Elastic properties of spherically anisotropic piezoelectric composites
NASA Astrophysics Data System (ADS)
Wei, En-Bo; Gu, Guo-Qing; Poon, Ying-Ming
2010-09-01
Effective elastic properties of spherically anisotropic piezoelectric composites, whose spherically anisotropic piezoelectric inclusions are embedded in an infinite non-piezoelectric matrix, are theoretically investigated. Analytical solutions for the elastic displacements and the electric potentials under a uniform external strain are derived exactly. Taking into account of the coupling effects of elasticity, permittivity and piezoelectricity, the formula is derived for estimating the effective elastic properties based on the average field theory in the dilute limit. An elastic response mechanism is revealed, in which the effective elastic properties increase as inclusion piezoelectric properties increase and inclusion dielectric properties decrease. Moreover, a piezoelectric response mechanism, of which the effective piezoelectric response vanishes due to the symmetry of spherically anisotropic composite, is also disclosed.
The anisotropic Hooke's law for cancellous bone and wood.
Yang, G; Kabel, J; van Rietbergen, B; Odgaard, A; Huiskes, R; Cowin, S C
A method of data analysis for a set of elastic constant measurements is applied to data bases for wood and cancellous bone. For these materials the identification of the type of elastic symmetry is complicated by the variable composition of the material. The data analysis method permits the identification of the type of elastic symmetry to be accomplished independent of the examination of the variable composition. This method of analysis may be applied to any set of elastic constant measurements, but is illustrated here by application to hardwoods and softwoods, and to an extraordinary data base of cancellous bone elastic constants. The solid volume fraction or bulk density is the compositional variable for the elastic constants of these natural materials. The final results are the solid volume fraction dependent orthotropic Hooke's law for cancellous bone and a bulk density dependent one for hardwoods and softwoods.
Hao, Shijie; Cui, Lishan; Wang, Hua; ...
2016-02-10
Crystals held at ultrahigh elastic strains and stresses may exhibit exceptional physical and chemical properties. Individual metallic nanowires can sustain ultra-large elastic strains of 4-7%. However, retaining elastic strains of such magnitude in kilogram-scale nanowires is challenging. Here, we find that under active load, ~5.6% elastic strain can be achieved in Nb nanowires in a composite material. Moreover, large tensile (2.8%) and compressive (-2.4%) elastic strains can be retained in kilogram-scale Nb nanowires when the composite is unloaded to a free-standing condition. It is then demonstrated that the retained tensile elastic strains of Nb nanowires significantly increase their superconducting transitionmore » temperature and critical magnetic fields, corroborating ab initio calculations based on BCS theory. This free-standing nanocomposite design paradigm opens new avenues for retaining ultra-large elastic strains in great quantities of nanowires and elastic-strain-engineering at industrial scale.« less
Durand, Letícia Brandão; Guimarães, Jackeline Coutinho; Monteiro Junior, Sylvio; Baratieri, Luiz Narciso
2015-01-01
The purpose of this study was to determine the effect of cavity depth, ceramic thickness, and resin bases with different elastic modulus on von Mises stress patterns of ceramic inlays. Tridimensional geometric models were developed with SolidWorks image software. The differences between the models were: depth of pulpal wall, ceramic thickness, and presence of composite bases with different thickness and elastic modulus. The geometric models were constrained at the proximal surfaces and base of maxillary bone. A load of 100 N was applied. The stress distribution pattern was analyzed with von Mises stress diagrams. The maximum von Mises stress values ranged from 176 MPa to 263 MPa and varied among the 3D-models. The highest von Mises stress value was found on models with 1-mm-thick composite resin base and 1-mm-thick ceramic inlay. Intermediate values (249-250 MPa) occurred on models with 2-mm-thick composite resin base and 1-mm-thick ceramic inlay and 1-mm-thick composite resin base and 2-mm-thick ceramic inlay. The lowest values were observed on models restored exclusively with ceramic inlay (176 MPa to 182 MPa). It was found that thicker inlays distribute stress more favorably and bases with low elastic modulus increase stress concentrations on the internal surface of the ceramic inlay. The increase of ceramic thickness tends to present more favorable stress distribution, especially when bonded directly onto the cavity without the use of supporting materials. When the use of a composite base is required, composite resin with high elastic modulus and reduced thickness should be preferred.
Elastic facial movement influences part-based but not holistic processing
Xiao, Naiqi G.; Quinn, Paul C.; Ge, Liezhong; Lee, Kang
2013-01-01
Face processing has been studied for decades. However, most of the empirical investigations have been conducted using static face images as stimuli. Little is known about whether static face processing findings can be generalized to real world contexts, in which faces are constantly moving. The present study investigates the nature of face processing (holistic vs. part-based) in elastic moving faces. Specifically, we focus on whether elastic moving faces, as compared to static ones, can facilitate holistic or part-based face processing. Using the composite paradigm, participants were asked to remember either an elastic moving face (i.e., a face that blinks and chews) or a static face, and then tested with a static composite face. The composite effect was (1) significantly smaller in the dynamic condition than in the static condition, (2) consistently found with different face encoding times (Experiments 1–3), and (3) present for the recognition of both upper and lower face parts (Experiment 4). These results suggest that elastic facial motion facilitates part-based processing, rather than holistic processing. Thus, while previous work with static faces has emphasized an important role for holistic processing, the current work highlights an important role for featural processing with moving faces. PMID:23398253
Wang, Xing; Zhang, Ligang; Guo, Ziyi; Jiang, Yun; Tao, Xiaoma; Liu, Libin
2016-09-01
CALPHAD-type modeling was used to describe the single-crystal elastic constants of the bcc solution phase in the ternary Ti-Nb-Zr system. The parameters in the model were evaluated based on the available experimental data and first-principle calculations. The composition-elastic properties of the full compositions were predicted and the results were in good agreement with the experimental data. It is found that the β phase can be divided into two regions which are separated by a critical dynamical stability composition line. The corresponding valence electron number per atom and the polycrystalline Young׳s modulus of the critical compositions are 4.04-4.17 and 30-40GPa respectively. Orientation dependencies of single-crystal Young׳s modulus show strong elastic anisotropy on the Ti-rich side. Alloys compositions with a Young׳s modulus along the <100> direction matching that of bone were found. The current results present an effective strategy for designing low modulus biomedical alloys using computational modeling. Copyright © 2016 Elsevier Ltd. All rights reserved.
Numerical Analysis of the Elastic Properties of 3D Needled Carbon/Carbon Composites
NASA Astrophysics Data System (ADS)
Tan, Y.; Yan, Y.; Li, X.; Guo, F.
2017-09-01
Based on the observation of microstructures of 3D needled carbon/carbon (C/C) composites, a model of their representative volume element (RVE) considering the true distribution of fibers is established. Using the theories of mesoscopic mechanics and introducing periodic boundary conditions for displacements, their elastic properties, with account of porosity, are determined by finite-element methods. Quasi-static tensile tests were carried out, and the numerical predictions were found to be in good agreement with test results. This means that the RVE model of 3D needled C/C composites can predict their elastic properties efficiently. The effects of needling density, radius of needled fibers, and thickness ratio of a short-cut fiber web and a weftless ply on the elastic constants of the composites are analyzed.
Micromechanics-based magneto-elastic constitutive modeling of particulate composites
NASA Astrophysics Data System (ADS)
Yin, Huiming
Modified Green's functions are derived for three situations: a magnetic field caused by a local magnetization, a displacement field caused by a local body force and a displacement field caused by a local prescribed eigenstrain. Based on these functions, an explicit solution is derived for two magnetic particles embedded in the infinite medium under external magnetic and mechanical loading. A general solution for numerable magnetic particles embedded in an infinite domain is then provided in integral form. Two-phase composites containing spherical magnetic particles of the same size are considered for three kinds of microstructures. With chain-structured composites, particle interactions in the same chain are considered and a transversely isotropic effective elasticity is obtained. For periodic composites, an eight-particle interaction model is developed and provides a cubic symmetric effective elasticity. In the random composite, pair-wise particle interactions are integrated from all possible positions and an isotropic effective property is reached. This method is further extended to functionally graded composites. Magneto-mechanical behavior is studied for the chain-structured composite and the random composite. Effective magnetic permeability, effective magnetostriction and field-dependent effective elasticity are investigated. It is seen that the chain-structured composite is more sensitive to the magnetic field than the random composite; a composite consisting of only 5% of chain-structured particles can provide a larger magnetostriction and a larger change of effective elasticity than an equivalent composite consisting of 30% of random dispersed particles. Moreover, the effective shear modulus of the chain-structured composite rapidly increases with the magnetic field, while that for the random composite decreases. An effective hyperelastic constitutive model is further developed for a magnetostrictive particle-filled elastomer, which is sampled by using a network of body-centered cubic lattices of particles connected by macromolecular chains. The proposed hyperelastic model is able to characterize overall nonlinear elastic stress-stretch relations of the composites under general three-dimensional loading. It is seen that the effective strain energy density is proportional to the length of stretched chains in unit volume and volume fraction of particles.
Exact solutions for laminated composite cylindrical shells in cylindrical bending
NASA Technical Reports Server (NTRS)
Yuan, F. G.
1992-01-01
Analytic elasticity solutions for laminated composite cylindrical shells under cylindrical bending are presented. The material of the shell is assumed to be general cylindrically anisotropic. Based on the theory of cylindrical anisotropic elasticity, coupled governing partial differential equations are developed. The general expressions for the stresses and displacements in the laminated composite cylinders are discussed. The closed form solutions based on Classical Shell Theory (CST) and Donnell's (1933) theory are also derived for comparison purposes. Three examples illustrate the effect of radius-to-thickness ratio, coupling and stacking sequence. The results show that, in general, CST yields poor stress and displacement distributions for thick-section composite shells, but converges to the exact elasticity solution as the radius-to-thickness ratio increases. It is also shown that Donnell's theory significantly underestimates the stress and displacement response.
Elasticity solutions for a class of composite laminate problems with stress singularities
NASA Technical Reports Server (NTRS)
Wang, S. S.
1983-01-01
A study on the fundamental mechanics of fiber-reinforced composite laminates with stress singularities is presented. Based on the theory of anisotropic elasticity and Lekhnitskii's complex-variable stress potentials, a system of coupled governing partial differential equations are established. An eigenfunction expansion method is introduced to determine the orders of stress singularities in composite laminates with various geometric configurations and material systems. Complete elasticity solutions are obtained for this class of singular composite laminate mechanics problems. Homogeneous solutions in eigenfunction series and particular solutions in polynomials are presented for several cases of interest. Three examples are given to illustrate the method of approach and the basic nature of the singular laminate elasticity solutions. The first problem is the well-known laminate free-edge stress problem, which has a rather weak stress singularity. The second problem is the important composite delamination problem, which has a strong crack-tip stress singularity. The third problem is the commonly encountered bonded composite joints, which has a complex solution structure with moderate orders of stress singularities.
Xu, Yingjie; Gao, Tian
2016-01-01
Carbon fiber-reinforced multi-layered pyrocarbon–silicon carbide matrix (C/C–SiC) composites are widely used in aerospace structures. The complicated spatial architecture and material heterogeneity of C/C–SiC composites constitute the challenge for tailoring their properties. Thus, discovering the intrinsic relations between the properties and the microstructures and sequentially optimizing the microstructures to obtain composites with the best performances becomes the key for practical applications. The objective of this work is to optimize the thermal-elastic properties of unidirectional C/C–SiC composites by controlling the multi-layered matrix thicknesses. A hybrid approach based on micromechanical modeling and back propagation (BP) neural network is proposed to predict the thermal-elastic properties of composites. Then, a particle swarm optimization (PSO) algorithm is interfaced with this hybrid model to achieve the optimal design for minimizing the coefficient of thermal expansion (CTE) of composites with the constraint of elastic modulus. Numerical examples demonstrate the effectiveness of the proposed hybrid model and optimization method. PMID:28773343
NASA Astrophysics Data System (ADS)
Rinawati, M.; Triastuti, J.; Pursetyo, K. T.
2018-04-01
The cornea is a refractive element of the eye that serves to continue the stimulation of light into the eye it has a clear, transparent, elastic and relatively thick tissue. Factors caused corneal blindness, are dystrophy, keratoconus, corneal scaring. Hydrogels can be made from polysaccharide derivatives that have gelation properties such as iota carrageenan. Therefore, it is a need to develop composite hydrogel based collagen-iota carragenan as an engineeried corneal tissue with high elasticity and hydration properties. Collagen hydrogel has a maximum water content an has equlibrium up to 40 %, less than the human cornea, 81 % and under normal hydration conditions, the human cornea can transmit 87 % of visible light. In addition, the refractive index on the surface of the cornea with air is 1.375-1.380. Based on this study, it is necessary to conduct research on the development and composition of hydrogel composite collagen-iota carrageen hydrogen based on. The best result was K5 (5:5) treatment, which has the equilibrium water content of 87.07 % and viscosity of 10.7346 Pa.s.
Elastic properties of rigid fiber-reinforced composites
NASA Astrophysics Data System (ADS)
Chen, J.; Thorpe, M. F.; Davis, L. C.
1995-05-01
We study the elastic properties of rigid fiber-reinforced composites with perfect bonding between fibers and matrix, and also with sliding boundary conditions. In the dilute region, there exists an exact analytical solution. Around the rigidity threshold we find the elastic moduli and Poisson's ratio by decomposing the deformation into a compression mode and a rotation mode. For perfect bonding, both modes are important, whereas only the compression mode is operative for sliding boundary conditions. We employ the digital-image-based method and a finite element analysis to perform computer simulations which confirm our analytical predictions.
An overview of self-consistent methods for fiber-reinforced composites
NASA Technical Reports Server (NTRS)
Gramoll, Kurt C.; Freed, Alan D.; Walker, Kevin P.
1991-01-01
The Walker et al. (1989) self-consistent method to predict both the elastic and the inelastic effective material properties of composites is examined and compared with the results of other self-consistent and elastically based solutions. The elastic part of their method is shown to be identical to other self-consistent methods for non-dilute reinforced composite materials; they are the Hill (1965), Budiansky (1965), and Nemat-Nasser et al. (1982) derivations. A simplified form of the non-dilute self-consistent method is also derived. The predicted, elastic, effective material properties for fiber reinforced material using the Walker method was found to deviate from the elasticity solution for the v sub 31, K sub 12, and mu sub 31 material properties (fiber is in the 3 direction) especially at the larger volume fractions. Also, the prediction for the transverse shear modulus, mu sub 12, exceeds one of the accepted Hashin bounds. Only the longitudinal elastic modulus E sub 33 agrees with the elasticity solution. The differences between the Walker and the elasticity solutions are primarily due to the assumption used in the derivation of the self-consistent method, i.e., the strain fields in the inclusions and the matrix are assumed to remain constant, which is not a correct assumption for a high concentration of inclusions.
High elastic modulus nanopowder reinforced resin composites for dental applications
NASA Astrophysics Data System (ADS)
Wang, Yijun
2007-12-01
Dental restorations account for more than $3 billion dollars a year on the market. Among them, all-ceramic dental crowns draw more and more attention and their popularity has risen because of their superior aesthetics and biocompatibility. However, their relatively high failure rate and labor-intensive fabrication procedure still limit their application. In this thesis, a new family of high elastic modulus nanopowder reinforced resin composites and their mechanical properties are studied. Materials with higher elastic modulus, such as alumina and diamond, are used to replace the routine filler material, silica, in dental resin composites to achieve the desired properties. This class of composites is developed to serve (1) as a high stiffness support to all-ceramic crowns and (2) as a means of joining independently fabricated crown core and veneer layers. Most of the work focuses on nano-sized Al2O3 (average particle size 47 nm) reinforcement in a polymeric matrix with 50:50 Bisphenol A glycidyl methacrylate (Bis-GMA): triethylene glycol dimethacrylate (TEGDMA) monomers. Surfactants, silanizing agents and primers are examined to obtain higher filler levels and enhance the bonding between filler and matrix. Silane agents work best. The elastic modulus of a 57.5 vol% alumina/resin composite is 31.5 GPa compared to current commercial resin composites with elastic modulus <15 GPa. Chemical additives can also effectively raise the hardness to as much as 1.34 GPa. Besides>alumina, diamond/resin composites are studied. An elastic modulus of about 45 GPa is obtained for a 57 vol% diamond/resin composite. Our results indicate that with a generally monodispersed nano-sized high modulus filler, relatively high elastic modulus resin-based composite cements are possible. Time-dependent behavior of our resin composites is also investigated. This is valuable for understanding the behavior of our material and possible fatigue testing in the future. Our results indicate that with effective coupling agents and higher filler loading, viscous flow can be greatly decreased due to the attenuation of mobility of polymer chains. Complementary studies indicate that our resin composites are promising for the proposed applications as a stiff support to all-ceramic crowns.
Study of Graphite/Epoxy Composites for Material Flaw Criticality.
1980-11-01
criticality of disbonds with two-dimensional planforms located in laminated graphite/epoxy composites has been examined. Linear elastic fracture...mechanics approach, semi-empirical growth laws and methods of stress analysis based on a modified laminated plate theory have been studied for assessing...growth rates of disbonds in a transverse shear environ- ment. Elastic stability analysis has been utilized for laminates with disbonds subjected to in
NASA Astrophysics Data System (ADS)
Kumar, Manoj; Khan, Gufran S.; Shakher, Chandra
2015-08-01
In the present work, application of digital speckle pattern interferometry (DSPI) was applied for the measurement of mechanical/elastic and thermal properties of fibre reinforced plastics (FRP). Digital speckle pattern interferometric technique was used to characterize the material constants (Poisson's ratio and Young's modulus) of the composite material. Poisson ratio based on plate bending and Young's modulus based on plate vibration of material are measured by using DSPI. In addition to this, the coefficient of thermal expansion of composite material is also measured. To study the thermal strain analysis, a single DSPI fringe pattern is used to extract the phase information by using Riesz transform and the monogenic signal. The phase extraction from a single DSPI fringe pattern by using Riesz transform does not require a phase-shifting system or spatial carrier. The elastic and thermal parameters obtained from DSPI are in close agreement with the theoretical predictions available in literature.
Micromechanical performance of interfacial transition zone in fiber-reinforced cement matrix
NASA Astrophysics Data System (ADS)
Zacharda, V.; Němeček, J.; Štemberk, P.
2017-09-01
The paper investigates microstructure, chemical composition and micromechanical behavior of an interfacial transition zone (ITZ) in steel fiber reinforced cement matrix. For this goal, a combination of scanning electron microscopy (SEM), nanoindentation and elastic homogenization theory are used. The investigated sample of cement paste with dispersed reinforcement consists of cement CEM I 42,5R and a steel fiber TriTreg 50 mm. The microscopy revealed smaller portion of clinkers and larger porosity in the ITZ. Nanoindentation delivered decreased elastic modulus in comparison with cement bulk (67%) and the width of ITZ (∼ 40 μm). The measured properties served as input parameters for a simple two-scale model for elastic properties of the composite. Although, no major influence of ITZ properties on the composite elastic behavior was found, the findings about the ITZ reduced properties and its size can serve as input to other microstructural fracture based models.
Nonlinear Visco-Elastic Response of Composites via Micro-Mechanical Models
NASA Technical Reports Server (NTRS)
Gates, Thomas S.; Sridharan, Srinivasan
2005-01-01
Micro-mechanical models for a study of nonlinear visco-elastic response of composite laminae are developed and their performance compared. A single integral constitutive law proposed by Schapery and subsequently generalized to multi-axial states of stress is utilized in the study for the matrix material. This is used in conjunction with a computationally facile scheme in which hereditary strains are computed using a recursive relation suggested by Henriksen. Composite response is studied using two competing micro-models, viz. a simplified Square Cell Model (SSCM) and a Finite Element based self-consistent Cylindrical Model (FECM). The algorithm is developed assuming that the material response computations are carried out in a module attached to a general purpose finite element program used for composite structural analysis. It is shown that the SSCM as used in investigations of material nonlinearity can involve significant errors in the prediction of transverse Young's modulus and shear modulus. The errors in the elastic strains thus predicted are of the same order of magnitude as the creep strains accruing due to visco-elasticity. The FECM on the other hand does appear to perform better both in the prediction of elastic constants and the study of creep response.
NASA Astrophysics Data System (ADS)
Kardashev, B. K.; Orlova, T. S.; Smirnov, B. I.; de Arellano-Lopez, A. R.; Martinez-Fernandez, J.
2009-04-01
The effect of the vibrational strain amplitude on the Young’s modulus and ultrasound absorption (internal friction) of a SiC/Si biomorphic composite prepared by pyrolysis of sapele wood followed by infiltration of silicon were investigated. The studies were conducted in air and in vacuum by the acoustic resonance method with the use of a composite vibrator in longitudinal vibrations at frequencies of about 100 kHz. Measurements performed on sapele wood-based bio-SiC/Si samples revealed a substantial effect of adsorption-desorption of molecules contained in air on the effective elasticity modulus and elastic vibration decrement. Microplastic characteristics of the SiC/Si composites prepared from wood of different tree species were compared.
NASA Technical Reports Server (NTRS)
Bert, C. W.; Chang, S.
1972-01-01
Elastic and damping analyses resulting in determinations of the various stiffnesses and associated loss tangents for the complete characterization of the elastic and damping behavior of a monofilament composite layer are presented. For the determination of the various stiffnesses, either an elementary mechanics-of-materials formulation or a more rigorous mixed-boundary-value elasticity formulation is used. The solution for the latter formulation is obtained by means of the boundary-point least-square error technique. Kimball-Lovell type damping is assumed for each of the constituent materials. For determining the loss tangents associated with the various stiffnesses, either the viscoelastic correspondence principle or an energy analysis based on the appropriate elastic stress distribution is used.
1993-03-01
correlation was determined between the matrix microplastic flow and the global composite tensile stress-strain curve. Based on the knowledge of the...framentation of the elastic matrix to form remnant elastic pockets at Silw tip surrounded y the matrix plastic flow. The matrix microplasticity is also...Deformation of SiC-Al Composites.’ Mater. Sci. Engng., A131:55-68. 11. Hamann, R., P. F. Gobin, and R. Fougeres, 1990. "A Study of the Microplasticity of Some
NASA Astrophysics Data System (ADS)
El Moumen, A.; Tarfaoui, M.; Lafdi, K.
2018-06-01
Elastic properties of laminate composites based Carbone Nanotubes (CNTs), used in military applications, were estimated using homogenization techniques and compared to the experimental data. The composite consists of three phases: T300 6k carbon fibers fabric with 5HS (satin) weave, baseline pure Epoxy matrix and CNTs added with 0.5%, 1%, 2% and 4%. Two step homogenization methods based RVE model were employed. The objective of this paper is to determine the elastic properties of structure starting from the knowledge of those of constituents (CNTs, Epoxy and carbon fibers fabric). It is assumed that the composites have a geometric periodicity and the homogenization model can be represented by a representative volume element (RVE). For multi-scale analysis, finite element modeling of unit cell based two step homogenization method is used. The first step gives the properties of thin film made of epoxy and CNTs and the second is used for homogenization of laminate composite. The fabric unit cell is chosen using a set of microscopic observation and then identified by its ability to enclose the characteristic periodic repeat in the fabric weave. The unit cell model of 5-Harness satin weave fabric textile composite is identified for numerical approach and their dimensions are chosen based on some microstructural measurements. Finally, a good comparison was obtained between the predicted elastic properties using numerical homogenization approach and the obtained experimental data with experimental tests.
NASA Astrophysics Data System (ADS)
El Moumen, A.; Tarfaoui, M.; Lafdi, K.
2017-08-01
Elastic properties of laminate composites based Carbone Nanotubes (CNTs), used in military applications, were estimated using homogenization techniques and compared to the experimental data. The composite consists of three phases: T300 6k carbon fibers fabric with 5HS (satin) weave, baseline pure Epoxy matrix and CNTs added with 0.5%, 1%, 2% and 4%. Two step homogenization methods based RVE model were employed. The objective of this paper is to determine the elastic properties of structure starting from the knowledge of those of constituents (CNTs, Epoxy and carbon fibers fabric). It is assumed that the composites have a geometric periodicity and the homogenization model can be represented by a representative volume element (RVE). For multi-scale analysis, finite element modeling of unit cell based two step homogenization method is used. The first step gives the properties of thin film made of epoxy and CNTs and the second is used for homogenization of laminate composite. The fabric unit cell is chosen using a set of microscopic observation and then identified by its ability to enclose the characteristic periodic repeat in the fabric weave. The unit cell model of 5-Harness satin weave fabric textile composite is identified for numerical approach and their dimensions are chosen based on some microstructural measurements. Finally, a good comparison was obtained between the predicted elastic properties using numerical homogenization approach and the obtained experimental data with experimental tests.
Elasticity of Calcium-Alkaline Amphiboles: Revised Properties for Crustal Seismic Models
NASA Astrophysics Data System (ADS)
Straughan, K. B.; Castle, N. R.; Brown, J.
2009-12-01
Amphiboles are dominant mineral constituents of both the oceanic and continental crust. Efforts to model crustal seismic structure and anisotropy have been limited by sparse and uncertain data for the elasticity of common rock-forming amphiboles. A single paper from 1961 reports properties of two “hornblendes” of unreported composition. We have undertaken a study of the calcium-alkaline amphiboles (minerals in this range include hornblende, tremolite, edenite, pargasite, tschermaktite and others) to explore elastic properties as a function of composition. Velocities as a function of propagation direction were measured using Impulsively Stimulated Light Scattering. All thirteen monoclinic elastic constants were determined for nine amphiboles spanning this common rock-forming compositional space. Amphiboles exhibit a wide range of elemental compositions and site occupancies. Measured trends of elastic constants with composition cannot be reduced to a single variable. Broad correlations are apparent in both (Mg+Fe) and Al concentrations. Among these samples, the isotropic average bulk modulus ranges from 85 to 98 GPa and the shear modulus ranges from 51 to 62. Poisson’s ratio varies from .23 to .27. The compressional velocity anisotropy (fast direction along the c axis and slow direction along the a-axis) varies with composition from 23% to 33%. Velocities along the c-axis are as fast as 9.0 km/s and along the a-axis are as slow as 5.8 km/s. These results exhibit far greater anisotropy and higher velocities than previously assumed based on the earlier data.
Studies on Effective Elastic Properties of CNT/Nano-Clay Reinforced Polymer Hybrid Composite
NASA Astrophysics Data System (ADS)
Thakur, Arvind Kumar; Kumar, Puneet; Srinivas, J.
2016-02-01
This paper presents a computational approach to predict elastic propertiesof hybrid nanocomposite material prepared by adding nano-clayplatelets to conventional CNT-reinforced epoxy system. In comparison to polymers alone/single-fiber reinforced polymers, if an additional fiber is added to the composite structure, it was found a drastic improvement in resultant properties. In this regard, effective elastic moduli of a hybrid nano composite are determined by using finite element (FE) model with square representative volume element (RVE). Continuum mechanics based homogenization of the nano-filler reinforced composite is considered for evaluating the volumetric average of the stresses and the strains under different periodic boundary conditions.A three phase Halpin-Tsai approach is selected to obtain the analytical result based on micromechanical modeling. The effect of the volume fractions of CNTs and nano-clay platelets on the mechanical behavior is studied. Two different RVEs of nano-clay platelets were used to investigate the influence of nano-filler geometry on composite properties. The combination of high aspect ratio of CNTs and larger surface area of clay platelets contribute to the stiffening effect of the hybrid samples. Results of analysis are validated with Halpin-Tsai empirical formulae.
NASA Astrophysics Data System (ADS)
Weng, Jingmeng; Wen, Weidong; Cui, Haitao; Chen, Bo
2018-06-01
A new method to generate the random distribution of fibers in the transverse cross-section of fiber reinforced composites with high fiber volume fraction is presented in this paper. Based on the microscopy observation of the transverse cross-sections of unidirectional composite laminates, hexagon arrangement is set as the initial arrangement status, and the initial velocity of each fiber is arbitrary at an arbitrary direction, the micro-scale representative volume element (RVE) is established by simulating perfectly elastic collision. Combined with the proposed periodic boundary conditions which are suitable for multi-axial loading, the effective elastic properties of composite materials can be predicted. The predicted properties show reasonable agreement with experimental results. By comparing the stress field of RVE with fibers distributed randomly and RVE with fibers distributed periodically, the predicted elastic modulus of RVE with fibers distributed randomly is greater than RVE with fibers distributed periodically.
Cheng Guan; Houjiang Zhang; Lujing Zhou; Xiping Wang
2015-01-01
A vibration testing method based on free vibration theory in a ââfreeâfreeâ support condition was investigated for evaluating the modulus of elasticity (MOE) of full-size wood composite panels (WCPs). Vibration experiments were conducted on three types of WCPs (medium density fibreboard, particleboard, and plywood) to determine the dynamic MOE of the panels. Static...
Wave propagation modeling in composites reinforced by randomly oriented fibers
NASA Astrophysics Data System (ADS)
Kudela, Pawel; Radzienski, Maciej; Ostachowicz, Wieslaw
2018-02-01
A new method for prediction of elastic constants in randomly oriented fiber composites is proposed. It is based on mechanics of composites, the rule of mixtures and total mass balance tailored to the spectral element mesh composed of 3D brick elements. Selected elastic properties predicted by the proposed method are compared with values obtained by another theoretical method. The proposed method is applied for simulation of Lamb waves in glass-epoxy composite plate reinforced by randomly oriented fibers. Full wavefield measurements conducted by the scanning laser Doppler vibrometer are in good agreement with simulations performed by using the time domain spectral element method.
Ridge regression for predicting elastic moduli and hardness of calcium aluminosilicate glasses
NASA Astrophysics Data System (ADS)
Deng, Yifan; Zeng, Huidan; Jiang, Yejia; Chen, Guorong; Chen, Jianding; Sun, Luyi
2018-03-01
It is of great significance to design glasses with satisfactory mechanical properties predictively through modeling. Among various modeling methods, data-driven modeling is such a reliable approach that can dramatically shorten research duration, cut research cost and accelerate the development of glass materials. In this work, the ridge regression (RR) analysis was used to construct regression models for predicting the compositional dependence of CaO-Al2O3-SiO2 glass elastic moduli (Shear, Bulk, and Young’s moduli) and hardness based on the ternary diagram of the compositions. The property prediction over a large glass composition space was accomplished with known experimental data of various compositions in the literature, and the simulated results are in good agreement with the measured ones. This regression model can serve as a facile and effective tool for studying the relationship between the compositions and the property, enabling high-efficient design of glasses to meet the requirements for specific elasticity and hardness.
NASA Astrophysics Data System (ADS)
Qiang, FangWei; Wei, PeiJun; Li, Li
2012-07-01
In the present paper, the effective propagation constants of elastic SH waves in composites with randomly distributed parallel cylindrical nanofibers are studied. The surface stress effects are considered based on the surface elasticity theory and non-classical interfacial conditions between the nanofiber and the host are derived. The scattering waves from individual nanofibers embedded in an infinite elastic host are obtained by the plane wave expansion method. The scattering waves from all fibers are summed up to obtain the multiple scattering waves. The interactions among random dispersive nanofibers are taken into account by the effective field approximation. The effective propagation constants are obtained by the configurational average of the multiple scattering waves. The effective speed and attenuation of the averaged wave and the associated dynamical effective shear modulus of composites are numerically calculated. Based on the numerical results, the size effects of the nanofibers on the effective propagation constants and the effective modulus are discussed.
NASA Technical Reports Server (NTRS)
Lineback, L. D.; Manning, C. R.
1971-01-01
Hafnia-based composites containing either graphite or tungsten were investigated as rocket nozzle throat inserts in solid propellant rocket engines. The thermal shock resistance of these materials is considered in terms of macroscopic thermal conductivity, thermal expansion, modulus of elasticity, and compressive fracture stress. The effect of degree of hafnia stabilization, density, and graphite or tungsten content upon these parameters is discussed. The variation of the ratio of elastic modulus to compressive fracture stress with density and its effect upon thermal shock resistance of these materials are discussed in detail.
Hard tissue as a composite material. I - Bounds on the elastic behavior.
NASA Technical Reports Server (NTRS)
Katz, J. L.
1971-01-01
Recent determination of the elastic moduli of hydroxyapatite by ultrasonic methods permits a re-examination of the Voigt or parallel model of the elastic behavior of bone, as a two phase composite material. It is shown that such a model alone cannot be used to describe the behavior of bone. Correlative data on the elastic moduli of dentin, enamel and various bone samples indicate the existence of a nonlinear dependence of elastic moduli on composition of hard tissue. Several composite models are used to calculate the bounds on the elastic behavior of these tissues. The limitations of these models are described, and experiments to obtain additional critical data are discussed.
An exact stiffness theory for unidirectional xFRP composites
NASA Astrophysics Data System (ADS)
Klasztorny, M.; Konderla, P.; Piekarski, R.
2009-01-01
UD xFRP composites, i.e., isotropic plastics reinforced with long transversely isotropic fibres packed unidirectionally according to the hexagonal scheme are considered. The constituent materials are geometrically and physically linear. The previous formulations of the exact stiffness theory of such composites are revised, and the theory is developed further based on selected boundary-value problems of elasticity theory. The numerical examples presented are focussed on testing the theory with account of previous variants of this theory and experimental values of the effective elastic constants. The authors have pointed out that the exact stiffness theory of UD xFRP composites, with the modifications proposed in our study, will be useful in the engineering practice and in solving the current problems of the mechanics of composite materials.
Calculation of skin-stiffener interface stresses in stiffened composite panels
NASA Technical Reports Server (NTRS)
Cohen, David; Hyer, Michael W.
1987-01-01
A method for computing the skin-stiffener interface stresses in stiffened composite panels is developed. Both geometrically linear and nonlinear analyses are considered. Particular attention is given to the flange termination region where stresses are expected to exhibit unbounded characteristics. The method is based on a finite-element analysis and an elasticity solution. The finite-element analysis is standard, while the elasticity solution is based on an eigenvalue expansion of the stress functions. The eigenvalue expansion is assumed to be valid in the local flange termination region and is coupled with the finite-element analysis using collocation of stresses on the local region boundaries. Accuracy and convergence of the local elasticity solution are assessed using a geometrically linear analysis. Using this analysis procedure, the influence of geometric nonlinearities and stiffener parameters on the skin-stiffener interface stresses is evaluated.
NASA Technical Reports Server (NTRS)
Pahr, D. H.; Arnold, S. M.
2001-01-01
The paper begins with a short overview of the recent work done in the field of discontinuous reinforced composites, focusing on the different parameters which influence the material behavior of discontinuous reinforced composites, as well as the various analysis approaches undertaken. Based on this overview it became evident, that in order to investigate the enumerated effects in an efficient and comprehensive manner, an alternative approach to the computationally intensive finite-element based micromechanics approach is required. Therefore, an investigation is conducted to demonstrate the utility of utilizing the generalized method of cells (GMC), a semi-analytical micromechanics-based approach, to simulate the elastic and elastoplastic material behavior of aligned short fiber composites. The results are compared with (1) simulations using other micromechanical based mean field models and finite element (FE) unit cell models found in the literature given elastic material behavior, as well as (2) finite element unit cell and a new semianalytical elastoplastic shear lag model in the inelastic range. GMC is shown to definitely have a window of applicability when simulating discontinuously reinforced composite material behavior.
NASA Technical Reports Server (NTRS)
Pahr, D. H.; Arnold, S. M.
2001-01-01
The paper begins with a short overview of the recent work done in the field of discontinuous reinforced composites, focusing on the different parameters which influence the material behavior of discontinuous reinforced composites, as well as the various analysis approaches undertaken. Based on this overview it became evident that in order to investigate the enumerated effects in an efficient and comprehensive manner, an alternative approach to the computationally intensive finite-element based micromechanics approach is required. Therefore, an investigation is conducted to demonstrate the utility of utilizing the generalized method of cells (GMC), a semi-analytical micromechanics-based approach, to simulate the elastic and elastoplastic material behavior of aligned short fiber composites. The results are compared with simulations using other micromechanical based mean field models and finite element (FE) unit cell models found in the literature given elastic material behavior, as well as finite element unit cell and a new semianalytical elastoplastic shear lag model in the inelastic range. GMC is shown to definitely have a window of applicability when simulating discontinuously reinforced composite material behavior.
Elastic properties of a porous titanium-bone tissue composite.
Rubshtein, A P; Makarova, E B; Rinkevich, A B; Medvedeva, D S; Yakovenkova, L I; Vladimirov, A B
2015-01-01
The porous titanium implants were introduced into the condyles of tibias and femurs of sheep. New bone tissue fills the pore, and the porous titanium-new bone tissue composite is formed. The duration of composite formation was 4, 8, 24 and 52 weeks. The formed composites were extracted from the bone and subjected to a compression test. The Young's modulus was calculated using the measured stress-strain curve. The time dependence of the Young's modulus of the composite was obtained. After 4 weeks the new bone tissue that filled the pores does not affect the elastic properties of implants. After 24 and 52 weeks the Young's modulus increases by 21-34% and 62-136%, respectively. The numerical calculations of the elasticity of porous titanium-new bone tissue composite were conducted using a simple polydisperse model that is based on the consideration of heterogeneous structure as a continuous medium with spherical inclusions of different sizes. The kinetics of the change in the elasticity of the new bone tissue is presented via the intermediate characteristics, namely the relative ultimate tensile strength or proportion of mature bone tissue in the bone tissue. The calculated and experimentally measured values of the Young's modulus of the composite are in good agreement after 8 weeks of composite formation. The properties of the porous titanium-new bone tissue composites can only be predicted when data on the properties of new bone tissue are available after 8 weeks of contact between the implant and the native bone. Copyright © 2015 Elsevier B.V. All rights reserved.
Predicting Plywood Properties with Wood-based Composite Models
Christopher Adam Senalik; Robert J. Ross
2015-01-01
Previous research revealed that stress wave nondestructive testing techniques could be used to evaluate the tensile and flexural properties of wood-based composite materials. Regression models were developed that related stress wave transmission characteristics (velocity and attenuation) to modulus of elasticity and strength. The developed regression models accounted...
Zhu, L-F; Friák, M; Lymperakis, L; Titrian, H; Aydin, U; Janus, A M; Fabritius, H-O; Ziegler, A; Nikolov, S; Hemzalová, P; Raabe, D; Neugebauer, J
2013-04-01
We employ ab initio calculations and investigate the single-crystalline elastic properties of (Ca,Mg)CO3 crystals covering the whole range of concentrations from pure calcite CaCO3 to pure magnesite MgCO3. Studying different distributions of Ca and Mg atoms within 30-atom supercells, our theoretical results show that the energetically most favorable configurations are characterized by elastic constants that nearly monotonously increase with the Mg content. Based on the first principles-derived single-crystalline elastic anisotropy, the integral elastic response of (Ca,Mg)CO3 polycrystals is determined employing a mean-field self-consistent homogenization method. As in case of single-crystalline elastic properties, the computed polycrystalline elastic parameters sensitively depend on the chemical composition and show a significant stiffening impact of Mg atoms on calcite crystals in agreement with the experimental findings. Our analysis also shows that it is not advantageous to use a higher-scale two-phase mix of stoichiometric calcite and magnesite instead of substituting Ca atoms by Mg ones on the atomic scale. Such two-phase composites are not significantly thermodynamically favorable and do not provide any strong additional stiffening effect. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zhou, Lan; Yang, Jin-Bo; Liu, Dan; Liu, Zhan; Chen, Ying; Gao, Bo
2008-06-01
To analyze the possible damage to the remaining tooth and composite restorations when various mixing ratios of bases were used. Testing elastic modulus and poission's ratio of glass-ionomer Vitrebond and self-cured calcium hydroxide Dycal with mixing ratios of 1:1, 3:4, 4:3. Micro-CT was used to scan the first mandibular molar, and the three-dimensional finite element model of the first permanent mandibular molar with class I cavity was established. Analyzing the stress of tooth structure, composite and base cement under physical load when different mixing ratios of base cement were used. The elastic modulus of base cement in various mixing ratios was different, which had the statistic significance. The magnitude and location of stress in restored tooth made no differences when the mixing ratios of Vitrebond and Dycal were changed. The peak stress and spreading area in the model with Dycal was more than that with Vitrebond. Changing the best mixing ratio of base cement can partially influence the mechanistic character, but make no differences on the magnitude and location of stress in restored tooth. During the treatment of deep caries, the base cement of the elastic modulus which is proximal to the dentin and restoration should be chosen to avoid the fracture of tooth or restoration.
Bending analysis of a general cross-ply laminate using 3D elasticity solution and layerwise theory
NASA Astrophysics Data System (ADS)
Yazdani Sarvestani, H.; Naghashpour, A.; Heidari-Rarani, M.
2015-12-01
In this study, the analytical solution of interlaminar stresses near the free edges of a general (symmetric and unsymmetric layups) cross-ply composite laminate subjected to pure bending loading is presented based on Reddy's layerwise theory (LWT) for the first time. First, the reduced form of displacement field is obtained for a general cross-ply composite laminate subjected to a bending moment by elasticity theory. Then, first-order shear deformation theory of plates and LWT is utilized to determine the global and local deformation parameters appearing in the displacement fields, respectively. One of the main advantages of the developed solution based on the LWT is exact prediction of interlaminar stresses at the boundary layer regions. To show the accuracy of this solution, three-dimensional elasticity bending problem of a laminated composite is solved for special set of boundary conditions as well. Finally, LWT results are presented for edge-effect problems of several symmetric and unsymmetric cross-ply laminates under the bending moment. The obtained results indicate high stress gradients of interlaminar stresses near the edges of laminates.
Field Dislocation Mechanics for heterogeneous elastic materials: A numerical spectral approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Djaka, Komlan Senam; Villani, Aurelien; Taupin, Vincent
Spectral methods using Fast Fourier Transform (FFT) algorithms have recently seen a surge in interest in the mechanics of materials community. The present work addresses the critical question of determining accurate local mechanical fields using FFT methods without artificial fluctuations arising from materials and defects induced discontinuities. Precisely, this work introduces a numerical approach based on intrinsic discrete Fourier transforms for the simultaneous treatment of material discontinuities arising from the presence of dislocations and from elastic stiffness heterogeneities. To this end, the elasto-static equations of the field dislocation mechanics theory for periodic heterogeneous materials are numerically solved with FFT inmore » the case of dislocations in proximity of inclusions of varying stiffness. An optimal intrinsic discrete Fourier transform method is sought based on two distinct schemes. A centered finite difference scheme for differential rules are used for numerically solving the Poisson-type equation in the Fourier space, while centered finite differences on a rotated grid is chosen for the computation of the modified Fourier–Green’s operator associated with the Lippmann–Schwinger-type equation. By comparing different methods with analytical solutions for an edge dislocation in a composite material, it is found that the present spectral method is accurate, devoid of any numerical oscillation, and efficient even for an infinite phase elastic contrast like a hole embedded in a matrix containing a dislocation. The present FFT method is then used to simulate physical cases such as the elastic fields of dislocation dipoles located near the matrix/inclusion interface in a 2D composite material and the ones due to dislocation loop distributions surrounding cubic inclusions in 3D composite material. In these configurations, the spectral method allows investigating accurately the elastic interactions and image stresses due to dislocation fields in the presence of elastic inhomogeneities.« less
Field Dislocation Mechanics for heterogeneous elastic materials: A numerical spectral approach
Djaka, Komlan Senam; Villani, Aurelien; Taupin, Vincent; ...
2017-03-01
Spectral methods using Fast Fourier Transform (FFT) algorithms have recently seen a surge in interest in the mechanics of materials community. The present work addresses the critical question of determining accurate local mechanical fields using FFT methods without artificial fluctuations arising from materials and defects induced discontinuities. Precisely, this work introduces a numerical approach based on intrinsic discrete Fourier transforms for the simultaneous treatment of material discontinuities arising from the presence of dislocations and from elastic stiffness heterogeneities. To this end, the elasto-static equations of the field dislocation mechanics theory for periodic heterogeneous materials are numerically solved with FFT inmore » the case of dislocations in proximity of inclusions of varying stiffness. An optimal intrinsic discrete Fourier transform method is sought based on two distinct schemes. A centered finite difference scheme for differential rules are used for numerically solving the Poisson-type equation in the Fourier space, while centered finite differences on a rotated grid is chosen for the computation of the modified Fourier–Green’s operator associated with the Lippmann–Schwinger-type equation. By comparing different methods with analytical solutions for an edge dislocation in a composite material, it is found that the present spectral method is accurate, devoid of any numerical oscillation, and efficient even for an infinite phase elastic contrast like a hole embedded in a matrix containing a dislocation. The present FFT method is then used to simulate physical cases such as the elastic fields of dislocation dipoles located near the matrix/inclusion interface in a 2D composite material and the ones due to dislocation loop distributions surrounding cubic inclusions in 3D composite material. In these configurations, the spectral method allows investigating accurately the elastic interactions and image stresses due to dislocation fields in the presence of elastic inhomogeneities.« less
Nguyen Dinh, Duc; Nguyen, Pham Dinh
2017-01-01
Based on the classical shell theory, the linear dynamic response of functionally graded carbon nanotube-reinforced composite (FG-CNTRC) truncated conical shells resting on elastic foundations subjected to dynamic loads is presented. The truncated conical shells are reinforced by single-walled carbon nanotubes (SWCNTs) that vary according to the linear functions of the shell thickness. The motion equations are solved by the Galerkin method and the fourth-order Runge–Kutta method. In numerical results, the influences of geometrical parameters, elastic foundations, natural frequency parameters, and nanotube volume fraction of FG-CNTRC truncated conical shells are investigated. The proposed results are validated by comparing them with those of other authors. PMID:29057821
A 3/D finite element approach for metal matrix composites based on micromechanical models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svobodnik, A.J.; Boehm, H.J.; Rammerstorfer, F.G.
Based on analytical considerations by Dvorak and Bahel-El-Din, a 3/D finite element material law has been developed for the elastic-plastic analysis of unidirectional fiber-reinforced metal matrix composites. The material law described in this paper has been implemented in the finite element code ABAQUS via the user subroutine UMAT. A constitutive law is described under the assumption that the fibers are linear-elastic and the matrix is of a von Mises-type with a Prager-Ziegler kinematic hardening rule. The uniaxial effective stress-strain relationship of the matrix in the plastic range is approximated by a Ramberg-Osgood law, a linear hardening rule or a nonhardeningmore » rule. Initial yield surface of the matrix material and for the fiber reinforced composite are compared to show the effect of reinforcement. Implementation of this material law in a finite element program is shown. Furthermore, the efficiency of substepping schemes and stress corrections for the numerical integration of the elastic-plastic stress-strain relations for anisotropic materials are investigated. The results of uniaxial monotonic tests of a boron/aluminum composite are compared to some finite element analyses based on micromechanical considerations. Furthermore a complete 3/D analysis of a tensile test specimen made of a silicon-carbide/aluminum MMC and the analysis of an MMC inlet inserted in a homogenous material are shown. 12 refs.« less
Changing demographics and state fiscal outlook: the case of sales taxes.
Mullins, D R; Wallace, S
1996-04-01
"Broad-scale demographic changes have implications for state and local finance in terms of the composition of the base of revenue sources and their yields. This article examines the effect of such changes on the potential future yield of consumption-based taxes. The effect of household characteristics and composition on the consumption of selected groups of goods subject to ad valorem retail sales taxes is estimated, generating demographic elasticities of consumption. These elasticities are applied to projected demographic changes in eight states through the year 2000. The results show rather wide variation in expected consumption shifts and potential tax bases across the states, with income growth having the greatest effect...." The geographical focus is on the United States. excerpt
The energetics of tightly bent DNA: a composite elastica model including local melting
NASA Astrophysics Data System (ADS)
Evans, Arthur; Levine, Alex
2012-02-01
Melting transitions are well-known to be affected by the application of mechanical stress. Motivated by the experiments of Zocchi and collaborators (Qu and Zocchi 2011, EPL 94 18003), we explore the effect of the application of mechanical stress on DNA melting in a particular composite of a stiff double stranded piece of DNA (dsDNA), shorter than its own persistence length, whose ends are linked by a flexible single stranded piece of DNA (ssDNA). The flexible ssDNA acts as a Gaussian polymer coil bending the stiff dsDNA through an elastic force that is controllable by the length of the ssDNA chain. In this talk we present theoretical predictions for two experimentally accessible features: the degree of local dsDNA melting and the local elastic energy of the dsDNA/ssDNA construct both as a function of the length of the attached ssDNA. We also address the effect of introducing a nick (broken covalent bond) in the dsDNA backbone on these results and discuss the implications of such data on the relative importance of backbone elasticity versus base stacking and base pairing interactions in determining the elasticity of dsDNA. This work also addresses open questions in the nonlinear elasticity of DNA in tightly bent curves.
NASA Technical Reports Server (NTRS)
Prosser, William H.
1987-01-01
The theoretical treatment of linear and nonlinear elasticity in a unidirectionally fiber reinforced composite as well as measurements for a unidirectional graphite/epoxy composite (T300/5208) are presented. Linear elastic properties were measured by both ultrasonic and strain gage measurements. The nonlinear properties were determined by measuring changes in ultrasonic natural phase velocity with a pulsed phase locked loop interferometer as a function of stress and temperature. These measurements provide the basis for further investigations into the relationship between nonlinear elastic properties and other important properties such as strength and fiber-matrix interfacial stength in graphite/epoxy composites.
Buckling of thin walled composite cylindrical shell filled with solid propellant
NASA Astrophysics Data System (ADS)
Dash, A. P.; Velmurugan, R.; Prasad, M. S. R.
2017-12-01
This paper investigates the buckling of thin walled composite cylindrical tubes that are partially filled with solid propellant equivalent elastic filler. Experimental investigation is conducted on thin composite tubes made out of S2-glass epoxy, which is made by using filament winding technique. The composite tubes are filled with elastic filler having similar mechanical properties as that of a typical solid propellant used in rocket motors. The tubes are tested for their buckling strength against the external pressure in the presence of the filler. Experimental data confirms the enhancement of external pressure carrying capacity of the composite tubes by up to three times as that of empty tubes for a volumetric loading fraction (VLF) of 0.9. Furthermore, the finite element based geometric nonlinearity analysis predicts the buckling behaviour of the partially filled composite tubes close to the experimental results.
NASA Technical Reports Server (NTRS)
Whalen, R. T.; Gonzalez-Doncel, G.; Robinson, S. L.; Sherby, O. D.
1989-01-01
The effect of substituting the Mg metal in Mg-B composites by a Mg-14 wt pct Li solid solution on the ductility of the resulting composite was investigated using elastic modulus measurements on the P/M composite material prepared with a dispersion of B particles (in a vol pct range of 0-30) in a matrix of Mg-14 wt pct Li-1.5 wt pct Al. It was found that the elastic modulus of the composites increased rapidly with increasing boron, with specific stiffness values reaching about two times that of most structural materials. The values of the compression and tensile strengths increased significantly with boron additions. Good tensile ductility was achieved at the level of 10 vol pct B. However, at 20 vol pct B, the Mg-Li composite exhibited only limited tensile ductility (about 2 percent total elongation).
NASA Astrophysics Data System (ADS)
Semenova, I. V.; Belashov, A. V.; Garbuzov, F. E.; Samsonov, A. M.; Semenov, A. A.
2017-06-01
We demonstrate an alternative approach to determination of the third order elastic moduli of materials based on registration of nonlinear bulk strain waves in three basic structural waveguides (rod, plate and shell) and further calculation of the Murnaghan moduli from the recorded wave parameters via simple algebra. These elastic moduli are available in literature for a limited number of materials and are measured with considerable errors, that evidences a demand in novel approaches to their determination.
The Effect of Chemical Functionalization on Mechanical Properties of Nanotube/Polymer Composites
NASA Technical Reports Server (NTRS)
Odegard, G. M.; Frankland, S. J. V.; Gates, T. S.
2003-01-01
The effects of the chemical functionalization of a carbon nanotube embedded in a nanotube/polyethylene composite on the bulk elastic properties are presented. Constitutive equations are established for both functionalized and non-functionalized nanotube composites systems by using an equivalent-continuum modeling technique. The elastic properties of both composites systems are predicted for various nanotube lengths, volume fractions, and orientations. The results indicate that for the specific composite material considered in this study, most of the elastic stiffness constants of the functionalized composite are either less than or equal to those of the non-functionalized composite.
Modeling of Melt-Infiltrated SiC/SiC Composite Properties
NASA Technical Reports Server (NTRS)
Mital, Subodh K.; Bednarcyk, Brett A.; Arnold, Steven M.; Lang, Jerry
2009-01-01
The elastic properties of a two-dimensional five-harness melt-infiltrated silicon carbide fiber reinforced silicon carbide matrix (MI SiC/SiC) ceramic matrix composite (CMC) were predicted using several methods. Methods used in this analysis are multiscale laminate analysis, micromechanics-based woven composite analysis, a hybrid woven composite analysis, and two- and three-dimensional finite element analyses. The elastic properties predicted are in good agreement with each other as well as with the available measured data. However, the various methods differ from each other in three key areas: (1) the fidelity provided, (2) the efforts required for input data preparation, and (3) the computational resources required. Results also indicate that efficient methods are also able to provide a reasonable estimate of local stress fields.
Innovative energy absorbing devices based on composite tubes
NASA Astrophysics Data System (ADS)
Tiwari, Chandrashekhar
Analytical and experimental study of innovative load limiting and energy absorbing devices are presented here. The devices are based on composite tubes and can be categorized in to two groups based upon the energy absorbing mechanisms exhibited by them, namely: foam crushing and foam fracturing. The device based on foam crushing as the energy absorbing mechanism is composed of light weight elastic-plastic foam filling inside an angle ply composite tube. The tube is tailored to have a high Poisson’s ratio (>20). Upon being loaded the device experiences large transverse contraction resulting in rapid decrease in diameter. At a certain axial load the foam core begins to crush and energy is dissipated. This device is termed as crush tube device. The device based upon foam shear fracture as the energy absorbing mechanism involves an elastic-plastic core foam in annulus of two concentric extension-twist coupled composite tubes with opposite angles of fibers. The core foam is bonded to the inner and outer tube walls. Upon being loaded axially, the tubes twist in opposite directions and fracture the core foam in out of plane shear and thus dissipate the energy stored. The device is termed as sandwich core device (SCD). The devices exhibit variations in force-displacement characteristics with changes in design and material parameters, resulting in wide range of energy absorption capabilities. A flexible matrix composite system was selected, which was composed of high stiffness carbon fibers as reinforcements in relatively low stiffness polyurethane matrix, based upon large strain to failure capabilities and large beneficial elastic couplings. Linear and non-linear analytical models were developed encapsulating large deformation theory of the laminated composite shells (using non-linear strain energy formulation) to the fracture mechanics of core foam and elastic-plastic deformation theory of the foam filling. The non-linear model is capable of including material and geometric nonlinearities that arise from large deformation and fiber reorientation. Developed non-linear analysis predicts the behavior of extension-twist coupled and angle ply flexible matrix composite tubes under multi-axial loadings. The predicted results show close correlation with experimental findings. It was also found that these devices exhibit variations with respect to rate of loading. It was found that the novel energy absorbing devices are capable of providing 4-5 times higher specific energy absorption (SEA) than currently used devices for similar purposes (such as wire bender which has SEA of 3.6 J/g).
Elastic properties of uniaxial-fiber reinforced composites - General features
NASA Astrophysics Data System (ADS)
Datta, Subhendu; Ledbetter, Hassel; Lei, Ming
The salient features of the elastic properties of uniaxial-fiber-reinforced composites are examined by considering the complete set of elastic constants of composites comprising isotropic uniaxial fibers in an isotropic matrix. Such materials exhibit transverse-isotropic symmetry and five independent elastic constants in Voigt notation: C(11), C(33), C(44), C(66), and C(13). These C(ij) constants are calculated over the entire fiber-volume-fraction range 0.0-1.0, using a scattered-plane-wave ensemple-average model. Some practical elastic constants such as the principal Young moduli and the principal Poisson ratios are considered, and the behavior of these constants is discussed. Also presented are the results for the four principal sound velocities used to study uniaxial-fiber-reinforced composites: v(11), v(33), v(12), and v(13).
NASA Technical Reports Server (NTRS)
Pindera, Marek-Jerzy; Salzar, Robert S.; Williams, Todd O.
1993-01-01
The utility of a recently developed analytical micromechanics model for the response of metal matrix composites under thermal loading is illustrated by comparison with the results generated using the finite-element approach. The model is based on the concentric cylinder assemblage consisting of an arbitrary number of elastic or elastoplastic sublayers with isotropic or orthotropic, temperature-dependent properties. The elastoplastic boundary-value problem of an arbitrarily layered concentric cylinder is solved using the local/global stiffness matrix formulation (originally developed for elastic layered media) and Mendelson's iterative technique of successive elastic solutions. These features of the model facilitate efficient investigation of the effects of various microstructural details, such as functionally graded architectures of interfacial layers, on the evolution of residual stresses during cool down. The available closed-form expressions for the field variables can readily be incorporated into an optimization algorithm in order to efficiently identify optimal configurations of graded interfaces for given applications. Comparison of residual stress distributions after cool down generated using finite-element analysis and the present micromechanics model for four composite systems with substantially different temperature-dependent elastic, plastic, and thermal properties illustrates the efficacy of the developed analytical scheme.
Quantitative non-destructive evaluation of composite materials based on ultrasonic wave propagation
NASA Technical Reports Server (NTRS)
Miller, J. G.
1986-01-01
The application and interpretation of specific ultrasonic nondestructive evaluation techniques are studied. The Kramers-Kronig or generalized dispersion relationships are applied to nondestructive techniques. Progress was made on an improved determination of material properties of composites inferred from elastic constant measurements.
Defect induced guided waves mode conversion
NASA Astrophysics Data System (ADS)
Wandowski, Tomasz; Kudela, Pawel; Malinowski, Pawel; Ostachowicz, Wieslaw
2016-04-01
This paper deals with analysis of guided waves mode conversion phenomenon in fiber reinforced composite materials. Mode conversion phenomenon may take place when propagating elastic guided waves interact with discontinuities in the composite waveguide. The examples of such discontinuities are sudden thickness change or delamination between layers in composite material. In this paper, analysis of mode conversion phenomenon is based on full wave-field signals. In the full wave-field approach signals representing propagation of elastic waves are gathered from dense mesh of points that span over investigated area of composite part. This allow to animate the guided wave propagation. The reported analysis is based on signals resulting from numerical calculations and experimental measurements. In both cases defect in the form of delamination is considered. In the case of numerical research, Spectral Element Method (SEM) is utilized, in which a mesh is composed of 3D elements. Numerical model includes also piezoelectric transducer. Full wave-field experimental measurements are conducted by using piezoelectric transducer for guided wave excitation and Scanning Laser Doppler Vibrometer (SLDV) for sensing.
The elastic and inelastic behavior of woven graphite fabric reinforced polyimide composites
NASA Astrophysics Data System (ADS)
Searles, Kevin H.
In many aerospace and conventional engineering applications, load-bearing composite structures are designed with the intent of being subjected to uniaxial stresses that are predominantly tensile or compressive. However, it is likely that biaxial and possibly triaxial states of stress will exist throughout the in-service life of the structure or component. The existing paradigm suggests that unidirectional tape materials are superior under uniaxial conditions since the vast majority of fibers lie in-plane and can be aligned to the loading axis. This may be true, but not without detriment to impact performance, interlaminar strength, strain to failure and complexity of part geometry. In circumstances where a sufficient balance of these properties is required, composites based on woven fabric reinforcements become attractive choices. In this thesis, the micro- and mesoscale elastic behavior of composites based on 8HS woven graphite fabric architectures and polyimide matrices is studied analytically and numerically. An analytical model is proposed to predict the composite elastic constants and is verified using numerical strain energy methods of equivalence. The model shows good agreement with the experiments and numerical strain energy equivalence. Lamina stresses generated numerically from in-plane shear loading show substantial shear and transverse normal stress concentrations in the transverse undulated tow which potentially leads to intralaminar damage. The macroscale inelastic behavior of the same composites is also studied experimentally and numerically. On an experimental basis, the biaxial and modified biaxial Iosipescu test methods are employed to study the weaker-mode shear and biaxial failure properties at room and elevated temperatures. On a numerical basis, the macroscale inelastic shear behavior of the composites is studied. Structural nonlinearities and material nonlinearities are identified and resolved. In terms of specimen-to-fixture interactions, load eccentricities, geometric (large strains and rotations) nonlinearities and boundary contact (friction) nonlinearities are explored. In terms of material nonlinearities, anisotropic plasticity and progressive damage are explored. A progressive damage criterion is proposed which accounts for the elastic strain energy densities in three directions. Of the types of nonlinearities studied, the nonlinear shear stress-strain behavior of the composites is principally from progressive intralaminar damage. Structural nonlinearities and elastoplastic deformation appear to be inconsequential.
Theory of fiber reinforced materials
NASA Technical Reports Server (NTRS)
Hashin, Z.
1972-01-01
A unified and rational treatment of the theory of fiber reinforced composite materials is presented. Fundamental geometric and elasticity considerations are throughly covered, and detailed derivations of the effective elastic moduli for these materials are presented. Biaxially reinforced materials which take the form of laminates are then discussed. Based on the fundamentals presented in the first portion of this volume, the theory of fiber-reinforced composite materials is extended to include viscoelastic and thermoelastic properties. Thermal and electrical conduction, electrostatics and magnetostatics behavior of these materials are discussed. Finally, a brief statement of the very difficult subject of physical strength is included.
NASA Astrophysics Data System (ADS)
Puljiz, Mate; Menzel, Andreas M.
2017-05-01
Embedding rigid inclusions into elastic matrix materials is a procedure of high practical relevance, for instance, for the fabrication of elastic composite materials. We theoretically analyze the following situation. Rigid spherical inclusions are enclosed by a homogeneous elastic medium under stick boundary conditions. Forces and torques are directly imposed from outside onto the inclusions or are externally induced between them. The inclusions respond to these forces and torques by translations and rotations against the surrounding elastic matrix. This leads to elastic matrix deformations, and in turn results in mutual long-ranged matrix-mediated interactions between the inclusions. Adapting a well-known approach from low-Reynolds-number hydrodynamics, we explicitly calculate the displacements and rotations of the inclusions from the externally imposed or induced forces and torques. Analytical expressions are presented as a function of the inclusion configuration in terms of displaceability and rotateability matrices. The role of the elastic environment is implicitly included in these relations. That is, the resulting expressions allow a calculation of the induced displacements and rotations directly from the inclusion configuration, without having to explicitly determine the deformations of the elastic environment. In contrast to the hydrodynamic case, compressibility of the surrounding medium is readily taken into account. We present the complete derivation based on the underlying equations of linear elasticity theory. In the future, the method will, for example, be helpful to characterize the behavior of externally tunable elastic composite materials, to accelerate numerical approaches, as well as to improve the quantitative interpretation of microrheological results.
NASA Astrophysics Data System (ADS)
Kalinkina, M. E.; Kozlov, A. S.; Labkovskaia, R. I.; Pirozhnikova, O. I.; Tkalich, V. L.; Shmakov, N. A.
2018-05-01
The object of research is the element base of devices of control and automation systems, including in its composition annular elastic sensitive elements, methods of their modeling, calculation algorithms and software complexes for automation of their design processes. The article is devoted to the development of the computer-aided design system of elastic sensitive elements used in weight- and force-measuring automation devices. Based on the mathematical modeling of deformation processes in a solid, as well as the results of static and dynamic analysis, the calculation of elastic elements is given using the capabilities of modern software systems based on numerical simulation. In the course of the simulation, the model was a divided hexagonal grid of finite elements with a maximum size not exceeding 2.5 mm. The results of modal and dynamic analysis are presented in this article.
Badgayan, Nitesh Dhar; Sahu, Santosh Kumar; Samanta, Sutanu; Rama Sreekanth, P S
2018-04-01
A thrust on improvement of different properties of polymer has taken a contemporary route with advent of nanofillers. Although several nanofillers are existent; MultiWalled Carbon Nanotubes- (MWCNTs) and h-Boron Nitride nanoplatelets-(h-BNNPs) unique combination of 1D and 2D dimensional geometry aids an advantage of B-C-N triad elemental effects on properties of tested samples. The current study aims to investigate the effects of MWCNT and h-BNNP reinforcement in High Density Polyethylene (HDPE) for high load bearing areas of medical applications requiring both elastic and viscous behavior. The results were analyzed keeping a view of its application in areas like HDPE based fracture fixation plates, acetabular cups and others. The composite and hybrid samples with different loadings were prepared after surface modification of nanofillers by mechanical mixing and molding technique. The dynamic nano-mechanical properties like storage modulus, loss modulus and tan delta were assessed for each sample during frequency swept from 10 to 220 Hz. The viscoelastic properties like h c /h m , H/E, elastic-plastic deformation were investigated and evaluated. At a frequency of 10 Hz, the storage and loss modulus of 0.1 CNT increased by 37.56% and decreased by 23.52% respectively on comparison with pure HDPE. This infers a good elastic as well as viscous behavior. Overall elastic behavior of 0.1 CNT was confirmed from tan delta evaluation. The interaction between B-C-N elemental triad had significant effect on creep strength, visco-damping property (h c /h m and H/E), elastic plastic displacement and pile-up and sink-in behavior. Highest creep strength and visco-damping property was exhibited by 0.25 CNT/0.15 BNNP hybrid. The elastic-plastic displacement of hybrid composite was noted as least, which decreased by 30% on comparison with pure HDPE. It can be inferred that presence of 1D-MWCNT and 2D-h-BNNP had significant effect on important dynamic viscoelastic and creep properties of HDPE based hybrid composites. Copyright © 2018 Elsevier Ltd. All rights reserved.
Bahrami, M; Fathi, M H; Ahmadian, M
2015-03-01
The goal of the present research was to fabricate, characterize, and evaluate mechanical and biological properties of Co-base alloy composites with different amounts of hydroxyapatite (HA) nanopowder reinforcement. The powder of Co-Cr-Mo alloy was mixed with different amounts of HA by ball milling and it was then cold pressed and sintered. X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques were used. Microhardness measurement and compressive tests were also carried out. Bioactivity behavior was evaluated in simulated body fluid (SBF). A significant decrease in modulus elasticity and an increase in microhardness of the sintered composites were observed. Apatite formation on the surface of the composites showed that it could successfully convert bioinert Co-Cr-Mo alloy to bioactive type by adding 10, 15, and 20wt.% HA which have lower modulus elasticity and higher microhardness. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Aboudi, Jacob
2000-01-01
The micromechanical generalized method of cells model is employed for the prediction of the effective moduli of electro-magneto-thermo-elastic composites. These include the effective elastic, piezoelectric, piezomagnetic, dielectric, magnetic permeability, electromagnetic coupling moduli, as well as the effective thermal expansion coefficients and the associated pyroelectric and pyromagnetic constants. Results are given for fibrous and periodically bilaminated composites.
Nitta, Keiko; Nomoto, Rie; Tsubota, Yuji; Tsuchikawa, Masuji; Hayakawa, Tohru
2017-11-29
The purpose of this study was to evaluate polymerization shrinkage and other physical properties of newly-developed cavity base materials for bulk filling technique, with the brand name BULK BASE (BBS). Polymerization shrinkage was measured according to ISO/FDIS 17304. BBS showed the significantly lowest polymerization shrinkage and significantly higher depth of cure than conventional flowable resin composites (p<0.05). The Knoop hardness, flexural strength and elastic modulus of that were significantly lower than conventional flowable resin composites (p<0.05). BBS had the significantly greatest filler content (p<0.05). SEM images of the surface showed failure of fillers. The lowest polymerization shrinkage was due to the incorporation of a new type of low shrinkage monomer, which has urethane moieties. There were no clear correlations between inorganic filler contents and polymerization shrinkage, flexural strength and elastic modulus. In conclusion, the low polymerization shrinkage of BBS will be useful for cavity treatment in dental clinics.
Automated Discrimination Method of Muscular and Subcutaneous Fat Layers Based on Tissue Elasticity
NASA Astrophysics Data System (ADS)
Inoue, Masahiro; Fukuda, Osamu; Tsubai, Masayoshi; Muraki, Satoshi; Okumura, Hiroshi; Arai, Kohei
Balance between human body composition, e.g. bones, muscles, and fat, is a major and basic indicator of personal health. Body composition analysis using ultrasound has been developed rapidly. However, interpretation of echo signal is conducted manually, and accuracy and confidence in interpretation requires experience. This paper proposes an automated discrimination method of tissue boundaries for measuring the thickness of subcutaneous fat and muscular layers. A portable one-dimensional ultrasound device was used in this study. The proposed method discriminated tissue boundaries based on tissue elasticity. Validity of the proposed method was evaluated in twenty-one subjects (twelve women, nine men; aged 20-70 yr) at three anatomical sites. Experimental results show that the proposed method can achieve considerably high discrimination performance.
Thermo-mechanical response predictions for metal matrix composite laminates
NASA Technical Reports Server (NTRS)
Aboudi, J.; Hidde, J. S.; Herakovich, C. T.
1991-01-01
An analytical micromechanical model is employed for prediction of the stress-strain response of metal matrix composite laminates subjected to thermomechanical loading. The predicted behavior of laminates is based upon knowledge of the thermomechanical response of the transversely isotropic, elastic fibers and the elastic-viscoplastic, work-hardening matrix. The method is applied to study the behavior of silicon carbide/titanium metal matrix composite laminates. The response of laminates is compared with that of unidirectional lamina. The results demonstrate the effect of cooling from a stress-free temperature and the mismatch of thermal and mechanical properties of the constituent phases on the laminate's subsequent mechanical response. Typical results are presented for a variety of laminates subjected to monotonic tension, monotonic shear and cyclic tensile/compressive loadings.
NASA Technical Reports Server (NTRS)
Lee, Jong-Won; Allen, David H.
1993-01-01
The uniaxial response of a continuous fiber elastic-perfectly plastic composite is modeled herein as a two-element composite cylinder. An axisymmetric analytical micromechanics solution is obtained for the rate-independent elastic-plastic response of the two-element composite cylinder subjected to tensile loading in the fiber direction for the case wherein the core fiber is assumed to be a transversely isotropic elastic-plastic material obeying the Tsai-Hill yield criterion, with yielding simulating fiber failure. The matrix is assumed to be an isotropic elastic-plastic material obeying the Tresca yield criterion. It is found that there are three different circumstances that depend on the fiber and matrix properties: fiber yield, followed by matrix yielding; complete matrix yield, followed by fiber yielding; and partial matrix yield, followed by fiber yielding, followed by complete matrix yield. The order in which these phenomena occur is shown to have a pronounced effect on the predicted uniaxial effective composite response.
NASA Astrophysics Data System (ADS)
Holec, D.; Tasnádi, F.; Wagner, P.; Friák, M.; Neugebauer, J.; Mayrhofer, P. H.; Keckes, J.
2014-11-01
Despite the fast development of computational material modeling, the theoretical description of macroscopic elastic properties of textured polycrystalline aggregates starting from basic principles remains a challenging task. In this study we use a supercell-based approach to obtain the elastic properties of a random solid solution cubic Zr1 -xAlxN system as a function of the metallic sublattice composition and texture descriptors. The employed special quasirandom structures are optimized not only with respect to short-range-order parameters, but also to make the three cubic directions [1 0 0 ] , [0 1 0 ] , and [0 0 1 ] as similar as possible. In this way, only a small spread of elastic constant tensor components is achieved and an optimum trade-off between modeling of chemical disorder and computational limits regarding the supercell size and calculational time is proposed. The single-crystal elastic constants are shown to vary smoothly with composition, yielding x ≈0.5 an alloy constitution with an almost isotropic response. Consequently, polycrystals with this composition are suggested to have Young's modulus independent of the actual microstructure. This is indeed confirmed by explicit calculations of polycrystal elastic properties, both within the isotropic aggregate limit and with fiber textures with various orientations and sharpness. It turns out that for low AlN mole fractions, the spread of the possible Young's modulus data caused by the texture variation can be larger than 100 GPa. Consequently, our discussion of Young's modulus data of cubic Zr1 -xAlxN contains also the evaluation of the texture typical for thin films.
Generalized self-adjustment method for statistical mechanics of composite materials
NASA Astrophysics Data System (ADS)
Pan'kov, A. A.
1997-03-01
A new method is developed for the statistical mechanics of composite materials — the generalized selfadjustment method — which makes it possible to reduce the problem of predicting effective elastic properties of composites with random structures to the solution of two simpler "averaged" problems of an inclusion with transitional layers in a medium with the desired effective elastic properties. The inhomogeneous elastic properties and dimensions of the transitional layers take into account both the "approximate" order of mutual positioning, and also the variation in the dimensions and elastics properties of inclusions through appropriate special averaged indicator functions of the random structure of the composite. A numerical calculation of averaged indicator functions and effective elastic characteristics is performed by the generalized self-adjustment method for a unidirectional fiberglass on the basis of various models of actual random structures in the plane of isotropy.
NASA Astrophysics Data System (ADS)
Kamali, M.; Shamsi, M.; Saidi, A. R.
2018-03-01
As a first endeavor, the effect of nonlinear elastic foundation on the postbuckling behavior of smart magneto-electro-elastic (MEE) composite nanotubes is investigated. The composite nanotube is affected by a non-uniform thermal environment. A typical MEE composite nanotube consists of microtubules (MTs) and carbon nanotubes (CNTs) with a MEE cylindrical nanoshell for smart control. It is assumed that the nanoscale layers of the system are coupled by a polymer matrix or filament network depending on the application. In addition to thermal loads, magneto-electro-mechanical loads are applied to the composite nanostructure. Length scale effects are taken into account using the nonlocal elasticity theory. The principle of virtual work and von Karman's relations are used to derive the nonlinear governing differential equations of MEE CNT-MT nanotubes. Using Galerkin's method, nonlinear critical buckling loads are determined. Various types of non-uniform temperature distribution in the radial direction are considered. Finally, the effects of various parameters such as the nonlinear constant of elastic medium, thermal loading factor and small scale coefficient on the postbuckling of MEE CNT-MT nanotubes are studied.
Readily fiberizable glasses having a high modulus of elasticity
NASA Technical Reports Server (NTRS)
Bacon, J. F.
1970-01-01
New glass compositions yield composites having higher moduli of elasticity and specific moduli of elasticity than commercially available glasses. Over a reasonable temperature range the glasses have a viscosity of about 20,000 poises. They consist of silica, alumina, magnesia, and beryllia, plus at least one uncommon oxide.
NASA Astrophysics Data System (ADS)
Chen, Xihui; Sun, Zhigang; Sun, Jianfen; Song, Yingdong
2017-12-01
In this paper, a numerical model which incorporates the oxidation damage model and the finite element model of 2D plain woven composites is presented for simulation of the oxidation behaviors of 2D plain woven C/SiC composite under preloading oxidation atmosphere. The equal proportional reduction method is firstly proposed to calculate the residual moduli and strength of unidirectional C/SiC composite. The multi-scale method is developed to simulate the residual elastic moduli and strength of 2D plain woven C/SiC composite. The multi-scale method is able to accurately predict the residual elastic modulus and strength of the composite. Besides, the simulated residual elastic moduli and strength of 2D plain woven C/SiC composites under preloading oxidation atmosphere show good agreements with experimental results. Furthermore, the preload, oxidation time, temperature and fiber volume fractions of the composite are investigated to show their influences upon the residual elastic modulus and strength of 2D plain woven C/SiC composites.
Sakhavand, Navid; Shahsavari, Rouzbeh
2015-03-16
Many natural and biomimetic platelet-matrix composites--such as nacre, silk, and clay-polymer-exhibit a remarkable balance of strength, toughness and/or stiffness, which call for a universal measure to quantify this outstanding feature given the structure and material characteristics of the constituents. Analogously, there is an urgent need to quantify the mechanics of emerging electronic and photonic systems such as stacked heterostructures. Here we report the development of a unified framework to construct universal composition-structure-property diagrams that decode the interplay between various geometries and inherent material features in both platelet-matrix composites and stacked heterostructures. We study the effects of elastic and elastic-perfectly plastic matrices, overlap offset ratio and the competing mechanisms of platelet versus matrix failures. Validated by several 3D-printed specimens and a wide range of natural and synthetic materials across scales, the proposed universally valid diagrams have important implications for science-based engineering of numerous platelet-matrix composites and stacked heterostructures.
Magneto-elastic modeling of composites containing chain-structured magnetostrictive particles
NASA Astrophysics Data System (ADS)
Yin, H. M.; Sun, L. Z.; Chen, J. S.
2006-05-01
Magneto-elastic behavior is investigated for two-phase composites containing chain-structured magnetostrictive particles under both magnetic and mechanical loading. To derive the local magnetic and elastic fields, three modified Green's functions are derived and explicitly integrated for the infinite domain containing a spherical inclusion with a prescribed magnetization, body force, and eigenstrain. A representative volume element containing a chain of infinite particles is introduced to solve averaged magnetic and elastic fields in the particles and the matrix. Effective magnetostriction of composites is derived by considering the particle's magnetostriction and the magnetic interaction force. It is shown that there exists an optimal choice of the Young's modulus of the matrix and the volume fraction of the particles to achieve the maximum effective magnetostriction. A transversely isotropic effective elasticity is derived at the infinitesimal deformation. Disregarding the interaction term, this model provides the same effective elasticity as Mori-Tanaka's model. Comparisons of model results with the experimental data and other models show the efficacy of the model and suggest that the particle interactions have a considerable effect on the effective magneto-elastic properties of composites even for a low particle volume fraction.
NASA Technical Reports Server (NTRS)
Hashin, Z. (Editor); Herakovich, C. T. (Editor)
1983-01-01
The present conference on the mechanics of composites discusses microstructure's influence on particulate and short fiber composites' thermoelastic and transport properties, the elastoplastic deformation of composites, constitutive equations for viscoplastic composites, the plasticity and fatigue of metal matrix composites, laminate damping mechanisms, the micromechanical modeling of Kevlar/epoxy composites' time-dependent failure, the variational characterization of waves in composites, and computational methods for eigenvalue problems in composite design. Also discussed are the elastic response of laminates, elastic coupling nonlinear effects in unsymmetrical laminates, elasticity solutions for laminate problems having stress singularities, the mechanics of bimodular composite structures, the optimization of laminated plates and shells, NDE for laminates, the role of matrix cracking in the continuum constitutive behavior of a damaged composite ply, and the energy release rates of various microcracks in short fiber composites.
NASA Astrophysics Data System (ADS)
Pawar, Prashant M.; Jung, Sung Nam
2008-12-01
In this study, an assessment is made for the helicopter vibration reduction of composite rotor blades using an active twist control concept. Special focus is given to the feasibility of implementing the benefits of the shear actuation mechanism along with elastic couplings of composite blades for achieving maximum vibration reduction. The governing equations of motion for composite rotor blades with surface bonded piezoceramic actuators are obtained using Hamilton's principle. The equations are then solved for dynamic response using finite element discretization in the spatial and time domains. A time domain unsteady aerodynamic theory with free wake model is used to obtain the airloads. A newly developed single-crystal piezoceramic material is introduced as an actuator material to exploit its superior shear actuation authority. Seven rotor blades with different elastic couplings representing stiffness properties similar to stiff-in-plane rotor blades are used to investigate the hub vibration characteristics. The rotor blades are modeled as a box beam with actuator layers bonded on the outer surface of the top and bottom of the box section. Numerical results show that a notable vibration reduction can be achieved for all the combinations of composite rotor blades. This investigation also brings out the effect of different elastic couplings on various vibration-reduction-related parameters which could be useful for the optimal design of composite helicopter blades.
Preparation and mechanical characterization of a PNIPA hydrogel composite.
Liu, Kaifeng; Ovaert, Timothy C; Mason, James J
2008-04-01
A poly (N-isopropylacrylamide) (PNIPA) hydrogel was synthesized by free radical polymerization and reinforced with a polyurethane foam to make a hydrogel composite. The temperature dependence of the elastic modulus of the PNIPA hydrogel and the composite due to volume phase transition was found using a uniaxial compression test, and the swelling property was investigated using an equilibrium swelling ratio experiment. The gel composite preserves the ability to undergo the volume phase transition and its elastic modulus has strong temperature dependence. The temperature dependence of the elastic modulus and swelling ratio of the gel composite were compared to the PNIPA hydrogel. Not surprisingly, the modulus and swelling ratio of the composite were less dramatic than in the gel.
Vaidyanathan, Tritala K; Vaidyanathan, Jayalakshmi; Arghavani, David
2016-12-01
Purpose: The goal of this investigation was to characterize the compliance properties in selected polymers used for temporary (provisional crown and bridge) applications. Method: Polymethyl methacrylate (PMMA)- and polyethyl methacrylate (PEMA)-based JET and TRIM II were investigated along with two bisacryl composite resins (LUXATEMP and PROTEMP 3 GARANT). Rectangular samples of the resins were subjected to creep-recovery tests in a dynamic mechanical analyzer at and near the oral temperature (27 °C, 37 °C and 47 °C). The instantaneous (elastic), and time-dependent viscoelastic, and viscoplastic compliance profiles of the materials were determined and analyzed as a function of materials and temperature. Results: Highly significant ( p = 0.0001) differences among means of elastic, viscoelastic and viscoplastic compliance values were found as a function of materials. TRIM II showed an order of magnitude higher viscoplastic deformation than the other three materials (LUXATEMP, PROTEMP 3 GARANT and JET). Conclusions: The results indicate that PEMA is susceptible to significantly greater elastic, viscoelastic, and more importantly to viscoplastic compliant behavior compared with bisacryl composite and PMMA provisional crown and bridge materials. This indicates high-dimensional instability and poor stiffness and resiliency in PEMA appliances vis-à-vis those of PMMA and bisacryl composites.
Elastic anomalies in Fe-Cr alloys
NASA Astrophysics Data System (ADS)
Zhang, Hualei; Wang, Guisheng; Punkkinen, Marko P. J.; Hertzman, Staffan; Johansson, Börje; Vitos, Levente
2013-05-01
Using ab initio alloy theory, we determine the elastic parameters of ferromagnetic and paramagnetic Fe1-cCrc (0 ≤ c ≤ 1) alloys in the body centered cubic crystallographic phase. Comparison with the experimental data demonstrates that the employed theoretical approach accurately describes the observed composition dependence of the polycrystalline elastic moduli. The predicted single-crystal elastic constants follow complex anomalous trends, which are shown to originate from the interplay between magnetic and chemical effects. The nonmonotonic composition dependence of the elastic parameters has marked implications on the micro-mechanical properties of ferrite stainless steels.
NASA Astrophysics Data System (ADS)
Penta, Raimondo; Gerisch, Alf
2017-01-01
The classical asymptotic homogenization approach for linear elastic composites with discontinuous material properties is considered as a starting point. The sharp length scale separation between the fine periodic structure and the whole material formally leads to anisotropic elastic-type balance equations on the coarse scale, where the arising fourth rank operator is to be computed solving single periodic cell problems on the fine scale. After revisiting the derivation of the problem, which here explicitly points out how the discontinuity in the individual constituents' elastic coefficients translates into stress jump interface conditions for the cell problems, we prove that the gradient of the cell problem solution is minor symmetric and that its cell average is zero. This property holds for perfect interfaces only (i.e., when the elastic displacement is continuous across the composite's interface) and can be used to assess the accuracy of the computed numerical solutions. These facts are further exploited, together with the individual constituents' elastic coefficients and the specific form of the cell problems, to prove a theorem that characterizes the fourth rank operator appearing in the coarse-scale elastic-type balance equations as a composite material effective elasticity tensor. We both recover known facts, such as minor and major symmetries and positive definiteness, and establish new facts concerning the Voigt and Reuss bounds. The latter are shown for the first time without assuming any equivalence between coarse and fine-scale energies ( Hill's condition), which, in contrast to the case of representative volume elements, does not identically hold in the context of asymptotic homogenization. We conclude with instructive three-dimensional numerical simulations of a soft elastic matrix with an embedded cubic stiffer inclusion to show the profile of the physically relevant elastic moduli (Young's and shear moduli) and Poisson's ratio at increasing (up to 100 %) inclusion's volume fraction, thus providing a proxy for the design of artificial elastic composites.
NASA Astrophysics Data System (ADS)
Gumirova, V. N.; Bedin, S. A.; Abdurashidova, G. S.; Razumovskaya, I. V.
The strength of track etched membranes and prepared on their base polymer/metal composites is analysed in point of view of the pores form evolution during the extension and the interaction of elastic mechanical fields on closely positioned pores. The stress-strain curves for track membranes and composites PET/Cu are demonstrated for pore density 1.2×107сm-2 and diameters from 0.06 μm to 2.9 μm
On the strain energy of laminated composite plates
NASA Technical Reports Server (NTRS)
Atilgan, Ali R.; Hodges, Dewey H.
1991-01-01
The present effort to obtain the asymptotically correct form of the strain energy in inhomogeneous laminated composite plates proceeds from the geometrically nonlinear elastic theory-based three-dimensional strain energy by decomposing the nonlinear three-dimensional problem into a linear, through-the-thickness analysis and a nonlinear, two-dimensional analysis analyzing plate formation. Attention is given to the case in which each lamina exhibits material symmetry about its middle surface, deriving closed-form analytical expressions for the plate elastic constants and the displacement and strain distributions through the plate's thickness. Despite the simplicity of the plate strain energy's form, there are no restrictions on the magnitudes of displacement and rotation measures.
Air and ground resonance of helicopters with elastically tailored composite rotor blades
NASA Technical Reports Server (NTRS)
Smith, Edward C.; Chopra, Inderjit
1993-01-01
The aeromechanical stability, including air resonance in hover, air resonance in forward flight, and ground resonance, of a helicopter with elastically tailored composite rotor blades is investigated. Five soft-inplane hingeless rotor configurations, featuring elastic pitch-lag, pitch-flap and extension-torsion couplings, are analyzed. Elastic couplings introduced through tailored composite blade spars can have a powerful effect on both air and ground resonance behavior. Elastic pitch-flap couplings (positive and negative) strongly affect body, rotor and dynamic inflow modes. Air resonance stability is diminished by elastic pitch-flap couplings in hover and forwrad flight. Negative pitch-lag elastic coupling has a stabilizing effect on the regressive lag mode in hover and forward flight. The negative pitch-lag coupling has a detrimental effect on ground resonance stability. Extension-torsion elastic coupling (blade pitch decreases due to tension) decreases regressive lag mode stability in both airborne and ground contact conditions. Increasing thrust levels has a beneficial influence on ground resonance stability for rotors with pitch-flap and extension-torsion coupling and is only marginally effective in improving stability of rotors with pitch-lag coupling.
Stiffness Characteristics of Composite Rotor Blades With Elastic Couplings
NASA Technical Reports Server (NTRS)
Piatak, David J.; Nixon, Mark W.; Kosmatka, John B.
1997-01-01
Recent studies on rotor aeroelastic response and stability have shown the beneficial effects of incorporating elastic couplings in composite rotor blades. However, none of these studies have clearly identified elastic coupling limits and the effects of elastic couplings on classical beam stiffnesses of representative rotor blades. Knowledge of these limits and effects would greatly enhance future aeroelastic studies involving composite rotor blades. The present study addresses these voids and provides a preliminary design database for investigators who may wish to study the effects of elastic couplings on representative blade designs. The results of the present study should provide a basis for estimating the potential benefits associated with incorporating elastic couplings without the need for first designing a blade cross section and then performing a cross-section analysis to obtain the required beam section properties as is customary in the usual one-dimensional beam-type approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Babeyko, A.Yu.; Sobolev, S.V.; Sinelnikov, E.D.
1994-09-01
In-situ elastic properties in deep boreholes are controlled by several factors, mainly by lithology, petrofabric, fluid-filled cracks and pores. In order to separate the effects of different factors it is useful to extract lithology-controlled part from observed in-situ velocities. For that purpose we calculated mineralogical composition and isotropic crack-free elastic properties in the lower part of the Kola borehole from bulk chemical compositions of core samples. We use a new technique of petrophysical modeling based on thermodynamic approach. The reasonable accuracy of the modeling is confirmed by comparison with the observations of mineralogical composition and laboratory measurements of density andmore » elastic wave velocities in upper crustal crystalline rocks at high confining pressure. Calculations were carried out for 896 core samples from the depth segment of 6840-10535m. Using these results we estimate density and crack-free isotropic elastic properties of 554 lithology-defined layers composing this depth segment. Average synthetic P-wave velocity appears to be 2.7% higher than the velocity from Vertical Seismic Profiling (VSP), and 5% higher than sonic log velocity. Average synthetic S-wave velocity is 1.4% higher than that from VSP. These differences can be explained by superposition of effects of fabric-related anisotropy, cracks aligned parallel to the foliation plain, and randomly oriented cracks, with the effects of cracks being the predominant control. Low sonic log velocities are likely caused by drilling-induced cracking (hydrofractures) in the borehole walls. The calculated synthetic density and velocity cross-sections can be used for much more detailed interpretations, for which, however, new, more detailed and reliable seismic data are required.« less
Experimental evaluation of tailored chordwise deformable box beam and correlation with theory
NASA Technical Reports Server (NTRS)
Rehfield, Lawrence W.; Zischka, Peter J.; Chang, Stephen; Fentress, Michael L.; Ambur, Damodar R.
1993-01-01
This paper describes an experimental methodology based upon the use of a flexible sling support and load application system that has been created and utilized to evaluate a box beam which incorporates an elastic tailoring technology. The design technique used here for elastically tailoring the composite box beam structure is to produce exaggerated chordwise camber deformation of substantial magnitude to be of practical use in the new composite aircraft wings. The traditional methods such as a four-point bend test to apply constant bending moment with rigid fixtures inhibits the designed chordwise deformation from occurring and, hence, the need for the new test method. The experimental results for global camber and spanwise bending compliances correlate well with theoretical predictions based on a beam-like model.
Bäcker, Anne; Erhardt, Olga; Wietbrock, Lukas; Schel, Natalia; Göppert, Bettina; Dirschka, Marian; Abaffy, Paul; Sollich, Thomas; Cecilia, Angelica; Gruhl, Friederike J
2017-02-01
In the present work, different biopolymer blend scaffolds based on the silk protein fibroin from Bombyx mori (BM) were prepared via freeze-drying method. The chemical, structural, and mechanical properties of the three dimensional (3D) porous silk fibroin (SF) composite scaffolds of gelatin, collagen, and chitosan as well as SF from Antheraea pernyi (AP) and the recombinant spider silk protein spidroin (SSP1) have been systematically investigated, followed by cell culture experiments with epithelial prostate cancer cells (LNCaP) up to 14 days. Compared to the pure SF scaffold of BM, the blend scaffolds differ in porous morphology, elasticity, swelling behavior, and biochemical composition. The new composite scaffold with SSP1 showed an increased swelling degree and soft tissue like elastic properties. Whereas, in vitro cultivation of LNCaP cells demonstrated an increased growth behavior and spheroid formation within chitosan blended scaffolds based on its remarkable porosity, which supports nutrient supply matrix. Results of this study suggest that silk fibroin matrices are sufficient and certain SF composite scaffolds even improve 3D cell cultivation for prostate cancer research compared to matrices based on pure biomaterials or synthetic polymers. © 2016 Wiley Periodicals, Inc.
Soft-matter composites with electrically tunable elastic rigidity
NASA Astrophysics Data System (ADS)
Shan, Wanliang; Lu, Tong; Majidi, Carmel
2013-08-01
We use a phase-changing metal alloy to reversibly tune the elastic rigidity of an elastomer composite. The elastomer is embedded with a sheet of low-melting-point Field’s metal and an electric Joule heater composed of a serpentine channel of liquid-phase gallium-indium-tin (Galinstan®) alloy. At room temperature, the embedded Field’s metal is solid and the composite remains elastically rigid. Joule heating causes the Field’s metal to melt and allows the surrounding elastomer to freely stretch and bend. Using a tensile testing machine, we measure that the effective elastic modulus of the composite reversibly changes by four orders of magnitude when powered on and off. This dramatic change in rigidity is accurately predicted with a model for an elastic composite. Reversible rigidity control is also accomplished by replacing the Field’s metal with shape memory polymer. In addition to demonstrating electrically tunable rigidity with an elastomer, we also introduce a new technique to rapidly produce soft-matter electronics and multifunctional materials in several minutes with laser-patterned adhesive film and masked deposition of liquid-phase metal alloy.
Chen, Roland K; Shih, A J
2013-08-21
This study develops a new class of gellan gum-based tissue-mimicking phantom material and a model to predict and control the elastic modulus, thermal conductivity, and electrical conductivity by adjusting the mass fractions of gellan gum, propylene glycol, and sodium chloride, respectively. One of the advantages of gellan gum is its gelling efficiency allowing highly regulable mechanical properties (elastic modulus, toughness, etc). An experiment was performed on 16 gellan gum-based tissue-mimicking phantoms and a regression model was fit to quantitatively predict three material properties (elastic modulus, thermal conductivity, and electrical conductivity) based on the phantom material's composition. Based on these material properties and the regression model developed, tissue-mimicking phantoms of porcine spinal cord and liver were formulated. These gellan gum tissue-mimicking phantoms have the mechanical, thermal, and electrical properties approximately equivalent to those of the spinal cord and the liver.
NASA Astrophysics Data System (ADS)
Pan'kov, A. A.
1997-05-01
The feasibility of using a generalized self-consistent method for predicting the effective elastic properties of composites with random hybrid structures has been examined. Using this method, the problem is reduced to solution of simpler special averaged problems for composites with single inclusions and corresponding transition layers in the medium examined. The dimensions of the transition layers are defined by correlation radii of the composite random structure of the composite, while the heterogeneous elastic properties of the transition layers take account of the probabilities for variation of the size and configuration of the inclusions using averaged special indicator functions. Results are given for a numerical calculation of the averaged indicator functions and analysis of the effect of the micropores in the matrix-fiber interface region on the effective elastic properties of unidirectional fiberglass—epoxy using the generalized self-consistent method and compared with experimental data and reported solutions.
Correlation between elastic and plastic deformations of partially cured epoxy networks
NASA Astrophysics Data System (ADS)
Müller, Michael; Böhm, Robert; Geller, Sirko; Kupfer, Robert; Jäger, Hubert; Gude, Maik
2018-05-01
The thermo-mechanical behavior of polymer matrix materials is strongly dependent on the curing reaction as well as temperature and time. To date, investigations of epoxy resins and their composites mainly focused on the elastic domain because plastic deformation of cross-linked polymer networks was considered as irrelevant or not feasible. This paper presents a novel approach which combines both elastic and plastic domain. Based on an analytical framework describing the storage modulus, analogous parameter combinations are defined in order to reduce complexity when variations in temperature, strain rate and degree of cure are encountered.
NASA Astrophysics Data System (ADS)
Ullemeyer, Klaus; Lokajíček, Tomás; Vasin, Roman N.; Keppler, Ruth; Behrmann, Jan H.
2018-02-01
In this study elastic moduli of three different rock types of simple (calcite marble) and more complex (amphibolite, micaschist) mineralogical compositions were determined by modeling of elastic moduli using texture (crystallographic preferred orientation; CPO) data, experimental investigation and extrapolation. 3D models were calculated using single crystal elastic moduli, and CPO measured using time-of-flight neutron diffraction at the SKAT diffractometer in Dubna (Russia) and subsequently analyzed using Rietveld Texture Analysis. To define extrinsic factors influencing elastic behaviour, P-wave and S-wave velocity anisotropies were experimentally determined at 200, 400 and 600 MPa confining pressure. Functions describing variations of the elastic moduli with confining pressure were then used to predict elastic properties at 1000 MPa, revealing anisotropies in a supposedly crack-free medium. In the calcite marble elastic anisotropy is dominated by the CPO. Velocities continuously increase, while anisotropies decrease from measured, over extrapolated to CPO derived data. Differences in velocity patterns with sample orientation suggest that the foliation forms an important mechanical anisotropy. The amphibolite sample shows similar magnitudes of extrapolated and CPO derived velocities, however the pattern of CPO derived velocity is closer to that measured at 200 MPa. Anisotropy decreases from the extrapolated to the CPO derived data. In the micaschist, velocities are higher and anisotropies are lower in the extrapolated data, in comparison to the data from measurements at lower pressures. Generally our results show that predictions for the elastic behavior of rocks at great depths are possible based on experimental data and those computed from CPO. The elastic properties of the lower crust can, thus, be characterized with an improved degree of confidence using extrapolations. Anisotropically distributed spherical micro-pores are likely to be preserved, affecting seismic velocity distributions. Compositional variations in the polyphase rock samples do not significantly change the velocity patterns, allowing the use of RTA-derived volume percentages for the modeling of elastic moduli.
Elastic-plastic analysis of AS4/PEEK composite laminate using a one-parameter plasticity model
NASA Technical Reports Server (NTRS)
Sun, C. T.; Yoon, K. J.
1992-01-01
A one-parameter plasticity model was shown to adequately describe the plastic deformation of AS4/PEEK (APC-2) unidirectional thermoplastic composite. This model was verified further for unidirectional and laminated composite panels with and without a hole. The elastic-plastic stress-strain relations of coupon specimens were measured and compared with those predicted by the finite element analysis using the one-parameter plasticity model. The results show that the one-parameter plasticity model is suitable for the analysis of elastic-plastic deformation of AS4/PEEK composite laminates.
Nonlinear deformation of composites with consideration of the effect of couple-stresses
NASA Astrophysics Data System (ADS)
Lagzdiņš, A.; Teters, G.; Zilaucs, A.
1998-09-01
Nonlinear deformation of spatially reinforced composites under active loading (without unloading) is considered. All the theoretical constructions are based on the experimental data on unidirectional and ±π/4 cross-ply epoxy plastics reinforced with glass fibers. Based on the elastic properties of the fibers and EDT-10 epoxy binder, the linear elastic characteristics of a transversely isotropic unidirectionally reinforced fiberglass plastic are found, whereas the nonlinear characteristics are obtained from experiments. For calculating the deformation properties of the ±π/4 cross-ply plastic, a refined version of the Voigt method is applied taking into account also the couple-stresses arising in the composite due to relative rotation of the reinforcement fibers. In addition, a fourth-rank damage tensor is introduced in order to account for the impact of fracture caused by the couple-stresses. The unknown constants are found from the experimental uniaxial tension curve for the cross-ply composite. The comparison between the computed curves and experimental data for other loading paths shows that the description of the nonlinear behavior of composites can be improved by considering the effect of couple-stresses generated by rotations of the reinforcing fibers.
Achieving large linear elasticity and high strength in bulk nanocompsite via synergistic effect
Hao, Shijie; Cui, Lishan; Guo, Fangmin; ...
2015-03-09
Elastic strain in bulk metallic materials is usually limited to only a fraction of 1%. Developing bulk metallic materials showing large linear elasticity and high strength has proven to be difficult. Here, based on the synergistic effect between nanowires and orientated martensite NiTi shape memory alloy, we developed an in-situ Nb nanowires-orientated martensitic NiTi matrix composite showing an ultra-large linear elastic strain of 4% and an ultrahigh yield strength of 1.8 GPa. This material also has a high mechanical energy storage efficiency of 96% and a high energy storage density of 36 J/cm 3 that is almost one order ofmore » larger than that of spring steel. It is demonstrated that the synergistic effect allows the exceptional mechanical properties of nanowires to be harvested at macro scale and the mechanical properties of matrix to be greatly improved, resulting in these superior properties. This research provides new avenues for developing advanced composites with superior properties by using effective synergistic effect between components.« less
NASA Technical Reports Server (NTRS)
Hyer, M. W.; Cooper, D. E.; Cohen, D.
1985-01-01
The effects of a uniform temperature change on the stresses and deformations of composite tubes are investigated. The accuracy of an approximate solution based on the principle of complementary virtual work is determined. Interest centers on tube response away from the ends and so a planar elasticity approach is used. For the approximate solution a piecewise linear variation of stresses with the radial coordinate is assumed. The results from the approximate solution are compared with the elasticity solution. The stress predictions agree well, particularly peak interlaminar stresses. Surprisingly, the axial deformations also agree well. This, despite the fact that the deformations predicted by the approximate solution do not satisfy the interface displacement continuity conditions required by the elasticity solution. The study shows that the axial thermal expansion coefficient of tubes with a specific number of axial and circumferential layers depends on the stacking sequence. This is in contrast to classical lamination theory which predicts the expansion to be independent of the stacking arrangement. As expected, the sign and magnitude of the peak interlaminar stresses depends on stacking sequence.
NASA Astrophysics Data System (ADS)
Abramovich, A.
2016-04-01
Metal-ceramics composites (cermets) are modern construction material used in different industry branches. Their strength and heat resistance depend on elastic and thermos physical properties. In this work cermets based on corundum and stainless steel (sintered in high vacuum at temperatures 1500 - 1600°C) are investigated. The volume steel concentration in the samples varies up 2 to 20 vol %. The elastic modules were measured by ultrasonic method at room temperature, measuring of thermo conductivity coefficient were carried out at temperatures 100, 200°C by method of continued heating in adiabatic calorimeter. We founded appearance of two extremes on dependences of elastic modules (E, G) on stainless steel concentrations, nature of which is unknown, modules values change in range: E = 110 - 310, G = 60 - 130GPa (for different temperatures of sintering). Similar dependence is observed for thermo conductivity coefficient which values varies up 10 to 40 W/(m.K). There is presented also discussion of results based on structure cermet model as multiphase micro heterogeneous media with isotropic physical properties in the work.
NASA Technical Reports Server (NTRS)
Marques, E. R. C.; Williams, J. H., Jr.
1986-01-01
The elastic constants of a fiberglass epoxy unidirectional composite are determined by measuring the phase velocities of longitudinal and shear stress waves via the through transmission ultrasonic technique. The waves introduced into the composite specimens were generated by piezoceramic transducers. Geometric lengths and the times required to travel those lengths were used to calculate the phase velocities. The model of the transversely isotropic medium was adopted to relate the velocities and elastic constants.
The effect of long-range order on the elastic properties of Cu3Au
NASA Astrophysics Data System (ADS)
Wang, Gui-Sheng; Krisztina Delczeg-Czirjak, Erna; Hu, Qing-Miao; Kokko, Kalevi; Johansson, Börje; Vitos, Levente
2013-02-01
Ab initio calculations, based on the exact muffin-tin orbitals method are used to determine the elastic properties of Cu-Au alloys with Au/Cu ratio 1/3. The compositional disorder is treated within the coherent potential approximation. The lattice parameters and single-crystal elastic constants are calculated for different partially ordered structures ranging from the fully ordered L12 to the random face centered cubic lattice. It is shown that the theoretical elastic constants follow a clear trend with the degree of chemical order: namely, C11 and C12 decrease, whereas C44 remains nearly constant with increasing disorder. The present results are in line with the experimental findings that the impact of the chemical ordering on the fundamental elastic parameters is close to the resolution of the available experimental and theoretical tools.
A composite material based on recycled tires
NASA Astrophysics Data System (ADS)
Malers, L.; Plesuma, R.; Locmele, L.
2009-01-01
The present study is devoted to the elaboration and investigation of a composite material based on mechanically grinded recycled tires and a polymer binder. The correlation between the content of the binder, some technological parameters, and material properties of the composite was clarified. The apparent density, the compressive stress at a 10% strain, the compressive elastic modulus in static and cyclic loadings, and the insulating properties (acoustic and thermal) were the parameters of special interest of the present investigation. It is found that a purposeful variation of material composition and some technological parameters leads to multifunctional composite materials with different and predictable mechanical and insulation properties.
NASA Astrophysics Data System (ADS)
Milton, Graeme W.; Camar-Eddine, Mohamed
2018-05-01
For a composite containing one isotropic elastic material, with positive Lame moduli, and void, with the elastic material occupying a prescribed volume fraction f, and with the composite being subject to an average stress, σ0 , Gibiansky, Cherkaev, and Allaire provided a sharp lower bound Wf(σ0) on the minimum compliance energy σ0 :ɛ0 , in which ɛ0 is the average strain. Here we show these bounds also provide sharp bounds on the possible (σ0 ,ɛ0) -pairs that can coexist in such composites, and thus solve the weak G-closure problem for 3d-printed materials. The materials we use to achieve the extremal (σ0 ,ɛ0) -pairs are denoted as near optimal pentamodes. We also consider two-phase composites containing this isotropic elasticity material and a rigid phase with the elastic material occupying a prescribed volume fraction f, and with the composite being subject to an average strain, ɛ0. For such composites, Allaire and Kohn provided a sharp lower bound W˜f(ɛ0) on the minimum elastic energy σ0 :ɛ0 . We show that these bounds also provide sharp bounds on the possible (σ0 ,ɛ0) -pairs that can coexist in such composites of the elastic and rigid phases, and thus solve the weak G-closure problem in this case too. The materials we use to achieve these extremal (σ0 ,ɛ0) -pairs are denoted as near optimal unimodes.
NASA Astrophysics Data System (ADS)
Kucher, N. K.; Dveyrin, A. Z.; Zarazovskii, M. N.; Zemtsov, M. P.
2004-05-01
The regularities of elastic deformation of multilayered fiberglass plastics reinforced with a fabric of sateen weave are studied. The effect of cooling to 77 K on the averaged elastic characteristics of the orthotropic material is analyzed. The efficiency of mathematical modeling in calculating the stiffness and compliance parameters of the woven composites based on the geometry and mechanical properties of their constituents is investigated.
Aeromechanical stability of helicopters with composite rotor blades in forward flight
NASA Technical Reports Server (NTRS)
Smith, Edward C.; Chopra, Inderjit
1992-01-01
The aeromechanical stability, including air resonance in hover, air resonance in forward flight, and ground resonance, of a helicopter with elastically tailored composite rotor blades is investigated. Five soft-inplane hingeless rotor configurations, featuring elastic pitch-lag, pitch-flap and extension-torsion couplings, are analyzed. Elastic couplings introduced through tailored composite blade spars can have a powerful effect on both air and ground resonance behavior. Elastic pitch-flap couplings (positive and negative) strongly affect body, rotor and dynamic inflow modes. Air resonance stability is diminished by elastic pitch-flap couplings in hover and forward flight. Negative pitch-lag elastic coupling has a stabilizing effect on the regressive lag mode in hover and forward flight. The negative pitch-lag coupling has a detrimental effect on ground resonance stability. Extension-torsion elastic coupling (blade pitch decreases due to tension) decreases regressive lag mode stability in both airborne and ground contact conditions. Increasing thrust levels has a beneficial influence on ground resonance stability for rotors with pitch-flap and extension-torsion coupling and is only marginally effective in improving stability of rotors with pitch-lag coupling.
Prediction of the elastic modulus of wood flour/kenaf fibre/polypropylene hybrid composites
Jamal Mirbagheri; Mehdi Tajvidi; Ismaeil Ghasemi; John C. Hermanson
2007-01-01
The prediction of the elastic modulus of short natural fibre hybrid composites has been investigated by using the properties of the pure composites through the rule of hybrid mixtures (RoHM) equation. In this equation, a hybrid natural fibre composite assumed as a system consisting of two separate single systems, namely particle/polymer and short-fibre/polymer systems...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Modak, Partha; Hossain, M. Jamil, E-mail: jamil917@gmail.com; Ahmed, S. Reaz
An accurate stress analysis has been carried out to investigate the suitability of a hybrid balanced laminate as a structural material for thick composite beams with axial stiffeners. Three different balanced laminates composed of dissimilar ply material as well as fiber orientations are considered for a thick beam on simple supports with stiffened lateral ends. A displacement potential based elasticity approach is used to obtain the numerical solution of the corresponding elastic fields. The overall laminate stresses as well as individual ply stresses are analysed mainly in the perspective of laminate hybridization. Both the fiber material and ply angle ofmore » individual laminas are found to play dominant roles in defining the design stresses of the present composite beam.« less
Self-actuating and self-diagnosing plastically deforming piezo-composite flapping wing MAV
NASA Astrophysics Data System (ADS)
Harish, Ajay B.; Harursampath, Dineshkumar; Mahapatra, D. Roy
2011-04-01
In this work, we propose a constitutive model to describe the behavior of Piezoelectric Fiber Reinforced Composite (PFRC) material consisting of elasto-plastic matrix reinforced by strong elastic piezoelectric fibers. Computational efficiency is achieved using analytical solutions for elastic stifness matrix derived from Variational Asymptotic Methods (VAM). This is extended to provide Structural Health Monitoring (SHM) based on plasticity induced degradation of flapping frequency of PFRC. Overall this work provides an effective mathematical tool that can be used for structural self-health monitoring of plasticity induced flapping degradation of PFRC flapping wing MAVs. The developed tool can be re-calibrated to also provide SHM for other forms of failures like fatigue, matrix cracking etc.
Graphene and water-based elastomers thin-film composites by dip-moulding.
Iliut, Maria; Silva, Claudio; Herrick, Scott; McGlothlin, Mark; Vijayaraghavan, Aravind
2016-09-01
Thin-film elastomers (elastic polymers) have a number of technologically significant applications ranging from sportswear to medical devices. In this work, we demonstrate that graphene can be used to reinforce 20 micron thin elastomer films, resulting in over 50% increase in elastic modulus at a very low loading of 0.1 wt%, while also increasing the elongation to failure. This loading is below the percolation threshold for electrical conductivity. We demonstrate composites with both graphene oxide and reduced graphene oxide, the reduction being undertaken in-situ or ex-situ using a biocompatible reducing agent in ascorbic acid. The ultrathin films were cast by dip moulding. The transparency of the elastomer films allows us to use optical microscopy image and confirm the uniform distribution as well as the conformation of the graphene flakes within the composite.
Wang, L; Rokhlin, S I
2002-09-01
An inversion method based on Floquet wave velocity in a periodic medium has been introduced to determine the single ply elastic moduli of a multi-ply composite. The stability of this algorithm is demonstrated by numerical simulation. The applicability of the plane wave approximation to the velocity measurement in the double-through-transmission self-reference method has been analyzed using a time-domain beam model. It shows that the finite width of the transmitter affects only the amplitudes of the signals and has almost no effect on the time delay. Using this method, the ply moduli for a multiply composite have been experimentally determined. While the paper focuses on elastic constant reconstruction from phase velocity measurements by the self-reference double-through-transmission method, the reconstruction methodology is also applicable to assessment of data collected by other methods.
NASA Technical Reports Server (NTRS)
Zhang, Q. M.
2003-01-01
This program supported investigation of an all-polymer percolative composite which exhibits very high dielectric constant (less than 7,000). The experimental results show that the dielectric behavior of this new class of percolative composites follows the prediction of the percolation theory and the analysis of the conductive percolation phenomena. The very high dielectric constant of the all-polymer composites which are also very flexible and possess elastic modulus not very much different from that of the insulation polymer matrix makes it possible to induce a high electromechanical response under a much reduced electric field (a strain of 2.65% with an elastic energy density of 0.18 J/cu cm can be achieved under a field of 16 MV/m). Data analysis also suggests that in these composites, the non-uniform local field distribution as well as interface effects can significantly enhance the strain responses. Furthermore, the experimental data as well as the data analysis indicate that the conduction loss in these composites will not affect the strain hysteresis.
NASA Astrophysics Data System (ADS)
Yuan, Ruihao; Xue, Deqing; Zhou, Yumei; Ding, Xiangdong; Sun, Jun; Xue, Dezhen
2017-07-01
We designed and synthesized a pseudo-binary Pb-free system, Ba(Ti0.7Zr0.3)O3-x(Ba0.82Ca0.18)TiO3, by combining a rhombohedral end (with only cubic to rhombohedral ferroelectric phase transition) and a tetragonal end (with only cubic to tetragonal ferroelectric phase transition). The established composition-temperature phase diagram is characterized by a tricritical point type morphotropic phase boundary (MPB), and the MPB composition has better ferroelectric, piezoelectric, and dielectric properties than the compositions deviating from MPB. Moreover, a full set of material constants (including elastic stiffness constants, elastic compliance constants, piezoelectric constants, dielectric constants, and electromechanical coupling factors) of the MPB composition are determined using a resonance method. The good piezoelectric performance of the MPB composition can be ascribed to the high dielectric constants, elastic softening, and large electromechanical coupling factor.
A comparison between different finite elements for elastic and aero-elastic analyses.
Mahran, Mohamed; ELsabbagh, Adel; Negm, Hani
2017-11-01
In the present paper, a comparison between five different shell finite elements, including the Linear Triangular Element, Linear Quadrilateral Element, Linear Quadrilateral Element based on deformation modes, 8-node Quadrilateral Element, and 9-Node Quadrilateral Element was presented. The shape functions and the element equations related to each element were presented through a detailed mathematical formulation. Additionally, the Jacobian matrix for the second order derivatives was simplified and used to derive each element's strain-displacement matrix in bending. The elements were compared using carefully selected elastic and aero-elastic bench mark problems, regarding the number of elements needed to reach convergence, the resulting accuracy, and the needed computation time. The best suitable element for elastic free vibration analysis was found to be the Linear Quadrilateral Element with deformation-based shape functions, whereas the most suitable element for stress analysis was the 8-Node Quadrilateral Element, and the most suitable element for aero-elastic analysis was the 9-Node Quadrilateral Element. Although the linear triangular element was the last choice for modal and stress analyses, it establishes more accurate results in aero-elastic analyses, however, with much longer computation time. Additionally, the nine-node quadrilateral element was found to be the best choice for laminated composite plates analysis.
Elastic Properties of the Solid Electrolyte Li7La3Zr2O12 (LLZO)
Yu, Seungho; Schmidt, Robert D.; Garcia-mendez, Regina; ...
2015-12-16
The oxide known as LLZO, with nominal composition Li 7La 3Zr 2O 12, is a promising solid electrolyte for Li-based batteries due to its high Li-ion conductivity and chemical stability with respect to lithium. Solid electrolytes may also enable the use of metallic Li anodes by serving as a physical barrier that suppresses dendrite initiation and propagation during cycling. Prior linear elasticity models of the Li electrode/solid electrolyte interface suggest that the stability of this interface is highly dependent on the elastic properties of the solid separator. For example, dendritic suppression is predicted to be enhanced as the electrolyte smore » shear modulus increases. In the present study a combination of first-principles calculations, acoustic impulse excitation measurements, and nanoindentation experiments are used to determine the elastic constants and moduli for highconductivity LLZO compositions based on Al and Ta doping. The calculated and measured isotropic shear moduli are in good agreement and fall within the range of 56-61 GPa. These values are an order of magnitude larger than that for Li metal and far exceed the minimum value ( 8.5 GPa) believed to be necessary to suppress dendrite initiation. These data suggest that LLZO exhibits sufficient stiffness to warrant additional development as a solid electrolyte for Li batteries.« less
NASA Astrophysics Data System (ADS)
Hao, Wenfeng; Liu, Ye; Huang, Xinrong; Liu, Yinghua; Zhu, Jianguo
2018-06-01
In this work, the elastic constants of 3D four directional cylindrical braided composite shafts were predicted using analytical and numerical methods. First, the motion rule of yarn carrier of 3D four directional cylindrical braided composite shafts was analyzed, and the horizontal projection of yarn motion trajectory was obtained. Then, the geometry models of unit-cells with different braiding angles and fiber volume contents were built up, and the meso-scale models of 3D cylindrical braided composite shafts were obtained. Finally, the effects of braiding angles and fiber volume contents on the elastic constants of 3D braided composite shafts were analyzed theoretically and numerically. These results play a crucial role in investigating the mechanical properties of 3D 4-directional braided composites shafts.
PAFAC- PLASTIC AND FAILURE ANALYSIS OF COMPOSITES
NASA Technical Reports Server (NTRS)
Bigelow, C. A.
1994-01-01
The increasing number of applications of fiber-reinforced composites in industry demands a detailed understanding of their material properties and behavior. A three-dimensional finite-element computer program called PAFAC (Plastic and Failure Analysis of Composites) has been developed for the elastic-plastic analysis of fiber-reinforced composite materials and structures. The evaluation of stresses and deformations at edges, cut-outs, and joints is essential in understanding the strength and failure for metal-matrix composites since the onset of plastic yielding starts very early in the loading process as compared to the composite's ultimate strength. Such comprehensive analysis can only be achieved by a finite-element program like PAFAC. PAFAC is particularly suited for the analysis of laminated metal-matrix composites. It can model the elastic-plastic behavior of the matrix phase while the fibers remain elastic. Since the PAFAC program uses a three-dimensional element, the program can also model the individual layers of the laminate to account for thickness effects. In PAFAC, the composite is modeled as a continuum reinforced by cylindrical fibers of vanishingly small diameter which occupy a finite volume fraction of the composite. In this way, the essential axial constraint of the phases is retained. Furthermore, the local stress and strain fields are uniform. The PAFAC finite-element solution is obtained using the displacement method. Solution of the nonlinear equilibrium equations is obtained with a Newton-Raphson iteration technique. The elastic-plastic behavior of composites consisting of aligned, continuous elastic filaments and an elastic-plastic matrix is described in terms of the constituent properties, their volume fractions, and mutual constraints between phases indicated by the geometry of the microstructure. The program uses an iterative procedure to determine the overall response of the laminate, then from the overall response determines the stress state in each phase of the composite material. Failure of the fibers or matrix within an element can also be modeled by PAFAC. PAFAC is written in FORTRAN IV for batch execution and has been implemented on a CDC CYBER 170 series computer with a segmented memory requirement of approximately 66K (octal) of 60 bit words. PAFAC was developed in 1982.
Study of free edge effect on sub-laminar scale for thermoplastic composite laminates
NASA Astrophysics Data System (ADS)
Shen, Min; Lu, Huanbao; Tong, Jingwei; Su, Yishi; Li, Hongqi; Lv, Yongmin
2008-11-01
The interlaminar deformation on the free edge surface in thermoplastic composite AS4/PEEK laminates under bending loading are studied by means of digital image correlation method (DICM) using a white-light industrial microscopic. During the test, any artificial stochastic spray is not applied to the specimen surface. In laminar scale, the interlaminare displacements of [0/90]3s laminate are measured. In sub-laminar scale, the tested area includes a limited number of fibers; the fiber is elastic with actual diameter about 7μm, and PEEK matrix has elastic-plastic behavior. The local mesoscopic fields of interlaminar displacement near the areas of fiber-matrix interface are obtained by DICM. The distributions of in-plane elastic-plastic stresses near the interlaminar interface between different layers are indirectly obtained using the coupling the results of DICM with finite element method. Based on above DICM experiments, the influences of random fiber distribution and the PEEK matrix ductility in sub-laminar scale on the ineterlaminar mesomechanical behavior are investigated. The experimental results in the present work are important for multi-scale theory and numerical analysis of interlaminar deformation and stresses in these composite laminates.
NASA Astrophysics Data System (ADS)
Thionnet, A.; Chou, H. Y.; Bunsell, A.
2015-04-01
The purpose of these three papers is not to just revisit the modelling of unidirectional composites. It is to provide a robust framework based on physical processes that can be used to optimise the design and long term reliability of internally pressurised filament wound structures. The model presented in Part 1 for the case of monotonically loaded unidirectional composites is further developed to consider the effects of the viscoelastic nature of the matrix in determining the kinetics of fibre breaks under slow or sustained loading. It is shown that the relaxation of the matrix around fibre breaks leads to locally increasing loads on neighbouring fibres and in some cases their delayed failure. Although ultimate failure is similar to the elastic case in that clusters of fibre breaks ultimately control composite failure the kinetics of their development varies significantly from the elastic case. Failure loads have been shown to reduce when loading rates are lowered.
NASA Astrophysics Data System (ADS)
Nazarenko, Lidiya; Khoroshun, Leonid; Müller, Wolfgang H.; Wille, Ralf
2009-02-01
In the present paper, we will illustrate the application of the method of conditional moments by constructing the algorithm for determination of the effective elastic properties of composites from the given elastic constants of the components and geometrical parameters of inclusions. A special case of two-component matrix composite with randomly distributed unidirectional spheroidal inclusions is considered. To this end it is assumed that the components of the composite show transversally isotropic symmetry of thermoelastic properties and that the axes of symmetry of the thermoelastic properties of the matrix and inclusions coincide with the coordinate axis x 3. As a numerical example a composite based on carbon inclusions and epoxide matrix is investigated. The dependencies of Young’s moduli, Poisson’s ratios and shear modulus from the concentration of inclusions and for certain values which characterize the shape of inclusions are analyzed. The results are compared and discussed in context with other theoretical predictions and experimental data.
Pastila, Pirjo; Lassila, Lippo V J; Jokinen, Mikko; Vuorinen, Jyrki; Vallittu, Pekka K; Mäntylä, Tapio
2007-07-01
This study was aimed to determine if short-term water storage would change elastic properties of dental composite materials. Particulate filler composite resin and continuous unidirectional E-glass FRC materials were photopolymerized and additionally post-polymerized by heat for testing elastic properties with the Resonance Ultrasound Spectroscopy method as a function of time in water storage. The test specimens were stored in 37 degrees C water for up to 30 days. About 1% weight increase due to water sorption was observed in both materials with both polymerization methods. Water sorption did not change the resonance frequencies towards lower values, indicating no significant decrease in elastic properties in these materials. Because of high damping of the polymer composite materials leading to wide resonance peaks and low number of the recorded peaks, accurate determination of the elastic properties was not possible. Results suggest that the most likely explanation for the previously observed decrease in bending stiffness of FRC materials is the decreased yield limit of the hydrated polymer matrix. It is important to recognize that water sorption has the effect on mechanical properties of dental composite materials by changing the yield limit of the matrix rather than by changing the elastic properties of the material.
Micromechanical models for textile structural composites
NASA Technical Reports Server (NTRS)
Marrey, Ramesh V.; Sankar, Bhavani V.
1995-01-01
The objective is to develop micromechanical models for predicting the stiffness and strength properties of textile composite materials. Two models are presented to predict the homogeneous elastic constants and coefficients of thermal expansion of a textile composite. The first model is based on rigorous finite element analysis of the textile composite unit-cell. Periodic boundary conditions are enforced between opposite faces of the unit-cell to simulate deformations accurately. The second model implements the selective averaging method (SAM), which is based on a judicious combination of stiffness and compliance averaging. For thin textile composites, both models can predict the plate stiffness coefficients and plate thermal coefficients. The finite element procedure is extended to compute the thermal residual microstresses, and to estimate the initial failure envelope for textile composites.
Liao, Chun-De; Tsauo, Jau-Yih; Lin, Li-Fong; Huang, Shih-Wei; Ku, Jan-Wen; Chou, Lin-Chuan; Liou, Tsan-Hon
2017-01-01
Abstract Background: Sarcopenia is associated with loss of muscle mass and an increased risk of physical disability in elderly people. However, the prevalence of sarcopenia has increased in obese elderly populations. The purpose of this study was to identify the clinical efficacy of elastic resistance exercise training (RET) in patients with sarcopenic obesity. Methods: This study was conducted at the rehabilitation center of a university-based teaching hospital and was designed as a prospective and randomized controlled trial with an intention-to-treat analysis. A total of 46 women aged 67.3 (5.2) years were randomly assigned to an experimental group (EG) and control group (CG). The EG underwent elastic RET for 12 weeks, and the CG received no RET intervention. All outcome measures were assessed at the baseline and posttest, including body composition measured using dual-energy X-ray absorptiometry, muscle quality (MQ) defined as a ratio of muscular strength to muscle mass, and physical capacity assessed using functional mobility tests. One-way analysis of covariance and Pearson correlation were used to compare outcomes between the 2 groups and to identify the relationship between changes in body composition and physical outcomes, respectively. A chi-square test was performed to identify differences in qualitative data between the 2 groups. Results: At the posttest, a significant between-group difference was observed in fat-free mass, MQ, and physical capacity (all P < .05); and a significant correlation was found between leg-lean-mass change and gait speed (r = 0.36; P < .05). After 12 weeks of elastic RET intervention, the EG had significantly fewer patients exhibiting sarcopenia (P < .05) and experiencing physical difficulty (P < .001) than the CG. Conclusion: The present data suggest that elastic resistance exercise exerted benefits on the body composition, MQ, and physical function in patients with sarcopenic obesity. Regular exercise incorporating elastic RET should be used to attenuate muscle mass loss and prevent physical difficulty in obese older adults with sarcopenia on reconditioning therapy. Trial Registration: Chinese Clinical Trial Registry, ChiCTR-IPR-15006069. PMID:28591061
Liao, Chun-De; Tsauo, Jau-Yih; Lin, Li-Fong; Huang, Shih-Wei; Ku, Jan-Wen; Chou, Lin-Chuan; Liou, Tsan-Hon
2017-06-01
Sarcopenia is associated with loss of muscle mass and an increased risk of physical disability in elderly people. However, the prevalence of sarcopenia has increased in obese elderly populations. The purpose of this study was to identify the clinical efficacy of elastic resistance exercise training (RET) in patients with sarcopenic obesity. This study was conducted at the rehabilitation center of a university-based teaching hospital and was designed as a prospective and randomized controlled trial with an intention-to-treat analysis. A total of 46 women aged 67.3 (5.2) years were randomly assigned to an experimental group (EG) and control group (CG). The EG underwent elastic RET for 12 weeks, and the CG received no RET intervention. All outcome measures were assessed at the baseline and posttest, including body composition measured using dual-energy X-ray absorptiometry, muscle quality (MQ) defined as a ratio of muscular strength to muscle mass, and physical capacity assessed using functional mobility tests. One-way analysis of covariance and Pearson correlation were used to compare outcomes between the 2 groups and to identify the relationship between changes in body composition and physical outcomes, respectively. A chi-square test was performed to identify differences in qualitative data between the 2 groups. At the posttest, a significant between-group difference was observed in fat-free mass, MQ, and physical capacity (all P < .05); and a significant correlation was found between leg-lean-mass change and gait speed (r = 0.36; P < .05). After 12 weeks of elastic RET intervention, the EG had significantly fewer patients exhibiting sarcopenia (P < .05) and experiencing physical difficulty (P < .001) than the CG. The present data suggest that elastic resistance exercise exerted benefits on the body composition, MQ, and physical function in patients with sarcopenic obesity. Regular exercise incorporating elastic RET should be used to attenuate muscle mass loss and prevent physical difficulty in obese older adults with sarcopenia on reconditioning therapy. Chinese Clinical Trial Registry, ChiCTR-IPR-15006069.
NASA Astrophysics Data System (ADS)
Monfared, Vahid
2018-03-01
Elastic analysis is analytically presented to predict the behaviors of the stress and displacement components in the cylindrical ring as a unit cell of a complete composite under applied stress in the complex plane using cubic polynomials. This analysis is based on the complex computation of the stress functions in the complex plane and polar coordinates. Also, suitable boundary conditions are considered and assumed to analyze along with the equilibrium equations and bi-harmonic equation. This method has some important applications in many fields of engineering such as mechanical, civil and material engineering generally. One of the applications of this research work is in composite design and designing the cylindrical devices under various loadings. Finally, it is founded that the convergence and accuracy of the results are suitable and acceptable through comparing the results.
Micromechanics and effective elastoplastic behavior of two-phase metal matrix composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ju, J.W.; Chen, T.M.
A micromechanical framework is presented to predict effective (overall) elasto-(visco-)plastic behavior of two-phase particle-reinforced metal matrix composites (PRMMC). In particular, the inclusion phase (particle) is assumed to be elastic and the matrix material is elasto-(visco-)plastic. Emanating from Ju and Chen's (1994a,b) work on effective elastic properties of composites containing many randomly dispersed inhomogeneities, effective elastoplastic deformations and responses of PRMMC are estimated by means of the effective yield criterion'' derived micromechanically by considering effects due to elastic particles embedded in the elastoplastic matrix. The matrix material is elastic or plastic, depending on local stress and deformation, and obeys general plasticmore » flow rule and hardening law. Arbitrary (general) loadings and unloadings are permitted in the framework through the elastic predictor-plastic corrector two-step operator splitting methodology. The proposed combined micromechanical and computational approach allows one to estimate overall elastoplastic responses of PRMMCs by accounting for the microstructural information (such as the spatial distribution and micro-geometry of particles), elastic properties of constituent phases, and the plastic behavior of the matrix-only materials.« less
NASA Astrophysics Data System (ADS)
Topics addressed include the prediction of helicopter component loads using neural networks, spacecraft on-orbit coupled loads analysis, hypersonic flutter of a curved shallow panel with aerodynamic heating, thermal-acoustic fatigue of ceramic matrix composite materials, transition elements based on transfinite interpolation, damage progression in stiffened composite panels, a direct treatment of min-max dynamic response optimization problems, and sources of helicopter rotor hub inplane shears. Also discussed are dynamics of a layered elastic system, confidence bounds on structural reliability, mixed triangular space-time finite elements, advanced transparency development for USAF aircraft, a low-velocity impact on a graphite/PEEK, an automated mode-tracking strategy, transonic flutter suppression by a passive flap, a nonlinear response of composite panels to random excitation, an optimal placement of elastic supports on a simply supported plate, a probabilistic assessment of composite structures, a model for mode I failure of laminated composites, a residual flexibility approach to multibody dynamics,and multilayer piezoelectric actuators.
NASA Astrophysics Data System (ADS)
Heller, R. A.; Thangjitham, S.; Wang, X.
1992-04-01
The state of stress in a cylindrical structure consisting of multiple layers of carbon-carbon composite and subjected to thermal and pressure shock are analyzed using an elasticity approach. The reliability of the structure based on the weakest link concept and the Weibull distribution is also calculated. Coupled thermo-elasticity is first assumed and is shown to be unnecessary for the material considered. The effects of external and internal thermal shock as well as a superimposed pressure shock are examined. It is shown that for the geometry chosen, the structure may fail when exposed to thermal shock alone while a superimposed pressure shock can mitigate the probability of failure.
Ultrasonic Determination of the Elastic Constants of Epoxy-natural Fiber Composites
NASA Astrophysics Data System (ADS)
Valencia, C. A. Meza; Pazos-Ospina, J. F.; Franco, E. E.; Ealo, Joao L.; Collazos-Burbano, D. A.; Garcia, G. F. Casanova
This paper shows the applications ultrasonic through-transmission technique to determine the elastic constants of two polymer-natural fiber composite materials with potential industrial application and economic and environmental advantages. The transversely isotropic coconut-epoxy and fique-epoxy samples were analyzed using an experimental setup which allows the sample to be rotated with respect to transducers faces and measures the time-of-flight at different angles of incidence. Then, the elastic properties of the material were obtained by fitting the experimental data to the Christoffel equation. Results show a good agreement between the measured elastic constants and the values predicted by an analytical model. The velocities as a function of the incidence angle are reported and the effect of the natural fiber on the stiffness of the composite is discussed.
Defects in Ceramic Matrix Composites and Their Impact on Elastic Properties (Postprint)
2013-07-01
numerically modeled. The composite under investigation was a 10 layer T300 carbon/ SiC composite in which carbon fabric was impregnated using a polymer ...fraction. (3) Melt Infiltrated in situ BN SiC / SiC composite comprising a stochiometric SiC (Sylramic™) fiber, with an in situ boron nitride treatment...SiNC composite is listed in Table 4. Polymer derived SiC and SiNC matrix material do not ex- hibit a major change in their elastic properties at
NASA Astrophysics Data System (ADS)
Tam, Jun Hui; Ong, Zhi Chao; Ismail, Zubaidah; Ang, Bee Chin; Khoo, Shin Yee
2018-05-01
The demand for composite materials is increasing due to their great superiority in material properties, e.g., lightweight, high strength and high corrosion resistance. As a result, the invention of composite materials of diverse properties is becoming prevalent, and thus, leading to the development of material identification methods for composite materials. Conventional identification methods are destructive, time-consuming and costly. Therefore, an accurate identification approach is proposed to circumvent these drawbacks, involving the use of Frequency Response Function (FRF) error function defined by the correlation discrepancy between experimental and Finite-Element generated FRFs. A square E-glass epoxy composite plate is investigated under several different configurations of boundary conditions. It is notable that the experimental FRFs are used as the correlation reference, such that, during computation, the predicted FRFs are continuously updated with reference to the experimental FRFs until achieving a solution. The final identified elastic properties, namely in-plane elastic moduli, Ex and Ey, in-plane shear modulus, Gxy, and major Poisson's ratio, vxy of the composite plate are subsequently compared to the benchmark parameters as well as with those obtained using modal-based approach. As compared to the modal-based approach, the proposed method is found to have yielded relatively better results. This can be explained by the direct employment of raw data in the proposed method that avoids errors that might incur during the stage of modal extraction.
1998-09-01
to characterize the weakening constraint power of the matrix as opposed to earlier analyses that used an additional eigenstrain term. It also...matrix Poisson ratio was constant and the inclusions were rigid, he showed that the disturbed strain and the eigenstrain in the Eshelby method could...Eshelby, elastic properties, prediction, energy balance, mechanical behavior, eigenstrain , nonlinear dcd03e So7S&3 UNCLASSIFIED SECURITY CLASSIFICATION OF FORM (Highest classification of Title, Abstract, Keywords)
Analysis, design and elastic tailoring of composite rotor blades
NASA Technical Reports Server (NTRS)
Rehfield, Lawrence W.; Atilgan, Ali R.
1987-01-01
The development of structural models for composite rotor blades is summarized. The models are intended for use in design analysis for the purpose of exploring the potential of elastic tailoring. The research was performed at the Center for Rotary Wing Aircraft Technology.
Study on the PTC/NTC effect of carbon black-filled polymer composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tang, Hao; Chen, Xinfang; Luo, Yunxia
1995-12-01
In this work, the effect of processing condition and radiation-crosslinking on the electrical and dynamic behaviors of carbon black filled low density polyethylene (LDPE) composites were investigated. Compared with the solution counterpart, the mechanical composites have a strong PTC effect and a great dynamic elastic mold, which results from the strong interaction between carbon black and LDPE. The experiment result shows that the NTC effect is caused by the decrease of elastic mold of LDPE at high temperature, and it can be declined significantly by radiation-crosslinking. We conclude that the strong interaction between polymer and carbon black is essentially importantmore » for composites to have a great PTC intensity good electrical reproducibility and high dynamic elastic sold.« less
NASA Astrophysics Data System (ADS)
Cho, Hiroaki; Ashida, Yasunori; Nakamura, Shuhei; Shimizu, Wataru; Murakami, Yasushi
Room temperature vulcanizing (RTV) elastic silicone usually employs organic tin compounds as a hardener. It is well known that they are strong biohazardous. Thus, European Union is going to regulate the use of organic tin compounds and to exclude them from industrial products till 2015. Authors have succeeded in making a substitute of organic tin compounds as a hardener for RTV elastic silicone by using titanium alkoxide and a carboxylate ester as a hardener and a promoter, respectively. In this paper, composites of RTV elastic silicone made with silica particles and a silane coupling agent are studied based on the mechanical, heat-resistive and adhesive properties.
Understanding the Earth's Mantle Through Advanced Elasticity Measurements
NASA Astrophysics Data System (ADS)
Marquardt, Hauke; Schulze, Kirsten; Kurnosov, Alexander; Buchen, Johannes; Frost, Daniel; Boffa Ballaran, Tiziana; Marquardt, Katharina; Kawazoe, Takaaki
2017-04-01
Constraints on the inner structure, chemical and mineralogical composition as well as dynamics of Earth's mantle can be derived through comparison of laboratory elasticity data to seismological observables. A quantitative knowledge of the elastic properties of mantle minerals, and their variations with chemical composition, at pressure and temperature conditions of Earth's mantle is key to construct reliable synthetic mineral physics-based seismic velocity models to be compared to seismic observables. We will discuss results of single-crystal elasticity measurements on Earth mantle minerals that have been conducted using the combined Brillouin scattering and x-ray diffraction (XRD) system at BGI Bayreuth in combination with advanced sample preparation using the focused ion beam (FIB) technique [1] that allows for tailoring sizes and shapes of tiny single-crystals. In our experiments, multiple FIB-prepared single-crystals were loaded in a single sample chamber of a resistively-heated diamond-anvil cell (DAC). The possiblity to measure simultaneously acoustic wave velocities and density (unit-cell parameters) in the DAC in combination with the multi-sample approach facilitates direct quantification of the effects of chemical substitution on the elasticity and seismic wave velocities at non-ambient conditions. Our experimental approach eliminates uncertainties arising from the combination of data collected under (potentially) different conditions in several DAC runs, in different laboratories and/or from using different pressure-temperature sensors. We will present our recent experiments on the elasticity of single-crystal Fe-Al-bearing bridgmanite in the lower mantle and discuss implications for the composition and oxidation state of Earth's lower mantle. We will further discuss our laboratory data on the effects of 'water' and iron on the seismic wave velocities of ringwoodite in Earth's transition zone and outline implications for mapping 'water' in the transition zone using geophysical observables. [1] Marquardt, H. and K. Marquardt, 2012. American Mineralogist 97, 299-304.
Golub, Mikhail V; Zhang, Chuanzeng
2015-01-01
This paper presents an elastodynamic analysis of two-dimensional time-harmonic elastic wave propagation in periodically multilayered elastic composites, which are also frequently referred to as one-dimensional phononic crystals, with a periodic array of strip-like interior or interface cracks. The transfer matrix method and the boundary integral equation method in conjunction with the Bloch-Floquet theorem are applied to compute the elastic wave fields in the layered periodic composites. The effects of the crack size, spacing, and location, as well as the incidence angle and the type of incident elastic waves on the wave propagation characteristics in the composite structure are investigated in details. In particular, the band-gaps, the localization and the resonances of elastic waves are revealed by numerical examples. In order to understand better the wave propagation phenomena in layered phononic crystals with distributed cracks, the energy flow vector of Umov and the corresponding energy streamlines are visualized and analyzed. The numerical results demonstrate that large energy vortices obstruct elastic wave propagation in layered phononic crystals at resonance frequencies. They occur before the cracks reflecting most of the energy transmitted by the incoming wave and disappear when the problem parameters are shifted from the resonant ones.
Development of a novel regenerated cellulose composite material.
De Silva, Rasike; Vongsanga, Kylie; Wang, Xungai; Byrne, Nolene
2015-05-05
We report for the first time on a new natural composite material achieved by blending cotton and duck feather using an ionic liquid. The addition of duck feather was found to improve the elasticity, strain at break, by 50% when compared to regenerated cellulose alone. This is a significant finding since regenerated cotton using ionic liquids often suffers from poor elasticity. The improved elasticity is likely due to the regenerated duck feather maintaining its helical structure. The new regenerated cellulose composites were characterized using a combination of dynamic mechanical analysis, Fourier transform infrared spectroscopy, thermal gravimetric analysis, contact angle measurements and scanning electron microscopy. Copyright © 2015. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varughese, Byji; Dayananda, G. N.; Rao, M. Subba
2008-07-29
The last two decades have seen a substantial rise in the use of advanced materials such as polymer composites for aerospace structural applications. In more recent years there has been a concerted effort to integrate materials, which mimic biological functions (referred to as smart materials) with polymeric composites. Prominent among smart materials are shape memory alloys, which possess both actuating and sensory functions that can be realized simultaneously. The proper characterization and modeling of advanced and smart materials holds the key to the design and development of efficient smart devices/systems. This paper focuses on the material characterization; modeling and validationmore » of the model in relation to the development of a Shape Memory Alloy (SMA) based smart landing gear (with high energy dissipation features) for a semi rigid radio controlled airship (RC-blimp). The Super Elastic (SE) SMA element is configured in such a way that it is forced into a tensile mode of high elastic deformation. The smart landing gear comprises of a landing beam, an arch and a super elastic Nickel-Titanium (Ni-Ti) SMA element. The landing gear is primarily made of polymer carbon composites, which possess high specific stiffness and high specific strength compared to conventional materials, and are therefore ideally suited for the design and development of an efficient skid landing gear system with good energy dissipation characteristics. The development of the smart landing gear in relation to a conventional metal landing gear design is also dealt with.« less
SiC/SiC Composites: The Effect of Fiber Type and Fiber Architecture on Mechanical Properties
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.
2008-01-01
Woven SiC/SiC composites represent a broad family of composites with a broad range of properties which are of interest for many energy-based and aero-based applications. Two important features of SiC/SiC composites which one must consider are the reinforcing fibers themselves and the fiber-architecture they are formed into. The range of choices for these two features can result in a wide range of elastic, mechanical, thermal, and electrical properties. In this presentation, it will be demonstrated how the effect of fiber-type and fiber architecture effects the important property of "matrix cracking stress" for slurry-cast melt-infiltrated SiC matrix composites, which is often considered to be a critical design parameter for this system of composites.
Rheological characterisation of gluten from triticale (x Triticosecale Wittmack).
Pruska-Kędzior, Anna; Makowska, Agnieszka; Kędzior, Zenon; Salmanowicz, Bolesław P
2017-11-01
Triticale gluten still remains very poorly characterised rheologically. In this study the mechanical spectra of gluten isolated from four triticale cultivars were registered and fitted with Cole-Cole functions yielding the visco-elastic plateau parameters. Master spectra were calculated. A retardation test was performed and used to calculate the composite mechanical spectra and the width of visco-elastic plateau l. Protein fractional composition of triticale flour and gluten was studied using capillary zone electrophoresis. Differentiated HMW-GS/SS compositions were identified in the triticale cultivars studied. The rheological parameters reached the following values: J N 0 1.05·10 -3 to 2.69·10 -3 Pa -1 , G N 0 372 to 956 Pa, ω 0 0.003 to 0.06 rad s -1 , l 169 to 3121, J e 0 1.57·10 -3 to 5.03·10 -3 Pa -1 , G e 0 199 to 637 Pa and η 0 1.06·10 7 to 3.93·10 7 Pa s. Visco-elastic properties of triticale gluten correspond to the lower end of medium visco-elasticity shown by common wheat gluten. Master spectra and the composite mechanical spectra prove that four triticale glutens exhibit practically an identical type of visco-elastic behaviour of a biopolymeric visco-elastic liquid similar to wheat gluten. The visco-elastic plateau parameters G N 0 , J N 0 , ω 0 and l appeared significantly correlated with the contents of prolamins and secaloglutenins in triticale flours and glutens. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Vibration control of multiferroic fibrous composite plates using active constrained layer damping
NASA Astrophysics Data System (ADS)
Kattimani, S. C.; Ray, M. C.
2018-06-01
Geometrically nonlinear vibration control of fiber reinforced magneto-electro-elastic or multiferroic fibrous composite plates using active constrained layer damping treatment has been investigated. The piezoelectric (BaTiO3) fibers are embedded in the magnetostrictive (CoFe2O4) matrix forming magneto-electro-elastic or multiferroic smart composite. A three-dimensional finite element model of such fiber reinforced magneto-electro-elastic plates integrated with the active constrained layer damping patches is developed. Influence of electro-elastic, magneto-elastic and electromagnetic coupled fields on the vibration has been studied. The Golla-Hughes-McTavish method in time domain is employed for modeling a constrained viscoelastic layer of the active constrained layer damping treatment. The von Kármán type nonlinear strain-displacement relations are incorporated for developing a three-dimensional finite element model. Effect of fiber volume fraction, fiber orientation and boundary conditions on the control of geometrically nonlinear vibration of the fiber reinforced magneto-electro-elastic plates is investigated. The performance of the active constrained layer damping treatment due to the variation of piezoelectric fiber orientation angle in the 1-3 Piezoelectric constraining layer of the active constrained layer damping treatment has also been emphasized.
NASA Astrophysics Data System (ADS)
Hikov, T.; Mitev, D.; Radeva, E.; Iglic, A.; Presker, R.; Daniel, M.; Sepitka, J.; Krasteva, N.; Keremidarska, M.; Cvetanov, I.; Pramatarova, L.
2014-12-01
The combined unique properties offered by organic and inorganic constituents within a single material on a nanoscale level make nanocomposites attractive for the next generation of biocompatible materials. The composite materials of the detonation nanodiamond/polymer type possess spatial organization of components with new structural features and physical properties, as well as complex functions due to the strong synergistic effects between the nanoparticles and the polymer [1]. The plasma polymerization (PP) method was chosen to obtain composites of silicon-based polymers, in which detonation generated nanodiamond (DND) particles were incorporated. The composite layers are homogeneous, chemically resistant, thermally and mechanically stable, thus allowing a large amount of biological components to be loaded onto their surface and to be used in tissue engineering, regenerative medicine, implants, stents, biosensors and other medical and biological devices. Mesenchymal stem cells (MSCs) are the main focus of research in regenerative medicine due to their extraordinary potential to differentiate into different kinds of cells including osteoblasts, which are needed for various bone disease treatments. However, for optimal usage of MSCs knowledge about the factors that influence their initial distribution in the human system, tissue-specific activation and afterwards differentiation into osteoblasts is required. In recent studies it was found that one of these factors is the elasticity of the substrates [2]. The choice of the proper material which specifically guides the differentiation of stem cells even in the absence of growth factors is very important when building modern strategy for bone regeneration. One of the reasons for there not being many studies in this area worldwide is the lack of suitable biomaterials which support these kinds of experiments. The goal of this study is to create substrates suitable for cell culture with a range of mechanical properties (namely elasticity and hardness) using composite layers (PPHMDS-DND) of plasma polymerized (PP) hexamethyldisiloxane (HMDS) and detonation generated nanodiamond (DND). The samples' elastic modulae and hardness were measured by CSM Ultra Nanoindentation Tester.
New Elastic Moduli for Amphiboles and Feldspars: Impact on Interpretations of Seismic Velocities
NASA Astrophysics Data System (ADS)
Brown, J. M.; Angel, R. J.
2016-12-01
Seismic properties (both isotropic and anisotropic) of the crust and upper mantle require re-evaluation in light of improved single crystal properties for feldspars and amphiboles as a function of elemental partitioning. Together these minerals constitute more than half of the crust and are locally important in the lithospheric mantle. Their contribution in understanding seismic structures (both in the crust and mantle) has long been recognized. However, published single crystal elastic moduli, required in predictions of seismic velocities based on mineral properties, have remained inadequate for over 50 years. For example, the contribution of amphiboles to seismic velocities has often been approximated on the basis of the reported moduli for two hornblende crystals of unknown composition. New measurements now accurately characterize the plagioclase feldspars, the potassium feldspars, and the calcium and calcium-sodium amphiboles (including a range of compositions for common hornblende). The new moduli allow successful predictions of rock velocities with and without crystal preferred orientations. In contrast, the older moduli required inappropriate use of the Voigt upper aggregate bound in order to rationalize laboratory measurements. These minerals are also more anisotropic than suggested on the basis of the earlier work where cracks and open cleavage surfaces may have artificially depressed the apparent anisotropy. Both feldspars and amphiboles are nearly as anisotropic as sheet silicates with compressional velocity anisotropy of greater than 50%. The plagioclase feldspars show strong compositional trends with small discontinuities between minor structural transitions. In contrast, potassium substitution for sodium and differences in aluminum ordering have little impact on elastic moduli. In the amphiboles, elastic properties are strongly dependent on total aluminum and iron composition. The bulk modulus is most sensitive to aluminum and the shear modulus is more sensitive to iron. Variations in Poisson's ratio (which depends on the ratio of isotropic compressional and shear wave velocities) associated with compositions within the amphiboles and the feldspars are larger than previously predicted. The extent of modifications to seismic interpretations is evaluated.
Das, Sumanta; Yang, Pu; Singh, Sudhanshu S.; ...
2015-09-02
Microstructural and micromechanical investigation of a fly ash-based geopolymer using: (i) synchrotron x-ray tomography (XRT) to determine the volume fraction and tortuosity of pores that are influential in fluid transport, (ii) mercury intrusion porosimetry (MIP) to capture the volume fraction of smaller pores, (iii) scanning electron microscopy (SEM) combined with multi-label thresholding to identify and characterize the solid phases in the microstructure, and (iv) nanoindentation to determine the component phase elastic properties using statistical deconvolution, is reported in this paper. The phase volume fractions and elastic properties are used in multi-step mean field homogenization (Mori- Tanaka and double inclusion) modelsmore » to determine the homogenized macroscale elastic modulus of the composite. The homogenized elastic moduli are in good agreement with the flexural elastic modulus determined on macroscale paste beams. As a result, the combined use of microstructural and micromechanical characterization tools at multiple scales provides valuable information towards the material design of fly ash geopolymers.« less
Cellularized cylindrical fiber/hydrogel composites for ligament tissue engineering.
Thayer, Patrick S; Dimling, Anna F; Plessl, Daniel S; Hahn, Mariah R; Guelcher, Scott A; Dahlgren, Linda A; Goldstein, Aaron S
2014-01-13
Electrospun meshes suffer from poor cell infiltration and limited thickness, which restrict their use to thin tissue applications. Herein, we demonstrate two complementary processes to overcome these limitations and achieve elastomeric composites that may be suitable for ligament repair. First, C3H10T1/2 mesenchymal stem cells were incorporated into electrospun meshes using a hybrid electrospinning/electrospraying process. Second, electrospun meshes were rolled and formed into composites with an interpenetrating polyethylene glycol (PEG) hydrogel network. Stiffer composites were formed from poly(lactic-co-glycolic acid) (PLGA) meshes, while softer and more elastic composites were formed from poly(ester-urethane urea) (PEUUR) meshes. As-spun PLGA and PEUUR rolled meshes had tensile moduli of 19.2 ± 1.9 and 0.86 ± 0.34 MPa, respectively, which changed to 11.6 ± 4.8 and 1.05 ± 0.39 MPa with the incorporation of a PEG hydrogel phase. In addition, cyclic tensile testing indicated that PEUUR-based composites deformed elastically to at least 10%. Finally, C3H10T1/2 cells incorporated into electrospun meshes survived the addition of the PEG phase and remained viable for up to 5 days. These results indicate that the fabricated cellularized composites are support cyclic mechanical conditioning, and have potential application in ligament repair.
Improved Mechanical Compatibility and Cytocompatibility of Ta/Ti Double-Layered Composite Coating
NASA Astrophysics Data System (ADS)
Ding, Ding; Xie, Youtao; Li, Kai; Huang, Liping; Zheng, Xuebin
2017-08-01
In order to improve the mechanical compatibility and cytocompatibility of titanium implants, a composite coating with double layers composed of tantalum and titanium was designed and prepared using plasma spraying technology. In the composite coating, the upper tantalum layer provides a good biocompatibility, and the sublayer of titanium with a porous structure ensures the low elastic modulus. Results show that the fabricated composite coating exhibits a relatively low elastic modulus of 26.7 GPa, which is close to the elastic modulus of human cortical bone. In vitro cytocompatibility evaluation of the composite coating shows that the human bone marrow stromal cells exhibit enhanced adhesion and spreading performance on the double-layered composite coating in comparison with the single-layered titanium coating. In order to eliminate the misgivings of chemical stability of the composite coating in clinical application, electrochemical corrosion of the coating was examined. The results obtained revealed a very weak galvanic corrosion between the tantalum and titanium in the composite coating, which would ensure the safety of the coating in vivo.
NASA Astrophysics Data System (ADS)
Tasnádi, Ferenc; Odén, M.; Abrikosov, Igor A.
2012-04-01
In this study we discuss the performance of the special quasirandom structure (SQS) method in predicting the elastic properties of B1 (rocksalt) Ti0.5Al0.5N alloy. We use a symmetry-based projection technique, which gives the closest cubic approximate of the elastic tensor and allows us to align the SQSs of different shapes and sizes for a comparison in modeling elastic tensors. We show that the derived closest cubic approximate of the elastic tensor converges faster with respect to SQS size than the elastic tensor itself. That establishes a less demanding computational strategy to achieve convergence for the elastic constants. We determine the cubic elastic constants (Cij) and Zener's type elastic anisotropy (A) of Ti0.5Al0.5N. Optimal supercells, which capture accurately both the configurational disorder and cubic symmetry of elastic tensor, result in C11=447 GPa, C12=158 GPa, and C44=203 GPa with 3% of error and A=1.40 with 6% of error. In addition, we establish the general importance of selecting proper SQS with symmetry arguments to reliably model elasticity of alloys. We suggest the calculation of nine elastic tensor elements: C11, C22, C33, C12, C13, C23, C44, C55, and C66, to analyze the performance of SQSs and predict elastic constants of cubic alloys. The described methodology is general enough to be extended for alloys with other symmetry at arbitrary composition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Merijs-Meri, Remo; Zicans, Janis; Ivanova, Tatjana
2014-05-15
Styrene acrylate polymer (SAC) nanocomposites with various carbon nanofillers (multiwalled carbon nanotubes MWCNTs and onion like carbon OLC) are manufactured by means of latex based routes. Concentration of the carbon nanofillers is changed in a broad interval starting from 0.01 up to 10 wt. %. Elastic, dielectric and electromagnetic properties of SAC nanocomposites are investigated. Elastic modulus, electrical conductivity and electromagnetic radiation absorption of the investigated SAC nanocomposites increase along with rising nanofiller content. The effect of the addition of anisometric MWCNTs on the elastic properties of the composite is higher than in the case of the addition of OLC.more » Higher electrical conductivity of the OLC containing nanocomposites is explained with the fact that reasonable agglomeration of the nanofiller can promote the development of electrically conductive network. Efficiency of the absorption of electromagnetic radiation depends on the development of conductive network within the SAC matrix.« less
The importance of stress percolation patterns in rocks and other polycrystalline materials.
Burnley, P C
2013-01-01
A new framework for thinking about the deformation behavior of rocks and other heterogeneous polycrystalline materials is proposed, based on understanding the patterns of stress transmission through these materials. Here, using finite element models, I show that stress percolates through polycrystalline materials that have heterogeneous elastic and plastic properties of the same order as those found in rocks. The pattern of stress percolation is related to the degree of heterogeneity in and statistical distribution of the elastic and plastic properties of the constituent grains in the aggregate. The development of these stress patterns leads directly to shear localization, and their existence provides insight into the formation of rhythmic features such as compositional banding and foliation in rocks that are reacting or dissolving while being deformed. In addition, this framework provides a foundation for understanding and predicting the macroscopic rheology of polycrystalline materials based on single-crystal elastic and plastic mechanical properties.
The importance of stress percolation patterns in rocks and other polycrystalline materials
Burnley, P.C.
2013-01-01
A new framework for thinking about the deformation behavior of rocks and other heterogeneous polycrystalline materials is proposed, based on understanding the patterns of stress transmission through these materials. Here, using finite element models, I show that stress percolates through polycrystalline materials that have heterogeneous elastic and plastic properties of the same order as those found in rocks. The pattern of stress percolation is related to the degree of heterogeneity in and statistical distribution of the elastic and plastic properties of the constituent grains in the aggregate. The development of these stress patterns leads directly to shear localization, and their existence provides insight into the formation of rhythmic features such as compositional banding and foliation in rocks that are reacting or dissolving while being deformed. In addition, this framework provides a foundation for understanding and predicting the macroscopic rheology of polycrystalline materials based on single-crystal elastic and plastic mechanical properties. PMID:23823992
Anisotropic elasticity of quasi-one-component polymer nanocomposites.
Voudouris, Panayiotis; Choi, Jihoon; Gomopoulos, Nikos; Sainidou, Rebecca; Dong, Hongchen; Matyjaszewski, Krzysztof; Bockstaller, Michael R; Fytas, George
2011-07-26
The in-plane and out-of-plane elastic properties of thin films of "quasi-one-component" particle-brush-based nanocomposites are compared to those of "classical" binary particle-polymer nanocomposite systems with near identical overall composition using Brillouin light scattering. Whereas phonon propagation is found to be independent of the propagation direction for the binary particle/polymer blend systems, a pronounced splitting of the phonon propagation velocity along the in-plane and out-of-plane film direction is observed for particle-brush systems. The anisotropic elastic properties of quasi-one-component particle-brush systems are interpreted as a consequence of substrate-induced order formation into layer-type structures and the associated breaking of the symmetry of the film. The results highlight new opportunities to engineer quasi-one-component nanocomposites with advanced control of structural and physical property characteristics based on the assembly of particle-brush materials.
First-principles study of the structural and elastic properties of AuxV1-x and AuxNb1-x alloys
NASA Astrophysics Data System (ADS)
Al-Zoubi, N.
2018-04-01
Ab initio total energy calculations, based on the Exact Muffin-Tin Orbitals (EMTO) method in combination with the coherent potential approximation (CPA), are used to calculate the total energy of AuxV1-x and AuxNb1-x random alloys along the Bain path that connects the body-centred cubic (bcc) and face-centred cubic (fcc) structures as a function of composition x (0 ≤ x ≤ 1). The equilibrium Wigner-Seitz radius and the elastic properties of both systems are determined as a function of composition. Our theoretical prediction in case of pure elements (x = 0 or x = 1) are in good agreement with the available experimental data. For the Au-V system, the equilibrium Wigner-Seitz radius increase as x increases, while for the Au-Nb system, the equilibrium Wigner-Seitz radius is almost constant. The bulk modulus B and C44 for both alloys exhibit nearly parabolic trend. On the other hand, the tetragonal shear elastic constant C‧ decreases as x increases and correlates reasonably well with the structural energy difference between fcc and bcc structures. Our results offer a consistent starting point for further theoretical and experimental studies of the elastic and micromechanical properties of Au-V and Au-Nb systems.
Elastic memory composites (EMC) for deployable industrial and commercial applications
NASA Astrophysics Data System (ADS)
Arzberger, Steven C.; Tupper, Michael L.; Lake, Mark S.; Barrett, Rory; Mallick, Kaushik; Hazelton, Craig; Francis, William; Keller, Phillip N.; Campbell, Douglas; Feucht, Sara; Codell, Dana; Wintergerst, Joe; Adams, Larry; Mallioux, Joe; Denis, Rob; White, Karen; Long, Mark; Munshi, Naseem A.; Gall, Ken
2005-05-01
The use of smart materials and multifunctional components has the potential to provide enhanced performance, improved economics, and reduced safety concerns for applications ranging from outer space to subterranean. Elastic Memory Composite (EMC) materials, based on shape memory polymers and used to produce multifunctional components and structures, are being developed and qualified for commercial use as deployable components and structures. EMC materials are similar to traditional fiber-reinforced composites except for the use of a thermoset shape memory resin that enables much higher packaging strains than traditional composites without damage to the fibers or the resin. This unique capability is being exploited in the development of very efficient EMC structural components for deployable spacecraft systems as well as capability enhancing components for use in other industries. The present paper is intended primarily to describe the transition of EMC materials as smart structure technologies into viable industrial and commercial products. Specifically, the paper discusses: 1) TEMBO EMC materials for deployable space/aerospace systems, 2) TEMBO EMC resins for terrestrial applications, 3) future generation EMC materials.
Fundamental analysis of the failure of polymer-based fiber reinforced composites
NASA Technical Reports Server (NTRS)
Kanninen, M. F.; Rybicki, E. F.; Griffith, W. I.; Broek, D.
1976-01-01
A mathematical model is described which will permit predictions of the strength of fiber reinforced composites containing known flaws to be made from the basic properties of their constituents. The approach was to embed a local heterogeneous region (LHR) surrounding the crack tip into an anisotropic elastic continuum. The model should (1) permit an explicit analysis of the micromechanical processes involved in the fracture process, and (2) remain simple enough to be useful in practical computations. Computations for arbitrary flaw size and orientation under arbitrary applied load combinations were performed from unidirectional composites with linear elastic-brittle constituent behavior. The mechanical properties were nominally those of graphite epoxy. With the rupture properties arbitrarily varied to test the capability of the model to reflect real fracture modes in fiber composites, it was shown that fiber breakage, matrix crazing, crack bridging, matrix-fiber debonding, and axial splitting can all occur during a period of (gradually) increasing load prior to catastrophic fracture. The computations reveal qualitatively the sequential nature of the stable crack process that precedes fracture.
NASA Astrophysics Data System (ADS)
Bruschini, Enrico; Speziale, Sergio; Bosi, Ferdinando; Andreozzi, Giovanni B.
2018-03-01
We investigated by a multi-analytical approach (Brillouin scattering, X-ray diffraction and electron microprobe) the dependence of the elastic properties on the chemical composition of six spinels in the series (Mg1-x ,Fe x )Al2O4 (0 ≤ x ≤ 0.5). With the exception of C 12, all the elastic moduli (C 11, C 44, K S0 and G) are insensitive to chemical composition for low iron concentration, while they decrease linearly for higher Fe2+ content. Only C 12 shows a continuous linear increase with increasing Fe2+ across the whole compositional range under investigation. The high cation disorder showed by the sample with x = 0.202 has little or no influence on the elastic parameters. The range 0.202 < x < 0.388 bounds the percolation threshold (p c) for nearest neighbor interaction of Fe in the cation sublattices of the spinel structure. Below x = 0.202, the iron atoms are diluted in the system and far from each other, and the elastic moduli are nearly constant. Above x = 0.388, Fe atoms form extended interconnected clusters and show a cooperative behavior thus affecting the single-crystal elastic moduli. The elastic anisotropy largely increases with the introduction of Fe2+ in substitution of magnesium in spinel. This behavior is different with respect to other spinels containing transition metals such as Mn2+ and Co2+.
Nanomechanical properties of dental resin-composites.
El-Safty, S; Akhtar, R; Silikas, N; Watts, D C
2012-12-01
To determine by nanoindentation the hardness and elastic modulus of resin-composites, including a series with systematically varied filler loading, plus other representative materials that fall into the categories of flowable, bulk-fill and conventional nano-hybrid types. Ten dental resin-composites: three flowable, three bulk-fill and four conventional were investigated using nanoindentation. Disc specimens (15mm×2mm) were prepared from each material using a metallic mold. Specimens were irradiated in the mold at top and bottom surfaces in multiple overlapping points (40s each) with light curing unit at 650mW/cm(2). Specimens were then mounted in 3cm diameter phenolic ring forms and embedded in a self-curing polystyrene resin. After grinding and polishing, specimens were stored in distilled water at 37°C for 7 days. Specimens were investigated using an Agilent Technologies XP nanoindenter equipped with a Berkovich diamond tip (100nm radius). Each specimen was loaded at one loading rate and three different unloading rates (at room temperature) with thirty indentations, per unloading rate. The maximum load applied by the nanoindenter to examine the specimens was 10mN. Dependent on the type of the resin-composite material, the mean values ranged from 0.73GPa to 1.60GPa for nanohardness and from 14.44GPa to 24.07GPa for elastic modulus. There was a significant positive non-linear correlation between elastic modulus and nanohardness (r(2)=0.88). Nonlinear regression revealed a significant positive correlation (r(2)=0.62) between elastic moduli and filler loading and a non-significant correlation (r(2)=0.50) between nanohardness and filler loading of the studied materials. Varying the unloading rates showed no consistent effect on the elastic modulus and nanohardness of the studied materials. For a specific resin matrix, both elastic moduli and nanohardness correlated positively with filler loading. For the resin-composites investigated, the group-average elastic moduli and nanohardnesses for bulk-fill and flowable materials were lower than those for conventional nano-hybrid composites. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Micromechanical models to guide the development of synthetic ‘brick and mortar’ composites
NASA Astrophysics Data System (ADS)
Begley, Matthew R.; Philips, Noah R.; Compton, Brett G.; Wilbrink, David V.; Ritchie, Robert O.; Utz, Marcel
2012-08-01
This paper describes a micromechanical analysis of the uniaxial response of composites comprising elastic platelets (bricks) bonded together with thin elastic perfectly plastic layers (mortar). The model yields closed-form results for the spatial variation of displacements in the bricks as a function of constituent properties, which can be used to calculate the effective properties of the composite, including elastic modulus, strength and work-to-failure. Regime maps are presented which indicate critical stresses for failure of the bricks and mortar as a function of constituent properties and brick architecture. The solution illustrates trade-offs between elastic modulus, strength and dissipated work that are a result of transitions between various failure mechanisms associated with brick rupture and rupture of the interfaces. Detailed scaling relationships are presented with the goal of providing material developers with a straightforward means to identify synthesis targets that balance competing mechanical behaviors and optimize material response. Ashby maps are presented to compare potential brick and mortar composites with existing materials, and identify future directions for material development.
Stress Analysis of Composite Cylindrical Shells with an Elliptical Cutout
NASA Technical Reports Server (NTRS)
Oterkus, E.; Madenci, E.; Nemeth, M. P.
2007-01-01
A special-purpose, semi-analytical solution method for determining the stress and deformation fields in a thin laminated-composite cylindrical shell with an elliptical cutout is presented. The analysis includes the effects of cutout size, shape, and orientation; non-uniform wall thickness; oval-cross-section eccentricity; and loading conditions. The loading conditions include uniform tension, uniform torsion, and pure bending. The analysis approach is based on the principle of stationary potential energy and uses Lagrange multipliers to relax the kinematic admissibility requirements on the displacement representations through the use of idealized elastic edge restraints. Specifying appropriate stiffness values for the elastic extensional and rotational edge restraints (springs) allows the imposition of the kinematic boundary conditions in an indirect manner, which enables the use of a broader set of functions for representing the displacement fields. Selected results of parametric studies are presented for several geometric parameters that demonstrate that analysis approach is a powerful means for developing design criteria for laminated-composite shells.
Stress Analysis of Composite Cylindrical Shells With an Elliptical Cutout
NASA Technical Reports Server (NTRS)
Nemeth, M. P.; Oterkus, E.; Madenci, E.
2005-01-01
A special-purpose, semi-analytical solution method for determining the stress and deformation fields in a thin laminated-composite cylindrical shell with an elliptical cutout is presented. The analysis includes the effects of cutout size, shape, and orientation; nonuniform wall thickness; oval-cross-section eccentricity; and loading conditions. The loading conditions include uniform tension, uniform torsion, and pure bending. The analysis approach is based on the principle of stationary potential energy and uses Lagrange multipliers to relax the kinematic admissibility requirements on the displacement representations through the use of idealized elastic edge restraints. Specifying appropriate stiffness values for the elastic extensional and rotational edge restraints (springs) allows the imposition of the kinematic boundary conditions in an indirect manner, which enables the use of a broader set of functions for representing the displacement fields. Selected results of parametric studies are presented for several geometric parameters that demonstrate that analysis approach is a powerful means for developing design criteria for laminated-composite shells.
NASA Astrophysics Data System (ADS)
Kardashev, B. K.; Nefagin, A. S.; Smirnov, B. I.; de Arellano-Lopez, A. R.; Martinez-Fernandez, J.; Sepulveda, R.
2006-09-01
This paper reports on the results of a comparative investigation into the elastic and microplastic properties of biomorphic SiC/Si composites and biomorphic SiC prepared by pyrolysis of oak and eucalyptus with subsequent infiltration of molten silicon into a carbon matrix and additional chemical treatment to remove excess silicon. The acoustic studies were performed by the composite oscillator technique using resonant longitudinal vibrations at frequencies of about 100 kHz. It is shown that, in biomorphic SiC (as in biomorphic SiC/Si) at small-amplitude strains ɛ, adsorption and desorption of the environmental (air) molecules determine to a considerable extent the Young’s modulus E and the internal friction (decrement of acoustic vibrations δ) and that the changes in E and δ at these amplitudes are irreversible. The stress-microplastic strain curves are constructed from the acoustic data for the materials under study at temperatures of 100 and 290 K.
NASA Technical Reports Server (NTRS)
Pindera, Marek-Jerzy; Freed, Alan D.; Arnold, Steven M.
1992-01-01
Examined here is the effect of fiber and interfacial layer morphologies on thermal fields in metal matrix composites (MMCs). A micromechanics model based on an arbitrarily layered concentric cylinder configuration is used to calculate thermal stress fields in MMCs subjected to spatially uniform temperature changes. The fiber is modelled as a layered material with isotropic or orthotropic elastic layers, whereas the surrounding matrix, including interfacial layers, is treated as a strain-hardening, elastoplastic, von Mises solid with temperature-dependent parameters. The solution to the boundary-value problem of an arbitrarily layered concentric cylinder under the prescribed thermal loading is obtained using the local/global stiffness matrix formulation originally developed for stress analysis of multilayered elastic media. Examples are provided that illustrate how the morphology of the SCS6 silicon carbide fiber and the use of multiple compliant layers at the fiber/matrix interface affect the evolution of residual stresses in SiC/Ti composites during fabrication cool-down.
Numerical Study on Section Constitutive Relations of Members Reinforced by Steel-BFRP Composite Bars
NASA Astrophysics Data System (ADS)
Xiao, Tongliang; Qiu, Hongxing
2017-06-01
Steel-Basalt FRP Composite Bar (S-BFCB) is a new kind of substitute material for longitudinal reinforcement, with high elastic modulus, stable post-yield stiffness and excellent corrosive resistance. Based on mechanical properties of S-BFCB and the plane cross-section assumption, the moment-curvature curves of beam and column members are simulated. Some parameters such as equivalent rebar ratio, postyeild stiffness, concrete strength and axial compression ratio of column were discussed. Results show that the constitutive relation of the cross section is similar with RC member in elastic and cracking stages, while different in post-yield stage. With the increase of postyeild stiffness ratio of composite bar, the ultimate bearing capacity of component improved observably, member may turn out over-reinforced phenomenon, concrete crushing may appear before the fibersarefractured. The effect of concrete strength increase in lower postyeild stiffness ratio is not obvious than in higher. The increase of axial compression ratio has actively influence on bearing capacity of column, but decreases on the ductility.
Aeroelastic response and blade loads of a composite rotor in forward flight
NASA Technical Reports Server (NTRS)
Smith, Edward C.; Chopra, Inderjit
1992-01-01
The aeroelastic response, blade and hub loads, and shaft-fixed aeroelastic stability is investigated for a helicopter with elastically tailored composite rotor blades. A new finite element based structural analysis including nonclassical effects such as transverse shear, torsion related warping and inplane elasticity is integrated with the University of Maryland Advanced Rotorcraft Code. The structural dynamics analysis is correlated against both experimental data and detailed finite element results. Correlation of rotating natural frequencies of coupled composite box-beams is generally within 5-10 percent. The analysis is applied to a soft-inplane hingeless rotor helicopter in free flight propulsive trim. For example, lag mode damping can be increased 300 percent over a range of thrust conditions and forward speeds. The influence of unsteady aerodynamics on the blade response and vibratory hub loads is also investigated. The magnitude and phase of the flap response is substantially altered by the unsteady aerodynamic effects. Vibratory hub loads increase up to 30 percent due to unsteady aerodynamic effects.
NASA Technical Reports Server (NTRS)
Wilkie, W. Keats; Park, K. C.
1996-01-01
A simple aeroelastic analysis of a helicopter rotor blade incorporating embedded piezoelectric fiber composite, interdigitated electrode blade twist actuators is described. The analysis consist of a linear torsion and flapwise bending model coupled with a nonlinear ONERA based unsteady aerodynamics model. A modified Galerkin procedure is performed upon the rotor blade partial differential equations of motion to develop a system of ordinary differential equations suitable for numerical integration. The twist actuation responses for three conceptual full-scale blade designs with realistic constraints on blade mass are numerically evaluated using the analysis. Numerical results indicate that useful amplitudes of nonresonant elastic twist, on the order of one to two degrees, are achievable under one-g hovering flight conditions for interdigitated electrode poling configurations. Twist actuation for the interdigitated electrode blades is also compared with the twist actuation of a conventionally poled piezoelectric fiber composite blade. Elastic twist produced using the interdigitated electrode actuators was found to be four to five times larger than that obtained with the conventionally poled actuators.
Evaluation of Shielding Performance for Newly Developed Composite Materials
NASA Astrophysics Data System (ADS)
Evans, Beren Richard
This work details an investigation into the contributing factors behind the success of newly developed composite neutron shield materials. Monte Carlo simulation methods were utilized to assess the neutron shielding capabilities and secondary radiation production characteristics of aluminum boron carbide, tungsten boron carbide, bismuth borosilicate glass, and Metathene within various neutron energy spectra. Shielding performance and secondary radiation data suggested that tungsten boron carbide was the most effective composite material. An analysis of the macroscopic cross-section contributions from constituent materials and interaction mechanisms was then performed in an attempt to determine the reasons for tungsten boron carbide's success over the other investigated materials. This analysis determined that there was a positive correlation between a non-elastic interaction contribution towards a material's total cross-section and shielding performance within the thermal and epi-thermal energy regimes. This finding was assumed to be a result of the boron-10 absorption reaction. The analysis also determined that within the faster energy regions, materials featuring higher non-elastic interaction contributions were comparable to those exhibiting primarily elastic scattering via low Z elements. This allowed for the conclusion that composite shield success within higher energy neutron spectra does not necessitate the use elastic scattering via low Z elements. These findings suggest that the inclusion of materials featuring high thermal absorption properties is more critical to composite neutron shield performance than the presence of constituent materials more inclined to maximize elastic scattering energy loss.
Nonlinear Elastic Effects on the Energy Flux Deviation of Ultrasonic Waves in GR/EP Composites
NASA Technical Reports Server (NTRS)
Prosser, William H.; Kriz, R. D.; Fitting, Dale W.
1992-01-01
In isotropic materials, the direction of the energy flux (energy per unit time per unit area) of an ultrasonic plane wave is always along the same direction as the normal to the wave front. In anisotropic materials, however, this is true only along symmetry directions. Along other directions, the energy flux of the wave deviates from the intended direction of propagation. This phenomenon is known as energy flux deviation and is illustrated. The direction of the energy flux is dependent on the elastic coefficients of the material. This effect has been demonstrated in many anisotropic crystalline materials. In transparent quartz crystals, Schlieren photographs have been obtained which allow visualization of the ultrasonic waves and the energy flux deviation. The energy flux deviation in graphite/epoxy (gr/ep) composite materials can be quite large because of their high anisotropy. The flux deviation angle has been calculated for unidirectional gr/ep composites as a function of both fiber orientation and fiber volume content. Experimental measurements have also been made in unidirectional composites. It has been further demonstrated that changes in composite materials which alter the elastic properties such as moisture absorption by the matrix or fiber degradation, can be detected nondestructively by measurements of the energy flux shift. In this research, the effects of nonlinear elasticity on energy flux deviation in unidirectional gr/ep composites were studied. Because of elastic nonlinearity, the angle of the energy flux deviation was shown to be a function of applied stress. This shift in flux deviation was modeled using acoustoelastic theory and the previously measured second and third order elastic stiffness coefficients for T300/5208 gr/ep. Two conditions of applied uniaxial stress were considered. In the first case, the direction of applied uniaxial stress was along the fiber axis (x3) while in the second case it was perpendicular to the fiber axis along the laminate stacking direction (x1).
NASA Astrophysics Data System (ADS)
Wang, Jingcheng; Luo, Jingrun
2018-04-01
Due to the extremely high particle volume fraction (greater than 85%) and damage feature of polymer bonded explosives (PBXs), conventional micromechanical methods lead to inaccurate estimates on their effective elastic properties. According to their manufacture characteristics, a multistep approach based on micromechanical methods is proposed. PBXs are treated as pseudo poly-crystal materials consisting of equivalent composite particles (explosive crystals with binder coating), rather than two-phase composites composed of explosive particles and binder matrix. Moduli of composite spheres are obtained by generalized self-consistent method first, and the self-consistent method is modified to calculate the effective moduli of PBX. Defects and particle size distribution are considered by Mori-Tanaka method. Results show that when the multistep approach is applied to PBX 9501, estimates are far more accurate than the conventional micromechanical results. The bulk modulus is 5.75% higher, and shear modulus is 5.78% lower than the experimental values. Further analyses discover that while particle volume fraction and the binder's property have significant influences on the effective moduli of PBX, the moduli of particles present minor influences. Investigation of another particle size distribution indicates that the use of more fine particles will enhance the effective moduli of PBX.
Silicone-based elastic composites able to generate energy on micromechanical impulse
NASA Astrophysics Data System (ADS)
Racles, Carmen; Ignat, Mircea; Bele, Adrian; Dascalu, Mihaela; Lipcinski, Daniel; Cazacu, Maria
2016-08-01
Elastic composites were prepared based on a polydimethylsiloxane-α,ω-diol (M w = 139 000 g mol-1), different α,ω-bis(trimethylsiloxy)poly(methylcyanopropyl-methylhexyl-methylhydro)siloxanes as the polar group component and TEOS as a cross-linking agent and silica generator. The resulting materials consisted of polar-nonpolar interconnected networks as matrices which had 7.4 or 9.5 wt% in situ generated silica and contained up to 2.74 wt% CN groups. The films formed were tested for electromechanical response to a micromechanical impulse. It was found that their performance was proportional to their electromechanical sensitivity (β = ɛ‧/Y, where ɛ‧ is the dielectric permittivity and Y is Young’s modulus); thus it can be adjusted by their composition, via tailoring the dielectric and mechanical properties. The generated voltage peak-to-peak measured was between 3.75 and 12.3 V mm-1. The best result for the tested materials (i.e. harvested energy of 460 nJ or energy density of 4.6 μJ cm-3, as a response to a micro-impulse of 0.017 kg m s-1) was obtained for a film having ɛ‧ = 3.6 and Y = 0.19 MPa.
Model-Based Experimental Development of Passive Compliant Robot Legs from Fiberglass Composites
Lin, Shang-Chang; Hu, Chia-Jui; Lin, Pei-Chun
2015-01-01
We report on the methodology of developing compliant, half-circular, and composite robot legs with designable stiffness. First, force-displacement experiments on flat cantilever composites made by one or multifiberglass cloths are executed. By mapping the cantilever mechanics to the virtual spring model, the equivalent elastic moduli of the composites can be derived. Next, by using the model that links the curved beam mechanics back to the virtual spring, the resultant stiffness of the composite in a half-circular shape can be estimated without going through intensive experimental tryouts. The overall methodology has been experimentally validated, and the fabricated composites were used on a hexapod robot to perform walking and leaping behaviors. PMID:27065748
Halacheva, Silvia S; Adlam, Daman J; Hendow, Eseelle K; Freemont, Tony J; Hoyland, Judith; Saunders, Brian R
2014-05-12
The potential of various pH-responsive alkyl (meth)acrylate ester- and (meth)acrylic acid-based copolymers, including poly(methyl methacrylate-co-acrylic acid) (PMMA-AA) and poly(n-butyl acrylate-co-methacrylic acid) (PBA-MAA), to form pH-sensitive biocompatible and biodegradable hollow particle gel scaffolds for use in non-load-bearing soft tissue regeneration have been explored. The optimal copolymer design criteria for preparation of these materials have been established. Physical gels which are both pH- and redox-sensitive were formed only from PMMA-AA copolymers. MMA is the optimal hydrophobic monomer, whereas the use of various COOH-containing monomers, e.g., MAA and AA, will always induce a pH-triggered physical gelation. The PMMA-AA gels were prepared at physiological pH range from concentrated dispersions of swollen, hollow, polymer-based particles cross-linked with either cystamine (CYS) or 3,3'-dithiodipropionic acid dihydrazide (DTP). A linear relationship between particle swelling ratios, gel elasticity, and ductility was observed. The PMMA-AA gels with lower AA contents feature lower swelling ratios, mechanical strengths, and ductilities. Increasing the swelling ratio (e.g., through increasing AA content) decreased the intraparticle elasticity; however, intershell contact and gel elasticity were found to increase. The mechanical properties and performance of the gels were tuneable upon varying the copolymers' compositions and the structure of the cross-linker. Compared to PMMA-AA/CYS, the PMMA-AA/DTP gels were more elastic and ductile. The biodegradability and cytotoxicity of the new hollow particle gels were tested for the first time and related to their composition, mechanical properties, and morphology. The new PMMA-AA/CYS and PMMA-AA/DTP gels have shown good biocompatibility, biodegradability, strength, and interconnected porosity and therefore have good potential as a tissue repair agent.
Yeo, Giselle C; Aghaei-Ghareh-Bolagh, Behnaz; Brackenreg, Edwin P; Hiob, Matti A; Lee, Pearl; Weiss, Anthony S
2015-11-18
The mechanical stability, elasticity, inherent bioactivity, and self-assembly properties of elastin make it a highly attractive candidate for the fabrication of versatile biomaterials. The ability to engineer specific peptide sequences derived from elastin allows the precise control of these physicochemical and organizational characteristics, and further broadens the diversity of elastin-based applications. Elastin and elastin-like peptides can also be modified or blended with other natural or synthetic moieties, including peptides, proteins, polysaccharides, and polymers, to augment existing capabilities or confer additional architectural and biofunctional features to compositionally pure materials. Elastin and elastin-based composites have been subjected to diverse fabrication processes, including heating, electrospinning, wet spinning, solvent casting, freeze-drying, and cross-linking, for the manufacture of particles, fibers, gels, tubes, sheets and films. The resulting materials can be tailored to possess specific strength, elasticity, morphology, topography, porosity, wettability, surface charge, and bioactivity. This extraordinary tunability of elastin-based constructs enables their use in a range of biomedical and tissue engineering applications such as targeted drug delivery, cell encapsulation, vascular repair, nerve regeneration, wound healing, and dermal, cartilage, bone, and dental replacement. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yeo, Giselle C.; Weiss, Anthony S.
2015-01-01
The mechanical stability, elasticity, inherent bioactivity, and self-assembly properties of elastin make it a highly attractive candidate for the fabrication of versatile biomaterials. The ability to engineer specific peptide sequences derived from elastin allows for precise control of these physicochemical and organizational characteristics, and further broadens the diversity of elastin-based applications. Elastin and elastin-like peptides can also be modified or blended with other natural or synthetic moieties, including peptides, proteins, polysaccharides and polymers, to augment existing capabilities or confer additional architectural and biofunctional features to compositionally pure materials. Elastin and elastin-based composites have been subjected to diverse fabrication processes, including heating, electrospinning, wet spinning, solvent casting, freeze-drying, and cross-linking, for the manufacture of particles, fibers, gels, tubes, sheets and films. The resulting materials can be tailored to possess specific strength, elasticity, morphology, topography, porosity, wettability, surface charge and bioactivity. This extraordinary tunability of elastin-based constructs enables their use in a range of biomedical and tissue engineering applications such as targeted drug delivery, cell encapsulation, vascular repair, nerve regeneration, wound healing, and dermal, cartilage, bone and dental replacement. PMID:25771993
Numerical tool for SMA material simulation: application to composite structure design
NASA Astrophysics Data System (ADS)
Chemisky, Yves; Duval, Arnaud; Piotrowski, Boris; Ben Zineb, Tarak; Tahiri, Vanessa; Patoor, Etienne
2009-10-01
Composite materials based on shape memory alloys (SMA) have received growing attention over these last few years. In this paper, two particular morphologies of composites are studied. The first one is an SMA/elastomer composite in which a snake-like wire NiTi SMA is embedded into an elastomer ribbon. The second one is a commercial Ni47Ti44Nb9 which presents elastic-plastic inclusions in an NiTi SMA matrix. In both cases, the design of such composites required the development of an SMA design tool, based on a macroscopic 3D constitutive law for NiTi alloys. Two different strategies are then applied to compute these composite behaviors. For the SMA/elastomer composite, the macroscopic behavior law is implemented in commercial FEM software, and for the Ni47Ti44Nb9 a scale transition approach based on the Mori-Tanaka scheme is developed. In both cases, simulations are compared to experimental data.
Damage tolerant functionally graded materials for advanced wear and friction applications
NASA Astrophysics Data System (ADS)
Prchlik, Lubos
The research work presented in this dissertation focused on processing effects, microstructure development, characterization and performance evaluation of composite and graded coatings used for friction and wear control. The following issues were addressed. (1) Definition of prerequisites for a successful composite and graded coating formation by means of thermal spraying. (2) Improvement of characterization methods available for homogenous thermally sprayed coating and their extension to composite and graded materials. (3) Development of novel characterization methods specifically for FGMs, with a focus on through thickness property measurement by indentation and in-situ curvature techniques. (4) Design of composite materials with improved properties compared to homogenous coatings. (5) Fabrication and performance assessment of FGM with improved wear and impact damage properties. Materials. The materials studied included several material systems relevant to low friction and contact damage tolerant applications: MO-Mo2C, WC-Co cermets as materials commonly used sliding components of industrial machinery and NiCrAlY/8%-Yttria Partially Stabilized Zirconia composites as a potential solution for abradable sections of gas turbines and aircraft engines. In addition, uniform coatings such as molybdenum and Ni5%Al alloy were evaluated as model system to assess the influence of microstructure variation onto the mechanical property and wear response. Methods. The contact response of the materials was investigated through several techniques. These included methods evaluating the relevant intrinsic coating properties such as elastic modulus, residual stress, fracture toughness, scratch resistance and tests measuring the abrasion and friction-sliding behavior. Dry-sand and wet two-body abrasion testing was performed in addition to traditional ball on disc sliding tests. Among all characterization techniques the spherical indentation deserved most attention and enabled to measure elastic-plastic properties of uniform and graded structures. In-situ curvature method used for residual stress and elastic modulus measurement was extended from uniform coatings to coatings with compositional/property gradients. Properties of composite and graded materials were measured using the inverse analysis. Conclusions. The specifics of the elastic-plastic response for thermally sprayed coatings were demonstrated. These included the strain dependence of elastic modulus and damage accumulation related to unloading/reloading loop formation. The measurement of elastic-plastic characteristics of composite coatings revealed the mixing and bonding mechanisms unique for thermally sprayed materials. Microstructural and compositional factors governing the frictional vs. abrasion response of carbide-metallic composite coatings were described. The measurement of abrasion resistance and friction sliding properties demonstrated that grading of cermet and ceramic coatings by adding moderate amount of metallic alloys can enhance elastic-properties radically and have a beneficial effect onto the coating performance.
NASA Astrophysics Data System (ADS)
Balasoiu, Maria; Bica, Ioan
The fabrication of composite magnetorheological elastomers (MRECs) based on silicone rubber, carbonyl iron microparticles (10% vol.) and polyurethane elastomer doped with 0%, 10% and 20% volume concentration TiO2 microparticles is presented. The obtained MRECs have the shape of thin foils and are used as dielectric materials for manufacturing plane capacitors. Using the plane capacitor method and expression of capacitance as a function of magnetic field intensity, combined with linear elasticity theory, the static magnetoelastic model of the composite is obtained and analyzed.
NASA Astrophysics Data System (ADS)
Mueller, W. H.; Schmauder, S.
1993-02-01
This paper is concerned with the problem of the calculation of stress-intensity factors at the tips of radial matrix cracks (r-cracks) in fiber-reinforced composites under thermal and/or transverse uniaxial or biaxial mechanical loading. The crack is either located in the immediate vicinity of a single fiber or it terminates at the interface between the fiber and the matrix. The problem is stated and solved numerically within the framework of linear elasticity using Erdogan's integral equation technique. It is shown that the solutions for purely thermal and purely mechanical loading can simply be superimposed in order to obtain the results of the combined loading case. Stress-intensity factors (SIFs) are calculated for various lengths and distances of the crack from the interface for each of these loading conditions. The behavior of the SIFs for cracks growing towards or away from the interface is examined. The role of the elastic mismatch between the fibers and the matrix is emphasized and studied extensively using the so-called Dundurs' parameters. It is shown that an r-crack, which is remotely located from the fiber, can either be stabilized or destabilized depending on both the elastic as well as the thermal mismatch of the fibrous composite. Furthermore, Dundurs' parameters are used to predict the exponent of the singularity of the crack tip elastic field and the behavior of the corresponding SIFs for cracks which terminate at the interface. An analytical solution for the SIFs is derived for all three loading conditions under the assumption that the elastic constants of the matrix and the fiber are equal. It is shown that the analytical solution is in good agreement with the corresponding numerical results. Moreover, another analytical solution from the literature, which is based upon Paris' equation for the calculation of stress-intensity factors, is compared with the numerical results and it is shown to be valid only for extremely short r-cracks touching the interface. The numerical results presented are valid for practical fiber composites with r-cracks close to or terminating at the interface provided the matrix material is brittle and the crack does not interact with other neighboring fibers. They may be applied to predict the transverse mechanical behavior of high strength fiber composites.
NASA Technical Reports Server (NTRS)
Jansson, S.; Leckie, F. A.; Onat, E. T.; Ranaweera, M. P.
1990-01-01
The combination of thermal and mechanical loading expected in practice means that constitutive equations of metal matrix composites must be developed which deal with time-independent and time-dependent irreversible deformation. Also, the internal state of composites is extremely complicated which underlines the need to formulate macroscopic constitutive equations with a limited number of state variables which represent the internal state at the micro level. One available method for calculating the macro properties of composites in terms of the distribution and properties of the constituent materials is the method of homogenization whose formulation is based on the periodicity of the substructure of the composite. A homogenization procedure was developed which lends itself to the use of the finite element procedure. The efficiency of these procedures, to determine the macroscopic properties of a composite system from its constituent properties, was demonstrated utilizing an aluminum plate perforated by directionally oriented slits. The selection of this problem is based on the fact that, extensive experimental results exist, the macroscopic response is highly anisotropic, and that the slits provide very high stress gradients which severely test the effectiveness of the computational procedures. Furthermore, both elastic and plastic properties were investigated so that the application to practical systems with inelastic deformation should be able to proceed without difficulty. The effectiveness of the procedures was rigorously checked against experimental results and with the predictions of approximate calculations. Using the computational results it is illustrated how macroscopic constitutive equations can be expressed in forms of the elastic and limit load behavior.
Dynamic compressive strength of epoxy composites
NASA Astrophysics Data System (ADS)
Plastinin, A. V.; Sil'vestrov, V. V.
1996-11-01
The strength of laminated and unidirectionally reinforced composite materials was investigated in conditions of dynamic uniaxial compression with a strain rate of 50-1000 sec-1 using the split Hopkinson pressure bar method. It was shown that in conditions of dynamic compression, glass/epoxy, aramid/epoxy, and carbon/epoxy composites exhibit elastic-brittle behavior with anisotropy of the strength and elastic properties. The effect of the strain rate on the strength characteristics of fiberglass-reinforced plastics was demonstrated.
Cao, Xu; Pan, Guoshun; Huang, Peng; Guo, Dan; Xie, Guoxin
2017-08-22
The core-shell structured PS/SiO 2 composite nanospheres were synthesized on the basis of a modified Stöber method. The mechanical properties of monodisperse nanospheres were characterized with nanoindentation on the basis of the atomic force microscopy (AFM). The surface morphologies of PS/SiO 2 composite nanospheres was scanned with the tapping mode of AFM, and the force-distance curves were measured with the contact mode of AFM. Different contact models were compared for the analyses of experimental data. The elastic moduli of PS/SiO 2 composite nanosphere (4-40 GPa) and PS nanosphere (∼3.4 GPa) were obtained with the Hertz and Johnson-Kendall-Roberts (JKR) models, respectively, and the JKR model was proven to be more appropriate for calculating the elastic modulus of PS/SiO 2 nanospheres. The elastic modulus of SiO 2 shell gradually approached a constant value (∼46 GPa) with the increase of SiO 2 shell thickness. A core-shell model was proposed for describing the relationship between PS/SiO 2 composite nanosphere's elastic modulus and shell thickness. The mechanical properties of the composite nanospheres were reasonably explained on the basis of the growth mechanism of PS/SiO 2 composite nanospheres, in particular the SiO 2 shell's formation process. Available research data of PS/SiO 2 composite nanospheres in this work can provide valuable guidance for their effective application in surface engineering, micro/nanomanufacturing, lubrication, and so on.
Dexter, Annette F; Malcolm, Andrew S; Zeng, Biyun; Kennedy, Debora; Middelberg, Anton P J
2008-04-01
We report an interfacially active system based on an informational peptide surfactant mixed with an oppositely charged polyelectrolyte. The 21-residue cationic peptide, AM1, has previously been shown to respond reversibly to pH and metal ions at fluid interfaces, forming elastic films that can be rapidly switched to collapse foams or emulsions on demand. Here we report the reversible association of AM1 with the methacrylate-based anionic polymer Eudragit S-100. The strength of the association, in bulk aqueous solution, is modulated by added metal ions and by ionic strength. Addition of zinc ions to the peptide-polymer system promotes complex formation and phase separation, while addition of a chelating agent reverses the association. The addition of salt weakens peptide-polymer interactions in the presence or absence of zinc. At the air-water interface, Eudragit S-100 forms an elastic mixed film with AM1 in the absence of metal, under conditions where the peptide alone does not show interfacial elasticity. When zinc is present, the elasticity of the mixed film is increased, but the rate of interfacial adsorption slows due to formation of peptide-polymer complexes in bulk solution. An understanding of these interactions can be used to identify favorable foam-forming conditions in the mixed system.
Piezoresistivity, mechanisms and model of cement-based materials with CNT/NCB composite fillers
NASA Astrophysics Data System (ADS)
Zhang, Liqing; Ding, Siqi; Dong, Sufen; Li, Zhen; Ouyang, Jian; Yu, Xun; Han, Baoguo
2017-12-01
The use of conductive cement-based materials as sensors has attracted intense interest over past decades. In this paper, carbon nanotube (CNT)/nano carbon black (NCB) composite fillers made by electrostatic self-assembly are used to fabricate conductive cement-based materials. Electrical and piezoresistive properties of the fabricated cement-based materials are investigated. Effect of filler content, load amplitudes and rate on piezoresistive property within elastic regime and piezoresistive behaviors during compressive loading to destruction are explored. Finally, a model describing piezoresistive property of cement-based materials with CNT/NCB composite fillers is established based on the effective conductive path and tunneling effect theory. The research results demonstrate that filler content and load amplitudes have obvious effect on piezoresistive property of the composites materials, while load rate has little influence on piezoresistive property. During compressive loading to destruction, the composites also show sensitive piezoresistive property. Therefore, the cement-based composites can be used to monitor the health state of structures during their whole life. The built model can well describe the piezoresistive property of the composites during compressive loading to destruction. The good match between the model and experiment data indicates that tunneling effect actually contributes to piezoresistive phenomenon.
Development of a Knowledge Base of Ti-Alloys From First-Principles and Thermodynamic Modeling
NASA Astrophysics Data System (ADS)
Marker, Cassie
An aging population with an active lifestyle requires the development of better load-bearing implants, which have high levels of biocompatibility and a low elastic modulus. Titanium alloys, in the body centered cubic phase, are great implant candidates, due to their mechanical properties and biocompatibility. The present work aims at investigating the thermodynamic and elastic properties of bcc Tialloys, using the integrated first-principles based on Density Functional Theory (DFT) and the CALculation of PHAse Diagrams (CALPHAD) method. The use of integrated first-principles calculations based on DFT and CALPHAD modeling has greatly reduced the need for trial and error metallurgy, which is ineffective and costly. The phase stability of Ti-alloys has been shown to greatly affect their elastic properties. Traditionally, CALPHAD modeling has been used to predict the equilibrium phase formation, but in the case of Ti-alloys, predicting the formation of two metastable phases o and alpha" is of great importance as these phases also drastically effect the elastic properties. To build a knowledge base of Ti-alloys, for biomedical load-bearing implants, the Ti-Mo-Nb-Sn-Ta-Zr system was studied because of the biocompatibility and the bcc stabilizing effects of some of the elements. With the focus on bcc Ti-rich alloys, a database of thermodynamic descriptions of each phase for the pure elements, binary and Ti-rich ternary alloys was developed in the present work. Previous thermodynamic descriptions for the pure elements were adopted from the widely used SGTE database for global compatibility. The previous binary and ternary models from the literature were evaluated for accuracy and new thermodynamic descriptions were developed when necessary. The models were evaluated using available experimental data, as well as the enthalpy of formation of the bcc phase obtained from first-principles calculations based on DFT. The thermodynamic descriptions were combined into a database ensuring that the sublattice models are compatible with each other. For subsystems, such as the Sn-Ta system, where no thermodynamic description had been evaluated and minimal experimental data was available, first-principles calculations based on DFT were used. The Sn-Ta system has two intermetallic phases, TaSn2 and Ta3Sn, with three solution phases: bcc, body centered tetragonal (bct) and diamond. First-principles calculations were completed on the intermetallic and solution phases. Special quasirandom structures (SQS) were used to obtain information about the solution phases across the entire composition range. The Debye-Gruneisen approach, as well as the quasiharmonic phonon method, were used to obtain the finite-temperature data. Results from the first-principles calculations and experiments were used to complete the thermodynamic description. The resulting phase diagram reproduced the first-principles calculations and experimental data accurately. In order to determine the effect of alloying on the elastic properties, first-principles calculations based on DFT were systematically done on the pure elements, five Ti-X binary systems and Ti-X-Y ternary systems (X ≠ Y = Mo, Nb, Sn, Ta Zr) in the bcc phase. The first-principles calculations predicted the single crystal elastic stiffness constants cij 's. Correspondingly, the polycrystalline aggregate properties were also estimated from the cij's, including bulk modulus B, shear modulus G and Young's modulus E. The calculated results showed good agreement with experimental results. The CALPHAD method was then adapted to assist in the database development of the elastic properties as a function of composition. On average, the database predicted the elastic properties of higher order Ti-alloys within 5 GPa of the experimental results. Finally, the formation of the metastable phases, o and alpha" was studied in the Ti-Ta and Ti-Nb systems. The formation energy of these phases, calculated from first-principles at 0 K, showed that the phases have similar formation energies to the bcc and hcp phases. Inelastic neutron scattering was completed on four different Ti-Nb compositions to study the entropy of the phases as well as the transformations occurring when the phases form and the phase fractions. Ongoing work is being done to use the experimental information to introduce thermodynamic descriptions for these two phases in the Ti-Nb system in order to be able to predict the formation and phase fractions. DFT based first-principles were used to predict the effect these phases have on the elastic properties and a rule of mixtures was used to determine the elastic properties of multi-phase alloys. The results were compared with experiments and showed that if the ongoing modeling can predict the phase fraction, the elastic database can accurately predict the elastic properties of the o and alpha" phases. This thesis provides a knowledge base of the thermodynamic and elastic properties of Ti-alloys from computational thermodynamics. The databases created will impact research activities on Ti-alloys and specifically efforts focused on Ti-alloys for biomedical applications.
Zheng, Zeng; Wang, Lianfeng; Jia, Min; Cheng, Lingyu; Yan, Biao
2017-02-01
Selective laser melting (SLM) is raised as one kind of additive manufacturing (AM) which is based on the discrete-stacking concept. This technique can fabricate advanced composites with desirable properties directly from 3D CAD data. In this research, 316L stainless steel (316L SS) and different fractions of calcium silicate (CaSiO 3 ) composites (weight fractions of calcium silicate are 0%, 5%,10% and 15%, respectively) were prepared by SLM technique with a purpose to develop biomedical metallic materials. The relative density, tensile, microhardness and elastic modulus of the composites were tested, their microstructures and fracture morphologies were observed using optical microscope (OM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). It was found that the addition of CaSiO 3 particles influenced the microstructure and mechanical properties of specimens significantly. The CaSiO 3 precipitates from the overlap of adjacent tracks and became the origin of the defects. The tensile strength of specimens range 320-722MPa. The microhardness and elastic modulus are around 250HV and 215GPa respectively. These composites were ductile materials and the fracture mode of the composites was mixed mode of ductile and brittle fracture. The 316L SS/CaSiO 3 composites can be a potential biomedical metallic materials in the medical field. Copyright © 2016. Published by Elsevier B.V.
Masia, Lorenzo; Cappello, Leonardo; Morasso, Pietro; Lachenal, Xavier; Pirrera, Alberto; Weaver, Paul; Mattioni, Filippo
2013-06-01
A novel actuator is introduced that combines an elastically compliant composite structure with conventional electromechanical elements. The proposed design is analogous to that used in Series Elastic Actuators, its distinctive feature being that the compliant composite part offers different stable configurations. In other words, its elastic potential presents points of local minima that correspond to robust stable positions (multistability). This potential is known a priori as a function of the structural geometry, thus providing tremendous benefits in terms of control implementation. Such knowledge enables the complexities arising from the additional degrees of freedom associated with link deformations to be overcome and uncover challenges that extends beyond those posed by standard rigidlink robot dynamics. It is thought that integrating a multistable elastic element in a robotic transmission can provide new scenarios in the field of assistive robotics, as the system may help a subject to stand or carry a load without the need for an active control effort by the actuators.
Local Elastic Constants for Epoxy-Nanotube Composites from Molecular Dynamics Simulation
NASA Technical Reports Server (NTRS)
Frankland, S. J. V.; Gates, T. S.
2007-01-01
A method from molecular dynamics simulation is developed for determining local elastic constants of an epoxy/nanotube composite. The local values of C11, C33, K12, and K13 elastic constants are calculated for an epoxy/nanotube composite as a function of radial distance from the nanotube. While the results possess a significant amount of statistical uncertainty resulting from both the numerical analysis and the molecular fluctuations during the simulation, the following observations can be made. If the size of the region around the nanotube is increased from shells of 1 to 6 in thickness, then the scatter in the data reduces enough to observe trends. All the elastic constants determined are at a minimum 20 from the center of the nanotube. The C11, C33, and K12 follow similar trends as a function of radial distance from the nanotube. The K13 decreases greater distances from the nanotube and becomes negative which may be a symptom of the statistical averaging.
Maghemite based silicone composite for arterial embolization hyperthermia.
Smolkova, Ilona S; Kazantseva, Natalia E; Makoveckaya, Kira N; Smolka, Petr; Saha, Petr; Granov, Anatoly M
2015-03-01
Maghemite nanoparticle based silicone composite for application in arterial embolization hyperthermia is developed. It possesses embolization ability, high heating efficiency in alternating magnetic fields and radiopaque property. The initial components of the composite are selected so that the material stays liquid for 20min, providing the opportunity for transcatheter transportation and filling of the tumour vascular system. After this induction period the viscosity increases rapidly and soft embolus is formed which is able to occlude the tumour blood vessels. The composite is thermally stable up to 225°C, displays rubber-elastic properties and has a thermal expansion coefficient higher than that of blood. Maghemite nanoparticles uniformly distributed in the composite provide its rapid heating (tens of °Cmin(-1)) due to Neel magnetization relaxation. Required X-ray contrast of composite is achieved by addition of potassium iodide. Copyright © 2014 Elsevier B.V. All rights reserved.
da Silva, Dayanne Lopes; Santos, Emanuel; Camargo, Sérgio de Souza; Ruellas, Antônio Carlos de Oliveira
2015-09-01
To evaluate the material composition, mechanical properties (hardness and elastic modulus), and scratch resistance of the coating of four commercialized esthetic orthodontic archwires. The coating composition of esthetic archwires was assessed by Fourier-transform infrared spectroscopy (FTIR). Coating hardness and elastic modulus were analyzed with instrumented nano-indentation tests. Scratch resistance of coatings was evaluated by scratch test. Coating micromorphologic characteristics after scratch tests were observed in a scanning electron microscope. Statistical differences were investigated using analysis of variance and Tukey post hoc test. The FTIR results indicate that all analyzed coatings were markedly characterized by the benzene peak at about 1500 cm(-1). The coating hardness and elastic modulus average values ranged from 0.17 to 0.23 GPa and from 5.0 to 7.6 GPa, respectively. Scratch test showed a high coating elasticity after load removal with elastic recoveries >60%, but different failure features could be observed along the scratches. The coatings of esthetic archwires evaluated are probably a composite of polyester and polytetrafluoroethylene. Delamination, crack propagation, and debris generation could be observed along the coating scratches and could influence its durability in the oral environment.
Elastic torsional buckling of thin-walled composite cylinders
NASA Technical Reports Server (NTRS)
Marlowe, D. E.; Sushinsky, G. F.; Dexter, H. B.
1974-01-01
The elastic torsional buckling strength has been determined experimentally for thin-walled cylinders fabricated with glass/epoxy, boron/epoxy, and graphite/epoxy composite materials and composite-reinforced aluminum and titanium. Cylinders have been tested with several unidirectional-ply orientations and several cross-ply layups. Specimens were designed with diameter-to-thickness ratios of approximately 150 and 300 and in two lengths of 10 in. and 20 in. The results of these tests were compared with the buckling strengths predicted by the torsional buckling analysis of Chao.
NASA Astrophysics Data System (ADS)
Kardashev, B. K.; Orlova, T. S.; Smirnov, B. I.; de Arellano-Lopez, A. R.; Martinez-Fernandez, J.
2010-10-01
The amplitude and temperature dependences of the Young’s modulus and the internal friction (ultrasonic absorption) of biomorphic carbon, silicon carbide, and SiC/Si composite produced from medium density fiberboard (MDF) by pyrolysis (carbonization), followed by infiltration of molten silicon into the prepared carbon preform have been studied in the temperature range 100-293 K in air and under vacuum. The measurements have been performed by the acoustic resonance method with the use of a composite vibrator for longitudinal vibrations at frequencies of approximately 100 kHz. The data obtained by acoustic measurements of the amplitude dependences of the elastic modulus have been used for evaluating the microplastic properties of samples under study. It has been shown that the Young’s modulus, the decrement of elastic vibrations, and the conventional microyield strength of the MDF samples differ from the corresponding data for previously studied similar materials produced from natural eucalyptus, beech, sapele, and pine woods. In particular, the desorption of environmental molecules at small amplitudes of vibrations, which is typical of biomorphic materials based on natural wood, is almost absent for the MDF samples. The results obtained have been explained by different structures and the influence of pores and other defects, which, to a large extent, determine the mechanical characteristics of the biomaterials under investigation.
NASA Astrophysics Data System (ADS)
Tennakoon, Sumudu P.
Relaxor ferroelectric lead magnesium niobate-lead titanate (PMN-PT) material exhibits exceptional electromechanical properties. The material undergoes a series of structural phase transitions with changes in temperature and the chemical composition. The work covered in this dissertation seek to gain insight into the phase diagram of PMN-PT using temperature and pressure dependence of the elastic properties. Single crystal PMN-PT with a composition near morphotropic phase boundary (MPB) was investigated using a resonant ultrasound spectroscopy (RUS) methodologies in the temperature range of 293 K - 800 K and the pressure range from near vacuum to 3.4 MPa. At atmospheric pressure, significantly high acoustic attenuation of PMN-PT is observed at temperatures below 400 K. A strong stiffening is observed in the temperature range of 400 K - 673 K, followed by a gradual softening at higher temperatures. With varying pressure, an increased pressure sensitivity of the elastic properties of PMN-PT is observed at the temperatures in the stiffening phase. Elastic behavior at elevated temperatures and pressures were studied for correlations with the ferroelectric domains at temperatures below the Curie temperature (TC), the locally polarized nano-regions, and an existence of pseudo-cubic crystalline at higher temperatures between (TC and TB). Thermoelectric lanthanum tellurides and skutterudites are being investigated by NASA's Jet Propulsion Laboratory for advanced thermoelectric generates (TEGs). Effects of nickel (Ni) doping on elastic properties of lanthanum tellurides at elevated temperatures were investigated in the temperature range of 293 K - 800 K. A linear stiffening was observed with increasing the Ni content in the material. Elastic properties of p-type and n-type bismuth-based skutterudites were investigated in the temperature range of 293 K - 723 K. Elastic properties of rare-earth doped strontium titanate were also investigated in the temperature range of 293 K - 750 K.
Characterization of the Nonlinear Elastic Properties of Graphite/Epoxy Composites Using Ultrasound
NASA Technical Reports Server (NTRS)
Prosser, William H.; Green, Robert E., Jr.
1990-01-01
The normalized change in ultrasonic "natural" velocity as a function of stress and temperature was measured in a unidirectional laminate of T300/5208 graphite/epoxy composite using a pulsed phase locked loop ultrasonic interferometer. These measurements were used together with the linear (second order) elastic moduli to calculate some of the nonlinear (third order) moduli of this material.
NASA Technical Reports Server (NTRS)
Sun, C. T.; Yoon, K. J.
1990-01-01
A one-parameter plasticity model was shown to adequately describe the orthotropic plastic deformation of AS4/PEEK (APC-2) unidirectional thermoplastic composite. This model was verified further for unidirectional and laminated composite panels with and without a hole. The nonlinear stress-strain relations were measured and compared with those predicted by the finite element analysis using the one-parameter elastic-plastic constitutive model. The results show that the one-parameter orthotropic plasticity model is suitable for the analysis of elastic-plastic deformation of AS4/PEEK composite laminates.
Damping behavior of nano-fibrous composites with viscous interface in anti-plane shear
NASA Astrophysics Data System (ADS)
Wang, Xu
2017-06-01
By using the composite cylinder assemblage model, we derive an explicit expression of the specific damping capacity of nano-fibrous composite with viscous interface when subjected to time-harmonic anti-plane shear loads. The fiber and the matrix are first endowed with separate and distinct Gurtin-Murdoch surface elasticities, and rate-dependent sliding occurs on the fiber-matrix interface. Our analysis indicates that the effective damping of the composite depends on five dimensionless parameters: the fiber volume fraction, the stiffness ratio, two parameters arising from surface elasticity and one parameter due to interface sliding.
Instability of fiber-reinforced viscoelastic composite plates to in-plane compressive loads
NASA Technical Reports Server (NTRS)
Chandiramani, N. K.; Librescu, L.
1990-01-01
This study analyzes the stability behavior of unidirectional fiber-reinforced composite plates with viscoelastic material behavior subject to in-plane biaxial compressive edge loads. To predict the effective time-dependent material properties, elastic fibers embedded in a linearly viscoelastic matrix are examined. The micromechanical relations developed for a transversely isotropic medium are discussed along with the correspondence principle of linear viscoelasticity. It is concluded that the stability boundary obtained for a viscoelastic plate is lower (more critical) than its elastic counterpart, and the transverse shear deformation effects are more pronounced in viscoelastic plates than in their elastic counterparts.
Predicting the morphologies of γ' precipitates in cobalt-based superalloys
Jokisaari, Andrea M.; Naghavi, S. S.; Wolverton, C.; ...
2017-09-06
Cobalt-based alloys with γ/γ' microstructures have the potential to become the next generation of superalloys, but alloy compositions and processing steps must be optimized to improve coarsening, creep, and rafting behavior. While these behaviors are different than in nickel-based superalloys, alloy development can be accelerated by understanding the thermodynamic factors influencing microstructure evolution. In this work, we develop a phase field model informed by first-principles density functional theory and experimental data to predict the equilibrium shapes of Co-Al-W γ' precipitates. Three-dimensional simulations of single and multiple precipitates are performed to understand the effect of elastic and interfacial energy on coarsenedmore » and rafted microstructures; the elastic energy is dependent on the elastic stiffnesses, misfit strain, precipitate size, applied stress, and precipitate spatial distribution. We observe characteristic microstructures dependent on the type of applied stress that have the same γ' morphology and orientation seen in experiments, indicating that the elastic stresses arising from coherent γ/γ' interfaces are important for morphological evolution during creep. Here, the results also indicate that the narrow γ channels between γ' precipitates are energetically favored, and provide an explanation for the experimentally observed directional coarsening that occurs without any applied stress.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landa, Romina A.; Soledad Antonel, Paula; Ruiz, Mariano M.
2013-12-07
Nickel (Ni) based nanoparticles and nanochains were incorporated as fillers in polydimethylsiloxane (PDMS) elastomers and then these mixtures were thermally cured in the presence of a uniform magnetic field. In this way, macroscopically structured-anisotropic PDMS-Ni based magnetorheological composites were obtained with the formation of pseudo-chains-like structures (referred as needles) oriented in the direction of the applied magnetic field when curing. Nanoparticles were synthesized at room temperature, under air ambient atmosphere (open air, atmospheric pressure) and then calcined at 400 °C (in air atmosphere also). The size distribution was obtained by fitting Small Angle X-ray Scattering (SAXS) experiments with a polydisperse hardmore » spheres model and a Schulz-Zimm distribution, obtaining a size distribution centered at (10.0 ± 0.6) nm with polydispersivity given by σ = (8.0 ± 0.2) nm. The SAXS, X-ray powder diffraction, and Transmission Electron Microscope (TEM) experiments are consistent with single crystal nanoparticles of spherical shape (average particle diameter obtained by TEM: (12 ± 1) nm). Nickel-based nanochains (average diameter: 360 nm; average length: 3 μm, obtained by Scanning Electron Microscopy; aspect ratio = length/diameter ∼ 10) were obtained at 85 °C and ambient atmosphere (open air, atmospheric pressure). The magnetic properties of Ni-based nanoparticles and nanochains at room temperature are compared and discussed in terms of surface and size effects. Both Ni-based nanoparticles and nanochains were used as fillers for obtaining the PDMS structured magnetorheological composites, observing the presence of oriented needles. Magnetization curves, ferromagnetic resonance (FMR) spectra, and strain-stress curves of low filler's loading composites (2% w/w of fillers) were determined as functions of the relative orientation with respect to the needles. The results indicate that even at low loadings it is possible to obtain magnetorheological composites with anisotropic properties, with larger anisotropy when using nanochains. For instance, the magnetic remanence, the FMR field, and the elastic response to compression are higher when measured parallel to the needles (about 30% with nanochains as fillers). Analogously, the elastic response is also anisotropic, with larger anisotropy when using nanochains as fillers. Therefore, all experiments performed confirm the high potential of nickel nanochains to induce anisotropic effects in magnetorheological materials.« less
Heterogeneous dissipative composite structures
NASA Astrophysics Data System (ADS)
Ryabov, Victor; Yartsev, Boris; Parshina, Ludmila
2018-05-01
The paper suggests mathematical models of decaying vibrations in layered anisotropic plates and orthotropic rods based on Hamilton variation principle, first-order shear deformation laminated plate theory (FSDT), as well as on the viscous-elastic correspondence principle of the linear viscoelasticity theory. In the description of the physical relationships between the materials of the layers forming stiff polymeric composites, the effect of vibration frequency and ambient temperature is assumed as negligible, whereas for the viscous-elastic polymer layer, temperature-frequency relationship of elastic dissipation and stiffness properties is considered by means of the experimentally determined generalized curves. Mitigation of Hamilton functional makes it possible to describe decaying vibration of anisotropic structures by an algebraic problem of complex eigenvalues. The system of algebraic equation is generated through Ritz method using Legendre polynomials as coordinate functions. First, real solutions are found. To find complex natural frequencies of the system, the obtained real natural frequencies are taken as input values, and then, by means of the 3rd order iteration method, complex natural frequencies are calculated. The paper provides convergence estimates for the numerical procedures. Reliability of the obtained results is confirmed by a good correlation between analytical and experimental values of natural frequencies and loss factors in the lower vibration tones for the two series of unsupported orthotropic rods formed by stiff GRP and CRP layers and a viscoelastic polymer layer. Analysis of the numerical test data has shown the dissipation & stiffness properties of heterogeneous composite plates and rods to considerably depend on relative thickness of the viscoelastic polymer layer, orientation of stiff composite layers, vibration frequency and ambient temperature.
NASA Astrophysics Data System (ADS)
González, C.; Segurado, J.; LLorca, J.
2004-07-01
The deformation of a composite made up of a random and homogeneous dispersion of elastic spheres in an elasto-plastic matrix was simulated by the finite element analysis of three-dimensional multiparticle cubic cells with periodic boundary conditions. "Exact" results (to a few percent) in tension and shear were determined by averaging 12 stress-strain curves obtained from cells containing 30 spheres, and they were compared with the predictions of secant homogenization models. In addition, the numerical simulations supplied detailed information of the stress microfields, which was used to ascertain the accuracy and the limitations of the homogenization models to include the nonlinear deformation of the matrix. It was found that secant approximations based on the volume-averaged second-order moment of the matrix stress tensor, combined with a highly accurate linear homogenization model, provided excellent predictions of the composite response when the matrix strain hardening rate was high. This was not the case, however, in composites which exhibited marked plastic strain localization in the matrix. The analysis of the evolution of the matrix stresses revealed that better predictions of the composite behavior can be obtained with new homogenization models which capture the essential differences in the stress carried by the elastic and plastic regions in the matrix at the onset of plastic deformation.
NASA Astrophysics Data System (ADS)
Santosh, D. N.; Ravikumar, B. N.; Mahesh, B.; Vijayalaxmi, S. P.; Srinivas, Y. V.
2018-04-01
In this paper, the effect of filler content is studied on elastic properties and water absorption behavior for jute epoxy composite. For reinforcement the plain woven jute fabric is used. The bonding system consists of resin-epoxy and Hardener in the ratio 10:1 by weight. Alumina (average grain size of 30 µm) is used as filler. The effect of filler content on elastic properties and water absorption behavior studied by varying the filler content from 5%, 10%, 15% with respect to weight of epoxy. The open mould method used to fabricate the alumina filled jute-epoxy composite laminates. Tests were conducted according to ASTM standards. The evaluation assesment of elastic properties of alumina filled jute-epoxy composite materials have been analyzed by theoretically and experimentally. The speculated values are analyzed with those obtained from experimental to validate the calculated theoretically with rule of mixture procedure. Young's modulus and shear modulus were found to increase with the increase in the filler content upto 10 wt%, beyond which the modulii showed decreasing trend. Poisson's ratio was found to be continuously decreasing with the increase in the alumina filler content of jute-eposy composite. It was clearly observed that unfilled specimen has the highest saturated moisture content and 15% filled specimen has lowest value. As alumina filler content increases resistance to moisture absorption also increases. The water diffusion coefficient of composite was calculated using the diffusion coefficient equation. As filler content increases diffusion co-efficient decreases for alumina filled jute-epoxy composite.
Investigation of PDMS based bi-layer elasticity via interpretation of apparent Young's modulus.
Sarrazin, Baptiste; Brossard, Rémy; Guenoun, Patrick; Malloggi, Florent
2016-02-21
As the need of new methods for the investigation of thin films on various kinds of substrates becomes greater, a novel approach based on AFM nanoindentation is explored. Substrates of polydimethylsiloxane (PDMS) coated by a layer of hard material are probed with an AFM tip in order to obtain the force profile as a function of the indentation. The equivalent elasticity of those composite systems is interpreted using a new numerical approach, the Coated Half-Space Indentation Model of Elastic Response (CHIMER), in order to extract the thicknesses of the upper layer. Two kinds of coating are investigated. First, chitosan films of known thicknesses between 30 and 200 nm were probed in order to test the model. A second type of samples is produced by oxygen plasma oxidation of the PDMS substrate, which results in the growth of a relatively homogeneous oxide layer. The local nature of this protocol enables measurements at long oxidation time, where the apparition of cracks prevents other kinds of measurements.
Determination of elastic constants of a generally orthotropic plate by modal analysis
NASA Astrophysics Data System (ADS)
Lai, T. C.; Lau, T. C.
1993-01-01
This paper describes a method of finding the elastic constants of a generally orthotropic composite thin plate through modal analysis based on a Rayleigh-Ritz formulation. The natural frequencies and mode shapes for a plate with free-free boundary conditions are obtained with chirp excitation. Based on the eigenvalue equation and the constitutive equations of the plate, an iteration scheme is derived using the experimentally determined natural frequencies to arrive at a set of converged values for the elastic constants. Four sets of experimental data are required for the four independent constants: namely the two Young's moduli E1 and E2, the in-plane shear modulus G12, and one Poisson's ratio nu12. The other Poisson's ratio nu21 can then be determined from the relationship among the constants. Comparison with static test results indicate good agreement. Choosing the right combinations of natural modes together with a set of reasonable initial estimates for the constants to start the iteration has been found to be crucial in achieving convergence.
Fundamental analysis of the failure of polymer-based fiber reinforced composites
NASA Technical Reports Server (NTRS)
Kanninen, M. F.; Rybicki, E. F.; Griffith, W. I.; Broek, D.
1975-01-01
A mathematical model predicting the strength of unidirectional fiber reinforced composites containing known flaws and with linear elastic-brittle material behavior was developed. The approach was to imbed a local heterogeneous region surrounding the crack tip into an anisotropic elastic continuum. This (1) permits an explicit analysis of the micromechanical processes involved in the fracture, and (2) remains simple enough to be useful in practical computations. Computations for arbitrary flaw size and orientation under arbitrary applied loads were performed. The mechanical properties were those of graphite epoxy. With the rupture properties arbitrarily varied to test the capabilities of the model to reflect real fracture modes, it was shown that fiber breakage, matrix crazing, crack bridging, matrix-fiber debonding, and axial splitting can all occur during a period of (gradually) increasing load prior to catastrophic failure. The calculations also reveal the sequential nature of the stable crack growth process proceding fracture.
Further studies on gold alloys used in fabrication of porcelain-fused-to-metal restorations.
Civjan, S; Huget, E F; Dvivedi, N; Cosner, H J
1975-03-01
Composition, microstructure, castability, mechanical properties, and heat treatment characteristics of two gold-palladium-silver-based alloys were studied. The materials exhibited compositional as well as microstructural differences. Clinically acceptable castings could not be obtained when manufacturers' recommended casting temperatures were used. Ultimate tensile strength, yield strength, modulus of elasticity, and Brinell hardness values for the alloys were comparable. The elastic limit of Cameo, however, was significantly higher than that of vivo-star. Maximum rehardening of annealed castings occurred on reheat treatment at temperatures between 1,200 and 1,300 F. As-cast specimens, however, were not heat hardenable. The sequence of heat treatments used in the application of porcelain reduced slightly the hardness of both alloys. Hardness of the metal substructures was not increased by return of porcelain-coated specimens to a 1,250 F oven for final heat treatment.
NASA Astrophysics Data System (ADS)
Lefèvre, Victor; Lopez-Pamies, Oscar
2017-02-01
This paper presents an analytical framework to construct approximate homogenization solutions for the macroscopic elastic dielectric response - under finite deformations and finite electric fields - of dielectric elastomer composites with two-phase isotropic particulate microstructures. The central idea consists in employing the homogenization solution derived in Part I of this work for ideal elastic dielectric composites within the context of a nonlinear comparison medium method - this is derived as an extension of the comparison medium method of Lopez-Pamies et al. (2013) in nonlinear elastostatics to the coupled realm of nonlinear electroelastostatics - to generate in turn a corresponding solution for composite materials with non-ideal elastic dielectric constituents. Complementary to this analytical framework, a hybrid finite-element formulation to construct homogenization solutions numerically (in three dimensions) is also presented. The proposed analytical framework is utilized to work out a general approximate homogenization solution for non-Gaussian dielectric elastomers filled with nonlinear elastic dielectric particles that may exhibit polarization saturation. The solution applies to arbitrary (non-percolative) isotropic distributions of filler particles. By construction, it is exact in the limit of small deformations and moderate electric fields. For finite deformations and finite electric fields, its accuracy is demonstrated by means of direct comparisons with finite-element solutions. Aimed at gaining physical insight into the extreme enhancement in electrostriction properties displayed by emerging dielectric elastomer composites, various cases wherein the filler particles are of poly- and mono-disperse sizes and exhibit different types of elastic dielectric behavior are discussed in detail. Contrary to an initial conjecture in the literature, it is found (inter alia) that the isotropic addition of a small volume fraction of stiff (semi-)conducting/high-permittivity particles to dielectric elastomers does not lead to the extreme electrostriction enhancements observed in experiments. It is posited that such extreme enhancements are the manifestation of interphasial phenomena.
Tensile Mechanical Property of Oil Palm Empty Fruit Bunch Fiber Reinforced Epoxy Composites
NASA Astrophysics Data System (ADS)
Ghazilan, A. L. Ahmad; Mokhtar, H.; Shaik Dawood, M. S. I.; Aminanda, Y.; Ali, J. S. Mohamed
2017-03-01
Natural, short, untreated and randomly oriented oil palm empty fruit bunch fiber reinforced epoxy composites were manufactured using vacuum bagging technique with 20% fiber volume composition. The performance of the composite was evaluated as an alternative to synthetic or conventional reinforced composites. Tensile properties such as tensile strength, modulus of elasticity and Poisson’s ratio were compared to the tensile properties of pure epoxy obtained via tensile tests as per ASTM D 638 specifications using Universal Testing Machine INSTRON 5582. The tensile properties of oil palm empty fruit bunch fiber reinforced epoxy composites were lower compared to plain epoxy structure with the decrement in performances of 38% for modulus of elasticity and 61% for tensile strength.
Stresses and deformations in cross-ply composite tubes subjected to a uniform temperature change
NASA Technical Reports Server (NTRS)
Hyer, M. W.; Cooper, D. E.; Cohen, D.
1986-01-01
This study investigates the effects of a uniform temperature change on the stresses and deformations of composite tubes and determines the accuracy of an approximate solution based on the principle of complementary virtual work. Interest centers on tube response away from the ends and so a planar elasticity approach is used. For the approximate solution a piecewise linear variation of stresses with the radial coordinate is assumed. The results from the approximate solution are compared with the elasticity solution. The stress predictions agree well, particularly peak interlaminar stresses. Surprisingly, the axial deformations also agree well, despite the fact that the deformations predicted by the approximate solution do not satisfy the interface displacement continuity conditions required by the elasticity solution. The study shows that the axial thermal expansion coefficient of tubes with a specific number of axial and circumferential layers depends on the stacking sequence. This is in contrast to classical lamination theory, which predicts that the expansion will be independent of the stacking arrangement. As expected, the sign and magnitude of the peak interlaminar stresses depend on stacking sequence. For tubes with a specific number of axial and circumferential layers, thermally induced interlaminar stresses can be controlled by altering stacking arrangement.
Modeling the Elastic Modulus of 2D Woven CVI SiC Composites
NASA Technical Reports Server (NTRS)
Morscher, Gregory N.
2006-01-01
The use of fiber, interphase, CVI SiC minicomposites as structural elements for 2D-woven SiC fiber reinforced chemically vapor infiltrated (CVI) SiC matrix composites is demonstrated to be a viable approach to model the elastic modulus of these composite systems when tensile loaded in an orthogonal direction. The 0deg (loading direction) and 90deg (perpendicular to loading direction) oriented minicomposites as well as the open porosity and excess SiC associated with CVI SiC composites were all modeled as parallel elements using simple Rule of Mixtures techniques. Excellent agreement for a variety of 2D woven Hi-Nicalon(TradeMark) fiber-reinforced and Sylramic-iBN reinforced CVI SiC matrix composites that differed in numbers of plies, constituent content, thickness, density, and number of woven tows in either direction (i.e, balanced weaves versus unbalanced weaves) was achieved. It was found that elastic modulus was not only dependent on constituent content, but also the degree to which 90deg minicomposites carried load. This depended on the degree of interaction between 90deg and 0deg minicomposites which was quantified to some extent by composite density. The relationships developed here for elastic modulus only necessitated the knowledge of the fractional contents of fiber, interphase and CVI SiC as well as the tow size and shape. It was concluded that such relationships are fairly robust for orthogonally loaded 2D woven CVI SiC composite system and can be implemented by ceramic matrix composite component modelers and designers for modeling the local stiffness in simple or complex parts fabricated with variable constituent contents.
Highly Loaded Composite Strut Test Development
NASA Technical Reports Server (NTRS)
Wu, K. Chauncey; Phelps, James E.; McKenney, Martin J.; Jegley, Dawn C.
2011-01-01
Highly loaded composite struts, representative of structural elements of a proposed truss-based lunar lander descent stage concept, were selected for design, development, fabrication and testing under NASA s Advanced Composites Technology program. The focus of this paper is the development of a capability for experimental evaluation of the structural performance of these struts. Strut lengths range from 60 to over 120 inches, and compressive launch and ascent loads can exceed -100,000 lbs, or approximately two times the corresponding tensile loads. Allowing all possible compressive structural responses, including elastic buckling, were primary considerations for designing the test hardware.
Finite element analysis of the stiffness of fabric reinforced composites
NASA Technical Reports Server (NTRS)
Foye, R. L.
1992-01-01
The objective of this work is the prediction of all three dimensional elastic moduli of textile fabric reinforced composites. The analysis is general enough for use with complex reinforcing geometries and capable of subsequent improvements. It places no restrictions on fabric microgeometry except that the unit cell be determinate and rectangular. The unit cell is divided into rectangular subcells in which the reinforcing geometries are easier to define and analyze. The analysis, based on inhomogeneous finite elements, is applied to a variety of weave, braid, and knit reinforced composites. Some of these predictions are correlated to test data.
Bukovinszky, Katalin; Molnár, Lilla; Bakó, József; Szalóki, Melinda; Hegedus, Csaba
2014-03-01
The polymerization shrinkage and shrinkage stress of dental composites are in the center of the interest of researchers and manufacturers. It is a great challenge to minimize this important property as low as possible. Many factors are related and are in complicated correlation with each other affecting the polymerization shrinkage. Polymerization shrinkage stress degree of conversion and elasticity has high importance from this aspect. Our aim was to study the polymerization shrinkage and related properties (modulus of elasticity, degree of conversion, shrinkage stress) of three flowable composite (Charisma Opal Flow, SDR, Filtek Ultimate) and an unfilled composite resin. Modulus of elasticity was measured using three point flexure tests on universal testing machine. The polymerization shrinkage stress was determined using bonded-disc technique. The degree of conversion measurements were performed by FT-IR spectroscopy. And the volumetric shrinkage was investigated using Archimedes principle and was measured on analytical balance with special additional equipment. The unfilled resin generally showed higher shrinkage (8,26%), shrinkage stress (0,8 MPa) and degree of conversion (38%), and presented the lowest modulus of elasticity (3047,02MPa). Highest values of unfilled resin correspond to the literature. The lack of fillers enlarges the shrinkage, and the shrinkage stress, but gives the higher flexibility and higher degree of conversion. Further investigations needs to be done to understand and reveal the differences between the composites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Junsong; Hao, Shijie; Jiang, Daqiang
This study explored a novel intermetallic composite design concept based on the principle of lattice strain matching enabled by the collective atomic load transfer. It investigated the hard-soft microscopic deformation behavior of a Ti3Sn/TiNi eutectic hard-soft dual phase composite by means of in situ synchrotron high-energy X-ray diffraction (HE-XRD) during compression. The composite provides a unique micromechanical system with distinctive deformation behaviors and mechanisms from the two components, with the soft TiNi matrix deforming in full compliance via martensite variant reorientation and the hard Ti3Sn lamellae deforming predominantly by rigid body rotation, producing a crystallographic texture for the TiNi matrixmore » and a preferred alignment for the Ti3Sn lamellae. HE-XRD reveals continued martensite variant reorientation during plastic deformation well beyond the stress plateau of TiNi. The hard and brittle Ti3Sn is also found to produce an exceptionally large elastic strain of 1.95% in the composite. This is attributed to the effect of lattice strain matching between the transformation lattice distortion of the TiNi matrix and the elastic strain of Ti3Sn lamellae. With such unique micromechanic characteristics, the composite exhibits high strength and large ductility.« less
Laskin, Debra L.; Gow, Andrew J.
2017-01-01
Both aging and chronic inflammation produce complex structural and biochemical alterations to the lung known to impact work of breathing. Mice deficient in surfactant protein D (Sftpd) develop progressive age-related lung pathology characterized by tissue destruction/remodeling, accumulation of foamy macrophages and alteration in surfactant composition. This study proposes to relate changes in tissue structure seen in normal aging and in chronic inflammation to altered lung mechanics using a computational model. Alterations in lung function in aging and Sftpd -/- mice have been inferred from fitting simple mechanical models to respiratory impedance data (Zrs), however interpretation has been confounded by the simultaneous presence of multiple coexisting pathophysiologic processes. In contrast to the inverse modeling approach, this study uses simulation from experimental measurements to recapitulate how aging and inflammation alter Zrs. Histologic and mechanical measurements were made in C57BL6/J mice and congenic Sftpd-/- mice at 8, 27 and 80 weeks of age (n = 8/group). An anatomic computational model based on published airway morphometry was developed and Zrs was simulated between 0.5 and 20 Hz. End expiratory pressure dependent changes in airway caliber and recruitment were estimated from mechanical measurements. Tissue elements were simulated using the constant phase model of viscoelasticity. Baseline elastance distribution was estimated in 8-week-old wild type mice, and stochastically varied for each condition based on experimentally measured alteration in elastic fiber composition, alveolar geometry and surfactant composition. Weighing reduction in model error against increasing model complexity allowed for identification of essential features underlying mechanical pathology and their contribution to Zrs. Using a maximum likelihood approach, alteration in lung recruitment and diminished elastic fiber density were shown predictive of mechanical alteration at airway opening, to a greater extent than overt acinar wall destruction. Model-predicted deficits in PEEP-dependent lung recruitment correlate with altered lung lining fluid composition independent of age or genotype. PMID:28837561
Massa, Christopher B; Groves, Angela M; Jaggernauth, Smita U; Laskin, Debra L; Gow, Andrew J
2017-08-01
Both aging and chronic inflammation produce complex structural and biochemical alterations to the lung known to impact work of breathing. Mice deficient in surfactant protein D (Sftpd) develop progressive age-related lung pathology characterized by tissue destruction/remodeling, accumulation of foamy macrophages and alteration in surfactant composition. This study proposes to relate changes in tissue structure seen in normal aging and in chronic inflammation to altered lung mechanics using a computational model. Alterations in lung function in aging and Sftpd -/- mice have been inferred from fitting simple mechanical models to respiratory impedance data (Zrs), however interpretation has been confounded by the simultaneous presence of multiple coexisting pathophysiologic processes. In contrast to the inverse modeling approach, this study uses simulation from experimental measurements to recapitulate how aging and inflammation alter Zrs. Histologic and mechanical measurements were made in C57BL6/J mice and congenic Sftpd-/- mice at 8, 27 and 80 weeks of age (n = 8/group). An anatomic computational model based on published airway morphometry was developed and Zrs was simulated between 0.5 and 20 Hz. End expiratory pressure dependent changes in airway caliber and recruitment were estimated from mechanical measurements. Tissue elements were simulated using the constant phase model of viscoelasticity. Baseline elastance distribution was estimated in 8-week-old wild type mice, and stochastically varied for each condition based on experimentally measured alteration in elastic fiber composition, alveolar geometry and surfactant composition. Weighing reduction in model error against increasing model complexity allowed for identification of essential features underlying mechanical pathology and their contribution to Zrs. Using a maximum likelihood approach, alteration in lung recruitment and diminished elastic fiber density were shown predictive of mechanical alteration at airway opening, to a greater extent than overt acinar wall destruction. Model-predicted deficits in PEEP-dependent lung recruitment correlate with altered lung lining fluid composition independent of age or genotype.
NASA Astrophysics Data System (ADS)
Merheb, B.; Deymier, P. A.; Jain, M.; Aloshyna-Lesuffleur, M.; Mohanty, S.; Berker, A.; Greger, R. W.
2008-09-01
The transmission of acoustic waves through centimeter-scale elastic and viscoelastic two-dimensional silicone rubber/air phononic crystal structures is investigated theoretically and experimentally. We introduce a finite difference time domain method for two-dimensional elastic and viscoelastic composite structures. Elastic fluid-solid phononic crystals composed of a two-dimensional array of cylindrical air inclusions in a solid rubber matrix, as well as an array of rubber cylinders in an air matrix, are shown to behave similarly to fluid-fluid composite structures. These systems exhibit very wide band gaps in their transmission spectra that extend to frequencies in the audible range of the spectrum. This effect is associated with the very low value of the transverse speed of sound in rubber compared to that of the longitudinal polarization. The difference in transmission between elastic and viscoelastic rubber/air crystals results from attenuation of transmission over a very wide frequency range, leaving only narrow passing bands at very low frequencies. These phononic crystals demonstrate the practical design of elastic or viscoelastic solid rubber/air acoustic band gap sound barriers with small dimensions.
Locally resonant sonic materials
Liu; Zhang; Mao; Zhu; Yang; Chan; Sheng
2000-09-08
We have fabricated sonic crystals, based on the idea of localized resonant structures, that exhibit spectral gaps with a lattice constant two orders of magnitude smaller than the relevant wavelength. Disordered composites made from such localized resonant structures behave as a material with effective negative elastic constants and a total wave reflector within certain tunable sonic frequency ranges. A 2-centimeter slab of this composite material is shown to break the conventional mass-density law of sound transmission by one or more orders of magnitude at 400 hertz.
NASA Astrophysics Data System (ADS)
Schaffer, Jeremy E.; Nauman, Eric A.; Stanciu, Lia A.
2012-08-01
Yield strengths exceeding 1 GPa with elastic strains exceeding 1 pct were measured in novel bioabsorbable wire materials comprising high-purity iron (Fe), manganese (Mn), magnesium (Mn), and zinc (Zn), which may enable the development of self-expandable, bioabsorbable, wire-based endovascular stents. The high strength of these materials is attributed to the fine microstructure and fiber textures achieved through cold drawing techniques. Bioabsorbable vascular stents comprising nutrient metal compositions may provide a means to overcome the limitations of polymer-based bioabsorbable stents such as excessive strut thickness and poor degradation rate control. Thin, 125- μm wires comprising combinations of ferrous alloys surrounding a relatively anodic nonferrous core were manufactured and tested using monotonic and cyclic techniques. The strength and durability properties are tested in air and in body temperature phosphate-buffered saline, and then they were compared with cold-drawn 316L stainless steel wire. The antiferromagnetic Fe35Mn-Mg composite wire exhibited more than 7 pct greater elasticity (1.12 pct vs 1.04 pct engineering strain), similar fatigue strength in air, an ultimate strength of more than 1.4 GPa, and a toughness exceeding 35 mJ/mm3 compared with 30 mJ/mm3 for 316L.
NASA Astrophysics Data System (ADS)
Ruslantsev, A. N.; Portnova, Ya M.; Tairova, L. P.; Dumansky, A. M.
2016-10-01
The polymer binder cracking problem arises while designing and maintaining polymer composite-based aircraft load-bearing members. Some technological methods are used to solve this problem. In particular the injection of nanoagents can block the initiation and growth of microscopic cracks. Crack propagation can also be blocked if the strain energy release is not related with fracturing. One of the possible ways for such energy release is creep. Testing of the anisotropy of the woven carbon fibre reinforced plastic elastic characteristics and creep have been conducted. The samples with different layouts have been made of woven carbon fibre laminate BMI-3/3692 with nanomodified bismaleimide matrix. This matrix has a higher glass transition temperature and improved mechanical properties. The deformation regularities have been analyzed, layer elastic characteristics have been determined. The constitutive equations describing composite material creep have been obtained and its parameters have been defined. Experimental and calculated creep curves have been plotted. It was found that the effects of rheology arise as the direction of load does not match the direction of reinforcing fibres of the material.
Bouarab, Lynda; Maherani, Behnoush; Kheirolomoom, Azadeh; Hasan, Mahmoud; Aliakbarian, Bahar; Linder, Michel; Arab-Tehrany, Elmira
2014-03-01
In this work, we studied the effect of nanoliposome composition based on phospholipids of docosahexaenoic acid (PL-DHA), salmon and soya lecithin, on physico-chemical characterization of vector. Cinnamic acid was encapsulated as a hydrophobic molecule in nanoliposomes made of three different lipid sources. The aim was to evaluate the influence of membrane lipid structure and composition on entrapment efficiency and membrane permeability of cinnamic acid. These properties are important for active molecule delivery. In addition, size, electrophoretic mobility, phase transition temperature, elasticity and membrane fluidity were measured before and after encapsulation. The results showed a correlation between the size of the nanoliposome and the entrapment. The entrapment efficiency of cinnamic acid was found to be the highest in liposomes prepared from salmon lecithin. The nanoliposomes composed of salmon lecithin presented higher capabilities as a carrier for cinnamic acid encapsulation. These vesicles also showed a high stability which in turn increases the membrane rigidity of nanoliposome as evaluated by their elastic properties, membrane fluidity and phase transition temperature. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Lee, Jong-Won; Harris, Charles E.
1990-01-01
A mathematical model based on the Euler-Bermoulli beam theory is proposed for predicting the effective Young's moduli of piecewise isotropic composite laminates with local ply curvatures in the main load-carrying layers. Strains in corrugated layers, in-phase layers, and out-of-phase layers are predicted for various geometries and material configurations by assuming matrix layers as elastic foundations of different spring constants. The effective Young's moduli measured from corrugated aluminum specimens and aluminum/epoxy specimens with in-phase and out-of-phase wavy patterns coincide very well with the model predictions. Moire fringe analysis of an in-phase specimen and an out-of-phase specimen are also presented, confirming the main assumption of the model related to the elastic constraint due to the matrix layers. The present model is also compared with the experimental results and other models, including the microbuckling models, published in the literature. The results of the present study show that even a very small-scale local ply curvature produces a noticeable effect on the mechanical constitutive behavior of a laminated composite.
NASA Astrophysics Data System (ADS)
Li, Dongna; Li, Xudong; Dai, Jianfeng
2018-06-01
In this paper, two kinds of transient models, the viscoelastic model and the linear elastic model, are established to analyze the curing deformation of the thermosetting resin composites, and are calculated by COMSOL Multiphysics software. The two models consider the complicated coupling between physical and chemical changes during curing process of the composites and the time-variant characteristic of material performance parameters. Subsequently, the two proposed models are implemented respectively in a three-dimensional composite laminate structure, and a simple and convenient method of local coordinate system is used to calculate the development of residual stresses, curing shrinkage and curing deformation for the composite laminate. Researches show that the temperature, degree of curing (DOC) and residual stresses during curing process are consistent with the study in literature, so the curing shrinkage and curing deformation obtained on these basis have a certain referential value. Compared the differences between the two numerical results, it indicates that the residual stress and deformation calculated by the viscoelastic model are more close to the reference value than the linear elastic model.
Low Cost Fabrication of Silicon Carbide Based Ceramics and Fiber Reinforced Composites
NASA Technical Reports Server (NTRS)
Singh, M.; Levine, S. R.
1995-01-01
A low cost processing technique called reaction forming for the fabrication of near-net and complex shaped components of silicon carbide based ceramics and composites is presented. This process consists of the production of a microporous carbon preform and subsequent infiltration with liquid silicon or silicon-refractory metal alloys. The microporous preforms are made by the pyrolysis of a polymerized resin mixture with very good control of pore volume and pore size thereby yielding materials with tailorable microstructure and composition. Mechanical properties (elastic modulus, flexural strength, and fracture toughness) of reaction-formed silicon carbide ceramics are presented. This processing approach is suitable for various kinds of reinforcements such as whiskers, particulates, fibers (tows, weaves, and filaments), and 3-D architectures. This approach has also been used to fabricate continuous silicon carbide fiber reinforced ceramic composites (CFCC's) with silicon carbide based matrices. Strong and tough composites with tailorable matrix microstructure and composition have been obtained. Microstructure and thermomechanical properties of a silicon carbide (SCS-6) fiber reinforced reaction-formed silicon carbide matrix composites are discussed.
Computational Simulation of the High Strain Rate Tensile Response of Polymer Matrix Composites
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.
2002-01-01
A research program is underway to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to high strain rate impact loads. Under these types of loading conditions, the material response can be highly strain rate dependent and nonlinear. State variable constitutive equations based on a viscoplasticity approach have been developed to model the deformation of the polymer matrix. The constitutive equations are then combined with a mechanics of materials based micromechanics model which utilizes fiber substructuring to predict the effective mechanical and thermal response of the composite. To verify the analytical model, tensile stress-strain curves are predicted for a representative composite over strain rates ranging from around 1 x 10(exp -5)/sec to approximately 400/sec. The analytical predictions compare favorably to experimentally obtained values both qualitatively and quantitatively. Effective elastic and thermal constants are predicted for another composite, and compared to finite element results.
Characterization of elastic-viscoplastic properties of an AS4/PEEK thermoplastic composite
NASA Technical Reports Server (NTRS)
Yoon, K. J.; Sun, C. T.
1991-01-01
The elastic-viscoplastic properties of an AS4/PEEK (APC-2) thermoplastic composite were characterized at 24 C (75 F) and 121 C (250 F) by using a one-parameter viscoplasticity model. To determine the strain-rate effects, uniaxial tension tests were performed on unidirectional off-axis coupon specimens with different monotonic strain rates. A modified Bodner and Partom's model was also used to describe the viscoplasticity of the thermoplastic composite. The experimental results showed that viscoplastic behavior can be characterized quite well using the one-parameter overstress viscoplasticity model.
Shear properties of pultruded fiber reinforced polymer composite materials
NASA Astrophysics Data System (ADS)
Seo, J. H.; Kim, S. H.; Ok, D. M.; An, D. J.; Yoon, S. J.
2018-06-01
This paper focuses on the mechanical properties of PFRP composite materials. Especially, relationship between shear property and the other mechanical properties of PFRP composite materials is investigated through comparison between experimental and theoretical results. The shear property of PFRP composite specimen is calculated from the theoretical equations which were suggested in previous studies. In addition, comparison between the shear property determined by the tensile test and the shear property calculated from theoretical equations is conducted and discussed. It was found that the theoretically predicted shear modulus of elasticity considering contiguity is close to the shear modulus of elasticity obtained by the 45° off-axis tensile test.
Behaviour study of thick laminated composites: Experimentation and finite element analyses
NASA Astrophysics Data System (ADS)
Duchaine, Francois
In today's industries, it is common practice to utilize composite materials in very large and thick structures like bridge decks, high pressure vessels, wind turbine blades and aircraft parts to mention a few. Composite materials are highly favoured due to their physical characteristics: low weight, low cost, adaptable mechanical properties, high specific strength and stiffness. The use of composite materials for large structures has however raised several concerns in the prediction of the behaviour of thick laminated composite parts. A lack of knowledge and experience in the use of composite materials during the design, sizing and manufacturing of thick composite parts can lead to catastrophic events. In this thesis, it was supposed that the elastic material properties may vary with the laminate thickness. In order to measure the influence of the thickness on nine orthotropic elastic material properties (E1, E2, E3, nu12, nu 13, nu23, G12, G13 and G23), three categories of thickness have been defined using a comparison between the classical lamination theory (CLT), different beam theories and a numerical 3D solid finite element analysis (FEA) model. The defined categories are: thin laminates for thicknesses below 6 mm (0.236"), moderately thick laminates for thicknesses up to 16 mm (0.630") and thick laminates for thicknesses above 16 mm (0.630"). For three different thicknesses (thin -- 1.5 mm, moderately thick -- 10 mm and thick -- 20 mm), the influence of the thickness on the orthotropic elastic material properties of unidirectional (UD) fibreglass/epoxy laminates has been measured. A torsion test on rectangular bar is also proposed to measure the influence of the thickness on G13 and G23. The nine elastic material properties, in function of the thickness, have been used in CLT and 3D solid FEA model in order to predict the axial Young's modulus and Poisson's ratios of cross-ply and quasi-isotropic laminates. Experimental results have also been obtained for those laminates. The analysis of test results with CLT and FEA showed that the variation of elastic material properties with the thickness is not significant for in-plane problems. On the other hand, a substantial influence has been highlighted on UD elastic material properties driven by the matrix like E 2, E3, nu13 and G12. .
Development of high temperature materials for solid propellant rocket nozzle applications
NASA Technical Reports Server (NTRS)
Manning, C. R., Jr.; Lineback, L. D.
1974-01-01
Aspects of the development and characteristics of thermal shock resistant hafnia ceramic material for use in solid propellant rocket nozzles are presented. The investigation of thermal shock resistance factors for hafnia based composites, and the preparation and analysis of a model of elastic materials containing more than one crack are reported.
Shock wave response of a zirconium-based bulk metallic glass and its composite
NASA Astrophysics Data System (ADS)
Zhuang, Shiming; Lu, Jun; Ravichandran, Guruswami
2002-06-01
A zirconium-based bulk metallic glass, Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vit 1), and its composite, Zr56.3Ti13.8Cu6.9Ni5.6Nb5.0Be12.5 (beta-Vit), were subjected to planar impact loading. A surprisingly low amplitude elastic precursor and bulk wave, corresponding to the elastic response of the "frozen structure" of the intact metallic glasses, were observed to precede the rate-dependent large deformation shock wave. A concave downward curvature after the initial increase of the Us-Up shock Hugoniots suggests that a phase-change-like transition occurred during shock compression. Further, compression damage occurred due to the shear localization. The spalling in Vit 1 was induced by shear localization, while in beta-Vit, it was due to debonding of the beta-phase boundary from the matrix. The spall strengths at strain rate of 2 x106 s-1 were determined to be 2.35 and 2.11 GPa for Vit 1 and beta-Vit, respectively.
NASA Astrophysics Data System (ADS)
Xie, Fei; Tang, Jinyuan; Wang, Ailun; Shuai, Cijun; Wang, Qingshan
2018-05-01
In this paper, a unified solution for vibration analysis of the functionally graded carbon nanotube reinforced composite (FG-CNTRC) cylindrical panels with general elastic supports is carried out via using the Ritz method. The excellent accuracy and reliability of the present method are compared with the results of the classical boundary cases found in the literature. New results are given for vibration characteristics of FG-CNTRC cylindrical panels with various boundary conditions. The effects of the elastic restraint parameters, thickness, subtended angle and volume fraction of carbon nanotubes on the free vibration characteristic of the cylindrical panels are also reported.
A numerical approximation to the elastic properties of sphere-reinforced composites
NASA Astrophysics Data System (ADS)
Segurado, J.; Llorca, J.
2002-10-01
Three-dimensional cubic unit cells containing 30 non-overlapping identical spheres randomly distributed were generated using a new, modified random sequential adsortion algorithm suitable for particle volume fractions of up to 50%. The elastic constants of the ensemble of spheres embedded in a continuous and isotropic elastic matrix were computed through the finite element analysis of the three-dimensional periodic unit cells, whose size was chosen as a compromise between the minimum size required to obtain accurate results in the statistical sense and the maximum one imposed by the computational cost. Three types of materials were studied: rigid spheres and spherical voids in an elastic matrix and a typical composite made up of glass spheres in an epoxy resin. The moduli obtained for different unit cells showed very little scatter, and the average values obtained from the analysis of four unit cells could be considered very close to the "exact" solution to the problem, in agreement with the results of Drugan and Willis (J. Mech. Phys. Solids 44 (1996) 497) referring to the size of the representative volume element for elastic composites. They were used to assess the accuracy of three classical analytical models: the Mori-Tanaka mean-field analysis, the generalized self-consistent method, and Torquato's third-order approximation.
NASA Astrophysics Data System (ADS)
Ku-Herrera, J. J.; Avilés, F.; Seidel, G. D.
2013-08-01
The piezoresistive response of multiwalled carbon nanotube/vinyl ester composites containing 0.3, 0.5 and 1% w/w carbon nanotubes (CNTs) loaded in tension and compression is investigated. The change in electrical resistance (ΔR) under tension loading was positive and showed a linear relationship with the applied strain up to failure, with slightly increased sensitivity for decreased CNT content. In compression, a nonlinear and non-monotonic piezoresistive behavior was observed, with ΔR initially decreasing in the elastic regime, leveling off at the onset of yielding and increasing after matrix yielding. The piezoresistive response of the composite is more sensitive to the CNT content for compression than for tension, and the calculated gage factors are higher in the compressive plastic regime. The results show that the piezoresistive signal is dependent on the CNT concentration, loading type and material elastoplastic behavior, and that recording ΔR during mechanical loading can allow self-identification of the elastic and plastic regimes of the composite.
Cheng Guan; Houjiang Zhang; Xiping Wang; Hu Miao; Lujing Zhou; Fenglu Liu
2017-01-01
Key elastic properties of full-sized wood composite panels (WCPs) must be accurately determined not only for safety, but also serviceability demands. In this study, the modal parameters of full-sized WCPs supported on four nodes were analyzed for determining the modulus of elasticity (E) in both major and minor axes, as well as the in-plane shear modulus of panels by...
NASA Astrophysics Data System (ADS)
Goryk, A. V.; Koval'chuk, S. B.
2018-05-01
An exact elasticity theory solution for the problem on plane bending of a narrow layered composite cantilever beam by tangential and normal loads distributed on its free end is presented. Components of the stress-strain state are found for the whole layers package by directly integrating differential equations of the plane elasticity theory problem by using an analytic representation of piecewise constant functions of the mechanical characteristics of layer materials. The continuous solution obtained is realized for a four-layer beam with account of kinematic boundary conditions simulating the rigid fixation of its one end. The solution obtained allows one to predict the strength and stiffness of composite cantilever beams and to construct applied analytical solutions for various problems on the elastic bending of layered beams.
NASA Technical Reports Server (NTRS)
Qin, Zhanming; Hasanyan, Davresh; Librescu, Liviu; Ambur, Damodar R.
2005-01-01
In Part 1 of this paper, the governing equations of geometrically nonlinear, anisotropic composite plates incorporating magneto-thermo-elastic effects have been derived. In order to gain insight into the implications of a number of geometrical and physical features of the system. three special cases are investigated: (i) free vibration of a plate strip immersed in a transversal magnetic field; (ii) free vibration of the plate strip immersed in an axial magnetic field; (iii) magneto-elastic wave propagations of an infinite plate. Within each of these cases, a prescribed uniform thermal field is considered. Special coupling characteristics between the magnetic and elastic fields are put into evidence. Extensive numerical investigations are conducted and pertinent conclusions which highlight the various effects induced by the magneto-elastic couplings and the finite electroconductivity, are outlined.
Application of the boundary element method to the micromechanical analysis of composite materials
NASA Technical Reports Server (NTRS)
Goldberg, R. K.; Hopkins, D. A.
1995-01-01
A new boundary element formulation for the micromechanical analysis of composite materials is presented in this study. A unique feature of the formulation is the use of circular shape functions to convert the two-dimensional integrations of the composite fibers to one-dimensional integrations. To demonstrate the applicability of the formulations, several example problems including elastic and thermal analysis of laminated composites and elastic analyses of woven composites are presented and the boundary element results compared to experimental observations and/or results obtained through alternate analytical procedures. While several issues remain to be addressed in order to make the methodology more robust, the formulations presented here show the potential in providing an alternative to traditional finite element methods, particularly for complex composite architectures.
Barkaoui, Abdelwahed; Chamekh, Abdessalem; Merzouki, Tarek; Hambli, Ridha; Mkaddem, Ali
2014-03-01
The complexity and heterogeneity of bone tissue require a multiscale modeling to understand its mechanical behavior and its remodeling mechanisms. In this paper, a novel multiscale hierarchical approach including microfibril scale based on hybrid neural network (NN) computation and homogenization equations was developed to link nanoscopic and macroscopic scales to estimate the elastic properties of human cortical bone. The multiscale model is divided into three main phases: (i) in step 0, the elastic constants of collagen-water and mineral-water composites are calculated by averaging the upper and lower Hill bounds; (ii) in step 1, the elastic properties of the collagen microfibril are computed using a trained NN simulation. Finite element calculation is performed at nanoscopic levels to provide a database to train an in-house NN program; and (iii) in steps 2-10 from fibril to continuum cortical bone tissue, homogenization equations are used to perform the computation at the higher scales. The NN outputs (elastic properties of the microfibril) are used as inputs for the homogenization computation to determine the properties of mineralized collagen fibril. The mechanical and geometrical properties of bone constituents (mineral, collagen, and cross-links) as well as the porosity were taken in consideration. This paper aims to predict analytically the effective elastic constants of cortical bone by modeling its elastic response at these different scales, ranging from the nanostructural to mesostructural levels. Our findings of the lowest scale's output were well integrated with the other higher levels and serve as inputs for the next higher scale modeling. Good agreement was obtained between our predicted results and literature data. Copyright © 2013 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Plesuma, Renate; Malers, Laimonis
2015-04-01
The present article is dedicated to the determination of a possible connection between the composition, specific properties of the composite material and molding pressure as an important technological parameter. Apparent density, Shore C hardness, compressive modulus of elasticity and compressive stress at 10% deformation was determined for composite material samples. Definite formation conditions - varying molding pressure conditions at ambient temperature and corresponding relative air humiditywere realized. The results obtained showed a significant effect of molding pressure on the apparent density, mechanical properties of composite material as well as on the compressive stress change at a cyclic mode of loading. Some general regularities were determined - mechanical properties of the composite material, as well as values of Shore C hardness increases with an increase of molding pressure.
On the theory of hysteretic magnetostriction of soft ferrogels
NASA Astrophysics Data System (ADS)
Zubarev, Andrey; Chirikov, Dmitry; Stepanov, Gennady; Borin, Dmitry; Lopez-Lopez, M. T.
2018-05-01
The paper deals with theoretical study of hysteretic magnetostriction of soft ferrogels - composite materials, consisting of the micron-sized magnetizable particles embedded into gel matrices. It is supposed that initially, before application of an external magnetic field, the particles are homogeneously and isotropically distributed in an elastic matrix. The theoretical explanation of the hysteresis phenomena is based on the conception that, under the field action, the particles rearrange into the linear chain-like aggregates. The typical length of the chains is determined by the competition between the force of magnetic attraction of the particles and the force of elastic deformation of the matrix.
Viscoelastic/damage modeling of filament-wound spherical pressure vessels
NASA Technical Reports Server (NTRS)
Hackett, Robert M.; Dozier, Jan D.
1987-01-01
A model of the viscoelastic/damage response of a filament-wound spherical vessel used for long-term pressure containment is developed. The matrix material of the composite system is assumed to be linearly viscoelastic. Internal accumulated damage based upon a quadratic relationship between transverse modulus and maximum circumferential strain is postulated. The resulting nonlinear problem is solved by an iterative routine. The elastic-viscoelastic correspondence is employed to produce, in the Laplace domain, the associated elastic solution for the maximum circumferential strain which is inverted by the method of collocation to yield the time-dependent solution. Results obtained with the model are compared to experimental observations.
Matrix density effects on the mechanical properties of SiC/RBSN composites
NASA Technical Reports Server (NTRS)
Bhatt, Ramakrishna T.; Kiser, James D.
1990-01-01
The room temperature mechanical properties were measured for SiC fiber reinforced reaction-bonded silicon nitride composites (SiC/RBSN) of different densities. The composites consisted of approx. 30 vol percent uniaxially aligned 142 micron diameter SiC fibers (Textron SCS-6) in a reaction-bonded Si3N4 matrix. The composite density was varied by changing the consolidation pressure during RBSN processing and by hot isostatically pressing the SiC/RBSN composites. Results indicate that as the consolidation pressure was increased from 27 to 138 MPa, the average pore size of the nitrided composites decreased from 0.04 to 0.02 microns and the composite density increased from 2.07 to 2.45 gm/cc. Nonetheless, these improvements resulted in only small increases in the first matrix cracking stress, primary elastic modulus, and ultimate tensile strength values of the composites. In contrast, HIP consolidation of SiC/RBSN resulted in a fully dense material whose first matrix cracking stress and elastic modulus were approx. 15 and 50 percent higher, respectively, and ultimate tensile strength values were approx. 40 percent lower than those for unHIPed SiC/RBSN composites. The modulus behavior for all specimens can be explained by simple rule-of-mixture theory. Also, the loss in ultimate strength for the HIPed composites appears to be related to a degradation in fiber strength at the HIP temperature. However, the density effect on matrix fracture strength was much less than would be expected based on typical monolithic Si3N4 behavior, suggesting that composite theory is indeed operating. Possible practical implications of these observations are discussed.
Coupling Field Theory with Mesoscopic Dynamical Simulations of Multicomponent Lipid Bilayers
McWhirter, J. Liam; Ayton, Gary; Voth, Gregory A.
2004-01-01
A method for simulating a two-component lipid bilayer membrane in the mesoscopic regime is presented. The membrane is modeled as an elastic network of bonded points; the spring constants of these bonds are parameterized by the microscopic bulk modulus estimated from earlier atomistic nonequilibrium molecular dynamics simulations for several bilayer mixtures of DMPC and cholesterol. The modulus depends on the composition of a point in the elastic membrane model. The dynamics of the composition field is governed by the Cahn-Hilliard equation where a free energy functional models the coupling between the composition and curvature fields. The strength of the bonds in the elastic network are then modulated noting local changes in the composition and using a fit to the nonequilibrium molecular dynamics simulation data. Estimates for the magnitude and sign of the coupling parameter in the free energy model are made treating the bending modulus as a function of composition. A procedure for assigning the remaining parameters in the free energy model is also outlined. It is found that the square of the mean curvature averaged over the entire simulation box is enhanced if the strength of the bonds in the elastic network are modulated in response to local changes in the composition field. We suggest that this simulation method could also be used to determine if phase coexistence affects the stress response of the membrane to uniform dilations in area. This response, measured in the mesoscopic regime, is already known to be conditioned or renormalized by thermal undulations. PMID:15347594
NASA Technical Reports Server (NTRS)
Walker, Kevin P.; Freed, Alan D.; Jordan, Eric H.
1993-01-01
Local stress and strain fields in the unit cell of an infinite, two-dimensional, periodic fibrous lattice have been determined by an integral equation approach. The effect of the fibres is assimilated to an infinite two-dimensional array of fictitious body forces in the matrix constituent phase of the unit cell. By subtracting a volume averaged strain polarization term from the integral equation we effectively embed a finite number of unit cells in a homogenized medium in which the overall stress and strain correspond to the volume averaged stress and strain of the constrained unit cell. This paper demonstrates that the zeroth term in the governing integral equation expansion, which embeds one unit cell in the homogenized medium, corresponds to the generalized self-consistent approximation. By comparing the zeroth term approximation with higher order approximations to the integral equation summation, both the accuracy of the generalized self-consistent composite model and the rate of convergence of the integral summation can be assessed. Two example composites are studied. For a tungsten/copper elastic fibrous composite the generalized self-consistent model is shown to provide accurate, effective, elastic moduli and local field representations. The local elastic transverse stress field within the representative volume element of the generalized self-consistent method is shown to be in error by much larger amounts for a composite with periodically distributed voids, but homogenization leads to a cancelling of errors, and the effective transverse Young's modulus of the voided composite is shown to be in error by only 23% at a void volume fraction of 75%.
2016-01-01
Several theories of phospholipid homeostasis have postulated that cells regulate the molecular composition of their bilayer membranes, such that a common biophysical membrane parameter is under homeostatic control. Two commonly cited theories are the intrinsic curvature hypothesis, which states that cells control membrane curvature elastic stress, and the theory of homeoviscous adaptation, which postulates cells control acyl chain packing order (membrane order). In this paper, we present evidence from data-driven modelling studies that these two theories correlate in vivo. We estimate the curvature elastic stress of mammalian cells to be 4–7 × 10−12 N, a value high enough to suggest that in mammalian cells the preservation of membrane order arises through a mechanism where membrane curvature elastic stress is controlled. These results emerge from analysing the molecular contribution of individual phospholipids to both membrane order and curvature elastic stress in nearly 500 cellular compositionally diverse lipidomes. Our model suggests that the de novo synthesis of lipids is the dominant mechanism by which cells control curvature elastic stress and hence membrane order in vivo. These results also suggest that cells can increase membrane curvature elastic stress disproportionately to membrane order by incorporating polyunsaturated fatty acids into lipids. PMID:27534697
Dymond, Marcus K
2016-08-01
Several theories of phospholipid homeostasis have postulated that cells regulate the molecular composition of their bilayer membranes, such that a common biophysical membrane parameter is under homeostatic control. Two commonly cited theories are the intrinsic curvature hypothesis, which states that cells control membrane curvature elastic stress, and the theory of homeoviscous adaptation, which postulates cells control acyl chain packing order (membrane order). In this paper, we present evidence from data-driven modelling studies that these two theories correlate in vivo. We estimate the curvature elastic stress of mammalian cells to be 4-7 × 10(-12) N, a value high enough to suggest that in mammalian cells the preservation of membrane order arises through a mechanism where membrane curvature elastic stress is controlled. These results emerge from analysing the molecular contribution of individual phospholipids to both membrane order and curvature elastic stress in nearly 500 cellular compositionally diverse lipidomes. Our model suggests that the de novo synthesis of lipids is the dominant mechanism by which cells control curvature elastic stress and hence membrane order in vivo These results also suggest that cells can increase membrane curvature elastic stress disproportionately to membrane order by incorporating polyunsaturated fatty acids into lipids. © 2016 The Author(s).
Mechanical properties of tantalum-based ceramic coatings for biomedical applications
NASA Astrophysics Data System (ADS)
Donkov, N.; Walkowicz, J.; Zavaleyev, V.; Zykova, A.; Safonov, V.; Dudin, S.; Yakovin, S.
2018-03-01
The properties were studied of Ta, Ta2O5 and Ta/Ta2O5 coatings deposited by reactive magnetron sputtering on stainless steel (AISI 316) substrates. The compositional, structural and morphological parameters of the coatings were investigated by means of X-ray photoemission spectroscopy (XPS), energy dispersive X-ray (EDX) spectroscopy, and scanning electron microscopy (SEM). The roughness parameters, adhesion strength, hardness, elastic modulus, and H/E ratio were evaluated by standard techniques. The hardness parameters of the Ta2O5 and Ta/Ta2O5 coatings increased in comparison with pure Ta films, while the relatively low Young’s modulus was related to high elastic recovery and high resistance to cracking. The tantalum-based coatings possessed good biomechanical parameters for advanced implant and stent applications.
NASA Astrophysics Data System (ADS)
O'Toole, Ronald Patrick
1994-01-01
In the recent advancement of piezoelectric resonator technology, there has been a large growth in the application of these devices for chemical sensing. These sensors operate by detecting changes in their environment which perturb the electrical - acoustic operation and in turn can be harnessed by means of supporting electronics and signal processing to monitor various processes. Examples include remote environmental monitoring, chemical process control, and commercial gas phase detectors. In this dissertation, the chemical sensing theory and properties of piezoelectric resonators such as the bulk-acoustic wave thin-film resonator (TFR) and the quartz crystal microbalance (QCM) are developed. This analysis concentrates on characterizing the resonance behavior of thickness mode resonators based upon the physical properties at the electrode interface which include interfacial mass density, elasticity, viscosity, and thickness of the composite device consisting of the piezoelectric material, the electrodes, and any deposited layer on the electrode surface in contact with the surrounding medium. In this work, no approximation is made as to the stress or particle displacement variation across the visco-elastic film which allows a complete study of the perturbational mechanical variations on the electrical and resonance properties of the composite resonator. The derivation and verification of equivalent circuit models based on the physical properties of the piezoelectric resonator and visco-elastic sensing film are presented. The results and models from this research will be beneficial to surface chemistry studies and also have application to fabrication techniques and electrical modeling. The use of this theory is employed in a study of a QCM coated with a commercially developed negative resist. Photo-polymerization of the resist results in induced visco-elastic structural changes which can be monitored and characterized using the full admittance theory of the composite thickness mode resonator. In order to validate the chemical sensing concept, the design and implementation of a TFR controlled chemical sensing system is demonstrated. This system employs the frequency selectivity of the chemical sensing TFR as the feedback element in integrated Colpitts oscillators which are downconverted by superheterodyne techniques. The integrated system design philosophy and performance tradeoffs are discussed. This analysis also investigates the phase noise performance and injection locking considerations of the design. The sensor system detection limit is derived which sets the lower limit of signal detection based upon measurand sensitivity and measured phase noise.
Green's Function and Stress Fields in Stochastic Heterogeneous Continua
NASA Astrophysics Data System (ADS)
Negi, Vineet
Many engineering materials used today are heterogenous in composition e.g. Composites - Polymer Matrix Composites, Metal Matrix Composites. Even, conventional engineering materials - metals, plastics, alloys etc. - may develop heterogeneities, like inclusions and residual stresses, during the manufacturing process. Moreover, these materials may also have intrinsic heterogeneities at a nanoscale in the form of grain boundaries in metals, crystallinity in amorphous polymers etc. While, the homogenized constitutive models for these materials may be satisfactory at a macroscale, recent studies of phenomena like fatigue failure, void nucleation, size-dependent brittle-ductile transition in polymeric nanofibers reveal a major play of micro/nanoscale physics in these phenomena. At this scale, heterogeneities in a material may no longer be ignored. Thus, this demands a study into the effects of various material heterogeneities. In this work, spatial heterogeneities in two material properties - elastic modulus and yield stress - have been investigated separately. The heterogeneity in the elastic modulus is studied in the context of Green's function. The Stochastic Finite Element method is adopted to get the mean statistics of the Green's function defined on a stochastic heterogeneous 2D infinite space. A study of the elastic-plastic transition in a domain having stochastic heterogenous yield stress was done using Mont-Carlo methods. The statistics for various stress and strain fields during the transition were obtained. Further, the effects of size of the domain and the strain-hardening rate on the stress fields during the heterogeneous elastic-plastic transition were investigated. Finally, a case is made for the role of the heterogenous elastic-plastic transition in damage nucleation and growth.
Dynamic analysis of bulk-fill composites: Effect of food-simulating liquids.
Eweis, Ahmed Hesham; Yap, Adrian U-Jin; Yahya, Noor Azlin
2017-10-01
This study investigated the effect of food simulating liquids on visco-elastic properties of bulk-fill restoratives using dynamic mechanical analysis. One conventional composite (Filtek Z350 [FZ]), two bulk-fill composites (Filtek Bulk-fill [FB] and Tetric N Ceram [TN]) and a bulk-fill giomer (Beautifil-Bulk Restorative [BB]) were evaluated. Specimens (12 × 2 × 2mm) were fabricated using customized stainless steel molds. The specimens were light-cured, removed from their molds, finished, measured and randomly divided into six groups. The groups (n = 10) were conditioned in the following mediums for 7 days at 37°C: air (control), artificial saliva (SAGF), distilled water, 0.02N citric acid, heptane, 50% ethanol-water solution. Specimens were assessed using dynamic mechanical testing in flexural three-point bending mode and their respective mediums at 37°C and a frequency range of 0.1-10Hz. The distance between the supports were fixed at 10mm and an axial load of 5N was employed. Data for elastic modulus, viscous modulus and loss tangent were subjected to ANOVA/Tukey's tests at significance level p < 0.05. Significant differences in visco-elastic properties were observed between materials and mediums. Apart from bulk-fill giomer, elastic modulus was the highest after conditioning in heptane. No apparent trends were noted for viscous modulus. Generally, loss tangent was the highest after conditioning in ethanol. The effect of food-simulating liquids on the visco-elastic properties of bulk-fill composites was material and medium dependent. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mantilaka, M. M. M. G. P. G.; Goh, K. L.; Ratnayake, S. P.; Amaratunga, G. A. J.; de Silva, K. M. Nalin
2017-01-01
Mechanically robust alginate-based nanofibrous scaffolds were successfully fabricated by electrospinning method to mimic the natural extracellular matrix structure which benefits development and regeneration of tissues. Alginate-based nanofibres were electrospun from an alginate/poly(vinyl alcohol) (PVA) polyelectrolyte complex. SEM images revealed the spinnability of the complex composite nanofibrous scaffolds, showing randomly oriented, ultrafine, and virtually defects-free alginate-based/MgO nanofibrous scaffolds. Here, it is shown that an alginate/PVA complex scaffold, blended with near-spherical MgO nanoparticles (⌀ 45 nm) at a predetermined concentration (10% (w/w)), is electrospinnable to produce a complex composite nanofibrous scaffold with enhanced mechanical stability. For the comparison purpose, chemically cross-linked electrospun alginate-based scaffolds were also fabricated. Tensile test to rupture revealed the significant differences in the tensile strength and elastic modulus among the alginate scaffolds, alginate/MgO scaffolds, and cross-linked alginate scaffolds (P < 0.05). In contrast to cross-linked alginate scaffolds, alginate/MgO scaffolds yielded the highest tensile strength and elastic modulus while preserving the interfibre porosity of the scaffolds. According to the thermogravimetric analysis, MgO reinforced alginate nanofibrous scaffolds exhibited improved thermal stability. These novel alginate-based/MgO scaffolds are economical and versatile and may be further optimised for use as extracellular matrix substitutes for repair and regeneration of tissues. PMID:28694826
NASA Astrophysics Data System (ADS)
Li, Dongna; Li, Xudong; Dai, Jianfeng; Xi, Shangbin
2018-02-01
In this paper, three kinds of constitutive laws, elastic, "cure hardening instantaneously linear elastic (CHILE)" and viscoelastic law, are used to predict curing process-induced residual stress for the thermoset polymer composites. A multi-physics coupling finite element analysis (FEA) model implementing the proposed three approaches is established in COMSOL Multiphysics-Version 4.3b. The evolution of thermo-physical properties with temperature and degree of cure (DOC), which improved the accuracy of numerical simulations, and cure shrinkage are taken into account for the three models. Subsequently, these three proposed constitutive models are implemented respectively in a 3D micro-scale composite laminate structure. Compared the differences between these three numerical results, it indicates that big error in residual stress and cure shrinkage generates by elastic model, but the results calculated by the modified CHILE model are in excellent agreement with those estimated by the viscoelastic model.
Elastic Moduli of Nanoparticle-Polymer Composite Thin Films via Buckling on Elastomeric Substrates
NASA Astrophysics Data System (ADS)
Yuan, Hongyi; Karim, Alamgir; University of Akron Team
2011-03-01
Polymeric thin films find applications in diverse areas such as coatings, barriers and packaging. The dispersion of nanoparticles into the films was proven to be an effective method to generate tunable properties, particularly mechanical strength. However, there are very few methods for mechanical characterization of the composite thin films with high accuracy. In this study, nanometric polystyrene and polyvinyl alcohol films with uniformly dispersed cobalt and Cloisite nanoparticles at varying concentrations were synthesized via flow-coating and then transferred to crosslinked polydimethylsiloxane (PDMS) flexible substrates. The technique of Strain-Induced Elastic Buckling Instability for Mechanical Measurements (SIEBIMM) was employed to determine the elastic moduli of the films, which were calculated from the buckling patterns generated by applying compressive stresses. Results on moduli of films as a function of the concentrations of nanoparticles and the thicknesses of the composite films will be presented. *Corresponding author: alamgir@uakron.edu
Structural mechanics and helical geometry of thin elastic composites.
Wada, Hirofumi
2016-09-21
Helices are ubiquitous in nature, and helical shape transition is often observed in residually stressed bodies, such as composites, wherein materials with different mechanical properties are glued firmly together to form a whole body. Inspired by a variety of biological examples, the basic physical mechanism responsible for the emergence of twisting and bending in such thin composite structures has been extensively studied. Here, we propose a simplified analytical model wherein a slender membrane tube undergoes a helical transition driven by the contraction of an elastic ribbon bound to the membrane surface. We analytically predict the curvature and twist of an emergent helix as functions of differential strains and elastic moduli, which are confirmed by our numerical simulations. Our results may help understand shapes observed in different biological systems, such as spiral bacteria, and could be applied to novel designs of soft machines and robots.
Analysis of Mode II Crack in Bilayered Composite Beam
NASA Astrophysics Data System (ADS)
Rizov, Victor I.; Mladensky, Angel S.
2012-06-01
Mode II crack problem in cantilever bilayered composite beams is considered. Two configurations are analyzed. In the first configuration the crack arms have equal heights while in the second one the arms have different heights. The modulus of elasticity and the shear modulus of the beam un-cracked part in the former case and the moment of inertia in the latter are derived as functions of the two layers characteristics. The expressions for the strain energy release rate,
NASA Technical Reports Server (NTRS)
Bhatt, Ramakrishna T.; Kiser, Lames D.
1990-01-01
The room temperature mechanical properties were measured for SiC fiber reinforced reaction-bonded silicon nitride composites (SiC/RBSN) of different densities. The composites consisted of approx. 30 vol percent uniaxially aligned 142 micron diameter SiC fibers (Textron SCS-6) in a reaction-bonded Si3N4 matrix. The composite density was varied by changing the consolidation pressure during RBSN processing and by hot isostatically pressing the SiC/RBSN composites. Results indicate that as the consolidation pressure was increased from 27 to 138 MPa, the average pore size of the nitrided composites decreased from 0.04 to 0.02 microns and the composite density increased from 2.07 to 2.45 gm/cc. Nonetheless, these improvements resulted in only small increases in the first matrix cracking stress, primary elastic modulus, and ultimate tensile strength values of the composites. In contrast, HIP consolidation of SiC/RBSN resulted in a fully dense material whose first matrix cracking stress and elastic modulus were approx. 15 and 50 percent higher, respectively, and ultimate tensile strength values were approx. 40 percent lower than those for unHIPed SiC/RBSN composites. The modulus behavior for all specimens can be explained by simple rule-of-mixture theory. Also, the loss in ultimate strength for the HIPed composites appears to be related to a degradation in fiber strength at the HIP temperature. However, the density effect on matrix fracture strength was much less than would be expected based on typical monolithic Si3N4 behavior, suggesting that composite theory is indeed operating. Possible practical implications of these observations are discussed.
FEAMAC/CARES Stochastic-Strength-Based Damage Simulation Tool for Ceramic Matrix Composites
NASA Technical Reports Server (NTRS)
Nemeth, Noel; Bednarcyk, Brett; Pineda, Evan; Arnold, Steven; Mital, Subodh; Murthy, Pappu; Bhatt, Ramakrishna
2016-01-01
Reported here is a coupling of two NASA developed codes: CARES (Ceramics Analysis and Reliability Evaluation of Structures) with the MAC/GMC (Micromechanics Analysis Code/ Generalized Method of Cells) composite material analysis code. The resulting code is called FEAMAC/CARES and is constructed as an Abaqus finite element analysis UMAT (user defined material). Here we describe the FEAMAC/CARES code and an example problem (taken from the open literature) of a laminated CMC in off-axis loading is shown. FEAMAC/CARES performs stochastic-strength-based damage simulation response of a CMC under multiaxial loading using elastic stiffness reduction of the failed elements.
Stochastic-Strength-Based Damage Simulation Tool for Ceramic Matrix Composite
NASA Technical Reports Server (NTRS)
Nemeth, Noel; Bednarcyk, Brett; Pineda, Evan; Arnold, Steven; Mital, Subodh; Murthy, Pappu
2015-01-01
Reported here is a coupling of two NASA developed codes: CARES (Ceramics Analysis and Reliability Evaluation of Structures) with the MAC/GMC (Micromechanics Analysis Code/ Generalized Method of Cells) composite material analysis code. The resulting code is called FEAMAC/CARES and is constructed as an Abaqus finite element analysis UMAT (user defined material). Here we describe the FEAMAC/CARES code and an example problem (taken from the open literature) of a laminated CMC in off-axis loading is shown. FEAMAC/CARES performs stochastic-strength-based damage simulation response of a CMC under multiaxial loading using elastic stiffness reduction of the failed elements.
NASA Astrophysics Data System (ADS)
Ukhrowiyah, Nuril; Setyaningsih, Novi; Hikmawati, Dyah; Yasin, Moh
2017-05-01
Synthesis of breast-phantom-based on gelatine-glutaraldehyde-TiO2 as testing material of breast cancer diagnosis using Near Infrared-Diffuse Optical Tomography (NIR-DOT) is presented. Glutaraldehyde (GA) is added to obtain optimum breast phantom which has same elasticity modulus with mammae. First, synthesis is conducted by mixing gelatine with various amounts of 1 g, 2 g and 3 g with saline solution on 40° C temperature for 30 minutes until they become homogenous. Next, GA with concentration of 0.5 and 1.0% is added. The characterization includes FTIR test, physical test, and mechanical test used to identify group of gelatine’s functions. Elasticity modulus of breast phantom of gelatine composition 2 g and 0.5% GA is obtained at 53.46 kPA which is the approximation of mammae culture elasticity. This composition is chosen to synthesise the next step. In the second step, TiO2 is added with variation of 0.01 g, 0.015 g, 0.02 g, 0.025 g, and 0,03 g. With this variation, it is aimed to get a breast phantom providing image with optimum absorption. The test of this material uses Differential Scanning Calorimetry (DSC), homogeneity test, and analysis of coefficient absorption. The result shows the sample has a good thermal property in the range of 40 - 70° C with a good homogeneity and absorption coefficient of 0.4 mm-1.
Mechanical and microwave absorbing properties of carbon-filled polyurethane.
Kucerová, Z; Zajícková, L; Bursíková, V; Kudrle, V; Eliás, M; Jasek, O; Synek, P; Matejková, J; Bursík, J
2009-01-01
Polyurethane (PU) matrix composites were prepared with various carbon fillers at different filler contents in order to investigate their structure, mechanical and microwave absorbing properties. As fillers, flat carbon microparticles, carbon microfibers and multiwalled carbon nanotubes (MWNT) were used. The microstructure of the composite was examined by scanning electron microscopy and transmission electron microscopy. Mechanical properties, namely universal hardness, plastic hardness, elastic modulus and creep were assessed by means of depth sensing indentation test. Mechanical properties of PU composite filled with different fillers were investigated and the composite always exhibited higher hardness, elastic modulus and creep resistance than un-filled PU. Influence of filler shape, content and dispersion was also investigated.
Contact law and impact responses of laminated composites
NASA Technical Reports Server (NTRS)
Sun, C. T.; Yang, S. H.
1980-01-01
Static identation tests were performed to determine the law of contact between a steel ball and glass/epoxy and graphite/epoxy laminated composites. For both composites the power law with an index of 1.5 was found to be adequate for the loading curve. Substantial permanent deformations were noted after the unloading. A high order beam finite element was used to compute the dynamic contact force and response of the laminated composite subjected to the impact of an elastic sphere. This program can be used with either the classical Hertzian contact law or the measured contact law. A simple method is introduced for estimating the contact force and contact duration in elastic impacts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henager, Charles H.; Nguyen, Ba Nghiep; Kurtz, Richard J.
2015-06-30
The international fusion community designed miniature torsion specimens for joint testing and irradiation in test reactors with limited irradiation volumes since SiC and SiC-composites used in fission or fusion environments require joining methods for assembling systems. Torsion specimens fail out-of-plane when joints are strong and when elastic moduli are comparable to SiC, which causes difficulties in determining shear strengths for many joints or for comparing unirradiated and irradiated joints. A finite element damage model was developed to treat elastic joints such as SiC/Ti3SiC2+SiC and elastic-plastic joints such as SiC/epoxy and steel/epoxy. The model uses constitutive shear data and is validatedmore » using epoxy joint data. The elastic model indicates fracture is likely to occur within the joined pieces to cause out-of-plane failures for miniature torsion specimens when a certain modulus and strength ratio between the joint material and the joined material exists. Lower modulus epoxy joints always fail in plane and provide good model validation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kahl, W.K.
1997-03-01
The paper describes a study which attempted to extrapolate meaningful elastic-plastic fracture toughness data from flexure tests of a chemical vapor-infiltrated SiC/Nicalon fiber-reinforced ceramic matrix composite. Fibers in the fabricated composites were pre-coated with pyrolytic carbon to varying thicknesses. In the tests, crack length was not measured and the study employed an estimate procedure, previously used successfully for ductile metals, to derive J-R curve information. Results are presented in normalized load vs. normalized displacements and comparative J{sub Ic} behavior as a function of fiber precoating thickness.
NASA Astrophysics Data System (ADS)
Ebrahimi, Farzad; Barati, Mohammad Reza
2018-04-01
This article deals with the wave propagation analysis of single/double layered functionally graded (FG) size-dependent nanobeams in elastic medium and subjected to a longitudinal magnetic field employing nonlocal elasticity theory. Material properties of nanobeam change gradually according to the sigmoid function. Applying an analytical solution, the acoustical and optical dispersion relations are explored for various wave number, nonlocality parameter, material composition, elastic foundation constants, and magnetic field intensity. It is found that frequency and phase velocity of waves propagating in S-FGM nanobeam are significantly affected by these parameters. Also, presence of cut-off and escape frequencies in wave propagation analysis of embedded S-FGM nanobeams is investigated.
Correlating off-axis tension tests to shear modulus of wood-based panels
Edmond P. Saliklis; Robert H. Falk
2000-01-01
The weakness of existing relationships correlating off-axis modulus of elasticity E q to shear modulus G 12 for wood composite panels is demonstrated through presentation of extensive experimental data. A new relationship is proposed that performs better than existing equations found in the literature. This relationship can be manipulated to calculate the shear modulus...
Solution of the Eshelby problem in gradient elasticity for multilayer spherical inclusions
NASA Astrophysics Data System (ADS)
Volkov-Bogorodskii, D. B.; Lurie, S. A.
2016-03-01
We consider gradient models of elasticity which permit taking into account the characteristic scale parameters of the material. We prove the Papkovich-Neuber theorems, which determine the general form of the gradient solution and the structure of scale effects. We derive the Eshelby integral formula for the gradient moduli of elasticity, which plays the role of the closing equation in the self-consistent three-phase method. In the gradient theory of deformations, we consider the fundamental Eshelby-Christensen problem of determining the effective elastic properties of dispersed composites with spherical inclusions; the exact solution of this problem for classical models was obtained in 1976. This paper is the first to present the exact analytical solution of the Eshelby-Christensen problem for the gradient theory, which permits estimating the influence of scale effects on the stress state and the effective properties of the dispersed composites under study.We also analyze the influence of scale factors.
Determination of Elastic Moduli of Fiber-Resin Composites Using an Impulse Excitation Technique
NASA Technical Reports Server (NTRS)
Viens, Michael J.; Johnson, Jeffrey J.
1996-01-01
The elastic moduli of graphite/epoxy and graphite/cyanate ester composite specimens with various laminate lay-ups was determined using an impulse excitation/acoustic resonance technique and compared to those determined using traditional strain gauge and extensometer techniques. The stiffness results were also compared to those predicted from laminate theory using uniaxial properties. The specimen stiffnesses interrogated ranged from 12 to 30 Msi. The impulse excitation technique was found to be a relatively quick and accurate method for determining elastic moduli with minimal specimen preparation and no requirement for mechanical loading frames. The results of this investigation showed good correlation between the elastic modulus determined using the impulse excitation technique, strain gauge and extensometer techniques, and modulus predicted from laminate theory. The flexural stiffness determined using the impulse excitation was in good agreement with that predicted from laminate theory. The impulse excitation/acoustic resonance interrogation technique has potential as a quality control test.
NASA Astrophysics Data System (ADS)
Levin, V.; Petronyuk, Yu.; Morokov, E.; Chernozatonskii, L.; Kuzhir, P.; Fierro, V.; Celzard, A.; Bellucci, S.; Bistarelli, S.; Mastrucci, M.; Tabacchioni, I.
2016-05-01
Bulk microstructure and elastic properties of epoxy-nanocarbon nanocomposites for diverse types and different content of carbon nanofiller has been studied by using impulse acoustic microscopy technique. It has been shown occurrence of various types of mesoscopic structure formed by nanoparticles inside the bulk of nanocomposite materials, including nanoparticle conglomerates and nanoparticle aerogel systems. In spite of the bulk microstructure, nanocarbon composites demonstrate elastic uniformity and negligible influence of nanofiller on elastic properties of carbon nanocomposite materials.
Tunable band gaps in bio-inspired periodic composites with nacre-like microstructure
NASA Astrophysics Data System (ADS)
Chen, Yanyu; Wang, Lifeng
2014-08-01
Periodic composite materials have many promising applications due to their unique ability to control the propagation of waves. Here, we report the existence and frequency tunability of complete elastic wave band gaps in bio-inspired periodic composites with nacre-like, brick-and-mortar microstructure. Numerical results show that complete band gaps in these periodic composites derive from local resonances or Bragg scattering, depending on the lattice angle and the volume fraction of each phase in the composites. The investigation of elastic wave propagation in finite periodic composites validates the simulated complete band gaps and further reveals the mechanisms leading to complete band gaps. Moreover, our results indicate that the topological arrangement of the mineral platelets and changes of material properties can be utilized to tune the evolution of complete band gaps. Our finding provides new opportunities to design mechanically robust periodic composite materials for wave absorption under hostile environments, such as for deep water applications.
Tensile properties of SiC/aluminum filamentary composites - Thermal degradation effects
NASA Technical Reports Server (NTRS)
Skinner, A.; Koczak, M. J.; Lawley, A.
1982-01-01
Aluminium metal matrix composites with a low cost fiber, e.g. SiC, provide for an attractive combination of high elastic modulus and longitudinal strengths coupled with a low density. SiC (volume fraction 0.55)-aluminum (6061) systems have been studied in order to optimize fiber composite strength and processing parameters. A comparison of two SiC/aluminum composites produced by AVCO and DWA is provided. Fiber properties are shown to alter composite tensile properties and fracture morphology. The room temperature tensile strengths appear to be insensitive to thermal exposures at 500 C up to 150 h. The elastic modulus of the composites also appears to be stable up to 400 C, however variations in the loss modulus are apparent. The fracture morphology reflects the quality of the interfacial bond, fiber strengths and fiber processing.
Processing of Alumina-Toughened Zirconia Composites
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.; Choi, Sung R.
2003-01-01
Dense and crack-free 10-mol%-yttria-stabilized zirconia (10YSZ)-alumina composites, containing 0 to 30 mol% of alumina, have been fabricated by hot pressing. Release of pressure before onset of cooling was crucial in obtaining crack-free material. Hot pressing at 1600 C resulted in the formation of ZrC by reaction of zirconia with grafoil. However, no such reaction was observed at 1500 C. Cubic zirconia and -alumina were the only phases detected from x-ray diffraction indicating no chemical reaction between the composite constituents during hot pressing. Microstructure of the composites was analyzed by scanning electron microscopy and transmission electron microscopy. Density and elastic modulus of the composites followed the rule-of-mixtures. Addition of alumina to 10YSZ resulted in lighter, stronger, and stiffer composites by decreasing density and increasing strength and elastic modulus.
Effects of self-healing microcapsules on bending performance in composite brake pads
NASA Astrophysics Data System (ADS)
Zhang, Li; Dong, Xiu-ping; Wang, Hui
2009-07-01
For the purpose of reducing self-weight, friction noise and cost, improving shock absorption, enhancing corrosion and wear resistance, brake pads made of composite materials with self-healing function are prepared to substitute metal ones by designing ingredients and applying optimized production technology. As self-healing capsules are chosen, new method with technology of self-healing microcapsules, dicyclpentadiene (DCPD) microcapsules coated with poly (urea-formaldehyde), is put forward in this paper. In the crack's extending process, the stress is concentrated at the crack end, where the microcapsule is designed to be located. When the stress goes through the microcapsules and causes them to break, the self-healing liquid runs out to fill the crack by the capillary and it will poly-react with catalyst in the composite. As a result, the crack is healed. In this paper, polymer matrix composite brake pads with 6 prescriptions are prepared and studied. Three-point bending tests are carried out according to standards in GB/T 3356-1999 and the elastic constants of these polymer matrix composites are obtained by experiments. In accordance with the law of the continuous fiber composite, elastic constants of the short-fiber composite can be calculated by proportions of each ingredient. Results show that the theoretical expected results and the experimental values are consistent. 0.3-1.2 % mass proportion of microcapsules has little effects on the composite's bending intensity and modulus of elasticity. These studies also show that self-healing microcapsules used in composite brake pads is feasible.
Elastin: a representative ideal protein elastomer.
Urry, D W; Hugel, T; Seitz, M; Gaub, H E; Sheiba, L; Dea, J; Xu, J; Parker, T
2002-01-01
During the last half century, identification of an ideal (predominantly entropic) protein elastomer was generally thought to require that the ideal protein elastomer be a random chain network. Here, we report two new sets of data and review previous data. The first set of new data utilizes atomic force microscopy to report single-chain force-extension curves for (GVGVP)(251) and (GVGIP)(260), and provides evidence for single-chain ideal elasticity. The second class of new data provides a direct contrast between low-frequency sound absorption (0.1-10 kHz) exhibited by random-chain network elastomers and by elastin protein-based polymers. Earlier composition, dielectric relaxation (1-1000 MHz), thermoelasticity, molecular mechanics and dynamics calculations and thermodynamic and statistical mechanical analyses are presented, that combine with the new data to contrast with random-chain network rubbers and to detail the presence of regular non-random structural elements of the elastin-based systems that lose entropic elastomeric force upon thermal denaturation. The data and analyses affirm an earlier contrary argument that components of elastin, the elastic protein of the mammalian elastic fibre, and purified elastin fibre itself contain dynamic, non-random, regularly repeating structures that exhibit dominantly entropic elasticity by means of a damping of internal chain dynamics on extension. PMID:11911774
Numerical investigation of active porous composites with enhanced acoustic absorption
NASA Astrophysics Data System (ADS)
Zieliński, Tomasz G.
2011-10-01
The paper presents numerical analysis - involving an advanced multiphysics modeling - of the concept of active porous composite sound absorbers. Such absorbers should be made up of a layer or layers of poroelastic material (porous foams) with embedded elastic inclusions having active (piezoelectric) elements. The purpose of such active composite material is to significantly absorb the energy of acoustic waves in a wide frequency range, particularly, at lower frequencies. At the same time the total thickness of composite should be very moderate. The active parts of composites are used to adapt the absorbing properties of porous layers to different noise conditions by affecting the so-called solid-borne wave - originating mainly from the vibrations of elastic skeleton of porous medium - to counteract the fluid-borne wave - resulting mainly from the vibrations of air in the pores; both waves are strongly coupled, especially, at lower frequencies. In fact, since the traction between the air and the solid frame of porous medium is the main absorption mechanism, the elastic skeleton is actively vibrated in order to adapt and improve the dissipative interaction of the skeleton and air in the pores. Passive and active performance of such absorbers is analyzed to test the feasibility of this approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Y.; Rizzo, F.J.
1997-08-01
In this paper, the composite boundary integral equation (BIE) formulation is applied to scattering of elastic waves from thin shapes with small but {ital finite} thickness (open cracks or thin voids, thin inclusions, thin-layer interfaces, etc.), which are modeled with {ital two surfaces}. This composite BIE formulation, which is an extension of the Burton and Miller{close_quote}s formulation for acoustic waves, uses a linear combination of the conventional BIE and the hypersingular BIE. For thin shapes, the conventional BIE, as well as the hypersingular BIE, will degenerate (or nearly degenerate) if they are applied {ital individually} on the two surfaces. Themore » composite BIE formulation, however, will not degenerate for such problems, as demonstrated in this paper. Nearly singular and hypersingular integrals, which arise in problems involving thin shapes modeled with two surfaces, are transformed into sums of weakly singular integrals and nonsingular line integrals. Thus, no finer mesh is needed to compute these nearly singular integrals. Numerical examples of elastic waves scattered from penny-shaped cracks with varying openings are presented to demonstrate the effectiveness of the composite BIE formulation. {copyright} {ital 1997 Acoustical Society of America.}« less
A coupled/uncoupled deformation and fatigue damage algorithm utilizing the finite element method
NASA Technical Reports Server (NTRS)
Wilt, Thomas E.; Arnold, Steven M.
1994-01-01
A fatigue damage computational algorithm utilizing a multiaxial, isothermal, continuum based fatigue damage model for unidirectional metal matrix composites has been implemented into the commercial finite element code MARC using MARC user subroutines. Damage is introduced into the finite element solution through the concept of effective stress which fully couples the fatigue damage calculations with the finite element deformation solution. An axisymmetric stress analysis was performed on a circumferentially reinforced ring, wherein both the matrix cladding and the composite core were assumed to behave elastic-perfectly plastic. The composite core behavior was represented using Hill's anisotropic continuum based plasticity model, and similarly, the matrix cladding was represented by an isotropic plasticity model. Results are presented in the form of S-N curves and damage distribution plots.
Guidelines for VCCT-Based Interlaminar Fatigue and Progressive Failure Finite Element Analysis
NASA Technical Reports Server (NTRS)
Deobald, Lyle R.; Mabson, Gerald E.; Engelstad, Steve; Prabhakar, M.; Gurvich, Mark; Seneviratne, Waruna; Perera, Shenal; O'Brien, T. Kevin; Murri, Gretchen; Ratcliffe, James;
2017-01-01
This document is intended to detail the theoretical basis, equations, references and data that are necessary to enhance the functionality of commercially available Finite Element codes, with the objective of having functionality better suited for the aerospace industry in the area of composite structural analysis. The specific area of focus will be improvements to composite interlaminar fatigue and progressive interlaminar failure. Suggestions are biased towards codes that perform interlaminar Linear Elastic Fracture Mechanics (LEFM) using Virtual Crack Closure Technique (VCCT)-based algorithms [1,2]. All aspects of the science associated with composite interlaminar crack growth are not fully developed and the codes developed to predict this mode of failure must be programmed with sufficient flexibility to accommodate new functional relationships as the science matures.
The structural response of unsymmetrically laminated composite cylinders
NASA Technical Reports Server (NTRS)
Butler, T. A.; Hyer, M. W.
1989-01-01
The responses of an unsymmetrically laminated fiber-reinforced composite cylinder to an axial compressive load, a torsional load, and the temperature change associated with cooling from the processing temperature to the service temperature are investigated. These problems are considered axisymmetric and the response is studied in the context of linear elastic material behavior and geometrically linear kinematics. Four different laminates are studied: a general unsymmetric laminate; two unsymmetric but more conventional laminates; and a conventional quasi-isotropic symmetric laminate. The responses based on closed-form solutions for different boundary conditions are computed and studied in detail. Particular emphasis is directed at understanding the influence of elastic couplings in the laminates. The influence of coupling decreased from a large effect in the general unsymmetric laminate, to practically no effect in the quasi-isotropic laminate. For example, the torsional loading of the general unsymmetric laminate resulted in a radial displacement. The temperature change also caused a significant radial displacement to occur near the ends of the cylinder. On the other hand, the more conventional unsymmetric laminate and the quasi-isotropic cylinder did not deform radially when subjected to a torsional load. From the results obtained, it is clear the degree of elastic coupling can be controlled and indeed designed into a cylinder, the degree and character of the coupling being dictated by the application.
Jung, Youngmee; Lee, Sun-Hee; Kim, Sang-Heon; Lim, Jong Choo; Kim, Soo Hyun
2013-01-01
We synthesized a series of tri-component biodegradable copolymers with elastic characteristics by ring-opening copolymerization of cyclic lactones, that is, glycolide, L-lactide, and ϵ-caprolactone, in the presence of stannous octoate as a catalyst. We evaluated the physical and chemical characteristics of poly(glycolide-co-L-lactide-co-ϵ-caprolactone) (PGLCL) copolymers. The synthesized PGLCL had a high molecular weight of about 100 kD and an amorphous structure. It was confirmed that the physical and chemical properties of these terpolymers could be modulated by adjusting copolymer composition. PGLCL films exhibited rubber-like elasticity and showed almost complete recovery when subjected to 50% of the tensile strain. To examine the biodegradability of the PGLCL copolymers, we performed in vitro degradation tests for 12 weeks and observed changes in molecular weight, gross weight, and composition. These results showed that the glycolide was degraded most quickly and that ϵ-caprolactone was the slowest to degrade. Additionally, cytotoxicity tests revealed that none of the polymers were toxic. In summary, the mechanical properties and biodegradability of PGLCL terpolymers could be controlled by changing the monomer content, which may be useful for a wide range of tissue engineering applications based on mechanical property requirements.
Shojaee, S. A.; Qi, Y.; Wang, Y. Q.; Mehner, A.; Lucca, D. A.
2017-01-01
Ion irradiation is an alternative to heat treatment for transforming organic-inorganic thin films to a ceramic state. One major shortcoming in previous studies of ion-irradiated films is the assumption that constituent phases in ion-irradiated and heat-treated films are identical and that the ion irradiation effect is limited to changes in composition. In this study, we investigate the effects of ion irradiation on both the composition and structure of constituent phases and use the results to explain the measured elastic modulus of the films. The results indicated that the microstructure of the irradiated films consisted of carbon clusters within a silica matrix. It was found that carbon was present in a non-graphitic sp2-bonded configuration. It was also observed that ion irradiation caused a decrease in the Si-O-Si bond angle of silica, similar to the effects of applied pressure. A phase transformation from tetrahedrally bonded to octahedrally bonded silica was also observed. The results indicated the incorporation of carbon within the silica network. A combination of the decrease in Si-O-Si bond angle and an increase in the carbon incorporation within the silica network was found to be responsible for the increase in the elastic modulus of the films. PMID:28071696
Shojaee, S. A.; Qi, Y.; Wang, Y. Q.; ...
2017-01-10
Ion irradiation is an alternative to heat treatment for transforming organic-inorganic thin films to a ceramic state. One major shortcoming in previous studies of ion-irradiated films is the assumption that constituent phases in ion-irradiated and heat-treated films are identical and that the ion irradiation effect is limited to changes in composition. Here, we investigate the effects of ion irradiation on both the composition and structure of constituent phases and use the results to explain the measured elastic modulus of the films. Our results indicated that the microstructure of the irradiated films consisted of carbon clusters within a silica matrix. Itmore » was found that carbon was present in a non-graphitic sp 2-bonded configuration. It was also observed that ion irradiation caused a decrease in the Si-O-Si bond angle of silica, similar to the effects of applied pressure. A phase transformation from tetrahedrally bonded to octahedrally bonded silica was also observed. The results indicated the incorporation of carbon within the silica network. Finally, a combination of the decrease in Si-O-Si bond angle and an increase in the carbon incorporation within the silica network was found to be responsible for the increase in the elastic modulus of the films.« less
Effective Medium Theories for Multicomponent Poroelastic Composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berryman, J G
2005-02-08
In Biot's theory of poroelasticity, elastic materials contain connected voids or pores and these pores may be filled with fluids under pressure. The fluid pressure then couples to the mechanical effects of stress or strain applied externally to the solid matrix. Eshelby's formula for the response of a single ellipsoidal elastic inclusion in an elastic whole space to a strain imposed at a distant boundary is a very well-known and important result in elasticity. Having a rigorous generalization of Eshelby's results valid for poroelasticity means that the hard part of Eshelby's work (in computing the elliptic integrals needed to evaluatemore » the fourth-rank tensors for inclusions shaped like spheres, oblate and prolate spheroids, needles and disks) can be carried over from elasticity to poroelasticity--and also thermoelasticity--with only relatively minor modifications. Effective medium theories for poroelastic composites such as rocks can then be formulated easily by analogy to well-established methods used for elastic composites. An identity analogous to Eshelby's classic result has been derived [Physical Review Letters 79:1142-1145 (1997)] for use in these more complex and more realistic problems in rock mechanics analysis. Descriptions of the application of this result as the starting point for new methods of estimation are presented, including generalizations of the coherent potential approximation (CPA), differential effective medium (DEM) theory, and two explicit schemes. Results are presented for estimating drained shear and bulk modulus, the Biot-Willis parameter, and Skempton's coefficient. Three of the methods considered appear to be quite reliable estimators, while one of the explicit schemes is found to have some undesirable characteristics.« less
Modeling the elastic energy of alloys: Potential pitfalls of continuum treatments.
Baskaran, Arvind; Ratsch, Christian; Smereka, Peter
2015-12-01
Some issues that arise when modeling elastic energy for binary alloys are discussed within the context of a Keating model and density-functional calculations. The Keating model is a simplified atomistic formulation based on modeling elastic interactions of a binary alloy with harmonic springs whose equilibrium length is species dependent. It is demonstrated that the continuum limit for the strain field are the usual equations of linear elasticity for alloys and that they correctly capture the coarse-grained behavior of the displacement field. In addition, it is established that Euler-Lagrange equation of the continuum limit of the elastic energy will yield the same strain field equation. This is the same energy functional that is often used to model elastic effects in binary alloys. However, a direct calculation of the elastic energy atomistic model reveals that the continuum expression for the elastic energy is both qualitatively and quantitatively incorrect. This is because it does not take atomistic scale compositional nonuniformity into account. Importantly, this result also shows that finely mixed alloys tend to have more elastic energy than segregated systems, which is the exact opposite of predictions made by some continuum theories. It is also shown that for strained thin films the traditionally used effective misfit for alloys systematically underestimate the strain energy. In some models, this drawback is handled by including an elastic contribution to the enthalpy of mixing, which is characterized in terms of the continuum concentration. The direct calculation of the atomistic model reveals that this approach suffers serious difficulties. It is demonstrated that elastic contribution to the enthalpy of mixing is nonisotropic and scale dependent. It is also shown that such effects are present in density-functional theory calculations for the Si-Ge system. This work demonstrates that it is critical to include the microscopic arrangements in any elastic model to achieve even qualitatively correct behavior.
Modeling creep behavior of fiber composites
NASA Technical Reports Server (NTRS)
Chen, J. L.; Sun, C. T.
1988-01-01
A micromechanical model for the creep behavior of fiber composites is developed based on a typical cell consisting of a fiber and the surrounding matrix. The fiber is assumed to be linearly elastic and the matrix nonlinearly viscous. The creep strain rate in the matrix is assumed to be a function of stress. The nominal stress-strain relations are derived in the form of differential equations which are solved numerically for off-axis specimens under uniaxial loading. A potential function and the associated effective stress and effective creep strain rates are introduced to simplify the orthotropic relations.
Shpotyuk, Olha; Adamiak, Stanislaw; Bezvushko, Elvira; Cebulski, Jozef; Iskiv, Maryana; Shpotyuk, Oleh; Balitska, Valentina
2017-12-01
Light-curing volumetric shrinkage in dimethacrylate-based dental resin composites Dipol® is examined through comprehensive kinetics research employing nanoindentation measurements and nanoscale atomic-deficient study with lifetime spectroscopy of annihilating positrons. Photopolymerization kinetics determined through nanoindentation testing is shown to be described via single-exponential relaxation function with character time constants reaching respectively 15.0 and 18.7 s for nanohardness and elastic modulus. Atomic-deficient characteristics of composites are extracted from positron lifetime spectra parameterized employing unconstrained x3-term fitting. The tested photopolymerization kinetics can be adequately reflected in time-dependent changes observed in average positron lifetime (with 17.9 s time constant) and fractional free volume of positronium traps (with 18.6 s time constant). This correlation proves that fragmentation of free-volume positronium-trapping sites accompanied by partial positronium-to-positron traps conversion determines the light-curing volumetric shrinkage in the studied composites.
NASA Astrophysics Data System (ADS)
Altenbach, H.; Naumenko, K.; L'vov, G. I.; Pilipenko, S. N.
2003-05-01
A model which allows us to estimate the elastic properties of thin-walled structures manufactured by injection molding is presented. The starting step is the numerical prediction of the microstructure of a short-fiber-reinforced composite developed during the filling stage of the manufacturing process. For this purpose, the Moldflow Plastic Insight® commercial program is used. As a result of simulating the filling process, a second-rank orientation tensor characterizing the microstructure of the material is obtained. The elastic properties of the prepared material locally depend on the orientational distribution of fibers. The constitutive equation is formulated by means of orientational averaging for a given orientation tensor. The tensor of elastic material properties is computed and translated into the format for a stress-strain analysis based on the ANSYSÒ finite-element code. The numerical procedure and the convergence of results are discussed for a thin strip, a rectangular plate, and a shell of revolution. The influence of manufacturing conditions on the stress-strain state of statically loaded thin-walled elements is illustrated.
Application of RMS for damage detection by guided elastic waves
NASA Astrophysics Data System (ADS)
Radzieński, M.; Doliński, Ł.; Krawczuk, M.; dot Zak, A.; Ostachowicz, W.
2011-07-01
This paper presents certain results of an experimental study related with a damage detection in structural elements based on deviations in guided elastic wave propagation patterns. In order to excite guided elastic waves within specimens tested piezoelectric transducers have been applied. As excitation signals 5 sine cycles modulated by Hanning window have been used. Propagation of guided elastic waves has been monitored by a scanning Doppler laser vibrometer. The time signals recorded during measurement have been utilised to calculate the values of RMS. It has turned out that the values of RMS differed significantly in damaged areas from the values calculated for the healthy ones. In this way it has become possible to pinpoint precisely the locations of damage over the entire measured surface. All experimental investigations have been carried out for thin aluminium or composite plates. Damage has been simulated by a small additional mass attached on the plate surface or by a narrow notch cut. It has been shown that proposed method allows one to localise damage of various shapes and sizes within structural elements over the whole area under investigation.
NASA Astrophysics Data System (ADS)
Feng, Q. L.; Li, C.; Liao, Y. F.
2017-12-01
Short fiber reinforced EPDM is a new kind of composite material used in solid rocket motor winding and coating. It has relatively large deformation under the small stress condition, and the physical non-linear characteristic is obvious. Due to the addition of fiber in the specific direction of the rubber, the macroscopic mechanical properties are expressed as transversely isotropic properties. In order to describe the mechanical behavior under the impact and vibration, the transversely isotropic hyperelastic constitutive model based on tensor function is proposed. The symmetry of the transversely isotropic incompressible material limits the stress tensor ‘ K ’ to be characterized as a function of 5 tensor invariants and 4 scalar invariants. The third power constitutive equations of the model give 12 independent elastic constants of the transversely isotropic nonlinear elastic material. The experimental results show that the non-zero elastic constants are different in the fiber direction and at the different strain rate. Number and value of adiabatic layer and related products R & D has a reference value.
Density and mechanical properties of calcium aluminate cement
NASA Astrophysics Data System (ADS)
Ahmed, Syed Taqi Uddin; Ahmmad, Shaik Kareem
2018-04-01
Calcium aluminate cements are a special type of cements which have their composition mainly dominated by the presence of Monocalcium Aluminates. In the present paper for the first time we have shown theoretical density and elastic constants for various calcium aluminate cements. The density of the present CAS decrease with aluminates presents in the cement. Using the density data, the elastic moduli namely Young's modulus, bulk and shear modulus show strong linear dependence as a function of compositional parameter.
Elastic/viscoplastic behavior of fiber-reinforced thermoplastic composites
NASA Technical Reports Server (NTRS)
Wang, C.; Sun, C. T.; Gates, T. S.
1990-01-01
An elastic/viscoplastic constitutive model was used to characterize the nonlinear and rate dependent behavior of a continuous fiber-reinforced thermoplastic composite. This model was incorporated into a finite element program for the analysis of laminated plates and shells. Details on the finite element formulation with the proposed constitutive model were presented. The numerical results were compared with experimental data for uniaxial tension and three-point bending tests of (+ or - 45 deg)3s APC-2 laminates.
Cifuentes, S C; Frutos, E; Benavente, R; Lorenzo, V; González-Carrasco, J L
2017-01-01
This work deals with the mechanical characterization by depth-sensing indentation (DSI) of PLLA and PLDA composites reinforced with micro-particles of Mg (up to 15wt%), which is a challenging task since the indented volume must provide information of the bulk composite, i.e. contain enough reinforcement particles. The composites were fabricated by combining hot extrusion and compression moulding. Physico-chemical characterization by TGA and DSC indicates that Mg anticipates the thermal degradation of the polymers but does not compromise their stability during processing. Especial emphasis is devoted to determine the effect of strain rate and Mg content on mechanical behavior, thus important information about the visco-elastic behavior and time-dependent response of the composites is obtained. Relevant for the intended application is that Mg addition increases the elastic modulus and hardness of the polymeric matrices and induces a higher resistance to flow. The elastic modulus obtained by DSI experiments shows good agreement with that obtained by uniaxial compression tests. The results indicate that DSI experiments are a reliable method to calculate the modulus of polymeric composites reinforced with micro-particles. Taking into consideration the mechanical properties results, PLA/Mg composite could be used as substitute for biodegradable monolithic polymeric implants already in the market for orthopedics (freeform meshes, mini plates, screws, pins, …), craniomaxillofacial, or spine. Copyright © 2016 Elsevier Ltd. All rights reserved.
2011-11-01
elastic range, and with some simple forms of progressing damage . However, a general physics-based methodology to assess the initial and lifetime... damage evolution in the RVE for all possible load histories. Microstructural data on initial configuration and damage progression in CMCs were...the damaged elements will have changed, hence, a progressive damage model. The crack opening for each crack type in each element is stored as a
Effects of assumed tow architecture on the predicted moduli and stresses in woven composites
NASA Technical Reports Server (NTRS)
Chapman, Clinton Dane
1994-01-01
This study deals with the effect of assumed tow architecture on the elastic material properties and stress distributions of plain weave woven composites. Specifically, the examination of how a cross-section is assumed to sweep-out the tows of the composite is examined in great detail. The two methods studied are extrusion and translation. This effect is also examined to determine how sensitive this assumption is to changes in waviness ratio. 3D finite elements were used to study a T300/Epoxy plain weave composite with symmetrically stacked mats. 1/32nd of the unit cell is shown to be adequate for analysis of this type of configuration with the appropriate set of boundary conditions. At low waviness, results indicate that for prediction of elastic properties, either method is adequate. At high waviness, certain elastic properties become more sensitive to the method used. Stress distributions at high waviness ratio are shown to vary greatly depending on the type of loading applied. At low waviness, both methods produce similar results.
The role of elastic fibers in pathogenesis of conjunctivochalasis
Gan, Jing-Yun; Li, Qing-Song; Zhang, Zhen-Yong; Zhang, Wei; Zhang, Xing-Ru
2017-01-01
The PubMed, MEDLINE databases and China National Knowledge Infrastructure (CNKI) were searched for information regarding the etiology and pathogenesis of conjunctivochalasis (CCh) and the synthesis and degradation of elastic fibers. After analysis of the literature, we found elastic fibers was a complex protein molecule from the structure and composition; the degradation of elastic fibers was one of the histopathological features of the disease; the vast majority of the factors related to the pathogenesis of CCh ultimately pointed to abnormal elastic fibers. By reasonably speculating, we considered that abnormal elastic fibers cause the conjunctival relaxation. In conclusion, we hypothesize that elastic fibers play an important role in the pathogenesis of CCh. Studies on the mechanism of synthesis, degradation of elastic fibers are helpful to clarify the pathogenesis of the disease and to find effective treatment methods. PMID:28944209
Shrinkage Stresses Generated during Resin-Composite Applications: A Review
Schneider, Luis Felipe J.; Cavalcante, Larissa Maria; Silikas, Nick
2010-01-01
Many developments have been made in the field of resin composites for dental applications. However, the manifestation of shrinkage due to the polymerization process continues to be a major problem. The material's shrinkage, associated with dynamic development of elastic modulus, creates stresses within the material and its interface with the tooth structure. As a consequence, marginal failure and subsequent secondary caries, marginal staining, restoration displacement, tooth fracture, and/or post-operative sensitivity are clinical drawbacks of resin-composite applications. The aim of the current paper is to present an overview about the shrinkage stresses created during resin-composite applications, consequences, and advances. The paper is based on results of many researches that are available in the literature. PMID:20948573
Elasticity of plagioclase feldspars
NASA Astrophysics Data System (ADS)
Brown, J. Michael; Angel, Ross J.; Ross, Nancy L.
2016-02-01
Elastic properties are reported for eight plagioclase feldspars that span compositions from albite (NaSi3AlO8) to anorthite (CaSi2Al2O8). Surface acoustic wave velocities measured using Impulsive Stimulated Light Scattering and compliance sums from high-pressure X-ray compression studies accurately determine all 21 components of the elasticity tensor for these triclinic minerals. The overall pattern of elasticity and the changes in individual elastic components with composition can be rationalized on the basis of the evolution of crystal structures and chemistry across this solid-solution join. All plagioclase feldspars have high elastic anisotropy; a* (the direction perpendicular to the b and c axes) is the softest direction by a factor of 3 in albite. From albite to anorthite the stiffness of this direction undergoes the greatest change, increasing twofold. Small discontinuities in the elastic components, inferred to occur between the three plagioclase phases with distinct symmetry (C1>¯, I1>¯, and P1>¯), appear consistent with the nature of the underlying conformation of the framework-linked tetrahedra and the associated structural changes. Measured body wave velocities of plagioclase-rich rocks, reported over the last five decades, are consistent with calculated Hill-averaged velocities using the current moduli. This confirms long-standing speculation that previously reported elastic moduli for plagioclase feldspars are systematically in error. The current results provide greater assurance that the seismic structure of the middle and lower crusts can be accurately estimated on the basis of specified mineral modes, chemistry, and fabric.
The evolution of acute burn care - retiring the split skin graft.
Greenwood, J E
2017-07-01
The skin graft was born in 1869 and since then, surgeons have been using split skin grafts for wound repair. Nevertheless, this asset fails the big burn patient, who deserves an elastic, mobile and robust outcome but who receives the poorest possible outcome based on donor site paucity. Negating the need for the skin graft requires an autologous composite cultured skin and a material capable of temporising the burn wound for four weeks until the composite is produced. A novel, biodegradable polyurethane chemistry has been used to create two such products. This paper describes the design, production, optimisation and evaluation of several iterations of these products. The evaluation has occurred in a variety of models, both in vitro and in vivo, employing Hunterian scientific principles, and embracing Hunter's love and appreciation of comparative anatomy. The process has culminated in significant human experience in complex wounds and extensive burn injury. Used serially, the products offer robust and elastic healing in deep burns of any size within 6 weeks of injury.
Numerical analysis of composite STEEL-CONCRETE SECTIONS using integral equation of Volterra
NASA Astrophysics Data System (ADS)
Partov, Doncho; Kantchev, Vesselin
2011-09-01
The paper presents analysis of the stress and deflections changes due to creep in statically determinate composite steel-concrete beam. The mathematical model involves the equation of equilibrium, compatibility and constitutive relationship, i.e. an elastic law for the steel part and an integral-type creep law of Boltzmann — Volterra for the concrete part. On the basis of the theory of the viscoelastic body of Arutyunian-Trost-Bažant for determining the redistribution of stresses in beam section between concrete plate and steel beam with respect to time "t", two independent Volterra integral equations of the second kind have been derived. Numerical method based on linear approximation of the singular kernal function in the integral equation is presented. Example with the model proposed is investigated. The creep functions is suggested by the model CEB MC90-99 and the "ACI 209R-92 model. The elastic modulus of concrete E c (t) is assumed to be constant in time `t'. The obtained results from the both models are compared.
Effect of Magnetic Inclusions on the Effective Magnetostriction of Bulk Superconductors
NASA Astrophysics Data System (ADS)
Zhao, Yufeng; Pan, Baocai; Liu, Zhiguo
2018-07-01
A simple model is presented based on the Kim-Anderson model to further investigate the dependence of the effective magnetostriction of magnetic inclusion-superconducting matrix system on both the elastic and magnetic parameters including the elastic modulus, permeability, and volume fraction. The effect of the permeability on the magnetostriction is also obtained by implementing the continuity conditions of displacement and strain at the interface between the inclusion and the matrix through the magnetostriction loop. The results indicate that a stiffer inclusion can decrease the effective magnetostriction no matter whether the inclusion is magnetic or not and a larger effective magnetostriction can be obtained by choosing the matrix with a higher permeability, which gives an explanation about why the composite made from a matrix with a high permeability but a negligibly small magnetostriction yields unexpectedly low magnetostriction. Of particular interest is that in a certain range the effective magnetostriction of composites can be enhanced until it is saturated by increasing the permeability of matrix.
NASA Technical Reports Server (NTRS)
Wilkie, W. Keats; Belvin, W. Keith; Park, K. C.
1996-01-01
A simple aeroelastic analysis of a helicopter rotor blade incorporating embedded piezoelectric fiber composite, interdigitated electrode blade twist actuators is described. The analysis consists of a linear torsion and flapwise bending model coupled with a nonlinear ONERA based unsteady aerodynamics model. A modified Galerkin procedure is performed upon the rotor blade partial differential equations of motion to develop a system of ordinary differential equations suitable for dynamics simulation using numerical integration. The twist actuation responses for three conceptual fullscale blade designs with realistic constraints on blade mass are numerically evaluated using the analysis. Numerical results indicate that useful amplitudes of nonresonant elastic twist, on the order of one to two degrees, are achievable under one-g hovering flight conditions for interdigitated electrode poling configurations. Twist actuation for the interdigitated electrode blades is also compared with the twist actuation of a conventionally poled piezoelectric fiber composite blade. Elastic twist produced using the interdigitated electrode actuators was found to be four to five times larger than that obtained with the conventionally poled actuators.
NASA Astrophysics Data System (ADS)
Dang, Baokang; Chen, Yipeng; Yang, Ning; Chen, Bo; Sun, Qingfeng
2018-05-01
Carbon fiber (CF) reinforced polyacrylamide/wood fiber composite boards are fabricated by mechanical grind-assisted hot-pressing, and are used for electromagnetic interference (EMI) shielding. CF with an average diameter of 150 nm is distributed on wood fiber, which is then encased by polyacrylamide. The CF/polyacrylamide/wood fiber (CPW) composite exhibits an optimal EMI shielding effectiveness (SE) of 41.03 dB compared to that of polyacrylamide/wood fiber composite (0.41 dB), which meets the requirements of commercial merchandise. Meanwhile, the CPW composite also shows high mechanical strength. The maximum modulus of rupture (MOR) and modulus of elasticity (MOE) of CPW composites are 39.52 MPa and 5823.15 MPa, respectively. The MOR and MOE of CPW composites increased by 38% and 96%, respectively, compared to that of polyacrylamide/wood fiber composite (28.64 and 2967.35 MPa).
Dang, Baokang; Chen, Yipeng; Yang, Ning; Chen, Bo; Sun, Qingfeng
2018-05-11
Carbon fiber (CF) reinforced polyacrylamide/wood fiber composite boards are fabricated by mechanical grind-assisted hot-pressing, and are used for electromagnetic interference (EMI) shielding. CF with an average diameter of 150 nm is distributed on wood fiber, which is then encased by polyacrylamide. The CF/polyacrylamide/wood fiber (CPW) composite exhibits an optimal EMI shielding effectiveness (SE) of 41.03 dB compared to that of polyacrylamide/wood fiber composite (0.41 dB), which meets the requirements of commercial merchandise. Meanwhile, the CPW composite also shows high mechanical strength. The maximum modulus of rupture (MOR) and modulus of elasticity (MOE) of CPW composites are 39.52 MPa and 5823.15 MPa, respectively. The MOR and MOE of CPW composites increased by 38% and 96%, respectively, compared to that of polyacrylamide/wood fiber composite (28.64 and 2967.35 MPa).
NASA Astrophysics Data System (ADS)
Zhang, Yiqun; Li, Na; Yang, Guigeng; Ru, Wenrui
2017-02-01
This paper presents a dynamic analysis approach for the composite structure of a deployable truss and cable-net system. An Elastic Catenary Element is adopted to model the slack/tensioned cables. Then, from the energy standpoint, the kinetic energy, elasticity-potential energy and geopotential energy of the cable-net structure and deployable truss are derived. Thus, the flexible multi-body dynamic model of the deployable antenna is built based on the Lagrange equation. The effect of the cable-net tension on the antenna truss is discussed and compared with previous publications and a dynamic deployment analysis is performed. Both the simulation and experimental results verify the validity of the method presented.
Sumino, Natsu; Tsubota, Keishi; Takamizawa, Toshiki; Shiratsuchi, Koji; Miyazaki, Masashi; Latta, Mark A
2013-01-01
To determine the localized wear and flexural properties of flowable resin composites for posterior lesions compared with universal resin composites produced by the same manufacturers. Ten specimens of each of three flowable resins, G-ænial Universal Flo, G-ænial Flo and Clearfil Majesty Flow, and the corresponding resin composite materials, Kalore and Clearfil Majesty Esthetics, were prepared in custom fixtures and subjected to 400,000 wear machine cycles to simulate localized wear. The total maximum depth and volume loss of the wear facets was calculated for each specimen using a profilometer. A three-point bending test was performed to determine the flexural strength, modulus of elasticity and resilience. Values were statistically compared using one-way analysis of variance (ANOVA) followed by Tukey's Honestly Significant Difference (HSD) test. The wear depth ranged from 58.3-126.9 m and the volumetric loss ranged from 0.019-0.049 mm(3), with significant differences observed between restorative materials. The wear depth of G-ænial Universal Flo was significantly smaller than those of the other resin composites tested. The flexural strengths and elastic modulus ranged from 90.5-135.1 MPa and from 4.7-7.6 GPa, respectively. A significantly greater flexural strength and higher elastic modulus was found for G-ænial Universal Flo than the other composites. The wear and mechanical properties of the flowable resin composites tested suggested improved performance compared with universal resin composites.
NASA Astrophysics Data System (ADS)
Ghorbanpour Arani, A.; Shajari, A. R.; Amir, S.; Loghman, A.
2012-08-01
Nonlinear vibration and stability of a smart composite micro-tube made of Poly-vinylidene fluoride (PVDF) reinforced by Boron-Nitride nanotubes (BNNTs) embedded in an elastic medium under electro-thermal loadings is investigated. The BNNTs are considered to be long straight fibers and the composite used in this study is in the category of piezoelectric fiber reinforced composites (PEFRC). The micro-tube is conveying a fully developed isentropic, incompressible and irrotational fluid flow. The smart micro-tube is modeled as a thin shell based on the nonlinear Donnell's shell theory. Effects of mean flow velocity, fluid viscosity, elastic medium modulus, temperature change, imposed electric potential, small scale, aspect ratio, volume percent and orientation angle of the BNNTs on the vibration behavior of the micro-tube are taken into account. The results indicate that increasing mean flow velocity considerably increases the nonlinearity effects so that small scale and temperature change effects become negligible. It has also been found that stability of the system is strongly dependent on the imposed electric potential and the volume percent of BNNTs reinforcement. The system studied in this article can be used as sensor and actuator in the sensitive applications.
Assessment and prediction of drying shrinkage cracking in bonded mortar overlays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beushausen, Hans, E-mail: hans.beushausen@uct.ac.za; Chilwesa, Masuzyo
2013-11-15
Restrained drying shrinkage cracking was investigated on composite beams consisting of substrate concrete and bonded mortar overlays, and compared to the performance of the same mortars when subjected to the ring test. Stress development and cracking in the composite specimens were analytically modeled and predicted based on the measurement of relevant time-dependent material properties such as drying shrinkage, elastic modulus, tensile relaxation and tensile strength. Overlay cracking in the composite beams could be very well predicted with the analytical model. The ring test provided a useful qualitative comparison of the cracking performance of the mortars. The duration of curing wasmore » found to only have a minor influence on crack development. This was ascribed to the fact that prolonged curing has a beneficial effect on tensile strength at the onset of stress development, but is in the same time not beneficial to the values of tensile relaxation and elastic modulus. -- Highlights: •Parameter study on material characteristics influencing overlay cracking. •Analytical model gives good quantitative indication of overlay cracking. •Ring test presents good qualitative indication of overlay cracking. •Curing duration has little effect on overlay cracking.« less
Aspects of the Fracture Toughness of Carbon Nanotube Modified Epoxy Polymer Composites
NASA Astrophysics Data System (ADS)
Mirjalili, Vahid
Epoxy resins used in fibre reinforced composites exhibit a brittle fracture behaviour, because they show no sign of damage prior to a catastrophic failure. Rubbery materials and micro-particles have been added to epoxy resins to improve their fracture toughness, which reduces strength and elastic properties. In this research, carbon nanotubes (CNTs) are investigated as a potential toughening agent for epoxy resins and carbon fibre reinforced composites, which can also enhance strength and elastic properties. More specifically, the toughening mechanisms of CNTs are investigated theoretically and experimentally. The effect of aligned and randomly oriented carbon nanotubes (CNTs) on the fracture toughness of polymers was modelled using Elastic Plastic Fracture Mechanics. Toughening from CNT pull-out and rupture were considered, depending on the CNTs critical length. The model was used to identify the effect of CNTs geometrical and mechanical properties on the fracture toughness of CNT-modified epoxies. The modelling results showed that a uniform dispersion and alignment of a high volume fraction of CNTs normal to the crack growth plane would lead to the maximum fracture toughness enhancement. To achieve a uniform dispersion, the effect of processing on the dispersion of single walled and multi walled CNTs in epoxy resins was investigated. An instrumented optical microscope with a hot stage was used to quantify the evolution of the CNT dispersion during cure. The results showed that the reduction of the resin viscosity at temperatures greater than 100 °C caused an irreversible re-agglomeration of the CNTs in the matrix. The dispersion quality was then directly correlated to the fracture toughness of the modified resin. It was shown that the fine tuning of the ratio of epoxy resin, curing agent and CNT content was paramount to the improvement of the base resin fracture toughness. For the epoxy resin (MY0510 from Hexcel), an improvement of 38% was achieved with 0.3 wt.% of Single Walled CNT (SWNT). Finally, the CNT-modified epoxy resin was used to manufacture carbon fibre laminates by resin film infusion and prepreg technologies. The Mode I and Mode II delamination properties of the CNT-modified composite increased by 140% and 127%, respectively. In contrast, this improvement was not observed for the base CNT-modified polymers, used to manufacture the composite laminates. A qualitative analysis of the fractured surface using a Scanning Electron Microscope revealed a good dispersion in the composites samples, confirming the importance of processing to harness the full potential of carbon nanotubes for toughening polymer composites.
Lamb Wave Assessment of Fiber Volume Fraction in Composites
NASA Technical Reports Server (NTRS)
Seale, Michael D.; Smith, Barry T.; Prosser, W. H.; Zalameda, Joseph N.
1998-01-01
Among the various techniques available, ultrasonic Lamb waves offer a convenient method of examining composite materials. Since the Lamb wave velocity depends on the elastic properties of a material, an effective tool exists to evaluate composites by measuring the velocity of these waves. Lamb waves can propagate over long distances and are sensitive to the desired in-plane elastic properties of the material. This paper discusses a study in which Lamb waves were used to examine fiber volume fraction variations of approximately 0.40-0.70 in composites. The Lamb wave measurements were compared to fiber volume fractions obtained from acid digestion tests. Additionally, a model to predict the fiber volume fraction from Lamb wave velocity values was evaluated.
NASA Technical Reports Server (NTRS)
Prosser, William H.
1990-01-01
The first measurements of the stress induced velocity changes for propagation directions along the direction of applied stress in gr/ep composites have been presented. For propagation and stress direction perpendicular to the fiber direction, the data demonstrated a linear relation between normalized velocity shift and stress. After corrections for the delay line were made, the slope or SAC was determined and compared favorably with the expected value calculated from the previously determined nonlinear coefficients of this material. The ratio of the SAC to the elastic compliance for this direction of loading was evaluated and found to have a value similar to numerous other materials which have very different linear elastic properties. Measurements with stress and propagation along the fibers yielded unusual behavior. The curves were very nonlinear and even shifted direction at higher loads. The large scatter in the data due to bond variations made separation of material effects from bond induced artifacts impossible. Thus the SAC, R, and the remaining two unknown TOEC's could not be determined for this direction of propagation. These measurements further expand the basis of determining nonlinear elastic properties of composite materials. These properties may be useful in developing much needed NDE techniques to determine such important parameters as residual stress after cure and residual strength after impact damage. Additional study is needed to measure the nonlinear behavior in other composite materials including angle ply laminates. Also, other techniques to measure elastic nonlinearity such as harmonic generation should be applied to composites to improve the understanding of these properties and their importance.
Investigation on low velocity impact resistance of SMA composite material
NASA Astrophysics Data System (ADS)
Hu, Dianyin; Zhang, Long; Wang, Rongqiao; Zhang, Xiaoyong
2016-04-01
A method to improve low velocity impact resistance of aeroengine composite casing using shape memory alloy's properties of shape memory(SM) and super-elasticity(SE) is proposed in this study. Firstly, a numerical modeling of SMA reinforced composite laminate under low velocity impact load with impact velocity of 10 m/s is established based on its constitutive model implemented by the VUMAT subroutine of commercial software ABAQUS. Secondly, the responses of SMA composite laminate including stress and deflection distributions were achieved through transient analysis under low velocity impact load. Numerical results show that both peak stress and deflection values of SMA composite laminate are less than that without SMA, which proves that embedding SMA into the composite structure can effectively improve the low velocity impact performance of composite structure. Finally, the influence of SM and SE on low velocity impact resistance is quantitatively investigated. The values of peak stress and deflection of SMA composite based on SM property decrease by 18.28% and 9.43% respectively, compared with those without SMA, instead of 12.87% and 5.19% based on SE. In conclusion, this proposed model described the impact damage of SMA composite structure and turned to be a more beneficial method to enhance the impact resistance by utilizing SM effect.
Composite-Material Point-Stress Analysis
NASA Technical Reports Server (NTRS)
Spears, F., S.
1982-01-01
PSANAL computes composite-laminate elastic and thermal properties and allowable load levels for any combination of applied membrane and bending loads occurring at a point. Basic linear orthotropic stress/ strain relationships and standard composite-laminate theory formulas are utilized.
Time-dependent response of filamentary composite spherical pressure vessels
NASA Technical Reports Server (NTRS)
Dozier, J. D.
1983-01-01
A filamentary composite spherical pressure vessel is modeled as a pseudoisotropic (or transversely isotropic) composite shell, with the effects of the liner and fill tubes omitted. Equations of elasticity, macromechanical and micromechanical formulations, and laminate properties are derived for the application of an internally pressured spherical composite vessel. Viscoelastic properties for the composite matrix are used to characterize time-dependent behavior. Using the maximum strain theory of failure, burst pressure and critical strain equations are formulated, solved in the Laplace domain with an associated elastic solution, and inverted back into the time domain using the method of collocation. Viscoelastic properties of HBFR-55 resin are experimentally determined and a Kevlar/HBFR-55 system is evaluated with a FORTRAN program. The computed reduction in burst pressure with respect to time indicates that the analysis employed may be used to predict the time-dependent response of a filamentary composite spherical pressure vessel.
Evaluation of silicon carbide fiber/titanium composites
NASA Technical Reports Server (NTRS)
Jech, R. W.; Signorelli, R. A.
1979-01-01
Izod impact, tensile, and modulus of elasticity were determined for silicon carbide fiber/titanium composites to evaluate their potential usefulness as substitutes for titanium alloys or stainless steel in stiffness critical applications for aircraft turbine engines. Variations in processing conditions and matrix ductility were examined to produce composites having good impact strength in both the as-fabricated condition and after air exposure at elevated temperature. The impact strengths of composites containing 36 volume percent silicon carbide (SiC) fiber in an unalloyed (A-40) titanium matrix were found to be equal to unreinforced titanium-6 aluminum-4 vanadium alloy; the tensile strengths of the composites were marginally better than the unreinforced unalloyed (A-70) matrix at elevated temperature, though not at room temperature. At room temperature the modulus of elasticity of the composites was 48 percent higher than titanium or its alloys and 40 percent higher than that of stainless steel.
Characterization and damage evaluation of advanced materials
NASA Astrophysics Data System (ADS)
Mitrovic, Milan
Mechanical characterization of advanced materials, namely magnetostrictive and graphite/epoxy composite materials, is studied in this dissertation, with an emphasis on damage evaluation of composite materials. Consequently, the work in this dissertation is divided into two parts, with the first part focusing on characterization of the magneto-elastic response of magnetostrictlve materials, while the second part of this dissertation describes methods for evaluating the fatigue damage in composite materials. The objective of the first part of this dissertation is to evaluate a nonlinear constitutive relation which more closely depict the magneto-elastic response of magnetostrictive materials. Correlation between experimental and theoretical values indicate that the model adequately predicts the nonlinear strain/field relations in specific regimes, and that the currently employed linear approaches are inappropriate for modeling the response of this material in a structure. The objective of the second part of this dissertation is to unravel the complexities associated with damage events associated with polymeric composite materials. The intent is to characterize and understand the influence of impact and fatigue induced damage on the residual thermo-mechanical properties and compressive strength of composite systems. The influence of fatigue generated matrix cracking and micro-delaminations on thermal expansion coefficient (TEC) and compressive strength is investigated for woven graphite/epoxy composite system. Experimental results indicate that a strong correlation exists between TEC and compressive strength measurements, indicating that TEC measurements can be used as a damage metric for this material systems. The influence of delaminations on the natural frequencies and mode shapes of a composite laminate is also investigated. Based on the changes of these parameters as a function of damage, a methodology for determining the size and location of damage is suggested. Finally, the influence of loading parameters on impact damage growth is investigated experimentally though constant amplitude and spectrum loading fatigue tests. Based on observed impact damage growth during these tests it is suggested that the low load levels can be deleted from the standardized test sequence without significant influence on impact damage propagation.
NASA Technical Reports Server (NTRS)
Pindera, Marek-Jerzy; Salzar, Robert S.
1996-01-01
A user's guide for the computer program OPTCOMP2 is presented in this report. This program provides a capability to optimize the fabrication or service-induced residual stresses in unidirectional metal matrix composites subjected to combined thermomechanical axisymmetric loading by altering the processing history, as well as through the microstructural design of interfacial fiber coatings. The user specifies the initial architecture of the composite and the load history, with the constituent materials being elastic, plastic, viscoplastic, or as defined by the 'user-defined' constitutive model, in addition to the objective function and constraints, through a user-friendly data input interface. The optimization procedure is based on an efficient solution methodology for the inelastic response of a fiber/interface layer(s)/matrix concentric cylinder model where the interface layers can be either homogeneous or heterogeneous. The response of heterogeneous layers is modeled using Aboudi's three-dimensional method of cells micromechanics model. The commercial optimization package DOT is used for the nonlinear optimization problem. The solution methodology for the arbitrarily layered cylinder is based on the local-global stiffness matrix formulation and Mendelson's iterative technique of successive elastic solutions developed for elastoplastic boundary-value problems. The optimization algorithm employed in DOT is based on the method of feasible directions.
Elastic Moduli and Damping of Vibrational Modes of Aluminum/Silicon Carbide Composite Beams
NASA Technical Reports Server (NTRS)
Leidecker, Henning
1996-01-01
Elastic and shear moduli were determined for two aluminum matrix composites containing 20 and 40 volume percent discontinuous silicon carbide, respectively, using transverse, longitudinal, and torsional vibrational modes of specimens prepared as thin beams. These moduli are consistent with those determined from stress-strain measurements. The damping factors for these modes were also determined. Thermal properties are used to show that part of the damping of transverse modes is caused by the transverse thermal currents discussed by C. Zener (thermo-elastic damping); this damping is frequency-dependent with a maximum damping factor of approximately 0.002. The remaining damping is frequency-independent, and has roughly similar values in transverse, longitudinal, and torsional modes: approximately 0.0001.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, G. Y.; Gao, X. -L.; Bishop, J. E.
Here, a new model for determining band gaps for elastic wave propagation in a periodic composite beam structure is developed using a non-classical Bernoulli–Euler beam model that incorporates the microstructure, surface energy and rotational inertia effects. The Bloch theorem and transfer matrix method for periodic structures are employed in the formulation. The new model reduces to the classical elasticity-based model when both the microstructure and surface energy effects are not considered. The band gaps predicted by the new model depend on the microstructure and surface elasticity of each constituent material, the unit cell size, the rotational inertia, and the volumemore » fraction. To quantitatively illustrate the effects of these factors, a parametric study is conducted. The numerical results reveal that the band gap predicted by the current non-classical model is always larger than that predicted by the classical model when the beam thickness is very small, but the difference is diminishing as the thickness becomes large. Also, it is found that the first frequency for producing the band gap and the band gap size decrease with the increase of the unit cell length according to both the current and classical models. In addition, it is observed that the effect of the rotational inertia is larger when the exciting frequency is higher and the unit cell length is smaller. Furthermore, it is seen that the volume fraction has a significant effect on the band gap size, and large band gaps can be obtained by tailoring the volume fraction and material parameters.« less
Zhang, G. Y.; Gao, X. -L.; Bishop, J. E.; ...
2017-11-20
Here, a new model for determining band gaps for elastic wave propagation in a periodic composite beam structure is developed using a non-classical Bernoulli–Euler beam model that incorporates the microstructure, surface energy and rotational inertia effects. The Bloch theorem and transfer matrix method for periodic structures are employed in the formulation. The new model reduces to the classical elasticity-based model when both the microstructure and surface energy effects are not considered. The band gaps predicted by the new model depend on the microstructure and surface elasticity of each constituent material, the unit cell size, the rotational inertia, and the volumemore » fraction. To quantitatively illustrate the effects of these factors, a parametric study is conducted. The numerical results reveal that the band gap predicted by the current non-classical model is always larger than that predicted by the classical model when the beam thickness is very small, but the difference is diminishing as the thickness becomes large. Also, it is found that the first frequency for producing the band gap and the band gap size decrease with the increase of the unit cell length according to both the current and classical models. In addition, it is observed that the effect of the rotational inertia is larger when the exciting frequency is higher and the unit cell length is smaller. Furthermore, it is seen that the volume fraction has a significant effect on the band gap size, and large band gaps can be obtained by tailoring the volume fraction and material parameters.« less
Dynamic behaviour analysis of an energy accumulation system comprising a composite flywheel
NASA Astrophysics Data System (ADS)
Portnov, G. G.; Kulakov, V. L.; Barinov, I. N.
1994-01-01
A simple system for energy accumulation comprising a rim and a massive shaft with elastic couplings was considered; the shaft runs in elastic damping bearings. Forced vibrations of the flywheel system induced by linear and angular eccentricities of composite rim were investigated. The effect of variation of different parameters of the system (stiffness of bearings, viscous friction coefficients of bearings, mass and moment of inertia of the shaft) on damping of radial and angular forced vibrations has been estimated.
Mechanical properties of composite materials
NASA Technical Reports Server (NTRS)
Thornton, H. Richard; Cornwell, L. R.
1993-01-01
A composite material incorporates high strength, high modulus fibers in a matrix (polymer, metal, or ceramic). The fibers may be oriented in a manner to give varying in-plane properties (longitudinal, transverse-stress, strain, and modulus of elasticity). The lay-up of the composite laminates is such that a center line of symmetry and no bending moment exist through the thickness. The laminates are tabbed, with either aluminum or fiberglass, and are ready for tensile testing. The determination of the tensile properties of resin matrix composites, reinforced by continuous fibers, is outlined in ASTM standard D 3039, Tensile Properties of Oriented Fiber Composites. The tabbed flat tensile coupons are placed into the grips of a tensile machine and load-deformation curves plotted. The load-deformation data are translated into stress-strain curves for determination of mechanical properties (ultimate tensile strength and modulus of elasticity).
NASA Astrophysics Data System (ADS)
Ibrahim, Mustafa K.; Hamzah, E.; Saud, Safaa N.; Nazim, E. M.; Bahador, A.
2017-12-01
Ti-Ni and Ti-Ni-Ce shape memory alloys (SMAs) were successfully fabricated by microwave sintering. The improvement of the mechanical properties especially the elastic modulus is the most important criterion in this research. The high elastic modulus problems are the most critical issues frequently encountered in hard tissue replacement applications. The effect of Ce addition with four atomic percentages (0 %, 0.19 %, 0.385 % and, 1.165 %) on the microstructure, phase composition, transformation temperatures and mechanical properties was investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), Differential Scanning Calorimeter (DSC), and compression test. The microstructure shows plates-like with needles-like inside the titanium-rich region. The compression strain was improved, but reduces the compression strength. The addition of cerium improved the properties by reducing the elastic modulus to be very close to the natural human bone, also the microwave sintering gives TiNi SMAs with low elastic modulus comparing with other methods. Based on the results, the 0.385 at. % Ce exhibited a remarkable highest compressive strain and lower elastic modulus compared with the other percentages. In conclusion, the present results indicate that Ti-Ni-Ce SMAs could be a potential alternative to improve Ti-51 at %Ni SMAs for certain biomedical applications.
Wang, Shan; Cui, Lishan; Hao, Shijie; ...
2014-10-24
This study investigated the elastic deformation behaviour of Nb nanowires embedded in a NiTi matrix. The Nb nanowires exhibited an ultra-large elastic deformation, which is found to be dictated by the martensitic transformation of the NiTi matrix, thus exhibiting unique characteristics of locality and rapidity. These are in clear contrast to our conventional observation of elastic deformations of crystalline solids, which is a homogeneous lattice distortion with a strain rate controlled by the applied strain. The Nb nanowires are also found to exhibit elastic-plastic deformation accompanying the martensitic transformation of the NiTi matrix in the case when the transformation strainmore » of the matrix over-matches the elastic strain limit of the nanowires, or exhibit only elastic deformation in the case of under-matching. Such insight provides an important opportunity for elastic strain engineering and composite design.« less
NASA Technical Reports Server (NTRS)
Krempl, Erhard; Hong, Bor Zen
1989-01-01
A macromechanics analysis is presented for the in-plane, anisotropic time-dependent behavior of metal matrix laminates. The small deformation, orthotropic viscoplasticity theory based on overstress represents lamina behavior in a modified simple laminate theory. Material functions and constants can be identified in principle from experiments with laminae. Orthotropic invariants can be repositories for tension-compression asymmetry and for linear elasticity in one direction while the other directions behave in a viscoplastic manner. Computer programs are generated and tested for either unidirectional or symmetric laminates under in-plane loading. Correlations with the experimental results on metal matrix composites are presented.
Influence of Ionizing Radiation on the Mechanical Properties of a Wood-Plastic Composite
NASA Astrophysics Data System (ADS)
Palm, Andrew; Smith, Jennifer; Driscoll, Mark; Smith, Leonard; Larsen, L. Scott
The focus of this study was to examine the potential benefits of irradiating polyethylene (PE)-based wood-plastic composites (WPCs) in order to enhance the mechanical properties of the WPC. The PE-based WPCs were irradiated, post extrusion, at dose levels of 0, 50, 100, 150, 200, and 250 kGy with an electron beam (EB). The irradiated WPCs were then evaluated using a third point bending test (ASTM D4761) along with scanning electron microscopy (SEM). It was found that ultimate strength and modulus of elasticity (MOE) increased with increasing dose level. Examination of the fracture surfaces of polyethylene revealed a distinct difference in failure between irradiated and non-irradiated surfaces.
Schrof, Susanne; Varga, Peter; Hesse, Bernhard; Schöne, Martin; Schütz, Roman; Masic, Admir; Raum, Kay
2016-10-15
The mechanical competence of bone is crucially determined by its material composition and structural design. To investigate the interaction of the complex hierarchical architecture, the chemical composition and the resulting elastic properties of healthy femoral bone at the level of single bone lamellae and entire structural units, we combined polarized Raman spectroscopy (PRS), scanning acoustic microscopy (SAM) and synchrotron X-ray phase contrast nano tomography (SR-nanoCT). In line with earlier studies, mutual correlation analysis strongly suggested that the characteristic elastic modulations of bone lamellae within single units are the result of the twisting fibrillar orientation, rather than compositional variations, modulations of the mineral particle maturity, or mass density deviations. Furthermore, we show that predominant fibril orientations in entire tissue units can be rapidly assessed from Raman parameter maps. Coexisting twisted and oscillating fibril patterns were observed in all investigated tissue domains. Ultimately, our findings demonstrate in particular the potential of combined PRS and SAM measurements in providing multi-scalar analysis of correlated fundamental tissue properties. In future studies, the presented approach can be applied for non-destructive investigation of small pathologic samples from bone biopsies and a broad range of biological materials and tissues. Bone is a complex structured composite material consisting of collagen fibrils and mineral particles. Various studies have shown that not only composition, maturation, and packing of its components, but also their structural arrangement determine the mechanical performance of the tissue. However, prominent methodologies are usually not able to concurrently describe these factors on the micron scale and complementary tissue characterization remains challenging. In this study we combine X-ray nanoCT, polarized Raman imaging and scanning acoustic microscopy and propose a protocol for fast and easy assessment of predominant fibril orientations in bone. Based on our site-matched analysis of cortical bone, we conclude that the elastic modulations of bone lamellae are mainly determined by the fibril arrangement. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
An endochronic theory for transversely isotropic fibrous composites
NASA Technical Reports Server (NTRS)
Pindera, M. J.; Herakovich, C. T.
1981-01-01
A rational methodology of modelling both nonlinear and elastic dissipative response of transversely isotropic fibrous composites is developed and illustrated with the aid of the observed response of graphite-polyimide off-axis coupons. The methodology is based on the internal variable formalism employed within the text of classical irreversible thermodynamics and entails extension of Valanis' endochronic theory to transversely isotropic media. Applicability of the theory to prediction of various response characteristics of fibrous composites is illustrated by accurately modelling such often observed phenomena as: stiffening reversible behavior along fiber direction; dissipative response in shear and transverse tension characterized by power-laws with different hardening exponents; permanent strain accumulation; nonlinear unloading and reloading; and stress-interaction effects.
METABOLIC SYNDROME AND ARTERIAL ELASTICITY IN YOUTH
Gardner, Andrew W.; Parker, Donald E.; Krishnan, Sowmya; Chalmers, Laura J.
2012-01-01
Objective To compare arterial elasticity in children, adolescents, and young adults with and without metabolic syndrome (MetS), and to assess which MetS components, demographic measures, and body composition measures are associated with arterial elasticity. Materials/Methods Two-hundred six subjects (107 females and 99 males) between the ages of 10 and 20 years were recruited by local newspaper advertisements, university email advertisements, and informational flyers. Subjects were assessed on MetS components, demographic measures, body composition measures, and arterial elasticity via radial tonometry. Forty-five subjects (22%) had MetS, as defined by the International Diabetes Federation, and 161 subjects (78%) did not. Results The primary novel finding was that group differences were not observed for large artery elasticity index (LAEI) (MetS = 16.1±4.4 (ml × mmHg−1) × 10 (mean±SD), control = 15.4±4.9, (ml × mmHg−1) × 10, p=0.349), and small artery elasticity index (SAEI) (MetS = 9.2±2.7 (ml × mmHg−1) × 100, control = 8.4±2.9, (ml × mmHg−1) × 100, p=0.063). In the MetS group, fat free mass was positively associated with arterial elasticity, and was the strongest multivariate predictor of LAEI (partial R2=0.41) and SAEI (partial R2=0.41). Conclusions Youth with MetS did not exhibit differences in LAEI and SAEI compared to controls. Furthermore, fat free mass of youth with MetS was positively associated with arterial elasticity, and was the strongest predictor of both LAEI and SAEI. The clinical implication is that exercise intervention designed to increase fat free mass might increase arterial elasticity in youth, particularly in youth with MetS. PMID:23142161
Model based inversion of ultrasound data in composites
NASA Astrophysics Data System (ADS)
Roberts, R. A.
2018-04-01
Work is reported on model-based defect characterization in CFRP composites. The work utilizes computational models of ultrasound interaction with defects in composites, to determine 1) the measured signal dependence on material and defect properties (forward problem), and 2) an assessment of defect properties from analysis of measured ultrasound signals (inverse problem). Work is reported on model implementation for inspection of CFRP laminates containing multi-ply impact-induced delamination, in laminates displaying irregular surface geometry (roughness), as well as internal elastic heterogeneity (varying fiber density, porosity). Inversion of ultrasound data is demonstrated showing the quantitative extraction of delamination geometry and surface transmissivity. Additionally, data inversion is demonstrated for determination of surface roughness and internal heterogeneity, and the influence of these features on delamination characterization is examined. Estimation of porosity volume fraction is demonstrated when internal heterogeneity is attributed to porosity.
Fernandes-Silva, Miguel M; Shah, Amil M; Claggett, Brian; Cheng, Susan; Tanaka, Hirofumi; Silvestre, Odilson M; Nadruz, Wilson; Borlaug, Barry A; Solomon, Scott D
2018-04-16
Weight gain appears to accelerate age-related ventricular-arterial stiffening, which has been implicated in the development of heart failure (HF), but it is unclear whether body fat accumulation underpins this association. We evaluated the relationship of adiposity, using measures of body composition, with ventricular-arterial stiffness among the elderly in the community. Adiposity was accessed through body mass index (BMI), waist circumference, and body fat percentage. We studied the association of these measures with carotid-femoral pulse wave velocity (cfPWV), arterial elastance index (EaI), left ventricular (LV) end-systolic elastance index (EesI) and LV end-diastolic elastance index (EedI) in 5520 community-based, elderly Atherosclerosis Risk in Communities (ARIC) Study participants, who underwent echocardiography between 2011 and 2013. BMI and waist circumference were directly associated with EaI, EedI and EesI even after adjusting for age, sex, race, hypertension, diabetes mellitus, heart rate, prevalent coronary heart disease and HF. After further adjustment for BMI, body fat percentage demonstrated significant independent linear relationships with EaI [standardized beta coefficient (β)=0.17, P<0.001], EesI (β=0.08, P=0.003) and EedI (β=0.20, P<0.001), and significant non-linear relationships with cfPWV (P=0.033). In this biracial community-based cohort, increased adiposity was associated with increased ventricular-arterial stiffness among the elderly and suggests a potential mechanism by which obesity might contribute to the development of HF. © 2018 The Authors. European Journal of Heart Failure © 2018 European Society of Cardiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shan; Cui, Lishan; Hao, Shijie
This study investigated the elastic deformation behaviour of Nb nanowires embedded in a NiTi matrix. The Nb nanowires exhibited an ultra-large elastic deformation, which is found to be dictated by the martensitic transformation of the NiTi matrix, thus exhibiting unique characteristics of locality and rapidity. These are in clear contrast to our conventional observation of elastic deformations of crystalline solids, which is a homogeneous lattice distortion with a strain rate controlled by the applied strain. The Nb nanowires are also found to exhibit elastic-plastic deformation accompanying the martensitic transformation of the NiTi matrix in the case when the transformation strainmore » of the matrix over-matches the elastic strain limit of the nanowires, or exhibit only elastic deformation in the case of under-matching. Such insight provides an important opportunity for elastic strain engineering and composite design.« less
NASA Astrophysics Data System (ADS)
Handa, Danish; Sekhar Dondapati, Raja; Kumar, Abhinav
2017-08-01
Ductile to brittle transition (DTBT) is extensively observed in materials under cryogenic temperatures, thereby observing brittle failure due to the non-resistance of crack propagation. Owing to its outstanding mechanical and thermal properties, Kevlar 49 composites are widely used in aerospace applications under cryogenic temperatures. Therefore, in this paper, involving the assumption of linear elastic fracture mechanics (LEFM), mechanical characterization of Kevlar 49 composite is done using Extended Finite Element Method (X-FEM) technique in Abaqus/CAE software. Further, the failure of Kevlar 49 composites due to the propagation of crack at room temperature and the cryogenic temperature is investigated. Stress, strain and strain energy density as a function of the width of the Kevlar specimen is predicted, indicates that Kevlar 49 composites are suitable for use under cryogenic temperatures.
Mechanical Model Development for Composite Structural Supercapacitors
NASA Technical Reports Server (NTRS)
Ricks, Trenton M.; Lacy, Thomas E., Jr.; Santiago, Diana; Bednarcyk, Brett A.
2016-01-01
Novel composite structural supercapacitor concepts have recently been developed as a means both to store electrical charge and to provide modest mechanical load carrying capability. Double-layer composite supercapacitors are often fabricated by impregnating a woven carbon fiber fabric, which serves as the electrodes, with a structural polymer electrolyte. Polypropylene or a glass fabric is often used as the separator material. Recent research has been primarily limited to evaluating these composites experimentally. In this study, mechanical models based on the Multiscale Generalized Method of Cells (MSGMC) were developed and used to calculate the shear and tensile properties and response of two composite structural supercapacitors from the literature. The modeling approach was first validated against traditional composite laminate data. MSGMC models for composite supercapacitors were developed, and accurate elastic shear/tensile properties were obtained. It is envisioned that further development of the models presented in this work will facilitate the design of composite components for aerospace and automotive applications and can be used to screen candidate constituent materials for inclusion in future composite structural supercapacitor concepts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henager, Charles H.; Nguyen, Ba Nghiep; Kurtz, Richard J.
2015-03-01
The use of SiC and SiC-composites in fission or fusion environments requires joining methods for assembling systems. The international fusion community designed miniature torsion specimens for joint testing and irradiation in test reactors with limited irradiation volumes. These torsion specimens fail out-of-plane when joints are strong and when elastic moduli are within a certain range compared to SiC, which causes difficulties in determining shear strengths for joints or for comparing unirradiated and irradiated joints. A finite element damage model was developed that indicates fracture is likely to occur within the joined pieces to cause out-of-plane failures for miniature torsion specimensmore » when a certain modulus and strength ratio between the joint material and the joined material exists. The model was extended to treat elastic-plastic joints such as SiC/epoxy and steel/epoxy joints tested as validation of the specimen design.« less
Compaction trends of full stiffness tensor and fluid permeability in artificial shales
NASA Astrophysics Data System (ADS)
Beloborodov, Roman; Pervukhina, Marina; Lebedev, Maxim
2018-03-01
We present a methodology and describe a set-up that allows simultaneous acquisition of all five elastic coefficients of a transversely isotropic (TI) medium and its permeability in the direction parallel to the symmetry axis during mechanical compaction experiments. We apply the approach to synthetic shale samples and investigate the role of composition and applied stress on their elastic and transport properties. Compaction trends for the five elastic coefficients that fully characterize TI anisotropy of artificial shales are obtained for a porosity range from 40 per cent to 15 per cent. A linear increase of elastic coefficients with decreasing porosity is observed. The permeability acquired with the pressure-oscillation technique exhibits exponential decrease with decreasing porosity. Strong correlations are observed between an axial fluid permeability and seismic attributes, namely, VP/VS ratio and acoustic impedance, measured in the same direction. These correlations might be used to derive permeability of shales from seismic data given that their mineralogical composition is known.
Chou, Szu-Yuan; Cheng, Chao-Min; LeDuc, Philip R
2009-06-01
At the interface between extracellular substrates and biological materials, substrate elasticity strongly influences cell morphology and function. The associated biological ramifications comprise a diversity of critical responses including apoptosis, differentiation, and motility, which can affect medical devices such as stents. The interactions of the extracellular environment with the substrate are also affected by local properties wherein cells sense and respond to different physical inputs. To investigate the effects of having localized elasticity control of substrate microenvironments on cell response, we have developed a method to control material interface interactions with cells by dictating local substrate elasticity. This system is created by generating a composite material system with alternating, linear regions of polymers that have distinct stiffness characteristics. This approach was used to examine cytoskeletal and morphological changes in NIH 3T3 fibroblasts with emphasis on both local and global properties, noting that cells sense and respond to distinct material elasticities. Isolated cells sense and respond to these local differences in substrate elasticity by extending processes along the interface. Also, cells grown on softer elastic regions at higher densities (in contact with each other) have a higher projected area than isolated cells. Furthermore, when using chemical agents such as cytochalasin-D to disrupt the actin cytoskeleton, there is a significant increase in projected area for cells cultured on softer elastic regions This method has the potential to promote understanding of biomaterial-affected responses in a diversity of areas including morphogenesis, mechanotransduction, stents, and stem cell differentiation.
Comparison of formation of visco-elastic masses and their properties between zeins and kafirins.
Taylor, Janet; Anyango, Joseph O; Muhiwa, Peter J; Oguntoyinbo, Segun I; Taylor, John R N
2018-04-15
Zeins of differing sub-class composition much more readily formed visco-elastic masses in water or acetic acid solutions than equivalent kafirin preparations. Visco-elastic masses could be formed from both zein and kafirin preparations by coacervation from glacial acetic acid. Dissolving the prolamins in glacial acetic acid apparently enabled protonation and complete solvation. Stress-relaxation analysis of coacervated zein and kafirin visco-elastic masses showed they were initially soft. With storage, they became much firmer. Zein masses exhibited predominantly viscous flow properties, whereas kafirin masses were more elastic. The γ-sub-class is apparently necessary for the retention of visco-elastic mass softness with kafirin and zein, and for elastic recovery of kafirin. Generally, regardless of water or acetic acid treatment, all the zein preparations had similar FTIR spectra, with greater α-helical conformation, than the kafirin preparations which were also similar to each other. Kafirin visco-elastic masses have a much higher elastic character than zein masses. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Al-Sehemi, Abdullah G.; Al-Ghamdi, Ahmed A.; Dishovsky, Nikolay T.; Malinova, Petrunka A.; Atanasov, Nikolay T.; Atanasova, Gabriela L.
2017-07-01
The aim of the research is to obtain conductive elastomer based composites with different degree of filling and specific properties that are applicable for manufacturing of small flexible wearable antennas. The mechanical, electrical and magnetic properties of the composites based on butadiene-acrylonitrile rubber and conductive carbon black have been determined and the possibilities for their use have been analyzed. It has been found that regarding the requirements for elastomer composites application as substrates in such kind of antennas for the 2.4-2.5 GHz frequency range (in respect to the tensile strength, elasticity, volume resistivity, real part of permittivity and permeability, tangent of dielectric and magnetic losses), the most suitable composites are those containing conductive carbon black at 5-10 phr. The prepared composites have been used as monolayered or multilayered substrates for manufacturing prototypes of small flexible wearable antennas for medical, sport and military applications for the 2.4-2.5 GHz frequency range, which demonstrate reliable performance and meet the requirements of the Federal Communication Commission.
NASA Astrophysics Data System (ADS)
Kumar, Amit; La, Thanh Giang; Li, Xinda; Chung, Hyun Joong
The recent development of stretchable electronics expands the scope of wearable and healthcare applications. This creates a high demand in stretchy conductor that can maintain conductivity at high strain conditions. Here, we describe a simple fabrication pathway to achieve stretchable, 3D-printable and low-cost conductive composite ink. The ink is used to print complex stretchable patterns with high conductivity. The elastic ink is composed of silver(Ag) flakes, fluorine rubber, an organic solvent and surfactant. The surfactant plays multiple roles in in the composite. The surfactant promotes compatibility between silver flakes and fluorine rubber; at the same time, it affects the mechanical properties of the hosting fluoropolymers and adhesion properties of the composite. Based on experimental observations, we discuss the exact role of the surfactant in the composite. The resulting composite exhibits high conductivity value of 8.49 *10 4 S/m along with high reliability against repeated stretching/releasing cycles. Interesting examples of transfer printing of the printed ink and its applications in working devices, such as RFID tag and antennas, are also showcased.
1991-01-01
their midsurface counterparts due to the nature of the pin deflection and resulting load transfer. Linear elastic coupon radial stresses also followed... midsurface counterparts. The effects of the nonlinear elastic material behavior were quite evident when viewing the [(0/90)3,01, coupon intralaminar...to the midsurface of the coupon. The nonlinear elastic intralaminar shear stress-strain assumption acted to increase through thickness stresses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berryman, James G.; Grechka, Vladimir
2006-07-08
A model study on fractured systems was performed using aconcept that treats isotropic cracked systems as ensembles of crackedgrains by analogy to isotropic polycrystalline elastic media. Theapproach has two advantages: (a) Averaging performed is ensembleaveraging, thus avoiding the criticism legitimately leveled at mosteffective medium theories of quasistatic elastic behavior for crackedmedia based on volume concentrations of inclusions. Since crack effectsare largely independent of the volume they occupy in the composite, sucha non-volume-based method offers an appealingly simple modelingalternative. (b) The second advantage is that both polycrystals andfractured media are stiffer than might otherwise be expected, due tonatural bridging effects ofmore » the strong components. These same effectshave also often been interpreted as crack-crack screening inhigh-crack-density fractured media, but there is no inherent conflictbetween these two interpretations of this phenomenon. Results of thestudy are somewhat mixed. The spread in elastic constants observed in aset of numerical experiments is found to be very comparable to the spreadin values contained between the Reuss and Voigt bounds for thepolycrystal model. However, computed Hashin-Shtrikman bounds are much tootight to be in agreement with the numerical data, showing thatpolycrystals of cracked grains tend to violate some implicit assumptionsof the Hashin-Shtrikman bounding approach. However, the self-consistentestimates obtained for the random polycrystal model are nevertheless verygood estimators of the observed average behavior.« less
Elastic Properties and Enhanced Piezoelectric Response at Morphotropic Phase Boundaries
Cordero, Francesco
2015-01-01
The search for improved piezoelectric materials is based on the morphotropic phase boundaries (MPB) between ferroelectric phases with different crystal symmetry and available directions for the spontaneous polarization. Such regions of the composition x−T phase diagrams provide the conditions for minimal anisotropy with respect to the direction of the polarization, so that the polarization can easily rotate maintaining a substantial magnitude, while the near verticality of the TMPBx boundary extends the temperature range of the resulting enhanced piezoelectricity. Another consequence of the quasi-isotropy of the free energy is a reduction of the domain walls energies, with consequent formation of domain structures down to nanoscale. Disentangling the extrinsic and intrinsic contributions to the piezoelectricity in such conditions requires a high level of sophistication from the techniques and analyses for studying the structural, ferroelectric and dielectric properties. The elastic characterization is extremely useful in clarifying the phenomenology and mechanisms related to ferroelectric MPBs. The relationship between dielectric, elastic and piezoelectric responses is introduced in terms of relaxation of defects with electric dipole and elastic quadrupole, and extended to the response near phase transitions in the framework of the Landau theory. An account is provided of the anelastic experiments, from torsional pendulum to Brillouin scattering, that provided new important information on ferroelectric MPBs, including PZT, PMN-PT, NBT-BT, BCTZ, and KNN-based systems. PMID:28793707
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.
2001-01-01
A research program is in progress to develop strain rate dependent deformation and failure models for the analysis of polymer matrix composites subject to impact loads. Previously, strain rate dependent inelastic constitutive equations developed to model the polymer matrix were incorporated into a mechanics of materials based micromechanics method. In the current work, the micromechanics method is revised such that the composite unit cell is divided into a number of slices. Micromechanics equations are then developed for each slice, with laminate theory applied to determine the elastic properties, effective stresses and effective inelastic strains for the unit cell. Verification studies are conducted using two representative polymer matrix composites with a nonlinear, strain rate dependent deformation response. The computed results compare well to experimentally obtained values.
Poisson's ratio of fiber-reinforced composites
NASA Astrophysics Data System (ADS)
Christiansson, Henrik; Helsing, Johan
1996-05-01
Poisson's ratio flow diagrams, that is, the Poisson's ratio versus the fiber fraction, are obtained numerically for hexagonal arrays of elastic circular fibers in an elastic matrix. High numerical accuracy is achieved through the use of an interface integral equation method. Questions concerning fixed point theorems and the validity of existing asymptotic relations are investigated and partially resolved. Our findings for the transverse effective Poisson's ratio, together with earlier results for random systems by other authors, make it possible to formulate a general statement for Poisson's ratio flow diagrams: For composites with circular fibers and where the phase Poisson's ratios are equal to 1/3, the system with the lowest stiffness ratio has the highest Poisson's ratio. For other choices of the elastic moduli for the phases, no simple statement can be made.
An all-organic composite actuator material with a high dielectric constant.
Zhang, Q M; Li, Hengfeng; Poh, Martin; Xia, Feng; Cheng, Z-Y; Xu, Haisheng; Huang, Cheng
2002-09-19
Electroactive polymers (EAPs) can behave as actuators, changing their shape in response to electrical stimulation. EAPs that are controlled by external electric fields--referred to here as field-type EAPs--include ferroelectric polymers, electrostrictive polymers, dielectric elastomers and liquid crystal polymers. Field-type EAPs can exhibit fast response speeds, low hysteresis and strain levels far above those of traditional piezoelectric materials, with elastic energy densities even higher than those of piezoceramics. However, these polymers also require a high field (>70 V micro m(-1)) to generate such high elastic energy densities (>0.1 J cm(-3); refs 4, 5, 9, 10). Here we report a new class of all-organic field-type EAP composites, which can exhibit high elastic energy densities induced by an electric field of only 13 V micro m(-1). The composites are fabricated from an organic filler material possessing very high dielectric constant dispersed in an electrostrictive polymer matrix. The composites can exhibit high net dielectric constants while retaining the flexibility of the matrix. These all-organic actuators could find applications as artificial muscles, 'smart skins' for drag reduction, and in microfluidic systems for drug delivery.
NASA Technical Reports Server (NTRS)
Asthana, R.; Singh, M.
2008-01-01
Three types of hot-pressed zirconium diboride (ZrB2)-based ultra-high-temperature ceramic composites (UHTCC), ZrB2-SiC (ZS), ZrB2-SiC-C (ZSC), and ZrB2-SCS9-SiC (ZSS), were joined to Cu-clad-Mo using two Ag-Cu brazes (Cusil-ABA and Ticusil, T(sub L) approx.1073-1173 K) and two Pd-base brazes (Palco and Palni, T(sub L) approx.1493-1513 K). Scanning Electron Microscopy (SEM) coupled with energy-dispersive spectroscopy (EDS) revealed greater chemical interaction in joints made using Pd-base brazes than in joints made using Ag-Cu based active brazes. The degree of densification achieved in hot pressed composites influenced the Knoop hardness of the UHTCC and the hardness distribution across the braze interlayer. The braze region in Pd-base system displayed higher hardness in joints made using fully-dense ZS composites than in joints made using partially-dense ZSS composites and the carbon-containing ZSC composites. Calculations indicate a small negative elastic strain energy and an increase in the UHTCC's fracture stress up to a critical clad layer thickness . Above this critical thickness, strain energy in the UHTCC is positive, and it increases with increasing clad layer thickness. Empirical projections show a reduction in the effective thermal resistance of the joints and highlight the potential benefits of joining the UHTCC to Cu-clad-Mo.
Interlaminar stresses in composite laminates: A perturbation analysis
NASA Technical Reports Server (NTRS)
Hsu, P. W.; Herakovich, C. T.
1976-01-01
A general method of solution for an elastic balanced symmetric composite laminate subject to a uniaxial extension was developed based upon a perturbation analysis of a limiting free body containing an interfacial plane. The solution satisfies more physical requirements and boundary conditions than previous investigations, and predicts smooth continuous interlaminar stresses with no instabilities. It determines the finite maximum intensity for the interlaminar normal stress in all laminates, provides mathematical evidences for the singular stresses in angle-ply laminates, suggests the need for the experimental determination of an important problem parameter, and introduces a viable means for solving related problems of practical interest.
Preparation and Anodizing of SiCp/Al Composites with Relatively High Fraction of SiCp
2018-01-01
By properly proportioned SiC particles with different sizes and using squeeze infiltration process, SiCp/Al composites with high volume fraction of SiC content (Vp = 60.0%, 61.2%, 63.5%, 67.4%, and 68.0%) were achieved for optical application. The flexural strength of the prepared SiCp/Al composites was higher than 483 MPa and the elastic modulus was increased from 174.2 to 206.2 GPa. With an increase in SiC volume fraction, the flexural strength and Poisson's ratio decreased with the increase in elastic modulus. After the anodic oxidation treatment, an oxidation film with porous structure was prepared on the surface of the composite and the oxidation film was uniformly distributed. The anodic oxide growth rate of composite decreased with SiC content increased and linearly increased with anodizing time. PMID:29682145
Preparation and Anodizing of SiCp/Al Composites with Relatively High Fraction of SiCp.
Wang, Bin; Qu, Shengguan; Li, Xiaoqiang
2018-01-01
By properly proportioned SiC particles with different sizes and using squeeze infiltration process, SiCp/Al composites with high volume fraction of SiC content (Vp = 60.0%, 61.2%, 63.5%, 67.4%, and 68.0%) were achieved for optical application. The flexural strength of the prepared SiC p /Al composites was higher than 483 MPa and the elastic modulus was increased from 174.2 to 206.2 GPa. With an increase in SiC volume fraction, the flexural strength and Poisson's ratio decreased with the increase in elastic modulus. After the anodic oxidation treatment, an oxidation film with porous structure was prepared on the surface of the composite and the oxidation film was uniformly distributed. The anodic oxide growth rate of composite decreased with SiC content increased and linearly increased with anodizing time.
NASA Astrophysics Data System (ADS)
El Jai, Mostapha; Akhrif, Iatimad; Mesrar, Laila; Jabrane, Raouf
2018-05-01
The aim of this paper is to characterize mechanically the new micro-composites that have been developed in our laboratories. The composites are composed by natural clay (as a matrix) with variant percentages of Polyethylene Glycol 6000 (PEG 6000) as micro-fillers. We used the compression test for the measurement of the static parameters such as elasticity modulus in elastic region and the hardening coefficient which permits to describe the plasticity behaviour of the materials. An additional energetic approach is proposed in order to quantify the evolution of the plasticity of the reinforced materials, caused by the PEG 6000, for different percentages of this polymer.
Characterization of elastic-plastic properties of AS4/APC-2 thermoplastic composite
NASA Technical Reports Server (NTRS)
Sun, C. T.; Yoon, K. J.
1988-01-01
Elastic and inelastic properties of AS4/APC-2 composites were characterized with respect to temperature variation by using a one-parameter orthotropic plasticity model and a one parameter failure criterion. Simple uniaxial off-axis tension tests were performed on coupon specimens of unidirectional AS4/APC-2 thermoplastic composite at various temperatures. To avoid the complication caused by the extension-shear coupling effect in off-axis testing, new tabs were designed and used on the test specimens. The experimental results showed that the nonlinear behavior of constitutive relations and the failure strengths can be characterized quite well using the one parameter plasticity model and the failure criterion, respectively.
Low-Cost Nanocellulose-Reinforced High-Temperature Polymer Composites for Additive Manufacturing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ozcan, Soydan; Tekinalp, Halil L.; Love, Lonnie J.
2016-07-13
ORNL worked with American Process Inc. to demonstrate the potential use of bio-based BioPlus ® lignin-coated cellulose nanofibrils (L-CNF) as a reinforcing agent in the development of polymer feedstock suitable for additive manufacturing. L-CNF-reinforced polylactic acid (PLA) testing coupons were prepared and up to 69% increase in tensile strength and 133% increase in elastic modulus were demonstrated.
NASA Astrophysics Data System (ADS)
Rahnev, I.; Rimini, G.
2017-10-01
The equilibrium of the masses and the mechanical properties between the warp and the weft is a determining factor for the quality of the woven fabrics. When the fabric has a multi-layered structure and is designed for protective clothing, the uniform distribution of the elastical resistance acquires a paramount importance for the consumer properties. Isotropy in the sense of absolute equalising of the properties between the base and the weft evaluates the achieved optimum cohesion between the weaving threads and directs the weaving cycle settings. The possible variation of the ratio between the elastic modules of the warp and the weft, depending on the weft spacing and the warp tension, is the basic idea of this article.
Chanbi, Daoud; Ogam, Erick; Amara, Sif Eddine; Fellah, Z E A
2018-05-07
Precise but simple experimental and inverse methods allowing the recovery of mechanical material parameters are necessary for the exploration of materials with novel crystallographic structures and elastic properties, particularly for new materials and those existing only in theory. The alloys studied herein are of new atomic compositions. This paper reports an experimental study involving the synthesis and development of methods for the determination of the elastic properties of binary (Fe-Al, Fe-Ti and Ti-Al) and ternary (Fe-Ti-Al) intermetallic alloys with different concentrations of their individual constituents. The alloys studied were synthesized from high purity metals using an arc furnace with argon flow to ensure their uniformity and homogeneity. Precise but simple methods for the recovery of the elastic constants of the isotropic metals from resonant ultrasound vibration data were developed. These methods allowed the fine analysis of the relationships between the atomic concentration of a given constituent and the Young’s modulus or alloy density.
Chanbi, Daoud; Amara, Sif Eddine; Fellah, Z. E. A.
2018-01-01
Precise but simple experimental and inverse methods allowing the recovery of mechanical material parameters are necessary for the exploration of materials with novel crystallographic structures and elastic properties, particularly for new materials and those existing only in theory. The alloys studied herein are of new atomic compositions. This paper reports an experimental study involving the synthesis and development of methods for the determination of the elastic properties of binary (Fe-Al, Fe-Ti and Ti-Al) and ternary (Fe-Ti-Al) intermetallic alloys with different concentrations of their individual constituents. The alloys studied were synthesized from high purity metals using an arc furnace with argon flow to ensure their uniformity and homogeneity. Precise but simple methods for the recovery of the elastic constants of the isotropic metals from resonant ultrasound vibration data were developed. These methods allowed the fine analysis of the relationships between the atomic concentration of a given constituent and the Young’s modulus or alloy density. PMID:29735946
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hans, M., E-mail: hans@mch.rwth-aachen.de; Baben, M. to; Music, D.
2014-09-07
Ti-Al-O-N coatings were synthesized by cathodic arc and high power pulsed magnetron sputtering. The chemical composition of the coatings was determined by means of elastic recoil detection analysis and energy dispersive X-ray spectroscopy. The effect of oxygen incorporation on the stress-free lattice parameters and Young's moduli of Ti-Al-O-N coatings was investigated by X-ray diffraction and nanoindentation, respectively. As nitrogen is substituted by oxygen, implications for the charge balance may be expected. A reduction in equilibrium volume with increasing O concentration is identified by X-ray diffraction and density functional theory calculations of Ti-Al-O-N supercells reveal the concomitant formation of metal vacancies.more » Hence, the oxygen incorporation-induced formation of metal vacancies enables charge balancing. Furthermore, nanoindentation experiments reveal a decrease in elastic modulus with increasing O concentration. Based on ab initio data, two causes can be identified for this: First, the metal vacancy-induced reduction in elasticity; and second, the formation of, compared to the corresponding metal nitride bonds, relatively weak Ti-O and Al-O bonds.« less
Insights into the role of elastin in vocal fold health and disease
Moore, Jaime
2011-01-01
Elastic fibers are large, complex and surprisingly poorly understood extracellular matrix (ECM) macromolecules. The elastin fiber, generated from a single human gene - elastin (ELN), is a self assembling integral protein that endows critical mechanic proprieties to elastic tissues and organs such as the skin, lungs, and arteries. The biology of elastic fibers is complex because they have multiple components, a tightly regulated developmental deposition, a multi-step hierarchical assembly and unique biomechanical functions. Elastin is present in vocal folds, where it plays a pivotal role in the quality of phonation. This review article provides an overview of the genesis of elastin and its wide- ranging structure and function. Specific distribution within the vocal fold lamina propria across the lifespan in normal and pathological states and its contribution to vocal fold biomechanics will be examined. Elastin and elastin-derived molecules are increasingly investigated for their application in tissue engineering. The properties of various elastin– based materials will be discussed and their current and future applications evaluated. A new level of understanding of the biomechanical properties of vocal fold elastin composites and their molecular basis should lead to new strategies for elastic fiber repair and regeneration in aging and disease. PMID:21708449
Fuselage structure using advanced technology fiber reinforced composites
NASA Technical Reports Server (NTRS)
Robinson, R. K.; Tomlinson, H. M. (Inventor)
1982-01-01
A fuselage structure is described in which the skin is comprised of layers of a matrix fiber reinforced composite, with the stringers reinforced with the same composite material. The high strength to weight ratio of the composite, particularly at elevated temperatures, and its high modulus of elasticity, makes it desirable for use in airplane structures.
Composites from southern pine juvenile wood. Part 2. Durability and dimensional stability
Anton D. Pugel; Eddie W. Price; Chung-Yun Hse
1990-01-01
Southern pine juvenile and mature wood were processed into three composites: flakeboard, particleboard, and fiberboard. The durability of these composites was assessed by subjecting specimens to an ovendry-vacuumpressure-soak (ODVPS) treatment, and then evaluated for modulus of elasticity, modulus of rupture, and internal bond. Overall, juvenile wood composites had...
García-Arribas, Alfredo; Gutiérrez, Jon; Kurlyandskaya, Galina V.; Barandiarán, José M.; Svalov, Andrey; Fernández, Eduardo; Lasheras, Andoni; de Cos, David; Bravo-Imaz, Iñaki
2014-01-01
The outstanding properties of selected soft magnetic materials make them successful candidates for building high performance sensors. In this paper we present our recent work regarding different sensing technologies based on the coupling of the magnetic properties of soft magnetic materials with their electric or elastic properties. In first place we report the influence on the magneto-impedance response of the thickness of Permalloy films in multilayer-sandwiched structures. An impedance change of 270% was found in the best conditions upon the application of magnetic field, with a low field sensitivity of 140%/Oe. Second, the magneto-elastic resonance of amorphous ribbons is used to demonstrate the possibility of sensitively measuring the viscosity of fluids, aimed to develop an on-line and real-time sensor capable of assessing the state of degradation of lubricant oils in machinery. A novel analysis method is shown to sensitively reveal the changes of the damping parameter of the magnetoelastic oscillations at the resonance as a function of the oil viscosity. Finally, the properties and performance of magneto-electric laminated composites of amorphous magnetic ribbons and piezoelectric polymer films are investigated, demonstrating magnetic field detection capabilities below 2.7 nT. PMID:24776934
Simplified Calculation Model and Experimental Study of Latticed Concrete-Gypsum Composite Panels
Jiang, Nan; Ma, Shaochun
2015-01-01
In order to address the performance complexity of the various constituent materials of (dense-column) latticed concrete-gypsum composite panels and the difficulty in the determination of the various elastic constants, this paper presented a detailed structural analysis of the (dense-column) latticed concrete-gypsum composite panel and proposed a feasible technical solution to simplified calculation. In conformity with mechanical rules, a typical panel element was selected and divided into two homogenous composite sub-elements and a secondary homogenous element, respectively for solution, thus establishing an equivalence of the composite panel to a simple homogenous panel and obtaining the effective formulas for calculating the various elastic constants. Finally, the calculation results and the experimental results were compared, which revealed that the calculation method was correct and reliable and could meet the calculation needs of practical engineering and provide a theoretical basis for simplified calculation for studies on composite panel elements and structures as well as a reference for calculations of other panels. PMID:28793631
Lamb Wave Assessment of Fatigue and Thermal Damage in Composites
NASA Technical Reports Server (NTRS)
Seale, Michael D.; Smith, Barry T.; Prosser, W. H.
2004-01-01
Among the various techniques available, ultrasonic Lamb waves offer a convenient method of evaluating composite materials. Since the Lamb wave velocity depends on the elastic properties of a structure, an effective tool exists to monitor damage in composites by measuring the velocity of these waves. Lamb wave measurements can propagate over long distances and are sensitive to the desired in-plane elastic properties of the material. This paper describes two studies which monitor fatigue damage and two studies which monitor thermal damage in composites using Lamb waves. In the fatigue studies, the Lamb wave velocity is compared to modulus measurements obtained using strain gage measurements in the first experiment and the velocity is monitored along with the crack density in the second. In the thermal damage studies, one examines samples which were exposed to varying temperatures for a three minute duration and the second includes rapid thermal damage in composites by intense laser beams. In all studies, the Lamb wave velocity is demonstrated to be an excellent method to monitor damage in composites.
Simplified Calculation Model and Experimental Study of Latticed Concrete-Gypsum Composite Panels.
Jiang, Nan; Ma, Shaochun
2015-10-27
In order to address the performance complexity of the various constituent materials of (dense-column) latticed concrete-gypsum composite panels and the difficulty in the determination of the various elastic constants, this paper presented a detailed structural analysis of the (dense-column) latticed concrete-gypsum composite panel and proposed a feasible technical solution to simplified calculation. In conformity with mechanical rules, a typical panel element was selected and divided into two homogenous composite sub-elements and a secondary homogenous element, respectively for solution, thus establishing an equivalence of the composite panel to a simple homogenous panel and obtaining the effective formulas for calculating the various elastic constants. Finally, the calculation results and the experimental results were compared, which revealed that the calculation method was correct and reliable and could meet the calculation needs of practical engineering and provide a theoretical basis for simplified calculation for studies on composite panel elements and structures as well as a reference for calculations of other panels.
Duan, Yuanyuan; Griggs, Jason A
2015-06-01
Further investigations are required to evaluate the mechanical behaviour of newly developed polymer-matrix composite (PMC) blocks for computer-aided design/computer-aided manufacturing (CAD/CAM) applications. The purpose of this study was to investigate the effect of elasticity on the stress distribution in dental crowns made of glass-ceramic and PMC materials using finite element (FE) analysis. Elastic constants of two materials were determined by ultrasonic pulse velocity using an acoustic thickness gauge. Three-dimensional solid models of a full-coverage dental crown on a first mandibular molar were generated based on X-ray micro-CT scanning images. A variety of load case-material property combinations were simulated and conducted using FE analysis. The first principal stress distribution in the crown and luting agent was plotted and analyzed. The glass-ceramic crown had stress concentrations on the occlusal surface surrounding the area of loading and the cemented surface underneath the area of loading, while the PMC crown had only stress concentration on the occlusal surface. The PMC crown had lower maximum stress than the glass-ceramic crown in all load cases, but this difference was not substantial when the loading had a lateral component. Eccentric loading did not substantially increase the maximum stress in the prosthesis. Both materials are resistant to fracture with physiological occlusal load. The PMC crown had lower maximum stress than the glass-ceramic crown, but the effect of a lateral loading component was more pronounced for a PMC crown than for a glass-ceramic crown. Knowledge of the stress distribution in dental crowns with low modulus of elasticity will aid clinicians in planning treatments that include such restorations. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Cyprych, Daria; Piazolo, Sandra; Almqvist, Bjarne S. G.
2017-11-01
We present calculated seismic velocities and anisotropies of mafic granulites and eclogites from the Cretaceous deep lower crust (∼40-65 km) of Fiordland, New Zealand. Both rock types show a distinct foliation defined by cm-scale compositional banding. Seismic properties are estimated using the Asymptotic Expansion Homogenisation - Finite Element (AEH-FE) method that, unlike the commonly used Voigt-Reuss-Hill homogenisation, incorporates the phase boundary network into calculations. The predicted mean P- and S-wave velocities are consistent with previously published data for similar lithologies from other locations (e.g., Kohistan Arc), although we find higher than expected anisotropies (AVP ∼ 5.0-8.0%, AVS ∼ 3.0-6.5%) and substantial S-wave splitting along foliation planes in granulites. This seismic signature of granulites results from a density and elasticity contrast between cm-scale pyroxene ± garnet stringers and plagioclase matrix rather than from crystallographic orientations alone. Banded eclogites do not show elevated anisotropies as the contrast in density and elastic constants of garnet and pyroxene is too small. The origin of compositional banding in Fiordland granulites is primarily magmatic and structures described here are expected to be typical for the base of present day magmatic arcs. Hence, we identify a new potential source of anisotropy within this geotectonic setting.
Poroelastic Mechanical Effects of Hemicelluloses on Cellulosic Hydrogels under Compression
Lopez-Sanchez, Patricia; Cersosimo, Julie; Wang, Dongjie; Flanagan, Bernadine; Stokes, Jason R.; Gidley, Michael J.
2015-01-01
Hemicelluloses exhibit a range of interactions with cellulose, the mechanical consequences of which in plant cell walls are incompletely understood. We report the mechanical properties of cell wall analogues based on cellulose hydrogels to elucidate the contribution of xyloglucan or arabinoxylan as examples of two hemicelluloses displaying different interactions with cellulose. We subjected the hydrogels to mechanical pressures to emulate the compressive stresses experienced by cell walls in planta. Our results revealed that the presence of either hemicellulose increased the resistance to compression at fast strain rates. However, at slow strain rates, only xyloglucan increased composite strength. This behaviour could be explained considering the microstructure and the flow of water through the composites confirming their poroelastic nature. In contrast, small deformation oscillatory rheology showed that only xyloglucan decreased the elastic moduli. These results provide evidence for contrasting roles of different hemicelluloses in plant cell wall mechanics and man-made cellulose-based composite materials. PMID:25794048
Poroelastic mechanical effects of hemicelluloses on cellulosic hydrogels under compression.
Lopez-Sanchez, Patricia; Cersosimo, Julie; Wang, Dongjie; Flanagan, Bernadine; Stokes, Jason R; Gidley, Michael J
2015-01-01
Hemicelluloses exhibit a range of interactions with cellulose, the mechanical consequences of which in plant cell walls are incompletely understood. We report the mechanical properties of cell wall analogues based on cellulose hydrogels to elucidate the contribution of xyloglucan or arabinoxylan as examples of two hemicelluloses displaying different interactions with cellulose. We subjected the hydrogels to mechanical pressures to emulate the compressive stresses experienced by cell walls in planta. Our results revealed that the presence of either hemicellulose increased the resistance to compression at fast strain rates. However, at slow strain rates, only xyloglucan increased composite strength. This behaviour could be explained considering the microstructure and the flow of water through the composites confirming their poroelastic nature. In contrast, small deformation oscillatory rheology showed that only xyloglucan decreased the elastic moduli. These results provide evidence for contrasting roles of different hemicelluloses in plant cell wall mechanics and man-made cellulose-based composite materials.
Polymerization stresses in low-shrinkage dental resin composites measured by crack analysis.
Yamamoto, Takatsugu; Kubota, Yu; Momoi, Yasuko; Ferracane, Jack L
2012-09-01
The objective of this study was to compare several dental restoratives currently advertised as low-shrinkage composites (Clearfil Majesty Posterior, Kalore, Reflexions XLS Dentin and Venus Diamond) with a microfill composite (Heliomolar) in terms of polymerization stress, polymerization shrinkage and elastic modulus. Cracks were made at several distances from the edge of a precision cavity in a soda-lime glass disk. The composites were placed into the cavity and lengths of the cracks were measured before and after light curing. Polymerization stresses generated in the glass at 2 and 10 min after the irradiation were calculated from the crack lengths and K(c) of the glass. Polymerization shrinkage and elastic modulus of the composites also were measured at 2 and 10 min after irradiation using a video-imaging device and a nanoindenter, respectively. The data were statistically analyzed by ANOVAs and Tukey's test (p<0.05). The stress was significantly affected by composite brand, distance and time. The stress was directly proportional to time and inversely proportional to distance from the edge of the cavity. Clearfil Majesty Posterior demonstrated the highest stress and it resulted in the fracture of the glass at 2 min. Venus Diamond and Heliomolar exhibited the greatest shrinkage at both times. The elastic moduli of Clearfil Majesty Posterior and Reflexions XLS Dentin were greatest at 2 and 10 min, respectively. Among the four low-shrinkage composites, two demonstrated significantly reduced polymerization stress compared to Heliomolar, which has previously been shown in in vitro tests to generate low curing stress. Copyright © 2012 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gu, M.; Jiang, W.; Zhang, G.
Due to titanium carbide`s physical and elastic properties, titanium carbide particles are widely used as a reinforcement in titanium-alloy-based composites. Previous studies have shown that no obvious reaction products were detected on the interface region in TiC/Ti alloy systems; instead, a nonstoichiometric region in the TiC particle between the Ti{sub 6}Al{sub 4}V alloy and the stoichiometric TiC was found. However, the nature and the extent of the nonstoichiometric zone have not been quantitatively described. The present communication reports some results of a parallel electron-energy-loss spectroscopy (PEELS) study on a 10 vol pct TiC-particle-reinforced IMI-829 metal-matrix composite.
Intercalated graphite fiber composites as EMI shields in aerospace structures
NASA Technical Reports Server (NTRS)
Gaier, James R.
1990-01-01
The requirements for electromagnetic interference (EMI) shielding in aerospace structures are complicated over that of ground structures by their weight limitations. As a result, the best EMI shielding materials must blend low density, high strength, and high elastic modulus with high shielding ability. In addition, fabrication considerations including penetrations and joints play a major role. The EMI shielding properties are calculated for shields formed from pristine and intercalated graphite fiber/epoxy composites and compared to preliminary experimental results and to shields made from aluminum. Calculations indicate that EMI shields could be fabricated from intercalated graphite composites which would have less than 12 percent of the mass of conventional aluminum shields, based on mechanical properties and shielding properties alone.
NASA Astrophysics Data System (ADS)
Castagnède, Bernard; Jenkins, James T.; Sachse, Wolfgang; Baste, Stéphane
1990-03-01
A method is described to optimally determine the elastic constants of anisotropic solids from wave-speeds measurements in arbitrary nonprincipal planes. For such a problem, the characteristic equation is a degree-three polynomial which generally does not factorize. By developing and rearranging this polynomial, a nonlinear system of equations is obtained. The elastic constants are then recovered by minimizing a functional derived from this overdetermined system of equations. Calculations of the functional are given for two specific cases, i.e., the orthorhombic and the hexagonal symmetries. Some numerical results showing the efficiency of the algorithm are presented. A numerical method is also described for the recovery of the orientation of the principal acoustical axes. This problem is solved through a double-iterative numerical scheme. Numerical as well as experimental results are presented for a unidirectional composite material.
Micromechanical analysis on anisotropy of structured magneto-rheological elastomer
NASA Astrophysics Data System (ADS)
Li, R.; Zhang, Z.; Chen, S. W.; Wang, X. J.
2015-07-01
This paper investigates the equivalent elastic modulus of structured magneto-rheological elastomer (MRE) in the absence of magnetic field. We assume that both matrix and ferromagnetic particles are linear elastic materials, and ferromagnetic particles are embedded in matrix with layer-like structure. The structured composite could be divided into matrix layer and reinforced layer, in which the reinforced layer is composed of matrix and the homogenously distributed ferromagnetic particles in matrix. The equivalent elastic modulus of reinforced layer is analysed by the Mori-Tanaka method. Finite Element Method (FEM) is also carried out to illustrate the relationship between the elastic modulus and the volume fraction of ferromagnetic particles. The results show that the anisotropy of elastic modulus becomes noticeable, as the volume fraction of particles increases.
NASA Astrophysics Data System (ADS)
Huang, Cheng; Shao, Hongbang; Ma, Yunlong; Huang, Yuanchun; Xiao, Zhengbing
2018-04-01
The structural stability, electronic structures and elastic properties of the strengthening precipitates, namely Al3Zr, MgZn2, Al2CuMg and Al2Cu, present in 7055 aluminum alloy were investigated by the first-principles calculations based on density functional theory (DFT). The optimized structural parameters are in good agreement with literature values available. It is found that Al3Zr has the strongest alloying ability and structural stability, while for MgZn2, its structural stability is the worst. The calculated electronic results indicate that covalent bonding is the dominant cohesion of Al3Zr, whereas the fractional ionic interactions coexisting with metallic bonding are found in MgZn2, Al2CuMg and Al2Cu. The elastic constants Cij of these precipitates were calculated, and the bulk modulus, shear modulus, Young’s modulus, Poisson’s ratio and universal elastic anisotropy were derived. It is suggested that MgZn2 is ductile, whereas Al3Zr, Al2CuMg and Al2Cu are brittle, and the elastic anisotropies of them increase in the following sequence: Al3Zr
Direct measurement of 3D elastic anisotropy on rocks from the Ivrea zone (Southern Alps, NW Italy)
NASA Astrophysics Data System (ADS)
Pros, Z.; Lokajíček, T.; Přikryl, R.; Klíma, K.
2003-07-01
Lower crustal and upper mantle rocks exposed at the earth's surface present direct possibility to measure their physical properties that must be, in other cases, interpreted using indirect methods. The results of these direct measurements can be then used for the corrections of models based on the indirect data. Elastic properties are among the most important parameters studied in geophysics and employed in many fields of earth sciences. In laboratory, dynamic elastic properties are commonly tested in three mutually perpendicular directions. The spatial distribution of P- and S-wave velocities are then computed using textural data, modal composition, density and elastic constants. During such computation, it is virtually impossible to involve all microfabric parameters like different types of microcracking, micropores, mineral alteration or quality of grain boundaries. In this study, complete 3D ultrasonic transmission of spherical samples in 132 independent directions at several levels of confining pressure up to 400 MPa has been employed for study of selected mafic and ultrabasic rocks sampled in and nearby Balmuccia ultrabasic massif (Ivrea zone, Southern Alps, NW Italy). This method revealed large directional variance of maximum P-wave velocity and different symmetries (orthorhombic vs. transversal isotropic) of elastic waves 3D distribution that has not been recorded on these rocks before. Moreover, one dunite sample exhibits P-wave velocity approaching to that of olivine single crystal being interpreted as influence of CPO.
Bendable Electro-Acoustic Transducer Fabricated Utilizing Frequency Dispersion of Elastic Modulus
NASA Astrophysics Data System (ADS)
Miyoshi, Tetsu; Ohga, Juro
2013-09-01
To realize the speaker diaphragm that can be united with a flexible display without deteriorating lightweight properties and flexibility, a novel bendable electro-acoustic transducer (BEAT) based on 0-3-type piezoelectric composites has been developed. To overcome the trade-off between flexibility and the transmission efficiency of vibration energy, a viscoelastic polymer that has local maximum points in the loss factor as well as large frequency dispersion in the storage modulus near room temperature was employed as the matrix of the piezoelectric composite layer. Against the comparatively slow (10 Hz or less) deformation from the outside, the viscoelastic matrix is viscous enough to prevent cracking and delamination. On the other hand, in the audible range (20 Hz to 20 kHz), the matrix is elastic enough to transmit piezoelectric vibration energy, maintaining a moderately large loss factor as well as a high sound velocity. For the first time, we successfully demonstrated a rollable speaker that can continue to generate a high-quality sound while being rolled and unrolled repeatedly onto a cylinder with a curvature radius of 4 mm.
Rigidity-tuning conductive elastomer
NASA Astrophysics Data System (ADS)
Shan, Wanliang; Diller, Stuart; Tutcuoglu, Abbas; Majidi, Carmel
2015-06-01
We introduce a conductive propylene-based elastomer (cPBE) that rapidly and reversibly changes its mechanical rigidity when powered with electrical current. The elastomer is rigid in its natural state, with an elastic (Young’s) modulus of 175.5 MPa, and softens when electrically activated. By embedding the cPBE in an electrically insulating sheet of polydimethylsiloxane (PDMS), we create a cPBE-PDMS composite that can reversibly change its tensile modulus between 37 and 1.5 MPa. The rigidity change takes ˜6 s and is initiated when a 100 V voltage drop is applied across the two ends of the cPBE film. This magnitude of change in elastic rigidity is similar to that observed in natural skeletal muscle and catch connective tissue. We characterize the tunable load-bearing capability of the cPBE-PDMS composite with a motorized tensile test and deadweight experiment. Lastly, we demonstrate the ability to control the routing of internal forces by embedding several cPBE-PDMS ‘active tendons’ into a soft robotic pneumatic bending actuator. Selectively activating the artificial tendons controls the neutral axis and direction of bending during inflation.
Effect of dermal thickness, tissue composition, and body site on skin biomechanical properties.
Smalls, Lola K; Randall Wickett, R; Visscher, Marty O
2006-02-01
Quantitative measurement of skin biomechanical properties has been used effectively in the investigation of physiological changes in tissue structure and function and to determine treatment efficacy. As the methods are applied to new questions, tissue characteristics that may influence the resultant biomechanical properties are important considerations in the research design. For certain applications, variables such as dermal thickness and subdermal tissue composition, as well as age and/or solar exposure, may influence the skin biomechanics. We determined the influence of dermal thickness, tissue composition, and age on the skin biomechanical properties at the shoulder, thigh, and calf among 30 healthy females. We compared two devices, the Biomechanical Tissue Characterization System and the Cutometer SEM 575 Skin Elasticity Meter , to determine the effect of tissue sampling size. Dermal thickness was measured with 20 MHz ultrasound (Dermascan C) and tissue composition was inferred from anthropomorphic data. Skin thickness was significantly correlated with stiffness, energy absorption, and U(r)/U(f) for the shoulder. Body mass index (BMI) was significantly correlated with stiffness (negative correlation), energy absorption (positive), and skin thickness (negative) for the shoulder. Significant differences across body sites were observed. The calf was significantly different from the thigh and shoulders for all parameters (P<0.05, one-way anova). The calf had significantly lower laxity, laxity%, elastic deformation, energy absorption, elasticity, elasticity %, U(r), U(f), and U(r)/U(f) and significantly higher stiffness compared with the thighs and shoulders. sites. The thigh and shoulder sites were significantly different for all parameters except U(r)/U(f), elasticity %, laxity%, and stiffness. The dominant and non-dominant sides were significantly different. The dominant side (right for 90% of the subjects) had increased stiffness and decreased energy absorption (tissue softness, compliance) compared with the left side. A significant (P< or =0.02) negative relationship with age was seen for all biomechanical measures except stiffness at the shoulder. For the thigh and calf sites, significant negative correlations with age were found for elasticity %, U(r), and U(r)/U(f). Age and skin thickness were not correlated in this population. Skin thickness and age influenced the energy absorption at the shoulder site. The biological elasticity at the calf site could be predicted by age and BMI. The biological activity at the thigh site could be predicted by skin thickness and BMI. Significant regional variations in biomechanical properties and dominant side effects were observed. The biomechanical properties were significantly influenced by age. Certain properties varied with dermal thickness and tissue composition. The parameters were well correlated between the two instruments. The Cutometer, with its smaller aperture, was found to be more sensitive to age relationships.
Finite lateral compression of an elastic plasticfibre-reinforced tube : loading solutions
NASA Astrophysics Data System (ADS)
England, A. H.; Gregory, P. W.
1999-02-01
This paper considers the finite plane-strain deformations of an elastic-plastic tubecompressed between two rigid smooth parallel plates. The tube is composed of an elastic-plasticfibre-reinforced material in which the fibres lie in planes perpendicular to the axis of the tube andreinforce the tube in the circumferential direction. The composite is assumed to be an idealmaterial which is inextensible in the fibre-direction and is incompressible. The unloading of theelastic-plastic tube will be considered in a subsequent paper.
NASA Astrophysics Data System (ADS)
Kochmann, D. M.; Drugan, W. J.
2016-06-01
An elastic system containing a negative-stiffness element tuned to produce positive-infinite system stiffness, although statically unstable as is any such elastic system if unconstrained, is proved to be stabilized by rotation-produced gyroscopic forces at sufficiently high rotation rates. This is accomplished in possibly the simplest model of a composite structure (or solid) containing a negative-stiffness component that exhibits all these features, facilitating a conceptually and mathematically transparent, completely closed-form analysis.
Fiber-optically sensorized composite wing
NASA Astrophysics Data System (ADS)
Costa, Joannes M.; Black, Richard J.; Moslehi, Behzad; Oblea, Levy; Patel, Rona; Sotoudeh, Vahid; Abouzeida, Essam; Quinones, Vladimir; Gowayed, Yasser; Soobramaney, Paul; Flowers, George
2014-04-01
Electromagnetic interference (EMI) immune and light-weight, fiber-optic sensor based Structural Health Monitoring (SHM) will find increasing application in aerospace structures ranging from aircraft wings to jet engine vanes. Intelligent Fiber Optic Systems Corporation (IFOS) has been developing multi-functional fiber Bragg grating (FBG) sensor systems including parallel processing FBG interrogators combined with advanced signal processing for SHM, structural state sensing and load monitoring applications. This paper reports work with Auburn University on embedding and testing FBG sensor arrays in a quarter scale model of a T38 composite wing. The wing was designed and manufactured using fabric reinforced polymer matrix composites. FBG sensors were embedded under the top layer of the composite. Their positions were chosen based on strain maps determined by finite element analysis. Static and dynamic testing confirmed expected response from the FBGs. The demonstrated technology has the potential to be further developed into an autonomous onboard system to perform load monitoring, SHM and Non-Destructive Evaluation (NDE) of composite aerospace structures (wings and rotorcraft blades). This platform technology could also be applied to flight testing of morphing and aero-elastic control surfaces.
Mobility Research at TARDEC (Briefing Charts)
2015-03-10
UWM UIC UWM UWM Gap Collaboration 4 ARC & RIF Fund: $255k+$250K New ANCF shell element Fiber -reinforced composite rubber Validation and benchmark 2013...U.S. ARMY TANK AUTOMOTIVE RESEARCH, DEVELOPMENT AND ENGINEERING CENTER Mobility Research at TARDEC Dr. P. Jayakumar, S. Arepally Analytics 1...t s 5 9 - - - -3 t s 7 98 - - - . . . .t s Drucker-Prager Elasto- Plastic Soil Elastic Soil 6 A Physics-Based High Performance
NASA Technical Reports Server (NTRS)
Jenkins, Michael G.; Ghosh, Asish; Salem, Jonathan A.
1990-01-01
Micromechanics fracture models are incorporated into three distinct fracture process zones which contribute to the crack growth resistance of fibrous composites. The frontal process zone includes microcracking, fiber debonding, and some fiber failure. The elastic process zone is related only to the linear elastic creation of new matrix and fiber fracture surfaces. The wake process zone includes fiber bridging, fiber pullout, and fiber breakage. The R-curve predictions of the model compare well with empirical results for a unidirectional, continuous fiber C/C composite. Separating the contributions of each process zone reveals the wake region to contain the dominant crack growth resistance mechanisms. Fractography showed the effects of the micromechanisms on the macroscopic fracture behavior.
Edge delamination in angle-ply composite laminates, part 5
NASA Technical Reports Server (NTRS)
Wang, S. S.
1981-01-01
A theoretical method was developed for describing the edge delamination stress intensity characteristics in angle-ply composite laminates. The method is based on the theory of anisotropic elasticity. The edge delamination problem is formulated using Lekhnitskii's complex-variable stress potentials and an especially developed eigenfunction expansion method. The method predicts exact orders of the three-dimensional stress singularity in a delamination crack tip region. With the aid of boundary collocation, the method predicts the complete stress and displacement fields in a finite-dimensional, delaminated composite. Fracture mechanics parameters such as the mixed-mode stress intensity factors and associated energy release rates for edge delamination can be calculated explicity. Solutions are obtained for edge delaminated (theta/-theta theta/-theta) angle-ply composites under uniform axial extension. Effects of delamination lengths, fiber orientations, lamination and geometric variables are studied.
NASA Astrophysics Data System (ADS)
Filipenkov, V. V.; Rupeks, L. E.; Vitins, V. M.; Knets, I. V.; Kasyanov, V. A.
2017-07-01
New biocomposites and the cattle bone tissue were investigated. The composites were made from an endodontic cement (EC) and natural hydroxyapatite (NHAp.) The results of experiments performed by the method of infrared spectroscopy showed that protein was removed from the heat-treated specimens of bone tissue practically completely. The structure of bone tissue before and after deproteinization and the structure of the composite materials based on NHAp and EC (with different percentage) were investigated by the method of optical microscopy. The characteristics of mechanical properties (the initial elastic modulus, breaking tensile and compressive stresses, and breaking strain) and the density and porosity of these materials were determined. The new composite materials were implanted in the live tissue of rat. Biocompatibility between the live tissue and the new biocomposites was estimated.
Wang, Yue; Gregory, Cherry; Minor, Mark A
2018-06-01
Molded silicone rubbers are common in manufacturing of soft robotic parts, but they are often prone to tears, punctures, and tensile failures when strained. In this article, we present a fabric compositing method for improving the mechanical properties of soft robotic parts by creating a fabric/rubber composite that increases the strength and durability of the molded rubber. Comprehensive ASTM material tests evaluating the strength, tear resistance, and puncture resistance are conducted on multiple composites embedded with different fabrics, including polyester, nylon, silk, cotton, rayon, and several blended fabrics. Results show that strong fabrics increase the strength and durability of the composite, valuable in pneumatic soft robotic applications, while elastic fabrics maintain elasticity and enhance tear strength, suitable for robotic skins or soft strain sensors. Two case studies then validate the proposed benefits of the fabric compositing for soft robotic pressure vessel applications and soft strain sensor applications. Evaluations of the fabric/rubber composite samples and devices indicate that such methods are effective for improving mechanical properties of soft robotic parts, resulting in parts that can have customized stiffness, strength, and vastly improved durability.
Energy in elastic fiber embedded in elastic matrix containing incident SH wave
NASA Technical Reports Server (NTRS)
Williams, James H., Jr.; Nagem, Raymond J.
1989-01-01
A single elastic fiber embedded in an infinite elastic matrix is considered. An incident plane SH wave is assumed in the infinite matrix, and an expression is derived for the total energy in the fiber due to the incident SH wave. A nondimensional form of the fiber energy is plotted as a function of the nondimensional wavenumber of the SH wave. It is shown that the fiber energy attains maximum values at specific values of the wavenumber of the incident wave. The results obtained here are interpreted in the context of phenomena observed in acousto-ultrasonic experiments on fiber reinforced composite materials.
NASA Astrophysics Data System (ADS)
Rudenko, O. V.; Tsyuryupa, S. N.; Sarvazyan, A. P.
2016-09-01
We develop a theory of the elasticity moduli and dissipative properties of a composite material: a phantom simulating muscle tissue anisotropy. The model used in the experiments was made of a waterlike polymer with embedded elastic filaments imitating muscle fiber. In contrast to the earlier developed phenomenological theory of the anisotropic properties of muscle tissue, here we obtain the relationship of the moduli with characteristic sizes and moduli making up the composite. We introduce the effective elasticity moduli and viscosity tensor components, which depend on stretching of the fibers. We measure the propagation velocity of shear waves and the shear viscosity of the model for regulated tension. Waves were excited by pulsed radiation pressure generated by modulated focused ultrasound. We show that with increased stretching of fibers imitating muscle contraction, an increase in both elasticity and viscosity takes place, and this effect depends on the wave propagation direction. The results of theoretical and experimental studies support our hypothesis on the protective function of stretched skeletal muscle, which protects bones and joints from trauma.
NASA Astrophysics Data System (ADS)
Escocio, Viviane A.; Visconte, Leila L. Y.; Cavalcante, Andre de P.; Furtado, Ana Maria S.; Pacheco, Elen B. A. V.
2015-05-01
Brazil has a remarkable position in the use of renewable energy. The potential of natural resources in Brazil has motivated the use of these renewable resources to make technologies more sustainable. From the large variety of commercially available High Density Polyethylene (HDPE) from different sources, two were chosen for investigation: one produced from sugarcane ethanol, and the other one, a conventional polyethylene, produced from fossil resources. In the preparation of the composites, sponge-gourds also called Luffa cylindrica were selectec. The main application of this product is as bath sponge, whose production generates scraps that are generally burnt. In this work, the composites were prepared by blending the sponge scrap at different proportions (10, 20, 30 and 40% wt/wt) with high density polyethylene (HDPE) from renewable source by extrusion. The melt flow index analysis of the composites was determined and specimens were obtained by injection molding for the assessment of mechanical properties such as tensile (elasticity modulus), flexural and Izod impact strengths. The microstructure of the impact fractured surface of the specimen also was determined. The results showed that the addition of sponge scrap affects positively all the properties studied as compared to HDPE. The results of tensile strength, elasticity modulus and flexural strength were similar to those observed in the literature for composites of HDPE from fossil source. The microstructure corroborates the results of mechanical properties. It was shown that the sponge scrap has potential to be applied as cellulosic filler for renewable polyethylene, providing a totally renewable material with good mechanical properties.
Tartibi, M; Liu, Y X; Liu, G-Y; Komvopoulos, K
2015-11-01
The membrane-cytoskeleton system plays a major role in cell adhesion, growth, migration, and differentiation. F-actin filaments, cross-linkers, binding proteins that bundle F-actin filaments to form the actin cytoskeleton, and integrins that connect the actin cytoskeleton network to the cell plasma membrane and extracellular matrix are major cytoskeleton constituents. Thus, the cell cytoskeleton is a complex composite that can assume different shapes. Atomic force microscopy (AFM)-based techniques have been used to measure cytoskeleton material properties without much attention to cell shape. A recently developed surface chemical patterning method for long-term single-cell culture was used to seed individual cells on circular patterns. A continuum-based cell model, which uses as input the force-displacement response obtained with a modified AFM setup and relates the membrane-cytoskeleton elastic behavior to the cell geometry, while treating all other subcellular components suspended in the cytoplasmic liquid (gel) as an incompressible fluid, is presented and validated by experimental results. The developed analytical-experimental methodology establishes a framework for quantifying the membrane-cytoskeleton elasticity of live cells. This capability may have immense implications in cell biology, particularly in studies seeking to establish correlations between membrane-cytoskeleton elasticity and cell disease, mortality, differentiation, and migration, and provide insight into cell infiltration through nonwoven fibrous scaffolds. The present method can be further extended to analyze membrane-cytoskeleton viscoelasticity, examine the role of other subcellular components (e.g., nucleus envelope) in cell elasticity, and elucidate the effects of mechanical stimuli on cell differentiation and motility. This is the first study to decouple the membrane-cytoskeleton elasticity from cell stiffness and introduce an effective approach for measuring the elastic modulus. The novelty of this study is the development of new technology for quantifying the elastic stiffness of the membrane-cytoskeleton system of cells. This capability could have immense implications in cell biology, particularly in establishing correlations between various cell diseases, mortality, and differentiation with membrane-cytoskeleton elasticity, examining through-tissue cell migration, and understanding cell infiltration in porous scaffolds. The present method can be further extended to analyze membrane-cytoskeleton viscous behavior, identify the contribution of other subcellular components (e.g., nucleus envelope) to load sharing, and elucidate mechanotransduction effects due to repetitive compressive loading and unloading on cell differentiation and motility. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Automated Finite Element Analysis of Elastically-Tailored Plates
NASA Technical Reports Server (NTRS)
Jegley, Dawn C. (Technical Monitor); Tatting, Brian F.; Guerdal, Zafer
2003-01-01
A procedure for analyzing and designing elastically tailored composite laminates using the STAGS finite element solver has been presented. The methodology used to produce the elastic tailoring, namely computer-controlled steering of unidirectionally reinforced composite material tows, has been reduced to a handful of design parameters along with a selection of construction methods. The generality of the tow-steered ply definition provides the user a wide variety of options for laminate design, which can be automatically incorporated with any finite element model that is composed of STAGS shell elements. Furthermore, the variable stiffness parameterization is formulated so that manufacturability can be assessed during the design process, plus new ideas using tow steering concepts can be easily integrated within the general framework of the elastic tailoring definitions. Details for the necessary implementation of the tow-steering definitions within the STAGS hierarchy is provided, and the format of the ply definitions is discussed in detail to provide easy access to the elastic tailoring choices. Integration of the automated STAGS solver with laminate design software has been demonstrated, so that the large design space generated by the tow-steering options can be traversed effectively. Several design problems are presented which confirm the usefulness of the design tool as well as further establish the potential of tow-steered plies for laminate design.
NASA Astrophysics Data System (ADS)
Kim, Jeong-Woo
A joint experimental and analytical investigation of the sound transmission loss (STL) and two-dimensional free wave propagation in composite sandwich panels is presented here. An existing panel, a Nomex honeycomb sandwich panel, was studied in detail. For the purpose of understanding the typical behavior of sandwich panels, a composite structure comprising two aluminum sheets with a relatively soft, poro-elastic foam core was also constructed and studied. The cores of both panels were modeled using an anisotropic (transversely isotropic) poro-elastic material theory. Several estimation methods were used to obtain the material properties of the honeycomb core and the skin plates to be used in the numerical calculations. Appropriate values selected from among the estimates were used in the STL and free wave propagation models. The prediction model was then verified in two ways: first, the calculated wave speeds and STL of a single poro-elastic layer were numerically verified by comparison with the predictions of a previously developed isotropic model. Secondly, to physically validate the transversely isotropic model, the measured STL and the phase speeds of the sandwich panels were compared with their predicted values. To analyze the actual treatment of a fuselage structure, multi-layered configurations, including a honeycomb panel and several layers such as air gaps, acoustic blankets and membrane partitions, were formulated. Then, to find the optimal solution for improving the sound barrier performance of an actual fuselage system, air layer depth and glass fiber lining effects were investigated by using these multi-layer models. By using the free wave propagation model, the first anti-symmetric and symmetric modes of the sandwich panels were characterized to allow the identification of the coincidence frequencies of the sandwich panel. The behavior of the STL could then be clearly explained by comparison with the free wave propagation solutions. By performing a parameter study based both on the STL and free wave propagation speeds, the mass, stiffness and damping-controlled regions of the STL were identified. The structural factors that can be adjusted to improve STL performance were also identified.
NASA Astrophysics Data System (ADS)
Paimushin, V. N.; Kholmogorov, S. A.; Gazizullin, R. K.
2018-01-01
One-dimensional linearized problems on the possible buckling modes of an internal or peripheral layer of unidirectional multilayer composites with rectilinear fibers under compression in the fiber direction are considered. The investigations are carried out using the known Kirchhoff-Love and Timoshenko models for the layers. The binder, modeled as an elastic foundation, is described by the equations of elasticity theory, which are simplified in accordance to the model of a transversely soft layer and are integrated along the transverse coordinate considering the kinematic coupling relations for a layer and foundation layers. Exact analytical solutions of the problems formulated are found, which are used to calculate a composite made of an HSE 180 REM prepreg based on a unidirectional carbon fiber tape. The possible buckling modes of its internal and peripheral layers are identified. Calculation results are compared with experimental data obtained earlier. It is concluded that, for the composite studied, the flexural buckling of layers in the uniform axial compression of specimens along fibers is impossible — the failure mechanism is delamination with buckling of a fiber bundle according to the pure shear mode. It is realized (due to the low average transverse shear modulus) at the value of the ultimate compression stress equal to the average shear modulus. It is shown that such a shear buckling mode can be identified only on the basis of equations constructed using the Timoshenko shear model to describe the deformation process of layers.
Structural short-range order of the β-Ti phase in bulk Ti-Fe-(Sn) nanoeutectic composites
NASA Astrophysics Data System (ADS)
Das, J.; Eckert, J.; Theissmann, R.
2006-12-01
The authors report lattice distortion and "ω-like" structural short-range order (SRO) of the β-Ti phase in a Ti-Fe-(Sn) bulk nanoeutectic composite prepared by slow cooling from the melt. The nanoeuetctic phases are chemically homogeneous, but the addition of Sn releases the local lattice strain, modifies the structural SRO, and prevents the formation of stacking faults in the body centered cubic (bcc) β-Ti phase resulting in improved plastic deformability. The elastic properties and the structural SRO of the β-Ti phase are proposed to be important parameters for developing advanced high strength, ductile Ti-base nanocomposite alloys.
Critical fictive temperature for plasticity in metallic glasses
Kumar, Golden; Neibecker, Pascal; Liu, Yan Hui; Schroers, Jan
2013-01-01
A long-sought goal in metallic glasses is to impart ductility without conceding their strength and elastic limit. The rational design of tough metallic glasses, however, remains challenging because of the inability of existing theories to capture the correlation between plasticity, composition and processing for a wide range of glass-forming alloys. Here we propose a phenomenological criterion based on a critical fictive temperature, Tfc, which can rationalize the effect of composition, cooling rate and annealing on room-temperature plasticity of metallic glasses. Such criterion helps in understanding the widespread mechanical behaviour of metallic glasses and reveals alloy-specific preparation conditions to circumvent brittleness. PMID:23443564
Advanced composite materials based on polyhydroxybutyrate and polylactic acid
NASA Astrophysics Data System (ADS)
Tubaeva, P. M.; Olkhov, A. A.; Podzorova, M. V.; Popov, A. A.
2017-12-01
In this paper, we consider the main characteristics of polyhydroxybutyrate (PHB) and polylactic acid (PLA) as well as the prospects and possibility of the medical use of PHB-PLA compositions as these polymers are most relevant to such application. The study establishes the main thermophysical parameters of PHB and PLA. It is found that PHB and PLA are hydrophobic enough. The study by the electron paramagnetic resonance method reveals a small amount of the radical infiltrated in PLA and PHB, which indicates the chain rigidity of both polymeric structures. Mechanical properties of PLA and PHB are characterized by high strength and low elasticity.
Thermal and mechanical analysis of PVA / sulfonated carbon nanotubes composite
NASA Astrophysics Data System (ADS)
Yadav, Vikrant; Sharma, Prem P.; Rajput, Abhishek; Kulshrestha, Vaibhav
2018-04-01
Nanocomposites of polyvinyl alcohol (PVA) and sulfonated carbon nanotubes (s-CNT) with enhanced properties were synthesized successfully. Effect of different amount of sulfonated nanotubes on thermal and mechanical properties of resultant nanocomposites derived from s-CNT and PVA were studied. Structural analysis for functionalization of CNT was done by using FTIR spectra. Thermal and mechanical analysis were done by using TGA, DSC and UTM. Nanocomposite containing s-CNT shows higher elastic moduli, higher melting temperature in consort with lower weight loss at same temperature, compared with pristine PVA. The novelty of this work is to use PVA/s-CNT based composites with improved thermomechanical properties in different nanotechnologies.
Thermally induced stresses in cross-ply composite tubes
NASA Technical Reports Server (NTRS)
Hyer, M. W.; Cooper, D. E.; Tompkins, S. S.
1986-01-01
An approximate solution for determining stresses in cross-ply composite tubes subjected to a circumferential temperature gradient is presented. The solution is based on the principle of complementary virtual work (PCVW) in conjunction with a Ritz approximation on the stress field and accounts for the temperature dependence of material properties. The PCVW method is compared with a planar elasticity solution using temperature-independent material properties and a Navier approach. The net effect of including temperature-dependent material properties is that the peak absolute values of the stresses are reduced. The dependence of the stresses on the circumferential location is also reduced in comparison with the case of temperature-independent properties.
NASA Technical Reports Server (NTRS)
Chu, Y. C.; Hefetz, M.; Rokhlin, S. I.; Baaklini, G. Y.
1992-01-01
Ultrasonic techniques are employed to develop methods for nondestructive evaluation of elastic properties and damage in SiC/RBSN composites. To incorporate imperfect boundary conditions between fibers and matrix into a micromechanical model, a model of fibers having effective anisotropic properties is introduced. By inverting Hashin's (1979) microstructural model for a composite material with microscopic constituents the effective fiber properties were found from ultrasonic measurements. Ultrasonic measurements indicate that damage due to thermal shock is located near the surface, so the surface wave is most appropriate for estimation of the ultimate strength reduction and critical temperature of thermal shock. It is concluded that bonding between laminates of SiC/RBSN composites is severely weakened by thermal oxidation. Generally, nondestructive evaluation of thermal oxidation effects and thermal shock shows good correlation with measurements previously performed by destructive methods.
A review on mechanical properties of magnesium based nano composites
NASA Astrophysics Data System (ADS)
Tarafder, Nilanjan; Prasad, M. Lakshmi Vara
2018-04-01
A review was done on Magnesium (Mg) based composite materials reinforced with different nano particles such as TiO2, Cu, Y2O3, SiC, ZrO2 and Al2O3. TiO2 and Al2O3 nanoparticles were synthesised by melt deposition process. Cu, Y2O3, SiC and ZrO2 nanoparticles were synthesised by powder metallurgy process. Composite microstructural characteristics shows that the nano-size reinforcements are uniformly distributed in the composite matrix and also minimum porosity with solid interfacial integrity. The mechanical properties showed yield strength improvement by 0.2 percentage and Ultimate tensile strength (UTS) was also improved for all the nano-particles. But UTS was adversely affected with TiO2 reinforcement while ductility was increased. With Cu reinforcement elastic modulus, hardness and fracture resistance increased and improved the co-efficient of thermal expansion (CTE) of Mg based matrix. By Y2O3 reinforcement hardness, fracture resistance was improved and ductility reached maximum by 0.22 volume percentage of Y2O3 and decreased with succeeding increase in Y2O3 reinforcement. The readings exposed that mechanical properties were gathered from the composite comprising 2.0 weight percentage of Y2O3. Ductility and fracture resistance increased with ZrO2 reinforcement in Mg matrix. Using Al2O3 as reinforcement in Mg composite matrix hardness, elastic modulus and ductility was increased but porosity reduced with well interfacial integrity. Dissipation of energy in the form of damping capacity was resolved by classical vibration theory. The result showed that an increasing up to 0.4 volume percentage alumina content increases the damping capacity up to 34 percent. In another sample, addition of 2 weight percentage nano-Al2O3 particles showed big possibility in reducing CTE from 27.9-25.9×10-6 K-1 in Magnesium, tensile and yield strength amplified by 40MPa. In another test, Mg/1.1Al2O3 nanocomposite was manufactured by solidification process followed by hot extrusion. Results showed that strengthening effect was maintained up to 150°C and fracture characteristics of Mg composite transformed from brittle to mixed ductile mode and fully ductile in attendance of nano-Al2O3 particulates.
Study of the elastic behavior of synthetic lightweight aggregates (SLAs)
NASA Astrophysics Data System (ADS)
Jin, Na
Synthetic lightweight aggregates (SLAs), composed of coal fly ash and recycled plastics, represent a resilient construction material that could be a key aspect to future sustainable development. This research focuses on a prediction of the elastic modulus of SLA, assumed as a homogenous and isotropic composite of particulates of high carbon fly ash (HCFA) and a matrix of plastics (HDPE, LDPE, PS and mixture of plastics), with the emphasis on SLAs made of HCFA and PS. The elastic moduli of SLA with variable fly ash volume fractions are predicted based on finite element analyses (FEA) performed using the computer programs ABAQUS and PLAXIS. The effect of interface friction (roughness) between phases and other computation parameters; e.g., loading strain, stiffness of component, element type and boundary conditions, are included in these analyses. Analytical models and laboratory tests provide a baseline for comparison. Overall, results indicate ABAQUS generates elastic moduli closer to those predicted by well-established analytical models than moduli predicted from PLAXIS, especially for SLAs with lower fly ash content. In addition, an increase in roughness, loading strain indicated increase of SLAs stiffness, especially as fly ash content increases. The elastic moduli obtained from unconfined compression generally showed less elastic moduli than those obtained from analytical and ABAQUS 3D predictions. This may be caused by possible existence of pre-failure surface in specimen and the directly interaction between HCFA particles. Recommendations for the future work include laboratory measurements of SLAs moduli and FEM modeling that considers various sizes and random distribution of HCFA particles in SLAs.
High-pressure elastic properties of major materials of Earth's mantle from first principles
NASA Astrophysics Data System (ADS)
Karki, Bijaya B.; Stixrude, Lars; Wentzcovitch, Renata M.
2001-11-01
The elasticity of materials is important for our understanding of processes ranging from brittle failure, to flexure, to the propagation of elastic waves. Seismologically revealed structure of the Earth's mantle, including the radial (one-dimensional) profile, lateral heterogeneity, and anisotropy are determined largely by the elasticity of the materials that make up this region. Despite its importance to geophysics, our knowledge of the elasticity of potentially relevant mineral phases at conditions typical of the Earth's mantle is still limited: Measuring the elastic constants at elevated pressure-temperature conditions in the laboratory remains a major challenge. Over the past several years, another approach has been developed based on first-principles quantum mechanical theory. First-principles calculations provide the ideal complement to the laboratory approach because they require no input from experiment; that is, there are no free parameters in the theory. Such calculations have true predictive power and can supply critical information including that which is difficult to measure experimentally. A review of high-pressure theoretical studies of major mantle phases shows a wide diversity of elastic behavior among important tetrahedrally and octahedrally coordinated Mg and Ca silicates and Mg, Ca, Al, and Si oxides. This is particularly apparent in the acoustic anisotropy, which is essential for understanding the relationship between seismically observed anisotropy and mantle flow. The acoustic anisotropy of the phases studied varies from zero to more than 50% and is found to depend on pressure strongly, and in some cases nonmonotonically. For example, the anisotropy in MgO decreases with pressure up to 15 GPa before increasing upon further compression, reaching 50% at a pressure of 130 GPa. Compression also has a strong effect on the elasticity through pressure-induced phase transitions in several systems. For example, the transition from stishovite to CaCl2 structure in silica is accompanied by a discontinuous change in the shear (S) wave velocity that is so large (60%) that it may be observable seismologically. Unifying patterns emerge as well: Eulerian finite strain theory is found to provide a good description of the pressure dependence of the elastic constants for most phases. This is in contrast to an evaluation of Birch's law, which shows that this systematic accounts only roughly for the effect of pressure, composition, and structure on the longitudinal (P) wave velocity. The growing body of theoretical work now allows a detailed comparison with seismological observations. The athermal elastic wave velocities of most important mantle phases are found to be higher than the seismic wave velocities of the mantle by amounts that are consistent with the anticipated effects of temperature and iron content on the P and S wave velocities of the phases studied. An examination of future directions focuses on strategies for extending first-principles studies to more challenging but geophysically relevant situations such as solid solutions, high-temperature conditions, and mineral composites.
NASA Astrophysics Data System (ADS)
Schindler, Stefan; Mergheim, Julia; Zimmermann, Marco; Aurich, Jan C.; Steinmann, Paul
2017-01-01
A two-scale material modeling approach is adopted in order to determine macroscopic thermal and elastic constitutive laws and the respective parameters for metal matrix composite (MMC). Since the common homogenization framework violates the thermodynamical consistency for non-constant temperature fields, i.e., the dissipation is not conserved through the scale transition, the respective error is calculated numerically in order to prove the applicability of the homogenization method. The thermomechanical homogenization is applied to compute the macroscopic mass density, thermal expansion, elasticity, heat capacity and thermal conductivity for two specific MMCs, i.e., aluminum alloy Al2024 reinforced with 17 or 30 % silicon carbide particles. The temperature dependency of the material properties has been considered in the range from 0 to 500°C, the melting temperature of the alloy. The numerically determined material properties are validated with experimental data from the literature as far as possible.
Pourdeyhimi, B; Robinson, H H; Schwartz, P; Wagner, H D
1986-01-01
A study of the fracture behaviour of Kevlar 29 reinforced dental cement is undertaken using both linear elastic and nonlinear elastic fracture mechanics techniques. Results from both approaches--of which the nonlinear elastic is believed to be more appropriate--indicate that a reinforcing effect is obtained for the fracture toughness even at very low fibre content. The flexural strength and modulus are apparently not improved, however, by the incorporation of Kevlar 29 fibres in the PMMA cement, probably because of the presence of voids, the poor fibre/matrix interfacial bonding and unsatisfying cement mixing practice. When compared to other PMMA composite cements, the present system appears to be probably more effective than carbon/PMMA, for example, in terms of fracture toughness. More experimental and analytical work is needed so as to optimize the mechanical properties with respect to structural parameters and cement preparation technique.
Reverse Aging of Composite Materials for Aeronautical Applications
NASA Astrophysics Data System (ADS)
lannone, Michele
2008-08-01
Hygro-thermal ageing of polymer matrix composite materials is a major issue for all the aeronautical structures. For carbon-epoxy composites generally used in aeronautical applications the major effect of ageing is the humidity absorption, which induces a plasticization effect, generally decreasing Tg and elastic moduli, and finally design allowables. A thermodynamical and kinetic study has been performed, aimed to establish a program of periodic heating of the composite part, able to reversing the ageing effect by inducing water desorption. The study was founded on a simple model based on Fick's law, coupled with a concept of "relative saturation coefficient" depending on the different temperature of the composite part and the environment. The behaviour of some structures exposed to humidity and "reverse aged" by heating has been virtually tested. The conclusion of the study allowed to issue a specific patent application for aeronautical structures to be designed on the basis of a "humidity free" concept which allows the use of higher design allowables; having as final results lighter composite structures with a simplified certification process.
NASA Astrophysics Data System (ADS)
Saif, S.; Brownlee, S. J.
2017-12-01
Compositional and structural heterogeneity in the continental crust are factors that contribute to the complex expression of crustal seismic anisotropy. Understanding deformation and flow in the crust using seismic anisotropy has thus proven difficult. Seismic anisotropy is affected by rock microstructure and mineralogy, and a number of studies have begun to characterize the full elastic tensors of crustal rocks in an attempt to increase our understanding of these intrinsic factors. However, there is still a large gap in length-scale between laboratory characterization on the scale of centimeters and seismic wavelengths on the order of kilometers. To address this length-scale gap we are developing a 3D crustal model that will help us determine the effects of rotating laboratory-scale elastic tensors into field-scale structures. The Chester gneiss dome in southeast Vermont is our primary focus. The model combines over 2000 structural data points from field measurements and published USGS structural data with elastic tensors of Chester dome rocks derived from electron backscatter diffraction data. We created a uniformly spaced grid by averaging structural measurements together in equally spaced grid boxes. The surface measurements are then projected into the third dimension using existing subsurface interpretations. A measured elastic tensor for the specific rock type is rotated according to its unique structural input at each point in the model. The goal is to use this model to generate artificial seismograms using existing numerical wave propagation codes. Once completed, the model input can be varied to examine the effects of different subsurface structure interpretations, as well as heterogeneity in rock composition and elastic tensors. Our goal is to be able to make predictions for how specific structures will appear in seismic data, and how that appearance changes with variations in rock composition.
Symmetry considerations in the scattering of identical composite bodies
NASA Technical Reports Server (NTRS)
Norbury, J. W.; Townsend, L. W.; Deutchman, P. A.
1986-01-01
Previous studies of the interactions between composite particles were extended to the case in which the composites are identical. The form of the total interaction potential matrix elements was obtained, and guidelines for their explicit evaluation were given. For the case of elastic scattering of identical composites, the matrix element approach was shown to be equivalent to the scattering amplitude method.
NiTi-Enabled Composite Design for Exceptional Performances
Shao, Yang; Guo, Fangmin; Ren, Yang; ...
2017-03-08
In an effort to further develop shape memory alloys (SMAs) for functional applications, much focus has been given in recent years to design and create innovative forms of SMAs, such as functionally graded SMAs, architecture SMAs, and SMA-based metallic composites. Here, we reports on the progress in creating NiTi-based composites of exceptional properties stimulated by the recent discovery of the principle of lattice strain matching between the SMA matrix and superelastic nanoinclusions embedded in the matrix. And based on this principle, different SMA–metal composites have been designed to achieve extraordinary shape memory performances, such as complete pseudoelastic behavior at asmore » low as 77 K and stress plateau as high as 1600 MPa, and exceptional mechanical properties, such as tensile strength as high as 2000 MPa and Young’s modulus as low as 28 GPa. Details are given for a NiTi–W micro-fiber composite prepared by melt infiltration, hot pressing, forging, and cold rolling. Furthermore, the composite contained 63% in volume of W micro-fibers of ~0.6 μm thickness. In situ synchrotron X-ray diffraction revealed that the NiTi matrix underwent martensite transformation during tensile deformation while the W micro-fiber deformed elastically with a maximum strain of 0.83% in the loading direction, implying a W fiber stress of 3280 MPa. The composite showed a maximum high tensile strength of 2300 MPa.« less
A Theoretical Investigation into the Inelastic Behavior of Metal-Matrix Composites
1990-06-01
Part 13. Abstract (continued): for the constraining power of the matrix due to eigenstrain accumulation and anisotropy due to fiber reinforcement. The...1 CHAPTER II ELAS Method with Elastic Constraint ......................... 10 * 2.1 Eigenstrain Terminology...10 2.2 Fundamental Equations of Elasticity with Eigenstrains ......... 11 2.3 Eshelby’s Equivalent Inclusion Problem
NASA Technical Reports Server (NTRS)
Lee, Jong-Won; Allen, David H.
1990-01-01
A continuous fiber composite is modelled by a two-element composite cylinder in order to predict the elastoplastic response of the composite under a monotonically increasing tensile loading parallel to fibers. The fibers and matrix are assumed to be elastic-perfectly plastic materials obeying Hill's and Tresca's yield criteria, respectively. Here, the composite behavior when the fibers yield prior to the matrix is investigated.
2010-01-01
0188 The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing...body screening effect. In addition, a radial cutoff function is also applied to reduce calculation time . The MEAM for an alloy system is based on the...moduli Real materials are usually polycrystalline aggregates of randomly oriented single-crystal grains, each exhibiting single-crystalline elastic
Investigation of Kevlar fabric-based materials for use with inflatable structures
NASA Technical Reports Server (NTRS)
Niccum, R. J.; Munson, J. B.; Rueter, L. L.
1977-01-01
Design, manufacture and testing of laminated and coated composite materials incorporating a structural matrix of Kevlar are reported. The practicality of using Kevlar in aerostat materials is demonstrated, and data are provided on practical weaves, lamination and coating particulars, rigidity, strength, weight, elastic coefficients, abrasion resistance, crease effects, peel strength, blocking tendencies, helium permeability, and fabrication techniques. Properties of the Kevlar-based materials are compared with conventional Dacron-reinforced counterparts. A comprehensive test and qualification program is discussed, and considerable quantitative biaxial tensile and shear test data are provided.
A Micromechanics-Based Damage Model for [+/- Theta/90n]s Composite Laminates
NASA Technical Reports Server (NTRS)
Mayugo, Joan-Andreu; Camanho, Pedro P.; Maimi, Pere; Davila, Carlos G.
2006-01-01
A new damage model based on a micromechanical analysis of cracked [+/- Theta/90n]s laminates subjected to multiaxial loads is proposed. The model predicts the onset and accumulation of transverse matrix cracks in uniformly stressed laminates, the effect of matrix cracks on the stiffness of the laminate, as well as the ultimate failure of the laminate. The model also accounts for the effect of the ply thickness on the ply strength. Predictions relating the elastic properties of several laminates and multiaxial loads are presented.
Processing and properties of Titanium alloy based materials with tailored porosity and composition
NASA Astrophysics Data System (ADS)
Cabezas-Villa, Jose Luis; Olmos, Luis; Lemus-Ruiz, Jose; Bouvard, Didier; Chavez, Jorge; Jimenez, Omar; Manuel Solorio, Victor
2017-06-01
This paper deals with powder processing of Ti6Al4V titanium alloy based materials with tailored porosity and composition. Ti6Al4V powder was mixed either with salt particles acting as space holder, so as to provide two-scale porosity, or with hard TiN particles that significantly modified the microstructure of the material and increased its hardness. Finally an original three-layer component was produced. Sample microstructure was observed by SEM and micro-tomography with special interest in pore size and shape, inclusion distribution and connectivity. Compression tests provided elastic modulus and yield stress as functions of density. These materials are representative of bone implants subjected to complex biological and mechanical conditions. These results thus open avenues for processing personalized implants by powder metallurgy.
Shock Wave Response of Iron-based In Situ Metallic Glass Matrix Composites
Khanolkar, Gauri R.; Rauls, Michael B.; Kelly, James P.; Graeve, Olivia A.; Hodge, Andrea M.; Eliasson, Veronica
2016-01-01
The response of amorphous steels to shock wave compression has been explored for the first time. Further, the effect of partial devitrification on the shock response of bulk metallic glasses is examined by conducting experiments on two iron-based in situ metallic glass matrix composites, containing varying amounts of crystalline precipitates, both with initial composition Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4. The samples, designated SAM2X5-600 and SAM2X5-630, are X-ray amorphous and partially crystalline, respectively, due to differences in sintering parameters during sample preparation. Shock response is determined by making velocity measurements using interferometry techniques at the rear free surface of the samples, which have been subjected to impact from a high-velocity projectile launched from a powder gun. Experiments have yielded results indicating a Hugoniot Elastic Limit (HEL) to be 8.58 ± 0.53 GPa for SAM2X5-600 and 11.76 ± 1.26 GPa for SAM2X5-630. The latter HEL result is higher than elastic limits for any BMG reported in the literature thus far. SAM2X5-600 catastrophically loses post-yield strength whereas SAM2X5-630, while showing some strain-softening, retains strength beyond the HEL. The presence of crystallinity within the amorphous matrix is thus seen to significantly aid in strengthening the material as well as preserving material strength beyond yielding. PMID:26932846
Shock Wave Response of Iron-based In Situ Metallic Glass Matrix Composites.
Khanolkar, Gauri R; Rauls, Michael B; Kelly, James P; Graeve, Olivia A; Hodge, Andrea M; Eliasson, Veronica
2016-03-02
The response of amorphous steels to shock wave compression has been explored for the first time. Further, the effect of partial devitrification on the shock response of bulk metallic glasses is examined by conducting experiments on two iron-based in situ metallic glass matrix composites, containing varying amounts of crystalline precipitates, both with initial composition Fe49.7Cr17.7Mn1.9Mo7.4W1.6B15.2C3.8Si2.4. The samples, designated SAM2X5-600 and SAM2X5-630, are X-ray amorphous and partially crystalline, respectively, due to differences in sintering parameters during sample preparation. Shock response is determined by making velocity measurements using interferometry techniques at the rear free surface of the samples, which have been subjected to impact from a high-velocity projectile launched from a powder gun. Experiments have yielded results indicating a Hugoniot Elastic Limit (HEL) to be 8.58 ± 0.53 GPa for SAM2X5-600 and 11.76 ± 1.26 GPa for SAM2X5-630. The latter HEL result is higher than elastic limits for any BMG reported in the literature thus far. SAM2X5-600 catastrophically loses post-yield strength whereas SAM2X5-630, while showing some strain-softening, retains strength beyond the HEL. The presence of crystallinity within the amorphous matrix is thus seen to significantly aid in strengthening the material as well as preserving material strength beyond yielding.
The effect of water on thermal stresses in polymer composites
NASA Technical Reports Server (NTRS)
Sullivan, Roy M.
1994-01-01
The fundamentals of the thermodynamic theory of mixtures and continuum thermochemistry are reviewed for a mixture of condensed water and polymer. A specific mixture which is mechanically elastic with temperature and water concentration gradients present is considered. An expression for the partial pressure of water in the mixture is obtained based on certain assumptions regarding the thermodynamic state of the water in the mixture. Along with a simple diffusion equation, this partial pressure expression may be used to simulate the thermostructural behavior of polymer composite materials due to water in the free volumes of the polymer. These equations are applied to a specific polymer composite material during isothermal heating conditions. The thermal stresses obtained by the application of the theory are compared to measured results to verify the accuracy of the approach.
Elastic response of binary hard-sphere fluids
NASA Astrophysics Data System (ADS)
Rickman, J. M.; Ou-Yang, H. Daniel
2011-07-01
We derive expressions for the high-frequency, wave-number-dependent elastic constants of a binary hard-sphere fluid and employ Monte Carlo computer simulation to evaluate these constants in order to highlight the impact of composition and relative sphere diameter on the elastic response of this system. It is found that the elastic constant c11(k) exhibits oscillatory behavior as a function of k whereas the high-frequency shear modulus, for example, does not. This behavior is shown to be dictated by the angular dependence (in k⃗ space) of derivatives of the interatomic force at contact. The results are related to recent measurements of the compressibility of colloidal fluids in laser trapping experiments.
Elastic properties and fracture strength of quasi-isotropic graphite/epoxy composites
NASA Technical Reports Server (NTRS)
Sullivan, T. L.
1977-01-01
A research program is described which was devised to determine experimentally the elastic properties in tension and bending of quasi-isotropic laminates made from high-modulus graphite fiber and epoxy. Four laminate configurations were investigated, and determinations were made of the tensile modulus, Poisson's ratio, bending stiffness, fracture strength, and fracture strain. The measured properties are compared with those predicted by laminate theory, reasons for scatter in the experimental data are discussed, and the effect of fiber misalignment on predicted elastic tensile properties is examined. The results strongly suggest that fiber misalignment in combination with variation in fiber volume content is responsible for the scatter in both elastic constants and fracture strength.
Ultrasonic studies of aluminium-substituted Bi(Pb)-2223 superconductors
NASA Astrophysics Data System (ADS)
Solunke, M. B.; Sharma, P. U.; Pandya, M. P.; Lakhani, V. K.; Modi, K. B.; Venugopal Reddy, P.; Shah, S. S.
2005-09-01
The compositional dependence of elastic properties of Al^{3+}-substitu- ted Bi(Pb)-2223 superconducting system with the general formula Bi_{1.7-x}Al_xPb_{0.3}Sr_2Ca_2- Cu_3O_y (x = 0.0, 0.1, 0.2 and 0.3) have been studied by means of ultrasonic pulse transmission (UPT) technique at 1 MHz (300 K). The elastic moduli of the specimens are computed and corrected to zero porosity. The observed variation of elastic constants with aluminium substitution has been explained on the basis of the strength of interatomic bonding. The applicability of heterogeneous metal mixture rule for estimating elastic constants and transition temperature has been tested.
NASA Technical Reports Server (NTRS)
Reed, R. P.
1972-01-01
The elastic and plastic deformation behavior of high-purity aluminum and of dilute aluminum alloys is reviewed. Reliable property data, including elastic moduli, elastic coefficients, tensile, creep, fatigue, hardness, and impact are presented. Single crystal tensile results are discussed. Rather comprehensive reference lists, containing publications of the past 20 years, are included for each of the above categories. Defect structures and mechanisms responsible for mechanical behavior are presented. Strengthening techniques (alloys, cold work, irradiation, quenching, composites) and recovery are briefly reviewed.
NASA Astrophysics Data System (ADS)
Yuan, Shenfang; Bao, Qiao; Qiu, Lei; Zhong, Yongteng
2015-10-01
The growing use of composite materials on aircraft structures has attracted much attention for impact monitoring as a kind of structural health monitoring (SHM) method. Multiple signal classification (MUSIC)-based monitoring technology is a promising method because of its directional scanning ability and easy arrangement of the sensor array. However, for applications on real complex structures, some challenges still exist. The impact-induced elastic waves usually exhibit a wide-band performance, giving rise to the difficulty in obtaining the phase velocity directly. In addition, composite structures usually have obvious anisotropy, and the complex structural style of real aircrafts further enhances this performance, which greatly reduces the localization precision of the MUSIC-based method. To improve the MUSIC-based impact monitoring method, this paper first analyzes and demonstrates the influence of measurement precision of the phase velocity on the localization results of the MUSIC impact localization method. In order to improve the accuracy of the phase velocity measurement, a single frequency component extraction method is presented. Additionally, a single frequency component-based re-estimated MUSIC (SFCBR-MUSIC) algorithm is proposed to reduce the localization error caused by the anisotropy of the complex composite structure. The proposed method is verified on a real composite aircraft wing box, which has T-stiffeners and screw holes. Three typical categories of 41 impacts are monitored. Experimental results show that the SFCBR-MUSIC algorithm can localize impact on complex composite structures with an obviously improved accuracy.
Processing and damage recovery of intrinsic self-healing glass fiber reinforced composites
NASA Astrophysics Data System (ADS)
Sordo, Federica; Michaud, Véronique
2016-08-01
Glass fiber reinforced composites with a self-healing, supramolecular hybrid network matrix were produced using a modified vacuum assisted resin infusion moulding process adapted to high temperature processing. The quality and fiber volume fraction (50%) of the obtained materials were assessed through microscopy and matrix burn-off methods. The thermo-mechanical properties were quantified by means of dynamic mechanical analysis, revealing very high damping properties compared to traditional epoxy-based glass fiber reinforced composites. Self-healing properties were assessed by three-point bending tests. A high recovery of the flexural properties, around 72% for the elastic modulus and 65% of the maximum flexural stress, was achieved after a resting period of 24 h at room temperature. Recovery after low velocity impact events was also visually observed. Applications for this intrinsic and autonomic self-healing highly reinforced composite material point towards semi-structural applications where high damping and/or integrity recovery after impact are required.
Stretchable Light-Emitting Diodes with Organometal-Halide-Perovskite-Polymer Composite Emitters.
Bade, Sri Ganesh R; Shan, Xin; Hoang, Phong Tran; Li, Junqiang; Geske, Thomas; Cai, Le; Pei, Qibing; Wang, Chuan; Yu, Zhibin
2017-06-01
Intrinsically stretchable light-emitting diodes (LEDs) are demonstrated using organometal-halide-perovskite/polymer composite emitters. The polymer matrix serves as a microscale elastic connector for the rigid and brittle perovskite and induces stretchability to the composite emissive layers. The stretchable LEDs consist of poly(ethylene oxide)-modified poly(3,4-ethylenedioxythiophene) polystyrene sulfonate as a transparent and stretchable anode, a perovskite/polymer composite emissive layer, and eutectic indium-gallium as the cathode. The devices exhibit a turn-on voltage of 2.4 V, and a maximum luminance intensity of 15 960 cd m -2 at 8.5 V. Such performance far exceeds all reported intrinsically stretchable LEDs based on electroluminescent polymers. The stretchable perovskite LEDs are mechanically robust and can be reversibly stretched up to 40% strain for 100 cycles without failure. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Higher-Order Bending Theory for Laminated Composite and Sandwich Beams
NASA Technical Reports Server (NTRS)
Cook, Geoffrey M.
1997-01-01
A higher-order bending theory is derived for laminated composite and sandwich beams. This is accomplished by assuming a special form for the axial and transverse displacement expansions. An independent expansion is also assumed for the transverse normal stress. Appropriate shear correction factors based on energy considerations are used to adjust the shear stiffness. A set of transverse normal correction factors is introduced, leading to significant improvements in the transverse normal strain and stress for laminated composite and sandwich beams. A closed-form solution to the cylindrical elasticity solutions for a wide range of beam aspect ratios and commonly used material systems. Accurate shear stresses for a wide range of laminates, including the challenging unsymmetric composite and sandwich laminates, are obtained using an original corrected integration scheme. For application of the theory to a wider range of problems, guidelines for finite element approximations are presented.
Structural modeling for multicell composite rotor blades
NASA Technical Reports Server (NTRS)
Rehfield, Lawrence W.; Atilgan, Ali R.
1987-01-01
Composite material systems are currently good candidates for aerospace structures, primarily for the design flexibility they offer, i.e., it is possible to tailor the material and manufacturing approach to the application. A working definition of elastic or structural tailoring is the use of structural concept, fiber orientation, ply stacking sequence, and a blend of materials to achieve specific performance goals. In the design process, choices of materials and dimensions are made which produce specific response characteristics, and which permit the selected goals to be achieved. Common choices for tailoring goals are preventing instabilities or vibration resonances or enhancing damage tolerance. An essential, enabling factor in the design of tailored composite structures is structural modeling that accurately, but simply, characterizes response. The objective of this paper is to present a new multicell beam model for composite rotor blades and to validate predictions based on the new model by comparison with a finite element simulation in three benchmark static load cases.
A new aeroelastic model for composite rotor blades with straight and swept tips
NASA Technical Reports Server (NTRS)
Yuan, Kuo-An; Friedmann, Peretz P.; Venkatesan, Comandur
1992-01-01
An analytical model for predicting the aeroelastic behavior of composite rotor blades with straight and swept tips is presented. The blade is modeled by beam type finite elements along the elastic axis. A single finite element is used to model the swept tip. The nonlinear equations of motion for the finite element model are derived using Hamilton's principle and based on a moderate deflection theory and accounts for: arbitrary cross-sectional shape, pretwist, generally anisotropic material behavior, transverse shears and out-of-plane warping. Numerical results illustrating the effects of tip sweep, anhedral and composite ply orientation on blade aeroelastic behavior are presented. Tip sweep can induce aeroelastic instability by flap-twist coupling. Tip anhedral causes lag-torsion and flap-axial couplings, however, its effects on blade stability is less pronounced than the effect due to sweep. Composite ply orientation has a substantial effect on blade stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moya, Xavier; Gonzalez-Alonso, David; Manosa, Lluis
2009-01-01
Neutron scattering and ultrasonic methods have been used to study the lattice dynamics of two single crystals of Ni-Mn-In Heusler alloys close to Ni50Mn34In16 magnetic superelastic composition. The paper reports the experimental determination of the low-lying phonon dispersion curves and the elastic constants for this alloy system. We found that the frequencies of the TA2 branch are relatively low and it exhibits a small dip anomaly at a wave number n= 1/3, which softens with decreasing temperature. Associated with the softening of this phonon, we also observed the softening of the shear elastic constant C0 = (C11 C12)=2. Both temperaturemore » softenings are typical for bcc based solids which undergo martensitic transformations and re ect the dynamical instability of the cubic lattice against shearing of f110g planes along h1 10i directions. Additionally, we measured low-lying phonon dispersion branches and elastic constants in applied magnetic fields aimed to characterize the magnetoelastic coupling.« less
NASA Astrophysics Data System (ADS)
Ganguli, R.
2002-11-01
An aeroelastic analysis based on finite elements in space and time is used to model the helicopter rotor in forward flight. The rotor blade is represented as an elastic cantilever beam undergoing flap and lag bending, elastic torsion and axial deformations. The objective of the improved design is to reduce vibratory loads at the rotor hub that are the main source of helicopter vibration. Constraints are imposed on aeroelastic stability, and move limits are imposed on the blade elastic stiffness design variables. Using the aeroelastic analysis, response surface approximations are constructed for the objective function (vibratory hub loads). It is found that second order polynomial response surfaces constructed using the central composite design of the theory of design of experiments adequately represents the aeroelastic model in the vicinity of the baseline design. Optimization results show a reduction in the objective function of about 30 per cent. A key accomplishment of this paper is the decoupling of the analysis problem and the optimization problems using response surface methods, which should encourage the use of optimization methods by the helicopter industry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Lu; Wang, Jing; Wang, Shibin
A comprehensive morphological stability analysis of a nanoscale circular island during heteroepitaxial growth is presented based on continuum elasticity theory. The interplay between kinetic and thermodynamic mechanisms is revealed by including strain-related kinetic processes. In the kinetic regime, the Burton-Cabrera-Frank model is adopted to describe the growth front of the island. Together with kinetic boundary conditions, various kinetic processes including deposition flow, adatom diffusion, attachment-detachment kinetics, and the Ehrlich-Schwoebel barrier can be taken into account at the same time. In the thermodynamic regime, line tension, surface energy, and elastic energy are considered. As the strain relief in the early stagesmore » of heteroepitaxy is more complicated than commonly suggested by simple consideration of lattice mismatch, we also investigate the effects of external applied strain and elastic response due to perturbations on the island shape evolution. The analytical expressions for elastic fields induced by mismatch strain, external applied strain, and relaxation strain are presented. A systematic approach is developed to solve the system via a perturbation analysis which yields the conditions of film morphological instabilities. Consistent with previous experimental and theoretical work, parametric studies show the kinetic evolution of elastic relaxation, island morphology, and film composition under various conditions. Our present work offers an effective theoretical approach to get a comprehensive understanding of the interplay between different growth mechanisms and how to tailor the growth mode by controlling the nature of the crucial factors.« less
Tailoring of physical properties in highly filled experimental nanohybrid resin composites.
Pick, Bárbara; Pelka, Matthias; Belli, Renan; Braga, Roberto R; Lohbauer, Ulrich
2011-07-01
To assess the elastic modulus (EM), volumetric shrinkage (VS), and polymerization shrinkage stress (PSS) of experimental highly filled nanohybrid composites as a function of matrix composition, filler distribution, and density. One regular viscosity nanohybrid composite (Grandio, VOCO, Germany) and one flowable nanohybrid composite (Grandio Flow, VOCO) were tested as references along with six highly filled experimental nanohybrid composites (four Bis-GMA-based, one UDMA-based, and one Ormocer®-based). The experimental composites varied in filler size and density. EM values were obtained from the "three-point bending" load-displacement curve. VS was calculated with Archimedes' buoyancy principle. PSS was determined in 1-mm thick specimens placed between two (poly)methyl methacrylate rods (Ø=6mm) attached to an universal testing machine. Data were analyzed using oneway ANOVA, Tukey's test (α=0.05), and linear regression analyses. The flowable composite exhibited the highest VS and PSS but lowest EM. The PSS was significantly lower with Ormocer. The EM was significantly higher among experimental composites with highest filler levels. No significant differences were found between all other experimental composites regarding VS and PSS. Filler density and size did not influence EM, VS, or PSS. Neither the filler configuration nor matrix composition in the investigated materials significantly influenced composite shrinkage and mechanical properties. The highest filled experimental composite seemed to increase EM by keeping VS and PSS low; however, matrix composition seemed to be the determinant factor for shrinkage and stress development. The Ormocer, with reduced PSS, deserves further investigation. Filler size and density did not influence the tested parameters. Copyright © 2011 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
A-thermal elastic behavior of silicate glasses.
Rabia, Mohammed Kamel; Degioanni, Simon; Martinet, Christine; Le Brusq, Jacques; Champagnon, Bernard; Vouagner, Dominique
2016-02-24
Depending on the composition of silicate glasses, their elastic moduli can increase or decrease as function of the temperature. Studying the Brillouin frequency shift of these glasses versus temperature allows the a-thermal composition corresponding to an intermediate glass to be determined. In an intermediate glass, the elastic moduli are independent of the temperature over a large temperature range. For sodium alumino-silicate glasses, the a-thermal composition is close to the albite glass (NaAlSi3O8). The structural origin of this property is studied by in situ high temperature Raman scattering. The structure of the intermediate albite glass and of silica are compared at different temperatures between room temperature and 600 °C. When the temperature increases, it is shown that the high frequency shift of the main band at 440 cm(-1) in silica is a consequence of the cristobalite-like alpha-beta transformation of 6-membered rings. This effect is stronger in silica than bond elongation (anharmonic effects). As a consequence, the elastic moduli of silica increase as the temperature increases. In the albite glass, the substitution of 25% of Si(4+) ions by Al(3+) and Na(+) ions decreases the proportion of SiO2 6-membered rings responsible for the silica anomaly. The effects of the silica anomaly balance the anharmonicity in albite glass and give rise to an intermediate a-thermal glass. Different networks, formers or modifiers, can be added to produce different a-thermal glasses with useful mechanical or chemical properties.
Fiber reinforced glasses and glass-ceramics for high performance applications
NASA Technical Reports Server (NTRS)
Prewo, K. M.; Brennan, J. J.; Layden, G. K.
1986-01-01
The development of fiber reinforced glass and glass-ceramic matrix composites is described. The general concepts involved in composite fabrication and resultant composite properties are given for a broad range of fiber and matrix combinations. It is shown that composite materials can be tailored to achieve high levels of toughness, strength, and elastic stiffness, as well as wear resistance and dimensional stability.
The effect of carbon black loading and structure on tensile property of natural rubber composite
NASA Astrophysics Data System (ADS)
Savetlana, S.; Zulhendri; Sukmana, I.; Saputra, F. A.
2017-07-01
Natural rubber composite has been continuously developed due to its advantages such as a good combination of strength and damping property. Most of carbon black (CB)/Natural Rubber (NR) composite were used as material in tyre industry. The addition of CB in natural rubber is very important to enhance the strength of natural rubber. The particle loading and different structure of CB can affect the composite strength. The effects of CB particle loading of 20, 25 and 30 wt% and the effects of CB structures of N220, N330, N550 and N660 series on tensile property of composite were investigated. The result shows that the tensile strength and elastic modulus of natural rubber/CB composite was higher than pure natural rubber. From SEM observation the agglomeration of CB aggregate increases with particle loading. It leads to decrease of tensile strength of composite as more particle was added. High structure of CB particle i.e. N220 resulted in highest tensile stress. In fact, composite reinforced by N660 CB particle shown a comparable tensile strength and elastic modulus with N220 CB particle. SEM observation shows that agglomeration of CB aggregates of N330 and N550 results in lower stress of associate NR/CB composite.
NASA Astrophysics Data System (ADS)
Ratim, S.; Bonnia, N. N.; Surip, S. N.
2012-07-01
The effects of woven and non-woven kenaf fiber on mechanical properties of polyester composites were studied at different types of perform structures. Composite polyester reinforced kenaf fiber has been prepared via hand lay-up process by varying fiber forms into plain weave, twill and mats structure. The reinforcing efficiency of different fiber structure was compared with control of unreinforced polyester sample. It was found that the strength and stiffness of the composites are largely affected by fiber structure. A maximum value for tensile strength of composite was obtained for twill weave pattern of fiber structure while no significant different for plain weave and mat structure. The elastic modulus of composite has shown some improvement on plain and twill weave pattern. Meanwhile, lower value of modulus elasticity achieved by mats structure composite as well as control sample. The modulus of rupture and impact resistance were also analyzed. The improvement of modulus of rupture value can be seen on plain and twill weave pattern. However impact resistance doesn't show significant improvement in all types of structure except for mat fiber. The mechanical properties of kenaf fiber reinforced polyester composite found to be increased with woven and non-woven fiber structures in composite.
NASA Astrophysics Data System (ADS)
Xu, Jiang; Kan, Yide; Liu, Wenjin
In order to improve the wear resistance of aluminum alloy, in-situ synthesized TiB2 and Ti3B4 peritectic composite particulate reinforced metal matrix composite, formed on a 2024 aluminum alloy by laser cladding with a powder mixture of Fe-coated Boron, Ti and Al, was successfully achieved using 3-KW CW CO2 laser. The chemical composition, microstructure and phase structure of the composite clad coating were analyzed by energy dispersive X-ray spectroscopy (EDX), SEM, AFM and XRD. The typical microstructure of the composite coating is composed of TiB2, Ti3B4, Al3Ti, Al3Fe and α-Al. The surface hardness of cladding coating increases with the amount of added Fe-coated B and Ti powder which determines the amount of TiB2 and Ti3B4 peritectic composite particulate. The nanohardness and the elastic modulus at the interface of the TiB2 and Ti3B4 peritectic composite particulate/matrix were investigated using the nanoindentation technique. The results showed that the nanohardness and the reduced elastic modulus from the peritectic composite particulate to the matrix is a gradient distribution.
Brittle behavior of ceramic matrix composites made of 2 different phases
NASA Astrophysics Data System (ADS)
Sadowski, Tomasz; Craciun, Eduard; Marsavina, Liviu
2018-02-01
Brittle behavior of Ceramic matrix Composites (CMCs) results from overall response to applied loads due to complex of their internal microstructure. The CMCs materials are composed of mixtures of phases, some amount of porosity and technological defects. The phases can exhibit purely elastic behavior or elastic-plastic one under high level of loading. The crucial point in description of their behavior is correlation of microcracking processes with the type of loading, i.e. tensile or compressive. This distinction in the material behavior is typical for so called brittle materials. In this paper we compared both microcracking processes for the above 2 characteristic loading paths.
New reusable elastomer electrodes for assessing body composition
NASA Astrophysics Data System (ADS)
Moreno, M.-V.; Chaset, L.; Bittner, P. A.; Barthod, C.; Passard, M.
2013-04-01
The development of telemedicine requires finding solutions of reusable electrodes for use in patients' homes. The objective of this study is to evaluate the relevance of reusable elastomer electrodes for measuring body composition. We measured a population of healthy Caucasian (n = 17). A measurement was made with a reference device, the Xitron®, associated with AgCl Gel electrodes (Gel) and another measurement with a multifrequency impedancemeter Z-Metrix® associated with reusable elastomer electrodes (Elast). We obtained a low variability with an average error of repeatability of 0.39% for Re and 0.32% for Rinf. There is a non significantly difference (P T-test > 0.1) about 200 ml between extracellular water Ve measured with Gel and Elast in supine and in standing position. For total body water Vt, we note a non significantly difference (P T-test > 0.1) about 100 ml and 2.2 1 respectively in supine and standing position. The results give low dispersion, with R2 superior to 0.90, with a 1.5% maximal error between Gel and Elast on Ve in standing position. It looks possible, taking a few precautions, using elastomer electrodes for assessing body composition.
Characterization of Elastic Properties of Interfaces in Composite Materials
1990-09-01
ceramic Imatrix composites. These types of composite materials offer the advantages of being lighter, stiffer, stronger, and more resistant to creep and...actual composite materials. śi 3 II. Introduction The advantages offered by metal and ceramic matrix composites for strw, ural aerispace applications...minimum when ( VST /Vs) 2 = 0.8453... This corresponds to a situation analogous to a Rayleigh wave. As the ratio of the displacements increases, the ratio of
NASA Technical Reports Server (NTRS)
Pineda, Evan J.; Fassin, Marek; Bednarcyk, Brett A.; Reese, Stefanie; Simon, Jaan-Willem
2017-01-01
Three different multiscale models, based on the method of cells (generalized and high fidelity) micromechanics models were developed and used to predict the elastic properties of C/C-SiC composites. In particular, the following multiscale modeling strategies were employed: Concurrent multiscale modeling of all phases using the generalized method of cells, synergistic (two-way coupling in space) multiscale modeling with the generalized method of cells, and hierarchical (one-way coupling in space) multiscale modeling with the high fidelity generalized method of cells. The three models are validated against data from a hierarchical multiscale finite element model in the literature for a repeating unit cell of C/C-SiC. Furthermore, the multiscale models are used in conjunction with classical lamination theory to predict the stiffness of C/C-SiC plates manufactured via a wet filament winding and liquid silicon infiltration process recently developed by the German Aerospace Institute.
A Proposed Method for the Computer-aided Discovery and Design of High-strength, Ductile Metals
NASA Astrophysics Data System (ADS)
Winter, Ian Stewart
Gum Metal, a class of Ti-Nb alloys, has generated a great deal of interest in the metallurgical community since its development in 2003. These alloys display numerous novel and anomalous properties, many of which only occur after severe plastic deformation has been incurred on the material. Such properties include: super-elasticity, super-coldworkability, Invar and Elinvar behavior, high ductility, as well as high strength. The high strength of gum metal has generated particular enthusiasm as it is on the order of the predicted ideal strength of the material. Many of the properties of gum metal appear to be a direct result of tuning the composition to be near an elastic instability resulting in a high degree of elastic anisotropy. This presents an opportunity for the computer-aided discovery and design of structural materials as the ideal strength and elastic anisotropy can be approximated from the elastic constants. Two approaches are described for searching for this high ansitropy. In the first, The possibility of forming gum metal in Mg is explored by tuning the material to be near the BCC-HCP transition either by pressure or alloying with Li. The second makes use of the Materials Project's elastic constants database, which contains thousands of ordered compounds, in order to screen for gum metal candidates. By defining an elastic anisotropy parameter consistent with the behavior of gum metal and calculating it for all cubic materials in the elastic constants database several gum metal candidates are found. In order to better assess their candidacy information on the intrinsic ductility of these materials is necessary. A method is proposed for calculating the ideal strength and deformation mode of a solid solution from first-principles. In order to validate this method the intrinsic ductile-to-brittle transition composition of Ti-V systems is calculated. It is further shown that this method can be applied to the calculation of an ideal tensile yield surface.
A new barometer from stress fields around inclusions
NASA Astrophysics Data System (ADS)
Avadanii, Diana; Hansen, Lars; Wallis, David; Waters, David
2017-04-01
A key step in understanding geological and geodynamic processes is modelling the pressure-temperature paths of metamorphic rocks. Traditional thermobarometry relies on mineral assemblage equilibria and thermodynamic modelling to infer the pressures and temperatures of chemical equilibration. This approach requires the presence of specific mineral assemblages and compositions, which narrows its applicability. In this study we aim to develop a geobarometer based on mechanical interactions between inclusions and their host grains. Exhumation of minerals with inclusions causes heterogeneous residual stress fields due to the different, and often anisotropic, elastic properties of the inclusion and host. Recent studies measure residual mean stresses within inclusions using Raman spectroscopy and use those stresses as a barometer. In contrast, we map each component of the stress tensor around inclusions using high angular-resolution electron backscatter diffraction (HR-EBSD). This technique provides both higher spatial resolution and increased sensitivity to elastic strains relative to Raman spectroscopy. We focus on quartz inclusions in garnet, a common feature in metamorphic rocks. This assemblage also provides an opportunity to test our results with compositional thermobarometry. We analyse samples metamorphosed at pressures ranging from ˜ 300 MPa to ˜ 1600 MPa, as recorded by independent geobarometers. HR-EBSD reveals symmetric and lobate signals around inclusions, with elastic strains and residual stresses of the order 10-3 and ±102 -103 MPa, respectively. We solve Eshelby's problem for the 'inhomogeneous inclusion' case to simulate the elastic strain/stress field around an anisotropic ellipsoidal inclusion surrounded by an isotropic, homogeneous, infinite matrix. This model calculates the stress disturbances caused by differential expansion of an inclusion and host subjected to decompression. We additionally account for differential expansion related to cooling by imposing an eigenstrain in the inclusion, according to the thermal expansivity of quartz. Thermal contraction in the host garnet is accounted for by modifying the macroscopic pressure. The simulations reproduce the general pattern of the elastic fields that we observe from HR-EBSD and account for different geometries of the inclusion. The simulations provide the basis for quantitatively relating the stress fields measured by HR-EBSD to the entrapment pressures of inclusions.
NASA Technical Reports Server (NTRS)
Lu, M. C.; Erdogan, F.
1980-01-01
The numerical method is given for solving the plane problem for two bonded infinite dissimilar elastic strips which contain cracks of various configurations. The problem is intended to approximate a composite beam or a plate having cracks perpendicular to and on the interface of the two layers.
NASA Astrophysics Data System (ADS)
Liu, Qimao
2018-02-01
This paper proposes an assumption that the fibre is elastic material and polymer matrix is viscoelastic material so that the energy dissipation depends only on the polymer matrix in dynamic response process. The damping force vectors in frequency and time domains, of FRP (Fibre-Reinforced Polymer matrix) laminated composite plates, are derived based on this assumption. The governing equations of FRP laminated composite plates are formulated in both frequency and time domains. The direct inversion method and direct time integration method for nonviscously damped systems are employed to solve the governing equations and achieve the dynamic responses in frequency and time domains, respectively. The computational procedure is given in detail. Finally, dynamic responses (frequency responses with nonzero and zero initial conditions, free vibration, forced vibrations with nonzero and zero initial conditions) of a FRP laminated composite plate are computed using the proposed methodology. The proposed methodology in this paper is easy to be inserted into the commercial finite element analysis software. The proposed assumption, based on the theory of material mechanics, needs to be further proved by experiment technique in the future.
Numerical Study of Effects of Fluid-Structure Interaction on Dynamic Responses of Composite Plates
2009-09-01
FORCE LOAD AND CLAMPED BOUNDARY.................73 APPENDIX F: ADDITIONAL FIGURES FOR COMPOSITE DE NSITY EFFECTS WITH CONCE NTRATED FORCE LOAD AND...Structure Strain and Kine tic Energy Comparison for Elastic Modulus Variations with Concentrated Force and Clamped Boundary .........................31...48 Figure 49. Experiment Strain Gage La yout on Underside of Composite Plate
Elastic and Sorption Characteristics of an Epoxy Binder in a Composite During Its Moistening
NASA Astrophysics Data System (ADS)
Aniskevich, K.; Glaskova, T.; Jansons, J.
2005-07-01
Results of an experimental investigation into the elastic and sorption characteristics of a model composite material (CM) — epoxy resin filled with LiF crystals — during its moistening are presented. Properties of the binder in the CM with different filler contents ( v f = 0, 0.05, 0.11, 0.23, 0.28, 0.33, 0.38, and 0.46) were evaluated indirectly by using known micromechanical models of CMs. It was revealed that, for the CM in a conditionally initial state, the elastic modulus of the binder in it and the filler microstrain (change in the interplanar distance in the crystals, measured by the X-ray method) as functions of filler content had the same character. The elastic modulus of the binder in the CM with a low filler content was equal to that for the binder in a block; the elastic modulus of the binder in the CM decreased with increasing filler content. The maximum (corresponding to water saturation of the CM) stresses in the binder and the filler microstresses as functions of filler content were of the same character. Moreover, the absolute values of maximum stresses in the binder and of filler microstresses coincided for high and low contents of the filler. At v f = 0.2-0. 3, the filler microstrains exceeded the stresses in the binder. The effect of moisture on the epoxy binder in the CM with a high filler content was not entirely reversible: the elastic characteristics of the binder increased, the diffusivity decreased, and the ultimate water content increased after a moistening-drying cycle.
NASA Technical Reports Server (NTRS)
Pindera, Marek-Jerzy; Salzar, Robert S.; Williams, Todd O.
1994-01-01
A user's guide for the computer program OPTCOMP is presented in this report. This program provides a capability to optimize the fabrication or service-induced residual stresses in uni-directional metal matrix composites subjected to combined thermo-mechanical axisymmetric loading using compensating or compliant layers at the fiber/matrix interface. The user specifies the architecture and the initial material parameters of the interfacial region, which can be either elastic or elastoplastic, and defines the design variables, together with the objective function, the associated constraints and the loading history through a user-friendly data input interface. The optimization procedure is based on an efficient solution methodology for the elastoplastic response of an arbitrarily layered multiple concentric cylinder model that is coupled to the commercial optimization package DOT. The solution methodology for the arbitrarily layered cylinder is based on the local-global stiffness matrix formulation and Mendelson's iterative technique of successive elastic solutions developed for elastoplastic boundary-value problems. The optimization algorithm employed in DOT is based on the method of feasible directions.
Modeling Geometry and Progressive Failure of Material Interfaces in Plain Weave Composites
NASA Technical Reports Server (NTRS)
Hsu, Su-Yuen; Cheng, Ron-Bin
2010-01-01
A procedure combining a geometrically nonlinear, explicit-dynamics contact analysis, computer aided design techniques, and elasticity-based mesh adjustment is proposed to efficiently generate realistic finite element models for meso-mechanical analysis of progressive failure in textile composites. In the procedure, the geometry of fiber tows is obtained by imposing a fictitious expansion on the tows. Meshes resulting from the procedure are conformal with the computed tow-tow and tow-matrix interfaces but are incongruent at the interfaces. The mesh interfaces are treated as cohesive contact surfaces not only to resolve the incongruence but also to simulate progressive failure. The method is employed to simulate debonding at the material interfaces in a ceramic-matrix plain weave composite with matrix porosity and in a polymeric matrix plain weave composite without matrix porosity, both subject to uniaxial cyclic loading. The numerical results indicate progression of the interfacial damage during every loading and reverse loading event in a constant strain amplitude cyclic process. However, the composites show different patterns of damage advancement.
Speaker box made of composite particle board based on mushroom growing media waste
NASA Astrophysics Data System (ADS)
Tjahjanti, P. H.; Sutarman, Widodo, E.; Kurniawan, A. R.; Winarno, A. T.; Yani, A.
2017-06-01
This research aimed to use mushroom growing media waste (MGMW) that was added by urea, starch and polyvinyl chloride (PVC) glue as a composite particle board to be used as the material of speaker box manufacture. Physical and mechanical testing of particle board including density, moisture content, thickness swelling after immersion in water, strength in water absorption, internal bonding, modulus of elasticity, modulus of rupture and screw holding power, were carried out in accordance with the Stándar Nasional Indonesia (SNI) 03-2105-2006 and Japanese International Standard (JIS) A 5908-2003. The optimum composition of composite particle boards was 60% MGMW + 39% (50% urea +50% starch) + 1% PVC glue. Furthermore, the optimum composition to create speaker box with hardness values of 14.9 Brinnel Hardness Number and results of vibration test obtained amplitude values of the Z-axis, minimum of 0.032007 and maximum of 0.151575. For the acoustic test, results showed good sound absorption coefficients at frequencies of 500 Hz and it has better damping absorption.
Huang, Shih-Wei; Ku, Jan-Wen; Lin, Li-Fong; Liao, Chun-De; Chou, Lin-Chuan; Liou, Tsan-Hon
2017-08-01
Sarcopenia involves age-related decreases in muscle strength and muscle mass, leading to frailty and disability in elderly people. When combined with obesity, it is defined as sarcopenic obesity (SO), which can result in more functional limitations and metabolic disorders than either disorder alone. The aim of this study was to investigate body composition changes after elastic band resistance training in elderly women with SO. Randomized single-blinded (assessor blinded) controlled pilot trial. Academic medical center. Thirty-five elderly (>60 years old) women with SO. This pilot randomized controlled trial focused on elderly women with SO. The study group underwent progressive elastic band resistance training for 12 weeks (3 times per week). The control group received only a 40-minute lesson about the exercise concept. Dual-energy X-ray absorptiometry was performed before and after intervention to evaluate body composition. Mann-Whitney U and Wilcoxon signed rank tests were used to analyze the differences within and between these groups. In total, 35 elderly women with SO were enrolled and divided into study (N.=18) and control groups (N.=17). No difference was observed in age, biochemical parameters, or Body Mass Index between both groups. After the intervention, the fat proportion of body composition in the right upper extremity (P=0.03), left upper extremity (P=0.04), total fat (P=0.035), and fat percentage (P=0.012) had decreased, and bone mineral density (BMD) (P=0.026), T-score (P=0.028), and Z-score (P=0.021) had increased in the study group. Besides, statistical difference was observed in outcome measurements of right upper extremity (P=0.013), total fat (P=0.023), and fat percentage (P=0.012) between the groups. Our study demonstrated that progressive elastic band resistance exercise can reduce fat mass and increase BMD in elderly women with SO, and that this exercise program is feasible for this demographic. Additional studies with larger sample sizes and longer intervention periods should be conducted. Twelve weeks of progressive elastic band resistance exercise program is safe and effective for SO elder women.
Dziendzikowski, Michal; Niedbala, Patryk; Kurnyta, Artur; Kowalczyk, Kamil; Dragan, Krzysztof
2018-05-11
One of the ideas for development of Structural Health Monitoring (SHM) systems is based on excitation of elastic waves by a network of PZT piezoelectric transducers integrated with the structure. In the paper, a variant of the so-called Transfer Impedance (TI) approach to SHM is followed. Signal characteristics, called the Damage Indices (DIs), were proposed for data presentation and analysis. The idea underlying the definition of DIs was to maintain most of the information carried by the voltage induced on PZT sensors by elastic waves. In particular, the DIs proposed in the paper should be sensitive to all types of damage which can influence the amplitude or the phase of the voltage induced on the sensor. Properties of the proposed DIs were investigated experimentally using a GFRP composite panel equipped with PZT networks attached to its surface and embedded into its internal structure. Repeatability and stability of DI indications under controlled conditions were verified in tests. Also, some performance indicators for surface-attached and structure-embedded sensors were obtained. The DIs' behavior was dependent mostly on the presence of a simulated damage in the structure. Anisotropy of mechanical properties of the specimen, geometrical properties of PZT network as well as, to some extent, the technology of sensor integration with the structure were irrelevant for damage indication. This property enables the method to be used for damage detection and classification.
Marsano, Anna; Wendt, David; Raiteri, Roberto; Gottardi, Riccardo; Stolz, Martin; Wirz, Dieter; Daniels, Alma U; Salter, Donald; Jakob, Marcel; Quinn, Thomas M; Martin, Ivan
2006-12-01
The aim of this study was to demonstrate that differences in the local composition of bi-zonal fibrocartilaginous tissues result in different local biomechanical properties in compression and tension. Bovine articular chondrocytes were loaded into hyaluronan-based meshes (HYAFF-11) and cultured for 4 weeks in mixed flask, a rotary Cell Culture System (RCCS), or statically. Resulting tissues were assessed histologically, immunohistochemically, by scanning electron microscopy and mechanically in different regions. Local mechanical analyses in compression and tension were performed by indentation-type scanning force microscopy and by tensile tests on punched out concentric rings, respectively. Tissues cultured in mixed flask or RCCS displayed an outer region positively stained for versican and type I collagen, and an inner region positively stained for glycosaminoglycans and types I and II collagen. The outer fibrocartilaginous capsule included bundles (up to 2 microm diameter) of collagen fibers and was stiffer in tension (up to 3.6-fold higher elastic modulus), whereas the inner region was stiffer in compression (up to 3.8-fold higher elastic modulus). Instead, molecule distribution and mechanical properties were similar in the outer and inner regions of statically grown tissues. In conclusion, exposure of articular chondrocyte-based constructs to hydrodynamic flow generated tissues with locally different composition and mechanical properties, resembling some aspects of the complex structure and function of the outer and inner zones of native meniscus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shao, Yang; Guo, Fangmin; Ren, Yang
In an effort to further develop shape memory alloys (SMAs) for functional applications, much focus has been given in recent years to design and create innovative forms of SMAs, such as functionally graded SMAs, architecture SMAs, and SMA-based metallic composites. Here, we reports on the progress in creating NiTi-based composites of exceptional properties stimulated by the recent discovery of the principle of lattice strain matching between the SMA matrix and superelastic nanoinclusions embedded in the matrix. And based on this principle, different SMA–metal composites have been designed to achieve extraordinary shape memory performances, such as complete pseudoelastic behavior at asmore » low as 77 K and stress plateau as high as 1600 MPa, and exceptional mechanical properties, such as tensile strength as high as 2000 MPa and Young’s modulus as low as 28 GPa. Details are given for a NiTi–W micro-fiber composite prepared by melt infiltration, hot pressing, forging, and cold rolling. Furthermore, the composite contained 63% in volume of W micro-fibers of ~0.6 μm thickness. In situ synchrotron X-ray diffraction revealed that the NiTi matrix underwent martensite transformation during tensile deformation while the W micro-fiber deformed elastically with a maximum strain of 0.83% in the loading direction, implying a W fiber stress of 3280 MPa. The composite showed a maximum high tensile strength of 2300 MPa.« less
Study of nano mechanical properties polydimethylsiloxane (PDMS)/MWCNT composites
NASA Astrophysics Data System (ADS)
Murudkar, Vrishali; Gaonkar, Amita; Deshpande, V. D.; Mhaske, S. T.
2018-05-01
Polydimethylsiloxane (PDMS), a clear elastomer, is a common material used in many applications; but has poor mechanical properties. Carbon nano tubes (CNT) exhibit excellent mechanical properties & hence are used as filler in PDMS. It was found that the elastic modulus and strength of the PDMS/MWCNT nano composites were enhanced by adding MWCNT [1]. Through the nano indentation experiment, the hardness (H), the elastic modulus (E), and other mechanical properties can be determined from very small volumes of materials [2]; hence nano indentation is widely used to study mechanical properties. PDMS/MWCNT composites have enhanced mechanical properties over neat PDMS. FTIR analysis shows bonding between MWCNT and PDMS; which affects the mechanical properties. From AFM study it shows decreasing roughness for increasing MWCNT concentration. Surface morphology (SEM) study shows well dispersion of MWCNT into PDMS matrix.
Influence of stress interaction on the behavior of off-axis unidirectional composites
NASA Technical Reports Server (NTRS)
Pindera, M. J.; Herakovich, C. T.
1980-01-01
The yield function for plane stress of a transversely isotropic composite lamina consisting of stiff, linearly elastic fibers and a von Mises matrix material is formulated in terms of Hill's elastic stress concentration factors and a single plastic constraint parameter. The above are subsequently evaluated on the basis of observed average lamina and constituent response for the Avco 5505 boron epoxy system. It is shown that inclusion of residual stresses in the yield function together with the incorporation of Dubey and Hillier's concept of generalized yield stress for anisotropic media in the constitutive equation correctly predicts the trends observed in experiments. The incorporation of the strong axial stress interaction necessary to predict the correct trends in the shear response is directly traced to the high residual axial stresses in the matrix induced during fabrication of the composite.
Defect stability in thorium monocarbide: An ab initio study
NASA Astrophysics Data System (ADS)
Wang, Chang-Ying; Han, Han; Shao, Kuan; Cheng, Cheng; Huai, Ping
2015-09-01
The elastic properties and point defects of thorium monocarbide (ThC) have been studied by means of density functional theory based on the projector-augmented-wave method. The calculated electronic and elastic properties of ThC are in good agreement with experimental data and previous theoretical results. Five types of point defects have been considered in our study, including the vacancy defect, interstitial defect, antisite defect, schottky defect, and composition-conserving defect. Among these defects, the carbon vacancy defect has the lowest formation energy of 0.29 eV. The second most stable defect (0.49 eV) is one of composition-conserving defects in which one carbon is removed to another carbon site forming a C2 dimer. In addition, we also discuss several kinds of carbon interstitial defects, and predict that the carbon trimer configuration may be a transition state for a carbon dimer diffusion in ThC. Project supported by the International S&T Cooperation Program of China (Grant No. 2014DFG60230), the National Natural Science Foundation of China (Grant No. 91326105), the National Basic Research Program of China (Grant No. 2010CB934504), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA02040104).
Iterative and variational homogenization methods for filled elastomers
NASA Astrophysics Data System (ADS)
Goudarzi, Taha
Elastomeric composites have increasingly proved invaluable in commercial technological applications due to their unique mechanical properties, especially their ability to undergo large reversible deformation in response to a variety of stimuli (e.g., mechanical forces, electric and magnetic fields, changes in temperature). Modern advances in organic materials science have revealed that elastomeric composites hold also tremendous potential to enable new high-end technologies, especially as the next generation of sensors and actuators featured by their low cost together with their biocompatibility, and processability into arbitrary shapes. This potential calls for an in-depth investigation of the macroscopic mechanical/physical behavior of elastomeric composites directly in terms of their microscopic behavior with the objective of creating the knowledge base needed to guide their bottom-up design. The purpose of this thesis is to generate a mathematical framework to describe, explain, and predict the macroscopic nonlinear elastic behavior of filled elastomers, arguably the most prominent class of elastomeric composites, directly in terms of the behavior of their constituents --- i.e., the elastomeric matrix and the filler particles --- and their microstructure --- i.e., the content, size, shape, and spatial distribution of the filler particles. This will be accomplished via a combination of novel iterative and variational homogenization techniques capable of accounting for interphasial phenomena and finite deformations. Exact and approximate analytical solutions for the fundamental nonlinear elastic response of dilute suspensions of rigid spherical particles (either firmly bonded or bonded through finite size interphases) in Gaussian rubber are first generated. These results are in turn utilized to construct approximate solutions for the nonlinear elastic response of non-Gaussian elastomers filled with a random distribution of rigid particles (again, either firmly bonded or bonded through finite size interphases) at finite concentrations. Three-dimensional finite element simulations are also carried out to gain further insight into the proposed theoretical solutions. Inter alia, we make use of these solutions to examine the effects of particle concentration, mono- and poly-dispersity of the filler particle size, and the presence of finite size interphases on the macroscopic response of filled elastomers. The solutions are found able to explain and describe experimental results that to date have been understood only in part. More generally, the solutions provide a robust tool to efficiently guide the design of filled elastomers with desired macroscopic properties. The homogenization techniques developed in this work are not limited to nonlinear elasticity, but can be readily utilized to study multi-functional properties as well. For demonstration purposes, we work out a novel exact solution for the macroscopic dielectric response of filled elastomers with interphasial space charges.
Hardrock Elastic Physical Properties: Birch's Seismic Parameter Revisited
NASA Astrophysics Data System (ADS)
Wu, M.; Milkereit, B.
2014-12-01
Identifying rock composition and properties is imperative in a variety of fields including geotechnical engineering, mining, and petroleum exploration, in order to accurately make any petrophysical calculations. Density is, in particular, an important parameter that allows us to differentiate between lithologies and estimate or calculate other petrophysical properties. It is well established that compressional and shear wave velocities of common crystalline rocks increase with increasing densities (i.e. the Birch and Nafe-Drake relationships). Conventional empirical relations do not take into account S-wave velocity. Physical properties of Fe-oxides and massive sulfides, however, differ significantly from the empirical velocity-density relationships. Currently, acquiring in-situ density data is challenging and problematic, and therefore, developing an approximation for density based on seismic wave velocity and elastic moduli would be beneficial. With the goal of finding other possible or better relationships between density and the elastic moduli, a database of density, P-wave velocity, S-wave velocity, bulk modulus, shear modulus, Young's modulus, and Poisson's ratio was compiled based on a multitude of lab samples. The database is comprised of isotropic, non-porous metamorphic rock. Multi-parameter cross plots of the various elastic parameters have been analyzed in order to find a suitable parameter combination that reduces high density outliers. As expected, the P-wave velocity to S-wave velocity ratios show no correlation with density. However, Birch's seismic parameter, along with the bulk modulus, shows promise in providing a link between observed compressional and shear wave velocities and rock densities, including massive sulfides and Fe-oxides.
Fracture-Based Mesh Size Requirements for Matrix Cracks in Continuum Damage Mechanics Models
NASA Technical Reports Server (NTRS)
Leone, Frank A.; Davila, Carlos G.; Mabson, Gerald E.; Ramnath, Madhavadas; Hyder, Imran
2017-01-01
This paper evaluates the ability of progressive damage analysis (PDA) finite element (FE) models to predict transverse matrix cracks in unidirectional composites. The results of the analyses are compared to closed-form linear elastic fracture mechanics (LEFM) solutions. Matrix cracks in fiber-reinforced composite materials subjected to mode I and mode II loading are studied using continuum damage mechanics and zero-thickness cohesive zone modeling approaches. The FE models used in this study are built parametrically so as to investigate several model input variables and the limits associated with matching the upper-bound LEFM solutions. Specifically, the sensitivity of the PDA FE model results to changes in strength and element size are investigated.
A constitutive model for AS4/PEEK thermoplastic composites under cyclic loading
NASA Technical Reports Server (NTRS)
Rui, Yuting; Sun, C. T.
1990-01-01
Based on the basic and essential features of the elastic-plastic response of the AS4/PEEK thermoplastic composite subjected to off-axis cyclic loadings, a simple rate-independent constitutive model is proposed to describe the orthotropic material behavior for cyclic loadings. A one-parameter memory surface is introduced to distinguish the virgin deformation and the subsequent deformation process and to characterize the loading range effect. Cyclic softening is characterized by the change of generalized plastic modulus. By the vanishing yield surface assumption, a yield criterion is not needed and it is not necessary to consider loading and unloading separately. The model is compared with experimental results and good agreement is obtained.
Simple theoretical models for composite rotor blades
NASA Technical Reports Server (NTRS)
Valisetty, R. R.; Rehfield, L. W.
1984-01-01
The development of theoretical rotor blade structural models for designs based upon composite construction is discussed. Care was exercised to include a member of nonclassical effects that previous experience indicated would be potentially important to account for. A model, representative of the size of a main rotor blade, is analyzed in order to assess the importance of various influences. The findings of this model study suggest that for the slenderness and closed cell construction considered, the refinements are of little importance and a classical type theory is adequate. The potential of elastic tailoring is dramatically demonstrated, so the generality of arbitrary ply layup in the cell wall is needed to exploit this opportunity.
A Global Upper-Mantle Tomographic Model of Shear Attenuation
NASA Astrophysics Data System (ADS)
Karaoglu, H.; Romanowicz, B. A.
2016-12-01
Mapping anelastic 3D structure within the earth's mantle is key to understanding present day mantle dynamics, as it provides complementary constraints to those obtained from elastic structure, with the potential to distinguish between thermal and compositional heterogeneity. For this, we need to measure seismic wave amplitudes, which are sensitive to both elastic (through focusing and scattering) and anelastic structure. The elastic effects are less pronounced at long periods, so previous global upper-mantle attenuation models are based on teleseismic surface wave data, sometimes including overtones. In these studies, elastic effects are considered either indirectly, by eliminating data strongly contaminated by them (e.g. Romanowicz, 1995; Gung and Romanowicz, 2004), or by correcting for elastic focusing effects using an approximate linear approach (Dalton et al., 2008). Additionally, in these studies, the elastic structure is held fixed when inverting for intrinsic attenuation . The importance of (1) having a good starting elastic model, (2) accurate modeling of the seismic wavefield and (3) joint inversion for elastic and anelastic structure, becomes more evident as the targeted resolution level increases. Also, velocity dispersion effects due to anelasticity need to be taken into account. Here, we employ a hybrid full waveform inversion method, inverting jointly for global elastic and anelastic upper mantle structure, starting from the latest global 3D shear velocity model built by our group (French and Romanowicz, 2014), using the spectral element method for the forward waveform modeling (Capdeville et al., 2003), and normal-mode perturbation theory (NACT - Li and Romanowicz, 1995) for kernel computations. We present a 3D upper-mantle anelastic model built by using three component fundamental and overtone surface waveforms down to 60 s as well as long period body waveforms down to 30 s. We also include source and site effects to first order as frequency independent scalar factors. The robustness of the inversion method is assessed through synthetic and resolution tests. We discuss salient features of the resulting anelastic model and in particular the well-resolved strong correlation with tectonics observed in the first 200 km of the mantle.
Ultrastructure of the bovine nuchal ligament.
Morocutti, M; Raspanti, M; Ottani, V; Govoni, P; Ruggeri, A
1991-01-01
Nuchal ligament is composed almost exclusively of elastic fibres and collagen fibrils, interwoven very closely and lying parallel to the main ligament axis. Elastic fibres are very large, straight and roughly cylindrical; the collagenous matrix consists of septa of diminishing size forming a 3-dimensional matrix that envelops fibre bundles as well as individual elastic fibres. In all areas examined, collagen fibrils are of very uniform size and, on replicas, they reveal a spiral subfibrillar arrangement with an inclination angle of 17 degrees. Collagen fibrils appear to adhere to the elastic fibres very closely, conforming to their irregular shape. Sometimes they impinge directly upon the elastic fibres, while in other cases a space is visible between collagen fibrils and elastic fibres that contains a rich fabric of intermediate filaments. The collagen-elastin complex of the ligamentum nuchae may be considered a fibre-reinforced composite material comprising tough fibres immersed in an amorphous elastic matrix. Its mechanical behaviour is the result of the combined properties of its components and their interactions. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:1810923
Physical Properties of NiFeCrCo-based High-Entropy Alloys
NASA Astrophysics Data System (ADS)
Zaddach, Alexander Joseph
Conventional alloy design has been based on improving the properties of a single base, or solvent, element through relatively small additions of other elements. More recently, research has been conducted on alloys that contain multiple principal elements, particularly multi-component equiatomic alloys. When such alloys form solid solution phases, they are termed "high-entropy alloys" (HEAs) due to their high configurational entropy. These alloys often have favorable properties compared to conventional dilute solution alloys, but their compositional complexity and relative novelty means that they remain difficult to design and their basic properties are often unknown. The motivation for this work is a detailed experimental exploration of some of the basic physical properties of NiFeCrCo-based alloys. NiFeCrCoMn was one of the first equiatomic HEAs developed. As the compositional space within this single system is extremely large, this work focuses primarily on equiatomic alloys and a limited subset of non-equiatomic alloys chosen for their specific properties. Several alloys are prepared using both conventional methods (arc melting) and nonequilibrium methods (mechanical alloying). Properties studied include stacking fault energy, bulk mechanical properties, single crystal elastic constants, and magnetic properties. The equiatomic NiFeCrCo and NiFeCrCoMn alloys were found to have a moderate to low stacking fault energy, 18 -- 30 mJ m-2. As they are single-phase, fcc alloys, they have high tensile ductility. Additionally, they also exhibit high work-hardening rates, resulting in high toughness. NiFeCrCo outperforms the 5-component equiatomic alloy in ductility and toughness. A 5-component alloy with higher Co content to reduce the stacking fault energy also performs well. The single crystal elastic constants were measured using nanoindentation modulus measurements of grains of known orientation. The measured elastic constants were consistent with those calculated using first-principles modeling. Adding Zn in addition to Mn resulted in an alloy that preferred to form multiple phases. After the optimal heat treatment, it forms nano-sized grains of FeCo, which results in permanent magnetic behavior at room temperature.
Zuleger, Brigitte; Werner, Uwe; Kort, Alexander; Glowienka, Rene; Wehnes, Engelbert; Duncan, Derek
2012-01-01
It was recently found that after storage of a live viral vaccine at -80 °C in glass vials closed with rubber stoppers, a phenomenon was revealed which had not been observed before with other viral products stored at -20 °C: overpressure in the vials. As this phenomenon poses a serious safety problem for medical personnel as well as for the product itself, an investigation was initiated to identify the root cause of the overpressure. After exclusion of possible root causes (differences in air temperature or atmospheric air pressure during filling and quality control testing, outgassing from the formulation buffer) the remaining hypothesis involved a possible container closure integrity issue at low temperature. The glass transition temperatures (T(g)) of many rubber stopper formulations are in the range -55 to -70 °C. At storage temperatures below T(g), the rubber stopper loses its elastic properties and there is a risk that the seal integrity of the vial could be compromised. Loss of seal integrity of the vials near storage temperatures of -80 °C would result in an ingress of cold dense gas into the vial headspace. After removal of the vials from storage at -80 °C, the rubber stoppers could regain their elastic properties and the vials would quickly reseal, thereby trapping the ingressed gas, which leads to overpressure in the vial headspace. Nondestructive laser-based headspace analysis was used to investigate the maintenance of container closure integrity as a function of the filling and capping/crimping process, storage and transport conditions, and vial/stopper designs. This analytical method is based on frequency modulation spectroscopy (FMS) and can be used for noninvasive headspace measurements of headspace pressure and headspace gas composition. Changes in the vial headspace composition and/or pressure are a clear marker for vials that have lost container closure integrity. After storage of a live viral vaccine at -80 °C in glass vials closed with rubber stoppers, overpressure in some of the vials was observed, posing a serious safety problem for medical personnel as well as for the product. A working hypothesis to explain this phenomenon involved a possible container closure integrity issue at these low temperatures. The glass transition temperatures (T(g)) of many rubber stopper formulations are in the range -55 to -70 °C. At storage temperatures below T(g), the rubber stopper loses its elastic properties, resulting in compromised seal integrity of the vial and ingress of cold dense gas into the vial headspace. Upon thawing, the rubber stoppers regain their elastic properties and the vials quickly reseal, thereby trapping the ingressed gas, which leads to overpressure in the vial headspace. Nondestructive, laser-based headspace analysis, which is able to detect changes in headspace pressure and gas composition, was used to investigate the maintenance of container closure integrity. Changes in the vial headspace composition and/or pressure are a clear marker for vials that have lost container closure integrity.
Neves, Lucas M; Fortaleza, Ana C; Rossi, Fabrício E; Diniz, Tiego A; Codogno, Jamile S; Gobbo, Luis A; Gobbi, Sebastião; Freitas, Ismael F
2017-04-01
This randomized clinical trial with concealed allocations, and blinding of the assessors and the data analyst, was aimed at determining the effects of 16 weeks of functional training on the body composition, functional fitness and lipid profiles in postmenopausal women. The study began with 64 subjects (N.=32 functional training and N.=32 control group) and ended with 50 subjects (N.=28 functional training and N.=22 control group). The exercise was conducted in circuit training format with 8 stations related to the development of muscular strength (using elastic bands for resistance) plus 3 stations focused on balance, coordination, and agility. The training session also incorporated an 18 to 30 minute walk. The control group did not participate in the exercise programs during the period of study. The participants were evaluated before and after the training period as regards their body composition (fat and lean mass), functional fitness, abdominal strength and blood chemistry variables. Significant reductions were observed in all body composition variables related to fat (FM= -3.4 and Android FM= -7.7%) (P<0.05). The functional fitness components had significant improvements in coordination (-33.3%), strength (66.5%), agility (-19.5%) and aerobic capacity (-7%), and significant improvement in abdominal strength (188.2%). We observed significant improvements in total cholesterol (-4.4%) and HDL (-9.9%). The observed data lead us to conclude that functional training utilizing with elastic bands and unstable bases causes significantly improved in body composition, functional fitness and lipid profiles.
Mechanical Analysis of Cartilage Graft Reinforced with PDS Plate
Conderman, Christian; Kinzinger, Michael; Manuel, Cyrus; Protsenko, Dmitry; Wong, Brian J. F.
2014-01-01
Objectives/Hypothesis This study attempts to characterize the biomechanical properties of a PDS-cartilage composite graft for use in septorhinoplasty. Study Design Experimental Study. Methods This study used a PDS analog, porcine cartilage cut to 1 × 5 × 20 mm, and a mechanical testing platform to measure flexure of a composite graft. Samples were assessed in four groups based on variations in suture pattern and orientation. The platform measured the force required to deflect the sample 2 mm in single cantilever beam geometry before and after the polymer was affixed to the specimen. Elastic Moduli were calculated before and after application of the polydioxanone polymer. Results The average modulus of the cartilage alone was 17 ± 0.9 MPa. The modulus of the composite cartilage-polymer graft with 2 suture fixation was 21.2 ± 1.5 MPa. The 3-suture configuration produced an increase to 25.8 ± 2.23 MPa. The four-suture configuration produced 23.1 ± 3.19 MPa. The five-suture configuration produced 25.7 ± 2.6 MPa. The modulus of the analog alone was 170 ± 30 MPa. The modulus of the 0.5 mm PDS was 692 ± 37.4 MPa. The modulus of the 0.15 mm perforated PDS was 447 ± 34.8 MPa. Conclusions The study found that suturing a polymer plate to cartilage resulted in enhanced stiffness of the composite. Under the conditions of the study, there was no significant difference in elastic moduli between suture configurations, making the two-suture linear configuration optimal in the one-plane cantilever deflection model. PMID:22965809
Structural Design of a Horizontal-Axis Tidal Current Turbine Composite Blade
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bir, G. S.; Lawson, M. J.; Li, Y.
2011-10-01
This paper describes the structural design of a tidal composite blade. The structural design is preceded by two steps: hydrodynamic design and determination of extreme loads. The hydrodynamic design provides the chord and twist distributions along the blade length that result in optimal performance of the tidal turbine over its lifetime. The extreme loads, i.e. the extreme flap and edgewise loads that the blade would likely encounter over its lifetime, are associated with extreme tidal flow conditions and are obtained using a computational fluid dynamics (CFD) software. Given the blade external shape and the extreme loads, we use a laminate-theory-basedmore » structural design to determine the optimal layout of composite laminas such that the ultimate-strength and buckling-resistance criteria are satisfied at all points in the blade. The structural design approach allows for arbitrary specification of the chord, twist, and airfoil geometry along the blade and an arbitrary number of shear webs. In addition, certain fabrication criteria are imposed, for example, each composite laminate must be an integral multiple of its constituent ply thickness. In the present effort, the structural design uses only static extreme loads; dynamic-loads-based fatigue design will be addressed in the future. Following the blade design, we compute the distributed structural properties, i.e. flap stiffness, edgewise stiffness, torsion stiffness, mass, moments of inertia, elastic-axis offset, and center-of-mass offset along the blade. Such properties are required by hydro-elastic codes to model the tidal current turbine and to perform modal, stability, loads, and response analyses.« less
NASA Astrophysics Data System (ADS)
Toubia, Elias Anis
Sandwich construction is one of the most functional forms of composite structures developed by the composite industry. Due to the increasing demand of web-reinforced core for composite sandwich construction, a research study is needed to investigate the web plate instability under shear, compression, and combined loading. If the web, which is an integral part of the three dimensional web core sandwich structure, happens to be slender with respect to one or two of its spatial dimensions, then buckling phenomena become an issue in that it must be quantified as part of a comprehensive strength model for a fiber reinforced core. In order to understand the thresholds of thickness, web weight, foam type, and whether buckling will occur before material yielding, a thorough investigation needs to be conducted, and buckling design equations need to be developed. Often in conducting a parametric study, a special purpose analysis is preferred over a general purpose analysis code, such as a finite element code, due to the cost and effort usually involved in generating a large number of results. A suitable methodology based on an energy method is presented to solve the stability of symmetrical and specially orthotropic laminated plates on an elastic foundation. Design buckling equations were developed for the web modeled as a laminated plate resting on elastic foundations. The proposed equations allow for parametric studies without limitation regarding foam stiffness, geometric dimensions, or mechanical properties. General behavioral trends of orthotropic and symmetrical anisotropic plates show pronounced contribution of the elastic foundation and fiber orientations on the buckling resistance of the plate. The effects of flexural anisotropy on the buckling behavior of long rectangular plates when subjected to pure shear loading are well represented in the model. The reliability of the buckling equations as a design tool is confirmed by comparison with experimental results. Comparing to predicted values, the experimental plate shear test results range between 15 and 35 percent, depending on the boundary conditions considered. The compression testing yielded conservative results, and as such, can provide a valuable tool for the designer.
A smart composite patch for the repair of aircraft structures
NASA Astrophysics Data System (ADS)
Wakha, Kelah; Samuel, Paul; Pines, Darryll J.
2005-05-01
Recent interest in bonded composite patch repair technology for aerospace systems is because this method can be carried out at a reduced cost and time and can easily be applied to complex geometric structures. This paper details the development of a dual stiffness/energy sensor for monitoring the integrity of a composite patch used to repair an aluminum structural component. The smart sensor has the ability to predict the elastic field of a given host structure based on the strain state of two sub-sensors integrated into the structure. The present study shows the possibility of using the sensor to deduce the local instantaneous host stiffness. Damaged structures are characterized by a reduction in their elastic stiffness that evolve from microstructural defects. A local smart sensor can be developed to sense the local average properties on a host. In this paper, sensors are attached to a structure and a modified Eshelby's equivalent inclusion method is used to derive the elastic properties of the host. An analytical derivation and a sensitivity analysis for the quasistatic application is given in a papers by Majed, Dasgupta, Kelah and Pines. A summary of the derivation of the dynamic Eshelby tensor is presented. This is of importance because damage detection in structures undergoing vibratory and other motions present a greater challenge than those in quasistatic motion. An in-situ health monitoring active sensor system for a real structure (an aluminum plate with an attached repair patch) under close-to real lifecycle loading conditions is developed. The detection of the onset of any damage to the structure as well as the repair patch and the subsequent monitoring of the growth of this damage constitute important goals of the system. Both experimental and finite element methods were applied. Experimental results are presented for tests of the aluminum plate with the repair patch under monotonic quasi-static and dynamic loading vibratory conditions. In summary, the study shows that smart bonded composite repair patches are very effective in the repair of thin aluminum structures since they are able to determine the integrity of the repair structure as well as the repair patch.
NASA Technical Reports Server (NTRS)
Nixon, Mark W.
1993-01-01
There is a potential for improving the performance and aeroelastic stability of tiltrotors through the use of elastically-coupled composite rotor blades. To study the characteristics of tiltrotors with these types of rotor blades it is necessary to formulate a new analysis which has the capabilities of modeling both a tiltrotor configuration and an anisotropic rotor blade. Background for these formulations is established in two preliminary investigations. In the first, the influence of several system design parameters on tiltrotor aeroelastic stability is examined for the high-speed axial flight mode using a newly-developed rigid-blade analysis with an elastic wing finite element model. The second preliminary investigation addresses the accuracy of using a one-dimensional beam analysis to predict frequencies of elastically-coupled highly-twisted rotor blades. Important aspects of the new aeroelastic formulations are the inclusion of a large steady pylon angle which controls tilt of the rotor system with respect to the airflow, the inclusion of elastic pitch-lag coupling terms related to rotor precone, the inclusion of hub-related degrees of freedom which enable modeling of a gimballed rotor system and engine drive-train dynamics, and additional elastic coupling terms which enable modeling of the anisotropic features for both the rotor blades and the tiltrotor wing. Accuracy of the new tiltrotor analysis is demonstrated by a comparison of the results produced for a baseline case with analytical and experimental results reported in the open literature. Two investigations of elastically tailored blades on a baseline tiltrotor are then conducted. One investigation shows that elastic bending-twist coupling of the rotor blade is a very effective means for increasing the flutter velocity of a tiltrotor, and the magnitude of coupling required does not have an adverse effect on performance or blade loads. The second investigation shows that passive blade twist control via elastic extension-twist coupling of the rotor blade has the capability of significantly improving tiltrotor aerodynamic performance. This concept, however, is shown to have, in general, a negative impact on stability characteristics.
Microstructure and Properties of Fe3Al-Fe3AlC x Composite Prepared by Reactive Liquid Processing
NASA Astrophysics Data System (ADS)
Verona, Maria Nalu; Setti, Dalmarino; Paredes, Ramón Sigifredo Cortés
2018-04-01
A Fe3Al-Fe3AlC x composite was prepared using reactive liquid processing (RLP) through controlled mixture of carbon steel and aluminum in the liquid state. The microstructure and phases of the composite were assessed using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, optical microscopy, and differential scanning calorimetry. In addition, the density, hardness, microhardness, and elastic modulus were evaluated. The Fe3Al-Fe3AlC x composite consisted of 65 vol pct Fe3Al and 35 vol pct Fe3AlC x ( κ). The κ phase contained 10.62 at. pct C, resulting in the stoichiometry Fe3AlC0.475. The elastic modulus of the Fe3Al-Fe3AlC0.475 composite followed the rule of mixtures. The RLP technique was shown to be capable of producing Fe3Al-Fe3AlC0.475 with a microstructure and properties similar to those achieved using other processing techniques reported in the literature.
Mechanical behaviour of degradable phosphate glass fibres and composites-a review.
Colquhoun, R; Tanner, K E
2015-12-23
Biodegradable materials are potentially an advantageous alternative to the traditional metallic fracture fixation devices used in the reconstruction of bone tissue defects. This is due to the occurrence of stress shielding in the surrounding bone tissue that arises from the absence of mechanical stimulus to the regenerating bone due to the mismatch between the elastic modulus of bone and the metal implant. However although degradable polymers may alleviate such issues, these inert materials possess insufficient mechanical properties to be considered as a suitable alternative to current metallic devices at sites of sufficient mechanical loading. Phosphate based glasses are an advantageous group of materials for tissue regenerative applications due to their ability to completely degrade in vivo at highly controllable rates based on the specific glass composition. Furthermore the release of the glass's constituent ions can evoke a therapeutic stimulus in vivo (i.e. osteoinduction) whilst also generating a bioactive response. The processing of these materials into fibres subsequently allows them to act as reinforcing agents in degradable polymers to simultaneously increase its mechanical properties and enhance its in vivo response. However despite the various review articles relating to the compositional influences of different phosphate glass systems, there has been limited work summarising the mechanical properties of different phosphate based glass fibres and their subsequent incorporation as a reinforcing agent in degradable composite materials. As a result, this review article examines the compositional influences behind the development of different phosphate based glass fibre compositions intended as composite reinforcing agents along with an analysis of different potential composite configurations. This includes variations in the fibre content, matrix material and fibre architecture as well as other novel composites designs.
Flame resistant elastic elastomeric fiber
NASA Technical Reports Server (NTRS)
Howarth, J. T.; Sheth, S.; Massucco, A. A.; Sidman, K. R.
1974-01-01
Compositions exhibit elastomeric properties and possess various degrees of flame resistance. First material polyurethane, incorporates halogen containing polyol and is flame resistant in air; second contains spandex elastomer with flame retardant additives; and third material is prepared from fluorelastomer composition of copolymer of vinylidene fluoride and hexafluoropropylene.
Polypropylene Biocomposites with Boron Nitride and Nanohydroxyapatite Reinforcements
Chan, Kai Wang; Wong, Hoi Man; Yeung, Kelvin Wai Kwok; Tjong, Sie Chin
2015-01-01
In this study, we develop binary polypropylene (PP) composites with hexagonal boron nitride (hBN) nanoplatelets and ternary hybrids reinforced with hBN and nanohydroxyapatite (nHA). Filler hybridization is a sound approach to make novel nanocomposites with useful biological and mechanical properties. Tensile test, osteoblastic cell culture and dimethyl thiazolyl diphenyl tetrazolium (MTT) assay were employed to investigate the mechanical performance, bioactivity and biocompatibility of binary PP/hBN and ternary PP/hBN-nHA composites. The purpose is to prepare biocomposite nanomaterials with good mechanical properties and biocompatibility for replacing conventional polymer composites reinforced with large hydroxyapatite microparticles at a high loading of 40 vol%. Tensile test reveals that the elastic modulus of PP composites increases, while tensile elongation decreases with increasing hBN content. Hybridization of hBN with nHA further enhances elastic modulus of PP. The cell culture and MTT assay show that osteoblastic cells attach and proliferate on binary PP/hBN and ternary PP/hBN-20%nHA nanocomposites. PMID:28787984
Influence of fibre reinforcement on selected mechanical properties of dental composites.
Niewczas, Agata M; Zamościńska, Jolanta; Krzyżak, Aneta; Pieniak, Daniel; Walczak, Agata; Bartnik, Grzegorz
2017-01-01
For splinting or designing adhesive bridges, reconstructive composite structures with increased mechanical properties owing to embedded reinforcement fibres are used. The aim of this article was to determine the influence of glass and aramid fibres on the mechanical strength of composites reinforced with these fibres. Two polymer-ceramic microhybrid materials: Boston and Herculite were tested. Three types of reinforcement fibres were used: aramid (Podwiązka) with a single layer weave, a single layer weave glass fibre (FSO) and triple layer weave glass fibre (FSO evo). Tests were conducted in accordance with the requirements of ISO 4049:2009. The following material types were chosen for research: Boston, Boston + Podwiązka, Herculite, Herculite + Podwiązka, Herculite + FSO and Herculite + FSO evo. The scope of research included: flexural strength B, bending modulus of elasticity εB and work to failure of the reinforced composite Wfb. Additionally, microscopic observations of fracture occurring in samples were made. In comparison: the Herculite (97.7 MPa) type with the Herculite + FSO evo (177.5 MPa) type was characterized by the highest strength. Fibre reinforcement resulted in decreasing the elasticity modulus: Herculite + reinforcement (6.86 GPa; 6.33 GPa; 6.11 GPa) in comparison with the Herculite (9.84 GPa) and respectively Boston + reinforcement (10.08 GPa) as compared with the Boston (11.81 GPa). Using glass fibres increases flexural strength of the test composites. Using aramid fibres does not change their strength. The elasticity modulus of the reinforced reconstructive structures decreases after application of either type of fibres. However, their resistance to the crack initiation increases.
AFM Investigation of Liquid-Filled Polymer Microcapsules Elasticity.
Sarrazin, Baptiste; Tsapis, Nicolas; Mousnier, Ludivine; Taulier, Nicolas; Urbach, Wladimir; Guenoun, Patrick
2016-05-10
Elasticity of polymer microcapsules (MCs) filled with a liquid fluorinated core is studied by atomic force microscopy (AFM). Accurately characterized spherical tips are employed to obtain the Young's moduli of MCs having four different shell thicknesses. We show that those moduli are effective ones because the samples are composites. The strong decrease of the effective MC elasticity (from 3.0 to 0.1 GPa) as the shell thickness decreases (from 200 to 10 nm) is analyzed using a novel numerical approach. This model describes the evolution of the elasticity of a coated half-space according to the contact radius, the thickness of the film, and the elastic moduli of bulk materials. This numerical model is consistent with the experimental data and allows simulating the elastic behavior of MCs at high frequencies (5 MHz). While the quasi-static elasticity of the MCs is found to be very dependent on the shell thickness, the high frequency (5 MHz) elastic behavior of the core leads to a stable behavior of the MCs (from 2.5 to 3 GPa according to the shell thickness). Finally, the effect of thermal annealing on the MCs elasticity is investigated. The Young's modulus is found to decrease because of the reduction of the shell thickness due to the loss of the polymer.
NASA Technical Reports Server (NTRS)
Wilt, Thomas E.; Arnold, Steven M.; Saleeb, Atef F.
1997-01-01
A fatigue damage computational algorithm utilizing a multiaxial, isothermal, continuum-based fatigue damage model for unidirectional metal-matrix composites has been implemented into the commercial finite element code MARC using MARC user subroutines. Damage is introduced into the finite element solution through the concept of effective stress that fully couples the fatigue damage calculations with the finite element deformation solution. Two applications using the fatigue damage algorithm are presented. First, an axisymmetric stress analysis of a circumferentially reinforced ring, wherein both the matrix cladding and the composite core were assumed to behave elastic-perfectly plastic. Second, a micromechanics analysis of a fiber/matrix unit cell using both the finite element method and the generalized method of cells (GMC). Results are presented in the form of S-N curves and damage distribution plots.
NASA Astrophysics Data System (ADS)
Leininger, Wyatt Christopher
Nanomaterial composites hold improvement potential for many materials. Improvements arise through known material behaviors and unique nanoscale effects to improve performance in areas including elastic modulus and damping as well as various processes, and products. Review of research spurred development of a load-stage. The load stage could be used independently, or in conjunction with an AFM to investigate bulk and nanoscale material mechanics. The effect of MWCNT content on structural damping, elastic modulus, toughness, loss modulus, and glass transition temperature was investigated using the load stage, AMF, and DMA. Initial investigation showed elastic modulus increased 23% with 1wt.% MWCNT versus pure epoxy and in-situ imaging observed micro/nanoscale deformation. Dynamic capabilities of the load stage were investigated as a method to achieve higher stress than available through DMA. The system showed energy dissipation across all reinforce levels, with 480% peak for the 1wt.% MWCNT material vs. the neat epoxy at 1Hz.
Organic-inorganic Interface in Nacre: Learning Lessons from Nature
NASA Astrophysics Data System (ADS)
Rahbar, Nima; Askarinejad, Sina
Problem-solving strategies of naturally growing composites such as nacre give us a fantastic vision to design and fabricate tough, stiff while strong composites. To provide the outstanding mechanical functions, nature has evolved complex and effective functionally graded interfaces. Particularly in nacre, organic-inorganic interface in which the proteins behave stiffer and stronger in proximity of calcium carbonate minerals provide an impressive role in structural integrity and mechanical deformation of the natural composite. The well-known shear-lag theory was employed on a simplified two-dimensional unit-cell of the multilayered composite considering the interface properties. The closed-form solutions for the displacements in the elastic components as a function of constituent properties can be used to calculate the effective mechanical properties of composite such as elastic modulus, strength and work-to-failure. The results solve the important mysteries about nacre and emphasize on the role of organic-inorganic interface properties and mineral bridges. Our results show that the properties of proteins in proximity of mineral bridges are also significant. More studies need to be performed on the strategies to enhance the interface properties in manmade composites. NSF Career Award no. 1281264.
NASA Astrophysics Data System (ADS)
Nie, Shihua
The main aim of this dissertation was to characterize the damage mechanism and fatigue behavior of the acrylic particulate composite. This dissertation also investigated how the failure mechanism is influenced by changes in certain parameters including the volume fraction of particle, the interfacial bonding strength, the stiffness and thickness of the interphase, and the CTE mismatch between the particle and the matrix. Monotonic uniaxial tensile and compressive testing under various temperatures and strain rates, isothermal low-cycle mechanical testing and thermal cycling of a plate with a cutout were performed. The influence of the interfacial bonding strength between the particle and the matrix on the failure mechanism of the ATH filled PMMA was investigated using in situ observations under uniaxial loading conditions. For composites with weak interfacial bonding, the debonding is the major damage mode. For composites with strong interfacial bonding, the breakage of the agglomerate of particles is the major damage mode. Experimental studies also demonstrated the significant influence of interfacial bonding strength on the fatigue life of the ATH filled PMMA. The damage was characterized in terms of the elastic modulus degradation, the load-drop parameter, the plastic strain range and the hysteresis dissipation. Identifying the internal state variables that quantify material degradation under thermomechanical loading is an active research field. In this dissertation, the entropy production, which is a measure of the irreversibility of the thermodynamic system, is used as the metric for damage. The close correlation between the damage measured in terms of elastic modulus degradation and that obtained from the finite element simulation results validates the entropy based damage evolution function. A micromechanical model for acrylic particulate composites with imperfect interfacial bonds was proposed. Acrylic particulate composites are treated as three-phase composites consisting of agglomerated particles, bulk matrix and an interfacial transition zone around the agglomerate. The influence of the interfacial bonding and the CTE mismatch between the matrix and the filler on the overall thermomechanical behavior of composites is studied analytically and experimentally. The comparison of analytical simulation with experimental data demonstrated the validity of the proposed micromechanical model for acrylic particulate composites with an imperfect interface. (Abstract shortened by UMI.)
NASA Astrophysics Data System (ADS)
Handley, Scott Michael
The central theme of this thesis is to contribute to the physics underlying the mechanical properties of highly anisotropic materials. Our hypothesis is that a fundamental understanding of the physics involved in the interaction of interrogating ultrasonic waves with anisotropic media will provide useful information applicable to quantitative ultrasonic measurement techniques employed for the determination of material properties. Fiber-reinforced plastics represent a class of advanced composite materials that exhibit substantial anisotropy. The desired characteristics of practical fiber -reinforced composites depend on average mechanical properties achieved by placing fibers at specific angles relative to the external surfaces of the finished part. We examine the physics underlying the use of ultrasound as an interrogation probe for determination of ultrasonic and mechanical properties of anisotropic materials such as fiber-reinforced composites. Fundamental constituent parameters, such as elastic stiffness coefficients (c_{rm IJ}), are experimentally determined from ultrasonic time-of-flight measurements. Mechanical moduli (Poisson's ratio, Young's and shear modulus) descriptive of the anisotropic mechanical properties of unidirectional graphite/epoxy composites are obtained from the ultrasonically determined stiffness coefficients. Three-dimensional visualizations of the anisotropic ultrasonic and mechanical properties of unidirectional graphite/epoxy composites are generated. A related goal of the research is to strengthen the connection-between practical ultrasonic nondestructive evaluation methods and the physics underlying quantitative ultrasonic measurements for the assessment of manufactured fiber-reinforced composites. Production defects such as porosity have proven to be of substantial concern in the manufacturing of composites. We investigate the applicability of ultrasonic interrogation techniques for the detection and characterization of porosity in graphite/epoxy laminates. Complementary ultrasonic parameters based on the frequency dependence of ultrasonic attenuation and integrated polar backscatter are investigated. In summary, the approach taken in this thesis is to examine the physical mechanisms in terms of a continuum mechanics framework and a linear elastic description of ultrasonic wave propagation in anisotropic media with specific application to the nondestructive evaluation of advanced composite materials.
Coupled thermal stresses analysis in the composite elastic-plastic cylinder
NASA Astrophysics Data System (ADS)
Murashkin, E. V.; Dats, E. P.
2018-04-01
The present study is devoted to the set of boundary value problems in the frameworks of coupled thermoelastoplasticity under axial symmetry conditions for a composite circular cylinder. Throughout the paper the conventional Prandtl–Reuss elastic–plastic model generalised on the thermal effects is used. The yield stress is assumed by linear function of the temperature. The plastic potential is chosen in the form of Tresca yield criterion and the associated plastic flow rule is derived. The adding process of a heated cylinder to another is simulated. The coupled thermal stresses are calculated during processes of cooling and material unloading. The elastic-plastic borders positions are calculated and plastic flow domains are localized. Numerical results are graphically analysed.
Predictions of the electro-mechanical response of conductive CNT-polymer composites
NASA Astrophysics Data System (ADS)
Matos, Miguel A. S.; Tagarielli, Vito L.; Baiz-Villafranca, Pedro M.; Pinho, Silvestre T.
2018-05-01
We present finite element simulations to predict the conductivity, elastic response and strain-sensing capability of conductive composites comprising a polymeric matrix and carbon nanotubes. Realistic representative volume elements (RVE) of the microstructure are generated and both constituents are modelled as linear elastic solids, with resistivity independent of strain; the electrical contact between nanotubes is represented by a new element which accounts for quantum tunnelling effects and captures the sensitivity of conductivity to separation. Monte Carlo simulations are conducted and the sensitivity of the predictions to RVE size is explored. Predictions of modulus and conductivity are found in good agreement with published results. The strain-sensing capability of the material is explored for multiaxial strain states.
Elastic stability of biaxially loaded longitudinally stiffened composite structures.
NASA Technical Reports Server (NTRS)
Viswanathan, A. V.; Tamekuni, M.; Tripp, L. L.
1973-01-01
A linear analysis method is presented for the elastic stability of structures of uniform cross section, that may be idealized as an assemblage of laminated plate-strips, flat and curved, and beams. Each plate-strip and beam covers the entire length of the structure and is simply supported on the edges normal to the longitudinal axis. Arbitrary boundary conditions may be specified on any external longitudinal side of plate-strips. The structure or selected plate-strips may be loaded in any desired combination of inplane biaxial loads. The analysis simultaneously considers all modes of instability and is applicable for the buckling of laminated composite structures. Some numerical results are presented to indicate possible applications.
Fatigue damage mechanisms in boron-aluminium composite laminates
NASA Technical Reports Server (NTRS)
Dvorak, G. J.; Johnson, W. S.
1980-01-01
The relationship between fatigue and shakedown in metal matrix composites is investigated theoretically and experimentally for unidirectional and laminated 6061 Al-B materials. It is shown that no fatigue damage takes place if the applied stress range is such that the material remains elastic, or shakes down, i.e., resumes elastic cyclic straining after a small number of plastic strain cycles. Fatigue damage occurs only in specimens subjected to stress ranges which cause sustained cyclic plastic straining in the aluminum matrix. If the applied stress range is smaller than that required for fatigue failure, after about 10 to the 6th cycles a saturation damage state is reached which remains essentially unchanged with increasing number of cycles.
NASA Technical Reports Server (NTRS)
Nemeth, Noel N.; Bednarcyk, Brett A.; Pineda, Evan; Arnold, Steven; Mital, Subodh; Murthy, Pappu; Walton, Owen
2015-01-01
Reported here is a coupling of two NASA developed codes: CARES (Ceramics Analysis and Reliability Evaluation of Structures) with the MACGMC composite material analysis code. The resulting code is called FEAMACCARES and is constructed as an Abaqus finite element analysis UMAT (user defined material). Here we describe the FEAMACCARES code and an example problem (taken from the open literature) of a laminated CMC in off-axis loading is shown. FEAMACCARES performs stochastic-strength-based damage simulation response of a CMC under multiaxial loading using elastic stiffness reduction of the failed elements.
Second quantization techniques in the scattering of nonidentical composite bodies
NASA Technical Reports Server (NTRS)
Norbury, J. W.; Townsend, L. W.; Deutchman, P. A.
1986-01-01
Second quantization techniques for describing elastic and inelastic interactions between nonidentical composite bodies are presented and are applied to nucleus-nucleus collisions involving ground-state and one-particle-one-hole excitations. Evaluations of the resultant collision matrix elements are made through use of Wick's theorem.
Simple Elasticity Modeling and Failure Prediction for Composite Flexbeams
NASA Technical Reports Server (NTRS)
Makeev, Andrew; Armanios, Erian; OBrien, T. Kevin (Technical Monitor)
2001-01-01
A simple 2D boundary element analysis, suitable for developing cost effective models for tapered composite laminates, is presented. Constant stress and displacement elements are used. Closed-form fundamental solutions are derived. Numerical results are provided for several configurations to illustrate the accuracy of the model.
Computing Fiber/Matrix Interfacial Effects In SiC/RBSN
NASA Technical Reports Server (NTRS)
Goldberg, Robert K.; Hopkins, Dale A.
1996-01-01
Computational study conducted to demonstrate use of boundary-element method in analyzing effects of fiber/matrix interface on elastic and thermal behaviors of representative laminated composite materials. In study, boundary-element method implemented by Boundary Element Solution Technology - Composite Modeling System (BEST-CMS) computer program.
NASA Technical Reports Server (NTRS)
Wang, S. S.; Choi, I.
1983-01-01
Based on theories of laminate anisotropic elasticity and interlaminar fracture, the complete solution structure associated with a composite delamination is determined. Fracture mechanics parameters characterizing the interlaminar crack behavior are defined from asymptotic stress solutions for delaminations with different crack-tip deformation configurations. A numerical method employing singular finite elements is developed to study delaminations in fiber composites with any arbitrary combinations of lamination, material, geometric, and crack variables. The special finite elements include the exact delamination stress singularity in its formulation. The method is shown to be computationally accurate and efficient, and operationally simple. To illustrate the basic nature of composite delamination, solutions are shown for edge-delaminated (0/-0/-0/0) and (+ or - 0/+ or - 0/90/90 deg) graphite-epoxy systems under uniform axial extenstion. Three-dimensional crack-tip stress intensity factors, associated energy release rates, and delamination crack-closure are determined for each individual case. The basic mechanics and mechanisms of composite delamination are studied, and fundamental characteristics unique to recently proposed tests for interlaminar fracture toughness of fiber composite laminates are examined.
Computer Modeling of Ceramic Boride Composites
2014-11-01
the reinforcer deform elastically, for the theoretical strength of the composite it can be written [46] BBBAAABBAAK EE δεδεσδσδσ +=+= (51) where...coefficients of thermal expansion. Approximately linear expansion coefficient of the composite is determined by the relation [52] EEE BBBAAAk...1 δαδαα ⋅+⋅= , (58) where AE and BE are Young moduli of components, and E – average modulus for composition BBAA EEE δδ
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vishnuvardhan, J.; Muralidharan, Ajith; Balasubramaniam, Krishnan
A full ring STMR array patch had been used for Structural Health Monitoring (SHM) of anisotropic materials where the elastic moduli, correspond to the virgin sample, were used in the calculations. In the present work an in-situ SHM has been successfully demonstrated using a novel compact sensor patch (Double ring single quadrant small footprint STMR array) through simultaneous reconstruction of the elastic moduli, material symmetry, orientation of principal planes and defect imaging. The direct received signals were used to measure Lamb wave velocities, which were used in a slowness based reconstructed algorithm using Genetic Algorithm to reconstruct the elastic moduli,more » material symmetry and orientation of principal planes. The measured signals along with the reconstructed elastic moduli were used in the phased addition algorithm for imaging the damages present on the structure. To show the applicability of the method, simulations were carried out with the double ring single quadrant STMR array configuration to image defects and are compared with the images obtained using simulation data of the full ring STMR array configuration. The experimental validation has been carried out using 3.15 mm quasi-isotropic graphite-epoxy composite. The double ring single quadrant STMR array has advantages over the full ring STMR array as it can carry out in-situ SHM with limited footprint on the structure.« less
Alberich-Bayarri, Angel; Moratal, David; Ivirico, Jorge L Escobar; Rodríguez Hernández, José C; Vallés-Lluch, Ana; Martí-Bonmatí, Luis; Estellés, Jorge Más; Mano, Joao F; Pradas, Manuel Monleón; Ribelles, José L Gómez; Salmerón-Sánchez, Manuel
2009-10-01
Detailed knowledge of the porous architecture of synthetic scaffolds for tissue engineering, their mechanical properties, and their interrelationship was obtained in a nondestructive manner. Image analysis of microcomputed tomography (microCT) sections of different scaffolds was done. The three-dimensional (3D) reconstruction of the scaffold allows one to quantify scaffold porosity, including pore size, pore distribution, and struts' thickness. The porous morphology and porosity as calculated from microCT by image analysis agrees with that obtained experimentally by scanning electron microscopy and physically measured porosity, respectively. Furthermore, the mechanical properties of the scaffold were evaluated by making use of finite element modeling (FEM) in which the compression stress-strain test is simulated on the 3D structure reconstructed from the microCT sections. Elastic modulus as calculated from FEM is in agreement with those obtained from the stress-strain experimental test. The method was applied on qualitatively different porous structures (interconnected channels and spheres) with different chemical compositions (that lead to different elastic modulus of the base material) suitable for tissue regeneration. The elastic properties of the constructs are explained on the basis of the FEM model that supports the main mechanical conclusion of the experimental results: the elastic modulus does not depend on the geometric characteristics of the pore (pore size, interconnection throat size) but only on the total porosity of the scaffold. (c) 2009 Wiley Periodicals, Inc.
Huang, Yonghui; Yang, Zhicheng; Liu, Airong; Fu, Jiyang
2018-05-28
The buckling behavior of functionally graded graphene platelet-reinforced composite (FG-GPLRC) shallow arches with elastic rotational constraints under uniform radial load is investigated in this paper. The nonlinear equilibrium equation of the FG-GPLRC shallow arch with elastic rotational constraints under uniform radial load is established using the Halpin-Tsai micromechanics model and the principle of virtual work, from which the critical buckling load of FG-GPLRC shallow arches with elastic rotational constraints can be obtained. This paper gives special attention to the effect of the GPL distribution pattern, weight fraction, geometric parameters, and the constraint stiffness on the buckling load. The numerical results show that all of the FG-GPLRC shallow arches with elastic rotational constraints have a higher buckling load-carrying capacity compared to the pure epoxy arch, and arches of the distribution pattern X have the highest buckling load among four distribution patterns. When the GPL weight fraction is constant, the thinner and larger GPL can provide the better reinforcing effect to the FG-GPLRC shallow arch. However, when the value of the aspect ratio is greater than 4, the flakiness ratio is greater than 103, and the effect of GPL's dimensions on the buckling load of the FG-GPLRC shallow arch is less significant. In addition, the buckling model of FG-GPLRC shallow arch with elastic rotational constraints is changed as the GPL distribution patterns or the constraint stiffness changes. It is expected that the method and the results that are presented in this paper will be useful as a reference for the stability design of this type of arch in the future.
Weng, Shayuan; Ning, Huiming; Fu, Tao; Hu, Ning; Zhao, Yinbo; Huang, Cheng; Peng, Xianghe
2018-02-15
Molecular dynamics simulations of nanolaminated graphene/Cu (NGCu) and pure Cu under compression are conducted to investigate the underlying strengthening mechanism of graphene and the effect of lamella thickness. It is found that the stress-strain curves of NGCu undergo 3 regimes i.e. the elastic regime I, plastic strengthening regime II and plastic flow regime III. Incorporating graphene monolayer is proved to simultaneously contribute to the strength and ductility of the composites and the lamella thickness has a great effect on the mechanical properties of NGCu composites. Different strengthening mechanisms play main role in different regimes, the transition of mechanisms is found to be related to the deformation behavior. Graphene affected zone is developed and integrated with rule of mixtures and confined layer slip model to describe the elastic properties of NGCu and the strengthening effect of the incorporated graphene.
Lamb wave propagation in a restricted geometry composite pi-joint specimen
NASA Astrophysics Data System (ADS)
Blackshire, James L.; Soni, Som
2012-05-01
The propagation of elastic waves in a material can involve a number of complex physical phenomena, resulting in both subtle and dramatic effects on detected signal content. In recent years, the use of advanced methods for characterizing and imaging elastic wave propagation and scattering processes has increased, where for example the use of scanning laser vibrometry and advanced computational models have been used very effectively to identify propagating modes, scattering phenomena, and damage feature interactions. In the present effort, the propagation of Lamb waves within a narrow, constrained geometry composite pi-joint structure are studied using 3D finite element models and scanning laser vibrometry measurements, where the effects of varying sample thickness, complex joint curvatures, and restricted structure geometries are highlighted, and a direct comparison of computational and experimental results are provided for simulated and realistic geometry composite pi-joint samples.
NASA Astrophysics Data System (ADS)
Terao, Takamichi
2018-04-01
Vibrational properties of elastic composites containing a mass-in-mass microstructure embedded in a solid matrix are numerically studied. Using a lattice model, we investigate the vibrational density of states in three-dimensional composite structures where resonant particles are randomly dispersed. By dispersing such particles in the system, a sonic band gap appears. It is confirmed that this band gap can be introduced in a desired frequency regime by changing the parameters of resonant particles and the frequency width of this band gap can be controlled by varying the concentration of the resonant particles to be dispersed. In addition, multiple sonic band gaps can be realized using different species of resonant particles. These results enable us to suggest an alternative method to fabricate devices that can inhibit the propagation of elastic waves with specific frequencies using acoustic metamaterials.
Continuum-Scale Modeling of Shear Banding in Bulk Metallic Glass-Matrix Composites
NASA Astrophysics Data System (ADS)
Gibbons, Michael
Metallic glasses represent a relatively new class of materials that have demonstrated enormous potential for functional and structural applications due to the unique set of properties attributed to them as a result of the disordered isotropic structure with metallically bonded elements. Amorphous metals benefit from the strong nature of the metallic bonds, but lack the crystallographic structure and polycrystalline nature of traditional metals which unsurprisingly has huge implications on the material properties, as all deformation mechanisms associated with a lattice are suppressed. This results in excellent strength, a high elastic strain limit, exceptional hardness, and improved corrosion and wear resistance. "Bulk" metallic glasses (BMG) represent the amorphous metals which can be produced at the cm length-scale, thus greatly expanding their applicability for structural applications. However, due to the catastrophic nature of the failure produced upon yielding, monolithic metallic glasses are seldomly used for structural applications. Bulk metallic glass-matrix composites (BMGMCs), however, are able to combine the excellent strength, hardness, and elastic strain limit of amorphous metallic glass with a ductile crystalline phase to achieve extraordinary toughness with minimal degradation in strength. In order to explore the mechanical interactions between the amorphous and crystalline phases, a full-field micromechanical model which couples the free-volume based constitutive behavior for the matrix phase with standard rate-dependent crystal plasticity for the dendrites, and its implementation via an elastic-viscoplastic Fast-Fourier Transform (FFT) solver. The model is calibrated to macroscale stress-strain data for Ti-Zr-V-Cu-Be BMGMCs with varying composition and furthermore by comparing the deformation behavior associated with the shear bands predicted by the model, to the artifacts observed from characterization microscopy analysis on the same failed BMGMC tensile specimens in which the macroscopic composite behavior predicted by the model was validated with. The FFT-based deformation modeling is then exercised to study the nature and origin of shear bands in metallic glass composites. Synthetic 3D microstructures were produced using images of real BMGMCs, and then subjected to uniaxial tension deformation simulations. The findings indicate that in BMGMCs, local inhomogeneities in the glass phase are less influential on the mechanical performance than the contrast in individual phase properties and the spatial distribution of the microstructure. Due to the strong contrast in mechanical properties between the phases, highly heterogeneous stress fields develop, contributing to regionally confined free-volume generation, localized flow and softening in the glass. These softened regions can link and plastic flow then rapidly localizes into a thin shear band with planar like geometry. The availability of finely resolved (spatially and temporally) 3D deformation maps allow for the determination of the mechanism corresponding with these macroscopic stick-slip oscillations apparent in the stress-strain curves. In addition to shedding light on the nature of shear banding in bulk metallic glass-matrix composites, this work also demonstrates the feasibility of using a spectral-based continuum-scale model to efficiently predict the microstructure and individual phase properties that lead to new materials, superior to those found using only experimental techniques.
Wrinkling of solidifying polymeric coatings
NASA Astrophysics Data System (ADS)
Basu, Soumendra Kumar
2005-07-01
In coatings, wrinkles are viewed as defects or as desired features for low gloss, and texture. In either case, discovering the origin of wrinkles and the conditions that lead to their formation is important. This research examines what wrinkling requires and proposes a mechanism to explain the observations. All curing wrinkling coatings contain multi-functional reactants. Upon curing, all develop a depth-wise gradient in solidification that result in a cross-linked elastic skin atop a viscous bottom layer. It is hypothesized that compressive stress develops in the skin when liquid below diffuses up into the skin. High enough compressive stress buckles the skin to produce wrinkles. The hypothesis is substantiated by experimental and theoretical evidences. Effects of various application and compositional parameters on wrinkle size in a liquid-applied acrylic coating and a powder-applied epoxy coating were examined. All three components, namely resin, cross-linker and catalyst blocked with at least equimolar volatile blocker, proved to be required for wrinkling. The wrinkling phenomenon was modeled with a theory that accounts for gradient generation, cross-linking reaction and skinning; predictions compared well with observations. Two-layer non-curing coatings that have a stiff elastic layer atop a complaint elastic bottom layer wrinkled when the top layer is compressed. The top layer was compressed by either moisture absorption or differential thermal expansion. Experimental observations compared well with predictions from a theory based on force balance in multilayer systems subjected to differential contraction or expansion. A model based on the Flory-Rehner free energy of a constrained cross-linked gel was constructed that predicts the compressive stress generated in a coating when it absorbs solvent. Linear stability analysis predicts that when a compressed elastic layer is attached atop a viscous layer, it is always unstable to buckles whose wavelength exceeds a critical value; more cross-linking and poor solvent produce higher wavelength, lower amplitude wrinkles. When a compressed elastic layer is attached atop an elastic layer and subjected to more than a critical compressive stress, it is unstable to intermediate wavelengths of buckling; better solvent, higher ratio of bottom-to-top layer thickness, and lower bottom layer modulus produce higher wavelength, higher amplitude wrinkles.
3D Modeling Effect of Spherical Inclusions on the Magnetostriction of Bulk Superconductors
NASA Astrophysics Data System (ADS)
Zhao, Yufeng; Pan, Baocai
2018-02-01
In this paper, the dependence of the effective magnetostriction of bulk superconductors on the elastic parameters including the volume fraction and elastic modulus ratio is studied by a three-dimensional model consisting of a spherical inclusion-superconducting matrix system. The effect of the elastic modulus and volume fraction on the magnetostriction is also obtained through the magnetostriction loop. The results indicate that the elastic modulus and volume fraction have obvious effects on the effective magnetostriction of the superconducting composite, which gives an explanation about the differences between the experimental and the theoretical results. Furthermore, it is worth pointing out that the linear field dependence of magnetostriction is unique to the Bean model by comparing the curve shapes of the magnetostriction loop with and without inclusion.
Comparative study of mechanical properties of direct core build-up materials
Kumar, Girish; Shivrayan, Amit
2015-01-01
Background and Objectives: The strength greatly influences the selection of core material because core must withstand forces due to mastication and para-function for many years. This study was conducted to evaluate certain mechanical properties of commonly used materials for direct core build-up, including visible light cured composite, polyacid modified composite, resin modified glass ionomer, high copper amalgam, and silver cermet cement. Materials and Methods: All the materials were manipulated according to the manufacturer's recommendations and standard test specimens were prepared. A universal testing machine at different cross-head speed was used to determine all the four mechanical properties. Mean compressive strength, diametral tensile strength, flexural strength, and elastic modulus with standard deviations were calculated. Multiple comparisons of the materials were also done. Results: Considerable differences in compressive strength, diametral tensile strength, and flexural strength were observed. Visible light cured composite showed relatively high compressive strength, diametral tensile strength, and flexural strength compared with the other tested materials. Amalgam showed the highest value for elastic modulus. Silver cermet showed less value for all the properties except for elastic modulus. Conclusions: Strength is one of the most important criteria for selection of a core material. Stronger materials better resist deformation and fracture provide more equitable stress distribution, greater stability, and greater probability of clinical success. PMID:25684905
Zirconia toughened mica glass ceramics for dental restorations.
Gali, Sivaranjani; K, Ravikumar; Murthy, B V S; Basu, Bikramjit
2018-03-01
The objective of the present study is to understand the role of yttria stabilized zirconia (YSZ) in achieving the desired spectrum of clinically relevant mechanical properties (hardness, elastic modulus, fracture toughness and brittleness index) and chemical solubility of mica glass ceramics. The glass-zirconia mixtures with varying amounts of YSZ (0, 5, 10, 15 and 20wt.%) were ball milled, compacted and sintered to obtain pellets of glass ceramic-YSZ composites. Phase analysis was carried out using X-ray diffraction and microstructural characterization with SEM revealed the crystal morphology of the composites. Mechanical properties such as Vickers hardness, elastic modulus, indentation fracture toughness and chemical solubility were assessed. Phase analysis of sintered pellets of glass ceramic-YSZ composites revealed the characteristic peaks of fluorophlogopite (FPP) and tetragonal zirconia. Microstructural investigation showed plate and lath-like interlocking mica crystals with embedded zirconia. Vickers hardness of 9.2GPa, elastic modulus of 125GPa, indentation toughness of 3.6MPa·m 1/2 , and chemical solubility of 30μg/cm 2 (well below the permissible limit) were recorded with mica glass ceramics containing 20wt.% YSZ. An increase in hardness and toughness of the glass ceramic-YSZ composites with no compromise on their brittleness index and chemical solubility has been observed. Such spectrum of properties can be utilised for developing a machinable ceramic for low stress bearing inlays, onlays and veneers. Copyright © 2018 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yokozeki, Tomohiro; Iwahori, Yutaka; Ishiwata, Shin
This study investigated the thermo-elastic properties and microscopic ply cracking behaviors in carbon fiber reinforced nanotube-dispersed epoxy laminates. The nanocomposite laminates used in this study consisted of traditional carbon fibers and epoxy resin filled with cup-stacked carbon nanotubes (CSCNTs). Thermo-mechanical properties of unidirectional nanocomposite laminates were evaluated, and quasi-static and fatigue tension tests of cross-ply laminates were carried out in order to observe the damage accumulation behaviors of matrix cracks. Clear retardation of matrix crack onset and accumulation was found in composite laminates with CSCNT compared to those without CSCNT. Fracture toughness associated with matrix cracking was evaluated based on the analytical model using the experimental results. It was concluded that the dispersion of CSCNT resulted in fracture toughness improvement and residual thermal strain decrease, and specifically, the former was the main contribution to the retardation of matrix crack formation.