School

    ERIC Educational Resources Information Center

    Alwardt, Randi Kay

    2011-01-01

    This investigation examined the transition from a spiral science curriculum to a field-focus science curriculum in middle school. A spiral science curriculum focuses on a small part of each field of science during each middle school year, more of a general science concept. In contrast to that, the base of a field-focus curriculum is that each…

  19. Shemya AFB, Alaska 1992 IRP field investigation report. Volume 3, Appendixes B, C, and D: Final report

    SciTech Connect

    Not Available

    1993-02-01

    The US Air Force is currently investigating 22 sites on Shemya Air Force Base (AFB) to determine if past spill and disposal activities have caused environmental damage. These investigations are being carried out under the Air Force`s Installation Restoration Program (IRP). Field investigations were performed in 1992 to obtain the information needed to assess what future actions will need to be carried out at each site. The island`s drinking water supply was also investigated. Activities completed at 10 selected sites included surface sampling to determine the lateral extent of contamination, subsurface sampling to determine the vertical extent of contamination, and the installation of well points and monitoring wells to determine the direction of groundwater flow and if the groundwater has been affected by a site. Geophysical surveys were performed at most sites to identify site boundaries and check for the presence of buried metal to be avoided during drilling activities. This report, appendices B, C, and D contains information on the following: geophysical contour maps and profile plots; human health risk assessment; and ecological risk assessment.

  20. Overview of NASA FINESSE (Field Investigations to Enable Solar System Science and Exploration) Science and Exploration Results

    NASA Technical Reports Server (NTRS)

    Heldmann, Jennifer L.; Lim, Darlene S. S.; Hughes, S.; Kobs, S.; Garry, B.; Osinski, G. R.; Hodges, K.; Kobayashi, L.; Colaprete, A.

    2015-01-01

    NASA's FINESSE (Field Investigations to Enable Solar System Science and Exploration) project is focused on a science and exploration field-based research program to generate strategic knowledge in preparation for human and robotic exploration of other planetary bodies including our moon, Mars' moons Phobos and Deimos, and near-Earth asteroids. Scientific study focuses on planetary volcanism (e.g., the formation of volcanoes, evolution of magma chambers and the formation of multiple lava flow types, as well as the evolution and entrapment of volatile chemicals) and impact cratering (impact rock modification, cratering mechanics, and the chronologic record). FINESSE conducts multiple terrestrial field campaigns (Craters of the Moon National Monument and Preserve in Idaho for volcanics, and West Clearwater Impact Structure in Canada for impact studies) to study such features as analogs relevant to our moon, Phobos, Deimos, and asteroids. Here we present the science and exploration results from two deployments to Idaho (2014, 2015) and our first deployment to Canada (2014). FINESSE was selected as a research team by NASA's Solar System Exploration Research Virtual Institute (SSERVI). SSERVI is a joint effort by NASA's Science Mission Directorate (SMD) and Human Exploration and Operations Mission Directorate (HEOMD).

  1. Overview of NASA FINESSE (Field Investigations to Enable Solar System Science and Exploration) Science and Exploration Results

    NASA Astrophysics Data System (ADS)

    Heldmann, J. L.; Lim, D. S. S.; Hughes, S. S.; Kobs-Nawotniak, S. E.; Garry, W. B.; Osinski, G. R.; Hodges, K. V.; Kobayashi, L.; Colaprete, A.

    2015-12-01

    NASA's FINESSE (Field Investigations to Enable Solar System Science and Exploration) project is focused on a science and exploration field-based research program to generate strategic knowledge in preparation for human and robotic exploration of other planetary bodies including our moon, Mars' moons Phobos and Deimos, and near-Earth asteroids. Scientific study focuses on planetary volcanism (e.g., the formation of volcanoes, evolution of magma chambers and the formation of multiple lava flow types, as well as the evolution and entrapment of volatile chemicals) and impact cratering (impact rock modification, cratering mechanics, and the chronologic record). FINESSE conducts multiple terrestrial field campaigns (Craters of the Moon National Monument and Preserve in Idaho for volcanics, and West Clearwater Impact Structure in Canada for impact studies) to study such features as analogs relevant to our moon, Phobos, Deimos, and asteroids. Here we present the science and exploration results from two deployments to Idaho (2014, 2015) and our first deployment to Canada (2014). FINESSE was selected as a research team by NASA's Solar System Exploration Research Virtual Institute (SSERVI). SSERVI is a joint effort by NASA's Science Mission Directorate (SMD) and Human Exploration and Operations Mission Directorate (HEOMD).

  2. Toward increased concentration sensitivity for continuous wave EPR investigations of spin-labeled biological macromolecules at high fields

    NASA Astrophysics Data System (ADS)

    Song, Likai; Liu, Zhanglong; Kaur, Pavanjeet; Esquiaqui, Jackie M.; Hunter, Robert I.; Hill, Stephen; Smith, Graham M.; Fanucci, Gail E.

    2016-04-01

    High-field, high-frequency electron paramagnetic resonance (EPR) spectroscopy at W-(∼94 GHz) and D-band (∼140 GHz) is important for investigating the conformational dynamics of flexible biological macromolecules because this frequency range has increased spectral sensitivity to nitroxide motion over the 100 ps to 2 ns regime. However, low concentration sensitivity remains a roadblock for studying aqueous samples at high magnetic fields. Here, we examine the sensitivity of a non-resonant thin-layer cylindrical sample holder, coupled to a quasi-optical induction-mode W-band EPR spectrometer (HiPER), for continuous wave (CW) EPR analyses of: (i) the aqueous nitroxide standard, TEMPO; (ii) the unstructured to α-helical transition of a model IDP protein; and (iii) the base-stacking transition in a kink-turn motif of a large 232 nt RNA. For sample volumes of ∼50 μL, concentration sensitivities of 2-20 μM were achieved, representing a ∼10-fold enhancement compared to a cylindrical TE011 resonator on a commercial Bruker W-band spectrometer. These results therefore highlight the sensitivity of the thin-layer sample holders employed in HiPER for spin-labeling studies of biological macromolecules at high fields, where applications can extend to other systems that are facilitated by the modest sample volumes and ease of sample loading and geometry.

  3. Investigation of the acoustic field in a standing wave thermoacoustic refrigerator using time-resolved particule image velocimetry

    NASA Astrophysics Data System (ADS)

    Blanc-Benon, Ph.; Poignand, G.; Jondeau, E.

    2012-09-01

    In thermoacoustic devices, the full understanding of the heat transfer between the stack and the heat exchangers is a key issue to improve the global efficiency of these devices. The goal of this paper is to investigate the vortex structures, which appear at the stack plates extremities and may impact the heat transfer. Here, the aerodynamic field between a stack and a heat exchanger is characterised with a time-resolved particle image velocimetry (TR- PIV) set-up. Measurements are performed in a standing wave thermoacoustic refrigerator operating at a frequency of 200 Hz. The employed TR-PIV set-up offers the possibility to acquire 3000 instantaneous velocity fields at a frequency of 3125 Hz (15 instantaneous velocity fields per acoustic period). Measurements show that vortex shedding can occur at high pressure level, when a nonlinear acoustic regime preveals, leading to an additional heating generated by viscous dissipation in the gap between the stack and the heat exchangers and a loss of efficiency.

  4. Toward increased concentration sensitivity for continuous wave EPR investigations of spin-labeled biological macromolecules at high fields.

    PubMed

    Song, Likai; Liu, Zhanglong; Kaur, Pavanjeet; Esquiaqui, Jackie M; Hunter, Robert I; Hill, Stephen; Smith, Graham M; Fanucci, Gail E

    2016-04-01

    High-field, high-frequency electron paramagnetic resonance (EPR) spectroscopy at W-(∼94 GHz) and D-band (∼140 GHz) is important for investigating the conformational dynamics of flexible biological macromolecules because this frequency range has increased spectral sensitivity to nitroxide motion over the 100 ps to 2 ns regime. However, low concentration sensitivity remains a roadblock for studying aqueous samples at high magnetic fields. Here, we examine the sensitivity of a non-resonant thin-layer cylindrical sample holder, coupled to a quasi-optical induction-mode W-band EPR spectrometer (HiPER), for continuous wave (CW) EPR analyses of: (i) the aqueous nitroxide standard, TEMPO; (ii) the unstructured to α-helical transition of a model IDP protein; and (iii) the base-stacking transition in a kink-turn motif of a large 232 nt RNA. For sample volumes of ∼50 μL, concentration sensitivities of 2-20 μM were achieved, representing a ∼10-fold enhancement compared to a cylindrical TE011 resonator on a commercial Bruker W-band spectrometer. These results therefore highlight the sensitivity of the thin-layer sample holders employed in HiPER for spin-labeling studies of biological macromolecules at high fields, where applications can extend to other systems that are facilitated by the modest sample volumes and ease of sample loading and geometry.

  5. Controlling Influence of Magnetic Field on Solar Wind Outflow: An Investigation using Current Sheet Source Surface Model

    NASA Astrophysics Data System (ADS)

    Poduval, B.

    2016-08-01

    This Letter presents the results of an investigation into the controlling influence of large-scale magnetic field of the Sun in determining the solar wind outflow using two magnetostatic coronal models: current sheet source surface (CSSS) and potential field source surface. For this, we made use of the Wang and Sheeley inverse correlation between magnetic flux expansion rate (FTE) and observed solar wind speed (SWS) at 1 au. During the period of study, extended over solar cycle 23 and beginning of solar cycle 24, we found that the coefficients of the fitted quadratic equation representing the FTE-SWS inverse relation exhibited significant temporal variation, implying the changing pattern of the influence of FTE on SWS over time. A particularly noteworthy feature is an anomaly in the behavior of the fitted coefficients during the extended minimum, 2008-2010 (CRs 2073-2092), which is considered due to the particularly complex nature of the solar magnetic field during this period. However, this variation was significant only for the CSSS model, though not a systematic dependence on the phase of the solar cycle. Further, we noticed that the CSSS model demonstrated better solar wind prediction during the period of study, which we attribute to the treatment of volume and sheet currents throughout the corona and the more accurate tracing of footpoint locations resulting from the geometry of the model.

  6. Controlling Influence of Magnetic Field on Solar Wind Outflow: An Investigation using Current Sheet Source Surface Model

    NASA Astrophysics Data System (ADS)

    Poduval, B.

    2016-08-01

    This Letter presents the results of an investigation into the controlling influence of large-scale magnetic field of the Sun in determining the solar wind outflow using two magnetostatic coronal models: current sheet source surface (CSSS) and potential field source surface. For this, we made use of the Wang and Sheeley inverse correlation between magnetic flux expansion rate (FTE) and observed solar wind speed (SWS) at 1 au. During the period of study, extended over solar cycle 23 and beginning of solar cycle 24, we found that the coefficients of the fitted quadratic equation representing the FTE–SWS inverse relation exhibited significant temporal variation, implying the changing pattern of the influence of FTE on SWS over time. A particularly noteworthy feature is an anomaly in the behavior of the fitted coefficients during the extended minimum, 2008–2010 (CRs 2073–2092), which is considered due to the particularly complex nature of the solar magnetic field during this period. However, this variation was significant only for the CSSS model, though not a systematic dependence on the phase of the solar cycle. Further, we noticed that the CSSS model demonstrated better solar wind prediction during the period of study, which we attribute to the treatment of volume and sheet currents throughout the corona and the more accurate tracing of footpoint locations resulting from the geometry of the model.

  7. Field test kits for collection of ignitable liquids and ignitable liquid residues used by the NSW fire scene investigators.

    PubMed

    Burda, Katarina; Black, Margaret; Djulamerovic, Suzanna; Darwen, Kathleen; Hollier, Kathryn

    2016-07-01

    The detection of ignitable liquid residues (ILR) on samples related to fire scenes provides investigators with important information. Field test kits were developed as an alternative procedure to swabbing using cotton wool and cotton tip applicators for situations where direct sampling is not possible. Central to the kits is a piece of white absorbent non-woven material consisting of polypropylene fibres (cloth). Experiments were carried out in our laboratory using the polypropylene cloths and cotton wool for collection of burnt and unburnt petrol residues from porous and non-porous surfaces. Every aspect of this new procedure was validated, involving more than 200 analyses of fire debris samples, where the polypropylene cloth was used to sample ILR comprising all common accelerants. The use of field test kits for collection of petrol and medium petroleum distillate (MPD) residues from hands was validated on the hands of 11 volunteers. The polypropylene cloth was found to be suitable for application in field test kits for the collection and recovery of petroleum-based liquids and liquid residues from both fire scenes and hands. PMID:27037662

  8. Field Lysimeter Investigations: Low-Level Waste Data Base Development Program for fiscal year 1994. Annual report, Volume 7

    SciTech Connect

    McConnell, J.W. Jr.; Rogers, R.D.; Jastrow, J.D.; Sanford, W.E.; Sullivan, T.M.

    1995-05-01

    The Field Lysimeter Investigations: Low-Level Waste Data Base Development Program, funded by the US Nuclear Regulatory Commission, is (a) studying the degradation effects in EPICOR-II organic ion-exchange resins caused by radiation, (b) examining the adequacy of test procedures recommended in the Branch Technical Position on Waste Form to meet the requirements of 10 CFR 61 using solidified EPICOR-II resins, (c) obtaining performance information on solidified EPICOR-II ion-exchange resins in a disposal environment, and (d) determining the condition of EPICOR-II liners. Compressive test results of 11-year-old cement and vinyl ester-styrene solidified waste forms are presented, which show effects of aging and self-irradiation. Results of the ninth year of data acquisition from the field testing are presented and discussed. During the continuing field testing, both portland type I-II cement and Dow vinyl ester-styrene waste forms are being tested in lysimeter arrays located at Argonne National Laboratory-East in Illinois and at Oak Ridge National Laboratory. The study is designed to provide continuous data on nuclide release and movement, as well as environmental conditions, over a 20-year period.

  9. 36 CFR 907.7 - Determination of requirement for EIS.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for EIS. 907.7 Section 907.7 Parks, Forests, and Public Property PENNSYLVANIA AVENUE DEVELOPMENT CORPORATION ENVIRONMENTAL QUALITY § 907.7 Determination of requirement for EIS. Determining whether to prepare an environmental impact statement is the first step in applying the NEPA process. In deciding...

  10. 7 CFR 1794.72 - Adoption of an EIS.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... published informing the public of its action and will circulate copies of the EIS in accordance with 40 CFR 1502.19 and 40 CFR 1506.3. ... 7 Agriculture 12 2010-01-01 2010-01-01 false Adoption of an EIS. 1794.72 Section...

  11. 7 CFR 1794.72 - Adoption of an EIS.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... published informing the public of its action and will circulate copies of the EIS in accordance with 40 CFR 1502.19 and 40 CFR 1506.3. ... 7 Agriculture 12 2011-01-01 2011-01-01 false Adoption of an EIS. 1794.72 Section...

  12. 7 CFR 1794.72 - Adoption of an EIS.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... published informing the public of its action and will circulate copies of the EIS in accordance with 40 CFR 1502.19 and 40 CFR 1506.3. ... 7 Agriculture 12 2013-01-01 2013-01-01 false Adoption of an EIS. 1794.72 Section...

  13. 7 CFR 1794.72 - Adoption of an EIS.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... published informing the public of its action and will circulate copies of the EIS in accordance with 40 CFR 1502.19 and 40 CFR 1506.3. ... 7 Agriculture 12 2012-01-01 2012-01-01 false Adoption of an EIS. 1794.72 Section...

  14. 7 CFR 1794.72 - Adoption of an EIS.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... published informing the public of its action and will circulate copies of the EIS in accordance with 40 CFR 1502.19 and 40 CFR 1506.3. ... 7 Agriculture 12 2014-01-01 2013-01-01 true Adoption of an EIS. 1794.72 Section...

  15. 36 CFR 1010.9 - Preparation of an EIS.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... human environment. ... notice of intent in the Federal Register in accordance with 40 CFR 1501.7 and 1508.22. Where there is a... direct the preparation of the EIS. The EIS shall be formatted in accordance with 40 CFR 1502.10....

  16. 33 CFR 230.6 - Actions normally requiring an EIS.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... consider the use of an environmental assessment (EA) on these types of actions if early studies and... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Actions normally requiring an EIS..., DEPARTMENT OF DEFENSE PROCEDURES FOR IMPLEMENTING NEPA § 230.6 Actions normally requiring an EIS....

  17. 33 CFR 230.6 - Actions normally requiring an EIS.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... consider the use of an environmental assessment (EA) on these types of actions if early studies and... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Actions normally requiring an EIS..., DEPARTMENT OF DEFENSE PROCEDURES FOR IMPLEMENTING NEPA § 230.6 Actions normally requiring an EIS....

  18. Open Energy Info (OpenEI) (Fact Sheet)

    SciTech Connect

    Not Available

    2010-12-01

    The Open Energy Information (OpenEI.org) initiative is a free, open-source, knowledge-sharing platform. OpenEI was created to provide access to data, models, tools, and information that accelerate the transition to clean energy systems through informed decisions.

  19. 36 CFR 1010.9 - Preparation of an EIS.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Supplemental environmental impact statements. The Trust may supplement a draft or final EIS at any time. The... notice of intent in the Federal Register in accordance with 40 CFR 1501.7 and 1508.22. Where there is a lengthy period between the Trust's decision to prepare an EIS and the time of actual preparation, then...

  20. 32 CFR 651.43 - Format of the EIS.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 4 2011-07-01 2011-07-01 false Format of the EIS. 651.43 Section 651.43 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) ENVIRONMENTAL QUALITY ENVIRONMENTAL ANALYSIS OF ARMY ACTIONS (AR 200-2) Environmental Impact Statement § 651.43 Format of the EIS....