Sample records for ekonomicke udaje ujd

  1. Reynolds number influence on statistical behaviors of turbulence in a circular free jet

    NASA Astrophysics Data System (ADS)

    Mi, J.; Xu, M.; Zhou, T.


    The present paper examines the effect of Reynolds number on turbulence properties in the transition region of a circular jet issuing from a smoothly contracting nozzle. Hot-wire measurements were performed for this investigation through varying the jet-exit Reynolds number Red (≡ Ujd/ν, where Uj, d, and ν are the jet-exit mean velocity, nozzle diameter, and kinematic viscosity) approximately from Red ≈ 4 × 103 to Red ≈ 2 × 104. Results reveal that the rates of the mean flow decay and spread vary with Reynolds number for Red < 104 and tend to become Reynolds-number independent at Red ≥ 104. Even more importantly, the small-scale turbulence properties, e.g., the mean rate of dissipation of kinetic energy (ɛ), the Kolmogorov and Taylor microscales, are found to vary in different forms over the Red ranges of Red > 104 and Red < 104. Namely, the critical Reynolds number appears to occur at Red,cr ≈ 104 across which the jet turbulence behaves distinctly. Two turbulence regimes are therefore identified: (i) developing or partially developed turbulence at Red < Red,cr and (ii) fully developed turbulence at Red ≥ Red,cr. It is suggested that the energy dissipation rate (DR) can be expressed as \\varepsilon ˜ ν U_c^2 /R^2 in regime (i) and \\varepsilon ˜ U_c^3 /R in regime (ii), where Uc and R are the centerline (or maximum) mean velocity and half-radius at which the mean velocity is 0.5Uc. In addition, the critical Reynolds number appears to vary from flow to flow.

  2. NNSA / IAEA VVER reactor safety workshops. May 2002 - April 2003. Executive summary.

    SciTech Connect

    Evans, M.; Petri, M. C.


    Over the past year, the U.S. National Nuclear Security Administration (NNSA) has sponsored four workshops to compare the probabilistic risk assessments (PRAs) of Soviet-designed VVER power plants. The ''International Workshop on Safety of First-Generation VVER-440 Nuclear Power Plants'' was held on May 20-25, 2002, in Piestany, Slovakia. A short follow-on workshop was held in Bratislava, Slovakia, on November 5-6, 2002, to complete the work begun in May. Piestany was the location also for the ''International Workshop on Safety of Second-Generation VVER-440 Nuclear Power Plants'' (September 9-14, 2002) and the ''International Workshop on Safety of VVER-1000 Nuclear Power Plants'' (April 7-12, 2003). The four workshops were held in cooperation with the International Atomic Energy Agency (IAEA), the Nuclear Regulatory Authority of Slovakia (UJD), the Center for Nuclear Safety in Central and Eastern Europe (CENS), and Argonne National Laboratory (ANL). The objectives of the workshops were to identify the impact of the improvements on the core damage frequency; the contribution to the PRA results of different assumptions about events that can occur at the plants; and to understand, identify, and prioritize potential improvements in hardware and plant operation of VVER nuclear power plants. These objectives were achieved based on insights gained from recent PRAs completed by the plants and their technical support organizations. Nine first-generation VVER-440 plants (nominally of the VVER-440/230 design) are currently operating in Armenia, Bulgaria, Russia, and Slovakia. Sixteen VVER-440/213 plants are currently operating in the Czech Republic, Hungary, Russia, Slovakia, and Ukraine. Twenty-three VVER-1000 plants are currently operating in Bulgaria, the Czech Republic, Russia, and Ukraine. Eleven addition plants are in the advanced stages of construction in various parts of the world. The workshops reviewed the current configuration and safety status of each plant