NASA Astrophysics Data System (ADS)
Szajewski, B. A.; Hunter, A.; Luscher, D. J.; Beyerlein, I. J.
2018-01-01
Both theoretical and numerical models of dislocations often necessitate the assumption of elastic isotropy to retain analytical tractability in addition to reducing computational load. As dislocation based models evolve towards physically realistic material descriptions, the assumption of elastic isotropy becomes increasingly worthy of examination. We present an analytical dislocation model for calculating the full dissociated core structure of dislocations within anisotropic face centered cubic (FCC) crystals as a function of the degree of material elastic anisotropy, two misfit energy densities on the γ-surface ({γ }{{isf}}, {γ }{{usf}}) and the remaining elastic constants. Our solution is independent of any additional features of the γ-surface. Towards this pursuit, we first demonstrate that the dependence of the anisotropic elasticity tensor on the orientation of the dislocation line within the FCC crystalline lattice is small and may be reasonably neglected for typical materials. With this approximation, explicit analytic solutions for the anisotropic elasticity tensor {B} for both nominally edge and screw dislocations within an FCC crystalline lattice are devised, and employed towards defining a set of effective isotropic elastic constants which reproduce fully anisotropic results, however do not retain the bulk modulus. Conversely, Hill averaged elastic constants which both retain the bulk modulus and reasonably approximate the dislocation core structure are employed within subsequent numerical calculations. We examine a wide range of materials within this study, and the features of each partial dislocation core are sufficiently localized that application of discrete linear elasticity accurately describes the separation of each partial dislocation core. In addition, the local features (the partial dislocation core distribution) are well described by a Peierls-Nabarro dislocation model. We develop a model for the displacement profile which depends upon two disparate dislocation length scales which describe the core structure; (i) the equilibrium stacking fault width between two Shockley partial dislocations, R eq and (ii) the maximum slip gradient, χ, of each Shockley partial dislocation. We demonstrate excellent agreement between our own analytic predictions, numerical calculations, and R eq computed directly by both ab-initio and molecular statics methods found elsewhere within the literature. The results suggest that understanding of various plastic mechanisms, e.g., cross-slip and nucleation may be augmented with the inclusion of elastic anisotropy.
NASA Astrophysics Data System (ADS)
Geslin, Pierre-Antoine; Gatti, Riccardo; Devincre, Benoit; Rodney, David
2017-11-01
We propose a framework to study thermally-activated processes in dislocation glide. This approach is based on an implementation of the nudged elastic band method in a nodal mesoscale dislocation dynamics formalism. Special care is paid to develop a variational formulation to ensure convergence to well-defined minimum energy paths. We also propose a methodology to rigorously parametrize the model on atomistic data, including elastic, core and stacking fault contributions. To assess the validity of the model, we investigate the homogeneous nucleation of partial dislocation loops in aluminum, recovering the activation energies and loop shapes obtained with atomistic calculations and extending these calculations to lower applied stresses. The present method is also applied to heterogeneous nucleation on spherical inclusions.
NASA Astrophysics Data System (ADS)
Messner, Mark C.; Rhee, Moono; Arsenlis, Athanasios; Barton, Nathan R.
2017-06-01
This work develops a method for calibrating a crystal plasticity model to the results of discrete dislocation (DD) simulations. The crystal model explicitly represents junction formation and annihilation mechanisms and applies these mechanisms to describe hardening in hexagonal close packed metals. The model treats these dislocation mechanisms separately from elastic interactions among populations of dislocations, which the model represents through a conventional strength-interaction matrix. This split between elastic interactions and junction formation mechanisms more accurately reproduces the DD data and results in a multi-scale model that better represents the lower scale physics. The fitting procedure employs concepts of machine learning—feature selection by regularized regression and cross-validation—to develop a robust, physically accurate crystal model. The work also presents a method for ensuring the final, calibrated crystal model respects the physical symmetries of the crystal system. Calibrating the crystal model requires fitting two linear operators: one describing elastic dislocation interactions and another describing junction formation and annihilation dislocation reactions. The structure of these operators in the final, calibrated model reflect the crystal symmetry and slip system geometry of the DD simulations.
Singularity-free dislocation dynamics with strain gradient elasticity
NASA Astrophysics Data System (ADS)
Po, Giacomo; Lazar, Markus; Seif, Dariush; Ghoniem, Nasr
2014-08-01
The singular nature of the elastic fields produced by dislocations presents conceptual challenges and computational difficulties in the implementation of discrete dislocation-based models of plasticity. In the context of classical elasticity, attempts to regularize the elastic fields of discrete dislocations encounter intrinsic difficulties. On the other hand, in gradient elasticity, the issue of singularity can be removed at the outset and smooth elastic fields of dislocations are available. In this work we consider theoretical and numerical aspects of the non-singular theory of discrete dislocation loops in gradient elasticity of Helmholtz type, with interest in its applications to three dimensional dislocation dynamics (DD) simulations. The gradient solution is developed and compared to its singular and non-singular counterparts in classical elasticity using the unified framework of eigenstrain theory. The fundamental equations of curved dislocation theory are given as non-singular line integrals suitable for numerical implementation using fast one-dimensional quadrature. These include expressions for the interaction energy between two dislocation loops and the line integral form of the generalized solid angle associated with dislocations having a spread core. The single characteristic length scale of Helmholtz elasticity is determined from independent molecular statics (MS) calculations. The gradient solution is implemented numerically within our variational formulation of DD, with several examples illustrating the viability of the non-singular solution. The displacement field around a dislocation loop is shown to be smooth, and the loop self-energy non-divergent, as expected from atomic configurations of crystalline materials. The loop nucleation energy barrier and its dependence on the applied shear stress are computed and shown to be in good agreement with atomistic calculations. DD simulations of Lome-Cottrell junctions in Al show that the strength of the junction and its configuration are easily obtained, without ad-hoc regularization of the singular fields. Numerical convergence studies related to the implementation of the non-singular theory in DD are presented.
Fast Fourier transform discrete dislocation dynamics
NASA Astrophysics Data System (ADS)
Graham, J. T.; Rollett, A. D.; LeSar, R.
2016-12-01
Discrete dislocation dynamics simulations have been generally limited to modeling systems described by isotropic elasticity. Effects of anisotropy on dislocation interactions, which can be quite large, have generally been ignored because of the computational expense involved when including anisotropic elasticity. We present a different formalism of dislocation dynamics in which the dislocations are represented by the deformation tensor, which is a direct measure of the slip in the lattice caused by the dislocations and can be considered as an eigenstrain. The stresses arising from the dislocations are calculated with a fast Fourier transform (FFT) method, from which the forces are determined and the equations of motion are solved. Use of the FFTs means that the stress field is only available at the grid points, which requires some adjustments/regularizations to be made to the representation of the dislocations and the calculation of the force on individual segments, as is discussed hereinafter. A notable advantage of this approach is that there is no computational penalty for including anisotropic elasticity. We review the method and apply it in a simple dislocation dynamics calculation.
Elastic precursor wave decay in shock-compressed aluminum over a wide range of temperature
NASA Astrophysics Data System (ADS)
Austin, Ryan A.
2018-01-01
The effect of temperature on the dynamic flow behavior of aluminum is considered in the context of precursor wave decay measurements and simulations. In this regard, a dislocation-based model of high-rate metal plasticity is brought into agreement with previous measurements of evolving wave profiles at 300 to 933 K, wherein the amplification of the precursor structure with temperature arises naturally from the dislocation mechanics treatment. The model suggests that the kinetics of inelastic flow and stress relaxation are governed primarily by phonon scattering and radiative damping (sound wave emission from dislocation cores), both of which intensify with temperature. The manifestation of these drag effects is linked to low dislocation density ahead of the precursor wave and the high mobility of dislocations in the face-centered cubic lattice. Simulations performed using other typical models of shock wave plasticity do not reproduce the observed temperature-dependence of elastic/plastic wave structure.
Dislocation dynamics and crystal plasticity in the phase-field crystal model
NASA Astrophysics Data System (ADS)
Skaugen, Audun; Angheluta, Luiza; Viñals, Jorge
2018-02-01
A phase-field model of a crystalline material is introduced to develop the necessary theoretical framework to study plastic flow due to dislocation motion. We first obtain the elastic stress from the phase-field crystal free energy under weak distortion and show that it obeys the stress-strain relation of linear elasticity. We focus next on dislocations in a two-dimensional hexagonal lattice. They are composite topological defects in the weakly nonlinear amplitude equation expansion of the phase field, with topological charges given by the standard Burgers vector. This allows us to introduce a formal relation between the dislocation velocity and the evolution of the slowly varying amplitudes of the phase field. Standard dissipative dynamics of the phase-field crystal model is shown to determine the velocity of the dislocations. When the amplitude expansion is valid and under additional simplifications, we find that the dislocation velocity is determined by the Peach-Koehler force. As an application, we compute the defect velocity for a dislocation dipole in two setups, pure glide and pure climb, and compare it with the analytical predictions.
Hydrogen diffusion in the elastic fields of dislocations in iron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sivak, A. B., E-mail: Sivak-AB@nrcki.ru; Sivak, P. A.; Romanov, V. A.
2016-12-15
The effect of dislocation stress fields on the sink efficiency thereof is studied for hydrogen interstitial atoms at temperatures of 293 and 600 K and at a dislocation density of 3 × 10{sup 14} m{sup –2} in bcc iron crystal. Rectilinear full screw and edge dislocations in basic slip systems 〈111〉(110), 〈111〉(112), 〈100〉(100), and 〈100〉(110) are considered. Diffusion of defects is simulated by means of the object kinetic Monte Carlo method. The energy of interaction between defects and dislocations is calculated using the anisotropic theory of elasticity. The elastic fields of dislocations result in a less than 25% change ofmore » the sink efficiency as compared to the noninteracting linear sink efficiency at a room temperature. The elastic fields of edge dislocations increase the dislocation sink efficiency, whereas the elastic fields of screw dislocations either decrease this parameter (in the case of dislocations with the Burgers vector being 1/2〈111〉) or do not affect it (in the case of dislocations with the Burgers vector being 〈100〉). At temperatures above 600 K, the dislocations affect the behavior of hydrogen in bcc iron mainly owing to a high binding energy between the hydrogen atom and dislocation cores.« less
Gurrutxaga-Lerma, Beñat; Balint, Daniel S; Dini, Daniele; Eakins, Daniel E; Sutton, Adrian P
2015-05-01
When a metal is subjected to extremely rapid compression, a shock wave is launched that generates dislocations as it propagates. The shock wave evolves into a characteristic two-wave structure, with an elastic wave preceding a plastic front. It has been known for more than six decades that the amplitude of the elastic wave decays the farther it travels into the metal: this is known as "the decay of the elastic precursor." The amplitude of the elastic precursor is a dynamic yield point because it marks the transition from elastic to plastic behavior. In this Letter we provide a full explanation of this attenuation using the first method of dislocation dynamics to treat the time dependence of the elastic fields of dislocations explicitly. We show that the decay of the elastic precursor is a result of the interference of the elastic shock wave with elastic waves emanating from dislocations nucleated in the shock front. Our simulations reproduce quantitatively recent experiments on the decay of the elastic precursor in aluminum and its dependence on strain rate.
NASA Astrophysics Data System (ADS)
Vattré, A.
2017-08-01
A parametric energy-based framework is developed to describe the elastic strain relaxation of interface dislocations. By means of the Stroh sextic formalism with a Fourier series technique, the proposed approach couples the classical anisotropic elasticity theory with surface/interface stress and elasticity properties in heterogeneous interface-dominated materials. For any semicoherent interface of interest, the strain energy landscape is computed using the persistent elastic fields produced by infinitely periodic hexagonal-shaped dislocation configurations with planar three-fold nodes. A finite element based procedure combined with the conjugate gradient and nudged elastic band methods is applied to determine the minimum-energy paths for which the pre-computed energy landscapes yield to elastically favorable dislocation reactions. Several applications on the Au/Cu heterosystems are given. The simple and limiting case of a single set of infinitely periodic dislocations is introduced to determine exact closed-form expressions for stresses. The second limiting case of the pure (010) Au/Cu heterophase interfaces containing two crossing sets of straight dislocations investigates the effects due to the non-classical boundary conditions on the stress distributions, including separate and appropriate constitutive relations at semicoherent interfaces and free surfaces. Using the quantized Frank-Bilby equation, it is shown that the elastic strain landscape exhibits intrinsic dislocation configurations for which the junction formation is energetically unfavorable. On the other hand, the mismatched (111) Au/Cu system gives rise to the existence of a minimum-energy path where the fully strain-relaxed equilibrium and non-regular intrinsic hexagonal-shaped dislocation rearrangement is accompanied by a significant removal of the short-range elastic energy.
Elasticity and dislocation anelasticity of crystals
NASA Astrophysics Data System (ADS)
Nikanorov, S. P.; Kardashev, B. K.
The book is concerned with the application of the results of physical acoustic studies of elasticity and dislocation anelasticity to the investigation of interatomic interactions and interactions between lattice defects. The analysis of the potential functions determining the energy of interatomic interactions is based on a study of the elastic properties of crystals over a wide temperature range; data on the dislocation structure and on the interaction between dislocations and point defects are based mainly on a study of inelastic effects. Particular attention is given to the relationship between microplastic effects and the initial stage of plastic deformation under conditions of elastic oscillations, when the multiplication of dislocations is negligible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandal, A.; Gupta, Y. M.
To understand the elastic-plastic deformation response of shock-compressed molybdenum (Mo) – a body-centered cubic (BCC) metal, single crystal samples were shocked along the [100] crystallographic orientation to an elastic impact stress of 12.5 GPa. Elastic-plastic wave profiles, measured at different propagation distances ranging between ~0.23 to 2.31 mm using laser interferometry, showed a time-dependent material response. Within experimental scatter, the measured elastic wave amplitudes were nearly constant over the propagation distances examined. These data point to a large and rapid elastic wave attenuation near the impact surface, before reaching a threshold value (elastic limit) of ~3.6 GPa. Numerical simulations ofmore » the measured wave profiles, performed using a dislocation-based continuum model, suggested that {110}<111> and/or {112}<111> slip systems are operative under shock loading. In contrast to shocked metal single crystals with close-packed structures, the measured wave profiles in Mo single crystals could not be explained in terms of dislocation multiplication alone. A dislocation generation mechanism, operative for shear stresses larger than that at the elastic limit, was required to model the rapid elastic wave attenuation and to provide a good overall match to the measured wave profiles. However, the physical basis for this mechanism was not established for the high-purity single crystal samples used in this study. As a result, the numerical simulations also suggested that Mo single crystals do not work harden significantly under shock loading in contrast to the behavior observed under quasi-static loading.« less
NASA Astrophysics Data System (ADS)
Bertin, N.; Upadhyay, M. V.; Pradalier, C.; Capolungo, L.
2015-09-01
In this paper, we propose a novel full-field approach based on the fast Fourier transform (FFT) technique to compute mechanical fields in periodic discrete dislocation dynamics (DDD) simulations for anisotropic materials: the DDD-FFT approach. By coupling the FFT-based approach to the discrete continuous model, the present approach benefits from the high computational efficiency of the FFT algorithm, while allowing for a discrete representation of dislocation lines. It is demonstrated that the computational time associated with the new DDD-FFT approach is significantly lower than that of current DDD approaches when large number of dislocation segments are involved for isotropic and anisotropic elasticity, respectively. Furthermore, for fine Fourier grids, the treatment of anisotropic elasticity comes at a similar computational cost to that of isotropic simulation. Thus, the proposed approach paves the way towards achieving scale transition from DDD to mesoscale plasticity, especially due to the method’s ability to incorporate inhomogeneous elasticity.
Elastic-plastic deformation of molybdenum single crystals shocked along [100
Mandal, A.; Gupta, Y. M.
2017-01-24
To understand the elastic-plastic deformation response of shock-compressed molybdenum (Mo) – a body-centered cubic (BCC) metal, single crystal samples were shocked along the [100] crystallographic orientation to an elastic impact stress of 12.5 GPa. Elastic-plastic wave profiles, measured at different propagation distances ranging between ~0.23 to 2.31 mm using laser interferometry, showed a time-dependent material response. Within experimental scatter, the measured elastic wave amplitudes were nearly constant over the propagation distances examined. These data point to a large and rapid elastic wave attenuation near the impact surface, before reaching a threshold value (elastic limit) of ~3.6 GPa. Numerical simulations ofmore » the measured wave profiles, performed using a dislocation-based continuum model, suggested that {110}<111> and/or {112}<111> slip systems are operative under shock loading. In contrast to shocked metal single crystals with close-packed structures, the measured wave profiles in Mo single crystals could not be explained in terms of dislocation multiplication alone. A dislocation generation mechanism, operative for shear stresses larger than that at the elastic limit, was required to model the rapid elastic wave attenuation and to provide a good overall match to the measured wave profiles. However, the physical basis for this mechanism was not established for the high-purity single crystal samples used in this study. As a result, the numerical simulations also suggested that Mo single crystals do not work harden significantly under shock loading in contrast to the behavior observed under quasi-static loading.« less
Elastic Green’s Function in Anisotropic Bimaterials Considering Interfacial Elasticity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Juan, Pierre -Alexandre; Dingreville, Remi
Here, the two-dimensional elastic Green’s function is calculated for a general anisotropic elastic bimaterial containing a line dislocation and a concentrated force while accounting for the interfacial structure by means of a generalized interfacial elasticity paradigm. The introduction of the interface elasticity model gives rise to boundary conditions that are effectively equivalent to those of a weakly bounded interface. The equations of elastic equilibrium are solved by complex variable techniques and the method of analytical continuation. The solution is decomposed into the sum of the Green’s function corresponding to the perfectly bonded interface and a perturbation term corresponding to themore » complex coupling nature between the interface structure and a line dislocation/concentrated force. Such construct can be implemented into the boundary integral equations and the boundary element method for analysis of nano-layered structures and epitaxial systems where the interface structure plays an important role.« less
Elastic Green’s Function in Anisotropic Bimaterials Considering Interfacial Elasticity
Juan, Pierre -Alexandre; Dingreville, Remi
2017-09-13
Here, the two-dimensional elastic Green’s function is calculated for a general anisotropic elastic bimaterial containing a line dislocation and a concentrated force while accounting for the interfacial structure by means of a generalized interfacial elasticity paradigm. The introduction of the interface elasticity model gives rise to boundary conditions that are effectively equivalent to those of a weakly bounded interface. The equations of elastic equilibrium are solved by complex variable techniques and the method of analytical continuation. The solution is decomposed into the sum of the Green’s function corresponding to the perfectly bonded interface and a perturbation term corresponding to themore » complex coupling nature between the interface structure and a line dislocation/concentrated force. Such construct can be implemented into the boundary integral equations and the boundary element method for analysis of nano-layered structures and epitaxial systems where the interface structure plays an important role.« less
Automated identification and indexing of dislocations in crystal interfaces
Stukowski, Alexander; Bulatov, Vasily V.; Arsenlis, Athanasios
2012-10-31
Here, we present a computational method for identifying partial and interfacial dislocations in atomistic models of crystals with defects. Our automated algorithm is based on a discrete Burgers circuit integral over the elastic displacement field and is not limited to specific lattices or dislocation types. Dislocations in grain boundaries and other interfaces are identified by mapping atomic bonds from the dislocated interface to an ideal template configuration of the coherent interface to reveal incompatible displacements induced by dislocations and to determine their Burgers vectors. Additionally, the algorithm generates a continuous line representation of each dislocation segment in the crystal andmore » also identifies dislocation junctions.« less
A statistical analysis of the elastic distortion and dislocation density fields in deformed crystals
Mohamed, Mamdouh S.; Larson, Bennett C.; Tischler, Jonathan Z.; ...
2015-05-18
The statistical properties of the elastic distortion fields of dislocations in deforming crystals are investigated using the method of discrete dislocation dynamics to simulate dislocation structures and dislocation density evolution under tensile loading. Probability distribution functions (PDF) and pair correlation functions (PCF) of the simulated internal elastic strains and lattice rotations are generated for tensile strain levels up to 0.85%. The PDFs of simulated lattice rotation are compared with sub-micrometer resolution three-dimensional X-ray microscopy measurements of rotation magnitudes and deformation length scales in 1.0% and 2.3% compression strained Cu single crystals to explore the linkage between experiment and the theoreticalmore » analysis. The statistical properties of the deformation simulations are analyzed through determinations of the Nye and Kr ner dislocation density tensors. The significance of the magnitudes and the length scales of the elastic strain and the rotation parts of dislocation density tensors are demonstrated, and their relevance to understanding the fundamental aspects of deformation is discussed.« less
Elasticity and dislocation inelasticity of crystals
NASA Astrophysics Data System (ADS)
Nikanorov, S. P.; Kardashev, B. K.
The use of methods of physical acoustics for studying the elasticity and dislocation inelasticity of crystals is discussed, as is the application of the results of such studies to the analysis of interatomic and lattice defect interactions. The analysis of the potential functions determining the energy of interatomic interactions is based on an analysis of the elastic properties of crystals over a wide temperature range. The data on the dislocation structure and the interaction between dislocations and point defects are obtained from a study of inelastic effects. Particular attention is given to the relationship between microplastic effects under conditions of elastic oscillations and the initial stage of plastic deformation.
NASA Astrophysics Data System (ADS)
Vattré, A.
2017-08-01
The long- and short-range interactions as well as planar reactions between two infinitely periodic sets of crossing dislocations are investigated using anisotropic elasticity theory in face- (fcc) and body- (bcc) centered cubic materials. Two preliminary cases are proposed to examine the substantial changes in the elastic stress states and the corresponding strain energies due to a slight rearrangement in the internal dislocation geometries and characters. In general, significant differences and discrepancies resulting from the considered cubic crystal structure and the approximation of isotropic elasticity are exhibited. In a third scenario, special attention is paid to connecting specific internal dislocation structures from the previous cases with non-equilibrium configurations predicted by the quantized Frank-Bilby equation for the (111) fcc and (110) bcc twist grain boundaries. The present solutions lead to the formation of energetically favorable dislocation junctions with non-randomly strain-relaxed configurations of lower energy. In particular, the local dislocation interactions and reactions form equilibrium hexagonal-shaped patterns with planar three-fold dislocation nodes without producing spurious far-field stresses.Numerical application results are presented from a selection of cubic metals including aluminum, copper, tantalum, and niobium. In contrast to the fcc materials, asymmetric dislocation nodes occur in the anisotropic bcc cases, within which the minimum-energy paths for predicting the fully strain-relaxed dislocation patterns depend on the Zener anisotropic factor with respect to unity. The associated changes in the dislocation structures as well as the removal of the elastic strain energy upon relaxations are quantified and also discussed.
Field Dislocation Mechanics for heterogeneous elastic materials: A numerical spectral approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Djaka, Komlan Senam; Villani, Aurelien; Taupin, Vincent
Spectral methods using Fast Fourier Transform (FFT) algorithms have recently seen a surge in interest in the mechanics of materials community. The present work addresses the critical question of determining accurate local mechanical fields using FFT methods without artificial fluctuations arising from materials and defects induced discontinuities. Precisely, this work introduces a numerical approach based on intrinsic discrete Fourier transforms for the simultaneous treatment of material discontinuities arising from the presence of dislocations and from elastic stiffness heterogeneities. To this end, the elasto-static equations of the field dislocation mechanics theory for periodic heterogeneous materials are numerically solved with FFT inmore » the case of dislocations in proximity of inclusions of varying stiffness. An optimal intrinsic discrete Fourier transform method is sought based on two distinct schemes. A centered finite difference scheme for differential rules are used for numerically solving the Poisson-type equation in the Fourier space, while centered finite differences on a rotated grid is chosen for the computation of the modified Fourier–Green’s operator associated with the Lippmann–Schwinger-type equation. By comparing different methods with analytical solutions for an edge dislocation in a composite material, it is found that the present spectral method is accurate, devoid of any numerical oscillation, and efficient even for an infinite phase elastic contrast like a hole embedded in a matrix containing a dislocation. The present FFT method is then used to simulate physical cases such as the elastic fields of dislocation dipoles located near the matrix/inclusion interface in a 2D composite material and the ones due to dislocation loop distributions surrounding cubic inclusions in 3D composite material. In these configurations, the spectral method allows investigating accurately the elastic interactions and image stresses due to dislocation fields in the presence of elastic inhomogeneities.« less
Field Dislocation Mechanics for heterogeneous elastic materials: A numerical spectral approach
Djaka, Komlan Senam; Villani, Aurelien; Taupin, Vincent; ...
2017-03-01
Spectral methods using Fast Fourier Transform (FFT) algorithms have recently seen a surge in interest in the mechanics of materials community. The present work addresses the critical question of determining accurate local mechanical fields using FFT methods without artificial fluctuations arising from materials and defects induced discontinuities. Precisely, this work introduces a numerical approach based on intrinsic discrete Fourier transforms for the simultaneous treatment of material discontinuities arising from the presence of dislocations and from elastic stiffness heterogeneities. To this end, the elasto-static equations of the field dislocation mechanics theory for periodic heterogeneous materials are numerically solved with FFT inmore » the case of dislocations in proximity of inclusions of varying stiffness. An optimal intrinsic discrete Fourier transform method is sought based on two distinct schemes. A centered finite difference scheme for differential rules are used for numerically solving the Poisson-type equation in the Fourier space, while centered finite differences on a rotated grid is chosen for the computation of the modified Fourier–Green’s operator associated with the Lippmann–Schwinger-type equation. By comparing different methods with analytical solutions for an edge dislocation in a composite material, it is found that the present spectral method is accurate, devoid of any numerical oscillation, and efficient even for an infinite phase elastic contrast like a hole embedded in a matrix containing a dislocation. The present FFT method is then used to simulate physical cases such as the elastic fields of dislocation dipoles located near the matrix/inclusion interface in a 2D composite material and the ones due to dislocation loop distributions surrounding cubic inclusions in 3D composite material. In these configurations, the spectral method allows investigating accurately the elastic interactions and image stresses due to dislocation fields in the presence of elastic inhomogeneities.« less
NASA Astrophysics Data System (ADS)
Reid, Andrew C. E.; Olson, Gregory B.
2000-03-01
Heterogeneous nucleation of martensite is modeled by examining the strain field of a dislocation array in a nonlinear, nonlocal continuum elastic matrix. The dislocations are modeled by including effects from atomic length scales, which control the dislocation Burger's vector, into a mesoscopic continuum model. The dislocation array models the heterogeneous nucleation source of the Olson/Cohen defect dissociation model, and depending on the potency can give rise to embryos of different character. High potency dislocations give rise to fully developed, classical pre-existing embryos, whereas low-potency dislocations result in the formation of highly nonclassical strain embryos. Heterogeneous nucleation theory is related to nucleation kinetics through the critical driving force for nucleation at a defect of a given potency. Recent stereological and calorimetric kinetic studies in thermoelastic TiNi alloys confirm that these materials exhibit the same form of defect potency distribution and resulting sample-size dependent Martensite start temperature, M_s, as nonthermoelastic FeNi systems. These results together point towards a broad theory of heterogeneous nucleation for both thermoelastic and nonthermoelastic martensites.
A dislocation density based micromechanical constitutive model for Sn-Ag-Cu solder alloys
NASA Astrophysics Data System (ADS)
Liu, Lu; Yao, Yao; Zeng, Tao; Keer, Leon M.
2017-10-01
Based on the dislocation density hardening law, a micromechanical model considering the effects of precipitates is developed for Sn-Ag-Cu solder alloys. According to the microstructure of the Sn-3.0Ag-0.5Cu thin films, intermetallic compounds (IMCs) are assumed as sphere particles embedded in the polycrystalline β-Sn matrix. The mechanical behavior of polycrystalline β-Sn matrix is determined by the elastic-plastic self-consistent method. The existence of IMCs not only impedes the motion of dislocations but also increases the overall stiffness. Thus, a dislocation density based hardening law considering non-shearable precipitates is adopted locally for single β-Sn crystal, and the Mori-Tanaka scheme is applied to describe the overall viscoplastic behavior of solder alloys. The proposed model is incorporated into finite element analysis and the corresponding numerical implementation method is presented. The model can describe the mechanical behavior of Sn-3.0Ag-0.5Cu and Sn-1.0Ag-0.5Cu alloys under high strain rates at a wide range of temperatures. Furthermore, the overall Young’s modulus changes due to different contents of IMCs is predicted and compared with experimental data. Results show that the proposed model can describe both elastic and inelastic behavior of solder alloys with reasonable accuracy.
Mesoscale modeling of strain induced solid state amorphization in crystalline materials
NASA Astrophysics Data System (ADS)
Lei, Lei
Solid state amorphization, and in particular crystalline to amorphous transformation, can be observed in metallic alloys, semiconductors, intermetallics, minerals, and also molecular crystals when they undergo irradiation, hydrogen gas dissolution, thermal interdiffusion, mechanical alloying, or mechanical milling. Although the amorphization mechanisms may be different, the transformation occurs due to the high level of disorder introduced into the material. Milling induced solid state amorphization is proposed to be the result of accumulation of crystal defects, specifically dislocations, as the material is subjected to large deformations during the high energy process. Thus, understanding the deformation mechanisms of crystalline materials will be the first step in studying solid state amorphization in crystalline materials, which not only has scientific contributions, but also technical consequences. A phase field dislocation dynamics (PFDD) approach is employed in this work to simulate plastic deformation of molecular crystals. This PFDD model has the advantage of tracking all of the dislocations in a material simultaneously. The model takes into account the elastic interaction between dislocations, the lattice resistance to dislocation motion, and the elastic interaction of dislocations with an external stress field. The PFDD model is employed to describe the deformation of molecular crystals with pharmaceutical applications, namely, single crystal sucrose, acetaminophen, gamma-indomethacin, and aspirin. Stress-strain curves are produced that result in expected anisotropic material response due to the activation of different slip systems and yield stresses that agree well with those from experiments. The PFDD model is coupled to a phase transformation model to study the relation between plastic deformation and the solid state amorphization of crystals that undergo milling. This model predicts the amorphous volume fraction in excellent agreement with experimental observation. Finally, we incorporate the effect of stress free surfaces to model the behavior of dislocations close to these surfaces and in the presence of voids.
Change and anisotropy of elastic modulus in sheet metals due to plastic deformation
NASA Astrophysics Data System (ADS)
Ishitsuka, Yuki; Arikawa, Shuichi; Yoneyama, Satoru
2015-03-01
In this study, the effect of the plastic deformation on the microscopic structure and the anisotropy of the elastic modulus in the cold-rolled steel sheet (SPCC) is investigated. Various uniaxial plastic strains (0%, 2.5%, 5%, 7.5%, and 10%) are applied to the annealed SPCC plates, then, the specimens for the tensile tests are cut out from them. The elastic moduli in the longitudinal direction and the transverse direction to the direction that are pre-strained are measured by the tensile tests. Cyclic tests are performed to investigate the effects of the internal friction caused by the movable dislocations in the elastic deformation. Also, the movable dislocations are quantified by the boundary tracking for TEM micrographs. In addition, the behaviors of the change of the elastic modulus in the solutionized and thermal aged aluminum alloy (A5052) are measured to investigate the effect on the movable dislocations with the amount of the depositions. As a result in SPCC, the elastic moduli of the 0° and 90° directions decrease more than 10% as 10% prestrain applied. On the other hand, the elastic modulus shows the recovery behavior after the strain aging and the annealing. The movable dislocation and the internal friction show a tendency to increase as the plastic strain increases. The marked anisotropy is not observed in the elastic modulus and the internal friction. The elastic modulus in A5052 with many and few depositions decreases similarly by the plastic deformation. From the above, the movable dislocations affect the elastic modulus strongly without depending on the deposition amount. Moreover, the elastic modulus recovers after the plastic deformation by reducing the effects of them with the strain aging and the heat treatment.
Modeling of plasticity and fracture of metals at shock loading
NASA Astrophysics Data System (ADS)
Mayer, A. E.; Khishchenko, K. V.; Levashov, P. R.; Mayer, P. N.
2013-05-01
In this paper, we present a model of dislocation plasticity and fracture of metals, which in combination with the wide-range equation of state and the continuum mechanics equations is a necessary component for simulation of the shock-wave loading. We take into account immobilization of dislocations and nucleation of micro-voids in weakened zones of substance; this is distinguished feature of the present version of the model. Accounting of the dislocations immobilization provides a better description of the unloading wave structure, while the detailed consideration of processes in the weakened zones expands the domain of applicability of fracture model to higher strain rates. We compare our results with the experimental data for the shock loading of aluminum, copper, and nickel samples; the comparison indicates satisfactory description of the elastic precursor, unloading wave, and spall pulse. Using the model, we investigate intently the early stage of the shock formation in solids; it is found out that the elastic precursor is formed even for a strong shock wave, and initially the precursor has very large amplitude and propagation velocity.
NASA Astrophysics Data System (ADS)
Samolyuk, G. D.; Osetsky, Y. N.; Stoller, R. E.
2013-01-01
Several transition metals were examined to evaluate their potential for improving the ductility of tungsten. The dislocation core structure and Peierls stress and barrier of 1/2<111> screw dislocations in binary tungsten-transition metal alloys (W1-xTMx) were investigated using density functional theory calculations. The periodic quadrupole approach was applied to model the structure of the 1/2<111> dislocation. Alloying with transition metals was modeled using the virtual crystal approximation and the applicability of this approach was assessed by calculating the equilibrium lattice parameter and elastic constants of the tungsten alloys. Reasonable agreement was obtained with experimental data and with results obtained from the conventional supercell approach. Increasing the concentration of a transition metal from the VIIIA group, i.e. the elements in columns headed by Fe, Co and Ni, leads to reduction of the C‧ elastic constant and increase of the elastic anisotropy A = C44/C‧. Alloying W with a group VIIIA transition metal changes the structure of the dislocation core from symmetric to asymmetric, similarly to results obtained for W1-xRex alloys in the earlier work of Romaner et al (2010 Phys. Rev. Lett. 104 195503). In addition to a change in the core symmetry, the values of the Peierls stress and barrier are reduced. The latter effect could lead to increased ductility in a tungsten-based alloy. Our results demonstrate that alloying with any of the transition metals from the VIIIA group should have a similar effect to alloying with Re.
NASA Astrophysics Data System (ADS)
Luscher, D. J.; Addessio, F. L.; Cawkwell, M. J.; Ramos, K. J.
2017-01-01
We have developed a model for the finite deformation thermomechanical response of α-cyclotrimethylene trinitramine (RDX). Our model accounts for nonlinear thermoelastic lattice deformation through a free energy-based equation of state developed by Cawkwell et al. (2016) in combination with temperature and pressure dependent elastic constants, as well as dislocation-mediated plastic slip on a set of slip systems motivated by experimental observation. The kinetics of crystal plasticity are modeled using the Orowan equation relating slip rate to dislocation density and the dislocation velocity developed by Austin and McDowell (2011), which naturally accounts for transition from thermally activated to dislocation drag limited regimes. Evolution of dislocation density is specified in terms of local ordinary differential equations reflecting dislocation-dislocation interactions. This paper presents details of the theory and parameterization of the model, followed by discussion of simulations of flyer plate impact experiments. Impact conditions explored within this combined simulation and experimental effort span shock pressures ranging from 1 to 3 GPa for four crystallographic orientations and multiple specimen thicknesses. Simulation results generated using this model are shown to be in strong agreement with velocimetry measurements from the corresponding plate impact experiments. Finally, simulation results are used to motivate conclusions about the nature of dislocation-mediated plasticity in RDX.
Dislocation pileup as a representation of strain accumulation on a strike-slip fault
Savage, J.C.
2006-01-01
The conventional model of strain accumulation on a vertical transform fault is a discrete screw dislocation in an elastic half-space with the Burgers vector of the dislocation increasing at the rate of relative plate motion. It would be more realistic to replace that discrete dislocation by a dislocation distribution, presumably a pileup in which the individual dislocations are in equilibrium. The length of the pileup depends upon the applied stress and the amount of slip that has occurred at depth. I argue here that the dislocation pileup (the transition on the fault from no slip to slip at the full plate rate) occupies a substantial portion of the lithosphere thickness. A discrete dislocation at an adjustable depth can reproduce the surface deformation profile predicted by a pileup so closely that it will be difficult to distinguish between the two models. The locking depth (dislocation depth) of that discrete dislocation approximation is substantially (???30%) larger than that (depth to top of the pileup) in the pileup model. Thus, in inverting surface deformation data using the discrete dislocation model, the locking depth in the model should not be interpreted as the true locking depth. Although dislocation pileup models should provide a good explanation of the surface deformation near the fault trace, that explanation may not be adequate at greater distances from the fault trace because approximating the expected horizontally distributed deformation at subcrustal depths by uniform slip concentrated on the fault is not justified.
Dislocation loop models for the high temperature creep of Al-5.5 at.% Mg alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
An, S.U.; Blum, W.
1995-04-15
The Al-5.5 at.% Mg alloy is a typical class I type solution hardened material. The dislocation loop models proposed by Orlova and Cadek and by Mills et al., respectively are widely applied models in describing the high temperature creep behavior of the Al-5.5 at.% Mg alloy. These models, however, are in conflict in explaining dislocation loop theory. Orlova and Cadek suggest that in class I solution hardened alloys screw dislocations are relatively easier to migrate because they are subject to a smaller resistance in motion than edge dislocations. Consequently, the migration rate of screw dislocations is higher than that ofmore » edge dislocations. However, since dislocation loops are composed of both screw and edge components, the overall migration rate of screw dislocations are reduced by that of the edge component. Mills et al. on the contrary, used a different dislocation loop model. As the loop grows while it moves, it takes on the shape of an ellipsoid due to the unbalance in growth rate, the score segment moving much easier than the edge. Therefore, as shown in the results of the stress reduction tests, rapid elastic ({Delta} {var_epsilon}{sub el}) and anelastic contraction ({Delta} {var_epsilon}{sub an}) occur simultaneously directly after stress reduction. During the movement of the dislocation loop, the screw component hence becomes severely curved, while the edge component retains a straight line. This has been proved through dislocation structure observations by TEM.« less
Modeling elasticity in crystal growth.
Elder, K R; Katakowski, Mark; Haataja, Mikko; Grant, Martin
2002-06-17
A new model of crystal growth is presented that describes the phenomena on atomic length and diffusive time scales. The former incorporates elastic and plastic deformation in a natural manner, and the latter enables access to time scales much larger than conventional atomic methods. The model is shown to be consistent with the predictions of Read and Shockley for grain boundary energy, and Matthews and Blakeslee for misfit dislocations in epitaxial growth.
Molecular dynamics simulation on the elastoplastic properties of copper nanowire under torsion
NASA Astrophysics Data System (ADS)
Yang, Yong; Li, Ying; Yang, Zailin; Zhang, Guowei; Wang, Xizhi; Liu, Jin
2018-02-01
Influences of different factors on the torsion properties of single crystal copper nanowire are studied by molecular dynamics method. The length, torsional rate, and temperature of the nanowire are discussed at the elastic-plastic critical point. According to the average potential energy curve and shear stress curve, the elastic-plastic critical angle is determined. Also, the dislocation at elastoplastic critical points is analyzed. The simulation results show that the single crystal copper nanowire can be strengthened by lengthening the model, decreasing the torsional rate, and lowering the temperature. Moreover, atoms move violently and dislocation is more likely to occur with a higher temperature. This work mainly describes the mechanical behavior of the model under different states.
NASA Astrophysics Data System (ADS)
Balusu, K.; Huang, H.
2017-04-01
A combined dislocation fan-finite element (DF-FE) method is presented for efficient and accurate simulation of dislocation nodal forces in 3D elastically anisotropic crystals with dislocations intersecting the free surfaces. The finite domain problem is decomposed into half-spaces with singular traction stresses, an infinite domain, and a finite domain with non-singular traction stresses. As such, the singular and non-singular parts of the traction stresses are addressed separately; the dislocation fan (DF) method is introduced to balance the singular traction stresses in the half-spaces while the finite element method (FEM) is employed to enforce the non-singular boundary conditions. The accuracy and efficiency of the DF method is demonstrated using a simple isotropic test case, by comparing it with the analytical solution as well as the FEM solution. The DF-FE method is subsequently used for calculating the dislocation nodal forces in a finite elastically anisotropic crystal, which produces dislocation nodal forces that converge rapidly with increasing mesh resolutions. In comparison, the FEM solution fails to converge, especially for nodes closer to the surfaces.
Dynamics of threading dislocations in porous heteroepitaxial GaN films
NASA Astrophysics Data System (ADS)
Gutkin, M. Yu.; Rzhavtsev, E. A.
2017-12-01
Behavior of threading dislocations in porous heteroepitaxial gallium nitride (GaN) films has been studied using computer simulation by the two-dimensional discrete dislocation dynamics approach. A computational scheme, where pores are modeled as cross sections of cylindrical cavities, elastically interacting with unidirectional parallel edge dislocations, which imitate threading dislocations, is used. Time dependences of coordinates and velocities of each dislocation from dislocation ensembles under investigation are obtained. Visualization of current structure of dislocation ensemble is performed in the form of a location map of dislocations at any time. It has been shown that the density of appearing dislocation structures significantly depends on the ratio of area of a pore cross section to area of the simulation region. In particular, increasing the portion of pores surface on the layer surface up to 2% should lead to about a 1.5-times decrease of the final density of threading dislocations, and increase of this portion up to 15% should lead to approximately a 4.5-times decrease of it.
Analytic crack solutions for tilt fields around hydraulic fractures
NASA Astrophysics Data System (ADS)
Warpinski, Norman R.
2000-10-01
The recent development of downhole tiltmeter arrays for monitoring hydraulic fractures has provided new information on fracture growth and geometry. These downhole arrays offer the significant advantages of being close to the fracture (large signal) and being unaffected by the free surface. As with surface tiltmeter data, analysis of these measurements requires the inversion of a crack or dislocation model. To supplement the dislocation models of Davis [1983], Okada [1992], and others, this work has extended several elastic crack solutions to provide tilt calculations. The solutions include constant-pressure two-dimensional (2-D), penny-shaped, and 3-D-elliptic cracks and a 2-D-variable-pressure crack. Equations are developed for an arbitrary inclined fracture in an infinite elastic space. Effects of fracture height, fracture length, fracture dip, fracture azimuth, fracture width, and monitoring distance on the tilt distribution are given, as well as comparisons with the dislocation model. The results show that the tilt measurements are very sensitive to the fracture dimensions but also that it is difficult to separate the competing effects of the various parameters.
Analytic crack solutions for tilt fields around hydraulic fractures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Warpinski, N.R.
The recent development of downhole tiltmeter arrays for monitoring hydraulic fractures has provided new information on fracture growth and geometry. These downhole arrays offer the significant advantages of being close to the fracture (large signal) and being unaffected by the free surface. As with surface tiltmeter data, analysis of these measurements requires the inversion of a crack or dislocation model. To supplement the dislocation models of Davis [1983], Okada [1992] and others, this work has extended several elastic crack solutions to provide tilt calculations. The solutions include constant-pressure 2D, penny-shaped, and 3D-elliptic cracks and a 2D-variable-pressure crack. Equations are developedmore » for an arbitrary inclined fracture in an infinite elastic space. Effects of fracture height, fracture length, fracture dip, fracture azimuth, fracture width and monitoring distance on the tilt distribution are given, as well as comparisons with the dislocation model. The results show that the tilt measurements are very sensitive to the fracture dimensions, but also that it is difficult to separate the competing effects of the various parameters.« less
The core structure and recombination energy of a copper screw dislocation: a Peierls study
NASA Astrophysics Data System (ADS)
Szajewski, B. A.; Hunter, A.; Beyerlein, I. J.
2017-09-01
The recombination process of dislocations is central to cross-slip, and transmission through ?3 grain boundaries among other fundamental plastic deformation processes. Despite its importance, a detailed mechanistic understanding remains lacking. We apply a continuous dislocation model, inspired by Peierls and Nabarro, complete with an ab-initio computed ?-surface and continuous units of infinitesimal dislocation slip, towards computing the stress-dependent recombination path of both an isotropic and anisotropic Cu screw dislocation. Under no applied stress, our model reproduces the stacking fault width between Shockley partial dislocations as predicted by discrete linear elasticity. Upon application of a compressive Escaig stress, the two partial dislocations coalesce to a separation of ??. Upon increased loading the edge components of each partial dislocation recede, leaving behind a spread Peierls screw dislocation, indicating the recombined state. We demonstrate that the critical stress required to achieve the recombined state is independent of the shear modulus. Rather the critical recombination stress depends on an energy difference between an unstable fault energy (?) and the intrinsic stacking fault energy (?-?). We report recombination energies of ?W = 0.168 eV/Å and ?W = 0.084 eV/Å, respectively, for the Cu screw dislocation within isotropic and anisotropic media. We develop an analytic model which provides insight into our simulation results which compare favourably with other (similar) models.
McHugh, Stuart
1976-01-01
The material in this report is concerned with the effects of a vertically oriented rectangular dislocation loop on the tilts observed at the free surface of an elastic half-space. Part I examines the effect of a spatially variable static strike-slip distribution across the slip surface. The tilt components as a function of distance parallel, or perpendicular, to the strike of the slip surface are displayed for different slip-versus-distance profiles. Part II examines the effect of spatially and temporally variable slip distributions across the dislocation loop on the quasi-static tilts at the free surface of an elastic half space. The model discussed in part II may be used to generate theoretical tilt versus time curves produced by creep events.
Luscher, Darby Jon; Addessio, Francis L.; Cawkwell, Marc Jon; ...
2017-01-01
Here, we have developed a model for the finite deformation thermomechanical response of α-cyclotrimethylene trinitramine (RDX). Our model accounts for nonlinear thermoelastic lattice deformation through a free energy-based equation of state developed by Cawkwell et al. (2016) in combination with temperature and pressure dependent elastic constants, as well as dislocation-mediated plastic slip on a set of slip systems motivated by experimental observation. The kinetics of crystal plasticity are modeled using the Orowan equation relating slip rate to dislocation density and the dislocation velocity developed by Austin and McDowell (2011), which naturally accounts for transition from thermally activated to dislocation dragmore » limited regimes. Evolution of dislocation density is specified in terms of local ordinary differential equations reflecting dislocation–dislocation interactions. This paper presents details of the theory and parameterization of the model, followed by discussion of simulations of flyer plate impact experiments. Impact conditions explored within this combined simulation and experimental effort span shock pressures ranging from 1 to 3 GPa for four crystallographic orientations and multiple specimen thicknesses. Simulation results generated using this model are shown to be in strong agreement with velocimetry measurements from the corresponding plate impact experiments. Finally, simulation results are used to motivate conclusions about the nature of dislocation-mediated plasticity in RDX.« less
Measuring strain and rotation fields at the dislocation core in graphene
NASA Astrophysics Data System (ADS)
Bonilla, L. L.; Carpio, A.; Gong, C.; Warner, J. H.
2015-10-01
Strain fields, dislocations, and defects may be used to control electronic properties of graphene. By using advanced imaging techniques with high-resolution transmission electron microscopes, we have measured the strain and rotation fields about dislocations in monolayer graphene with single-atom sensitivity. These fields differ qualitatively from those given by conventional linear elasticity. However, atom positions calculated from two-dimensional (2D) discrete elasticity and three-dimensional discrete periodized Föppl-von Kármán equations (dpFvKEs) yield fields close to experiments when determined by geometric phase analysis. 2D theories produce symmetric fields whereas those from experiments exhibit asymmetries. Numerical solutions of dpFvKEs provide strain and rotation fields of dislocation dipoles and pairs that also exhibit asymmetries and, compared with experiments, may yield information on out-of-plane displacements of atoms. While discrete theories need to be solved numerically, analytical formulas for strains and rotation about dislocations can be obtained from 2D Mindlin's hyperstress theory. These formulas are very useful for fitting experimental data and provide a template to ascertain the importance of nonlinear and nonplanar effects. Measuring the parameters of this theory, we find two characteristic lengths between three and four times the lattice spacings that control dilatation and rotation about a dislocation. At larger distances from the dislocation core, the elastic fields decay to those of conventional elasticity. Our results may be relevant for strain engineering in graphene and other 2D materials of current interest.
Crustal deformation along the San Andreas, California
NASA Technical Reports Server (NTRS)
Li, Victor C.
1992-01-01
The goal is to achieve a better understanding of the regional and local deformation and crustal straining processes in western North America, particularly the effects of the San Andreas and nearby faults on the spatial and temporal crustal deformation behavior. Construction of theoretical models based on the mechanics of coupled elastic plate, viscoelastic foundation and large scale crack mechanics provide a rational basis for the interpretation of seismic and aseismic anomalies and expedite efforts in forecasting the stability of plate boundary deformation. Special focus is placed on the three dimensional time dependent surface deformation due to localized slippage in a elastic layer coupled to a visco-elastic substrate. The numerical analysis is based on a 3-D boundary element technique. Extension to visco-elastic coupling demands the derivation of 3-D time dependent Green's function. This method was applied to analyze the viscoelastic surface displacements due to a dislocated embedded patch. Surface uplift as a function of time and position are obtained. Comparisons between surface uplift for long and short dislocated patches are made.
Fast algorithms for evaluating the stress field of dislocation lines in anisotropic elastic media
NASA Astrophysics Data System (ADS)
Chen, C.; Aubry, S.; Oppelstrup, T.; Arsenlis, A.; Darve, E.
2018-06-01
In dislocation dynamics (DD) simulations, the most computationally intensive step is the evaluation of the elastic interaction forces among dislocation ensembles. Because the pair-wise interaction between dislocations is long-range, this force calculation step can be significantly accelerated by the fast multipole method (FMM). We implemented and compared four different methods in isotropic and anisotropic elastic media: one based on the Taylor series expansion (Taylor FMM), one based on the spherical harmonics expansion (Spherical FMM), one kernel-independent method based on the Chebyshev interpolation (Chebyshev FMM), and a new kernel-independent method that we call the Lagrange FMM. The Taylor FMM is an existing method, used in ParaDiS, one of the most popular DD simulation softwares. The Spherical FMM employs a more compact multipole representation than the Taylor FMM does and is thus more efficient. However, both the Taylor FMM and the Spherical FMM are difficult to derive in anisotropic elastic media because the interaction force is complex and has no closed analytical formula. The Chebyshev FMM requires only being able to evaluate the interaction between dislocations and thus can be applied easily in anisotropic elastic media. But it has a relatively large memory footprint, which limits its usage. The Lagrange FMM was designed to be a memory-efficient black-box method. Various numerical experiments are presented to demonstrate the convergence and the scalability of the four methods.
Ultrasonic influence on evolution of disordered dislocation structures
NASA Astrophysics Data System (ADS)
Bachurin, D. V.; Murzaev, R. T.; Nazarov, A. A.
2017-12-01
Evolution of disordered dislocation structures under ultrasonic influence is studied in a model two-dimensional grain within the discrete-dislocation approach. Non-equilibrium grain boundary state is mimicked by a mesodefect located at the corners of the grain, stress field of which is described by that of a wedge junction disclination quadrupole. Significant rearrangement related to gliding of lattice dislocations towards the grain boundaries is found, which results in a noticeable reduction of internal stress fields and cancel of disclination quadrupole. The process of dislocation structure evolution passes through two stages: rapid and slow. The main dislocation rearrangement occurs during the first stage. Reduction of internal stress fields is associated with the number of dislocations entered into the grain boundaries. The change of misorientation angle due to lattice dislocations absorbed by the grain boundaries is evaluated. Amplitude of ultrasonic treatment significantly influences the relaxation of dislocation structure. Preliminary elastic relaxation of dislocation structure does not affect substantially the results of the following ultrasonic treatment. Substantial grain size dependence of relaxation of disordered dislocation systems is found. Simulation results are consistent with experimental data.
Quantifying the errors due to the superposition of analytical deformation sources
NASA Astrophysics Data System (ADS)
Neuberg, J. W.; Pascal, K.
2012-04-01
The displacement field due to magma movement in the subsurface is often modelled using a Mogi point source or a dislocation Okada source embedded in a homogeneous elastic half-space. When the magmatic system cannot be modelled by a single source it is often represented by several sources, their respective deformation fields are superimposed. However, in such a case the assumption of homogeneity in the half-space is violated and the interaction between sources in an elastic medium is neglected. In this investigation we have quantified the effects of neglecting the interaction between sources on the surface deformation field. To do so, we calculated the vertical and horizontal displacements for models with adjacent sources and we tested them against the solutions of corresponding numerical 3D finite element models. We implemented several models combining spherical pressure sources and dislocation sources, varying the pressure or dislocation of the sources and their relative position. We also investigated three numerical methods to model a dike as a dislocation tensile source or as a pressurized tabular crack. We found that the discrepancies between simple superposition of the displacement field and a fully interacting numerical solution depend mostly on the source types and on their spacing. The errors induced when neglecting the source interaction are expected to vary greatly with the physical and geometrical parameters of the model. We demonstrated that for certain scenarios these discrepancies can be neglected (<5%) when the sources are separated by at least 4 radii for two combined Mogi sources and by at least 3 radii for juxtaposed Mogi and Okada sources
The core structure and recombination energy of a copper screw dislocation: a Peierls study
Szajewski, B. A.; Hunter, A.; Beyerlein, I. J.
2017-05-19
The recombination process of dislocations is central to cross-slip, and transmission through Σ3 grain boundaries among other fundamental plastic deformation processes. Despite its importance, a detailed mechanistic understanding remains lacking. In this paper, we apply a continuous dislocation model, inspired by Peierls and Nabarro, complete with an ab-initio computed -surface and continuous units of infinitesimal dislocation slip, towards computing the stress-dependent recombination path of both an isotropic and anisotropic Cu screw dislocation. Under no applied stress, our model reproduces the stacking fault width between Shockley partial dislocations as predicted by discrete linear elasticity. Upon application of a compressive Escaig stress,more » the two partial dislocations coalesce to a separation of ~|b|. Upon increased loading the edge components of each partial dislocation recede, leaving behind a spread Peierls screw dislocation, indicating the recombined state. We demonstrate that the critical stress required to achieve the recombined state is independent of the shear modulus. Rather the critical recombination stress depends on an energy difference between an unstable fault energy (γτ) and the intrinsic stacking fault energy (γτ-γisf). We report recombination energies of ΔW = 0.168 eV/Å and ΔW = 0.084 eV/Å, respectively, for the Cu screw dislocation within isotropic and anisotropic media. Finally, we develop an analytic model which provides insight into our simulation results which compare favourably with other (similar) models.« less
The core structure and recombination energy of a copper screw dislocation: a Peierls study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szajewski, B. A.; Hunter, A.; Beyerlein, I. J.
The recombination process of dislocations is central to cross-slip, and transmission through Σ3 grain boundaries among other fundamental plastic deformation processes. Despite its importance, a detailed mechanistic understanding remains lacking. In this paper, we apply a continuous dislocation model, inspired by Peierls and Nabarro, complete with an ab-initio computed -surface and continuous units of infinitesimal dislocation slip, towards computing the stress-dependent recombination path of both an isotropic and anisotropic Cu screw dislocation. Under no applied stress, our model reproduces the stacking fault width between Shockley partial dislocations as predicted by discrete linear elasticity. Upon application of a compressive Escaig stress,more » the two partial dislocations coalesce to a separation of ~|b|. Upon increased loading the edge components of each partial dislocation recede, leaving behind a spread Peierls screw dislocation, indicating the recombined state. We demonstrate that the critical stress required to achieve the recombined state is independent of the shear modulus. Rather the critical recombination stress depends on an energy difference between an unstable fault energy (γτ) and the intrinsic stacking fault energy (γτ-γisf). We report recombination energies of ΔW = 0.168 eV/Å and ΔW = 0.084 eV/Å, respectively, for the Cu screw dislocation within isotropic and anisotropic media. Finally, we develop an analytic model which provides insight into our simulation results which compare favourably with other (similar) models.« less
NASA Astrophysics Data System (ADS)
Vattré, A.; Pan, E.
2018-07-01
Lattice dislocation interactions with semicoherent interfaces are investigated by means of anisotropic field solutions in metallic homo- and hetero-structures. The present framework is based on the mathematically elegant and computationally powerful Stroh formalism, combining further with the Fourier integral and series transforms, which cover different shapes and dimensions of various extrinsic and intrinsic dislocations. Two-dimensional equi-spaced arrays of straight lattice dislocations and finite arrangements of piled-up dislocations as well as any polygonal and elliptical dislocation loops in three dimensions are considered using a superposition scheme. Self, image and Peach-Koehler forces are derived to compute the equilibrium dislocation positions in pile-ups, including the internal structures and energetics of the interfacial dislocation networks. For illustration, the effects due to the elastic and misfit mismatches are discussed in the pure misfit Au/Cu and heterophase Cu/Nb systems, while discrepancies resulting from the approximation of isotropic elasticity are clearly exhibited. These numerical examples not only feature and enhance the existing works in anisotropic bimaterials, but also promote a novel opportunity of analyzing the equilibrium shapes of planar glide dislocation loops at nanoscale.
Influence of pore pressure change on coseismic volumetric strain
Wang, Chi-Yuen; Barbour, Andrew J.
2017-01-01
Coseismic strain is fundamentally important for understanding crustal response to changes of stress after earthquakes. The elastic dislocation model has been widely applied to interpreting observed shear deformation caused by earthquakes. The application of the same theory to interpreting volumetric strain, however, has met with difficulty, especially in the far field of earthquakes. Predicted volumetric strain with dislocation model often differs substantially, and sometimes of opposite signs, from observed coseismic volumetric strains. The disagreement suggests that some processes unaccounted for by the dislocation model may occur during earthquakes. Several hypotheses have been suggested, but none have been tested quantitatively. In this paper we first examine published data to highlight the difference between the measured and calculated static coseismic volumetric strains; we then use these data to provide quantitative test of the model that the disagreement may be explained by the change of pore pressure in the shallow crust. The test allows us to conclude that coseismic change of pore pressure may be an important mechanism for coseismic crustal strain and, in the far field, may even be the dominant mechanism. Thus in the interpretation of observed coseismic crustal strain, one needs to account not only for the elastic strain due to fault rupture but also for the strain due to coseismic change of pore pressure.
Scale transition using dislocation dynamics and the nudged elastic band method
Sobie, Cameron; Capolungo, Laurent; McDowell, David L.; ...
2017-08-01
Microstructural features such as precipitates or irradiation-induced defects impede dislocation motion and directly influence macroscopic mechanical properties such as yield point and ductility. In dislocation-defect interactions both atomic scale and long range elastic interactions are involved. Thermally assisted dislocation bypass of obstacles occurs when thermal fluctuations and driving stresses contribute sufficient energy to overcome the energy barrier. The Nudged Elastic Band (NEB) method is typically used in the context of atomistic simulations to quantify the activation barriers for a given reaction. In this work, the NEB method is generalized to coarse-grain continuum representations of evolving microstructure states beyond the discretemore » particle descriptions of first principles and atomistics. The method we employed enables the calculation of activation energies for a View the MathML source glide dislocation bypassing a [001] self-interstitial atom loop of size in the range of 4-10 nm with a spacing larger than 150nm in α-iron for a range of applied stresses and interaction geometries. This study is complemented by a comparison between atomistic and continuum based prediction of barriers.« less
Nonlocal elasticity tensors in dislocation and disclination cores
Taupin, V.; Gbemou, K.; Fressengeas, C.; ...
2017-01-07
We introduced nonlocal elastic constitutive laws for crystals containing defects such as dislocations and disclinations. Additionally, the pointwise elastic moduli tensors adequately reflect the elastic response of defect-free regions by relating stresses to strains and couple-stresses to curvatures, elastic cross-moduli tensors relating strains to couple-stresses and curvatures to stresses within convolution integrals are derived from a nonlocal analysis of strains and curvatures in the defects cores. Sufficient conditions are derived for positive-definiteness of the resulting free energy, and stability of elastic solutions is ensured. The elastic stress/couple stress fields associated with prescribed dislocation/disclination density distributions and solving the momentum andmore » moment of momentum balance equations in periodic media are determined by using a Fast Fourier Transform spectral method. Here, the convoluted cross-moduli bring the following results: (i) Nonlocal stresses and couple stresses oppose their local counterparts in the defects core regions, playing the role of restoring forces and possibly ensuring spatio-temporal stability of the simulated defects, (ii) The couple stress fields are strongly affected by nonlocality. Such effects favor the stability of the simulated grain boundaries and allow investigating their elastic interactions with extrinsic defects, (iii) Driving forces inducing grain growth or refinement derive from the self-stress and couple stress fields of grain boundaries in nanocrystalline configurations.« less
A continuum theory of edge dislocations
NASA Astrophysics Data System (ADS)
Berdichevsky, V. L.
2017-09-01
Continuum theory of dislocation aims to describe the behavior of large ensembles of dislocations. This task is far from completion, and, most likely, does not have a "universal solution", which is applicable to any dislocation ensemble. In this regards it is important to have guiding lines set by benchmark cases, where the transition from a discrete set of dislocations to a continuum description is made rigorously. Two such cases have been considered recently: equilibrium of dislocation walls and screw dislocations in beams. In this paper one more case is studied, equilibrium of a large set of 2D edge dislocations placed randomly in a 2D bounded region. The major characteristic of interest is energy of dislocation ensemble, because it determines the structure of continuum equations. The homogenized energy functional is obtained for the periodic dislocation ensembles with a random contents of the periodic cell. Parameters of the periodic structure can change slowly on distances of order of the size of periodic cells. The energy functional is obtained by the variational-asymptotic method. Equilibrium positions are local minima of energy. It is confirmed the earlier assertion that energy density of the system is the sum of elastic energy of averaged elastic strains and microstructure energy, which is elastic energy of the neutralized dislocation system, i.e. the dislocation system placed in a constant dislocation density field making the averaged dislocation density zero. The computation of energy is reduced to solution of a variational cell problem. This problem is solved analytically. The solution is used to investigate stability of simple dislocation arrays, i.e. arrays with one dislocation in the periodic cell. The relations obtained yield two outcomes: First, there is a state parameter of the system, dislocation polarization; averaged stresses affect only dislocation polarization and cannot change other characteristics of the system. Second, the structure of dislocation phase space is strikingly simple. Dislocation phase space is split in a family of subspaces corresponding to constant values of dislocation polarizations; in each equipolarization subspace there are many local minima of energy; for zero external stresses the system is stuck in a local minimum of energy; for non-zero slowly changing external stress, dislocation polarization evolves, while the system moves over local energy minima of equipolarization subspaces. Such a simple picture of dislocation dynamics is due to the presence of two time scales, slow evolution of dislocation polarization and fast motion of the system over local minima of energy. The existence of two time scales is justified for a neutral system of edge dislocations.
Fundamental Studies of Strengthening Mechanisms in Metals Using Dislocation Dynamics
2006-03-26
to quantify the elastic fields of inclusion eigenstrain problems in 2D and 3D (Lerma et al. 2003). The inclusions can be of any shape or size and the... eigenstrains can be arbitrarily assigned, i.e. constant or non-constant within the inclusion. The method works well for material or field points...geometry and misfits. Recently, we have developed a new distributed-dislocation method for modeling eigenstrain problems such as gamma prime inclusions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Askari, Hesam; Zbib, Hussein M.; Sun, Xin
In this study, the strengthening effect of inclusions and precipitates in metals is investigated within a multiscale approach that utilizes models at various length scales, namely, Molecular Mechanics (MM), discrete Dislocation Dynamics (DD), and an Eigenstrain Inclusion Method (EIM). Particularly, precipitates are modeled as hardsoft particles whose stress fields interact with dislocations. The stress field resulting from the elastic mismatch between the particles and the matrix is accounted for through the EIM. While the MM method is employed for the purpose of developing rules for DD for short range interaction between a single dislocation and an inclusion, the DD methodmore » is used to predict the strength of the composite resulting from the interaction between ensembles of dislocations and particles. As an application to this method, the mechanical behavior of Advanced High Strength Steel (AHSS) is investigated and the results are then compared to the experimental data. The results show that the finely dispersive precipitates can strengthen the material by pinning the dislocations up to a certain shear stress and retarding the recovery, as well as annihilation of dislocations. The DD results show that strengthening due to nano sized particles is a function of the density and size of the precipitates. This size effect is then explained using a mechanistic model developed based on dislocation-particle interaction.« less
Enhancing elastic stress relaxation in SiGe/Si heterostructures by Si pillar necking
NASA Astrophysics Data System (ADS)
Isa, F.; Salvalaglio, M.; Arroyo Rojas Dasilva, Y.; Jung, A.; Isella, G.; Erni, R.; Timotijevic, B.; Niedermann, P.; Gröning, P.; Montalenti, F.; von Känel, H.
2016-10-01
We demonstrate that the elastic stress relaxation mechanism in micrometre-sized, highly mismatched heterostructures may be enhanced by employing patterned substrates in the form of necked pillars, resulting in a significant reduction of the dislocation density. Compositionally graded Si1-xGex crystals were grown by low energy plasma enhanced chemical vapour deposition, resulting in tens of micrometres tall, three-dimensional heterostructures. The patterned Si(001) substrates consist of micrometre-sized Si pillars either with the vertical {110} or isotropically under-etched sidewalls resulting in narrow necks. The structural properties of these heterostructures were investigated by defect etching and transmission electron microscopy. We show that the dislocation density, and hence the competition between elastic and plastic stress relaxation, is highly influenced by the shape of the substrate necks and their proximity to the mismatched epitaxial material. The SiGe dislocation density increases monotonically with the crystal width but is significantly reduced by the substrate under-etching. The drop in dislocation density is interpreted as a direct effect of the enhanced compliance of the under-etched Si pillars, as confirmed by the three-dimensional finite element method simulations of the elastic energy distribution.
NASA Astrophysics Data System (ADS)
Ait-Oubba, A.; Coupeau, C.; Durinck, J.; Talea, M.; Grilhé, J.
2018-06-01
In the framework of the continuum elastic theory, the equilibrium positions of Shockley partial dislocations have been determined as a function of their distance from the free surface. It is found that the dissociation width decreases with the decreasing depth, except for a depth range very close to the free surface for which the dissociation width is enlarged. A similar behaviour is also predicted when Shockley dislocation pairs are regularly arranged, whatever the wavelength. These results derived from the elastic theory are compared to STM observations of the reconstructed (1 1 1) surface in gold, which is usually described by a Shockley dislocations network.
Non-Singular Dislocation Elastic Fields and Linear Elastic Fracture Mechanics
NASA Astrophysics Data System (ADS)
Korsunsky, Alexander M.
2010-03-01
One of the hallmarks of the traditional linear elastic fracture mechanics (LEFM) is the presence of an (integrable) inverse square root singularity of strains and stresses in the vicinity of the crack tip. It is the presence of this singularity that necessitates the introduction of the concepts of stress intensity factor (and its critical value, the fracture toughness) and the energy release rate (and material toughness). This gives rise to the Griffith theory of strength that includes, apart from applied stresses, the considerations of defect size and geometry. A highly successful framework for the solution of crack problems, particularly in the two-dimensional case, due to Muskhelishvili (1953), Bilby and Eshelby (1968) and others, relies on the mathematical concept of dislocation. Special analytical and numerical methods of dealing with the characteristic 1/r (Cauchy) singularity occupy a prominent place within this theory. Recently, in a different context of dislocation dynamics simulations, Cai et al. (2006) proposed a novel means of removing the singularity associated with the dislocation core, by introducing a blunting radius parameter a into the expressions for elastic fields. Here, using the example of two-dimensional elasticity, we demonstrate how the adoption of the similar mathematically expedient tool leads naturally to a non-singular formulation of fracture mechanics problems. This opens an efficient means of treating a variety of crack problems.
Strengthening via deformation twinning in a nickel alloy
Shaw, Leon L.; Villegas, Juan; Huang, Jian-Yu; ...
2007-07-01
In this study, nanograins and nanotwins are produced in specimens using one processing technique to allow direct comparison in their nanohardnesses. It is shown that the hardness of nanotwins can be close to the lower end of the hardness of nanograins. The resistance of nanotwins to dislocation movement is explained based on elastic interactions between the incident 60° dislocation and the product dislocations. The latter includes one Shockley partial at the twin boundary and one 60° dislocation in the twinned region. The analysis indicates that a resolved shear stress of at least 1.24 GPa is required for a 60° dislocationmore » to pass across a twin boundary in the nickel alloy investigated. It is this high level of the required shear stress coupled with a limited number of dislocations that can be present between two adjacent twin boundaries that provides nanotwins with high resistance to dislocation movement. The model proposed is corroborated by the detailed analysis of high-resolution transmission electron microscopy.« less
NASA Astrophysics Data System (ADS)
Li, Nan-Lin; Wu, Wen-Ping; Nie, Kai
2018-05-01
The evolution of misfit dislocation network at γ /γ‧ phase interface and tensile mechanical properties of Ni-based single crystal superalloys at various temperatures and strain rates are studied by using molecular dynamics (MD) simulations. From the simulations, it is found that with the increase of loading, the dislocation network effectively inhibits dislocations emitted in the γ matrix cutting into the γ‧ phase and absorbs the matrix dislocations to strengthen itself which increases the stability of structure. Under the influence of the temperature, the initial mosaic structure of dislocation network gradually becomes irregular, and the initial misfit stress and the elastic modulus slowly decline as temperature increasing. On the other hand, with the increase of the strain rate, it almost has no effect on the elastic modulus and the way of evolution of dislocation network, but contributes to the increases of the yield stress and tensile strength. Moreover, tension-compression asymmetry of Ni-based single crystal superalloys is also presented based on MD simulations.
Structure, Energetics, and Dynamics of Screw Dislocations in Even n-Alkane Crystals.
Olson, Isabel A; Shtukenberg, Alexander G; Hakobyan, Gagik; Rohl, Andrew L; Raiteri, Paolo; Ward, Michael D; Kahr, Bart
2016-08-18
Spiral hillocks on n-alkane crystal surfaces were observed immediately after Frank recognized the importance of screw dislocations for crystal growth, yet their structures and energies in molecular crystals remain ill-defined. To illustrate the structural chemistry of screw dislocations that are responsible for plasticity in organic crystals and upon which the organic electronics and pharmaceutical industries depend, molecular dynamics was used to examine heterochiral dislocation pairs with Burgers vectors along [001] in n-hexane, n-octane, and n-decane crystals. The cores were anisotropic and elongated in the (110) slip plane, with significant local changes in molecular position, orientation, conformation, and energy. This detailed atomic level picture produced a distribution of strain consistent with linear elastic theory, giving confidence in the simulations. Dislocations with doubled Burgers vectors split into pairs with elementary displacements. These results suggest a pathway to understanding the mechanical properties and failure associated with elastic and plastic deformation in soft crystals.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paulauskas, Tadas; Buurma, Christopher; Colegrove, Eric
Dislocation cores have long dominated the electronic and optical behaviors of semiconductor devices and detailed atomic characterization is required to further explore their effects. Miniaturization of semiconductor devices to nanometre scale also puts emphasis on a material's mechanical properties to withstand failure due to processing or operational stresses. Sessile junctions of dislocations provide barriers to propagation of mobile dislocations and may lead to work-hardening. The sessile Lomer–Cottrell and Hirth lock dislocations, two stable lowest elastic energy stair-rods, are studied in this paper. More specifically, using atomic resolution high-angle annular dark-field imaging and atomic-column-resolved X-ray spectrum imaging in an aberration-corrected scanningmore » transmission electron microscope, dislocation core structures are examined in zinc-blende CdTe. A procedure is outlined for atomic scale analysis of dislocation junctions which allows determination of their identity with specially tailored Burgers circuits and also formation mechanisms of the polar core structures based on Thompson's tetrahedron adapted to reactions of polar dislocations as they appear in CdTe and other zinc-blende solids. Strain fields associated with the dislocations calculatedviageometric phase analysis are found to be diffuse and free of `hot spots' that reflect compact structures and low elastic energy of the pure-edge stair-rods.« less
Dislocation Mobility and Anomalous Shear Modulus Effect in ^4He Crystals
NASA Astrophysics Data System (ADS)
Malmi-Kakkada, Abdul N.; Valls, Oriol T.; Dasgupta, Chandan
2017-02-01
We calculate the dislocation glide mobility in solid ^4He within a model that assumes the existence of a superfluid field associated with dislocation lines. Prompted by the results of this mobility calculation, we study within this model the role that such a superfluid field may play in the motion of the dislocation line when a stress is applied to the crystal. To do this, we relate the damping of dislocation motion, calculated in the presence of the assumed superfluid field, to the shear modulus of the crystal. As the temperature increases, we find that a sharp drop in the shear modulus will occur at the temperature where the superfluid field disappears. We compare the drop in shear modulus of the crystal arising from the temperature dependence of the damping contribution due to the superfluid field, to the experimental observation of the same phenomena in solid ^4He and find quantitative agreement. Our results indicate that such a superfluid field plays an important role in dislocation pinning in a clean solid ^4He at low temperatures and in this regime may provide an alternative source for the unusual elastic phenomena observed in solid ^4He.
Zeng, Y.; Hunter, A.; Beyerlein, I. J.; ...
2015-09-14
In this study, we present a phase field dislocation dynamics formulation designed to treat a system comprised of two materials differing in moduli and lattice parameters that meet at a common interface. We apply the model to calculate the critical stress τ crit required to transmit a perfect dislocation across the bimaterial interface with a cube-on-cube orientation relationship. The calculation of τ crit accounts for the effects of: 1) the lattice mismatch (misfit or coherency stresses), 2) the elastic moduli mismatch (Koehler forces or image stresses), and 3) the formation of the residual dislocation in the interface. Our results showmore » that the value of τ crit associated with the transmission of a dislocation from material 1 to material 2 is not the same as that from material 2 to material 1. Dislocation transmission from the material with the lower shear modulus and larger lattice parameter tends to be easier than the reverse and this apparent asymmetry in τ crit generally increases with increases in either lattice or moduli mismatch or both. In efforts to clarify the roles of lattice and moduli mismatch, we construct an analytical model for τcrit based on the formation energy of the residual dislocation. We show that path dependence in this energetic barrier can explain the asymmetry seen in the calculated τ crit values.« less
NASA Astrophysics Data System (ADS)
Gu, Yejun; El-Awady, Jaafar A.
2018-03-01
We present a new framework to quantify the effect of hydrogen on dislocations using large scale three-dimensional (3D) discrete dislocation dynamics (DDD) simulations. In this model, the first order elastic interaction energy associated with the hydrogen-induced volume change is accounted for. The three-dimensional stress tensor induced by hydrogen concentration, which is in equilibrium with respect to the dislocation stress field, is derived using the Eshelby inclusion model, while the hydrogen bulk diffusion is treated as a continuum process. This newly developed framework is utilized to quantify the effect of different hydrogen concentrations on the dynamics of a glide dislocation in the absence of an applied stress field as well as on the spacing between dislocations in an array of parallel edge dislocations. A shielding effect is observed for materials having a large hydrogen diffusion coefficient, with the shield effect leading to the homogenization of the shrinkage process leading to the glide loop maintaining its circular shape, as well as resulting in a decrease in dislocation separation distances in the array of parallel edge dislocations. On the other hand, for materials having a small hydrogen diffusion coefficient, the high hydrogen concentrations around the edge characters of the dislocations act to pin them. Higher stresses are required to be able to unpin the dislocations from the hydrogen clouds surrounding them. Finally, this new framework can open the door for further large scale studies on the effect of hydrogen on the different aspects of dislocation-mediated plasticity in metals. With minor modifications of the current formulations, the framework can also be extended to account for general inclusion-induced stress field in discrete dislocation dynamics simulations.
NASA Astrophysics Data System (ADS)
Rezaei Mianroodi, Jaber; Svendsen, Bob
2015-04-01
The purpose of the current work is the development of a phase field model for dislocation dissociation, slip and stacking fault formation in single crystals amenable to determination via atomistic or ab initio methods in the spirit of computational material design. The current approach is based in particular on periodic microelasticity (Wang and Jin, 2001; Bulatov and Cai, 2006; Wang and Li, 2010) to model the strongly non-local elastic interaction of dislocation lines via their (residual) strain fields. These strain fields depend in turn on phase fields which are used to parameterize the energy stored in dislocation lines and stacking faults. This energy storage is modeled here with the help of the "interface" energy concept and model of Cahn and Hilliard (1958) (see also Allen and Cahn, 1979; Wang and Li, 2010). In particular, the "homogeneous" part of this energy is related to the "rigid" (i.e., purely translational) part of the displacement of atoms across the slip plane, while the "gradient" part accounts for energy storage in those regions near the slip plane where atomic displacements deviate from being rigid, e.g., in the dislocation core. Via the attendant global energy scaling, the interface energy model facilitates an atomistic determination of the entire phase field energy as an optimal approximation of the (exact) atomistic energy; no adjustable parameters remain. For simplicity, an interatomic potential and molecular statics are employed for this purpose here; alternatively, ab initio (i.e., DFT-based) methods can be used. To illustrate the current approach, it is applied to determine the phase field free energy for fcc aluminum and copper. The identified models are then applied to modeling of dislocation dissociation, stacking fault formation, glide and dislocation reactions in these materials. As well, the tensile loading of a dislocation loop is considered. In the process, the current thermodynamic picture is compared with the classical mechanical one as based on the Peach-Köhler force.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hansen, Benjamin L; Bronkhorst, Curt; Beyerlein, Irene
The goal of this work is to formulate a constitutive model for the deformation of metals over a wide range of strain rates. Damage and failure of materials frequently occurs at a variety of deformation rates within the same sample. The present state of the art in single crystal constitutive models relies on thermally-activated models which are believed to become less reliable for problems exceeding strain rates of 10{sup 4} s{sup -1}. This talk presents work in which we extend the applicability of the single crystal model to the strain rate region where dislocation drag is believed to dominate. Themore » elastic model includes effects from volumetric change and pressure sensitive moduli. The plastic model transitions from the low-rate thermally-activated regime to the high-rate drag dominated regime. The direct use of dislocation density as a state parameter gives a measurable physical mechanism to strain hardening. Dislocation densities are separated according to type and given a systematic set of interactions rates adaptable by type. The form of the constitutive model is motivated by previously published dislocation dynamics work which articulated important behaviors unique to high-rate response in fcc systems. The proposed material model incorporates thermal coupling. The hardening model tracks the varying dislocation population with respect to each slip plane and computes the slip resistance based on those values. Comparisons can be made between the responses of single crystals and polycrystals at a variety of strain rates. The material model is fit to copper.« less
NASA Astrophysics Data System (ADS)
Huang, Minsheng; Li, Zhenhuan
2015-12-01
To investigate the mechanical behavior of the microlayered metallic thin films (MMMFs) at elevated temperature, an enhanced discrete-continuous model (DCM), which couples rather than superposes the two-dimensional climb/glide-enabled discrete dislocation dynamics (2D-DDD) with the linearly elastic finite element method (FEM), is developed in this study. In the present coupling scheme, two especial treatments are made. One is to solve how the plastic strain captured by the DDD module is transferred properly to the FEM module as an eigen-strain; the other is to answer how the stress field computationally obtained by the FEM module is transferred accurately to the DDD module to drive those discrete dislocations moving correctly. With these two especial treatments, the interactions between adjacent dislocations and between dislocation pile-ups and inter-phase boundaries (IBs), which are crucial to the strengthening effect in MMMFs, are carefully taken into account. After verified by comparing the computationally predicted results with the theoretical solutions for a dislocation residing in a homogeneous material and nearby a bi-material interface, this 2D-DDD/FEM coupling scheme is used to model the tensile mechanical behaviors of MMMFs at elevated temperature. The strengthening mechanism of MMMFs and the layer thickness effect are studied in detail, with special attentions to the influence of dislocation climb on them.
NASA Technical Reports Server (NTRS)
Cohen, S. C.
1979-01-01
A model of viscoelastic deformations associated with earthquakes is presented. A strike-slip fault is represented by a rectangular dislocation in a viscoelastic layer (lithosphere) lying over a viscoelastic half-space (asthenosphere). Deformations occur on three time scales. The initial response is governed by the instantaneous elastic properties of the earth. A slower response is associated with viscoelastic relaxation of the lithosphere and a yet slower response is due to viscoelastic relaxation of the asthenosphere. The major conceptual contribution is the inclusion of lithospheric viscoelastic properties into a dislocation model of earthquake related deformations and stresses. Numerical calculations using typical fault parameters reveal that the postseismic displacements and strains are small compared to the coseismic ones near the fault, but become significant further away. Moreover, the directional sense of the deformations attributable to the elastic response, the lithospheric viscoelastic softening, and the asthenospheric viscoelastic flow may differ and depend on location and model details. The results and theoretical arguments suggest that the stress changes accompanying lithospheric relaxation may also be in a different sense than and be larger than the strain changes.
Local Variability of the Peierls Barrier of Screw Dislocations in Ta-10W.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foiles, Stephen M.
2017-10-01
It is well know that the addition of substitutional elements changes the mechanical behavior of metals, a effect referred to solid solution hardening. For body-centered-cubic (BCC) metals, screw dislocation play a key role in the mechanical properties. Here the detailed modification of the Peierls barrier for screw dislocation motion in Ta with W substitutional atoms is computing using density functional theory (DFT). A reduced order model (ROM) of the influence of W substitution on the Peierls barrier is developed. The mean field change in the Peierls barrier for a Ta10W alloy is determined and shown to be larger than anticipatedmore » based on simple elasticity considerations. The ROM could be used in future calculations to determine the local variability of the Peierls barrier and the resultant influence on the motion of screw dislocation in this alloy.« less
Te homogeneous precipitation in Ge dislocation loop vicinity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perrin Toinin, J.; Portavoce, A., E-mail: alain.portavoce@im2np.fr; Texier, M.
2016-06-06
High resolution microscopies were used to study the interactions of Te atoms with Ge dislocation loops, after a standard n-type doping process in Ge. Te atoms neither segregate nor precipitate on dislocation loops, but form Te-Ge clusters at the same depth as dislocation loops, in contradiction with usual dopant behavior and thermodynamic expectations. Atomistic kinetic Monte Carlo simulations show that Te atoms are repulsed from dislocation loops due to elastic interactions, promoting homogeneous Te-Ge nucleation between dislocation loops. This phenomenon is enhanced by coulombic interactions between activated Te{sup 2+} or Te{sup 1+} ions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolluri, Kedarnath; Martinez Saez, Enrique; Uberuaga, Blas Pedro
Interfaces, grain boundaries, and dislocations are known to have significant impact on the transport properties of materials. Even so, it is still not clear how the structure of interfaces influences the mobility and concentration of carriers that are responsible for transport. Using low angle twist grain boundaries in MgO as a model system, we examine the structural and kinetic properties of vacancies. These boundaries are characterized by a network of screw dislocations. Vacancies of both types, Mg and O, are strongly attracted to the dislocation network, residing preferentially at the misfit dislocation intersections (MDIs). However, the vacancies can lower theirmore » energy by splitting into two parts, which then repel each other along the dislocation line between two MDIs, further lowering their energy. This dissociated structure has important consequences for transport, as the free energy of the dissociated vacancies decreases with decreasing twist angle, leading to an increase in the net migration barrier for diffusion as revealed by molecular dynamics simulations. Similar behavior is observed in BaO and NaCl, highlighting the generality of the behavior. Finally, we analyze the structure of the dissociated vacancies as a pair of jogs on the dislocation and construct a model containing electrostatic and elastic contributions that qualitatively describe the energetics of the dissociated vacancy. Our results represent the first validation of a mechanism for vacancy dissociation on screw dislocations in ionic materials first discussed by Thomson and Balluffi in 1962.« less
Kolluri, Kedarnath; Martinez Saez, Enrique; Uberuaga, Blas Pedro
2018-03-05
Interfaces, grain boundaries, and dislocations are known to have significant impact on the transport properties of materials. Even so, it is still not clear how the structure of interfaces influences the mobility and concentration of carriers that are responsible for transport. Using low angle twist grain boundaries in MgO as a model system, we examine the structural and kinetic properties of vacancies. These boundaries are characterized by a network of screw dislocations. Vacancies of both types, Mg and O, are strongly attracted to the dislocation network, residing preferentially at the misfit dislocation intersections (MDIs). However, the vacancies can lower theirmore » energy by splitting into two parts, which then repel each other along the dislocation line between two MDIs, further lowering their energy. This dissociated structure has important consequences for transport, as the free energy of the dissociated vacancies decreases with decreasing twist angle, leading to an increase in the net migration barrier for diffusion as revealed by molecular dynamics simulations. Similar behavior is observed in BaO and NaCl, highlighting the generality of the behavior. Finally, we analyze the structure of the dissociated vacancies as a pair of jogs on the dislocation and construct a model containing electrostatic and elastic contributions that qualitatively describe the energetics of the dissociated vacancy. Our results represent the first validation of a mechanism for vacancy dissociation on screw dislocations in ionic materials first discussed by Thomson and Balluffi in 1962.« less
On low temperature glide of dissociated <1 1 0> dislocations in strontium titanate
NASA Astrophysics Data System (ADS)
Ritterbex, Sebastian; Hirel, Pierre; Carrez, Philippe
2018-05-01
An elastic interaction model is presented to quantify low temperature plasticity of SrTiO3 via glide of dissociated <1 1 0>{1 1 0} screw dislocations. Because <1 1 0> dislocations are dissociated, their glide, controlled by the kink-pair mechanism at T < 1050 K, involves the formation of kink-pairs on partial dislocations, either simultaneously or sequentially. Our model yields results in good quantitative agreement with the observed non-monotonic mechanical behaviour of SrTiO3. This agreement allows to explain the experimental results in terms of a (progressive) change in <1 1 0>{1 1 0} glide mechanism, from simultaneous nucleation of two kink-pairs along both partials at low stress, towards nucleation of single kink-pairs on individual partials if resolved shear stress exceeds a critical value of 95 MPa. High resolved shear stress allows thus for the activation of extra nucleation mechanisms on dissociated dislocations impossible to occur under the sole action of thermal activation. We suggest that stress condition in conjunction with core dissociation is key to the origin of non-monotonic plastic behaviour of SrTiO3 at low temperatures.
Metal nanoplates: Smaller is weaker due to failure by elastic instability
NASA Astrophysics Data System (ADS)
Ho, Duc Tam; Kwon, Soon-Yong; Park, Harold S.; Kim, Sung Youb
2017-11-01
Under mechanical loading, crystalline solids deform elastically, and subsequently yield and fail via plastic deformation. Thus crystalline materials experience two mechanical regimes: elasticity and plasticity. Here, we provide numerical and theoretical evidence to show that metal nanoplates exhibit an intermediate mechanical regime that occurs between elasticity and plasticity, which we call the elastic instability regime. The elastic instability regime begins with a decrease in stress, during which the nanoplates fail via global, and not local, deformation mechanisms that are distinctly different from traditional dislocation-mediated plasticity. Because the nanoplates fail via elastic instability, the governing strength criterion is the ideal strength, rather than the yield strength, and as a result, we observe a unique "smaller is weaker" trend. We develop a simple surface-stress-based analytic model to predict the ideal strength of the metal nanoplates, which accurately reproduces the smaller is weaker behavior observed in the atomistic simulations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Tianyi; Tan, Lizhen; Lu, Zizhe
Instrumented nanoindentation was used in this paper to investigate the hardness, elastic modulus, and creep behavior of an austenitic Fe-20Cr-25Ni model alloy at room temperature, with the indented grain orientation being the variant. The samples indented close to the {111} surfaces exhibited the highest hardness and modulus. However, nanoindentation creep tests showed the greatest tendency for creep in the {111} indented samples, compared with the samples indented close to the {001} and {101} surfaces. Scanning electron microscopy and cross-sectional transmission electron microscopy revealed slip bands and dislocations in all samples. The slip band patterns on the indented surfaces were influencedmore » by the grain orientations. Deformation twinning was observed only under the {001} indented surfaces. Finally, microstructural analysis and molecular dynamics modeling correlated the anisotropic nanoindentation-creep behavior with the different dislocation substructures formed during indentation, which resulted from the dislocation reactions of certain active slip systems that are determined by the indented grain orientations.« less
Earthquake-origin expansion of the Earth inferred from a spherical-Earth elastic dislocation theory
NASA Astrophysics Data System (ADS)
Xu, Changyi; Sun, Wenke
2014-12-01
In this paper, we propose an approach to compute the coseismic Earth's volume change based on a spherical-Earth elastic dislocation theory. We present a general expression of the Earth's volume change for three typical dislocations: the shear, tensile and explosion sources. We conduct a case study for the 2004 Sumatra earthquake (Mw9.3), the 2010 Chile earthquake (Mw8.8), the 2011 Tohoku-Oki earthquake (Mw9.0) and the 2013 Okhotsk Sea earthquake (Mw8.3). The results show that mega-thrust earthquakes make the Earth expand and earthquakes along a normal fault make the Earth contract. We compare the volume changes computed for finite fault models and a point source of the 2011 Tohoku-Oki earthquake (Mw9.0). The big difference of the results indicates that the coseismic changes in the Earth's volume (or the mean radius) are strongly dependent on the earthquakes' focal mechanism, especially the depth and the dip angle. Then we estimate the cumulative volume changes by historical earthquakes (Mw ≥ 7.0) since 1960, and obtain an Earth mean radius expanding rate about 0.011 mm yr-1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, Yanfei; Larson, Ben C.
There are large classes of materials problems that involve the solutions of stress, displacement, and strain energy of dislocation loops in elastically anisotropic solids, including increasingly detailed investigations of the generation and evolution of irradiation induced defect clusters ranging in sizes from the micro- to meso-scopic length scales. Based on a two-dimensional Fourier transform and Stroh formalism that are ideal for homogeneous and layered anisotropic solids, we have developed robust and computationally efficient methods to calculate the displacement fields for circular and polygonal dislocation loops. Using the homogeneous nature of the Green tensor of order -1, we have shown thatmore » the displacement and stress fields of dislocation loops can be obtained by numerical quadrature of a line integral. In addition, it is shown that the sextuple integrals associated with the strain energy of loops can be represented by the product of a pre-factor containing elastic anisotropy effects and a universal term that is singular and equal to that for elastic isotropic case. Furthermore, we have found that the self-energy pre-factor of prismatic loops is identical to the effective modulus of normal contact, and the pre-factor of shear loops differs from the effective indentation modulus in shear by only a few percent. These results provide a convenient method for examining dislocation reaction energetic and efficient procedures for numerical computation of local displacements and stresses of dislocation loops, both of which play integral roles in quantitative defect analyses within combined experimental–theoretical investigations.« less
Gao, Yanfei; Larson, Ben C.
2015-06-19
There are large classes of materials problems that involve the solutions of stress, displacement, and strain energy of dislocation loops in elastically anisotropic solids, including increasingly detailed investigations of the generation and evolution of irradiation induced defect clusters ranging in sizes from the micro- to meso-scopic length scales. Based on a two-dimensional Fourier transform and Stroh formalism that are ideal for homogeneous and layered anisotropic solids, we have developed robust and computationally efficient methods to calculate the displacement fields for circular and polygonal dislocation loops. Using the homogeneous nature of the Green tensor of order -1, we have shown thatmore » the displacement and stress fields of dislocation loops can be obtained by numerical quadrature of a line integral. In addition, it is shown that the sextuple integrals associated with the strain energy of loops can be represented by the product of a pre-factor containing elastic anisotropy effects and a universal term that is singular and equal to that for elastic isotropic case. Furthermore, we have found that the self-energy pre-factor of prismatic loops is identical to the effective modulus of normal contact, and the pre-factor of shear loops differs from the effective indentation modulus in shear by only a few percent. These results provide a convenient method for examining dislocation reaction energetic and efficient procedures for numerical computation of local displacements and stresses of dislocation loops, both of which play integral roles in quantitative defect analyses within combined experimental–theoretical investigations.« less
The effect of grain orientation on nanoindentation behavior of model austenitic alloy Fe-20Cr-25Ni
Chen, Tianyi; Tan, Lizhen; Lu, Zizhe; ...
2017-07-26
Instrumented nanoindentation was used in this paper to investigate the hardness, elastic modulus, and creep behavior of an austenitic Fe-20Cr-25Ni model alloy at room temperature, with the indented grain orientation being the variant. The samples indented close to the {111} surfaces exhibited the highest hardness and modulus. However, nanoindentation creep tests showed the greatest tendency for creep in the {111} indented samples, compared with the samples indented close to the {001} and {101} surfaces. Scanning electron microscopy and cross-sectional transmission electron microscopy revealed slip bands and dislocations in all samples. The slip band patterns on the indented surfaces were influencedmore » by the grain orientations. Deformation twinning was observed only under the {001} indented surfaces. Finally, microstructural analysis and molecular dynamics modeling correlated the anisotropic nanoindentation-creep behavior with the different dislocation substructures formed during indentation, which resulted from the dislocation reactions of certain active slip systems that are determined by the indented grain orientations.« less
Magnesium Vacancy Segregation and Fast Pipe Diffusion for the ½<110>{110} Edge Dislocation in MgO
NASA Astrophysics Data System (ADS)
Walker, A. M.; Zhang, F.; Wright, K.; Gale, J. D.
2009-12-01
The movement of point defects in minerals plays a key role in determining their rheological properties, both by permitting diffusional creep and by allowing recovery by dislocation climb. Point defect diffusion can also control the kinetics of phase transitions and grain growth, and can determine the rate of chemical equilibration between phases. Because of this, and the difficulties associated with experimental studies of diffusion, the simulation of point defect formation and migration has been a subject of considerable interest in computational mineral physics. So far, studies have concentrated on point defects moving through otherwise perfect crystals. In this work we examine the behavior of magnesium vacancies close to the core of an edge dislocation in MgO and find that the dislocation dramatically changes the behavior of the point defect. An atomic scale model of the ½<110>{110} edge dislocation in MgO was constructed by applying the anisotropic linear elastic displacement field to the crystal structure and subsequently minimizing the energy of the crystal close to the dislocation core using a parameterized potential model. This process yielded the structure of an isolated edge dislocation in an otherwise perfect crystal. The energy cost associated with introducing magnesium vacancies around the dislocation was then mapped and compared to the formation energy of an isolated magnesium vacancy in bulk MgO. We find that the formation energy of magnesium vacancies around the dislocation mirrors the elastic strain field. Above the dislocation line σxx and σyy are negative and the strain field is compressional. Atoms are squeezed together to make room for the extra half plane effectively increasing the pressure in this region. Below the dislocation line σxx and σyy are positive and the strain field is dilatational. Planes of atoms are pulled apart to avoid a discontinuity across the glide plane and the effective pressure is decreased. In the region with a compressional strain field the vacancies become less stable than those in perfect MgO. In contrast, the region with a dilatational strain field hosts vacancies which are stabilized compared to the perfect crystal. This is in agreement with the previously observed tendency for increasing pressure to decrease the stability of vacancies in MgO. The most stable position for a magnesium vacancy was found to be 1.7 eV more stable than the vacancy in the bulk crystal, suggesting that vacancies will strongly partition to dislocations in MgO. Finally, the energy profile traced out by a vacancy moving through the bulk crystal was compared with that experienced by a vacancy moving along the dislocation core. A low energy pathway for vacancy migration along the dislocation line was found with a migration energy of 1.6 eV compared with a migration energy in the perfect crystal of 1.9 eV. This shows that vacancies segregated to the dislocation line will be significantly more mobile than vacancies in the perfect crystal. Dislocations will act as pipes, allowing material to be rapidly transported through crystals of MgO.
McHugh, Stuart
1976-01-01
The material in this report can be grouped into two categories: 1) programs that compute tilts produced by a vertically oriented expanding rectangular dislocation loop in an elastic or viscoelastic material and 2) programs that compute the shear stresses, strains, and shear displacements in a three-phase half-space (i.e. a half-space containing a vertical slab). Each section describes the relevant theory, and provides a detailed guide to the operation of the programs. A series of examples is provided at the end of each section.
Modeling collective behavior of dislocations in crystalline materials
NASA Astrophysics Data System (ADS)
Varadhan, Satya N.
Elastic interaction of dislocations leads to collective behavior and determines plastic response at the mesoscale. Notable characteristics of mesoscale plasticity include the formation of dislocation patterns, propagative instability phenomena due to strain aging such as the Luders and Portevin-Le Chatelier effects, and size-dependence of low stress. This work presents a unified approach to modeling collective behavior based on mesoscale field dislocation mechanics and crystal plasticity, using constitutive models with physical basis. Successful application is made to: compression of a bicrystal, where "smaller is stronger"---the flow stress increases as the specimen size is reduced; torsional creep of ice single crystals, where the plastic strain rate increases with time under constant applied torque; strain aging in a single crystal alloy, where the transition from homogeneous deformation to intermittent bands to continuous band is captured as the applied deformation rate is increased. A part of this work deals with the kinematics of dislocation density evolution. An explicit Galerkin/least-squares formulation is introduced for the quasilinear evolution equation, which leads to a symmetric and well-conditioned system of equations with constant coefficients, making it attractive for large-scale problems. It is shown that the evolution equation simplifies to the Hamilton-Jacobi equations governing geometric optics and level set methods in the following physical contexts: annihilation of dislocations, expansion of a polygonal dislocation loop and operation of a Frank-Read source. The weak solutions to these equations are not unique, and the numerical method is able to capture solutions corresponding to shock as well as expansion fans.
Levine, Lyle E.; Okoro, Chukwudi A.; Xu, Ruqing
2015-09-30
We report non-destructive measurements of the full elastic strain and stress tensors from individual dislocation cells distributed along the full extent of a 50 mm-long polycrystalline copper via in Si is reported. Determining all of the components of these tensors from sub-micrometre regions within deformed metals presents considerable challenges. The primary issues are ensuring that different diffraction peaks originate from the same sample volume and that accurate determination is made of the peak positions from plastically deformed samples. For these measurements, three widely separated reflections were examined from selected, individual grains along the via. The lattice spacings and peak positionsmore » were measured for multiple dislocation cell interiors within each grain and the cell-interior peaks were sorted out using the measured included angles. A comprehensive uncertainty analysis using a Monte Carlo uncertainty algorithm provided uncertainties for the elastic strain tensor and stress tensor components.« less
Coseismic Gravity and Displacement Signatures Induced by the 2013 Okhotsk Mw8.3 Earthquake.
Zhang, Guoqing; Shen, Wenbin; Xu, Changyi; Zhu, Yiqing
2016-09-01
In this study, Gravity Recovery and Climate Experiment (GRACE) RL05 data from January 2003 to October 2014 were used to extract the coseismic gravity changes induced by the 24 May 2013 Okhotsk Mw8.3 deep-focus earthquake using the difference and least square fitting methods. The gravity changes obtained from GRACE data agreed well with those from dislocation theory in both magnitude and spatial pattern. Positive and negative gravity changes appeared on both sides of the epicenter. The positive signature appeared on the western side, and the peak value was approximately 0.4 microgal (1 microgal = 10(-8) m/s²), whereas on the eastern side, the gravity signature was negative, and the peak value was approximately -1.1 microgal. It demonstrates that deep-focus earthquakes Mw ≤ 8.5 are detectable by GRACE observations. Moreover, the coseismic displacements of 20 Global Positioning System (GPS) stations on the Earth's surface were simulated using an elastic dislocation theory in a spherical earth model, and the results are consistent with the GPS results, especially the near-field results. We also estimated the gravity contributions from the coseismic vertical displacements and density changes, analyzed the proportion of these two gravity change factors (based on an elastic dislocation theory in a spherical earth model) in this deep-focus earthquake. The gravity effect from vertical displacement is four times larger than that caused by density redistribution.
A FFT-based formulation for discrete dislocation dynamics in heterogeneous media
NASA Astrophysics Data System (ADS)
Bertin, N.; Capolungo, L.
2018-02-01
In this paper, an extension of the DDD-FFT approach presented in [1] is developed for heterogeneous elasticity. For such a purpose, an iterative spectral formulation in which convolutions are calculated in the Fourier space is developed to solve for the mechanical state associated with the discrete eigenstrain-based microstructural representation. With this, the heterogeneous DDD-FFT approach is capable of treating anisotropic and heterogeneous elasticity in a computationally efficient manner. In addition, a GPU implementation is presented to allow for further acceleration. As a first example, the approach is used to investigate the interaction between dislocations and second-phase particles, thereby demonstrating its ability to inherently incorporate image forces arising from elastic inhomogeneities.
NASA Astrophysics Data System (ADS)
Fukahata, Y.; Matsu'ura, M.
2015-12-01
The most conspicuous cumulative deformation in subduction zones is the formation of island arc-trench system. A pair of anomalies in topography and free-air gravity, high in the arc and low around the trench, is observed without exceptions all over the world. Since the 1960s, elastic dislocation theory has been widely used to interpret coseismic crustal deformation. For the modeling of longer-term crustal deformation, it is necessary to consider viscoelastic properties of the asthenosphere. By simply applying elastic-viscoelastic dislocation theory to plate subduction, Matsu'ura and Sato (1989, GJI) have shown that some crustal deformation remains after the completion of one earthquake cycle, which means that crustal deformation accumulates with time in a long term due to plate subduction. In fact, by constructing a plate interface model in and around Japan, Hashimoto, Fukui and Matsu'ura (2004, PAGEOPH) have demonstrated that the computed vertical displacements due to steady plate subduction well explain the observed free-air gravity anomaly pattern. Recently, we got a lucid explanation of crustal deformation due to plate subduction. In subduction zones, oceanic plates bend and descend into the mantle. Because the bending of oceanic plates is usually not spontaneous, there exists kinematic interaction between the oceanic and overriding plates, which causes cumulative deformation of the overriding plate. This may be understood based on the law of action and reaction: one is bending of an oceanic plate and the other is deformation of the overriding plate. As a special case, it is useful to consider plate subduction along a part of true circle. In this case, crustal deformation due to steady subduction is solely caused by the effect of gravity, because dislocation along a circle does not cause any intrinsic internal deformation. When an oceanic plate is descending along an arcuate plate interface from the right-hand side, according to dislocation theory, the oceanic plate rotates anti-clockwise and the overriding plate rotates clockwise. The gravity, however, requires both plates at a distance from the trench to remain in the original gravitational equilibrium, which results in upward bending of both plates. As subduction proceeds, the deformation of the upward bending accumulates with time.
NASA Astrophysics Data System (ADS)
Cheng, Li-Wei; Lee, Jian-Cheng; Hu, Jyr-Ching; Chen, Horng-Yue
2009-03-01
The Chengkung earthquake with ML = 6.6 occurred in eastern Taiwan at 12:38 local time on December 10th 2003. Based on the main shock relocation and aftershock distribution, the Chengkung earthquake occurred along the previously recognized N20°E trending Chihshang fault. This event did not cause human loss, but significant cracks developed at the ground surface and damaged some buildings. After 1951 Taitung earthquake, there was no larger ML > 6 earthquake occurred in this region until the Chengkung earthquake. As a result, the Chengkung earthquake is a good opportunity to study the seismogenic structure of the Chihshang fault. The coseismic displacements recorded by GPS show a fan-shaped distribution with maximal displacement of about 30 cm near the epicenter. The aftershocks of the Chengkung earthquake revealing an apparent linear distribution helps us to construct the clear fault geometry of the Chihshang fault. In this study, we employ a half-space angular elastic dislocation model with GPS observations to figure out the slip distribution and seismological behavior of the Chengkung earthquake on the Chihshang fault. The elastic half-space dislocation model reveals that the Chengkung earthquake is a thrust event with minor left-lateral strike-slip component. The maximum coseismic slip is located around the depth of 20 km and up to 1.1 m. The slips are gradually decreased to less than 10 cm near the surface part of the Chihshang fault. The seismogenic fault plane, which is constructed by the delineation of the aftershocks, demonstrates that the Chihshang fault is a high-angle fault. However the fault plane changes to a flat plane at depth of 20 km. In addition, a significant part of the measured deformation across the surface fault zone for this earthquake can be attributed to postseismic creep. The postseismic elastic dislocation model shows that most afterslips are distributed to the upper level of the Chihshang fault. And most afterslips consist of both of dip- and left-lateral slip. The model results show that the Chihshang fault may be partially locked or damped near surface during coseismic slip. After the mainshock, the strain, which cumulated near the surface, was released by postseismic creep resulting in significant postseismic deformation.
NASA Astrophysics Data System (ADS)
Chen, J.; Girard, J.
2012-12-01
Study of mechanical properties of mantle minerals has unveiled many mysteries of Earth's interior alluded through seismic events. However, some details of seismic models remain unexplained. For instance, magnitude of seismic discontinuity at 410 km depth in seismic models is significantly larger than that derived from elastic properties of dominant minerals at such depth. For another example, although the attenuation of seismic anisotropy in the upper mantle at about 200-220 km depth can be attributed to switchover of active dislocation slip system in the dominant mineral, olivine, the depth and its variation are discrepant from that derived from the pressure at which such switchover is observed in the deformation experiment of mineral plasticity study. We have investigated influence of water on elastic and plastic behaviors of olivine through equation of state and rheological creep experiments using synchrotron x-rays at the X17C and X17B2 beamlines of the NSLS. Results indicate water significantly weakens the mineral. Elastically, 0.4 wt% H2O in olivine results in a 5% reduction in bulk modulus (i.e. from 130 GPa for anhydrous sample to 123 GPa for hydrous sample). Plastically, structural H2O in olivine influences different dislocation slip system very differently, and therefore alters the pressure of active slip system switchover with respect to "dry" sample. Even 30 ppm H2O in weight may lower down the pressure for transition from [100](010) slip to [001](010) slip by 2 GPa (i.e. from 8 GPa in dry condition to 6 GPa in wet condition). Implications of these results will be discussed in this presentation. Together with previously reported results on elastic and plastic properties of mantle dominant minerals, we are able to reconcile the discrepancies between mineral physics and seismology models for the magnitude of 410 km discontinuity and for the attenuation of seismic anisotropy at about 200-220 km respectively.
Nonrigid 3D medical image registration and fusion based on deformable models.
Liu, Peng; Eberhardt, Benjamin; Wybranski, Christian; Ricke, Jens; Lüdemann, Lutz
2013-01-01
For coregistration of medical images, rigid methods often fail to provide enough freedom, while reliable elastic methods are available clinically for special applications only. The number of degrees of freedom of elastic models must be reduced for use in the clinical setting to archive a reliable result. We propose a novel geometry-based method of nonrigid 3D medical image registration and fusion. The proposed method uses a 3D surface-based deformable model as guidance. In our twofold approach, the deformable mesh from one of the images is first applied to the boundary of the object to be registered. Thereafter, the non-rigid volume deformation vector field needed for registration and fusion inside of the region of interest (ROI) described by the active surface is inferred from the displacement of the surface mesh points. The method was validated using clinical images of a quasirigid organ (kidney) and of an elastic organ (liver). The reduction in standard deviation of the image intensity difference between reference image and model was used as a measure of performance. Landmarks placed at vessel bifurcations in the liver were used as a gold standard for evaluating registration results for the elastic liver. Our registration method was compared with affine registration using mutual information applied to the quasi-rigid kidney. The new method achieved 15.11% better quality with a high confidence level of 99% for rigid registration. However, when applied to the quasi-elastic liver, the method has an averaged landmark dislocation of 4.32 mm. In contrast, affine registration of extracted livers yields a significantly (P = 0.000001) smaller dislocation of 3.26 mm. In conclusion, our validation shows that the novel approach is applicable in cases where internal deformation is not crucial, but it has limitations in cases where internal displacement must also be taken into account.
New theory for Mode I crack-tip dislocation emission
NASA Astrophysics Data System (ADS)
Andric, Predrag; Curtin, W. A.
2017-09-01
A material is intrinsically ductile under Mode I loading when the critical stress intensity KIe for dislocation emission is lower than the critical stress intensity KIc for cleavage. KIe is usually evaluated using the approximate Rice theory, which predicts a dependence on the elastic constants and the unstable stacking fault energy γusf for slip along the plane of dislocation emission. Here, atomistic simulations across a wide range of fcc metals show that KIe is systematically larger (10-30%) than predicted. However, the critical (crack tip) shear displacement is up to 40% smaller than predicted. The discrepancy arises because Mode I emission is accompanied by the formation of a surface step that is not considered in the Rice theory. A new theory for Mode I emission is presented based on the ideas that (i) the stress resisting step formation at the crack tip creates "lattice trapping" against dislocation emission such that (ii) emission is due to a mechanical instability at the crack tip. The new theory is formulated using a Peierls-type model, naturally includes the energy to form the step, and reduces to the Rice theory (no trapping) when the step energy is small. The new theory predicts a higher KIe at a smaller critical shear displacement, rationalizing deviations of simulations from the Rice theory. Specific predictions of KIe for the simulated materials, usually requiring use of the measured critical crack tip shear displacement due to complex material non-linearity, show very good agreement with simulations. An analytic model involving only γusf, the surface energy γs, and anisotropic elastic constants is shown to be quite accurate, serves as a replacement for the analytical Rice theory, and is used to understand differences between Rice theory and simulation in recent literature. The new theory highlights the role of surface steps created by dislocation emission in Mode I, which has implications not only for intrinsic ductility but also for crack tip twinning and fracture due to chemical interactions at the crack tip.
Pair Interaction of Dislocations in Two-Dimensional Crystals
NASA Astrophysics Data System (ADS)
Eisenmann, C.; Gasser, U.; Keim, P.; Maret, G.; von Grünberg, H. H.
2005-10-01
The pair interaction between crystal dislocations is systematically explored by analyzing particle trajectories of two-dimensional colloidal crystals measured by video microscopy. The resulting pair energies are compared to Monte Carlo data and to predictions derived from the standard Hamiltonian of the elastic theory of dislocations. Good agreement is found with respect to the distance and temperature dependence of the interaction potential, but not regarding the angle dependence where discrete lattice effects become important. Our results on the whole confirm that the dislocation Hamiltonian allows a quantitative understanding of the formation and interaction energies of dislocations in two-dimensional crystals.
Supersonic Dislocation Bursts in Silicon
Hahn, E. N.; Zhao, S.; Bringa, E. M.; ...
2016-06-06
Dislocations are the primary agents of permanent deformation in crystalline solids. Since the theoretical prediction of supersonic dislocations over half a century ago, there is a dearth of experimental evidence supporting their existence. Here we use non-equilibrium molecular dynamics simulations of shocked silicon to reveal transient supersonic partial dislocation motion at approximately 15 km/s, faster than any previous in-silico observation. Homogeneous dislocation nucleation occurs near the shock front and supersonic dislocation motion lasts just fractions of picoseconds before the dislocations catch the shock front and decelerate back to the elastic wave speed. Applying a modified analytical equation for dislocation evolutionmore » we successfully predict a dislocation density of 1.5 x 10(12) cm(-2) within the shocked volume, in agreement with the present simulations and realistic in regards to prior and on-going recovery experiments in silicon.« less
Supersonic Dislocation Bursts in Silicon
Hahn, E. N.; Zhao, S.; Bringa, E. M.; Meyers, M. A.
2016-01-01
Dislocations are the primary agents of permanent deformation in crystalline solids. Since the theoretical prediction of supersonic dislocations over half a century ago, there is a dearth of experimental evidence supporting their existence. Here we use non-equilibrium molecular dynamics simulations of shocked silicon to reveal transient supersonic partial dislocation motion at approximately 15 km/s, faster than any previous in-silico observation. Homogeneous dislocation nucleation occurs near the shock front and supersonic dislocation motion lasts just fractions of picoseconds before the dislocations catch the shock front and decelerate back to the elastic wave speed. Applying a modified analytical equation for dislocation evolution we successfully predict a dislocation density of 1.5 × 1012 cm−2 within the shocked volume, in agreement with the present simulations and realistic in regards to prior and on-going recovery experiments in silicon. PMID:27264746
Supersonic Dislocation Bursts in Silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hahn, E. N.; Zhao, S.; Bringa, E. M.
Dislocations are the primary agents of permanent deformation in crystalline solids. Since the theoretical prediction of supersonic dislocations over half a century ago, there is a dearth of experimental evidence supporting their existence. Here we use non-equilibrium molecular dynamics simulations of shocked silicon to reveal transient supersonic partial dislocation motion at approximately 15 km/s, faster than any previous in-silico observation. Homogeneous dislocation nucleation occurs near the shock front and supersonic dislocation motion lasts just fractions of picoseconds before the dislocations catch the shock front and decelerate back to the elastic wave speed. Applying a modified analytical equation for dislocation evolutionmore » we successfully predict a dislocation density of 1.5 x 10(12) cm(-2) within the shocked volume, in agreement with the present simulations and realistic in regards to prior and on-going recovery experiments in silicon.« less
Gussev, Maxim N.; Field, Kevin G.; Busby, Jeremy T.
2015-02-24
We investigated dynamics of deformation localization and dislocation channel formation in situ in a neutron irradiated AISI 304 austenitic stainless steel and a model 304-based austenitic alloy by combining several analytical techniques including optic microscopy and laser confocal microscopy, scanning electron microscopy, electron backscatter diffraction and transmission electron microscopy. Channel formation was observed at 70% of the formal tensile yield stress for both alloys. It was shown that triple junction points do not always serve as a source of dislocation channels; at stress levels below the yield stress, channels often formed near the middle of the grain boundary. For amore » single grain, the role of elastic stiffness value (Young modulus) in the channel formation was analyzed; it was shown that in the irradiated 304 steels the initial channels appeared in soft grains with a high Schmid factor located near stiff grains with high elastic stiffness. Moreover, the spatial organization of channels in a single grain was analyzed; it was shown that secondary channels operating in the same slip plane as primary channels often appeared at the middle or at one third of the way between primary channels. The twinning nature of dislocation channels was analyzed for grains of different orientation using TEM. Finally, it was shown that in the AISI 304 steel, channels were twin-free in grains oriented close to [001] and [101] of standard unit triangle; [111]-grains and grains oriented close to Schmid factor maximum contained deformation twins.« less
Phase-field crystal modeling of compositional domain formation in ultrathin films.
Muralidharan, Srevatsan; Haataja, Mikko
2010-09-17
Bulk-immiscible binary systems often form stress-induced miscible alloy phases when deposited on a substrate. Both alloying and surface dislocation formation lead to the decrease of the elastic strain energy, and the competition between these two strain-relaxation mechanisms gives rise to the emergence of pseudomorphic compositional nanoscale domains, often coexisting with a partially coherent single phase. In this work, we develop a phase-field crystal model for compositional patterning in monolayer aggregates of binary metallic systems. We first demonstrate that the model naturally incorporates the competition between alloying and misfit dislocations, and quantify the effects of misfit and line tension on equilibrium domain size. Then, we quantitatively relate the parameters of the phase-field crystal model to a specific system, CoAg/Ru(0001), and demonstrate that the simulations capture experimentally observed morphologies.
NASA Astrophysics Data System (ADS)
Kovaleva, Elizaveta; Klötzli, Urs; Wheeler, John; Habler, Gerlinde
2018-02-01
This study documents the strain accommodation mechanisms in zircon under amphibolite-facies metamorphic conditions in simple shear. Microstructural data from undeformed, fractured and crystal-plastically deformed zircon crystals are described in the context of the host shear zone, and evaluated in the light of zircon elastic anisotropy. Our work challenges the existing model of zircon evolution and shows previously undescribed rheological characteristics for this important accessory mineral. Crystal-plastically deformed zircon grains have
Coseismic Gravity and Displacement Signatures Induced by the 2013 Okhotsk Mw8.3 Earthquake
Zhang, Guoqing; Shen, Wenbin; Xu, Changyi; Zhu, Yiqing
2016-01-01
In this study, Gravity Recovery and Climate Experiment (GRACE) RL05 data from January 2003 to October 2014 were used to extract the coseismic gravity changes induced by the 24 May 2013 Okhotsk Mw8.3 deep-focus earthquake using the difference and least square fitting methods. The gravity changes obtained from GRACE data agreed well with those from dislocation theory in both magnitude and spatial pattern. Positive and negative gravity changes appeared on both sides of the epicenter. The positive signature appeared on the western side, and the peak value was approximately 0.4 microgal (1 microgal = 10−8 m/s2), whereas on the eastern side, the gravity signature was negative, and the peak value was approximately −1.1 microgal. It demonstrates that deep-focus earthquakes Mw ≤ 8.5 are detectable by GRACE observations. Moreover, the coseismic displacements of 20 Global Positioning System (GPS) stations on the Earth’s surface were simulated using an elastic dislocation theory in a spherical earth model, and the results are consistent with the GPS results, especially the near-field results. We also estimated the gravity contributions from the coseismic vertical displacements and density changes, analyzed the proportion of these two gravity change factors (based on an elastic dislocation theory in a spherical earth model) in this deep-focus earthquake. The gravity effect from vertical displacement is four times larger than that caused by density redistribution. PMID:27598158
Reduced Moment-Based Models for Oxygen Precipitates and Dislocation Loops in Silicon
NASA Astrophysics Data System (ADS)
Trzynadlowski, Bart
The demand for ever smaller, higher-performance integrated circuits and more efficient, cost-effective solar cells continues to push the frontiers of process technology. Fabrication of silicon devices requires extremely precise control of impurities and crystallographic defects. Failure to do so not only reduces performance, efficiency, and yield, it threatens the very survival of commercial enterprises in today's fiercely competitive and price-sensitive global market. The presence of oxygen in silicon is an unavoidable consequence of the Czochralski process, which remains the most popular method for large-scale production of single-crystal silicon. Oxygen precipitates that form during thermal processing cause distortion of the surrounding silicon lattice and can lead to the formation of dislocation loops. Localized deformation caused by both of these defects introduces potential wells that trap diffusing impurities such as metal atoms, which is highly desirable if done far away from sensitive device regions. Unfortunately, dislocations also reduce the mechanical strength of silicon, which can cause wafer warpage and breakage. Engineers must negotiate this and other complex tradeoffs when designing fabrication processes. Accomplishing this in a complex, modern process involving a large number of thermal steps is impossible without the aid of computational models. In this dissertation, new models for oxygen precipitation and dislocation loop evolution are described. An oxygen model using kinetic rate equations to evolve the complete precipitate size distribution was developed first. This was then used to create a reduced model tracking only the moments of the size distribution. The moment-based model was found to run significantly faster than its full counterpart while accurately capturing the evolution of oxygen precipitates. The reduced model was fitted to experimental data and a sensitivity analysis was performed to assess the robustness of the results. Source code for both models is included. A moment-based model for dislocation loop formation from {311} defects in ion-implanted silicon was also developed and validated against experimental data. Ab initio density functional theory calculations of stacking faults and edge dislocations were performed to extract energies and elastic properties. This allowed the effect of applied stress on the evolution of {311} defects and dislocation loops to be investigated.
Effect of rotation on the elastic moduli of solid 4He
NASA Astrophysics Data System (ADS)
Tsuiki, T.; Takahashi, D.; Murakawa, S.; Okuda, Y.; Kono, K.; Shirahama, K.
2018-02-01
We report measurements of elastic moduli of hcp solid 4He down to 15 mK when the samples are rotated unidirectionally. Recent investigations have revealed that the elastic behavior of solid 4He is dominated by gliding of dislocations and pinning of them by 3He impurities, which move in the solidlike Bloch waves (impuritons). Motivated by the recent controversy of torsional oscillator studies, we have performed direct measurements of shear and Young's moduli of annular solid 4He using pairs of quarter-circle-shape piezoelectric transducers (PZTs) while the whole apparatus is rotated with angular velocity Ω up to 4 rad/s. We have found that shear modulus μ is suppressed by rotation below 80 mK, when shear strain applied by PZT exceeds a critical value, above which μ decreases because the shear strain unbinds dislocations from 3He impurities. The rotation-induced decrement of μ at Ω =4 rad/s is about 14.7(12.3)% of the total change of temperature dependent μ for solid samples of pressure 3.6(5.4) MPa. The decrements indicate that the probability of pinning of 3He on dislocation segment G decreases by several orders of magnitude. We propose that the motion of 3He impuritons under rotation becomes strongly anisotropic by the Coriolis force, resulting a decrease in G for dislocation lines aligning parallel to the rotation axis.
NASA Astrophysics Data System (ADS)
Zhao, Yue; Marian, Jaime
2018-06-01
Interactions among dislocations and solute atoms are the basis of several important processes in metal plasticity. In body-centered cubic (bcc) metals and alloys, low-temperature plastic flow is controlled by screw dislocation glide, which is known to take place by the nucleation and sideward relaxation of kink pairs across two consecutive Peierls valleys. In alloys, dislocations and solutes affect each other’s kinetics via long-range stress field coupling and short-range inelastic interactions. It is known that in certain substitutional bcc alloys a transition from solute softening to solute hardening is observed at a critical concentration. In this paper, we develop a kinetic Monte Carlo model of screw dislocation glide and solute diffusion in substitutional W–Re alloys. We find that dislocation kinetics is governed by two competing mechanisms. At low solute concentrations, nucleation is enhanced by the softening of the Peierls stress, which dominates over the elastic repulsion of Re atoms on kinks. This trend is reversed at higher concentrations, resulting in a minimum in the flow stress that is concentration and temperature dependent. This minimum marks the transition from solute softening to hardening, which is found to be in reasonable agreement with experiments.
Theory of interacting dislocations on cylinders.
Amir, Ariel; Paulose, Jayson; Nelson, David R
2013-04-01
We study the mechanics and statistical physics of dislocations interacting on cylinders, motivated by the elongation of rod-shaped bacterial cell walls and cylindrical assemblies of colloidal particles subject to external stresses. The interaction energy and forces between dislocations are solved analytically, and analyzed asymptotically. The results of continuum elastic theory agree well with numerical simulations on finite lattices even for relatively small systems. Isolated dislocations on a cylinder act like grain boundaries. With colloidal crystals in mind, we show that saddle points are created by a Peach-Koehler force on the dislocations in the circumferential direction, causing dislocation pairs to unbind. The thermal nucleation rate of dislocation unbinding is calculated, for an arbitrary mobility tensor and external stress, including the case of a twist-induced Peach-Koehler force along the cylinder axis. Surprisingly rich phenomena arise for dislocations on cylinders, despite their vanishing Gaussian curvature.
On the mobility of carriers at semi-coherent oxide heterointerfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dholabhai, Pratik P.; Martinez, Enrique Saez; Brown, Nicholas Taylor
In the quest to develop new materials with enhanced ionic conductivity for battery and fuel cell applications, nano-structured oxides have attracted attention. Experimental reports indicate that oxide heterointerfaces can lead to enhanced ionic conductivity, but these same reports cannot elucidate the origin of this enhancement, often vaguely referring to pipe diffusion at misfit dislocations as a potential explanation. However, this highlights the need to understand the role of misfit dislocation structure at semi-coherent oxide heterointerfaces in modifying carrier mobilities. Here, we use atomistic and kinetic Monte Carlo (KMC) simulations to develop a model of oxygen vacancy migration at SrTiO 3/MgOmore » interfaces, chosen because the misfit dislocation structure can be modified by changing the termination chemistry. We use atomistic simulations to determine the energetics of oxygen vacancies at both SrO and TiO 2 terminated interfaces, which are then used as the basis of the KMC simulations. While this model is approximate (as revealed by select nudged elastic band calculations), it highlights the role of the misfit dislocation structure in modifying the oxygen vacancy dynamics. We find that oxygen vacancy mobility is significantly reduced at either interface, with slight differences at each interface due to the differing misfit dislocation structure. Here, we conclude that if such semi-coherent oxide heterointerfaces induce enhanced ionic conductivity, it is not a consequence of higher carrier mobility.« less
On the mobility of carriers at semi-coherent oxide heterointerfaces
Dholabhai, Pratik P.; Martinez, Enrique Saez; Brown, Nicholas Taylor; ...
2017-08-17
In the quest to develop new materials with enhanced ionic conductivity for battery and fuel cell applications, nano-structured oxides have attracted attention. Experimental reports indicate that oxide heterointerfaces can lead to enhanced ionic conductivity, but these same reports cannot elucidate the origin of this enhancement, often vaguely referring to pipe diffusion at misfit dislocations as a potential explanation. However, this highlights the need to understand the role of misfit dislocation structure at semi-coherent oxide heterointerfaces in modifying carrier mobilities. Here, we use atomistic and kinetic Monte Carlo (KMC) simulations to develop a model of oxygen vacancy migration at SrTiO 3/MgOmore » interfaces, chosen because the misfit dislocation structure can be modified by changing the termination chemistry. We use atomistic simulations to determine the energetics of oxygen vacancies at both SrO and TiO 2 terminated interfaces, which are then used as the basis of the KMC simulations. While this model is approximate (as revealed by select nudged elastic band calculations), it highlights the role of the misfit dislocation structure in modifying the oxygen vacancy dynamics. We find that oxygen vacancy mobility is significantly reduced at either interface, with slight differences at each interface due to the differing misfit dislocation structure. Here, we conclude that if such semi-coherent oxide heterointerfaces induce enhanced ionic conductivity, it is not a consequence of higher carrier mobility.« less
Dislocation models of interseismic deformation in the western United States
Pollitz, F.F.; McCrory, P.; Svarc, J.; Murray, J.
2008-01-01
The GPS-derived crustal velocity field of the western United States is used to construct dislocation models in a viscoelastic medium of interseismic crustal deformation. The interseismic velocity field is constrained by 1052 GPS velocity vectors spanning the ???2500-km-long plate boundary zone adjacent to the San Andreas fault and Cascadia subduction zone and extending ???1000 km into the plate interior. The GPS data set is compiled from U.S. Geological Survey campaign data, Plate Boundary Observatory data, and the Western U.S. Cordillera velocity field of Bennett et al. (1999). In the context of viscoelastic cycle models of postearthquake deformation, the interseismic velocity field is modeled with a combination of earthquake sources on ???100 known faults plus broadly distributed sources. Models that best explain the observed interseismic velocity field include the contributions of viscoelastic relaxation from faulting near the major plate margins, viscoelastic relaxation from distributed faulting in the plate interior, as well as lateral variations in depth-averaged rigidity in the elastic lithosphere. Resulting rigidity variations are consistent with reduced effective elastic plate thickness in a zone a few tens of kilometers wide surrounding the San Andreas fault (SAF) system. Primary deformation characteristics are captured along the entire SAF system, Eastern California Shear Zone, Walker Lane, the Mendocino triple junction, the Cascadia margin, and the plate interior up to ???1000 km from the major plate boundaries.
Zhang, Jiayong; Zhang, Hongwu; Ye, Hongfei; Zheng, Yonggang
2016-09-07
A free-end adaptive nudged elastic band (FEA-NEB) method is presented for finding transition states on minimum energy paths, where the energy barrier is very narrow compared to the whole paths. The previously proposed free-end nudged elastic band method may suffer from convergence problems because of the kinks arising on the elastic band if the initial elastic band is far from the minimum energy path and weak springs are adopted. We analyze the origin of the formation of kinks and present an improved free-end algorithm to avoid the convergence problem. Moreover, by coupling the improved free-end algorithm and an adaptive strategy, we develop a FEA-NEB method to accurately locate the transition state with the elastic band cut off repeatedly and the density of images near the transition state increased. Several representative numerical examples, including the dislocation nucleation in a penta-twinned nanowire, the twin boundary migration under a shear stress, and the cross-slip of screw dislocation in face-centered cubic metals, are investigated by using the FEA-NEB method. Numerical results demonstrate both the stability and efficiency of the proposed method.
Three-dimensional formulation of dislocation climb
NASA Astrophysics Data System (ADS)
Gu, Yejun; Xiang, Yang; Quek, Siu Sin; Srolovitz, David J.
2015-10-01
We derive a Green's function formulation for the climb of curved dislocations and multiple dislocations in three-dimensions. In this new dislocation climb formulation, the dislocation climb velocity is determined from the Peach-Koehler force on dislocations through vacancy diffusion in a non-local manner. The long-range contribution to the dislocation climb velocity is associated with vacancy diffusion rather than from the climb component of the well-known, long-range elastic effects captured in the Peach-Koehler force. Both long-range effects are important in determining the climb velocity of dislocations. Analytical and numerical examples show that the widely used local climb formula, based on straight infinite dislocations, is not generally applicable, except for a small set of special cases. We also present a numerical discretization method of this Green's function formulation appropriate for implementation in discrete dislocation dynamics (DDD) simulations. In DDD implementations, the long-range Peach-Koehler force is calculated as is commonly done, then a linear system is solved for the climb velocity using these forces. This is also done within the same order of computational cost as existing discrete dislocation dynamics methods.
Static and dynamic properties of incommensurate smectic-A(IC) liquid crystals
NASA Technical Reports Server (NTRS)
Lubensky, T. C.; Ramaswamy, Sriram; Toner, John
1988-01-01
The elasticity, topological defects, and hydrodynamics of the incommensurate smectic A(IC) phase liquid crystals are studied. The phase is characterized by two colinear mass density waves of incommensurate spatial frequency. The elastic free energy is formulated in terms of a displacement field and a phason field. It is found that the topological defects of the system are dislocations with a nonzero phason field and phason field components. A two-dimensional Burgers lattice for these dislocations is introduced. It is shown that the hydrodynamic modes of the phase include first- and second-sound modes whose direction-dependent velocities are identical to those in ordinary smectics.
Battaglia, Maurizio; ,; Peter, F.; Murray, Jessica R.
2013-01-01
This manual provides the physical and mathematical concepts for selected models used to interpret deformation measurements near active faults and volcanic centers. The emphasis is on analytical models of deformation that can be compared with data from the Global Positioning System (GPS) receivers, Interferometric synthetic aperture radar (InSAR), leveling surveys, tiltmeters and strainmeters. Source models include pressurized spherical, ellipsoidal, and horizontal penny-shaped geometries in an elastic, homogeneous, flat half-space. Vertical dikes and faults are described following the mathematical notation for rectangular dislocations in an elastic, homogeneous, flat half-space. All the analytical expressions were verified against numerical models developed by use of COMSOL Multyphics, a Finite Element Analysis software (http://www.comsol.com). In this way, typographical errors present were identified and corrected. Matlab scripts are also provided to facilitate the application of these models.
Recent Progress in Discrete Dislocation Dynamics and Its Applications to Micro Plasticity
NASA Astrophysics Data System (ADS)
Po, Giacomo; Mohamed, Mamdouh S.; Crosby, Tamer; Erel, Can; El-Azab, Anter; Ghoniem, Nasr
2014-10-01
We present a self-contained review of the discrete dislocation dynamics (DDD) method for the numerical investigation of plasticity in crystals, focusing on recent development and implementation progress. The review covers the theoretical foundations of DDD within the framework of incompatible elasticity, its numerical implementation via the nodal method, the extension of the method to finite domains and several implementation details. Applications of the method to current topics in micro-plasticity are presented, including the size effects in nano-indentation, the evolution of the dislocation microstructure in persistent slip bands, and the phenomenon of dislocation avalanches in micro-pillar compression.
NASA Astrophysics Data System (ADS)
Pretko, Michael; Radzihovsky, Leo
2018-05-01
Motivated by recent studies of fractons, we demonstrate that elasticity theory of a two-dimensional quantum crystal is dual to a fracton tensor gauge theory, providing a concrete manifestation of the fracton phenomenon in an ordinary solid. The topological defects of elasticity theory map onto charges of the tensor gauge theory, with disclinations and dislocations corresponding to fractons and dipoles, respectively. The transverse and longitudinal phonons of crystals map onto the two gapless gauge modes of the gauge theory. The restricted dynamics of fractons matches with constraints on the mobility of lattice defects. The duality leads to numerous predictions for phases and phase transitions of the fracton system, such as the existence of gauge theory counterparts to the (commensurate) crystal, supersolid, hexatic, and isotropic fluid phases of elasticity theory. Extensions of this duality to generalized elasticity theories provide a route to the discovery of new fracton models. As a further consequence, the duality implies that fracton phases are relevant to the study of interacting topological crystalline insulators.
A study of microindentation hardness tests by mechanism-based strain gradient plasticity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Y.; Xue, Z.; Gao, H.
2000-08-01
We recently proposed a theory of mechanism-based strain gradient (MSG) plasticity to account for the size dependence of plastic deformation at micron- and submicron-length scales. The MSG plasticity theory connects micron-scale plasticity to dislocation theories via a multiscale, hierarchical framework linking Taylor's dislocation hardening model to strain gradient plasticity. Here we show that the theory of MSG plasticity, when used to study micro-indentation, indeed reproduces the linear dependence observed in experiments, thus providing an important self-consistent check of the theory. The effects of pileup, sink-in, and the radius of indenter tip have been taken into account in the indentation model.more » In accomplishing this objective, we have generalized the MSG plasticity theory to include the elastic deformation in the hierarchical framework. (c) 2000 Materials Research Society.« less
Pressure Dependence of the Peierls Stress in Aluminum
NASA Astrophysics Data System (ADS)
Dang, Khanh; Spearot, Douglas
2018-03-01
The effect of pressure applied normal to the {111} slip plane on the Peierls stress in Al is studied via atomistic simulations. Edge, screw, 30°, and 60° straight dislocations are created using the Volterra displacement fields for isotropic elasticity. For each dislocation character angle, the Peierls stress is calculated based on the change in the internal energy, which is an invariant measure of the dislocation driving force. It is found that the Peierls stress for dislocations under zero pressure is in general agreement with previous results. For screw and 60° dislocations, the Peierls stress versus pressure relationship has maximum values associated with stacking fault widths that are multiples of the Peierls period. For the edge dislocation, the Peierls stress decreases with increasing pressure from tension to compression. Compared with the Mendelev potential, the Peierls stress calculated from the Mishin potential is more sensitive to changes in pressure.
Nano-indentation used to study pyramidal slip in GaN single crystals
NASA Astrophysics Data System (ADS)
Krimsky, E.; Jones, K. A.; Tompkins, R. P.; Rotella, P.; Ligda, J.; Schuster, B. E.
2018-02-01
The nucleation and structure of dislocations created by the nano-indentation of GaN samples with dislocation densities ≈103, 106 or 109 ⊥/cm2 were studied in the interest of learning how dislocations can be created to relieve the mismatch strain in ternary nitride films grown on (0001) oriented binary nitride substrates. Using transmission electron microscopy and stress analyses to assist in interpreting the nano-indentation data, we determined that the pop-ins in the indenter load vs. penetration depth curves are created by an avalanche process at stresses well above the typical yield stress. The process begins by the homogeneous formation of a basal plane screw dislocation that triggers the formation of pyramidal and other basal plane dislocations that relieve the excess stored elastic energy. It appears that pyramidal slip can occur on either the {1122} or {0111} planes, as there is little resistance to the cross slip of screw dislocations.
Modeling Dislocations and Disclinations with Finite Micropolar Elastoplasticity
2006-02-01
substructures on flow stress ( Mughrabi , 1983, 1988, 2001; Berveiller et al ., 1993; Zaiser, 1998). Meyers and co-workers (Meyers and Ashworth, 1982... al . / International Journal of Plasticity 22 (2006) 210–256 211order gradients of elastic or plastic parts of the total deformation gradient may alone...polycrystals (Hughes et al ., 1997, 2003; Kuhl- mann-Wilsdorf, 1999; Butler et al ., 2000; Barton and Dawson, 2001; Hughes, 2001; Leffers, 2001). Also measured
NASA Astrophysics Data System (ADS)
Gao, Shanghua; Fu, Guangyu; Liu, Tai; Zhang, Guoqing
2017-03-01
Tanaka et al. (Geophys J Int 164:273-289, 2006, Geophys J Int 170:1031-1052, 2007) proposed the spherical dislocation theory (SDT) in a spherically symmetric, self-gravitating visco-elastic earth model. However, to date there have been no reports on easily adopted, widely used software that utilizes Tanaka's theory. In this study we introduce a new code to compute post-seismic deformations (PSD), including displacements as well as Geoid and gravity changes, caused by a seismic source at any position. This new code is based on the above-mentioned SDT. The code consists of two parts. The first part is the numerical frame of the dislocation Green function (DGF), which contains a set of two-dimensional discrete numerical frames of DGFs on a symmetric earth model. The second part is an integration function, which performs bi-quadratic spline interpolation operations on the frame of DGFs. The inputs are the information on the seismic fault models and the information on the observation points. After the user prepares the inputs in a file with given format, the code will automatically compute the PSD. As an example, we use the new code to calculate the co-seismic displacements caused by the Tohoku-Oki Mw 9.0 earthquake. We compare the result with observations and the result from a full-elastic SDT, and we found that the Root Mean Square error between the calculated and observed results is 7.4 cm. This verifies the suitability of our new code. Finally, we discuss several issues that require attention when using the code, which should be helpful for users.
A spectral approach for discrete dislocation dynamics simulations of nanoindentation
NASA Astrophysics Data System (ADS)
Bertin, Nicolas; Glavas, Vedran; Datta, Dibakar; Cai, Wei
2018-07-01
We present a spectral approach to perform nanoindentation simulations using three-dimensional nodal discrete dislocation dynamics. The method relies on a two step approach. First, the contact problem between an indenter of arbitrary shape and an isotropic elastic half-space is solved using a spectral iterative algorithm, and the contact pressure is fully determined on the half-space surface. The contact pressure is then used as a boundary condition of the spectral solver to determine the resulting stress field produced in the simulation volume. In both stages, the mechanical fields are decomposed into Fourier modes and are efficiently computed using fast Fourier transforms. To further improve the computational efficiency, the method is coupled with a subcycling integrator and a special approach is devised to approximate the displacement field associated with surface steps. As a benchmark, the method is used to compute the response of an elastic half-space using different types of indenter. An example of a dislocation dynamics nanoindentation simulation with complex initial microstructure is presented.
The Peierls stress of the moving [Formula: see text] screw dislocation in Ta.
Liu, Ruiping; Wang, Shaofeng; Wu, Xiaozhi
2009-08-26
The Peierls stress of the moving [Formula: see text] screw dislocation with a planar and non-dissociated core structure in Ta has been calculated. The elastic strain energy which is associated with the discrete effect of the lattice and ignored in classical Peierls-Nabarro (P-N) theory has been taken into account in calculating the Peierls stress, and it can make the Peierls stress become smaller. The Peierls stress we obtain is very close to the experimental data. As shown in the numerical calculations and atomistic simulations, the core structure of the screw dislocation undergoes significant changes under the explicit stress before the screw dislocation moves. Moreover, the mechanism of the screw dislocation is revealed by our results and the experimental data that the screw dislocation retracts its extension in three {110} planes and transforms its dissociated core structure into a planar configuration. Therefore, the core structure of the moving [Formula: see text] screw dislocation in Ta is proposed to be planar.
Six-week physical rehabilitation protocol for anterior shoulder dislocation in athletes
Gaballah, Ahmed; Zeyada, Mohamed; Elgeidi, Adham; Bressel, Eadric
2017-01-01
Anterior shoulder dislocations are common in young athletes. The mechanism for the first or primary shoulder dislocation may involve a collision or a fall typically with the arm in an abducted and externally rotated position. The aim of this study was to design a physical rehabilitation program using the elastic band and resistive exercise to improve joint strength and range of motion in individuals diagnosed with a first-time shoulder dislocation. Twelve physically active males with a first-time acute shoulder dislocation were asked to volunteer. Participants began a physical rehabilitation program 2 weeks after the shoulder dislocation, which was confirmed by a referring physician. The rehabilitation program was 6 weeks in duration and required the participants to engage in progressive resistive loads/duration using elastic bands and weights 5 days per week. Pretest and posttest measures included shoulder strength and range of motion. All outcome measures were compared between the injured and uninjured shoulder, which served as the control condition in this study. There were statistically significant differences between the injured and uninjured shoulder for measures of strength and range of motion during pretests (P<0.01) but not post-tests (P<0.53). Finally, there were no differences between shoulders in regards to the volume measure suggesting that any changes in muscle atrophy or swelling were not detected. The physical rehabilitation program proposed in this study was effective at improving strength and range of motion in the injured shoulder as evidenced by the similarity in posttest values between the injured and uninjured shoulder. PMID:28702449
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sung Bo, E-mail: bolee@snu.ac.kr; Han, Heung Nam, E-mail: hnhan@snu.ac.kr; Lee, Dong Nyung
Much research has been done to reduce dislocation densities for the growth of GaN on sapphire, but has paid little attention to the elastic behavior at the GaN/sapphire interface. In this study, we have examined effects of the addition of Si to a sapphire substrate on its elastic property and on the growth of GaN deposit. Si atoms are added to a c-plane sapphire substrate by ion implantation. The ion implantation results in scratches on the surface, and concomitantly, inhomogeneous distribution of Si. The scratch regions contain a higher concentration of Si than other regions of the sapphire substrate surface,more » high-temperature GaN being poorly grown there. However, high-temperature GaN is normally grown in the other regions. The GaN overlayer in the normally-grown regions is observed to have a lower TD density than the deposit on the bare sapphire substrate (with no Si accommodated). As compared with the film on an untreated, bare sapphire, the cathodoluminescence defect density decreases by 60 % for the GaN layer normally deposited on the Si-ion implanted sapphire. As confirmed by a strain mapping technique by transmission electron microscopy (geometric phase analysis), the addition of Si in the normally deposited regions forms a surface layer in the sapphire elastically more compliant than the GaN overlayer. The results suggest that the layer can largely absorb the misfit strain at the interface, which produces the overlayer with a lower defect density. Our results highlight a direct correlation between threading-dislocation density in GaN deposits and the elastic behavior at the GaN/sapphire interface, opening up a new pathway to reduce threading-dislocation density in GaN deposits.« less
Equivalent strike-slip earthquake cycles in half-space and lithosphere-asthenosphere earth models
Savage, J.C.
1990-01-01
By virtue of the images used in the dislocation solution, the deformation at the free surface produced throughout the earthquake cycle by slippage on a long strike-slip fault in an Earth model consisting of an elastic plate (lithosphere) overlying a viscoelastic half-space (asthenosphere) can be duplicated by prescribed slip on a vertical fault embedded in an elastic half-space. Inversion of 1973-1988 geodetic measurements of deformation across the segment of the San Andreas fault in the Transverse Ranges north of Los Angeles for the half-space equivalent slip distribution suggests no significant slip on the fault above 30 km and a uniform slip rate of 36 mm/yr below 30 km. One equivalent lithosphere-asthenosphere model would have a 30-km thick lithosphere and an asthenosphere relaxation time greater than 33 years, but other models are possible. -from Author
Han, Xiaodong; Wang, Lihua; Yue, Yonghai; Zhang, Ze
2015-04-01
In this review, we briefly introduce our in situ atomic-scale mechanical experimental technique (ASMET) for transmission electron microscopy (TEM), which can observe the atomic-scale deformation dynamics of materials. This in situ mechanical testing technique allows the deformation of TEM samples through a simultaneous double-tilt function, making atomic-scale mechanical microscopy feasible. This methodology is generally applicable to thin films, nanowires (NWs), tubes and regular TEM samples to allow investigation of the dynamics of mechanically stressed samples at the atomic scale. We show several examples of this technique applied to Pt and Cu single/polycrystalline specimens. The in situ atomic-scale observation revealed that when the feature size of these materials approaches the nano-scale, they often exhibit "unusual" deformation behaviours compared to their bulk counterparts. For example, in Cu single-crystalline NWs, the elastic-plastic transition is size-dependent. An ultra-large elastic strain of 7.2%, which approaches the theoretical elasticity limit, can be achieved as the diameter of the NWs decreases to ∼6 nm. The crossover plasticity transition from full dislocations to partial dislocations and twins was also discovered as the diameter of the single-crystalline Cu NWs decreased. For Pt nanocrystals (NC), the long-standing uncertainties of atomic-scale plastic deformation mechanisms in NC materials (grain size G less than 15 nm) were clarified. For larger grains with G<∼10 nm, we frequently observed movements and interactions of cross-grain full dislocations. For G between 6 and 10 nm, stacking faults resulting from partial dislocations become more frequent. For G<∼6 nm, the plasticity mechanism transforms from a mode of cross-grain dislocation to a collective grain rotation mechanism. This grain rotation process is mediated by grain boundary (GB) dislocations with the assistance of GB diffusion and shuffling. These in situ atomic-scale images provide a direct demonstration that grain rotation, through the evolution of the misorientation angle between neighbouring grains, can be quantitatively assessed by the dislocation content within the grain boundaries. In combination with the revolutionary Cs-corrected sub-angstrom imaging technologies developed by Urban et al., the opportunities for experimental mechanics at the atomic scale are emerging. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Dislocation dynamics simulations of plasticity at small scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Caizhi
2010-01-01
As metallic structures and devices are being created on a dimension comparable to the length scales of the underlying dislocation microstructures, the mechanical properties of them change drastically. Since such small structures are increasingly common in modern technologies, there is an emergent need to understand the critical roles of elasticity, plasticity, and fracture in small structures. Dislocation dynamics (DD) simulations, in which the dislocations are the simulated entities, offer a way to extend length scales beyond those of atomistic simulations and the results from DD simulations can be directly compared with the micromechanical tests. The primary objective of this researchmore » is to use 3-D DD simulations to study the plastic deformation of nano- and micro-scale materials and understand the correlation between dislocation motion, interactions and the mechanical response. Specifically, to identify what critical events (i.e., dislocation multiplication, cross-slip, storage, nucleation, junction and dipole formation, pinning etc.) determine the deformation response and how these change from bulk behavior as the system decreases in size and correlate and improve our current knowledge of bulk plasticity with the knowledge gained from the direct observations of small-scale plasticity. Our simulation results on single crystal micropillars and polycrystalline thin films can march the experiment results well and capture the essential features in small-scale plasticity. Furthermore, several simple and accurate models have been developed following our simulation results and can reasonably predict the plastic behavior of small scale materials.« less
Li, N.; Yadav, S. K.; Liu, X. -Y.; ...
2015-11-05
Using the in situ indentation of TiN in a high-resolution transmission electron microscope, the nucleation of full as well as partial dislocations has been observed from {001} and {111} surfaces, respectively. The critical elastic strains associated with the nucleation of the dislocations were analyzed from the recorded atomic displacements, and the nucleation stresses corresponding to the measured critical strains were computed using density functional theory. The resolved shear stress was estimated to be 13.8 GPa for the partial dislocation 1/6 <110> {111} and 6.7 GPa for the full dislocation ½ <110> {110}. Moreover, such an approach of quantifying nucleation stressesmore » for defects via in situ high-resolution experiment coupled with density functional theory calculation may be applied to other unit processes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Huamiao; Clausen, Bjorn; Capolungo, Laurent
Continuous mechanical tests with strain holds (stress relaxation) and with stress holds (strain relaxation) are performed simultaneously with in-situ neutron measurements to analyze the mechanisms of stress and strain relaxation in Mg AZ31 rolled plate. A dislocation activity based constitutive model, accounting for internal stress statistical distributions, is proposed and implemented into an elastic viscoplastic self-consistent (EVPSC) framework to simultaneously describe both stress and strain relaxation. The model captures the experimental data in terms of macroscopic stress strain curves, evolution of stress and strain during holding, as well as evolution of the internal elastic strains. Model results indicate that themore » magnitude of the stress relaxed during strain holding is dependent on both, the magnitude of the flow stress and the spread of the resolved shear stress distribution. The magnitude of strain accumulated during stress holding is, on the other hand, dependent on the magnitude of the hardening rate and on the spread of the resolved shear stress distribution. Furthermore, the internal elastic strains are directly correlated with the stress state, and hence the stress relaxation during strain holds has a greater influence on the lattice strains than strain relaxation during stress holds.« less
Wang, Huamiao; Clausen, Bjorn; Capolungo, Laurent; ...
2015-07-16
Continuous mechanical tests with strain holds (stress relaxation) and with stress holds (strain relaxation) are performed simultaneously with in-situ neutron measurements to analyze the mechanisms of stress and strain relaxation in Mg AZ31 rolled plate. A dislocation activity based constitutive model, accounting for internal stress statistical distributions, is proposed and implemented into an elastic viscoplastic self-consistent (EVPSC) framework to simultaneously describe both stress and strain relaxation. The model captures the experimental data in terms of macroscopic stress strain curves, evolution of stress and strain during holding, as well as evolution of the internal elastic strains. Model results indicate that themore » magnitude of the stress relaxed during strain holding is dependent on both, the magnitude of the flow stress and the spread of the resolved shear stress distribution. The magnitude of strain accumulated during stress holding is, on the other hand, dependent on the magnitude of the hardening rate and on the spread of the resolved shear stress distribution. Furthermore, the internal elastic strains are directly correlated with the stress state, and hence the stress relaxation during strain holds has a greater influence on the lattice strains than strain relaxation during stress holds.« less
Physics-Based Crystal Plasticity Modeling of Single Crystal Niobium
NASA Astrophysics Data System (ADS)
Maiti, Tias
Crystal plasticity models based on thermally activated dislocation kinetics has been successful in predicting the deformation behavior of crystalline materials, particularly in face-centered cubic (fcc) metals. In body-centered cubic (bcc) metals success has been limited owing to ill-defined slip planes. The flow stress of a bcc metal is strongly dependent on temperature and orientation due to the non-planar splitting of a/2 screw dislocations. As a consequence of this, bcc metals show two unique deformation characteristics: (a) thermally-activated glide of screw dislocations--the motion of screw components with their non-planar core structure at the atomistic level occurs even at low stress through the nucleation (assisted by thermal activation) and lateral propagation of dislocation kink pairs; (b) break-down of the Schmid Law, where dislocation slip is driven only by the resolved shear stress. Since the split dislocation core has to constrict for a kink pair formation (and propagation), the non-planarity of bcc screw dislocation cores entails an influence of (shear) stress components acting on planes other than the primary glide plane on their mobility. Another consequence of the asymmetric core splitting on the glide plane is a direction-sensitive slip resistance, which is termed twinning/atwinning sense of shear and should be taken into account when developing constitutive models. Modeling thermally-activated flow including the above-mentioned non-Schmid effects in bcc metals has been the subject of much work, starting in the 1980s and gaining increased interest in recent times. The majority of these works focus on single crystal deformation of commonly used metals such as Iron (Fe), Molybdenum (Mo), and Tungsten (W), while very few published studies address deformation behavior in Niobium (Nb). Most of the work on Nb revolves around fitting parameters of phenomenological descriptions, which do not capture adequately the macroscopic multi-stage hardening behavior and evolution of crystallographic texture from a physical point of view. Therefore, we aim to develop a physics-based crystal plasticity model that can capture these effects as a function of grain orientations, microstructure parameters, and temperature. To achieve this goal, first, a new dilatational constitutive model is developed for simulating the deformation of non-compact geometries (foams or geometries with free surfaces) using the spectral method. The model has been used to mimic the void-growth behavior of a biaxially loaded plate with a circular inclusion. The results show that the proposed formulation provides a much better description of void-like behavior compared to the pure elastic behavior of voids. Using the developed dilatational framework, periodic boundary conditions arising from the spectral solver has been relaxed to study the tensile deformation behavior of dogbone-shaped Nb single crystals. Second, a dislocation density-based constitutive model with storage and recovery laws derived from Discrete Dislocation Dynamics (DDD) is implemented to model multi-stage strain hardening. The influence of pre-deformed dislocation content, dislocation interaction strengths and mean free path on stage II hardening is then simulated and compared with in-situ tensile experiments.
Modeling the Temperature Rise at the Tip of a Fast Crack
1989-08-01
plastic deformation in the plastic zone, the strain rate and the temperature dependence of the flow stress have been incorporated in the determination ...of dislocation generation in the plastic zone. The stress field 1 associated with a moving elastic crack tip is used to determine the increment of...yield stress and the crack tip stress field for a given mode of the applied stress. The fracture toughness of several materials, determined
Hall-petch law revisited in terms of collective dislocation dynamics.
Louchet, François; Weiss, Jérôme; Richeton, Thiebaud
2006-08-18
The Hall-Petch (HP) law, that accounts for the effect of grain size on the plastic yield stress of polycrystals, is revisited in terms of the collective motion of interacting dislocations. Sudden relaxation of incompatibility stresses in a grain triggers aftershocks in the neighboring ones. The HP law results from a scaling argument based on the conservation of the elastic energy during such transfers. The Hall-Petch law breakdown for nanometric sized grains is shown to stem from the loss of such a collective behavior as grains start deforming by successive motion of individual dislocations.
The size effects upon shock plastic compression of nanocrystals
NASA Astrophysics Data System (ADS)
Malygin, G. A.; Klyavin, O. V.
2017-10-01
For the first time a theoretical analysis of scale effects upon the shock plastic compression of nanocrystals is implemented in the context of a dislocation kinetic approach based on the equations and relationships of dislocation kinetics. The yield point of crystals τy is established as a quantitative function of their cross-section size D and the rate of shock deformation as τy ɛ2/3 D. This dependence is valid in the case of elastic stress relaxation on account of emission of dislocations from single-pole Frank-Read sources near the crystal surface.
Dynamic Processes in Nanostructured Crystals Under Ion Irradiation
NASA Astrophysics Data System (ADS)
Uglov, V. V.; Kvasov, N. T.; Shimanski, V. I.; Safronov, I. V.; Komarov, N. D.
2018-02-01
The paper presents detailed investigations of dynamic processes occurring in nanostructured Si(Fe) material under the radiation exposure, namely: heating, thermoelastic stress generation, elastic disturbances of the surrounding medium similar to weak shock waves, and dislocation generation. The performance calculations are proposed for elastic properties of the nanostructured material with a glance to size effects in nanoparticles.
Finite Element modelling of deformation induced by interacting volcanic sources
NASA Astrophysics Data System (ADS)
Pascal, Karen; Neuberg, Jürgen; Rivalta, Eleonora
2010-05-01
The displacement field due to magma movements in the subsurface is commonly modelled using the solutions for a point source (Mogi, 1958), a finite spherical source (McTigue, 1987), or a dislocation source (Okada, 1992) embedded in a homogeneous elastic half-space. When the magmatic system comprises more than one source, the assumption of homogeneity in the half-space is violated and several sources are combined, their respective deformation field being summed. We have investigated the effects of neglecting the interaction between sources on the surface deformation field. To do so, we calculated the vertical and horizontal displacements for models with adjacent sources and we tested them against the solutions of corresponding numerical 3D finite element models. We implemented several models combining spherical pressure sources and dislocation sources, varying their relative position. Furthermore we considered the impact of topography, loading, and magma compressibility. To quantify the discrepancies and compare the various models, we calculated the difference between analytical and numerical maximum horizontal or vertical surface displacements.We will demonstrate that for certain conditions combining analytical sources can cause an error of up to 20%. References: McTigue, D. F. (1987), Elastic Stress and Deformation Near a Finite Spherical Magma Body: Resolution of the Point Source Paradox, J. Geophys. Res. 92, 12931-12940. Mogi, K. (1958), Relations between the eruptions of various volcanoes and the deformations of the ground surfaces around them, Bull Earthquake Res Inst, Univ Tokyo 36, 99-134. Okada, Y. (1992), Internal Deformation Due to Shear and Tensile Faults in a Half-Space, Bulletin of the Seismological Society of America 82(2), 1018-1040.
Mechanism of underthrusting in southwest Japan: A model of convergent plate interactions
NASA Technical Reports Server (NTRS)
Fitch, T. J.; Scholz, C. H.
1971-01-01
An elastic rebound mechanism consistent with underthrusting at the time of the magnitude 8.2 Nankaido earthquake of 21 December, 1946 accounts for a reversal in sense between seismic and preseismic changes in elevation throughout a large portion of southwest Japan. It is shown that the seismic movements during the earthquake were generated by slip on a complex thrust fault that is inferred to intersect the surface near the base of the continental slope. The preseismic deformation is explained by strain accumulation equivalent to a virtual dislocation with the same orientation as the fault surface but a sense opposite to that of the real dislocation that occurred at the time of the earthquake. Adjustments by slip along the fault surface and extensions of that surface can account for postseismic movements.
A revised dislocation model of interseismic deformation of the Cascadia subduction zone
Wang, Kelin; Wells, Ray E.; Mazzotti, Stephane; Hyndman, Roy D.; Sagiya, Takeshi
2003-01-01
CAS3D‐2, a new three‐dimensional (3‐D) dislocation model, is developed to model interseismic deformation rates at the Cascadia subduction zone. The model is considered a snapshot description of the deformation field that changes with time. The effect of northward secular motion of the central and southern Cascadia forearc sliver is subtracted to obtain the effective convergence between the subducting plate and the forearc. Horizontal deformation data, including strain rates and surface velocities from Global Positioning System (GPS) measurements, provide primary geodetic constraints, but uplift rate data from tide gauges and leveling also provide important validations for the model. A locked zone, based on the results of previous thermal models constrained by heat flow observations, is located entirely offshore beneath the continental slope. Similar to previous dislocation models, an effective zone of downdip transition from locking to full slip is used, but the slip deficit rate is assumed to decrease exponentially with downdip distance. The exponential function resolves the problem of overpredicting coastal GPS velocities and underpredicting inland velocities by previous models that used a linear downdip transition. A wide effective transition zone (ETZ) partially accounts for stress relaxation in the mantle wedge that cannot be simulated by the elastic model. The pattern of coseismic deformation is expected to be different from that of interseismic deformation at present, 300 years after the last great subduction earthquake. The downdip transition from full rupture to no slip should take place over a much narrower zone.
Interaction of irradiation-induced prismatic dislocation loops with free surfaces in tungsten
NASA Astrophysics Data System (ADS)
Fikar, Jan; Gröger, Roman; Schäublin, Robin
2017-02-01
The prismatic dislocation loops appear in metals as a result of high-energy irradiation. Understanding their formation and interaction is important for quantification of irradiation-induced deterioration of mechanical properties. Characterization of dislocation loops in thin foils is commonly made using transmission electron microscopy (TEM), but the results are inevitably influenced by the proximity of free surfaces. The prismatic loops are attracted to free surfaces by image forces. Depending on the type, size and depth of the loop in the foil, they can escape to the free surface, thus invalidating TEM observations and conclusions. In this article small prismatic hexagonal and circular dislocation loops in tungsten with the Burgers vectors 1/2 〈 1 1 1 〉 and 〈 1 0 0 〉 are studied by molecular statics simulations using three embedded atom method (EAM) potentials. The calculated image forces are compared to known elastic solutions. A particular attention is paid to the critical stress to move edge dislocations. The escape of the loop to the free surface is quantified by a combination of atomistic simulations and elastic calculations. For example, for the 1/2 〈 1 1 1 〉 loop with diameter 7.4 nm in a 55 nm thick foil we calculated that about one half of the loops will escape to the free surface. This implies that TEM observations detect only approx. 50% of the loops that were originally present in the foil.
Band-Like Behavior of Localized States of Metal Silicide Precipitate in Silicon
NASA Astrophysics Data System (ADS)
Bondarenko, Anton; Vyvenko, Oleg
2018-03-01
Deep-level transient spectroscopy (DLTS) investigations of energy levels of charge-carrier traps associated with precipitates of metal silicide often show that they behave not like localized monoenergetic traps but as a continuous density of allowed states in the bandgap with fast carrier exchange between these states, so-called band-like behavior. This kind of behavior was ascribed to the dislocation loop bounding the platelet, which in addition exhibits an attractive potential caused by long-range elastic strain. In previous works, the presence of the dislocation-related deformation potential in combination with the external electric field of the Schottky diode was included to obtain a reasonable fit of the proposed model to experimental data. Another well-known particular property of extended defects—the presence of their own strong electric field in their vicinity that is manifested in the logarithmic kinetics of electron capture—was not taken into account. We derive herein a theoretical model that takes into account both the external electric field and the intrinsic electric field of dislocation self-charge as well as its deformation potential, which leads to strong temporal variation of the activation energy during charge-carrier emission. We performed numerical simulations of the DLTS spectra based on such a model for a monoenergetic trap, finding excellent agreement with available experimental data.
Structure of screw dislocation core in Ta at high pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shaofeng, E-mail: sfwang@cqu.edu.cn; Jiang, Na; Wang, Rui
2014-03-07
The core structure and Peierls stress of the 1/2 〈111〉(110) screw dislocation in Ta have been investigated theoretically using the modified Peierls–Nabarro theory that takes into account the discreteness effect of crystal. The lattice constants, the elastic properties, and the generalized-stacking-fault energy(γ-surface) under the different pressures have been calculated from the electron density functional theory. The core structure of dislocation is determined by the modified Peierls equation, and the Peierls stress is evaluated from the dislocation energy that varies periodically as dislocation moves. The results show the core width and Peierls stress in Ta are weakly dependent of the pressuremore » up to 100 GPa when the length and stress are measured separately by the Burgers vector b and shear modulus μ. This indicates that core structure is approximately scaling invariant for the screw dislocation in Ta. The scaled plasticity of Ta changes little in high pressure environment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Long, Fei; Daymond, Mark R., E-mail: mark.daymond@queensu.ca; Yao, Zhongwen
Thin foil dog bone samples prepared from a hot rolled Zr-2.5Nb alloy have been deformed by tensile deformation to different plastic strains. The development of slip traces during loading was observed in situ through SEM, revealing that deformation starts preferentially in certain sets of grains during the elastic-plastic transition region. TEM characterization showed that sub-grain boundaries formed during hot rolling consisted of screw 〈a〉 dislocations or screw 〈c〉 and 〈a〉 dislocations. Prismatic 〈a〉 dislocations with large screw or edge components have been identified from the sample with 0.5% plastic strain. Basal 〈a〉 and pyramidal 〈c + a〉 dislocations were found in themore » sample that had been deformed with 1.5% plastic strain, implying that these dislocations require larger stresses to be activated.« less
Nonlinear acoustics and honeycomb materials
NASA Astrophysics Data System (ADS)
Thompson, D. O.
2012-05-01
The scope of research activity that Bruce Thompson embraced was very large. In this talk three different research topics that the author shared with Bruce are reviewed. They represent Bruce's introduction to NDE and include nonlinear acoustics, nondestructive measurements of adhesive bond strengths in honeycomb panels, and studies of flexural wave dispersion in honeycomb materials. In the first of these, four harmonics of a 30 Mhz finite amplitude wave were measured for both fused silica and aluminum single crystals with varying lengths and amounts of cold work using a capacity microphone with heterodyne receiver with a flat frequency response from 30 to 250 Mhz. The results for fused silica with no dislocation structure could be described by a model due to Fubini, originally developed for gases, that depends upon only the second and third order elastic constants and not the fourth and higher order constants. The same was not true for the aluminum with dislocation structures. These results raised some questions about models for harmonic generation in materials with dislocations. In the second topic, experiments were made to determine the adhesive bond strengths of honeycomb panels using the vibrational response of the panels (Chladni figures). The results showed that both the damping characteristics of panel vibrations as a whole and velocity of propagation of elastic waves that travel along the surface and sample the bondline can be correlated with destructively determined bond strengths. Finally, the phase velocity of flexural waves traveling along a 1-inch honeycomb sandwich panel was determined from 170 Hz to 50 Khz, ranging from 2.2×104 cm/sec at the low end to 1.18×105 cm/sec at 40 Khz. The dispersion arises from the finite thickness of the panel and agreed with the results of continuum models for the honeycomb. Above 40 Khz, this was not the case. The paper concludes with a tribute to Bruce for his many wonderful contributions and lessons beyond his technical legacy for all of us.
Superclimbing dislocation with a Coulomb-type interaction between jogs
NASA Astrophysics Data System (ADS)
Liu, Longxiang; Kuklov, Anatoly B.
2018-03-01
The main candidate for the superfluid pathways in solid 4He are dislocations with Burgers vector along the hcp symmetry axis. Here we focus on the quantum behavior of a generic edge dislocation which can perform superclimb; that is, it can climb due to the superflow along its core. The role of the long-range elastic interactions between jogs is addressed by Monte Carlo simulations. It is found that such interactions do not change qualitatively the phase diagram found without accounting for the long-range forces. Their main effect consists of renormalizing the effective scale determining the compressibility of the dislocation in the Tomonaga-Luttinger liquid phase. It is also found that the quantum rough phase of the dislocation can be well described within the Gaussian approximation which features off-diagonal long-range order (ODLRO) in one dimension for the superfluid order parameter along the core.
Geodetic exploration of strain along the El Pilar Fault in northeastern Venezuela
NASA Astrophysics Data System (ADS)
Reinoza, C.; Jouanne, F.; Audemard, F. A.; Schmitz, M.; Beck, C.
2015-03-01
We use Global Navigation Satellite Systems observations in northeastern Venezuela to constrain the El Pilar Fault (EPF) kinematics and to explore the effects of the variable elastic properties of the surrounding medium and of the fault geometry on inferred slip rates and locking depth. The velocity field exhibits an asymmetric velocity gradient on either side of the EPF. We use five different approaches to explore possible models to explain this asymmetry. First, we infer a 1.6 km locking depth using a classic elastic half-space dislocation model. Second, we infer a 1.5 km locking depth and a 0.33 asymmetry coefficient using a heterogeneous asymmetric model, including contrasting material properties on either side of a vertical fault, suggesting that the igneous-metamorphic terranes on the northern side are ~2 times more rigid than the sedimentary southern side. Third, we use a three-dimensional elastostatic model to evaluate the presence of a compliant zone, suggesting a 30% reduction of rigidity in the upper 3 km at the depth of a 1 to 5 km wide fault zone. Fourth, we evaluate the distribution of fault slip, revealing a widespread partial creep pattern in the eastern upper segment, while the upper western segment exhibits a partially locked area, which coincides with the rupture surface of the 1797 and 1929 earthquakes. To supplement these models, we upgrade the previously published displacement simulation method using nonvertical dislocations with data acquired between 2003 and 2013. The localized aseismic displacement pattern associated with creeping or partially creeping fault segments could explain the low level of historic seismicity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tianlei; Gao, Yanfei; Bei, Hongbin
2011-01-01
Instrumented nanoindentation techniques have been widely used to characterize the small-scale mechanical behavior of materials. The elastic-plastic transition during nanoindentation is often indicated by a sudden displacement burst (pop-in) in the measured load-displacement curve. In defect-free single crystals, the pop-in is believed to be the result of homogeneous dislocation nucleation because the maximum shear stress corresponding to the pop-in load approaches the theoretical strength of the materials and because the statistical distribution of pop-in stresses is consistent with what is expected for a thermally activated process of homogeneous dislocation nucleation. This paper investigates whether this process is affected by crystallographymore » and stress components other than the resolved shear stress. A Stroh formalism coupled with the two-dimensional Fourier transformation is used to derive the analytical stress fields in elastically anisotropic solids under Hertzian contact, which allows the determination of an indentation Schmid factor, namely, the ratio of maximum resolved shear stress to the maximum contact pressure. Nanoindentation tests were conducted on B2-structured NiAl single crystals with different surface normal directions. This material was chosen because it deforms at room temperature by {110}<001> slip and thus avoids the complexity of partial dislocation nucleation. Good agreement is obtained between the experimental data and the theoretically predicted orientation dependence of pop-in loads based on the indentation Schmid factor. Pop-in load is lowest for indentation directions close to <111> and highest for those close to <001>. In nanoindentation, since the stress component normal to the slip plane is typically comparable in magnitude to the resolved shear stress, we find that the pressure sensitivity of homogeneous dislocation nucleation cannot be determined from pop-in tests. Our statistical measurements generally confirm the thermal activation model of homogeneous dislocation nucleation. That is, the extracted dependence of activation energy on resolved shear stress is almost the same for all the indentation directions considered in this study, except for those close to <001>. Because very high pop-in loads are measured for orientations close to <001>, which implies a large contact area at pop-in, there is a higher probability of activating pre-existing dislocations in these orientations, which may explain the discrepancy near <001>.« less
The Earth isn't flat: The (large) influence of topography on geodetic fault slip imaging.
NASA Astrophysics Data System (ADS)
Thompson, T. B.; Meade, B. J.
2017-12-01
While earthquakes both occur near and generate steep topography, most geodetic slip inversions assume that the Earth's surface is flat. We have developed a new boundary element tool, Tectosaur, with the capability to study fault and earthquake problems including complex fault system geometries, topography, material property contrasts, and millions of elements. Using Tectosaur, we study the model error induced by neglecting topography in both idealized synthetic fault models and for the cases of the MW=7.3 Landers and MW=8.0 Wenchuan earthquakes. Near the steepest topography, we find the use of flat Earth dislocation models may induce errors of more than 100% in the inferred slip magnitude and rake. In particular, neglecting topographic effects leads to an inferred shallow slip deficit. Thus, we propose that the shallow slip deficit observed in several earthquakes may be an artefact resulting from the systematic use of elastic dislocation models assuming a flat Earth. Finally, using this study as an example, we emphasize the dangerous potential for forward model errors to be amplified by an order of magnitude in inverse problems.
NASA Astrophysics Data System (ADS)
Wallis, D.; Hansen, L. N.; Kempton, I.; Wilkinson, A. J.
2017-12-01
Geodynamic phenomena, including glacial isostatic adjustment and postseismic deformation, can involve transient deformation in response to changes in differential stress acting on mantle rocks. As such, rheological models of transient deformation are incorporated in predictions of associated processes, including sea-level rise and stress redistribution after earthquakes. However, experimental constraints on rheological models for transient deformation of mantle materials are sparse. In particular, experiments involving stress reductions have been lacking. Moreover, a material's response to a reduction in stress can provide clues to the microphysical processes controlling deformation. To constrain models of transient deformation of mantle rocks we performed stress-reduction tests on single crystals of olivine at 1250-1300°C. Mechanical and piezoelectric actuators controlled constant initial stress during creep. At various strain intervals stress was reduced near-instantaneously using the piezoelectric actuator, inducing both elastic and anelastic (time-dependent) lengthening of the samples. A range of magnitudes of stress reduction were applied, typically unloading 10-90% of the initial stress. High-angular resolution electron backscatter diffraction (HR-EBSD), based on cross-correlation of diffraction patterns, was used to map dislocation density and elastic strain distributions in the recovered samples. Magnitudes of anelastic back-strain increase with increasing magnitudes of stress reduction and show a marked increase when stress reductions exceed 50% of the initial stress, consistent with previous observations in metals and alloys. This observation is inconsistent with the Burgers rheological model commonly used to describe transient behaviour and suggests that the style of rheological behaviour depends on the magnitude of stress change. HR-EBSD maps reveal that the crystal lattices are smoothly curved and generally lack subgrain boundaries and elastic strain heterogeneities. The dependence of the anelastic behaviour on the initial stress, combined with the lack of subgrain boundaries, suggest that the anelastic behaviour is controlled by local interactions between dislocations, rather than resistance imposed by the lattice or subgrain boundaries.
Mishra, Srishti; Meraj, Md; Pal, Snehanshu
2018-06-19
A large-scale molecular dynamics (MD) simulation of nano-indentation was carried out to provide insight into the influence of the Al-Al 2 O 3 interface on dislocation evolution and deformation behavior of Al substrate coated with Al 2 O 3 thin film. Adaptive common neighbor analysis (a-CNA), centro-symmetry parameter (CSP) estimation, and dislocation extraction algorithm (DXA) were implemented to represent structural evolution during nano-indentation deformation. The absence of elastic regime was observed in the P-h curve for this simulated nano-indentation test of Al 2 O 3 thin film coated Al specimen. The displacement of oxygen atoms from Al 2 O 3 to Al partly through the interface greatly influences the plastic deformation behavior of the specimen during nano-indentation. Prismatic dislocation loops, which are formed due to pinning of Shockley partials (1/6 < 112>) by Stair-rod (1/6 < 110>) and Hirth dislocation (1/3 < 001>), were observed in all cases studied in this work. Pile-up of atoms was also observed and the extent of the pile-up was found to vary with the test temperature. A distorted stacking fault tetrahedron (SFT) is formed when a nano-indentation test is carried out at 100 K. The presence of a prismatic dislocation loop, SFT and dislocation forest caused strain hardening and, consequently, there is an increase in hardness as indentation depth increases. Graphical abstract Figure illustrates nano-indentation model set up along with load vs. depth curve and distorted stacking fault tetrahedron.
Generalized continuum modeling of scale-dependent crystalline plasticity
NASA Astrophysics Data System (ADS)
Mayeur, Jason R.
The use of metallic material systems (e.g. pure metals, alloys, metal matrix composites) in a wide range of engineering applications from medical devices to electronic components to automobiles continues to motivate the development of improved constitutive models to meet increased performance demands while minimizing cost. Emerging technologies often incorporate materials in which the dominant microstructural features have characteristic dimensions reaching into the submicron and nanometer regime. Metals comprised of such fine microstructures often exhibit unique and size-dependent mechanical response, and classical approaches to constitutive model development at engineering (continuum) scales, being local in nature, are inadequate for describing such behavior. Therefore, traditional modeling frameworks must be augmented and/or reformulated to account for such phenomena. Crystal plasticity constitutive models have proven quite capable of capturing first-order microstructural effects such as grain orientation (elastic/plastic anisotropy), grain morphology, phase distribution, etc. on the deformation behavior of both single and polycrystals, yet suffer from the same limitations as other local continuum theories with regard to capturing scale-dependent mechanical response. This research is focused on the development, numerical implementation, and application of a generalized (nonlocal) theory of single crystal plasticity capable of describing the scale-dependent mechanical response of both single and polycrystalline metals that arises as a result of heterogeneous deformation. This research developed a dislocation-based theory of micropolar single crystal plasticity. The majority of nonlocal crystal plasticity theories are predicated on the connection between gradients of slip and geometrically necessary dislocations. Due to the diversity of existing nonlocal crystal plasticity theories, a review, summary, and comparison of representative model classes is presented in Chapter 2 from a unified dislocation-based perspective. The discussion of the continuum crystal plasticity theories is prefaced by a brief review of discrete dislocation plasticity, which facilitates the comparison of certain model aspects and also serves as a reference for latter segments of the research which make connection to this constitutive description. Chapter 2 has utility not only as a literature review, but also as a synthesis and analysis of competing and alternative nonlocal crystal plasticity modeling strategies from a common viewpoint. The micropolar theory of single crystal plasticity is presented in Chapter 3. Two different types of flow criteria are considered - the so-called single and multicriterion theories, and several variations of the dislocation-based strength models appropriate for each theory are presented and discussed. The numerical implementation of the two-dimensional version of the constitutive theory is given in Chapter 4. A user element subroutine for the implicit commercial finite element code Abaqus/Standard is developed and validated through the solution of initial-boundary value problems with closed-form solutions. Convergent behavior of the subroutine is also demonstrated for an initial-boundary value problem exhibiting strain localization. In Chapter 5, the models are employed to solve several standard initial-boundary value problems for heterogeneously deforming single crystals including simple shearing of a semi-infinite constrained thin film, pure bending of thin films, and simple shearing of a metal matrix composite with elastic inclusions. The simulation results are compared to those obtained from the solution of equivalent boundary value problems using discrete dislocation dynamics and alternative generalized crystal plasticity theories. Comparison and calibration with respect to the former provides guidance in the specification of non-traditional material parameters that arise in the model formulation and demonstrates its effectiveness at capturing the heterogeneous deformation fields and size-dependent mechanical behavior predicted by a finer scale constitutive description. Finally, in Chapter 6, the models are applied to simulate the deformation behavior of small polycrystalline ensembles. Several grain boundary constitutive descriptions are explored and the response characteristics are analyzed with respect to experimental observations as well as results obtained from discrete dislocation dynamics and alternative nonlocal crystal plasticity theories. Particular attention is focused on how the various grain boundary descriptions serve to either locally concentrate or diffuse deformation heterogeneity as a function of grain size.
NASA Astrophysics Data System (ADS)
Wu, Cheng-Da; Tsai, Hsing-Wei
2018-06-01
The effect of temperature on the structural evolution of nanocrystalline (NC) and single-crystalline (SC) Au nanowires (NWs) under torsional deformation is studied using molecular dynamics simulations based on the many-body embedded-atom potential. The effect is investigated using common neighbor analysis and discussed in terms of shear strain distribution and atomic flow field. The simulation results show that deformation for NC NWs is mainly driven by the nucleation and propagation of dislocations and the gliding of grain boundaries (GBs) and that for SC NWs is mainly driven by dislocations and the formation of disordered structures. Dislocations for NC and SC NWs easily nucleate at GBs and free surfaces, respectively. For NC NWs, torsional buckling occurs easily at GBs with large gliding. SC NWs have a more uniform and larger elastic deformation under torsion compared to that for NC NWs due to the former's lack of grains. SC NWs have a long period of elastic deformation transforming into plastic deformation. Increasing temperature facilitates stress transmission throughout NWs.
Grain-size-yield stress relationship: Analysis and computation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyers, M.A.; Benson, D.J.; Fu, H.H.
1999-07-01
The seminal contributions of Julia Weertman to the understanding of the mechanical properties of nanocrystalline materials will be briefly outlined. A constitutive equation predicting the effect of grain size on the yield stress of metals, based on the model proposed by M.A. Meyers and E. Ashworth, is discussed and extended to the nanocrystalline regime. At large grain sizes, it has the Hall-Petch form, and in the nanocrystalline domain the slope gradually decreases until it asymptotically approaches the flow stress of the grain boundaries. The material is envisaged as a composite, comprised of the grain interior, with flow stress {sigma}{sub fB},more » and grain boundary work-hardened layer, with flow stress {sigma}{sub fGB}. Three principal factors contribute to the grain-boundary hardening: (1) the grain boundaries act as barriers to plastic flow; (2) the grain boundaries act as dislocation sources; and (3) elastic anisotropy causes additional stresses in grain-boundary surroundings. The predictions of this model are compared with experimental measurements over the mono, micro, and nanocrystalline domains. Computational predictions are made of plastic flow as a function of grain size incorporating elastic and plastic anisotropy as well as differences of dislocation accumulation rate in grain boundary regions and grain interiors. This is the first plasticity calculation that accounts for grain size effects in a physically-based manner. 58 refs., 7 figs., 1 tab.« less
Size effects under homogeneous deformation of single crystals: A discrete dislocation analysis
NASA Astrophysics Data System (ADS)
Guruprasad, P. J.; Benzerga, A. A.
Mechanism-based discrete dislocation plasticity is used to investigate the effect of size on micron scale crystal plasticity under conditions of macroscopically homogeneous deformation. Long-range interactions among dislocations are naturally incorporated through elasticity. Constitutive rules are used which account for key short-range dislocation interactions. These include junction formation and dynamic source and obstacle creation. Two-dimensional calculations are carried out which can handle high dislocation densities and large strains up to 0.1. The focus is laid on the effect of dimensional constraints on plastic flow and hardening processes. Specimen dimensions ranging from hundreds of nanometers to tens of microns are considered. Our findings show a strong size-dependence of flow strength and work-hardening rate at the micron scale. Taylor-like hardening is shown to be insufficient as a rationale for the flow stress scaling with specimen dimensions. The predicted size effect is associated with the emergence, at sufficient resolution, of a signed dislocation density. Heuristic correlations between macroscopic flow stress and macroscopic measures of dislocation density are sought. Most accurate among those is a correlation based on two state variables: the total dislocation density and an effective, scale-dependent measure of signed density.
Shock-induced Plasticity and Brittle Cracks in Aluminum Nitride
NASA Astrophysics Data System (ADS)
Branicio, Paulo; Kalia, Rajiv
2005-03-01
Two hundred and nine million atom molecular-dynamics simulation of hypervelocity projectile impact in aluminum nitride reveals strong interplay between shock-induced structural phase transformation, plastic deformation and brittle cracks. The shock wave splits into an elastic precursor and a wurtzite-to-rocksalt structural transformation wave. When the elastic wave reflected from the boundary of the sample interacts with the transformation wave front, nanocavities are generated along the penetration path of the projectile and dislocations in adjacent regions. The nanocavities coalesce to form mode I brittle cracks while dislocations generate kink bands that give rise to mode II cracks. These simulations provide a microscopic view of defects associated with simultaneous tensile and shear cracking at the structural phase transformation boundary due to shock impact in high-strength ceramics.
Tailoring Superconductivity with Quantum Dislocations.
Li, Mingda; Song, Qichen; Liu, Te-Huan; Meroueh, Laureen; Mahan, Gerald D; Dresselhaus, Mildred S; Chen, Gang
2017-08-09
Despite the established knowledge that crystal dislocations can affect a material's superconducting properties, the exact mechanism of the electron-dislocation interaction in a dislocated superconductor has long been missing. Being a type of defect, dislocations are expected to decrease a material's superconducting transition temperature (T c ) by breaking the coherence. Yet experimentally, even in isotropic type I superconductors, dislocations can either decrease, increase, or have little influence on T c . These experimental findings have yet to be understood. Although the anisotropic pairing in dirty superconductors has explained impurity-induced T c reduction, no quantitative agreement has been reached in the case a dislocation given its complexity. In this study, by generalizing the one-dimensional quantized dislocation field to three dimensions, we reveal that there are indeed two distinct types of electron-dislocation interactions. Besides the usual electron-dislocation potential scattering, there is another interaction driving an effective attraction between electrons that is caused by dislons, which are quantized modes of a dislocation. The role of dislocations to superconductivity is thus clarified as the competition between the classical and quantum effects, showing excellent agreement with existing experimental data. In particular, the existence of both classical and quantum effects provides a plausible explanation for the illusive origin of dislocation-induced superconductivity in semiconducting PbS/PbTe superlattice nanostructures. A quantitative criterion has been derived, in which a dislocated superconductor with low elastic moduli and small electron effective mass and in a confined environment is inclined to enhance T c . This provides a new pathway for engineering a material's superconducting properties by using dislocations as an additional degree of freedom.
LibHalfSpace: A C++ object-oriented library to study deformation and stress in elastic half-spaces
NASA Astrophysics Data System (ADS)
Ferrari, Claudio; Bonafede, Maurizio; Belardinelli, Maria Elina
2016-11-01
The study of deformation processes in elastic half-spaces is widely employed for many purposes (e.g. didactic, scientific investigation of real processes, inversion of geodetic data, etc.). We present a coherent programming interface containing a set of tools designed to make easier and faster the study of processes in an elastic half-space. LibHalfSpace is presented in the form of an object-oriented library. A set of well known and frequently used source models (Mogi source, penny shaped horizontal crack, inflating spheroid, Okada rectangular dislocation, etc.) are implemented to describe the potential usage and the versatility of the library. The common interface given to library tools enables us to switch easily among the effects produced by different deformation sources that can be monitored at the free surface. Furthermore, the library also offers an interface which simplifies the creation of new source models exploiting the features of object-oriented programming (OOP). These source models can be built as distributions of rectangular boundary elements. In order to better explain how new models can be deployed some examples are included in the library.
Nanocrystalline copper films are never flat
NASA Astrophysics Data System (ADS)
Zhang, Xiaopu; Han, Jian; Plombon, John J.; Sutton, Adrian P.; Srolovitz, David J.; Boland, John J.
2017-07-01
We used scanning tunneling microscopy to study low-angle grain boundaries at the surface of nearly planar copper nanocrystalline (111) films. The presence of grain boundaries and their emergence at the film surface create valleys composed of dissociated edge dislocations and ridges where partial dislocations have recombined. Geometric analysis and simulations indicated that valleys and ridges were created by an out-of-plane grain rotation driven by reduction of grain boundary energy. These results suggest that in general, it is impossible to form flat two-dimensional nanocrystalline films of copper and other metals exhibiting small stacking fault energies and/or large elastic anisotropy, which induce a large anisotropy in the dislocation-line energy.
Triangular dislocation: an analytical, artefact-free solution
NASA Astrophysics Data System (ADS)
Nikkhoo, Mehdi; Walter, Thomas R.
2015-05-01
Displacements and stress-field changes associated with earthquakes, volcanoes, landslides and human activity are often simulated using numerical models in an attempt to understand the underlying processes and their governing physics. The application of elastic dislocation theory to these problems, however, may be biased because of numerical instabilities in the calculations. Here, we present a new method that is free of artefact singularities and numerical instabilities in analytical solutions for triangular dislocations (TDs) in both full-space and half-space. We apply the method to both the displacement and the stress fields. The entire 3-D Euclidean space {R}3 is divided into two complementary subspaces, in the sense that in each one, a particular analytical formulation fulfils the requirements for the ideal, artefact-free solution for a TD. The primary advantage of the presented method is that the development of our solutions involves neither numerical approximations nor series expansion methods. As a result, the final outputs are independent of the scale of the input parameters, including the size and position of the dislocation as well as its corresponding slip vector components. Our solutions are therefore well suited for application at various scales in geoscience, physics and engineering. We validate the solutions through comparison to other well-known analytical methods and provide the MATLAB codes.
The high temperature impact response of tungsten and chromium
NASA Astrophysics Data System (ADS)
Zaretsky, E. B.; Kanel, G. I.
2017-09-01
The evolution of elastic-plastic shock waves has been studied in pure polycrystalline tungsten and chromium at room and elevated temperatures over propagation distances ranging from 0.05 to 3 mm (tungsten) and from 0.1 to 2 mm (chromium). The use of fused silica windows in all but one experiment with chromium and in several high temperature experiments with tungsten led to the need for performing shock and optic characterization of these windows over the 300-1200 K temperature interval. Experiments with tungsten and chromium samples showed that annealing of the metals transforms the initial ramping elastic wave into a jump-like wave, substantially increasing the Hugoniot elastic limits of the metals. With increased annealing time, the spall strength of the two metals slightly increases. Both at room and at high temperatures, the elastic precursor in the two metals decays in two distinct regimes. At propagation distances smaller than ˜1 mm (tungsten) or ˜0.5 mm (chromium), decay is fast, with the dislocation motion and multiplication being controlled by phonon viscous drag. At greater distances, the rate of decay becomes much lower, with control of the plastic deformation being passed to the thermally activated generation and motion of dislocation double-kinks. The stress at which this transition takes place virtually coincides with the Peierls stress τP of the active glide system. Analysis of the annealing effects in both presently and previously studied BCC metals (i.e., Ta, V, Nb, Mo, W, and Cr) and of the dependencies of their normalized Peierls stresses τP(θ) /τP(0 ) on the normalized temperature θ=T /Tm allows one to conclude that the non-planar, split into several glide planes, structure of the dislocation core in these metals is mainly responsible for their plastic deformation features.
The application of an atomistic J-integral to a ductile crack.
Zimmerman, Jonathan A; Jones, Reese E
2013-04-17
In this work we apply a Lagrangian kernel-based estimator of continuum fields to atomic data to estimate the J-integral for the emission dislocations from a crack tip. Face-centered cubic (fcc) gold and body-centered cubic (bcc) iron modeled with embedded atom method (EAM) potentials are used as example systems. The results of a single crack with a K-loading compare well to an analytical solution from anisotropic linear elastic fracture mechanics. We also discovered that in the post-emission of dislocations from the crack tip there is a loop size-dependent contribution to the J-integral. For a system with a finite width crack loaded in simple tension, the finite size effects for the systems that were feasible to compute prevented precise agreement with theory. However, our results indicate that there is a trend towards convergence.
NASA Astrophysics Data System (ADS)
Dudarev, S. L.; Ma, Pui-Wai
2018-03-01
Density functional theory (DFT) calculations show that self-interstitial atom (SIA) defects in nonmagnetic body-centered-cubic (bcc) metals adopt strongly anisotropic configurations, elongated in the <111 > direction [S. Han et al., Phys. Rev. B 66, 220101 (2002), 10.1103/PhysRevB.66.220101; D. Nguyen-Manh et al., Phys. Rev. B 73, 020101 (2006), 10.1103/PhysRevB.73.020101; P. M. Derlet et al., Phys. Rev. B 76, 054107 (2007), 10.1103/PhysRevB.76.054107; S. L. Dudarev, Annu. Rev. Mater. Res. 43, 35 (2013), 10.1146/annurev-matsci-071312-121626]. Elastic distortions, associated with such anisotropic atomic structures, appear similar to distortions around small prismatic dislocation loops, although the extent of this similarity has never been quantified. We derive analytical formulas for the dipole tensors of SIA defects, which show that, in addition to the prismatic dislocation looplike character, the elastic field of a SIA defect also has a significant isotropic dilatation component. Using empirical potentials and DFT calculations, we parametrize dipole tensors of <111 > defects for all the nonmagnetic bcc transition metals. This enables a quantitative evaluation of the energy of elastic interaction between the defects, which also shows that in a periodic three-dimensional simple cubic arrangement of crowdions, long-range elastic interactions between a defect and all its images favor a <111 > orientation of the defect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Guangming; Zhou, Zhangjian; Mo, Kun
An application of high-energy wide angle synchrotron X-ray diffraction to investigate the tensile deformation of 9Cr ferritic/martensitic (F/M) ODS steel is presented. With tensile loading and in-situ Xray exposure, the lattice strain development of matrix was determined. The lattice strain was found to decrease with increasing temperature, and the difference in Young's modulus of six different reflections at different temperatures reveals the temperature dependence of elastic anisotropy. The mean internal stress was calculated and compared with the applied stress, showing that the strengthening factor increased with increasing temperature, indicating that the oxide nanoparticles have a good strengthening impact at highmore » temperature. The dislocation density and character were also measured during tensile deformation. The dislocation density decreased with increasing of temperature due to the greater mobility of dislocation at high temperature. The dislocation character was determined by best-fit methods for different dislocation average contrasts with various levels of uncertainty. The results shows edge type dislocations dominate the plastic strain at room temperature (RT) and 300 C, while the screw type dislocations dominate at 600 C. The dominance of edge character in 9Cr F/M ODS steels at RT and 300 C is likely due to the pinning effect of nanoparticles for higher mobile edge dislocations when compared with screw dislocations, while the stronger screw type of dislocation structure at 600 C may be explained by the activated cross slip of screw segments.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beaudoin, A. J.; Shade, P. A.; Schuren, J. C.
The plastic deformation of crystalline materials is usually modeled as smoothly progressing in space and time, yet modern studies show intermittency in the deformation dynamics of single-crystals arising from avalanche behavior of dislocation ensembles under uniform applied loads. However, once the prism of the microstructure in polycrystalline materials disperses and redistributes the load on a grain-by-grain basis, additional length and time scales are involved. Thus, the question is open as to how deformation intermittency manifests for the nonuniform grain-scale internal driving forces interacting with the finer-scale dislocation ensemble behavior. In this work we track the evolution of elastic strain withinmore » individual grains of a creep-loaded titanium alloy, revealing widely varying internal strains that fluctuate over time. Here, the findings provide direct evidence of how flow intermittency proceeds for an aggregate of ~700 grains while showing the influences of multiscale ensemble interactions and opening new avenues for advancing plasticity modeling.« less
Beaudoin, A. J.; Shade, P. A.; Schuren, J. C.; ...
2017-11-30
The plastic deformation of crystalline materials is usually modeled as smoothly progressing in space and time, yet modern studies show intermittency in the deformation dynamics of single-crystals arising from avalanche behavior of dislocation ensembles under uniform applied loads. However, once the prism of the microstructure in polycrystalline materials disperses and redistributes the load on a grain-by-grain basis, additional length and time scales are involved. Thus, the question is open as to how deformation intermittency manifests for the nonuniform grain-scale internal driving forces interacting with the finer-scale dislocation ensemble behavior. In this work we track the evolution of elastic strain withinmore » individual grains of a creep-loaded titanium alloy, revealing widely varying internal strains that fluctuate over time. Here, the findings provide direct evidence of how flow intermittency proceeds for an aggregate of ~700 grains while showing the influences of multiscale ensemble interactions and opening new avenues for advancing plasticity modeling.« less
Microstructural and Morphological Factors Affecting Uncertainty in Small Scale Mechanical Properties
NASA Astrophysics Data System (ADS)
Maughan, Michael R.
If materials are to be developed from the ground up, the process will be dependent upon accurate and well-defined models of material behavior. These models can be closed-form solutions developed from first principles, simulations, or empirically derived equations, among others. Material behavior at the mesoscale is in general well understood, having had several centuries of study. However, behavior at the micro or nanoscale still requires characterization. Understanding the collective influence of the microstructure on the bulk material, for example with models like the Hall-Petch relation, has advanced our ability to manipulate the material to our advantage. We now have the ability to study not only the structure of the material, but also the material behavior and properties at the nanoscale. Understanding this behavior is critical to developing a framework for interpreting and utilizing these properties in materials design. This research aims to improve the fundamental understanding of the mechanical performance of materials and the subsequent variation in measured properties. The literature reports widely varying material properties such as hardness, elastic modulus, and yield point when measured at the nanoscale. Proposed variation mechanisms in these properties include surface preparation, error in measurement, heterogeneous dislocation density and distribution, crystal orientation, surface oxide film fracture, and others. Among other things, this work shows that these sources of variation can be determined and quantified, and that this information can be utilized as a characterization and/or predictive tool. The main goals of this work are to 1) continue basic research on sources of variation in the nanoscale properties of materials, specifically hardness and modulus in crystalline and glassy solids, 2) study the abrupt transition from elastic to plastic material behavior known as pop-in and resolve the problem of pseudo-elastic behavior prior to plasticity, and 3) integrate the sources of and propagate the variation into materials simulations, 4) study the influence of dislocation processes on indentation size effects, and 5) apply this learning to difficult to measure or interpret materials applications.
Defect-induced change of temperature-dependent elastic constants in BCC iron
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao, N.; Setyawan, W.; Zhang, S. H.
2017-07-01
The effects of radiation-induced defects (randomly distributed vacancies, voids, and interstitial dislocation loops) on temperature-dependent elastic constants, C11, C12, and C44 in BCC iron, are studied with molecular dynamics method. The elastic constants are found to decrease with increasing temperatures for all cases containing different defects. The presence of vacancies, voids, or interstitial loops further decreases the elastic constants. For a given number of point defects, the randomly distributed vacancies show the strongest effect compared to voids or interstitial loops. All these results are expected to provide useful information to combine with experimental results for further understanding of radiation damage.
NASA Astrophysics Data System (ADS)
Barragan-Yani, D.; Albe, K.
2018-04-01
The segregation of GaIn and NaCu to perfect 60° dislocations in CuIn1-xGaxSe2 is investigated by means of density functional theory calculations. We find that the segregation process is mainly driven by the elastic interaction of both defect types with the strain field of the dislocation. GaIn moves into the negatively strained region, while NaCu is found in the positively strained region. We show that both defects affect the electronic defect levels induced by the dislocation core and GaIn is able to passivate the β-core in CuInSe2. This result indicates that β-cores are inactive in CuIn1-xGaxSe2. NaCu; however, they do not have a significant effect on the electrical properties of the studied dislocation cores. Therefore, the experimentally observed sodium segregation to dislocation cores in CuIn1-xGaxSe2 cannot be considered as the passivation mechanism of the electrically active cores in that material.
Strengthening and toughening metallic glasses: The elastic perspectives and opportunities
NASA Astrophysics Data System (ADS)
Liu, Z. Q.; Zhang, Z. F.
2014-04-01
There exist general conflicts between strength and toughness in crystalline engineering materials, and various strengthening and toughening strategies have been developed from the dislocation motion perspectives. Metallic glasses (MGs) have demonstrated great potentials owing to their unique properties; however, their structural applications are strictly limited. One of the key problems is that the traditional strengthening and toughening strategies and mechanisms are not applicable in MGs due to the absence of dislocations and crystalline microstructures. Here, we show that the strength and toughness, or equivalently the shear modulus and Poisson's ratio, are invariably mutually exclusive in MGs. Accordingly, the MGs can be categorized into four groups with different levels of integrated mechanical properties. It is further revealed that the conflicts originate fundamentally from the atomic bonding structures and the levels of strength-toughness combinations are indeed dominated by the bulk modulus. Moreover, we propose novel strategies for optimizing the mechanical properties of MGs from the elastic perspectives. We emphasize the significance of developing high bulk modulus MGs to achieve simultaneously both high strength and good toughness and highlight the elastic opportunities for strengthening and toughening materials.
3D Deformation at the Coso Geothermal Field - Observations and Models
NASA Astrophysics Data System (ADS)
Hetland, E. A.; Hager, B. H.; McClusky, S.; King, R. W.
2001-12-01
Over the past decade, rapid ground deformation has been measured over the Coso geothermal field in Eastern CA using InSAR and GPS. InSAR resolves changes in distance along the line-of-sight (LOS) to the satellite with high spatial coverage. In the Coso geothermal field the maximum LOS displacements are up to 35 mm/yr. The inclination of the LOS is acute (about 20 degrees), hence the majority of the deformation resolved with InSAR is vertical, however LOS displacements are also affected by horizontal displacements. The ratio of the sensitivity of LOS displacements to vertical and horizontal displacements is at most 5 to 2, for horizontal displacements inline with the LOS. GPS is able to resolve large horizontal displacements in this area, leading to the conclusion that the InSAR LOS displacement fields are non-trivially affected by horizontal displacements. Additionally, since the horizontal displacements are large, GPS is also able to resolve vertical displacements. Moreover, the GPS three component velocities are fairly consistent with the LOS displacements from InSAR. This deformation has been largely attributed to subsidence as fluid is extracted from the geothermal reservoir. The reservoir has been previously modeled as deflating elliptical volumes and as collapsing sills. The elliptical volumes are described as Mogi sources, which are mathematically given as point forces along a line. The collapsing sills are treated as Okada dislocations for finite area faults with pure tensile displacements across them. In both of these dislocation models of the reservoir, the elastic moduli of the rock remains constant with changing fluid pressure. Actual reservoirs are more likely composed of regions of rock permeated with fluid-filled cracks and pores. In such a composite material, changing the pore-fluid pressure changes the elastic moduli of the region. These moduli changes cause the region to deform under loading, thus resulting in observed surface displacements. The surface displacements resulting from models with varying moduli of the reservoir rock are markedly different from patterns of surface displacements resulting from models in which the reservoir is treated as dislocations. For a given reservoir size, the differences in displacements from the various models are clearest in the horizontal displacement field, differing by up to a factor of two. We use finite element models with simple reservoir geometries to investigate the sensitivity of both vertical and horizontal displacements to the chosen reservoir model.
NASA Technical Reports Server (NTRS)
Nicolaescu, I. I.
1974-01-01
Using echo pulse and resonance rod methods, internal friction in pure aluminum was studied as a function of frequency, hardening temperature, time (internal friction relaxation) and impurity content. These studies led to the conclusion that internal friction in these materials depends strongly on dislocation structure and on elastic interactions between structure defects. It was found experimentally that internal friction relaxation depends on the cooling rate and on the impurity content. Some parameters of the dislocation structure and of the diffusion process were determined. It is shown that the dislocated dependence of internal friction can be used as a method of nondestructive testing of the impurity content of high-purity materials.
NASA Astrophysics Data System (ADS)
Moulas, E.; Brandon, M. T.; Podladchikov, Y.; Bennett, R. A.
2014-12-01
At present, our understanding of the locked zone at Cascadia subduction zone is based on thermal modeling and elastic modeling of horizontal GPS velocities. The thermal model by Hyndman and Wang (1995) provided a first-order assessment of where the subduction thrust might be cold enough for stick-slip behavior. The alternative approach by McCaffrey et al. (2007) is to use a Green's function that relates horizontal surface velocities, as recorded by GPS, to interseismic elastic deformation. The thermal modeling approach is limited by a lack of information about the amount of frictional heating occurring on the thrust (Molnar and England, 1990). The GPS approach is limited in that the horizontal velocity component is fairly insensitive to the structure of the locked zone. The vertical velocity component is much more useful for this purpose. We are fortunate in that vertical velocities can now be measured by GPS to a precision of about 0.2 mm/a. The dislocation model predicts that vertical velocities should range up to about 20 percent of the subduction velocity, which means maximum values of ~7 mm/a. The locked zone is generally entirely offshore at Cascadia, except for the Olympic Peninsula region, where the underlying Juan De Fuca plate has an anomalously low dip. Previous thermal and GPS modeling, as well as tide gauge data and episodic tremors indicate the locked zone there extends about 50 to 75 km onland. This situation provides an opportunity to directly study the locked zone. With that objective in mind, we have constructed a full 3D geodynamic model of the Cascadia subduction zone. At present, the model provides a full representation of the interseismic elastic deformation due to variations of slip on the subduction thrust. The model has been benchmarked against the Savage (2D) and Okada (3D) analytical solutions. This model has an important advantage over traditional dislocation modeling in that we include temperature-sensitive viscosity for the upper and lower plates, and also use realistic constitutive models to represent the locked zone. Another important advantage is that the 3D model provides a full representation of the interseismic deformation, which is important for interpreting GPS data.
NASA Astrophysics Data System (ADS)
Jin, Yongmei
In recent years, theoretical modeling and computational simulation of microstructure evolution and materials property has been attracting much attention. While significant advances have been made, two major challenges remain. One is the integration of multiple physical phenomena for simulation of complex materials behavior, the other is the bridging over multiple length and time scales in materials modeling and simulation. The research presented in this Thesis is focused mainly on tackling the first major challenge. In this Thesis, a unified Phase Field Microelasticity (PFM) approach is developed. This approach is an advanced version of the phase field method that takes into account the exact elasticity of arbitrarily anisotropic, elastically and structurally inhomogeneous systems. The proposed theory and models are applicable to infinite solids, elastic half-space, and finite bodies with arbitrary-shaped free surfaces, which may undergo various concomitant physical processes. The Phase Field Microelasticity approach is employed to formulate the theories and models of martensitic transformation, dislocation dynamics, and crack evolution in single crystal and polycrystalline solids. It is also used to study strain relaxation in heteroepitaxial thin films through misfit dislocation and surface roughening. Magnetic domain evolution in nanocrystalline thin films is also investigated. Numerous simulation studies are performed. Comparison with analytical predictions and experimental observations are presented. Agreement verities the theory and models as realistic simulation tools for computational materials science and engineering. The same Phase Field Microelasticity formalism of individual models of different physical phenomena makes it easy to integrate multiple physical processes into one unified simulation model, where multiple phenomena are treated as various relaxation modes that together act as one common cooperative phenomenon. The model does not impose a priori constraints on possible microstructure evolution paths. This gives the model predicting power, where material system itself "chooses" the optimal path for multiple processes. The advances made in this Thesis present a significant step forward to overcome the first challenge, mesoscale multi-physics modeling and simulation of materials. At the end of this Thesis, the way to tackle the second challenge, bridging over multiple length and time scales in materials modeling and simulation, is discussed based on connection between the mesoscale Phase Field Microelasticity modeling and microscopic atomistic calculation as well as macroscopic continuum theory.
Bending energy of buckled edge dislocations
NASA Astrophysics Data System (ADS)
Kupferman, Raz
2017-12-01
The study of elastic membranes carrying topological defects has a longstanding history, going back at least to the 1950s. When allowed to buckle in three-dimensional space, membranes with defects can totally relieve their in-plane strain, remaining with a bending energy, whose rigidity modulus is small compared to the stretching modulus. In this paper we study membranes with a single edge dislocation. We prove that the minimum bending energy associated with strain-free configurations diverges logarithmically with the size of the system.
Dislocation model for aseismic fault slip in the transverse ranges of Southern California
NASA Technical Reports Server (NTRS)
Cheng, A.; Jackson, D. D.; Matsuura, M.
1985-01-01
Geodetic data at a plate boundary can reveal the pattern of subsurface displacements that accompany plate motion. These displacements are modelled as the sum of rigid block motion and the elastic effects of frictional interaction between blocks. The frictional interactions are represented by uniform dislocation on each of several rectangular fault patches. The block velocities and fault parameters are then estimated from geodetic data. Bayesian inversion procedure employs prior estimates based on geological and seismological data. The method is applied to the Transverse Ranges, using prior geological and seismological data and geodetic data from the USGS trilateration networks. Geodetic data imply a displacement rate of about 20 mm/yr across the San Andreas Fault, while the geologic estimates exceed 30 mm/yr. The prior model and the final estimates both imply about 10 mm/yr crustal shortening normal to the trend of the San Andreas Fault. Aseismic fault motion is a major contributor to plate motion. The geodetic data can help to identify faults that are suffering rapid stress accumulation; in the Transverse Ranges those faults are the San Andreas and the Santa Susana.
Modeling the nonlinear hysteretic response in DAE experiments of Berea sandstone: A case-study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pecorari, Claudio, E-mail: claudio.pecorari@hotmail.com
2015-03-31
Dynamic acousto-elasticity (DAE) allows probing the instantaneous state of a material while the latter slowly and periodically is changed by an external, dynamic source. In DAE investigations of geo-materials, hysteresis of the material's modulus defect displays intriguing features which have not yet been interpreted in terms of any specific mechanism occurring at atomic or mesoscale. Here, experimental results on dry Berea sandstone, which is the rock type best investigated by means of a DAE technique, are analyzed in terms of three rheological models providing simplified representations of mechanisms involving dislocations interacting with point defects which are distributed along the dislocations'more » core or glide planes, and microcracks with finite stiffness in compression. Constitutive relations linking macroscopic strain and stress are derived. From the latter, the modulus defect associated to each mechanism is recovered. These models are employed to construct a composite one which is capable of reproducing several of the main features observed in the experimental data. The limitations of the present approach and, possibly, of the current implementation of DAE are discussed.« less
Wehrenberg, C. E.; Comley, A. J.; Barton, N. R.; ...
2015-09-29
We report direct lattice level measurements of plastic relaxation kinetics through time-resolved, in-situ Laue diffraction of shock-compressed single-crystal [001] Ta at pressures of 27-210 GPa. For a 50 GPa shock, a range of shear strains is observed extending up to the uniaxial limit for early data points (<0.6 ns) and the average shear strain relaxes to a near steady state over ~1 ns. For 80 and 125 GPa shocks, the measured shear strains are fully relaxed already at 200 ps, consistent with rapid relaxation associated with the predicted threshold for homogeneous nucleation of dislocations occurring at shock pressure ~65 GPa.more » The relaxation rate and shear stresses are used to estimate the dislocation density and these quantities are compared to the Livermore Multiscale Strength model as well as various molecular dynamics simulations.« less
NASA Astrophysics Data System (ADS)
Xu, Changyi; Chao, B. Fong
2017-05-01
We compute the coseismic gravitational potential energy Eg change using the spherical-Earth elastic dislocation theory and either the fault model treated as a point source or the finite fault model. The rate of the accumulative Eg loss produced by historical earthquakes from 1976 to 2016 (about 42,000 events) using the Global Centroid Moment Tensor Solution catalogue is estimated to be on the order of -2.1 × 1020 J/a, or -6.7 TW (1 TW = 1012 W), amounting to 15% in the total terrestrial heat flow. The energy loss is dominated by the thrust faulting, especially the megathrust earthquakes such as the 2004 Sumatra earthquake (Mw 9.0) and the 2011 Tohoku-Oki earthquake (Mw 9.1). It is notable that the very deep focus events, the 1994 Bolivia earthquake (Mw 8.2) and the 2013 Okhotsk earthquake (Mw 8.3), produced significant overall coseismic Eg gain according to our calculation. The accumulative coseismic Eg is mainly lost in the mantle of the Earth and also lost in the core of the Earth but with a relatively smaller magnitude. By contrast, the crust of the Earth gains gravitational potential energy cumulatively because of the coseismic deformations. We further investigate the tectonic signature in the coseismic crustal Eg changes in some complex tectonic zone, such as Taiwan region and the northeastern margin of the Tibetan Plateau. We found that the coseismic Eg change is consistent with the regional tectonic character.
Wedge disclination dipole in an embedded nanowire within the surface/interface elasticity
NASA Astrophysics Data System (ADS)
Shodja, Hossein M.; Rezazadeh-Kalehbasti, Shaghayegh; Gutkin, Mikhail Yu
2013-12-01
The elastic behavior of an arbitrary oriented wedge disclination dipole located inside a nanowire, which in turn is embedded in an infinite matrix, is studied within the surface/interface theory of elasticity. The corresponding boundary value problem is provided using complex potential functions. The potential functions are defined through modeling the wedge disclination in terms of an equivalent distribution of edge dislocations. The interface effects on the stress field and strain energy of the disclination dipole and image forces acting on it, the influence of relative shear moduli of the nanowire and the matrix, as well as the different characteristics of the interface are studied thoroughly. It is shown that the positive interface modulus leads to increased strain energy and extra repulsive forces on the disclination dipole. The noticeable effect of the negative interface modulus is the non-classical oscillations in the stress field of the disclination dipole and an extra attractive image force on it.
NASA Technical Reports Server (NTRS)
Yamakov, Vesselin I.; Saether, Erik; Phillips, Dawn R.; Glaessgen, Edward H.
2006-01-01
A traction-displacement relationship that may be embedded into a cohesive zone model for microscale problems of intergranular fracture is extracted from atomistic molecular-dynamics simulations. A molecular-dynamics model for crack propagation under steady-state conditions is developed to analyze intergranular fracture along a flat 99 [1 1 0] symmetric tilt grain boundary in aluminum. Under hydrostatic tensile load, the simulation reveals asymmetric crack propagation in the two opposite directions along the grain boundary. In one direction, the crack propagates in a brittle manner by cleavage with very little or no dislocation emission, and in the other direction, the propagation is ductile through the mechanism of deformation twinning. This behavior is consistent with the Rice criterion for cleavage vs. dislocation blunting transition at the crack tip. The preference for twinning to dislocation slip is in agreement with the predictions of the Tadmor and Hai criterion. A comparison with finite element calculations shows that while the stress field around the brittle crack tip follows the expected elastic solution for the given boundary conditions of the model, the stress field around the twinning crack tip has a strong plastic contribution. Through the definition of a Cohesive-Zone-Volume-Element an atomistic analog to a continuum cohesive zone model element - the results from the molecular-dynamics simulation are recast to obtain an average continuum traction-displacement relationship to represent cohesive zone interaction along a characteristic length of the grain boundary interface for the cases of ductile and brittle decohesion. Keywords: Crack-tip plasticity; Cohesive zone model; Grain boundary decohesion; Intergranular fracture; Molecular-dynamics simulation
Trivedi, Rahul P.; Klevets, Ivan I.; Senyuk, Bohdan; Lee, Taewoo; Smalyukh, Ivan I.
2012-01-01
Colloidal systems find important applications ranging from fabrication of photonic crystals to direct probing of phenomena typically encountered in atomic crystals and glasses. New applications—such as nanoantennas, plasmonic sensors, and nanocircuits—pose a challenge of achieving sparse colloidal assemblies with tunable interparticle separations that can be controlled at will. We demonstrate reconfigurable multiscale interactions and assembly of colloids mediated by defects in cholesteric liquid crystals that are probed by means of laser manipulation and three-dimensional imaging. We find that colloids attract via distance-independent elastic interactions when pinned to the ends of cholesteric oily streaks, line defects at which one or more layers are interrupted. However, dislocations and oily streaks can also be optically manipulated to induce kinks, allowing one to lock them into the desired configurations that are stabilized by elastic energy barriers for structural transformation of the particle-connecting defects. Under the influence of elastic energy landscape due to these defects, sublamellar-sized colloids self-assemble into structures mimicking the cores of dislocations and oily streaks. Interactions between these defect-embedded colloids can be varied from attractive to repulsive by optically introducing dislocation kinks. The reconfigurable nature of defect–particle interactions allows for patterning of defects by manipulation of colloids and, in turn, patterning of particles by these defects, thus achieving desired colloidal configurations on scales ranging from the size of defect core to the sample size. This defect-colloidal sculpturing may be extended to other lamellar media, providing the means for optically guided self-assembly of mesoscopic composites with predesigned properties. PMID:22411822
Atomistic simulations of stainless steels: a many-body potential for the Fe-Cr-C system.
Henriksson, K O E; Björkas, C; Nordlund, K
2013-11-06
Stainless steels found in real-world applications usually have some C content in the base Fe-Cr alloy, resulting in hard and dislocation-pinning carbides-Fe3C (cementite) and Cr23C6-being present in the finished steel product. The higher complexity of the steel microstructure has implications, for example, for the elastic properties and the evolution of defects such as Frenkel pairs and dislocations. This makes it necessary to re-evaluate the effects of basic radiation phenomena and not simply to rely on results obtained from purely metallic Fe-Cr alloys. In this report, an analytical interatomic potential parameterization in the Abell-Brenner-Tersoff form for the entire Fe-Cr-C system is presented to enable such calculations. The potential reproduces, for example, the lattice parameter(s), formation energies and elastic properties of the principal Fe and Cr carbides (Fe3C, Fe5C2, Fe7C3, Cr3C2, Cr7C3, Cr23C6), the Fe-Cr mixing energy curve, formation energies of simple C point defects in Fe and Cr, and the martensite lattice anisotropy, with fair to excellent agreement with empirical results. Tests of the predictive power of the potential show, for example, that Fe-Cr nanowires and bulk samples become elastically stiffer with increasing Cr and C concentrations. High-concentration nanowires also fracture at shorter relative elongations than wires made of pure Fe. Also, tests with Fe3C inclusions show that these act as obstacles for edge dislocations moving through otherwise pure Fe.
Atomistic simulations of stainless steels: a many-body potential for the Fe-Cr-C system
NASA Astrophysics Data System (ADS)
Henriksson, K. O. E.; Björkas, C.; Nordlund, K.
2013-11-01
Stainless steels found in real-world applications usually have some C content in the base Fe-Cr alloy, resulting in hard and dislocation-pinning carbides—Fe3C (cementite) and Cr23C6—being present in the finished steel product. The higher complexity of the steel microstructure has implications, for example, for the elastic properties and the evolution of defects such as Frenkel pairs and dislocations. This makes it necessary to re-evaluate the effects of basic radiation phenomena and not simply to rely on results obtained from purely metallic Fe-Cr alloys. In this report, an analytical interatomic potential parameterization in the Abell-Brenner-Tersoff form for the entire Fe-Cr-C system is presented to enable such calculations. The potential reproduces, for example, the lattice parameter(s), formation energies and elastic properties of the principal Fe and Cr carbides (Fe3C, Fe5C2, Fe7C3, Cr3C2, Cr7C3, Cr23C6), the Fe-Cr mixing energy curve, formation energies of simple C point defects in Fe and Cr, and the martensite lattice anisotropy, with fair to excellent agreement with empirical results. Tests of the predictive power of the potential show, for example, that Fe-Cr nanowires and bulk samples become elastically stiffer with increasing Cr and C concentrations. High-concentration nanowires also fracture at shorter relative elongations than wires made of pure Fe. Also, tests with Fe3C inclusions show that these act as obstacles for edge dislocations moving through otherwise pure Fe.
Doubly anharmonic oscillator under the topological effects of a screw dislocation
NASA Astrophysics Data System (ADS)
Bakke, Knut
2018-05-01
We consider an elastic medium with the distortion of a circular curve into a vertical spiral, and investigate the influence of this topological defect on the doubly anharmonic oscillator. We show that the Schrödinger equation for the doubly anharmonic oscillator in the presence of this linear topological defect can be solved analytically. We also obtain the exact expressions for the permitted energies of the ground state of the doubly anharmonic oscillator, and show that the topology of the screw dislocation modifies the spectrum of energy of the doubly anharmonic oscillator.
NASA Astrophysics Data System (ADS)
Silbermann, C. B.; Ihlemann, J.
2016-03-01
Continuum Dislocation Theory (CDT) relates gradients of plastic deformation in crystals with the presence of geometrically necessary dislocations. Therefore, the dislocation tensor is introduced as an additional thermodynamic state variable which reflects tensorial properties of dislocation ensembles. Moreover, the CDT captures both the strain energy from the macroscopic deformation of the crystal and the elastic energy of the dislocation network, as well as the dissipation of energy due to dislocation motion. The present contribution deals with the geometrically linear CDT. More precise, the focus is on the role of dislocation kinematics for single and multi-slip and its consequences on the field equations. Thereby, the number of active slip systems plays a crucial role since it restricts the degrees of freedom of plastic deformation. Special attention is put on the definition of proper, well-defined invariants of the dislocation tensor in order to avoid any spurious dependence of the resulting field equations on the coordinate system. It is shown how a slip system based approach can be in accordance with the tensor nature of the involved quantities. At first, only dislocation glide in one active slip system of the crystal is allowed. Then, the special case of two orthogonal (interacting) slip systems is considered and the governing field equations are presented. In addition, the structure and symmetry of the backstress tensor is investigated from the viewpoint of thermodynamical consistency. The results will again be used in order to facilitate the set of field equations and to prepare for a robust numerical implementation.
NASA Astrophysics Data System (ADS)
Murray, J. R.
2017-12-01
Earth surface displacements measured at Global Navigation Satellite System (GNSS) sites record crustal deformation due, for example, to slip on faults underground. A primary objective in designing geodetic networks to study crustal deformation is to maximize the ability to recover parameters of interest like fault slip. Given Green's functions (GFs) relating observed displacement to motion on buried dislocations representing a fault, one can use various methods to estimate spatially variable slip. However, assumptions embodied in the GFs, e.g., use of a simplified elastic structure, introduce spatially correlated model prediction errors (MPE) not reflected in measurement uncertainties (Duputel et al., 2014). In theory, selection algorithms should incorporate inter-site correlations to identify measurement locations that give unique information. I assess the impact of MPE on site selection by expanding existing methods (Klein et al., 2017; Reeves and Zhe, 1999) to incorporate this effect. Reeves and Zhe's algorithm sequentially adds or removes a predetermined number of data according to a criterion that minimizes the sum of squared errors (SSE) on parameter estimates. Adapting this method to GNSS network design, Klein et al. select new sites that maximize model resolution, using trade-off curves to determine when additional resolution gain is small. Their analysis uses uncorrelated data errors and GFs for a uniform elastic half space. I compare results using GFs for spatially variable strike slip on a discretized dislocation in a uniform elastic half space, a layered elastic half space, and a layered half space with inclusion of MPE. I define an objective criterion to terminate the algorithm once the next site removal would increase SSE more than the expected incremental SSE increase if all sites had equal impact. Using a grid of candidate sites with 8 km spacing, I find the relative value of the selected sites (defined by the percent increase in SSE that further removal of each site would cause) is more uniform when MPE is included. However, the number and distribution of selected sites depends primarily on site location relative to the fault. For this test case, inclusion of MPE has minimal practical impact; I will investigate whether these findings hold for more densely spaced candidate grids and dipping faults.
Strengthening and toughening metallic glasses: The elastic perspectives and opportunities
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Z. Q.; Zhang, Z. F., E-mail: zhfzhang@imr.ac.cn
2014-04-28
There exist general conflicts between strength and toughness in crystalline engineering materials, and various strengthening and toughening strategies have been developed from the dislocation motion perspectives. Metallic glasses (MGs) have demonstrated great potentials owing to their unique properties; however, their structural applications are strictly limited. One of the key problems is that the traditional strengthening and toughening strategies and mechanisms are not applicable in MGs due to the absence of dislocations and crystalline microstructures. Here, we show that the strength and toughness, or equivalently the shear modulus and Poisson's ratio, are invariably mutually exclusive in MGs. Accordingly, the MGs canmore » be categorized into four groups with different levels of integrated mechanical properties. It is further revealed that the conflicts originate fundamentally from the atomic bonding structures and the levels of strength-toughness combinations are indeed dominated by the bulk modulus. Moreover, we propose novel strategies for optimizing the mechanical properties of MGs from the elastic perspectives. We emphasize the significance of developing high bulk modulus MGs to achieve simultaneously both high strength and good toughness and highlight the elastic opportunities for strengthening and toughening materials.« less
Phase-field-crystal model for ordered crystals
NASA Astrophysics Data System (ADS)
Alster, Eli; Elder, K. R.; Hoyt, Jeffrey J.; Voorhees, Peter W.
2017-02-01
We describe a general method to model multicomponent ordered crystals using the phase-field-crystal (PFC) formalism. As a test case, a generic B2 compound is investigated. We are able to produce a line of either first-order or second-order order-disorder phase transitions, features that have not been incorporated in existing PFC approaches. Further, it is found that the only elastic constant for B2 that depends on ordering is C11. This B2 model is then used to study antiphase boundaries (APBs). The APBs are shown to reproduce classical mean-field results. Dynamical simulations of ordering across small-angle grain boundaries predict that dislocation cores pin the evolution of APBs.
NASA Astrophysics Data System (ADS)
Skripnyak, Vladimir; Skripnyak, Evgeniya; Meyer, Lothar W.; Herzig, Norman; Skripnyak, Nataliya
2012-02-01
Researches of the last years have allowed to establish that the laws of deformation and fracture of bulk ultrafine-grained and coarse-grained materials are various both in static and in dynamic loading conditions. Development of adequate constitutive equations for the description of mechanical behavior of bulk ultrafine-grained materials at intensive dynamic influences is complicated in consequence of insufficient knowledge about general rules of inelastic deformation and nucleation and growth of cracks. Multi-scale computational model was used for the investigation of deformation and fracture of bulk structured aluminum and magnesium alloys under stress pulse loadings on mesoscale level. The increment of plastic deformation is defined by the sum of the increments caused by a nucleation and gliding of dislocations, the twinning, meso-blocks movement, and grain boundary sliding. The model takes into account the influence on mechanical properties of alloys an average grains size, grain sizes distribution of and concentration of precipitates. It was obtained the nucleation and gliding of dislocations caused the high attenuation rate of the elastic precursor of ultrafine-grained alloys than in coarse grained counterparts.
Meng, Xiankai; Zhou, Jianzhong; Huang, Shu; Su, Chun; Sheng, Jie
2017-01-01
The laser shock wave (LSW) generated by the interaction between a laser and a material has been widely used in laser manufacturing, such as laser shock peening and laser shock forming. However, due to the high strain rate, the propagation of LSW in materials, especially LSW at elevated temperatures, is difficult to study through experimental methods. A molecular dynamics simulation was used in this study to investigate the propagation of LSW in an Al-Cu alloy. The Hugoniot relations of LSW were obtained at different temperatures and the effects of elevated temperatures on shock velocity and shock pressure were analyzed. Then the elastic and plastic wave of the LSW was researched. Finally, the evolution of dislocations induced by LSW and its mechanism under elevated temperatures was explored. The results indicate that the shock velocity and shock pressure induced by LSW both decrease with the increasing temperatures. Moreover, the velocity of elastic wave and plastic wave both decrease with the increasing treatment temperature, while their difference decreases as the temperature increases. Moreover, the dislocation atoms increases with the increasing temperatures before 2 ps, while it decreases with the increasing temperatures after 2 ps. The reason for the results is related to the formation and evolution of extended dislocations. PMID:28772433
Meng, Xiankai; Zhou, Jianzhong; Huang, Shu; Su, Chun; Sheng, Jie
2017-01-18
The laser shock wave (LSW) generated by the interaction between a laser and a material has been widely used in laser manufacturing, such as laser shock peening and laser shock forming. However, due to the high strain rate, the propagation of LSW in materials, especially LSW at elevated temperatures, is difficult to study through experimental methods. A molecular dynamics simulation was used in this study to investigate the propagation of LSW in an Al-Cu alloy. The Hugoniot relations of LSW were obtained at different temperatures and the effects of elevated temperatures on shock velocity and shock pressure were analyzed. Then the elastic and plastic wave of the LSW was researched. Finally, the evolution of dislocations induced by LSW and its mechanism under elevated temperatures was explored. The results indicate that the shock velocity and shock pressure induced by LSW both decrease with the increasing temperatures. Moreover, the velocity of elastic wave and plastic wave both decrease with the increasing treatment temperature, while their difference decreases as the temperature increases. Moreover, the dislocation atoms increases with the increasing temperatures before 2 ps, while it decreases with the increasing temperatures after 2 ps. The reason for the results is related to the formation and evolution of extended dislocations.
Gupta, Satyapriya; Taupin, Vincent; Fressengeas, Claude; Jrad, Mohamad
2018-03-27
The displacement discontinuity arising between crack surfaces is assigned to smooth densities of crystal defects referred to as disconnections, through the incompatibility of the distortion tensor. In a dual way, the disconnections are defined as line defects terminating surfaces where the displacement encounters a discontinuity. A conservation statement for the crack opening displacement provides a framework for disconnection dynamics in the form of transport laws. A similar methodology applied to the discontinuity of the plastic displacement due to dislocations results in the concurrent involvement of dislocation densities in the analysis. Non-linearity of the geometrical setting is assumed for defining the elastic distortion incompatibility in the presence of both dislocations and disconnections, as well as for their transport. Crack nucleation in the presence of thermally-activated fluctuations of the atomic order is shown to derive from this nonlinearity in elastic brittle materials, without any algorithmic rule or ad hoc material parameter. Digital image correlation techniques applied to the analysis of tensile tests on ductile Al-Cu-Li samples further demonstrate the ability of the disconnection density concept to capture crack nucleation and relate strain localization bands to consistent disconnection fields and to the eventual occurrence of complex and combined crack modes in these alloys.
Measurements of strain at plate boundaries using space based geodetic techniques
NASA Technical Reports Server (NTRS)
Robaudo, Stefano; Harrison, Christopher G. A.
1993-01-01
We have used the space based geodetic techniques of Satellite Laser Ranging (SLR) and VLBI to study strain along subduction and transform plate boundaries and have interpreted the results using a simple elastic dislocation model. Six stations located behind island arcs were analyzed as representative of subduction zones while 13 sites located on either side of the San Andreas fault were used for the transcurrent zones. The length deformation scale was then calculated for both tectonic margins by fitting the relative strain to an exponentially decreasing function of distance from the plate boundary. Results show that space-based data for the transcurrent boundary along the San Andreas fault help to define better the deformation length scale in the area while fitting nicely the elastic half-space earth model. For subduction type bonndaries the analysis indicates that there is no single scale length which uniquely describes the deformation. This is mainly due to the difference in subduction characteristics for the different areas.
Structural Rheology of the Smectic Phase
Fujii, Shuji; Komura, Shigeyuki; Lu, Chun-Yi David
2014-01-01
In this review article, we discuss the rheological properties of the thermotropic smectic liquid crystal 8CB with focal conic domains (FCDs) from the viewpoint of structural rheology. It is known that the unbinding of the dislocation loops in the smectic phase drives the smectic-nematic transition. Here we discuss how the unbinding of the dislocation loops affects the evolution of the FCD size, linear and nonlinear rheological behaviors of the smectic phase. By studying the FCD formation from the perpendicularly oriented smectic layers, we also argue that dislocations play a key role in the structural development in layered systems. Furthermore, similarities in the rheological behavior between the FCDs in the smectic phase and the onion structures in the lyotropic lamellar phase suggest that these systems share a common physical origin for the elasticity. PMID:28788123
Simplex GPS and InSAR Inversion Software
NASA Technical Reports Server (NTRS)
Donnellan, Andrea; Parker, Jay W.; Lyzenga, Gregory A.; Pierce, Marlon E.
2012-01-01
Changes in the shape of the Earth's surface can be routinely measured with precisions better than centimeters. Processes below the surface often drive these changes and as a result, investigators require models with inversion methods to characterize the sources. Simplex inverts any combination of GPS (global positioning system), UAVSAR (uninhabited aerial vehicle synthetic aperture radar), and InSAR (interferometric synthetic aperture radar) data simultaneously for elastic response from fault and fluid motions. It can be used to solve for multiple faults and parameters, all of which can be specified or allowed to vary. The software can be used to study long-term tectonic motions and the faults responsible for those motions, or can be used to invert for co-seismic slip from earthquakes. Solutions involving estimation of fault motion and changes in fluid reservoirs such as magma or water are possible. Any arbitrary number of faults or parameters can be considered. Simplex specifically solves for any of location, geometry, fault slip, and expansion/contraction of a single or multiple faults. It inverts GPS and InSAR data for elastic dislocations in a half-space. Slip parameters include strike slip, dip slip, and tensile dislocations. It includes a map interface for both setting up the models and viewing the results. Results, including faults, and observed, computed, and residual displacements, are output in text format, a map interface, and can be exported to KML. The software interfaces with the QuakeTables database allowing a user to select existing fault parameters or data. Simplex can be accessed through the QuakeSim portal graphical user interface or run from a UNIX command line.
Three-dimensional modelling of thermal stress in floating zone silicon crystal growth
NASA Astrophysics Data System (ADS)
Plate, Matiss; Krauze, Armands; Virbulis, Jānis
2018-05-01
During the growth of large diameter silicon single crystals with the industrial floating zone method, undesirable level of thermal stress in the crystal is easily reached due to the inhomogeneous expansion as the crystal cools down. Shapes of the phase boundaries, temperature field and elastic material properties determine the thermal stress distribution in the solid mono crystalline silicon during cylindrical growth. Excessive stress can lead to fracture, generation of dislocations and altered distribution of intrinsic point defects. Although appearance of ridges on the crystal surface is the decisive factor of a dislocation-free growth, the influence of these ridges on the stress field is not completely clear. Here we present the results of thermal stress analysis for 4” and 5” diameter crystals using a quasi-stationary three dimensional mathematical model including the material anisotropy and the presence of experimentally observed ridges which cannot be addressed with axis-symmetric models. The ridge has a local but relatively strong influence on thermal stress therefore its relation to the origin of fracture is hypothesized. In addition, thermal stresses at the crystal rim are found to increase for a particular position of the crystal radiation reflector.
X-ray scattering by edge-dislocations in the S_A phase of mesomorphic side chain polyacrylates
NASA Astrophysics Data System (ADS)
Davidson, P.; Pansu, B.; Levelut, A. M.; Strzelecki, L.
1991-01-01
The X-ray diffraction patterns of mesomorphic side chain polymers in the S_A phase present diffuse streaks in shape of “butterfly wings”. We show that this diffuse scattering may be due to the presence of edge dislocations. On the basis of a previous description of edge dislocations within the framework of the elastic continuum theory of the S_A phase given by De Gennes, we have calculated the Fourier transform of the deformation field. Optical diffraction experiments on sketches of defects have also been made to reproduce the X-ray scattering patterns. Both methods show that this diffuse scattering may indeed be due to the presence of edge dislocations. Their density may be roughly estimated to some 10^8/cm^2. The size of their cores should be only a few Ångströms. From the decay of their elastic deformation field, a typical length λ = (K/B)^{1/2}≈ 1,5 Å can be obtained which shows that the elastic constant B of compression of the layers should be about two orders of magnitude larger in the “polymeric” S_A phase than in the “conventional” one. Les clichés de diffraction des rayons X par des polymères mésomorphes en peigne, en phase S_A, présentent des trainées diffuses en forme d'“ ailes de papillon ”. Nous montrons que cette diffusion diffuse peut s'expliquer par la présence de dislocations-coin. En partant de la description des dislocations-coin donnée par De Gennes dans le cadre de la théorie du continuum élastique de la phase S_A, nous avons calculé la transformée de Fourier du champ de déformation. Des expériences de diffraction optique sur des modèles de défauts ont aussi été effectuées afin de reproduire les clichés de diffraction des rayons X. Les deux méthodes montrent que cette diffusion diffuse peut en effet bien s'expliquer par la présence de dislocations-coin. Leur densité a été grossièrement estimée à quelques 10^8/cm^2. La taille de leurs coeurs ne devrait pas dépasser quelques Ångströms. D'après l'allure du champ de déformation élastique, on peut tirer une longueur typique λ = (K/B)^{1/2}≈ 1,5 Å, ce qui montre que la constante élastique B de compression des couches devrait être environ 100 fois plus élevée en phase S_A “ polymérique ” qu'en phase S_A “ usuelle ”.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Z.Y., E-mail: zhengye.zhong@hzg.de; Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, D-21502 Geesthacht; Brokmeier, H.-G.
2015-10-15
The dislocation density evolution along the loading axis of a textured AA 7020-T6 aluminum alloy during uniaxial tension was investigated by in-situ synchrotron diffraction. The highly parallel synchrotron beam at the High Energy Materials Science beamline P07 in PETRA III, DESY, offers excellent conditions to separate different influences for line broadening from which micro-strains are obtained using the modified Williamson–Hall method which is also for defect density investigations. During tensile loading the dislocation density evolution was documented from the as-received material (initial micro-strain state) to the relaxation of the strains during elastic deformation. After yield, the increasing rate of dislocationmore » density growth was relatively fast till half-way between yield and UTS. After that, the rate started to decrease and the dislocation density fluctuated as the elongation increased due to the generation and annihilation of dislocations. When dislocation generation is dominant, the correlation between the flow stress and dislocation density satisfies the Taylor equation. Besides, a method to correct the thickness effect on peak broadening is developed in the present study. - Highlights: • In-situ synchrotron diffraction was applied to characterize peak broadening. • Dislocation evolution along the loading axis during uniaxial tension was investigated. • A method to correct the sample thickness effect on peak broadening was developed. • Dislocation density and flow stress satisfy the Taylor equation at a certain range. • The texture before load and after sample fracture was analyzed.« less
Strain relaxation in (0001) AlN/GaN heterostructures
NASA Astrophysics Data System (ADS)
Bourret, Alain; Adelmann, Christoph; Daudin, Bruno; Rouvière, Jean-Luc; Feuillet, Guy; Mula, Guido
2001-06-01
The strain-relaxation phenomena during the early stages of plasma-assisted molecular-beam epitaxy growth of lattice-mismatched wurtzite (0001) AlN/GaN heterostructures have been studied by real-time recording of the in situ reflection high-energy electron diffraction (RHEED), ex situ transmission electron microscopy (TEM), and atomic-force microscopy. A pseudo-two-dimensional layer-by-layer growth is observed at substrate temperatures of 640-660 °C, as evidenced by RHEED and TEM. However, the variation of the in-plane lattice parameter during growth and after growth has been found to be complex. Three steps have been seen during the deposition of lattice-mismatched AlN and GaN layers: they were interpreted as the succession of the formation of flat platelets, 3-6 monolayers high (0.8-1.5 nm) and 10-20 nm in diameter, their partial coalescence, and gradual dislocation introduction. Platelet formation leads to elastic relaxation as high as 1.8%, i.e., a considerable part of the AlN/GaN lattice mismatch of 2.4%, and can be reversible. Platelets are always observed during the initial stages of growth and are almost insensitive to the metal/N ratio. In contrast, platelet coalescence and dislocation introduction are very dependent on the metal/N ratio: no coalescence occurs and the dislocation introduction rate is higher under N-rich conditions. In all cases, the misfit dislocation density, as measured by the irreversible relaxation, is initially of the order of 7×1011 cm-2 and decreases exponentially with the layer thickness. These results are interpreted in the framework of a model that emphasizes the important role of the flat platelets for dislocation nucleation.
Zhang, Y. B.; Andriollo, T.; Faester, S.; ...
2016-09-14
A synchrotron technique, differential aperture X-ray microscopy (DAXM), has been applied to characterize the microstructure and analyze the local mesoscale residual elastic strain fields around graphite nodules embedded in ferrite matrix grains in ductile cast iron. Compressive residual elastic strains are measured with a maximum strain of ~6.5–8 × 10 –4 near the graphite nodules extending into the matrix about 20 μm, where the elastic strain is near zero. The experimental data are compared with a strain gradient calculated by a finite element model, and good accord has been found but with a significant overprediction of the maximum strain. Thismore » is discussed in terms of stress relaxation during cooling or during storage by plastic deformation of the nodule, the matrix or both. Furthermore, relaxation by plastic deformation of the ferrite is demonstrated by the formation of low energy dislocation cell structure also quantified by the DAXM technique.« less
Interatomic potential to study plastic deformation in tungsten-rhenium alloys
NASA Astrophysics Data System (ADS)
Bonny, G.; Bakaev, A.; Terentyev, D.; Mastrikov, Yu. A.
2017-04-01
In this work, an interatomic potential for the W-Re system is fitted and benchmarked against experimental and density functional theory (DFT) data, of which part are generated in this work. Having in mind studies related to the plasticity of W-Re alloys under irradiation, emphasis is put on fitting point-defect properties, elastic constants, and dislocation properties. The developed potential can reproduce the mechanisms responsible for the experimentally observed softening, i.e., decreasing shear moduli, decreasing Peierls barrier, and asymmetric screw dislocation core structure with increasing Re content in W-Re solid solutions. In addition, the potential predicts elastic constants in reasonable agreement with DFT data for the phases forming non-coherent precipitates (σ- and χ-phases) in W-Re alloys. In addition, the mechanical stability of the different experimentally observed phases is verified in the temperature range of interest (700-1500 K). As a conclusion, the presented potential provides an excellent tool to study plasticity in W-Re alloys at the atomic level.
NASA Astrophysics Data System (ADS)
Cho, H. E.; Horstemeyer, M. F.; Baumgardner, J. R.
2017-12-01
In this study, we present an internal state variable (ISV) constitutive model developed to model static and dynamic recrystallization and grain size progression in a unified manner. This method accurately captures temperature, pressure and strain rate effect on the recrystallization and grain size. Because this ISV approach treats dislocation density, volume fraction of recrystallization and grain size as internal variables, this model can simultaneously track their history during the deformation with unprecedented realism. Based on this deformation history, this method can capture realistic mechanical properties such as stress-strain behavior in the relationship of microstructure-mechanical property. Also, both the transient grain size during the deformation and the steady-state grain size of dynamic recrystallization can be predicted from the history variable of recrystallization volume fraction. Furthermore, because this model has a capability to simultaneously handle plasticity and creep behaviors (unified creep-plasticity), the mechanisms (static recovery (or diffusion creep), dynamic recovery (or dislocation creep) and hardening) related to dislocation dynamics can also be captured. To model these comprehensive mechanical behaviors, the mathematical formulation of this model includes elasticity to evaluate yield stress, work hardening in treating plasticity, creep, as well as the unified recrystallization and grain size progression. Because pressure sensitivity is especially important for the mantle minerals, we developed a yield function combining Drucker-Prager shear failure and von Mises yield surfaces to model the pressure dependent yield stress, while using pressure dependent work hardening and creep terms. Using these formulations, we calibrated against experimental data of the minerals acquired from the literature. Additionally, we also calibrated experimental data for metals to show the general applicability of our model. Understanding of realistic mantle dynamics can only be acquired once the various deformation regimes and mechanisms are comprehensively modeled. The results of this study demonstrate that this ISV model is a good modeling candidate to help reveal the realistic dynamics of the Earth's mantle.
Mineral Replacement Reactions as a Precursor to Strain Localisation: an (HR-)EBSD approach
NASA Astrophysics Data System (ADS)
Gardner, J.; Wheeler, J.; Wallis, D.; Hansen, L. N.; Mariani, E.
2017-12-01
Much remains to be learned about the links between metamorphism and deformation. Our work investigates the behaviour of fluid-mediated mineral replacement reaction products when exposed to subsequent shear stresses. We focus on albite from a metagabbro that has experienced metamorphism and subsequent deformation at greenschist facies, resulting in a reduction in grain size and associated strain localisation. EBSD maps show that prior to grain size reduction, product grains are highly distorted, yet they formed, and subsequently deformed, at temperatures at which extensive dislocation creep is unlikely. The Weighted Burgers Vector can be used to quantitatively describe the types of Burgers vectors present in geometrically necessary dislocation (GND) populations derived from 2-D EBSD map data. Application of this technique to the distorted product grains reveals the prominence of, among others, dislocations with apparent [010] Burgers vectors. This supports (with some caveats) the idea that dislocation creep is not responsible for the observed lattice distortion, as there are no known slip systems in plagioclase with a [010] Burgers vector. Distortion in a replacement microstructure has also been attributed to the presence of nanoscale product grains, which share very similar, but not identical, orientations due to topotactic nucleation from adjacent sites on the same substrate. As a precipitate, the product grains should be expected to be largely free of elastic strain. However, high angular resolution EBSD results demonstrate that product grains contain both elastic strains (> 10-3) and residual stresses (several hundred MPa), as well as GND densities on the order of 1014-1015 m-2. Thus we suggest the observed distortion (elastic strain plus rotations) in the lattice is produced during the mineral replacement reaction by a lattice mismatch and volume change between parent and product. Stored strain energy then provides a driving force for recovery and recrystallization. Recrystallization produces smaller grains with high angle boundaries, reducing the strength of, and allowing deformation to localise in, the albite phase. Grain size reduction in turn facilitates shear deformation to high strains by a grain size sensitive mechanism (fluid-assisted diffusion creep).
Dislocation Onset and Glide in Carbon Nanotubes under Torsion
NASA Astrophysics Data System (ADS)
Dumitrica, Traian; Zhang, Dong-Bo; James, Richard
2009-03-01
The torsional plastic response of carbon nanotubes is comprehensively described in the objective molecular dynamics framework [1-3]. It is shown that an (n,m) tube is prone to slip along a nearly-axial helical path, which introduces a distinct (+1,-1) change in the wrapping index. The low energy realization occurs without loss of mass, via nucleation of a 5-7-7-5 dislocation dipole, followed by a nearly-axial glide of the 5-7 dislocation. The onset of plasticity depends not only on chirality but also on handedness. For a given handedness of the applied twist, chiral tubes of opposed handedness are most susceptible to yield. A right-handed applied twist on an armchair (zig-zag) tube leads to a right- (left-) handed tube. [4pt] [1] T. Dumitrica and R.D. James, Objective Molecular Dynamics, Journal of the Mechanics and Physics of Solids 55, 2206 (2007). [0pt] [2] D.-B. Zhang, M. Hua, and T. Dumitrica, Stability of Polycrystalline and Wurtzite Si Nanowires via Symmetry-Adapted Tight-Binding Objective Molecular Dynamics, Journal of Chemical Physics 128, 084104 (2008). [0pt] [3] D.-B. Zhang and T. Dumitrica, Elasticity of Ideal Single-Walled Carbon Nanotubes via Symmetry-Adapted Tight-Binding Objective Modeling, Applied Physics Letters 93, 031919 (2008).
NASA Astrophysics Data System (ADS)
Li, Y.; Zhou, X. M.; Cai, Y.; Liu, C. L.; Luo, S. N.
2018-04-01
[100] CaF2 single crystals are shock-compressed via symmetric planar impact, and the flyer plate-target interface velocity histories are measured with a laser displacement interferometry. The shock loading is slightly above the Hugoniot elastic limit to investigate incipient plasticity and its kinetics, and its effects on optical properties and deformation inhomogeneity. Fringe patterns demonstrate different features in modulation of fringe amplitude, including birefringence and complicated modulations. The birefringence is attributed to local lattice rotation accompanying incipient plasticity. Spatially resolved measurements show inhomogeneity in deformation, birefringence, and fringe pattern evolutions, most likely caused by the inhomogeneity associated with lattice rotation and dislocation slip. Transiently overdriven elastic states are observed, and the incubation time for incipient plasticity decreases inversely with increasing overdrive by the elastic shock.
First-principles modeling of hardness in transition-metal diborides
NASA Astrophysics Data System (ADS)
Lazar, Petr; Chen, Xing-Qiu; Podloucky, Raimund
2009-07-01
Based on recent experiments, the diborides OsB2 and ReB2 were proposed to be ultraincompressible and superhard materials. By application of an ab initio density-functional theory approach we investigate the elastic and cleavage fracture properties of the borides MB2 ( M=Hf , Ta, W, Re, Os, and Ir). We derive a direct correlation between the lowest calculated critical cleavage stress and the experimental (micro)hardness. By calculating the critical shear stress and estimating the possibility of dislocation emission we can justify the prediction that ReB2 is indeed a superhard material.
Nanocrystalline copper films are never flat.
Zhang, Xiaopu; Han, Jian; Plombon, John J; Sutton, Adrian P; Srolovitz, David J; Boland, John J
2017-07-28
We used scanning tunneling microscopy to study low-angle grain boundaries at the surface of nearly planar copper nanocrystalline (111) films. The presence of grain boundaries and their emergence at the film surface create valleys composed of dissociated edge dislocations and ridges where partial dislocations have recombined. Geometric analysis and simulations indicated that valleys and ridges were created by an out-of-plane grain rotation driven by reduction of grain boundary energy. These results suggest that in general, it is impossible to form flat two-dimensional nanocrystalline films of copper and other metals exhibiting small stacking fault energies and/or large elastic anisotropy, which induce a large anisotropy in the dislocation-line energy. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Semiconductor Film Grown on a Circular Substrate: Predictive Modeling of Lattice-Misfit Stresses
NASA Astrophysics Data System (ADS)
Suhir, E.; Nicolics, J.; Khatibi, G.; Lederer, M.
2016-03-01
An effective and physically meaningful analytical predictive model is developed for the evaluation the lattice-misfit stresses (LMS) in a semiconductor film grown on a circular substrate (wafer). The two-dimensional (plane-stress) theory-of-elasticity approximation (TEA) is employed in the analysis. The addressed stresses include the interfacial shearing stress, responsible for the occurrence and growth of dislocations, as well as for possible delaminations and the cohesive strength of a buffering material, if any. Normal radial and circumferential (tangential) stresses acting in the film cross-sections and responsible for its short- and long-term strength (fracture toughness) are also addressed. The analysis is geared to the GaN technology.
Dislocation gliding and cross-hatch morphology formation in AIII-BV epitaxial heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kovalskiy, V. A., E-mail: kovalva@iptm.ru; Vergeles, P. S.; Eremenko, V. G.
2014-12-08
An approach for understanding the origin of cross-hatch pattern (CHP) on the surface of lattice mismatched GaMnAs/InGaAs samples grown on GaAs (001) substrates is developed. It is argued that the motion of threading dislocations in the (111) slip planes during the relaxation of InGaAs buffer layer is more complicated process and its features are similar to the ones of dislocation half-loops gliding in plastically deformed crystals. The heterostructures were characterized by atomic force microscopy and electron beam induced current (EBIC). Detailed EBIC experiments revealed contrast features, which cannot be accounted for by the electrical activity of misfit dislocations at themore » buffer/substrate interface. We attribute these features to specific extended defects (EDs) generated by moving threading dislocations in the partially relaxed InGaAs layers. We believe that the core topology, surface reconstruction, and elastic strains from these EDs accommodated in slip planes play an important role in the CHP formation. The study of such electrically active EDs will allow further understanding of degradation and changes in characteristics of quantum devices based on strained heterostructures.« less
Elastic constants of hcp 4He: Path-integral Monte Carlo results versus experiment
NASA Astrophysics Data System (ADS)
Ardila, Luis Aldemar Peña; Vitiello, Silvio A.; de Koning, Maurice
2011-09-01
The elastic constants of hcp 4He are computed using the path-integral Monte Carlo (PIMC) method. The stiffness coefficients are obtained by imposing different distortions to a periodic cell containing 180 atoms, followed by measurement of the elements of the corresponding stress tensor. For this purpose an appropriate path-integral expression for the stress tensor observable is derived and implemented into the pimc++ package. In addition to allowing the determination of the elastic stiffness constants, this development also opens the way to an explicit atomistic determination of the Peierls stress for dislocation motion using the PIMC technique. A comparison of the results to available experimental data shows an overall good agreement of the density dependence of the elastic constants, with the single exception of C13. Additional calculations for the bcc phase, on the other hand, show good agreement for all elastic constants.
Measurement of process-dependent material properties of pharmaceutical solids by nanoindentation.
Liao, Xiangmin; Wiedmann, Timothy Scott
2005-01-01
The purpose of this work was to evaluate nanoindentation as a means to characterize the material properties of pharmaceutical solids. X-ray diffraction of potassium chloride and acetaminophen showed that samples prepared by cooling a melt to a crystalline sample as opposed to slow recrystallization had the same crystal structure. With analysis of the force-displacement curves, the KCl quenched samples had a hardness that was 10 times higher than the recrystallized KCl, while acetaminophen quenched samples were 25% harder than the recrystallized samples. The elastic moduli of the quenched samples were also much greater than that observed for the recrystallized samples. Although the elasticity was independent of load, the hardness increased with load for acetaminophen. With each sample, the flow at constant load increased with applied load. Etching patterns obtained by atomic force microscopy showed that the KCl quenched sample had a higher dislocation density than the recrystallized sample, although there was no evident difference in the acetaminophen samples. Overall, the differences in the observed sample properties may be related to the dislocation density. Thus, nanoindentation has been shown to be a sensitive method for determining a processed-induced change in the hardness, creep, and elasticity of KCl and acetaminophen. (c) 2004 Wiley-Liss, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dirras, G., E-mail: dirras@univ-paris13.fr; Gubicza, J.; Heczel, A.
2015-10-15
The microstructure evolution in body-centered cubic (bcc) Ti{sub 20}Zr{sub 20}Hf{sub 20}Nb{sub 20}Ta{sub 20} high entropy alloy during quasi-static compression test was studied by X-ray line profile analysis (XLPA) and transmission electron microscopy (TEM). The average lattice constant and other important parameters of the microstructure such as the mean crystallite size, the dislocation density and the edge/screw character of dislocations were determined by XLPA. The elastic anisotropy factor required for XLPA procedure was determined by nanoindentation. XLPA shows that the crystallite size decreased while the dislocation density increased with strain during compression, and their values reached about 39 nm and 15more » × 10{sup 14} m{sup −2}, respectively, at a plastic strain of ~ 20%. It was revealed that with increasing strain the dislocation character became more screw. This can be explained by the reduced mobility of screw dislocations compared to edge dislocations in bcc structures. These observations are in line with TEM investigations. The development of dislocation density during compression was related to the yield strength evolution. - Highlights: • Ti{sub 20}Zr{sub 20}Hf{sub 20}Nb{sub 20}Ta{sub 20} high entropy alloy was processed by arc-melting. • The mechanical was evaluated by RT compression test. • The microstructure evolution was studied by XLPA and TEM. • With increasing strain the dislocation character became more screw. • The yield strength was related to the development of the dislocation density.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rahman, O.S. Asiq; Wasekar, Nitin P.; Sundararajan, G.
Nanoindentation was performed on silicon carbide (SiC) reinforced pulse electrodeposited nickel-tungsten (Ni-W) composite coating. Addition of 5 vol.% of SiC in Ni-W coating increased the hardness from 10.31 ± 0.65 GPa to 14.32 ± 0.63 GPa and elastic modulus from 119.74 ± 3.15 GPa to 139.26 ± 2.09 GPa. Increased hardness and elastic modulus directly translates to the improved strengthening in the coating. An experimental investigation of strengthening mechanism was carried out in Ni-W-5 vol.% SiC alloy. Two simultaneous phenomena viz. grain refinement and increased internal strain was observed, which increased the dislocation density from 5.51 × 10{sup 18} m{supmore » −2} to 1.346 × 10{sup 19} m{sup −2} on reinforcement of 5 vol.% of SiC in Ni-W coating. Increased dislocation density promoted the formation of grain boundary misorientations and nano twinning. Low angle grain boundary, high angle grain boundary and nano twinning were identified using high resolution transmission electron microscope (HR-TEM) image and their role in strengthening mechanism was discussed in details. - Highlights: • SiC reinforced pulse electrodeposition Ni-W coating was deposited on steel. • Nanoindentation showed the increased mechanical properties on addition of SiC. • Grain refinement and increased internal strain was observed in Ni-W-SiC coating. • Dislocation density increased on reinforcement of SiC in Ni-W coating. • Increased dislocation density triggered grain boundary misorientation and twinning.« less
Coarse gaining of molecular crystals: limitations imposed by molecular flexibility
NASA Astrophysics Data System (ADS)
Picu, Catalin; Pal, Anirban
Molecular crystals include molecular electronics, energetic materials, pharmaceuticals and some food components. In many of these applications the small scale mechanical behavior of the crystal is important such as for example in energetic materials where detonation is induced by the formation of hot spots which are induced thermomechanically, and in pharmaceuticals where phase stability is critical for the biochemical activity of the drug. Accurate modeling of these processes requires resolving the atomistic scale details of the material. However, the cost of these models is very large due to the complexity of the molecules forming the crystal, and some form of coarse graning is necessary. In this study we identify the limitations imposed by the need to accurately capture molecular flexibility on the development of coarse grained models for the energetic molecular crystal RDX. We define guidelines for the definition of coarse grained models that target elastic and plastic crystal scale properties such as elastic constants, thermal expansion, compressibility, the critical stress for the motion of dislocations (Peierls stress) and the stacking fault energy This work was supported by the ARO through Grant W911NF-09-1-0330 and AFRL through Grant FA8651-16-1-0004.
Strain-Engineered Nanomembrane Substrates for Si/SiGe Heterostructures
NASA Astrophysics Data System (ADS)
Sookchoo, Pornsatit
For Group IV materials, including silicon, germanium, and their alloys, although they are most widely used in the electronics industry, the development of photonic devices is hindered by indirect band gaps and large lattice mismatches. Thus, any heterostructures involving Si and Ge (4.17% lattice mismatch) are subject to plastic relaxation by dislocation formation in the heterolayers. These defects make many devices impossible and at minimum degrade the performance of those that are possible. Fabrication using elastic strain engineering in Si/SiGe nanomembranes (NMs) is an approach that is showing promise to overcome this limitation. A key advantage of such NM substrates over conventional bulk substrates is that they are relaxed elastically and therefore free of dislocations that occur in the conventional fabrication of SiGe substrates, which are transferred to the epilayers and roughen film interfaces. In this thesis, I use the strain engineering of NMs or NM stacks to fabricate substrates for the epitaxial growth of many repeating units of Si/SiGe heterostructure, known as a 'superlattice', by the elastic strain sharing of a few periods of the repeating unit of Si/SiGe heterolayers or a Si/SiGe/Si tri-layer structure. In both cases, the process begins with the epitaxial growth of Si/SiGe heterolayers on silicon-on-insulator (SOI), where each layer thickness is designed to stay below its kinetic critical thickness for the formation of dislocations. The heterostructure NMs are then released by etching of the SiO2 sacrificial layer in hydrofluoric acid. The resulting freestanding NMs are elastically relaxed by the sharing of strain between the heterolayers. The NMs can be bonded in-place to their host substrate or transferred to another host substrate for the subsequent growth of many periods of superlattice film. The magnitude of strain sharing in these freestanding NMs is influenced by their layer thicknesses and layer compositions. As illustrated in this dissertation, strain-engineering of such NMs can provide the enabling basis for improved Group IV optoelectronic devices.
Static stress changes associated with normal faulting earthquakes in South Balkan area
NASA Astrophysics Data System (ADS)
Papadimitriou, E.; Karakostas, V.; Tranos, M.; Ranguelov, B.; Gospodinov, D.
2007-10-01
Activation of major faults in Bulgaria and northern Greece presents significant seismic hazard because of their proximity to populated centers. The long recurrence intervals, of the order of several hundred years as suggested by previous investigations, imply that the twentieth century activation along the southern boundary of the sub-Balkan graben system, is probably associated with stress transfer among neighbouring faults or fault segments. Fault interaction is investigated through elastic stress transfer among strong main shocks ( M ≥ 6.0), and in three cases their foreshocks, which ruptured distinct or adjacent normal fault segments. We compute stress perturbations caused by earthquake dislocations in a homogeneous half-space. The stress change calculations were performed for faults of strike, dip, and rake appropriate to the strong events. We explore the interaction between normal faults in the study area by resolving changes of Coulomb failure function ( ΔCFF) since 1904 and hence the evolution of the stress field in the area during the last 100 years. Coulomb stress changes were calculated assuming that earthquakes can be modeled as static dislocations in an elastic half-space, and taking into account both the coseismic slip in strong earthquakes and the slow tectonic stress buildup associated with major fault segments. We evaluate if these stress changes brought a given strong earthquake closer to, or sent it farther from, failure. Our modeling results show that the generation of each strong event enhanced the Coulomb stress on along-strike neighbors and reduced the stress on parallel normal faults. We extend the stress calculations up to present and provide an assessment for future seismic hazard by identifying possible sites of impending strong earthquakes.
The taming of the screw: Or how I learned to stop worrying and love elliptic functions
NASA Astrophysics Data System (ADS)
Matsumoto, Elisabetta A.
2011-12-01
Nonlinear elastic phenomena appear time and again in the world around us. This work considers two separate soft matter systems, instabilities in an elastic membrane perforated by a lattice of circular holes and defect textures in smectic liquid crystals. By studying the set of singularities characterizing each system, not only do the analytics become tractable, we gain intuition and insight into complex structures. Under hydrostatic compression, the holes decorating an elastic sheet undergo a buckling instability and collapse. By modeling each of the buckled holes as a pair of dislocation singularities, linear elasticity theory accurately captures the interactions between holes and predicts the pattern transformation they undergo. The diamond plate pattern generated by a square lattice of holes achieves long ranged order due to the broken symmetry of the underlying lattice. The limited number of two dimensional lattices restricts the classes of patterns that can be produced by a at sheet. By changing the topology of the membrane to a cylinder the types of accessible patterns vastly increases, from a chiral wrapped cylinder to pairs of holes alternating orientations to even more complex structures. Equally spaced layered smectics introduce a plethora of geometric constraints yielding novel textures based upon topological defects. The frustration due to the incompatibility of molecular chirality and layers drives the formation of both the venerable twist-grain-boundary phase and the newly discovered helical nanofilament (HN) phase. The HN phase is a newly found solution of the chiral Landau-de Gennes free energy. Finally, we consider two limiting cases of the achiral Landau-de Gennes free energy, bending energy dominated allows defects in the layers and compression energy dominated enforces equally spaced layers. In order to minimize bending energy, smectic layers assume the morphology of minimal surfaces. Riemann's minimal surface is composed of a nonlinear sum of two oppositely handed screw dislocations and has the morphology of a pore. Likewise, focal conic domains result from enforcing the equal spacing condition. We develop an approach to the study of focal sets in smectics which exploits a hidden Poincare symmetry revealed only by viewing the smectic layers as projections from one-higher dimension.
Dislocation-mediated growth of bacterial cell walls
Amir, Ariel; Nelson, David R.
2012-01-01
Recent experiments have illuminated a remarkable growth mechanism of rod-shaped bacteria: proteins associated with cell wall extension move at constant velocity in circles oriented approximately along the cell circumference [Garner EC, et al., (2011) Science 333:222–225], [Domínguez-Escobar J, et al. (2011) Science 333:225–228], [van Teeffelen S, et al. (2011) PNAS 108:15822–15827]. We view these as dislocations in the partially ordered peptidoglycan structure, activated by glycan strand extension machinery, and study theoretically the dynamics of these interacting defects on the surface of a cylinder. Generation and motion of these interacting defects lead to surprising effects arising from the cylindrical geometry, with important implications for growth. We also discuss how long range elastic interactions and turgor pressure affect the dynamics of the fraction of actively moving dislocations in the bacterial cell wall. PMID:22660931
Local tsunamis and earthquake source parameters
Geist, Eric L.; Dmowska, Renata; Saltzman, Barry
1999-01-01
This chapter establishes the relationship among earthquake source parameters and the generation, propagation, and run-up of local tsunamis. In general terms, displacement of the seafloor during the earthquake rupture is modeled using the elastic dislocation theory for which the displacement field is dependent on the slip distribution, fault geometry, and the elastic response and properties of the medium. Specifically, nonlinear long-wave theory governs the propagation and run-up of tsunamis. A parametric study is devised to examine the relative importance of individual earthquake source parameters on local tsunamis, because the physics that describes tsunamis from generation through run-up is complex. Analysis of the source parameters of various tsunamigenic earthquakes have indicated that the details of the earthquake source, namely, nonuniform distribution of slip along the fault plane, have a significant effect on the local tsunami run-up. Numerical methods have been developed to address the realistic bathymetric and shoreline conditions. The accuracy of determining the run-up on shore is directly dependent on the source parameters of the earthquake, which provide the initial conditions used for the hydrodynamic models.
Injection-Sensitive Mechanics of Hydraulic Fracture Interaction with Discontinuities
NASA Astrophysics Data System (ADS)
Chuprakov, D.; Melchaeva, O.; Prioul, R.
2014-09-01
We develop a new analytical model, called OpenT, that solves the elasticity problem of a hydraulic fracture (HF) contact with a pre-existing discontinuity natural fracture (NF) and the condition for HF re-initiation at the NF. The model also accounts for fluid penetration into the permeable NFs. For any angle of fracture intersection, the elastic problem of a blunted dislocation discontinuity is solved for the opening and sliding generated at the discontinuity. The sites and orientations of a new tensile crack nucleation are determined based on a mixed stress- and energy-criterion. In the case of tilted fracture intersection, the finite offset of the new crack initiation point along the discontinuity is computed. We show that aside from known controlling parameters such stress contrast, cohesional and frictional properties of the NFs and angle of intersection, the fluid injection parameters such as the injection rate and the fluid viscosity are of first-order in the crossing behavior. The model is compared to three independent laboratory experiments, analytical criteria of Blanton, extended Renshaw-Pollard, as well as fully coupled numerical simulations. The relative computational efficiency of OpenT model (compared to the numerical models) makes the model attractive for implementation in modern engineering tools simulating hydraulic fracture propagation in naturally fractured environments.
NASA Astrophysics Data System (ADS)
Lazar, Markus; Pellegrini, Yves-Patrick
2016-11-01
This work introduces original explicit solutions for the elastic fields radiated by non-uniformly moving, straight, screw or edge dislocations in an isotropic medium, in the form of time-integral representations in which acceleration-dependent contributions are explicitly separated out. These solutions are obtained by applying an isotropic regularization procedure to distributional expressions of the elastodynamic fields built on the Green tensor of the Navier equation. The obtained regularized field expressions are singularity-free, and depend on the dislocation density rather than on the plastic eigenstrain. They cover non-uniform motion at arbitrary speeds, including faster-than-wave ones. A numerical method of computation is discussed, that rests on discretizing motion along an arbitrary path in the plane transverse to the dislocation, into a succession of time intervals of constant velocity vector over which time-integrated contributions can be obtained in closed form. As a simple illustration, it is applied to the elastodynamic equivalent of the Tamm problem, where fields induced by a dislocation accelerated from rest beyond the longitudinal wave speed, and thereafter put to rest again, are computed. As expected, the proposed expressions produce Mach cones, the dynamic build-up and decay of which is illustrated by means of full-field calculations.
NASA Astrophysics Data System (ADS)
Müller, W. H.
1990-12-01
Stress-induced transformation toughening in Zirconia-containing ceramics is described analytically by means of a quantitative model: A Griffith crack which interacts with a transformed, circular Zirconia inclusion. Due to its volume expansion, a ZrO2-particle compresses its flanks, whereas a particle in front of the crack opens the flanks such that the crack will be attracted and finally absorbed. Erdogan's integral equation technique is applied to calculate the dislocation functions and the stress-intensity-factors which correspond to these situations. In order to derive analytical expressions, the elastic constants of the inclusion and the matrix are assumed to be equal.
Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation.
Yamakov, V; Wolf, D; Phillpot, S R; Mukherjee, A K; Gleiter, H
2004-01-01
Molecular-dynamics simulations have recently been used to elucidate the transition with decreasing grain size from a dislocation-based to a grain-boundary-based deformation mechanism in nanocrystalline f.c.c. metals. This transition in the deformation mechanism results in a maximum yield strength at a grain size (the 'strongest size') that depends strongly on the stacking-fault energy, the elastic properties of the metal, and the magnitude of the applied stress. Here, by exploring the role of the stacking-fault energy in this crossover, we elucidate how the size of the extended dislocations nucleated from the grain boundaries affects the mechanical behaviour. Building on the fundamental physics of deformation as exposed by these simulations, we propose a two-dimensional stress-grain size deformation-mechanism map for the mechanical behaviour of nanocrystalline f.c.c. metals at low temperature. The map captures this transition in both the deformation mechanism and the related mechanical behaviour with decreasing grain size, as well as its dependence on the stacking-fault energy, the elastic properties of the material, and the applied stress level.
PREFACE: Festschrift to mark the sixtieth birthday of Professor Jens Lothe
NASA Astrophysics Data System (ADS)
Jøssang, Torstein; Barnett, David M.
1992-01-01
The collection of papers in this Festschrift represents the proceedings of a symposium held at the Norwegian Academy of Science and Letters on November 25-26, 1991, marking the occasion of the sixtieth birthday of Professor Jens Lothe. The symposium organizers attempted to invite contributors, either written, oral, or both, from a group of international scientists who have either collaborated with Jens in the past or whose work has had a significant impact in one of three areas in which Jens has focussed his own research interests, namely, statistical physics, elasticity and elastic waves, and the theory of dislocations in crystalline solids. The extent to which we have succeeded in obtaining a proper spectrum of contributors and contributions must be judged by the readers of this volume. It is rather rare in modern times to encounter a physicist such as Jens who has made seminal contributions in fields as diverse as the three included in this Festschrift. For this reason it is both historically interesting and instructive to follow the path that Jens Lothe's research career has taken him, since doing so clearly points out the international nature of the scientific endeavor and the fact that the search for scientific truth transcends national borders and governmental ideologies. Jens' postdoctoral studies at the University of Bristol in the late 1950s brought him in contact with an American postdoctoral student, John Hirth, who had worked on nucleation theory and condensation under the late Professor G M Pound at Carnegie-Mellon University. (Alex Maradudin, one of the contributors to the surface wave session of this symposium was also a postdoctoral fellow at Bristol at this time.) Both Lothe and Hirth had come to Bristol to acquaint themselves with dislocation theory; their first joint paper on double-kink nucleation theory was followed by numerous joint efforts, including their now-classic book Theory of Dislocations. Clearly, their interaction jelled. As legend has it, Hirth, recognizing Jens' interests and talents in statistical physics, brought Lothe to Pound's attention. Jens accepted an invitation to spend time at Carnegie-Mellon as a visiting faculty member, a stay which ultimately resulted in a series of penetrating papers on nucleation theory with Pound, Ken Russell (a student of Pound's, later a postdoctoral fellow with Jens, and a contributor to this symposium), and Jens Feder (a former student of Jens' and co-author of the opening lecture). When Pound later moved to Stanford University, he was fond of saying how at that time nucleation theory needed the strong hand of a good statistical physicist, and that "Jens Lothe showed us how to do it right". Meanwhile, a part of the "Bristol Connection" had moved to Ohio State University, where John Hirth had joined the faculty, and where one of us (TJ, who is also a former student of Jens') had come for postdoctoral work with Hirth on dislocation theory. When Jøssang returned to Oslo, Lothe rejoined Hirth for a year, to continue the preparations for production of the dislocation text several years later. A glance at Jens' publication list shows that upon his return to the physics group in Oslo in the mid 1960s his research interests were turning to the effects of elastic anisotropy in dislocation theory. His 1967 paper "Dislocation Bends in Anisotropic Media" appears immediately before L M Brown's "A Proof of Lothe's Theorem" in the same issue of Philosophical Magazine, the latter paper being stimulated by the former. Together these two articles form the basis for what might be termed the modern geometrical theory of planar dislocation loops. Within a year V L Indenbom and S S Orlov in the Soviet Union would publish the fully three-dimensional version of the theory; Jens was instrumental in bringing to the attention of western scientists the correctness and importance of the Indenbom-Orlov work at the 1969 National Bureau of Standards Conference on Fundamental Aspects of Dislocation Theory (Gaithersburg, Maryland, USA). This familiarity with and appreciation for contemporary Russian work in dislocation theory and (later) in elastic waves, as well as his knowledge of the Russian language, was to become a trademark of Jens during the next 20 years, a point to which we shall return. Kazumi Nishioka, a student of Pound's from Stanford (and a contributor to this symposium) joined Jens for post- doctoral studies in statistical physics in 1970, but soon found himself engaged in anisotropic elasticity and the connection between dislocations in uniform motion and the theory of surface waves (as pointed out by the late A N Stroh in 1962). Lothe and Nishioka wrote to one of us (DMB), who was now at Stanford and pursuing the use of an integral formalism rather than the Stroh sextic formalism for anisotropic elasticity, about the possibility of collaborating on certain aspects of subsonic Rayleigh wave theory. By 1974 Jens and DMB had not only virtually settled the issue of the existence of subsonic surface waves in anisotropic elastic half-spaces, but had embarked on a collaboration which still exists, having produced 24 joint publications. Oddly enough, a key ingredient in resolving the Rayleigh wave problem was somewhat fortuitously recalled by Barnett from a paper he requested from Jens ("Some Unifying Relations for Moving Dislocations", by R J Beltz, T L Davis and K Malen, three of Jens' postdoctoral students in 1967-68) four years prior to their collaboration. Professor Peter Chadwick, FRS (a contributor to the surface wave session), of the School of Mathematics at the University of East Anglia, UK, and his student, G D Smith, placed the Lothe-Barnett theory of subsonic surface waves on a much firmer and comprehensive basis in their beautiful 1977 monograph "Foundations of the Theory of Surface Waves in Anisotropic Elastic Materials"; this work clearly delineated the important notions of limiting speed, first transonic state, and exceptional limiting waves, notions which in a sense lead to what can be called the "Russian Connection" with V L Indenbom, V I Alshits (a contributor to the surface wave session), and their colleagues, as well as the broadening of Jens' interests in elastic waves. Jens' much earlier work on radiation forces on moving dislocations was known and well-appreciated by Indenbom. Following a stay in Oslo as a visiting scientist, Alshits collaborated with Lothe to produce a remarkable series of three papers which clearly showed that degeneracies between slowness branches (acoustic axes) are usually the rule and not the exception in any crystal symmetry class, and that acoustic axes are the anchoring points for lines of exceptional waves on the unit sphere. Later, Professor Per Holm (Mathematics Department, University of Oslo, and a contributor of this volume) and Jens co-authored a deep mathematical study of the topology of bulk wave polarization fields on the unit sphere. In 1981 Alshits and Lothe provided the link between surface wave theory and the theory of bulk wave reflection, which have essentially paved the way for a clearer and more unified view of supersonic surface wave theory. More recent work by Steinar A Gundersen (Jens' most recent doctoral graduate and author of the introductory surface wave paper in this volume), Litian Wang (Jens' present graduate student and a contributor to this volume), and Jens on secluded surface waves and by Chadwick, Lothe and Barnett on one-component surface waves have roots in the 1981 Alshits-Lothe paper. We now eagerly await the appearance of the book Elastic Strain Fields and Dislocation Mobility, co-edited by Jens and V L Indenbom, currently in press through North-Holland, Amsterdam. A glance at the last 30 publications in Jens' vita shows the extent to which his Russian connection has broadened. He has taken great efforts to maintain familiarity with the relevant Russian scientific literature and to nurture and encourage western acquaintance with their work. No doubt his warm personality, natural curiosity and willingness to promote and seize opportunities for collaboration across national boundaries is what has allowed great intellect stationed in a somewhat remote part of the scientific community to engender such a large international following, when other gifted men might have chosen to work in isolation under similar circumstances. Vladimir Alshits may have said it best during his visit to Oslo last April, namely, "There are three Norwegian names known to every Russian—Henrik Ibsen, Fridtjof Nansen and Jens Lothe". None of this is meant to imply that Jens has neglected or ignored his colleagues in Norway. Indeed, quite the contrary is true, but we believe the exposition on the development within the Solid State Group and the Cooperative Phenomena Program at the University of Oslo and at NTH in Trondheim in this symposium and its proceedings, presented by the local staff and present close associates addresses Jens Lothe's contribution on the home front far better than this preface would allow. We believe we speak for all the symposium attendees by extending to Jens the happiest greetings and our best wishes for continued health and happiness.
Maxwell: A semi-analytic 4D code for earthquake cycle modeling of transform fault systems
NASA Astrophysics Data System (ADS)
Sandwell, David; Smith-Konter, Bridget
2018-05-01
We have developed a semi-analytic approach (and computational code) for rapidly calculating 3D time-dependent deformation and stress caused by screw dislocations imbedded within an elastic layer overlying a Maxwell viscoelastic half-space. The maxwell model is developed in the Fourier domain to exploit the computational advantages of the convolution theorem, hence substantially reducing the computational burden associated with an arbitrarily complex distribution of force couples necessary for fault modeling. The new aspect of this development is the ability to model lateral variations in shear modulus. Ten benchmark examples are provided for testing and verification of the algorithms and code. One final example simulates interseismic deformation along the San Andreas Fault System where lateral variations in shear modulus are included to simulate lateral variations in lithospheric structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrence, Samantha K.; Somerday, Brian P.; Ingraham, Mathew Duffy
Hydrogen effects on small-volume plasticity and elastic stiffness constants are investigated with nanoindentation of Ni-201 and sonic velocity measurements of bulk Ni single crystals. Elastic modulus of Ni-201, calculated from indentation data, decreases ~22% after hydrogen charging. This substantial decrease is independently confirmed by sonic velocity measurements of Ni single crystals; c 44 decreases ~20% after hydrogen exposure. Furthermore, clear hydrogen-deformation interactions are observed. The maximum shear stress required to nucleate dislocations in hydrogen-charged Ni-201 is markedly lower than in as-annealed material, driven by hydrogen-reduced shear modulus. Additionally, a larger number of depth excursions are detected prior to general yieldingmore » in hydrogen-charged material, suggesting cross-slip restriction. Together, these data reveal direct correlation between hydrogen-affected elastic properties and plastic deformation in Ni alloys.« less
Lawrence, Samantha K.; Somerday, Brian P.; Ingraham, Mathew Duffy; ...
2018-04-11
Hydrogen effects on small-volume plasticity and elastic stiffness constants are investigated with nanoindentation of Ni-201 and sonic velocity measurements of bulk Ni single crystals. Elastic modulus of Ni-201, calculated from indentation data, decreases ~22% after hydrogen charging. This substantial decrease is independently confirmed by sonic velocity measurements of Ni single crystals; c 44 decreases ~20% after hydrogen exposure. Furthermore, clear hydrogen-deformation interactions are observed. The maximum shear stress required to nucleate dislocations in hydrogen-charged Ni-201 is markedly lower than in as-annealed material, driven by hydrogen-reduced shear modulus. Additionally, a larger number of depth excursions are detected prior to general yieldingmore » in hydrogen-charged material, suggesting cross-slip restriction. Together, these data reveal direct correlation between hydrogen-affected elastic properties and plastic deformation in Ni alloys.« less
NASA Astrophysics Data System (ADS)
Lawrence, S. K.; Somerday, B. P.; Ingraham, M. D.; Bahr, D. F.
2018-04-01
Hydrogen effects on small-volume plasticity and elastic stiffness constants are investigated with nanoindentation of Ni-201 and sonic velocity measurements of bulk Ni single crystals. Elastic modulus of Ni-201, calculated from indentation data, decreases 22% after hydrogen charging. This substantial decrease is independently confirmed by sonic velocity measurements of Ni single crystals; c 44 decreases 20% after hydrogen exposure. Furthermore, clear hydrogen-deformation interactions are observed. The maximum shear stress required to nucleate dislocations in hydrogen-charged Ni-201 is markedly lower than in as-annealed material, driven by hydrogen-reduced shear modulus. Additionally, a larger number of depth excursions are detected prior to general yielding in hydrogen-charged material, suggesting cross-slip restriction. Together, these data reveal a direct correlation between hydrogen-affected elastic properties and plastic deformation in Ni alloys.
Molecular dynamics studies of InGaN growth on nonpolar (11 2 \\xAF0 ) GaN surfaces
NASA Astrophysics Data System (ADS)
Chu, K.; Gruber, J.; Zhou, X. W.; Jones, R. E.; Lee, S. R.; Tucker, G. J.
2018-01-01
We have performed direct molecular dynamics (MD) simulations of heteroepitaxial vapor deposition of I nxG a1 -xN films on nonpolar (11 2 ¯0 ) wurtzite-GaN surfaces to investigate strain relaxation by misfit-dislocation formation. The simulated growth is conducted on an atypically large scale by sequentially injecting nearly a million individual vapor-phase atoms towards a fixed GaN substrate. We apply time-and-position-dependent boundary constraints to affect the appropriate environments for the vapor phase, the near-surface solid phase, and the bulklike regions of the growing layer. The simulations employ a newly optimized Stillinger-Weber In-Ga-N system interatomic potential wherein multiple binary and ternary structures are included in the underlying density-functional theory and experimental training sets to improve the treatment of the In-Ga-N related interactions. To examine the effect of growth conditions, we study a matrix of 63 different MD-growth simulations spanning seven I nxG a1 -xN -alloy compositions ranging from x =0.0 to x =0.8 and nine growth temperatures above half the simulated melt temperature. We found a composition dependent temperature range where all kinetically trapped defects were eliminated, leaving only quasiequilibrium misfit and threading dislocations present in the simulated films. Based on the MD results obtained in this temperature range, we observe the formation of interfacial misfit and threading dislocation arrays with morphologies strikingly close to those seen in experiments. In addition, we compare the MD-observed thickness-dependent onset of misfit-dislocation formation to continuum-elasticity-theory models of the critical thickness and find reasonably good agreement. Finally, we use the three-dimensional atomistic details uniquely available in the MD-growth histories to directly observe the nucleation of dislocations at surface pits in the evolving free surface.
NASA Astrophysics Data System (ADS)
Gao, Siwen; Fivel, Marc; Ma, Anxin; Hartmaier, Alexander
2017-05-01
A three-dimensional (3D) discrete dislocation dynamics (DDD) creep model is developed to investigate creep behavior under uniaxial tensile stress along the crystallographic [001] direction in Ni-base single crystal superalloys, which takes explicitly account of dislocation glide, climb and vacancy diffusion, but neglects phase transformation like rafting of γ‧ precipitates. The vacancy diffusion model takes internal stresses by dislocations and mismatch strains into account and it is coupled to the dislocation dynamics model in a numerically efficient way. This model is helpful for understanding the fundamental creep mechanisms in superalloys and clarifying the effects of dislocation glide and climb on creep deformation. In cases where the precipitate cutting rarely occurs, e.g. due to the high anti-phase boundary energy and the lack of superdislocations, the dislocation glide in the γ matrix and the dislocation climb along the γ/γ‧ interface dominate plastic deformation. The simulation results show that a high temperature or a high stress both promote dislocation motion and multiplication, so as to cause a large creep strain. Dislocation climb accelerated by high temperature only produces a small plastic strain, but relaxes the hardening caused by the filling γ channels and lets dislocations further glide and multiply. The strongest variation of vacancy concentration occurs in the horizontal channels, where more mixed dislocations exit and tend to climb. The increasing internal stresses due to the increasing dislocation density are easily overcome by dislocations under a high external stress that leads to a long-term dislocation glide accompanied by multiplication.
Geometry and mechanics of two-dimensional defects in amorphous materials
Moshe, Michael; Levin, Ido; Aharoni, Hillel; Kupferman, Raz; Sharon, Eran
2015-01-01
We study the geometry of defects in amorphous materials and their elastic interactions. Defects are defined and characterized by deviations of the material’s intrinsic metric from a Euclidian metric. This characterization makes possible the identification of localized defects in amorphous materials, the formulation of a corresponding elastic problem, and its solution in various cases of physical interest. We present a multipole expansion that covers a large family of localized 2D defects. The dipole term, which represents a dislocation, is studied analytically and experimentally. Quadrupoles and higher multipoles correspond to fundamental strain-carrying entities. The interactions between those entities, as well as their interaction with external stress fields, are fundamental to the inelastic behavior of solids. We develop analytical tools to study those interactions. The model, methods, and results presented in this work are all relevant to the study of systems that involve a distribution of localized sources of strain. Examples are plasticity in amorphous materials and mechanical interactions between cells on a flexible substrate. PMID:26261331
Taw, Matthew R.; Yeager, John D.; Hooks, Daniel E.; ...
2017-06-19
Organic molecular crystals are often noncubic and contain significant steric hindrance within their structure to resist dislocation motion. Plastic deformation in these systems can be imparted during processing (tableting and comminution of powders), and the defect density impacts subsequent properties and performance. This paper measured the elastic and plastic properties of representative monoclinic, orthorhombic, and triclinic molecular crystalline structures using nanoindentation of as-grown sub-mm single crystals. The variation in modulus due to in-plane rotational orientation, relative to a Berkovich tip, was approximately equal to the variation of a given crystal at a fixed orientation. The onset of plasticity occurs consistentlymore » at shear stresses between 1 and 5% of the elastic modulus in all three crystal systems, and the hardness to modulus ratio suggests conventional Berkovich tips do not generate fully self-similar plastic zones in these materials. Finally, this provides guidance for mechanical models of tableting, machining, and property assessment of molecular crystals.« less
Wheeler, J; Mariani, E; Piazolo, S; Prior, D J; Trimby, P; Drury, M R
2009-03-01
The Weighted Burgers Vector (WBV) is defined here as the sum, over all types of dislocations, of [(density of intersections of dislocation lines with a map) x (Burgers vector)]. Here we show that it can be calculated, for any crystal system, solely from orientation gradients in a map view, unlike the full dislocation density tensor, which requires gradients in the third dimension. No assumption is made about gradients in the third dimension and they may be non-zero. The only assumption involved is that elastic strains are small so the lattice distortion is entirely due to dislocations. Orientation gradients can be estimated from gridded orientation measurements obtained by EBSD mapping, so the WBV can be calculated as a vector field on an EBSD map. The magnitude of the WBV gives a lower bound on the magnitude of the dislocation density tensor when that magnitude is defined in a coordinate invariant way. The direction of the WBV can constrain the types of Burgers vectors of geometrically necessary dislocations present in the microstructure, most clearly when it is broken down in terms of lattice vectors. The WBV has three advantages over other measures of local lattice distortion: it is a vector and hence carries more information than a scalar quantity, it has an explicit mathematical link to the individual Burgers vectors of dislocations and, since it is derived via tensor calculus, it is not dependent on the map coordinate system. If a sub-grain wall is included in the WBV calculation, the magnitude of the WBV becomes dependent on the step size but its direction still carries information on the Burgers vectors in the wall. The net Burgers vector content of dislocations intersecting an area of a map can be simply calculated by an integration round the edge of that area, a method which is fast and complements point-by-point WBV calculations.
NASA Astrophysics Data System (ADS)
Yamazaki, Ken'ichi
2016-07-01
Fault ruptures in the Earth's crust generate both elastic and electromagnetic (EM) waves. If the corresponding EM signals can be observed, then earthquakes could be detected before the first seismic waves arrive. In this study, I consider the piezomagnetic effect as a mechanism that converts elastic waves to EM energy, and I derive analytical formulas for the conversion process. The situation considered in this study is a whole-space model, in which elastic and EM properties are uniform and isotropic. In this situation, the governing equations of the elastic and EM fields, combined with the piezomagnetic constitutive law, can be solved analytically in the time domain by ignoring the displacement current term. Using the derived formulas, numerical examples are investigated, and the corresponding characteristics of the expected magnetic signals are resolved. I show that temporal variations in the magnetic field depend strongly on the electrical conductivity of the medium, meaning that precise detection of signals generated by the piezomagnetic effect is generally difficult. Expected amplitudes of piezomagnetic signals are estimated to be no larger than 0.3 nT for earthquakes with a moment magnitude of ≥7.0 at a source distance of 25 km; however, this conclusion may not extend to the detection of real earthquakes, because piezomagnetic stress sensitivity is currently poorly constrained.
On the nature of L1{sub 0} ordering in equiatomic AuNi and AuCu thin films grown on Au(001)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dynna, M.; Marty, A.; Gilles, B.
1997-01-01
The L1{sub 0} ordering of thin epitaxial films having a (001) surface normal subject to elastic constraints imposed by a similarly oriented substrate has been investigated both experimentally and theoretically. Thin AuNi films grown by MBE at room temperature on Au(001) by means of the alternating deposition of Au and Ni are found to possess a L1{sub 0} structure free of periodic antiphase boundaries when growth is controlled in such a way as to ensure that the quantity of Au or Ni deposited is almost exactly equal to one monolayer. If such control is not exercised during growth, a structuremore » having periodic antiphase boundaries is formed. This behavior stands in contrast to that of AuCu during room temperature MBE growth on Au(001), where a strongly ordered L2{sub 0} structure free of antiphase boundaries is formed even on the codeposition of Au and Cu. The effect of elastic constraints on the state of order in an alloy film which undergoes an L2{sub 0} order-disorder transition is examined as a function of temperature, lattice mismatch, and film thickness within the context of a model which allows for the introduction of dislocations in order to relieve misfit strain. Calculations are performed in detail for the case of AuCu, where particular attention is paid to the coupling between film thickness, the number of misfit dislocations present at equilibrium, and the state of order.« less
NASA Astrophysics Data System (ADS)
Kelemen, P. B.; Hirth, G.
2004-12-01
Localized ductile shear zones with widths of cm to m are observed in exposures of Earth's shallow mantle (e.g., Kelemen & Dick JGR 95; Vissers et al. Tectonophys 95) and dredged from oceanic fracture zones (e.g., Jaroslow et al. Tectonophys 96). These are mylonitic (grain size 10 to 100 microns) and record mineral cooling temperatures from 1100 to 600 C. Pseudotachylites in a mantle shear zone show that shear heating temperatures can exceed the mantle solidus (e.g., Obata & Karato Tectonophys 95). Simple shear, recrystallization, and grain boundary sliding all decrease the spacing between pyroxenes, so olivine grain growth at lower stress is inhibited; thus, once formed, these shear zones do not "heal" on geological time scales. Reasoning that grain-size sensitive creep will be localized within these shear zones, rather than host rocks (grain size 1 to 10 mm), and inspired by the work of Whitehead & Gans (GJRAS 74), we thought these might undergo repeated shear heating instabilities. In this view, as elastic stress increases, the shear zone weakens via shear heating; rapid deformation of the weak shear zone releases most stored elastic stress; lower stress and strain rate coupled with diffusion of heat into host rocks leads to cooling and strengthening, after which the cycle repeats. We constructed a simple numerical model incorporating olivine flow laws for dislocation creep, diffusion creep, grain boundary sliding, and low T plasticity. We assumed that viscous deformation remains localized in shear zones, surrounded by host rocks undergoing elastic deformation. We fixed the velocity along one side of an elastic half space, and calculated stress due to elastic strain. This stress drives viscous deformation in a shear zone of specified width. Shear heating and thermal diffusion control temperature evolution in the shear zone and host rocks. A maximum of 1400 C (where substantial melting of peridotite would occur) is imposed. Grain size evolves during dislocation creep and grain boundary sliding as a function of stress and strain, and undergoes diffusive growth during diffusion creep. For strain rates ca E-13 per second and initial temperatures ca 600 to 850 C, this model produces periodic viscous shear heating events with periods of 100's of years. Strain rates during these events approach 1 per second as temperatures reach 1400 C, so future models will incorporate inertial terms in the stress. Cooling between events returns the shear zone almost to its initial temperature, but ultimately shear zone temperature between events exceeds 850 C resulting in stable viscous creep. Back of the envelope calculations based on model results support the view that viscous deformation in both shear zone and host will be mainly via grain-size sensitive creep, and thus deformation will remain localized in shear zones. Similarly, we infer that inertial terms will remain small. Future models will test and quantify these inferences. The simple model described above provides an attractive explanation for intermediate-depth earthquakes, especially those in subduction zones that occur in a narrow thermal window (e.g., Hacker et al JGR 2003). We think that a "smoother"periodic instability might be produced via the same mechanism in weaker materials, which could provide a viscous mechanism for some slow earthquakes. By AGU, we will construct a second, simple model using quartz rheology to investigate this. Finally, coupling of viscous shear heating instabilities in the shallow mantle with brittle stick-slip deformation in the weaker, overlying crust may influence earthquake frequency.
A new finite element code for the study of strain-localization under strike-slip faults
NASA Astrophysics Data System (ADS)
Rodríguez-González, J.; Montesi, L.
2016-12-01
Shear localization under strike-slip faults in ductile conditions remains a matter of debate. The rheology of rocks in the ductile regime is fundamentally strain-rate hardening, which complicates the understanding of the formation of narrow shear zones. Localized shear zones are present in a variety of scales, including kilometric structures at plate boundaries. To compensate for strain-rate hardening, shear zones must be weaker than their surroundings thanks to some weakening mechanism that works at multiple length scales. Mechanisms as shear heating or grain size reduction have been invoked to explain localization of deformation, but none of these mechanisms can work in scales that range from 1 to 1000 km. Layered fabric development has been suggested as a candidate to develop localized shear zones at multiple scales. To test this hypothesis, we have developed a new software that uses the Finite Element Method library deal.II written in C++. We solve the elasticity equations for elastic and Maxwell visco-elastic mediums. A key component required to study strain localization is adaptive mesh refinement. The code automatically identifies those regions in which the deformation is being localized and will increase the resolution. We benchmark the code and test its accuracy using analytical solutions of strike-slip deformation with different boundary conditions. We simulate the instantaneous deformation caused by two kinds of dislocations: a free fault subject to a far field traction and fault with an imposed displacement. We also simulate the visco-elastic relaxation following a strike-slip dislocation. We show that deal.II is a flexible library, suitable for different problems, which will prove useful to study the mechanisms that can lead to strain localization.
Simulation of the zero-temperature behavior of a three-dimensional elastic medium
NASA Astrophysics Data System (ADS)
McNamara, David; Middleton, A. Alan; Zeng, Chen
1999-10-01
We have performed numerical simulation of a three-dimensional elastic medium, with scalar displacements, subject to quenched disorder. In the absence of topological defects this system is equivalent to a (3+1)-dimensional interface subject to a periodic pinning potential. We have applied an efficient combinatorial optimization algorithm to generate exact ground states for this interface representation. Our results indicate that this Bragg glass is characterized by power law divergences in the structure factor S(k)~Ak-3. We have found numerically consistent values of the coefficient A for two lattice discretizations of the medium, supporting universality for A in the isotropic systems considered here. We also examine the response of the ground state to the change in boundary conditions that corresponds to introducing a single dislocation loop encircling the system. The rearrangement of the ground state caused by this change is equivalent to the domain wall of elastic deformations which span the dislocation loop. Our results indicate that these domain walls are highly convoluted, with a fractal dimension df=2.60(5). We also discuss the implications of the domain wall energetics for the stability of the Bragg glass phase. Elastic excitations similar to these domain walls arise when the pinning potential is slightly perturbed. As in other disordered systems, perturbations of relative strength δ introduce a new length scale L*~δ-1/ζ beyond which the perturbed ground state becomes uncorrelated with the reference (unperturbed) ground state. We have performed a scaling analysis of the response of the ground state to the perturbations and obtain ζ=0.385(40). This value is consistent with the scaling relation ζ=df/2-θ, where θ characterizes the scaling of the energy fluctuations of low energy excitations.
Analysis of synthetic diamond single crystals by X-ray topography and double-crystal diffractometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prokhorov, I. A., E-mail: igor.prokhorov@mail.ru; Ralchenko, V. G.; Bolshakov, A. P.
2013-12-15
Structural features of diamond single crystals synthesized under high pressure and homoepitaxial films grown by chemical vapor deposition (CVD) have been analyzed by double-crystal X-ray diffractometry and topography. The conditions of a diffraction analysis of diamond crystals using Ge monochromators have been optimized. The main structural defects (dislocations, stacking faults, growth striations, second-phase inclusions, etc.) formed during crystal growth have been revealed. The nitrogen concentration in high-pressure/high-temperature (HPHT) diamond substrates is estimated based on X-ray diffraction data. The formation of dislocation bundles at the film-substrate interface in the epitaxial structures has been revealed by plane-wave topography; these dislocations are likelymore » due to the relaxation of elastic macroscopic stresses caused by the lattice mismatch between the substrate and film. The critical thicknesses of plastic relaxation onset in CVD diamond films are calculated. The experimental techniques for studying the real diamond structure in optimizing crystal-growth technology are proven to be highly efficient.« less
From Atomistic Model to the Peierls-Nabarro Model with {γ} -surface for Dislocations
NASA Astrophysics Data System (ADS)
Luo, Tao; Ming, Pingbing; Xiang, Yang
2018-05-01
The Peierls-Nabarro (PN) model for dislocations is a hybrid model that incorporates the atomistic information of the dislocation core structure into the continuum theory. In this paper, we study the convergence from a full atomistic model to the PN model with {γ} -surface for the dislocation in a bilayer system. We prove that the displacement field and the total energy of the dislocation solution of the PN model are asymptotically close to those of the full atomistic model. Our work can be considered as a generalization of the analysis of the convergence from atomistic model to Cauchy-Born rule for crystals without defects.
Zuanetti, Bryan; McGrane, Shawn David; Bolme, Cynthia Anne; ...
2018-05-18
Here, this article presents results from laser-driven shock compression experiments performed on pre-heated pure aluminum films at temperatures ranging from 23 to 400 °C. The samples were vapor deposited on the surface of a 500 μm thick sapphire substrate and mounted onto a custom holder with an integrated ring-heater to enable variable initial temperature conditions. A chirped pulse amplified laser was used to generate a pulse for both shocking the films and for probing the free surface velocity using Ultrafast Dynamic Ellipsometry. The particle velocity traces measured at the free surface clearly show elastic and plastic wave separation, which wasmore » used to estimate the decay of the elastic precursor amplitude over propagation distances ranging from 0.278 to 4.595 μm. Elastic precursors (which also correspond to dynamic material strength under uniaxial strain) of increasing amplitudes were observed with increasing initial sample temperatures for all propagation distances, which is consistent with expectations for aluminum in a deformation regime where phonon drag limits the mobility of dislocations. The experimental results show peak elastic amplitudes corresponding to axial stresses of over 7.5 GPa; estimates for plastic strain-rates in the samples are of the order 10 9/s. The measured elastic amplitudes at the micron length scales are compared with those at the millimeter length-scales using a two-parameter model and used to correlate the rate sensitivity of the dynamic strength at strain-rates ranging from 10 3 to 10 9/s and elevated temperature conditions. The overall trend, as inferred from the experimental data, indicates that the temperature-strengthening effect decreases with increasing plastic strain-rates.« less
NASA Astrophysics Data System (ADS)
Zuanetti, Bryan; McGrane, Shawn D.; Bolme, Cynthia A.; Prakash, Vikas
2018-05-01
This article presents results from laser-driven shock compression experiments performed on pre-heated pure aluminum films at temperatures ranging from 23 to 400 °C. The samples were vapor deposited on the surface of a 500 μm thick sapphire substrate and mounted onto a custom holder with an integrated ring-heater to enable variable initial temperature conditions. A chirped pulse amplified laser was used to generate a pulse for both shocking the films and for probing the free surface velocity using Ultrafast Dynamic Ellipsometry. The particle velocity traces measured at the free surface clearly show elastic and plastic wave separation, which was used to estimate the decay of the elastic precursor amplitude over propagation distances ranging from 0.278 to 4.595 μm. Elastic precursors (which also correspond to dynamic material strength under uniaxial strain) of increasing amplitudes were observed with increasing initial sample temperatures for all propagation distances, which is consistent with expectations for aluminum in a deformation regime where phonon drag limits the mobility of dislocations. The experimental results show peak elastic amplitudes corresponding to axial stresses of over 7.5 GPa; estimates for plastic strain-rates in the samples are of the order 109/s. The measured elastic amplitudes at the micron length scales are compared with those at the millimeter length-scales using a two-parameter model and used to correlate the rate sensitivity of the dynamic strength at strain-rates ranging from 103 to 109/s and elevated temperature conditions. The overall trend, as inferred from the experimental data, indicates that the temperature-strengthening effect decreases with increasing plastic strain-rates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuanetti, Bryan; McGrane, Shawn David; Bolme, Cynthia Anne
Here, this article presents results from laser-driven shock compression experiments performed on pre-heated pure aluminum films at temperatures ranging from 23 to 400 °C. The samples were vapor deposited on the surface of a 500 μm thick sapphire substrate and mounted onto a custom holder with an integrated ring-heater to enable variable initial temperature conditions. A chirped pulse amplified laser was used to generate a pulse for both shocking the films and for probing the free surface velocity using Ultrafast Dynamic Ellipsometry. The particle velocity traces measured at the free surface clearly show elastic and plastic wave separation, which wasmore » used to estimate the decay of the elastic precursor amplitude over propagation distances ranging from 0.278 to 4.595 μm. Elastic precursors (which also correspond to dynamic material strength under uniaxial strain) of increasing amplitudes were observed with increasing initial sample temperatures for all propagation distances, which is consistent with expectations for aluminum in a deformation regime where phonon drag limits the mobility of dislocations. The experimental results show peak elastic amplitudes corresponding to axial stresses of over 7.5 GPa; estimates for plastic strain-rates in the samples are of the order 10 9/s. The measured elastic amplitudes at the micron length scales are compared with those at the millimeter length-scales using a two-parameter model and used to correlate the rate sensitivity of the dynamic strength at strain-rates ranging from 10 3 to 10 9/s and elevated temperature conditions. The overall trend, as inferred from the experimental data, indicates that the temperature-strengthening effect decreases with increasing plastic strain-rates.« less
Compliance matrices for cracked bodies
NASA Technical Reports Server (NTRS)
Ballarini, R.
1986-01-01
An algorithm is developed to construct the compliance matrix for a cracked solid in the integral-equation formulation of two-dimensional linear-elastic fracture mechanics. The integral equation is reduced to a system of algebraic equations for unknown values of the dislocation-density function at discrete points on the interval from -1 to 1, using the numerical procedure described by Gerasoulis (1982). Sample numerical results are presented, and it is suggested that the algorithm is especially useful in cases where iterative solutions are required; e.g., models of fiber-reinforced concrete, rocks, or ceramics where microcracking, fiber bridging, and other nonlinear effects are treated as nonlinear springs along the crack surfaces (Ballarini et al., 1984).
Model for threading dislocations in metamorphic tandem solar cells on GaAs (001) substrates
NASA Astrophysics Data System (ADS)
Song, Yifei; Kujofsa, Tedi; Ayers, John E.
2018-02-01
We present an approximate model for the threading dislocations in III-V heterostructures and have applied this model to study the defect behavior in metamorphic triple-junction solar cells. This model represents a new approach in which the coefficient for second-order threading dislocation annihilation and coalescence reactions is considered to be determined by the length of misfit dislocations, LMD, in the structure, and we therefore refer to it as the LMD model. On the basis of this model we have compared the average threading dislocation densities in the active layers of triple junction solar cells using linearly-graded buffers of varying thicknesses as well as S-graded (complementary error function) buffers with varying thicknesses and standard deviation parameters. We have shown that the threading dislocation densities in the active regions of metamorphic tandem solar cells depend not only on the thicknesses of the buffer layers but on their compositional grading profiles. The use of S-graded buffer layers instead of linear buffers resulted in lower threading dislocation densities. Moreover, the threading dislocation densities depended strongly on the standard deviation parameters used in the S-graded buffers, with smaller values providing lower threading dislocation densities.
Disclinations, dislocations, and continuous defects: A reappraisal
NASA Astrophysics Data System (ADS)
Kleman, M.; Friedel, J.
2008-01-01
Disclinations were first observed in mesomorphic phases. They were later found relevant to a number of ill-ordered condensed-matter media involving continuous symmetries or frustrated order. Disclinations also appear in polycrystals at the edges of grain boundaries; but they are of limited interest in solid single crystals, where they can move only by diffusion climb and, owing to their large elastic stresses, mostly appear in close pairs of opposite signs. The relaxation mechanisms associated with a disclination in its creation, motion, and change of shape involve an interplay with continuous or quantized dislocations and/or continuous disclinations. These are attached to the disclinations or are akin to Nye’s dislocation densities, which are particularly well suited for consideration here. The notion of an extended Volterra process is introduced, which takes these relaxation processes into account and covers different situations where this interplay takes place. These concepts are illustrated by a variety of applications in amorphous solids, mesomorphic phases, and frustrated media in their curved habit space. These often involve disclination networks with specific node conditions. The powerful topological theory of line defects considers only defects stable against any change of boundary conditions or relaxation processes compatible with the structure considered. It can be seen as a simplified case of the approach considered here, particularly suited for media of high plasticity or/and complex structures. It cannot analyze the dynamical properties of defects nor the elastic constants involved in their static properties; topological stability cannot guarantee energetic stability, and sometimes cannot distinguish finer details of the structure of defects.
Mechanical behavior of nanocrystalline NaCl islands on Cu(111).
Bombis, Ch; Ample, F; Mielke, J; Mannsberger, M; Villagómez, C J; Roth, Ch; Joachim, C; Grill, L
2010-05-07
The mechanical response of ultrathin NaCl crystallites of nanometer dimensions upon manipulation with the tip of a scanning tunneling microscope (STM) is investigated, expanding STM manipulation to various nanostructuring modes of inorganic materials as cutting, moving, and cracking. In the light of theoretical calculations, our results reveal that atomic-scale NaCl islands can behave elastically and follow a classical Hooke's law. When the elastic limit of the nanocrystallites is reached, the STM tip induces atomic dislocations and consequently the regime of plastic deformation is entered. Our methodology is paving the way to understand the mechanical behavior and properties of other nanoscale materials.
Prediction of dislocation generation during Bridgman growth of GaAs crystals
NASA Technical Reports Server (NTRS)
Tsai, C. T.; Yao, M. W.; Chait, Arnon
1992-01-01
Dislocation densities are generated in GaAs single crystals due to the excessive thermal stresses induced by temperature variations during growth. A viscoplastic material model for GaAs, which takes into account the movement and multiplication of dislocations in the plastic deformation, is developed according to Haasen's theory. The dislocation density is expressed as an internal state variable in this dynamic viscoplastic model. The deformation process is a nonlinear function of stress, strain rate, dislocation density and temperature. The dislocation density in the GaAs crystal during vertical Bridgman growth is calculated using a nonlinear finite element model. The dislocation multiplication in GaAs crystals for several temperature fields obtained from thermal modeling of both the GTE GaAs experimental data and artificially designed data are investigated.
Prediction of dislocation generation during Bridgman growth of GaAs crystals
NASA Astrophysics Data System (ADS)
Tsai, C. T.; Yao, M. W.; Chait, Arnon
1992-11-01
Dislocation densities are generated in GaAs single crystals due to the excessive thermal stresses induced by temperature variations during growth. A viscoplastic material model for GaAs, which takes into account the movement and multiplication of dislocations in the plastic deformation, is developed according to Haasen's theory. The dislocation density is expressed as an internal state variable in this dynamic viscoplastic model. The deformation process is a nonlinear function of stress, strain rate, dislocation density and temperature. The dislocation density in the GaAs crystal during vertical Bridgman growth is calculated using a nonlinear finite element model. The dislocation multiplication in GaAs crystals for several temperature fields obtained from thermal modeling of both the GTE GaAs experimental data and artificially designed data are investigated.
NASA Astrophysics Data System (ADS)
Reina, Celia; Conti, Sergio
2017-10-01
The multiplicative decomposition of the total deformation F =FeFi between an elastic (Fe) and an inelastic component (Fi) is standard in the modeling of many irreversible processes such as plasticity, growth, thermoelasticity, viscoelasticty or phase transformations. The heuristic argument for such kinematic assumption is based on the chain rule for the compatible scenario (CurlFi = 0) where the individual deformation tensors are gradients of deformation mappings, i.e. F = D φ = D (φe ∘φi) = (Dφe) ∘φi (Dφi) =FeFi . Yet, the conditions for its validity in the general incompatible case (CurlFi ≠ 0) has so far remained uncertain. We show in this paper that detFi = 1 and CurlFi bounded are necessary and sufficient conditions for the validity of F =FeFi for a wide range of inelastic processes. In particular, in the context of crystal plasticity, we demonstrate via rigorous homogenization from discrete dislocations to the continuum level in two dimensions, that the volume preserving property of the mechanistics of dislocation glide, combined with a finite dislocation density, is sufficient to deliver F =FeFp at the continuum scale. We then generalize this result to general two-dimensional inelastic processes that may be described at a lower dimensional scale via a multiplicative decomposition while exhibiting a finite density of incompatibilities. The necessity of the conditions detFi = 1 and CurlFi bounded for such systems is demonstrated via suitable counterexamples.
NASA Astrophysics Data System (ADS)
Mezhov-Deglin, L. P.; Mukhin, S. I.
2011-10-01
The possible interpretation of experimental data on low-temperature anomalies in weakly deformed metallic crystals prepared form ultra-pure lead, copper, and silver, as well as in crystals of 4He is discussed within the previously proposed theoretical picture of dislocations with dynamical kinks. In the case of pure metals the theoretical predictions give a general picture of interaction of conduction electrons in a sample with newly-introduced dislocations, containing dynamic kinks in the Peierls potential relief. In the field of random stresses appearing due to plastic deformation of a sample, kinks on the dislocation line form a set of one-dimensional oscillators in potential wells of different shapes. In the low temperature region at low enough density of defects pinning kinks the inelastic scattering of electrons on kinks should lead to deviations from the Wiedemann-Franz law. In particular, the inelastic scattering on kinks should result in a quadratic temperature dependence of the thermal conductivity in a metallic sample along preferential directions of dislocation axes. In the plane normal to the dislocation axis the elastic large-angle scattering of electrons is prevalent. The kink pinning by a point defect or by additional dislocations as well as the sample annealing leading to the disappearance of kinks should induce suppression of transport anomalies. Thus, the energy interval for the spectrum of kink oscillations restricted by characteristic amplitude of the Peierls relief is a "passport of deformation history" for each specific sample. For instance, in copper the temperature/energy region of the order of 1 K corresponds to it. It is also planned to discuss in the other publication applicability of mechanism of phonon scattering on mobile dislocation kinks and pinning of kinks by impurities in order to explain anomalies of phonon thermal conductivity of 4He crystals and deformed crystals of pure lead in a superconducting state.
Asymptotic self-restabilization of a continuous elastic structure
NASA Astrophysics Data System (ADS)
Bosi, F.; Misseroni, D.; Dal Corso, F.; Neukirch, S.; Bigoni, D.
2016-12-01
A challenge in soft robotics and soft actuation is the determination of an elastic system that spontaneously recovers its trivial path during postcritical deformation after a bifurcation. The interest in this behavior is that a displacement component spontaneously cycles around a null value, thus producing a cyclic soft mechanism. An example of such a system is theoretically proven through the solution of the elastica and a stability analysis based on dynamic perturbations. It is shown that the asymptotic self-restabilization is driven by the development of a configurational force, of similar nature to the Peach-Koehler interaction between dislocations in crystals, which is derived from the principle of least action. A proof-of-concept prototype of the discovered elastic system is designed, realized, and tested, showing that this innovative behavior can be obtained in a real mechanical apparatus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phan, Thien Q.; Levine, Lyle E.; Lee, I-Fang
Synchrotron X-ray microbeam diffraction was used to measure the full elastic long range internal strain and stress tensors of low dislocation density regions within the submicrometer grain/subgrain structure of equal-channel angular pressed (ECAP) aluminum alloy AA1050 after 1, 2, and 8 passes using route B C. This is the first time that full tensors were measured in plastically deformed metals at this length scale. The maximum (most tensile or least compressive) principal elastic strain directions for the unloaded 1 pass sample for the grain/subgrain interiors align well with the pressing direction, and are more random for the 2 and 8more » pass samples. The measurements reported here indicate that the local stresses and strains become increasingly isotropic (homogenized) with increasing ECAP passes using route BC. The average maximum (in magnitude) LRISs are -0.43 σ a for 1 pass, -0.44 σ a for 2 pass, and 0.14 σ a for the 8 pass sample. Furthermore, these LRISs are larger than those reported previously because those earlier measurements were unable to measure the full stress tensor. Significantly, the measured stresses are inconsistent with the two-component composite model.« less
Phan, Thien Q.; Levine, Lyle E.; Lee, I-Fang; ...
2016-04-23
Synchrotron X-ray microbeam diffraction was used to measure the full elastic long range internal strain and stress tensors of low dislocation density regions within the submicrometer grain/subgrain structure of equal-channel angular pressed (ECAP) aluminum alloy AA1050 after 1, 2, and 8 passes using route B C. This is the first time that full tensors were measured in plastically deformed metals at this length scale. The maximum (most tensile or least compressive) principal elastic strain directions for the unloaded 1 pass sample for the grain/subgrain interiors align well with the pressing direction, and are more random for the 2 and 8more » pass samples. The measurements reported here indicate that the local stresses and strains become increasingly isotropic (homogenized) with increasing ECAP passes using route BC. The average maximum (in magnitude) LRISs are -0.43 σ a for 1 pass, -0.44 σ a for 2 pass, and 0.14 σ a for the 8 pass sample. Furthermore, these LRISs are larger than those reported previously because those earlier measurements were unable to measure the full stress tensor. Significantly, the measured stresses are inconsistent with the two-component composite model.« less
Peierls-Nabarro modeling of dislocations in UO2
NASA Astrophysics Data System (ADS)
Skelton, Richard; Walker, Andrew M.
2017-11-01
Under conditions of high stress or low temperature, glide of dislocations plays an important role in the deformation of UO2. In this paper, the Peierls-Nabarro model is used to calculate the core widths and Peierls stresses of ½<110> edge and screw dislocations gliding on {100}, {110}, and {111}. The energy of the inelastic displacement field in the dislocation core is parameterized using generalized stacking fault energies, which are calculated atomistically using interatomic potentials. We use seven different interatomic potential models, representing the variety of different models available for UO2. The different models broadly agree on the relative order of the strengths of the different slip systems, with the 1/2<110>{100} edge dislocation predicted to be the weakest slip system and 1/2<110>{110} the strongest. However, the calculated Peierls stresses depend strongly on the interatomic potential used, with values ranging between 2.7 and 12.9 GPa for glide of 1/2<110>{100} edge dislocations, 16.4-32.3 GPa for 1/2<110>{110} edge dislocations, and 6.8-13.6 GPa for 1/2<110>{111} edge dislocations. The glide of 1/2<110> screw dislocations in UO2 is also found to depend on the interatomic potential used, with some models predicting similar Peierls stresses for glide on {100} and {111}, while others predict a unique easy glide direction. Comparison with previous fully atomistic calculations show that the Peierls-Nabarro model can accurately predict dislocation properties in UO2.
Dislocation mechanism based model for stage II fatigue crack propagation rate
NASA Technical Reports Server (NTRS)
Mazumdar, P. K.
1986-01-01
Repeated plastic deformation, which of course depends on dislocation mechanism, at or near the crack tip leads to the fatigue crack propagation. By involving the theory of thermally activated flow and the cumulative plastic strain criterion, an effort is made here to model the stage II fatigue crack propagation rate in terms of the dislocation mechanism. The model, therefore, provides capability to ascertain: (1) the dislocation mechanism (and hence the near crack tip microstructures) assisting the crack growth, (2) the relative resistance of dislocation mechanisms to the crack growth, and (3) the fracture surface characteristics and its interpretation in terms of the dislocation mechanism. The local microstructure predicted for the room temperature crack growth in copper by this model is in good agreement with the experimental results taken from the literature. With regard to the relative stability of such dislocation mechanisms as the cross-slip and the dislocation intersection, the model suggests an enhancement of crack growth rate with an ease of cross-slip which in general promotes dislocation cell formation and is common in material which has high stacking fault energy (produces wavy slips). Cross-slip apparently enhances crack growth rate by promoting slip irreversibility and fracture surface brittleness to a greater degree.
Analytical close-form solutions to the elastic fields of solids with dislocations and surface stress
NASA Astrophysics Data System (ADS)
Ye, Wei; Paliwal, Bhasker; Ougazzaden, Abdallah; Cherkaoui, Mohammed
2013-07-01
The concept of eigenstrain is adopted to derive a general analytical framework to solve the elastic field for 3D anisotropic solids with general defects by considering the surface stress. The formulation shows the elastic constants and geometrical features of the surface play an important role in determining the elastic fields of the solid. As an application, the analytical close-form solutions to the stress fields of an infinite isotropic circular nanowire are obtained. The stress fields are compared with the classical solutions and those of complex variable method. The stress fields from this work demonstrate the impact from the surface stress when the size of the nanowire shrinks but becomes negligible in macroscopic scale. Compared with the power series solutions of complex variable method, the analytical solutions in this work provide a better platform and they are more flexible in various applications. More importantly, the proposed analytical framework profoundly improves the studies of general 3D anisotropic materials with surface effects.
NASA Astrophysics Data System (ADS)
Skripnyak, Vladimir
2011-06-01
Features of mechanical behavior of nanostructured (NS) and ultrafine grained (UFG) metal and ceramic materials under quasistatic and shock wave loadings are discussed in this report. Multilevel models developed within the approach of computational mechanics of materials were used for simulation mechanical behavior of UFG and NS metals and ceramics. Comparisons of simulation results with experimental data are presented. Models of mechanical behavior of nanostructured metal alloys takes into account a several structural factors influencing on the mechanical behavior of materials (type of a crystal lattice, density of dislocations, a size of dislocation substructures, concentration and size of phase precipitation, and distribution of grains sizes). Results show the strain rate sensitivity of the yield stress of UFG and polycrystalline alloys is various in a range from 103 up to 106 1/s. But the difference of the Hugoniot elastic limits of a UFG and coarse-grained alloys may be not considerable. The spall strength, the yield stress of UFG and NS alloys are depend not only on grains size, but a number of factors such as a distribution of grains sizes, a concentration and sizes of voids and cracks, a concentration and sizes of phase precipitation. Some titanium alloys with grain sizes from 300 to 500 nm have the quasi-static yield strength and the tensile strength twice higher than that of coarse grained counterparts. But the spall strength of the UFG titanium alloys is only 10 percents above than that of coarse grained alloys. At the same time it was found the spall strength of the bulk UFG aluminium and magnesium alloys with precipitation strengthening is essentially higher in comparison of coarse-grained counterparts. The considerable decreasing of the strain before failure of UFG alloys was predicted at high strain rates. The Hugoniot elastic limits of oxide nanoceramics depend not only on the porosity, but also on sizes and volume distribution of voids.
High Compressive Stresses Near the Surface of the Sierra Nevada, California
NASA Astrophysics Data System (ADS)
Martel, S. J.; Logan, J. M.; Stock, G. M.
2012-12-01
Observations and stress measurements in granitic rocks of the Sierra Nevada, California reveal strong compressive stresses parallel to the surface of the range at shallow depths. New overcoring measurements show high compressive stresses at three locations along an east-west transect through Yosemite National Park. At the westernmost site (west end of Tenaya Lake), the mean compressive stress is 1.9. At the middle site (north shore of Tenaya Lake) the mean compressive stress is 6.8 MPa. At the easternmost site (south side of Lembert Dome) the mean compressive stress is 3.0 MPa. The trend of the most compressive stress at these sites is within ~30° of the strike of the local topographic surface. Previously published hydraulic fracturing measurements by others elsewhere in the Sierra Nevada indicate surface-parallel compressive stresses of several MPa within several tens of meters of the surface, with the stress magnitudes generally diminishing to the west. Both the new and the previously published compressive stress magnitudes are consistent with the presence of sheeting joints (i.e., "exfoliation joints") in the Sierra Nevada, which require lateral compressive stresses of several MPa to form. These fractures are widespread: they are distributed in granitic rocks from the north end of the range to its southern tip and across the width of the range. Uplift along the normal faults of the eastern escarpment, recently measured by others at ~1-2 mm/yr, probably contributes to these stresses substantially. Geodetic surveys reveal that normal faulting flexes a range concave upwards in response to fault slip, and this flexure is predicted by elastic dislocation models. The topographic relief of the eastern escarpment of the Sierra Nevada is 2-4 km, and since alluvial fill generally buries the bedrock east of the faults, the offset of granitic rocks is at least that much. Compressive stresses of several MPa are predicted by elastic dislocation models of the range front faults of the eastern Sierra Nevada for as little as 100m of slip. The compression is consistent with a concave up flexure of the surface of the range. Conversely, elastic models also predict that markedly lower compressive stresses or even a tension would exist on exposed bedrock on the down-dropped hanging wall east of the range front faults. To test this prediction, we measured stresses at a fourth site, in the granitic rock of the Aeolian Buttes, which is east of the range front faults. The mean compressive stress there is 0.26 MPa, more than an order of magnitude less than the average at the three Yosemite sites. The measured stress magnitudes near the topographic surface of the Sierra, the distribution of sheeting joints west of the range front faults, and elastic model predictions are broadly consistent and indicate that the high compressive stresses at the surface of the Sierra Nevada are largely associated with uplift of the range, although other contributions cannot be excluded.
NASA Astrophysics Data System (ADS)
Xia, Shengxu; El-Azab, Anter
2015-07-01
We present a continuum dislocation dynamics model that predicts the formation of dislocation cell structure in single crystals at low strains. The model features a set of kinetic equations of the curl type that govern the space and time evolution of the dislocation density in the crystal. These kinetic equations are coupled to stress equilibrium and deformation kinematics using the eigenstrain approach. A custom finite element method has been developed to solve the coupled system of equations of dislocation kinetics and crystal mechanics. The results show that, in general, dislocations self-organize in patterns under their mutual interactions. However, the famous dislocation cell structure has been found to form only when cross slip is implemented in the model. Cross slip is also found to lower the yield point, increase the hardening rate, and sustain an increase in the dislocation density over the hardening regime. Analysis of the cell structure evolution reveals that the average cell size decreases with the applied stress, which is consistent with the similitude principle.
Modeling and 2-D discrete simulation of dislocation dynamics for plastic deformation of metal
NASA Astrophysics Data System (ADS)
Liu, Juan; Cui, Zhenshan; Ou, Hengan; Ruan, Liqun
2013-05-01
Two methods are employed in this paper to investigate the dislocation evolution during plastic deformation of metal. One method is dislocation dynamic simulation of two-dimensional discrete dislocation dynamics (2D-DDD), and the other is dislocation dynamics modeling by means of nonlinear analysis. As screw dislocation is prone to disappear by cross-slip, only edge dislocation is taken into account in simulation. First, an approach of 2D-DDD is used to graphically simulate and exhibit the collective motion of a large number of discrete dislocations. In the beginning, initial grains are generated in the simulation cells according to the mechanism of grain growth and the initial dislocation is randomly distributed in grains and relaxed under the internal stress. During the simulation process, the externally imposed stress, the long range stress contribution of all dislocations and the short range stress caused by the grain boundaries are calculated. Under the action of these forces, dislocations begin to glide, climb, multiply, annihilate and react with each other. Besides, thermal activation process is included. Through the simulation, the distribution of dislocation and the stress-strain curves can be obtained. On the other hand, based on the classic dislocation theory, the variation of the dislocation density with time is described by nonlinear differential equations. Finite difference method (FDM) is used to solve the built differential equations. The dislocation evolution at a constant strain rate is taken as an example to verify the rationality of the model.
NASA Astrophysics Data System (ADS)
Vattré, A.; Devincre, B.; Feyel, F.; Gatti, R.; Groh, S.; Jamond, O.; Roos, A.
2014-02-01
A unified model coupling 3D dislocation dynamics (DD) simulations with the finite element (FE) method is revisited. The so-called Discrete-Continuous Model (DCM) aims to predict plastic flow at the (sub-)micron length scale of materials with complex boundary conditions. The evolution of the dislocation microstructure and the short-range dislocation-dislocation interactions are calculated with a DD code. The long-range mechanical fields due to the dislocations are calculated by a FE code, taking into account the boundary conditions. The coupling procedure is based on eigenstrain theory, and the precise manner in which the plastic slip, i.e. the dislocation glide as calculated by the DD code, is transferred to the integration points of the FE mesh is described in full detail. Several test cases are presented, and the DCM is applied to plastic flow in a single-crystal Nickel-based superalloy.
Dislocation loops in ultra-high purity Fe(Cr) alloys after 7.2 MeV proton irradiation
NASA Astrophysics Data System (ADS)
Chen, J.; Duval, F.; Jung, P.; Schäublin, R.; Gao, N.; Barthe, M. F.
2018-05-01
Ultra-high purity Fe(Cr) alloys (from 0 wt% Cr to 14 wt% Cr) were 3D homogeneously irradiated by 0-7.2 MeV protons to 0.3 dpa at nominal temperatures from 270 °C to 500 °C. Microstructural changes were observed by transmission electron microscopy (TEM). The results showed that evolution of dislocation loops depends on the Cr content. Below 300 °C, large ½ a0 <111> loops are dominating. Above 300 °C, a0 <100> loops with a habit plane {100} appear. Loop sizes of both types are more or less the same. At temperatures from 310 °C to 400 °C, a0 <100> loops form clusters with the same {100} habit plane as the one of the loops forming them. This indicates that <100> loops of the same variant start gliding under mutual elastic interaction. At 500 °C, dislocation loops form disc shaped clusters about 1000 nm in diameter and sitting on {111} and/or {100} planes in the pure Fe samples. Based on these observations a quantitative analysis of the dislocation loops configurations and their temperature dependence is made, leading to an understanding of the basic mechanisms of formation of these loops.
A Mathematical Model for Plasticity and Cosmology
NASA Astrophysics Data System (ADS)
Muñoz-Andrade, Juan Daniel
2007-05-01
In the scenery of a crystalline universe, embedded and related in a spatially extended polycrystalline system, with a relativistic framework, the constancy of the speed of light is the cosmic connection between the Planck length and the Hubble length, As a matter of fact, in the general relativity theory the gravitational interaction is propagated at the speed of light and when the gravitational field changed, the gravitational waves are produced in a similar form of an elastic field with dislocations in a crystal during plastic flow. Moreover, the nature role of a field in relativistic physics shows that it is an independent physical entity that should be considered on the same grounds as matter particles and it possesses energy and momentum. Consequently, in this work a mathematical model for plasticity and cosmology is proposed and some properties of the universe are obtained.
NASA Astrophysics Data System (ADS)
Admal, Nikhil Chandra; Po, Giacomo; Marian, Jaime
2017-12-01
The standard way of modeling plasticity in polycrystals is by using the crystal plasticity model for single crystals in each grain, and imposing suitable traction and slip boundary conditions across grain boundaries. In this fashion, the system is modeled as a collection of boundary-value problems with matching boundary conditions. In this paper, we develop a diffuse-interface crystal plasticity model for polycrystalline materials that results in a single boundary-value problem with a single crystal as the reference configuration. Using a multiplicative decomposition of the deformation gradient into lattice and plastic parts, i.e. F( X,t)= F L( X,t) F P( X,t), an initial stress-free polycrystal is constructed by imposing F L to be a piecewise constant rotation field R 0( X), and F P= R 0( X)T, thereby having F( X,0)= I, and zero elastic strain. This model serves as a precursor to higher order crystal plasticity models with grain boundary energy and evolution.
NASA Astrophysics Data System (ADS)
Carvalho Resende, T.; Balan, T.; Abed-Meraim, F.; Bouvier, S.; Sablin, S.-S.
2010-06-01
With a view to environmental, economic and safety concerns, car manufacturers need to design lighter and safer vehicles in ever shorter development times. In recent years, High Strength Steels (HSS) like Interstitial Free (IF) steels which have higher ratios of yield strength to elastic modulus, are increasingly used for sheet metal parts in automotive industry to meet the demands. Moreover, the application of sheet metal forming simulations has proven to be beneficial to reduce tool costs in the design stage and to optimize current processes. The Finite Element Method (FEM) is quite successful to simulate metal forming processes but accuracy largely depends on the quality of the material properties provided as input to the material model. Common phenomenological models roughly consist in the fitting of functions on experimental results and do not provide any predictive character for different metals from the same grade. Therefore, the use of accurate plasticity models based on physics would increase predictive capability, reduce parameter identification cost and allow for robust and time-effective finite element simulations. For this purpose, a 3D physically based model at large strain with dislocation density evolution approach was presented in IDDRG2009 by the authors [1]. This model allows the description of work-hardening's behavior for different loading paths (i.e. uni-axial tensile, simple shear and Bauschinger tests) taking into account several data from microstructure (i.e. grain size, texture, etc…). The originality of this model consists in the introduction of microstructure data in a classical phenomenological model in order to achieve work-hardening's predictive character for different metals from the same grade. Indeed, thanks to a microstructure parameter set for an Interstitial Free steel, it is possible to describe work-hardening behavior for different loading paths of other IF steels by only changing the mean grain size and the chemical composition. During sheet metal forming processes local material points may experience multi-axial and multi-path loadings. Before simulating actual industrial parts, automotive manufacturers use validation tools—e.g. the Cross-Die stamping test. Such typical stamping tests enable the evaluation of a complex distribution of strains. The work described is an implementation [2] of a 3D dislocation based model in ABAQUS/Explicit and its validation on a Finite Element (FE) Cross-Die model. In order to assess the performance and relevance of the 3D dislocation based model in the simulation of industrial forming applications, the results of thinning profiles predicted along several directions and the strain distribution were obtained and compared with experimental results for IF steels with grain sizes varying in the 8-22 μm value range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, B.; The Peac Institute of Multiscale Sciences, Chengdu, Sichuan 610207; Wang, L.
With large-scale molecular dynamics simulations, we investigate shock response of He nanobubbles in single crystal Cu. For sufficient bubble size or internal pressure, a prismatic dislocation loop may form around a bubble in unshocked Cu. The internal He pressure helps to stabilize the bubble against plastic deformation. However, the prismatic dislocation loops may partially heal but facilitate nucleation of new shear and prismatic dislocation loops. For strong shocks, the internal pressure also impedes internal jetting, while a bubble assists local melting; a high speed jet breaks a He bubble into pieces dispersed among Cu. Near-surface He bubbles may burst andmore » form high velocity ejecta containing atoms and small fragments, while the ejecta velocities do not follow the three-dimensional Maxwell-Boltzmann distributions expected for thermal equilibrium. The biggest fragment size deceases with increasing shock strength. With a decrease in ligament thickness or an increase in He bubble size, the critical shock strength required for bubble bursting decreases, while the velocity range, space extension and average velocity component along the shock direction, increase. Small bubbles are more efficient in mass ejecting. Compared to voids and perfect single crystal Cu, He bubbles have pronounced effects on shock response including bubble/void collapse, Hugoniot elastic limit (HEL), deformation mechanisms, and surface jetting. HEL is the highest for perfect single crystal Cu with the same orientations, followed by He bubbles without pre-existing prismatic dislocation loops, and then voids. Complete void collapse and shear dislocations occur for embedded voids, as opposed to partial collapse, and shear and possibly prismatic dislocations for He bubbles. He bubbles lower the threshhold shock strength for ejecta formation, and increase ejecta velocity and ejected mass.« less
Comment on ``Dynamic Peierls-Nabarro equations for elastically isotropic crystals''
NASA Astrophysics Data System (ADS)
Markenscoff, Xanthippi
2011-02-01
The paper by Pellegrini [Phys. Rev. BPRBMDO0031-899X10.1103/PhysRevB.81.024101 81, 024101 (2010)] introduces additional “distributional terms” to the displacement of the static field of a dislocation and claims that they are needed so that Weertman's equation for the steady-state motion of the Peierls-Nabarro dislocation be recovered. He also claims that the [Eshelby, Phys. Rev.PHRVAO0031-899X10.1103/PhysRev.90.248 90, 248 (1953)] solution for a moving screw is wrong, a statement with which I disagree. The same [Eshelby, Phys. Rev.PHRVAO0031-899X10.1103/PhysRev.90.248 90, 248 (1953)] solution is also obtained and used by the eminent dislocation scientists Al’shitz and Indenbom in Al’shitz [Sov. Phys. JETP 33, 1240 (1971)] that the author ignores. A key reference in the formulation of the problem as a 3D inclusion with eigenstrain is Willis [J. Mech. Phys. SolidsJMPSA80022-509610.1016/0022-5096(65)90038-4 13, 377 (1965)] who showed that, in the transient fields, the static Eshelby equivalence of dislocations to inclusions (with eigenstrain) does not hold, but only at long times when they tend to the static ones. In this Comment the author provides the fundamental physics of the behavior of a moving Volterra dislocation in nonuniform motion by showing how the singular fields near the moving core are obtained from “first principles” (without solving for the full fields). The limit to the steady-state motion of a Peierls-Nabarro dislocation is also shown how to be obtained from first principles from the Volterra one by taking the appropriate limit, without the need of the additional distributional terms that Pellegrini introduces.
Lehtinen, Arttu; Granberg, Fredric; Laurson, Lasse; Nordlund, Kai; Alava, Mikko J
2016-01-01
The stress-driven motion of dislocations in crystalline solids, and thus the ensuing plastic deformation process, is greatly influenced by the presence or absence of various pointlike defects such as precipitates or solute atoms. These defects act as obstacles for dislocation motion and hence affect the mechanical properties of the material. Here we combine molecular dynamics studies with three-dimensional discrete dislocation dynamics simulations in order to model the interaction between different kinds of precipitates and a 1/2〈111〉{110} edge dislocation in BCC iron. We have implemented immobile spherical precipitates into the ParaDis discrete dislocation dynamics code, with the dislocations interacting with the precipitates via a Gaussian potential, generating a normal force acting on the dislocation segments. The parameters used in the discrete dislocation dynamics simulations for the precipitate potential, the dislocation mobility, shear modulus, and dislocation core energy are obtained from molecular dynamics simulations. We compare the critical stresses needed to unpin the dislocation from the precipitate in molecular dynamics and discrete dislocation dynamics simulations in order to fit the two methods together and discuss the variety of the relevant pinning and depinning mechanisms.
Multiphysical simulation analysis of the dislocation structure in germanium single crystals
NASA Astrophysics Data System (ADS)
Podkopaev, O. I.; Artemyev, V. V.; Smirnov, A. D.; Mamedov, V. M.; Sid'ko, A. P.; Kalaev, V. V.; Kravtsova, E. D.; Shimanskii, A. F.
2016-09-01
To grow high-quality germanium crystals is one of the most important problems of growth industry. The dislocation density is an important parameter of the quality of single crystals. The dislocation densities in germanium crystals 100 mm in diameter, which have various shapes of the side surface and are grown by the Czochralski technique, are experimentally measured. The crystal growth is numerically simulated using heat-transfer and hydrodynamics models and the Alexander-Haasen dislocation model in terms of the CGSim software package. A comparison of the experimental and calculated dislocation densities shows that the dislocation model can be applied to study lattice defects in germanium crystals and to improve their quality.
Liu, Guisen; Cheng, Xi; Wang, Jian; Chen, Kaiguo; Shen, Yao
2017-01-01
Prediction of Peierls stress associated with dislocation glide is of fundamental concern in understanding and designing the plasticity and mechanical properties of crystalline materials. Here, we develop a nonlocal semi-discrete variational Peierls-Nabarro (SVPN) model by incorporating the nonlocal atomic interactions into the semi-discrete variational Peierls framework. The nonlocal kernel is simplified by limiting the nonlocal atomic interaction in the nearest neighbor region, and the nonlocal coefficient is directly computed from the dislocation core structure. Our model is capable of accurately predicting the displacement profile, and the Peierls stress, of planar-extended core dislocations in face-centered cubic structures. Our model could be extended to study more complicated planar-extended core dislocations, such as <110> {111} dislocations in Al-based and Ti-based intermetallic compounds. PMID:28252102
NASA Astrophysics Data System (ADS)
Aleshin, A. N.; Bugaev, A. S.; Ruban, O. A.; Tabachkova, N. Yu.; Shchetinin, I. V.
2017-10-01
Spatial distribution of residual elastic strain in the layers of two step-graded metamophic buffers of various designs, grown by molecular beam epitaxy from ternary InxAl1-xAs solutions on GaAs(001) substrates, is obtained using reciprocal space mapping by three-axis X-ray diffractometry and the linear theory of elasticity. The difference in the design of the buffers enabled the formation of a dislocation-free layer with different thickness in each of the heterostructures, which was the main basis of this study. It is shown that, in spite of the different design of graded metamorphic buffers, the nature of strain fields in them is the same, and the residual elastic strains in the final elements of both buffers adjusted for the effect of work hardening subject to the same phenomenological law, which describes the strain relief process in single-layer heterostructures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, M.H.; King, A.H.
The role of interaction between slip dislocations and a ..sigma.. = 9 tilt boundary in localized microplastic deformation, cleavage, or intergranular fracture in the L1/sub 2/ ordered structure has been analyzed by using the anisotropic elasticity theory of dislocations and fracture. Screw superpartials cross slip easily at the boundary onto the (11-bar1) and the (001) planes at low and high temperatures, respectively. Transmission of primary slip dislocations onto the conjugate slip system occurs with a certain degree of difficulty, which is eased by localized disordering. When the transmission is impeded, cleavage fracture on the (1-bar11) plane is predicted to occur,more » not intergranular fracture, unless a symmetric double pileup occurs simultaneously. Absorption (or emission) of superpartials occurs only when the boundary region is disordered. Slip initiation from pre-existing sources near the boundary can occur under the local stress concentration. Implications of the present result on the inherent brittleness of grain boundaries in Ni/sub 3/ Al and its improvement by boron segregation are discussed.« less
3D Imaging of a Dislocation Loop at the Onset of Plasticity in an Indented Nanocrystal.
Dupraz, M; Beutier, G; Cornelius, T W; Parry, G; Ren, Z; Labat, S; Richard, M-I; Chahine, G A; Kovalenko, O; De Boissieu, M; Rabkin, E; Verdier, M; Thomas, O
2017-11-08
Structural quality and stability of nanocrystals are fundamental problems that bear important consequences for the performances of small-scale devices. Indeed, at the nanoscale, their functional properties are largely influenced by elastic strain and depend critically on the presence of crystal defects. It is thus of prime importance to be able to monitor, by noninvasive means, the stability of the microstructure of nano-objects against external stimuli such as mechanical load. Here we demonstrate the potential of Bragg coherent diffraction imaging for such measurements, by imaging in 3D the evolution of the microstructure of a nanocrystal exposed to in situ mechanical loading. Not only could we observe the evolution of the internal strain field after successive loadings, but we also evidenced a transient microstructure hosting a stable dislocation loop. The latter is fully characterized from its characteristic displacement field. The mechanical behavior of this small crystal is clearly at odds with what happens in bulk materials where many dislocations interact. Moreover, this original in situ experiment opens interesting possibilities for the investigation of plastic deformation at the nanoscale.
NASA Astrophysics Data System (ADS)
Kustov, S.; Gremaud, G.; Benoit, W.; Golyandin, S.; Sapozhnikov, K.; Nishino, Y.; Asano, S.
1999-02-01
Experimental investigations of the internal friction and the Young's modulus defect in single crystals of Cu-(1.3-7.6) at. % Ni have been performed for 7-300 K over a wide range of oscillatory strain amplitudes. Extensive data have been obtained at a frequency of vibrations around 100 kHz and compared with the results obtained for the same crystals at a frequency of ˜1 kHz. The strain amplitude dependence of the anelastic strain amplitude and the average friction stress acting on a dislocation due to solute atoms are also analyzed. Several stages in the strain amplitude dependence of the internal friction and the Young's modulus defect are revealed for all of the alloy compositions, at different temperatures and in different frequency ranges. For the 100 kHz frequency, low temperatures and low strain amplitudes (˜10-7-10-5), the amplitude-dependent internal friction and the Young's modulus defect are essentially temperature independent, and are ascribed to a purely hysteretic internal friction component. At higher strain amplitudes, a transition stage and a steep strain amplitude dependence of the internal friction and the Young's modulus defect are observed, followed by saturation at the highest strain amplitudes employed. These stages are temperature and frequency dependent and are assumed to be due to thermally activated motion of dislocations. We suggest that the observed regularities in the entire strain amplitude, temperature and frequency ranges correspond to a motion of dislocations in a two-component system of obstacles: weak but long-range ones, due to the elastic interaction of dislocations with solute atoms distributed in the bulk of the crystal; and strong short-range ones, due to the interaction of dislocations with solute atoms distributed close to dislocation glide planes. Based on these assumptions, a qualitative explanation is given for the variety of experimental observations.
NASA Astrophysics Data System (ADS)
Hong, Yanyan; Li, Shilei; Li, Hongjia; Li, Jian; Sun, Guangai; Wang, Yan-Dong
2018-05-01
Neutron diffraction was used to investigate the residual lattice strains in AL6XN austenitic stainless steel subjected to tensile loading at different temperatures, revealing the development of large intergranular stresses after plastic deformation. Elastic-plastic self-consistent modeling was employed to simulate the micromechanical behavior at room temperature. The overall variations of the modeled lattice strains as a function of the sample direction with respect to the loading axis agree in general with the experimental values, indicating that dislocation slip is the main plastic deformation mode. At 300 °C, the serrated flow in the stress-strain curve and the great amount of slip bands indicate the appearance of dynamic strain aging. Except for promoting the local strain concentration, the long-range stress field caused by the planar slip bands near the grain boundaries is also attributed to the decrease in the experimental intergranular strains. An increase in the lattice strains localized at some specific specimen orientations for reflections at 600 °C may be explained by the segregation of solute atoms (Cr and Mo) at dislocation slip bands. The evolution of full-width at half-maximum demonstrates that the dynamic recovery indeed plays an important role in alleviating the local strain concentrations during tensile loading at 600 °C.
Complex earthquake rupture and local tsunamis
Geist, E.L.
2002-01-01
In contrast to far-field tsunami amplitudes that are fairly well predicted by the seismic moment of subduction zone earthquakes, there exists significant variation in the scaling of local tsunami amplitude with respect to seismic moment. From a global catalog of tsunami runup observations this variability is greatest for the most frequently occuring tsunamigenic subduction zone earthquakes in the magnitude range of 7 < Mw < 8.5. Variability in local tsunami runup scaling can be ascribed to tsunami source parameters that are independent of seismic moment: variations in the water depth in the source region, the combination of higher slip and lower shear modulus at shallow depth, and rupture complexity in the form of heterogeneous slip distribution patterns. The focus of this study is on the effect that rupture complexity has on the local tsunami wave field. A wide range of slip distribution patterns are generated using a stochastic, self-affine source model that is consistent with the falloff of far-field seismic displacement spectra at high frequencies. The synthetic slip distributions generated by the stochastic source model are discretized and the vertical displacement fields from point source elastic dislocation expressions are superimposed to compute the coseismic vertical displacement field. For shallow subduction zone earthquakes it is demonstrated that self-affine irregularities of the slip distribution result in significant variations in local tsunami amplitude. The effects of rupture complexity are less pronounced for earthquakes at greater depth or along faults with steep dip angles. For a test region along the Pacific coast of central Mexico, peak nearshore tsunami amplitude is calculated for a large number (N = 100) of synthetic slip distribution patterns, all with identical seismic moment (Mw = 8.1). Analysis of the results indicates that for earthquakes of a fixed location, geometry, and seismic moment, peak nearshore tsunami amplitude can vary by a factor of 3 or more. These results indicate that there is substantially more variation in the local tsunami wave field derived from the inherent complexity subduction zone earthquakes than predicted by a simple elastic dislocation model. Probabilistic methods that take into account variability in earthquake rupture processes are likely to yield more accurate assessments of tsunami hazards.
NASA Astrophysics Data System (ADS)
Pascal, K.; Neuberg, J. W.; Rivalta, E.
2011-12-01
The displacement field due to magma movements in the subsurface is commonly modelled using the solutions for a point source (Mogi, 1958), a finite spherical source (McTigue, 1987), or a dislocation source (Okada, 1992) embedded in a homogeneous elastic half-space. When the magmatic system is represented by several sources, their respective deformation fields are summed, and the assumption of homogeneity in the half-space is violated. We have investigated the effects of neglecting the interaction between sources on the surface deformation field. To do so, we calculated the vertical and horizontal displacements for models with adjacent sources and we tested them against the solutions of corresponding numerical 3D finite element models. We implemented several models combining spherical pressure sources and dislocation sources, varying the pressure or opening of the sources and their relative position. We also investigated various numerical methods to model a dike as a dislocation tensile source or as a pressurized tabular crack. In the former case, the dike opening was either defined as two boundaries displaced from a central location, or as one boundary displaced relative to the other. We finally considered two case studies based on Soufrière Hills Volcano (Montserrat, West Indies) and the Dabbahu rift segment (Afar, Ethiopia) magmatic systems. We found that the discrepancies between simple superposition of the displacement field and a fully interacting numerical solution depend mostly on the source types and on their spacing. Their magnitude may be comparable with the errors due to neglecting the topography, the inhomogeneities in crustal properties or more realistic rheologies. In the models considered, the errors induced when neglecting the source interaction can be neglected (<5%) when the sources are separated by at least 4 radii for two combined Mogi sources and by at least 3 radii for juxtaposed Mogi and Okada sources. Furthermore, this study underlines fundamental issues related to the numerical method chosen to model a dike or a magma chamber. It clearly demonstrates that, while the magma compressibility can be neglected to model the deformation due to one source or distant sources, it is necessary to take it into account in models combining close sources.
Intensity of joints associated with an extensional fault zone: an estimation by poly3d .
NASA Astrophysics Data System (ADS)
Minelli, G.
2003-04-01
The presence and frequency of joints in sedimentary rocks strongly affects the mechanical and fluid flow properties of the host layers. Joints intensity is evaluated by spacing, S, the distance between neighbouring fractures, or by density, D = 1/S. Joint spacing in layered rocks is often linearly related to layer thickness T, with typical values of 0.5 T < S < 2.0 T . On the other hand, some field cases display very tight joints with S << T and nonlinear relations between spacing and thickness , most of these cases are related to joint system “genetically” related to a nearby fault zone. The present study by using the code Poly3D (Rock Fracture Project at Stanford), numerically explores the effect of the stress distribution in the neighbour of an extensional fault zone with respect to the mapped intensity of joints both in the hanging wall and in the foot wall of it (WILLEMSE, E. J. M., 1997; MARTEL, S. J, AND BOGER, W. A,; 1998). Poly3D is a C language computer program that calculates the displacements, strains and stresses induced in an elastic whole or half-space by planar, polygonal-shaped elements of displacement discontinuity (WILLEMSE, E. J. M., POLLARD, D. D., 2000) Dislocations of varying shapes may be combined to yield complex three-dimensional surfaces well-suited for modeling fractures, faults, and cavities in the earth's crust. The algebraic expressions for the elastic fields around a polygonal element are derived by superposing the solution for an angular dislocation in an elastic half-space. The field data have been collected in a quarry located close to Noci town (Puglia) by using the scan line methodology. In this quarry a platform limestone with a regular bedding with very few shale or marly intercalations displaced by a normal fault are exposed. The comparison between the mapped joints intensity and the calculated stress around the fault displays a good agreement. Nevertheless the intrinsic limitations (isotropic medium and elastic behaviour) of this project encourages other application of Poly3d. References WILLEMSE, E. J. M., 1997, Segmented normal faults: Correspondence between three-dimensional mechanical models and field data: Journal of Geophysical Research, v. 102, p. 675-692. MARTEL, S. J, AND BOGER, W. A, 1998, Geometry and mechanics of secondary fracturing around small three-dimensional faults in granitic rock: Journal of Geophysical Research, v. 103, p. 21,299-21,314. WILLEMSE, E. J. M., POLLARD, D. D., 2000, Normal fault growth: evolution of tipline shapes and slip distribution: in Lehner, F.K. &Urai, J.L. (eds.), Aspects of Tectonic Faulting, Springer -Verlag , Berlin, p. 193-226.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Bo; Shibutani, Yoji, E-mail: sibutani@mech.eng.osaka-u.ac.jp; Zhang, Xu
2015-07-07
Recent research has explained that the steeply increasing yield strength in metals depends on decreasing sample size. In this work, we derive a statistical physical model of the yield strength of finite single-crystal micro-pillars that depends on single-ended dislocation pile-up inside the micro-pillars. We show that this size effect can be explained almost completely by considering the stochastic lengths of the dislocation source and the dislocation pile-up length in the single-crystal micro-pillars. The Hall–Petch-type relation holds even in a microscale single-crystal, which is characterized by its dislocation source lengths. Our quantitative conclusions suggest that the number of dislocation sources andmore » pile-ups are significant factors for the size effect. They also indicate that starvation of dislocation sources is another reason for the size effect. Moreover, we investigated the explicit relationship between the stacking fault energy and the dislocation “pile-up” effect inside the sample: materials with low stacking fault energy exhibit an obvious dislocation pile-up effect. Our proposed physical model predicts a sample strength that agrees well with experimental data, and our model can give a more precise prediction than the current single arm source model, especially for materials with low stacking fault energy.« less
Structure-Property Relations in Aluminum-Lithium Alloys
1989-01-01
adsorbed ( Mughrabi et al , 1983). Such dislocations could not re-enter the grain during the reverse cycle of stress and the associated slip would be...ASTM STP 601, ASTM, 33 Mughrabi , H., Wang, R., Differt, D., Essmann, U. (1983) ASTM STP 811, ASTM, 5 Muller, W. et al (1986) Aluminium-Lithium Alloys...behaviour of Al -Li-Cu-Mg-Zr alloys ...... 34 2.4 Mechanical behaviour ......................................... 35 2.4.1 Elastic modulus
NASA Astrophysics Data System (ADS)
Gao, Yuan; Zhuang, Zhuo; You, XiaoChuan
2011-04-01
We develop a new hierarchical dislocation-grain boundary (GB) interaction model to predict the mechanical behavior of polycrystalline metals at micro and submicro scales by coupling 3D Discrete Dislocation Dynamics (DDD) simulation with the Molecular Dynamics (MD) simulation. At the microscales, the DDD simulations are responsible for capturing the evolution of dislocation structures; at the nanoscales, the MD simulations are responsible for obtaining the GB energy and ISF energy which are then transferred hierarchically to the DDD level. In the present model, four kinds of dislocation-GB interactions, i.e. transmission, absorption, re-emission and reflection, are all considered. By this methodology, the compression of a Cu micro-sized bi-crystal pillar is studied. We investigate the characteristic mechanical behavior of the bi-crystal compared with that of the single-crystal. Moreover, the comparison between the present penetrable model of GB and the conventional impenetrable model also shows the accuracy and efficiency of the present model.
Instability of total hip replacement: A clinical study and determination of its risk factors.
Ezquerra-Herrando, L; Seral-García, B; Quilez, M P; Pérez, M A; Albareda-Albareda, J
2015-01-01
To determine the risk factors associated with prosthetic dislocation and simulate a finite element model to determine the safe range of movement of various inclination and anteversion cup positions. Retrospective Case Control study with 46 dislocated patients from 1994 to 2011. 83 randomly selected patients. Dislocation risk factors described in the literature were collected. A prosthetic model was simulated using finite elements with 28, 32, 36 mm heads, and a 52 mm cup. Acetabular position was 25°, 40°, and 60° tilt and with 0°, 15° and 25° anteversion. In extension of 0° and flexion of 90°, internal and external rotation was applied to analyze the range of movement, maximum resisting moment, and stress distribution in the acetabulum to impingement and dislocation. There was greater dislocation in older patients (p=0.002). Higher dislocation in fractures than in osteoarthritis (p=0.001). Less anteversion in dislocated patients (p=0.043). Longer femoral neck in dislocated patients (p=0.002). Finite element model: lower dislocation when there is more anteversion, tilt and bigger femoral heads. Advanced age and fractures are the major risk factors for dislocation. "Safe zone" of movement for dislocation avoidance is 40°-60° tilt and 15°-25° anteversion. Both the defect and excess of soft tissue tension predispose to dislocation. Bigger femoral heads are more stable. Copyright © 2014 SECOT. Published by Elsevier Espana. All rights reserved.
2015-01-01
polycrystalline magnesium (Mg) was studied using three-dimensional discrete dislocation dynamics ( DDD ). A systematic interaction model between dislocations...and f1012g tension twin boundaries (TBs) was proposed and introduced into the DDD framework. In addition, a nominal grain boundary (GB) model based...dynamics ( DDD ). A systematic interaction model between dislocations and f10 12g tension twin boundaries (TBs) was proposed and introduced into the DDD
Split and sealing of dislocated pipes at the front of a growing crystal
NASA Astrophysics Data System (ADS)
Gutkin, M. Yu.; Sheinerman, A. G.
2004-07-01
A model is suggested for the split of dislocated pipes at the front a growing crystal. Within the model, the pipe split occurs through the generation of a dislocation semi-loop at the pipe and crystal surfaces and its subsequent expansion into the crystal interior. The strain energy of such a dislocation semi-loop as well as the stress field of a dislocated pipe perpendicular to a flat crystal surface are calculated. The parameter regions are determined at which the expansion of the dislocation semi-loop is energetically favorable and, thus, the pipe split becomes irreversible. A mechanism is proposed for the formation of a stable semi-loop resulting in the split and possible subsequent overgrowth of the dislocated pipe.
Fracture toughness of materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burns, S.J.
Crack tip dislocation emission in bulk specimens have been measured in single crystal specimens and the measurements are well below the accepted theoretical values for dislocation emission. The image forces on a dislocation due to the presence of a semi-infinite crack are used to calculate the potential energy of the dislocation around the crack. Expressions for the radial and tangential forces and for slip and climb forces have been found. Crack tip deformation in Mode I and Mode II fractures on both {l brace}100{r brace} and {l brace}110{r brace} planes have been observed in crystals of LiF. The deformation ismore » shown to nearly completely shield {l brace}110{r brace} plane cracks and prevent their propagation while deformation is less effective in shielding {l brace}100{r brace} plane cracks. The fracture toughness of MgO-partially-stabilized ZrO{sub 2} exhibiting transformation toughening been measured. The equations of linear elastic fracture mechanics have been self-consistantly formulated to include the residual displacement from the transformation wake. MgO single crystals were fatigued in plastic strain control at elevated temperatures. At high temperatures, dense bundles of dislocations were observed in transmission electron microscopy aligned perpendicular to the Burgers' vector directions. The thermodynamics of a superconducting second order phase transformation has been related to jumps in physical properties. A simple energy balance, without assuming an equation of state, is used to relate the rate of change of state variables to measurable physical properties. There are no preconceived assumptions about the superconducting mechanism.« less
Modeling of dislocation dynamics in germanium Czochralski growth
NASA Astrophysics Data System (ADS)
Artemyev, V. V.; Smirnov, A. D.; Kalaev, V. V.; Mamedov, V. M.; Sidko, A. P.; Podkopaev, O. I.; Kravtsova, E. D.; Shimansky, A. F.
2017-06-01
Obtaining very high-purity germanium crystals with low dislocation density is a practically difficult problem, which requires knowledge and experience in growth processes. Dislocation density is one of the most important parameters defining the quality of germanium crystal. In this paper, we have performed experimental study of dislocation density during 4-in. germanium crystal growth using the Czochralski method and comprehensive unsteady modeling of the same crystal growth processes, taking into account global heat transfer, melt flow and melt/crystal interface shape evolution. Thermal stresses in the crystal and their relaxation with generation of dislocations within the Alexander-Haasen model have been calculated simultaneously with crystallization dynamics. Comparison to experimental data showed reasonable agreement for the temperature, interface shape and dislocation density in the crystal between calculation and experiment.
The geometry of discombinations and its applications to semi-inverse problems in anelasticity
Yavari, Arash; Goriely, Alain
2014-01-01
The geometrical formulation of continuum mechanics provides us with a powerful approach to understand and solve problems in anelasticity where an elastic deformation is combined with a non-elastic component arising from defects, thermal stresses, growth effects or other effects leading to residual stresses. The central idea is to assume that the material manifold, prescribing the reference configuration for a body, has an intrinsic, non-Euclidean, geometrical structure. Residual stresses then naturally arise when this configuration is mapped into Euclidean space. Here, we consider the problem of discombinations (a new term that we introduce in this paper), that is, a combined distribution of fields of dislocations, disclinations and point defects. Given a discombination, we compute the geometrical characteristics of the material manifold (curvature, torsion, non-metricity), its Cartan's moving frames and structural equations. This identification provides a powerful algorithm to solve semi-inverse problems with non-elastic components. As an example, we calculate the residual stress field of a cylindrically symmetric distribution of discombinations in an infinite circular cylindrical bar made of an incompressible hyperelastic isotropic elastic solid. PMID:25197257
NASA Astrophysics Data System (ADS)
Bose, Narayan; Dutta, Dripta; Mukherjee, Soumyajit
2018-07-01
Brittle Y- and P-planes exist in an exposure of greywacke in the Garhwal Lesser Himalaya, India. Although, Y-planes are well developed throughout, the P-planes are prominent only in some parts (domain-A), and not elsewhere (domain-B). To investigate why the P-planes developed selectively, the following studies were undertaken: 1. Clay-separated XRD analyses: clinochlore and illite are present in both the domains. 2. Strain analyses by Rf-φ method: it deduces strain magnitudes of ∼1.8 for the ductile deformed quartz grains from both the domains A and B. 3. Grain size analyses of quartz clasts: domain-A is mostly composed of finer grains (area up to 40,000 μm2), whereas domain-B consists of a population of coarser grains (area >45,000 μm2). A 2D finite element modeling of linear elastic material was performed using COMSOL software to investigate the control of grain-size variation on the generation brittle shear planes. The results of numerical modeling corroborate the known fact that an increase in grain-size reduces the elastic strain energy density. A broader grain-size distribution increases the effects of diffusion creep and resists the onset of dislocation creep. Thus, rocks with coarser grain population (domain B) tend to resist the generation of shear fractures, unlike their fine-grained counterpart (domain A).
NASA Astrophysics Data System (ADS)
McFarland, Phillip K.; Bennett, Richard A.; Alvarado, Patricia; DeCelles, Peter G.
2017-10-01
We present crustal velocities for 29 continuously recording GPS stations from the southern central Andes across the Puna, Eastern Cordillera, and Santa Barbara system for the period between the 27 February 2010 Maule and 1 April 2014 Iquique earthquakes in a South American frame. The velocity field exhibits a systematic decrease in magnitude from 35 mm/yr near the trench to <1 mm/yr within the craton. We forward model loading on the Nazca-South America (NZ-SA) subduction interface using back slip on elastic dislocations to approximate a fully locked interface from 10 to 50 km depth. We generate an ensemble of models by iterating over the percentage of NZ-SA convergence accommodated at the subduction interface. Velocity residuals calculated for each model demonstrate that locking on the NZ-SA interface is insufficient to reproduce the observed velocities. We model deformation associated with a back-arc décollement using an edge dislocation, estimating model parameters from the velocity residuals for each forward model of the subduction interface ensemble using a Bayesian approach. We realize our best fit to the thrust-perpendicular velocity field with 70 ± 5% of NZ-SA convergence accommodated at the subduction interface and a slip rate of 9.1 ± 0.9 mm/yr on the fold-thrust belt décollement. We also estimate a locking depth of 14 ± 9 km, which places the downdip extent of the locked zone 135 ± 20 km from the thrust front. The thrust-parallel component of velocity is fit by a constant shear strain rate of -19 × 10-9 yr-1, equivalent to clockwise rigid block rotation of the back arc at a rate of 1.1°/Myr.
Solute atmospheres at dislocations
Hirth, John P.; Barnett, David M.; Hoagland, Richard G.
2017-06-01
In this study, a two-dimensional plane strain elastic solution is determined for the Cottrell solute atmosphere around an edge dislocation in an infinitely long cylinder of finite radius (the matrix), in which rows of solutes are represented by cylindrical rods with in-plane hydrostatic misfit (axial misfit is also considered). The periphery of the matrix is traction-free, thus introducing an image solute field which generates a solute-solute interaction energy that has not been considered previously. The relevant energy for the field of any distribution of solutes coexistent with a single edge dislocation along the (matrix) cylinder axis is determined, and coherencymore » effects are discussed and studied. Monte Carlo simulations accounting for all pertinent interactions over a range of temperatures are found to yield solute distributions different from classical results, namely, (1) Fermi-Dirac condensations at low temperatures at the free surface, (2) the majority of the atmosphere lying within an unexpectedly large non-linear interaction region near the dislocation core, and (3) temperature-dependent asymmetrical solute arrangements that promote bending. The solute distributions at intermediate temperatures show a 1/r dependence in agreement with previous linearized approximations. With a standard state of solute corresponding to a mean concentration, c 0, the relevant interaction energy expression presented in this work is valid when extended to large concentrations for which Henry's Law and Vegard's Law do not apply.« less
Solute atmospheres at dislocations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirth, John P.; Barnett, David M.; Hoagland, Richard G.
In this study, a two-dimensional plane strain elastic solution is determined for the Cottrell solute atmosphere around an edge dislocation in an infinitely long cylinder of finite radius (the matrix), in which rows of solutes are represented by cylindrical rods with in-plane hydrostatic misfit (axial misfit is also considered). The periphery of the matrix is traction-free, thus introducing an image solute field which generates a solute-solute interaction energy that has not been considered previously. The relevant energy for the field of any distribution of solutes coexistent with a single edge dislocation along the (matrix) cylinder axis is determined, and coherencymore » effects are discussed and studied. Monte Carlo simulations accounting for all pertinent interactions over a range of temperatures are found to yield solute distributions different from classical results, namely, (1) Fermi-Dirac condensations at low temperatures at the free surface, (2) the majority of the atmosphere lying within an unexpectedly large non-linear interaction region near the dislocation core, and (3) temperature-dependent asymmetrical solute arrangements that promote bending. The solute distributions at intermediate temperatures show a 1/r dependence in agreement with previous linearized approximations. With a standard state of solute corresponding to a mean concentration, c 0, the relevant interaction energy expression presented in this work is valid when extended to large concentrations for which Henry's Law and Vegard's Law do not apply.« less
NASA Astrophysics Data System (ADS)
Gornostyrev, Yu. N.
2005-03-01
The plastic deformation in bcc metals is realized by the motion of screw dislocations with a complex star-like non-planar core. In this case, the direct investigation of the solute effect by first principles electronic structure calculations is a challenging problem for which we follow a combined approach that includes atomistic dislocation modelling with ab-initio parametrization of interatomic interactions. The screw dislocation core structure in Mo alloys is described within the model of atomic row displacements along a dislocation line with the interatomic row potential estimated from total energy full-potential linear muffin-tin orbital (FLMTO) calculations with the generalized gradient approximation (GGA) for the exchange-correlation potential. We demonstrate (1) that the solute effect on the dislocation structure is different for ``hard'' and ``easy'' cores and (2) that the softener addition in a ``hard'' core gives rise to a structural transformation into a configuration with a lower energy through an intermediate state. The softener solute is shown to disturb locally the three-fold symmetry of the dislocation core and the dislocation structure tends to the split planar core.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sung Bo, E-mail: bolee@snu.ac.kr; Han, Heung Nam, E-mail: hnhan@snu.ac.kr; Kim, Young-Min
In Part I, we have shown that the addition of Si into sapphire by ion implantationmakes the sapphire substrate elastically softer than for the undoped sapphire. The more compliant layer of the Si-implanted sapphire substrate can absorb the misfit stress at the GaN/sapphire interface, which produces a lower threading-dislocation density in the GaN overlayer. Here in Part II, based on experimental results by electron energy loss spectroscopy and a first-principle molecular orbital calculation in the literature, we suggest that the softening effect of Si results from a reduction of ionic bonding strength in sapphire (α-Al{sub 2}O{sub 3}) with the substitutionmore » of Si for Al.« less
Atomistic simulation of shocks in single crystal and polycrystalline Ta
NASA Astrophysics Data System (ADS)
Bringa, E. M.; Higginbotham, A.; Park, N.; Tang, Y.; Suggit, M.; Mogni, G.; Ruestes, C. J.; Hawreliak, J.; Erhart, P.; Meyers, M. A.; Wark, J. S.
2011-06-01
Non-equilibrium molecular dynamics (MD) simulations of shocks in Ta single crystals and polycrystals were carried out using up to 360 million atoms. Several EAM and FS type potentials were tested up to 150 GPa, with varying success reproducing the Hugoniot and the behavior of elastic constants under pressure. Phonon modes were studied to exclude possible plasticity nucleation by soft-phonon modes, as observed in MD simulations of Cu crystals. The effect of loading rise time in the resulting microstructure was studied for ramps up to 0.2 ns long. Dislocation activity was not observed in single crystals, unless there were defects acting as dislocation sources above a certain pressure. E.M.B. was funded by CONICET, Agencia Nacional de Ciencia y Tecnología (PICT2008-1325), and a Royal Society International Joint Project award.
Strength and deformation of shocked diamond single crystals: Orientation dependence
Lang, John Michael Jr.; Winey, J. M.; Gupta, Y. M.
2018-03-01
Understanding and quantifying the strength or elastic limit of diamond single crystals is of considerable scientific and technological importance, and has been a subject of long standing theoretical and experimental interest. To examine the effect of crystalline anisotropy on strength and deformation of shocked diamond single crystals, plate impact experiments were conducted to measure wave profiles at various elastic impact stresses up to ~120 GPa along [110] and [111] crystal orientations. Using laser interferometry, particle velocity histories and shock velocities in the diamond samples were measured and were compared with similar measurements published previously for shock compression along the [100]more » direction. Wave profiles for all three orientations showed large elastic wave amplitudes followed by time-dependent inelastic deformation. From the measured wave profiles, the elastic limits were determined under well characterized uniaxial strain loading conditions. The measured elastic wave amplitudes for the [110] and [111] orientations were lower for higher elastic impact stress (stress attained for an elastic diamond response), consistent with the result reported previously for [100] diamond. The maximum resolved shear stress (MRSS) on the {111}<110> slip systems was determined for each orientation, revealing significant orientation dependence. The MRSS values for the [100] and [110] orientations (~33 GPa) are 25-30% of theoretical estimates; the MRSS value for the [111] orientation is significantly lower (~23 GPa). Our results demonstrate that the MRSS depends strongly on the stress component normal to the {111} planes or the resolved normal stress (RNS), suggesting that the RNS plays a key role in inhibiting the onset of inelastic deformation. Lower elastic wave amplitudes at higher peak stress and the effect of the RNS are inconsistent with typical dislocation slip mechanisms of inelastic deformation, suggesting instead an inelastic response characteristic of shocked brittle solids. The present results show that the elastic limit (or material strength) of diamond single crystals cannot be described using traditional isotropic approaches, and typical plasticity models cannot be used to describe the inelastic deformation of diamond. Analysis of the measured wave profiles beyond the elastic limit, including characterization of the peak state, requires numerical simulations that incorporate a time-dependent, anisotropic, inelastic deformation response. Development of such a material description for diamond is an important need.« less
Strength and deformation of shocked diamond single crystals: Orientation dependence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lang, John Michael Jr.; Winey, J. M.; Gupta, Y. M.
Understanding and quantifying the strength or elastic limit of diamond single crystals is of considerable scientific and technological importance, and has been a subject of long standing theoretical and experimental interest. To examine the effect of crystalline anisotropy on strength and deformation of shocked diamond single crystals, plate impact experiments were conducted to measure wave profiles at various elastic impact stresses up to ~120 GPa along [110] and [111] crystal orientations. Using laser interferometry, particle velocity histories and shock velocities in the diamond samples were measured and were compared with similar measurements published previously for shock compression along the [100]more » direction. Wave profiles for all three orientations showed large elastic wave amplitudes followed by time-dependent inelastic deformation. From the measured wave profiles, the elastic limits were determined under well characterized uniaxial strain loading conditions. The measured elastic wave amplitudes for the [110] and [111] orientations were lower for higher elastic impact stress (stress attained for an elastic diamond response), consistent with the result reported previously for [100] diamond. The maximum resolved shear stress (MRSS) on the {111}<110> slip systems was determined for each orientation, revealing significant orientation dependence. The MRSS values for the [100] and [110] orientations (~33 GPa) are 25-30% of theoretical estimates; the MRSS value for the [111] orientation is significantly lower (~23 GPa). Our results demonstrate that the MRSS depends strongly on the stress component normal to the {111} planes or the resolved normal stress (RNS), suggesting that the RNS plays a key role in inhibiting the onset of inelastic deformation. Lower elastic wave amplitudes at higher peak stress and the effect of the RNS are inconsistent with typical dislocation slip mechanisms of inelastic deformation, suggesting instead an inelastic response characteristic of shocked brittle solids. The present results show that the elastic limit (or material strength) of diamond single crystals cannot be described using traditional isotropic approaches, and typical plasticity models cannot be used to describe the inelastic deformation of diamond. Analysis of the measured wave profiles beyond the elastic limit, including characterization of the peak state, requires numerical simulations that incorporate a time-dependent, anisotropic, inelastic deformation response. Development of such a material description for diamond is an important need.« less
Strength and deformation of shocked diamond single crystals: Orientation dependence
NASA Astrophysics Data System (ADS)
Lang, J. M.; Winey, J. M.; Gupta, Y. M.
2018-03-01
Understanding and quantifying the strength or elastic limit of diamond single crystals is of considerable scientific and technological importance, and has been a subject of long standing theoretical and experimental interest. To examine the effect of crystalline anisotropy on strength and deformation of shocked diamond single crystals, plate impact experiments were conducted to measure wave profiles at various elastic impact stresses up to ˜120 GPa along [110] and [111] crystal orientations. Using laser interferometry, particle velocity histories and shock velocities in the diamond samples were measured and were compared with similar measurements published previously for shock compression along the [100] direction. Wave profiles for all three orientations showed large elastic wave amplitudes followed by time-dependent inelastic deformation. From the measured wave profiles, the elastic limits were determined under well characterized uniaxial strain loading conditions. The measured elastic wave amplitudes for the [110] and [111] orientations were lower for higher elastic impact stress (stress attained for an elastic diamond response), consistent with the result reported previously for [100] diamond. The maximum resolved shear stress (MRSS) on the {111}⟨110⟩ slip systems was determined for each orientation, revealing significant orientation dependence. The MRSS values for the [100] and [110] orientations (˜33 GPa) are 25%-30% of theoretical estimates; the MRSS value for the [111] orientation is significantly lower (˜23 GPa). Our results demonstrate that the MRSS depends strongly on the stress component normal to the {111} planes or the resolved normal stress (RNS), suggesting that the RNS plays a key role in inhibiting the onset of inelastic deformation. Lower elastic wave amplitudes at higher peak stress and the effect of the RNS are inconsistent with typical dislocation slip mechanisms of inelastic deformation, suggesting instead an inelastic response characteristic of shocked brittle solids. The present results show that the elastic limit (or material strength) of diamond single crystals cannot be described using traditional isotropic approaches, and typical plasticity models cannot be used to describe the inelastic deformation of diamond. Analysis of the measured wave profiles beyond the elastic limit, including characterization of the peak state, requires numerical simulations that incorporate a time-dependent, anisotropic, inelastic deformation response. Development of such a material description for diamond is an important need.
Revisiting the Al/Al₂O₃ interface: coherent interfaces and misfit accommodation.
Pilania, Ghanshyam; Thijsse, Barend J; Hoagland, Richard G; Lazić, Ivan; Valone, Steven M; Liu, Xiang-Yang
2014-03-27
We study the coherent and semi-coherent Al/α-Al2O3 interfaces using molecular dynamics simulations with a mixed, metallic-ionic atomistic model. For the coherent interfaces, both Al-terminated and O-terminated nonstoichiometric interfaces have been studied and their relative stability has been established. To understand the misfit accommodation at the semi-coherent interface, a 1-dimensional (1D) misfit dislocation model and a 2-dimensional (2D) dislocation network model have been studied. For the latter case, our analysis reveals an interface dislocation structure with a network of three sets of parallel dislocations, each with pure-edge character, giving rise to a pattern of coherent and stacking-fault-like regions at the interface. Structural relaxation at elevated temperatures leads to a further change of the dislocation pattern, which can be understood in terms of a competition between the stacking fault energy and the dislocation interaction energy at the interface. Our results are expected to serve as an input for the subsequent dislocation dynamics models to understand and predict the macroscopic mechanical behavior of Al/α-Al2O3 composite heterostructures.
NASA Astrophysics Data System (ADS)
Zhang, J.; Chen, Z.; Cheng, C.; Wang, Y. X.
2017-10-01
A phase field crystal (PFC) model is employed to study morphology evolution of nanoheteroepitaxy and misfit dislocation generation when applied with enhanced supercooling, lattice mismatch and substrate vicinal angle conditions. Misfit strain that rises due to lattice mismatch causes rough surfaces or misfit dislocations, deteriorates film properties, hence, efforts taken to reveal their microscopic mechanism are significant for film quality improvement. Uniform islands, instead of misfit dislocations, are developed in subcritical thickness film, serving as a way of strain relief by surface mechanism. Misfit dislocations generate when strain relief by surface mechanism is deficient in higher supercooling, multilayers of misfit dislocations dominate, but the number of layers reduces gradually when the supercooling is further enhanced. Rough surfaces like islands or cuspate pits are developed which is ascribed to lattice mismatch, multilayers of misfit dislocations generate to further enhance lattice mismatch. Layers of misfit dislocations generate at a thickening position at enhanced substrate vicinal angle, this further enhancing the angle leading to sporadic generation of misfit dislocations.
Unravelling the physics of size-dependent dislocation-mediated plasticity
NASA Astrophysics Data System (ADS)
El-Awady, Jaafar A.
2015-01-01
Size-affected dislocation-mediated plasticity is important in a wide range of materials and technologies. Here we develop a generalized size-dependent dislocation-based model that predicts strength as a function of crystal/grain size and the dislocation density. Three-dimensional (3D) discrete dislocation dynamics (DDD) simulations reveal the existence of a well-defined relationship between strength and dislocation microstructure at all length scales for both single crystals and polycrystalline materials. The results predict a transition from dislocation-source strengthening to forest-dominated strengthening at a size-dependent critical dislocation density. It is also shown that the Hall-Petch relationship can be physically interpreted by coupling with an appropriate kinetic equation of the evolution of the dislocation density in polycrystals. The model is shown to be in remarkable agreement with experiments. This work presents a micro-mechanistic framework to predict and interpret strength size-scale effects, and provides an avenue towards performing multiscale simulations without ad hoc assumptions.
Strain field mapping of dislocations in a Ge/Si heterostructure.
Liu, Quanlong; Zhao, Chunwang; Su, Shaojian; Li, Jijun; Xing, Yongming; Cheng, Buwen
2013-01-01
Ge/Si heterostructure with fully strain-relaxed Ge film was grown on a Si (001) substrate by using a two-step process by ultra-high vacuum chemical vapor deposition. The dislocations in the Ge/Si heterostructure were experimentally investigated by high-resolution transmission electron microscopy (HRTEM). The dislocations at the Ge/Si interface were identified to be 90° full-edge dislocations, which are the most efficient way for obtaining a fully relaxed Ge film. The only defect found in the Ge epitaxial film was a 60° dislocation. The nanoscale strain field of the dislocations was mapped by geometric phase analysis technique from the HRTEM image. The strain field around the edge component of the 60° dislocation core was compared with those of the Peierls-Nabarro and Foreman dislocation models. Comparison results show that the Foreman model with a = 1.5 can describe appropriately the strain field around the edge component of a 60° dislocation core in a relaxed Ge film on a Si substrate.
Xu, Shuozhi; Xiong, Liming; Chen, Youping; ...
2016-01-29
Sequential slip transfer across grain boundaries (GB) has an important role in size-dependent propagation of plastic deformation in polycrystalline metals. For example, the Hall–Petch effect, which states that a smaller average grain size results in a higher yield stress, can be rationalised in terms of dislocation pile-ups against GBs. In spite of extensive studies in modelling individual phases and grains using atomistic simulations, well-accepted criteria of slip transfer across GBs are still lacking, as well as models of predicting irreversible GB structure evolution. Slip transfer is inherently multiscale since both the atomic structure of the boundary and the long-range fieldsmore » of the dislocation pile-up come into play. In this work, concurrent atomistic-continuum simulations are performed to study sequential slip transfer of a series of curved dislocations from a given pile-up on Σ3 coherent twin boundary (CTB) in Cu and Al, with dominant leading screw character at the site of interaction. A Frank-Read source is employed to nucleate dislocations continuously. It is found that subject to a shear stress of 1.2 GPa, screw dislocations transfer into the twinned grain in Cu, but glide on the twin boundary plane in Al. Moreover, four dislocation/CTB interaction modes are identified in Al, which are affected by (1) applied shear stress, (2) dislocation line length, and (3) dislocation line curvature. Our results elucidate the discrepancies between atomistic simulations and experimental observations of dislocation-GB reactions and highlight the importance of directly modeling sequential dislocation slip transfer reactions using fully 3D models.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Shuozhi; Xiong, Liming; Chen, Youping
Sequential slip transfer across grain boundaries (GB) has an important role in size-dependent propagation of plastic deformation in polycrystalline metals. For example, the Hall–Petch effect, which states that a smaller average grain size results in a higher yield stress, can be rationalised in terms of dislocation pile-ups against GBs. In spite of extensive studies in modelling individual phases and grains using atomistic simulations, well-accepted criteria of slip transfer across GBs are still lacking, as well as models of predicting irreversible GB structure evolution. Slip transfer is inherently multiscale since both the atomic structure of the boundary and the long-range fieldsmore » of the dislocation pile-up come into play. In this work, concurrent atomistic-continuum simulations are performed to study sequential slip transfer of a series of curved dislocations from a given pile-up on Σ3 coherent twin boundary (CTB) in Cu and Al, with dominant leading screw character at the site of interaction. A Frank-Read source is employed to nucleate dislocations continuously. It is found that subject to a shear stress of 1.2 GPa, screw dislocations transfer into the twinned grain in Cu, but glide on the twin boundary plane in Al. Moreover, four dislocation/CTB interaction modes are identified in Al, which are affected by (1) applied shear stress, (2) dislocation line length, and (3) dislocation line curvature. Our results elucidate the discrepancies between atomistic simulations and experimental observations of dislocation-GB reactions and highlight the importance of directly modeling sequential dislocation slip transfer reactions using fully 3D models.« less
Causes and Prevention of Structural Materials Failures in Naval Environments.
1984-01-01
atomic hydrogen as the first step; (iii) creation of elastic-plastic zones near the crack tip region due to movement of dislocations under applied...sodium tellurate is added to the charging solution. There is a dramatic drop in hydrogen permeation current due to the reduction of the tellurate ...effect of tellurium which has been deposited. Thus it has been shown that the tellurate ion, an electron acceptor, can delay the production of hydrogen
Jones, Reese E.; Zimmerman, Jonathan A.; Po, Giacomo; ...
2016-02-01
Accurate simulation of the plastic deformation of ductile metals is important to the design of structures and components to performance and failure criteria. Many techniques exist that address the length scales relevant to deformation processes, including dislocation dynamics (DD), which models the interaction and evolution of discrete dislocation line segments, and crystal plasticity (CP), which incorporates the crystalline nature and restricted motion of dislocations into a higher scale continuous field framework. While these two methods are conceptually related, there have been only nominal efforts focused at the global material response that use DD-generated information to enhance the fidelity of CPmore » models. To ascertain to what degree the predictions of CP are consistent with those of DD, we compare their global and microstructural response in a number of deformation modes. After using nominally homogeneous compression and shear deformation dislocation dynamics simulations to calibrate crystal plasticity ow rule parameters, we compare not only the system-level stress-strain response of prismatic wires in torsion but also the resulting geometrically necessary dislocation density fields. To establish a connection between explicit description of dislocations and the continuum assumed with crystal plasticity simulations we ascertain the minimum length-scale at which meaningful dislocation density fields appear. Furthermore, our results show that, for the case of torsion, that the two material models can produce comparable spatial dislocation density distributions.« less
Static friction boost in edge-driven incommensurate contacts
NASA Astrophysics Data System (ADS)
Mandelli, Davide; Guerra, Roberto; Ouyang, Wengen; Urbakh, Michael; Vanossi, Andrea
2018-04-01
We present a numerical investigation of the size scaling of static friction in incommensurate two-dimensional contacts performed for different lateral loading configurations. Results of model simulations show that both the absolute value of the force Fs and the scaling exponent γ strongly depend on the loading configuration adopted to drive the slider along the substrate. Under edge loading, a sharp increase of static friction is observed above a critical size corresponding to the appearance of a localized commensurate dislocation. Noticeably, the existence of sublinear scaling, which is a fingerprint of superlubricity, does not conflict with the possibility to observe shear-induced localized commensurate regions at the contact interface. Atomistic simulations of gold islands sliding over graphite corroborate these findings, suggesting that similar elasticity effects should be at play in real frictional contacts.
Mapping of hydraulic fractures from tiltmeter measurements
NASA Astrophysics Data System (ADS)
Lecampion, B.; Jeffrey, R.
2003-12-01
In considering the problem of inverse modeling of tiltmeter data for hydraulic fracture mapping, we address the issues of selecting the elastic model to represent the hydraulic fracture and limitations imposed by distance and fracture size on the information that can be recovered about the fracture. A tiltmeter measures, at its location, the changes in the surface inclination in two orthogonal directions. These inclinations are a direct measure of the horizontal gradient of the vertical component of the displacement field. Since advances in instrumentation in the last two decades, this type of apparatus have become extremely precise and can detect inclination changes down to a nanoradian. The simplicity of tiltmeter measurements has attracted interest not only in geophysics, but also in the petroleum industry. The idea of using tiltmeters to monitor hydraulic fractures can be traced back to the paper of Sun te{S} and is now a commercial service offered to the petroleum industry te{W}. However, the modeling and associated inverse problems required to analyze tiltmeter data raise difficult questions. The object(s) (fault, dyke, fracture) responsible for the recorded tilt are often modeled by finite Displacement Discontinuities, also called dislocation models. The validity of this type of model has been extensively discussed te{O,E} and many solutions for different configurations can be found in the literature. We show that it is possible to construct the solution for any type of dislocation model from the fundamental solution for an infinitesimal Displacement Discontinuity tensor. The eigenstrain theory te{M} is used to obtain this fundamental solution from the Green's function for the desired elastic domain (e.g. full or half space). Comparisons with known solutions demonstrate the flexibility of such method. We then focus on the problem of obtaining information about the orientation and size of an opening mode hydraulic fracture from the measured tilt field. One important problem is the identification of all the dimensions of the fracture model (length, width). The ability to obtain these parameters is controlled by limits, expressed in terms of the distance between the measurements and the fracture compared to the size of the fracture itself. The value of this ratio provides a condition that must be met before the fracture length-scales can be resolved. Determination of the fracture orientation is then investigated using a spatial Fourier Transform on the data set. This procedure highlights the requirement on the measurement array needed for a reliable identification: extension, number of tiltmeters, relative angle between the array and the fracture plane. \\begin{thebibliography}{1} \\bibitem{E} {Evans K.} \
Surface stress mediated image force and torque on an edge dislocation
NASA Astrophysics Data System (ADS)
Raghavendra, R. M.; Divya, Iyer, Ganesh; Kumar, Arun; Subramaniam, Anandh
2018-07-01
The proximity of interfaces gives prominence to image forces experienced by dislocations. The presence of surface stress alters the traction-free boundary conditions existing on free-surfaces and hence is expected to alter the magnitude of the image force. In the current work, using a combined simulation of surface stress and an edge dislocation in a semi-infinite body, we evaluate the configurational effects on the system. We demonstrate that if the extra half-plane of the edge dislocation is parallel to the surface, the image force (glide) is not altered due to surface stress; however, the dislocation experiences a torque. The surface stress breaks the 'climb image force' symmetry, thus leading to non-equivalence between positive and negative climb. We discover an equilibrium position for the edge dislocation in the positive 'climb geometry', arising due to a competition between the interaction of the dislocation stress fields with the surface stress and the image dislocation. Torque in the climb configuration is not affected by surface stress (remains zero). Surface stress is computed using a recently developed two-scale model based on Shuttleworth's idea and image forces using a finite element model developed earlier. The effect of surface stress on the image force and torque experienced by the dislocation monopole is analysed using illustrative 3D models.
Luscher, Darby Jon; Mayeur, Jason Rhea; Mourad, Hashem Mohamed; ...
2015-08-05
Here, we have developed a multi-physics modeling approach that couples continuum dislocation transport, nonlinear thermoelasticity, crystal plasticity, and consistent internal stress and deformation fields to simulate the single-crystal response of materials under extreme dynamic conditions. Dislocation transport is modeled by enforcing dislocation conservation at a slip-system level through the solution of advection-diffusion equations. Nonlinear thermoelasticity provides a thermodynamically consistent equation of state to relate stress (including pressure), temperature, energy densities, and dissipation. Crystal plasticity is coupled to dislocation transport via Orowan's expression where the constitutive description makes use of recent advances in dislocation velocity theories applicable under extreme loading conditions.more » The configuration of geometrically necessary dislocation density gives rise to an internal stress field that can either inhibit or accentuate the flow of dislocations. An internal strain field associated with the internal stress field contributes to the kinematic decomposition of the overall deformation. The paper describes each theoretical component of the framework, key aspects of the constitutive theory, and some details of a one-dimensional implementation. Results from single-crystal copper plate impact simulations are discussed in order to highlight the role of dislocation transport and pile-up in shock loading regimes. The main conclusions of the paper reinforce the utility of the modeling approach to shock problems.« less
NASA Astrophysics Data System (ADS)
Gornostyrev, Yu. N.; Katsnelson, M. I.; Mryasov, Oleg N.; Freeman, A. J.; Trefilov, M. V.
1998-03-01
Theoretical analysis of the fracture behaviour of fcc Au, Ir and Al have been performed within various brittle/ductile criteria (BDC) with ab-initio, embedded atom (EAM), and pseudopotential parameterizations. We systematically examined several important aspects of the fracture behaviour: (i) dislocation structure, (ii) energetics of the cleavage decohesion and (iii) character of the interatomic interactions. Unit dislocation structures were analyzed within a two dimensional generalization of the Peierls-Nabarro model with restoring forces determined from ab-initio total energy calculations and found to be split with well defined highly mobile partials for all considered metals. We find from ab-initio and pseudopotential that in contrast with most of fcc metals, cleavage decohesion curve for Al appreciably differs from UBER relation. Finally, using ab-initio, EAM and pseudopotential parameterizations, we demonstrate that (i) Au (as a typical example of a ductile metal) is well described within existing BDC's, (ii) anomalous cleavage-like crack propagation of Ir is driven predominantly by it's high elastic modulus and (iii) Al is not described within BDC due to it's long-range interatomic interactions (and hence requires adjustments of the brittle/ductile criteria).
NASA Astrophysics Data System (ADS)
Luscher, Darby
2017-06-01
The dynamic thermomechanical responses of polycrystalline materials under shock loading are often dominated by the interaction of defects and interfaces. For example, polymer-bonded explosives (PBX) can initiate under weak shock impacts whose energy, if distributed homogeneously throughout the material, translates to temperature increases that are insufficient to drive the rapid chemistry observed. In such cases, heterogeneous thermomechanical interactions at the mesoscale (i.e. between single-crystal and macroscale) lead to the formation of localized hot spots. Within metals, a prescribed deformation associated with a shock wave may be accommodated by crystallographic slip, provided a sufficient population of mobile dislocations is available. However, if the deformation rate is large enough, there may be an insufficient number of freely mobile dislocations. In these cases, additional dislocations may be nucleated, or alternate mechanisms (e.g. twinning, damage) activated in order to accommodate the deformation. Direct numerical simulation at the mesoscale offers insight into these physical processes that can be invaluable to the development of macroscale constitutive theories, if the mesoscale models adequately represent the anisotropic nonlinear thermomechanical response of individual crystals and their interfaces. This talk will briefly outline a continuum mesoscale modeling framework founded upon local and nonlocal variations of dislocation-density based crystal plasticity theory. The nonlocal theory couples continuum dislocation transport with the local theory. In the latter, dislocation transport is modeled by enforcing dislocation conservation at a slip-system level through the solution of advection-diffusion equations. The configuration of geometrically necessary dislocation density gives rise to a back-stress that inhibits or accentuates the flow of dislocations. Development of the local theory and application to modeling the explosive molecular crystal RDX and polycrystalline PBX will be discussed. The talk will also emphasize recent implementation of the coupled nonlocal model into a 3D shock hydrocode and simulation results for the dynamic response of polycrystalline copper in two and three dimensions.
Plastic behavior of polycrystalline copper at optical scales of deformation
NASA Astrophysics Data System (ADS)
Domber, Jeanette Leah
Microplasticity is permanent deformation that occurs below the proportional limit of a material. For precision deployable optical spacecraft, it is unknown how microplasticity will affect the performance of the precision structure. An examination of the rolling of thin film optical reflectors indicates a strong dependence of the post-deployed shape on the strain hardening exponent of the material. However, confirmation of the valid extension of the constitutive model used to predict the deployed shape to microscopic strain regimes is necessary. The primary objective of this thesis is threefold: determine the relationship between stress and strain at nano to microstrain levels for representative materials; determine if the relationship between microscopic and macroscopic plastic behavior can be accurately characterized by the Ramberg-Osgood strain hardening constitutive model with a single set of material parameters; and determine if dislocation motion is the root cause of microplastic behavior at room temperature. The test apparatus, with a dynamic force range of 40,000 to 1, measures strains from 0.01 to 1000 parts per million (ppm) of cylindrical amorphous quartz and cold-worked and annealed tempered polycrystalline copper specimen. Elastic behavior in all three materials was consistent with typical values. However, plastic responses were larger than expected. Stresses on the order of 10 to 10,000 kPa (1.45 to 1450 psi) produced permanent strain in all three types of materials ranging from 0.01 to 1 ppm, some of which was attributable to a systematic error in the measurement. Extrapolating macroplastic behavior to lower stress and strain values underestimates the amount of microplasticity observed in the material. Therefore, material property characterization is required at all strain levels that are of concern for a particular application. The similarity in the levels of measured permanent strain for a given stress level between the as-drawn and annealed copper is consistent with the observed dislocation substructure of the two materials, which is also similar. This uniformity indicates that microplastic behavior at room temperature is driven by dislocation glide.
NASA Astrophysics Data System (ADS)
Malka-Markovitz, Alon; Mordehai, Dan
2018-02-01
Cross-slip is a dislocation mechanism by which screw dislocations can change their glide plane. This thermally activated mechanism is an important mechanism in plasticity and understanding the energy barrier for cross-slip is essential to construct reliable cross-slip rules in dislocation models. In this work, we employ a line tension model for cross-slip of screw dislocations in face-centred cubic (FCC) metals in order to calculate the energy barrier under Escaig stresses. The analysis shows that the activation energy is proportional to the stacking fault energy, the unstressed dissociation width and a typical length for cross-slip along the dislocation line. Linearisation of the interaction forces between the partial dislocations yields that this typical length is related to the dislocation length that bows towards constriction during cross-slip. We show that the application of Escaig stresses on both the primary and the cross-slip planes varies the typical length for cross-slip and we propose a stress-dependent closed form expression for the activation energy for cross-slip in a large range of stresses. This analysis results in a stress-dependent activation volume, corresponding to the typical volume surrounding the stressed dislocation at constriction. The expression proposed here is shown to be in agreement with previous models, and to capture qualitatively the essentials found in atomistic simulations. The activation energy function can be easily implemented in dislocation dynamics simulations, owing to its simplicity and universality.
Ching, K.-E.; Rau, R.-J.; Zeng, Y.
2007-01-01
A coseismic source model of the 2003 Mw 6.8 Chengkung, Taiwan, earthquake was well determined with 213 GPS stations, providing a unique opportunity to study the characteristics of coseismic displacements of a high-angle buried reverse fault. Horizontal coseismic displacements show fault-normal shortening across the fault trace. Displacements on the hanging wall reveal fault-parallel and fault-normal lengthening. The largest horizontal and vertical GPS displacements reached 153 and 302 mm, respectively, in the middle part of the network. Fault geometry and slip distribution were determined by inverting GPS data using a three-dimensional (3-D) layered-elastic dislocation model. The slip is mainly concentrated within a 44 ?? 14 km slip patch centered at 15 km depth with peak amplitude of 126.6 cm. Results from 3-D forward-elastic model tests indicate that the dome-shaped folding on the hanging wall is reproduced with fault dips greater than 40??. Compared with the rupture area and average slip from slow slip earthquakes and a compilation of finite source models of 18 earthquakes, the Chengkung earthquake generated a larger rupture area and a lower stress drop, suggesting lower than average friction. Hence the Chengkung earthquake seems to be a transitional example between regular and slow slip earthquakes. The coseismic source model of this event indicates that the Chihshang fault is divided into a creeping segment in the north and the locked segment in the south. An average recurrence interval of 50 years for a magnitude 6.8 earthquake was estimated for the southern fault segment. Copyright 2007 by the American Geophysical Union.
Revisiting the Al/Al 2O 3 Interface: Coherent Interfaces and Misfit Accommodation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pilania, Ghanshyam; Thijsse, Barend J.; Hoagland, Richard G.
We report the coherent and semi-coherent Al/α-Al 2O 3 interfaces using molecular dynamics simulations with a mixed, metallic-ionic atomistic model. For the coherent interfaces, both Al-terminated and O-terminated nonstoichiometric interfaces have been studied and their relative stability has been established. To understand the misfit accommodation at the semi-coherent interface, a 1-dimensional (1D) misfit dislocation model and a 2-dimensional (2D) dislocation network model have been studied. For the latter case, our analysis reveals an interface dislocation structure with a network of three sets of parallel dislocations, each with pure-edge character, giving rise to a pattern of coherent and stacking-fault-like regions atmore » the interface. Structural relaxation at elevated temperatures leads to a further change of the dislocation pattern, which can be understood in terms of a competition between the stacking fault energy and the dislocation interaction energy at the interface. In conclusion, our results are expected to serve as an input for the subsequent dislocation dynamics models to understand and predict the macroscopic mechanical behavior of Al/α-Al 2O 3 composite heterostructures.« less
Revisiting the Al/Al 2O 3 Interface: Coherent Interfaces and Misfit Accommodation
Pilania, Ghanshyam; Thijsse, Barend J.; Hoagland, Richard G.; ...
2014-03-27
We report the coherent and semi-coherent Al/α-Al 2O 3 interfaces using molecular dynamics simulations with a mixed, metallic-ionic atomistic model. For the coherent interfaces, both Al-terminated and O-terminated nonstoichiometric interfaces have been studied and their relative stability has been established. To understand the misfit accommodation at the semi-coherent interface, a 1-dimensional (1D) misfit dislocation model and a 2-dimensional (2D) dislocation network model have been studied. For the latter case, our analysis reveals an interface dislocation structure with a network of three sets of parallel dislocations, each with pure-edge character, giving rise to a pattern of coherent and stacking-fault-like regions atmore » the interface. Structural relaxation at elevated temperatures leads to a further change of the dislocation pattern, which can be understood in terms of a competition between the stacking fault energy and the dislocation interaction energy at the interface. In conclusion, our results are expected to serve as an input for the subsequent dislocation dynamics models to understand and predict the macroscopic mechanical behavior of Al/α-Al 2O 3 composite heterostructures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bremner, S. P.; Ban, K.-Y.; Faleev, N. N.
2013-09-14
We describe InAs quantum dot creation in InAs/GaAsSb barrier structures grown on GaAs (001) wafers by molecular beam epitaxy. The structures consist of 20-nm-thick GaAsSb barrier layers with Sb content of 8%, 13%, 15%, 16%, and 37% enclosing 2 monolayers of self-assembled InAs quantum dots. Transmission electron microscopy and X-ray diffraction results indicate the onset of relaxation of the GaAsSb layers at around 15% Sb content with intersected 60° dislocation semi-loops, and edge segments created within the volume of the epitaxial structures. 38% relaxation of initial elastic stress is seen for 37% Sb content, accompanied by the creation of amore » dense net of dislocations. The degradation of In surface migration by these dislocation trenches is so severe that quantum dot formation is completely suppressed. The results highlight the importance of understanding defect formation during stress relaxation for quantum dot structures particularly those with larger numbers of InAs quantum-dot layers, such as those proposed for realizing an intermediate band material.« less
Molecular dynamics simulations of thermally activated edge dislocation unpinning from voids in α -Fe
NASA Astrophysics Data System (ADS)
Byggmästar, J.; Granberg, F.; Nordlund, K.
2017-10-01
In this study, thermal unpinning of edge dislocations from voids in α -Fe is investigated by means of molecular dynamics simulations. The activation energy as a function of shear stress and temperature is systematically determined. Simulations with a constant applied stress are compared with dynamic simulations with a constant strain rate. We found that a constant applied stress results in a temperature-dependent activation energy. The temperature dependence is attributed to the elastic softening of iron. If the stress is normalized with the softening of the specific shear modulus, the activation energy is shown to be temperature-independent. From the dynamic simulations, the activation energy as a function of critical shear stress was determined using previously developed methods. The results from the dynamic simulations are in good agreement with the constant stress simulations, after the normalization. This indicates that the computationally more efficient dynamic method can be used to obtain the activation energy as a function of stress and temperature. The obtained relation between stress, temperature, and activation energy can be used to introduce a stochastic unpinning event in larger-scale simulation methods, such as discrete dislocation dynamics.
Source model for the Mw 6.7, 23 October 2002, Nenana Mountain Earthquake (Alaska) from InSAR
Wright, Tim J.; Lu, Z.; Wicks, Charles
2003-01-01
The 23 October 2002 Nenana Mountain Earthquake (Mw ∼ 6.7) occurred on the Denali Fault (Alaska), to the west of the Mw ∼ 7.9 Denali Earthquake that ruptured the same fault 11 days later. We used 6 interferograms, constructed using radar images from the Canadian Radarsat-1 and European ERS-2 satellites, to determine the coseismic surface deformation and a source model. Data were acquired on ascending and descending satellite passes, with incidence angles between 23 and 45 degrees, and time intervals of 72 days or less. Modeling the event as dislocations in an elastic half space suggests that there was nearly 0.9 m of right-lateral strike-slip motion at depth, on a near-vertical fault, and that the maximum slip in the top 4 km of crust was less than 0.2 m. The Nenana Mountain Earthquake increased the Coulomb stress at the future hypocenter of the 3 November 2002, Denali Earthquake by 30–60 kPa.
Source model for the Mw 6.7, 23 October 2002, Nenana Mountain Earthquake (Alaska) from InSAR
Wright, Tim J.; Lu, Zhong; Wicks, Chuck
2003-01-01
The 23 October 2002 Nenana Mountain Earthquake (Mw ∼ 6.7) occurred on the Denali Fault (Alaska), to the west of the Mw ∼ 7.9 Denali Earthquake that ruptured the same fault 11 days later. We used 6 interferograms, constructed using radar images from the Canadian Radarsat-1 and European ERS-2 satellites, to determine the coseismic surface deformation and a source model. Data were acquired on ascending and descending satellite passes, with incidence angles between 23 and 45 degrees, and time intervals of 72 days or less. Modeling the event as dislocations in an elastic half space suggests that there was nearly 0.9 m of right-lateral strike-slip motion at depth, on a near-vertical fault, and that the maximum slip in the top 4 km of crust was less than 0.2 m. The Nenana Mountain Earthquake increased the Coulomb stress at the future hypocenter of the 3 November 2002, Denali Earthquake by 30–60 kPa.
Impact of Various Charge States of Hydrogen on Passivation of Dislocation in Silicon
NASA Astrophysics Data System (ADS)
Song, Lihui; Lou, Jingjing; Fu, Jiayi; Ji, Zhenguo
2018-03-01
Dislocation, one of typical crystallographic defects in silicon, is detrimental to the minority carrier lifetime of silicon wafer. Hydrogen passivation is able to reduce the recombination activity of dislocation, however, the passivation efficacy is strongly dependent on the experimental conditions. In this paper, a model based on the theory of hydrogen charge state control is proposed to explain the passivation efficacy of dislocation correlated to the peak temperature of thermal annealing and illumination intensity. Experimental results support the prediction of the model that a mix of positively charged hydrogen and negatively charged hydrogen at certain ratio can maximise the passivation efficacy of dislocation, leading to a better power conversion efficiency of silicon solar cell with dislocation in it.
Dislocation and Structural Studies at Metal-Metallic Glass Interface at Low Temperature
NASA Astrophysics Data System (ADS)
Gupta, Pradeep; Yedla, Natraj
2017-12-01
In this paper, molecular dynamics (MD) simulation deformation studies on the Al (metal)-Cu50Zr50 (metallic glass) model interface is carried out based on cohesive zone model. The interface is subjected to mode-I loading at a strain rate of 109 s-1 and temperature of 100 K. The dislocations reactions and evolution of dislocation densities during the deformation have been investigated. Atomic interactions between Al, Cu and Zr atoms are modeled using EAM (embedded atom method) potential, and a timestep of 0.002 ps is used for performing the MD simulations. A circular crack and rectangular notch are introduced at the interface to investigate the effect on the deformation behavior and fracture. Further, scale size effect is also investigated. The structural changes and evolution of dislocation density are also examined. It is found that the dominant deformation mechanism is by Shockley partial dislocation nucleation. Amorphization is observed in the Al regions close to the interface and occurs at a lower strain in the presence of a crack. The total dislocation density is found to be maximum after the first yield in both the perfect and defect interface models and is highest in the case of perfect interface with a density of 6.31 × 1017 m-2. In the perfect and circular crack defect interface models, it is observed that the fraction of Shockley partial dislocation density decreases, whereas that of strain rod dislocations increases with increase in strain.
NASA Astrophysics Data System (ADS)
Betekhtin, V. I.; Kadomtsev, A. G.; Kardashev, B. K.
2006-08-01
The effect of the amplitude of vibrational deformation on the elastic modulus and internal friction of microcrystalline aluminum samples produced by equal-channel angular pressing was studied. The samples have various deformation and thermal histories. The elastic and inelastic (microplastic) properties of the samples are investigated. As the degree of plastic deformation increases, the Young’s modulus E, the amplitude-independent decrement δi, and the microplastic flow stress σ increase. As the annealing temperature increases, the quantities δi and σ decrease noticeably and the modulus E exhibits a more complex behavior. The experimental data are discussed under the assumption that the dislocation mobility depends on both the spectrum of point defects and the internal stresses, whose level is determined by the degree of plastic deformation and the temperature of subsequent annealing. The concept of internal stresses is also used to analyze the data on the effect of the degree of deformation and annealing on the rupture strength of the samples.
NASA Astrophysics Data System (ADS)
Xie, Xi; Kan, Qianhua; Kang, Guozheng; Li, Jian; Qiu, Bo; Yu, Chao
2016-04-01
The strain field of a super-elastic NiTi shape memory alloy (SMA) and its variation during uniaxial cyclic tension-unloading were observed by a non-contact digital image correlation method, and then the transformation domains and their evolutions were indirectly investigated and discussed. It is seen that the super-elastic NiTi (SMA) exhibits a remarkable localized deformation and the transformation domains evolve periodically with the repeated cyclic tension-unloading within the first several cycles. However, the evolutions of transformation domains at the stage of stable cyclic transformation depend on applied peak stress: when the peak stress is low, no obvious transformation band is observed and the strain field is nearly uniform; when the peak stress is large enough, obvious transformation bands occur due to the residual martensite caused by the prevention of enriched dislocations to the reverse transformation from induced martensite to austenite. Temperature variations measured by an infrared thermal imaging method further verifies the formation and evolution of transformation domains.
Materials science in pre-plated leadframes for electronic packages
NASA Astrophysics Data System (ADS)
Liu, Lilin
Au/Pd/Ni pre-plated leadframes (PPF) are high performance frames for accommodating high-end electronic packages. Cost and reliability are major concerns in their wide application. The present work, from a materials science point view, deepens the understanding of PPFs, optimizes the conventional PPFs, develops a novel PPF architecture and models the residual stress relaxation in heteroepitaxial thin films. The wire pull test, the solderability test, and High-Resolution Transmission Electron Microscopy (HRTEM) were employed to characterize the PPFs in order to understand the relationship between performance and microstructure. We optimized the electroplating profiles and determined the minimum thickness of the Pd layer with the PPF performance satisfying the industry standards. Further increasing the Pd layer thickness beyond the critical thickness will not enhance the performance more, but increase the product cost. With the optimized electroplating profile, the electroplated Au layer is epitaxially deposited on the Pd layer, and so does the Pd layer on the Ni layer. Misfit dislocations and nanotwins are present at the interface between the Pd and Ni layers, which are generated to release the about 10.4% misfit strain between the Pd and Ni lattices. This work demonstrates that the electro-deposition technique can electroplate epitaxy-like Pd films on the highly (200) textured Ni films, which are grown on the Cu substrates. A novel technique for impeding Cu out-diffusion in Cu alloy based pre-plated leadframes was developed by electroplating a 3-4 nm thick Sn layer on a Cu alloy base prior to electroplating a Ni layer. A 10-14 nm thick epitaxy-like and dense (Cu,Ni)3Sn intermetallic compound (IMC) layer is automatically formed en route of diffuse reaction, which leads to a drastic reduction in Cu out-diffusion and hence improves significantly the protection of the leadframes against oxidation and corrosion attack. The oxidation behaviours were quantified by Electron Diffraction X-ray (EX) incorporated in Scanning Electron Microscopy (SEM) in the present work, which is a good complementary to the traditional weight gain test by a balance. A diffusion/oxidation model was developed to estimate the effective diffusion coefficient of Cu in the formed IMC nanolayers. The estimated Cu diffusion coefficient in the IMC interlayer is about 1.6x10 -22m2/s at 250°C, which is around 7~11 orders lower than the interdiffusion coefficients for eta- Cu6Sn5 and epsilon- Cu3Sn phases at corresponding temperatures. Based on the dislocation theory of twinning, analytical solutions by using the hybrid superposition and Fourier transformation approach were derived for the calculation of various energies involved in the misfit twinning process. For a given epilayer thickness and lattice mismatch strain, the twin formation energy should reach its minimum to determine the twin width and a zero minimum formation energy determines the critical thickness for misfit twinning. The effect of elastic mismatch between the epilayer and the substrate on the critical thickness was studied comprehensively, revealing that an elastically soft epilayer has a large critical thickness. Moreover, a misfit-twin-and-perfect-dislocation predominance chart is constructed to predict the predominant regions of misfit twinning and perfect dislocation in the mismatch strain and the specific twin boundary energy domain. Multiple misfit twins in epilayer/substrate systems were studied by summing up the stress and displacement fields of individual twins. In principle, the energy minimization approach can be applied to multiple misfit twins, although only periodic arrays of parallel and alternating twins were investigated here in detail. The equilibrium twin width and equilibrium twin spacing of a periodic array of twins represent the misfit twin morphology. The theoretical results indicate that the difference in elastic constants between an epilayer and its substrate has great effects on the morphology of equilibrium twins. The theoretical predictions agree with experimental observations.
Application of a Multiscale Model of Tantalum Deformation at Megabar Pressures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cavallo, R M; Park, H; Barton, N R
A new multiscale simulation tool has been developed to model the strength of tantalum under high-pressure dynamic compression. This new model combines simulations at multiple length scales to explain macroscopic properties of materials. Previously known continuum models of material response under load have built upon a mixture of theoretical physics and experimental phenomenology. Experimental data, typically measured at static pressures, are used as a means of calibration to construct models that parameterize the material properties; e.g., yield stress, work hardening, strain-rate dependence, etc. The pressure dependence for most models enters through the shear modulus, which is used to scale themore » flow stress. When these models are applied to data taken far outside the calibrated regions of phase space (e.g., strain rate or pressure) they often diverge in their predicted behavior of material deformation. The new multiscale model, developed at Lawrence Livermore National Laboratory, starts with interatomic quantum mechanical potential and is based on the motion and multiplication of dislocations. The basis for the macroscale model is plastic deformation by phonon drag and thermally activated dislocation motion and strain hardening resulting from elastic interactions among dislocations. The dislocation density, {rho}, and dislocation velocity, {nu}, are connected to the plastic strain rate {var_epsilon}{sup p}, via Orowan's equation: {var_epsilon}{sup p} = {rho}b{nu}/M, where b is the Burger's vector, the shear magnitude associated with a dislocation, and M is the Taylor factor, which accounts for geometric effects in how slip systems accommodate the deformation. The evolution of the dislocation density and velocity is carried out in the continuum model by parameterized fits to smaller scale simulations, each informed by calculations on smaller length scales down to atomistic dimensions. We apply this new model for tantalum to two sets of experiments and compare the results with more traditional models. The experiments are based on the Barnes's technique in which a low density material loads against a metal surface containing a pre-imposed rippled pattern. The loaded sample is Rayleigh-Taylor unstable and the rippled amplitudes grow with time. The rate of growth differs depending on the material strength, with stronger materials growing less, even to the point of saturation. One set of experiments was conducted at the pRad facility at LANSCE at Los Alamos National Laboratory in 2007 using high-explosive (HE) driven tantalum samples. The other set of experiments was done at the Omega laser at the Laboratory for Laser Energetics at the University of Rochester, which used high-powered lasers to create plasmas to dynamically compress a rippled tantalum sample. The two techniques provide data at different pressures and strain rates: The HE technique drives the samples at around 2 x 10{sup 5} s{sup -1} strain rate and pressures near 500 kbar, while the laser technique hits strain rates around 2 x 10{sup 7} s{sup -1} and pressures close to 1.4 Mbar. The most recent laser experiments were conducted in February 2010 and they present a sample of the data in Figure 1, which shows a face-on radiograph at a time of 65 ns after the laser was turned on. From this radiograph, they measure the growth factor which is defined to be the change in amplitude of the ripples relative to their initial amplitude. Figure 2 shows the resulting growth factors along with various model fits. The error bars are typically 20-25%. Only the multiscale model predictions match the experimental measurements. The growth factors via the HE technique are determined from multiple side-on proton radiography images and thus provide a full growth curve per single experiment. A sample growth curve is shown in Figure 3, also with various model fits and error bars estimated at 25%. It should be noted that by 7.5 {micro}s the growth in this sample has exceeded the initial target thickness indicating that localizations not captured in the overall simulation have probably become dominant, i.e., the target is likely breaking up. Application of the multiscale dislocation dynamics model as implemented in the Ares hydrodynamics code shows excellent agreement with both the pRad and Omega data. They also compare the Steinberg-Lund (SL), Preston-Tonks-Wallace (PTW), and Stainberg-Guinan (SG) models with the data. The PTW and SG models provide good fits to the pRad data but over-predict the growth (underestimate the strength) on the laser platform. The SL model under-predicts the pRad data and over-predicts the Omega data. The excellent agreement of the multiscale model with the data over two orders of magnitude in strain rate and more than a factor of two in pressure lends credibility to the model. They continue to stress the model by conducting experiments at 5 Mbars and beyond at the National Ignition Facility at LLNL in the near future.« less
Zhang, Guangming; Zhou, Zhangjian; Mo, Kun; ...
2016-03-03
In this study, two kinds of 14Cr ODS alloys (14Cr-Al and 14Cr-Ti) were investigated to reveal the different effects between Al and Ti on the microstructures and mechanical properties of 14Cr ferritic ODS alloys. The microstructure information such as grains, minor phases of these two alloys has been investigated by high-energy X-ray diffraction and transmission electron microscopy (TEM). The in situ synchrotron X-ray diffraction tensile test was applied to investigate the mechanical properties of these two alloys. The lattice strains of different phases through the entire tensile deformation process in these two alloys were analyzed to calculate their elastic stresses.more » From the comparison of elastic stress, the strengthening capability of Y 2Ti 2O 7 is better than TiN in 14Cr-Ti, and the strengthening capability of YAH is much better than YAM and AlN in 14Cr-Al ODS. The dislocation densities of 14Cr-Ti and 14Cr-Al ODS alloys during tensile deformation were also examined by modified Williamson-Hall analyses of peak broadening, respectively. In conclusion, the different increasing speed of dislocation density with plastic deformation reveals the better strengthening effect of Y-Ti-O particles in 14Cr-Ti ODS than that of Y-Al-O particles in 14Cr-Al ODS alloy.« less
Onset of Plasticity via Relaxation Analysis (OPRA)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandey, Amit; Wheeler, Robert; Shyam, Amit
In crystalline metals and alloys, plasticity occurs due to the movement of mobile dislocations and the yield stress for engineering applications is traditionally quantified based on strain. The onset of irreversible plasticity or “yielding” is generally identified by a deviation from linearity in the stress-strain plot or by some standard convention such as 0.2 % offset strain relative to the “linear elastic response”. In the present work, we introduce a new methodology for the determination of the true yield point based on stress relaxation. We show experimentally that this determination is self-consistent in nature and, as such, provides an objectivemore » observation of the very onset of plastic flow. Lastly, our designation for yielding is no longer related to the shape of the stress-strain curve but instead reflects the earliest signature of the activation of concerted irreversible dislocation motion in a test specimen under increasing load.« less
Onset of Plasticity via Relaxation Analysis (OPRA)
Pandey, Amit; Wheeler, Robert; Shyam, Amit; ...
2016-03-17
In crystalline metals and alloys, plasticity occurs due to the movement of mobile dislocations and the yield stress for engineering applications is traditionally quantified based on strain. The onset of irreversible plasticity or “yielding” is generally identified by a deviation from linearity in the stress-strain plot or by some standard convention such as 0.2 % offset strain relative to the “linear elastic response”. In the present work, we introduce a new methodology for the determination of the true yield point based on stress relaxation. We show experimentally that this determination is self-consistent in nature and, as such, provides an objectivemore » observation of the very onset of plastic flow. Lastly, our designation for yielding is no longer related to the shape of the stress-strain curve but instead reflects the earliest signature of the activation of concerted irreversible dislocation motion in a test specimen under increasing load.« less
Dislocation-free strained silicon-on-silicon by in-place bonding
NASA Astrophysics Data System (ADS)
Cohen, G. M.; Mooney, P. M.; Paruchuri, V. K.; Hovel, H. J.
2005-06-01
In-place bonding is a technique where silicon-on-insulator (SOI) slabs are bonded by hydrophobic attraction to the underlying silicon substrate when the buried oxide is undercut in dilute HF. The bonding between the exposed surfaces of the SOI slab and the substrate propagates simultaneously with the buried oxide etching. As a result, the slabs maintain their registration and are referred to as "bonded in-place". We report the fabrication of dislocation-free strained silicon slabs from pseudomorphic trilayer Si/SiGe/SOI by in-place bonding. Removal of the buried oxide allows the compressively strained SiGe film to relax elastically and induce tensile strain in the top and bottom silicon films. The slabs remain bonded to the substrate by van der Waals forces when the wafer is dried. Subsequent annealing forms a covalent bond such that when the upper Si and the SiGe layer are removed, the bonded silicon slab remains strained.
Aseismic slip and surface creep on the Hazar-Palu Section of the East Anatolian Fault, Turkey
NASA Astrophysics Data System (ADS)
Ergintav, S.; Cakir, Z.; Dogan, U.; Cetin, S.; Senturk, S.; Karabulut, H.; Saroglu, F.; Dikmen, U.; Bilham, R. G.; Ozdemir, A.; Julaiti, W.; Ozener, H.
2017-12-01
Forming the boundary between the Anatolian and Arabian plates in Turkey, the East Anatolian fault (EAF) is one of the most important tectonic structures in the Eastern Mediterranean region. Together with its conjugate, the North Anatolian Fault (NAF), it accommodates the westward motion of the Anatolian plate at a rate of 10 mm/yr. We study the interseismic deformation along the eastern section of the EAF using SAR data (2012-2017). Interferograms are calculated, using GMT5SAR software (Sandwell et al., 2011). The interferograms are then used to map the velocity field with the Stanford Method for Persistent Scatterers technique (STAMPS; Hooper et al., 2012). In 2015 a new GPS network was established with 6 fault perpendicular profiles crossing segments identified to be creeping from SAR analysis. The closest GPS sites are within 2 km from the surface EAF. Far-field continuous GPS sites permit us to determine the long-term slip rate and hence the depth of creep on the fault using dislocation models. Additionally, two creepmeters were installed to monitor fault creep in a railway tunnel crossing the fault at ≈50 m depth below the ruined medieval village of Palu, at a location where the walls of the tunnel have been offset by 10-20 cm since construction in the middle of the last century. To confirm these results, earthquake catalogs were, also, re-analyzed. The preliminary results, which are obtained from multidisciplinary data, confirm the average slip rate of the EAF is about 10 mm/yr. The results also reveal that the 100-km-long Palu segment in the Elazıg-Bingöl seismic gap is exhibiting aseismic creep at the surface. The surface creep rate varies along the fault locally attaining the far field plate velocity (i.e. 10 mm/yr), implying that significant portion of the elastic strain has been released aseismically. Preliminary modelling with elastic dislocations suggests that some sections of the fault may be creeping from the surface down to the entire seismogenic crust. Our data are the first to confirm aseismic slip on the EAF (supported by TUBITAK 1001 project no:114Y250)
The role of equiaxed particles on the yield stress of composites
NASA Technical Reports Server (NTRS)
Aikin, R. M., Jr.; Christodoulou, L.
1991-01-01
Possible explanations are investigated for the yield strength enhancement of discontinuously reinforced Al alloy matrix MMCs, for the case of low temperature yield behavior where deformation occurs by dislocation slide. The Al alloys contain 0.1-10 micron diameter equiaxed particle discontinuous reinforcements of TiB2, Al2O3, and TiC. Attention is given to a single dislocation-particle interaction model, and both dislocation pile-up and forest-hardening multiple-dislocation particle interaction models.
NASA Astrophysics Data System (ADS)
Fettré, D.; Bouvier, S.; Favergeon, J.; Kurpaska, L.
2015-12-01
The paper is devoted to modeling residual stresses and strains in an oxide film formed during high temperature oxidation. It describes the deflection test in isothermal high-temperature monofacial oxidation (DTMO) of pure zirconium. The model incorporates kinetics and mechanism of oxidation and takes into account elastic, viscoplastic, growth and chemical strains. Different growth strains models are considered, namely, isotropic growth strains given by Pilling-Bedworth ratio, anisotropic growth strains defined by Parise and co-authors and physically based model for growth strain proposed by Clarke. Creep mechanisms based on dislocation slip and core diffusion, are used. A mechanism responsible for through thickness normal stress gradient in the oxide film is proposed. The material parameters are identified using deflection tests under 400 °C, 500 °C and 600 °C. The effect of temperature on creep and stress relaxation is analyzed. Numerical sensitivity study of the DTMO experiment is proposed in order to investigate the effects of the initial foil thickness and platinum coating on the deflection curves.
Mechanical Effects of Normal Faulting Along the Eastern Escarpment of the Sierra Nevada, California
NASA Astrophysics Data System (ADS)
Martel, S. J.; Logan, J. M.; Stock, G. M.
2013-12-01
Here we test whether the regional near-surface stress field in the Sierra Nevada, California, and the near-surface fracturing that heavily influences the Sierran landscape are a mechanical response to normal faulting along its eastern escarpment. A compilation of existing near-surface stress measurements for the central Sierra Nevada, together with three new measurements, shows the most compressive horizontal stresses are 3-21 MPa, consistent with the widespread distribution of sheeting joints (near-surface fractures subparallel to the ground surface). In contrast, a new stress measurement at Aeolian Buttes in the Mono Basin, east of the range front fault system, reveals a horizontal principal tension of 0.014 MPa, consistent with the abundant vertical joints there. To evaluate mechanical effects of normal faulting, we modeled both normal faults and grabens in three ways: (1) dislocations of specified slip in an elastic half-space, (2) frictionless sliding surfaces in an elastic half-space; and (3) faults in thin elastic beams resting on an inviscid fluid. The different mechanical models predict concave upward flexure and widespread near-surface compressive stresses in the Sierra Nevada that surpass the measurements even for as little as 1 km of normal slip along the eastern escarpment, which exhibits 1-3 km of structural and topographic relief. The models also predict concave downward flexure of the bedrock floors and horizontal near-surface tensile stresses east of the escarpment. The thin-beam models account best for the topographic relief of the eastern escarpment and the measured stresses given current best estimates for the rheology of the Sierran lithosphere. Our findings collectively indicate that the regional near-surface stress field and the widespread near-surface fracturing directly reflect the mechanical response to normal faulting along the eastern escarpment. These results have broad scientific and engineering implications for slope stability, hydrology, and geomorphology in and near fault-bounded mountain ranges in general.
Simulating the Seismic Signal of Phase Transitions in the Deepest Mantle (Invited)
NASA Astrophysics Data System (ADS)
Walker, A.; Dobson, D. P.; Nowacki, A.; Wookey, J. M.; Forte, A. M.; Kendall, J. M.
2013-12-01
The discovery of the perovskite to post-perovskite phase transition in (Mg,Fe)SiO3 explains many of the seismic observations of the lowermost mantle including the presence of multiple seismic discontinuities and significant seismic anisotropy. However, the explanations of many detailed features remain elusive. The recent discovery of a topotactic relationship between the orientation of perovskite and post-perovskite crystals in a partially transformed analogue opens the possibility of texture inheritance through the phase transition [1]. This must be captured in simulations designed to explain the anisotropy of the lowermost mantle, especially those which link mantle dynamics with seismic observations. We have extended our previous work linking models of flow in the lowermost mantle with simulations of texture development and predictions of seismic anisotropy [2] to account for the topotaxy between perovskite and post-perovskite. In particular, we compare four cases: (1) As in [2], anisotropy is only generated in post-perovskite by dislocation mediated deformation dominated by one of a number of slip systems, phase transitions destroy texture and ferropericlase and perovskite dominated rocks are isotropic. (2) Although phase transitions destroy texture, ferropericlase and/or perovskite deform by dislocation motion permitting the generation of seismic anisotropy in warmer regions of the mantle where post-perovskite is unstable. We account for the possibility of the inversion of slip-system activities in ferropericlase at high pressure as suggested by models of dislocation motion based on atomic scale simulations [3]. (3) Allow texture development by dislocation motion in perovskite and post-perovskite and texture inheritance through phase transitions by the mechanism described in [1]. However, we assume that the bulk of the lower mantle deforms by a mechanism that does not lead to the development of texture and so begin the simulation from a random distribution of crystal orientations the first time the post-perovskite stability field is encountered for downward migrating packages of mantle. (4) Allow the bulk of the lower mantle to deform by dislocation creep such that material entering the lowermost mantle for the first time is already textured, allow this texture to be inherited and further modified by strain and phase transitions. These calculations show clear differences in global and local scale elastic anisotropy in the lowermost mantle between cases where texture is allowed to persist through the phase transitions and those where it is not. On a global scale and when radial anisotropy is imposed the inclusion of topotaxy results in a dramatic decrease in the strength of the degree two signal and better agreement between observations and the model for post-perovskite deformation where dislocations moving on (001) dominate. On a smaller scale we see potential signs of reflectors generated by a change in anisotropy between perovskite that has inherited a strong starting texture from post-perovskite and overlaying perovskite that has never undergone the phase transition. These observations suggest that the incorporation of texture inheritance will be an important feature of future models of anisotropy in the lowermost mantle. [1] Dobson et al. 2013 Nature Geosci. 6:575-578 [2] Walker et al. 2011 Gcubed. 12:Q10006 [3] Cordier et al. 2012 Nature 481:177-180
Dislocation loop evolution during in-situ ion irradiation of model FeCrAl alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haley, Jack C.; Briggs, Samuel A.; Edmondson, Philip D.
Model FeCrAl alloys of Fe-10%Cr-5%Al, Fe-12%Cr-4.5%Al, Fe-15%Cr-4%Al, and Fe-18%Cr-3%Al (in wt %) were irradiated with 1 MeV Kr++ ions in-situ with transmission electron microscopy to a dose of 2.5 displacements per atom (dpa) at 320 °C. In all cases, the microstructural damage consisted of dislocation loops with ½< 111 > and <100 > Burgers vectors. The proportion of ½< 111 > dislocation loops varied from ~50% in the Fe-10%Cr-5%Al model alloy and the Fe-18Cr%-3%Al model alloy to a peak of ~80% in the model Fe-15%Cr-4.5%Al alloy. The dislocation loop volume density increased with dose for all alloys and showed signsmore » of approaching an upper limit. The total loop populations at 2.5 dpa had a slight (and possibly insignificant) decline as the chromium content was increased from 10 to 15 wt %, but the Fe-18%Cr-3%Al alloy had a dislocation loop population ~50% smaller than the other model alloys. As a result, the largest dislocation loops in each alloy had image sizes of close to 20 nm in the micrographs, and the median diameters for all alloys ranged from 6 to 8 nm. Nature analysis by the inside-outside method indicated most dislocation loops were interstitial type.« less
Dislocation loop evolution during in-situ ion irradiation of model FeCrAl alloys
Haley, Jack C.; Briggs, Samuel A.; Edmondson, Philip D.; ...
2017-07-06
Model FeCrAl alloys of Fe-10%Cr-5%Al, Fe-12%Cr-4.5%Al, Fe-15%Cr-4%Al, and Fe-18%Cr-3%Al (in wt %) were irradiated with 1 MeV Kr++ ions in-situ with transmission electron microscopy to a dose of 2.5 displacements per atom (dpa) at 320 °C. In all cases, the microstructural damage consisted of dislocation loops with ½< 111 > and <100 > Burgers vectors. The proportion of ½< 111 > dislocation loops varied from ~50% in the Fe-10%Cr-5%Al model alloy and the Fe-18Cr%-3%Al model alloy to a peak of ~80% in the model Fe-15%Cr-4.5%Al alloy. The dislocation loop volume density increased with dose for all alloys and showed signsmore » of approaching an upper limit. The total loop populations at 2.5 dpa had a slight (and possibly insignificant) decline as the chromium content was increased from 10 to 15 wt %, but the Fe-18%Cr-3%Al alloy had a dislocation loop population ~50% smaller than the other model alloys. As a result, the largest dislocation loops in each alloy had image sizes of close to 20 nm in the micrographs, and the median diameters for all alloys ranged from 6 to 8 nm. Nature analysis by the inside-outside method indicated most dislocation loops were interstitial type.« less
Atomistic modeling of carbon Cottrell atmospheres in bcc iron
NASA Astrophysics Data System (ADS)
Veiga, R. G. A.; Perez, M.; Becquart, C. S.; Domain, C.
2013-01-01
Atomistic simulations with an EAM interatomic potential were used to evaluate carbon-dislocation binding energies in bcc iron. These binding energies were then used to calculate the occupation probability of interstitial sites in the vicinity of an edge and a screw dislocation. The saturation concentration due to carbon-carbon interactions was also estimated by atomistic simulations in the dislocation core and taken as an upper limit for carbon concentration in a Cottrell atmosphere. We obtained a maximum concentration of 10 ± 1 at.% C at T = 0 K within a radius of 1 nm from the dislocation lines. The spatial carbon distributions around the line defects revealed that the Cottrell atmosphere associated with an edge dislocation is denser than that around a screw dislocation, in contrast with the predictions of the classical model of Cochardt and colleagues. Moreover, the present Cottrell atmosphere model is in reasonable quantitative accord with the three-dimensional atom probe data available in the literature.
Free energy change of a dislocation due to a Cottrell atmosphere
NASA Astrophysics Data System (ADS)
Sills, R. B.; Cai, W.
2018-06-01
The free energy reduction of a dislocation due to a Cottrell atmosphere of solutes is computed using a continuum model. We show that the free energy change is composed of near-core and far-field components. The far-field component can be computed analytically using the linearized theory of solid solutions. Near the core the linearized theory is inaccurate, and the near-core component must be computed numerically. The influence of interactions between solutes in neighbouring lattice sites is also examined using the continuum model. We show that this model is able to reproduce atomistic calculations of the nickel-hydrogen system, predicting hydride formation on dislocations. The formation of these hydrides leads to dramatic reductions in the free energy. Finally, the influence of the free energy change on a dislocation's line tension is examined by computing the equilibrium shape of a dislocation shear loop and the activation stress for a Frank-Read source using discrete dislocation dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jinfeng, E-mail: jfzhang@xidian.edu.cn; Li, Yao; Yan, Ran
In a semiconductor hetero-junction, the stripe/line-shaped scatters located at the hetero-interface lead to the anisotropic transport of two-dimensional electron gas (2DEG). The elastic scattering of infinitely long and uniform stripe/line-shaped scatters to 2DEG is theoretically investigated based on a general theory of anisotropic 2DEG transport [J. Schliemann and D. Loss, Phys. Rev. B 68(16), 165311 (2003)], and the resulting 2DEG mobility along the applied electrical field is modeled to be a function of the angle between the field and the scatters. The anisotropy of the scattering and the mobility originate in essence from that the stripe/line-shaped scatters act upon themore » injecting two-dimensional wave vector by changing only its component perpendicular to the scatters. Three related scattering mechanisms in a nonpolar AlGaN/GaN hetero-junction are discussed as illustrations, including the striated morphology caused interface roughness scattering, and the polarization induced line charge dipole scattering and the misfit dislocation scattering at the AlGaN/GaN interface. Different anisotropic behaviors of the mobility limited by these scattering mechanisms are demonstrated, but analysis shows that all of them are determined by the combined effects of the anisotropic bare scattering potential and the anisotropic dielectric response of the 2DEG.« less
NASA Astrophysics Data System (ADS)
Singh, J. B.; Molénat, G.; Sundararaman, M.; Banerjee, S.; Saada, G.; Veyssière, P.; Couret, A.
2006-01-01
Processes by which deformation spreads throughout a lamellar TiAl alloy have been investigated by in situ tensile experiments performed at room temperature in a transmission electron microscope. Several situations are found and analysed in which dislocations cross the ?/a2 interfaces and the a2 lamellae - the hard phase of the structure. Conditions by which strain transfer can be elastically mediated across sufficiently thin a2 lamellae are discussed.
Gradient Plasticity Model and its Implementation into MARMOT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barker, Erin I.; Li, Dongsheng; Zbib, Hussein M.
2013-08-01
The influence of strain gradient on deformation behavior of nuclear structural materials, such as boby centered cubic (bcc) iron alloys has been investigated. We have developed and implemented a dislocation based strain gradient crystal plasticity material model. A mesoscale crystal plasticity model for inelastic deformation of metallic material, bcc steel, has been developed and implemented numerically. Continuum Dislocation Dynamics (CDD) with a novel constitutive law based on dislocation density evolution mechanisms was developed to investigate the deformation behaviors of single crystals, as well as polycrystalline materials by coupling CDD and crystal plasticity (CP). The dislocation density evolution law in thismore » model is mechanism-based, with parameters measured from experiments or simulated with lower-length scale models, not an empirical law with parameters back-fitted from the flow curves.« less
NASA Astrophysics Data System (ADS)
Timoshenko, Yu K.; Shunina, V. A.; Shashkin, A. I.
2018-03-01
In the present work we used semiempirical and non-empirical models for electronic states of KCl nanocrystal containing edge dislocation for comparison of the obtained results. Electronic levels and local densities of states were calculated. As a result we found a reasonable qualitative correlation of semiempirical and non-empirical results. Using the results of computer modelling we discuss the problem of localization of electronic states near the line of edge dislocation.
Modal analysis of dislocation vibration and reaction attempt frequency
Sobie, Cameron; Capolungo, Laurent; McDowell, David L.; ...
2017-02-04
Transition state theory is a fundamental approach for temporal coarse-graining. It estimates the reaction rate for a transition processes by quantifying the activation free energy and attempt frequency for the unit process. To calculate the transition rate of a gliding dislocation, the attempt frequency is often obtained from line tension estimates of dislocation vibrations, a highly simplified model of dislocation behavior. This work revisits the calculation of attempt frequency for a dislocation bypassing an obstacle, in this case a self-interstitial atom (SIA) loop. First, a direct calculation of the vibrational characteristics of a finite pinned dislocation segment is compared tomore » line tension estimates before moving to the more complex case of dislocation-obstacle bypass. The entropic factor associated with the attempt frequency is calculated for a finite dislocation segment and for an infinite glide dislocation interacting with an SIA loop. Lastly, it is found to be dislocation length independent for three cases of dislocation-self interstitial atom (SIA) loop interactions.« less
Crustal deformation in great California earthquake cycles
NASA Technical Reports Server (NTRS)
Li, Victor C.; Rice, James R.
1986-01-01
Periodic crustal deformation associated with repeated strike slip earthquakes is computed for the following model: A depth L (less than or similiar to H) extending downward from the Earth's surface at a transform boundary between uniform elastic lithospheric plates of thickness H is locked between earthquakes. It slips an amount consistent with remote plate velocity V sub pl after each lapse of earthquake cycle time T sub cy. Lower portions of the fault zone at the boundary slip continuously so as to maintain constant resistive shear stress. The plates are coupled at their base to a Maxwellian viscoelastic asthenosphere through which steady deep seated mantle motions, compatible with plate velocity, are transmitted to the surface plates. The coupling is described approximately through a generalized Elsasser model. It is argued that the model gives a more realistic physical description of tectonic loading, including the time dependence of deep slip and crustal stress build up throughout the earthquake cycle, than do simpler kinematic models in which loading is represented as imposed uniform dislocation slip on the fault below the locked zone.
NASA Astrophysics Data System (ADS)
Wiesauer, Karin; Springholz, G.
2004-06-01
Strain relaxation and misfit dislocation formation is investigated for the high-misfit PbTe1-xSex/PbSe (001) heteroepitaxial system in which the lattice mismatch varies from 0% to 5.5%. Because a two-dimensional (2D) layer growth prevails for all PbTe1-xSex ternary compositions, the lattice mismatch is relaxed purely by misfit dislocations. In addition, it is found that strain relaxation is not hindered by dislocation kinetics. Therefore, this material combination is an ideal model system for testing the equilibrium Frank van der Merwe and Matthews Blakeslee strain relaxation models. In our experiments, we find significantly lower values of the critical layer thickness as compared to the model predictions. This discrepancy is caused by the inappropriate description of the dislocation self-energies when the layer thickness becomes comparable to the dislocation core radius. To resolve this problem, a modified expression for the dislocation self-energy is proposed. The resulting theoretical critical thicknesses are in excellent agreement with the experimental data. In addition, a remarkable universal scaling behavior is found for the strain relaxation data. This underlines the breakdown of the current strain relaxation models.
A dislocation-based crystal plasticity framework for dynamic ductile failure of single crystals
Nguyen, Thao; Luscher, D. J.; Wilkerson, J. W.
2017-08-02
We developed a framework for dislocation-based viscoplasticity and dynamic ductile failure to model high strain rate deformation and damage in single crystals. The rate-dependence of the crystal plasticity formulation is based on the physics of relativistic dislocation kinetics suited for extremely high strain rates. The damage evolution is based on the dynamics of void growth, which are governed by both micro-inertia as well as dislocation kinetics and dislocation substructure evolution. Furthermore, an averaging scheme is proposed in order to approximate the evolution of the dislocation substructure in both the macroscale as well as its spatial distribution at the microscale. Inmore » addition, a concept of a single equivalent dislocation density that effectively captures the collective influence of dislocation density on all active slip systems is proposed here. Together, these concepts and approximations enable the use of semi-analytic solutions for void growth dynamics developed in [J. Wilkerson and K. Ramesh. A dynamic void growth model governed by dislocation kinetics. J. Mech. Phys. Solids, 70:262–280, 2014.], which greatly reduce the computational overhead that would otherwise be required. The resulting homogenized framework has been implemented into a commercially available finite element package, and a validation study against a suite of direct numerical simulations was carried out.« less
Thermal activation of dislocations in large scale obstacle bypass
NASA Astrophysics Data System (ADS)
Sobie, Cameron; Capolungo, Laurent; McDowell, David L.; Martinez, Enrique
2017-08-01
Dislocation dynamics simulations have been used extensively to predict hardening caused by dislocation-obstacle interactions, including irradiation defect hardening in the athermal case. Incorporating the role of thermal energy on these interactions is possible with a framework provided by harmonic transition state theory (HTST) enabling direct access to thermally activated reaction rates using the Arrhenius equation, including rates of dislocation-obstacle bypass processes. Moving beyond unit dislocation-defect reactions to a representative environment containing a large number of defects requires coarse-graining the activation energy barriers of a population of obstacles into an effective energy barrier that accurately represents the large scale collective process. The work presented here investigates the relationship between unit dislocation-defect bypass processes and the distribution of activation energy barriers calculated for ensemble bypass processes. A significant difference between these cases is observed, which is attributed to the inherent cooperative nature of dislocation bypass processes. In addition to the dislocation-defect interaction, the morphology of the dislocation segments pinned to the defects play an important role on the activation energies for bypass. A phenomenological model for activation energy stress dependence is shown to describe well the effect of a distribution of activation energies, and a probabilistic activation energy model incorporating the stress distribution in a material is presented.
Dislocation mechanisms in stressed crystals with surface effects
NASA Astrophysics Data System (ADS)
Wu, Chi-Chin; Crone, Joshua; Munday, Lynn; Discrete Dislocation Dynamics Team
2014-03-01
Understanding dislocation properties in stressed crystals is the key for important processes in materials science, including the strengthening of metals and the stress relaxation during the growth of hetero-epitaxial structures. Despite existing experimental approaches and theories, many dislocation mechanisms with surface effects still remain elusive in experiments. Even though discrete dislocation dynamics (DDD) simulations are commonly employed to study dislocations, few demonstrate sufficient computational capabilities for massive dislocations with the combined effects of surfaces and stresses. Utilizing the Army's newly developed FED3 code, a DDD computation code coupled with finite elements, this work presents several dislocation mechanisms near different types of surfaces in finite domains. Our simulation models include dislocations in a bended metallic cantilever beam, near voids in stressed metals, as well as threading and misfit dislocations in as-grown semiconductor epitaxial layers and their quantitative inter-correlations to stress relaxation and surface instability. Our studies provide not only detailed physics of individual dislocation mechanisms, but also important collective dislocation properties such as dislocation densities and strain-stress profiles and their interactions with surfaces.
Evolution of stress and microstructure in silicon-doped aluminum gallium nitride thin films
NASA Astrophysics Data System (ADS)
Manning, Ian C.
The present work examines the effects of the Si incorporation on the stress evolution of AlxGa1-xN thin films deposited using metalorganic chemical vapor deposition. Specifically, tensile stress generation was evaluated using an in situ wafer curvature measurement technique, and correlated with the inclination of edge-type threading dislocations observed with transmission electron microscopy (TEM). This microstructural process had been theorized to relax compressive strain with increasing film thickness by expanding the missing planes of atoms associated with the dislocations. Prior work regarded dislocation bending as being the result of an effective climb mechanism. In a preliminary investigation, the accuracy of the model derived to quantify the strain induced by dislocation inclination was tested. The relevant parameters were measured to calculate a theoretical stress gradient, which was compared with the gradient as extract from experimental stress data. The predicted value was found to overestimate the measured value. It was also confirmed during the preliminary investigation that Si incorporation alone was sufficient to initiate dislocation bending. The overestimation of the stress gradient yielded by the prediction of the model was then addressed by exploring the effects of dislocation annihilation and fusion reactions occurring during film growth. Si-doped Al0.42Ga 0.58N layers exhibiting inclined threading dislocations were grown to different thicknesses. The dislocation density at the surface of each sample was then measured using plan-view TEM, and was found to be inversely proportional to the thickness. As the original model assumed a constant dislocation density, applying the correction for its reduction yielded a better prediction of the stress evolution. In an attempt to extend the predictive capabilities of the model beyond the single composition examined above, and to better understand the interaction of Si with the host AlxGa1-xN lattice, several sets of AlxGa1-xN films were grown, each with a unique composition. The Si doping level was varied within each set. It was determined that the dominant influence on tensile strain generation is in fact the initial dislocation density, which increased with increasing Al content as observed with plan-view TEM. This was expounded in a series of modeling examples. In addition, threading dislocation inclination was studied in nominally undoped and Si-doped Al xGa1-xN grown under conditions of tensile stress to isolate the influence of Si from that of compressive stress, which had also been found to induce dislocation bending. The effects due to Si and compressive stress were found not to combine as expected, based on a stochastic model of dislocation jog formation that had been developed in prior work to describe the inclination mechanism. Having confirmed the strong, direct relationship between the initial dislocation density and the degree of tensile stress generated in the Al xGa1-xN epilayers during growth, an effort was made to demonstrate the advantage that might be gained by using AlN substrates rather than SiC. In principle, AlN provides a growth surface that inhibits defect formation due to its close similarity to AlxGa1-xN lattice structure and chemistry, particularly at high Al mole fractions. Threading dislocation densities were reduced by an order of magnitude in comparison with samples grown on SiC, with a corresponding reduction in the stress gradient arising from dislocation inclination. (Abstract shortened by UMI.)
Elastic Moduli of Pyrolytic Boron Nitride Measured Using 3-Point Bending and Ultrasonic Testing
NASA Technical Reports Server (NTRS)
Kaforey, M. L.; Deeb, C. W.; Matthiesen, D. H.; Roth, D. J.
1999-01-01
Three-point bending and ultrasonic testing were performed on a flat plate of PBN. In the bending experiment, the deformation mechanism was believed to be shear between the pyrolytic layers, which yielded a shear modulus, c (sub 44), of 2.60 plus or minus .31 GPa. Calculations based on the longitudinal and shear wave velocity measurements yielded values of 0.341 plus or minus 0.006 for Poisson's ratio, 10.34 plus or minus .30 GPa for the elastic modulus (c (sub 33)), and 3.85 plus or minus 0.02 GPa for the shear modulus (c (sub 44)). Since free basal dislocations have been reported to affect the value of c (sub 44) found using ultrasonic methods, the value from the bending experiment was assumed to be the more accurate value.
Localizing softness and stress along loops in 3D topological metamaterials
NASA Astrophysics Data System (ADS)
Baardink, Guido; Souslov, Anton; Paulose, Jayson; Vitelli, Vincenzo
2018-01-01
Topological states can be used to control the mechanical properties of a material along an edge or around a localized defect. The rigidity of elastic networks is characterized by a topological invariant called the polarization; materials with a well-defined uniform polarization display a dramatic range of edge softness depending on the orientation of the polarization relative to the terminating surface. However, in all 3D mechanical metamaterials proposed to date, the topological modes are mixed with bulk soft modes, which organize themselves in Weyl loops. Here, we report the design of a 3D topological metamaterial without Weyl lines and with a uniform polarization that leads to an asymmetry between the number of soft modes on opposing surfaces. We then use this construction to localize topological soft modes in interior regions of the material by including defect lines—dislocation loops—that are unique to three dimensions. We derive a general formula that relates the difference in the number of soft modes and states of self-stress localized along the dislocation loop to the handedness of the vector triad formed by the lattice polarization, Burgers vector, and dislocation-line direction. Our findings suggest a strategy for preprogramming failure and softness localized along lines in 3D, while avoiding extended soft Weyl modes.
NASA Astrophysics Data System (ADS)
Lin, Bing; Huang, Minsheng; Zhao, Liguo; Roy, Anish; Silberschmidt, Vadim; Barnard, Nick; Whittaker, Mark; McColvin, Gordon
2018-06-01
Strain-controlled cyclic deformation of a nickel-based single crystal superalloy has been modelled using three-dimensional (3D) discrete dislocation dynamics (DDD) for both [0 0 1] and [1 1 1] orientations. The work focused on the interaction between dislocations and precipitates during cyclic plastic deformation at elevated temperature, which has not been well studied yet. A representative volume element with cubic γ‧-precipitates was chosen to represent the material, with enforced periodical boundary conditions. In particular, cutting of superdislocations into precipitates was simulated by a back-force method. The global cyclic stress-strain responses were captured well by the DDD model when compared to experimental data, particularly the effects of crystallographic orientation. Dislocation evolution showed that considerably high density of dislocations was produced for [1 1 1] orientation when compared to [0 0 1] orientation. Cutting of dislocations into the precipitates had a significant effect on the plastic deformation, leading to material softening. Contour plots of in-plane shear strain proved the development of heterogeneous strain field, resulting in the formation of shear-band embryos.
Xu, Shuozhi; Xiong, Liming; Chen, Youping; ...
2017-04-26
Dislocation/stacking fault interactions play an important role in the plastic deformation of metallic nanocrystals and polycrystals. These interactions have been explored in atomistic models, which are limited in scale length by high computational cost. In contrast, multiscale material modeling approaches have the potential to simulate the same systems at a fraction of the computational cost. In this paper, we validate the concurrent atomistic-continuum (CAC) method on the interactions between a lattice screw dislocation and a stacking fault (SF) in three face-centered cubic metallic materials—Ni, Al, and Ag. Two types of SFs are considered: intrinsic SF (ISF) and extrinsic SF (ESF).more » For the three materials at different strain levels, two screw dislocation/ISF interaction modes (annihilation of the ISF and transmission of the dislocation across the ISF) and three screw dislocation/ESF interaction modes (transformation of the ESF into a three-layer twin, transformation of the ESF into an ISF, and transmission of the dislocation across the ESF) are identified. Here, our results show that CAC is capable of accurately predicting the dislocation/SF interaction modes with greatly reduced DOFs compared to fully-resolved atomistic simulations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Shuozhi; Xiong, Liming; Chen, Youping
Dislocation/stacking fault interactions play an important role in the plastic deformation of metallic nanocrystals and polycrystals. These interactions have been explored in atomistic models, which are limited in scale length by high computational cost. In contrast, multiscale material modeling approaches have the potential to simulate the same systems at a fraction of the computational cost. In this paper, we validate the concurrent atomistic-continuum (CAC) method on the interactions between a lattice screw dislocation and a stacking fault (SF) in three face-centered cubic metallic materials—Ni, Al, and Ag. Two types of SFs are considered: intrinsic SF (ISF) and extrinsic SF (ESF).more » For the three materials at different strain levels, two screw dislocation/ISF interaction modes (annihilation of the ISF and transmission of the dislocation across the ISF) and three screw dislocation/ESF interaction modes (transformation of the ESF into a three-layer twin, transformation of the ESF into an ISF, and transmission of the dislocation across the ESF) are identified. Here, our results show that CAC is capable of accurately predicting the dislocation/SF interaction modes with greatly reduced DOFs compared to fully-resolved atomistic simulations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Thao; Luscher, D. J.; Wilkerson, J. W.
We developed a framework for dislocation-based viscoplasticity and dynamic ductile failure to model high strain rate deformation and damage in single crystals. The rate-dependence of the crystal plasticity formulation is based on the physics of relativistic dislocation kinetics suited for extremely high strain rates. The damage evolution is based on the dynamics of void growth, which are governed by both micro-inertia as well as dislocation kinetics and dislocation substructure evolution. Furthermore, an averaging scheme is proposed in order to approximate the evolution of the dislocation substructure in both the macroscale as well as its spatial distribution at the microscale. Inmore » addition, a concept of a single equivalent dislocation density that effectively captures the collective influence of dislocation density on all active slip systems is proposed here. Together, these concepts and approximations enable the use of semi-analytic solutions for void growth dynamics developed in [J. Wilkerson and K. Ramesh. A dynamic void growth model governed by dislocation kinetics. J. Mech. Phys. Solids, 70:262–280, 2014.], which greatly reduce the computational overhead that would otherwise be required. The resulting homogenized framework has been implemented into a commercially available finite element package, and a validation study against a suite of direct numerical simulations was carried out.« less
Orientation-dependent deformation mechanisms of bcc niobium nanoparticles
NASA Astrophysics Data System (ADS)
Bian, J. J.; Yang, L.; Niu, X. R.; Wang, G. F.
2018-07-01
Nanoparticles usually exhibit pronounced anisotropic properties, and a close insight into the atomic-scale deformation mechanisms is of great interest. In present study, atomic simulations are conducted to analyse the compression of bcc nanoparticles, and orientation-dependent features are addressed. It is revealed that surface morphology under indenter predominantly governs the initial elastic response. The loading curve follows the flat punch contact model in [1 1 0] compression, while it obeys the Hertzian contact model in [1 1 1] and [0 0 1] compressions. In plastic deformation regime, full dislocation gliding is dominated in [1 1 0] compression, while deformation twinning is prominent in [1 1 1] compression, and these two mechanisms coexist in [0 0 1] compression. Such deformation mechanisms are distinct from those in bulk crystals under nanoindentation and nanopillars under compression, and the major differences are also illuminated. Our results provide an atomic perspective on the mechanical behaviours of bcc nanoparticles and are helpful for the design of nanoparticle-based components and systems.
Sun, Zhiqian; Song, Gian; Sisneros, Thomas A.; Clausen, Bjørn; Pu, Chao; Li, Lin; Gao, Yanfei; Liaw, Peter K.
2016-01-01
An understanding of load sharing among constituent phases aids in designing mechanical properties of multiphase materials. Here we investigate load partitioning between the body-centered-cubic iron matrix and NiAl-type precipitates in a ferritic alloy during uniaxial tensile tests at 364 and 506 °C on multiple length scales by in situ neutron diffraction and crystal plasticity finite element modeling. Our findings show that the macroscopic load-transfer efficiency is not as high as that predicted by the Eshelby model; moreover, it depends on the matrix strain-hardening behavior. We explain the grain-level anisotropic load-partitioning behavior by considering the plastic anisotropy of the matrix and elastic anisotropy of precipitates. We further demonstrate that the partitioned load on NiAl-type precipitates relaxes at 506 °C, most likely through thermally-activated dislocation rearrangement on the microscopic scale. The study contributes to further understanding of load-partitioning characteristics in multiphase materials. PMID:26979660
Sun, Zhiqian; Song, Gian; Sisneros, Thomas A.; ...
2016-03-16
An understanding of load sharing among constituent phases aids in designing mechanical properties of multiphase materials. Here we investigate load partitioning between the body-centered-cubic iron matrix and NiAl-type precipitates in a ferritic alloy during uniaxial tensile tests at 364 and 506 C on multiple length scales by in situ neutron diffraction and crystal plasticity finite element modeling. Our findings show that the macroscopic load-transfer efficiency is not as high as that predicted by the Eshelby model; moreover, it depends on the matrix strain-hardening behavior. We explain the grain-level anisotropic load-partitioning behavior by considering the plastic anisotropy of the matrix andmore » elastic anisotropy of precipitates. We further demonstrate that the partitioned load on NiAl-type precipitates relaxes at 506 C, most likely through thermally-activated dislocation rearrangement on the microscopic scale. Furthermore, the study contributes to further understanding of load-partitioning characteristics in multiphase materials.« less
Glide dislocation nucleation from dislocation nodes at semi-coherent {111} Cu–Ni interfaces
Shao, Shuai; Wang, Jian; Beyerlein, Irene J.; ...
2015-07-23
Using atomistic simulations and dislocation theory on a model system of semi-coherent {1 1 1} interfaces, we show that misfit dislocation nodes adopt multiple atomic arrangements corresponding to the creation and redistribution of excess volume at the nodes. We identified four distinctive node structures: volume-smeared nodes with (i) spiral or (ii) straight dislocation patterns, and volume-condensed nodes with (iii) triangular or (iv) hexagonal dislocation patterns. Volume-smeared nodes contain interfacial dislocations lying in the Cu–Ni interface but volume-condensed nodes contain two sets of interfacial dislocations in the two adjacent interfaces and jogs across the atomic layer between the two adjacent interfaces.more » Finally, under biaxial tension/compression applied parallel to the interface, we show that the nucleation of lattice dislocations is preferred at the nodes and is correlated with the reduction of excess volume at the nodes.« less
Seismic anisotropy from crust to core: a mineral and rock physics perspective
NASA Astrophysics Data System (ADS)
Mainprice, David
2014-05-01
Since the early work of Hess and co-works for mantle in the 1960s and Poupinet et al. in 1980s for the inner core, we know that seismic anisotropy is a global phenomenon. Progress in seismology has led to a much more complete image of the Earth's interior in terms of heterogeneity and anisotropy. The interpretation of the seismic anisotropy requires a multidisciplinary effort to unravel the geodynamic scenario recorded in today's seismological snapshot. Progress in mineral physics on the experimental measurement of elastic properties at extreme conditions are now completed by ab initio atomic modelling for the full range of temperatures and pressures of the Earth's interior. The new data on the elastic constants of wider range minerals enables more realistic petrology for seismic anisotropy models. Experimental plastic deformation of polycrystalline samples at deep Earth conditions allows the direct study of crystal preferred orientation (CPO) and these studies are completed by ab initio atomic modelling of dislocations and other defects that control plasticity. Finally, polycrystalline plasticity codes allow the simulation of CPO reported by experimentalists and the modelling of more complex strain paths required for geodynamic models. The CPO of crustal and mantle rocks from the Earth's surface or recovered as xenoliths, provides a geological verification of the CPOs present in the Earth. The systematic use of CPO measured by U-stage for field studies all over the world for last 40 years has now been intensified in last 15 years by the use of electron back-scattered diffraction (EBSD) to study of CPO and the associated digital microstructure. It is an appropriate time to analysis CPO databases of olivine and other minerals, which represents the work of our group, both present and former members, as well as collaborating colleagues. It is also interesting to compare the natural record as illustrated by our databases in the light of recent experimental results. Information on CPO together with single crystal elastic constants and the equation of state allow the modelling of seismic anisotropy due to plasticity at any PT condition, and the connection with geodynamic processes related to large-scale flow in the deep Earth.
Theory of electron–phonon–dislon interacting system—toward a quantized theory of dislocations
Li, Mingda; Tsurimaki, Yoichiro; Meng, Qingping; ...
2018-02-05
In this paper, we provide a comprehensive theoretical framework to study how crystal dislocations influence the functional properties of materials, based on the idea of a quantized dislocation, namely a 'dislon'. In contrast to previous work on dislons which focused on exotic phenomenology, here we focus on their theoretical structure and computational power. We first provide a pedagogical introduction that explains the necessity and benefits of taking the dislon approach and why the dislon Hamiltonian takes its current form. Then, we study the electron–dislocation and phonon–dislocation scattering problems using the dislon formalism. Both the effective electron and phonon theories aremore » derived, from which the role of dislocations on electronic and phononic transport properties is computed. Compared with traditional dislocation scattering studies, which are intrinsically single-particle, low-order perturbation and classical quenched defect in nature, the dislon theory not only allows easy incorporation of quantum many-body effects such as electron correlation, electron–phonon interaction, and higher-order scattering events, but also allows proper consideration of the dislocation's long-range strain field and dynamic aspects on equal footing for arbitrary types of straight-line dislocations. This means that instead of developing individual models for specific dislocation scattering problems, the dislon theory allows for the calculation of electronic structure and electrical transport, thermal transport, optical and superconducting properties, etc, under one unified theory. Furthermore, the dislon theory has another advantage over empirical models in that it requires no fitting parameters. The dislon theory could serve as a major computational tool to understand the role of dislocations on multiple materials' functional properties at an unprecedented level of clarity, and may have wide applications in dislocated energy materials.« less
Theory of electron–phonon–dislon interacting system—toward a quantized theory of dislocations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Mingda; Tsurimaki, Yoichiro; Meng, Qingping
In this paper, we provide a comprehensive theoretical framework to study how crystal dislocations influence the functional properties of materials, based on the idea of a quantized dislocation, namely a 'dislon'. In contrast to previous work on dislons which focused on exotic phenomenology, here we focus on their theoretical structure and computational power. We first provide a pedagogical introduction that explains the necessity and benefits of taking the dislon approach and why the dislon Hamiltonian takes its current form. Then, we study the electron–dislocation and phonon–dislocation scattering problems using the dislon formalism. Both the effective electron and phonon theories aremore » derived, from which the role of dislocations on electronic and phononic transport properties is computed. Compared with traditional dislocation scattering studies, which are intrinsically single-particle, low-order perturbation and classical quenched defect in nature, the dislon theory not only allows easy incorporation of quantum many-body effects such as electron correlation, electron–phonon interaction, and higher-order scattering events, but also allows proper consideration of the dislocation's long-range strain field and dynamic aspects on equal footing for arbitrary types of straight-line dislocations. This means that instead of developing individual models for specific dislocation scattering problems, the dislon theory allows for the calculation of electronic structure and electrical transport, thermal transport, optical and superconducting properties, etc, under one unified theory. Furthermore, the dislon theory has another advantage over empirical models in that it requires no fitting parameters. The dislon theory could serve as a major computational tool to understand the role of dislocations on multiple materials' functional properties at an unprecedented level of clarity, and may have wide applications in dislocated energy materials.« less
Atomistic calculations of dislocation core energy in aluminium
Zhou, X. W.; Sills, R. B.; Ward, D. K.; ...
2017-02-16
A robust molecular dynamics simulation method for calculating dislocation core energies has been developed. This method has unique advantages: it does not require artificial boundary conditions, is applicable for mixed dislocations, and can yield highly converged results regardless of the atomistic system size. Utilizing a high-fidelity bond order potential, we have applied this method in aluminium to calculate the dislocation core energy as a function of the angle β between the dislocation line and Burgers vector. These calculations show that, for the face-centred-cubic aluminium explored, the dislocation core energy follows the same functional dependence on β as the dislocation elasticmore » energy: Ec = A·sin 2β + B·cos 2β, and this dependence is independent of temperature between 100 and 300 K. By further analysing the energetics of an extended dislocation core, we elucidate the relationship between the core energy and radius of a perfect versus extended dislocation. With our methodology, the dislocation core energy can be accurately accounted for in models of plastic deformation.« less
Atomistic calculations of dislocation core energy in aluminium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, X. W.; Sills, R. B.; Ward, D. K.
A robust molecular dynamics simulation method for calculating dislocation core energies has been developed. This method has unique advantages: it does not require artificial boundary conditions, is applicable for mixed dislocations, and can yield highly converged results regardless of the atomistic system size. Utilizing a high-fidelity bond order potential, we have applied this method in aluminium to calculate the dislocation core energy as a function of the angle β between the dislocation line and Burgers vector. These calculations show that, for the face-centred-cubic aluminium explored, the dislocation core energy follows the same functional dependence on β as the dislocation elasticmore » energy: Ec = A·sin 2β + B·cos 2β, and this dependence is independent of temperature between 100 and 300 K. By further analysing the energetics of an extended dislocation core, we elucidate the relationship between the core energy and radius of a perfect versus extended dislocation. With our methodology, the dislocation core energy can be accurately accounted for in models of plastic deformation.« less
Displacive transformation of virus protein crystal
NASA Astrophysics Data System (ADS)
Celotto, S.; Pond, R. C.
2003-10-01
A crystalline protein undergoes a displacive transformation in the T-even bacteriophage. In the present work, the transformation mechanism is modelled in terms of interfacial dislocations whose motion gives rise to the observed deformation. The topological properties (Burgers vector, {b}, and `overlap' step height, h) of the dislocations involved are defined rigorously and a recent theory is used that quantifies the diffusional flux arising due to their movement. The circumstance under which passage of transformation dislocations is diffusionless is identified. Thus, dislocation modelling is used successfully to describe a diffusionless displacive transformation in a process where the phenomenological theory of martensite crystallography cannot be applied.
Simpson, R.W.; Schulz, S.S.; Dietz, L.D.; Burford, R.O.
1988-01-01
Rates of shallow slip on creeping sections of the San Andreas fault have been perturbed on a number of occasions by earthquakes occurring on nearby faults. One example of such perturbations occurred during the 26 January 1986 magnitude 5.3 Tres Pinos earthquake located about 10 km southeast of Hollister, California. Seven creepmeters on the San Andreas fault showed creep steps either during or soon after the shock. Both left-lateral (LL) and right-lateral (RL) steps were observed. A rectangular dislocation in an elastic half-space was used to model the coseismic fault offset at the hypocenter. For a model based on the preliminary focal mechanism, the predicted changes in static shear stress on the plane of the San Andreas fault agreed in sense (LL or RL) with the observed slip directions at all seven meters; for a model based on a refined focal mechanism, six of the seven meters showed the correct sense of motion. Two possible explanations for such coseismic and postseismic steps are (1) that slip was triggered by the earthquake shaking or (2) that slip occurred in response to the changes in static stress fields accompanying the earthquake. In the Tres Pinos example, the observed steps may have been of both the triggered and responsive kinds. A second example is provided by the 2 May 1983 magnitude 6.7 Coalinga earthquake, which profoundly altered slip rates at five creepmeters on the San Andreas fault for a period of months to years. The XMM1 meter 9 km northwest of Parkfield, California recorded LL creep for more than a year after the event. To simulate the temporal behavior of the XMM1 meter and to view the stress perturbation provided by the Coalinga earthquake in the context of steady-state deformation on the San Andreas fault, a simple time-evolving dislocation model was constructed. The model was driven by a single long vertical dislocation below 15 km in depth, that was forced to slip at 35 mm/yr in a RL sense. A dislocation element placed in the seismogenic layer under XMM1 was given a finite breaking strength of sufficient magnitude to produce a Parkfield-like earthquake every 22 years. When stress changes equivalent to a Coalinga earthquake were superposed on the model running in a steady state mode, the effect was to make a segment under XMM1, that could slip in a linear viscous fashion, creep LL and to delay the onset of the next Parkfield-like earthquake by a year or more. If static stress changes imposed by earthquakes off the San Andreas can indeed advance or delay earthquakes on the San Andreas by months or years, then such changes must be considered in intermediate-term prediction efforts. ?? 1988 Birkha??user Verlag.
Finite element approximation of the fields of bulk and interfacial line defects
NASA Astrophysics Data System (ADS)
Zhang, Chiqun; Acharya, Amit; Puri, Saurabh
2018-05-01
A generalized disclination (g.disclination) theory (Acharya and Fressengeas, 2015) has been recently introduced that goes beyond treating standard translational and rotational Volterra defects in a continuously distributed defects approach; it is capable of treating the kinematics and dynamics of terminating lines of elastic strain and rotation discontinuities. In this work, a numerical method is developed to solve for the stress and distortion fields of g.disclination systems. Problems of small and finite deformation theory are considered. The fields of a single disclination, a single dislocation treated as a disclination dipole, a tilt grain boundary, a misfitting grain boundary with disconnections, a through twin boundary, a terminating twin boundary, a through grain boundary, a star disclination/penta-twin, a disclination loop (with twist and wedge segments), and a plate, a lenticular, and a needle inclusion are approximated. It is demonstrated that while the far-field topological identity of a dislocation of appropriate strength and a disclination-dipole plus a slip dislocation comprising a disconnection are the same, the latter microstructure is energetically favorable. This underscores the complementary importance of all of topology, geometry, and energetics in understanding defect mechanics. It is established that finite element approximations of fields of interfacial and bulk line defects can be achieved in a systematic and routine manner, thus contributing to the study of intricate defect microstructures in the scientific understanding and predictive design of materials. Our work also represents one systematic way of studying the interaction of (g.)disclinations and dislocations as topological defects, a subject of considerable subtlety and conceptual importance (Aharoni et al., 2017; Mermin, 1979).
On the residual yield stress of shocked metals
NASA Astrophysics Data System (ADS)
Chapman, David J.; Eakins, Daniel E.; Proud, William G.; Savinykh, Andrey S.; Garkushin, Gennady V.; Razorenov, Sergey V.; Kanel, Gennady I.
2014-05-01
Precise measurement of the free-surface velocity can be a rich source of information on the effects of time and strain on material strength. With this objective, we performed a careful comparative measurement of the free-surface velocity of shock loaded aluminium AD1 and magnesium alloy Ma2 samples of various thicknesses in the range 0.2 mm to 5 mm. We observed the expected decay in the elastic precursor state with increasing sample thickness for both aluminium and magnesium alloy. However, we also observed a small change in the magnitude of hysteresis in the elastic-plastic compression-unloading cycle; where qualitatively the peak free-surface velocity also increased with increasing specimen thickness. Interestingly, the observed change in hysteresis as function of specimen thickness for the Ma2 alloy was relatively smaller than the AD1, in contrast with the larger change in precursor magnitude observed for the magnesium. We propose that softening due to multiplication of dislocations is relatively large in Ma2 and results in a smaller hysteresis in the elastic-plastic cycle.
The Khachaturyan theory of elastic inclusions: Recollections and results
NASA Astrophysics Data System (ADS)
Morris, J. W.
2010-01-01
In keeping with the assignment, this paper has two parts. The first is a personal recollection of my interactions with Professor Armen Khachaturyan since he first visited Berkeley in the 1970s. The second part is a review of the Khachaturyan formulation of the theory of elastic inclusions, with emphasis on results found since his classic monograph on the Theory of Structural Transformations in Solids [Wiley, New York, 1983]. The focus here is on the shapes and habits of coherent inclusions. The basic theory is presented, briefly, to exhibit Khachaturyan's results for the strain and energy within a coherent inclusion and show that the elastic energy is minimal for a thin-plate morphology with a definite habit. The preferred habit of the thin-plate inclusion is then discussed and computed for inclusions with dyadic strain (including the dislocation loop) and coherent inclusions with orthorhombic or simpler symmetry. This is followed by a discussion of the evolution of precipitate shape during coarsening, including the theory of the spontaneous splitting of coarsening precipitates and the development of octahedral or tetrahedral shapes.
On the elastic–plastic decomposition of crystal deformation at the atomic scale
Stukowski, Alexander; Arsenlis, A.
2012-03-02
Given two snapshots of an atomistic system, taken at different stages of the deformation process, one can compute the incremental deformation gradient field, F, as defined by continuum mechanics theory, from the displacements of atoms. However, such a kinematic analysis of the total deformation does not reveal the respective contributions of elastic and plastic deformation. We develop a practical technique to perform the multiplicative decomposition of the deformation field, F = F eF p, into elastic and plastic parts for the case of crystalline materials. The described computational analysis method can be used to quantify plastic deformation in a materialmore » due to crystal slip-based mechanisms in molecular dynamics and molecular statics simulations. The knowledge of the plastic deformation field, F p, and its variation with time can provide insight into the number, motion and localization of relevant crystal defects such as dislocations. As a result, the computed elastic field, F e, provides information about inhomogeneous lattice strains and lattice rotations induced by the presence of defects.« less
Dislocation-Twin Boundary Interactions Induced Nanocrystalline via SPD Processing in Bulk Metals
NASA Astrophysics Data System (ADS)
Zhang, Fucheng; Feng, Xiaoyong; Yang, Zhinan; Kang, Jie; Wang, Tiansheng
2015-03-01
This report investigated dislocation-twin boundary (TB) interactions that cause the TB to disappear and turn into a high-angle grain boundary (GB). The evolution of the microstructural characteristics of Hadfield steel was shown as a function of severe plastic deformation processing time. Sessile Frank partial dislocations and/or sessile unit dislocations were formed on the TB through possible dislocation reactions. These reactions induced atomic steps on the TB and led to the accumulation of gliding dislocations at the TB, which resulted in the transition from coherent TB to incoherent GB. The factors that affect these interactions were described, and a physical model was established to explain in detail the feasible dislocation reactions at the TB.
Dislocation-twin boundary interactions induced nanocrystalline via SPD processing in bulk metals.
Zhang, Fucheng; Feng, Xiaoyong; Yang, Zhinan; Kang, Jie; Wang, Tiansheng
2015-03-11
This report investigated dislocation-twin boundary (TB) interactions that cause the TB to disappear and turn into a high-angle grain boundary (GB). The evolution of the microstructural characteristics of Hadfield steel was shown as a function of severe plastic deformation processing time. Sessile Frank partial dislocations and/or sessile unit dislocations were formed on the TB through possible dislocation reactions. These reactions induced atomic steps on the TB and led to the accumulation of gliding dislocations at the TB, which resulted in the transition from coherent TB to incoherent GB. The factors that affect these interactions were described, and a physical model was established to explain in detail the feasible dislocation reactions at the TB.
NASA Astrophysics Data System (ADS)
Russell, J. J.; Zou, J.; Moon, A. R.; Cockayne, D. J. H.
2000-08-01
Threading dislocation glide relieves strain in strained-layer heterostructures by increasing the total length of interface misfit dislocations. The blocking theory proposed by Freund [J. Appl. Phys. 68, 2073 (1990)] predicts the thickness above which gliding threading dislocations are able to overcome the resistance force produced by existing orthogonal misfit dislocations. A set of wedge-shaped samples of InxGa1-xAs/GaAs (x=0.04) strained-layer heterostructures was grown using molecular-beam epitaxy in order to test the theory of dislocation blocking over a range of thicknesses within one sample. Scanning cathodoluminescence microscopy techniques were used to image the misfit dislocations. The cathodoluminescence results confirm the model proposed by Freund.
Effect of solute atoms on dislocation motion in Mg: An electronic structure perspective
Tsuru, T.; Chrzan, D. C.
2015-01-01
Solution strengthening is a well-known approach to tailoring the mechanical properties of structural alloys. Ultimately, the properties of the dislocation/solute interaction are rooted in the electronic structure of the alloy. Accordingly, we compute the electronic structure associated with, and the energy barriers to dislocation cross-slip. The energy barriers so obtained can be used in the development of multiscale models for dislocation mediated plasticity. The computed electronic structure can be used to identify substitutional solutes likely to interact strongly with the dislocation. Using the example of a-type screw dislocations in Mg, we compute accurately the Peierls barrier to prismatic plane slip and argue that Y, Ca, Ti, and Zr should interact strongly with the studied dislocation, and thereby decrease the dislocation slip anisotropy in the alloy. PMID:25740411
Dislocation dynamics in hexagonal close-packed crystals
Aubry, S.; Rhee, M.; Hommes, G.; ...
2016-04-14
Extensions of the dislocation dynamics methodology necessary to enable accurate simulations of crystal plasticity in hexagonal close-packed (HCP) metals are presented. They concern the introduction of dislocation motion in HCP crystals through linear and non-linear mobility laws, as well as the treatment of composite dislocation physics. Formation, stability and dissociation of and other dislocations with large Burgers vectors defined as composite dislocations are examined and a new topological operation is proposed to enable their dissociation. Furthermore, the results of our simulations suggest that composite dislocations are omnipresent and may play important roles both in specific dislocation mechanisms and in bulkmore » crystal plasticity in HCP materials. While fully microscopic, our bulk DD simulations provide wealth of data that can be used to develop and parameterize constitutive models of crystal plasticity at the mesoscale.« less
Time and Temperature Dependence of Viscoelastic Stress Relaxation in Gold and Gold Alloy Thin Films
NASA Astrophysics Data System (ADS)
Mongkolsuttirat, Kittisun
Radio frequency (RF) switches based on capacitive MicroElectroMechanical System (MEMS) devices have been proposed as replacements for traditional solid-state field effect transistor (FET) devices. However, one of the limitations of the existing capacitive switch designs is long-term reliability. Failure is generally attributed to electrical charging in the capacitor's dielectric layer that creates an attractive electrostatic force between a moving upper capacitor plate (a metal membrane) and the dielectric. This acts as an attractive stiction force between them that may cause the switch to stay permanently in the closed state. The force that is responsible for opening the switch is the elastic restoring force due to stress in the film membrane. If the restoring force decreases over time due to stress relaxation, the tendency for stiction failure behavior will increase. Au films have been shown to exhibit stress relaxation even at room temperature. The stress relaxation observed is a type of viscoelastic behavior that is more significant in thin metal films than in bulk materials. Metal films with a high relaxation resistance would have a lower probability of device failure due to stress relaxation. It has been shown that solid solution and oxide dispersion can strengthen a material without unacceptable decreases in electrical conductivity. In this study, the viscoelastic behavior of Au, AuV solid solution and AuV2O5 dispersion created by DC magnetron sputtering are investigated using the gas pressure bulge testing technique in the temperature range from 20 to 80°C. The effectiveness of the two strengthening approaches is compared with the pure Au in terms of relaxation modulus and 3 hour modulus decay. The time dependent relaxation curves can be fitted very well with a four-term Prony series model. From the temperature dependence of the terms of the series, activation energies have been deduced to identify the possible dominant relaxation mechanism. The measured modulus relaxation of Au films also proves that the films exhibit linear viscoelastic behavior. From this, a linear viscoelastic model is shown to fit very well to experimental steady state stress relaxation data and can predict time dependent stress for complex loading histories including the ability to predict stress-time behavior at other strain rates during loading. Two specific factors that are expected to influence the viscoelastic behavior-degree of alloying and grain size are investigated to explore the influence of V concentration in solid solution and grain size of pure Au. It is found that the normalized modulus of Au films is dependent on both concentration (C) and grain size (D) with proportionalities of C1/3 and D 2, respectively. A quantitative model of the rate-equation for dislocation glide plasticity based on Frost and Ashby is proposed and fitted well with steady state anelastic stress relaxation experimental data. The activation volume and the density of mobile dislocations is determined using repeated stress relaxation tests in order to further understand the viscoelastic relaxation mechanism. A rapid decrease of mobile dislocation density is found at the beginning of relaxation, which correlates well with a large reduction of viscoelastic modulus at the early stage of relaxation. The extracted activation volume and dislocation mobility can be ascribed to mobile dislocation loops with double kinks generated at grain boundaries, consistent with the dislocation mechanism proposed for the low activation energy measured in this study.
NASA Astrophysics Data System (ADS)
Pendurti, Srinivas
InP is an important material for opto-electronic and high speed electronics applications. Its main use today is as the substrate material for epitaxy to produce GaInAsP lasers. The present technology for growing bulk InP is the high pressure Czochralski process. Bulk InP grown through this technique suffers from presence of a high density of line defects or dislocations, which are produced by thermal stresses the material goes through during its growth in the high temperature furnace. Modeling of these thermal stresses and the resulting plastic deformation, giving rise to dislocation densities, entails simulation of the entire thermal history of the crystal during its growth in the furnace, and studying the deformation of the crystal through suitable visco-plastic constitutive equations. Accordingly, a suitable visco-plastic model for deformation of InP was constructed, integrated with the ABAQUS finite element code, and verified through experimental data for uniaxial constant strain rate deformation tests available in literature. This was then coupled with a computation fluid dynamics model, predicting the entire temperature history in the furnace during crystal growth, to study the plastic deformation and dislocation density evolution in the crystal during growth. Growth in a variety of conditions was simulated and those conditions that generate minimum dislocation density identified. Macroscopic controllable parameters that affect the dislocation densities the most, have also been delineated. It was found that the strength of gas convection in the Czochralski furnace has the strongest effect on the dislocation densities in the fully grown crystal. Comparison of the simulated dislocation densities on wafers, with experimentally recorded etch pit profiles on as-grown crystals was reasonable. Finally some limitations in the work are discussed and avenues for future work identified.
NASA Astrophysics Data System (ADS)
Barchuk, M.; Holý, V.; Rafaja, D.
2018-04-01
X-ray diffraction is one of the most popular experimental methods employed for determination of dislocation densities, as it can recognize both the strain fields and the local lattice rotations produced by dislocations. The main challenge of the quantitative analysis of the dislocation density is the formulation of a suitable microstructure model, which describes the dislocation arrangement and the effect of the interactions between the strain fields from neighboring dislocations reliably in order to be able to determine the dislocation densities precisely. The aim of this study is to prove the capability of X-ray diffraction and two computational methods, which are frequently used for quantification of the threading dislocation densities from X-ray diffraction measurements, in the special case of partially bunched threading dislocations. The first method is based on the analysis of the dislocation-controlled crystal mosaicity, and the other one on the analysis of diffuse X-ray scattering from threading dislocations. The complementarity of both methods is discussed. Furthermore, it is shown how the complementarity of these methods can be used to improve the results of the quantitative analysis of bunched and thus inhomogeneously distributed threading dislocations and to get a better insight into the dislocation arrangement.
Unfolding the fullerene: nanotubes, graphene and poly-elemental varieties by simulations.
Penev, Evgeni S; Artyukhov, Vasilii I; Ding, Feng; Yakobson, Boris I
2012-09-18
Recent research progress in nanostructured carbon has built upon and yet advanced far from the studies of more conventional carbon forms such as diamond, graphite, and perhaps coals. To some extent, the great attention to nano-carbons has been ignited by the discovery of the structurally least obvious, counterintuitive, small strained fullerene cages. Carbon nanotubes, discovered soon thereafter, and recently, the great interest in graphene, ignited by its extraordinary physics, are all interconnected in a blend of cross-fertilizing fields. Here we review the theoretical and computational models development in our group at Rice University, towards understanding the key structures and behaviors in the immense diversity of carbon allotropes. Our particular emphasis is on the role of certain transcending concepts (like elastic instabilities, dislocations, edges, etc.) which serve so well across the scales and for chemically various compositions. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Renormalization group study of the melting of a two-dimensional system of collapsing hard disks
NASA Astrophysics Data System (ADS)
Ryzhov, V. N.; Tareyeva, E. E.; Fomin, Yu. D.; Tsiok, E. N.; Chumakov, E. S.
2017-06-01
We consider the melting of a two-dimensional system of collapsing hard disks (a system with a hard-disk potential to which a repulsive step is added) for different values of the repulsive-step width. We calculate the system phase diagram by the method of the density functional in crystallization theory using equations of the Berezinskii-Kosterlitz-Thouless-Halperin-Nelson-Young theory to determine the lines of stability with respect to the dissociation of dislocation pairs, which corresponds to the continuous transition from the solid to the hexatic phase. We show that the crystal phase can melt via a continuous transition at low densities (the transition to the hexatic phase) with a subsequent transition from the hexatic phase to the isotropic liquid and via a first-order transition. Using the solution of renormalization group equations with the presence of singular defects (dislocations) in the system taken into account, we consider the influence of the renormalization of the elastic moduli on the form of the phase diagram.
NASA Astrophysics Data System (ADS)
Solov'ev, V. A.; Chernov, M. Yu; Baidakova, M. V.; Kirilenko, D. A.; Yagovkina, M. A.; Sitnikova, A. A.; Komissarova, T. A.; Kop'ev, P. S.; Ivanov, S. V.
2018-01-01
This paper presents a study of structural properties of InGaAs/InAlAs quantum well (QW) heterostructures with convex-graded InxAl1-xAs (x = 0.05-0.79) metamorphic buffer layers (MBLs) grown by molecular beam epitaxy on GaAs substrates. Mechanisms of elastic strain relaxation in the convex-graded MBLs were studied by the X-ray reciprocal space mapping combined with the data of spatially-resolved selected area electron diffraction implemented in a transmission electron microscope. The strain relaxation degree was approximated for the structures with different values of an In step-back. Strong contribution of the strain relaxation via lattice tilt in addition to the formation of the misfit dislocations has been observed for the convex-graded InAlAs MBL, which results in a reduced threading dislocation density in the QW region as compared to a linear-graded MBL.
NASA Astrophysics Data System (ADS)
Simon, W. K.; Akdogan, E. K.; Safari, A.
2006-07-01
Strain relaxation in (Ba0.60Sr0.40)TiO3 (BST) thin films on ⟨110⟩ orthorhombic NdGaO3 substrates is investigated by x-ray diffractometry. Pole figure analysis indicates a [010]BST∥[1¯10]NGO and [001]BST∥[001]NGO in-plane and [100]BST∥[100]NGO out-of-plane epitaxial relationship. The residual strains are relaxed at h ˜200nm, and for h >600nm, films are essentially strain free. Two independent dislocations mechanisms operate to relieve the anisotropic misfit strains along the principal directions. The critical thickness for misfit dislocation formation along [001] and [010] are 11 and 15nm, respectively. Stress analysis indicates deviation from linear elasticity for h <200. The films with 10
Melting of 2D colloidal crystals
NASA Astrophysics Data System (ADS)
Maret, G.; Eisenmann, C.; Gasser, U.; Vongruenberg, H. H.; Keim, P.; Zahn, K.
2004-11-01
We study melting of 2D crystals of super-paramagnetic colloidal particles confined by gravity to a flat air-water interface. The effective system temperature is given by the strength of the dipolar inter-particle interaction controlled by an external magnetic field B. Particle positions are obtained by video-microscopy. In vertical B-field crystals are hexagonal and we find all features of the 2-step melting scenario predicted by KTHNY-theory. In particular, quantitative agreement is found for the translational and orientational order parameters related to bound and isolated dislocations and disclinations. From particle position fluctuations wave-vector (q) dependent normal-mode spring constants are obtained in agreement with phonon band structure calculations. The elastic constants (q=0 limit) soften near melting in quantitative agreement with KTHNY. By tilting B away from vertical anisotropic 2D crystals are generated; at small tilting angles they melt through a quasi-hexatic phase, while at higher tilts a centered rectangular phase is found which melts into a 2D smectic-like phase through orientation-dependent dislocations.
Constitutive modeling of intrinsic and oxygen-contaminated silicon monocrystals in easy glide
NASA Astrophysics Data System (ADS)
Cochard, J.; Yonenaga, I.; Gouttebroze, S.; M'Hamdi, M.; Zhang, Z. L.
2010-11-01
We generalize in this work the constitutive model for silicon crystals of Alexander and Haasen. Strain-rate and temperature dependency of the mechanical behavior of intrinsic crystals are correctly accounted for into stage I of hardening. We show that the steady-state of deformation in stage I is very well reproduced in a wide range of temperature and strain rate. The case of extrinsic crystals containing high levels of dissolved oxygen is examined. The introduction of an effective density of mobile dislocations dependent on the unlocking stress created by oxygen atoms gathered at the dislocation cores is combined to an alteration of the dislocation multiplication rate, due to pinning of the dislocation line by oxygen atoms. This increases the upper yield stress with the bulk oxygen concentration in agreement with experimental observations. The fraction of effectively mobile dislocations is found to decay exponentially with the unlocking stress. Finally, the influence of oxygen migration back onto the dislocations from the bulk on the stress distribution in silicon bars is investigated.
Theory of electron-phonon-dislon interacting system—toward a quantized theory of dislocations
NASA Astrophysics Data System (ADS)
Li, Mingda; Tsurimaki, Yoichiro; Meng, Qingping; Andrejevic, Nina; Zhu, Yimei; Mahan, Gerald D.; Chen, Gang
2018-02-01
We provide a comprehensive theoretical framework to study how crystal dislocations influence the functional properties of materials, based on the idea of a quantized dislocation, namely a ‘dislon’. In contrast to previous work on dislons which focused on exotic phenomenology, here we focus on their theoretical structure and computational power. We first provide a pedagogical introduction that explains the necessity and benefits of taking the dislon approach and why the dislon Hamiltonian takes its current form. Then, we study the electron-dislocation and phonon-dislocation scattering problems using the dislon formalism. Both the effective electron and phonon theories are derived, from which the role of dislocations on electronic and phononic transport properties is computed. Compared with traditional dislocation scattering studies, which are intrinsically single-particle, low-order perturbation and classical quenched defect in nature, the dislon theory not only allows easy incorporation of quantum many-body effects such as electron correlation, electron-phonon interaction, and higher-order scattering events, but also allows proper consideration of the dislocation’s long-range strain field and dynamic aspects on equal footing for arbitrary types of straight-line dislocations. This means that instead of developing individual models for specific dislocation scattering problems, the dislon theory allows for the calculation of electronic structure and electrical transport, thermal transport, optical and superconducting properties, etc, under one unified theory. Furthermore, the dislon theory has another advantage over empirical models in that it requires no fitting parameters. The dislon theory could serve as a major computational tool to understand the role of dislocations on multiple materials’ functional properties at an unprecedented level of clarity, and may have wide applications in dislocated energy materials.
NASA Astrophysics Data System (ADS)
Gao, B.; Nakano, S.; Harada, H.; Miyamura, Y.; Kakimoto, K.
2017-09-01
We used an advanced 3D model to study the effect of crystal orientation on the dislocation multiplication in single-crystal silicon under accurate control of the cooling history of temperature. The incorporation of the anisotropy effect of the crystal lattice into the model has been explained in detail, and an algorithm for accurate control of the temperature in the furnace has also been presented. This solver can dynamically track the history of dislocation generation for different orientations during thermal processing of single-crystal silicon. Four orientations, [001], [110], [111], and [112], have been examined, and the comparison of dislocation distributions has been provided.
NASA Astrophysics Data System (ADS)
Tran, H.-S.; Tummala, H.; Duchene, L.; Pardoen, T.; Fivel, M.; Habraken, A. M.
2017-10-01
The interaction of a pure screw dislocation with a Coherent Twin Boundary Σ3 in copper was studied using the Quasicontinuum method. Coherent Twin Boundary behaves as a strong barrier to dislocation glide and prohibits slip transmission across the boundary. Dislocation pileup modifies the stress field at its intersection with the Grain Boundary (GB). A methodology to estimate the strength of the barrier for a dislocation to slip across CTB is proposed. A screw dislocation approaching the boundary from one side either propagates into the adjacent twin grain by cutting through the twin boundary or is stopped and increases the dislocation pileup amplitude at the GB. Quantitative estimation of the critical stress for transmission was performed using the virial stress computed by Quasicontinuum method. The transmission mechanism and critical stress are in line with the literature. Such information can be used as input for dislocation dynamic simulations for a better modeling of grain boundaries.
Free energy change of a dislocation due to a Cottrell atmosphere
Sills, R. B.; Cai, W.
2018-03-07
The free energy reduction of a dislocation due to a Cottrell atmosphere of solutes is computed using a continuum model. In this work, we show that the free energy change is composed of near-core and far-field components. The far-field component can be computed analytically using the linearized theory of solid solutions. Near the core the linearized theory is inaccurate, and the near-core component must be computed numerically. The influence of interactions between solutes in neighbouring lattice sites is also examined using the continuum model. We show that this model is able to reproduce atomistic calculations of the nickel–hydrogen system, predictingmore » hydride formation on dislocations. The formation of these hydrides leads to dramatic reductions in the free energy. Lastly, the influence of the free energy change on a dislocation’s line tension is examined by computing the equilibrium shape of a dislocation shear loop and the activation stress for a Frank–Read source using discrete dislocation dynamics.« less
Free energy change of a dislocation due to a Cottrell atmosphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sills, R. B.; Cai, W.
The free energy reduction of a dislocation due to a Cottrell atmosphere of solutes is computed using a continuum model. In this work, we show that the free energy change is composed of near-core and far-field components. The far-field component can be computed analytically using the linearized theory of solid solutions. Near the core the linearized theory is inaccurate, and the near-core component must be computed numerically. The influence of interactions between solutes in neighbouring lattice sites is also examined using the continuum model. We show that this model is able to reproduce atomistic calculations of the nickel–hydrogen system, predictingmore » hydride formation on dislocations. The formation of these hydrides leads to dramatic reductions in the free energy. Lastly, the influence of the free energy change on a dislocation’s line tension is examined by computing the equilibrium shape of a dislocation shear loop and the activation stress for a Frank–Read source using discrete dislocation dynamics.« less
M(2)C Carbide Precipitation in Martensitic Cobalt - Steels.
NASA Astrophysics Data System (ADS)
Montgomery, Jonathan Scott
1990-01-01
M_2C carbide precipitation was investigated in martensitic Co-Ni steels, including the commercial AF1410 steel and a series of higher-strength model alloys. Results of TEM (from both thin foils and extraction replicas) and X-ray diffraction were combined with results of collaborative SANS and APFIM studies to determine phase fractions, compositions, and lattice parameters throughout precipitation, including estimation of carbide initial critical nucleus properties. The composition dependence of the M_2C lattice parameters was modelled to predict the composition-dependent transformation eigen-strains for coherent precipitation; this was input into collaborative numerical calculations of both the coherent carbide elastic self energy and the dislocation interaction energy during heterogeneous precipitation. The observed overall precipitation behavior is consistent with theoretically-predicted behavior at high supersaturations where nucleation and coarsening compete such that the average particle size remains close to the critical size as supersaturation drops. However, the coarsening in this system follows a t^{1over 5} rate law consistent with heterogeneous precipitation on dislocations. Initial precipitation appears to be coherent, the carbides tending toward a rod shape with major axis oriented along the minimum principal strain direction. At initial nucleation, particles are Fe-rich and C-deficient, diminishing the transformation eigenstrains to a near invariant-line strain condition. The observed relation between carbide volume fraction and the shape -dependent capillarity parameter partialS/ partialV implies a coherency loss transition in AF1410 reached at 8hr tempering at 510 ^circC. The precipitation in AF1410 at 510^ circC exhibits a "renucleation" phenomenon in which a second stage of nucleation occurs beyond the precipitation half-completion time (1-2hrs). It appears that the carbide composition during precipitation follows a trajectory of increasing interfacial energy and nearly constant volume driving force. This may contribute to the renucleation phenomenon, but the computed barrier for heterogeneous nucleation on the dislocations is at this point an order of magnitude too high. An alternative possibility is that renucleation may represent autocatalytic heterogeneous nucleation in the stress field of coherent carbides, once they have grown to sufficient size to act as potent nucleation sites.
Anomalous elastic response of silicon to uniaxial shock compression on nanosecond time scales.
Loveridge-Smith, A; Allen, A; Belak, J; Boehly, T; Hauer, A; Holian, B; Kalantar, D; Kyrala, G; Lee, R W; Lomdahl, P; Meyers, M A; Paisley, D; Pollaine, S; Remington, B; Swift, D C; Weber, S; Wark, J S
2001-03-12
We have used x-ray diffraction with subnanosecond temporal resolution to measure the lattice parameters of orthogonal planes in shock compressed single crystals of silicon (Si) and copper (Cu). Despite uniaxial compression along the (400) direction of Si reducing the lattice spacing by nearly 11%, no observable changes occur in planes with normals orthogonal to the shock propagation direction. In contrast, shocked Cu shows prompt hydrostaticlike compression. These results are consistent with simple estimates of plastic strain rates based on dislocation velocity data.
Burgers vector content of an interfacial ledge
NASA Astrophysics Data System (ADS)
Bonnet, R.; Loubradou, M.; Pénisson, J. M.
1992-07-01
A new way of investigating the elastic field around a ledge of a faceted interface is proposed for crystalline materials. The length and/or angular misfits along two adjacent facets are accommodated by slightly deforming the atomic structural units with an appropriate distribution of translation dislocations. The Burgers vector content of the ledge is not defined as usual from a circuit crossing the interface twice, a method which proves to be sometimes misleading. An example treats, at the atomic scale, an unusual ledge of the interface TiAl/Ti3Al.
NASA Astrophysics Data System (ADS)
Kundin, Julia; Ajmal Choudhary, Muhammad
2017-07-01
In this article, we present the recent advances in the development of the anisotropic phase-field crystal (APFC) model. These advances are important in basic researches for multiferroic and thermoelectric materials with anisotropic crystal lattices and in thin-film applications. We start by providing a general description of the model derived in our previous studies based on the crystal symmetry and the microscopic dynamical density functional theory for anisotropic interactions and show that there exist only two possible degrees of freedom for the anisotropic lattices which are described by two independent parameters. New findings concerning the applications of the APFC model for the estimation of the elastic modules of anisotropic systems including sheared and stretched lattices as well as for the investigation of the heterogeneous thin film growth are described. The simulation results demonstrate the strong dependency of the misfit dislocation formation during the film growth on the anisotropy and reveal the asymmetric behavior in the cases of positive and negative misfits. We also present the development of the amplitude representation for the full APFC model of two orientation variants and show the relationship between the wave vectors and the base angles of the anisotropic lattices.
Mechanical responses of a-axis GaN nanowires under axial loads
NASA Astrophysics Data System (ADS)
Wang, R. J.; Wang, C. Y.; Feng, Y. T.; Tang, Chun
2018-03-01
Gallium nitride (GaN) nanowires (NWs) hold technological significance as functional components in emergent nano-piezotronics. However, the examination of their mechanical responses, especially the mechanistic understanding of behavior beyond elasticity (at failure) remains limited due to the constraints of in situ experimentation. We therefore performed simulations of the molecular dynamics (MD) of the mechanical behavior of [1\\bar{2}10]-oriented GaN NWs subjected to tension or compression loading until failure. The mechanical properties and critical deformation processes are characterized in relation to NW sizes and loading conditions. Detailed examinations revealed that the failure mechanisms are size-dependent and controlled by the dislocation mobility on shuffle-set pyramidal planes. The size dependence of the elastic behavior is also examined in terms of the surface structure determined modification of Young’s modulus. In addition, a comparison with c-axis NWs is made to show how size-effect trends vary with the growth orientation of NWs.
Spall behaviour of single crystal aluminium at three principal orientations
NASA Astrophysics Data System (ADS)
Owen, G. D.; Chapman, D. J.; Whiteman, G.; Stirk, S. M.; Millett, J. C. F.; Johnson, S.
2017-10-01
A series of plate impact experiments have been conducted to study the spall strength of the three principal crystallographic orientations of single crystal aluminium ([100], [110] and, [111]) and ultra-pure polycrystalline aluminium. The samples have been shock loaded at two impact stresses (4 GPa and 10 GPa). Significant differences have been observed in the elastic behaviour, the pullback velocities, and the general shape of the wave profiles, which can be accounted for by considerations of the microscale homogeneity, the dislocation density, and the absence of grain boundaries in the single crystal materials. The data have shown that there is a consistent order of spall strength measured for the four sample materials. The [111] orientation has the largest spall strength and elastic limit, followed closely by [110], [100], and then the polycrystalline material. This order is consistent with both quasi-static data and geometrical consideration of Schmid factors.
Dynamic plasticity and failure of high-purity alumina under shock loading.
Chen, M W; McCauley, J W; Dandekar, D P; Bourne, N K
2006-08-01
Most high-performance ceramics subjected to shock loading can withstand high failure strength and exhibit significant inelastic strain that cannot be achieved under conventional loading conditions. The transition point from elastic to inelastic response prior to failure during shock loading, known as the Hugoniot elastic limit (HEL), has been widely used as an important parameter in the characterization of the dynamic mechanical properties of ceramics. Nevertheless, the underlying micromechanisms that control HEL have been debated for many years. Here we show high-resolution electron microscopy of high-purity alumina, soft-recovered from shock-loading experiments. The change of deformation behaviour from dislocation activity in the vicinity of grain boundaries to deformation twinning has been observed as the impact pressures increase from below, to above HEL. The evolution of deformation modes leads to the conversion of material failure from an intergranular mode to transgranular cleavage, in which twinning interfaces serve as the preferred cleavage planes.
Interaction between a circular inclusion and an arbitrarily oriented crack
NASA Technical Reports Server (NTRS)
Erdogan, F.; Gupta, G. D.; Ratwani, M.
1975-01-01
The plane interaction problem for a circular elastic inclusion embedded in an elastic matrix which contains an arbitrarily oriented crack is considered. Using the existing solutions for the edge dislocations as Green's functions, first the general problem of a through crack in the form of an arbitrary smooth arc located in the matrix in the vicinity of the inclusion is formulated. The integral equations for the line crack are then obtained as a system of singular integral equations with simple Cauchy kernels. The singular behavior of the stresses around the crack tips is examined and the expressions for the stress-intensity factors representing the strength of the stress singularities are obtained in terms of the asymptotic values of the density functions of the integral equations. The problem is solved for various typical crack orientations and the corresponding stress-intensity factors are given.
Effect of elastic excitations on the surface structure of hadfield steel under friction
NASA Astrophysics Data System (ADS)
Kolubaev, A. V.; Ivanov, Yu. F.; Sizova, O. V.; Kolubaev, E. A.; Aleshina, E. A.; Gromov, V. E.
2008-02-01
The structure of the Hadfield steel (H13) surface layer forming under dry friction is examined. The deformation of the material under the friction surface is studied at a low slip velocity and a low pressure (much smaller than the yields stress of H13 steel). The phase composition and defect substructure on the friction surface are studied using scanning, optical, and diffraction electron microscopy methods. It is shown that a thin highly deformed nanocrystalline layer arises near the friction surface that transforms into a polycrystalline layer containing deformation twins and dislocations. The nanocrystalline structure and the presence of oxides in the surface layer and friction zone indicate a high temperature and high plastic strains responsible for the formation of the layer. It is suggested that the deformation of the material observed far from the surface is due to elastic wave generation at friction.
Binary dislocation junction formation and strength in hexagonal close-packed crystals
Wu, Chi -Chin; Aubry, Sylvie; Arsenlis, Athanasios; ...
2015-12-17
This work examines binary dislocation interactions, junction formation and junction strengths in hexagonal close-packed ( hcp ) crystals. Through a line-tension model and dislocation dynamics (DD) simulations, the interaction and dissociation of different sets of binary junctions are investigated involving one dislocation on the (011¯0) prismatic plane and a second dislocation on one of the following planes: (0001) basal, (11¯00) prismatic, (11¯01) primary pyramidal, or (2¯112) secondary pyramidal. Varying pairs of Burgers vectors are chosen from among the common types the basal type < a > 1/3 < 112¯0 >, prismatic type < c > <0001>, and pyramidal type
Influence of dislocation density on internal quantum efficiency of GaN-based semiconductors
NASA Astrophysics Data System (ADS)
Yu, Jiadong; Hao, Zhibiao; Li, Linsen; Wang, Lai; Luo, Yi; Wang, Jian; Sun, Changzheng; Han, Yanjun; Xiong, Bing; Li, Hongtao
2017-03-01
By considering the effects of stress fields coming from lattice distortion as well as charge fields coming from line charges at edge dislocation cores on radiative recombination of exciton, a model of carriers' radiative and non-radiative recombination has been established in GaN-based semiconductors with certain dislocation density. Using vector average of the stress fields and the charge fields, the relationship between dislocation density and the internal quantum efficiency (IQE) is deduced. Combined with related experimental results, this relationship is fitted well to the trend of IQEs of bulk GaN changing with screw and edge dislocation density, meanwhile its simplified form is fitted well to the IQEs of AlGaN multiple quantum well LEDs with varied threading dislocation densities but the same light emission wavelength. It is believed that this model, suitable for different epitaxy platforms such as MOCVD and MBE, can be used to predict to what extent the luminous efficiency of GaN-based semiconductors can still maintain when the dislocation density increases, so as to provide a reasonable rule of thumb for optimizing the epitaxial growth of GaN-based devices.
Size-dependent adhesion energy of shape-selected Pd and Pt nanoparticles
NASA Astrophysics Data System (ADS)
Ahmadi, M.; Behafarid, F.; Cuenya, B. Roldan
2016-06-01
Thermodynamically stable shape-selected Pt and Pd nanoparticles (NPs) were synthesized via inverse micelle encapsulation and a subsequent thermal treatment in vacuum above 1000 °C. The majority of the Pd NPs imaged via scanning tunneling microscopy (STM) had a truncated octahedron shape with (111) top and interfacial facets, while the Pt NPs were found to adopt a variety of shapes. For NPs of identical shape for both material systems, the NP-support adhesion energy calculated based on STM data was found to be size-dependent, with large NPs (e.g. ~6 nm) having lower adhesion energies than smaller NPs (e.g. ~1 nm). This phenomenon was rationalized based on support-induced strain that for larger NPs favors the formation of lattice dislocations at the interface rather than a lattice distortion that may propagate through the smaller NPs. In addition, identically prepared Pt NPs of the same shape were found to display a lower adhesion energy compared to Pd NPs. While in both cases, a transition from a lattice distortion to interface dislocations is expected to occur with increasing NP size, the higher elastic energy in Pt leads to a lower transition size, which in turn lowers the adhesion energy of Pt NPs compared to Pd.Thermodynamically stable shape-selected Pt and Pd nanoparticles (NPs) were synthesized via inverse micelle encapsulation and a subsequent thermal treatment in vacuum above 1000 °C. The majority of the Pd NPs imaged via scanning tunneling microscopy (STM) had a truncated octahedron shape with (111) top and interfacial facets, while the Pt NPs were found to adopt a variety of shapes. For NPs of identical shape for both material systems, the NP-support adhesion energy calculated based on STM data was found to be size-dependent, with large NPs (e.g. ~6 nm) having lower adhesion energies than smaller NPs (e.g. ~1 nm). This phenomenon was rationalized based on support-induced strain that for larger NPs favors the formation of lattice dislocations at the interface rather than a lattice distortion that may propagate through the smaller NPs. In addition, identically prepared Pt NPs of the same shape were found to display a lower adhesion energy compared to Pd NPs. While in both cases, a transition from a lattice distortion to interface dislocations is expected to occur with increasing NP size, the higher elastic energy in Pt leads to a lower transition size, which in turn lowers the adhesion energy of Pt NPs compared to Pd. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02166b
Microstructural comparison of the kinematics of discrete and continuum dislocations models
NASA Astrophysics Data System (ADS)
Sandfeld, Stefan; Po, Giacomo
2015-12-01
The Continuum Dislocation Dynamics (CDD) theory and the Discrete Dislocation Dynamics (DDD) method are compared based on concise mathematical formulations of the coarse graining of discrete data. A numerical tool for converting from a discrete to a continuum representation of a given dislocation configuration is developed, which allows to directly compare both simulation approaches based on continuum quantities (e.g. scalar density, geometrically necessary densities, mean curvature). Investigating the evolution of selected dislocation configurations within analytically given velocity fields for both DDD and CDD reveals that CDD contains a surprising number of important microstructural details.
Elastic and Mechanical Properties of the MAX Phases
NASA Astrophysics Data System (ADS)
Barsoum, Michel W.; Radovic, Miladin
2011-08-01
The more than 60 ternary carbides and nitrides, with the general formula Mn+1AXn—where n = 1, 2, or 3; M is an early transition metal; A is an A-group element (a subset of groups 13-16); and X is C and/or N—represent a new class of layered solids, where Mn+1Xn layers are interleaved with pure A-group element layers. The growing interest in the Mn+1AXn phases lies in their unusual, and sometimes unique, set of properties that can be traced back to their layered nature and the fact that basal dislocations multiply and are mobile at room temperature. Because of their chemical and structural similarities, the MAX phases and their corresponding MX phases share many physical and chemical properties. In this paper we review our current understanding of the elastic and mechanical properties of bulk MAX phases where they differ significantly from their MX counterparts. Elastically the MAX phases are in general quite stiff and elastically isotropic. The MAX phases are relatively soft (2-8 GPa), are most readily machinable, and are damage tolerant. Some of them are also lightweight and resistant to thermal shock, oxidation, fatigue, and creep. In addition, they behave as nonlinear elastic solids, dissipating 25% of the mechanical energy during compressive cycling loading of up to 1 GPa at room temperature. At higher temperatures, they undergo a brittle-to-plastic transition, and their mechanical behavior is a strong function of deformation rate.
Internal friction and dislocation collective pinning in disordered quenched solid solutions
NASA Astrophysics Data System (ADS)
D'Anna, G.; Benoit, W.; Vinokur, V. M.
1997-12-01
We introduce the collective pinning of dislocations in disordered quenched solid solutions and calculate the macroscopic mechanical response to a small dc or ac applied stress. This work is a generalization of the Granato-Lücke string model, able to describe self-consistently short and long range dislocation motion. Under dc applied stress the long distance dislocation creep has at the microscopic level avalanche features, which result in a macroscopic nonlinear "glassy" velocity-stress characteristic. Under ac conditions the model predicts, in addition to the anelastic internal friction relaxation in the high frequency regime, a linear internal friction background which remains amplitude-independent down to a crossover frequency to a strongly nonlinear internal friction regime.
NASA Astrophysics Data System (ADS)
Li, Zebo; Trinkle, Dallas R.
2017-04-01
We use a continuum method informed by transport coefficients computed using self-consistent mean field theory to model vacancy-mediated diffusion of substitutional Si solutes in FCC Ni near an a/2 [1 1 ¯0 ] (111 ) edge dislocation. We perform two sequential simulations: first under equilibrium boundary conditions and then under irradiation. The strain field around the dislocation induces heterogeneity and anisotropy in the defect transport properties and determines the steady-state vacancy and Si distributions. At equilibrium both vacancies and Si solutes diffuse to form Cottrell atmospheres with vacancies accumulating in the compressive region above the dislocation core while Si segregates to the tensile region below the core. Irradiation raises the bulk vacancy concentration, driving vacancies to flow into the dislocation core. The out-of-equilibrium vacancy fluxes drag Si atoms towards the core, causing segregation to the compressive region, despite Si being an oversized solute in Ni.
Understanding dislocation mechanics at the mesoscale using phase field dislocation dynamics
Hunter, A.
2016-01-01
In this paper, we discuss the formulation, recent developments and findings obtained from a mesoscale mechanics technique called phase field dislocation dynamics (PFDD). We begin by presenting recent advancements made in modelling face-centred cubic materials, such as integration with atomic-scale simulations to account for partial dislocations. We discuss calculations that help in understanding grain size effects on transitions from full to partial dislocation-mediated slip behaviour and deformation twinning. Finally, we present recent extensions of the PFDD framework to alternative crystal structures, such as body-centred cubic metals, and two-phase materials, including free surfaces, voids and bi-metallic crystals. With several examples we demonstrate that the PFDD model is a powerful and versatile method that can bridge the length and time scales between atomistic and continuum-scale methods, providing a much needed understanding of deformation mechanisms in the mesoscale regime. PMID:27002063
Dislocation dynamics in non-convex domains using finite elements with embedded discontinuities
NASA Astrophysics Data System (ADS)
Romero, Ignacio; Segurado, Javier; LLorca, Javier
2008-04-01
The standard strategy developed by Van der Giessen and Needleman (1995 Modelling Simul. Mater. Sci. Eng. 3 689) to simulate dislocation dynamics in two-dimensional finite domains was modified to account for the effect of dislocations leaving the crystal through a free surface in the case of arbitrary non-convex domains. The new approach incorporates the displacement jumps across the slip segments of the dislocations that have exited the crystal within the finite element analysis carried out to compute the image stresses on the dislocations due to the finite boundaries. This is done in a simple computationally efficient way by embedding the discontinuities in the finite element solution, a strategy often used in the numerical simulation of crack propagation in solids. Two academic examples are presented to validate and demonstrate the extended model and its implementation within a finite element program is detailed in the appendix.
NASA Astrophysics Data System (ADS)
Taccoen, Nicolas; Lequeux, François; Gunes, Deniz Z.; Baroud, Charles N.
2016-01-01
Bubbles are dynamic objects that grow and rise or shrink and disappear, often on the scale of seconds. This conflicts with their uses in foams where they serve to modify the properties of the material in which they are embedded. Coating the bubble surface with solid particles has been demonstrated to strongly enhance the foam stability, although the mechanisms for such stabilization remain mysterious. In this paper, we reduce the problem of foam stability to the study of the behavior of a single spherical bubble coated with a monolayer of solid particles. The behavior of this armored bubble is monitored while the ambient pressure around it is varied, in order to simulate the dissolution stress resulting from the surrounding foam. We find that above a critical stress, localized dislocations appear on the armor and lead to a global loss of the mechanical stability. Once these dislocations appear, the armor is unable to prevent the dissolution of the gas into the surrounding liquid, which translates into a continued reduction of the bubble volume, even for a fixed overpressure. The observed route to the armor failure therefore begins from localized dislocations that lead to large-scale deformations of the shell until the bubble completely dissolves. The critical value of the ambient pressure that leads to the failure depends on the bubble radius, with a scaling of Δ Pcollapse∝R-1 , but does not depend on the particle diameter. These results disagree with the generally used elastic models to describe particle-covered interfaces. Instead, the experimental measurements are accounted for by an original theoretical description that equilibrates the energy gained from the gas dissolution with the capillary energy cost of displacing the individual particles. The model recovers the short-wavelength instability, the scaling of the collapse pressure with bubble radius, and the insensitivity to particle diameter. Finally, we use this new microscopic understanding to predict the aging of particle-stabilized foams, by applying classical Ostwald ripening models. We find that the smallest armored bubbles should fail, as the dissolution stress on these bubbles increases more rapidly than the armor strength. Both the experimental and theoretical results can readily be generalized to more complex particle interactions and shell structures.
NASA Astrophysics Data System (ADS)
Huang, Minsheng; Li, Zhenhuan
2013-12-01
To model the deformation of single crystal nickel based superalloys (SCNBS) with low stacking fault energy (SFE), three-dimensional discrete dislocation dynamics (3D-DDD) is extended by incorporating dislocation dissociation mechanism. The present 3D-DDD simulations show that, consistent with the existing TEM observation, the leading partial can enter the matrix channel efficiently while the trailing partial can hardly glide into it when the dislocation dissociation is taken into account. To determine whether the dislocation dissociation can occur or not, a critical percolation stress (CPS) based criterion is suggested. According to this CPS criterion, for SCNBS there exists a critical matrix channel width. When the channel width is lower than this critical value, the dislocation tends to dissociate into an extended configuration and vice versa. To clarify the influence of dislocation dissociation on CPS, the classical Orowan formula is improved by incorporating the SFE. Moreover, the present 3D-DDD simulations also show that the yielding stress of SCNBSs with low SFE may be overestimated up to 30% if the dislocation dissociation is ignored. With dislocation dissociation being considered, the size effect due to the width of γ matrix channel and the length of γ‧ precipitates on the stress-strain responses of SCNBS can be enhanced remarkably. In addition, due to the strong constraint effect by the two-phase microstructure in SCNBS, the configuration of formed junctions is quite different from that in single phase crystals such as Cu. The present results not only provide clear understanding of the two-phase microstructure levelled microplastic mechanisms in SCNBSs with low SFE, but also help to develop new continuum-levelled constitutive laws for SCNBSs.
Evolution of Radiation Induced Defects in SiC: A Multiscale Simulation Approach
NASA Astrophysics Data System (ADS)
Jiang, Hao
Because of various excellent properties, SiC has been proposed for many applications in nuclear reactors including cladding layers in fuel rod, fission products container in TRISO fuel, and first wall/blanket in magnetic controlled fusion reactors. Upon exposure to high energy radiation environments, point defects and defect clusters are generated in materials in amounts significantly exceeding their equilibrium concentrations. The accumulation of defects can lead to undesired consequences such as crystalline-to-amorphous transformation1, swelling, and embrittlement, and these phenomena can adversely affect the lifetime of SiC based components in nuclear reactors. It is of great importance to understand the accumulation process of these defects in order to estimate change in properties of this material and to design components with superior ability to withstand radiation damages. Defect clusters are widely in SiC irradiated at the operation temperatures of various reactors. These clusters are believed to cause more than half of the overall swelling of irradiated SiC and can potentially lead to lowered thermal conductivity and mechanical strength. It is critical to understand the formation and growth of these clusters. Diffusion of these clusters is one importance piece to determine the growth rate of clusters; however it is unclear so far due to the challenges in simulating rare events. Using a combination of kinetic Activation Relaxation Technique with empirical potential and ab initio based climbing image nudged elastic band method, I performed an extensive search of the migration paths of the most stable carbon tri-interstitial cluster in SiC. This research reveals paths with the lowest energy barriers to migration, rotation, and dissociation of the most stable cluster. Based on these energy barriers, I concluded defect clusters are thermally immobile at temperatures lower than 1500 K and can dissociate into smaller clusters and single interstitials at temperatures beyond that. Even though clusters cannot diffuse by thermal vibrations, we found they can migrate at room temperature under the influence of electron radiation. This is the first direct observation of radiation-induced diffusion of defect clusters in bulk materials. We show that the underlying mechanism of this athermal diffusion is elastic collision between incoming electrons and cluster atoms. Our findings suggest that defect clusters may be mobile under certain irradiation conditions, changing current understanding of cluster annealing process in irradiated SiC. With the knowledge of cluster diffusion in SiC demonstrated in this thesis, we now become able to predict cluster evolution in SiC with good agreement with experimental measurements. This ability can enable us to estimate changes in many properties of irradiated SiC relevant for its applications in reactors. Internal interfaces such as grain boundaries can behave as sinks to radiation induced defects. The ability of GBs to absorb, transport, and annihilate radiation-induced defects (sink strength) is important to understand radiation response of polycrystalline materials and to better design interfaces for improved resistance to radiation damage. Nowadays, it is established GBs' sink strength is not a static property but rather evolves with many factors, including radiation environments, grain size, and GB microstructure. In this thesis, I investigated the response of small-angle tilt and twist GBs to point defects fluxes in SiC. First of all, I found the pipe diffusion of interstitials in tilt GBs is slower than bulk diffusion. This is because the increased interatomic distance at dislocation cores raises the migration barrier of interstitial dumbbells. Furthermore, I show that both the annihilation of interstitials at jogs and jog nucleation from clusters are diffusion-controlled and can occur under off-stoichiometric interstitial fluxes. Finally, a dislocation line model is developed to predict the role of tilt GBs in annihilating radiation damage. The model predicts the role of tilt GBs in annihilating defects depends on the rate of defects segregation to and diffusion along tilt GBs. Tilt GBs mainly serve as diffusion channel for defects to reach other sinks when defect diffusivity is high at boundaries. When defect diffusivity is low, most of the defects segregated to tilt GBs are annihilated by dislocation climb. Up-to-date, the response of twist GBs under irradiation has been rarely reported in literature and is still unclear. It is important to develop atom scale insight on this question in order to predict twist GBs' sink strength for a better understanding of radiation response of polycrystalline materials. By using a combination of molecular dynamics and grand canonical Monte Carlo, here I demonstrate the defect kinetics in {001} and {111} twist GBs and the microstructural evolution of these GBs under defect fluxes in SiC. I found due to the deep potential well for interstitials at dislocation intersections within the interface, the mobility of defects on dislocation grid is retard and this leads to defect accumulation at GBs for many cases. Furthermore, I conclude both types of twist GBs have to form mixed dislocations with edge component in order to absorb accumulated interstitials at the interface. The formation of mixed dislocation is either by interstitial loop nucleation or by dislocation reactions at the interface. The continuous formation and climb of these mixed dislocations make twist GBs unsaturatable sinks to radiation induced defects.
Ultrasonic Study of Dislocation Dynamics in Lithium -
NASA Astrophysics Data System (ADS)
Han, Myeong-Deok
1987-09-01
Experimental studies of dislocation dynamics in LiF single crystals, using ultrasonic techniques combined with dynamic loading, were performed to investigate the time evolution of the plastic deformation process under a short stress pulse at room temperature, and the temperature dependence of the dislocation damping mechanism in the temperature range 25 - 300(DEGREES)K. From the former, the time dependence of the ultrasonic attenuation was understood as resulting from dislocation multiplication followed by the evolution of mobile dislocations to immobile ones under large stress. From the latter, the temperature dependence of the ultrasonic attenuation was interpreted as due to the motion of the dislocation loops overcoming the periodic Peierls potential barrier in a manner analogous to the motion of a thermalized sine-Gordon chain under a small stress. The Peierls stress obtained from the experimental results by application of Seeger's relaxation model with exponential dislocation length distribution was 4.26MPa, which is consistent with the lowest stress for the linear relation between the dislocation velocity and stress observed by Flinn and Tinder.
Uncovering the inertia of dislocation motion and negative mechanical response in crystals.
Tang, Yizhe
2018-01-09
Dislocations are linear defects in crystals and their motion controls crystals' mechanical behavior. The dissipative nature of dislocation propagation is generally accepted although the specific mechanisms are still not fully understood. The inertia, which is undoubtedly the nature of motion for particles with mass, seems much less convincing for configuration propagation. We utilize atomistic simulations in conditions that minimize dissipative effects to enable uncovering of the hidden nature of dislocation motion, in three typical model metals Mg, Cu and Ta. We find that, with less/no dissipation, dislocation motion is under-damped and explicitly inertial at both low and high velocities. The inertia of dislocation motion is intrinsic, and more fundamental than the dissipative nature. The inertia originates from the kinetic energy imparted from strain energy and stored in the moving core. Peculiar negative mechanical response associated with the inertia is also discovered. These findings shed light on the fundamental nature of dislocation motion, reveal the underlying physics, and provide a new physical explanation for phenomena relevant to high-velocity dislocations.
Advances in Discrete Dislocation Dynamics Modeling of Size-Affected Plasticity
NASA Astrophysics Data System (ADS)
El-Awady, Jaafar A.; Fan, Haidong; Hussein, Ahmed M.
In dislocation-mediated plasticity of crystalline materials, discrete dislocation dynamics (DDD) methods have been widely used to predict the plastic deformation in a number of technologically important problems. These simulations have led to significant improvement in the understanding of the different mechanism that controls the mechanical properties of crystalline materials, which can greatly accelerate the future development of materials with superior properties. This chapter provides an overview of different practical applications of both two-dimensional and three-dimensional DDD simulations in the field of size-affected dislocation-mediated plasticity. The chapter is divided into two major tracks. First, DDD simulations focusing on aspects of modeling size-dependent plasticity in single crystals in uniaxial micro-compression/tension, microtorsion, microbending, and nanoindentation are discussed. Special attention is directed towards the role of cross-slip and dislocation nucleation on the overall response. Second, DDD simulations focusing on the role of interfaces, including grain and twin boundaries, on dislocation-mediated plasticity are discussed. Finally, a number of challenges that are withholding DDD simulations from reaching their full potential are discussed.
2006-07-01
dislocation-loop expansion . The new model was used to simulate the thermally reversible flow behaviour for C-S type two-step deformation, and the results are...implemented into the finite element software ABAQUS through a User MATerial subroutine (UMAT). A tangent modulus method [48] was used for the time...locking under a dislocation loop- expansion configuration. This approach was motivated by modern understanding of dislocation mechanisms for Ni3Al
Orientation influence on grain size-effects in ultrafine-grained magnesium
Fan, Haidong; Aubry, Sylvie; Arsenlis, A.; ...
2014-11-08
The mechanical behavior of ultrafine-grained magnesium was studied by discrete dislocation dynamics (DDD) simulations. Our results show basal slip yields a strong size effect, while prismatic and pyramidal slips produce a weak one. We developed a new size-strength model that considers dislocation transmission across grain boundaries. Good agreement between this model, current DDD simulations and previous experiments is observed. These results reveal that the grain size effect depends on 3 factors: Peierls stress, dislocation source strength and grain boundary strength.
Nanoscale size dependence parameters on lattice thermal conductivity of Wurtzite GaN nanowires
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mamand, S.M., E-mail: soran.mamand@univsul.net; Omar, M.S.; Muhammad, A.J.
2012-05-15
Graphical abstract: Temperature dependence of calculated lattice thermal conductivity of Wurtzite GaN nanowires. Highlights: Black-Right-Pointing-Pointer A modified Callaway model is used to calculate lattice thermal conductivity of Wurtzite GaN nanowires. Black-Right-Pointing-Pointer A direct method is used to calculate phonon group velocity for these nanowires. Black-Right-Pointing-Pointer 3-Gruneisen parameter, surface roughness, and dislocations are successfully investigated. Black-Right-Pointing-Pointer Dislocation densities are decreases with the decrease of wires diameter. -- Abstract: A detailed calculation of lattice thermal conductivity of freestanding Wurtzite GaN nanowires with diameter ranging from 97 to 160 nm in the temperature range 2-300 K, was performed using a modified Callaway model.more » Both longitudinal and transverse modes are taken into account explicitly in the model. A method is used to calculate the Debye and phonon group velocities for different nanowire diameters from their related melting points. Effect of Gruneisen parameter, surface roughness, and dislocations as structure dependent parameters are successfully used to correlate the calculated values of lattice thermal conductivity to that of the experimentally measured curves. It was observed that Gruneisen parameter will decrease with decreasing nanowire diameters. Scattering of phonons is assumed to be by nanowire boundaries, imperfections, dislocations, electrons, and other phonons via both normal and Umklapp processes. Phonon confinement and size effects as well as the role of dislocation in limiting thermal conductivity are investigated. At high temperatures and for dislocation densities greater than 10{sup 14} m{sup -2} the lattice thermal conductivity would be limited by dislocation density, but for dislocation densities less than 10{sup 14} m{sup -2}, lattice thermal conductivity would be independent of that.« less
Three-dimensional lattice matching of epitaxially embedded nanoparticles
NASA Astrophysics Data System (ADS)
May, Brelon J.; Anderson, Peter M.; Myers, Roberto C.
2017-02-01
For a given degree of in-plane lattice mismatch between a two-dimensional (2D) epitaxial layer and a substrate (ɛIP*), there is a critical thickness above which interfacial defects form to relax the elastic strain energy. Here, we extend the 2D lattice-matching conditions to three-dimensions in order to predict the critical size beyond which epitaxially encased nanoparticles, characterized by both ɛIP* and out-of-plane lattice mismatch (ɛOP*), relax by dislocation formation. The critical particle length (Lc) at which defect formation proceeds is determined by balancing the reduction in elastic energy associated with dislocation introduction with the corresponding increase in defect energy. Our results, which use a modified Eshelby inclusion technique for an embedded, arbitrarily-faceted nanoparticle, provide new insight to the nanoepitaxy of low dimensional structures, especially quantum dots and nanoprecipitates. By engineering ɛIP* and ɛOP* , the predicted Lc for nanoparticles can be increased to well beyond the case of encapsulation in a homogenous matrix. For the case of truncated pyramidal shaped InAs, Lc 10.8 nm when fully embedded in GaAs (ɛIP* = ɛOP* = - 0.072); 16.4 nm when the particle is grown on GaAs, but capped with InSb (ɛIP* = - 0.072 and ɛOP* =+0.065); and a maximum of 18.4 nm if capped with an alloy corresponding to ɛOP* =+0.037. The effect, which we term "3D Poisson-stabilization" provides a means to increase the epitaxial strain tolerance in epitaxial heterostructures by tailoring ɛOP*.
Continuum elastic theory for dynamics of surfaces and interfaces
NASA Astrophysics Data System (ADS)
Pykhtin, Michael V.
This thesis is divided into three parts, different by problems they deal with, but similar by underlying assumptions (crystals are treated as classical elastic anisotropic media) and methods of solving (vibrational Green's functions). (i) In the first part we compute the density of vibrational modes for a vicinal Ni(977) surface. In the spectrum we find new step induced modes which are compared with recently reported experimental data for Ni(977) surface obtained by inelastic atom scattering. (ii) In the second part we study damping of low-frequency adsorbate vibrations via resonant coupling to the substrate phonons. Our theory provides a general expression for the vibrational damping rate which can be applied to widely varying coverages and arbitrary overlayer structures. The damping rates predicted by our theory for CO on Cu(100) are in excellent quantitative agreement with available experimental data. (iii) In the third part we develop a theory for the density of vibrational modes at the surface of a thin film of one anisotropic solid an on top of the other. We compute the density of modes for a GaN film on a sapphire substrate for a wide range of wavevector and frequency, and obtain dispersion maps which contain waves trapped between the surface of the film and the interface. Two families of the trapped modes were observed: Love waves and generalized Lamb waves. We also study the effect of threading edge dislocations (majority of defects in the GaN film) on the trapped modes. At the experimental dislocation density the effect is negligible.
NASA Astrophysics Data System (ADS)
Hu, Xiangsheng; Wang, Shaofeng
2018-02-01
The extended structure of ? screw dislocation in Ta has been studied theoretically using the improved Peierls-Nabarro model combined with the first principles calculation. An instructive way to derive the fundamental equation for dislocations with the nonplanar structure is presented. The full ?-surface of ? plane in tantalum is evaluated from the first principles. In order to compare the energy of the screw dislocation with different structures, the structure parameter is introduced to describe the core configuration. Each kind of screw dislocation is described by an overall-shape component and a core component. Far from the dislocation centre, the asymptotic behaviour of dislocation is uniquely controlled by the overall-shape component. Near the dislocation centre, the structure detail is described by the core component. The dislocation energy is explicitly plotted as a function of the core parameter for the nonplanar dislocation as well as for the planar dislocation. It is found that in the physical regime of the core parameter, the sixfold nonplanar structure always has the lowest energy. Our result clearly confirms that the sixfold nonplanar structure is the most stable. Furthermore, the pressure effect on the dislocation structure is explored up to 100 GPa. The stability of the sixfold nonplanar structure is not changed by the applied pressure. The equilibrium structure and the related stress field are calculated, and a possible mechanism of the dislocation movement is discussed briefly based on the structure deformation caused by the external stress.
Deformation of island-arc lithosphere due to steady plate subduction
NASA Astrophysics Data System (ADS)
Fukahata, Yukitoshi; Matsu'ura, Mitsuhiro
2016-02-01
Steady plate subduction elastically brings about permanent lithospheric deformation in island arcs, though this effect has been neglected in most studies based on elastic dislocation theory. We investigate the characteristics of the permanent lithospheric deformation using a kinematic model, in which steady slip motion is given along a plate interface in the elastic lithosphere overlying the viscoelastic asthenosphere under gravity. As a rule of thumb, long-term lithospheric deformation can be understood as a bending of an elastic plate floating on non-viscous fluid, because the asthenosphere behaves like water on the long term. The steady slip below the lithosphere-asthenosphere boundary does not contribute to long-term lithospheric deformation. Hence, the key parameters that control the lithospheric deformation are only the thickness of the lithosphere and the geometry of the plate interface. Slip on a plate interface generally causes substantial vertical displacement, and gravity always tries to retrieve the original gravitational equilibrium. For a curved plate interface gravity causes convex upward bending of the island-arc lithosphere, while for a planar plate interface gravity causes convex downward bending. Larger curvature and thicker lithosphere generally results in larger deformation. When the curvature changes along the plate interface, internal deformation is also involved intrinsically, which modifies the deformation field due to gravity. Because the plate interface generally has some curvature, at least near the trench, convex upward bending of the island-arc lithosphere, which involves uplift of island-arc and subsidence around the trench, is always realized. On the other hand, the deformation field of the island-arc lithosphere sensitively depends on lithospheric thickness and plate interface geometry. These characteristics obtained by the numerical simulation are consistent with observed topography and free-air gravity anomalies in subduction zones: a pair of topography and gravity anomalies, high in the arc and low around the trench, is observed without exceptions all over the world, while there are large variety in the amplitude and horizontal scale of the topography and gravity anomalies.
Okamoto, Norihiko L; Fujimoto, Shu; Kambara, Yuki; Kawamura, Marino; Chen, Zhenghao M T; Matsunoshita, Hirotaka; Tanaka, Katsushi; Inui, Haruyuki; George, Easo P
2016-10-24
High-entropy alloys (HEAs) comprise a novel class of scientifically and technologically interesting materials. Among these, equatomic CrMnFeCoNi with the face-centered cubic (FCC) structure is noteworthy because its ductility and strength increase with decreasing temperature while maintaining outstanding fracture toughness at cryogenic temperatures. Here we report for the first time by single-crystal micropillar compression that its bulk room temperature critical resolved shear stress (CRSS) is ~33-43 MPa, ~10 times higher than that of pure nickel. CRSS depends on pillar size with an inverse power-law scaling exponent of -0.63 independent of orientation. Planar ½ < 110 > {111} dislocations dissociate into Shockley partials whose separations range from ~3.5-4.5 nm near the screw orientation to ~5-8 nm near the edge, yielding a stacking fault energy of 30 ± 5 mJ/m 2 . Dislocations are smoothly curved without any preferred line orientation indicating no significant anisotropy in mobilities of edge and screw segments. The shear-modulus-normalized CRSS of the HEA is not exceptionally high compared to those of certain concentrated binary FCC solid solutions. Its rough magnitude calculated using the Fleischer/Labusch models corresponds to that of a hypothetical binary with the elastic constants of our HEA, solute concentrations of 20-50 at.%, and atomic size misfit of ~4%.
Okamoto, Norihiko L.; Fujimoto, Shu; Kambara, Yuki; Kawamura, Marino; Chen, Zhenghao M. T.; Matsunoshita, Hirotaka; Tanaka, Katsushi; Inui, Haruyuki; George, Easo P.
2016-01-01
High-entropy alloys (HEAs) comprise a novel class of scientifically and technologically interesting materials. Among these, equatomic CrMnFeCoNi with the face-centered cubic (FCC) structure is noteworthy because its ductility and strength increase with decreasing temperature while maintaining outstanding fracture toughness at cryogenic temperatures. Here we report for the first time by single-crystal micropillar compression that its bulk room temperature critical resolved shear stress (CRSS) is ~33–43 MPa, ~10 times higher than that of pure nickel. CRSS depends on pillar size with an inverse power-law scaling exponent of –0.63 independent of orientation. Planar ½ < 110 > {111} dislocations dissociate into Shockley partials whose separations range from ~3.5–4.5 nm near the screw orientation to ~5–8 nm near the edge, yielding a stacking fault energy of 30 ± 5 mJ/m2. Dislocations are smoothly curved without any preferred line orientation indicating no significant anisotropy in mobilities of edge and screw segments. The shear-modulus-normalized CRSS of the HEA is not exceptionally high compared to those of certain concentrated binary FCC solid solutions. Its rough magnitude calculated using the Fleischer/Labusch models corresponds to that of a hypothetical binary with the elastic constants of our HEA, solute concentrations of 20–50 at.%, and atomic size misfit of ~4%. PMID:27775026
Modeling of dislocation channel width evolution in irradiated metals
Doyle, Peter J.; Benensky, Kelsa M.; Zinkle, Steven J.
2017-11-08
Defect-free dislocation channel formation has been reported to promote plastic instability during tensile testing via localized plastic flow, leading to a distinct loss of ductility and strain hardening in many low-temperature irradiated materials. In order to study the underlying mechanisms governing dislocation channel width and formation, the channel formation process is modeled via a simple stochastic dislocation-jog process dependent upon grain size, defect cluster density, and defect size. Dislocations traverse a field of defect clusters and jog stochastically upon defect interaction, forming channels of low defect-density. And based upon prior molecular dynamics (MD) simulations and in-situ experimental transmission electron microscopymore » (TEM) observations, each dislocation encounter with a dislocation loop or stacking fault tetrahedron (SFT) is assumed to cause complete absorption of the defect cluster, prompting the dislocation to jog up or down by a distance equal to half the defect cluster diameter. Channels are predicted to form rapidly and are comparable to reported TEM measurements for many materials. Predicted channel widths are found to be most strongly dependent on mean defect size and correlated well with a power law dependence on defect diameter and density, and distance from the dislocation source. Due to the dependence of modeled channel width on defect diameter and density, maximum channel width is predicted to slowly increase as accumulated dose increases. The relatively weak predicted dependence of channel formation width with distance, in accordance with a diffusion analogy, implies that after only a few microns from the source, most channels observed via TEM analyses may not appear to vary with distance because of limitations in the field-of-view to a few microns. Furthermore, examinations of the effect of the so-called “source-broadening” mechanism of channel formation showed that its effect is simply to add a minimum thickness to the channel without affecting channel dependence on the given parameters.« less
Modeling of dislocation channel width evolution in irradiated metals
NASA Astrophysics Data System (ADS)
Doyle, Peter J.; Benensky, Kelsa M.; Zinkle, Steven J.
2018-02-01
Defect-free dislocation channel formation has been reported to promote plastic instability during tensile testing via localized plastic flow, leading to a distinct loss of ductility and strain hardening in many low-temperature irradiated materials. In order to study the underlying mechanisms governing dislocation channel width and formation, the channel formation process is modeled via a simple stochastic dislocation-jog process dependent upon grain size, defect cluster density, and defect size. Dislocations traverse a field of defect clusters and jog stochastically upon defect interaction, forming channels of low defect-density. Based upon prior molecular dynamics (MD) simulations and in-situ experimental transmission electron microscopy (TEM) observations, each dislocation encounter with a dislocation loop or stacking fault tetrahedron (SFT) is assumed to cause complete absorption of the defect cluster, prompting the dislocation to jog up or down by a distance equal to half the defect cluster diameter. Channels are predicted to form rapidly and are comparable to reported TEM measurements for many materials. Predicted channel widths are found to be most strongly dependent on mean defect size and correlated well with a power law dependence on defect diameter and density, and distance from the dislocation source. Due to the dependence of modeled channel width on defect diameter and density, maximum channel width is predicted to slowly increase as accumulated dose increases. The relatively weak predicted dependence of channel formation width with distance, in accordance with a diffusion analogy, implies that after only a few microns from the source, most channels observed via TEM analyses may not appear to vary with distance because of limitations in the field-of-view to a few microns. Further, examinations of the effect of the so-called "source-broadening" mechanism of channel formation showed that its effect is simply to add a minimum thickness to the channel without affecting channel dependence on the given parameters.
Modeling of dislocation channel width evolution in irradiated metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doyle, Peter J.; Benensky, Kelsa M.; Zinkle, Steven J.
Defect-free dislocation channel formation has been reported to promote plastic instability during tensile testing via localized plastic flow, leading to a distinct loss of ductility and strain hardening in many low-temperature irradiated materials. In order to study the underlying mechanisms governing dislocation channel width and formation, the channel formation process is modeled via a simple stochastic dislocation-jog process dependent upon grain size, defect cluster density, and defect size. Dislocations traverse a field of defect clusters and jog stochastically upon defect interaction, forming channels of low defect-density. And based upon prior molecular dynamics (MD) simulations and in-situ experimental transmission electron microscopymore » (TEM) observations, each dislocation encounter with a dislocation loop or stacking fault tetrahedron (SFT) is assumed to cause complete absorption of the defect cluster, prompting the dislocation to jog up or down by a distance equal to half the defect cluster diameter. Channels are predicted to form rapidly and are comparable to reported TEM measurements for many materials. Predicted channel widths are found to be most strongly dependent on mean defect size and correlated well with a power law dependence on defect diameter and density, and distance from the dislocation source. Due to the dependence of modeled channel width on defect diameter and density, maximum channel width is predicted to slowly increase as accumulated dose increases. The relatively weak predicted dependence of channel formation width with distance, in accordance with a diffusion analogy, implies that after only a few microns from the source, most channels observed via TEM analyses may not appear to vary with distance because of limitations in the field-of-view to a few microns. Furthermore, examinations of the effect of the so-called “source-broadening” mechanism of channel formation showed that its effect is simply to add a minimum thickness to the channel without affecting channel dependence on the given parameters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruterana, Pierre, E-mail: pierre.ruterana@ensicaen.fr; Wang, Yi, E-mail: pierre.ruterana@ensicaen.fr; Chen, Jun, E-mail: pierre.ruterana@ensicaen.fr
A detailed investigation on the misfit and threading dislocations at GaSb/GaAs interface has been carried out using molecular dynamics simulation and quantitative electron microscopy techniques. The sources and propagation of misfit dislocations have been elucidated. The nature and formation mechanisms of the misfit dislocations as well as the role of Sb on the stability of the Lomer configuration have been explained.
2015-02-04
dislocation dynamics models ( DDD ), continuum representations). Coupling of these models is difficult. Coupling of atomistics and DDD models has been...explored to some extent, but the coupling between DDD and continuum models of the evolution of large populations of dislocations is essentially unexplored
A discrete dislocation dynamics model of creeping single crystals
NASA Astrophysics Data System (ADS)
Rajaguru, M.; Keralavarma, S. M.
2018-04-01
Failure by creep is a design limiting issue for metallic materials used in several high temperature applications. Current theoretical models of creep are phenomenological with little connection to the underlying microscopic mechanisms. In this paper, a bottom-up simulation framework based on the discrete dislocation dynamics method is presented for dislocation creep aided by the diffusion of vacancies, known to be the rate controlling mechanism at high temperature and stress levels. The time evolution of the creep strain and the dislocation microstructure in a periodic unit cell of a nominally infinite single crystal is simulated using the kinetic Monte Carlo method, together with approximate constitutive laws formulated for the rates of thermal activation of dislocations over local pinning obstacles. The deformation of the crystal due to dislocation glide between individual thermal activation events is simulated using a standard dislocation dynamics algorithm, extended to account for constant stress periodic boundary conditions. Steady state creep conditions are obtained in the simulations with the predicted creep rates as a function of stress and temperature in good agreement with experimentally reported values. Arrhenius scaling of the creep rates as a function of temperature and power-law scaling with the applied stress are also reproduced, with the values of the power-law exponents in the high stress regime in good agreement with experiments.
NASA Astrophysics Data System (ADS)
Dogan, U.; Demir, D. O.; Cakir, Z.; Ergintav, S.; Cetin, S.; Ozdemir, A.; Reilinger, R. E.
2017-12-01
The 23 October 2011, Mw=7.2 Van Earthquake occurred in eastern Turkey on a thrust fault trending NE-SW and dipping to the north. We use GPS time series from the survey and continuous stations to determine coseismic deformation and to identify spatial and temporal changes in the near and far field due to postseismic processes (2011-2017). The coseismic deformation in the near field is derived from GPS data collected at 25 cadastral GPS survey sites. The coseismic horizontal displacements reach nearly 50 cm close to the surface trace of the fault that ruptured at depth during the earthquake. The density and distribution of the GPS sites allow us to better constrain the extent of the coseismic rupture using elastic dislocations on triangular faults embedded in a homogeneous, elastic half space. Modeling studies suggest that the coseismic rupture stopped west of the Erçek Lake before veering to the north. Estimated seismic moment is in good agreement with the seismologically and geodetically estimated seismic moment, estimated from the finite-fault model. Our preferred coseismic model consists of a simple elliptical slip patch centered at around 8 km depth with a maximum slip of about 2.5 m, consistent with the previous estimates based on InSAR measurements. The postseismic deformation field is derived from far field continuous GPS observations (10.2011 - 11.2017) and near field GPS campaigns (10.2011 - 09.2015). The postseismic time-series are fit better with a logarithmic than an exponential function, suggesting that the postseismic deformation is due to afterslip. Then, we modified our published postseismic model, using the coseismic model and data sets, extended until the end of 2017. The results show that during 6 years following the earthquake, after slip of up to 65 cm occurred at relatively shallow (< 10 km) depths, mostly above the deep coseismic slip that reaches depths > 15 km. New interpretations of the shallow afterslip, also, adds further evidence that the surface break observed after the earthquake was caused by coseismic stress changes rather than representing the coseismic fault. (This study is supported by TUBITAK no: 112Y109 project). Keywords: Van earthquake, GPS, coseismic, postseismic, deformation, elastic modeling
Patra, Anirban; McDowell, David L.
2016-03-25
We use a continuum crystal plasticity framework to study the effect of microstructure and mesoscopic factors on dislocation channeling and flow localization in an irradiated model bcc alloy. For simulated dislocation channeling characteristics we correlate the dislocation and defect densities in the substructure, local Schmid factor, and stress triaxiality, in terms of their temporal and spatial evolution. A metric is introduced to assess the propensity for localization and is correlated to the grain-level Schmid factor. We also found that localization generally takes place in grains with a local Schmid factor in the range 0.42 or higher. Surface slip step heightsmore » are computed at free surfaces and compared to relevant experiments.« less
Avalanches and plastic flow in crystal plasticity: an overview
NASA Astrophysics Data System (ADS)
Papanikolaou, Stefanos; Cui, Yinan; Ghoniem, Nasr
2018-01-01
Crystal plasticity is mediated through dislocations, which form knotted configurations in a complex energy landscape. Once they disentangle and move, they may also be impeded by permanent obstacles with finite energy barriers or frustrating long-range interactions. The outcome of such complexity is the emergence of dislocation avalanches as the basic mechanism of plastic flow in solids at the nanoscale. While the deformation behavior of bulk materials appears smooth, a predictive model should clearly be based upon the character of these dislocation avalanches and their associated strain bursts. We provide here a comprehensive overview of experimental observations, theoretical models and computational approaches that have been developed to unravel the multiple aspects of dislocation avalanche physics and the phenomena leading to strain bursts in crystal plasticity.
On the residual yield stress of shocked metals
NASA Astrophysics Data System (ADS)
Chapman, David; Eakins, Daniel; Savinykh, Andrey; Garkushin, Gennady; Kanel, Gennady; Razorenov, Sergey
2013-06-01
The measurement of the free-surface velocity is commonly employed in planar shock-compression experiments. It is known that the peak free-surface velocity of a shocked elastic-plastic material should be slightly less than twice the particle velocity behind shock front; this difference being proportional to the yield stress. Precise measurement of the free-surface velocity can be a rich source of information on the effects of time and strain on material hardening or softening. With this objective, we performed comparative measurements of the free-surface velocity of shock loaded aluminium AD1 and magnesium alloy Ma2 samples of various thicknesses in the range 0.2 mm to 5 mm. We observed the expected hysteresis in the elastic-plastic compression-unloading cycle for both AD1 and Ma2; where qualitatively the peak free-surface velocity increased with increasing specimen thickness. However, the relative change in magnitude of hysteresis as function of specimen thickness observed for the Ma2 alloy was smaller than expected given the large observed change in precursor magnitude. We propose that softening due to multiplication of dislocations is relatively large in Ma2 and results in a smaller hysteresis in the elastic-plastic cycle.
Computational study of dislocation based mechanisms in FCC materials
NASA Astrophysics Data System (ADS)
Yellakara, Ranga Nikhil
Understanding the relationships between microstructures and properties of materials is a key to developing new materials with more suitable qualities or employing the appropriate materials in special uses. In the present world of material research, the main focus is on microstructural control to cost-effectively enhance properties and meet performance specifications. This present work is directed towards improving the fundamental understanding of the microscale deformation mechanisms and mechanical behavior of metallic alloys, particularly focusing on face centered cubic (FCC) structured metals through a unique computational methodology called three-dimensional dislocation dynamics (3D-DD). In these simulations, the equations of motion for dislocations are mathematically solved to determine the evolution and interaction of dislocations. Microstructure details and stress-strain curves are a direct observation in the simulation and can be used to validate experimental results. The effect of initial dislocation microstructure on the yield strength has been studied. It has been shown that dislocation density based crystal plasticity formulations only work when dislocation densities/numbers are sufficiently large so that a statistically accurate description of the microstructure can be obtainable. The evolution of the flow stress for grain sizes ranging from 0.5 to 10 mum under uniaxial tension was simulated using an improvised model by integrating dislocation pile-up mechanism at grain boundaries has been performed. This study showed that for a same initial dislocation density, the Hall--Petch relationship holds well at small grain sizes (0.5--2 mum), beyond which the yield strength remains constant as the grain size increases. Various dislocation-particle interaction mechanisms have been introduced and investigations were made on their effect on the uniaxial tensile properties. These studies suggested that increase in particle volume fraction and decrease in particle size has contributed to the strength of these alloys. This work has been successful of capturing complex dislocation mechanisms that involves interactions with particles during the deformation of particle hardened FCC alloys. Finally, the DD model has been extended into studying the cyclic behavior of FCC metallic alloys. This study showed that the strength as well as the cyclic hardening increases due to grain refinement and increase in particle volume fraction. It also showed that the cyclic deformation of ultra-fine grained (UFG) material have undergone cyclic softening at all plastic strain amplitudes. The results provided very useful quantitative information for developing future fatigue models.
NASA Astrophysics Data System (ADS)
Mehrotra, A.; Alemu, A.; Freundlich, A.
2011-02-01
Crystalline defects (e.g. dislocations or grain boundaries) as well as electron and proton induced defects cause reduction of minority carrier diffusion length which in turn results in degradation of efficiency of solar cells. Hetro-epitaxial or metamorphic III-V devices with low dislocation density have high BOL efficiencies but electron-proton radiation causes degradation in EOL efficiencies. By optimizing the device design (emitter-base thickness, doping) we can obtain highly dislocated metamorphic devices that are radiation resistant. Here we have modeled III-V single and multi junction solar cells using drift and diffusion equations considering experimental III-V material parameters, dislocation density, 1 Mev equivalent electron radiation doses, thicknesses and doping concentration. Thinner device thickness leads to increment in EOL efficiency of high dislocation density solar cells. By optimizing device design we can obtain nearly same EOL efficiencies from high dislocation solar cells than from defect free III-V multijunction solar cells. As example defect free GaAs solar cell after optimization gives 11.2% EOL efficiency (under typical 5x1015cm-2 1 MeV electron fluence) while a GaAs solar cell with high dislocation density (108 cm-2) after optimization gives 10.6% EOL efficiency. The approach provides an additional degree of freedom in the design of high efficiency space cells and could in turn be used to relax the need for thick defect filtering buffer in metamorphic devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatia, M. A.; Solanki, K. N., E-mail: kiran.solanki@asu.edu; Groh, S.
2014-08-14
In this study, we present atomistic mechanisms of 1/2 [111](11{sup ¯}0) edge dislocation interactions with point defects (hydrogen and vacancies) and hydrogen solute atmospheres in body centered cubic (bcc) iron. In metals such as iron, increases in hydrogen concentration can increase dislocation mobility and/or cleavage-type decohesion. Here, we first investigate the dislocation mobility in the presence of various point defects, i.e., change in the frictional stress as the edge dislocation interacts with (a) vacancy, (b) substitutional hydrogen, (c) one substitutional and one interstitial hydrogen, (d) interstitial hydrogen, (e) vacancy and interstitial hydrogen, and (f) two interstitial hydrogen. Second, we examinemore » the role of a hydrogen-solute atmosphere on the rate of local dislocation velocity. The edge dislocation simulation with a vacancy in the compression side of the dislocation and an interstitial hydrogen atom at the tension side exhibit the strongest mechanical response, suggesting a higher potential barrier and hence, the higher frictional stress (i.e., ∼83% higher than the pure iron Peierls stress). In the case of a dislocation interacting with a vacancy on the compressive side, the vacancy binds with the edge dislocation, resulting in an increase in the friction stress of about 28% when compared with the Peierls stress of an edge dislocation in pure iron. Furthermore, as the applied strain increases, the vacancy migrates through a dislocation transportation mechanism by attaining a velocity of the same order as the dislocation velocity. For the case of the edge dislocation interacting with interstitial hydrogen on the tension side, the hydrogen atom jumps through one layer perpendicular to the glide plane during the pinning-unpinning process. Finally, our simulation of dislocation interactions with hydrogen show first an increase in the local dislocation velocity followed by a pinning of the dislocation core in the atmosphere, resulting in resistance to dislocation motion as the dislocation moves though the hydrogen-solute atmospheres. With this systematic, atomistic study of the edge dislocation with various point defects, we show significant increase in obstacle strengths in addition to an increase in the local dislocation velocity during interaction with solute atmospheres. The results have implications for constitutive development and modeling of the hydrogen effect on dislocation mobility and deformation in metals.« less
NASA Astrophysics Data System (ADS)
Cordier, P.; Goryaeva, A.; Carrez, P.
2016-12-01
Dislocation motion in crystalline materials represents one of the most efficient mechanisms to produce plastic shear, the key mechanism for CPO development. Previous atomistic simulations show that MgSiO3 ppv is characterized by remarkably low lattice friction opposed to the glide of straight [100] screw dislocations in (010), while glide in (001) requires one order of magnitude larger stress values [1]. At finite temperature, dislocation glide occurs through nucleation and propagation of kink-pairs, i.e. dislocation does not move as a straight line, but partly bows out over the Peierls potential. We propose a theoretical study of a kink-pair formation mechanism for [100] screw dislocations in MgSiO3 ppv employing the line tension (LT) model [2] in conjunction with ab-initio atomic-scale modeling. The dislocation line tension, which plays a key role in dislocation dynamics, is computed at atomic scale as the energy increase resulting from individual atomic displacements due to the nucleation of a bow out. The estimated kink-pair formation enthalpy gives an access to evolution of critical resolved shear stress (CRSS) with temperature. Our results clearly demonstrate that at the lower mantle conditions, lattice friction in ppv vanishes for temperatures above ca. 600 K, i.e. ppv deforms in the athermal regime in contrast to the high-lattice friction bridgmanite [3]. Moreover, in the Earth's mantle, high-pressure Mg-ppv can be expected to be as ductile as MgO. Our simulations demonstrate that ppv contributes to a weak layer at the base of the mantle which is likely to promote alignment of (010) planes. In addition to that, we show that the high mobility of [100] dislocations results in a decrease of the apparent shear modulus (up to 15%) which contributes to a decrease of the shear wave velocity of about 7% and suggest that ppv induces energy dissipation and strong seismic attenuation in the D" layer. References[1] Goryaeva A, Carrez Ph & Cordier P (2015) Modeling defects and plasticity in MgSiO3 post-perovskite: Part 2 - screw and edge [100] dislocations. Phys. Chem. Miner. 45:793-803 [2] Seeger A (1984) in "Dislocations", CNRS, Paris, p. 141. [3] Kraych A, Carrez Ph & Cordier P (2016) On dislocation glide in MgSiO3 bridgmanite at high pressure and high-temperature. Earth Planet. Sci. Lett. submitted.
NASA Astrophysics Data System (ADS)
Zhu, X. A.; Tsai, C. T.
2000-09-01
Dislocations in gallium arsenide (GaAs) crystals are generated by excessive thermal stresses induced during the crystal growth process. The presence of dislocations has adverse effects on the performance and reliability of the GaAs-based devices. It is well known that dislocation density can be significantly reduced by doping impurity atoms into a GaAs crystal during its growth process. A viscoplastic constitutive equation that couples the microscopic dislocation density with the macroscopic plastic deformation is employed in a crystallographic finite element model for calculating the dislocation density generated in the GaAs crystal during its growth process. The dislocation density is considered as an internal state variable and the drag stress caused by doping impurity is included in this constitutive equation. A GaAs crystal grown by the vertical Bridgman process is adopted as an example to study the influences of doping impurity and growth orientation on dislocation generation. The calculated results show that doping impurity can significantly reduce the dislocation density generated in the crystal. The level of reduction is also influenced by the growth orientation during the crystal growth process.
NASA Astrophysics Data System (ADS)
Nikkhoo, M.; Walter, T. R.; Lundgren, P.; Prats-Iraola, P.
2015-12-01
Ground deformation at active volcanoes is one of the key precursors of volcanic unrest, monitored by InSAR and GPS techniques at high spatial and temporal resolution, respectively. Modelling of the observed displacements establishes the link between them and the underlying subsurface processes and volume change. The so-called Mogi model and the rectangular dislocation are two commonly applied analytical solutions that allow for quick interpretations based on the location, depth and volume change of pressurized spherical cavities and planar intrusions, respectively. Geological observations worldwide, however, suggest elongated, tabular or other non-equidimensional geometries for the magma chambers. How can these be modelled? Generalized models such as the Davis's point ellipsoidal cavity or the rectangular dislocation solutions, are geometrically limited and could barely improve the interpretation of data. We develop a new analytical artefact-free solution for a rectangular dislocation, which also possesses full rotational degrees of freedom. We construct a kinematic model in terms of three pairwise-perpendicular rectangular dislocations with a prescribed opening only. This model represents a generalized point source in the far field, and also performs as a finite dislocation model for planar intrusions in the near field. We show that through calculating the Eshelby's shape tensor the far-field displacements and stresses of any arbitrary triaxial ellipsoidal cavity can be reproduced by using this model. Regardless of its aspect ratios, the volume change of this model is simply the sum of the volume change of the individual dislocations. Our model can be integrated in any inversion scheme as simply as the Mogi model, profiting at the same time from the advantages of a generalized point source. After evaluating our model by using a boundary element method code, we apply it to ground displacements of the 2015 Calbuco eruption, Chile, observed by the Sentinel-1 satellite. We infer the parameters of a deflating elongated source located beneath Calbuco, and find significant differences to Mogi type solutions. The results imply that interpretations based on our model may help us better understand source characteristics, and in the case of Calubuco volcano infer a volcano-tectonic coupling mechanism.
1970-12-01
a Circular Hole A.S. Kobayashi and D.E. Maiden 217 Fatigue Performance of High Strength An Effective Strain Concept for Steels as Related to Their a ...in AFLC Col. H.B. Morrison, Jr. 899 Results of Analysis, Fatigue Testing and Usage of a High Speed Aircraft Subjected to Combined Peacetime and High ...on the level of the in a recent study of the fatigue performance of some stable elastic limit that can be produced by dislocation pin- high yield
2014-04-01
yet fully passed through. This element is free from traction along its external surface , and thus is in a state of self stress. The remainder of...neighbours so that it too is in a state of self stress. External boundaries of the entire slab are also necessarily traction free in this global intermediate...N ⊗ u)dS = 12V0 ∫ [∇u+ (∇u)T]dV0 must vanish in a domain with uniform material properties that is in a state of self stress (that is, a homogeneous
Avalanches and plasticity for colloids in a time dependent optical trap
Olson Reichhardt, Cynthia Jane; McDermott, Danielle Marie; Reichhardt, Charles
2015-08-25
Here, with the use of optical traps it is possible to confine assemblies of colloidal particles in two-dimensional and quasi-one-dimensional arrays. Here we examine how colloidal particles rearrange in a quasi-one-dimensional trap with a time dependent confining potential. The particle motion occurs both through slow elastic uniaxial distortions as well as through abrupt large-scale two-dimensional avalanches associated with plastic rearrangements. During the avalanches the particle velocity distributions extend over a broad range and can be fit to a power law consistent with other studies of plastic events mediated by dislocations.
NASA Astrophysics Data System (ADS)
Heidelberger, Christopher; Fitzgerald, Eugene A.
2018-04-01
Heterojunction bipolar transistors (HBTs) with GaAs0.825P0.175 bases and collectors and In0.40Ga0.60P emitters were integrated monolithically onto Si substrates. The HBT structures were grown epitaxially on Si via metalorganic chemical vapor deposition, using SiGe compositionally graded buffers to accommodate the lattice mismatch while maintaining threading dislocation density at an acceptable level (˜3 × 106 cm-2). GaAs0.825P0.175 is used as an active material instead of GaAs because of its higher bandgap (increased breakdown voltage) and closer lattice constant to Si. Misfit dislocation density in the active device layers, measured by electron-beam-induced current, was reduced by making iterative changes to the epitaxial structure. This optimized process culminated in a GaAs0.825P0.175/In0.40Ga0.60P HBT grown on Si with a DC current gain of 156. By considering the various GaAsP/InGaP HBTs grown on Si substrates alongside several control devices grown on GaAs substrates, a wide range of threading dislocation densities and misfit dislocation densities in the active layers could be correlated with HBT current gain. The effect of threading dislocations on current gain was moderated by the reduction in minority carrier lifetime in the base region, in agreement with existing models for GaAs light-emitting diodes and photovoltaic cells. Current gain was shown to be extremely sensitive to misfit dislocations in the active layers of the HBT—much more sensitive than to threading dislocations. We develop a model for this relationship where increased base current is mediated by Fermi level pinning near misfit dislocations.
Influence of strain on dislocation core in silicon
NASA Astrophysics Data System (ADS)
Pizzagalli, L.; Godet, J.; Brochard, S.
2018-05-01
First principles, density functional-based tight binding and semi-empirical interatomic potentials calculations are performed to analyse the influence of large strains on the structure and stability of a 60? dislocation in silicon. Such strains typically arise during the mechanical testing of nanostructures like nanopillars or nanoparticles. We focus on bi-axial strains in the plane normal to the dislocation line. Our calculations surprisingly reveal that the dislocation core structure largely depends on the applied strain, for strain levels of about 5%. In the particular case of bi-axial compression, the transformation of the dislocation to a locally disordered configuration occurs for similar strain magnitudes. The formation of an opening, however, requires larger strains, of about 7.5%. Furthermore, our results suggest that electronic structure methods should be favoured to model dislocation cores in case of large strains whenever possible.
Deformations of the spin currents by topological screw dislocation and cosmic dispiration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jianhua; Ma, Kai, E-mail: makainca@gmail.com; Li, Kang
2015-11-15
We study the spin currents induced by topological screw dislocation and cosmic dispiration. By using the extended Drude model, we find that the spin dependent forces are modified by the nontrivial geometry. For the topological screw dislocation, only the direction of spin current is bent by deforming the spin polarization vector. In contrast, the force induced by cosmic dispiration could affect both the direction and magnitude of the spin current. As a consequence, the spin-Hall conductivity does not receive corrections from screw dislocation.
Ubiquity of quantum zero-point fluctuations in dislocation glide
NASA Astrophysics Data System (ADS)
Landeiro Dos Reis, Marie; Choudhury, Anshuman; Proville, Laurent
2017-03-01
Modeling the dislocation glide through atomic scale simulations in Al, Cu, and Ni and in solid solution alloys Al(Mg) and Cu(Ag), we show that in the course of the plastic deformation the variation of the crystal zero-point energy (ZPE) and the dislocation potential energy barriers are of opposite sign. The multiplicity of situations where we have observed the same trend allows us to conclude that quantum fluctuations, giving rise to the crystal ZPE, make easier the dislocation glide in most materials, even those constituted of atoms heavier than H and He.
NASA Astrophysics Data System (ADS)
Huang, Min-Sheng; Zhu, Ya-Xin; Li, Zhen-Huan
2014-04-01
The influence of dislocation dissociation on the evolution of Frank—Read (F-R) sources is studied using a three-dimensional discrete dislocation dynamics simulation (3D-DDD). The classical Orowan nucleation stress and recently proposed Benzerga nucleation time models for F-R sources are improved. This work shows that it is necessary to introduce the dislocation dissociation scheme into 3D-DDD simulation, especially for simulations on micro-plasticity of small sized materials with low stacking fault energy.
Modeling defects and plasticity in MgSiO3 post-perovskite: Part 2-screw and edge [100] dislocations.
Goryaeva, Alexandra M; Carrez, Philippe; Cordier, Patrick
In this study, we propose a full atomistic study of [100] dislocations in MgSiO 3 post-perovskite based on the pairwise potential parameterized by Oganov et al. (Phys Earth Planet Inter 122:277-288, 2000) for MgSiO 3 perovskite. We model screw dislocations to identify planes where they glide easier. We show that despite a small tendency to core spreading in {011}, [100] screw dislocations glide very easily (Peierls stress of 1 GPa) in (010) where only Mg-O bonds are to be sheared. Crossing the Si-layers results in a higher lattice friction as shown by the Peierls stress of [100](001): 17.5 GPa. Glide of [100] screw dislocations in {011} appears also to be highly unfavorable. Whatever the planes, (010), (001) or {011}, edge dislocations are characterized by a wider core (of the order of 2 b ). Contrary to screw character, they bear negligible lattice friction (0.1 GPa) for each slip system. The layered structure of post-perovskite results in a drastic reduction in lattice friction opposed to the easiest slip systems compared to perovskite.
On precisely modelling surface deformation due to interacting magma chambers and dykes
NASA Astrophysics Data System (ADS)
Pascal, Karen; Neuberg, Jurgen; Rivalta, Eleonora
2014-01-01
Combined data sets of InSAR and GPS allow us to observe surface deformation in volcanic settings. However, at the vast majority of volcanoes, a detailed 3-D structure that could guide the modelling of deformation sources is not available, due to the lack of tomography studies, for example. Therefore, volcano ground deformation due to magma movement in the subsurface is commonly modelled using simple point (Mogi) or dislocation (Okada) sources, embedded in a homogeneous, isotropic and elastic half-space. When data sets are too complex to be explained by a single deformation source, the magmatic system is often represented by a combination of these sources and their displacements fields are simply summed. By doing so, the assumption of homogeneity in the half-space is violated and the resulting interaction between sources is neglected. We have quantified the errors of such a simplification and investigated the limits in which the combination of analytical sources is justified. We have calculated the vertical and horizontal displacements for analytical models with adjacent deformation sources and have tested them against the solutions of corresponding 3-D finite element models, which account for the interaction between sources. We have tested various double-source configurations with either two spherical sources representing magma chambers, or a magma chamber and an adjacent dyke, modelled by a rectangular tensile dislocation or pressurized crack. For a tensile Okada source (representing an opening dyke) aligned or superposed to a Mogi source (magma chamber), we find the discrepancies with the numerical models to be insignificant (<5 per cent) independently of the source separation. However, if a Mogi source is placed side by side to an Okada source (in the strike-perpendicular direction), we find the discrepancies to become significant for a source separation less than four times the radius of the magma chamber. For horizontally or vertically aligned pressurized sources, the discrepancies are up to 20 per cent, which translates into surprisingly large errors when inverting deformation data for source parameters such as depth and volume change. Beyond 8 radii however, we demonstrate that the summation of analytical sources represents adjacent magma chambers correctly.
Implementing Capsule Representation in a Total Hip Dislocation Finite Element Model
Stewart, Kristofer J; Pedersen, Douglas R; Callaghan, John J; Brown, Thomas D
2004-01-01
Previously validated hardware-only finite element models of THA dislocation have clarified how various component design and surgical placement variables contribute to resisting the propensity for implant dislocation. This body of work has now been enhanced with the incorporation of experimentally based capsule representation, and with anatomic bone structures. The current form of this finite element model provides for large deformation multi-body contact (including capsule wrap-around on bone and/or implant), large displacement interfacial sliding, and large deformation (hyperelastic) capsule representation. In addition, the modular nature of this model now allows for rapid incorporation of current or future total hip implant designs, accepts complex multi-axial physiologic motion inputs, and outputs case-specific component/bone/soft-tissue impingement events. This soft-tissue-augmented finite element model is being used to investigate the performance of various implant designs for a range of clinically-representative soft tissue integrities and surgical techniques. Preliminary results show that capsule enhancement makes a substantial difference in stability, compared to an otherwise identical hardware-only model. This model is intended to help put implant design and surgical technique decisions on a firmer scientific basis, in terms of reducing the likelihood of dislocation. PMID:15296198
Jafarpour, Farshid; Angheluta, Luiza; Goldenfeld, Nigel
2013-10-01
The dynamics of edge dislocations with parallel Burgers vectors, moving in the same slip plane, is mapped onto Dyson's model of a two-dimensional Coulomb gas confined in one dimension. We show that the tail distribution of the velocity of dislocations is power law in form, as a consequence of the pair interaction of nearest neighbors in one dimension. In two dimensions, we show the presence of a pairing phase transition in a system of interacting dislocations with parallel Burgers vectors. The scaling exponent of the velocity distribution at effective temperatures well below this pairing transition temperature can be derived from the nearest-neighbor interaction, while near the transition temperature, the distribution deviates from the form predicted by the nearest-neighbor interaction, suggesting the presence of collective effects.
Solute effects on edge dislocation pinning in complex alpha-Fe alloys
NASA Astrophysics Data System (ADS)
Pascuet, M. I.; Martínez, E.; Monnet, G.; Malerba, L.
2017-10-01
Reactor pressure vessel steels are well-known to harden and embrittle under neutron irradiation, mainly because of the formation of obstacles to the motion of dislocations, in particular, precipitates and clusters composed of Cu, Ni, Mn, Si and P. In this paper, we employ two complementary atomistic modelling techniques to study the heterogeneous precipitation and segregation of these elements and their effects on the edge dislocations in BCC iron. We use a special and highly computationally efficient Monte Carlo algorithm in a constrained semi-grand canonical ensemble to compute the equilibrium configurations for solute clusters around the dislocation core. Next, we use standard molecular dynamics to predict and analyze the effect of this segregation on the dislocation mobility. Consistently with expectations our results confirm that the required stress for dislocation unpinning from the precipitates formed on top of it is quite large. The identification of the precipitate resistance allows a quantitative treatment of atomistic results, enabling scale transition towards larger scale simulations, such as dislocation dynamics or phase field.
Gautam, Arvind; Rani, A Bhargavi; Callejas, Miguel A; Acharyya, Swati Ghosh; Acharyya, Amit; Biswas, Dwaipayan; Bhandari, Vasundhra; Sharma, Paresh; Naik, Ganesh R
2016-08-01
In this paper we introduce Shape Memory Alloy (SMA) for designing the tibial part of Total Knee Arthroplasty (TKA) by exploiting the shape-memory and pseudo-elasticity property of the SMA (e.g. NiTi). This would eliminate the drawbacks of the state-of-the art PMMA based knee-spacer including fracture, sustainability, dislocation, tilting, translation and subluxation for tackling the Osteoarthritis especially for the aged people of 45-plus or the athletes. In this paper a Computer Aided Design (CAD) model using SolidWorks for the knee-spacer is presented based on the proposed SMA adopting the state-of-the art industry-standard geometry that is used in the PMMA based spacer design. Subsequently Ansys based Finite Element Analysis is carried out to measure and compare the performance between the proposed SMA based model with the state-of-the art PMMA ones. 81% more bending is noticed in the PMMA based spacer compared to the proposed SMA that would eventually cause fracture and tilting or translation of spacer. Permanent shape deformation of approximately 58.75% in PMMA based spacer is observed compared to recoverable 11% deformation in SMA when same load is applied on both separately.
Gradient-type modeling of the effects of plastic recovery and surface passivation in thin films
NASA Astrophysics Data System (ADS)
Liu, Jinxing; Kah Soh, Ai
2016-08-01
The elasto-plastic responses of thin films subjected to cyclic tension-compression loading and bending are studied, with a focus on Bauschinger and size effects. For this purpose, a model is established by incorporating plastic recovery into the strain gradient plasticity theory we proposed recently. Elastic and plastic parts of strain and strain gradient, which are determined by the elasto-plastic decomposition according to the associative rule, are assumed to have a degree of material-dependent reversibility. Based on the above assumption, a dislocation reversibility-dependent rule is built to describe evolutions of different deformation components under cyclic loadings. Furthermore, a simple strategy is provided to implement the passivated boundary effects by introducing a gradual change to relevant material parameters in the yield function. Based on this theory, both bulge and bending tests under cyclic loading conditions are investigated. By comparing the present predictions with the existing experimental data, it is found that the yield function is able to exhibit the size effect, the Bauschinger effect, the influence of surface passivation and the hysteresis-loop phenomenon. Thus, the proposed model is deemed helpful in studying plastic deformations of micron-scale films.
Test of the Peierls-Nabarro model for dislocations in silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Q.; Joos, B.; Duesbery, M.S.
1995-11-01
We show, using an atomistic model with a Stillinger-Weber potential (SWP), that in the absence of reconstruction, the basic assumption of the Peierls-Nabarro (PN) model that the dislocation core is spread within the glide plane is verified for silicon. The Peierls stress (PS) obtained from the two models are in quantitative agreement ({approx}0.3{mu}), when restoring forces obtained from first principles generalized stacking-fault energy surfaces are used in the PN model [B. Joos, Q. Ren, and M. S. Duesbery, Phys. Rev. B {bold 50}, 5890 (1994)]. The PS was found to be isotropic in the glide plane. Within the SWP modelmore » no evidence of dissociation in the shuffle dislocations is found but glide sets do separate into two partials.« less
Pressure Solution Creep and Textural Softening in Greenschist Facies Phyllonites
NASA Astrophysics Data System (ADS)
Wintsch, R. P.; Attenoukon, M.; Kunk, M. J.; McAleer, R. J.; Wathen, B.; Yi, D.
2016-12-01
We have found evidence for dissolution-precipitation creep (DPC) in phyllites and phyllonites naturally deformed at greenschist facies conditions. Since the experiments of Kronenberg et al. (1990) and Mares and Kronenberg (1993) micas are known to be among the weakest of rock-forming minerals. They deform by dislocation glide in their basal plane and when these micas are aligned and contiguous in an orientation favorable for glide they tend to localize strain into shear zones. Therefore, these closed-system experiments suggest that dislocation glide should be the dominant deformation mechanism in mica-rich shear zones from near surface through greenschist facies conditions. In contrast, in naturally deformed rocks we have found strong textural and chemical evidence that micas deform by dissolution-precipitation creep in phyllites at upper and lower greenschist facies conditions. In the Littleton Formation (N.H.) we find retrograde muscovite (pg5)-rich folia (Sn) truncating amphibolite facies Na-rich muscovite and biotite grains that define earlier foliations. Na-rich muscovite grains are also selectively replaced along crenulation axes and boudin necks where plastic and elastic strain are highest. In biotite grade regional metamorphic rocks in the Tananao schist of Taiwan muscovite-rich folia (Sn) truncate crenulated muscovite-biotite schists at high angles. In still lower (chlorite) grade phyllonitic fault zones marking terrane boundaries in southern New England (East Derby shear zone) and in Taiwan (Daugan shear zone) crenulated older fabrics are cut by new undeformed muscovite grains in chlorite-free planar folia. Further evidence for recrystallization rather than dislocation glide comes from the 40Ar/39Ar ages of muscovite in the new Sn folia younger than the age of the truncated folia. The younger ages in each case demonstrate that recrystallization was activated at lower shear stresses than dislocation glide, and that the recrystallization occurred at lower greenschist facies conditions below the closure temperature for diffusion of argon in muscovite. The increase in muscovite/chlorite ratios and change in microchemistry of Sn muscovite, the truncating microstructures, and isotopic results are all incompatible with deformation by dislocation creep.
Deformation Behavior of Al/a-Si Core-shell Nanostructures
NASA Astrophysics Data System (ADS)
Fleming, Robert
Al/a-Si core-shell nanostructures (CSNs), consisting of a hemispherical Al core surrounded by a hard shell of a-Si, have been shown to display unusual mechanical behavior in response to compression loading. Most notably, these nanostructures exhibit substantial deformation recovery, even when loaded much beyond the elastic limit. Nanoindentation measurements revealed a unique mechanical response characterized by discontinuous signatures in the load-displacement data. In conjunction with the indentation signatures, nearly complete deformation recovery is observed. This behavior is attributed to dislocation nucleation and annihilation events enabled by the 3-dimensional confinement of the Al core. As the core confinement is reduced, either through an increase in confined core volume or a change in the geometrical confinement, the indentation signatures and deformation resistance are significantly reduced. Complimentary molecular dynamics simulations show that a substantial amount of dislocation egression occurs in the core of CSNs during unloading as dislocations annihilate at the core/shell interface. Smaller core diameters correlate with the development of a larger back-stress within the core during unloading, which further correlates with improved dislocation annihilation after unloading. Furthermore, dislocations nucleated in the core of core-shell nanorods are not as effectively removed as compared to CSNs. Nanostructure-textured surfaces (NSTSs) composed of Al/a-Si CSNs have improved tribological properties compared surfaces patterned with Al nanodots and a flat (100) Si surface. NSTSs have a coefficient of friction (COF) as low as 0.015, exhibit low adhesion with adhesion forces on the order of less than 1 microN, and are highly deformation resistant, with no apparent surface deformation after nanoscratch testing, even at contact forces up to 8000 microN. In comparison, (100) Si has substantially higher adhesion and COF ( 10 microN and 0.062, respectively), while the Al nanodots have both higher friction (COF 0.044) and are deformed when subjected to contact loads as low as 250 microN. This integrated experimental and computational study elucidates the mechanisms that contribute to the novel properties of Al/a-Si CSNs and characterizes the tribological properties of surface composed of these nanostructures, which provides a foundation for the rational design of novel technologies based on CSNs.
Size dependence of yield strength simulated by a dislocation-density function dynamics approach
NASA Astrophysics Data System (ADS)
Leung, P. S. S.; Leung, H. S.; Cheng, B.; Ngan, A. H. W.
2015-04-01
The size dependence of the strength of nano- and micron-sized crystals is studied using a new simulation approach in which the dynamics of the density functions of dislocations are modeled. Since any quantity of dislocations can be represented by a density, this approach can handle large systems containing large quantities of dislocations, which may handicap discrete dislocation dynamics schemes due to the excessive computation time involved. For this reason, pillar sizes spanning a large range, from the sub-micron to micron regimes, can be simulated. The simulation results reveal the power-law relationship between strength and specimen size up to a certain size, beyond which the strength varies much more slowly with size. For specimens smaller than ∼4000b, their strength is found to be controlled by the dislocation depletion condition, in which the total dislocation density remains almost constant throughout the loading process. In specimens larger than ∼4000b, the initial dislocation distribution is of critical importance since the presence of dislocation entanglements is found to obstruct deformation in the neighboring regions within a distance of ∼2000b. This length scale suggests that the effects of dense dislocation clusters are greater in intermediate-sized specimens (e.g. 4000b and 8000b) than in larger specimens (e.g. 16 000b), according to the weakest-link concept.
Edge dislocations as sinks for sub-nanometric radiation induced defects in α-iron
NASA Astrophysics Data System (ADS)
Anento, N.; Malerba, L.; Serra, A.
2018-01-01
The role of edge dislocations as sinks for small radiation induced defects in bcc-Fe is investigated by means of atomistic computer simulation. In this work we investigate by Molecular Statics (T = 0K) the interaction between an immobile dislocation line and defect clusters of small sizes invisible experimentally. The study highlights in particular the anisotropy of the interaction and distinguishes between absorbed and trapped defects. When the considered defect intersects the dislocation glide plane and the distance from the dislocation line to the defect is on the range between 2 nm and 4 nm, either total or partial absorption of the cluster takes place leading to the formation of jogs. Residual defects produced during partial absorption pin the dislocation. By the calculation of stress-strain curves we have assessed the strength of those residues as obstacles for the motion of the dislocation, which is reflected on the unpinning stresses and the binding energies obtained. When the defect is outside this range, but on planes close to the dislocation glide plane, instead of absorption we have observed a capture process. Finally, with a view to introducing explicitly in kinetic Monte Carlo models a sink with the shape of a dislocation line, we have summarized our findings on a table presenting the most relevant parameters, which define the interaction of the dislocation with the defects considered.
Singular orientations and faceted motion of dislocations in body-centered cubic crystals.
Kang, Keonwook; Bulatov, Vasily V; Cai, Wei
2012-09-18
Dislocation mobility is a fundamental material property that controls strength and ductility of crystals. An important measure of dislocation mobility is its Peierls stress, i.e., the minimal stress required to move a dislocation at zero temperature. Here we report that, in the body-centered cubic metal tantalum, the Peierls stress as a function of dislocation orientation exhibits fine structure with several singular orientations of high Peierls stress-stress spikes-surrounded by vicinal plateau regions. While the classical Peierls-Nabarro model captures the high Peierls stress of singular orientations, an extension that allows dislocations to bend is necessary to account for the plateau regions. Our results clarify the notion of dislocation kinks as meaningful only for orientations within the plateau regions vicinal to the Peierls stress spikes. These observations lead us to propose a Read-Shockley type classification of dislocation orientations into three distinct classes-special, vicinal, and general-with respect to their Peierls stress and motion mechanisms. We predict that dislocation loops expanding under stress at sufficiently low temperatures, should develop well defined facets corresponding to two special orientations of highest Peierls stress, the screw and the M111 orientations, both moving by kink mechanism. We propose that both the screw and the M111 dislocations are jointly responsible for the yield behavior of BCC metals at low temperatures.
NASA Astrophysics Data System (ADS)
Redfern, Simon
2015-04-01
Earth's inner core is elastically anisotropic, with seismology showing faster wave propagation along the polar axis compared to the equatorial plane. Some inner core studies report anisotropic seismic attenuation. Attenuation of body-waves has, previously, been postulated to be due to scattering by anisotropic microstructure, but recent normal mode studies also show strong anisotropic attenuation (Mäkinen et al. 2014). This suggests that the anisotropic attenuation is a result of the intrinsic (and anisotropic) anelastic properties of the solid iron alloy forming Earth's inner core. Here, I consider the origins of inner core anisotropic attenuation. Possibilities include grain boundary relaxation, dislocation bowing/glide, or point defect (alloying element) relaxations. The inner core is an almost perfect environment for near-equilibrium crystallisation, with very low temperature gradients across the inner core, low gravity, and slow crystallisation rates. It is assumed that grain sizes may be of the order of hundreds of metres. This implies vanishingly small volumes of grain boundary, and insignificant grain boundary relaxation. The very high homologous temperature and the absence of obvious deviatoric stress, also leads one to conclude that dislocation densities are low. On the other hand, estimates for light element concentrations are of the order of a few % with O, S, Si, C and H at various times being suggested as candidate elements. Light element solutes in hcp metals contribute to intrinsic anelastic attenuation if they occur in sufficient concentrations to pair and form elastic dipoles. Switching of dipoles under the stress of a passing seismic wave will result in anelastic mechanical loss. Such attenuation has been measured in hcp metals in the lab, and is anisotropic due to the intrinsic elastic anisotropy of the host lattice. Such solute pair relaxations result in a "Zener effect", which is suggested here to be responsible for observed anisotropic seismic attenuation. Zener relaxation magnitude scales with solute concentration and is consistent with around 5% light element. Variations in attenuation are expected in a core with spatially varying concentrations of light element, and attenuation tomography of the inner core could, therefore, be employed to map chemical heterogeneity.
Intrinsic Aniostropic Anelasticity of Hcp Iron Due to Light Element Solute Atoms
NASA Astrophysics Data System (ADS)
Redfern, S. A. T.
2014-12-01
Earth's inner core is elastically anisotropic, with seismology showing faster wave propagation along the polar axis compared to the equatorial plane. Some inner core studies report anisotropic seismic attenuation. Attenuation of body-waves has, previously, been postulated to be due to scattering by anisotropic microstructure, but recent normal mode studies also show strong anisotropic attenuation (Mäkinen et al. 2014). This suggests that the anisotropic attenuation is a result of the intrinsic (and anisotropic) anelastic properties of the solid iron alloy forming Earth's inner core. Here, I consider the origins of inner core anisotropic attenuation. Possibilities include grain boundary relaxation, dislocation bowing/glide, or point defect (alloying element) relaxations. The inner core is an almost perfect environment for near-equilibrium crystallisation, with very low temperature gradients across the inner core, low gravity, and slow crystallisation rates. It is assumed that grain sizes may be of the order of hundreds of metres. This implies vanishingly small volumes of grain boundary, and insignificant grain boundary relaxation. The very high homologous temperature and the absence of obvious deviatoric stress, also leads one to conclude that dislocation densities are low. On the other hand, estimates for light element concentrations are of the order of a few % with O, S, Si, C and H at various times being suggested as candidate elements. Light element solutes in hcp metals contribute to intrinsic anelastic attenuation if they occur in sufficient concentrations to pair and form elastic dipoles. Switching of dipoles under the stress of a passing seismic wave will result in anelastic mechanical loss. Such attenuation has been measured in hcp metals in the lab, and is anisotropic due to the intrinsic elastic anisotropy of the host lattice. Such solute pair relaxations result in a "Zener effect", which is suggested here to be responsible for observed anisotropic seismic attenuation. Zener relaxation magnitude scales with solute concentrationand is consistent with around 5% loght element. Variations in attenuation are expected in a core with spatially varying concentrations of light element, and attenuation tomography of the inner core could, therefore, be employed to map chemical heterogeneity.
Size-Tuned Plastic Flow Localization in Irradiated Materials at the Submicron Scale
NASA Astrophysics Data System (ADS)
Cui, Yinan; Po, Giacomo; Ghoniem, Nasr
2018-05-01
Three-dimensional discrete dislocation dynamics (3D-DDD) simulations reveal that, with reduction of sample size in the submicron regime, the mechanism of plastic flow localization in irradiated materials transitions from irradiation-controlled to an intrinsic dislocation source controlled. Furthermore, the spatial correlation of plastic deformation decreases due to weaker dislocation interactions and less frequent cross slip as the system size decreases, thus manifesting itself in thinner dislocation channels. A simple model of discrete dislocation source activation coupled with cross slip channel widening is developed to reproduce and physically explain this transition. In order to quantify the phenomenon of plastic flow localization, we introduce a "deformation localization index," with implications to the design of radiation-resistant materials.
Dislocation–Twin Boundary Interactions Induced Nanocrystalline via SPD Processing in Bulk Metals
Zhang, Fucheng; Feng, Xiaoyong; Yang, Zhinan; Kang, Jie; Wang, Tiansheng
2015-01-01
This report investigated dislocation–twin boundary (TB) interactions that cause the TB to disappear and turn into a high-angle grain boundary (GB). The evolution of the microstructural characteristics of Hadfield steel was shown as a function of severe plastic deformation processing time. Sessile Frank partial dislocations and/or sessile unit dislocations were formed on the TB through possible dislocation reactions. These reactions induced atomic steps on the TB and led to the accumulation of gliding dislocations at the TB, which resulted in the transition from coherent TB to incoherent GB. The factors that affect these interactions were described, and a physical model was established to explain in detail the feasible dislocation reactions at the TB. PMID:25757550
Terrier, Alexandre; Latypova, Adeliya; Guillemin, Maika; Parvex, Valérie; Guyen, Olivier
2017-03-01
Constrained devices, standard implants with large heads, and dual mobility systems have become popular options to manage instability after total hip arthroplasty (THA). Clinical results with these options have shown variable success rates and significant higher rates of aseptic loosening and mechanical failures with constrained implants. Literature suggests potential advantages of dual mobility, however little is known about its biomechanics. We present a comparative biomechanical study of a standard implant, a constrained implant, and a dual mobility system. A finite element analysis was developed to assess and compare these acetabular options with regard to the range of motion (ROM) to impingement, the angle of dislocation, the resistive torque, the volume of polyethylene (PE) with a stress above 80% of the elastic limit, and the interfacial cup/bone stress. Dual mobility implants provided the greatest ROM to impingement and allowed delaying subluxation and dislocation when compared to standard and constrained implants. Dual mobility also demonstrated the lowest resistive torque at subluxation while the constrained implant provided the greatest one. The lowest critical PE volume was observed with the dual mobility implant, and the highest stress at the interfaces was observed with the constrained implant. This study highlights the biomechanical advantages of dual mobility systems over constrained and standard implants, and is supported by the clinical results reported. Therefore, the use of dual mobility systems in situations at risk for instability should be advocated and constrained implants should be restricted to salvage situations.
NASA Astrophysics Data System (ADS)
Consonni, V.; Knelangen, M.; Geelhaar, L.; Trampert, A.; Riechert, H.
2010-02-01
The formation mechanisms of epitaxial GaN nanowires grown within a self-induced approach by molecular-beam epitaxy have been investigated at the onset of the nucleation process by combining in situ reflection high-energy electron-diffraction measurements and ex situ high-resolution transmission electron microscopy imaging. It is shown that the self-induced growth of GaN nanowires on the AlN buffer layer is initially governed by the nucleation of dislocation-free coherent islands. These coherent islands develop through a series of shape transitions from spherical caps through truncated to full pyramids in order to elastically relieve the lattice-mismatch-induced strain. A strong correlation between the subsequent process of plastic relaxation and the final shape transition from full pyramids toward the very first nanowires is found. The experimental critical radius at which the misfit dislocation nucleates is in very good agreement with the theoretical critical radius for the formation of the misfit dislocation in full pyramids, showing that the plastic relaxation process does take place within full pyramids: this critical size corresponds to the initial radius of the very first nanowires. We associate the plastic relaxation of the lattice-mismatch-induced strain occurring within full pyramids with a drastic change in their total free energy: this gives rise to a driving force for the shape transition toward the very first nanowires, which is mainly due to the anisotropy of surface energy.
Dislocation Content Measured Via 3D HR-EBSD Near a Grain Boundary in an AlCu Oligocrystal
NASA Technical Reports Server (NTRS)
Ruggles, Timothy; Hochhalter, Jacob; Homer, Eric
2016-01-01
Interactions between dislocations and grain boundaries are poorly understood and crucial to mesoscale plasticity modeling. Much of our understanding of dislocation-grain boundary interaction comes from atomistic simulations and TEM studies, both of which are extremely limited in scale. High angular resolution EBSD-based continuum dislocation microscopy provides a way of measuring dislocation activity at length scales and accuracies relevant to crystal plasticity, but it is limited as a two-dimensional technique, meaning the character of the grain boundary and the complete dislocation activity is difficult to recover. However, the commercialization of plasma FIB dual-beam microscopes have made 3D EBSD studies all the more feasible. The objective of this work is to apply high angular resolution cross correlation EBSD to a 3D EBSD data set collected by serial sectioning in a FIB to characterize dislocation interaction with a grain boundary. Three dimensional high angular resolution cross correlation EBSD analysis was applied to an AlCu oligocrystal to measure dislocation densities around a grain boundary. Distortion derivatives associated with the plasma FIB serial sectioning were higher than expected, possibly due to geometric uncertainty between layers. Future work will focus on mitigating the geometric uncertainty and examining more regions of interest along the grain boundary to glean information on dislocation-grain boundary interaction.
Ab initio calculations of ideal strength and lattice instability in W-Ta and W-Re alloys
NASA Astrophysics Data System (ADS)
Yang, Chaoming; Qi, Liang
2018-01-01
An important theoretical criterion to evaluate the ductility of metals with a body-centered cubic (bcc) lattice is the mechanical failure mode of their perfect crystals under tension along <;100 >; directions. When the tensile stress reaches the ideal tensile strength, the pure W crystal fails by a cleavage fracture along the {100 } plane so that it is intrinsically brittle. To discover the strategy to improve its ductility, we performed density functional theory and density functional perturbation theory calculations to study the ideal tensile strength and the lattice instability under <100 > tension for both W-Ta and W-Re alloys. Anisotropic linear elastic fracture mechanics (LEFM) theory and Rice's criterion were also applied to analyze the mechanical instability at the crack tip under <100 > tension based on the competition between cleavage propagation and dislocation emission. The results show that the intrinsic ductility can be achieved in both W-Ta and W-Re, however, by different mechanisms. Even though W-Ta alloys with low Ta concentrations are still intrinsically brittle, the intrinsic ductility of W-Ta alloys with high Ta concentrations is promoted by elastic shear instability before the cleavage failure. The intrinsic ductility of W-Re alloys is produced by unstable transverse phonon waves before the cleavage failure, and the corresponding phonon mode is related to the generation of 1/2 <111 > {2 ¯11 } dislocation in bcc crystals. The ideal tensile calculations, phonon analyses, and anisotropic LEFM examinations are mutually consistent in the evaluation of intrinsic ductility. These results bring us physical insights on the ductility-brittle mechanisms of W alloys under extreme stress conditions.
The crack-inclusion interaction problem
NASA Technical Reports Server (NTRS)
Liu, X.-H.; Erdogan, F.
1986-01-01
The general plane elastostatic problem of interaction between a crack and an inclusion is considered. The Green's functions for a pair of dislocations and a pair of concentrated body forces are used to generate the crack and the inclusion. Integral equations are obtained for a line crack and an elastic line inclusion having an arbitrary relative orientation and size. The nature of stress singularity around the end points of rigid and elastic inclusions is described and three special cases of this intersection problem are studied. The problem is solved for an arbitrary uniform stress state away from the crack-inclusion region. The nonintersecting crack-inclusion problem is considered for various relative size, orientation, and stiffness parameters, and the stress intensity factors at the ends of the inclusion and the crack are calculated. For the crack-inclusion intersection case, special stress intensity factors are defined and are calculated for various values of the parameters defining the relative size and orientation of the crack and the inclusion and the stiffness of the inclusion.
The crack-inclusion interaction problem
NASA Technical Reports Server (NTRS)
Xue-Hui, L.; Erdogan, F.
1984-01-01
The general plane elastostatic problem of interaction between a crack and an inclusion is considered. The Green's functions for a pair of dislocations and a pair of concentrated body forces are used to generate the crack and the inclusion. Integral equations are obtained for a line crack and an elastic line inclusion having an arbitrary relative orientation and size. The nature of stress singularity around the end points of rigid and elastic inclusions is described and three special cases of this intersection problem are studied. The problem is solved for an arbitrary uniform stress state away from the crack-inclusion region. The nonintersecting crack-inclusion problem is considered for various relative size, orientation, and stiffness parameters, and the stress intensity factors at the ends of the inclusion and the crack are calculated. For the crack-inclusion intersection case, special stress intensity factors are defined and are calculated for various values of the parameters defining the relative size and orientation of the crack and the inclusion and the stiffness of the inclusion.
Magnitude, moment, and measurement: The seismic mechanism controversy and its resolution.
Miyake, Teru
This paper examines the history of two related problems concerning earthquakes, and the way in which a theoretical advance was involved in their resolution. The first problem is the development of a physical, as opposed to empirical, scale for measuring the size of earthquakes. The second problem is that of understanding what happens at the source of an earthquake. There was a controversy about what the proper model for the seismic source mechanism is, which was finally resolved through advances in the theory of elastic dislocations. These two problems are linked, because the development of a physically-based magnitude scale requires an understanding of what goes on at the seismic source. I will show how the theoretical advances allowed seismologists to re-frame the questions they were trying to answer, so that the data they gathered could be brought to bear on the problem of seismic sources in new ways. Copyright © 2017 Elsevier Ltd. All rights reserved.
An extended 3D discrete-continuous model and its application on single- and bi-crystal micropillars
NASA Astrophysics Data System (ADS)
Huang, Minsheng; Liang, Shuang; Li, Zhenhuan
2017-04-01
A 3D discrete-continuous model (3D DCM), which couples the 3D discrete dislocation dynamics (3D DDD) and finite element method (FEM), is extended in this study. New schemes for two key information transfers between DDD and FEM, i.e. plastic-strain distribution from DDD to FEM and stress transfer from FEM to DDD, are suggested. The plastic strain induced by moving dislocation segments is distributed to an elementary spheroid (ellipsoid or sphere) via a specific new distribution function. The influence of various interfaces (such as free surfaces and grain boundaries (GBs)) on the plastic-strain distribution is specially considered. By these treatments, the deformation fields can be solved accurately even for dislocations on slip planes severely inclined to the FE mesh, with no spurious stress concentration points produced. In addition, a stress correction by singular and non-singular theoretical solutions within a cut-off sphere is introduced to calculate the stress on the dislocations accurately. By these schemes, the present DCM becomes less sensitive to the FE mesh and more numerically efficient, which can also consider the interaction between neighboring dislocations appropriately even though they reside in the same FE mesh. Furthermore, the present DCM has been employed to model the compression of single-crystal and bi-crystal micropillars with rigid and dislocation-absorbed GBs. The influence of internal GB on the jerky stress-strain response and deformation mode is studied in detail to shed more light on these important micro-plastic problems.
Collective behaviour of dislocations in a finite medium
NASA Astrophysics Data System (ADS)
Kooiman, M.; Hütter, M.; Geers, M. G. D.
2014-04-01
We derive the grand-canonical partition function of straight and parallel dislocation lines without making a priori assumptions on the temperature regime. Such a systematic derivation for dislocations has, to the best of our knowledge, not been carried out before, and several conflicting assumptions on the free energy of dislocations have been made in the literature. Dislocations have gained interest as they are the carriers of plastic deformation in crystalline materials and solid polymers, and they constitute a prototype system for two-dimensional Coulomb particles. Our microscopic starting level is the description of dislocations as used in the discrete dislocation dynamics (DDD) framework. The macroscopic level of interest is characterized by the temperature, the boundary deformation and the dislocation density profile. By integrating over state space, we obtain a field theoretic partition function, which is a functional integral of the Boltzmann weight over an auxiliary field. The Hamiltonian consists of a term quadratic in the field and an exponential of this field. The partition function is strongly non-local, and reduces in special cases to the sine-Gordon model. Moreover, we determine implicit expressions for the response functions and the dominant scaling regime for metals, namely the low-temperature regime.
A dislocation-based crystal plasticity framework for dynamic ductile failure of single crystals
NASA Astrophysics Data System (ADS)
Nguyen, Thao; Luscher, D. J.; Wilkerson, J. W.
2017-11-01
A framework for dislocation-based viscoplasticity and dynamic ductile failure has been developed to model high strain rate deformation and damage in single crystals. The rate-dependence of the crystal plasticity formulation is based on the physics of relativistic dislocation kinetics suited for extremely high strain rates. The damage evolution is based on the dynamics of void growth, which are governed by both micro-inertia as well as dislocation kinetics and dislocation substructure evolution. An averaging scheme is proposed in order to approximate the evolution of the dislocation substructure in both the macroscale as well as its spatial distribution at the microscale. Additionally, a concept of a single equivalent dislocation density that effectively captures the collective influence of dislocation density on all active slip systems is proposed here. Together, these concepts and approximations enable the use of semi-analytic solutions for void growth dynamics developed in (Wilkerson and Ramesh, 2014), which greatly reduce the computational overhead that would otherwise be required. The resulting homogenized framework has been implemented into a commercially available finite element package, and a validation study against a suite of direct numerical simulations was carried out.
NASA Astrophysics Data System (ADS)
Adam, Khaled; Zöllner, Dana; Field, David P.
2018-04-01
Modeling the microstructural evolution during recrystallization is a powerful tool for the profound understanding of alloy behavior and for use in optimizing engineering properties through annealing. In particular, the mechanical properties of metallic alloys are highly dependent upon evolved microstructure and texture from the softening process. In the present work, a Monte Carlo (MC) Potts model was used to model the primary recrystallization and grain growth in cold rolled single-phase Al alloy. The microstructural representation of two kinds of dislocation densities, statistically stored dislocations and geometrically necessary dislocations were quantified based on the ViscoPlastic Fast Fourier transform method. This representation was then introduced into the MC Potts model to identify the favorable sites for nucleation where orientation gradients and entanglements of dislocations are high. Additionally, in situ observations of non-isothermal microstructure evolution for single-phase aluminum alloy 1100 were made to validate the simulation. The influence of the texture inhomogeneity is analyzed from a theoretical point of view using an orientation distribution function for deformed and evolved texture.
Hardening Mechanisms of Silicon Nanospheres: A Molecular Dynamics Study
2011-05-01
in single oxide system 111 Figure 5.9 Dislocation motion in double oxide systems 112 x Figure 5.10 Dislocation response to incremental...addressed as no single dislocation loops were ever separated and no diffraction peaks indicative of the -Sn phase were observed. The load vs. displacement...as the diamond cubic structure has angle dependent covalent bonds. Therefore, other potentials have been 20 developed that model the
Size effects on plasticity and fatigue microstructure evolution in FCC single crystals
NASA Astrophysics Data System (ADS)
El-Awady, Jaafar Abbas
In aircraft structures and engines, fatigue damage is manifest in the progressive emergence of distributed surface cracks near locations of high stress concentrations. At the present time, reliable methods for prediction of fatigue crack initiation are not available, because the phenomenon starts at the atomic scale. Initiation of fatigue cracks is associated with the formation of Persistent slip bands (PSBs), which start at certain critical conditions inside metals with specific microstructure dimensions. The main objective of this research is to develop predictive computational capabilities for plasticity and fatigue damage evolution in finite volumes. In that attempt, a dislocation dynamics model that incorporates the influence of free and internal interfaces on dislocation motion is presented. The model is based on a self-consistent formulation of 3-D Parametric Dislocation Dynamics (PDD) with the Boundary Element method (BEM) to describe dislocation motion, and hence microscopic plastic flow in finite volumes. The developed computer models are bench-marked by detailed comparisons with the experimental data, developed at the Wright-Patterson Air Force Lab (WP-AFRL), by three dimensional large scale simulations of compression loading on micro-scale samples of FCC single crystals. These simulation results provide an understanding of plastic deformation of micron-size single crystals. The plastic flow characteristics as well as the stress-strain behavior of simulated micropillars are shown to be in general agreement with experimental observations. New size scaling aspects of plastic flow and work-hardening are identified through the use of these simulations. The flow strength versus the diameter of the micropillar follows a power law with an exponent equal to -0.69. A stronger correlation is observed between the flow strength and the average length of activated dislocation sources. This relationship is again a power law, with an exponent -0.85. Simulation results with and without the activation of cross-slip are compared. Discontinuous hardening is observed when cross-slip is included. Experimentally-observed size effects on plastic flow and work- hardening are consistent with a "weakest-link activation mechanism". In addition, the variations and periodicity of dislocation activation are analyzed using the Fast Fourier Transform (FFT). We then present models of localized plastic deformation inside Persistent Slip Band channels. We investigate the interaction between screw dislocations as they pass one another inside channel walls in copper. The model shows the mechanisms of dislocation bowing, dipole formation and binding, and dipole destruction as screw dislocations pass one another. The mechanism of (dipole passing) is assessed and interpreted in terms of the fatigue saturation stress. We also present results for the effects of the wall dipole structure on the dipole passing mechanism. The edge dislocation dipolar walls is seen to have an effect on the passing stress as well. It is shown that the passing stress in the middle of the channel is reduced by 11 to 23% depending on the initial configuration of the screw dislocations with respect to one another. Finally, from large scale simulations of the expansion process of the edge dipoles from the walls in the channel the screw dislocations in the PSB channels may not meet "symmetrically", i.e. precisely in the center of the channel but preferably a little on one or the other side. For this configuration the passing stress will be lowered which is in agreement to experimental observations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xiang; Chen, Youping; Xiong, Liming
2014-12-28
We present a molecular dynamics study of grain boundary (GB) resistance to dislocation-mediated slip transfer and phonon-mediated heat transfer in nanocrystalline silicon bicrystal. Three most stable 〈110〉 tilt GBs in silicon are investigated. Under mechanical loading, the nucleation and growth of hexagonal-shaped shuffle dislocation loops are reproduced. The resistances of different GBs to slip transfer are quantified through their constitutive responses. Results show that the Σ3 coherent twin boundary (CTB) in silicon exhibits significantly higher resistance to dislocation motion than the Σ9 GB in glide symmetry and the Σ19 GB in mirror symmetry. The distinct GB strengths are explained bymore » the atomistic details of the dislocation-GB interaction. Under thermal loading, based on a thermostat-induced heat pulse model, the resistances of the GBs to transient heat conduction in ballistic-diffusive regime are characterized. In contrast to the trend found in the dislocation-GB interaction in bicrystal models with different GBs, the resistances of the same three GBs to heat transfer are strikingly different. The strongest dislocation barrier Σ3 CTB is almost transparent to heat conduction, while the dislocation-permeable Σ9 and Σ19 GBs exhibit larger resistance to heat transfer. In addition, simulation results suggest that the GB thermal resistance not only depends on the GB energy but also on the detailed atomic structure along the GBs.« less
Dislocation filtering in GaN nanostructures.
Colby, Robert; Liang, Zhiwen; Wildeson, Isaac H; Ewoldt, David A; Sands, Timothy D; García, R Edwin; Stach, Eric A
2010-05-12
Dislocation filtering in GaN by selective area growth through a nanoporous template is examined both by transmission electron microscopy and numerical modeling. These nanorods grow epitaxially from the (0001)-oriented GaN underlayer through the approximately 100 nm thick template and naturally terminate with hexagonal pyramid-shaped caps. It is demonstrated that for a certain window of geometric parameters a threading dislocation growing within a GaN nanorod is likely to be excluded by the strong image forces of the nearby free surfaces. Approximately 3000 nanorods were examined in cross-section, including growth through 50 and 80 nm diameter pores. The very few threading dislocations not filtered by the template turn toward a free surface within the nanorod, exiting less than 50 nm past the base of the template. The potential active region for light-emitting diode devices based on these nanorods would have been entirely free of threading dislocations for all samples examined. A greater than 2 orders of magnitude reduction in threading dislocation density can be surmised from a data set of this size. A finite element-based implementation of the eigenstrain model was employed to corroborate the experimentally observed data and examine a larger range of potential nanorod geometries, providing a simple map of the different regimes of dislocation filtering for this class of GaN nanorods. These results indicate that nanostructured semiconductor materials are effective at eliminating deleterious extended defects, as necessary to enhance the optoelectronic performance and device lifetimes compared to conventional planar heterostructures.
NASA Astrophysics Data System (ADS)
Jackson, I.; Kennett, B. L.; Faul, U. H.
2009-12-01
In parallel with cooperative developments in seismology during the past 25 years, there have been phenomenal advances in mineral/rock physics making laboratory-based interpretation of seismological models increasingly useful. However, the assimilation of diverse experimental data into a physically sound framework for seismological application is not without its challenges as demonstrated by two examples. In the first example, that of equation-of-state and elasticity data, an appropriate, thermodynamically consistent framework involves finite-strain expansion of the Helmholz free energy incorporating the Debye approximation to the lattice vibrational energy, as advocated by Stixrude and Lithgow-Bertelloni. Within this context, pressure, specific heat and entropy, thermal expansion, elastic constants and their adiabatic and isothermal pressure derivatives are all calculable without further approximation in an internally consistent manner. The opportunities and challenges of assimilating a wide range of sometimes marginally incompatible experimental data into a single model of this type will be demonstrated with reference to MgO, unquestionably the most thoroughly studied mantle mineral. A neighbourhood-algorithm inversion has identified a broadly satisfactory model, but uncertainties in key parameters associated particularly with pressure calibration remain sufficiently large as to preclude definitive conclusions concerning lower-mantle chemical composition and departures from adiabaticity. The second example is the much less complete dataset concerning seismic-wave dispersion and attenuation emerging from low-frequency forced-oscillation experiments. Significant progress has been made during the past decade towards an understanding of high-temperature, micro-strain viscoelastic relaxation in upper-mantle materials, especially as regards the roles of oscillation period, temperature, grain size and melt fraction. However, the influence of other potentially important variables such as dislocation density and the concentration of structurally bound water remain as targets for ongoing research. The state-of-the-art will be illustrated by highlighting the challenge in reconciling the substantial and growing amount of experimental data concerning grain-size sensitive relaxation in fine-grained olivine with micro-mechanical models of grain-boundary sliding.
Huayamave, Victor; Rose, Christopher; Serra, Sheila; Jones, Brendan; Divo, Eduardo; Moslehy, Faissal; Kassab, Alain J; Price, Charles T
2015-07-16
A physics-based computational model of neonatal Developmental Dysplasia of the Hip (DDH) following treatment with the Pavlik Harness (PV) was developed to obtain muscle force contribution in order to elucidate biomechanical factors influencing the reduction of dislocated hips. Clinical observation suggests that reduction occurs in deep sleep involving passive muscle action. Consequently, a set of five (5) adductor muscles were identified as mediators of reduction using the PV. A Fung/Hill-type model was used to characterize muscle response. Four grades (1-4) of dislocation were considered, with one (1) being a low subluxation and four (4) a severe dislocation. A three-dimensional model of the pelvis-femur lower limb of a representative 10 week-old female was generated based on CT-scans with the aid of anthropomorphic scaling of anatomical landmarks. The model was calibrated to achieve equilibrium at 90° flexion and 80° abduction. The hip was computationally dislocated according to the grade under investigation, the femur was restrained to move in an envelope consistent with PV restraints, and the dynamic response under passive muscle action and the effect of gravity was resolved. Model results with an anteversion angle of 50° show successful reduction Grades 1-3, while Grade 4 failed to reduce with the PV. These results are consistent with a previous study based on a simplified anatomically-consistent synthetic model and clinical reports of very low success of the PV for Grade 4. However our model indicated that it is possible to achieve reduction of Grade 4 dislocation by hyperflexion and the resultant external rotation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Masterlark, Timothy
2003-01-01
Dislocation models can simulate static deformation caused by slip along a fault. These models usually take the form of a dislocation embedded in a homogeneous, isotropic, Poisson-solid half-space (HIPSHS). However, the widely accepted HIPSHS assumptions poorly approximate subduction zone systems of converging oceanic and continental crust. This study uses three-dimensional finite element models (FEMs) that allow for any combination (including none) of the HIPSHS assumptions to compute synthetic Green's functions for displacement. Using the 1995 Mw = 8.0 Jalisco-Colima, Mexico, subduction zone earthquake and associated measurements from a nearby GPS array as an example, FEM-generated synthetic Green's functions are combined with standard linear inverse methods to estimate dislocation distributions along the subduction interface. Loading a forward HIPSHS model with dislocation distributions, estimated from FEMs that sequentially relax the HIPSHS assumptions, yields the sensitivity of predicted displacements to each of the HIPSHS assumptions. For the subduction zone models tested and the specific field situation considered, sensitivities to the individual Poisson-solid, isotropy, and homogeneity assumptions can be substantially greater than GPS. measurement uncertainties. Forward modeling quantifies stress coupling between the Mw = 8.0 earthquake and a nearby Mw = 6.3 earthquake that occurred 63 days later. Coulomb stress changes predicted from static HIPSHS models cannot account for the 63-day lag time between events. Alternatively, an FEM that includes a poroelastic oceanic crust, which allows for postseismic pore fluid pressure recovery, can account for the lag time. The pore fluid pressure recovery rate puts an upper limit of 10-17 m2 on the bulk permeability of the oceanic crust. Copyright 2003 by the American Geophysical Union.
Fan, Haidong; Aubry, Sylvie; Arsenlis, Athanasios; ...
2015-04-13
The mechanical response of micro-twinned polycrystalline magnesium was studied through three-dimensional discrete dislocation dynamics (DDD). A systematic interaction model between dislocations and (1012) tension twin boundaries (TBs) was proposed and introduced into the DDD framework. In addition, a nominal grain boundary (GB) model agreeing with experimental results was also introduced to mimic the GB’s barrier effect. The current simulation results show that TBs act as a strong obstacle to gliding dislocations, which contributes significantly to the hardening behavior of magnesium. On the other hand, the deformation accommodated by twinning plays a softening role. Therefore, the concave shape of the Mgmore » stress-strain curve results from the competition between dislocation-TB induced hardening and twinning deformation induced softening. At low strain levels, twinning deformation induced softening dominates and a decreasing hardening rate is observed in Stage-I. In Stage-II, both the hardening and softening effects decline, but twinning deformation induced softening declines faster, which leads to an increasing hardening rate.« less
The Correlation Between Dislocations and Vacancy Defects Using Positron Annihilation Spectroscopy
NASA Astrophysics Data System (ADS)
Pang, Jinbiao; Li, Hui; Zhou, Kai; Wang, Zhu
2012-07-01
An analysis program for positron annihilation lifetime spectra is only applicable to isolated defects, but is of no use in the presence of defective correlations. Such limitations have long caused problems for positron researchers in their studies of complicated defective systems. In order to solve this problem, we aim to take a semiconductor material, for example, to achieve a credible average lifetime of single crystal silicon under plastic deformation at different temperatures using positron life time spectroscopy. By establishing reasonable positron trapping models with defective correlations and sorting out four lifetime components with multiple parameters, as well as their respective intensities, information is obtained on the positron trapping centers, such as the positron trapping rates of defects, the density of the dislocation lines and correlation between the dislocation lines, and the vacancy defects, by fitting with the average lifetime with the aid of Matlab software. These results give strong grounds for the existence of dislocation-vacancy correlation in plastically deformed silicon, and lay a theoretical foundation for the analysis of positron lifetime spectra when the positron trapping model involves dislocation-related defects.
Metal viscoplasticity with two-temperature thermodynamics and two dislocation densities
NASA Astrophysics Data System (ADS)
Roy Chowdhury, Shubhankar; Kar, Gurudas; Roy, Debasish; Reddy, J. N.
2018-03-01
Posed within the two-temperature theory of non-equilibrium thermodynamics, we propose a model for thermoviscoplastic deformation in metals. We incorporate the dynamics of dislocation densities-mobile and forest—that play the role of internal state variables in the formulation. The description based on two temperatures appears naturally when one recognizes that the thermodynamic system undergoing viscoplastic deformation is composed of two weakly interacting subsystems, viz. a kinetic-vibrational subsystem of the vibrating atomic lattices and a configurational subsystem of the slower degrees of freedom relating to defect motion, each with its own temperature. Starting with a basic model that involves only homogeneous deformation, a three-dimensional model for inhomogeneous viscoplasticity applicable to finite deformation is charted out in an overstress driven viscoplastic deformation framework. The model shows how the coupled evolutions of mobile and forest dislocation densities, which are critically influenced by the dynamics of configurational temperature, govern the strength and ductility of the metal. Unlike most contemporary models, the current proposal also affords a prediction of certain finer details as observed in the experimental data on stress-strain behaviour of metals and this in turn enhances the understanding of the evolving and interacting dislocation densities.
NASA Astrophysics Data System (ADS)
Song, Yifei; Kujofsa, Tedi; Ayers, John E.
2018-07-01
In order to evaluate various buffer layers for metamorphic devices, threading dislocation densities have been calculated for uniform composition In x Ga1- x As device layers deposited on GaAs (001) substrates with an intermediate graded buffer layer using the L MD model, where L MD is the average length of misfit dislocations. On this basis, we compare the relative effectiveness of buffer layers with linear, exponential, and S-graded compositional profiles. In the case of a 2 μm thick buffer layer linear grading results in higher threading dislocation densities in the device layer compared to either exponential or S-grading. When exponential grading is used, lower threading dislocation densities are obtained with a smaller length constant. In the S-graded case, lower threading dislocation densities result when a smaller standard deviation parameter is used. As the buffer layer thickness is decreased from 2 μm to 0.1 μm all of the above effects are diminished, and the absolute threading dislocation densities increase.
[Experimental study of dislocations of the scapulohumeral joint].
Gagey, O; Gagey, N; Boisrenoult, P; Hue, E; Mazas, F
1993-01-01
One may produce easily an experimental dislocation (anterior or erecta) of the scapulohumeral joint. The authors discuss, the experimental model then they describe the anatomical lesion produced through the experimental dislocation of 32 shoulders and the correlation observed after RMI assessment of 24 recurrent dislocations. The tear of the inferior glenohumeral ligament is constant, in 20 per cent of the cases the tear lies on the anterior aspect of the glenoid, in the other cases the tear was found on its humeral side. Whatever the situation of the tear of the inferior glenohumeral ligament, the lesion of the labrum was constant. The erecta dislocation was produced with the same movement but with a particular tear of the glenohumeral ligament: the tear was longitudinal. The experimental dislocation needs, in 7 or 8 cases, a desinsertion of the deep aspect of the rotator cuff. The Hill Sachs lesion occurs when the humerus falls along the chest wall after the dislocation. In 50 per cent of the patients, MRI shows modifications of the cuff which are compatible with our results. Hills Sachs lesions appear to be constant after MRI examination.
NASA Astrophysics Data System (ADS)
Chang, Hyung-Jun; Segurado, Javier; Molina-Aldareguía, Jon M.; Soler, Rafael; LLorca, Javier
2016-03-01
The mechanical behavior in compression of [1 1 1] LiF micropillars with diameters in the range 0.5 μm to 2.0 μm was analyzed by means of discrete dislocation dynamics at ambient and elevated temperature. The dislocation velocity was obtained from the Peach-Koehler force acting on the dislocation segments from a thermally-activated model that accounted for the influence of temperature on the lattice resistance. A size effect of the type ‘smaller is stronger’ was predicted by the simulations, which was in quantitative agreement with previous experimental results by the authors [1]. The contribution of the different physical deformation mechanisms to the size effect (namely, nucleation of dislocations, dislocation exhaustion and forest hardening) could be ascertained from the simulations and the dominant deformation mode could be assessed as a function of the specimen size and temperature. These results shed light into the complex interaction among size, lattice resistance and dislocation mobility in the mechanical behavior of μm-sized single crystals.
McMahon, Patrick J; Chow, Stephen; Sciaroni, Laura; Yang, Bruce Y; Lee, Thay Q
2003-01-01
A novel cadaveric model for anterior-inferior shoulder dislocation using forcible apprehension positioning is presented. This model simulates an in vivo mechanism and yields capsulolabral lesions. The scapulae of 14 cadaveric entire upper limbs (82 +/- 9 years, mean +/- standard deviation) were each rigidly fixed to a custom shoulder-testing device. A pneumatic system was used with pulleys and cables to simulate the rotator cuff and the deltoid muscles (anterior and middle portions). The glenohumeral joint was then positioned in the apprehension position of abduction, external rotation, and horizontal abduction. A 6-degree-of-freedom load cell (Assurance Technologies, Garner, North Carolina) measured the joint reaction force that was then resolved into three orthogonal components of compression force, anteriorly directed force, and superiorly directed force. With the use of a thrust bearing, the humerus was moved along a rail with a servomotor-controlled system at 50 mm/s that resulted in horizontal abduction. Force that developed passively in the pectoralis major muscle was recorded with an independent uniaxial load cell. Each of the glenohumeral joints dislocated anterior-inferior, six with avulsion of the capsulolabrum from the anterior-inferior glenoid bone and eight with capsulolabral stretching. Pectoralis major muscle force as well as the joint reaction force increased with horizontal abduction until dislocation. At dislocation, the magnitude of the pectoralis major muscle force, 609.6 N +/- 65.2 N was similar to the compression force, 569.6 N +/- 37.8 N. A cadaveric model yielded an anterior dislocation with a mechanism of forcible apprehension positioning when the appropriate shoulder muscles were simulated and a passive pectoralis major muscle was included. Capsulolabral lesions resulted, similar to those observed in vivo.
Effect of oxygen on dislocation multiplication in silicon crystals
NASA Astrophysics Data System (ADS)
Fukushima, Wataru; Harada, Hirofumi; Miyamura, Yoshiji; Imai, Masato; Nakano, Satoshi; Kakimoto, Koichi
2018-03-01
This paper aims to clarify the effect of oxygen on dislocation multiplication in silicon single crystals grown by the Czochralski and floating zone methods using numerical analysis. The analysis is based on the Alexander-Haasen-Sumino model and involves oxygen diffusion from the bulk to the dislocation cores during the annealing process in a furnace. The results show that after the annealing process, the dislocation density in silicon single crystals decreases as a function of oxygen concentration. This decrease can be explained by considering the unlocking stress caused by interstitial oxygen atoms. When the oxygen concentration is 7.5 × 1017 cm-3, the total stress is about 2 MPa and the unlocking stress is less than 1 MPa. As the oxygen concentration increases, the unlocking stress also increases; however, the dislocation velocity decreases.
Dislocation nucleation facilitated by atomic segregation
NASA Astrophysics Data System (ADS)
Zou, Lianfeng; Yang, Chaoming; Lei, Yinkai; Zakharov, Dmitri; Wiezorek, Jörg M. K.; Su, Dong; Yin, Qiyue; Li, Jonathan; Liu, Zhenyu; Stach, Eric A.; Yang, Judith C.; Qi, Liang; Wang, Guofeng; Zhou, Guangwen
2018-01-01
Surface segregation--the enrichment of one element at the surface, relative to the bulk--is ubiquitous to multi-component materials. Using the example of a Cu-Au solid solution, we demonstrate that compositional variations induced by surface segregation are accompanied by misfit strain and the formation of dislocations in the subsurface region via a surface diffusion and trapping process. The resulting chemically ordered surface regions acts as an effective barrier that inhibits subsequent dislocation annihilation at free surfaces. Using dynamic, atomic-scale resolution electron microscopy observations and theory modelling, we show that the dislocations are highly active, and we delineate the specific atomic-scale mechanisms associated with their nucleation, glide, climb, and annihilation at elevated temperatures. These observations provide mechanistic detail of how dislocations nucleate and migrate at heterointerfaces in dissimilar-material systems.
Stoica, G. M.; Stoica, A. D.; Miller, M. K.; ...
2014-10-10
Nanostructured ferritic alloys (NFA) are a new class of ultrafine-grained oxide dispersion-strengthened steels, promising for service in extreme environments of high temperature and high irradiation in the next-generation of nuclear reactors. This is owing to the remarkable stability of their complex microstructures containing a high density of Y-Ti-O nanoclusters within grains and along the grain boundaries. While nanoclusters have been recognized to be the primary contributor to the exceptional resistance to irradiation and high-temperature creep, very little is known about the mechanical roles of the polycrystalline grains that constitute the bulk ferritic matrix. Here we report the mesoscale characterization ofmore » anisotropic responses of the ultrafine NFA grains to tensile stresses at various temperatures using the state-of-the-art in situ neutron diffraction. We show the first experimental determination of temperature-dependent single-crystal elastic constants for the NFA, and reveal a strong temperature-dependent elastic anisotropy due to a sharp decrease in the shear stiffness constant [c'=(c_11-c_12)/2] when a critical temperature ( T_c ) is approached, indicative of elastic softening and instability of the ferritic matrix. We also show, from anisotropy-induced intergranular strain/stress accumulations, that a common dislocation slip mechanism operates at the onset of yielding for low temperatures, while there is a deformation crossover from low-temperature lattice hardening to high temperature lattice softening in response to extensive plastic deformation.« less
NASA Astrophysics Data System (ADS)
Saroj, Rajendra K.; Dhar, S.
2016-08-01
ZnO epitaxial layers are grown on c-plane GaN (p-type)/sapphire substrates using a chemical vapor deposition technique. Structural and luminescence properties of these layers have been studied systematically as a function of various growth parameters. It has been found that high quality ZnO epitaxial layers can indeed be grown on GaN films at certain optimum conditions. It has also been observed that the growth temperature and growth time have distinctly different influences on the screw and edge dislocation densities. While the growth temperature affects the density of edge dislocations more strongly than that of screw dislocations, an increase of growth duration leads to a rapid drop in the density of screw dislocation, whereas the density of edge dislocation hardly changes. Densities of both edge and screw dislocations are found to be minimum at a growth temperature of 500 °C. Interestingly, the defect related visible luminescence intensity also shows a minimum at the same temperature. Our study indeed suggests that the luminescence feature is related to threading edge dislocation. A continuum percolation model, where the defects responsible for visible luminescence are considered to be formed under the influence of the strain field surrounding the threading edge dislocations, is proposed. The theory explains the observed variation of the visible luminescence intensity as a function of the concentration of the dislocations.
NASA Astrophysics Data System (ADS)
Ren, Sicong; Mazière, Matthieu; Forest, Samuel; Morgeneyer, Thilo F.; Rousselier, Gilles
2017-12-01
One of the most successful models for describing the Portevin-Le Chatelier effect in engineering applications is the Kubin-Estrin-McCormick model (KEMC). In the present work, the influence of dynamic strain ageing on dynamic recovery due to dislocation annihilation is introduced in order to improve the KEMC model. This modification accounts for additional strain hardening rate due to limited dislocation annihilation by the diffusion of solute atoms and dislocation pinning at low strain rate and/or high temperature. The parameters associated with this novel formulation are identified based on tensile tests for a C-Mn steel at seven temperatures ranging from 20 °C to 350 °C. The validity of the model and the improvement compared to existing models are tested using 2D and 3D finite element simulations of the Portevin-Le Chatelier effect in tension.
NASA Technical Reports Server (NTRS)
Saether, Erik; Hochhalter, Jacob D.; Glaessgen, Edward H.
2012-01-01
A multiscale modeling methodology that combines the predictive capability of discrete dislocation plasticity and the computational efficiency of continuum crystal plasticity is developed. Single crystal configurations of different grain sizes modeled with periodic boundary conditions are analyzed using discrete dislocation plasticity (DD) to obtain grain size-dependent stress-strain predictions. These relationships are mapped into crystal plasticity parameters to develop a multiscale DD/CP model for continuum level simulations. A polycrystal model of a structurally-graded microstructure is developed, analyzed and used as a benchmark for comparison between the multiscale DD/CP model and the DD predictions. The multiscale DD/CP model follows the DD predictions closely up to an initial peak stress and then follows a strain hardening path that is parallel but somewhat offset from the DD predictions. The difference is believed to be from a combination of the strain rate in the DD simulation and the inability of the DD/CP model to represent non-monotonic material response.
Displacement field for an edge dislocation in a layered half-space
Savage, J.C.
1998-01-01
The displacement field for an edge dislocation in an Earth model consisting of a layer welded to a half-space of different material is found in the form of a Fourier integral following the method given by Weeks et al. [1968]. There are four elementary solutions to be considered: the dislocation is either in the half-space or the layer and the Burgers vector is either parallel or perpendicular to the layer. A general two-dimensional solution for a dip-slip faulting or dike injection (arbitrary dip) can be constructed from a superposition of these elementary solutions. Surface deformations have been calculated for an edge dislocation located at the interface with Burgers vector inclined 0??, 30??, 60??, and 90?? to the interface for the case where the rigidity of the layer is half of that of the half-space and the Poisson ratios are the same. Those displacement fields have been compared to the displacement fields generated by similarly situated edge dislocations in a uniform half-space. The surface displacement field produced by the edge dislocation in the layered half-space is very similar to that produced by an edge dislocation at a different depth in a uniform half-space. In general, a low-modulus (high-modulus) layer causes the half-space equivalent dislocation to appear shallower (deeper) than the actual dislocation in the layered half-space.
ERIC Educational Resources Information Center
Hollenbeck, Kevin
This study examined the characteristics of dislocated workers' wage profiles upon reemployment. In particular, it related these profiles to the model developed by Mincer and Ofek (1982). An inference from this model was that workers recovered wage losses relatively rapidly. Explanations for a steeply sloped reentry wage profile were as follows:…
Effects of Grain Size and Twin Layer Thickness on Crack Initiation at Twin Boundaries.
Zhou, Piao; Zhou, Jianqiu; Zhu, Yongwei; Jiang, E; Wang, Zikun
2018-04-01
A theoretical model to explore the effect on crack initiation of nanotwinned materials was proposed based on the accumulation of dislocations at twin boundaries. First, a critical cracking initiation condition was established considering the number of dislocations pill-up at TBs, grain size and twin layer thickness, and a semi-quantitative relationship between the crystallographic orientation and the stacking fault energy was built. In addition, the number of dislocations pill-up was described by introducing the theory of strain gradient. Based on this model, the effects of grain size and twin lamellae thickness on dislocation density and crack initiation at twin boundaries were also discussed. The simulation results demonstrated that the crack initiation resistance can be improved by decreasing the grain size and increasing the twin lamellae, which keeps in agreement with recent experimental findings reported in the literature.
NASA Astrophysics Data System (ADS)
Pei, Zongrui; Eisenbach, Markus
2017-06-01
Dislocations are among the most important defects in determining the mechanical properties of both conventional alloys and high-entropy alloys. The Peierls-Nabarro model supplies an efficient pathway to their geometries and mobility. The difficulty in solving the integro-differential Peierls-Nabarro equation is how to effectively avoid the local minima in the energy landscape of a dislocation core. Among the other methods to optimize the dislocation core structures, we choose the algorithm of Particle Swarm Optimization, an algorithm that simulates the social behaviors of organisms. By employing more particles (bigger swarm) and more iterative steps (allowing them to explore for longer time), the local minima can be effectively avoided. But this would require more computational cost. The advantage of this algorithm is that it is readily parallelized in modern high computing architecture. We demonstrate the performance of our parallelized algorithm scales linearly with the number of employed cores.
Atomistic-Dislocation Dynamics Modelling of Fatigue Microstructure and Crack Initiation
2013-01-01
experimental) Brown (Upper Limit’) DD Results Mughrabi & Pschenitzka (Lower Limit) y = 50 nm d, = 1.2 |lm M I 4 Simulations of... Mughrabi . Introduction to the viewpoint set on: Surface effects in cyclic deformation and fatigue. Scr. Metall. Mater., 26(10): 1499-1504, 1992. [3] E...associated with dislocation cores. Acta Materialia, 53:13131321, 2005. [13] H. Mughrabi . The long-range internal stress field in the dislocation wall
The role of frictional stress in misfit dislocation generation
NASA Technical Reports Server (NTRS)
Jesser, William A.
1992-01-01
An evaluation is undertaken of the implications of the friction and frictionless models of misfit dislocation generation in view of: (1) experimental measurements of the critical thickness above which misfit dislocation generation occurs; and (2) the amount of strain relaxation that occurs as a function of layer thickness, time, and temperature. Some of the frictional force terms that were expected to exhibit a strong temperature dependence are shown to be independent of temperature.
NASA Astrophysics Data System (ADS)
Lodh, Arijit; Tak, Tawqeer Nasir; Prakash, Aditya; Guruprasad, P. J.; Hutchinson, Christopher; Samajdar, Indradev
2017-11-01
Interrupted tensile tests were coupled with ex situ measurements of residual stress and microtexture. The residual stress quantification involved measurements of six independent Laue spots and conversion of the interplanar spacings to the residual stress tensor. A clear orientation-dependent residual stress evolution emerged from the experiments and the numerical simulations. For the orientations undergoing negligible changes in ρ GND (density of geometrically necessary dislocation), the residual stress developments appeared to be governed by the elastic stiffness of the grain clusters. For the others, the evolution of the residual stress and ρ GND exhibited a clear orientation-dependent scaling.
Effect of orientation on deformation behavior of Fe nanowires: A molecular dynamics study
NASA Astrophysics Data System (ADS)
Sainath, G.; Srinivasan, V. S.; Choudhary, B. K.; Mathew, M. D.; Jayakumar, T.
2014-04-01
Molecular dynamics simulations have been carried out to study the effect of crystal orientation on tensile deformation behaviour of single crystal BCC Fe nanowires at 10 K. Two nanowires with an initial orientation of <100>/{100} and <110>/{111} have been chosen for this study. The simulation results show that the deformation mechanisms varied with crystal orientation. The nanowire with an initial orientation of <100>/{100} deforms predominantly by twinning mechanism, whereas the nanowire oriented in <110>/{111}, deforms by dislocation plasticity. In addition, the single crystal oriented in <110>/{111} shows higher strength and elastic modulus than <100>/{100} oriented nanowire.
NASA Astrophysics Data System (ADS)
Gryzunova, N. N.; Vikarchuk, A. A.; Tyur'kov, M. N.
2016-10-01
The defect structure of the electrolytic copper coatings formed upon mechanical activation of a cathode is described. These coatings are shown to have a fragmented structure containing disclination-type defects, namely, terminating dislocation, disclination and twin boundaries; partial disclinations, misorientation bands; and twin layers. They have both growth and deformation origins. The mechanisms of formation of the structural defects are discussed. It is experimentally proved that part of the elastic energy stored in the crystal volume during electrocrystallization can be converted into surface energy. As a result, catalytically active materials with a large developed surface can be synthesized.