Gabor Jets for Clutter Rejection in Infrared Imagery
2004-12-01
application of a suitable model like Gabor Jets in facial recognition is well motivated by the observation that some low level, spatial-frequency...set. This is a simplified form of the Gabor Jet procedure and will not require any elastic graph matching procedures used in facial recognition . Another...motivation for employing Gabor jets as a post processing clutter rejecter is attributed to the great deal of research in facial recognition , invariant
Matching Extension in Regular Graphs
1989-01-01
Plummer, Matching Theory, Ann. Discrete Math . 29, North- Holland, Amsterdam, 1986. [101 , The matching structure of graphs: some recent re- sults...maximums d’un graphe, These, Dr. troisieme cycle, Univ. Grenoble, 1978. [12 ] D. Naddef and W.R. Pulleyblank, Matching in regular graphs, Discrete Math . 34...1981, 283-291. [13 1 M.D. Plummer, On n-extendable graphs, Discrete Math . 31, 1980, 201-210. . [ 141 ,Matching extension in planar graphs IV
Caetano, Tibério S; McAuley, Julian J; Cheng, Li; Le, Quoc V; Smola, Alex J
2009-06-01
As a fundamental problem in pattern recognition, graph matching has applications in a variety of fields, from computer vision to computational biology. In graph matching, patterns are modeled as graphs and pattern recognition amounts to finding a correspondence between the nodes of different graphs. Many formulations of this problem can be cast in general as a quadratic assignment problem, where a linear term in the objective function encodes node compatibility and a quadratic term encodes edge compatibility. The main research focus in this theme is about designing efficient algorithms for approximately solving the quadratic assignment problem, since it is NP-hard. In this paper we turn our attention to a different question: how to estimate compatibility functions such that the solution of the resulting graph matching problem best matches the expected solution that a human would manually provide. We present a method for learning graph matching: the training examples are pairs of graphs and the 'labels' are matches between them. Our experimental results reveal that learning can substantially improve the performance of standard graph matching algorithms. In particular, we find that simple linear assignment with such a learning scheme outperforms Graduated Assignment with bistochastic normalisation, a state-of-the-art quadratic assignment relaxation algorithm.
Sketch Matching on Topology Product Graph.
Liang, Shuang; Luo, Jun; Liu, Wenyin; Wei, Yichen
2015-08-01
Sketch matching is the fundamental problem in sketch based interfaces. After years of study, it remains challenging when there exists large irregularity and variations in the hand drawn sketch shapes. While most existing works exploit topology relations and graph representations for this problem, they are usually limited by the coarse topology exploration and heuristic (thus suboptimal) similarity metrics between graphs. We present a new sketch matching method with two novel contributions. We introduce a comprehensive definition of topology relations, which results in a rich and informative graph representation of sketches. For graph matching, we propose topology product graph that retains the full correspondence for matching two graphs. Based on it, we derive an intuitive sketch similarity metric whose exact solution is easy to compute. In addition, the graph representation and new metric naturally support partial matching, an important practical problem that received less attention in the literature. Extensive experimental results on a real challenging dataset and the superior performance of our method show that it outperforms the state-of-the-art.
Top-k similar graph matching using TraM in biological networks.
Amin, Mohammad Shafkat; Finley, Russell L; Jamil, Hasan M
2012-01-01
Many emerging database applications entail sophisticated graph-based query manipulation, predominantly evident in large-scale scientific applications. To access the information embedded in graphs, efficient graph matching tools and algorithms have become of prime importance. Although the prohibitively expensive time complexity associated with exact subgraph isomorphism techniques has limited its efficacy in the application domain, approximate yet efficient graph matching techniques have received much attention due to their pragmatic applicability. Since public domain databases are noisy and incomplete in nature, inexact graph matching techniques have proven to be more promising in terms of inferring knowledge from numerous structural data repositories. In this paper, we propose a novel technique called TraM for approximate graph matching that off-loads a significant amount of its processing on to the database making the approach viable for large graphs. Moreover, the vector space embedding of the graphs and efficient filtration of the search space enables computation of approximate graph similarity at a throw-away cost. We annotate nodes of the query graphs by means of their global topological properties and compare them with neighborhood biased segments of the datagraph for proper matches. We have conducted experiments on several real data sets, and have demonstrated the effectiveness and efficiency of the proposed method
A path following algorithm for the graph matching problem.
Zaslavskiy, Mikhail; Bach, Francis; Vert, Jean-Philippe
2009-12-01
We propose a convex-concave programming approach for the labeled weighted graph matching problem. The convex-concave programming formulation is obtained by rewriting the weighted graph matching problem as a least-square problem on the set of permutation matrices and relaxing it to two different optimization problems: a quadratic convex and a quadratic concave optimization problem on the set of doubly stochastic matrices. The concave relaxation has the same global minimum as the initial graph matching problem, but the search for its global minimum is also a hard combinatorial problem. We, therefore, construct an approximation of the concave problem solution by following a solution path of a convex-concave problem obtained by linear interpolation of the convex and concave formulations, starting from the convex relaxation. This method allows to easily integrate the information on graph label similarities into the optimization problem, and therefore, perform labeled weighted graph matching. The algorithm is compared with some of the best performing graph matching methods on four data sets: simulated graphs, QAPLib, retina vessel images, and handwritten Chinese characters. In all cases, the results are competitive with the state of the art.
Matching Extension and Connectivity in Graphs. 1. Introduction and Terminology,
1986-01-01
minimal elementary bipartite graphs, J. Combin. Theory Ser. B 23, 1977, 127-138. 1986. Matching Theory, Ann. Discrete Math ., North-Holland, Amsterdam, 1986...to appear). M. D. PLUMMER 1980. On n-extendable graphs, Discrete Math . 31, 1980, 201-210. 1985. A theorem on matchings in the plane, Conference in...memory of Gabriel Dirac, Ann. Discrete Math ., North-Holland, Amsterdam, to appear. 1986a. Matching extension in bipartite graphs, preprint, 1986. 1986b
ERIC Educational Resources Information Center
Kyer, Ben L.; Maggs, Gary E.
1995-01-01
Utilizes two-dimensional price and output graphs to demonstrate the way that the price-level elasticity of aggregate demand affects alternative monetary policy rules designed to cope with random aggregate supply shocks. Includes graphs illustrating price-level, real Gross Domestic Product (GDP), nominal GDP, and nominal money supply targeting.…
Path similarity skeleton graph matching.
Bai, Xiang; Latecki, Longin Jan
2008-07-01
This paper presents a novel framework to for shape recognition based on object silhouettes. The main idea is to match skeleton graphs by comparing the shortest paths between skeleton endpoints. In contrast to typical tree or graph matching methods, we completely ignore the topological graph structure. Our approach is motivated by the fact that visually similar skeleton graphs may have completely different topological structures. The proposed comparison of shortest paths between endpoints of skeleton graphs yields correct matching results in such cases. The skeletons are pruned by contour partitioning with Discrete Curve Evolution, which implies that the endpoints of skeleton branches correspond to visual parts of the objects. The experimental results demonstrate that our method is able to produce correct results in the presence of articulations, stretching, and occlusion.
Composing Data Parallel Code for a SPARQL Graph Engine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castellana, Vito G.; Tumeo, Antonino; Villa, Oreste
Big data analytics process large amount of data to extract knowledge from them. Semantic databases are big data applications that adopt the Resource Description Framework (RDF) to structure metadata through a graph-based representation. The graph based representation provides several benefits, such as the possibility to perform in memory processing with large amounts of parallelism. SPARQL is a language used to perform queries on RDF-structured data through graph matching. In this paper we present a tool that automatically translates SPARQL queries to parallel graph crawling and graph matching operations. The tool also supports complex SPARQL constructs, which requires more than basicmore » graph matching for their implementation. The tool generates parallel code annotated with OpenMP pragmas for x86 Shared-memory Multiprocessors (SMPs). With respect to commercial database systems such as Virtuoso, our approach reduces memory occupation due to join operations and provides higher performance. We show the scaling of the automatically generated graph-matching code on a 48-core SMP.« less
Extending Matchings in Graphs: A Survey
1990-01-01
private communication from, 1989. [11] D.A. Holton, D. Lou and M.D. Plummer, On the 2-extendability of planar graphs, Discrete Math ., (to appear). [12...222. [231 L. Lovasz and M.D. Plummer, Matching Theory, Ann. Discrete Math . 29, North- Holland, Amsterdam, 1986. [241 W.S. Massey, Algebraic Topology...Plummer, On n-extendable graphs, Discrete Math . 31, 1980, 201-210. [341 , Toughness and matching extension in graphs, Discrete Math . 72, 1988, 311-320
A graph theoretic approach to scene matching
NASA Technical Reports Server (NTRS)
Ranganath, Heggere S.; Chipman, Laure J.
1991-01-01
The ability to match two scenes is a fundamental requirement in a variety of computer vision tasks. A graph theoretic approach to inexact scene matching is presented which is useful in dealing with problems due to imperfect image segmentation. A scene is described by a set of graphs, with nodes representing objects and arcs representing relationships between objects. Each node has a set of values representing the relations between pairs of objects, such as angle, adjacency, or distance. With this method of scene representation, the task in scene matching is to match two sets of graphs. Because of segmentation errors, variations in camera angle, illumination, and other conditions, an exact match between the sets of observed and stored graphs is usually not possible. In the developed approach, the problem is represented as an association graph, in which each node represents a possible mapping of an observed region to a stored object, and each arc represents the compatibility of two mappings. Nodes and arcs have weights indicating the merit or a region-object mapping and the degree of compatibility between two mappings. A match between the two graphs corresponds to a clique, or fully connected subgraph, in the association graph. The task is to find the clique that represents the best match. Fuzzy relaxation is used to update the node weights using the contextual information contained in the arcs and neighboring nodes. This simplifies the evaluation of cliques. A method of handling oversegmentation and undersegmentation problems is also presented. The approach is tested with a set of realistic images which exhibit many types of sementation errors.
Matching Extension and the Genus of a Graph,
1986-04-01
genus and the cardinality of the maximum matchings of a graph, Discrete Math . 25, 1979, 149-156. oQORE 1967. The Four-Color Problem, Academic Press...Press, New York, 1969, 287-293. M D PLUMMER 1980. On n-extendable graphs, Discrete Math . 31, 1980, 201-210. 1985. A theorem on matchings in the plane
Azad, Ariful; Buluç, Aydın
2016-05-16
We describe parallel algorithms for computing maximal cardinality matching in a bipartite graph on distributed-memory systems. Unlike traditional algorithms that match one vertex at a time, our algorithms process many unmatched vertices simultaneously using a matrix-algebraic formulation of maximal matching. This generic matrix-algebraic framework is used to develop three efficient maximal matching algorithms with minimal changes. The newly developed algorithms have two benefits over existing graph-based algorithms. First, unlike existing parallel algorithms, cardinality of matching obtained by the new algorithms stays constant with increasing processor counts, which is important for predictable and reproducible performance. Second, relying on bulk-synchronous matrix operations,more » these algorithms expose a higher degree of parallelism on distributed-memory platforms than existing graph-based algorithms. We report high-performance implementations of three maximal matching algorithms using hybrid OpenMP-MPI and evaluate the performance of these algorithm using more than 35 real and randomly generated graphs. On real instances, our algorithms achieve up to 200 × speedup on 2048 cores of a Cray XC30 supercomputer. Even higher speedups are obtained on larger synthetically generated graphs where our algorithms show good scaling on up to 16,384 cores.« less
Jealousy Graphs: Structure and Complexity of Decentralized Stable Matching
2013-01-01
REPORT Jealousy Graphs: Structure and Complexity of Decentralized Stable Matching 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: The stable matching...Franceschetti 858-822-2284 3. DATES COVERED (From - To) Standard Form 298 (Rev 8/98) Prescribed by ANSI Std. Z39.18 - Jealousy Graphs: Structure and...market. Using this structure, we are able to provide a ner analysis of the complexity of a subclass of decentralized matching markets. Jealousy
2-Extendability in Two Classes of Claw-Free Graphs
1992-01-01
extendability of planar graphs, Discrete Math ., 96, 1991, 81-99. [Lai M. Las Verguas, A note on matchings in graphs, Colloque sur la Thiorie des Graphes...43, 1987, 187-222. [LP L. Loviss and M.D. Plummet, Matching Theory, Ann. Discrete Math . 29, North-Holland, Amsterdam, 1986. [P11 M.D. Plummer, On n...extendable graphs, Discrete Math . 31, 1960, 201-210. [P21 Extending matchinp in planar graphs IV, Proc. of the Conference in honor of Cert Sabidussi, Ann
Matching Theory - A Sampler: From Denes Koenig to the Present
1991-01-01
1079. [1131 , Matching Theory, Ann. Discrete Math . 29, North- Holland, Amsterdam, 1986. [114 ] M. Luby, A simple parallel algorithm for the maximal...311. [135 ]M.D. Plummer, On n-extendable graphs, Discrete Math . 31, 1980, 201-210. [1361 , Matching extension and the genus of a graph, J. Combin...Theory Ser. B, 44, 1988, 329-837. [137] , A theorem on matchings in the plane, Graph Theory in Memory of G.A. Dirac, Ann. Discrete Math . 41, North
On the 2-Extendability of Planar Graphs
1989-01-01
connectivity for n-extend- ability of regular graphs, 1988, submitted. [6] L. Lov~isz and M.D. Plummer, Matching Theory, Ann. Discrete Math . 29, North...Holland, Amsterdam, 1986. [7] M.D. Plummer, On n-extendable graphs, Discrete Math . 31, 1980, 201-210. [8] M.D. Plummer, A theorem on matchings in the...plane, Graph Theory in Memory of G.A. Dirac, Ann. Discrete Math . 41, North-Holland, Amsterdam, 1989, 347-354. [9] C. Thomassen, Girth in graphs, J
NASA Astrophysics Data System (ADS)
Viana, Ilisio; Orteu, Jean-José; Cornille, Nicolas; Bugarin, Florian
2015-11-01
We focus on quality control of mechanical parts in aeronautical context using a single pan-tilt-zoom (PTZ) camera and a computer-aided design (CAD) model of the mechanical part. We use the CAD model to create a theoretical image of the element to be checked, which is further matched with the sensed image of the element to be inspected, using a graph theory-based approach. The matching is carried out in two stages. First, the two images are used to create two attributed graphs representing the primitives (ellipses and line segments) in the images. In the second stage, the graphs are matched using a similarity function built from the primitive parameters. The similarity scores of the matching are injected in the edges of a bipartite graph. A best-match-search procedure in the bipartite graph guarantees the uniqueness of the match solution. The method achieves promising performance in tests with synthetic data including missing elements, displaced elements, size changes, and combinations of these cases. The results open good prospects for using the method with realistic data.
Carbody elastic vibrations of high-speed vehicles caused by bogie hunting instability
NASA Astrophysics Data System (ADS)
Wei, Lai; Zeng, Jing; Chi, Maoru; Wang, Jianbin
2017-09-01
In particular locations of the high-speed track, the worn wheel profile matched up with the worn rail profile will lead to an extremely high-conicity wheel-rail contact. Consequently, the bogie hunting instability arises, which further results in the so-called carbody shaking phenomenon. In this paper, the carbody elastic vibrations of a high-speed vehicle in service are firstly introduced. Modal tests are conducted to identity the elastic modes of the carbody. The ride comfort and running safety indices for the tested vehicle are evaluated. The rigid-flexible coupling dynamic model for the high-speed passenger car is then developed by using the FE and MBS coupling approach. The rail profiles in those particular locations are measured and further integrated into the simulation model to reproduce the bogie hunting and carbody elastic vibrations. The effects of wheel and rail wear on the vehicle system response, e.g. wheelset bifurcation graph and carbody vibrations, are studied. Two improvement measures, including the wheel profile modification and rail grinding, are proposed to provide possible solutions. It is found that the wheel-rail contact conicity can be lowered by decreasing wheel flange thickness or grinding rail corner, which is expected to improve the bogie hunting stability under worn rail and worn wheel conditions. The carbody elastic vibrations caused by bogie hunting instability can be further restrained.
Exact and approximate graph matching using random walks.
Gori, Marco; Maggini, Marco; Sarti, Lorenzo
2005-07-01
In this paper, we propose a general framework for graph matching which is suitable for different problems of pattern recognition. The pattern representation we assume is at the same time highly structured, like for classic syntactic and structural approaches, and of subsymbolic nature with real-valued features, like for connectionist and statistic approaches. We show that random walk based models, inspired by Google's PageRank, give rise to a spectral theory that nicely enhances the graph topological features at node level. As a straightforward consequence, we derive a polynomial algorithm for the classic graph isomorphism problem, under the restriction of dealing with Markovian spectrally distinguishable graphs (MSD), a class of graphs that does not seem to be easily reducible to others proposed in the literature. The experimental results that we found on different test-beds of the TC-15 graph database show that the defined MSD class "almost always" covers the database, and that the proposed algorithm is significantly more efficient than top scoring VF algorithm on the same data. Most interestingly, the proposed approach is very well-suited for dealing with partial and approximate graph matching problems, derived for instance from image retrieval tasks. We consider the objects of the COIL-100 visual collection and provide a graph-based representation, whose node's labels contain appropriate visual features. We show that the adoption of classic bipartite graph matching algorithms offers a straightforward generalization of the algorithm given for graph isomorphism and, finally, we report very promising experimental results on the COIL-100 visual collection.
Toughness and Matching Extension in Graphs,
1986-05-01
New York, 1977. V. CHVATAL 1973a. Tough graphs and Hamiltonian circuits, Discrete Math . 5, 1973, 215- 228. 1973b. New directions in Hamiltonian...PLUMMER 1986. Matching Theory, Ann. Discrete Math ., North-Holland, Amsterdam, 1986 (to appear). M. D. PLUMMER 1980. On n-extendable graphs, Discrete ... Math . 31, 1980, 201-210. 1985. A theorem on matchings in the plane, Conference in memory of Gabriel Dirac, Ann. Discrete Math ., North-Holland, Amsterdam
Self-organizing maps for learning the edit costs in graph matching.
Neuhaus, Michel; Bunke, Horst
2005-06-01
Although graph matching and graph edit distance computation have become areas of intensive research recently, the automatic inference of the cost of edit operations has remained an open problem. In the present paper, we address the issue of learning graph edit distance cost functions for numerically labeled graphs from a corpus of sample graphs. We propose a system of self-organizing maps (SOMs) that represent the distance measuring spaces of node and edge labels. Our learning process is based on the concept of self-organization. It adapts the edit costs in such a way that the similarity of graphs from the same class is increased, whereas the similarity of graphs from different classes decreases. The learning procedure is demonstrated on two different applications involving line drawing graphs and graphs representing diatoms, respectively.
Graph edit distance from spectral seriation.
Robles-Kelly, Antonio; Hancock, Edwin R
2005-03-01
This paper is concerned with computing graph edit distance. One of the criticisms that can be leveled at existing methods for computing graph edit distance is that they lack some of the formality and rigor of the computation of string edit distance. Hence, our aim is to convert graphs to string sequences so that string matching techniques can be used. To do this, we use a graph spectral seriation method to convert the adjacency matrix into a string or sequence order. We show how the serial ordering can be established using the leading eigenvector of the graph adjacency matrix. We pose the problem of graph-matching as a maximum a posteriori probability (MAP) alignment of the seriation sequences for pairs of graphs. This treatment leads to an expression in which the edit cost is the negative logarithm of the a posteriori sequence alignment probability. We compute the edit distance by finding the sequence of string edit operations which minimizes the cost of the path traversing the edit lattice. The edit costs are determined by the components of the leading eigenvectors of the adjacency matrix and by the edge densities of the graphs being matched. We demonstrate the utility of the edit distance on a number of graph clustering problems.
Sharma, Harshita; Alekseychuk, Alexander; Leskovsky, Peter; Hellwich, Olaf; Anand, R S; Zerbe, Norman; Hufnagl, Peter
2012-10-04
Computer-based analysis of digitalized histological images has been gaining increasing attention, due to their extensive use in research and routine practice. The article aims to contribute towards the description and retrieval of histological images by employing a structural method using graphs. Due to their expressive ability, graphs are considered as a powerful and versatile representation formalism and have obtained a growing consideration especially by the image processing and computer vision community. The article describes a novel method for determining similarity between histological images through graph-theoretic description and matching, for the purpose of content-based retrieval. A higher order (region-based) graph-based representation of breast biopsy images has been attained and a tree-search based inexact graph matching technique has been employed that facilitates the automatic retrieval of images structurally similar to a given image from large databases. The results obtained and evaluation performed demonstrate the effectiveness and superiority of graph-based image retrieval over a common histogram-based technique. The employed graph matching complexity has been reduced compared to the state-of-the-art optimal inexact matching methods by applying a pre-requisite criterion for matching of nodes and a sophisticated design of the estimation function, especially the prognosis function. The proposed method is suitable for the retrieval of similar histological images, as suggested by the experimental and evaluation results obtained in the study. It is intended for the use in Content Based Image Retrieval (CBIR)-requiring applications in the areas of medical diagnostics and research, and can also be generalized for retrieval of different types of complex images. The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1224798882787923.
2012-01-01
Background Computer-based analysis of digitalized histological images has been gaining increasing attention, due to their extensive use in research and routine practice. The article aims to contribute towards the description and retrieval of histological images by employing a structural method using graphs. Due to their expressive ability, graphs are considered as a powerful and versatile representation formalism and have obtained a growing consideration especially by the image processing and computer vision community. Methods The article describes a novel method for determining similarity between histological images through graph-theoretic description and matching, for the purpose of content-based retrieval. A higher order (region-based) graph-based representation of breast biopsy images has been attained and a tree-search based inexact graph matching technique has been employed that facilitates the automatic retrieval of images structurally similar to a given image from large databases. Results The results obtained and evaluation performed demonstrate the effectiveness and superiority of graph-based image retrieval over a common histogram-based technique. The employed graph matching complexity has been reduced compared to the state-of-the-art optimal inexact matching methods by applying a pre-requisite criterion for matching of nodes and a sophisticated design of the estimation function, especially the prognosis function. Conclusion The proposed method is suitable for the retrieval of similar histological images, as suggested by the experimental and evaluation results obtained in the study. It is intended for the use in Content Based Image Retrieval (CBIR)-requiring applications in the areas of medical diagnostics and research, and can also be generalized for retrieval of different types of complex images. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/1224798882787923. PMID:23035717
Elastic K-means using posterior probability.
Zheng, Aihua; Jiang, Bo; Li, Yan; Zhang, Xuehan; Ding, Chris
2017-01-01
The widely used K-means clustering is a hard clustering algorithm. Here we propose a Elastic K-means clustering model (EKM) using posterior probability with soft capability where each data point can belong to multiple clusters fractionally and show the benefit of proposed Elastic K-means. Furthermore, in many applications, besides vector attributes information, pairwise relations (graph information) are also available. Thus we integrate EKM with Normalized Cut graph clustering into a single clustering formulation. Finally, we provide several useful matrix inequalities which are useful for matrix formulations of learning models. Based on these results, we prove the correctness and the convergence of EKM algorithms. Experimental results on six benchmark datasets demonstrate the effectiveness of proposed EKM and its integrated model.
Content-based image retrieval by matching hierarchical attributed region adjacency graphs
NASA Astrophysics Data System (ADS)
Fischer, Benedikt; Thies, Christian J.; Guld, Mark O.; Lehmann, Thomas M.
2004-05-01
Content-based image retrieval requires a formal description of visual information. In medical applications, all relevant biological objects have to be represented by this description. Although color as the primary feature has proven successful in publicly available retrieval systems of general purpose, this description is not applicable to most medical images. Additionally, it has been shown that global features characterizing the whole image do not lead to acceptable results in the medical context or that they are only suitable for specific applications. For a general purpose content-based comparison of medical images, local, i.e. regional features that are collected on multiple scales must be used. A hierarchical attributed region adjacency graph (HARAG) provides such a representation and transfers image comparison to graph matching. However, building a HARAG from an image requires a restriction in size to be computationally feasible while at the same time all visually plausible information must be preserved. For this purpose, mechanisms for the reduction of the graph size are presented. Even with a reduced graph, the problem of graph matching remains NP-complete. In this paper, the Similarity Flooding approach and Hopfield-style neural networks are adapted from the graph matching community to the needs of HARAG comparison. Based on synthetic image material build from simple geometric objects, all visually similar regions were matched accordingly showing the framework's general applicability to content-based image retrieval of medical images.
Introduction and Terminology 2-Extendability in 3-Polytopes.
1985-01-01
and D.A. Holton, On defect-d matchings in graphs, Discrete Math ., 13, 1975, 41-54. [LGH2] (-), Erratum: "On defect-d matchings, Discrete Mlath., 14...Matching Theory, Vol. 29, knn. Discrete Math ., North- Holland, Amsterdam, 1986. [Plell J. Plesnik, Connectivity of regular graphs and the existence of 1...Plu2] -- ), A theorem on mnatchings in the plane, Graph Theo~ry in Memory of G..4. Dirac, Ann. Discrete Math ., North-Holland. Amisterdarni. to appear
Matching Extension and the Genus of a Graph,
1986-03-01
relationship between the genus and the cardinality of the maximum matchings of a graph, Discrete Math . 25, 1979, 149-156. O.ORE " 1967. The Four-Color...Ed.: W. T. Tutte, Academic Press, New York, 1969, 287-293. M.D. PLUMMER 1980. On n-extendable graph9, Discrete Math . 31, 1980, 201-210. 1985. A
Some Recent Results on Graph Matching,
1987-06-01
V. CHVATAL, Tough graphs and Hamiltonian circuits, Discrete Math . 5, 1973, 215-228. [El] J. EDMONDS, Paths, trees and flowers, Canad. J. Math. 17...Theory, Ann. Discrete Math . 29, North-Holland, Amsterdam, 1986. [N] D. NADDEF, Rank of maximum matchings in a graph, Math. Programming 22, 52-70. [NP...Optimization, Ann. Discrete Math . 16, North-Holland, Amsterdam, 1982, 241-260. [P1] M.D. PLUMMER, On n-extendable graphs, Discrete Math . 31, 1980, 201-210
Liu, Yuangang; Guo, Qingsheng; Sun, Yageng; Ma, Xiaoya
2014-01-01
Scale reduction from source to target maps inevitably leads to conflicts of map symbols in cartography and geographic information systems (GIS). Displacement is one of the most important map generalization operators and it can be used to resolve the problems that arise from conflict among two or more map objects. In this paper, we propose a combined approach based on constraint Delaunay triangulation (CDT) skeleton and improved elastic beam algorithm for automated building displacement. In this approach, map data sets are first partitioned. Then the displacement operation is conducted in each partition as a cyclic and iterative process of conflict detection and resolution. In the iteration, the skeleton of the gap spaces is extracted using CDT. It then serves as an enhanced data model to detect conflicts and construct the proximity graph. Then, the proximity graph is adjusted using local grouping information. Under the action of forces derived from the detected conflicts, the proximity graph is deformed using the improved elastic beam algorithm. In this way, buildings are displaced to find an optimal compromise between related cartographic constraints. To validate this approach, two topographic map data sets (i.e., urban and suburban areas) were tested. The results were reasonable with respect to each constraint when the density of the map was not extremely high. In summary, the improvements include (1) an automated parameter-setting method for elastic beams, (2) explicit enforcement regarding the positional accuracy constraint, added by introducing drag forces, (3) preservation of local building groups through displacement over an adjusted proximity graph, and (4) an iterative strategy that is more likely to resolve the proximity conflicts than the one used in the existing elastic beam algorithm. PMID:25470727
Ontology Matching Across Domains
2010-05-01
matching include GMO [1], Anchor-Prompt [2], and Similarity Flooding [3]. GMO is an iterative structural matcher, which uses RDF bipartite graphs to...AFRL under contract# FA8750-09-C-0058. References [1] Hu, W., Jian, N., Qu, Y., Wang, Y., “ GMO : a graph matching for ontologies”, in: Proceedings of
Saund, Eric
2013-10-01
Effective object and scene classification and indexing depend on extraction of informative image features. This paper shows how large families of complex image features in the form of subgraphs can be built out of simpler ones through construction of a graph lattice—a hierarchy of related subgraphs linked in a lattice. Robustness is achieved by matching many overlapping and redundant subgraphs, which allows the use of inexpensive exact graph matching, instead of relying on expensive error-tolerant graph matching to a minimal set of ideal model graphs. Efficiency in exact matching is gained by exploitation of the graph lattice data structure. Additionally, the graph lattice enables methods for adaptively growing a feature space of subgraphs tailored to observed data. We develop the approach in the domain of rectilinear line art, specifically for the practical problem of document forms recognition. We are especially interested in methods that require only one or very few labeled training examples per category. We demonstrate two approaches to using the subgraph features for this purpose. Using a bag-of-words feature vector we achieve essentially single-instance learning on a benchmark forms database, following an unsupervised clustering stage. Further performance gains are achieved on a more difficult dataset using a feature voting method and feature selection procedure.
Elastic K-means using posterior probability
Zheng, Aihua; Jiang, Bo; Li, Yan; Zhang, Xuehan; Ding, Chris
2017-01-01
The widely used K-means clustering is a hard clustering algorithm. Here we propose a Elastic K-means clustering model (EKM) using posterior probability with soft capability where each data point can belong to multiple clusters fractionally and show the benefit of proposed Elastic K-means. Furthermore, in many applications, besides vector attributes information, pairwise relations (graph information) are also available. Thus we integrate EKM with Normalized Cut graph clustering into a single clustering formulation. Finally, we provide several useful matrix inequalities which are useful for matrix formulations of learning models. Based on these results, we prove the correctness and the convergence of EKM algorithms. Experimental results on six benchmark datasets demonstrate the effectiveness of proposed EKM and its integrated model. PMID:29240756
Matching of renewable source of energy generation graphs and electrical load in local energy system
NASA Astrophysics Data System (ADS)
Lezhniuk, Petro; Komar, Vyacheslav; Sobchuk, Dmytro; Kravchuk, Sergiy; Kacejko, Piotr; Zavidsky, Vladislav
2017-08-01
The paper contains the method of matching generation graph of photovoltaic electric stations and consumers. Characteristic feature of this method is the application of morphometric analysis for assessment of non-uniformity of the integrated graph of energy supply, optimal coefficients of current distribution, that enables by mean of refining the powers, transferring in accordance with the graph , to provide the decrease of electric energy losses in the grid and transport task, as the optimization tool.
A Robust False Matching Points Detection Method for Remote Sensing Image Registration
NASA Astrophysics Data System (ADS)
Shan, X. J.; Tang, P.
2015-04-01
Given the influences of illumination, imaging angle, and geometric distortion, among others, false matching points still occur in all image registration algorithms. Therefore, false matching points detection is an important step in remote sensing image registration. Random Sample Consensus (RANSAC) is typically used to detect false matching points. However, RANSAC method cannot detect all false matching points in some remote sensing images. Therefore, a robust false matching points detection method based on Knearest- neighbour (K-NN) graph (KGD) is proposed in this method to obtain robust and high accuracy result. The KGD method starts with the construction of the K-NN graph in one image. K-NN graph can be first generated for each matching points and its K nearest matching points. Local transformation model for each matching point is then obtained by using its K nearest matching points. The error of each matching point is computed by using its transformation model. Last, L matching points with largest error are identified false matching points and removed. This process is iterative until all errors are smaller than the given threshold. In addition, KGD method can be used in combination with other methods, such as RANSAC. Several remote sensing images with different resolutions and terrains are used in the experiment. We evaluate the performance of KGD method, RANSAC + KGD method, RANSAC, and Graph Transformation Matching (GTM). The experimental results demonstrate the superior performance of the KGD and RANSAC + KGD methods.
DOE Office of Scientific and Technical Information (OSTI.GOV)
D'Ambra, P.; Vassilevski, P. S.
2014-05-30
Adaptive Algebraic Multigrid (or Multilevel) Methods (αAMG) are introduced to improve robustness and efficiency of classical algebraic multigrid methods in dealing with problems where no a-priori knowledge or assumptions on the near-null kernel of the underlined matrix are available. Recently we proposed an adaptive (bootstrap) AMG method, αAMG, aimed to obtain a composite solver with a desired convergence rate. Each new multigrid component relies on a current (general) smooth vector and exploits pairwise aggregation based on weighted matching in a matrix graph to define a new automatic, general-purpose coarsening process, which we refer to as “the compatible weighted matching”. Inmore » this work, we present results that broaden the applicability of our method to different finite element discretizations of elliptic PDEs. In particular, we consider systems arising from displacement methods in linear elasticity problems and saddle-point systems that appear in the application of the mixed method to Darcy problems.« less
The Kirchhoff index and the matching number
NASA Astrophysics Data System (ADS)
Zhou, Bo; Trinajstić, Nenad
The Kirchhoff index of a connected (molecular) graph is the sum of the resistance-distances between all unordered pairs of vertices and may also be expressed by its Laplacian eigenvalues. We determine the minimum Kirchhoff index of connected (molecular) graphs in terms of the number of vertices and matching number and characterize the unique extremal graph. The results on the Kirchhoff index are compared with the corresponding results on the Wiener index.
Retina verification system based on biometric graph matching.
Lajevardi, Seyed Mehdi; Arakala, Arathi; Davis, Stephen A; Horadam, Kathy J
2013-09-01
This paper presents an automatic retina verification framework based on the biometric graph matching (BGM) algorithm. The retinal vasculature is extracted using a family of matched filters in the frequency domain and morphological operators. Then, retinal templates are defined as formal spatial graphs derived from the retinal vasculature. The BGM algorithm, a noisy graph matching algorithm, robust to translation, non-linear distortion, and small rotations, is used to compare retinal templates. The BGM algorithm uses graph topology to define three distance measures between a pair of graphs, two of which are new. A support vector machine (SVM) classifier is used to distinguish between genuine and imposter comparisons. Using single as well as multiple graph measures, the classifier achieves complete separation on a training set of images from the VARIA database (60% of the data), equaling the state-of-the-art for retina verification. Because the available data set is small, kernel density estimation (KDE) of the genuine and imposter score distributions of the training set are used to measure performance of the BGM algorithm. In the one dimensional case, the KDE model is validated with the testing set. A 0 EER on testing shows that the KDE model is a good fit for the empirical distribution. For the multiple graph measures, a novel combination of the SVM boundary and the KDE model is used to obtain a fair comparison with the KDE model for the single measure. A clear benefit in using multiple graph measures over a single measure to distinguish genuine and imposter comparisons is demonstrated by a drop in theoretical error of between 60% and more than two orders of magnitude.
Statistically significant relational data mining :
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berry, Jonathan W.; Leung, Vitus Joseph; Phillips, Cynthia Ann
This report summarizes the work performed under the project (3z(BStatitically significant relational data mining.(3y (BThe goal of the project was to add more statistical rigor to the fairly ad hoc area of data mining on graphs. Our goal was to develop better algorithms and better ways to evaluate algorithm quality. We concetrated on algorithms for community detection, approximate pattern matching, and graph similarity measures. Approximate pattern matching involves finding an instance of a relatively small pattern, expressed with tolerance, in a large graph of data observed with uncertainty. This report gathers the abstracts and references for the eight refereed publicationsmore » that have appeared as part of this work. We then archive three pieces of research that have not yet been published. The first is theoretical and experimental evidence that a popular statistical measure for comparison of community assignments favors over-resolved communities over approximations to a ground truth. The second are statistically motivated methods for measuring the quality of an approximate match of a small pattern in a large graph. The third is a new probabilistic random graph model. Statisticians favor these models for graph analysis. The new local structure graph model overcomes some of the issues with popular models such as exponential random graph models and latent variable models.« less
High-order graph matching based feature selection for Alzheimer's disease identification.
Liu, Feng; Suk, Heung-Il; Wee, Chong-Yaw; Chen, Huafu; Shen, Dinggang
2013-01-01
One of the main limitations of l1-norm feature selection is that it focuses on estimating the target vector for each sample individually without considering relations with other samples. However, it's believed that the geometrical relation among target vectors in the training set may provide useful information, and it would be natural to expect that the predicted vectors have similar geometric relations as the target vectors. To overcome these limitations, we formulate this as a graph-matching feature selection problem between a predicted graph and a target graph. In the predicted graph a node is represented by predicted vector that may describe regional gray matter volume or cortical thickness features, and in the target graph a node is represented by target vector that include class label and clinical scores. In particular, we devise new regularization terms in sparse representation to impose high-order graph matching between the target vectors and the predicted ones. Finally, the selected regional gray matter volume and cortical thickness features are fused in kernel space for classification. Using the ADNI dataset, we evaluate the effectiveness of the proposed method and obtain the accuracies of 92.17% and 81.57% in AD and MCI classification, respectively.
Graph rigidity, cyclic belief propagation, and point pattern matching.
McAuley, Julian J; Caetano, Tibério S; Barbosa, Marconi S
2008-11-01
A recent paper [1] proposed a provably optimal polynomial time method for performing near-isometric point pattern matching by means of exact probabilistic inference in a chordal graphical model. Its fundamental result is that the chordal graph in question is shown to be globally rigid, implying that exact inference provides the same matching solution as exact inference in a complete graphical model. This implies that the algorithm is optimal when there is no noise in the point patterns. In this paper, we present a new graph that is also globally rigid but has an advantage over the graph proposed in [1]: Its maximal clique size is smaller, rendering inference significantly more efficient. However, this graph is not chordal, and thus, standard Junction Tree algorithms cannot be directly applied. Nevertheless, we show that loopy belief propagation in such a graph converges to the optimal solution. This allows us to retain the optimality guarantee in the noiseless case, while substantially reducing both memory requirements and processing time. Our experimental results show that the accuracy of the proposed solution is indistinguishable from that in [1] when there is noise in the point patterns.
Dinh, Hieu; Rajasekaran, Sanguthevar
2011-07-15
Exact-match overlap graphs have been broadly used in the context of DNA assembly and the shortest super string problem where the number of strings n ranges from thousands to billions. The length ℓ of the strings is from 25 to 1000, depending on the DNA sequencing technologies. However, many DNA assemblers using overlap graphs suffer from the need for too much time and space in constructing the graphs. It is nearly impossible for these DNA assemblers to handle the huge amount of data produced by the next-generation sequencing technologies where the number n of strings could be several billions. If the overlap graph is explicitly stored, it would require Ω(n(2)) memory, which could be prohibitive in practice when n is greater than a hundred million. In this article, we propose a novel data structure using which the overlap graph can be compactly stored. This data structure requires only linear time to construct and and linear memory to store. For a given set of input strings (also called reads), we can informally define an exact-match overlap graph as follows. Each read is represented as a node in the graph and there is an edge between two nodes if the corresponding reads overlap sufficiently. A formal description follows. The maximal exact-match overlap of two strings x and y, denoted by ov(max)(x, y), is the longest string which is a suffix of x and a prefix of y. The exact-match overlap graph of n given strings of length ℓ is an edge-weighted graph in which each vertex is associated with a string and there is an edge (x, y) of weight ω=ℓ-|ov(max)(x, y)| if and only if ω ≤ λ, where |ov(max)(x, y)| is the length of ov(max)(x, y) and λ is a given threshold. In this article, we show that the exact-match overlap graphs can be represented by a compact data structure that can be stored using at most (2λ-1)(2⌈logn⌉+⌈logλ⌉)n bits with a guarantee that the basic operation of accessing an edge takes O(log λ) time. We also propose two algorithms for constructing the data structure for the exact-match overlap graph. The first algorithm runs in O(λℓnlogn) worse-case time and requires O(λ) extra memory. The second one runs in O(λℓn) time and requires O(n) extra memory. Our experimental results on a huge amount of simulated data from sequence assembly show that the data structure can be constructed efficiently in time and memory. Our DNA sequence assembler that incorporates the data structure is freely available on the web at http://www.engr.uconn.edu/~htd06001/assembler/leap.zip
Extending Matchings in Planar Graphs 4
1989-01-01
Discrete Math ., 18, 1977, 213-216. [31 B. Grfianbaum, Convex Polytopes, Interscience Publishers, John Wiley & Sons, Lon- don, 1967. [4] D.A. Holton and...Kalamazoo, 1988), John Wiley & Sons, (to appear). [6] D.A. Holton, D. Lou and M.D. Plummer, On the 2-extendability of planar graphs, preprint, Discrete Math ., (to...81 L. Lovasz and M.D. Plummer, Matching Theory, Ann. Discrete Math . 29, North- Holland, Amsterdam, 1986. [9] M.D. Plummer, On n-extendable graphs
Poor textural image tie point matching via graph theory
NASA Astrophysics Data System (ADS)
Yuan, Xiuxiao; Chen, Shiyu; Yuan, Wei; Cai, Yang
2017-07-01
Feature matching aims to find corresponding points to serve as tie points between images. Robust matching is still a challenging task when input images are characterized by low contrast or contain repetitive patterns, occlusions, or homogeneous textures. In this paper, a novel feature matching algorithm based on graph theory is proposed. This algorithm integrates both geometric and radiometric constraints into an edge-weighted (EW) affinity tensor. Tie points are then obtained by high-order graph matching. Four pairs of poor textural images covering forests, deserts, bare lands, and urban areas are tested. For comparison, three state-of-the-art matching techniques, namely, scale-invariant feature transform (SIFT), speeded up robust features (SURF), and features from accelerated segment test (FAST), are also used. The experimental results show that the matching recall obtained by SIFT, SURF, and FAST varies from 0 to 35% in different types of poor textures. However, through the integration of both geometry and radiometry and the EW strategy, the recall obtained by the proposed algorithm is better than 50% in all four image pairs. The better matching recall improves the number of correct matches, dispersion, and positional accuracy.
Quantum Experiments and Graphs: Multiparty States as Coherent Superpositions of Perfect Matchings.
Krenn, Mario; Gu, Xuemei; Zeilinger, Anton
2017-12-15
We show a surprising link between experimental setups to realize high-dimensional multipartite quantum states and graph theory. In these setups, the paths of photons are identified such that the photon-source information is never created. We find that each of these setups corresponds to an undirected graph, and every undirected graph corresponds to an experimental setup. Every term in the emerging quantum superposition corresponds to a perfect matching in the graph. Calculating the final quantum state is in the #P-complete complexity class, thus it cannot be done efficiently. To strengthen the link further, theorems from graph theory-such as Hall's marriage problem-are rephrased in the language of pair creation in quantum experiments. We show explicitly how this link allows one to answer questions about quantum experiments (such as which classes of entangled states can be created) with graph theoretical methods, and how to potentially simulate properties of graphs and networks with quantum experiments (such as critical exponents and phase transitions).
Quantum Experiments and Graphs: Multiparty States as Coherent Superpositions of Perfect Matchings
NASA Astrophysics Data System (ADS)
Krenn, Mario; Gu, Xuemei; Zeilinger, Anton
2017-12-01
We show a surprising link between experimental setups to realize high-dimensional multipartite quantum states and graph theory. In these setups, the paths of photons are identified such that the photon-source information is never created. We find that each of these setups corresponds to an undirected graph, and every undirected graph corresponds to an experimental setup. Every term in the emerging quantum superposition corresponds to a perfect matching in the graph. Calculating the final quantum state is in the #P-complete complexity class, thus it cannot be done efficiently. To strengthen the link further, theorems from graph theory—such as Hall's marriage problem—are rephrased in the language of pair creation in quantum experiments. We show explicitly how this link allows one to answer questions about quantum experiments (such as which classes of entangled states can be created) with graph theoretical methods, and how to potentially simulate properties of graphs and networks with quantum experiments (such as critical exponents and phase transitions).
Slope versus Elasticity and the Burden of Taxation.
ERIC Educational Resources Information Center
Graves, Philip E.; And Others
1996-01-01
Criticizes the standard presentation, in introductory economics, of the burden of a tax as an application of elasticity. Argues that using the slopes of a supply and demand curve is the simplest and easiest way to clarify tax incidence. Includes three graphs illustrating this approach. (MJP)
Matched signal detection on graphs: Theory and application to brain imaging data classification.
Hu, Chenhui; Sepulcre, Jorge; Johnson, Keith A; Fakhri, Georges E; Lu, Yue M; Li, Quanzheng
2016-01-15
Motivated by recent progress in signal processing on graphs, we have developed a matched signal detection (MSD) theory for signals with intrinsic structures described by weighted graphs. First, we regard graph Laplacian eigenvalues as frequencies of graph-signals and assume that the signal is in a subspace spanned by the first few graph Laplacian eigenvectors associated with lower eigenvalues. The conventional matched subspace detector can be applied to this case. Furthermore, we study signals that may not merely live in a subspace. Concretely, we consider signals with bounded variation on graphs and more general signals that are randomly drawn from a prior distribution. For bounded variation signals, the test is a weighted energy detector. For the random signals, the test statistic is the difference of signal variations on associated graphs, if a degenerate Gaussian distribution specified by the graph Laplacian is adopted. We evaluate the effectiveness of the MSD on graphs both with simulated and real data sets. Specifically, we apply MSD to the brain imaging data classification problem of Alzheimer's disease (AD) based on two independent data sets: 1) positron emission tomography data with Pittsburgh compound-B tracer of 30 AD and 40 normal control (NC) subjects, and 2) resting-state functional magnetic resonance imaging (R-fMRI) data of 30 early mild cognitive impairment and 20 NC subjects. Our results demonstrate that the MSD approach is able to outperform the traditional methods and help detect AD at an early stage, probably due to the success of exploiting the manifold structure of the data. Copyright © 2015. Published by Elsevier Inc.
Searching social networks for subgraph patterns
NASA Astrophysics Data System (ADS)
Ogaard, Kirk; Kase, Sue; Roy, Heather; Nagi, Rakesh; Sambhoos, Kedar; Sudit, Moises
2013-06-01
Software tools for Social Network Analysis (SNA) are being developed which support various types of analysis of social networks extracted from social media websites (e.g., Twitter). Once extracted and stored in a database such social networks are amenable to analysis by SNA software. This data analysis often involves searching for occurrences of various subgraph patterns (i.e., graphical representations of entities and relationships). The authors have developed the Graph Matching Toolkit (GMT) which provides an intuitive Graphical User Interface (GUI) for a heuristic graph matching algorithm called the Truncated Search Tree (TruST) algorithm. GMT is a visual interface for graph matching algorithms processing large social networks. GMT enables an analyst to draw a subgraph pattern by using a mouse to select categories and labels for nodes and links from drop-down menus. GMT then executes the TruST algorithm to find the top five occurrences of the subgraph pattern within the social network stored in the database. GMT was tested using a simulated counter-insurgency dataset consisting of cellular phone communications within a populated area of operations in Iraq. The results indicated GMT (when executing the TruST graph matching algorithm) is a time-efficient approach to searching large social networks. GMT's visual interface to a graph matching algorithm enables intelligence analysts to quickly analyze and summarize the large amounts of data necessary to produce actionable intelligence.
A Simple Geometry of Income Elasticities.
ERIC Educational Resources Information Center
Heavey, Jerome F.
1994-01-01
Contends that, although most economics students are acquainted with the graphical analysis of the income and substitution effects of a price change, they often fail to appreciate that the same graphs provide information on the income elasticities of the two goods. Illustrates the proof of this concept using mathematical formulae and five graphic…
Fingerprint recognition system by use of graph matching
NASA Astrophysics Data System (ADS)
Shen, Wei; Shen, Jun; Zheng, Huicheng
2001-09-01
Fingerprint recognition is an important subject in biometrics to identify or verify persons by physiological characteristics, and has found wide applications in different domains. In the present paper, we present a finger recognition system that combines singular points and structures. The principal steps of processing in our system are: preprocessing and ridge segmentation, singular point extraction and selection, graph representation, and finger recognition by graphs matching. Our fingerprint recognition system is implemented and tested for many fingerprint images and the experimental result are satisfactory. Different techniques are used in our system, such as fast calculation of orientation field, local fuzzy dynamical thresholding, algebraic analysis of connections and fingerprints representation and matching by graphs. Wed find that for fingerprint database that is not very large, the recognition rate is very high even without using a prior coarse category classification. This system works well for both one-to-few and one-to-many problems.
Browsing schematics: Query-filtered graphs with context nodes
NASA Technical Reports Server (NTRS)
Ciccarelli, Eugene C.; Nardi, Bonnie A.
1988-01-01
The early results of a research project to create tools for building interfaces to intelligent systems on the NASA Space Station are reported. One such tool is the Schematic Browser which helps users engaged in engineering problem solving find and select schematics from among a large set. Users query for schematics with certain components, and the Schematic Browser presents a graph whose nodes represent the schematics with those components. The query greatly reduces the number of choices presented to the user, filtering the graph to a manageable size. Users can reformulate and refine the query serially until they locate the schematics of interest. To help users maintain orientation as they navigate a large body of data, the graph also includes nodes that are not matches but provide global and local context for the matching nodes. Context nodes include landmarks, ancestors, siblings, children and previous matches.
Graph-Based Object Class Discovery
NASA Astrophysics Data System (ADS)
Xia, Shengping; Hancock, Edwin R.
We are interested in the problem of discovering the set of object classes present in a database of images using a weakly supervised graph-based framework. Rather than making use of the ”Bag-of-Features (BoF)” approach widely used in current work on object recognition, we represent each image by a graph using a group of selected local invariant features. Using local feature matching and iterative Procrustes alignment, we perform graph matching and compute a similarity measure. Borrowing the idea of query expansion , we develop a similarity propagation based graph clustering (SPGC) method. Using this method class specific clusters of the graphs can be obtained. Such a cluster can be generally represented by using a higher level graph model whose vertices are the clustered graphs, and the edge weights are determined by the pairwise similarity measure. Experiments are performed on a dataset, in which the number of images increases from 1 to 50K and the number of objects increases from 1 to over 500. Some objects have been discovered with total recall and a precision 1 in a single cluster.
Match graph generation for symbolic indirect correlation
NASA Astrophysics Data System (ADS)
Lopresti, Daniel; Nagy, George; Joshi, Ashutosh
2006-01-01
Symbolic indirect correlation (SIC) is a new approach for bringing lexical context into the recognition of unsegmented signals that represent words or phrases in printed or spoken form. One way of viewing the SIC problem is to find the correspondence, if one exists, between two bipartite graphs, one representing the matching of the two lexical strings and the other representing the matching of the two signal strings. While perfect matching cannot be expected with real-world signals and while some degree of mismatch is allowed for in the second stage of SIC, such errors, if they are too numerous, can present a serious impediment to a successful implementation of the concept. In this paper, we describe a framework for evaluating the effectiveness of SIC match graph generation and examine the relatively simple, controlled cases of synthetic images of text strings typeset, both normally and in highly condensed fashion. We quantify and categorize the errors that arise, as well as present a variety of techniques we have developed to visualize the intermediate results of the SIC process.
Topological visual mapping in robotics.
Romero, Anna; Cazorla, Miguel
2012-08-01
A key problem in robotics is the construction of a map from its environment. This map could be used in different tasks, like localization, recognition, obstacle avoidance, etc. Besides, the simultaneous location and mapping (SLAM) problem has had a lot of interest in the robotics community. This paper presents a new method for visual mapping, using topological instead of metric information. For that purpose, we propose prior image segmentation into regions in order to group the extracted invariant features in a graph so that each graph defines a single region of the image. Although others methods have been proposed for visual SLAM, our method is complete, in the sense that it makes all the process: it presents a new method for image matching; it defines a way to build the topological map; and it also defines a matching criterion for loop-closing. The matching process will take into account visual features and their structure using the graph transformation matching (GTM) algorithm, which allows us to process the matching and to remove out the outliers. Then, using this image comparison method, we propose an algorithm for constructing topological maps. During the experimentation phase, we will test the robustness of the method and its ability constructing topological maps. We have also introduced new hysteresis behavior in order to solve some problems found building the graph.
Graph Matching: Relax at Your Own Risk.
Lyzinski, Vince; Fishkind, Donniell E; Fiori, Marcelo; Vogelstein, Joshua T; Priebe, Carey E; Sapiro, Guillermo
2016-01-01
Graph matching-aligning a pair of graphs to minimize their edge disagreements-has received wide-spread attention from both theoretical and applied communities over the past several decades, including combinatorics, computer vision, and connectomics. Its attention can be partially attributed to its computational difficulty. Although many heuristics have previously been proposed in the literature to approximately solve graph matching, very few have any theoretical support for their performance. A common technique is to relax the discrete problem to a continuous problem, therefore enabling practitioners to bring gradient-descent-type algorithms to bear. We prove that an indefinite relaxation (when solved exactly) almost always discovers the optimal permutation, while a common convex relaxation almost always fails to discover the optimal permutation. These theoretical results suggest that initializing the indefinite algorithm with the convex optimum might yield improved practical performance. Indeed, experimental results illuminate and corroborate these theoretical findings, demonstrating that excellent results are achieved in both benchmark and real data problems by amalgamating the two approaches.
Projected power iteration for network alignment
NASA Astrophysics Data System (ADS)
Onaran, Efe; Villar, Soledad
2017-08-01
The network alignment problem asks for the best correspondence between two given graphs, so that the largest possible number of edges are matched. This problem appears in many scientific problems (like the study of protein-protein interactions) and it is very closely related to the quadratic assignment problem which has graph isomorphism, traveling salesman and minimum bisection problems as particular cases. The graph matching problem is NP-hard in general. However, under some restrictive models for the graphs, algorithms can approximate the alignment efficiently. In that spirit the recent work by Feizi and collaborators introduce EigenAlign, a fast spectral method with convergence guarantees for Erd-s-Renyí graphs. In this work we propose the algorithm Projected Power Alignment, which is a projected power iteration version of EigenAlign. We numerically show it improves the recovery rates of EigenAlign and we describe the theory that may be used to provide performance guarantees for Projected Power Alignment.
Disconnection of network hubs and cognitive impairment after traumatic brain injury.
Fagerholm, Erik D; Hellyer, Peter J; Scott, Gregory; Leech, Robert; Sharp, David J
2015-06-01
Traumatic brain injury affects brain connectivity by producing traumatic axonal injury. This disrupts the function of large-scale networks that support cognition. The best way to describe this relationship is unclear, but one elegant approach is to view networks as graphs. Brain regions become nodes in the graph, and white matter tracts the connections. The overall effect of an injury can then be estimated by calculating graph metrics of network structure and function. Here we test which graph metrics best predict the presence of traumatic axonal injury, as well as which are most highly associated with cognitive impairment. A comprehensive range of graph metrics was calculated from structural connectivity measures for 52 patients with traumatic brain injury, 21 of whom had microbleed evidence of traumatic axonal injury, and 25 age-matched controls. White matter connections between 165 grey matter brain regions were defined using tractography, and structural connectivity matrices calculated from skeletonized diffusion tensor imaging data. This technique estimates injury at the centre of tract, but is insensitive to damage at tract edges. Graph metrics were calculated from the resulting connectivity matrices and machine-learning techniques used to select the metrics that best predicted the presence of traumatic brain injury. In addition, we used regularization and variable selection via the elastic net to predict patient behaviour on tests of information processing speed, executive function and associative memory. Support vector machines trained with graph metrics of white matter connectivity matrices from the microbleed group were able to identify patients with a history of traumatic brain injury with 93.4% accuracy, a result robust to different ways of sampling the data. Graph metrics were significantly associated with cognitive performance: information processing speed (R(2) = 0.64), executive function (R(2) = 0.56) and associative memory (R(2) = 0.25). These results were then replicated in a separate group of patients without microbleeds. The most influential graph metrics were betweenness centrality and eigenvector centrality, which provide measures of the extent to which a given brain region connects other regions in the network. Reductions in betweenness centrality and eigenvector centrality were particularly evident within hub regions including the cingulate cortex and caudate. Our results demonstrate that betweenness centrality and eigenvector centrality are reduced within network hubs, due to the impact of traumatic axonal injury on network connections. The dominance of betweenness centrality and eigenvector centrality suggests that cognitive impairment after traumatic brain injury results from the disconnection of network hubs by traumatic axonal injury. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.
Efficient structure from motion for oblique UAV images based on maximal spanning tree expansion
NASA Astrophysics Data System (ADS)
Jiang, San; Jiang, Wanshou
2017-10-01
The primary contribution of this paper is an efficient Structure from Motion (SfM) solution for oblique unmanned aerial vehicle (UAV) images. First, an algorithm, considering spatial relationship constraints between image footprints, is designed for match pair selection with the assistance of UAV flight control data and oblique camera mounting angles. Second, a topological connection network (TCN), represented by an undirected weighted graph, is constructed from initial match pairs, which encodes the overlap areas and intersection angles into edge weights. Then, an algorithm, termed MST-Expansion, is proposed to extract the match graph from the TCN, where the TCN is first simplified by a maximum spanning tree (MST). By further analysis of the local structure in the MST, expansion operations are performed on the vertices of the MST for match graph enhancement, which is achieved by introducing critical connections in the expansion directions. Finally, guided by the match graph, an efficient SfM is proposed. Under extensive analysis and comparison, its performance is verified by using three oblique UAV datasets captured with different multi-camera systems. Experimental results demonstrate that the efficiency of image matching is improved, with speedup ratios ranging from 19 to 35, and competitive orientation accuracy is achieved from both relative bundle adjustment (BA) without GCPs (Ground Control Points) and absolute BA with GCPs. At the same time, images in the three datasets are successfully oriented. For the orientation of oblique UAV images, the proposed method can be a more efficient solution.
Claw-Free Maximal Planar Graphs
1989-01-01
1976, 212-223. 110] M.D. Plummer, On n-extendable graphs, Discrete Math . 31, 1980, 201-210. 1111 , A theorem on matchings in the plane, Graph Theory...in Memory of G.A. Dirac, Ann. Discrete Math . 41, North-Holland, Amsterdam, 1989, 347-354. 1121 N. Sbihi, Algorithme de recherche d’un stable de...cardinalitA maximum dans un graphe sans 6toile, Discrete Math . 29, 1980, 53-76. 1131 D. Sumner, On Tutte’s factorization theorem, Graphs and Combinatorics
Peluso, Gonzalo; García-Espinosa, Victoria; Curcio, Santiago; Marota, Marco; Castro, Juan; Chiesa, Pedro; Giachetto, Gustavo; Bia, Daniel; Zócalo, Yanina
2017-03-01
In adults, central blood pressure (cBP) is reported to associate target organ damages (TODs) rather than peripheral blood pressure (pBP). However, data regarding the association of pre-clinical TODs with cBP and pBP in pediatric populations are scarce. To evaluate in children and adolescents the importance of cBP and pBP levels, in terms of their association with hemodynamic and vascular changes. 315 subjects [age (mean/range) 12/8-18 years] were included. pBP (oscillometry, Omron-HEM433INT and Mobil-O-Graph), cBP levels and waveforms (oscillometry, Mobil-O-Graph; applanation tonometry, SphygmoCor), aortic wave reflection-related parameters, carotid intima-media thickness (CIMT) and carotid (elastic modulus, stiffness-index) and aortic stiffness (carotid-femoral pulse wave velocity, PWV). Four groups were defined considering pBP and cBP percentiles (th): cBP ≥90th, cBP <90th, pBP ≥90th, pBP <90th. In each group, haemodynamic and vascular parameters were compared for subgroups defined considering the level of the remaining blood pressure (cBP or pBP). Subgroups were matched for anthropometric and cardiovascular risk factors (propensity matching-score). Subjects with high cBP showed a worse cardiovascular risk profile in addition to worse peripheral hemodynamic conditions. The CIMT, carotid and aortic stiffness levels were also higher in those subjects. CIMT and carotid stiffness remained statistically higher when subjects were matched for pBP and other cardiovascular risk factors. There were no differences in arterial properties when subjects were analyzed (compared) considering similar pBP levels, during normal and high cBP conditions. Compared with pBP, the cBP levels show a greater association with vascular alterations (high CIMT and arterial stiffness), in children and adolescents.
On Parallel Push-Relabel based Algorithms for Bipartite Maximum Matching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Langguth, Johannes; Azad, Md Ariful; Halappanavar, Mahantesh
2014-07-01
We study multithreaded push-relabel based algorithms for computing maximum cardinality matching in bipartite graphs. Matching is a fundamental combinatorial (graph) problem with applications in a wide variety of problems in science and engineering. We are motivated by its use in the context of sparse linear solvers for computing maximum transversal of a matrix. We implement and test our algorithms on several multi-socket multicore systems and compare their performance to state-of-the-art augmenting path-based serial and parallel algorithms using a testset comprised of a wide range of real-world instances. Building on several heuristics for enhancing performance, we demonstrate good scaling for themore » parallel push-relabel algorithm. We show that it is comparable to the best augmenting path-based algorithms for bipartite matching. To the best of our knowledge, this is the first extensive study of multithreaded push-relabel based algorithms. In addition to a direct impact on the applications using matching, the proposed algorithmic techniques can be extended to preflow-push based algorithms for computing maximum flow in graphs.« less
Alignment of Tractograms As Graph Matching.
Olivetti, Emanuele; Sharmin, Nusrat; Avesani, Paolo
2016-01-01
The white matter pathways of the brain can be reconstructed as 3D polylines, called streamlines, through the analysis of diffusion magnetic resonance imaging (dMRI) data. The whole set of streamlines is called tractogram and represents the structural connectome of the brain. In multiple applications, like group-analysis, segmentation, or atlasing, tractograms of different subjects need to be aligned. Typically, this is done with registration methods, that transform the tractograms in order to increase their similarity. In contrast with transformation-based registration methods, in this work we propose the concept of tractogram correspondence, whose aim is to find which streamline of one tractogram corresponds to which streamline in another tractogram, i.e., a map from one tractogram to another. As a further contribution, we propose to use the relational information of each streamline, i.e., its distances from the other streamlines in its own tractogram, as the building block to define the optimal correspondence. We provide an operational procedure to find the optimal correspondence through a combinatorial optimization problem and we discuss its similarity to the graph matching problem. In this work, we propose to represent tractograms as graphs and we adopt a recent inexact sub-graph matching algorithm to approximate the solution of the tractogram correspondence problem. On tractograms generated from the Human Connectome Project dataset, we report experimental evidence that tractogram correspondence, implemented as graph matching, provides much better alignment than affine registration and comparable if not better results than non-linear registration of volumes.
Empirical Determination of Pattern Match Confidence in Labeled Graphs
2014-02-07
were explored; Erdős–Rényi [6] random graphs, Barabási–Albert preferential attachment graphs [2], and Watts– Strogatz [18] small world graphs. The ER...B. Erdos - Renyi Barabasi - Albert Gr ap h Ty pe Strogatz - Watts Direct Within 2 nodes Within 4 nodes Search Limit 1 10 100 1000 10000 100000 100...Barabási–Albert (BA, crosses) and Watts– Strogatz (WS, trian- gles) graphs were generated with sizes ranging from 50 to 2500 nodes, and labeled
Large-scale parallel genome assembler over cloud computing environment.
Das, Arghya Kusum; Koppa, Praveen Kumar; Goswami, Sayan; Platania, Richard; Park, Seung-Jong
2017-06-01
The size of high throughput DNA sequencing data has already reached the terabyte scale. To manage this huge volume of data, many downstream sequencing applications started using locality-based computing over different cloud infrastructures to take advantage of elastic (pay as you go) resources at a lower cost. However, the locality-based programming model (e.g. MapReduce) is relatively new. Consequently, developing scalable data-intensive bioinformatics applications using this model and understanding the hardware environment that these applications require for good performance, both require further research. In this paper, we present a de Bruijn graph oriented Parallel Giraph-based Genome Assembler (GiGA), as well as the hardware platform required for its optimal performance. GiGA uses the power of Hadoop (MapReduce) and Giraph (large-scale graph analysis) to achieve high scalability over hundreds of compute nodes by collocating the computation and data. GiGA achieves significantly higher scalability with competitive assembly quality compared to contemporary parallel assemblers (e.g. ABySS and Contrail) over traditional HPC cluster. Moreover, we show that the performance of GiGA is significantly improved by using an SSD-based private cloud infrastructure over traditional HPC cluster. We observe that the performance of GiGA on 256 cores of this SSD-based cloud infrastructure closely matches that of 512 cores of traditional HPC cluster.
Lombaert, Herve; Grady, Leo; Polimeni, Jonathan R.; Cheriet, Farida
2013-01-01
Existing methods for surface matching are limited by the trade-off between precision and computational efficiency. Here we present an improved algorithm for dense vertex-to-vertex correspondence that uses direct matching of features defined on a surface and improves it by using spectral correspondence as a regularization. This algorithm has the speed of both feature matching and spectral matching while exhibiting greatly improved precision (distance errors of 1.4%). The method, FOCUSR, incorporates implicitly such additional features to calculate the correspondence and relies on the smoothness of the lowest-frequency harmonics of a graph Laplacian to spatially regularize the features. In its simplest form, FOCUSR is an improved spectral correspondence method that nonrigidly deforms spectral embeddings. We provide here a full realization of spectral correspondence where virtually any feature can be used as additional information using weights on graph edges, but also on graph nodes and as extra embedded coordinates. As an example, the full power of FOCUSR is demonstrated in a real case scenario with the challenging task of brain surface matching across several individuals. Our results show that combining features and regularizing them in a spectral embedding greatly improves the matching precision (to a sub-millimeter level) while performing at much greater speed than existing methods. PMID:23868776
DOGMA: A Disk-Oriented Graph Matching Algorithm for RDF Databases
NASA Astrophysics Data System (ADS)
Bröcheler, Matthias; Pugliese, Andrea; Subrahmanian, V. S.
RDF is an increasingly important paradigm for the representation of information on the Web. As RDF databases increase in size to approach tens of millions of triples, and as sophisticated graph matching queries expressible in languages like SPARQL become increasingly important, scalability becomes an issue. To date, there is no graph-based indexing method for RDF data where the index was designed in a way that makes it disk-resident. There is therefore a growing need for indexes that can operate efficiently when the index itself resides on disk. In this paper, we first propose the DOGMA index for fast subgraph matching on disk and then develop a basic algorithm to answer queries over this index. This algorithm is then significantly sped up via an optimized algorithm that uses efficient (but correct) pruning strategies when combined with two different extensions of the index. We have implemented a preliminary system and tested it against four existing RDF database systems developed by others. Our experiments show that our algorithm performs very well compared to these systems, with orders of magnitude improvements for complex graph queries.
Metric learning with spectral graph convolutions on brain connectivity networks.
Ktena, Sofia Ira; Parisot, Sarah; Ferrante, Enzo; Rajchl, Martin; Lee, Matthew; Glocker, Ben; Rueckert, Daniel
2018-04-01
Graph representations are often used to model structured data at an individual or population level and have numerous applications in pattern recognition problems. In the field of neuroscience, where such representations are commonly used to model structural or functional connectivity between a set of brain regions, graphs have proven to be of great importance. This is mainly due to the capability of revealing patterns related to brain development and disease, which were previously unknown. Evaluating similarity between these brain connectivity networks in a manner that accounts for the graph structure and is tailored for a particular application is, however, non-trivial. Most existing methods fail to accommodate the graph structure, discarding information that could be beneficial for further classification or regression analyses based on these similarities. We propose to learn a graph similarity metric using a siamese graph convolutional neural network (s-GCN) in a supervised setting. The proposed framework takes into consideration the graph structure for the evaluation of similarity between a pair of graphs, by employing spectral graph convolutions that allow the generalisation of traditional convolutions to irregular graphs and operates in the graph spectral domain. We apply the proposed model on two datasets: the challenging ABIDE database, which comprises functional MRI data of 403 patients with autism spectrum disorder (ASD) and 468 healthy controls aggregated from multiple acquisition sites, and a set of 2500 subjects from UK Biobank. We demonstrate the performance of the method for the tasks of classification between matching and non-matching graphs, as well as individual subject classification and manifold learning, showing that it leads to significantly improved results compared to traditional methods. Copyright © 2017 Elsevier Inc. All rights reserved.
Multiple Semantic Matching on Augmented N-partite Graph for Object Co-segmentation.
Wang, Chuan; Zhang, Hua; Yang, Liang; Cao, Xiaochun; Xiong, Hongkai
2017-09-08
Recent methods for object co-segmentation focus on discovering single co-occurring relation of candidate regions representing the foreground of multiple images. However, region extraction based only on low and middle level information often occupies a large area of background without the help of semantic context. In addition, seeking single matching solution very likely leads to discover local parts of common objects. To cope with these deficiencies, we present a new object cosegmentation framework, which takes advantages of semantic information and globally explores multiple co-occurring matching cliques based on an N-partite graph structure. To this end, we first propose to incorporate candidate generation with semantic context. Based on the regions extracted from semantic segmentation of each image, we design a merging mechanism to hierarchically generate candidates with high semantic responses. Secondly, all candidates are taken into consideration to globally formulate multiple maximum weighted matching cliques, which complements the discovery of part of the common objects induced by a single clique. To facilitate the discovery of multiple matching cliques, an N-partite graph, which inherently excludes intralinks between candidates from the same image, is constructed to separate multiple cliques without additional constraints. Further, we augment the graph with an additional virtual node in each part to handle irrelevant matches when the similarity between two candidates is too small. Finally, with the explored multiple cliques, we statistically compute pixel-wise co-occurrence map for each image. Experimental results on two benchmark datasets, i.e., iCoseg and MSRC datasets, achieve desirable performance and demonstrate the effectiveness of our proposed framework.
NASA Astrophysics Data System (ADS)
Bagno, A. M.
2017-03-01
The propagation of quasi-Lamb waves in a prestrained compressible elastic layer interacting with a layer of an ideal compressible fluid is studied. The three-dimensional equations of linearized elasticity and the assumption of finite strains for the elastic layer and the three-dimensional linearized Euler equations for the fluid are used. The dispersion curves for the quasi-Lamb modes are plotted over a wide frequency range. The effect of prestresses and the thickness of the elastic and liquid layers on the frequency spectrum of normal quasi-Lamb waves is analyzed. The localization properties of the lower quasi-Lamb modes in the elastic-fluid waveguides are studied. The numerical results are presented in the form of graphs and analyzed
Computing Maximum Cardinality Matchings in Parallel on Bipartite Graphs via Tree-Grafting
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azad, Ariful; Buluc, Aydn; Pothen, Alex
It is difficult to obtain high performance when computing matchings on parallel processors because matching algorithms explicitly or implicitly search for paths in the graph, and when these paths become long, there is little concurrency. In spite of this limitation, we present a new algorithm and its shared-memory parallelization that achieves good performance and scalability in computing maximum cardinality matchings in bipartite graphs. This algorithm searches for augmenting paths via specialized breadth-first searches (BFS) from multiple source vertices, hence creating more parallelism than single source algorithms. Algorithms that employ multiple-source searches cannot discard a search tree once no augmenting pathmore » is discovered from the tree, unlike algorithms that rely on single-source searches. We describe a novel tree-grafting method that eliminates most of the redundant edge traversals resulting from this property of multiple-source searches. We also employ the recent direction-optimizing BFS algorithm as a subroutine to discover augmenting paths faster. Our algorithm compares favorably with the current best algorithms in terms of the number of edges traversed, the average augmenting path length, and the number of iterations. Here, we provide a proof of correctness for our algorithm. Our NUMA-aware implementation is scalable to 80 threads of an Intel multiprocessor and to 240 threads on an Intel Knights Corner coprocessor. On average, our parallel algorithm runs an order of magnitude faster than the fastest algorithms available. The performance improvement is more significant on graphs with small matching number.« less
Computing Maximum Cardinality Matchings in Parallel on Bipartite Graphs via Tree-Grafting
Azad, Ariful; Buluc, Aydn; Pothen, Alex
2016-03-24
It is difficult to obtain high performance when computing matchings on parallel processors because matching algorithms explicitly or implicitly search for paths in the graph, and when these paths become long, there is little concurrency. In spite of this limitation, we present a new algorithm and its shared-memory parallelization that achieves good performance and scalability in computing maximum cardinality matchings in bipartite graphs. This algorithm searches for augmenting paths via specialized breadth-first searches (BFS) from multiple source vertices, hence creating more parallelism than single source algorithms. Algorithms that employ multiple-source searches cannot discard a search tree once no augmenting pathmore » is discovered from the tree, unlike algorithms that rely on single-source searches. We describe a novel tree-grafting method that eliminates most of the redundant edge traversals resulting from this property of multiple-source searches. We also employ the recent direction-optimizing BFS algorithm as a subroutine to discover augmenting paths faster. Our algorithm compares favorably with the current best algorithms in terms of the number of edges traversed, the average augmenting path length, and the number of iterations. Here, we provide a proof of correctness for our algorithm. Our NUMA-aware implementation is scalable to 80 threads of an Intel multiprocessor and to 240 threads on an Intel Knights Corner coprocessor. On average, our parallel algorithm runs an order of magnitude faster than the fastest algorithms available. The performance improvement is more significant on graphs with small matching number.« less
FPFH-based graph matching for 3D point cloud registration
NASA Astrophysics Data System (ADS)
Zhao, Jiapeng; Li, Chen; Tian, Lihua; Zhu, Jihua
2018-04-01
Correspondence detection is a vital step in point cloud registration and it can help getting a reliable initial alignment. In this paper, we put forward an advanced point feature-based graph matching algorithm to solve the initial alignment problem of rigid 3D point cloud registration with partial overlap. Specifically, Fast Point Feature Histograms are used to determine the initial possible correspondences firstly. Next, a new objective function is provided to make the graph matching more suitable for partially overlapping point cloud. The objective function is optimized by the simulated annealing algorithm for final group of correct correspondences. Finally, we present a novel set partitioning method which can transform the NP-hard optimization problem into a O(n3)-solvable one. Experiments on the Stanford and UWA public data sets indicates that our method can obtain better result in terms of both accuracy and time cost compared with other point cloud registration methods.
An image understanding system using attributed symbolic representation and inexact graph-matching
NASA Astrophysics Data System (ADS)
Eshera, M. A.; Fu, K.-S.
1986-09-01
A powerful image understanding system using a semantic-syntactic representation scheme consisting of attributed relational graphs (ARGs) is proposed for the analysis of the global information content of images. A multilayer graph transducer scheme performs the extraction of ARG representations from images, with ARG nodes representing the global image features, and the relations between features represented by the attributed branches between corresponding nodes. An efficient dynamic programming technique is employed to derive the distance between two ARGs and the inexact matching of their respective components. Noise, distortion and ambiguity in real-world images are handled through modeling in the transducer mapping rules and through the appropriate cost of error-transformation for the inexact matching of the representation. The system is demonstrated for the case of locating objects in a scene composed of complex overlapped objects, and the case of target detection in noisy and distorted synthetic aperture radar image.
Efficient Approximation Algorithms for Weighted $b$-Matching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khan, Arif; Pothen, Alex; Mostofa Ali Patwary, Md.
2016-01-01
We describe a half-approximation algorithm, b-Suitor, for computing a b-Matching of maximum weight in a graph with weights on the edges. b-Matching is a generalization of the well-known Matching problem in graphs, where the objective is to choose a subset of M edges in the graph such that at most a specified number b(v) of edges in M are incident on each vertex v. Subject to this restriction we maximize the sum of the weights of the edges in M. We prove that the b-Suitor algorithm computes the same b-Matching as the one obtained by the greedy algorithm for themore » problem. We implement the algorithm on serial and shared-memory parallel processors, and compare its performance against a collection of approximation algorithms that have been proposed for the Matching problem. Our results show that the b-Suitor algorithm outperforms the Greedy and Locally Dominant edge algorithms by one to two orders of magnitude on a serial processor. The b-Suitor algorithm has a high degree of concurrency, and it scales well up to 240 threads on a shared memory multiprocessor. The b-Suitor algorithm outperforms the Locally Dominant edge algorithm by a factor of fourteen on 16 cores of an Intel Xeon multiprocessor.« less
Building dynamic population graph for accurate correspondence detection.
Du, Shaoyi; Guo, Yanrong; Sanroma, Gerard; Ni, Dong; Wu, Guorong; Shen, Dinggang
2015-12-01
In medical imaging studies, there is an increasing trend for discovering the intrinsic anatomical difference across individual subjects in a dataset, such as hand images for skeletal bone age estimation. Pair-wise matching is often used to detect correspondences between each individual subject and a pre-selected model image with manually-placed landmarks. However, the large anatomical variability across individual subjects can easily compromise such pair-wise matching step. In this paper, we present a new framework to simultaneously detect correspondences among a population of individual subjects, by propagating all manually-placed landmarks from a small set of model images through a dynamically constructed image graph. Specifically, we first establish graph links between models and individual subjects according to pair-wise shape similarity (called as forward step). Next, we detect correspondences for the individual subjects with direct links to any of model images, which is achieved by a new multi-model correspondence detection approach based on our recently-published sparse point matching method. To correct those inaccurate correspondences, we further apply an error detection mechanism to automatically detect wrong correspondences and then update the image graph accordingly (called as backward step). After that, all subject images with detected correspondences are included into the set of model images, and the above two steps of graph expansion and error correction are repeated until accurate correspondences for all subject images are established. Evaluations on real hand X-ray images demonstrate that our proposed method using a dynamic graph construction approach can achieve much higher accuracy and robustness, when compared with the state-of-the-art pair-wise correspondence detection methods as well as a similar method but using static population graph. Copyright © 2015 Elsevier B.V. All rights reserved.
Model-based morphological segmentation and labeling of coronary angiograms.
Haris, K; Efstratiadis, S N; Maglaveras, N; Pappas, C; Gourassas, J; Louridas, G
1999-10-01
A method for extraction and labeling of the coronary arterial tree (CAT) using minimal user supervision in single-view angiograms is proposed. The CAT structural description (skeleton and borders) is produced, along with quantitative information for the artery dimensions and assignment of coded labels, based on a given coronary artery model represented by a graph. The stages of the method are: 1) CAT tracking and detection; 2) artery skeleton and border estimation; 3) feature graph creation; and iv) artery labeling by graph matching. The approximate CAT centerline and borders are extracted by recursive tracking based on circular template analysis. The accurate skeleton and borders of each CAT segment are computed, based on morphological homotopy modification and watershed transform. The approximate centerline and borders are used for constructing the artery segment enclosing area (ASEA), where the defined skeleton and border curves are considered as markers. Using the marked ASEA, an artery gradient image is constructed where all the ASEA pixels (except the skeleton ones) are assigned the gradient magnitude of the original image. The artery gradient image markers are imposed as its unique regional minima by the homotopy modification method, the watershed transform is used for extracting the artery segment borders, and the feature graph is updated. Finally, given the created feature graph and the known model graph, a graph matching algorithm assigns the appropriate labels to the extracted CAT using weighted maximal cliques on the association graph corresponding to the two given graphs. Experimental results using clinical digitized coronary angiograms are presented.
The Nonlinear Spring and Energy Conservation.
ERIC Educational Resources Information Center
Sherfinski, John
1989-01-01
Describes an air track experiment demonstrating the transfer of mechanical energy from elastic potential to kinetic. Discusses four methods for calculating energy stored in the spring. Included are pictures, typical data, and graphs. (YP)
NASA Astrophysics Data System (ADS)
Zhao, Yongli; Tian, Rui; Yu, Xiaosong; Zhang, Jiawei; Zhang, Jie
2017-03-01
A proper traffic grooming strategy in dynamic optical networks can improve the utilization of bandwidth resources. An auxiliary graph (AG) is designed to solve the traffic grooming problem under a dynamic traffic scenario in spatial division multiplexing enabled elastic optical networks (SDM-EON) with multi-core fibers. Five traffic grooming policies achieved by adjusting the edge weights of an AG are proposed and evaluated through simulation: maximal electrical grooming (MEG), maximal optical grooming (MOG), maximal SDM grooming (MSG), minimize virtual hops (MVH), and minimize physical hops (MPH). Numeric results show that each traffic grooming policy has its own features. Among different traffic grooming policies, an MPH policy can achieve the lowest bandwidth blocking ratio, MEG can save the most transponders, and MSG can obtain the fewest cores for each request.
Visual Odometry Based on Structural Matching of Local Invariant Features Using Stereo Camera Sensor
Núñez, Pedro; Vázquez-Martín, Ricardo; Bandera, Antonio
2011-01-01
This paper describes a novel sensor system to estimate the motion of a stereo camera. Local invariant image features are matched between pairs of frames and linked into image trajectories at video rate, providing the so-called visual odometry, i.e., motion estimates from visual input alone. Our proposal conducts two matching sessions: the first one between sets of features associated to the images of the stereo pairs and the second one between sets of features associated to consecutive frames. With respect to previously proposed approaches, the main novelty of this proposal is that both matching algorithms are conducted by means of a fast matching algorithm which combines absolute and relative feature constraints. Finding the largest-valued set of mutually consistent matches is equivalent to finding the maximum-weighted clique on a graph. The stereo matching allows to represent the scene view as a graph which emerge from the features of the accepted clique. On the other hand, the frame-to-frame matching defines a graph whose vertices are features in 3D space. The efficiency of the approach is increased by minimizing the geometric and algebraic errors to estimate the final displacement of the stereo camera between consecutive acquired frames. The proposed approach has been tested for mobile robotics navigation purposes in real environments and using different features. Experimental results demonstrate the performance of the proposal, which could be applied in both industrial and service robot fields. PMID:22164016
Stracuzzi, David John; Brost, Randolph C.; Phillips, Cynthia A.; ...
2015-09-26
Geospatial semantic graphs provide a robust foundation for representing and analyzing remote sensor data. In particular, they support a variety of pattern search operations that capture the spatial and temporal relationships among the objects and events in the data. However, in the presence of large data corpora, even a carefully constructed search query may return a large number of unintended matches. This work considers the problem of calculating a quality score for each match to the query, given that the underlying data are uncertain. As a result, we present a preliminary evaluation of three methods for determining both match qualitymore » scores and associated uncertainty bounds, illustrated in the context of an example based on overhead imagery data.« less
Matching and Vertex Packing: How Hard Are They?
1991-01-01
Theory, 29, Ann. Discrete Math ., North-Holland, Amsterdam, 1986. [2] M.D. Plummer, Matching theory - a sampler: from D~nes K~nig to the present...Ser. B, 28, 1980, 284-304. [20i N. Sbihi, Algorithme de recherche d’un stable de cardinalit6 maximum dans un graphe sans 6toile, Discrete Math ., 29...cliques and by finite families of graphs, Discrete Math ., 49, 1984, 45-59. [92] G. Cornu~jols, D. Hartvigsen and W.R. Pulleyblank, Packing subgraphs in
An Integrated Ransac and Graph Based Mismatch Elimination Approach for Wide-Baseline Image Matching
NASA Astrophysics Data System (ADS)
Hasheminasab, M.; Ebadi, H.; Sedaghat, A.
2015-12-01
In this paper we propose an integrated approach in order to increase the precision of feature point matching. Many different algorithms have been developed as to optimizing the short-baseline image matching while because of illumination differences and viewpoints changes, wide-baseline image matching is so difficult to handle. Fortunately, the recent developments in the automatic extraction of local invariant features make wide-baseline image matching possible. The matching algorithms which are based on local feature similarity principle, using feature descriptor as to establish correspondence between feature point sets. To date, the most remarkable descriptor is the scale-invariant feature transform (SIFT) descriptor , which is invariant to image rotation and scale, and it remains robust across a substantial range of affine distortion, presence of noise, and changes in illumination. The epipolar constraint based on RANSAC (random sample consensus) method is a conventional model for mismatch elimination, particularly in computer vision. Because only the distance from the epipolar line is considered, there are a few false matches in the selected matching results based on epipolar geometry and RANSAC. Aguilariu et al. proposed Graph Transformation Matching (GTM) algorithm to remove outliers which has some difficulties when the mismatched points surrounded by the same local neighbor structure. In this study to overcome these limitations, which mentioned above, a new three step matching scheme is presented where the SIFT algorithm is used to obtain initial corresponding point sets. In the second step, in order to reduce the outliers, RANSAC algorithm is applied. Finally, to remove the remained mismatches, based on the adjacent K-NN graph, the GTM is implemented. Four different close range image datasets with changes in viewpoint are utilized to evaluate the performance of the proposed method and the experimental results indicate its robustness and capability.
Tang, Xiaolan; Hong, Donghui; Chen, Wenlong
2017-01-01
Existing studies on data acquisition in vehicular networks often take the mobile vehicular nodes as data carriers. However, their autonomous movements, limited resources and security risks impact the quality of services. In this article, we propose a data acquisition model using stable matching of bipartite graph in cooperative vehicle-infrastructure systems, namely, DAS. Contents are distributed to roadside units, while vehicular nodes support supplementary storage. The original distribution problem is formulated as a stable matching problem of bipartite graph, where the data and the storage cells compose two sides of vertices. Regarding the factors relevant with the access ratio and delay, the preference rankings for contents and roadside units are calculated, respectively. With a multi-replica preprocessing algorithm to handle the potential one-to-many mapping, the matching problem is addressed in polynomial time. In addition, vehicular nodes carry and forward assistant contents to deliver the failed packets because of bandwidth competition. Furthermore, an incentive strategy is put forward to boost the vehicle cooperation and to achieve a fair bandwidth allocation at roadside units. Experiments show that DAS achieves a high access ratio and a small storage cost with an acceptable delay. PMID:28594359
NASA Astrophysics Data System (ADS)
Acton, Scott T.; Gilliam, Andrew D.; Li, Bing; Rossi, Adam
2008-02-01
Improvised explosive devices (IEDs) are common and lethal instruments of terrorism, and linking a terrorist entity to a specific device remains a difficult task. In the effort to identify persons associated with a given IED, we have implemented a specialized content based image retrieval system to search and classify IED imagery. The system makes two contributions to the art. First, we introduce a shape-based matching technique exploiting shape, color, and texture (wavelet) information, based on novel vector field convolution active contours and a novel active contour initialization method which treats coarse segmentation as an inverse problem. Second, we introduce a unique graph theoretic approach to match annotated printed circuit board images for which no schematic or connectivity information is available. The shape-based image retrieval method, in conjunction with the graph theoretic tool, provides an efficacious system for matching IED images. For circuit imagery, the basic retrieval mechanism has a precision of 82.1% and the graph based method has a precision of 98.1%. As of the fall of 2007, the working system has processed over 400,000 case images.
Identifying the minor set cover of dense connected bipartite graphs via random matching edge sets
NASA Astrophysics Data System (ADS)
Hamilton, Kathleen E.; Humble, Travis S.
2017-04-01
Using quantum annealing to solve an optimization problem requires minor embedding a logic graph into a known hardware graph. In an effort to reduce the complexity of the minor embedding problem, we introduce the minor set cover (MSC) of a known graph G: a subset of graph minors which contain any remaining minor of the graph as a subgraph. Any graph that can be embedded into G will be embeddable into a member of the MSC. Focusing on embedding into the hardware graph of commercially available quantum annealers, we establish the MSC for a particular known virtual hardware, which is a complete bipartite graph. We show that the complete bipartite graph K_{N,N} has a MSC of N minors, from which K_{N+1} is identified as the largest clique minor of K_{N,N}. The case of determining the largest clique minor of hardware with faults is briefly discussed but remains an open question.
Identifying the minor set cover of dense connected bipartite graphs via random matching edge sets
Hamilton, Kathleen E.; Humble, Travis S.
2017-02-23
Using quantum annealing to solve an optimization problem requires minor embedding a logic graph into a known hardware graph. We introduce the minor set cover (MSC) of a known graph GG : a subset of graph minors which contain any remaining minor of the graph as a subgraph, in an effort to reduce the complexity of the minor embedding problem. Any graph that can be embedded into GG will be embeddable into a member of the MSC. Focusing on embedding into the hardware graph of commercially available quantum annealers, we establish the MSC for a particular known virtual hardware, whichmore » is a complete bipartite graph. Furthermore, we show that the complete bipartite graph K N,N has a MSC of N minors, from which K N+1 is identified as the largest clique minor of K N,N. In the case of determining the largest clique minor of hardware with faults we briefly discussed this open question.« less
Graph configuration model based evaluation of the education-occupation match
2018-01-01
To study education—occupation matchings we developed a bipartite network model of education to work transition and a graph configuration model based metric. We studied the career paths of 15 thousand Hungarian students based on the integrated database of the National Tax Administration, the National Health Insurance Fund, and the higher education information system of the Hungarian Government. A brief analysis of gender pay gap and the spatial distribution of over-education is presented to demonstrate the background of the research and the resulted open dataset. We highlighted the hierarchical and clustered structure of the career paths based on the multi-resolution analysis of the graph modularity. The results of the cluster analysis can support policymakers to fine-tune the fragmented program structure of higher education. PMID:29509783
Graph configuration model based evaluation of the education-occupation match.
Gadar, Laszlo; Abonyi, Janos
2018-01-01
To study education-occupation matchings we developed a bipartite network model of education to work transition and a graph configuration model based metric. We studied the career paths of 15 thousand Hungarian students based on the integrated database of the National Tax Administration, the National Health Insurance Fund, and the higher education information system of the Hungarian Government. A brief analysis of gender pay gap and the spatial distribution of over-education is presented to demonstrate the background of the research and the resulted open dataset. We highlighted the hierarchical and clustered structure of the career paths based on the multi-resolution analysis of the graph modularity. The results of the cluster analysis can support policymakers to fine-tune the fragmented program structure of higher education.
Wang, Shan; Cui, Lishan; Hao, Shijie; ...
2014-10-24
This study investigated the elastic deformation behaviour of Nb nanowires embedded in a NiTi matrix. The Nb nanowires exhibited an ultra-large elastic deformation, which is found to be dictated by the martensitic transformation of the NiTi matrix, thus exhibiting unique characteristics of locality and rapidity. These are in clear contrast to our conventional observation of elastic deformations of crystalline solids, which is a homogeneous lattice distortion with a strain rate controlled by the applied strain. The Nb nanowires are also found to exhibit elastic-plastic deformation accompanying the martensitic transformation of the NiTi matrix in the case when the transformation strainmore » of the matrix over-matches the elastic strain limit of the nanowires, or exhibit only elastic deformation in the case of under-matching. Such insight provides an important opportunity for elastic strain engineering and composite design.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Shan; Cui, Lishan; Hao, Shijie
This study investigated the elastic deformation behaviour of Nb nanowires embedded in a NiTi matrix. The Nb nanowires exhibited an ultra-large elastic deformation, which is found to be dictated by the martensitic transformation of the NiTi matrix, thus exhibiting unique characteristics of locality and rapidity. These are in clear contrast to our conventional observation of elastic deformations of crystalline solids, which is a homogeneous lattice distortion with a strain rate controlled by the applied strain. The Nb nanowires are also found to exhibit elastic-plastic deformation accompanying the martensitic transformation of the NiTi matrix in the case when the transformation strainmore » of the matrix over-matches the elastic strain limit of the nanowires, or exhibit only elastic deformation in the case of under-matching. Such insight provides an important opportunity for elastic strain engineering and composite design.« less
1 / n Expansion for the Number of Matchings on Regular Graphs and Monomer-Dimer Entropy
NASA Astrophysics Data System (ADS)
Pernici, Mario
2017-08-01
Using a 1 / n expansion, that is an expansion in descending powers of n, for the number of matchings in regular graphs with 2 n vertices, we study the monomer-dimer entropy for two classes of graphs. We study the difference between the extensive monomer-dimer entropy of a random r-regular graph G (bipartite or not) with 2 n vertices and the average extensive entropy of r-regular graphs with 2 n vertices, in the limit n → ∞. We find a series expansion for it in the numbers of cycles; with probability 1 it converges for dimer density p < 1 and, for G bipartite, it diverges as |ln(1-p)| for p → 1. In the case of regular lattices, we similarly expand the difference between the specific monomer-dimer entropy on a lattice and the one on the Bethe lattice; we write down its Taylor expansion in powers of p through the order 10, expressed in terms of the number of totally reducible walks which are not tree-like. We prove through order 6 that its expansion coefficients in powers of p are non-negative.
What Mathematical Competencies Are Needed for Success in College.
ERIC Educational Resources Information Center
Garofalo, Joe
1990-01-01
Identifies requisite math skills for a microeconomics course, offering samples of supply curves, demand curves, equilibrium prices, elasticity, and complex graph problems. Recommends developmental mathematics competencies, including problem solving, reasoning, connections, communication, number and operation sense, algebra, relationships,…
Elastic constants for superplastically formed/diffusion-bonded corrugated sandwich core
NASA Technical Reports Server (NTRS)
Ko, W. L.
1980-01-01
Formulas and associated graphs for evaluating the effective elastic constants for a superplastically formed/diffusion bonded (SPF/DB) corrugated sandwich core, are presented. A comparison of structural stiffnesses of the sandwich core and a honeycomb core under conditions of equal sandwich core density was made. The stiffness in the thickness direction of the optimum SPF/DB corrugated core (that is, triangular truss core) is lower than that of the honeycomb core, and that the former has higher transverse shear stiffness than the latter.
Property-Structure-Processing Relations in Polymeric Materials.
1981-07-31
increase indefinitely without indicating actual yield value and R which is a measure of the elastic character of the fluid, approaches a limiting value...appears to increase indefinitely without indicating an- actual yield value and R, which is a measure of the elastic character of the fluid, approaches a...a linear graph when log r is plotted against log x; i.e., ,I has a x" behavior at low x. Since a 0 1, this does not correspond to the classical yield
Estimation of High-Dimensional Graphical Models Using Regularized Score Matching
Lin, Lina; Drton, Mathias; Shojaie, Ali
2017-01-01
Graphical models are widely used to model stochastic dependences among large collections of variables. We introduce a new method of estimating undirected conditional independence graphs based on the score matching loss, introduced by Hyvärinen (2005), and subsequently extended in Hyvärinen (2007). The regularized score matching method we propose applies to settings with continuous observations and allows for computationally efficient treatment of possibly non-Gaussian exponential family models. In the well-explored Gaussian setting, regularized score matching avoids issues of asymmetry that arise when applying the technique of neighborhood selection, and compared to existing methods that directly yield symmetric estimates, the score matching approach has the advantage that the considered loss is quadratic and gives piecewise linear solution paths under ℓ1 regularization. Under suitable irrepresentability conditions, we show that ℓ1-regularized score matching is consistent for graph estimation in sparse high-dimensional settings. Through numerical experiments and an application to RNAseq data, we confirm that regularized score matching achieves state-of-the-art performance in the Gaussian case and provides a valuable tool for computationally efficient estimation in non-Gaussian graphical models. PMID:28638498
Resistance distance and Kirchhoff index in circulant graphs
NASA Astrophysics Data System (ADS)
Zhang, Heping; Yang, Yujun
The resistance distance rij between vertices i and j of a connected (molecular) graph G is computed as the effective resistance between nodes i and j in the corresponding network constructed from G by replacing each edge of G with a unit resistor. The Kirchhoff index Kf(G) is the sum of resistance distances between all pairs of vertices. In this work, closed-form formulae for Kirchhoff index and resistance distances of circulant graphs are derived in terms of Laplacian spectrum and eigenvectors. Special formulae are also given for four classes of circulant graphs (complete graphs, complete graphs minus a perfect matching, cycles, Möbius ladders Mp). In particular, the asymptotic behavior of Kf(Mp) as p ? ? is obtained, that is, Kf(Mp) grows as ⅙p3 as p ? ?.
Superpixel-based graph cuts for accurate stereo matching
NASA Astrophysics Data System (ADS)
Feng, Liting; Qin, Kaihuai
2017-06-01
Estimating the surface normal vector and disparity of a pixel simultaneously, also known as three-dimensional label method, has been widely used in recent continuous stereo matching problem to achieve sub-pixel accuracy. However, due to the infinite label space, it’s extremely hard to assign each pixel an appropriate label. In this paper, we present an accurate and efficient algorithm, integrating patchmatch with graph cuts, to approach this critical computational problem. Besides, to get robust and precise matching cost, we use a convolutional neural network to learn a similarity measure on small image patches. Compared with other MRF related methods, our method has several advantages: its sub-modular property ensures a sub-problem optimality which is easy to perform in parallel; graph cuts can simultaneously update multiple pixels, avoiding local minima caused by sequential optimizers like belief propagation; it uses segmentation results for better local expansion move; local propagation and randomization can easily generate the initial solution without using external methods. Middlebury experiments show that our method can get higher accuracy than other MRF-based algorithms.
Graph Matching for the Registration of Persistent Scatterers to Optical Oblique Imagery
NASA Astrophysics Data System (ADS)
Schack, L.; Soergel, U.; Heipke, C.
2016-06-01
Matching Persistent Scatterers (PS) to airborne optical imagery is one possibility to augment applications and deepen the understanding of SAR processing and products. While recently this data registration task was done with PS and optical nadir images the alternatively available optical oblique imagery is mostly neglected. Yet, the sensing geometry of oblique images is very similar in terms of viewing direction with respect to SAR.We exploit the additional information coming with these optical sensors to assign individual PS to single parts of buildings. The key idea is to incorporate topology information which is derived by grouping regularly aligned PS at facades and use it together with a geometry based measure in order to establish a consistent and meaningful matching result. We formulate this task as an optimization problem and derive a graph matching based algorithm with guaranteed convergence in order to solve it. Two exemplary case studies show the plausibility of the presented approach.
Labeled Graph Kernel for Behavior Analysis.
Zhao, Ruiqi; Martinez, Aleix M
2016-08-01
Automatic behavior analysis from video is a major topic in many areas of research, including computer vision, multimedia, robotics, biology, cognitive science, social psychology, psychiatry, and linguistics. Two major problems are of interest when analyzing behavior. First, we wish to automatically categorize observed behaviors into a discrete set of classes (i.e., classification). For example, to determine word production from video sequences in sign language. Second, we wish to understand the relevance of each behavioral feature in achieving this classification (i.e., decoding). For instance, to know which behavior variables are used to discriminate between the words apple and onion in American Sign Language (ASL). The present paper proposes to model behavior using a labeled graph, where the nodes define behavioral features and the edges are labels specifying their order (e.g., before, overlaps, start). In this approach, classification reduces to a simple labeled graph matching. Unfortunately, the complexity of labeled graph matching grows exponentially with the number of categories we wish to represent. Here, we derive a graph kernel to quickly and accurately compute this graph similarity. This approach is very general and can be plugged into any kernel-based classifier. Specifically, we derive a Labeled Graph Support Vector Machine (LGSVM) and a Labeled Graph Logistic Regressor (LGLR) that can be readily employed to discriminate between many actions (e.g., sign language concepts). The derived approach can be readily used for decoding too, yielding invaluable information for the understanding of a problem (e.g., to know how to teach a sign language). The derived algorithms allow us to achieve higher accuracy results than those of state-of-the-art algorithms in a fraction of the time. We show experimental results on a variety of problems and datasets, including multimodal data.
NASA Astrophysics Data System (ADS)
Gohatre, Umakant Bhaskar; Patil, Venkat P.
2018-04-01
In computer vision application, the multiple object detection and tracking, in real-time operation is one of the important research field, that have gained a lot of attentions, in last few years for finding non stationary entities in the field of image sequence. The detection of object is advance towards following the moving object in video and then representation of object is step to track. The multiple object recognition proof is one of the testing assignment from detection multiple objects from video sequence. The picture enrollment has been for quite some time utilized as a reason for the location the detection of moving multiple objects. The technique of registration to discover correspondence between back to back casing sets in view of picture appearance under inflexible and relative change. The picture enrollment is not appropriate to deal with event occasion that can be result in potential missed objects. In this paper, for address such problems, designs propose novel approach. The divided video outlines utilizing area adjancy diagram of visual appearance and geometric properties. Then it performed between graph sequences by using multi graph matching, then getting matching region labeling by a proposed graph coloring algorithms which assign foreground label to respective region. The plan design is robust to unknown transformation with significant improvement in overall existing work which is related to moving multiple objects detection in real time parameters.
Predicting and Detecting Emerging Cyberattack Patterns Using StreamWorks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chin, George; Choudhury, Sutanay; Feo, John T.
2014-06-30
The number and sophistication of cyberattacks on industries and governments have dramatically grown in recent years. To counter this movement, new advanced tools and techniques are needed to detect cyberattacks in their early stages such that defensive actions may be taken to avert or mitigate potential damage. From a cybersecurity analysis perspective, detecting cyberattacks may be cast as a problem of identifying patterns in computer network traffic. Logically and intuitively, these patterns may take on the form of a directed graph that conveys how an attack or intrusion propagates through the computers of a network. Such cyberattack graphs could providemore » cybersecurity analysts with powerful conceptual representations that are natural to express and analyze. We have been researching and developing graph-centric approaches and algorithms for dynamic cyberattack detection. The advanced dynamic graph algorithms we are developing will be packaged into a streaming network analysis framework known as StreamWorks. With StreamWorks, a scientist or analyst may detect and identify precursor events and patterns as they emerge in complex networks. This analysis framework is intended to be used in a dynamic environment where network data is streamed in and is appended to a large-scale dynamic graph. Specific graphical query patterns are decomposed and collected into a graph query library. The individual decomposed subpatterns in the library are continuously and efficiently matched against the dynamic graph as it evolves to identify and detect early, partial subgraph patterns. The scalable emerging subgraph pattern algorithms will match on both structural and semantic network properties.« less
Attribute-based Decision Graphs: A framework for multiclass data classification.
Bertini, João Roberto; Nicoletti, Maria do Carmo; Zhao, Liang
2017-01-01
Graph-based algorithms have been successfully applied in machine learning and data mining tasks. A simple but, widely used, approach to build graphs from vector-based data is to consider each data instance as a vertex and connecting pairs of it using a similarity measure. Although this abstraction presents some advantages, such as arbitrary shape representation of the original data, it is still tied to some drawbacks, for example, it is dependent on the choice of a pre-defined distance metric and is biased by the local information among data instances. Aiming at exploring alternative ways to build graphs from data, this paper proposes an algorithm for constructing a new type of graph, called Attribute-based Decision Graph-AbDG. Given a vector-based data set, an AbDG is built by partitioning each data attribute range into disjoint intervals and representing each interval as a vertex. The edges are then established between vertices from different attributes according to a pre-defined pattern. Classification is performed through a matching process among the attribute values of the new instance and AbDG. Moreover, AbDG provides an inner mechanism to handle missing attribute values, which contributes for expanding its applicability. Results of classification tasks have shown that AbDG is a competitive approach when compared to well-known multiclass algorithms. The main contribution of the proposed framework is the combination of the advantages of attribute-based and graph-based techniques to perform robust pattern matching data classification, while permitting the analysis the input data considering only a subset of its attributes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Online graphic symbol recognition using neural network and ARG matching
NASA Astrophysics Data System (ADS)
Yang, Bing; Li, Changhua; Xie, Weixing
2001-09-01
This paper proposes a novel method for on-line recognition of line-based graphic symbol. The input strokes are usually warped into a cursive form due to the sundry drawing style, and classifying them is very difficult. To deal with this, an ART-2 neural network is used to classify the input strokes. It has the advantages of high recognition rate, less recognition time and forming classes in a self-organized manner. The symbol recognition is achieved by an Attribute Relational Graph (ARG) matching algorithm. The ARG is very efficient for representing complex objects, but computation cost is very high. To over come this, we suggest a fast graph matching algorithm using symbol structure information. The experimental results show that the proposed method is effective for recognition of symbols with hierarchical structure.
Kwon, Oh-Hyun; Crnovrsanin, Tarik; Ma, Kwan-Liu
2018-01-01
Using different methods for laying out a graph can lead to very different visual appearances, with which the viewer perceives different information. Selecting a "good" layout method is thus important for visualizing a graph. The selection can be highly subjective and dependent on the given task. A common approach to selecting a good layout is to use aesthetic criteria and visual inspection. However, fully calculating various layouts and their associated aesthetic metrics is computationally expensive. In this paper, we present a machine learning approach to large graph visualization based on computing the topological similarity of graphs using graph kernels. For a given graph, our approach can show what the graph would look like in different layouts and estimate their corresponding aesthetic metrics. An important contribution of our work is the development of a new framework to design graph kernels. Our experimental study shows that our estimation calculation is considerably faster than computing the actual layouts and their aesthetic metrics. Also, our graph kernels outperform the state-of-the-art ones in both time and accuracy. In addition, we conducted a user study to demonstrate that the topological similarity computed with our graph kernel matches perceptual similarity assessed by human users.
Simple graph models of information spread in finite populations
Voorhees, Burton; Ryder, Bergerud
2015-01-01
We consider several classes of simple graphs as potential models for information diffusion in a structured population. These include biases cycles, dual circular flows, partial bipartite graphs and what we call ‘single-link’ graphs. In addition to fixation probabilities, we study structure parameters for these graphs, including eigenvalues of the Laplacian, conductances, communicability and expected hitting times. In several cases, values of these parameters are related, most strongly so for partial bipartite graphs. A measure of directional bias in cycles and circular flows arises from the non-zero eigenvalues of the antisymmetric part of the Laplacian and another measure is found for cycles as the value of the transition probability for which hitting times going in either direction of the cycle are equal. A generalization of circular flow graphs is used to illustrate the possibility of tuning edge weights to match pre-specified values for graph parameters; in particular, we show that generalizations of circular flows can be tuned to have fixation probabilities equal to the Moran probability for a complete graph by tuning vertex temperature profiles. Finally, single-link graphs are introduced as an example of a graph involving a bottleneck in the connection between two components and these are compared to the partial bipartite graphs. PMID:26064661
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braunstein, Samuel L.; Ghosh, Sibasish; Severini, Simone
We reconsider density matrices of graphs as defined in quant-ph/0406165. The density matrix of a graph is the combinatorial Laplacian of the graph normalized to have unit trace. We describe a simple combinatorial condition (the 'degree condition') to test the separability of density matrices of graphs. The condition is directly related to the Peres-Horodecki partial transposition condition. We prove that the degree condition is necessary for separability, and we conjecture that it is also sufficient. We prove special cases of the conjecture involving nearest-point graphs and perfect matchings. We observe that the degree condition appears to have a value beyondmore » the density matrices of graphs. In fact, we point out that circulant density matrices and other matrices constructed from groups always satisfy the condition and indeed are separable with respect to any split. We isolate a number of problems and delineate further generalizations.« less
Indexing Volumetric Shapes with Matching and Packing
Koes, David Ryan; Camacho, Carlos J.
2014-01-01
We describe a novel algorithm for bulk-loading an index with high-dimensional data and apply it to the problem of volumetric shape matching. Our matching and packing algorithm is a general approach for packing data according to a similarity metric. First an approximate k-nearest neighbor graph is constructed using vantage-point initialization, an improvement to previous work that decreases construction time while improving the quality of approximation. Then graph matching is iteratively performed to pack related items closely together. The end result is a dense index with good performance. We define a new query specification for shape matching that uses minimum and maximum shape constraints to explicitly specify the spatial requirements of the desired shape. This specification provides a natural language for performing volumetric shape matching and is readily supported by the geometry-based similarity search (GSS) tree, an indexing structure that maintains explicit representations of volumetric shape. We describe our implementation of a GSS tree for volumetric shape matching and provide a comprehensive evaluation of parameter sensitivity, performance, and scalability. Compared to previous bulk-loading algorithms, we find that matching and packing can construct a GSS-tree index in the same amount of time that is denser, flatter, and better performing, with an observed average performance improvement of 2X. PMID:26085707
NASA Astrophysics Data System (ADS)
Reza Barati, Mohammad
2018-05-01
In this paper, applying a general nonlocal strain-gradient elasticity model with two nonlocal and one strain-gradient parameters, wave dispersion behavior of thermally affected and elastically bonded nanobeams is investigated. The two nanobeams are considered to have material imperfections or porosities evenly dispersed across the thickness. Each nanobeam has uniform thickness and is modeled by refined shear deformation beam theory with sinusoidal transverse shear strains. The governing equations of the system are derived by Hamilton's rule and are analytically solved to obtain wave frequencies and the velocity of wave propagation. In the presented graphs, one can see that porosities, temperature, nonlocal, strain gradient and bonding springs have great influences on the wave characteristics of the system.
[Propensity score matching in SPSS].
Huang, Fuqiang; DU, Chunlin; Sun, Menghui; Ning, Bing; Luo, Ying; An, Shengli
2015-11-01
To realize propensity score matching in PS Matching module of SPSS and interpret the analysis results. The R software and plug-in that could link with the corresponding versions of SPSS and propensity score matching package were installed. A PS matching module was added in the SPSS interface, and its use was demonstrated with test data. Score estimation and nearest neighbor matching was achieved with the PS matching module, and the results of qualitative and quantitative statistical description and evaluation were presented in the form of a graph matching. Propensity score matching can be accomplished conveniently using SPSS software.
Fast and accurate face recognition based on image compression
NASA Astrophysics Data System (ADS)
Zheng, Yufeng; Blasch, Erik
2017-05-01
Image compression is desired for many image-related applications especially for network-based applications with bandwidth and storage constraints. The face recognition community typical reports concentrate on the maximal compression rate that would not decrease the recognition accuracy. In general, the wavelet-based face recognition methods such as EBGM (elastic bunch graph matching) and FPB (face pattern byte) are of high performance but run slowly due to their high computation demands. The PCA (Principal Component Analysis) and LDA (Linear Discriminant Analysis) algorithms run fast but perform poorly in face recognition. In this paper, we propose a novel face recognition method based on standard image compression algorithm, which is termed as compression-based (CPB) face recognition. First, all gallery images are compressed by the selected compression algorithm. Second, a mixed image is formed with the probe and gallery images and then compressed. Third, a composite compression ratio (CCR) is computed with three compression ratios calculated from: probe, gallery and mixed images. Finally, the CCR values are compared and the largest CCR corresponds to the matched face. The time cost of each face matching is about the time of compressing the mixed face image. We tested the proposed CPB method on the "ASUMSS face database" (visible and thermal images) from 105 subjects. The face recognition accuracy with visible images is 94.76% when using JPEG compression. On the same face dataset, the accuracy of FPB algorithm was reported as 91.43%. The JPEG-compressionbased (JPEG-CPB) face recognition is standard and fast, which may be integrated into a real-time imaging device.
Elastic-Mathematical Theory of Cells and Mitochondria in Swelling Process
Mela, M. J.
1968-01-01
The elastic behavior of the cell wall as a function of the temperature has been studied with particular attention being given to the swelling of egg cells of Strongylocentrotus purpuratus and Crassostrea virginica in different sea water concentrations at different temperatures. It was found that the modulus of elasticity is a nonlinear function of temperature. At about 12-13°C the modulus of elasticity (E) is constant, independent of the stress (σ) and strain (εν) which exist at the cell wall; the membranous material follows Hooke's law, and E ≈ 3 × 107 dyn/cm2 for S. purpuratus and C. virginica. When the temperature is higher or lower than 12-13°C, the modulus of elasticity increases, and the membranous material does not follow Hooke's law, but is almost directly proportional to the stresses existing at the cell wall. On increasing the stress, the function Eσ = E(σ) approaches saturation. The corresponding stress-strain diagrams, σ = σ(εν), and the graphs, Eσ = E(σ) and Eσ = E(t) are given. The cyto-elastic phenomena at the membrane are discussed. PMID:5689191
Weak variations of Lipschitz graphs and stability of phase boundaries
NASA Astrophysics Data System (ADS)
Grabovsky, Yury; Kucher, Vladislav A.; Truskinovsky, Lev
2011-03-01
In the case of Lipschitz extremals of vectorial variational problems, an important class of strong variations originates from smooth deformations of the corresponding non-smooth graphs. These seemingly singular variations, which can be viewed as combinations of weak inner and outer variations, produce directions of differentiability of the functional and lead to singularity-centered necessary conditions on strong local minima: an equality, arising from stationarity, and an inequality, implying configurational stability of the singularity set. To illustrate the underlying coupling between inner and outer variations, we study in detail the case of smooth surfaces of gradient discontinuity representing, for instance, martensitic phase boundaries in non-linear elasticity.
Finite-Temperature Behavior of PdH x Elastic Constants Computed by Direct Molecular Dynamics
Zhou, X. W.; Heo, T. W.; Wood, B. C.; ...
2017-05-30
In this paper, robust time-averaged molecular dynamics has been developed to calculate finite-temperature elastic constants of a single crystal. We find that when the averaging time exceeds a certain threshold, the statistical errors in the calculated elastic constants become very small. We applied this method to compare the elastic constants of Pd and PdH 0.6 at representative low (10 K) and high (500 K) temperatures. The values predicted for Pd match reasonably well with ultrasonic experimental data at both temperatures. In contrast, the predicted elastic constants for PdH 0.6 only match well with ultrasonic data at 10 K; whereas, atmore » 500 K, the predicted values are significantly lower. We hypothesize that at 500 K, the facile hydrogen diffusion in PdH 0.6 alters the speed of sound, resulting in significantly reduced values of predicted elastic constants as compared to the ultrasonic experimental data. Finally, literature mechanical testing experiments seem to support this hypothesis.« less
A hierarchical graph neuron scheme for real-time pattern recognition.
Nasution, B B; Khan, A I
2008-02-01
The hierarchical graph neuron (HGN) implements a single cycle memorization and recall operation through a novel algorithmic design. The HGN is an improvement on the already published original graph neuron (GN) algorithm. In this improved approach, it recognizes incomplete/noisy patterns. It also resolves the crosstalk problem, which is identified in the previous publications, within closely matched patterns. To accomplish this, the HGN links multiple GN networks for filtering noise and crosstalk out of pattern data inputs. Intrinsically, the HGN is a lightweight in-network processing algorithm which does not require expensive floating point computations; hence, it is very suitable for real-time applications and tiny devices such as the wireless sensor networks. This paper describes that the HGN's pattern matching capability and the small response time remain insensitive to the increases in the number of stored patterns. Moreover, the HGN does not require definition of rules or setting of thresholds by the operator to achieve the desired results nor does it require heuristics entailing iterative operations for memorization and recall of patterns.
NASA Astrophysics Data System (ADS)
Ke, Xianhua; Jiang, Hao; Lv, Wen; Liu, Shiyuan
2016-03-01
Triple patterning (TP) lithography becomes a feasible technology for manufacturing as the feature size further scale down to sub 14/10 nm. In TP, a layout is decomposed into three masks followed with exposures and etches/freezing processes respectively. Previous works mostly focus on layout decomposition with minimal conflicts and stitches simultaneously. However, since any existence of native conflict will result in layout re-design/modification and reperforming the time-consuming decomposition, the effective method that can be aware of native conflicts (NCs) in layout is desirable. In this paper, a bin-based library matching method is proposed for NCs detection and layout decomposition. First, a layout is divided into bins and the corresponding conflict graph in each bin is constructed. Then, we match the conflict graph in a prebuilt colored library, and as a result the NCs can be located and highlighted quickly.
NASA Astrophysics Data System (ADS)
Gupta, Shishir; Ahmed, Mostaid; Pramanik, Abhijit
2017-03-01
The paper intends to study the propagation of horizontally polarized shear waves in an elastic medium with void pores constrained between a vertically inhomogeneous and an anisotropic magnetoelastic semi-infinite media. Elasto-dynamical equations of elastic medium with void pores and magnetoelastic solid have been employed to investigate the shear wave propagation in the proposed three-layered earth model. Method of separation of variables has been incorporated to deduce the dispersion relation. All possible special cases have been envisaged and they fairly comply with the corresponding results for classical cases. The role of inhomogeneity parameter, thickness of layer, angle with which the wave crosses the magnetic field and anisotropic magnetoelastic coupling parameter for three different materials has been elucidated and represented by graphs using MATHEMATICA.
NASA Astrophysics Data System (ADS)
Tang, Jiang; Hasegawa, Hideyuki; Kanai, Hiroshi
2005-06-01
For the assessment of the elasticity of the arterial wall, we have developed the phased tracking method [H. Kanai et al.: IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43 (1996) 791] for measuring the minute change in thickness due to heartbeats and the elasticity of the arterial wall with transcutaneous ultrasound. For various reasons, for example, an extremely small deformation of the wall, the minute change in wall thickness during one heartbeat is largely influenced by noise in these cases and the reliability of the elasticity distribution obtained from the maximum change in thickness deteriorates because the maximum value estimation is largely influenced by noise. To obtain a more reliable cross-sectional image of the elasticity of the arterial wall, in this paper, a matching method is proposed to evaluate the waveform of the measured change in wall thickness by comparing the measured waveform with a template waveform. The maximum deformation, which is used in the calculation of elasticity, was determined from the amplitude of the matched model waveform to reduce the influence of noise. The matched model waveform was obtained by minimizing the difference between the measured and template waveforms. Furthermore, a random error, which was obtained from the reproducibility among the heartbeats of the measured waveform, was considered useful for the evaluation of the reliability of the measured waveform.
PERFORMANCE OF TWO LIQUID METAL TURBOPROP ENGINES UTILIZING A CIRCULATING FUEL REACTOR
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tiedemann, H.J.; Mathews, L.
1955-01-20
The performance of two all-nuclear turboprop engines utilizing the circulating fuel reactor with a fluoride fuel temperature of I500 deg F was investigated. Data are presented for off-match-point and modified match-point performances. Results are given in graph form. (M.C.G.)
VISAGE: Interactive Visual Graph Querying.
Pienta, Robert; Navathe, Shamkant; Tamersoy, Acar; Tong, Hanghang; Endert, Alex; Chau, Duen Horng
2016-06-01
Extracting useful patterns from large network datasets has become a fundamental challenge in many domains. We present VISAGE, an interactive visual graph querying approach that empowers users to construct expressive queries, without writing complex code (e.g., finding money laundering rings of bankers and business owners). Our contributions are as follows: (1) we introduce graph autocomplete , an interactive approach that guides users to construct and refine queries, preventing over-specification; (2) VISAGE guides the construction of graph queries using a data-driven approach, enabling users to specify queries with varying levels of specificity, from concrete and detailed (e.g., query by example), to abstract (e.g., with "wildcard" nodes of any types), to purely structural matching; (3) a twelve-participant, within-subject user study demonstrates VISAGE's ease of use and the ability to construct graph queries significantly faster than using a conventional query language; (4) VISAGE works on real graphs with over 468K edges, achieving sub-second response times for common queries.
VISAGE: Interactive Visual Graph Querying
Pienta, Robert; Navathe, Shamkant; Tamersoy, Acar; Tong, Hanghang; Endert, Alex; Chau, Duen Horng
2017-01-01
Extracting useful patterns from large network datasets has become a fundamental challenge in many domains. We present VISAGE, an interactive visual graph querying approach that empowers users to construct expressive queries, without writing complex code (e.g., finding money laundering rings of bankers and business owners). Our contributions are as follows: (1) we introduce graph autocomplete, an interactive approach that guides users to construct and refine queries, preventing over-specification; (2) VISAGE guides the construction of graph queries using a data-driven approach, enabling users to specify queries with varying levels of specificity, from concrete and detailed (e.g., query by example), to abstract (e.g., with “wildcard” nodes of any types), to purely structural matching; (3) a twelve-participant, within-subject user study demonstrates VISAGE’s ease of use and the ability to construct graph queries significantly faster than using a conventional query language; (4) VISAGE works on real graphs with over 468K edges, achieving sub-second response times for common queries. PMID:28553670
Graph pyramids for protein function prediction
2015-01-01
Background Uncovering the hidden organizational characteristics and regularities among biological sequences is the key issue for detailed understanding of an underlying biological phenomenon. Thus pattern recognition from nucleic acid sequences is an important affair for protein function prediction. As proteins from the same family exhibit similar characteristics, homology based approaches predict protein functions via protein classification. But conventional classification approaches mostly rely on the global features by considering only strong protein similarity matches. This leads to significant loss of prediction accuracy. Methods Here we construct the Protein-Protein Similarity (PPS) network, which captures the subtle properties of protein families. The proposed method considers the local as well as the global features, by examining the interactions among 'weakly interacting proteins' in the PPS network and by using hierarchical graph analysis via the graph pyramid. Different underlying properties of the protein families are uncovered by operating the proposed graph based features at various pyramid levels. Results Experimental results on benchmark data sets show that the proposed hierarchical voting algorithm using graph pyramid helps to improve computational efficiency as well the protein classification accuracy. Quantitatively, among 14,086 test sequences, on an average the proposed method misclassified only 21.1 sequences whereas baseline BLAST score based global feature matching method misclassified 362.9 sequences. With each correctly classified test sequence, the fast incremental learning ability of the proposed method further enhances the training model. Thus it has achieved more than 96% protein classification accuracy using only 20% per class training data. PMID:26044522
Graph pyramids for protein function prediction.
Sandhan, Tushar; Yoo, Youngjun; Choi, Jin; Kim, Sun
2015-01-01
Uncovering the hidden organizational characteristics and regularities among biological sequences is the key issue for detailed understanding of an underlying biological phenomenon. Thus pattern recognition from nucleic acid sequences is an important affair for protein function prediction. As proteins from the same family exhibit similar characteristics, homology based approaches predict protein functions via protein classification. But conventional classification approaches mostly rely on the global features by considering only strong protein similarity matches. This leads to significant loss of prediction accuracy. Here we construct the Protein-Protein Similarity (PPS) network, which captures the subtle properties of protein families. The proposed method considers the local as well as the global features, by examining the interactions among 'weakly interacting proteins' in the PPS network and by using hierarchical graph analysis via the graph pyramid. Different underlying properties of the protein families are uncovered by operating the proposed graph based features at various pyramid levels. Experimental results on benchmark data sets show that the proposed hierarchical voting algorithm using graph pyramid helps to improve computational efficiency as well the protein classification accuracy. Quantitatively, among 14,086 test sequences, on an average the proposed method misclassified only 21.1 sequences whereas baseline BLAST score based global feature matching method misclassified 362.9 sequences. With each correctly classified test sequence, the fast incremental learning ability of the proposed method further enhances the training model. Thus it has achieved more than 96% protein classification accuracy using only 20% per class training data.
A Graph-Centric Approach for Metagenome-Guided Peptide and Protein Identification in Metaproteomics
Tang, Haixu; Li, Sujun; Ye, Yuzhen
2016-01-01
Metaproteomic studies adopt the common bottom-up proteomics approach to investigate the protein composition and the dynamics of protein expression in microbial communities. When matched metagenomic and/or metatranscriptomic data of the microbial communities are available, metaproteomic data analyses often employ a metagenome-guided approach, in which complete or fragmental protein-coding genes are first directly predicted from metagenomic (and/or metatranscriptomic) sequences or from their assemblies, and the resulting protein sequences are then used as the reference database for peptide/protein identification from MS/MS spectra. This approach is often limited because protein coding genes predicted from metagenomes are incomplete and fragmental. In this paper, we present a graph-centric approach to improving metagenome-guided peptide and protein identification in metaproteomics. Our method exploits the de Bruijn graph structure reported by metagenome assembly algorithms to generate a comprehensive database of protein sequences encoded in the community. We tested our method using several public metaproteomic datasets with matched metagenomic and metatranscriptomic sequencing data acquired from complex microbial communities in a biological wastewater treatment plant. The results showed that many more peptides and proteins can be identified when assembly graphs were utilized, improving the characterization of the proteins expressed in the microbial communities. The additional proteins we identified contribute to the characterization of important pathways such as those involved in degradation of chemical hazards. Our tools are released as open-source software on github at https://github.com/COL-IU/Graph2Pro. PMID:27918579
Nelson, Jon P
2014-01-01
Precise estimates of price elasticities are important for alcohol tax policy. Using meta-analysis, this paper corrects average beer elasticities for heterogeneity, dependence, and publication selection bias. A sample of 191 estimates is obtained from 114 primary studies. Simple and weighted means are reported. Dependence is addressed by restricting number of estimates per study, author-restricted samples, and author-specific variables. Publication bias is addressed using funnel graph, trim-and-fill, and Egger's intercept model. Heterogeneity and selection bias are examined jointly in meta-regressions containing moderator variables for econometric methodology, primary data, and precision of estimates. Results for fixed- and random-effects regressions are reported. Country-specific effects and sample time periods are unimportant, but several methodology variables help explain the dispersion of estimates. In models that correct for selection bias and heterogeneity, the average beer price elasticity is about -0.20, which is less elastic by 50% compared to values commonly used in alcohol tax policy simulations. Copyright © 2013 Elsevier B.V. All rights reserved.
Enabling Graph Mining in RDF Triplestores using SPARQL for Holistic In-situ Graph Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sangkeun; Sukumar, Sreenivas R; Hong, Seokyong
The graph analysis is now considered as a promising technique to discover useful knowledge in data with a new perspective. We envi- sion that there are two dimensions of graph analysis: OnLine Graph Analytic Processing (OLGAP) and Graph Mining (GM) where each respectively focuses on subgraph pattern matching and automatic knowledge discovery in graph. Moreover, as these two dimensions aim to complementarily solve complex problems, holistic in-situ graph analysis which covers both OLGAP and GM in a single system is critical for minimizing the burdens of operating multiple graph systems and transferring intermediate result-sets between those systems. Nevertheless, most existingmore » graph analysis systems are only capable of one dimension of graph analysis. In this work, we take an approach to enabling GM capabilities (e.g., PageRank, connected-component analysis, node eccentricity, etc.) in RDF triplestores, which are originally developed to store RDF datasets and provide OLGAP capability. More specifically, to achieve our goal, we implemented six representative graph mining algorithms using SPARQL. The approach allows a wide range of available RDF data sets directly applicable for holistic graph analysis within a system. For validation of our approach, we evaluate performance of our implementations with nine real-world datasets and three different computing environments - a laptop computer, an Amazon EC2 instance, and a shared-memory Cray XMT2 URIKA-GD graph-processing appliance. The experimen- tal results show that our implementation can provide promising and scalable performance for real world graph analysis in all tested environments. The developed software is publicly available in an open-source project that we initiated.« less
Enabling Graph Mining in RDF Triplestores using SPARQL for Holistic In-situ Graph Analysis
Lee, Sangkeun; Sukumar, Sreenivas R; Hong, Seokyong; ...
2016-01-01
The graph analysis is now considered as a promising technique to discover useful knowledge in data with a new perspective. We envi- sion that there are two dimensions of graph analysis: OnLine Graph Analytic Processing (OLGAP) and Graph Mining (GM) where each respectively focuses on subgraph pattern matching and automatic knowledge discovery in graph. Moreover, as these two dimensions aim to complementarily solve complex problems, holistic in-situ graph analysis which covers both OLGAP and GM in a single system is critical for minimizing the burdens of operating multiple graph systems and transferring intermediate result-sets between those systems. Nevertheless, most existingmore » graph analysis systems are only capable of one dimension of graph analysis. In this work, we take an approach to enabling GM capabilities (e.g., PageRank, connected-component analysis, node eccentricity, etc.) in RDF triplestores, which are originally developed to store RDF datasets and provide OLGAP capability. More specifically, to achieve our goal, we implemented six representative graph mining algorithms using SPARQL. The approach allows a wide range of available RDF data sets directly applicable for holistic graph analysis within a system. For validation of our approach, we evaluate performance of our implementations with nine real-world datasets and three different computing environments - a laptop computer, an Amazon EC2 instance, and a shared-memory Cray XMT2 URIKA-GD graph-processing appliance. The experimen- tal results show that our implementation can provide promising and scalable performance for real world graph analysis in all tested environments. The developed software is publicly available in an open-source project that we initiated.« less
RoleSim and RoleMatch: Role-Based Similarity and Graph Matching
ERIC Educational Resources Information Center
Lee, Victor Eugene
2012-01-01
With the rise of the internet, mobile communications, electronic transactions, and personal broadcasting, the scale of connectedness has grown immensely. Not only can an individual interact with thousands and millions of others, but details about those interactions are being stored in databases, for later retrieval and analysis. Two key concepts…
Classification of ligand molecules in PDB with graph match-based structural superposition.
Shionyu-Mitsuyama, Clara; Hijikata, Atsushi; Tsuji, Toshiyuki; Shirai, Tsuyoshi
2016-12-01
The fast heuristic graph match algorithm for small molecules, COMPLIG, was improved by adding a structural superposition process to verify the atom-atom matching. The modified method was used to classify the small molecule ligands in the Protein Data Bank (PDB) by their three-dimensional structures, and 16,660 types of ligands in the PDB were classified into 7561 clusters. In contrast, a classification by a previous method (without structure superposition) generated 3371 clusters from the same ligand set. The characteristic feature in the current classification system is the increased number of singleton clusters, which contained only one ligand molecule in a cluster. Inspections of the singletons in the current classification system but not in the previous one implied that the major factors for the isolation were differences in chirality, cyclic conformations, separation of substructures, and bond length. Comparisons between current and previous classification systems revealed that the superposition-based classification was effective in clustering functionally related ligands, such as drugs targeted to specific biological processes, owing to the strictness of the atom-atom matching.
Mela, M J
1968-01-01
The elastic behavior of the cell wall as a function of the temperature has been studied with particular attention being given to the swelling of egg cells of Strongylocentrotus purpuratus and Crassostrea virginica in different sea water concentrations at different temperatures. It was found that the modulus of elasticity is a nonlinear function of temperature. At about 12-13 degrees C the modulus of elasticity (E) is constant, independent of the stress (sigma) and strain (epsilon(nu)) which exist at the cell wall; the membranous material follows Hooke's law, and E approximately 3 x 10(7) dyn/cm(2) for S. purpuratus and C. virginica. When the temperature is higher or lower than 12-13 degrees C, the modulus of elasticity increases, and the membranous material does not follow Hooke's law, but is almost directly proportional to the stresses existing at the cell wall. On increasing the stress, the function E(sigma) = E(sigma) approaches saturation. The corresponding stress-strain diagrams, sigma = sigma(epsilon(nu)), and the graphs, E(sigma) = E(sigma) and E(sigma) = E(t) are given. The cyto-elastic phenomena at the membrane are discussed.
Shoepe, Todd C; Ramirez, David A; Almstedt, Hawley C
2010-01-01
Elastic bands added to traditional free-weight techniques have become a part of suggested training routines in recent years. Because of the variable loading patterns of elastic bands (i.e., greater stretch produces greater resistance), it is necessary to quantify the exact loading patterns of bands to identify the volume and intensity of training. The purpose of this study was to determine the length vs. tension properties of multiple sizes of a set of commonly used elastic bands to quantify the resistance that would be applied to free-weight plus elastic bench presses (BP) and squats (SQ). Five elastic bands of varying thickness were affixed to an overhead support beam. Dumbbells of varying weights were progressively added to the free end while the linear deformation was recorded with each subsequent weight increment. The resistance was plotted as a factor of linear deformation, and best-fit nonlinear logarithmic regression equations were then matched to the data. For both the BP and SQ loading conditions and all band thicknesses tested, R values were greater than 0.9623. These data suggest that differences in load exist as a result of the thickness of the elastic band, attachment technique, and type of exercise being performed. Facilities should adopt their own form of loading quantification to match their unique set of circumstances when acquiring, researching, and implementing elastic band and free-weight exercises into the training programs.
A distributed query execution engine of big attributed graphs.
Batarfi, Omar; Elshawi, Radwa; Fayoumi, Ayman; Barnawi, Ahmed; Sakr, Sherif
2016-01-01
A graph is a popular data model that has become pervasively used for modeling structural relationships between objects. In practice, in many real-world graphs, the graph vertices and edges need to be associated with descriptive attributes. Such type of graphs are referred to as attributed graphs. G-SPARQL has been proposed as an expressive language, with a centralized execution engine, for querying attributed graphs. G-SPARQL supports various types of graph querying operations including reachability, pattern matching and shortest path where any G-SPARQL query may include value-based predicates on the descriptive information (attributes) of the graph edges/vertices in addition to the structural predicates. In general, a main limitation of centralized systems is that their vertical scalability is always restricted by the physical limits of computer systems. This article describes the design, implementation in addition to the performance evaluation of DG-SPARQL, a distributed, hybrid and adaptive parallel execution engine of G-SPARQL queries. In this engine, the topology of the graph is distributed over the main memory of the underlying nodes while the graph data are maintained in a relational store which is replicated on the disk of each of the underlying nodes. DG-SPARQL evaluates parts of the query plan via SQL queries which are pushed to the underlying relational stores while other parts of the query plan, as necessary, are evaluated via indexless memory-based graph traversal algorithms. Our experimental evaluation shows the efficiency and the scalability of DG-SPARQL on querying massive attributed graph datasets in addition to its ability to outperform the performance of Apache Giraph, a popular distributed graph processing system, by orders of magnitudes.
Evaluation of Graph Pattern Matching Workloads in Graph Analysis Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Seokyong; Lee, Sangkeun; Lim, Seung-Hwan
2016-01-01
Graph analysis has emerged as a powerful method for data scientists to represent, integrate, query, and explore heterogeneous data sources. As a result, graph data management and mining became a popular area of research, and led to the development of plethora of systems in recent years. Unfortunately, the number of emerging graph analysis systems and the wide range of applications, coupled with a lack of apples-to-apples comparisons, make it difficult to understand the trade-offs between different systems and the graph operations for which they are designed. A fair comparison of these systems is a challenging task for the following reasons:more » multiple data models, non-standardized serialization formats, various query interfaces to users, and diverse environments they operate in. To address these key challenges, in this paper we present a new benchmark suite by extending the Lehigh University Benchmark (LUBM) to cover the most common capabilities of various graph analysis systems. We provide the design process of the benchmark, which generalizes the workflow for data scientists to conduct the desired graph analysis on different graph analysis systems. Equipped with this extended benchmark suite, we present performance comparison for nine subgraph pattern retrieval operations over six graph analysis systems, namely NetworkX, Neo4j, Jena, Titan, GraphX, and uRiKA. Through the proposed benchmark suite, this study reveals both quantitative and qualitative findings in (1) implications in loading data into each system; (2) challenges in describing graph patterns for each query interface; and (3) different sensitivity of each system to query selectivity. We envision that this study will pave the road for: (i) data scientists to select the suitable graph analysis systems, and (ii) data management system designers to advance graph analysis systems.« less
Enhancing SAMOS Data Access in DOMS via a Neo4j Property Graph Database.
NASA Astrophysics Data System (ADS)
Stallard, A. P.; Smith, S. R.; Elya, J. L.
2016-12-01
The Shipboard Automated Meteorological and Oceanographic System (SAMOS) initiative provides routine access to high-quality marine meteorological and near-surface oceanographic observations from research vessels. The Distributed Oceanographic Match-Up Service (DOMS) under development is a centralized service that allows researchers to easily match in situ and satellite oceanographic data from distributed sources to facilitate satellite calibration, validation, and retrieval algorithm development. The service currently uses Apache Solr as a backend search engine on each node in the distributed network. While Solr is a high-performance solution that facilitates creation and maintenance of indexed data, it is limited in the sense that its schema is fixed. The property graph model escapes this limitation by creating relationships between data objects. The authors will present the development of the SAMOS Neo4j property graph database including new search possibilities that take advantage of the property graph model, performance comparisons with Apache Solr, and a vision for graph databases as a storage tool for oceanographic data. The integration of the SAMOS Neo4j graph into DOMS will also be described. Currently, Neo4j contains spatial and temporal records from SAMOS which are modeled into a time tree and r-tree using Graph Aware and Spatial plugin tools for Neo4j. These extensions provide callable Java procedures within CYPHER (Neo4j's query language) that generate in-graph structures. Once generated, these structures can be queried using procedures from these libraries, or directly via CYPHER statements. Neo4j excels at performing relationship and path-based queries, which challenge relational-SQL databases because they require memory intensive joins due to the limitation of their design. Consider a user who wants to find records over several years, but only for specific months. If a traditional database only stores timestamps, this type of query would be complex and likely prohibitively slow. Using the time tree model, one can specify a path from the root to the data which restricts resolutions to certain timeframes (e.g., months). This query can be executed without joins, unions, or other compute-intensive operations, putting Neo4j at a computational advantage to the SQL database alternative.
Partitioning sparse matrices with eigenvectors of graphs
NASA Technical Reports Server (NTRS)
Pothen, Alex; Simon, Horst D.; Liou, Kang-Pu
1990-01-01
The problem of computing a small vertex separator in a graph arises in the context of computing a good ordering for the parallel factorization of sparse, symmetric matrices. An algebraic approach for computing vertex separators is considered in this paper. It is shown that lower bounds on separator sizes can be obtained in terms of the eigenvalues of the Laplacian matrix associated with a graph. The Laplacian eigenvectors of grid graphs can be computed from Kronecker products involving the eigenvectors of path graphs, and these eigenvectors can be used to compute good separators in grid graphs. A heuristic algorithm is designed to compute a vertex separator in a general graph by first computing an edge separator in the graph from an eigenvector of the Laplacian matrix, and then using a maximum matching in a subgraph to compute the vertex separator. Results on the quality of the separators computed by the spectral algorithm are presented, and these are compared with separators obtained from other algorithms for computing separators. Finally, the time required to compute the Laplacian eigenvector is reported, and the accuracy with which the eigenvector must be computed to obtain good separators is considered. The spectral algorithm has the advantage that it can be implemented on a medium-size multiprocessor in a straightforward manner.
MIMO: an efficient tool for molecular interaction maps overlap
2013-01-01
Background Molecular pathways represent an ensemble of interactions occurring among molecules within the cell and between cells. The identification of similarities between molecular pathways across organisms and functions has a critical role in understanding complex biological processes. For the inference of such novel information, the comparison of molecular pathways requires to account for imperfect matches (flexibility) and to efficiently handle complex network topologies. To date, these characteristics are only partially available in tools designed to compare molecular interaction maps. Results Our approach MIMO (Molecular Interaction Maps Overlap) addresses the first problem by allowing the introduction of gaps and mismatches between query and template pathways and permits -when necessary- supervised queries incorporating a priori biological information. It then addresses the second issue by relying directly on the rich graph topology described in the Systems Biology Markup Language (SBML) standard, and uses multidigraphs to efficiently handle multiple queries on biological graph databases. The algorithm has been here successfully used to highlight the contact point between various human pathways in the Reactome database. Conclusions MIMO offers a flexible and efficient graph-matching tool for comparing complex biological pathways. PMID:23672344
Left ventricle segmentation via graph cut distribution matching.
Ben Ayed, Ismail; Punithakumar, Kumaradevan; Li, Shuo; Islam, Ali; Chong, Jaron
2009-01-01
We present a discrete kernel density matching energy for segmenting the left ventricle cavity in cardiac magnetic resonance sequences. The energy and its graph cut optimization based on an original first-order approximation of the Bhattacharyya measure have not been proposed previously, and yield competitive results in nearly real-time. The algorithm seeks a region within each frame by optimization of two priors, one geometric (distance-based) and the other photometric, each measuring a distribution similarity between the region and a model learned from the first frame. Based on global rather than pixelwise information, the proposed algorithm does not require complex training and optimization with respect to geometric transformations. Unlike related active contour methods, it does not compute iterative updates of computationally expensive kernel densities. Furthermore, the proposed first-order analysis can be used for other intractable energies and, therefore, can lead to segmentation algorithms which share the flexibility of active contours and computational advantages of graph cuts. Quantitative evaluations over 2280 images acquired from 20 subjects demonstrated that the results correlate well with independent manual segmentations by an expert.
Automatic Assignment of Methyl-NMR Spectra of Supramolecular Machines Using Graph Theory.
Pritišanac, Iva; Degiacomi, Matteo T; Alderson, T Reid; Carneiro, Marta G; Ab, Eiso; Siegal, Gregg; Baldwin, Andrew J
2017-07-19
Methyl groups are powerful probes for the analysis of structure, dynamics and function of supramolecular assemblies, using both solution- and solid-state NMR. Widespread application of the methodology has been limited due to the challenges associated with assigning spectral resonances to specific locations within a biomolecule. Here, we present Methyl Assignment by Graph Matching (MAGMA), for the automatic assignment of methyl resonances. A graph matching protocol examines all possibilities for each resonance in order to determine an exact assignment that includes a complete description of any ambiguity. MAGMA gives 100% accuracy in confident assignments when tested against both synthetic data, and 9 cross-validated examples using both solution- and solid-state NMR data. We show that this remarkable accuracy enables a user to distinguish between alternative protein structures. In a drug discovery application on HSP90, we show the method can rapidly and efficiently distinguish between possible ligand binding modes. By providing an exact and robust solution to methyl resonance assignment, MAGMA can facilitate significantly accelerated studies of supramolecular machines using methyl-based NMR spectroscopy.
Transformations of Mathematical and Stimulus Functions
Ninness, Chris; Barnes-Holmes, Dermot; Rumph, Robin; McCuller, Glen; Ford, Angela M; Payne, Robert; Ninness, Sharon K; Smith, Ronald J; Ward, Todd A; Elliott, Marc P
2006-01-01
Following a pretest, 8 participants who were unfamiliar with algebraic and trigonometric functions received a brief presentation on the rectangular coordinate system. Next, they participated in a computer-interactive matching-to-sample procedure that trained formula-to-formula and formula-to-graph relations. Then, they were exposed to 40 novel formula-to-graph tests and 10 novel graph-to-formula tests. Seven of the 8 participants showed substantial improvement in identifying formula-to-graph relations; however, in the test of novel graph-to-formula relations, participants tended to select equations in their factored form. Next, we manipulated contextual cues in the form of rules regarding mathematical preferences. First, we informed participants that standard forms of equations were preferred over factored forms. In a subsequent test of 10 additional novel graph-to-formula relations, participants shifted their selections to favor equations in their standard form. This preference reversed during 10 more tests when financial reward was made contingent on correct identification of formulas in factored form. Formula preferences and transformation of novel mathematical and stimulus functions are discussed. PMID:17020211
The elastic ratio: introducing curvature into ratio-based image segmentation.
Schoenemann, Thomas; Masnou, Simon; Cremers, Daniel
2011-09-01
We present the first ratio-based image segmentation method that allows imposing curvature regularity of the region boundary. Our approach is a generalization of the ratio framework pioneered by Jermyn and Ishikawa so as to allow penalty functions that take into account the local curvature of the curve. The key idea is to cast the segmentation problem as one of finding cyclic paths of minimal ratio in a graph where each graph node represents a line segment. Among ratios whose discrete counterparts can be globally minimized with our approach, we focus in particular on the elastic ratio [Formula: see text] that depends, given an image I, on the oriented boundary C of the segmented region candidate. Minimizing this ratio amounts to finding a curve, neither small nor too curvy, through which the brightness flux is maximal. We prove the existence of minimizers for this criterion among continuous curves with mild regularity assumptions. We also prove that the discrete minimizers provided by our graph-based algorithm converge, as the resolution increases, to continuous minimizers. In contrast to most existing segmentation methods with computable and meaningful, i.e., nondegenerate, global optima, the proposed approach is fully unsupervised in the sense that it does not require any kind of user input such as seed nodes. Numerical experiments demonstrate that curvature regularity allows substantial improvement of the quality of segmentations. Furthermore, our results allow drawing conclusions about global optima of a parameterization-independent version of the snakes functional: the proposed algorithm allows determining parameter values where the functional has a meaningful solution and simultaneously provides the corresponding global solution.
The price elasticity of demand for heroin: matched longitudinal and experimental evidence#
Olmstead, Todd A.; Alessi, Sheila M.; Kline, Brendan; Pacula, Rosalie Liccardo; Petry, Nancy M.
2015-01-01
This paper reports estimates of the price elasticity of demand for heroin based on a newly constructed dataset. The dataset has two matched components concerning the same sample of regular heroin users: longitudinal information about real-world heroin demand (actual price and actual quantity at daily intervals for each heroin user in the sample) and experimental information about laboratory heroin demand (elicited by presenting the same heroin users with scenarios in a laboratory setting). Two empirical strategies are used to estimate the price elasticity of demand for heroin. The first strategy exploits the idiosyncratic variation in the price experienced by a heroin user over time that occurs in markets for illegal drugs. The second strategy exploits the experimentally-induced variation in price experienced by a heroin user across experimental scenarios. Both empirical strategies result in the estimate that the conditional price elasticity of demand for heroin is approximately −0.80. PMID:25702687
A graph-based network-vulnerability analysis system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swiler, L.P.; Phillips, C.; Gaylor, T.
1998-05-03
This paper presents a graph based approach to network vulnerability analysis. The method is flexible, allowing analysis of attacks from both outside and inside the network. It can analyze risks to a specific network asset, or examine the universe of possible consequences following a successful attack. The analysis system requires as input a database of common attacks, broken into atomic steps, specific network configuration and topology information, and an attacker profile. The attack information is matched with the network configuration information and an attacker profile to create a superset attack graph. Nodes identify a stage of attack, for example themore » class of machines the attacker has accessed and the user privilege level he or she has compromised. The arcs in the attack graph represent attacks or stages of attacks. By assigning probabilities of success on the arcs or costs representing level of effort for the attacker, various graph algorithms such as shortest path algorithms can identify the attack paths with the highest probability of success.« less
A graph-based network-vulnerability analysis system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swiler, L.P.; Phillips, C.; Gaylor, T.
1998-01-01
This report presents a graph-based approach to network vulnerability analysis. The method is flexible, allowing analysis of attacks from both outside and inside the network. It can analyze risks to a specific network asset, or examine the universe of possible consequences following a successful attack. The analysis system requires as input a database of common attacks, broken into atomic steps, specific network configuration and topology information, and an attacker profile. The attack information is matched with the network configuration information and an attacker profile to create a superset attack graph. Nodes identify a stage of attack, for example the classmore » of machines the attacker has accessed and the user privilege level he or she has compromised. The arcs in the attack graph represent attacks or stages of attacks. By assigning probabilities of success on the arcs or costs representing level-of-effort for the attacker, various graph algorithms such as shortest-path algorithms can identify the attack paths with the highest probability of success.« less
A Set of Handwriting Features for Use in Automated Writer Identification.
Miller, John J; Patterson, Robert Bradley; Gantz, Donald T; Saunders, Christopher P; Walch, Mark A; Buscaglia, JoAnn
2017-05-01
A writer's biometric identity can be characterized through the distribution of physical feature measurements ("writer's profile"); a graph-based system that facilitates the quantification of these features is described. To accomplish this quantification, handwriting is segmented into basic graphical forms ("graphemes"), which are "skeletonized" to yield the graphical topology of the handwritten segment. The graph-based matching algorithm compares the graphemes first by their graphical topology and then by their geometric features. Graphs derived from known writers can be compared against graphs extracted from unknown writings. The process is computationally intensive and relies heavily upon statistical pattern recognition algorithms. This article focuses on the quantification of these physical features and the construction of the associated pattern recognition methods for using the features to discriminate among writers. The graph-based system described in this article has been implemented in a highly accurate and approximately language-independent biometric recognition system of writers of cursive documents. © 2017 American Academy of Forensic Sciences.
Graph-Based Semantic Web Service Composition for Healthcare Data Integration.
Arch-Int, Ngamnij; Arch-Int, Somjit; Sonsilphong, Suphachoke; Wanchai, Paweena
2017-01-01
Within the numerous and heterogeneous web services offered through different sources, automatic web services composition is the most convenient method for building complex business processes that permit invocation of multiple existing atomic services. The current solutions in functional web services composition lack autonomous queries of semantic matches within the parameters of web services, which are necessary in the composition of large-scale related services. In this paper, we propose a graph-based Semantic Web Services composition system consisting of two subsystems: management time and run time. The management-time subsystem is responsible for dependency graph preparation in which a dependency graph of related services is generated automatically according to the proposed semantic matchmaking rules. The run-time subsystem is responsible for discovering the potential web services and nonredundant web services composition of a user's query using a graph-based searching algorithm. The proposed approach was applied to healthcare data integration in different health organizations and was evaluated according to two aspects: execution time measurement and correctness measurement.
Graph-Based Semantic Web Service Composition for Healthcare Data Integration
2017-01-01
Within the numerous and heterogeneous web services offered through different sources, automatic web services composition is the most convenient method for building complex business processes that permit invocation of multiple existing atomic services. The current solutions in functional web services composition lack autonomous queries of semantic matches within the parameters of web services, which are necessary in the composition of large-scale related services. In this paper, we propose a graph-based Semantic Web Services composition system consisting of two subsystems: management time and run time. The management-time subsystem is responsible for dependency graph preparation in which a dependency graph of related services is generated automatically according to the proposed semantic matchmaking rules. The run-time subsystem is responsible for discovering the potential web services and nonredundant web services composition of a user's query using a graph-based searching algorithm. The proposed approach was applied to healthcare data integration in different health organizations and was evaluated according to two aspects: execution time measurement and correctness measurement. PMID:29065602
Optimizing Approximate Weighted Matching on Nvidia Kepler K40
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naim, Md; Manne, Fredrik; Halappanavar, Mahantesh
Matching is a fundamental graph problem with numerous applications in science and engineering. While algorithms for computing optimal matchings are difficult to parallelize, approximation algorithms on the other hand generally compute high quality solutions and are amenable to parallelization. In this paper, we present efficient implementations of the current best algorithm for half-approximate weighted matching, the Suitor algorithm, on Nvidia Kepler K-40 platform. We develop four variants of the algorithm that exploit hardware features to address key challenges for a GPU implementation. We also experiment with different combinations of work assigned to a warp. Using an exhaustive set ofmore » $269$ inputs, we demonstrate that the new implementation outperforms the previous best GPU algorithm by $10$ to $$100\\times$$ for over $100$ instances, and from $100$ to $$1000\\times$$ for $15$ instances. We also demonstrate up to $$20\\times$$ speedup relative to $2$ threads, and up to $$5\\times$$ relative to $16$ threads on Intel Xeon platform with $16$ cores for the same algorithm. The new algorithms and implementations provided in this paper will have a direct impact on several applications that repeatedly use matching as a key compute kernel. Further, algorithm designs and insights provided in this paper will benefit other researchers implementing graph algorithms on modern GPU architectures.« less
A heuristic for efficient data distribution management in distributed simulation
NASA Astrophysics Data System (ADS)
Gupta, Pankaj; Guha, Ratan K.
2005-05-01
In this paper, we propose an algorithm for reducing the complexity of region matching and efficient multicasting in data distribution management component of High Level Architecture (HLA) Run Time Infrastructure (RTI). The current data distribution management (DDM) techniques rely on computing the intersection between the subscription and update regions. When a subscription region and an update region of different federates overlap, RTI establishes communication between the publisher and the subscriber. It subsequently routes the updates from the publisher to the subscriber. The proposed algorithm computes the update/subscription regions matching for dynamic allocation of multicast group. It provides new multicast routines that exploit the connectivity of federation by communicating updates regarding interactions and routes information only to those federates that require them. The region-matching problem in DDM reduces to clique-covering problem using the connections graph abstraction where the federations represent the vertices and the update/subscribe relations represent the edges. We develop an abstract model based on connection graph for data distribution management. Using this abstract model, we propose a heuristic for solving the region-matching problem of DDM. We also provide complexity analysis of the proposed heuristics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boman, Erik G.; Catalyurek, Umit V.; Chevalier, Cedric
2015-01-16
This final progress report summarizes the work accomplished at the Combinatorial Scientific Computing and Petascale Simulations Institute. We developed Zoltan, a parallel mesh partitioning library that made use of accurate hypergraph models to provide load balancing in mesh-based computations. We developed several graph coloring algorithms for computing Jacobian and Hessian matrices and organized them into a software package called ColPack. We developed parallel algorithms for graph coloring and graph matching problems, and also designed multi-scale graph algorithms. Three PhD students graduated, six more are continuing their PhD studies, and four postdoctoral scholars were advised. Six of these students and Fellowsmore » have joined DOE Labs (Sandia, Berkeley), as staff scientists or as postdoctoral scientists. We also organized the SIAM Workshop on Combinatorial Scientific Computing (CSC) in 2007, 2009, and 2011 to continue to foster the CSC community.« less
The random fractional matching problem
NASA Astrophysics Data System (ADS)
Lucibello, Carlo; Malatesta, Enrico M.; Parisi, Giorgio; Sicuro, Gabriele
2018-05-01
We consider two formulations of the random-link fractional matching problem, a relaxed version of the more standard random-link (integer) matching problem. In one formulation, we allow each node to be linked to itself in the optimal matching configuration. In the other one, on the contrary, such a link is forbidden. Both problems have the same asymptotic average optimal cost of the random-link matching problem on the complete graph. Using a replica approach and previous results of Wästlund (2010 Acta Mathematica 204 91–150), we analytically derive the finite-size corrections to the asymptotic optimal cost. We compare our results with numerical simulations and we discuss the main differences between random-link fractional matching problems and the random-link matching problem.
Tait, Alan R; Voepel-Lewis, Terri; Brennan-Martinez, Colleen; McGonegal, Maureen; Levine, Robert
2012-11-01
Conventional print materials for presenting risks and benefits of treatment are often difficult to understand. This study was undertaken to evaluate and compare subjects' understanding and perceptions of risks and benefits presented using animated computerized text and graphics. Adult subjects were randomized to receive identical risk/benefit information regarding taking statins that was presented on an iPad (Apple Corp, Cupertino, Calif) in 1 of 4 different animated formats: text/numbers, pie chart, bar graph, and pictograph. Subjects completed a questionnaire regarding their preferences and perceptions of the message delivery together with their understanding of the information. Health literacy, numeracy, and need for cognition were measured using validated instruments. There were no differences in subject understanding based on the different formats. However, significantly more subjects preferred graphs (82.5%) compared with text (17.5%, P<.001). Specifically, subjects preferred pictographs (32.0%) and bar graphs (31.0%) over pie charts (19.5%) and text (17.5%). Subjects whose preference for message delivery matched their randomly assigned format (preference match) had significantly greater understanding and satisfaction compared with those assigned to something other than their preference. Results showed that computer-animated depictions of risks and benefits offer an effective means to describe medical risk/benefit statistics. That understanding and satisfaction were significantly better when the format matched the individual's preference for message delivery is important and reinforces the value of "tailoring" information to the individual's needs and preferences. Copyright © 2012 Elsevier Inc. All rights reserved.
Figure-ground segmentation based on class-independent shape priors
NASA Astrophysics Data System (ADS)
Li, Yang; Liu, Yang; Liu, Guojun; Guo, Maozu
2018-01-01
We propose a method to generate figure-ground segmentation by incorporating shape priors into the graph-cuts algorithm. Given an image, we first obtain a linear representation of an image and then apply directional chamfer matching to generate class-independent, nonparametric shape priors, which provide shape clues for the graph-cuts algorithm. We then enforce shape priors in a graph-cuts energy function to produce object segmentation. In contrast to previous segmentation methods, the proposed method shares shape knowledge for different semantic classes and does not require class-specific model training. Therefore, the approach obtains high-quality segmentation for objects. We experimentally validate that the proposed method outperforms previous approaches using the challenging PASCAL VOC 2010/2012 and Berkeley (BSD300) segmentation datasets.
The price elasticity of demand for heroin: Matched longitudinal and experimental evidence.
Olmstead, Todd A; Alessi, Sheila M; Kline, Brendan; Pacula, Rosalie Liccardo; Petry, Nancy M
2015-05-01
This paper reports estimates of the price elasticity of demand for heroin based on a newly constructed dataset. The dataset has two matched components concerning the same sample of regular heroin users: longitudinal information about real-world heroin demand (actual price and actual quantity at daily intervals for each heroin user in the sample) and experimental information about laboratory heroin demand (elicited by presenting the same heroin users with scenarios in a laboratory setting). Two empirical strategies are used to estimate the price elasticity of demand for heroin. The first strategy exploits the idiosyncratic variation in the price experienced by a heroin user over time that occurs in markets for illegal drugs. The second strategy exploits the experimentally induced variation in price experienced by a heroin user across experimental scenarios. Both empirical strategies result in the estimate that the conditional price elasticity of demand for heroin is approximately -0.80. Copyright © 2015 Elsevier B.V. All rights reserved.
Neural coding in graphs of bidirectional associative memories.
Bouchain, A David; Palm, Günther
2012-01-24
In the last years we have developed large neural network models for the realization of complex cognitive tasks in a neural network architecture that resembles the network of the cerebral cortex. We have used networks of several cortical modules that contain two populations of neurons (one excitatory, one inhibitory). The excitatory populations in these so-called "cortical networks" are organized as a graph of Bidirectional Associative Memories (BAMs), where edges of the graph correspond to BAMs connecting two neural modules and nodes of the graph correspond to excitatory populations with associative feedback connections (and inhibitory interneurons). The neural code in each of these modules consists essentially of the firing pattern of the excitatory population, where mainly it is the subset of active neurons that codes the contents to be represented. The overall activity can be used to distinguish different properties of the patterns that are represented which we need to distinguish and control when performing complex tasks like language understanding with these cortical networks. The most important pattern properties or situations are: exactly fitting or matching input, incomplete information or partially matching pattern, superposition of several patterns, conflicting information, and new information that is to be learned. We show simple simulations of these situations in one area or module and discuss how to distinguish these situations based on the overall internal activation of the module. This article is part of a Special Issue entitled "Neural Coding". Copyright © 2011 Elsevier B.V. All rights reserved.
Maksimov, Dmitry; Hesser, Jürgen; Brockmann, Carolin; Jochum, Susanne; Dietz, Tiina; Schnitzer, Andreas; Düber, Christoph; Schoenberg, Stefan O; Diehl, Steffen
2009-12-01
Separating bone, calcification, and vessels in computer tomography angiography (CTA) allows for a detailed diagnosis of vessel stenosis. This paper presents a new, graph-based technique that solves this difficult problem with high accuracy. The approach requires one native data set and one that is contrast enhanced. On each data set, an attributed level-graph is derived and both graphs are matched by dynamic programming to differentiate between bone, on one hand side, and vessel/calcification on the other hand side. Lumen and calcified regions are then separated by a profile technique. Evaluation is based on data from vessels of pelvis and lower extremities of elderly patients. Due to substantial calcification and motion of patients between and during the acquisitions, the underlying approach is tested on a class of difficult cases. Analysis requires 3-5 min on a Pentium IV 3 GHz for a 700 MByte data set. Among 37 patients, our approach correctly identifies all three components in 80% of cases correctly compared to visual control. Critical inconsistencies with visual inspection were found in 6% of all cases; 70% of these inconsistencies are due to small vessels that have 1) a diameter near the resolution of the CT and 2) are passing next to bony structures. All other remaining deviations are found in an incorrect handling of the iliac artery since the slice thickness is near the diameter of this vessel and since the orientation is not in cranio-caudal direction. Increasing resolution is thus expected to solve many the aforementioned difficulties.
Cao, Hengyi; Plichta, Michael M; Schäfer, Axel; Haddad, Leila; Grimm, Oliver; Schneider, Michael; Esslinger, Christine; Kirsch, Peter; Meyer-Lindenberg, Andreas; Tost, Heike
2014-01-01
The investigation of the brain connectome with functional magnetic resonance imaging (fMRI) and graph theory analyses has recently gained much popularity, but little is known about the robustness of these properties, in particular those derived from active fMRI tasks. Here, we studied the test-retest reliability of brain graphs calculated from 26 healthy participants with three established fMRI experiments (n-back working memory, emotional face-matching, resting state) and two parcellation schemes for node definition (AAL atlas, functional atlas proposed by Power et al.). We compared the intra-class correlation coefficients (ICCs) of five different data processing strategies and demonstrated a superior reliability of task-regression methods with condition-specific regressors. The between-task comparison revealed significantly higher ICCs for resting state relative to the active tasks, and a superiority of the n-back task relative to the face-matching task for global and local network properties. While the mean ICCs were typically lower for the active tasks, overall fair to good reliabilities were detected for global and local connectivity properties, and for the n-back task with both atlases, smallworldness. For all three tasks and atlases, low mean ICCs were seen for the local network properties. However, node-specific good reliabilities were detected for node degree in regions known to be critical for the challenged functions (resting-state: default-mode network nodes, n-back: fronto-parietal nodes, face-matching: limbic nodes). Between-atlas comparison demonstrated significantly higher reliabilities for the functional parcellations for global and local network properties. Our findings can inform the choice of processing strategies, brain atlases and outcome properties for fMRI studies using active tasks, graph theory methods, and within-subject designs, in particular future pharmaco-fMRI studies. © 2013 Elsevier Inc. All rights reserved.
Neuro-symbolic representation learning on biological knowledge graphs.
Alshahrani, Mona; Khan, Mohammad Asif; Maddouri, Omar; Kinjo, Akira R; Queralt-Rosinach, Núria; Hoehndorf, Robert
2017-09-01
Biological data and knowledge bases increasingly rely on Semantic Web technologies and the use of knowledge graphs for data integration, retrieval and federated queries. In the past years, feature learning methods that are applicable to graph-structured data are becoming available, but have not yet widely been applied and evaluated on structured biological knowledge. Results: We develop a novel method for feature learning on biological knowledge graphs. Our method combines symbolic methods, in particular knowledge representation using symbolic logic and automated reasoning, with neural networks to generate embeddings of nodes that encode for related information within knowledge graphs. Through the use of symbolic logic, these embeddings contain both explicit and implicit information. We apply these embeddings to the prediction of edges in the knowledge graph representing problems of function prediction, finding candidate genes of diseases, protein-protein interactions, or drug target relations, and demonstrate performance that matches and sometimes outperforms traditional approaches based on manually crafted features. Our method can be applied to any biological knowledge graph, and will thereby open up the increasing amount of Semantic Web based knowledge bases in biology to use in machine learning and data analytics. https://github.com/bio-ontology-research-group/walking-rdf-and-owl. robert.hoehndorf@kaust.edu.sa. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.
Al Nasr, Kamal; Ranjan, Desh; Zubair, Mohammad; Chen, Lin; He, Jing
2014-01-01
Electron cryomicroscopy is becoming a major experimental technique in solving the structures of large molecular assemblies. More and more three-dimensional images have been obtained at the medium resolutions between 5 and 10 Å. At this resolution range, major α-helices can be detected as cylindrical sticks and β-sheets can be detected as plain-like regions. A critical question in de novo modeling from cryo-EM images is to determine the match between the detected secondary structures from the image and those on the protein sequence. We formulate this matching problem into a constrained graph problem and present an O(Δ(2)N(2)2(N)) algorithm to this NP-Hard problem. The algorithm incorporates the dynamic programming approach into a constrained K-shortest path algorithm. Our method, DP-TOSS, has been tested using α-proteins with maximum 33 helices and α-β proteins up to five helices and 12 β-strands. The correct match was ranked within the top 35 for 19 of the 20 α-proteins and all nine α-β proteins tested. The results demonstrate that DP-TOSS improves accuracy, time and memory space in deriving the topologies of the secondary structure elements for proteins with a large number of secondary structures and a complex skeleton.
ERIC Educational Resources Information Center
Young, Sharon L.
1991-01-01
Presented are activities that focus on gathering, using, and interpreting data about fingerprints as a basis for integrating mathematics and science. Patterns, classification, logical reasoning, and mathematical relationships are explored by making graphs, classifying fingerprints, and matching identical fingerprints. A parent-involvement activity…
NASA Astrophysics Data System (ADS)
Guz, A. N.; Bagno, A. M.
2017-07-01
The dispersion curves are constructed and propagation of quasi-Lamb waves are studied for wide range of frequencies based on the Navier -Stokes three-dimensional linearized equations for a viscous liquid and linear equations of the classical theory of elasticity for an elastic layer. For a thick liquid layer, the effect of the viscosity of the liquid and the thickness of elastic and liquid layers on the phase velocities and attenuation coefficients of quasi-Lamb modes is analyzed. It is shown that in the case of a thick liquid layer for all modes, there are elastic layers of certain thickness with minimal effect of liquid viscosity on the phase velocities and attenuation coefficients of modes. It is also discovered that for some modes, there are both certain thicknesses and certain ranges of thickness where the effect of liquid viscosity on the phase velocities and attenuation coefficients of these modes is considerable. We ascertain that liquid viscosity promotes decrease of the penetration depth of the lowest quasi-Lamb mode into the liquid. The developed approach and the obtained results make it possible to ascertain for wave processes the limits of applicability of the model of ideal compressible fluid. Numerical results in the form of graphs are adduced and analyzed.
Spin polarisation of tt¯γγ production at NLO+PS with GoSam interfaced to MadGraph5_aMC@NLO
van Deurzen, Hans; Frederix, Rikkert; Hirschi, Valentin; ...
2016-04-22
Here, we present an interface between the multipurpose Monte Carlo tool MadGraph5_aMC@NLO and the automated amplitude generator GoSam. As a first application of this novel framework, we compute the NLO corrections to pp→ tt¯H and pp→ tt¯γγ matched to a parton shower. In the phenomenological analyses of these processes, we focus our attention on observables which are sensitive to the polarisation of the top quarks.
Spin polarisation of tt¯γγ production at NLO+PS with GoSam interfaced to MadGraph5_aMC@NLO
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Deurzen, Hans; Frederix, Rikkert; Hirschi, Valentin
Here, we present an interface between the multipurpose Monte Carlo tool MadGraph5_aMC@NLO and the automated amplitude generator GoSam. As a first application of this novel framework, we compute the NLO corrections to pp→ tt¯H and pp→ tt¯γγ matched to a parton shower. In the phenomenological analyses of these processes, we focus our attention on observables which are sensitive to the polarisation of the top quarks.
A graph-based system for network-vulnerability analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swiler, L.P.; Phillips, C.
1998-06-01
This paper presents a graph-based approach to network vulnerability analysis. The method is flexible, allowing analysis of attacks from both outside and inside the network. It can analyze risks to a specific network asset, or examine the universe of possible consequences following a successful attack. The graph-based tool can identify the set of attack paths that have a high probability of success (or a low effort cost) for the attacker. The system could be used to test the effectiveness of making configuration changes, implementing an intrusion detection system, etc. The analysis system requires as input a database of common attacks,more » broken into atomic steps, specific network configuration and topology information, and an attacker profile. The attack information is matched with the network configuration information and an attacker profile to create a superset attack graph. Nodes identify a stage of attack, for example the class of machines the attacker has accessed and the user privilege level he or she has compromised. The arcs in the attack graph represent attacks or stages of attacks. By assigning probabilities of success on the arcs or costs representing level-of-effort for the attacker, various graph algorithms such as shortest-path algorithms can identify the attack paths with the highest probability of success.« less
Matched Interface and Boundary Method for Elasticity Interface Problems
Wang, Bao; Xia, Kelin; Wei, Guo-Wei
2015-01-01
Elasticity theory is an important component of continuum mechanics and has had widely spread applications in science and engineering. Material interfaces are ubiquity in nature and man-made devices, and often give rise to discontinuous coefficients in the governing elasticity equations. In this work, the matched interface and boundary (MIB) method is developed to address elasticity interface problems. Linear elasticity theory for both isotropic homogeneous and inhomogeneous media is employed. In our approach, Lamé’s parameters can have jumps across the interface and are allowed to be position dependent in modeling isotropic inhomogeneous material. Both strong discontinuity, i.e., discontinuous solution, and weak discontinuity, namely, discontinuous derivatives of the solution, are considered in the present study. In the proposed method, fictitious values are utilized so that the standard central finite different schemes can be employed regardless of the interface. Interface jump conditions are enforced on the interface, which in turn, accurately determines fictitious values. We design new MIB schemes to account for complex interface geometries. In particular, the cross derivatives in the elasticity equations are difficult to handle for complex interface geometries. We propose secondary fictitious values and construct geometry based interpolation schemes to overcome this difficulty. Numerous analytical examples are used to validate the accuracy, convergence and robustness of the present MIB method for elasticity interface problems with both small and large curvatures, strong and weak discontinuities, and constant and variable coefficients. Numerical tests indicate second order accuracy in both L∞ and L2 norms. PMID:25914439
Dynamic extension of the Simulation Problem Analysis Kernel (SPANK)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sowell, E.F.; Buhl, W.F.
1988-07-15
The Simulation Problem Analysis Kernel (SPANK) is an object-oriented simulation environment for general simulation purposes. Among its unique features is use of the directed graph as the primary data structure, rather than the matrix. This allows straightforward use of graph algorithms for matching variables and equations, and reducing the problem graph for efficient numerical solution. The original prototype implementation demonstrated the principles for systems of algebraic equations, allowing simulation of steady-state, nonlinear systems (Sowell 1986). This paper describes how the same principles can be extended to include dynamic objects, allowing simulation of general dynamic systems. The theory is developed andmore » an implementation is described. An example is taken from the field of building energy system simulation. 2 refs., 9 figs.« less
Wave chaos in the elastic disk.
Sondergaard, Niels; Tanner, Gregor
2002-12-01
The relation between the elastic wave equation for plane, isotropic bodies and an underlying classical ray dynamics is investigated. We study, in particular, the eigenfrequencies of an elastic disk with free boundaries and their connection to periodic rays inside the circular domain. Even though the problem is separable, wave mixing between the shear and pressure component of the wave field at the boundary leads to an effective stochastic part in the ray dynamics. This introduces phenomena typically associated with classical chaos as, for example, an exponential increase in the number of periodic orbits. Classically, the problem can be decomposed into an integrable part and a simple binary Markov process. Similarly, the wave equation can, in the high-frequency limit, be mapped onto a quantum graph. Implications of this result for the level statistics are discussed. Furthermore, a periodic trace formula is derived from the scattering matrix based on the inside-outside duality between eigenmodes and scattering solutions and periodic orbits are identified by Fourier transforming the spectral density.
Transient reaction of an elastic half-plane on a source of a concentrated boundary disturbance
NASA Astrophysics Data System (ADS)
Okonechnikov, A. S.; Tarlakovski, D. V.; Ul'yashina, A. N.; Fedotenkov, G. V.
2016-11-01
One of the key problems in studying the non-stationary processes of solid mechanics is obtaining of influence functions. These functions serve as solutions for the problems of effect of sudden concentrated loads on a body with linear elastic properties. Knowledge of the influence functions allows us to obtain the solutions for the problems with non-mixed boundary and initial conditions in the form of quadrature formulae with the help of superposition principle, as well as get the integral governing equations for the problems with mixed boundary and initial conditions. This paper offers explicit derivations for all nonstationary surface influence functions of an elastic half-plane in a plane strain condition. It is achieved with the help of combined inverse transform of a Fourier-Laplace integral transformation. The external disturbance is both dynamic and kinematic. The derived functions in xτ-domain are studied to find and describe singularities and are supplemented with graphs.
Registration of 3D spectral OCT volumes combining ICP with a graph-based approach
NASA Astrophysics Data System (ADS)
Niemeijer, Meindert; Lee, Kyungmoo; Garvin, Mona K.; Abràmoff, Michael D.; Sonka, Milan
2012-02-01
The introduction of spectral Optical Coherence Tomography (OCT) scanners has enabled acquisition of high resolution, 3D cross-sectional volumetric images of the retina. 3D-OCT is used to detect and manage eye diseases such as glaucoma and age-related macular degeneration. To follow-up patients over time, image registration is a vital tool to enable more precise, quantitative comparison of disease states. In this work we present a 3D registrationmethod based on a two-step approach. In the first step we register both scans in the XY domain using an Iterative Closest Point (ICP) based algorithm. This algorithm is applied to vessel segmentations obtained from the projection image of each scan. The distance minimized in the ICP algorithm includes measurements of the vessel orientation and vessel width to allow for a more robust match. In the second step, a graph-based method is applied to find the optimal translation along the depth axis of the individual A-scans in the volume to match both scans. The cost image used to construct the graph is based on the mean squared error (MSE) between matching A-scans in both images at different translations. We have applied this method to the registration of Optic Nerve Head (ONH) centered 3D-OCT scans of the same patient. First, 10 3D-OCT scans of 5 eyes with glaucoma imaged in vivo were registered for a qualitative evaluation of the algorithm performance. Then, 17 OCT data set pairs of 17 eyes with known deformation were used for quantitative assessment of the method's robustness.
Plastics as structural materials for aircraft
NASA Technical Reports Server (NTRS)
Kline, G M
1937-01-01
The purpose here is to consider the mechanical characteristics of reinforced phenol-formaldehyde resin as related to its use as structural material for aircraft. Data and graphs that have appeared in the literature are reproduced to illustrate the comparative behavior of plastics and materials commonly used in aircraft construction. Materials are characterized as to density, static strength, modulus of elasticity, resistance to long-time loading, strength under repeated impact, energy absorption, corrosion resistance, and ease of fabrication.
On Bipartite Graphs Trees and Their Partial Vertex Covers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caskurlu, Bugra; Mkrtchyan, Vahan; Parekh, Ojas D.
2015-03-01
Graphs can be used to model risk management in various systems. Particularly, Caskurlu et al. in [7] have considered a system, which has threats, vulnerabilities and assets, and which essentially represents a tripartite graph. The goal in this model is to reduce the risk in the system below a predefined risk threshold level. One can either restricting the permissions of the users, or encapsulating the system assets. The pointed out two strategies correspond to deleting minimum number of elements corresponding to vulnerabilities and assets, such that the flow between threats and assets is reduced below the predefined threshold level. Itmore » can be shown that the main goal in this risk management system can be formulated as a Partial Vertex Cover problem on bipartite graphs. It is well-known that the Vertex Cover problem is in P on bipartite graphs, however; the computational complexity of the Partial Vertex Cover problem on bipartite graphs has remained open. In this paper, we establish that the Partial Vertex Cover problem is NP-hard on bipartite graphs, which was also recently independently demonstrated [N. Apollonio and B. Simeone, Discrete Appl. Math., 165 (2014), pp. 37–48; G. Joret and A. Vetta, preprint, arXiv:1211.4853v1 [cs.DS], 2012]. We then identify interesting special cases of bipartite graphs, for which the Partial Vertex Cover problem, the closely related Budgeted Maximum Coverage problem, and their weighted extensions can be solved in polynomial time. We also present an 8/9-approximation algorithm for the Budgeted Maximum Coverage problem in the class of bipartite graphs. We show that this matches and resolves the integrality gap of the natural LP relaxation of the problem and improves upon a recent 4/5-approximation.« less
A Selectivity based approach to Continuous Pattern Detection in Streaming Graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhury, Sutanay; Holder, Larry; Chin, George
2015-05-27
Cyber security is one of the most significant technical challenges in current times. Detecting adversarial activities, prevention of theft of intellectual properties and customer data is a high priority for corporations and government agencies around the world. Cyber defenders need to analyze massive-scale, high-resolution network flows to identify, categorize, and mitigate attacks involving networks spanning institutional and national boundaries. Many of the cyber attacks can be described as subgraph patterns, with prominent examples being insider infiltrations (path queries), denial of service (parallel paths) and malicious spreads (tree queries). This motivates us to explore subgraph matching on streaming graphs in amore » continuous setting. The novelty of our work lies in using the subgraph distributional statistics collected from the streaming graph to determine the query processing strategy. We introduce a ``Lazy Search" algorithm where the search strategy is decided on a vertex-to-vertex basis depending on the likelihood of a match in the vertex neighborhood. We also propose a metric named ``Relative Selectivity" that is used to select between different query processing strategies. Our experiments performed on real online news, network traffic stream and a synthetic social network benchmark demonstrate 10-100x speedups over non-incremental, selectivity agnostic approaches.« less
Maciel, Alfredo; Presbítero, Gerardo; Piña, Cristina; del Pilar Gutiérrez, María; Guzmán, José; Munguía, Nadia
2015-01-01
A clear understanding of the dependence of mechanical properties of bone remains a task not fully achieved. In order to estimate the mechanical properties in bones for implants, pore cross-section area, calcium content, and apparent density were measured in trabecular bone samples for human implants. Samples of fresh and defatted bone tissue, extracted from one year old bovines, were cut in longitudinal and transversal orientation of the trabeculae. Pore cross-section area was measured with an image analyzer. Compression tests were conducted into rectangular prisms. Elastic modulus presents a linear tendency as a function of pore cross-section area, calcium content and apparent density regardless of the trabecular orientation. The best variable to estimate elastic modulus of trabecular bone for implants was pore cross-section area, and affirmations to consider Nukbone process appropriated for marrow extraction in trabecular bone for implantation purposes are proposed, according to bone mechanical properties. Considering stress-strain curves, defatted bone is stiffer than fresh bone. Number of pores against pore cross-section area present an exponential decay, consistent for all the samples. These graphs also are useful to predict elastic properties of trabecular samples of young bovines for implants.
A Multi-Scale Settlement Matching Algorithm Based on ARG
NASA Astrophysics Data System (ADS)
Yue, Han; Zhu, Xinyan; Chen, Di; Liu, Lingjia
2016-06-01
Homonymous entity matching is an important part of multi-source spatial data integration, automatic updating and change detection. Considering the low accuracy of existing matching methods in dealing with matching multi-scale settlement data, an algorithm based on Attributed Relational Graph (ARG) is proposed. The algorithm firstly divides two settlement scenes at different scales into blocks by small-scale road network and constructs local ARGs in each block. Then, ascertains candidate sets by merging procedures and obtains the optimal matching pairs by comparing the similarity of ARGs iteratively. Finally, the corresponding relations between settlements at large and small scales are identified. At the end of this article, a demonstration is presented and the results indicate that the proposed algorithm is capable of handling sophisticated cases.
Non-rigid image registration using graph-cuts.
Tang, Tommy W H; Chung, Albert C S
2007-01-01
Non-rigid image registration is an ill-posed yet challenging problem due to its supernormal high degree of freedoms and inherent requirement of smoothness. Graph-cuts method is a powerful combinatorial optimization tool which has been successfully applied into image segmentation and stereo matching. Under some specific constraints, graph-cuts method yields either a global minimum or a local minimum in a strong sense. Thus, it is interesting to see the effects of using graph-cuts in non-rigid image registration. In this paper, we formulate non-rigid image registration as a discrete labeling problem. Each pixel in the source image is assigned a displacement label (which is a vector) indicating which position in the floating image it is spatially corresponding to. A smoothness constraint based on first derivative is used to penalize sharp changes in displacement labels across pixels. The whole system can be optimized by using the graph-cuts method via alpha-expansions. We compare 2D and 3D registration results of our method with two state-of-the-art approaches. It is found that our method is more robust to different challenging non-rigid registration cases with higher registration accuracy.
Counting in Lattices: Combinatorial Problems from Statistical Mechanics.
NASA Astrophysics Data System (ADS)
Randall, Dana Jill
In this thesis we consider two classical combinatorial problems arising in statistical mechanics: counting matchings and self-avoiding walks in lattice graphs. The first problem arises in the study of the thermodynamical properties of monomers and dimers (diatomic molecules) in crystals. Fisher, Kasteleyn and Temperley discovered an elegant technique to exactly count the number of perfect matchings in two dimensional lattices, but it is not applicable for matchings of arbitrary size, or in higher dimensional lattices. We present the first efficient approximation algorithm for computing the number of matchings of any size in any periodic lattice in arbitrary dimension. The algorithm is based on Monte Carlo simulation of a suitable Markov chain and has rigorously derived performance guarantees that do not rely on any assumptions. In addition, we show that these results generalize to counting matchings in any graph which is the Cayley graph of a finite group. The second problem is counting self-avoiding walks in lattices. This problem arises in the study of the thermodynamics of long polymer chains in dilute solution. While there are a number of Monte Carlo algorithms used to count self -avoiding walks in practice, these are heuristic and their correctness relies on unproven conjectures. In contrast, we present an efficient algorithm which relies on a single, widely-believed conjecture that is simpler than preceding assumptions and, more importantly, is one which the algorithm itself can test. Thus our algorithm is reliable, in the sense that it either outputs answers that are guaranteed, with high probability, to be correct, or finds a counterexample to the conjecture. In either case we know we can trust our results and the algorithm is guaranteed to run in polynomial time. This is the first algorithm for counting self-avoiding walks in which the error bounds are rigorously controlled. This work was supported in part by an AT&T graduate fellowship, a University of California dissertation year fellowship and Esprit working group "RAND". Part of this work was done while visiting ICSI and the University of Edinburgh.
Superpropulsion of Droplets and Soft Elastic Solids
NASA Astrophysics Data System (ADS)
Raufaste, Christophe; Chagas, Gabriela Ramos; Darmanin, Thierry; Claudet, Cyrille; Guittard, Frédéric; Celestini, Franck
2017-09-01
We investigate the behavior of droplets and soft elastic objects propelled with a catapult. Experiments show that the ejection velocity depends on both the projectile deformation and the catapult acceleration dynamics. With a subtle matching given by a peculiar value of the projectile/catapult frequency ratio, a 250% kinetic energy gain is obtained as compared to the propulsion of a rigid projectile with the same engine. This superpropulsion has strong potentialities: actuation of droplets, sorting of objects according to their elastic properties, and energy saving for propulsion engines.
Reconstruction and simplification of urban scene models based on oblique images
NASA Astrophysics Data System (ADS)
Liu, J.; Guo, B.
2014-08-01
We describe a multi-view stereo reconstruction and simplification algorithms for urban scene models based on oblique images. The complexity, diversity, and density within the urban scene, it increases the difficulty to build the city models using the oblique images. But there are a lot of flat surfaces existing in the urban scene. One of our key contributions is that a dense matching algorithm based on Self-Adaptive Patch in view of the urban scene is proposed. The basic idea of matching propagating based on Self-Adaptive Patch is to build patches centred by seed points which are already matched. The extent and shape of the patches can adapt to the objects of urban scene automatically: when the surface is flat, the extent of the patch would become bigger; while the surface is very rough, the extent of the patch would become smaller. The other contribution is that the mesh generated by Graph Cuts is 2-manifold surface satisfied the half edge data structure. It is solved by clustering and re-marking tetrahedrons in s-t graph. The purpose of getting 2- manifold surface is to simply the mesh by edge collapse algorithm which can preserve and stand out the features of buildings.
Spatio-Semantic Comparison of Large 3d City Models in Citygml Using a Graph Database
NASA Astrophysics Data System (ADS)
Nguyen, S. H.; Yao, Z.; Kolbe, T. H.
2017-10-01
A city may have multiple CityGML documents recorded at different times or surveyed by different users. To analyse the city's evolution over a given period of time, as well as to update or edit the city model without negating modifications made by other users, it is of utmost importance to first compare, detect and locate spatio-semantic changes between CityGML datasets. This is however difficult due to the fact that CityGML elements belong to a complex hierarchical structure containing multi-level deep associations, which can basically be considered as a graph. Moreover, CityGML allows multiple syntactic ways to define an object leading to syntactic ambiguities in the exchange format. Furthermore, CityGML is capable of including not only 3D urban objects' graphical appearances but also their semantic properties. Since to date, no known algorithm is capable of detecting spatio-semantic changes in CityGML documents, a frequent approach is to replace the older models completely with the newer ones, which not only costs computational resources, but also loses track of collaborative and chronological changes. Thus, this research proposes an approach capable of comparing two arbitrarily large-sized CityGML documents on both semantic and geometric level. Detected deviations are then attached to their respective sources and can easily be retrieved on demand. As a result, updating a 3D city model using this approach is much more efficient as only real changes are committed. To achieve this, the research employs a graph database as the main data structure for storing and processing CityGML datasets in three major steps: mapping, matching and updating. The mapping process transforms input CityGML documents into respective graph representations. The matching process compares these graphs and attaches edit operations on the fly. Found changes can then be executed using the Web Feature Service (WFS), the standard interface for updating geographical features across the web.
Representation mutations from standard genetic codes
NASA Astrophysics Data System (ADS)
Aisah, I.; Suyudi, M.; Carnia, E.; Suhendi; Supriatna, A. K.
2018-03-01
Graph is widely used in everyday life especially to describe model problem and describe it concretely and clearly. In addition graph is also used to facilitate solve various kinds of problems that are difficult to be solved by calculation. In Biology, graph can be used to describe the process of protein synthesis in DNA. Protein has an important role for DNA (deoxyribonucleic acid) or RNA (ribonucleic acid). Proteins are composed of amino acids. In this study, amino acids are related to genetics, especially the genetic code. The genetic code is also known as the triplet or codon code which is a three-letter arrangement of DNA nitrogen base. The bases are adenine (A), thymine (T), guanine (G) and cytosine (C). While on RNA thymine (T) is replaced with Urasil (U). The set of all Nitrogen bases in RNA is denoted by N = {C U, A, G}. This codon works at the time of protein synthesis inside the cell. This codon also encodes the stop signal as a sign of the stop of protein synthesis process. This paper will examine the process of protein synthesis through mathematical studies and present it in three-dimensional space or graph. The study begins by analysing the set of all codons denoted by NNN such that to obtain geometric representations. At this stage there is a matching between the sets of all nitrogen bases N with Z 2 × Z 2; C=(\\overline{0},\\overline{0}),{{U}}=(\\overline{0},\\overline{1}),{{A}}=(\\overline{1},\\overline{0}),{{G}}=(\\overline{1},\\overline{1}). By matching the algebraic structure will be obtained such as group, group Klein-4,Quotien group etc. With the help of Geogebra software, the set of all codons denoted by NNN can be presented in a three-dimensional space as a multicube NNN and also can be represented as a graph, so that can easily see relationship between the codon.
Visual traffic jam analysis based on trajectory data.
Wang, Zuchao; Lu, Min; Yuan, Xiaoru; Zhang, Junping; van de Wetering, Huub
2013-12-01
In this work, we present an interactive system for visual analysis of urban traffic congestion based on GPS trajectories. For these trajectories we develop strategies to extract and derive traffic jam information. After cleaning the trajectories, they are matched to a road network. Subsequently, traffic speed on each road segment is computed and traffic jam events are automatically detected. Spatially and temporally related events are concatenated in, so-called, traffic jam propagation graphs. These graphs form a high-level description of a traffic jam and its propagation in time and space. Our system provides multiple views for visually exploring and analyzing the traffic condition of a large city as a whole, on the level of propagation graphs, and on road segment level. Case studies with 24 days of taxi GPS trajectories collected in Beijing demonstrate the effectiveness of our system.
Stressor-layer-induced elastic strain sharing in SrTiO 3 complex oxide sheets
Tilka, J. A.; Park, J.; Ahn, Y.; ...
2018-02-26
A precisely selected elastic strain can be introduced in submicron-thick single-crystal SrTiO 3 sheets using a silicon nitride stressor layer. A conformal stressor layer deposited using plasma-enhanced chemical vapor deposition produces an elastic strain in the sheet consistent with the magnitude of the nitride residual stress. Synchrotron x-ray nanodiffraction reveals that the strain introduced in the SrTiO 3 sheets is on the order of 10 -4, matching the predictions of an elastic model. Using this approach to elastic strain sharing in complex oxides allows the strain to be selected within a wide and continuous range of values, an effect notmore » achievable in heteroepitaxy on rigid substrates.« less
Stressor-layer-induced elastic strain sharing in SrTiO 3 complex oxide sheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tilka, J. A.; Park, J.; Ahn, Y.
A precisely selected elastic strain can be introduced in submicron-thick single-crystal SrTiO 3 sheets using a silicon nitride stressor layer. A conformal stressor layer deposited using plasma-enhanced chemical vapor deposition produces an elastic strain in the sheet consistent with the magnitude of the nitride residual stress. Synchrotron x-ray nanodiffraction reveals that the strain introduced in the SrTiO 3 sheets is on the order of 10 -4, matching the predictions of an elastic model. Using this approach to elastic strain sharing in complex oxides allows the strain to be selected within a wide and continuous range of values, an effect notmore » achievable in heteroepitaxy on rigid substrates.« less
Implications of the dependence of the elastic properties of DNA on nucleotide sequence.
Olson, Wilma K; Swigon, David; Coleman, Bernard D
2004-07-15
Recent advances in structural biochemistry have provided evidence that not only the geometric properties but also the elastic moduli of duplex DNA are strongly dependent on nucleotide sequence in a way that is not accounted for by classical rod models of the Kirchhoff type. A theory of sequence-dependent DNA elasticity is employed here to calculate the dependence of the equilibrium configurations of circular DNA on the binding of ligands that can induce changes in intrinsic twist at a single base-pair step. Calculations are presented of the influence on configurations of the assumed values and distribution along the DNA of intrinsic roll and twist and a modulus coupling roll to twist. Among the results obtained are the following. For minicircles formed from intrinsically straight DNA, the distribution of roll-twist coupling strongly affects the dependence of the total elastic energy Psi on the amount alpha of imposed untwisting, and that dependence can be far from quadratic. (In fact, for a periodic distribution of roll-twist coupling with a period equal to the intrinsic helical repeat length, Psi can be essentially independent of alpha for -90 degrees < alpha <90 degrees.) When the minicircle is homogeneous and without roll-twist coupling, but with uniform positive intrinsic roll, the point at which Psi attains its minimum value shifts towards negative values of alpha. It is remarked that there are cases in which one can relate graphs of Psi versus alpha to the 'effective values' of bending and twisting moduli and helical repeat length obtained from measurements of equilibrium distributions of topoisomers and probabilities of ring closure. For a minicircle formed from DNA that has an 'S' shape when stress-free, the graphs of Psi versus alpha have maxima at alpha = 0. As the binding of a twisting agent to such a minicircle results in a net decrease in Psi, the affinity of the twisting agent for binding to the minicircle is greater than its affinity for binding to unconstrained DNA with the same sequence.
A New Approach for Semantic Web Matching
NASA Astrophysics Data System (ADS)
Zamanifar, Kamran; Heidary, Golsa; Nematbakhsh, Naser; Mardukhi, Farhad
In this work we propose a new approach for semantic web matching to improve the performance of Web Service replacement. Because in automatic systems we should ensure the self-healing, self-configuration, self-optimization and self-management, all services should be always available and if one of them crashes, it should be replaced with the most similar one. Candidate services are advertised in Universal Description, Discovery and Integration (UDDI) all in Web Ontology Language (OWL). By the help of bipartite graph, we did the matching between the crashed service and a Candidate one. Then we chose the best service, which had the maximum rate of matching. In fact we compare two services' functionalities and capabilities to see how much they match. We found that the best way for matching two web services, is comparing the functionalities of them.
Automatic classification of protein structures relying on similarities between alignments
2012-01-01
Background Identification of protein structural cores requires isolation of sets of proteins all sharing a same subset of structural motifs. In the context of an ever growing number of available 3D protein structures, standard and automatic clustering algorithms require adaptations so as to allow for efficient identification of such sets of proteins. Results When considering a pair of 3D structures, they are stated as similar or not according to the local similarities of their matching substructures in a structural alignment. This binary relation can be represented in a graph of similarities where a node represents a 3D protein structure and an edge states that two 3D protein structures are similar. Therefore, classifying proteins into structural families can be viewed as a graph clustering task. Unfortunately, because such a graph encodes only pairwise similarity information, clustering algorithms may include in the same cluster a subset of 3D structures that do not share a common substructure. In order to overcome this drawback we first define a ternary similarity on a triple of 3D structures as a constraint to be satisfied by the graph of similarities. Such a ternary constraint takes into account similarities between pairwise alignments, so as to ensure that the three involved protein structures do have some common substructure. We propose hereunder a modification algorithm that eliminates edges from the original graph of similarities and gives a reduced graph in which no ternary constraints are violated. Our approach is then first to build a graph of similarities, then to reduce the graph according to the modification algorithm, and finally to apply to the reduced graph a standard graph clustering algorithm. Such method was used for classifying ASTRAL-40 non-redundant protein domains, identifying significant pairwise similarities with Yakusa, a program devised for rapid 3D structure alignments. Conclusions We show that filtering similarities prior to standard graph based clustering process by applying ternary similarity constraints i) improves the separation of proteins of different classes and consequently ii) improves the classification quality of standard graph based clustering algorithms according to the reference classification SCOP. PMID:22974051
Topological analysis of metabolic control.
Sen, A K
1990-12-01
A topological approach is presented for the analysis of control and regulation in metabolic pathways. In this approach, the control structure of a metabolic pathway is represented by a weighted directed graph. From an inspection of the topology of the graph, the control coefficients of the enzymes are evaluated in a heuristic manner in terms of the enzyme elasticities. The major advantage of the topological approach is that it provides a visual framework for (1) calculating the control coefficients of the enzymes, (2) analyzing the cause-effect relationships of the individual enzymes, (3) assessing the relative importance of the enzymes in metabolic regulation, and (4) simplifying the structure of a given pathway, from a regulatory viewpoint. Results are obtained for (a) an unbranched pathway in the absence of feedback the feedforward regulation and (b) an unbranched pathway with feedback inhibition. Our formulation is based on the metabolic control theory of Kacser and Burns (1973) and Heinrich and Rapoport (1974).
ERIC Educational Resources Information Center
Andrews, Doreen; And Others
1992-01-01
Presents a collection of fall and Halloween activities for elementary students, including pumpkin poetry, batty bulletin boards (graphing), vegetable variety art, old time radio mysteries, paper doll Halloween safety, career dress-up day, imaginative Halloween writing, and matching animals with foods they eat. A student page offers a Dracula…
Classification of ligand molecules in PDB with fast heuristic graph match algorithm COMPLIG.
Saito, Mihoko; Takemura, Naomi; Shirai, Tsuyoshi
2012-12-14
A fast heuristic graph-matching algorithm, COMPLIG, was devised to classify the small-molecule ligands in the Protein Data Bank (PDB), which are currently not properly classified on structure basis. By concurrently classifying proteins and ligands, we determined the most appropriate parameter for categorizing ligands to be more than 60% identity of atoms and bonds between molecules, and we classified 11,585 types of ligands into 1946 clusters. Although the large clusters were composed of nucleotides or amino acids, a significant presence of drug compounds was also observed. Application of the system to classify the natural ligand status of human proteins in the current database suggested that, at most, 37% of the experimental structures of human proteins were in complex with natural ligands. However, protein homology- and/or ligand similarity-based modeling was implied to provide models of natural interactions for an additional 28% of the total, which might be used to increase the knowledge of intrinsic protein-metabolite interactions. Copyright © 2012 Elsevier Ltd. All rights reserved.
Budget Constraints Affect Male Rats’ Choices between Differently Priced Commodities
Kalenscher, Tobias
2015-01-01
Demand theory can be applied to analyse how a human or animal consumer changes her selection of commodities within a certain budget in response to changes in price of those commodities. This change in consumption assessed over a range of prices is defined as demand elasticity. Previously, income-compensated and income-uncompensated price changes have been investigated using human and animal consumers, as demand theory predicts different elasticities for both conditions. However, in these studies, demand elasticity was only evaluated over the entirety of choices made from a budget. As compensating budgets changes the number of attainable commodities relative to uncompensated conditions, and thus the number of choices, it remained unclear whether budget compensation has a trivial effect on demand elasticity by simply sampling from a different total number of choices or has a direct effect on consumers’ sequential choice structure. If the budget context independently changes choices between commodities over and above price effects, this should become apparent when demand elasticity is assessed over choice sets of any reasonable size that are matched in choice opportunities between budget conditions. To gain more detailed insight in the sequential choice dynamics underlying differences in demand elasticity between budget conditions, we trained N=8 rat consumers to spend a daily budget by making a number of nosepokes to obtain two liquid commodities under different price regimes, in sessions with and without budget compensation. We confirmed that demand elasticity for both commodities differed between compensated and uncompensated budget conditions, also when the number of choices considered was matched, and showed that these elasticity differences emerge early in the sessions. These differences in demand elasticity were driven by a higher choice rate and an increased reselection bias for the preferred commodity in compensated compared to uncompensated budget conditions, suggesting a budget context effect on relative valuation. PMID:26053764
Budget Constraints Affect Male Rats' Choices between Differently Priced Commodities.
van Wingerden, Marijn; Marx, Christine; Kalenscher, Tobias
2015-01-01
Demand theory can be applied to analyse how a human or animal consumer changes her selection of commodities within a certain budget in response to changes in price of those commodities. This change in consumption assessed over a range of prices is defined as demand elasticity. Previously, income-compensated and income-uncompensated price changes have been investigated using human and animal consumers, as demand theory predicts different elasticities for both conditions. However, in these studies, demand elasticity was only evaluated over the entirety of choices made from a budget. As compensating budgets changes the number of attainable commodities relative to uncompensated conditions, and thus the number of choices, it remained unclear whether budget compensation has a trivial effect on demand elasticity by simply sampling from a different total number of choices or has a direct effect on consumers' sequential choice structure. If the budget context independently changes choices between commodities over and above price effects, this should become apparent when demand elasticity is assessed over choice sets of any reasonable size that are matched in choice opportunities between budget conditions. To gain more detailed insight in the sequential choice dynamics underlying differences in demand elasticity between budget conditions, we trained N=8 rat consumers to spend a daily budget by making a number of nosepokes to obtain two liquid commodities under different price regimes, in sessions with and without budget compensation. We confirmed that demand elasticity for both commodities differed between compensated and uncompensated budget conditions, also when the number of choices considered was matched, and showed that these elasticity differences emerge early in the sessions. These differences in demand elasticity were driven by a higher choice rate and an increased reselection bias for the preferred commodity in compensated compared to uncompensated budget conditions, suggesting a budget context effect on relative valuation.
Efficient Generation of Dancing Animation Synchronizing with Music Based on Meta Motion Graphs
NASA Astrophysics Data System (ADS)
Xu, Jianfeng; Takagi, Koichi; Sakazawa, Shigeyuki
This paper presents a system for automatic generation of dancing animation that is synchronized with a piece of music by re-using motion capture data. Basically, the dancing motion is synthesized according to the rhythm and intensity features of music. For this purpose, we propose a novel meta motion graph structure to embed the necessary features including both rhythm and intensity, which is constructed on the motion capture database beforehand. In this paper, we consider two scenarios for non-streaming music and streaming music, where global search and local search are required respectively. In the case of the former, once a piece of music is input, the efficient dynamic programming algorithm can be employed to globally search a best path in the meta motion graph, where an objective function is properly designed by measuring the quality of beat synchronization, intensity matching, and motion smoothness. In the case of the latter, the input music is stored in a buffer in a streaming mode, then an efficient search method is presented for a certain amount of music data (called a segment) in the buffer with the same objective function, resulting in a segment-based search approach. For streaming applications, we define an additional property in the above meta motion graph to deal with the unpredictable future music, which guarantees that there is some motion to match the unknown remaining music. A user study with totally 60 subjects demonstrates that our system outperforms the stat-of-the-art techniques in both scenarios. Furthermore, our system improves the synthesis speed greatly (maximal speedup is more than 500 times), which is essential for mobile applications. We have implemented our system on commercially available smart phones and confirmed that it works well on these mobile phones.
Structure-Based Low-Rank Model With Graph Nuclear Norm Regularization for Noise Removal.
Ge, Qi; Jing, Xiao-Yuan; Wu, Fei; Wei, Zhi-Hui; Xiao, Liang; Shao, Wen-Ze; Yue, Dong; Li, Hai-Bo
2017-07-01
Nonlocal image representation methods, including group-based sparse coding and block-matching 3-D filtering, have shown their great performance in application to low-level tasks. The nonlocal prior is extracted from each group consisting of patches with similar intensities. Grouping patches based on intensity similarity, however, gives rise to disturbance and inaccuracy in estimation of the true images. To address this problem, we propose a structure-based low-rank model with graph nuclear norm regularization. We exploit the local manifold structure inside a patch and group the patches by the distance metric of manifold structure. With the manifold structure information, a graph nuclear norm regularization is established and incorporated into a low-rank approximation model. We then prove that the graph-based regularization is equivalent to a weighted nuclear norm and the proposed model can be solved by a weighted singular-value thresholding algorithm. Extensive experiments on additive white Gaussian noise removal and mixed noise removal demonstrate that the proposed method achieves a better performance than several state-of-the-art algorithms.
A fuzzy pattern matching method based on graph kernel for lithography hotspot detection
NASA Astrophysics Data System (ADS)
Nitta, Izumi; Kanazawa, Yuzi; Ishida, Tsutomu; Banno, Koji
2017-03-01
In advanced technology nodes, lithography hotspot detection has become one of the most significant issues in design for manufacturability. Recently, machine learning based lithography hotspot detection has been widely investigated, but it has trade-off between detection accuracy and false alarm. To apply machine learning based technique to the physical verification phase, designers require minimizing undetected hotspots to avoid yield degradation. They also need a ranking of similar known patterns with a detected hotspot to prioritize layout pattern to be corrected. To achieve high detection accuracy and to prioritize detected hotspots, we propose a novel lithography hotspot detection method using Delaunay triangulation and graph kernel based machine learning. Delaunay triangulation extracts features of hotspot patterns where polygons locate irregularly and closely one another, and graph kernel expresses inner structure of graphs. Additionally, our method provides similarity between two patterns and creates a list of similar training patterns with a detected hotspot. Experiments results on ICCAD 2012 benchmarks show that our method achieves high accuracy with allowable range of false alarm. We also show the ranking of the similar known patterns with a detected hotspot.
MATCH: An Atom- Typing Toolset for Molecular Mechanics Force Fields
Yesselman, Joseph D.; Price, Daniel J.; Knight, Jennifer L.; Brooks, Charles L.
2011-01-01
We introduce a toolset of program libraries collectively titled MATCH (Multipurpose Atom-Typer for CHARMM) for the automated assignment of atom types and force field parameters for molecular mechanics simulation of organic molecules. The toolset includes utilities for the conversion from multiple chemical structure file formats into a molecular graph. A general chemical pattern-matching engine using this graph has been implemented whereby assignment of molecular mechanics atom types, charges and force field parameters is achieved by comparison against a customizable list of chemical fragments. While initially designed to complement the CHARMM simulation package and force fields by generating the necessary input topology and atom-type data files, MATCH can be expanded to any force field and program, and has core functionality that makes it extendable to other applications such as fragment-based property prediction. In the present work, we demonstrate the accurate construction of atomic parameters of molecules within each force field included in CHARMM36 through exhaustive cross validation studies illustrating that bond increment rules derived from one force field can be transferred to another. In addition, using leave-one-out substitution it is shown that it is also possible to substitute missing intra and intermolecular parameters with ones included in a force field to complete the parameterization of novel molecules. Finally, to demonstrate the robustness of MATCH and the coverage of chemical space offered by the recent CHARMM CGENFF force field (Vanommeslaeghe, et al., JCC., 2010, 31, 671–690), one million molecules from the PubChem database of small molecules are typed, parameterized and minimized. PMID:22042689
NASA Astrophysics Data System (ADS)
Peterman, Karen; Cranston, Kayla A.; Pryor, Marie; Kermish-Allen, Ruth
2015-11-01
This case study was conducted within the context of a place-based education project that was implemented with primary school students in the USA. The authors and participating teachers created a performance assessment of standards-aligned tasks to examine 6-10-year-old students' graph interpretation skills as part of an exploratory research project. Fifty-five students participated in a performance assessment interview at the beginning and end of a place-based investigation. Two forms of the assessment were created and counterbalanced within class at pre and post. In situ scoring was conducted such that responses were scored as correct versus incorrect during the assessment's administration. Criterion validity analysis demonstrated an age-level progression in student scores. Tests of discriminant validity showed that the instrument detected variability in interpretation skills across each of three graph types (line, bar, dot plot). Convergent validity was established by correlating in situ scores with those from the Graph Interpretation Scoring Rubric. Students' proficiency with interpreting different types of graphs matched expectations based on age and the standards-based progression of graphs across primary school grades. The assessment tasks were also effective at detecting pre-post gains in students' interpretation of line graphs and dot plots after the place-based project. The results of the case study are discussed in relation to the common challenges associated with performance assessment. Implications are presented in relation to the need for authentic and performance-based instructional and assessment tasks to respond to the Common Core State Standards and the Next Generation Science Standards.
Katan, Pesia; Kahta, Shani; Sasson, Ayelet; Schiff, Rachel
2017-07-01
Graph complexity as measured by topological entropy has been previously shown to affect performance on artificial grammar learning tasks among typically developing children. The aim of this study was to examine the effect of graph complexity on implicit sequential learning among children with developmental dyslexia. Our goal was to determine whether children's performance depends on the complexity level of the grammar system learned. We conducted two artificial grammar learning experiments that compared performance of children with developmental dyslexia with that of age- and reading level-matched controls. Experiment 1 was a high topological entropy artificial grammar learning task that aimed to establish implicit learning phenomena in children with developmental dyslexia using previously published experimental conditions. Experiment 2 is a lower topological entropy variant of that task. Results indicated that given a high topological entropy grammar system, children with developmental dyslexia who were similar to the reading age-matched control group had substantial difficulty in performing the task as compared to typically developing children, who exhibited intact implicit learning of the grammar. On the other hand, when tested on a lower topological entropy grammar system, all groups performed above chance level, indicating that children with developmental dyslexia were able to identify rules from a given grammar system. The results reinforced the significance of graph complexity when experimenting with artificial grammar learning tasks, particularly with dyslexic participants.
NASA Astrophysics Data System (ADS)
Gao, Hongwei; Zhang, Jianfeng
2008-09-01
The perfectly matched layer (PML) absorbing boundary condition is incorporated into an irregular-grid elastic-wave modelling scheme, thus resulting in an irregular-grid PML method. We develop the irregular-grid PML method using the local coordinate system based PML splitting equations and integral formulation of the PML equations. The irregular-grid PML method is implemented under a discretization of triangular grid cells, which has the ability to absorb incident waves in arbitrary directions. This allows the PML absorbing layer to be imposed along arbitrary geometrical boundaries. As a result, the computational domain can be constructed with smaller nodes, for instance, to represent the 2-D half-space by a semi-circle rather than a rectangle. By using a smooth artificial boundary, the irregular-grid PML method can also avoid the special treatments to the corners, which lead to complex computer implementations in the conventional PML method. We implement the irregular-grid PML method in both 2-D elastic isotropic and anisotropic media. The numerical simulations of a VTI lamb's problem, wave propagation in an isotropic elastic medium with curved surface and in a TTI medium demonstrate the good behaviour of the irregular-grid PML method.
Human body segmentation via data-driven graph cut.
Li, Shifeng; Lu, Huchuan; Shao, Xingqing
2014-11-01
Human body segmentation is a challenging and important problem in computer vision. Existing methods usually entail a time-consuming training phase for prior knowledge learning with complex shape matching for body segmentation. In this paper, we propose a data-driven method that integrates top-down body pose information and bottom-up low-level visual cues for segmenting humans in static images within the graph cut framework. The key idea of our approach is first to exploit human kinematics to search for body part candidates via dynamic programming for high-level evidence. Then, by using the body parts classifiers, obtaining bottom-up cues of human body distribution for low-level evidence. All the evidence collected from top-down and bottom-up procedures are integrated in a graph cut framework for human body segmentation. Qualitative and quantitative experiment results demonstrate the merits of the proposed method in segmenting human bodies with arbitrary poses from cluttered backgrounds.
Coupled Oscillator Model of the Business Cycle withFluctuating Goods Markets
NASA Astrophysics Data System (ADS)
Ikeda, Y.; Aoyama, H.; Fujiwara, Y.; Iyetomi, H.; Ogimoto, K.; Souma, W.; Yoshikawa, H.
The sectoral synchronization observed for the Japanese business cycle in the Indices of Industrial Production data is an example of synchronization. The stability of this synchronization under a shock, e.g., fluctuation of supply or demand, is a matter of interest in physics and economics. We consider an economic system made up of industry sectors and goods markets in order to analyze the sectoral synchronization observed for the Japanese business cycle. A coupled oscillator model that exhibits synchronization is developed based on the Kuramoto model with inertia by adding goods markets, and analytic solutions of the stationary state and the coupling strength are obtained. We simulate the effects on synchronization of a sectoral shock for systems with different price elasticities and the coupling strengths. Synchronization is reproduced as an equilibrium solution in a nearest neighbor graph. Analysis of the order parameters shows that the synchronization is stable for a finite elasticity, whereas the synchronization is broken and the oscillators behave like a giant oscillator with a certain frequency additional to the common frequency for zero elasticity.
Deciding Termination for Ancestor Match- Bounded String Rewriting Systems
NASA Technical Reports Server (NTRS)
Geser, Alfons; Hofbauer, Dieter; Waldmann, Johannes
2005-01-01
Termination of a string rewriting system can be characterized by termination on suitable recursively defined languages. This kind of termination criteria has been criticized for its lack of automation. In an earlier paper we have shown how to construct an automated termination criterion if the recursion is aligned with the rewrite relation. We have demonstrated the technique with Dershowitz's forward closure criterion. In this paper we show that a different approach is suitable when the recursion is aligned with the inverse of the rewrite relation. We apply this idea to Kurth's ancestor graphs and obtain ancestor match-bounded string rewriting systems. Termination is shown to be decidable for this class. The resulting method improves upon those based on match-boundedness or inverse match-boundedness.
Palchesko, Rachelle N.; Zhang, Ling; Sun, Yan; Feinberg, Adam W.
2012-01-01
Mechanics is an important component in the regulation of cell shape, proliferation, migration and differentiation during normal homeostasis and disease states. Biomaterials that match the elastic modulus of soft tissues have been effective for studying this cell mechanobiology, but improvements are needed in order to investigate a wider range of physicochemical properties in a controlled manner. We hypothesized that polydimethylsiloxane (PDMS) blends could be used as the basis of a tunable system where the elastic modulus could be adjusted to match most types of soft tissue. To test this we formulated blends of two commercially available PDMS types, Sylgard 527 and Sylgard 184, which enabled us to fabricate substrates with an elastic modulus anywhere from 5 kPa up to 1.72 MPa. This is a three order-of-magnitude range of tunability, exceeding what is possible with other hydrogel and PDMS systems. Uniquely, the elastic modulus can be controlled independently of other materials properties including surface roughness, surface energy and the ability to functionalize the surface by protein adsorption and microcontact printing. For biological validation, PC12 (neuronal inducible-pheochromocytoma cell line) and C2C12 (muscle cell line) were used to demonstrate that these PDMS formulations support cell attachment and growth and that these substrates can be used to probe the mechanosensitivity of various cellular processes including neurite extension and muscle differentiation. PMID:23240031
Attraction Toward the Model and Model's Competence as Determinants of Adult Imitative Behavior
ERIC Educational Resources Information Center
Baron, Robert A.
1970-01-01
Suggests that adults are quicker to learn to match the performance of a model similar to themselves in attitude if he is competent. Similarity of the model interferes with rate of learning if he is incompetent. Tables, graph, and bibliography. (RW)
An elastic failure model of indentation damage. [of brittle structural ceramics
NASA Technical Reports Server (NTRS)
Liaw, B. M.; Kobayashi, A. S.; Emery, A. F.
1984-01-01
A mechanistically consistent model for indentation damage based on elastic failure at tensile or shear overloads, is proposed. The model accommodates arbitrary crack orientation, stress relaxation, reduction and recovery of stiffness due to crack opening and closure, and interfacial friction due to backward sliding of closed cracks. This elastic failure model was implemented by an axisymmetric finite element program which was used to simulate progressive damage in a silicon nitride plate indented by a tungsten carbide sphere. The predicted damage patterns and the permanent impression matched those observed experimentally. The validation of this elastic failure model shows that the plastic deformation postulated by others is not necessary to replicate the indentation damage of brittle structural ceramics.
A graph-based approach for the retrieval of multi-modality medical images.
Kumar, Ashnil; Kim, Jinman; Wen, Lingfeng; Fulham, Michael; Feng, Dagan
2014-02-01
In this paper, we address the retrieval of multi-modality medical volumes, which consist of two different imaging modalities, acquired sequentially, from the same scanner. One such example, positron emission tomography and computed tomography (PET-CT), provides physicians with complementary functional and anatomical features as well as spatial relationships and has led to improved cancer diagnosis, localisation, and staging. The challenge of multi-modality volume retrieval for cancer patients lies in representing the complementary geometric and topologic attributes between tumours and organs. These attributes and relationships, which are used for tumour staging and classification, can be formulated as a graph. It has been demonstrated that graph-based methods have high accuracy for retrieval by spatial similarity. However, naïvely representing all relationships on a complete graph obscures the structure of the tumour-anatomy relationships. We propose a new graph structure derived from complete graphs that structurally constrains the edges connected to tumour vertices based upon the spatial proximity of tumours and organs. This enables retrieval on the basis of tumour localisation. We also present a similarity matching algorithm that accounts for different feature sets for graph elements from different imaging modalities. Our method emphasises the relationships between a tumour and related organs, while still modelling patient-specific anatomical variations. Constraining tumours to related anatomical structures improves the discrimination potential of graphs, making it easier to retrieve similar images based on tumour location. We evaluated our retrieval methodology on a dataset of clinical PET-CT volumes. Our results showed that our method enabled the retrieval of multi-modality images using spatial features. Our graph-based retrieval algorithm achieved a higher precision than several other retrieval techniques: gray-level histograms as well as state-of-the-art methods such as visual words using the scale- invariant feature transform (SIFT) and relational matrices representing the spatial arrangements of objects. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lunt, A. J. G.; Xie, M. Y.; Baimpas, N.; Zhang, S. Y.; Kabra, S.; Kelleher, J.; Neo, T. K.; Korsunsky, A. M.
2014-08-01
Yttria Stabilised Zirconia (YSZ) is a tough, phase-transforming ceramic that finds use in a wide range of commercial applications from dental prostheses to thermal barrier coatings. Micromechanical modelling of phase transformation can deliver reliable predictions in terms of the influence of temperature and stress. However, models must rely on the accurate knowledge of single crystal elastic stiffness constants. Some techniques for elastic stiffness determination are well-established. The most popular of these involve exploiting frequency shifts and phase velocities of acoustic waves. However, the application of these techniques to YSZ can be problematic due to the micro-twinning observed in larger crystals. Here, we propose an alternative approach based on selective elastic strain sampling (e.g., by diffraction) of grain ensembles sharing certain orientation, and the prediction of the same quantities by polycrystalline modelling, for example, the Reuss or Voigt average. The inverse problem arises consisting of adjusting the single crystal stiffness matrix to match the polycrystal predictions to observations. In the present model-matching study, we sought to determine the single crystal stiffness matrix of tetragonal YSZ using the results of time-of-flight neutron diffraction obtained from an in situ compression experiment and Finite Element modelling of the deformation of polycrystalline tetragonal YSZ. The best match between the model predictions and observations was obtained for the optimized stiffness values of C11 = 451, C33 = 302, C44 = 39, C66 = 82, C12 = 240, and C13 = 50 (units: GPa). Considering the significant amount of scatter in the published literature data, our result appears reasonably consistent.
Probabilistic fusion of stereo with color and contrast for bilayer segmentation.
Kolmogorov, Vladimir; Criminisi, Antonio; Blake, Andrew; Cross, Geoffrey; Rother, Carsten
2006-09-01
This paper describes models and algorithms for the real-time segmentation of foreground from background layers in stereo video sequences. Automatic separation of layers from color/contrast or from stereo alone is known to be error-prone. Here, color, contrast, and stereo matching information are fused to infer layers accurately and efficiently. The first algorithm, Layered Dynamic Programming (LDP), solves stereo in an extended six-state space that represents both foreground/background layers and occluded regions. The stereo-match likelihood is then fused with a contrast-sensitive color model that is learned on-the-fly and stereo disparities are obtained by dynamic programming. The second algorithm, Layered Graph Cut (LGC), does not directly solve stereo. Instead, the stereo match likelihood is marginalized over disparities to evaluate foreground and background hypotheses and then fused with a contrast-sensitive color model like the one used in LDP. Segmentation is solved efficiently by ternary graph cut. Both algorithms are evaluated with respect to ground truth data and found to have similar performance, substantially better than either stereo or color/ contrast alone. However, their characteristics with respect to computational efficiency are rather different. The algorithms are demonstrated in the application of background substitution and shown to give good quality composite video output.
Image-based model of the spectrin cytoskeleton for red blood cell simulation.
Fai, Thomas G; Leo-Macias, Alejandra; Stokes, David L; Peskin, Charles S
2017-10-01
We simulate deformable red blood cells in the microcirculation using the immersed boundary method with a cytoskeletal model that incorporates structural details revealed by tomographic images. The elasticity of red blood cells is known to be supplied by both their lipid bilayer membranes, which resist bending and local changes in area, and their cytoskeletons, which resist in-plane shear. The cytoskeleton consists of spectrin tetramers that are tethered to the lipid bilayer by ankyrin and by actin-based junctional complexes. We model the cytoskeleton as a random geometric graph, with nodes corresponding to junctional complexes and with edges corresponding to spectrin tetramers such that the edge lengths are given by the end-to-end distances between nodes. The statistical properties of this graph are based on distributions gathered from three-dimensional tomographic images of the cytoskeleton by a segmentation algorithm. We show that the elastic response of our model cytoskeleton, in which the spectrin polymers are treated as entropic springs, is in good agreement with the experimentally measured shear modulus. By simulating red blood cells in flow with the immersed boundary method, we compare this discrete cytoskeletal model to an existing continuum model and predict the extent to which dynamic spectrin network connectivity can protect against failure in the case of a red cell subjected to an applied strain. The methods presented here could form the basis of disease- and patient-specific computational studies of hereditary diseases affecting the red cell cytoskeleton.
Image-based model of the spectrin cytoskeleton for red blood cell simulation
Stokes, David L.; Peskin, Charles S.
2017-01-01
We simulate deformable red blood cells in the microcirculation using the immersed boundary method with a cytoskeletal model that incorporates structural details revealed by tomographic images. The elasticity of red blood cells is known to be supplied by both their lipid bilayer membranes, which resist bending and local changes in area, and their cytoskeletons, which resist in-plane shear. The cytoskeleton consists of spectrin tetramers that are tethered to the lipid bilayer by ankyrin and by actin-based junctional complexes. We model the cytoskeleton as a random geometric graph, with nodes corresponding to junctional complexes and with edges corresponding to spectrin tetramers such that the edge lengths are given by the end-to-end distances between nodes. The statistical properties of this graph are based on distributions gathered from three-dimensional tomographic images of the cytoskeleton by a segmentation algorithm. We show that the elastic response of our model cytoskeleton, in which the spectrin polymers are treated as entropic springs, is in good agreement with the experimentally measured shear modulus. By simulating red blood cells in flow with the immersed boundary method, we compare this discrete cytoskeletal model to an existing continuum model and predict the extent to which dynamic spectrin network connectivity can protect against failure in the case of a red cell subjected to an applied strain. The methods presented here could form the basis of disease- and patient-specific computational studies of hereditary diseases affecting the red cell cytoskeleton. PMID:28991926
Identifying patients with Alzheimer's disease using resting-state fMRI and graph theory.
Khazaee, Ali; Ebrahimzadeh, Ata; Babajani-Feremi, Abbas
2015-11-01
Study of brain network on the basis of resting-state functional magnetic resonance imaging (fMRI) has provided promising results to investigate changes in connectivity among different brain regions because of diseases. Graph theory can efficiently characterize different aspects of the brain network by calculating measures of integration and segregation. In this study, we combine graph theoretical approaches with advanced machine learning methods to study functional brain network alteration in patients with Alzheimer's disease (AD). Support vector machine (SVM) was used to explore the ability of graph measures in diagnosis of AD. We applied our method on the resting-state fMRI data of twenty patients with AD and twenty age and gender matched healthy subjects. The data were preprocessed and each subject's graph was constructed by parcellation of the whole brain into 90 distinct regions using the automated anatomical labeling (AAL) atlas. The graph measures were then calculated and used as the discriminating features. Extracted network-based features were fed to different feature selection algorithms to choose most significant features. In addition to the machine learning approach, statistical analysis was performed on connectivity matrices to find altered connectivity patterns in patients with AD. Using the selected features, we were able to accurately classify patients with AD from healthy subjects with accuracy of 100%. Results of this study show that pattern recognition and graph of brain network, on the basis of the resting state fMRI data, can efficiently assist in the diagnosis of AD. Classification based on the resting-state fMRI can be used as a non-invasive and automatic tool to diagnosis of Alzheimer's disease. Copyright © 2015 International Federation of Clinical Neurophysiology. All rights reserved.
Dunn, Abe
2016-07-01
This paper takes a different approach to estimating demand for medical care that uses the negotiated prices between insurers and providers as an instrument. The instrument is viewed as a textbook "cost shifting" instrument that impacts plan offerings, but is unobserved by consumers. The paper finds a price elasticity of demand of around -0.20, matching the elasticity found in the RAND Health Insurance Experiment. The paper also studies within-market variation in demand for prescription drugs and other medical care services and obtains comparable price elasticity estimates. Published by Elsevier B.V.
Nanoscale characterization of the biomechanical properties of collagen fibrils in the sclera
DOE Office of Scientific and Technical Information (OSTI.GOV)
Papi, M.; Paoletti, P.; Geraghty, B.
We apply the PeakForce Quantitative Nanomechanical Property Mapping (PFQNM) atomic force microscopy mode for the investigation of regional variations in the nanomechanical properties of porcine sclera. We examine variations in the collagen fibril diameter, adhesion, elastic modulus and dissipation in the posterior, equatorial and anterior regions of the sclera. The mean fibril diameter, elastic modulus and dissipation increased from the posterior to the anterior region. Collagen fibril diameter correlated linearly with elastic modulus. Our data matches the known macroscopic mechanical behavior of the sclera. We propose that PFQNM has significant potential in ocular biomechanics and biophysics research.
Joshi, Shantanu H.; Klassen, Eric; Srivastava, Anuj; Jermyn, Ian
2011-01-01
This paper illustrates and extends an efficient framework, called the square-root-elastic (SRE) framework, for studying shapes of closed curves, that was first introduced in [2]. This framework combines the strengths of two important ideas - elastic shape metric and path-straightening methods - for finding geodesics in shape spaces of curves. The elastic metric allows for optimal matching of features between curves while path-straightening ensures that the algorithm results in geodesic paths. This paper extends this framework by removing two important shape preserving transformations: rotations and re-parameterizations, by forming quotient spaces and constructing geodesics on these quotient spaces. These ideas are demonstrated using experiments involving 2D and 3D curves. PMID:21738385
Adaptation of pancreatic islet cyto-architecture during development
NASA Astrophysics Data System (ADS)
Striegel, Deborah A.; Hara, Manami; Periwal, Vipul
2016-04-01
Plasma glucose in mammals is regulated by hormones secreted by the islets of Langerhans embedded in the exocrine pancreas. Islets consist of endocrine cells, primarily α, β, and δ cells, which secrete glucagon, insulin, and somatostatin, respectively. β cells form irregular locally connected clusters within islets that act in concert to secrete insulin upon glucose stimulation. Varying demands and available nutrients during development produce changes in the local connectivity of β cells in an islet. We showed in earlier work that graph theory provides a framework for the quantification of the seemingly stochastic cyto-architecture of β cells in an islet. To quantify the dynamics of endocrine connectivity during development requires a framework for characterizing changes in the probability distribution on the space of possible graphs, essentially a Fokker-Planck formalism on graphs. With large-scale imaging data for hundreds of thousands of islets containing millions of cells from human specimens, we show that this dynamics can be determined quantitatively. Requiring that rearrangement and cell addition processes match the observed dynamic developmental changes in quantitative topological graph characteristics strongly constrained possible processes. Our results suggest that there is a transient shift in preferred connectivity for β cells between 1-35 weeks and 12-24 months.
Min, Yu-Sun; Chang, Yongmin; Park, Jang Woo; Lee, Jong-Min; Cha, Jungho; Yang, Jin-Ju; Kim, Chul-Hyun; Hwang, Jong-Moon; Yoo, Ji-Na; Jung, Tae-Du
2015-06-01
To investigate the global functional reorganization of the brain following spinal cord injury with graph theory based approach by creating whole brain functional connectivity networks from resting state-functional magnetic resonance imaging (rs-fMRI), characterizing the reorganization of these networks using graph theoretical metrics and to compare these metrics between patients with spinal cord injury (SCI) and age-matched controls. Twenty patients with incomplete cervical SCI (14 males, 6 females; age, 55±14.1 years) and 20 healthy subjects (10 males, 10 females; age, 52.9±13.6 years) participated in this study. To analyze the characteristics of the whole brain network constructed with functional connectivity using rs-fMRI, graph theoretical measures were calculated including clustering coefficient, characteristic path length, global efficiency and small-worldness. Clustering coefficient, global efficiency and small-worldness did not show any difference between controls and SCIs in all density ranges. The normalized characteristic path length to random network was higher in SCI patients than in controls and reached statistical significance at 12%-13% of density (p<0.05, uncorrected). The graph theoretical approach in brain functional connectivity might be helpful to reveal the information processing after SCI. These findings imply that patients with SCI can build on preserved competent brain control. Further analyses, such as topological rearrangement and hub region identification, will be needed for better understanding of neuroplasticity in patients with SCI.
Expert system validation in prolog
NASA Technical Reports Server (NTRS)
Stock, Todd; Stachowitz, Rolf; Chang, Chin-Liang; Combs, Jacqueline
1988-01-01
An overview of the Expert System Validation Assistant (EVA) is being implemented in Prolog at the Lockheed AI Center. Prolog was chosen to facilitate rapid prototyping of the structure and logic checkers and since February 1987, we have implemented code to check for irrelevance, subsumption, duplication, deadends, unreachability, and cycles. The architecture chosen is extremely flexible and expansible, yet concise and complementary with the normal interactive style of Prolog. The foundation of the system is in the connection graph representation. Rules and facts are modeled as nodes in the graph and arcs indicate common patterns between rules. The basic activity of the validation system is then a traversal of the connection graph, searching for various patterns the system recognizes as erroneous. To aid in specifying these patterns, a metalanguage is developed, providing the user with the basic facilities required to reason about the expert system. Using the metalanguage, the user can, for example, give the Prolog inference engine the goal of finding inconsistent conclusions among the rules, and Prolog will search the graph intantiations which can match the definition of inconsistency. Examples of code for some of the checkers are provided and the algorithms explained. Technical highlights include automatic construction of a connection graph, demonstration of the use of metalanguage, the A* algorithm modified to detect all unique cycles, general-purpose stacks in Prolog, and a general-purpose database browser with pattern completion.
Brain gray matter structural network in myotonic dystrophy type 1.
Sugiyama, Atsuhiko; Sone, Daichi; Sato, Noriko; Kimura, Yukio; Ota, Miho; Maikusa, Norihide; Maekawa, Tomoko; Enokizono, Mikako; Mori-Yoshimura, Madoka; Ohya, Yasushi; Kuwabara, Satoshi; Matsuda, Hiroshi
2017-01-01
This study aimed to investigate abnormalities in structural covariance network constructed from gray matter volume in myotonic dystrophy type 1 (DM1) patients by using graph theoretical analysis for further clarification of the underlying mechanisms of central nervous system involvement. Twenty-eight DM1 patients (4 childhood onset, 10 juvenile onset, 14 adult onset), excluding three cases from 31 consecutive patients who underwent magnetic resonance imaging in a certain period, and 28 age- and sex- matched healthy control subjects were included in this study. The normalized gray matter images of both groups were subjected to voxel based morphometry (VBM) and Graph Analysis Toolbox for graph theoretical analysis. VBM revealed extensive gray matter atrophy in DM1 patients, including cortical and subcortical structures. On graph theoretical analysis, there were no significant differences between DM1 and control groups in terms of the global measures of connectivity. Betweenness centrality was increased in several regions including the left fusiform gyrus, whereas it was decreased in the right striatum. The absence of significant differences between the groups in global network measurements on graph theoretical analysis is consistent with the fact that the general cognitive function is preserved in DM1 patients. In DM1 patients, increased connectivity in the left fusiform gyrus and decreased connectivity in the right striatum might be associated with impairment in face perception and theory of mind, and schizotypal-paranoid personality traits, respectively.
A constrained registration problem based on Ciarlet-Geymonat stored energy
NASA Astrophysics Data System (ADS)
Derfoul, Ratiba; Le Guyader, Carole
2014-03-01
In this paper, we address the issue of designing a theoretically well-motivated registration model capable of handling large deformations and including geometrical constraints, namely landmark points to be matched, in a variational framework. The theory of linear elasticity being unsuitable in this case, since assuming small strains and the validity of Hooke's law, the introduced functional is based on nonlinear elasticity principles. More precisely, the shapes to be matched are viewed as Ciarlet-Geymonat materials. We demonstrate the existence of minimizers of the related functional minimization problem and prove a convergence result when the number of geometric constraints increases. We then describe and analyze a numerical method of resolution based on the introduction of an associated decoupled problem under inequality constraint in which an auxiliary variable simulates the Jacobian matrix of the deformation field. A theoretical result of -convergence is established. We then provide preliminary 2D results of the proposed matching model for the registration of mouse brain gene expression data to a neuroanatomical mouse atlas.
A method for independent component graph analysis of resting-state fMRI.
Ribeiro de Paula, Demetrius; Ziegler, Erik; Abeyasinghe, Pubuditha M; Das, Tushar K; Cavaliere, Carlo; Aiello, Marco; Heine, Lizette; di Perri, Carol; Demertzi, Athena; Noirhomme, Quentin; Charland-Verville, Vanessa; Vanhaudenhuyse, Audrey; Stender, Johan; Gomez, Francisco; Tshibanda, Jean-Flory L; Laureys, Steven; Owen, Adrian M; Soddu, Andrea
2017-03-01
Independent component analysis (ICA) has been extensively used for reducing task-free BOLD fMRI recordings into spatial maps and their associated time-courses. The spatially identified independent components can be considered as intrinsic connectivity networks (ICNs) of non-contiguous regions. To date, the spatial patterns of the networks have been analyzed with techniques developed for volumetric data. Here, we detail a graph building technique that allows these ICNs to be analyzed with graph theory. First, ICA was performed at the single-subject level in 15 healthy volunteers using a 3T MRI scanner. The identification of nine networks was performed by a multiple-template matching procedure and a subsequent component classification based on the network "neuronal" properties. Second, for each of the identified networks, the nodes were defined as 1,015 anatomically parcellated regions. Third, between-node functional connectivity was established by building edge weights for each networks. Group-level graph analysis was finally performed for each network and compared to the classical network. Network graph comparison between the classically constructed network and the nine networks showed significant differences in the auditory and visual medial networks with regard to the average degree and the number of edges, while the visual lateral network showed a significant difference in the small-worldness. This novel approach permits us to take advantage of the well-recognized power of ICA in BOLD signal decomposition and, at the same time, to make use of well-established graph measures to evaluate connectivity differences. Moreover, by providing a graph for each separate network, it can offer the possibility to extract graph measures in a specific way for each network. This increased specificity could be relevant for studying pathological brain activity or altered states of consciousness as induced by anesthesia or sleep, where specific networks are known to be altered in different strength.
Renganathan, P.; Winey, J. M.; Gupta, Y. M.
2017-01-19
Here, to gain insight into inelastic deformation mechanisms for shocked hexagonal close-packed (hcp) metals, particularly the role of crystal anisotropy, magnesium (Mg) single crystals were subjected to shock compression and release along the a-axis to 3.0 and 4.8 GPa elastic impact stresses. Wave profiles measured at several thicknesses, using laser interferometry, show a sharply peaked elastic wave followed by the plastic wave. Additionally, a smooth and featureless release wave is observed following peak compression. When compared to wave profiles measured previously for c-axis Mg, the elastic wave amplitudes for a-axis Mg are lower for the same propagation distance, and less attenuation of elastic wave amplitude is observed for a given peak stress. The featureless release wave for a-axis Mg is in marked contrast to the structured features observed for c-axis unloading. Numerical simulations, using a time-dependent anisotropic modeling framework, showed that the wave profiles calculated using prismatic slip or (10more » $$\\bar{1}$$2) twinning, individually, do not match the measured compression profiles for a-axis Mg. However, a combination of slip and twinning provides a good overall match to the measured compression profiles. In contrast to compression,prismatic slip alone provides a reasonable match to the measured release wave profiles; (10$$\\bar{1}$$2) twinning due to its uni-directionality is not activated during release. The experimental results and wave profile simulations for a-axis Mg presented here are quite different from the previously published c-axis results, demonstrating the important role of crystal anisotropy on the time-dependent inelastic deformation of Mg single crystals under shock compression and release.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renganathan, P.; Winey, J. M.; Gupta, Y. M.
Here, to gain insight into inelastic deformation mechanisms for shocked hexagonal close-packed (hcp) metals, particularly the role of crystal anisotropy, magnesium (Mg) single crystals were subjected to shock compression and release along the a-axis to 3.0 and 4.8 GPa elastic impact stresses. Wave profiles measured at several thicknesses, using laser interferometry, show a sharply peaked elastic wave followed by the plastic wave. Additionally, a smooth and featureless release wave is observed following peak compression. When compared to wave profiles measured previously for c-axis Mg, the elastic wave amplitudes for a-axis Mg are lower for the same propagation distance, and less attenuation of elastic wave amplitude is observed for a given peak stress. The featureless release wave for a-axis Mg is in marked contrast to the structured features observed for c-axis unloading. Numerical simulations, using a time-dependent anisotropic modeling framework, showed that the wave profiles calculated using prismatic slip or (10more » $$\\bar{1}$$2) twinning, individually, do not match the measured compression profiles for a-axis Mg. However, a combination of slip and twinning provides a good overall match to the measured compression profiles. In contrast to compression,prismatic slip alone provides a reasonable match to the measured release wave profiles; (10$$\\bar{1}$$2) twinning due to its uni-directionality is not activated during release. The experimental results and wave profile simulations for a-axis Mg presented here are quite different from the previously published c-axis results, demonstrating the important role of crystal anisotropy on the time-dependent inelastic deformation of Mg single crystals under shock compression and release.« less
White, Allison; Abbott, Hannah; Masi, Alfonse T; Henderson, Jacqueline; Nair, Kalyani
2018-06-06
Ankylosing spondylitis is a degenerative and inflammatory rheumatologic disorder that primarily affects the spine. Delayed diagnosis leads to debilitating spinal damage. This study examines biomechanical properties of non-contracting (resting) human lower lumbar myofascia in ankylosing spondylitis patients and matched healthy control subjects. Biomechanical properties of stiffness, frequency, decrement, stress relaxation time, and creep were quantified from 24 ankylosing spondylitis patients (19 male, 5 female) and 24 age- and sex-matched control subjects in prone position on both sides initially and after 10 min rest. Concurrent surface electromyography measurements were performed to ensure resting state. Statistical analyses were conducted, and significance was set at p < 0.05. Decreased lumbar muscle elasticity (inverse of decrement) was primarily correlated with disease duration in ankylosing spondylitis subjects, whereas BMI was the primary correlate in control subjects. In ankylosing spondylitis and control groups, significant positive correlations were observed between the linear elastic properties of stiffness and frequency as well as between the viscoelastic parameters of stress relaxation time and creep. The preceding groups also showed significant negative correlations between the linear elastic and viscoelastic properties. Findings indicate that increased disease duration is associated with decreased tissue elasticity or myofascial degradation. Both ankylosing spondylitis and healthy subjects revealed similar correlations between the linear and viscoelastic properties which suggest that the disease does not directly alter their inherent interrelations. The novel results that stiffness is greater in AS than normal subjects, whereas decrement is significantly correlated with AS disease duration deserves further investigation of the biomechanical properties and their underlying mechanisms. Copyright © 2018 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lunt, A. J. G., E-mail: alexander.lunt@eng.ox.ac.uk; Xie, M. Y.; Baimpas, N.
2014-08-07
Yttria Stabilised Zirconia (YSZ) is a tough, phase-transforming ceramic that finds use in a wide range of commercial applications from dental prostheses to thermal barrier coatings. Micromechanical modelling of phase transformation can deliver reliable predictions in terms of the influence of temperature and stress. However, models must rely on the accurate knowledge of single crystal elastic stiffness constants. Some techniques for elastic stiffness determination are well-established. The most popular of these involve exploiting frequency shifts and phase velocities of acoustic waves. However, the application of these techniques to YSZ can be problematic due to the micro-twinning observed in larger crystals.more » Here, we propose an alternative approach based on selective elastic strain sampling (e.g., by diffraction) of grain ensembles sharing certain orientation, and the prediction of the same quantities by polycrystalline modelling, for example, the Reuss or Voigt average. The inverse problem arises consisting of adjusting the single crystal stiffness matrix to match the polycrystal predictions to observations. In the present model-matching study, we sought to determine the single crystal stiffness matrix of tetragonal YSZ using the results of time-of-flight neutron diffraction obtained from an in situ compression experiment and Finite Element modelling of the deformation of polycrystalline tetragonal YSZ. The best match between the model predictions and observations was obtained for the optimized stiffness values of C11 = 451, C33 = 302, C44 = 39, C66 = 82, C12 = 240, and C13 = 50 (units: GPa). Considering the significant amount of scatter in the published literature data, our result appears reasonably consistent.« less
Efficient Synthesis of Graph Methods: a Dynamically Scheduled Architecture
DOE Office of Scientific and Technical Information (OSTI.GOV)
Minutoli, Marco; Castellana, Vito G.; Tumeo, Antonino
RDF databases naturally map to a graph representation and employ languages, such as SPARQL, that implements queries as graph pattern matching routines. Graph methods exhibit an irregular behavior: they present unpredictable, fine-grained data accesses, and are synchronization inten- sive. Graph data structures expose large amounts of dy- namic parallelism, but are difficult to partition without gen- erating load unbalance. In this paper, we present a novel ar- chitecture to improve the synthesis of graph methods. Our design addresses the issues of these algorithms with two com- ponents: a Dynamic Task Scheduler (DTS), which reduces load unbalance and maximize resource utilization,more » and a Hi- erarchical Memory Interface controller (HMI), which pro- vides support for concurrent memory operations on multi- ported/multi-banked shared memories. We evaluate our ap- proach by generating the accelerators for a set of SPARQL queries from the Lehigh University Benchmark (LUBM). We first analyze the load unbalance of these queries, showing that execution time among tasks can differ even of order of magnitudes. We then synthesize the queries and com- pare the performance of the resulting accelerators against the current state of the art. Experimental results show that our solution provides a speedup over the serial implementa- tion close to the theoretical maximum and a speedup up to 3.45 over a baseline parallel implementation. We conclude our study by exploring the design space to achieve maximum memory channels utilization. The best design used at least three of the four memory channels for more than 90% of the execution time.« less
Small-world bias of correlation networks: From brain to climate
NASA Astrophysics Data System (ADS)
Hlinka, Jaroslav; Hartman, David; Jajcay, Nikola; Tomeček, David; Tintěra, Jaroslav; Paluš, Milan
2017-03-01
Complex systems are commonly characterized by the properties of their graph representation. Dynamical complex systems are then typically represented by a graph of temporal dependencies between time series of state variables of their subunits. It has been shown recently that graphs constructed in this way tend to have relatively clustered structure, potentially leading to spurious detection of small-world properties even in the case of systems with no or randomly distributed true interactions. However, the strength of this bias depends heavily on a range of parameters and its relevance for real-world data has not yet been established. In this work, we assess the relevance of the bias using two examples of multivariate time series recorded in natural complex systems. The first is the time series of local brain activity as measured by functional magnetic resonance imaging in resting healthy human subjects, and the second is the time series of average monthly surface air temperature coming from a large reanalysis of climatological data over the period 1948-2012. In both cases, the clustering in the thresholded correlation graph is substantially higher compared with a realization of a density-matched random graph, while the shortest paths are relatively short, showing thus distinguishing features of small-world structure. However, comparable or even stronger small-world properties were reproduced in correlation graphs of model processes with randomly scrambled interconnections. This suggests that the small-world properties of the correlation matrices of these real-world systems indeed do not reflect genuinely the properties of the underlying interaction structure, but rather result from the inherent properties of correlation matrix.
Small-world bias of correlation networks: From brain to climate.
Hlinka, Jaroslav; Hartman, David; Jajcay, Nikola; Tomeček, David; Tintěra, Jaroslav; Paluš, Milan
2017-03-01
Complex systems are commonly characterized by the properties of their graph representation. Dynamical complex systems are then typically represented by a graph of temporal dependencies between time series of state variables of their subunits. It has been shown recently that graphs constructed in this way tend to have relatively clustered structure, potentially leading to spurious detection of small-world properties even in the case of systems with no or randomly distributed true interactions. However, the strength of this bias depends heavily on a range of parameters and its relevance for real-world data has not yet been established. In this work, we assess the relevance of the bias using two examples of multivariate time series recorded in natural complex systems. The first is the time series of local brain activity as measured by functional magnetic resonance imaging in resting healthy human subjects, and the second is the time series of average monthly surface air temperature coming from a large reanalysis of climatological data over the period 1948-2012. In both cases, the clustering in the thresholded correlation graph is substantially higher compared with a realization of a density-matched random graph, while the shortest paths are relatively short, showing thus distinguishing features of small-world structure. However, comparable or even stronger small-world properties were reproduced in correlation graphs of model processes with randomly scrambled interconnections. This suggests that the small-world properties of the correlation matrices of these real-world systems indeed do not reflect genuinely the properties of the underlying interaction structure, but rather result from the inherent properties of correlation matrix.
Goekoop, Rutger; Goekoop, Jaap G.; Scholte, H. Steven
2012-01-01
Introduction Human personality is described preferentially in terms of factors (dimensions) found using factor analysis. An alternative and highly related method is network analysis, which may have several advantages over factor analytic methods. Aim To directly compare the ability of network community detection (NCD) and principal component factor analysis (PCA) to examine modularity in multidimensional datasets such as the neuroticism-extraversion-openness personality inventory revised (NEO-PI-R). Methods 434 healthy subjects were tested on the NEO-PI-R. PCA was performed to extract factor structures (FS) of the current dataset using both item scores and facet scores. Correlational network graphs were constructed from univariate correlation matrices of interactions between both items and facets. These networks were pruned in a link-by-link fashion while calculating the network community structure (NCS) of each resulting network using the Wakita Tsurumi clustering algorithm. NCSs were matched against FS and networks of best matches were kept for further analysis. Results At facet level, NCS showed a best match (96.2%) with a ‘confirmatory’ 5-FS. At item level, NCS showed a best match (80%) with the standard 5-FS and involved a total of 6 network clusters. Lesser matches were found with ‘confirmatory’ 5-FS and ‘exploratory’ 6-FS of the current dataset. Network analysis did not identify facets as a separate level of organization in between items and clusters. A small-world network structure was found in both item- and facet level networks. Conclusion We present the first optimized network graph of personality traits according to the NEO-PI-R: a ‘Personality Web’. Such a web may represent the possible routes that subjects can take during personality development. NCD outperforms PCA by producing plausible modularity at item level in non-standard datasets, and can identify the key roles of individual items and clusters in the network. PMID:23284713
Goekoop, Rutger; Goekoop, Jaap G; Scholte, H Steven
2012-01-01
Human personality is described preferentially in terms of factors (dimensions) found using factor analysis. An alternative and highly related method is network analysis, which may have several advantages over factor analytic methods. To directly compare the ability of network community detection (NCD) and principal component factor analysis (PCA) to examine modularity in multidimensional datasets such as the neuroticism-extraversion-openness personality inventory revised (NEO-PI-R). 434 healthy subjects were tested on the NEO-PI-R. PCA was performed to extract factor structures (FS) of the current dataset using both item scores and facet scores. Correlational network graphs were constructed from univariate correlation matrices of interactions between both items and facets. These networks were pruned in a link-by-link fashion while calculating the network community structure (NCS) of each resulting network using the Wakita Tsurumi clustering algorithm. NCSs were matched against FS and networks of best matches were kept for further analysis. At facet level, NCS showed a best match (96.2%) with a 'confirmatory' 5-FS. At item level, NCS showed a best match (80%) with the standard 5-FS and involved a total of 6 network clusters. Lesser matches were found with 'confirmatory' 5-FS and 'exploratory' 6-FS of the current dataset. Network analysis did not identify facets as a separate level of organization in between items and clusters. A small-world network structure was found in both item- and facet level networks. We present the first optimized network graph of personality traits according to the NEO-PI-R: a 'Personality Web'. Such a web may represent the possible routes that subjects can take during personality development. NCD outperforms PCA by producing plausible modularity at item level in non-standard datasets, and can identify the key roles of individual items and clusters in the network.
Lin, Cheng Yu; Kikuchi, Noboru; Hollister, Scott J
2004-05-01
An often-proposed tissue engineering design hypothesis is that the scaffold should provide a biomimetic mechanical environment for initial function and appropriate remodeling of regenerating tissue while concurrently providing sufficient porosity for cell migration and cell/gene delivery. To provide a systematic study of this hypothesis, the ability to precisely design and manufacture biomaterial scaffolds is needed. Traditional methods for scaffold design and fabrication cannot provide the control over scaffold architecture design to achieve specified properties within fixed limits on porosity. The purpose of this paper was to develop a general design optimization scheme for 3D internal scaffold architecture to match desired elastic properties and porosity simultaneously, by introducing the homogenization-based topology optimization algorithm (also known as general layout optimization). With an initial target for bone tissue engineering, we demonstrate that the method can produce highly porous structures that match human trabecular bone anisotropic stiffness using accepted biomaterials. In addition, we show that anisotropic bone stiffness may be matched with scaffolds of widely different porosity. Finally, we also demonstrate that prototypes of the designed structures can be fabricated using solid free-form fabrication (SFF) techniques.
Unapparent Information Revelation: Text Mining for Counterterrorism
NASA Astrophysics Data System (ADS)
Srihari, Rohini K.
Unapparent information revelation (UIR) is a special case of text mining that focuses on detecting possible links between concepts across multiple text documents by generating an evidence trail explaining the connection. A traditional search involving, for example, two or more person names will attempt to find documents mentioning both these individuals. This research focuses on a different interpretation of such a query: what is the best evidence trail across documents that explains a connection between these individuals? For example, all may be good golfers. A generalization of this task involves query terms representing general concepts (e.g. indictment, foreign policy). Previous approaches to this problem have focused on graph mining involving hyperlinked documents, and link analysis exploiting named entities. A new robust framework is presented, based on (i) generating concept chain graphs, a hybrid content representation, (ii) performing graph matching to select candidate subgraphs, and (iii) subsequently using graphical models to validate hypotheses using ranked evidence trails. We adapt the DUC data set for cross-document summarization to evaluate evidence trails generated by this approach
Thermal stability control system of photo-elastic interferometer in the PEM-FTs
NASA Astrophysics Data System (ADS)
Zhang, M. J.; Jing, N.; Li, K. W.; Wang, Z. B.
2018-01-01
A drifting model for the resonant frequency and retardation amplitude of a photo-elastic modulator (PEM) in the photo-elastic modulated Fourier transform spectrometer (PEM-FTs) is presented. A multi-parameter broadband-matching driving control method is proposed to improve the thermal stability of the PEM interferometer. The automatically frequency-modulated technology of the driving signal based on digital phase-locked technology is used to track the PEM's changing resonant frequency. Simultaneously the maximum optical-path-difference of a laser's interferogram is measured to adjust the amplitude of the PEM's driving signal so that the spectral resolution is stable. In the experiment, the multi-parameter broadband-matching control method is applied to the driving control system of the PEM-FTs. Control of resonant frequency and retardation amplitude stabilizes the maximum optical-path-difference to approximately 236 μm and results in a spectral resolution of 42 cm-1. This corresponds to a relative error smaller than 2.16% (4.28 standard deviation). The experiment shows that the method can effectively stabilize the spectral resolution of the PEM-FTs.
Hybrid services efficient provisioning over the network coding-enabled elastic optical networks
NASA Astrophysics Data System (ADS)
Wang, Xin; Gu, Rentao; Ji, Yuefeng; Kavehrad, Mohsen
2017-03-01
As a variety of services have emerged, hybrid services have become more common in real optical networks. Although the elastic spectrum resource optimizations over the elastic optical networks (EONs) have been widely investigated, little research has been carried out on the hybrid services of the routing and spectrum allocation (RSA), especially over the network coding-enabled EON. We investigated the RSA for the unicast service and network coding-based multicast service over the network coding-enabled EON with the constraints of time delay and transmission distance. To address this issue, a mathematical model was built to minimize the total spectrum consumption for the hybrid services over the network coding-enabled EON under the constraints of time delay and transmission distance. The model guarantees different routing constraints for different types of services. The immediate nodes over the network coding-enabled EON are assumed to be capable of encoding the flows for different kinds of information. We proposed an efficient heuristic algorithm of the network coding-based adaptive routing and layered graph-based spectrum allocation algorithm (NCAR-LGSA). From the simulation results, NCAR-LGSA shows highly efficient performances in terms of the spectrum resources utilization under different network scenarios compared with the benchmark algorithms.
Bergquist, Ronny; Iversen, Vegard Moe; Mork, Paul J; Fimland, Marius Steiro
2018-01-01
Abstract Elastic resistance bands require little space, are light and portable, but their efficacy has not yet been established for several resistance exercises. The main objective of this study was to compare the muscle activation levels induced by elastic resistance bands versus conventional resistance training equipment (dumbbells) in the upper-body resistance exercises flyes and reverse flyes. The level of muscle activation was measured with surface electromyography in 29 men and women in a cross-over design where resistance loadings with elastic resistance bands and dumbbells were matched using 10-repetition maximum loadings. Elastic resistance bands induced slightly lower muscle activity in the muscles most people aim to activate during flyes and reverse flies, namely pectoralis major and deltoideus posterior, respectively. However, elastic resistance bands increased the muscle activation level substantially in perceived ancillary muscles, that is deltoideus anterior in flyes, and deltoideus medius and trapezius descendens in reverse flyes, possibly due to elastic bands being a more unstable resistance modality. Overall, the results show that elastic resistance bands can be considered a feasible alternative to dumbbells in flyes and reverse flyes. PMID:29599855
Chetty, Raj; Friedman, John N.; Olsen, Tore; Pistaferri, Luigi
2011-01-01
We show that the effects of taxes on labor supply are shaped by interactions between adjustment costs for workers and hours constraints set by firms. We develop a model in which firms post job offers characterized by an hours requirement and workers pay search costs to find jobs. We present evidence supporting three predictions of this model by analyzing bunching at kinks using Danish tax records. First, larger kinks generate larger taxable income elasticities. Second, kinks that apply to a larger group of workers generate larger elasticities. Third, the distribution of job offers is tailored to match workers' aggregate tax preferences in equilibrium. Our results suggest that macro elasticities may be substantially larger than the estimates obtained using standard microeconometric methods. PMID:21836746
The Propagation of a Liquid Bolus Through an Elastic Tube and Airway Reopening
NASA Technical Reports Server (NTRS)
Howell, Peter D.; Grotberg, James B.
1996-01-01
We use lubrication theory and matched asymptotic expansions to model the quasi-steady propagation of a liquid bridge through an elastic tube. In the limit of small capillary number, asymptotic expressions are found for the pressure drop across the bridge and the thickness of the liquid film left behind, as functions of the capillary number, the thickness of the liquid lining ahead of the bridge and the elastic characteristics of the tube wall. For a given precursor thickness, we find a critical propagation speed, and hence a critical imposed pressure drop, above which the bridge will eventually burst, and hence the tube will reopen.
Adaptive elastic segmentation of brain MRI via shape-model-guided evolutionary programming.
Pitiot, Alain; Toga, Arthur W; Thompson, Paul M
2002-08-01
This paper presents a fully automated segmentation method for medical images. The goal is to localize and parameterize a variety of types of structure in these images for subsequent quantitative analysis. We propose a new hybrid strategy that combines a general elastic template matching approach and an evolutionary heuristic. The evolutionary algorithm uses prior statistical information about the shape of the target structure to control the behavior of a number of deformable templates. Each template, modeled in the form of a B-spline, is warped in a potential field which is itself dynamically adapted. Such a hybrid scheme proves to be promising: by maintaining a population of templates, we cover a large domain of the solution space under the global guidance of the evolutionary heuristic, and thoroughly explore interesting areas. We address key issues of automated image segmentation systems. The potential fields are initially designed based on the spatial features of the edges in the input image, and are subjected to spatially adaptive diffusion to guarantee the deformation of the template. This also improves its global consistency and convergence speed. The deformation algorithm can modify the internal structure of the templates to allow a better match. We investigate in detail the preprocessing phase that the images undergo before they can be used more effectively in the iterative elastic matching procedure: a texture classifier, trained via linear discriminant analysis of a learning set, is used to enhance the contrast of the target structure with respect to surrounding tissues. We show how these techniques interact within a statistically driven evolutionary scheme to achieve a better tradeoff between template flexibility and sensitivity to noise and outliers. We focus on understanding the features of template matching that are most beneficial in terms of the achieved match. Examples from simulated and real image data are discussed, with considerations of algorithmic efficiency.
Model-based occluded object recognition using Petri nets
NASA Astrophysics Data System (ADS)
Zhou, Chuan; Hura, Gurdeep S.
1998-09-01
This paper discusses the use of Petri nets to model the process of the object matching between an image and a model under different 2D geometric transformations. This transformation finds its applications in sensor-based robot control, flexible manufacturing system and industrial inspection, etc. A description approach for object structure is presented by its topological structure relation called Point-Line Relation Structure (PLRS). It has been shown how Petri nets can be used to model the matching process, and an optimal or near optimal matching can be obtained by tracking the reachability graph of the net. The experiment result shows that object can be successfully identified and located under 2D transformation such as translations, rotations, scale changes and distortions due to object occluded partially.
Using Wikipedia and Conceptual Graph Structures to Generate Questions for Academic Writing Support
ERIC Educational Resources Information Center
Liu, Ming; Calvo, R. A.; Aditomo, A.; Pizzato, L. A.
2012-01-01
In this paper, we present a novel approach for semiautomatic question generation to support academic writing. Our system first extracts key phrases from students' literature review papers. Each key phrase is matched with a Wikipedia article and classified into one of five abstract concept categories: Research Field, Technology, System, Term, and…
ERIC Educational Resources Information Center
Ibrahim, George M.; Morgan, Benjamin R.; Vogan, Vanessa M.; Leung, Rachel C.; Anagnostou, Evdokia; Taylor, Margot J.
2016-01-01
Children with autism spectrum disorder (ASD) exhibit social-communicative impairments. Less is known about the neuropsychological profile of ASD, although cognitive and neuropsychological deficits are evident. We modelled neuropsychological function in 20 children with ASD and 20 sex, age and IQ matched typically-developing controls (ages 7-14) as…
An Efficient Algorithm for Partitioning and Authenticating Problem-Solutions of eLeaming Contents
ERIC Educational Resources Information Center
Dewan, Jahangir; Chowdhury, Morshed; Batten, Lynn
2013-01-01
Content authenticity and correctness is one of the important challenges in eLearning as there can be many solutions to one specific problem in cyber space. Therefore, the authors feel it is necessary to map problems to solutions using graph partition and weighted bipartite matching. This article proposes an efficient algorithm to partition…
Matching next-to-leading order predictions to parton showers in supersymmetric QCD
Degrande, Céline; Fuks, Benjamin; Hirschi, Valentin; ...
2016-02-03
We present a fully automated framework based on the FeynRules and MadGraph5_aMC@NLO programs that allows for accurate simulations of supersymmetric QCD processes at the LHC. Starting directly from a model Lagrangian that features squark and gluino interactions, event generation is achieved at the next-to-leading order in QCD, matching short-distance events to parton showers and including the subsequent decay of the produced supersymmetric particles. As an application, we study the impact of higher-order corrections in gluino pair-production in a simplified benchmark scenario inspired by current gluino LHC searches.
Independence polynomial and matching polynomial of the Koch network
NASA Astrophysics Data System (ADS)
Liao, Yunhua; Xie, Xiaoliang
2015-11-01
The lattice gas model and the monomer-dimer model are two classical models in statistical mechanics. It is well known that the partition functions of these two models are associated with the independence polynomial and the matching polynomial in graph theory, respectively. Both polynomials have been shown to belong to the “#P-complete” class, which indicate the problems are computationally “intractable”. We consider these two polynomials of the Koch networks which are scale-free with small-world effects. Explicit recurrences are derived, and explicit formulae are presented for the number of independent sets of a certain type.
Matching next-to-leading order predictions to parton showers in supersymmetric QCD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Degrande, Céline; Fuks, Benjamin; Hirschi, Valentin
We present a fully automated framework based on the FeynRules and MadGraph5_aMC@NLO programs that allows for accurate simulations of supersymmetric QCD processes at the LHC. Starting directly from a model Lagrangian that features squark and gluino interactions, event generation is achieved at the next-to-leading order in QCD, matching short-distance events to parton showers and including the subsequent decay of the produced supersymmetric particles. As an application, we study the impact of higher-order corrections in gluino pair-production in a simplified benchmark scenario inspired by current gluino LHC searches.
The Edge-Disjoint Path Problem on Random Graphs by Message-Passing.
Altarelli, Fabrizio; Braunstein, Alfredo; Dall'Asta, Luca; De Bacco, Caterina; Franz, Silvio
2015-01-01
We present a message-passing algorithm to solve a series of edge-disjoint path problems on graphs based on the zero-temperature cavity equations. Edge-disjoint paths problems are important in the general context of routing, that can be defined by incorporating under a unique framework both traffic optimization and total path length minimization. The computation of the cavity equations can be performed efficiently by exploiting a mapping of a generalized edge-disjoint path problem on a star graph onto a weighted maximum matching problem. We perform extensive numerical simulations on random graphs of various types to test the performance both in terms of path length minimization and maximization of the number of accommodated paths. In addition, we test the performance on benchmark instances on various graphs by comparison with state-of-the-art algorithms and results found in the literature. Our message-passing algorithm always outperforms the others in terms of the number of accommodated paths when considering non trivial instances (otherwise it gives the same trivial results). Remarkably, the largest improvement in performance with respect to the other methods employed is found in the case of benchmarks with meshes, where the validity hypothesis behind message-passing is expected to worsen. In these cases, even though the exact message-passing equations do not converge, by introducing a reinforcement parameter to force convergence towards a sub optimal solution, we were able to always outperform the other algorithms with a peak of 27% performance improvement in terms of accommodated paths. On random graphs, we numerically observe two separated regimes: one in which all paths can be accommodated and one in which this is not possible. We also investigate the behavior of both the number of paths to be accommodated and their minimum total length.
The Edge-Disjoint Path Problem on Random Graphs by Message-Passing
2015-01-01
We present a message-passing algorithm to solve a series of edge-disjoint path problems on graphs based on the zero-temperature cavity equations. Edge-disjoint paths problems are important in the general context of routing, that can be defined by incorporating under a unique framework both traffic optimization and total path length minimization. The computation of the cavity equations can be performed efficiently by exploiting a mapping of a generalized edge-disjoint path problem on a star graph onto a weighted maximum matching problem. We perform extensive numerical simulations on random graphs of various types to test the performance both in terms of path length minimization and maximization of the number of accommodated paths. In addition, we test the performance on benchmark instances on various graphs by comparison with state-of-the-art algorithms and results found in the literature. Our message-passing algorithm always outperforms the others in terms of the number of accommodated paths when considering non trivial instances (otherwise it gives the same trivial results). Remarkably, the largest improvement in performance with respect to the other methods employed is found in the case of benchmarks with meshes, where the validity hypothesis behind message-passing is expected to worsen. In these cases, even though the exact message-passing equations do not converge, by introducing a reinforcement parameter to force convergence towards a sub optimal solution, we were able to always outperform the other algorithms with a peak of 27% performance improvement in terms of accommodated paths. On random graphs, we numerically observe two separated regimes: one in which all paths can be accommodated and one in which this is not possible. We also investigate the behavior of both the number of paths to be accommodated and their minimum total length. PMID:26710102
A Functional Analytic Approach To Computer-Interactive Mathematics
2005-01-01
Following a pretest, 11 participants who were naive with regard to various algebraic and trigonometric transformations received an introductory lecture regarding the fundamentals of the rectangular coordinate system. Following the lecture, they took part in a computer-interactive matching-to-sample procedure in which they received training on particular formula-to-formula and formula-to-graph relations as these formulas pertain to reflections and vertical and horizontal shifts. In training A-B, standard formulas served as samples and factored formulas served as comparisons. In training B-C, factored formulas served as samples and graphs served as comparisons. Subsequently, the program assessed for mutually entailed B-A and C-B relations as well as combinatorially entailed C-A and A-C relations. After all participants demonstrated mutual entailment and combinatorial entailment, we employed a test of novel relations to assess 40 different and complex variations of the original training formulas and their respective graphs. Six of 10 participants who completed training demonstrated perfect or near-perfect performance in identifying novel formula-to-graph relations. Three of the 4 participants who made more than three incorrect responses during the assessment of novel relations showed some commonality among their error patterns. Derived transfer of stimulus control using mathematical relations is discussed. PMID:15898471
Graph theory network function in Parkinson's disease assessed with electroencephalography.
Utianski, Rene L; Caviness, John N; van Straaten, Elisabeth C W; Beach, Thomas G; Dugger, Brittany N; Shill, Holly A; Driver-Dunckley, Erika D; Sabbagh, Marwan N; Mehta, Shyamal; Adler, Charles H; Hentz, Joseph G
2016-05-01
To determine what differences exist in graph theory network measures derived from electroencephalography (EEG), between Parkinson's disease (PD) patients who are cognitively normal (PD-CN) and matched healthy controls; and between PD-CN and PD dementia (PD-D). EEG recordings were analyzed via graph theory network analysis to quantify changes in global efficiency and local integration. This included minimal spanning tree analysis. T-tests and correlations were used to assess differences between groups and assess the relationship with cognitive performance. Network measures showed increased local integration across all frequency bands between control and PD-CN; in contrast, decreased local integration occurred in PD-D when compared to PD-CN in the alpha1 frequency band. Differences found in PD-MCI mirrored PD-D. Correlations were found between network measures and assessments of global cognitive performance in PD. Our results reveal distinct patterns of band and network measure type alteration and breakdown for PD, as well as with cognitive decline in PD. These patterns suggest specific ways that interaction between cortical areas becomes abnormal and contributes to PD symptoms at various stages. Graph theory analysis by EEG suggests that network alteration and breakdown are robust attributes of PD cortical dysfunction pathophysiology. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
A functional analytic approach to computer-interactive mathematics.
Ninness, Chris; Rumph, Robin; McCuller, Glen; Harrison, Carol; Ford, Angela M; Ninness, Sharon K
2005-01-01
Following a pretest, 11 participants who were naive with regard to various algebraic and trigonometric transformations received an introductory lecture regarding the fundamentals of the rectangular coordinate system. Following the lecture, they took part in a computer-interactive matching-to-sample procedure in which they received training on particular formula-to-formula and formula-to-graph relations as these formulas pertain to reflections and vertical and horizontal shifts. In training A-B, standard formulas served as samples and factored formulas served as comparisons. In training B-C, factored formulas served as samples and graphs served as comparisons. Subsequently, the program assessed for mutually entailed B-A and C-B relations as well as combinatorially entailed C-A and A-C relations. After all participants demonstrated mutual entailment and combinatorial entailment, we employed a test of novel relations to assess 40 different and complex variations of the original training formulas and their respective graphs. Six of 10 participants who completed training demonstrated perfect or near-perfect performance in identifying novel formula-to-graph relations. Three of the 4 participants who made more than three incorrect responses during the assessment of novel relations showed some commonality among their error patterns. Derived transfer of stimulus control using mathematical relations is discussed.
Searching for the light-element candidate of the Earth's inner core
NASA Astrophysics Data System (ADS)
Li, Y.; Vocadlo, L.; Brodholt, J. P.; Wood, I. G.
2016-12-01
The mismatch between the seismic observations of the Earth's inner core and observations from mineral physics (Vočadlo, 2007; Vočadlo et al., 2009; Belonoshko et al., 2007; Martorell et al., 2013) questions the basic structure of the core and also makes it more difficult to understand its other complex characteristics. The premelting elastic softening predicted in hcp Fe under inner core conditions gives a match with seismic wave velocities, but clearly the density is too high (Martorell et al., 2013); in addition, the origin of such premelting softening is not clear. Using ab-initio based simulation techniques, we have studied the structures and elastic properties of Fe alloys and compounds with C and Si that are strongly relevant to the inner core. The densities and elastic constants were obtained up to melting under inner core pressures. The premelting elastic softening observed in hcp Fe was also observed in materials like Fe7C3, and was found to be correlated with the partial weakening of the bonding network, but the density of Fe7C3 is too low to match that of the inner core. However, the density and elastic properties from calculations on the Fe-Si-C ternary alloy were found to be very close to the seismic observations of the core, suggesting that it may, finally, be possible to report a core composition which is fully matched with seismology. Belonoshko, A. B., Skorodumova, N. V., Davis, S., Osiptsov, A. N., Rosengren, A., Johansson, B., (2007). Science 316 (5831), 1603-1605. Vočadlo, L., (2007). Earth. Planet. Sci. Lett., 254 (1), 227-232. Vočadlo, L., Brodholt, J., Dobson, D.P., Knight, K., Marshall, W., Price, G.D., Wood, I.G. (2002). Earth. Planet. Sci. Lett., 203 (1) 567-575. Vočadlo, L., Dobson, D. P., Wood, I. G., (2009). Earth. Planet. Sci. Lett., 288 (3), 534-538. Martorell, B., Vočadlo, L., Brodholt, J., Wood, I. G., (2013b). Science 342 (6157), 466-468.
Phi-s correlation and dynamic time warping - Two methods for tracking ice floes in SAR images
NASA Technical Reports Server (NTRS)
Mcconnell, Ross; Kober, Wolfgang; Kwok, Ronald; Curlander, John C.; Pang, Shirley S.
1991-01-01
The authors present two algorithms for performing shape matching on ice floe boundaries in SAR (synthetic aperture radar) images. These algorithms quickly produce a set of ice motion and rotation vectors that can be used to guide a pixel value correlator. The algorithms match a shape descriptor known as the Phi-s curve. The first algorithm uses normalized correlation to match the Phi-s curves, while the second uses dynamic programming to compute an elastic match that better accommodates ice floe deformation. Some empirical data on the performance of the algorithms on Seasat SAR images are presented.
Integration of prior knowledge into dense image matching for video surveillance
NASA Astrophysics Data System (ADS)
Menze, M.; Heipke, C.
2014-08-01
Three-dimensional information from dense image matching is a valuable input for a broad range of vision applications. While reliable approaches exist for dedicated stereo setups they do not easily generalize to more challenging camera configurations. In the context of video surveillance the typically large spatial extent of the region of interest and repetitive structures in the scene render the application of dense image matching a challenging task. In this paper we present an approach that derives strong prior knowledge from a planar approximation of the scene. This information is integrated into a graph-cut based image matching framework that treats the assignment of optimal disparity values as a labelling task. Introducing the planar prior heavily reduces ambiguities together with the search space and increases computational efficiency. The results provide a proof of concept of the proposed approach. It allows the reconstruction of dense point clouds in more general surveillance camera setups with wider stereo baselines.
Comparison of Point Matching Techniques for Road Network Matching
NASA Astrophysics Data System (ADS)
Hackeloeer, A.; Klasing, K.; Krisp, J. M.; Meng, L.
2013-05-01
Map conflation investigates the unique identification of geographical entities across different maps depicting the same geographic region. It involves a matching process which aims to find commonalities between geographic features. A specific subdomain of conflation called Road Network Matching establishes correspondences between road networks of different maps on multiple layers of abstraction, ranging from elementary point locations to high-level structures such as road segments or even subgraphs derived from the induced graph of a road network. The process of identifying points located on different maps by means of geometrical, topological and semantical information is called point matching. This paper provides an overview of various techniques for point matching, which is a fundamental requirement for subsequent matching steps focusing on complex high-level entities in geospatial networks. Common point matching approaches as well as certain combinations of these are described, classified and evaluated. Furthermore, a novel similarity metric called the Exact Angular Index is introduced, which considers both topological and geometrical aspects. The results offer a basis for further research on a bottom-up matching process for complex map features, which must rely upon findings derived from suitable point matching algorithms. In the context of Road Network Matching, reliable point matches provide an immediate starting point for finding matches between line segments describing the geometry and topology of road networks, which may in turn be used for performing a structural high-level matching on the network level.
The Wrinkling of a Twisted Ribbon
NASA Astrophysics Data System (ADS)
Kohn, Robert V.; O'Brien, Ethan
2018-02-01
Recent experiments by Chopin and Kudrolli (Phys Rev Lett 111:174302, 2013) showed that a thin elastic ribbon, when twisted into a helicoid, may wrinkle in the center. We study this from the perspective of elastic energy minimization, building on recent work by Chopin et al. (J Elast 119(1-2):137-189, 2015) in which they derive a modified von Kármán functional and solve the relaxed problem. Our main contribution is to show matching upper and lower bounds for the minimum energy in the small-thickness limit. Along the way, we show that the displacements must be small where we expect that the ribbon is helicoidal, and we estimate the wavelength of the wrinkles.
Numerical modeling of the destruction of steel plates with a gradient substrate
NASA Astrophysics Data System (ADS)
Orlov, M. Yu.; Glazyrin, V. P.; Orlov, Yu. N.
2017-10-01
The paper presents the results of numerical simulation of the shock loading process of steel barriers with a gradient substrate. In an elastic plastic axisymmetric statement, a shock is simulated along the normal in the range of initial velocities up to 300 m / s. A range of initial velocities was revealed, in which the presence of a substrate "saved" the obstacle from spallation. New tasks were announced to deepen scientific knowledge about the behavior of unidirectional gradient barriers at impact. The results of calculations are obtained in the form of graphs, calculated configurations of the "impact - barrier" and tables.
On the dynamical stability of the space 'monorail'
NASA Astrophysics Data System (ADS)
Bergamaschi, S.; Manni, D.
The dynamical stability of 'monorail' tethered-satellite/elevator configurations being studied for the Space Station is investigated analytically, treating the end platforms and elevator as point masses, neglecting tether elasticity, and taking the Coriolis force and the complex gravitational field into account in analyzing the orbital-plane motion of the system. A mathematical model is constructed; the equations of motion are derived; and results obtained by numerical integration for platform masses 100,000 and 10,000 kg, elevator mass 5000 kg, and a 10-km-long 6-mm-diameter 4070-kg-mass tether are presented in graphs and briefly characterized.
Collis, Jon M; Frank, Scott D; Metzler, Adam M; Preston, Kimberly S
2016-05-01
Sound propagation predictions for ice-covered ocean acoustic environments do not match observational data: received levels in nature are less than expected, suggesting that the effects of the ice are substantial. Effects due to elasticity in overlying ice can be significant enough that low-shear approximations, such as effective complex density treatments, may not be appropriate. Building on recent elastic seafloor modeling developments, a range-dependent parabolic equation solution that treats the ice as an elastic medium is presented. The solution is benchmarked against a derived elastic normal mode solution for range-independent underwater acoustic propagation. Results from both solutions accurately predict plate flexural modes that propagate in the ice layer, as well as Scholte interface waves that propagate at the boundary between the water and the seafloor. The parabolic equation solution is used to model a scenario with range-dependent ice thickness and a water sound speed profile similar to those observed during the 2009 Ice Exercise (ICEX) in the Beaufort Sea.
NASA Astrophysics Data System (ADS)
Pretko, Michael; Radzihovsky, Leo
2018-05-01
Motivated by recent studies of fractons, we demonstrate that elasticity theory of a two-dimensional quantum crystal is dual to a fracton tensor gauge theory, providing a concrete manifestation of the fracton phenomenon in an ordinary solid. The topological defects of elasticity theory map onto charges of the tensor gauge theory, with disclinations and dislocations corresponding to fractons and dipoles, respectively. The transverse and longitudinal phonons of crystals map onto the two gapless gauge modes of the gauge theory. The restricted dynamics of fractons matches with constraints on the mobility of lattice defects. The duality leads to numerous predictions for phases and phase transitions of the fracton system, such as the existence of gauge theory counterparts to the (commensurate) crystal, supersolid, hexatic, and isotropic fluid phases of elasticity theory. Extensions of this duality to generalized elasticity theories provide a route to the discovery of new fracton models. As a further consequence, the duality implies that fracton phases are relevant to the study of interacting topological crystalline insulators.
Role of isostaticity and load-bearing microstructure in the elasticity of yielded colloidal gels.
Hsiao, Lilian C; Newman, Richmond S; Glotzer, Sharon C; Solomon, Michael J
2012-10-02
We report a simple correlation between microstructure and strain-dependent elasticity in colloidal gels by visualizing the evolution of cluster structure in high strain-rate flows. We control the initial gel microstructure by inducing different levels of isotropic depletion attraction between particles suspended in refractive index matched solvents. Contrary to previous ideas from mode coupling and micromechanical treatments, our studies show that bond breakage occurs mainly due to the erosion of rigid clusters that persist far beyond the yield strain. This rigidity contributes to gel elasticity even when the sample is fully fluidized; the origin of the elasticity is the slow Brownian relaxation of rigid, hydrodynamically interacting clusters. We find a power-law scaling of the elastic modulus with the stress-bearing volume fraction that is valid over a range of volume fractions and gelation conditions. These results provide a conceptual framework to quantitatively connect the flow-induced microstructure of soft materials to their nonlinear rheology.
2012-01-01
Background Chaos Game Representation (CGR) is an iterated function that bijectively maps discrete sequences into a continuous domain. As a result, discrete sequences can be object of statistical and topological analyses otherwise reserved to numerical systems. Characteristically, CGR coordinates of substrings sharing an L-long suffix will be located within 2-L distance of each other. In the two decades since its original proposal, CGR has been generalized beyond its original focus on genomic sequences and has been successfully applied to a wide range of problems in bioinformatics. This report explores the possibility that it can be further extended to approach algorithms that rely on discrete, graph-based representations. Results The exploratory analysis described here consisted of selecting foundational string problems and refactoring them using CGR-based algorithms. We found that CGR can take the role of suffix trees and emulate sophisticated string algorithms, efficiently solving exact and approximate string matching problems such as finding all palindromes and tandem repeats, and matching with mismatches. The common feature of these problems is that they use longest common extension (LCE) queries as subtasks of their procedures, which we show to have a constant time solution with CGR. Additionally, we show that CGR can be used as a rolling hash function within the Rabin-Karp algorithm. Conclusions The analysis of biological sequences relies on algorithmic foundations facing mounting challenges, both logistic (performance) and analytical (lack of unifying mathematical framework). CGR is found to provide the latter and to promise the former: graph-based data structures for sequence analysis operations are entailed by numerical-based data structures produced by CGR maps, providing a unifying analytical framework for a diversity of pattern matching problems. PMID:22551152
Large Eddy Simulation of Turbulent Combustion
2005-10-01
a new method to automatically generate skeletal kinetic mechanisms for surrogate fuels, using the directed relation graph method with error...propagation, was developed. These mechanisms are guaranteed to match results obtained using detailed chemistry within a user- defined accuracy for any...specified target. They can be combined together to produce adequate chemical models for surrogate fuels. A library containing skeletal mechanisms of various
ERIC Educational Resources Information Center
Lai, Jason Kwong-Hung; Leung, Howard; Hu, Zhi-Hui; Tang, Jeff K. T.; Xu, Yun
2010-01-01
One of the difficulties in learning Chinese characters is distinguishing similar characters. This can cause misunderstanding and miscommunication in daily life. Thus, it is important for students learning the Chinese language to be able to distinguish similar characters and understand their proper usage. In this paper, the authors propose a game…
Kinetic and kinematic differences between squats performed with and without elastic bands.
Israetel, Michael A; McBride, Jeffrey M; Nuzzo, James L; Skinner, Jared W; Dayne, Andrea M
2010-01-01
The purpose of this investigation was to compare kinetic and kinematic variables between squats performed with and without elastic bands equalized for total work. Ten recreationally weight trained males completed 1 set of 5 squats without (Wht) and with (Band) elastic bands as resistance. Squats were completed while standing on a force platform with bar displacement measured using 2 potentiometers. Electromyography (EMG) was obtained from the vastus lateralis. Average force-time, velocity-time, power-time, and EMG-time graphs were generated and statistically analyzed for mean differences in values between the 2 conditions during the eccentric and concentric phases. The Band condition resulted in significantly higher forces in comparison to the Wht condition during the first 25% of the eccentric phase and the last 10% of the concentric phase (p < or = 0.05). However, the Wht condition resulted in significantly higher forces during the last 5% of the eccentric phase and the first 5% of the concentric phase in comparison to the Band condition. The Band condition resulted in significantly higher power and velocity values during the first portion of the eccentric phase and the latter portion of the concentric phase. Vastus lateralis muscle activity during the Band condition was significantly greater during the first portion of the eccentric phase and latter portion of the concentric phase as well. This investigation indicates that squats equalized for total work with and without elastic bands significantly alter the force-time, power-time, velocity-time, and EMG-time curves associated with the movements. Specifically, elastic bands seem to increase force, power, and muscle activity during the early portions of the eccentric phase and latter portions of the concentric phase.
Stereo matching using census cost over cross window and segmentation-based disparity refinement
NASA Astrophysics Data System (ADS)
Li, Qingwu; Ni, Jinyan; Ma, Yunpeng; Xu, Jinxin
2018-03-01
Stereo matching is a vital requirement for many applications, such as three-dimensional (3-D) reconstruction, robot navigation, object detection, and industrial measurement. To improve the practicability of stereo matching, a method using census cost over cross window and segmentation-based disparity refinement is proposed. First, a cross window is obtained using distance difference and intensity similarity in binocular images. Census cost over the cross window and color cost are combined as the matching cost, which is aggregated by the guided filter. Then, winner-takes-all strategy is used to calculate the initial disparities. Second, a graph-based segmentation method is combined with color and edge information to achieve moderate under-segmentation. The segmented regions are classified into reliable regions and unreliable regions by consistency checking. Finally, the two regions are optimized by plane fitting and propagation, respectively, to match the ambiguous pixels. The experimental results are on Middlebury Stereo Datasets, which show that the proposed method has good performance in occluded and discontinuous regions, and it obtains smoother disparity maps with a lower average matching error rate compared with other algorithms.
Mild traumatic brain injury: graph-model characterization of brain networks for episodic memory.
Tsirka, Vasso; Simos, Panagiotis G; Vakis, Antonios; Kanatsouli, Kassiani; Vourkas, Michael; Erimaki, Sofia; Pachou, Ellie; Stam, Cornelis Jan; Micheloyannis, Sifis
2011-02-01
Episodic memory is among the cognitive functions that can be affected in the acute phase following mild traumatic brain injury (MTBI). The present study used EEG recordings to evaluate global synchronization and network organization of rhythmic activity during the encoding and recognition phases of an episodic memory task varying in stimulus type (kaleidoscope images, pictures, words, and pseudowords). Synchronization of oscillatory activity was assessed using a linear and nonlinear connectivity estimator and network analyses were performed using algorithms derived from graph theory. Twenty five MTBI patients (tested within days post-injury) and healthy volunteers were closely matched on demographic variables, verbal ability, psychological status variables, as well as on overall task performance. Patients demonstrated sub-optimal network organization, as reflected by changes in graph parameters in the theta and alpha bands during both encoding and recognition. There were no group differences in spectral energy during task performance or on network parameters during a control condition (rest). Evidence of less optimally organized functional networks during memory tasks was more prominent for pictorial than for verbal stimuli. Copyright © 2010 Elsevier B.V. All rights reserved.
[A retrieval method of drug molecules based on graph collapsing].
Qu, J W; Lv, X Q; Liu, Z M; Liao, Y; Sun, P H; Wang, B; Tang, Z
2018-04-18
To establish a compact and efficient hypergraph representation and a graph-similarity-based retrieval method of molecules to achieve effective and efficient medicine information retrieval. Chemical structural formula (CSF) was a primary search target as a unique and precise identifier for each compound at the molecular level in the research field of medicine information retrieval. To retrieve medicine information effectively and efficiently, a complete workflow of the graph-based CSF retrieval system was introduced. This system accepted the photos taken from smartphones and the sketches drawn on tablet personal computers as CSF inputs, and formalized the CSFs with the corresponding graphs. Then this paper proposed a compact and efficient hypergraph representation for molecules on the basis of analyzing factors that directly affected the efficiency of graph matching. According to the characteristics of CSFs, a hierarchical collapsing method combining graph isomorphism and frequent subgraph mining was adopted. There was yet a fundamental challenge, subgraph overlapping during the collapsing procedure, which hindered the method from establishing the correct compact hypergraph of an original CSF graph. Therefore, a graph-isomorphism-based algorithm was proposed to select dominant acyclic subgraphs on the basis of overlapping analysis. Finally, the spatial similarity among graphical CSFs was evaluated by multi-dimensional measures of similarity. To evaluate the performance of the proposed method, the proposed system was firstly compared with Wikipedia Chemical Structure Explorer (WCSE), the state-of-the-art system that allowed CSF similarity searching within Wikipedia molecules dataset, on retrieval accuracy. The system achieved higher values on mean average precision, discounted cumulative gain, rank-biased precision, and expected reciprocal rank than WCSE from the top-2 to the top-10 retrieved results. Specifically, the system achieved 10%, 1.41, 6.42%, and 1.32% higher than WCSE on these metrics for top-10 retrieval results, respectively. Moreover, several retrieval cases were presented to intuitively compare with WCSE. The results of the above comparative study demonstrated that the proposed method outperformed the existing method with regard to accuracy and effectiveness. This paper proposes a graph-similarity-based retrieval approach for medicine information. To obtain satisfactory retrieval results, an isomorphism-based algorithm is proposed for dominant subgraph selection based on the subgraph overlapping analysis, as well as an effective and efficient hypergraph representation of molecules. Experiment results demonstrate the effectiveness of the proposed approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Guang; Sun, Xin; Wang, Yuxin
A new inverse method was proposed to calculate the anisotropic elastic-plastic properties (flow stress) of thin electrodeposited Ag coating utilizing nanoindentation tests, previously reported inverse method for isotropic materials and three-dimensional (3-D) finite element analyses (FEA). Indentation depth was ~4% of coating thickness (~10 μm) to avoid substrate effect and different indentation responses were observed in the longitudinal (L) and the transverse (T) directions. The estimated elastic-plastic properties were obtained in the newly developed inverse method by matching the predicted indentation responses in the L and T directions with experimental measurements considering indentation size effect (ISE). The results were validatedmore » with tensile flow curves measured from free-standing (FS) Ag film. The current method can be utilized to characterize the anisotropic elastic-plastic properties of coatings and to provide the constitutive properties for coating performance evaluations.« less
Li, Zhigang; Shi, Zhongping; Li, Xin
2014-05-01
Several fermentations with consecutively feeding of acetate/butyrate were conducted in a 7 L fermentor and the results indicated that exogenous acetate/butyrate enhanced solvents productivities by 47.1% and 39.2% respectively, and changed butyrate/acetate ratios greatly. Then extracellular butyrate/acetate ratios were utilized for calculation of acids rates and the results revealed that acetate and butyrate formation pathways were almost blocked by corresponding acids feeding. In addition, models for acetate/butyrate feeding fermentations were constructed by graph theory based on calculation results and relevant reports. Solvents concentrations and butanol/acetone ratios of these fermentations were also calculated and the results of models calculation matched fermentation data accurately which demonstrated that models were constructed in a reasonable way. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, Zigang; Li, Lixiang; Peng, Haipeng; Liu, Yuhong; Yang, Yixian
2018-04-01
Community mining for complex social networks with link and attribute information plays an important role according to different application needs. In this paper, based on our proposed general non-negative matrix factorization (GNMF) algorithm without dimension matching constraints in our previous work, we propose the joint GNMF with graph Laplacian (LJGNMF) to implement community mining of complex social networks with link and attribute information according to different application needs. Theoretical derivation result shows that the proposed LJGNMF is fully compatible with previous methods of integrating traditional NMF and symmetric NMF. In addition, experimental results show that the proposed LJGNMF can meet the needs of different community minings by adjusting its parameters, and the effect is better than traditional NMF in the community vertices attributes entropy.
A variationally coupled FE-BE method for elasticity and fracture mechanics
NASA Technical Reports Server (NTRS)
Lu, Y. Y.; Belytschko, T.; Liu, W. K.
1991-01-01
A new method for coupling finite element and boundary element subdomains in elasticity and fracture mechanics problems is described. The essential feature of this new method is that a single variational statement is obtained for the entire domain, and in this process the terms associated with tractions on the interfaces between the subdomains are eliminated. This provides the additional advantage that the ambiguities associated with the matching of discontinuous tractions are circumvented. The method leads to a direct procedure for obtaining the discrete equations for the coupled problem without any intermediate steps. In order to evaluate this method and compare it with previous methods, a patch test for coupled procedures has been devised. Evaluation of this variationally coupled method and other methods, such as stiffness coupling and constraint traction matching coupling, shows that this method is substantially superior. Solutions for a series of fracture mechanics problems are also reported to illustrate the effectiveness of this method.
NASA Astrophysics Data System (ADS)
Shy, L. Y.; Eichinger, B. E.
1989-05-01
Computer simulations of the formation of trifunctional and tetrafunctional polydimethyl-siloxane networks that are crosslinked by condensation of telechelic chains with multifunctional crosslinking agents have been carried out on systems containing up to 1.05×106 chains. Eigenvalue spectra of Kirchhoff matrices for these networks have been evaluated at two levels of approximation: (1) inclusion of all midchain modes, and (2) suppression of midchain modes. By use of the recursion method of Haydock and Nex, we have been able to effectively diagonalize matrices with 730 498 rows and columns without actually constructing matrices of this size. The small eigenvalues have been computed by use of the Lanczos algorithm. We demonstrate the following results: (1) The smallest eigenvalues (with chain modes suppressed) vary as μ-2/3 for sufficiently large μ, where μ is the number of junctions in the network; (2) the eigenvalue spectra of the Kirchhoff matrices are well described by McKay's theory for random regular graphs in the range of the larger eigenvalues, but there are significant departures in the region of small eigenvalues where computed spectra have many more small eigenvalues than random regular graphs; (3) the smallest eigenvalues vary as n-1.78 where n is the number of Rouse beads in the chains that comprise the network. Computations are done for both monodisperse and polydisperse chain length distributions. Large eigenvalues associated with localized motion of the junctions are found as predicted by theory. The relationship between the small eigenvalues and the equilibrium modulus of elasticity is discussed, as is the relationship between viscoelasticity and the band edge of the spectrum.
A distributed-memory approximation algorithm for maximum weight perfect bipartite matching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azad, Ariful; Buluc, Aydin; Li, Xiaoye S.
We design and implement an efficient parallel approximation algorithm for the problem of maximum weight perfect matching in bipartite graphs, i.e. the problem of finding a set of non-adjacent edges that covers all vertices and has maximum weight. This problem differs from the maximum weight matching problem, for which scalable approximation algorithms are known. It is primarily motivated by finding good pivots in scalable sparse direct solvers before factorization where sequential implementations of maximum weight perfect matching algorithms, such as those available in MC64, are widely used due to the lack of scalable alternatives. To overcome this limitation, we proposemore » a fully parallel distributed memory algorithm that first generates a perfect matching and then searches for weightaugmenting cycles of length four in parallel and iteratively augments the matching with a vertex disjoint set of such cycles. For most practical problems the weights of the perfect matchings generated by our algorithm are very close to the optimum. An efficient implementation of the algorithm scales up to 256 nodes (17,408 cores) on a Cray XC40 supercomputer and can solve instances that are too large to be handled by a single node using the sequential algorithm.« less
Coupling between Inclusions and Membranes at the Nanoscale
NASA Astrophysics Data System (ADS)
Bories, Florent; Constantin, Doru; Galatola, Paolo; Fournier, Jean-Baptiste
2018-03-01
The activity of cell membrane inclusions (such as ion channels) is influenced by the host lipid membrane, to which they are elastically coupled. This coupling concerns the hydrophobic thickness of the bilayer (imposed by the length of the channel, as per the hydrophobic matching principle) but also its slope at the boundary of the inclusion. However, this parameter has never been measured so far. We combine small-angle x-ray scattering data and a complete elastic model to measure the slope for the model gramicidin channel and show that it is surprisingly steep in two membrane systems with very different elastic properties. This conclusion is confirmed and generalized by the comparison with recent results in the simulation literature and with conductivity measurements.
2018-02-01
similar methodology as the author’s example was conducted to prepare this dataset for processing via the SGM algorithm. Since and ′ are...TECHNICAL MEMORANDUM APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED STINFO COPY AIR FORCE RESEARCH LABORATORY...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air Force Research Laboratory/RIEA 525 Brooks Road Rome NY 13441-4505 8. PERFORMING ORGANIZATION REPORT NUMBER
Combating WMD Journal. Issue 6, Fall/Winter 2010
2010-12-31
Editorial Board prior to publication. Submit articles in Microsoft Word without automatic features, include photographs , graphs, tables, etc. as...presenters as many in attendance were unlikely to be swayed and in some cases the meet- ings turned into adversarial shouting matches. 19 These...Solar Superstorm, http://science.nasa.gov/ science-news/science-at- nasa /2003/23oct_superstorm/ 8. Pfeffer, Robert, The Need to Re- define
On the degree conjecture for separability of multipartite quantum states
NASA Astrophysics Data System (ADS)
Hassan, Ali Saif M.; Joag, Pramod S.
2008-01-01
We settle the so-called degree conjecture for the separability of multipartite quantum states, which are normalized graph Laplacians, first given by Braunstein et al. [Phys. Rev. A 73, 012320 (2006)]. The conjecture states that a multipartite quantum state is separable if and only if the degree matrix of the graph associated with the state is equal to the degree matrix of the partial transpose of this graph. We call this statement to be the strong form of the conjecture. In its weak version, the conjecture requires only the necessity, that is, if the state is separable, the corresponding degree matrices match. We prove the strong form of the conjecture for pure multipartite quantum states using the modified tensor product of graphs defined by Hassan and Joag [J. Phys. A 40, 10251 (2007)], as both necessary and sufficient condition for separability. Based on this proof, we give a polynomial-time algorithm for completely factorizing any pure multipartite quantum state. By polynomial-time algorithm, we mean that the execution time of this algorithm increases as a polynomial in m, where m is the number of parts of the quantum system. We give a counterexample to show that the conjecture fails, in general, even in its weak form, for multipartite mixed states. Finally, we prove this conjecture, in its weak form, for a class of multipartite mixed states, giving only a necessary condition for separability.
On Quantifying Diffusion of Health Information on Twitter.
Bakal, Gokhan; Kavuluru, Ramakanth
2017-02-01
With the increasing use of digital technologies, online social networks are emerging as major means of communication. Recently, social networks such as Facebook and Twitter are also being used by consumers, care providers (physicians, hospitals), and government agencies to share health related information. The asymmetric user network and the short message size have made Twitter particularly popular for propagating health related content on the Web. Besides tweeting on their own, users can choose to retweet particular tweets from other users (even if they do not follow them on Twitter.) Thus, a tweet can diffuse through the Twitter network via the follower-friend connections. In this paper, we report results of a pilot study we conducted to quantitatively assess how health related tweets diffuse in the directed follower-friend Twitter graph through the retweeting activity. Our effort includes (1). development of a retweet collection and Twitter retweet graph formation framework and (2). a preliminary analysis of retweet graphs and associated diffusion metrics for health tweets. Given the ambiguous nature (due to polysemy and sarcasm) of health relatedness of tweets collected with keyword based matches, our initial study is limited to ≈ 200 health related tweets (which were manually verified to be on health topics) each with at least 25 retweets. To our knowledge, this is first attempt to study health information diffusion on Twitter through retweet graph analysis.
Hosseini, S M Hadi; Hoeft, Fumiko; Kesler, Shelli R
2012-01-01
In recent years, graph theoretical analyses of neuroimaging data have increased our understanding of the organization of large-scale structural and functional brain networks. However, tools for pipeline application of graph theory for analyzing topology of brain networks is still lacking. In this report, we describe the development of a graph-analysis toolbox (GAT) that facilitates analysis and comparison of structural and functional network brain networks. GAT provides a graphical user interface (GUI) that facilitates construction and analysis of brain networks, comparison of regional and global topological properties between networks, analysis of network hub and modules, and analysis of resilience of the networks to random failure and targeted attacks. Area under a curve (AUC) and functional data analyses (FDA), in conjunction with permutation testing, is employed for testing the differences in network topologies; analyses that are less sensitive to the thresholding process. We demonstrated the capabilities of GAT by investigating the differences in the organization of regional gray-matter correlation networks in survivors of acute lymphoblastic leukemia (ALL) and healthy matched Controls (CON). The results revealed an alteration in small-world characteristics of the brain networks in the ALL survivors; an observation that confirm our hypothesis suggesting widespread neurobiological injury in ALL survivors. Along with demonstration of the capabilities of the GAT, this is the first report of altered large-scale structural brain networks in ALL survivors.
Adaptive Discrete Hypergraph Matching.
Yan, Junchi; Li, Changsheng; Li, Yin; Cao, Guitao
2018-02-01
This paper addresses the problem of hypergraph matching using higher-order affinity information. We propose a solver that iteratively updates the solution in the discrete domain by linear assignment approximation. The proposed method is guaranteed to converge to a stationary discrete solution and avoids the annealing procedure and ad-hoc post binarization step that are required in several previous methods. Specifically, we start with a simple iterative discrete gradient assignment solver. This solver can be trapped in an -circle sequence under moderate conditions, where is the order of the graph matching problem. We then devise an adaptive relaxation mechanism to jump out this degenerating case and show that the resulting new path will converge to a fixed solution in the discrete domain. The proposed method is tested on both synthetic and real-world benchmarks. The experimental results corroborate the efficacy of our method.
Fast Object Motion Estimation Based on Dynamic Stixels.
Morales, Néstor; Morell, Antonio; Toledo, Jonay; Acosta, Leopoldo
2016-07-28
The stixel world is a simplification of the world in which obstacles are represented as vertical instances, called stixels, standing on a surface assumed to be planar. In this paper, previous approaches for stixel tracking are extended using a two-level scheme. In the first level, stixels are tracked by matching them between frames using a bipartite graph in which edges represent a matching cost function. Then, stixels are clustered into sets representing objects in the environment. These objects are matched based on the number of stixels paired inside them. Furthermore, a faster, but less accurate approach is proposed in which only the second level is used. Several configurations of our method are compared to an existing state-of-the-art approach to show how our methodology outperforms it in several areas, including an improvement in the quality of the depth reconstruction.
Shear elastic modulus estimation from indentation and SDUV on gelatin phantoms
Amador, Carolina; Urban, Matthew W.; Chen, Shigao; Chen, Qingshan; An, Kai-Nan; Greenleaf, James F.
2011-01-01
Tissue mechanical properties such as elasticity are linked to tissue pathology state. Several groups have proposed shear wave propagation speed to quantify tissue mechanical properties. It is well known that biological tissues are viscoelastic materials; therefore velocity dispersion resulting from material viscoelasticity is expected. A method called Shearwave Dispersion Ultrasound Vibrometry (SDUV) can be used to quantify tissue viscoelasticity by measuring dispersion of shear wave propagation speed. However, there is not a gold standard method for validation. In this study we present an independent validation method of shear elastic modulus estimation by SDUV in 3 gelatin phantoms of differing stiffness. In addition, the indentation measurements are compared to estimates of elasticity derived from shear wave group velocities. The shear elastic moduli from indentation were 1.16, 3.40 and 5.6 kPa for a 7, 10 and 15% gelatin phantom respectively. SDUV measurements were 1.61, 3.57 and 5.37 kPa for the gelatin phantoms respectively. Shear elastic moduli derived from shear wave group velocities were 1.78, 5.2 and 7.18 kPa for the gelatin phantoms respectively. The shear elastic modulus estimated from the SDUV, matched the elastic modulus measured by indentation. On the other hand, shear elastic modulus estimated by group velocity did not agree with indentation test estimations. These results suggest that shear elastic modulus estimation by group velocity will be bias when the medium being investigated is dispersive. Therefore a rheological model should be used in order to estimate mechanical properties of viscoelastic materials. PMID:21317078
Elastic constants of stressed and unstressed materials in the phase-field crystal model
NASA Astrophysics Data System (ADS)
Wang, Zi-Le; Huang, Zhi-Feng; Liu, Zhirong
2018-04-01
A general procedure is developed to investigate the elastic response and calculate the elastic constants of stressed and unstressed materials through continuum field modeling, particularly the phase-field crystal (PFC) models. It is found that for a complete description of system response to elastic deformation, the variations of all the quantities of lattice wave vectors, their density amplitudes (including the corresponding anisotropic variation and degeneracy breaking), the average atomic density, and system volume should be incorporated. The quantitative and qualitative results of elastic constant calculations highly depend on the physical interpretation of the density field used in the model, and also importantly, on the intrinsic pressure that usually pre-exists in the model system. A formulation based on thermodynamics is constructed to account for the effects caused by constant pre-existing stress during the homogeneous elastic deformation, through the introducing of a generalized Gibbs free energy and an effective finite strain tensor used for determining the elastic constants. The elastic properties of both solid and liquid states can be well produced by this unified approach, as demonstrated by an analysis for the liquid state and numerical evaluations for the bcc solid phase. The numerical calculations of bcc elastic constants and Poisson's ratio through this method generate results that are consistent with experimental conditions, and better match the data of bcc Fe given by molecular dynamics simulations as compared to previous work. The general theory developed here is applicable to the study of different types of stressed or unstressed material systems under elastic deformation.
Acoustic resonances of fluid-immersed elastic cylinders and spheroids: Theory and experiment
NASA Astrophysics Data System (ADS)
Niemiec, Jan; Überall, Herbert; Bao, X. L.
2002-05-01
Frequency resonances in the scattering of acoustic waves from a target object are caused by the phase matching of surface waves repeatedly encircling the object. This is exemplified here by considering elastic finite cylinders and spheroids, and the phase-matching condition provides a means of calculating the complex resonance frequencies of such objects. Tank experiments carried out at Catholic University, or at the University of Le Havre, France by G. Maze and J. Ripoche, have been interpreted using this approach. The experiments employed sound pulses to measure arrival times, which allowed identification of the surface paths taken by the surface waves, thus giving rise to resonances in the scattering amplitude. A calculation of the resonance frequencies using the T-matrix approach showed satisfactory agreement with the experimental resonance frequencies that were either measured directly (as at Le Havre), or that were obtained by the interpretation of measured arrival times (at Catholic University) using calculated surface wave paths, and the extraction of resonance frequencies therefrom, on the basis of the phase-matching condition. Results for hemispherically endcapped, evacuated steel cylinders obtained in a lake experiment carried out by the NSWC were interpreted in the same fashion.
The elastic properties of hcp-Fe alloys under the conditions of the Earth's inner core
NASA Astrophysics Data System (ADS)
Li, Yunguo; Vočadlo, Lidunka; Brodholt, John P.
2018-07-01
Geophysical and cosmochemical constraints suggest the inner-core is mainly composed of iron with a few percent of light elements. However, despite extensive studies over many years, no single alloying light-element has been found that is able to simultaneously match the observed inner-core density and both seismic velocities. This has motivated a number of suggestions of other mechanism to lower velocities, such as anelasticity or premelting. However, an unexplored possibility is that a combination of two or more light-elements might produce the desired reduction in velocities and densities of the inner core. In order to test this, we use ab initio molecular dynamics calculations to map the elastic property space of hcp-Fe alloyed with S, Si and C at 360 GPa up to the melting temperature. Based on a mixing solid solution model together with direct simulations on the ternaries, we found a number of compositions which are able to match the observed properties of the inner core. This is the first time that the density, VP, Vs and the Poisson's ratio of the inner core have been matched directly with an hcp-Fe alloy.
Lin, Tungyou; Guyader, Carole Le; Dinov, Ivo; Thompson, Paul; Toga, Arthur; Vese, Luminita
2013-01-01
This paper proposes a numerical algorithm for image registration using energy minimization and nonlinear elasticity regularization. Application to the registration of gene expression data to a neuroanatomical mouse atlas in two dimensions is shown. We apply a nonlinear elasticity regularization to allow larger and smoother deformations, and further enforce optimality constraints on the landmark points distance for better feature matching. To overcome the difficulty of minimizing the nonlinear elasticity functional due to the nonlinearity in the derivatives of the displacement vector field, we introduce a matrix variable to approximate the Jacobian matrix and solve for the simplified Euler-Lagrange equations. By comparison with image registration using linear regularization, experimental results show that the proposed nonlinear elasticity model also needs fewer numerical corrections such as regridding steps for binary image registration, it renders better ground truth, and produces larger mutual information; most importantly, the landmark points distance and L2 dissimilarity measure between the gene expression data and corresponding mouse atlas are smaller compared with the registration model with biharmonic regularization. PMID:24273381
Free edge effects in laminated composites
NASA Technical Reports Server (NTRS)
Herakovich, C. T.
1989-01-01
The fundamental mechanics of free-edge effects in laminated fiber-reinforced composites is examined, reviewing the results of recent experimental and analytical investigations. The derivation of the governing equations for the basic problem is outlined, including the equilibrium and mismatch conditions and the elasticity formulation, and experimental data on axial displacement and shear strain in angle-ply laminates are summarized. Numerical predictions of free-edge deformation and interlaminar and through-thickness stress distributions are presented for cross-ply, angle-ply, and quasi-isotropic laminates, and the mechanisms of edge damage and failure in angle-ply laminates are briefly characterized. Extensive diagrams, drawings, graphs, and photographs are provided.
Exploiting graph kernels for high performance biomedical relation extraction.
Panyam, Nagesh C; Verspoor, Karin; Cohn, Trevor; Ramamohanarao, Kotagiri
2018-01-30
Relation extraction from biomedical publications is an important task in the area of semantic mining of text. Kernel methods for supervised relation extraction are often preferred over manual feature engineering methods, when classifying highly ordered structures such as trees and graphs obtained from syntactic parsing of a sentence. Tree kernels such as the Subset Tree Kernel and Partial Tree Kernel have been shown to be effective for classifying constituency parse trees and basic dependency parse graphs of a sentence. Graph kernels such as the All Path Graph kernel (APG) and Approximate Subgraph Matching (ASM) kernel have been shown to be suitable for classifying general graphs with cycles, such as the enhanced dependency parse graph of a sentence. In this work, we present a high performance Chemical-Induced Disease (CID) relation extraction system. We present a comparative study of kernel methods for the CID task and also extend our study to the Protein-Protein Interaction (PPI) extraction task, an important biomedical relation extraction task. We discuss novel modifications to the ASM kernel to boost its performance and a method to apply graph kernels for extracting relations expressed in multiple sentences. Our system for CID relation extraction attains an F-score of 60%, without using external knowledge sources or task specific heuristic or rules. In comparison, the state of the art Chemical-Disease Relation Extraction system achieves an F-score of 56% using an ensemble of multiple machine learning methods, which is then boosted to 61% with a rule based system employing task specific post processing rules. For the CID task, graph kernels outperform tree kernels substantially, and the best performance is obtained with APG kernel that attains an F-score of 60%, followed by the ASM kernel at 57%. The performance difference between the ASM and APG kernels for CID sentence level relation extraction is not significant. In our evaluation of ASM for the PPI task, ASM performed better than APG kernel for the BioInfer dataset, in the Area Under Curve (AUC) measure (74% vs 69%). However, for all the other PPI datasets, namely AIMed, HPRD50, IEPA and LLL, ASM is substantially outperformed by the APG kernel in F-score and AUC measures. We demonstrate a high performance Chemical Induced Disease relation extraction, without employing external knowledge sources or task specific heuristics. Our work shows that graph kernels are effective in extracting relations that are expressed in multiple sentences. We also show that the graph kernels, namely the ASM and APG kernels, substantially outperform the tree kernels. Among the graph kernels, we showed the ASM kernel as effective for biomedical relation extraction, with comparable performance to the APG kernel for datasets such as the CID-sentence level relation extraction and BioInfer in PPI. Overall, the APG kernel is shown to be significantly more accurate than the ASM kernel, achieving better performance on most datasets.
Second order Method for Solving 3D Elasticity Equations with Complex Interfaces
Wang, Bao; Xia, Kelin; Wei, Guo-Wei
2015-01-01
Elastic materials are ubiquitous in nature and indispensable components in man-made devices and equipments. When a device or equipment involves composite or multiple elastic materials, elasticity interface problems come into play. The solution of three dimensional (3D) elasticity interface problems is significantly more difficult than that of elliptic counterparts due to the coupled vector components and cross derivatives in the governing elasticity equation. This work introduces the matched interface and boundary (MIB) method for solving 3D elasticity interface problems. The proposed MIB elasticity interface scheme utilizes fictitious values on irregular grid points near the material interface to replace function values in the discretization so that the elasticity equation can be discretized using the standard finite difference schemes as if there were no material interface. The interface jump conditions are rigorously enforced on the intersecting points between the interface and the mesh lines. Such an enforcement determines the fictitious values. A number of new techniques has been developed to construct efficient MIB elasticity interface schemes for dealing with cross derivative in coupled governing equations. The proposed method is extensively validated over both weak and strong discontinuity of the solution, both piecewise constant and position-dependent material parameters, both smooth and nonsmooth interface geometries, and both small and large contrasts in the Poisson’s ratio and shear modulus across the interface. Numerical experiments indicate that the present MIB method is of second order convergence in both L∞ and L2 error norms for handling arbitrarily complex interfaces, including biomolecular surfaces. To our best knowledge, this is the first elasticity interface method that is able to deliver the second convergence for the molecular surfaces of proteins.. PMID:25914422
Search and Graph Database Technologies for Biomedical Semantic Indexing: Experimental Analysis.
Segura Bedmar, Isabel; Martínez, Paloma; Carruana Martín, Adrián
2017-12-01
Biomedical semantic indexing is a very useful support tool for human curators in their efforts for indexing and cataloging the biomedical literature. The aim of this study was to describe a system to automatically assign Medical Subject Headings (MeSH) to biomedical articles from MEDLINE. Our approach relies on the assumption that similar documents should be classified by similar MeSH terms. Although previous work has already exploited the document similarity by using a k-nearest neighbors algorithm, we represent documents as document vectors by search engine indexing and then compute the similarity between documents using cosine similarity. Once the most similar documents for a given input document are retrieved, we rank their MeSH terms to choose the most suitable set for the input document. To do this, we define a scoring function that takes into account the frequency of the term into the set of retrieved documents and the similarity between the input document and each retrieved document. In addition, we implement guidelines proposed by human curators to annotate MEDLINE articles; in particular, the heuristic that says if 3 MeSH terms are proposed to classify an article and they share the same ancestor, they should be replaced by this ancestor. The representation of the MeSH thesaurus as a graph database allows us to employ graph search algorithms to quickly and easily capture hierarchical relationships such as the lowest common ancestor between terms. Our experiments show promising results with an F1 of 69% on the test dataset. To the best of our knowledge, this is the first work that combines search and graph database technologies for the task of biomedical semantic indexing. Due to its horizontal scalability, ElasticSearch becomes a real solution to index large collections of documents (such as the bibliographic database MEDLINE). Moreover, the use of graph search algorithms for accessing MeSH information could provide a support tool for cataloging MEDLINE abstracts in real time. ©Isabel Segura Bedmar, Paloma Martínez, Adrián Carruana Martín. Originally published in JMIR Medical Informatics (http://medinform.jmir.org), 01.12.2017.
Aishima, Jun; Russel, Daniel S; Guibas, Leonidas J; Adams, Paul D; Brunger, Axel T
2005-10-01
Automatic fitting methods that build molecules into electron-density maps usually fail below 3.5 A resolution. As a first step towards addressing this problem, an algorithm has been developed using an approximation of the medial axis to simplify an electron-density isosurface. This approximation captures the central axis of the isosurface with a graph which is then matched against a graph of the molecular model. One of the first applications of the medial axis to X-ray crystallography is presented here. When applied to ligand fitting, the method performs at least as well as methods based on selecting peaks in electron-density maps. Generalization of the method to recognition of common features across multiple contour levels could lead to powerful automatic fitting methods that perform well even at low resolution.
NASA Astrophysics Data System (ADS)
Sneath, P. H. A.
A BASIC program is presented for significance tests to determine whether a dendrogram is derived from clustering of points that belong to a single multivariate normal distribution. The significance tests are based on statistics of the Kolmogorov—Smirnov type, obtained by comparing the observed cumulative graph of branch levels with a graph for the hypothesis of multivariate normality. The program also permits testing whether the dendrogram could be from a cluster of lower dimensionality due to character correlations. The program makes provision for three similarity coefficients, (1) Euclidean distances, (2) squared Euclidean distances, and (3) Simple Matching Coefficients, and for five cluster methods (1) WPGMA, (2) UPGMA, (3) Single Linkage (or Minimum Spanning Trees), (4) Complete Linkage, and (5) Ward's Increase in Sums of Squares. The program is entitled DENBRAN.
Applications of Graph-Theoretic Tests to Online Change Detection
2014-05-09
NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT ...assessment, crime investigation, and environmental field analysis. Our work offers a new tool for change detection that can be employed in real- time in very...this paper such MSTs and bipartite matchings. Ruth (2009) reports run times for MNBM ensembles created using Derigs’ (1998) algorithm on the order of
2014-01-01
Background The ability of science to produce experimental data has outpaced the ability to effectively visualize and integrate the data into a conceptual framework that can further higher order understanding. Multidimensional and shape-based observational data of regenerative biology presents a particularly daunting challenge in this regard. Large amounts of data are available in regenerative biology, but little progress has been made in understanding how organisms such as planaria robustly achieve and maintain body form. An example of this kind of data can be found in a new repository (PlanformDB) that encodes descriptions of planaria experiments and morphological outcomes using a graph formalism. Results We are developing a model discovery framework that uses a cell-based modeling platform combined with evolutionary search to automatically search for and identify plausible mechanisms for the biological behavior described in PlanformDB. To automate the evolutionary search we developed a way to compare the output of the modeling platform to the morphological descriptions stored in PlanformDB. We used a flexible connected component algorithm to create a graph representation of the virtual worm from the robust, cell-based simulation data. These graphs can then be validated and compared with target data from PlanformDB using the well-known graph-edit distance calculation, which provides a quantitative metric of similarity between graphs. The graph edit distance calculation was integrated into a fitness function that was able to guide automated searches for unbiased models of planarian regeneration. We present a cell-based model of planarian that can regenerate anatomical regions following bisection of the organism, and show that the automated model discovery framework is capable of searching for and finding models of planarian regeneration that match experimental data stored in PlanformDB. Conclusion The work presented here, including our algorithm for converting cell-based models into graphs for comparison with data stored in an external data repository, has made feasible the automated development, training, and validation of computational models using morphology-based data. This work is part of an ongoing project to automate the search process, which will greatly expand our ability to identify, consider, and test biological mechanisms in the field of regenerative biology. PMID:24917489
A Selectivity based approach to Continuous Pattern Detection in Streaming Graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhury, Sutanay; Holder, Larry; Chin, George
2015-02-02
Cyber security is one of the most significant technical challenges in current times. Detecting adversarial activities, prevention of theft of intellectual properties and customer data is a high priority for corporations and government agencies around the world. Cyber defenders need to analyze massive-scale, high-resolution network flows to identify, categorize, and mitigate attacks involving net- works spanning institutional and national boundaries. Many of the cyber attacks can be described as subgraph patterns, with promi- nent examples being insider infiltrations (path queries), denial of service (parallel paths) and malicious spreads (tree queries). This motivates us to explore subgraph matching on streaming graphsmore » in a continuous setting. The novelty of our work lies in using the subgraph distributional statistics collected from the streaming graph to determine the query processing strategy. We introduce a “Lazy Search" algorithm where the search strategy is decided on a vertex-to-vertex basis depending on the likelihood of a match in the vertex neighborhood. We also propose a metric named “Relative Selectivity" that is used to se- lect between different query processing strategies. Our experiments performed on real online news, network traffic stream and a syn- thetic social network benchmark demonstrate 10-100x speedups over selectivity agnostic approaches.« less
Sampling ARG of multiple populations under complex configurations of subdivision and admixture.
Carrieri, Anna Paola; Utro, Filippo; Parida, Laxmi
2016-04-01
Simulating complex evolution scenarios of multiple populations is an important task for answering many basic questions relating to population genomics. Apart from the population samples, the underlying Ancestral Recombinations Graph (ARG) is an additional important means in hypothesis checking and reconstruction studies. Furthermore, complex simulations require a plethora of interdependent parameters making even the scenario-specification highly non-trivial. We present an algorithm SimRA that simulates generic multiple population evolution model with admixture. It is based on random graphs that improve dramatically in time and space requirements of the classical algorithm of single populations.Using the underlying random graphs model, we also derive closed forms of expected values of the ARG characteristics i.e., height of the graph, number of recombinations, number of mutations and population diversity in terms of its defining parameters. This is crucial in aiding the user to specify meaningful parameters for the complex scenario simulations, not through trial-and-error based on raw compute power but intelligent parameter estimation. To the best of our knowledge this is the first time closed form expressions have been computed for the ARG properties. We show that the expected values closely match the empirical values through simulations.Finally, we demonstrate that SimRA produces the ARG in compact forms without compromising any accuracy. We demonstrate the compactness and accuracy through extensive experiments. SimRA (Simulation based on Random graph Algorithms) source, executable, user manual and sample input-output sets are available for downloading at: https://github.com/ComputationalGenomics/SimRA CONTACT: : parida@us.ibm.com Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Sone, Daichi; Matsuda, Hiroshi; Ota, Miho; Maikusa, Norihide; Kimura, Yukio; Sumida, Kaoru; Yokoyama, Kota; Imabayashi, Etsuko; Watanabe, Masako; Watanabe, Yutaka; Okazaki, Mitsutoshi; Sato, Noriko
2016-09-01
Graph theory is an emerging method to investigate brain networks. Altered cerebral blood flow (CBF) has frequently been reported in temporal lobe epilepsy (TLE), but graph theoretical findings of CBF are poorly understood. Here, we explored graph theoretical networks of CBF in TLE using arterial spin labeling imaging. We recruited patients with TLE and unilateral hippocampal sclerosis (HS) (19 patients with left TLE, and 21 with right TLE) and 20 gender- and age-matched healthy control subjects. We obtained all participants' CBF maps using pseudo-continuous arterial spin labeling and analyzed them using the Graph Analysis Toolbox (GAT) software program. As a result, compared to the controls, the patients with left TLE showed a significantly low clustering coefficient (p=0.024), local efficiency (p=0.001), global efficiency (p=0.010), and high transitivity (p=0.015), whereas the patients with right TLE showed significantly high assortativity (p=0.046) and transitivity (p=0.011). The group with right TLE also had high characteristic path length values (p=0.085), low global efficiency (p=0.078), and low resilience to targeted attack (p=0.101) at a trend level. Lower normalized clustering coefficient (p=0.081) in the left TLE and higher normalized characteristic path length (p=0.089) in the right TLE were found also at a trend level. Both the patients with left and right TLE showed significantly decreased clustering in similar areas, i.e., the cingulate gyri, precuneus, and occipital lobe. Our findings revealed differing left-right network metrics in which an inefficient CBF network in left TLE and vulnerability to irritation in right TLE are suggested. The left-right common finding of regional decreased clustering might reflect impaired default-mode networks in TLE. Copyright © 2016 Elsevier Inc. All rights reserved.
Knowledge-based understanding of aerial surveillance video
NASA Astrophysics Data System (ADS)
Cheng, Hui; Butler, Darren
2006-05-01
Aerial surveillance has long been used by the military to locate, monitor and track the enemy. Recently, its scope has expanded to include law enforcement activities, disaster management and commercial applications. With the ever-growing amount of aerial surveillance video acquired daily, there is an urgent need for extracting actionable intelligence in a timely manner. Furthermore, to support high-level video understanding, this analysis needs to go beyond current approaches and consider the relationships, motivations and intentions of the objects in the scene. In this paper we propose a system for interpreting aerial surveillance videos that automatically generates a succinct but meaningful description of the observed regions, objects and events. For a given video, the semantics of important regions and objects, and the relationships between them, are summarised into a semantic concept graph. From this, a textual description is derived that provides new search and indexing options for aerial video and enables the fusion of aerial video with other information modalities, such as human intelligence, reports and signal intelligence. Using a Mixture-of-Experts video segmentation algorithm an aerial video is first decomposed into regions and objects with predefined semantic meanings. The objects are then tracked and coerced into a semantic concept graph and the graph is summarized spatially, temporally and semantically using ontology guided sub-graph matching and re-writing. The system exploits domain specific knowledge and uses a reasoning engine to verify and correct the classes, identities and semantic relationships between the objects. This approach is advantageous because misclassifications lead to knowledge contradictions and hence they can be easily detected and intelligently corrected. In addition, the graph representation highlights events and anomalies that a low-level analysis would overlook.
Noncontiguous atom matching structural similarity function.
Teixeira, Ana L; Falcao, Andre O
2013-10-28
Measuring similarity between molecules is a fundamental problem in cheminformatics. Given that similar molecules tend to have similar physical, chemical, and biological properties, the notion of molecular similarity plays an important role in the exploration of molecular data sets, query-retrieval in molecular databases, and in structure-property/activity modeling. Various methods to define structural similarity between molecules are available in the literature, but so far none has been used with consistent and reliable results for all situations. We propose a new similarity method based on atom alignment for the analysis of structural similarity between molecules. This method is based on the comparison of the bonding profiles of atoms on comparable molecules, including features that are seldom found in other structural or graph matching approaches like chirality or double bond stereoisomerism. The similarity measure is then defined on the annotated molecular graph, based on an iterative directed graph similarity procedure and optimal atom alignment between atoms using a pairwise matching algorithm. With the proposed approach the similarities detected are more intuitively understood because similar atoms in the molecules are explicitly shown. This noncontiguous atom matching structural similarity method (NAMS) was tested and compared with one of the most widely used similarity methods (fingerprint-based similarity) using three difficult data sets with different characteristics. Despite having a higher computational cost, the method performed well being able to distinguish either different or very similar hydrocarbons that were indistinguishable using a fingerprint-based approach. NAMS also verified the similarity principle using a data set of structurally similar steroids with differences in the binding affinity to the corticosteroid binding globulin receptor by showing that pairs of steroids with a high degree of similarity (>80%) tend to have smaller differences in the absolute value of binding activity. Using a highly diverse set of compounds with information about the monoamine oxidase inhibition level, the method was also able to recover a significantly higher average fraction of active compounds when the seed is active for different cutoff threshold values of similarity. Particularly, for the cutoff threshold values of 86%, 93%, and 96.5%, NAMS was able to recover a fraction of actives of 0.57, 0.63, and 0.83, respectively, while the fingerprint-based approach was able to recover a fraction of actives of 0.41, 0.40, and 0.39, respectively. NAMS is made available freely for the whole community in a simple Web based tool as well as the Python source code at http://nams.lasige.di.fc.ul.pt/.
Krissinel, E; Henrick, K
2004-12-01
The present paper describes the SSM algorithm of protein structure comparison in three dimensions, which includes an original procedure of matching graphs built on the protein's secondary-structure elements, followed by an iterative three-dimensional alignment of protein backbone Calpha atoms. The SSM results are compared with those obtained from other protein comparison servers, and the advantages and disadvantages of different scores that are used for structure recognition are discussed. A new score, balancing the r.m.s.d. and alignment length Nalign, is proposed. It is found that different servers agree reasonably well on the new score, while showing considerable differences in r.m.s.d. and Nalign.
NASA Astrophysics Data System (ADS)
Han, Byeongho; Seol, Soon Jee; Byun, Joongmoo
2012-04-01
To simulate wave propagation in a tilted transversely isotropic (TTI) medium with a tilting symmetry-axis of anisotropy, we develop a 2D elastic forward modelling algorithm. In this algorithm, we use the staggered-grid finite-difference method which has fourth-order accuracy in space and second-order accuracy in time. Since velocity-stress formulations are defined for staggered grids, we include auxiliary grid points in the z-direction to meet the free surface boundary conditions for shear stress. Through comparisons of displacements obtained from our algorithm, not only with analytical solutions but also with finite element solutions, we are able to validate that the free surface conditions operate appropriately and elastic waves propagate correctly. In order to handle the artificial boundary reflections efficiently, we also implement convolutional perfectly matched layer (CPML) absorbing boundaries in our algorithm. The CPML sufficiently attenuates energy at the grazing incidence by modifying the damping profile of the PML boundary. Numerical experiments indicate that the algorithm accurately expresses elastic wave propagation in the TTI medium. At the free surface, the numerical results show good agreement with analytical solutions not only for body waves but also for the Rayleigh wave which has strong amplitude along the surface. In addition, we demonstrate the efficiency of CPML for a homogeneous TI medium and a dipping layered model. Only using 10 grid points to the CPML regions, the artificial reflections are successfully suppressed and the energy of the boundary reflection back into the effective modelling area is significantly decayed.
Learning context-sensitive shape similarity by graph transduction.
Bai, Xiang; Yang, Xingwei; Latecki, Longin Jan; Liu, Wenyu; Tu, Zhuowen
2010-05-01
Shape similarity and shape retrieval are very important topics in computer vision. The recent progress in this domain has been mostly driven by designing smart shape descriptors for providing better similarity measure between pairs of shapes. In this paper, we provide a new perspective to this problem by considering the existing shapes as a group, and study their similarity measures to the query shape in a graph structure. Our method is general and can be built on top of any existing shape similarity measure. For a given similarity measure, a new similarity is learned through graph transduction. The new similarity is learned iteratively so that the neighbors of a given shape influence its final similarity to the query. The basic idea here is related to PageRank ranking, which forms a foundation of Google Web search. The presented experimental results demonstrate that the proposed approach yields significant improvements over the state-of-art shape matching algorithms. We obtained a retrieval rate of 91.61 percent on the MPEG-7 data set, which is the highest ever reported in the literature. Moreover, the learned similarity by the proposed method also achieves promising improvements on both shape classification and shape clustering.
Applying graphs and complex networks to football metric interpretation.
Arriaza-Ardiles, E; Martín-González, J M; Zuniga, M D; Sánchez-Flores, J; de Saa, Y; García-Manso, J M
2018-02-01
This work presents a methodology for analysing the interactions between players in a football team, from the point of view of graph theory and complex networks. We model the complex network of passing interactions between players of a same team in 32 official matches of the Liga de Fútbol Profesional (Spain), using a passing/reception graph. This methodology allows us to understand the play structure of the team, by analysing the offensive phases of game-play. We utilise two different strategies for characterising the contribution of the players to the team: the clustering coefficient, and centrality metrics (closeness and betweenness). We show the application of this methodology by analyzing the performance of a professional Spanish team according to these metrics and the distribution of passing/reception in the field. Keeping in mind the dynamic nature of collective sports, in the future we will incorporate metrics which allows us to analyse the performance of the team also according to the circumstances of game-play and to different contextual variables such as, the utilisation of the field space, the time, and the ball, according to specific tactical situations. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandal, A.; Gupta, Y. M.
To understand the elastic-plastic deformation response of shock-compressed molybdenum (Mo) – a body-centered cubic (BCC) metal, single crystal samples were shocked along the [100] crystallographic orientation to an elastic impact stress of 12.5 GPa. Elastic-plastic wave profiles, measured at different propagation distances ranging between ~0.23 to 2.31 mm using laser interferometry, showed a time-dependent material response. Within experimental scatter, the measured elastic wave amplitudes were nearly constant over the propagation distances examined. These data point to a large and rapid elastic wave attenuation near the impact surface, before reaching a threshold value (elastic limit) of ~3.6 GPa. Numerical simulations ofmore » the measured wave profiles, performed using a dislocation-based continuum model, suggested that {110}<111> and/or {112}<111> slip systems are operative under shock loading. In contrast to shocked metal single crystals with close-packed structures, the measured wave profiles in Mo single crystals could not be explained in terms of dislocation multiplication alone. A dislocation generation mechanism, operative for shear stresses larger than that at the elastic limit, was required to model the rapid elastic wave attenuation and to provide a good overall match to the measured wave profiles. However, the physical basis for this mechanism was not established for the high-purity single crystal samples used in this study. As a result, the numerical simulations also suggested that Mo single crystals do not work harden significantly under shock loading in contrast to the behavior observed under quasi-static loading.« less
Effects of replacing free weights with elastic band resistance in squats on trunk muscle activation.
Saeterbakken, Atle H; Andersen, Vidar; Kolnes, Maria K; Fimland, Marius S
2014-11-01
The purpose of this study was to assess the effects of adding elastic bands to free-weight squats on the neuromuscular activation of core muscles. Twenty-five resistance trained women with 4.6 ± 2.1 years of resistance training experience participated in the study. In randomized order, the participants performed 6 repetition maximum in free-weight squats, with and without elastic bands (i.e., matched relative intensity between exercises). During free-weight squats with elastic bands, some of the free weights were replaced with 2 elastic bands attached to the lowest part of the squat rack. Surface electromyography (EMG) activity was measured from the erector spinae, external oblique, and rectus abdominis, whereas a linear encoder measured the vertical displacement. The EMG activities were compared between the 2 lifting modalities for the whole repetition and separately for the eccentric, concentric, and upper and lower eccentric and concentric phases. In the upper (greatest stretch of the elastic band), middle, and lower positions in squats with elastic bands, the resistance values were approximately 117, 105, and 93% of the free weight-only trial. Similar EMG activities were observed for the 2 lifting modalities for the erector spinae (p = 0.112-0.782), external oblique (p = 0.225-0.977), and rectus abdominis (p = 0.315-0.729) in all analyzed phases. In conclusion, there were no effects on the muscle activity of trunk muscles of substituting some resistance from free weights with elastic bands in the free-weight squat.
Elastic-plastic deformation of molybdenum single crystals shocked along [100
Mandal, A.; Gupta, Y. M.
2017-01-24
To understand the elastic-plastic deformation response of shock-compressed molybdenum (Mo) – a body-centered cubic (BCC) metal, single crystal samples were shocked along the [100] crystallographic orientation to an elastic impact stress of 12.5 GPa. Elastic-plastic wave profiles, measured at different propagation distances ranging between ~0.23 to 2.31 mm using laser interferometry, showed a time-dependent material response. Within experimental scatter, the measured elastic wave amplitudes were nearly constant over the propagation distances examined. These data point to a large and rapid elastic wave attenuation near the impact surface, before reaching a threshold value (elastic limit) of ~3.6 GPa. Numerical simulations ofmore » the measured wave profiles, performed using a dislocation-based continuum model, suggested that {110}<111> and/or {112}<111> slip systems are operative under shock loading. In contrast to shocked metal single crystals with close-packed structures, the measured wave profiles in Mo single crystals could not be explained in terms of dislocation multiplication alone. A dislocation generation mechanism, operative for shear stresses larger than that at the elastic limit, was required to model the rapid elastic wave attenuation and to provide a good overall match to the measured wave profiles. However, the physical basis for this mechanism was not established for the high-purity single crystal samples used in this study. As a result, the numerical simulations also suggested that Mo single crystals do not work harden significantly under shock loading in contrast to the behavior observed under quasi-static loading.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klima, Matej; Kucharik, MIlan; Shashkov, Mikhail Jurievich
We analyze several new and existing approaches for limiting tensor quantities in the context of deviatoric stress remapping in an ALE numerical simulation of elastic flow. Remapping and limiting of the tensor component-by-component is shown to violate radial symmetry of derived variables such as elastic energy or force. Therefore, we have extended the symmetry-preserving Vector Image Polygon algorithm, originally designed for limiting vector variables. This limiter constrains the vector (in our case a vector of independent tensor components) within the convex hull formed by the vectors from surrounding cells – an equivalent of the discrete maximum principle in scalar variables.more » We compare this method with a limiter designed specifically for deviatoric stress limiting which aims to constrain the J 2 invariant that is proportional to the specific elastic energy and scale the tensor accordingly. We also propose a method which involves remapping and limiting the J 2 invariant independently using known scalar techniques. The deviatoric stress tensor is then scaled to match this remapped invariant, which guarantees conservation in terms of elastic energy.« less
Prediction of Mechanical Properties of Polymers With Various Force Fields
NASA Technical Reports Server (NTRS)
Odegard, Gregory M.; Clancy, Thomas C.; Gates, Thomas S.
2005-01-01
The effect of force field type on the predicted elastic properties of a polyimide is examined using a multiscale modeling technique. Molecular Dynamics simulations are used to predict the atomic structure and elastic properties of the polymer by subjecting a representative volume element of the material to bulk and shear finite deformations. The elastic properties of the polyimide are determined using three force fields: AMBER, OPLS-AA, and MM3. The predicted values of Young s modulus and shear modulus of the polyimide are compared with experimental values. The results indicate that the mechanical properties of the polyimide predicted with the OPLS-AA force field most closely matched those from experiment. The results also indicate that while the complexity of the force field does not have a significant effect on the accuracy of predicted properties, small differences in the force constants and the functional form of individual terms in the force fields determine the accuracy of the force field in predicting the elastic properties of the polyimide.
Unifying model for random matrix theory in arbitrary space dimensions
NASA Astrophysics Data System (ADS)
Cicuta, Giovanni M.; Krausser, Johannes; Milkus, Rico; Zaccone, Alessio
2018-03-01
A sparse random block matrix model suggested by the Hessian matrix used in the study of elastic vibrational modes of amorphous solids is presented and analyzed. By evaluating some moments, benchmarked against numerics, differences in the eigenvalue spectrum of this model in different limits of space dimension d , and for arbitrary values of the lattice coordination number Z , are shown and discussed. As a function of these two parameters (and their ratio Z /d ), the most studied models in random matrix theory (Erdos-Renyi graphs, effective medium, and replicas) can be reproduced in the various limits of block dimensionality d . Remarkably, the Marchenko-Pastur spectral density (which is recovered by replica calculations for the Laplacian matrix) is reproduced exactly in the limit of infinite size of the blocks, or d →∞ , which clarifies the physical meaning of space dimension in these models. We feel that the approximate results for d =3 provided by our method may have many potential applications in the future, from the vibrational spectrum of glasses and elastic networks to wave localization, disordered conductors, random resistor networks, and random walks.
Comparing Phylogenetic Trees by Matching Nodes Using the Transfer Distance Between Partitions
Giaro, Krzysztof
2017-01-01
Abstract Ability to quantify dissimilarity of different phylogenetic trees describing the relationship between the same group of taxa is required in various types of phylogenetic studies. For example, such metrics are used to assess the quality of phylogeny construction methods, to define optimization criteria in supertree building algorithms, or to find horizontal gene transfer (HGT) events. Among the set of metrics described so far in the literature, the most commonly used seems to be the Robinson–Foulds distance. In this article, we define a new metric for rooted trees—the Matching Pair (MP) distance. The MP metric uses the concept of the minimum-weight perfect matching in a complete bipartite graph constructed from partitions of all pairs of leaves of the compared phylogenetic trees. We analyze the properties of the MP metric and present computational experiments showing its potential applicability in tasks related to finding the HGT events. PMID:28177699
Comparing Phylogenetic Trees by Matching Nodes Using the Transfer Distance Between Partitions.
Bogdanowicz, Damian; Giaro, Krzysztof
2017-05-01
Ability to quantify dissimilarity of different phylogenetic trees describing the relationship between the same group of taxa is required in various types of phylogenetic studies. For example, such metrics are used to assess the quality of phylogeny construction methods, to define optimization criteria in supertree building algorithms, or to find horizontal gene transfer (HGT) events. Among the set of metrics described so far in the literature, the most commonly used seems to be the Robinson-Foulds distance. In this article, we define a new metric for rooted trees-the Matching Pair (MP) distance. The MP metric uses the concept of the minimum-weight perfect matching in a complete bipartite graph constructed from partitions of all pairs of leaves of the compared phylogenetic trees. We analyze the properties of the MP metric and present computational experiments showing its potential applicability in tasks related to finding the HGT events.
Acoustic and elastic waves in metamaterials for underwater applications
NASA Astrophysics Data System (ADS)
Titovich, Alexey S.
Elastic effects in acoustic metamaterials are investigated. Water-based periodic arrays of elastic scatterers, sonic crystals, suffer from low transmission due to the impedance and index mismatch of typical engineering materials with water. A new type of acoustic metamaterial element is proposed that can be tuned to match the acoustic properties of water in the quasi-static regime. The element comprises a hollow elastic cylindrical shell fitted with an optimized internal substructure consisting of a central mass supported by an axisymmetric distribution of elastic stiffeners, which dictate the shell's effective bulk modulus and density. The derived closed form scattering solution for this system shows that the subsonic flexural waves excited in the shell by the attachment of stiffeners are suppressed by including a sufficiently large number of such stiffeners. As an example of refraction-based wave steering, a cylindrical-to-plane wave lens is designed by varying the bulk modulus in the array according to the conformal mapping of a unit circle to a square. Elastic shells provide rich scattering properties, mainly due to their ability to support highly dispersive flexural waves. Analysis of flexural-borne waves on a pair of shells yields an analytical expression for the width of a flexural resonance, which is then used with the theory of multiple scattering to accurately predict the splitting of the resonance frequency. This analysis leads to the discovery of the acoustic Poisson-like effect in a periodic wave medium. This effect redirects an incident acoustic wave by 90° in an otherwise acoustically transparent sonic crystal. An unresponsive "deaf" antisymmetric mode locked to band gap boundaries is unlocked by matching Bragg scattering with a quadrupole flexural resonance of the shell. The dynamic effect causes normal unidirectional wave motion to strongly couple to perpendicular motion, analogous to the quasi-static Poisson effect in solids. The Poisson-like effect is demonstrated using the first flexural resonance of an acrylic shell. This represent a new type of material which cannot be accurately described as an effective acoustic medium. The study concludes with an analysis of a non-zero shear modulus in a pentamode cloak via the two-scale method with the shear modulus as the perturbation parameter.
Accelerating the Mining of Influential Nodes in Complex Networks through Community Detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halappanavar, Mahantesh; Sathanur, Arun V.; Nandi, Apurba
Computing the set of influential nodes with a given size to ensure maximal spread of influence on a complex network is a challenging problem impacting multiple applications. A rigorous approach to influence maximization involves utilization of optimization routines that comes with a high computational cost. In this work, we propose to exploit the existence of communities in complex networks to accelerate the mining of influential seeds. We provide intuitive reasoning to explain why our approach should be able to provide speedups without significantly degrading the extent of the spread of influence when compared to the case of influence maximization withoutmore » using the community information. Additionally, we have parallelized the complete workflow by leveraging an existing parallel implementation of the Louvain community detection algorithm. We then conduct a series of experiments on a dataset with three representative graphs to first verify our implementation and then demonstrate the speedups. Our method achieves speedups ranging from 3x - 28x for graphs with small number of communities while nearly matching or even exceeding the activation performance on the entire graph. Complexity analysis reveals that dramatic speedups are possible for larger graphs that contain a correspondingly larger number of communities. In addition to the speedups obtained from the utilization of the community structure, scalability results show up to 6.3x speedup on 20 cores relative to the baseline run on 2 cores. Finally, current limitations of the approach are outlined along with the planned next steps.« less
On the degree conjecture for separability of multipartite quantum states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassan, Ali Saif M.; Joag, Pramod S.
2008-01-15
We settle the so-called degree conjecture for the separability of multipartite quantum states, which are normalized graph Laplacians, first given by Braunstein et al. [Phys. Rev. A 73, 012320 (2006)]. The conjecture states that a multipartite quantum state is separable if and only if the degree matrix of the graph associated with the state is equal to the degree matrix of the partial transpose of this graph. We call this statement to be the strong form of the conjecture. In its weak version, the conjecture requires only the necessity, that is, if the state is separable, the corresponding degree matricesmore » match. We prove the strong form of the conjecture for pure multipartite quantum states using the modified tensor product of graphs defined by Hassan and Joag [J. Phys. A 40, 10251 (2007)], as both necessary and sufficient condition for separability. Based on this proof, we give a polynomial-time algorithm for completely factorizing any pure multipartite quantum state. By polynomial-time algorithm, we mean that the execution time of this algorithm increases as a polynomial in m, where m is the number of parts of the quantum system. We give a counterexample to show that the conjecture fails, in general, even in its weak form, for multipartite mixed states. Finally, we prove this conjecture, in its weak form, for a class of multipartite mixed states, giving only a necessary condition for separability.« less
PERFECTLY MATCHED LAYERS FOR ELASTIC WAVES IN CYLINDRICAL AND SPHERICAL COORDINATES. (R825225)
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Robust estimation of carotid artery wall motion using the elasticity-based state-space approach.
Gao, Zhifan; Xiong, Huahua; Liu, Xin; Zhang, Heye; Ghista, Dhanjoo; Wu, Wanqing; Li, Shuo
2017-04-01
The dynamics of the carotid artery wall has been recognized as a valuable indicator to evaluate the status of atherosclerotic disease in the preclinical stage. However, it is still a challenge to accurately measure this dynamics from ultrasound images. This paper aims at developing an elasticity-based state-space approach for accurately measuring the two-dimensional motion of the carotid artery wall from the ultrasound imaging sequences. In our approach, we have employed a linear elasticity model of the carotid artery wall, and converted it into the state space equation. Then, the two-dimensional motion of carotid artery wall is computed by solving this state-space approach using the H ∞ filter and the block matching method. In addition, a parameter training strategy is proposed in this study for dealing with the parameter initialization problem. In our experiment, we have also developed an evaluation function to measure the tracking accuracy of the motion of the carotid artery wall by considering the influence of the sizes of the two blocks (acquired by our approach and the manual tracing) containing the same carotid wall tissue and their overlapping degree. Then, we have compared the performance of our approach with the manual traced results drawn by three medical physicians on 37 healthy subjects and 103 unhealthy subjects. The results have showed that our approach was highly correlated (Pearson's correlation coefficient equals 0.9897 for the radial motion and 0.9536 for the longitudinal motion), and agreed well (width the 95% confidence interval is 89.62 µm for the radial motion and 387.26 µm for the longitudinal motion) with the manual tracing method. We also compared our approach to the three kinds of previous methods, including conventional block matching methods, Kalman-based block matching methods and the optical flow. Altogether, we have been able to successfully demonstrate the efficacy of our elasticity-model based state-space approach (EBS) for more accurate tracking of the 2-dimensional motion of the carotid artery wall, towards more effective assessment of the status of atherosclerotic disease in the preclinical stage. Copyright © 2017 Elsevier B.V. All rights reserved.
Multi-Disciplinary Techniques for Understanding Time-Varying Space-Based Imagery.
1985-05-10
problem, and I V WY" 3 discuss the impgrtage of this work to Air Force technology and to related Air Force programs. Section 1.5 provides a summary of...development of new algorithms and their realization in a hybrid optical/digital architecture. However, devices and architectures being developed in related ...and relate these representntions to object and surface contour properties of the scene. The techniques studied included Probabilistic Graph Matching
Marathon: An Open Source Software Library for the Analysis of Markov-Chain Monte Carlo Algorithms
Rechner, Steffen; Berger, Annabell
2016-01-01
We present the software library marathon, which is designed to support the analysis of sampling algorithms that are based on the Markov-Chain Monte Carlo principle. The main application of this library is the computation of properties of so-called state graphs, which represent the structure of Markov chains. We demonstrate applications and the usefulness of marathon by investigating the quality of several bounding methods on four well-known Markov chains for sampling perfect matchings and bipartite graphs. In a set of experiments, we compute the total mixing time and several of its bounds for a large number of input instances. We find that the upper bound gained by the famous canonical path method is often several magnitudes larger than the total mixing time and deteriorates with growing input size. In contrast, the spectral bound is found to be a precise approximation of the total mixing time. PMID:26824442
Method and tool for network vulnerability analysis
Swiler, Laura Painton [Albuquerque, NM; Phillips, Cynthia A [Albuquerque, NM
2006-03-14
A computer system analysis tool and method that will allow for qualitative and quantitative assessment of security attributes and vulnerabilities in systems including computer networks. The invention is based on generation of attack graphs wherein each node represents a possible attack state and each edge represents a change in state caused by a single action taken by an attacker or unwitting assistant. Edges are weighted using metrics such as attacker effort, likelihood of attack success, or time to succeed. Generation of an attack graph is accomplished by matching information about attack requirements (specified in "attack templates") to information about computer system configuration (contained in a configuration file that can be updated to reflect system changes occurring during the course of an attack) and assumed attacker capabilities (reflected in "attacker profiles"). High risk attack paths, which correspond to those considered suited to application of attack countermeasures given limited resources for applying countermeasures, are identified by finding "epsilon optimal paths."
Self-Paced Physics, Segment 18.
ERIC Educational Resources Information Center
New York Inst. of Tech., Old Westbury.
Eighty-seven problems are included in this volume which is arranged to match study segments 2 through 14. The subject matter is related to projectiles, simple harmonic motion, kinetic friction, multiple pulley arrangements, motion on inclined planes, circular motion, potential energy, kinetic energy, center of mass, Newton's laws, elastic and…
3D Discrete element approach to the problem on abutment pressure in a gently dipping coal seam
NASA Astrophysics Data System (ADS)
Klishin, S. V.; Revuzhenko, A. F.
2017-09-01
Using the discrete element method, the authors have carried out 3D implementation of the problem on strength loss in surrounding rock mass in the vicinity of a production heading and on abutment pressure in a gently dripping coal seam. The calculation of forces at the contacts between particles accounts for friction, rolling resistance and viscosity. Between discrete particles modeling coal seam, surrounding rock mass and broken rocks, an elastic connecting element is introduced to allow simulating coherent materials. The paper presents the kinematic patterns of rock mass deformation, stresses in particles and the graph of the abutment pressure behavior in the coal seam.
Charge-regularized swelling kinetics of polyelectrolyte gels: Elasticity and diffusion
NASA Astrophysics Data System (ADS)
Sen, Swati; Kundagrami, Arindam
2017-11-01
We apply a recently developed method [S. Sen and A. Kundagrami, J. Chem. Phys. 143, 224904 (2015)], using a phenomenological expression of osmotic stress, as a function of polymer and charge densities, hydrophobicity, and network elasticity for the swelling of spherical polyelectrolyte (PE) gels with fixed and variable charges in a salt-free solvent. This expression of stress is used in the equation of motion of swelling kinetics of spherical PE gels to numerically calculate the spatial profiles for the polymer and free ion densities at different time steps and the time evolution of the size of the gel. We compare the profiles of the same variables obtained from the classical linear theory of elasticity and quantitatively estimate the bulk modulus of the PE gel. Further, we obtain an analytical expression of the elastic modulus from the linearized expression of stress (in the small deformation limit). We find that the estimated bulk modulus of the PE gel decreases with the increase of its effective charge for a fixed degree of deformation during swelling. Finally, we match the gel-front locations with the experimental data, taken from the measurements of charged reversible addition-fragmentation chain transfer gels to show an increase in gel-size with charge and also match the same for PNIPAM (uncharged) and imidazolium-based (charged) minigels, which specifically confirms the decrease of the gel modulus value with the increase of the charge. The agreement between experimental and theoretical results confirms general diffusive behaviour for swelling of PE gels with a decreasing bulk modulus with increasing degree of ionization (charge). The new formalism captures large deformations as well with a significant variation of charge content of the gel. It is found that PE gels with large deformation but same initial size swell faster with a higher charge.
Optimal development of matrix elasticity
Majkut, Stephanie; Idema, Timon; Swift, Joe; Krieger, Christine; Liu, Andrea; Discher, Dennis E.
2014-01-01
Summary In development and differentiation, morphological changes often accompany mechanical changes [1], but it is unclear if or when cells in embryos sense tissue elasticity. The earliest embryo is uniformly pliable while adult tissues vary widely in mechanics from soft brain and stiff heart to rigid bone [2], but the sensitivity of cells to microenvironment elasticity is debated [3]. Regenerative cardiology provides strong motivation because rigid post-infarct regions limit pumping by the adult heart [4]. Here we focus on embryonic heart and isolated cardiomyocytes, which both beat spontaneously. Tissue elasticity, Et, increases daily for heart to 1-2 kiloPascal by embryonic day-4 (E4), and although this is ∼10-fold softer than adult heart, the beating contractions of E4-cardiomyocytes prove optimal at ∼Et,E4 both in vivo and in vitro. Proteomics reveals daily increases in a small subset of proteins, namely collagen plus cardiac-specific excitation-contraction proteins. Rapid softening of the heart's matrix with collagenase or stiffening it with enzymatic crosslinking suppresses beating. Sparsely cultured E4-cardiomyocytes on collagen-coated gels likewise show maximal contraction on matrices with native E4 stiffness, highlighting cell-intrinsic mechanosensitivity. While an optimal elasticity for striation proves consistent with the mathematics of force-driven sarcomere registration, contraction wave-speed is linear in Et as theorized for Excitation-Contraction Coupled to Matrix Elasticity. Mechanosensitive stem cell cardiogenesis helps generalize tissue results, which demonstrate how myosin-II organization and contractile function is optimally matched to the load presented by matrix elasticity. PMID:24268417
SDIA: A dynamic situation driven information fusion algorithm for cloud environment
NASA Astrophysics Data System (ADS)
Guo, Shuhang; Wang, Tong; Wang, Jian
2017-09-01
Information fusion is an important issue in information integration domain. In order to form an extensive information fusion technology under the complex and diverse situations, a new information fusion algorithm is proposed. Firstly, a fuzzy evaluation model of tag utility was proposed that can be used to count the tag entropy. Secondly, a ubiquitous situation tag tree model is proposed to define multidimensional structure of information situation. Thirdly, the similarity matching between the situation models is classified into three types: the tree inclusion, the tree embedding, and the tree compatibility. Next, in order to reduce the time complexity of the tree compatible matching algorithm, a fast and ordered tree matching algorithm is proposed based on the node entropy, which is used to support the information fusion by ubiquitous situation. Since the algorithm revolve from the graph theory of disordered tree matching algorithm, it can improve the information fusion present recall rate and precision rate in the situation. The information fusion algorithm is compared with the star and the random tree matching algorithm, and the difference between the three algorithms is analyzed in the view of isomorphism, which proves the innovation and applicability of the algorithm.
A Perfectly Matched Layer for Peridynamics in Two Dimensions
2013-04-01
KIM Seoul National University, Republic of Korea Z. MROZ Academy of Science, Poland D. PAMPLONA Universidade Católica do Rio de Janeiro , Brazil M. B...applications, Prentice-Hall, Upper Saddle River , NJ, 1996. [Silling 2000] S. A. Silling, “Reformulation of elasticity theory for discontinuities and long
Roosevelt Hot Springs, Utah FORGE Stress Logging Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLennan, John
This spreadsheet consist of data and graphs from deep well 58-32 stress testing from 6900 - 7500 ft depth. Measured stress data were used to correct logging predictions of in situ stress. Stress plots shows pore pressure (measured during the injection testing), the total vertical in situ stress (determined from the density logging) and the total maximum and minimum horizontal stresses. The horizontal stresses were determined from the DSI (Dipole Sonic Imager) and corrected to match the direct measurements.
Optimizing graph-based patterns to extract biomedical events from the literature
2015-01-01
In BioNLP-ST 2013 We participated in the BioNLP 2013 shared tasks on event extraction. Our extraction method is based on the search for an approximate subgraph isomorphism between key context dependencies of events and graphs of input sentences. Our system was able to address both the GENIA (GE) task focusing on 13 molecular biology related event types and the Cancer Genetics (CG) task targeting a challenging group of 40 cancer biology related event types with varying arguments concerning 18 kinds of biological entities. In addition to adapting our system to the two tasks, we also attempted to integrate semantics into the graph matching scheme using a distributional similarity model for more events, and evaluated the event extraction impact of using paths of all possible lengths as key context dependencies beyond using only the shortest paths in our system. We achieved a 46.38% F-score in the CG task (ranking 3rd) and a 48.93% F-score in the GE task (ranking 4th). After BioNLP-ST 2013 We explored three ways to further extend our event extraction system in our previously published work: (1) We allow non-essential nodes to be skipped, and incorporated a node skipping penalty into the subgraph distance function of our approximate subgraph matching algorithm. (2) Instead of assigning a unified subgraph distance threshold to all patterns of an event type, we learned a customized threshold for each pattern. (3) We implemented the well-known Empirical Risk Minimization (ERM) principle to optimize the event pattern set by balancing prediction errors on training data against regularization. When evaluated on the official GE task test data, these extensions help to improve the extraction precision from 62% to 65%. However, the overall F-score stays equivalent to the previous performance due to a 1% drop in recall. PMID:26551594
Ontology Design of Influential People Identification Using Centrality
NASA Astrophysics Data System (ADS)
Maulana Awangga, Rolly; Yusril, Muhammad; Setyawan, Helmi
2018-04-01
Identifying influential people as a node in a graph theory commonly calculated by social network analysis. The social network data has the user as node and edge as relation forming a friend relation graph. This research is conducting different meaning of every nodes relation in the social network. Ontology was perfect match science to describe the social network data as conceptual and domain. Ontology gives essential relationship in a social network more than a current graph. Ontology proposed as a standard for knowledge representation for the semantic web by World Wide Web Consortium. The formal data representation use Resource Description Framework (RDF) and Web Ontology Language (OWL) which is strategic for Open Knowledge-Based website data. Ontology used in the semantic description for a relationship in the social network, it is open to developing semantic based relationship ontology by adding and modifying various and different relationship to have influential people as a conclusion. This research proposes a model using OWL and RDF for influential people identification in the social network. The study use degree centrality, between ness centrality, and closeness centrality measurement for data validation. As a conclusion, influential people identification in Facebook can use proposed Ontology model in the Group, Photos, Photo Tag, Friends, Events and Works data.
A new model to simulate the elastic properties of mineralized collagen fibril.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, F.; Stock, S.R.; Haeffner, D.R.
Bone, because of its hierarchical composite structure, exhibits an excellent combination of stiffness and toughness, which is due substantially to the structural order and deformation at the smaller length scales. Here, we focus on the mineralized collagen fibril, consisting of hydroxyapatite plates with nanometric dimensions aligned within a protein matrix, and emphasize the relationship between the structure and elastic properties of a mineralized collagen fibril. We create two- and three-dimensional representative volume elements to represent the structure of the fibril and evaluate the importance of the parameters defining its structure and properties of the constituent mineral and collagen phase. Elasticmore » stiffnesses are calculated by the finite element method and compared with experimental data obtained by synchrotron X-ray diffraction. The computational results match the experimental data well, and provide insight into the role of the phases and morphology on the elastic deformation characteristics. Also, the effects of water, imperfections in the mineral phase and mineral content outside the mineralized collagen fibril upon its elastic properties are discussed.« less
A new model to simulate the elastic properties of mineralized collagen fibril
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuan, F.; Stock, S.R.; Haeffner, D.R.
Bone, because of its hierarchical composite structure, exhibits an excellent combination of stiffness and toughness, which is due substantially to the structural order and deformation at the smaller length scales. Here, we focus on the mineralized collagen fibril, consisting of hydroxyapatite plates with nanometric dimensions aligned within a protein matrix, and emphasize the relationship between the structure and elastic properties of a mineralized collagen fibril. We create two- and three-dimensional representative volume elements to represent the structure of the fibril and evaluate the importance of the parameters defining its structure and properties of the constituent mineral and collagen phase. Elasticmore » stiffnesses are calculated by the finite element method and compared with experimental data obtained by synchrotron X-ray diffraction. The computational results match the experimental data well, and provide insight into the role of the phases and morphology on the elastic deformation characteristics. Also, the effects of water, imperfections in the mineral phase and mineral content outside the mineralized collagen fibril upon its elastic properties are discussed.« less
Flexible multibody simulation of automotive systems with non-modal model reduction techniques
NASA Astrophysics Data System (ADS)
Shiiba, Taichi; Fehr, Jörg; Eberhard, Peter
2012-12-01
The stiffness of the body structure of an automobile has a strong relationship with its noise, vibration, and harshness (NVH) characteristics. In this paper, the effect of the stiffness of the body structure upon ride quality is discussed with flexible multibody dynamics. In flexible multibody simulation, the local elastic deformation of the vehicle has been described traditionally with modal shape functions. Recently, linear model reduction techniques from system dynamics and mathematics came into the focus to find more sophisticated elastic shape functions. In this work, the NVH-relevant states of a racing kart are simulated, whereas the elastic shape functions are calculated with modern model reduction techniques like moment matching by projection on Krylov-subspaces, singular value decomposition-based reduction techniques, and combinations of those. The whole elastic multibody vehicle model consisting of tyres, steering, axle, etc. is considered, and an excitation with a vibration characteristics in a wide frequency range is evaluated in this paper. The accuracy and the calculation performance of those modern model reduction techniques is investigated including a comparison of the modal reduction approach.
Lucchetti, Liana; Fraccia, Tommaso P; Ciciulla, Fabrizio; Bellini, Tommaso
2017-07-10
Throughout the whole history of liquid crystals science, the balancing of intrinsic elasticity with coupling to external forces has been the key strategy for most application and investigation. While the coupling of the optical field to the nematic director is at the base of a wealth of thoroughly described optical effects, a significant variety of geometries and materials have not been considered yet. Here we show that by adopting a simple cell geometry and measuring the optically induced birefringence, we can readily extract the twist elastic coefficient K 22 of thermotropic and lyotropic chiral nematics (N*). The value of K 22 we obtain for chiral doped 5CB thermotropic N* well matches those reported in the literature. With this same strategy, we could determine for the first time K 22 of the N* phase of concentrated aqueous solutions of DNA oligomers, bypassing the limitations that so far prevented measuring the elastic constants of this class of liquid crystalline materials. The present study also enlightens the significant nonlinear optical response of DNA liquid crystals.
[Evaluation of arterial elastic parameters in patients with subclinical hypothyroidism].
Belen, Erdal
2015-12-01
Hypothyroidism is associated with increased cardiovascular morbidity and mortality. Subclinical hypothyroidism is one of the most common endocrine diseases among the general population. The aim of the present study was to investigate aortic elastic parameters related to increased cardiovascular risk in patients with subclinical hypothyroidism. Fifty patients newly diagnosed with subclinical hypothyroidism and 50 healthy, age- and sex-matched euthyroid controls were included. Following physical examination and routine biochemical analysis, systolic and diastolic diameters of the ascending aorta were measured by transthoracic echocardiography, and aortic elasticity parameters were calculated. Age, gender, and body mass index were similar between the groups. Patients had significantly higher C-reactive protein and thyroid-stimulating hormone levels than the control group (p=0.002 and p<0.001, respectively). Aortic stiffness was significantly higher in patients, but aortic strain values were significantly lower (p<0.001). Aortic stiffness, C-reactive protein, aortic strain, and systolic blood pressure were found to be independent predictors of subclinical hypothyroidism in multivariate logistic regression analysis (p<0.05). Subclinical hypothyroidism is associated with impairment of aortic elastic parameters, independent of other cardiovascular risk factors.
Wang, Xing; Zhang, Ligang; Guo, Ziyi; Jiang, Yun; Tao, Xiaoma; Liu, Libin
2016-09-01
CALPHAD-type modeling was used to describe the single-crystal elastic constants of the bcc solution phase in the ternary Ti-Nb-Zr system. The parameters in the model were evaluated based on the available experimental data and first-principle calculations. The composition-elastic properties of the full compositions were predicted and the results were in good agreement with the experimental data. It is found that the β phase can be divided into two regions which are separated by a critical dynamical stability composition line. The corresponding valence electron number per atom and the polycrystalline Young׳s modulus of the critical compositions are 4.04-4.17 and 30-40GPa respectively. Orientation dependencies of single-crystal Young׳s modulus show strong elastic anisotropy on the Ti-rich side. Alloys compositions with a Young׳s modulus along the <100> direction matching that of bone were found. The current results present an effective strategy for designing low modulus biomedical alloys using computational modeling. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Denli, H.; Huang, L.
2008-12-01
Quantitative monitoring of reservoir property changes is essential for safe geologic carbon sequestration. Time-lapse seismic surveys have the potential to effectively monitor fluid migration in the reservoir that causes geophysical property changes such as density, and P- and S-wave velocities. We introduce a novel method for quantitative estimation of seismic velocity changes using time-lapse seismic data. The method employs elastic sensitivity wavefields, which are the derivatives of elastic wavefield with respect to density, P- and S-wave velocities of a target region. We derive the elastic sensitivity equations from analytical differentiations of the elastic-wave equations with respect to seismic-wave velocities. The sensitivity equations are coupled with the wave equations in a way that elastic waves arriving in a target reservoir behave as a secondary source to sensitivity fields. We use a staggered-grid finite-difference scheme with perfectly-matched layers absorbing boundary conditions to simultaneously solve the elastic-wave equations and the elastic sensitivity equations. By elastic-wave sensitivities, a linear relationship between relative seismic velocity changes in the reservoir and time-lapse seismic data at receiver locations can be derived, which leads to an over-determined system of equations. We solve this system of equations using a least- square method for each receiver to obtain P- and S-wave velocity changes. We validate the method using both surface and VSP synthetic time-lapse seismic data for a multi-layered model and the elastic Marmousi model. Then we apply it to the time-lapse field VSP data acquired at the Aneth oil field in Utah. A total of 10.5K tons of CO2 was injected into the oil reservoir between the two VSP surveys for enhanced oil recovery. The synthetic and field data studies show that our new method can quantitatively estimate changes in seismic velocities within a reservoir due to CO2 injection/migration.
Elastic limit and microplastic response of hardened steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zaccone, M.A.; Krauss, G.
Tempered martensite-retained austenite microstructures were produced by direct quenching a series of 41XX medium carbon steels, direct quenching and reheating a series of five 0.8C-Cr-Ni-Mo steels and intercritically austenitizing at various temperatures, and quenching a SAE 52100 steel. All specimens were tempered either at 150 C or at 200 C. Specimens were subjected to compression and tension testing in the microstrain regime to determine the elastic limits and microplastic response of the microstructures. The retained austenite and matrix carbon content of the intercritically austenized specimens were measured by X-ray diffraction and Mossbauer spectroscopy. The elastic limit of the microstructures decreasesmore » with increasing amounts of retained austenite. Refining of the austenite distribution increases the elastic limit. Low elastic limits are mainly due to low flow stresses in the austenite and not internal stresses. The elastic limit correlates with the largest austenite free-mean path by a Hall-Petch type equation. The elastic limit increases with decreasing intercritical austenitizing temperature in the SAE 52100 due to a lower carbon content in the matrix reducing the retained austenite levels and retained carbides that refine grain size and, therefore, the austenite distribution in quenched specimens. In the microplastic region, the strain is accommodated by successively smaller austenite regions until the flow strength matches that of the martensite. Reheating and quenching refines the microstructure and renders the austenite unstable in the microplastic regime, causing transformation of the austenite to martensite by a strain-induced mechanism. The transformation of austenite to martensite occurs by a stress-assisted mechanism in medium carbon steels. The low elastic limits in medium carbon steels were due to the inability of the strain from the stress-assisted transformation to balance the plastic strain accumulated in the austenite.« less
Probabilistic Analysis of Combinatorial Optimization Problems on Hypergraph Matchings
2012-02-01
per dimension” ( recall that d is equal to the number of independent subsets of vertices Vk in the hypergraph Hd jn, and n denotes the number of...disjoint solutions whose costs are iid random variables. First, recalling the interpretation of feasible MAP solu- tions as paths in the index graph G, we...elements. On the other hand, recall that a (feasible) path G can be described as a set of n vectors D f.i .1/ 1 ; : : : ; i .1/ d /; : : : ; .i .n
3D face recognition under expressions, occlusions, and pose variations.
Drira, Hassen; Ben Amor, Boulbaba; Srivastava, Anuj; Daoudi, Mohamed; Slama, Rim
2013-09-01
We propose a novel geometric framework for analyzing 3D faces, with the specific goals of comparing, matching, and averaging their shapes. Here we represent facial surfaces by radial curves emanating from the nose tips and use elastic shape analysis of these curves to develop a Riemannian framework for analyzing shapes of full facial surfaces. This representation, along with the elastic Riemannian metric, seems natural for measuring facial deformations and is robust to challenges such as large facial expressions (especially those with open mouths), large pose variations, missing parts, and partial occlusions due to glasses, hair, and so on. This framework is shown to be promising from both--empirical and theoretical--perspectives. In terms of the empirical evaluation, our results match or improve upon the state-of-the-art methods on three prominent databases: FRGCv2, GavabDB, and Bosphorus, each posing a different type of challenge. From a theoretical perspective, this framework allows for formal statistical inferences, such as the estimation of missing facial parts using PCA on tangent spaces and computing average shapes.
HWDA: A coherence recognition and resolution algorithm for hybrid web data aggregation
NASA Astrophysics Data System (ADS)
Guo, Shuhang; Wang, Jian; Wang, Tong
2017-09-01
Aiming at the object confliction recognition and resolution problem for hybrid distributed data stream aggregation, a distributed data stream object coherence solution technology is proposed. Firstly, the framework was defined for the object coherence conflict recognition and resolution, named HWDA. Secondly, an object coherence recognition technology was proposed based on formal language description logic and hierarchical dependency relationship between logic rules. Thirdly, a conflict traversal recognition algorithm was proposed based on the defined dependency graph. Next, the conflict resolution technology was prompted based on resolution pattern matching including the definition of the three types of conflict, conflict resolution matching pattern and arbitration resolution method. At last, the experiment use two kinds of web test data sets to validate the effect of application utilizing the conflict recognition and resolution technology of HWDA.
NASA Astrophysics Data System (ADS)
Robson, Barry; Li, Jin; Dettinger, Richard; Peters, Amanda; Boyer, Stephen K.
2011-05-01
A patent data base of 6.7 million compounds generated by a very high performance computer (Blue Gene) requires new techniques for exploitation when extensive use of chemical similarity is involved. Such exploitation includes the taxonomic classification of chemical themes, and data mining to assess mutual information between themes and companies. Importantly, we also launch candidates that evolve by "natural selection" as failure of partial match against the patent data base and their ability to bind to the protein target appropriately, by simulation on Blue Gene. An unusual feature of our method is that algorithms and workflows rely on dynamic interaction between match-and-edit instructions, which in practice are regular expressions. Similarity testing by these uses SMILES strings and, less frequently, graph or connectivity representations. Examining how this performs in high throughput, we note that chemical similarity and novelty are human concepts that largely have meaning by utility in specific contexts. For some purposes, mutual information involving chemical themes might be a better concept.
Fast correspondences search in anatomical trees
NASA Astrophysics Data System (ADS)
dos Santos, Thiago R.; Gergel, Ingmar; Meinzer, Hans-Peter; Maier-Hein, Lena
2010-03-01
Registration of multiple medical images commonly comprises the steps feature extraction, correspondences search and transformation computation. In this paper, we present a new method for a fast and pose independent search of correspondences using as features anatomical trees such as the bronchial system in the lungs or the vessel system in the liver. Our approach scores the similarities between the trees' nodes (bifurcations) taking into account both, topological properties extracted from their graph representations and anatomical properties extracted from the trees themselves. The node assignment maximizes the global similarity (sum of the scores of each pair of assigned nodes), assuring that the matches are distributed throughout the trees. Furthermore, the proposed method is able to deal with distortions in the data, such as noise, motion, artifacts, and problems associated with the extraction method, such as missing or false branches. According to an evaluation on swine lung data sets, the method requires less than one second on average to compute the matching and yields a high rate of correct matches compared to state of the art work.
Approximate matching of structured motifs in DNA sequences.
El-Mabrouk, Nadia; Raffinot, Mathieu; Duchesne, Jean-Eudes; Lajoie, Mathieu; Luc, Nicolas
2005-04-01
Several methods have been developed for identifying more or less complex RNA structures in a genome. All these methods are based on the search for conserved primary and secondary sub-structures. In this paper, we present a simple formal representation of a helix, which is a combination of sequence and folding constraints, as a constrained regular expression. This representation allows us to develop a well-founded algorithm that searches for all approximate matches of a helix in a genome. The algorithm is based on an alignment graph constructed from several copies of a pushdown automaton, arranged one on top of another. This is a first attempt to take advantage of the possibilities of pushdown automata in the context of approximate matching. The worst time complexity is O(krpn), where k is the error threshold, n the size of the genome, p the size of the secondary expression, and r its number of union symbols. We then extend the algorithm to search for pseudo-knots and secondary structures containing an arbitrary number of helices.
Parcellation in Left Lateral Parietal Cortex Is Similar in Adults and Children
Nelson, Steven M.; Cohen, Alexander L.; Power, Jonathan D.; Coalson, Rebecca S.; Miezin, Francis M.; Vogel, Alecia C.; Dubis, Joseph W.; Church, Jessica A.; Petersen, Steven E.; Schlaggar, Bradley L.
2012-01-01
A key question in developmental neuroscience involves understanding how and when the cerebral cortex is partitioned into distinct functional areas. The present study used functional connectivity MRI mapping and graph theory to identify putative cortical areas and generate a parcellation scheme of left lateral parietal cortex (LLPC) in 7 to 10-year-old children and adults. Results indicated that a majority of putative LLPC areas could be matched across groups (mean distance between matched areas across age: 3.15 mm). Furthermore, the boundaries of children's putative LLPC areas respected the boundaries generated from the adults' parcellation scheme for a majority of children's areas (13/15). Consistent with prior research, matched LLPC areas showed age-related differences in functional connectivity strength with other brain regions. These results suggest that LLPC cortical parcellation and functional connectivity mature along different developmental trajectories, with adult-like boundaries between LLPC areas established in school-age children prior to adult-like functional connectivity. PMID:21810781
Topology determines force distributions in one-dimensional random spring networks.
Heidemann, Knut M; Sageman-Furnas, Andrew O; Sharma, Abhinav; Rehfeldt, Florian; Schmidt, Christoph F; Wardetzky, Max
2018-02-01
Networks of elastic fibers are ubiquitous in biological systems and often provide mechanical stability to cells and tissues. Fiber-reinforced materials are also common in technology. An important characteristic of such materials is their resistance to failure under load. Rupture occurs when fibers break under excessive force and when that failure propagates. Therefore, it is crucial to understand force distributions. Force distributions within such networks are typically highly inhomogeneous and are not well understood. Here we construct a simple one-dimensional model system with periodic boundary conditions by randomly placing linear springs on a circle. We consider ensembles of such networks that consist of N nodes and have an average degree of connectivity z but vary in topology. Using a graph-theoretical approach that accounts for the full topology of each network in the ensemble, we show that, surprisingly, the force distributions can be fully characterized in terms of the parameters (N,z). Despite the universal properties of such (N,z) ensembles, our analysis further reveals that a classical mean-field approach fails to capture force distributions correctly. We demonstrate that network topology is a crucial determinant of force distributions in elastic spring networks.
Topology determines force distributions in one-dimensional random spring networks
NASA Astrophysics Data System (ADS)
Heidemann, Knut M.; Sageman-Furnas, Andrew O.; Sharma, Abhinav; Rehfeldt, Florian; Schmidt, Christoph F.; Wardetzky, Max
2018-02-01
Networks of elastic fibers are ubiquitous in biological systems and often provide mechanical stability to cells and tissues. Fiber-reinforced materials are also common in technology. An important characteristic of such materials is their resistance to failure under load. Rupture occurs when fibers break under excessive force and when that failure propagates. Therefore, it is crucial to understand force distributions. Force distributions within such networks are typically highly inhomogeneous and are not well understood. Here we construct a simple one-dimensional model system with periodic boundary conditions by randomly placing linear springs on a circle. We consider ensembles of such networks that consist of N nodes and have an average degree of connectivity z but vary in topology. Using a graph-theoretical approach that accounts for the full topology of each network in the ensemble, we show that, surprisingly, the force distributions can be fully characterized in terms of the parameters (N ,z ) . Despite the universal properties of such (N ,z ) ensembles, our analysis further reveals that a classical mean-field approach fails to capture force distributions correctly. We demonstrate that network topology is a crucial determinant of force distributions in elastic spring networks.
Dynamic damping of vibrations of technical object with two degrees of freedom
NASA Astrophysics Data System (ADS)
Khomenko, A. P.; Eliseev, S. V.; Artyunin, A. I.
2017-10-01
Approach to the solution of problems of dynamic damping for the technical object with two degrees of freedom on the elastic supports is developed. Such tasks are typical for the dynamics of technological vibrating machines, machining machine tools and vehicles. The purpose of the study is to justify the possibility of obtaining regimes of simultaneous dynamic damping of oscillations in two coordinates. The achievement of the goal is based on the use of special devices for the transformation of motion, introduced parallel to the elastic element. The dynamic effect is provided by the possibility of changing the relationships between the reduced masses of devices for transforming motion. The method of structural mathematical modeling is used, in which the mechanical oscillatory system is compared, taking into account the principle of dynamic analogies, the dynamically equivalent structural diagram of the automatic control system. The concept of transfer functions of systems interpartial relations and generalized ideas about the partial frequencies and frequencies dynamic damping is applied. The concept of a frequency diagram that determines the mutual distribution of graphs of frequency characteristics in the interaction of the elements of the system is introduced.
NASA Astrophysics Data System (ADS)
Rahman, M. Muzibur; Ahmad, S. Reaz
2017-12-01
An analytical investigation of elastic fields for a guided deep beam of orthotropic composite material having three point symmetric bending is carried out using displacement potential boundary modeling approach. Here, the formulation is developed as a single function of space variables defined in terms of displacement components, which has to satisfy the mixed type of boundary conditions. The relevant displacement and stress components are derived into infinite series using Fourier integral along with suitable polynomials coincided with boundary conditions. The results are presented mainly in the form of graphs and verified with finite element solutions using ANSYS. This study shows that the analytical and numerical solutions are in good agreement and thus enhances reliability of the displacement potential approach.
Cognitive inhibition in students with and without dyslexia and dyscalculia.
Wang, Li-Chih; Tasi, Hung-Ju; Yang, Hsien-Ming
2012-01-01
The present study presents a comparison of the cognitive inhibition abilities of dyslexic, dyscalculic, and control students. The participants were 45 dyslexic students, 45 dyscalculic students, and 45 age-, gender-, and IQ-matched control students. The major evaluation tools included six cognitive inhibition tasks which were restructured during principal component analysis into three categories: graph inhibition, number inhibition, and word inhibition. Comparisons of the 3 groups of students revealed that in graph inhibition, dyscalculic students performed worst of the 3 groups, with dyslexic students also performing worse than control students in this category. For number inhibition, the control students' performances were equal to those of dyslexic students, with both groups performing better than dyscalculic students. For word inhibition, control students' performances were equal to those of dyscalculic students; both groups had shorter response times and lower incorrect rates than dyslexic students. These results suggest the complexity of the different cognitive inhibition abilities displayed by dyslexic, dyscalculic, and control students. However, some regular patterns occurred. Copyright © 2012 Elsevier Ltd. All rights reserved.
Do, Hongdo; Molania, Ramyar
2017-01-01
The identification of genomic rearrangements with high sensitivity and specificity using massively parallel sequencing remains a major challenge, particularly in precision medicine and cancer research. Here, we describe a new method for detecting rearrangements, GRIDSS (Genome Rearrangement IDentification Software Suite). GRIDSS is a multithreaded structural variant (SV) caller that performs efficient genome-wide break-end assembly prior to variant calling using a novel positional de Bruijn graph-based assembler. By combining assembly, split read, and read pair evidence using a probabilistic scoring, GRIDSS achieves high sensitivity and specificity on simulated, cell line, and patient tumor data, recently winning SV subchallenge #5 of the ICGC-TCGA DREAM8.5 Somatic Mutation Calling Challenge. On human cell line data, GRIDSS halves the false discovery rate compared to other recent methods while matching or exceeding their sensitivity. GRIDSS identifies nontemplate sequence insertions, microhomologies, and large imperfect homologies, estimates a quality score for each breakpoint, stratifies calls into high or low confidence, and supports multisample analysis. PMID:29097403
DSGRN: Examining the Dynamics of Families of Logical Models.
Cummins, Bree; Gedeon, Tomas; Harker, Shaun; Mischaikow, Konstantin
2018-01-01
We present a computational tool DSGRN for exploring the dynamics of a network by computing summaries of the dynamics of switching models compatible with the network across all parameters. The network can arise directly from a biological problem, or indirectly as the interaction graph of a Boolean model. This tool computes a finite decomposition of parameter space such that for each region, the state transition graph that describes the coarse dynamical behavior of a network is the same. Each of these parameter regions corresponds to a different logical description of the network dynamics. The comparison of dynamics across parameters with experimental data allows the rejection of parameter regimes or entire networks as viable models for representing the underlying regulatory mechanisms. This in turn allows a search through the space of perturbations of a given network for networks that robustly fit the data. These are the first steps toward discovering a network that optimally matches the observed dynamics by searching through the space of networks.
Efficient Wide Baseline Structure from Motion
NASA Astrophysics Data System (ADS)
Michelini, Mario; Mayer, Helmut
2016-06-01
This paper presents a Structure from Motion approach for complex unorganized image sets. To achieve high accuracy and robustness, image triplets are employed and (an approximate) camera calibration is assumed to be known. The focus lies on a complete linking of images even in case of large image distortions, e.g., caused by wide baselines, as well as weak baselines. A method for embedding image descriptors into Hamming space is proposed for fast image similarity ranking. The later is employed to limit the number of pairs to be matched by a wide baseline method. An iterative graph-based approach is proposed formulating image linking as the search for a terminal Steiner minimum tree in a line graph. Finally, additional links are determined and employed to improve the accuracy of the pose estimation. By this means, loops in long image sequences are implicitly closed. The potential of the proposed approach is demonstrated by results for several complex image sets also in comparison with VisualSFM.
NASA Astrophysics Data System (ADS)
Margaris, I.; Paltoglou, V.; Flytzanis, N.
2018-05-01
In this work we present a method of representing terms in the current-phase-relation of a ballistic Josephson junction by combinations of diagrams, used in previous work to represent an equivalent of the matching condition determinant of the junction. This is accomplished by the expansion of the logarithm of this determinant in Taylor series and keeping track of surviving terms, i.e. terms that do not annihilate each other. The types of the surviving terms are represented by connected graphs, whose points represent diagrammatic terms of the determinant expansion. Then the theory is applied to obtain approximations of the current-phase relation of relatively thick ballistic ferromagnetic Josephson junctions with non-collinear magnetizations. This demonstrates the versatility of the method in developing approximations schemes and providing physical insight into the nature of contributions to the supercurrent from the available particle excitations in the junction. We also discuss the strong second harmonic contribution to the supercurrent in junctions with three mutually orthogonal magnetization vectors and a weak intermediate ferromagnet.
Learning directed acyclic graphs from large-scale genomics data.
Nikolay, Fabio; Pesavento, Marius; Kritikos, George; Typas, Nassos
2017-09-20
In this paper, we consider the problem of learning the genetic interaction map, i.e., the topology of a directed acyclic graph (DAG) of genetic interactions from noisy double-knockout (DK) data. Based on a set of well-established biological interaction models, we detect and classify the interactions between genes. We propose a novel linear integer optimization program called the Genetic-Interactions-Detector (GENIE) to identify the complex biological dependencies among genes and to compute the DAG topology that matches the DK measurements best. Furthermore, we extend the GENIE program by incorporating genetic interaction profile (GI-profile) data to further enhance the detection performance. In addition, we propose a sequential scalability technique for large sets of genes under study, in order to provide statistically significant results for real measurement data. Finally, we show via numeric simulations that the GENIE program and the GI-profile data extended GENIE (GI-GENIE) program clearly outperform the conventional techniques and present real data results for our proposed sequential scalability technique.
Kandel, Benjamin M; Wang, Danny J J; Gee, James C; Avants, Brian B
2014-01-01
Although much attention has recently been focused on single-subject functional networks, using methods such as resting-state functional MRI, methods for constructing single-subject structural networks are in their infancy. Single-subject cortical networks aim to describe the self-similarity across the cortical structure, possibly signifying convergent developmental pathways. Previous methods for constructing single-subject cortical networks have used patch-based correlations and distance metrics based on curvature and thickness. We present here a method for constructing similarity-based cortical structural networks that utilizes a rotation-invariant representation of structure. The resulting graph metrics are closely linked to age and indicate an increasing degree of closeness throughout development in nearly all brain regions, perhaps corresponding to a more regular structure as the brain matures. The derived graph metrics demonstrate a four-fold increase in power for detecting age as compared to cortical thickness. This proof of concept study indicates that the proposed metric may be useful in identifying biologically relevant cortical patterns.
Khazaee, Ali; Ebrahimzadeh, Ata; Babajani-Feremi, Abbas
2016-09-01
The study of brain networks by resting-state functional magnetic resonance imaging (rs-fMRI) is a promising method for identifying patients with dementia from healthy controls (HC). Using graph theory, different aspects of the brain network can be efficiently characterized by calculating measures of integration and segregation. In this study, we combined a graph theoretical approach with advanced machine learning methods to study the brain network in 89 patients with mild cognitive impairment (MCI), 34 patients with Alzheimer's disease (AD), and 45 age-matched HC. The rs-fMRI connectivity matrix was constructed using a brain parcellation based on a 264 putative functional areas. Using the optimal features extracted from the graph measures, we were able to accurately classify three groups (i.e., HC, MCI, and AD) with accuracy of 88.4 %. We also investigated performance of our proposed method for a binary classification of a group (e.g., MCI) from two other groups (e.g., HC and AD). The classification accuracies for identifying HC from AD and MCI, AD from HC and MCI, and MCI from HC and AD, were 87.3, 97.5, and 72.0 %, respectively. In addition, results based on the parcellation of 264 regions were compared to that of the automated anatomical labeling atlas (AAL), consisted of 90 regions. The accuracy of classification of three groups using AAL was degraded to 83.2 %. Our results show that combining the graph measures with the machine learning approach, on the basis of the rs-fMRI connectivity analysis, may assist in diagnosis of AD and MCI.
Predicting conversion from MCI to AD using resting-state fMRI, graph theoretical approach and SVM.
Hojjati, Seyed Hani; Ebrahimzadeh, Ata; Khazaee, Ali; Babajani-Feremi, Abbas
2017-04-15
We investigated identifying patients with mild cognitive impairment (MCI) who progress to Alzheimer's disease (AD), MCI converter (MCI-C), from those with MCI who do not progress to AD, MCI non-converter (MCI-NC), based on resting-state fMRI (rs-fMRI). Graph theory and machine learning approach were utilized to predict progress of patients with MCI to AD using rs-fMRI. Eighteen MCI converts (average age 73.6 years; 11 male) and 62 age-matched MCI non-converters (average age 73.0 years, 28 male) were included in this study. We trained and tested a support vector machine (SVM) to classify MCI-C from MCI-NC using features constructed based on the local and global graph measures. A novel feature selection algorithm was developed and utilized to select an optimal subset of features. Using subset of optimal features in SVM, we classified MCI-C from MCI-NC with an accuracy, sensitivity, specificity, and the area under the receiver operating characteristic (ROC) curve of 91.4%, 83.24%, 90.1%, and 0.95, respectively. Furthermore, results of our statistical analyses were used to identify the affected brain regions in AD. To the best of our knowledge, this is the first study that combines the graph measures (constructed based on rs-fMRI) with machine learning approach and accurately classify MCI-C from MCI-NC. Results of this study demonstrate potential of the proposed approach for early AD diagnosis and demonstrate capability of rs-fMRI to predict conversion from MCI to AD by identifying affected brain regions underlying this conversion. Copyright © 2017 Elsevier B.V. All rights reserved.
Nathenson, M.
1999-01-01
Effective stress is the primary control on permeability and thus on flow and water loss for two-well hot dry rock systems involving injection and production that have been tested to date. Theoretical relations are derived for the flow between an injector and producer, including the dependence of permeability on effective stress. Four relations for permeability as a function of effective stress are used to match field data for the hot dry rock systems at Rosemanowes, Cornwall, and Fenton Hill, New Mexico. The flow and water loss behavior of these systems are well explained by the influence of effective stress on permeability. All four relations for permeability as a function of effective stress are successful in matching the field data, but some have difficulty in determining unique values for elastic and hydrologic parameters.Effective stress is the primary control on permeability and thus on flow and water loss for two-well hot dry rock systems involving injection and production that have been tested to date. Theoretical relations are derived for the flow between an injector and producer, including the dependence of permeability on effective stress. Four relations for permeability as a function of effective stress are used to match field data for the hot dry rock systems at Rosemanowes, Cornwall, and Fenton Hill, New Mexico. The flow and water loss behavior of these systems are well explained by the influence of effective stress on permeability. All four relations for permeability as a function of effective stress are successful in matching the field data, but some have difficulty in determining unique values for elastic and hydrologic parameters.
NASA Technical Reports Server (NTRS)
Connolly, Joseph W.; Kopasakis, George; Lemon, Kimberly A.
2010-01-01
A turbofan simulation has been developed for use in aero-propulso-servo-elastic coupling studies, on supersonic vehicles. A one-dimensional lumped volume approach is used whereby each component (fan, high-pressure compressor, combustor, etc.) is represented as a single volume using characteristic performance maps and conservation equations for continuity, momentum and energy. The simulation is developed in the MATLAB/SIMULINK (The MathWorks, Inc.) environment in order to facilitate controls development, and ease of integration with a future aero-servo-elastic vehicle model being developed at NASA Langley. The complete simulation demonstrated steady state results that closely match a proposed engine suitable for a supersonic business jet at the cruise condition. Preliminary investigation of the transient simulation revealed expected trends for fuel flow disturbances as well as upstream pressure disturbances. A framework for system identification enables development of linear models for controller design. Utilizing this framework, a transfer function modeling an upstream pressure disturbance s impacts on the engine speed is developed as an illustrative case of the system identification. This work will eventually enable an overall vehicle aero-propulso-servo-elastic model
On the geometrically nonlinear elastic response of class θ = 1 tensegrity prisms
NASA Astrophysics Data System (ADS)
Mascolo, Ida; Amendola, Ada; Zuccaro, Giulio; Feo, Luciano; Fraternali, Fernando
2018-03-01
The present work studies the geometrically nonlinear response of class ϑ=1 tensegrity prisms modeled as a collection of elastic springs reacting in tension (strings or cables) or compression (bars), under uniform uniaxial loading. The incremental equilibrium equations of the structure are numerically solved through a path-following procedure, with the aim of modeling the mechanical behavior of the structure in the large displacement regime. Several numerical results are presented with reference to a variety of physical models, which use two different materials for the cables and the bars, and show different aspect ratios associated with either 'standard' or 'expanded' configurations. An experimental validation of the predicted constitutive response is conducted with reference to a 'thick' and a 'slender' model, observing rather good theory vs. experiment matching. The given numerical and experimental results highlight that the elastic response of the examined structures may switch from stiffening to softening, depending on the geometry of the system, the magnitude of the external load, and the applied prestress. The outcomes of the current study confirm previous literature results on the elastic response of minimal tensegrity prisms, and pave the way to the use of tensegrity systems as nonlinear spring units forming tunable mechanical metamaterials.
Prior-Based Quantization Bin Matching for Cloud Storage of JPEG Images.
Liu, Xianming; Cheung, Gene; Lin, Chia-Wen; Zhao, Debin; Gao, Wen
2018-07-01
Millions of user-generated images are uploaded to social media sites like Facebook daily, which translate to a large storage cost. However, there exists an asymmetry in upload and download data: only a fraction of the uploaded images are subsequently retrieved for viewing. In this paper, we propose a cloud storage system that reduces the storage cost of all uploaded JPEG photos, at the expense of a controlled increase in computation mainly during download of requested image subset. Specifically, the system first selectively re-encodes code blocks of uploaded JPEG images using coarser quantization parameters for smaller storage sizes. Then during download, the system exploits known signal priors-sparsity prior and graph-signal smoothness prior-for reverse mapping to recover original fine quantization bin indices, with either deterministic guarantee (lossless mode) or statistical guarantee (near-lossless mode). For fast reverse mapping, we use small dictionaries and sparse graphs that are tailored for specific clusters of similar blocks, which are classified via tree-structured vector quantizer. During image upload, cluster indices identifying the appropriate dictionaries and graphs for the re-quantized blocks are encoded as side information using a differential distributed source coding scheme to facilitate reverse mapping during image download. Experimental results show that our system can reap significant storage savings (up to 12.05%) at roughly the same image PSNR (within 0.18 dB).
Oh, Taekjun; Lee, Donghwa; Kim, Hyungjin; Myung, Hyun
2015-01-01
Localization is an essential issue for robot navigation, allowing the robot to perform tasks autonomously. However, in environments with laser scan ambiguity, such as long corridors, the conventional SLAM (simultaneous localization and mapping) algorithms exploiting a laser scanner may not estimate the robot pose robustly. To resolve this problem, we propose a novel localization approach based on a hybrid method incorporating a 2D laser scanner and a monocular camera in the framework of a graph structure-based SLAM. 3D coordinates of image feature points are acquired through the hybrid method, with the assumption that the wall is normal to the ground and vertically flat. However, this assumption can be relieved, because the subsequent feature matching process rejects the outliers on an inclined or non-flat wall. Through graph optimization with constraints generated by the hybrid method, the final robot pose is estimated. To verify the effectiveness of the proposed method, real experiments were conducted in an indoor environment with a long corridor. The experimental results were compared with those of the conventional GMappingapproach. The results demonstrate that it is possible to localize the robot in environments with laser scan ambiguity in real time, and the performance of the proposed method is superior to that of the conventional approach. PMID:26151203
Causal discovery in the geosciences-Using synthetic data to learn how to interpret results
NASA Astrophysics Data System (ADS)
Ebert-Uphoff, Imme; Deng, Yi
2017-02-01
Causal discovery algorithms based on probabilistic graphical models have recently emerged in geoscience applications for the identification and visualization of dynamical processes. The key idea is to learn the structure of a graphical model from observed spatio-temporal data, thus finding pathways of interactions in the observed physical system. Studying those pathways allows geoscientists to learn subtle details about the underlying dynamical mechanisms governing our planet. Initial studies using this approach on real-world atmospheric data have shown great potential for scientific discovery. However, in these initial studies no ground truth was available, so that the resulting graphs have been evaluated only by whether a domain expert thinks they seemed physically plausible. The lack of ground truth is a typical problem when using causal discovery in the geosciences. Furthermore, while most of the connections found by this method match domain knowledge, we encountered one type of connection for which no explanation was found. To address both of these issues we developed a simulation framework that generates synthetic data of typical atmospheric processes (advection and diffusion). Applying the causal discovery algorithm to the synthetic data allowed us (1) to develop a better understanding of how these physical processes appear in the resulting connectivity graphs, and thus how to better interpret such connectivity graphs when obtained from real-world data; (2) to solve the mystery of the previously unexplained connections.
NASA Astrophysics Data System (ADS)
Igumnov, Leonid; Ipatov, Aleksandr; Belov, Aleksandr; Petrov, Andrey
2015-09-01
The report presents the development of the time-boundary element methodology and a description of the related software based on a stepped method of numerical inversion of the integral Laplace transform in combination with a family of Runge-Kutta methods for analyzing 3-D mixed initial boundary-value problems of the dynamics of inhomogeneous elastic and poro-elastic bodies. The results of the numerical investigation are presented. The investigation methodology is based on direct-approach boundary integral equations of 3-D isotropic linear theories of elasticity and poroelasticity in Laplace transforms. Poroelastic media are described using Biot models with four and five base functions. With the help of the boundary-element method, solutions in time are obtained, using the stepped method of numerically inverting Laplace transform on the nodes of Runge-Kutta methods. The boundary-element method is used in combination with the collocation method, local element-by-element approximation based on the matched interpolation model. The results of analyzing wave problems of the effect of a non-stationary force on elastic and poroelastic finite bodies, a poroelastic half-space (also with a fictitious boundary) and a layered half-space weakened by a cavity, and a half-space with a trench are presented. Excitation of a slow wave in a poroelastic medium is studied, using the stepped BEM-scheme on the nodes of Runge-Kutta methods.
K+-nucleus scattering using K {yields} {mu}{nu} decays as a normalization check
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael, R.; Hicks, K.; Bart, S.
1995-04-01
Elastic scattering of 720 and 620 MeV/c positive kaons from targets of {sup 12}C and {sup 6}Li has been measured up to laboratory angles of 42{degrees}. Since the magnitude of the cross sections is sensitive to nuclear medium effects, the K{yields}{mu}{nu} decay mode has been used to check the normalization. GEANT has been used to mimic the kaon decays over a path length of 12cm, with a correlated beam structure matching the experimental kaon beam. The corresponding muon distribution has been passed thru Monte Carlo simulations of the moby dick spectrometer. The results are compared with the experimental number ofmore » decay muons with good agreement. These results also agree with the normalization found using p-p elastic scattering. The normalized K{sup +} elastic data are compared to recent optical model predictions based on both Klein-Gordon and KDP equations in the impulse approximation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wielewski, Euan; Boyce, Donald E.; Park, Jun-Sang
Determining reliable single crystal material parameters for complex polycrystalline materials is a significant challenge for the materials community. In this work, a novel methodology for determining those parameters is outlined and successfully applied to the titanium alloy, Ti-6Al-4V. Utilizing the results from a lattice strain pole figure experiment conducted at the Cornell High Energy Synchrotron Source, an iterative approach is used to optimize the single crystal elastic moduli by comparing experimental and simulated lattice strain pole figures at discrete load steps during a uniaxial tensile test. Due to the large number of unique measurements taken during the experiments, comparisons weremore » made by using the discrete spherical harmonic modes of both the experimental and simulated lattice strain pole figures, allowing the complete pole figures to be used to determine the single crystal elastic moduli. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.« less
Hierarchical flexural strength of enamel: transition from brittle to damage-tolerant behaviour
Bechtle, Sabine; Özcoban, Hüseyin; Lilleodden, Erica T.; Huber, Norbert; Schreyer, Andreas; Swain, Michael V.; Schneider, Gerold A.
2012-01-01
Hard, biological materials are generally hierarchically structured from the nano- to the macro-scale in a somewhat self-similar manner consisting of mineral units surrounded by a soft protein shell. Considerable efforts are underway to mimic such materials because of their structurally optimized mechanical functionality of being hard and stiff as well as damage-tolerant. However, it is unclear how different hierarchical levels interact to achieve this performance. In this study, we consider dental enamel as a representative, biological hierarchical structure and determine its flexural strength and elastic modulus at three levels of hierarchy using focused ion beam (FIB) prepared cantilevers of micrometre size. The results are compared and analysed using a theoretical model proposed by Jäger and Fratzl and developed by Gao and co-workers. Both properties decrease with increasing hierarchical dimension along with a switch in mechanical behaviour from linear-elastic to elastic-inelastic. We found Gao's model matched the results very well. PMID:22031729
Changes in Mechanical Properties of Rat Bones under Simulated Effects of Microgravity and Radiation†
NASA Astrophysics Data System (ADS)
Walker, Azida H.; Perkins, Otis; Mehta, Rahul; Ali, Nawab; Dobretsov, Maxim; Chowdhury, Parimal
The aim of this study was to determine the changes in elasticity and lattice structure in leg bone of rats which were: 1) under Hind-Limb Suspension (HLS) by tail for 2 weeks and 2) exposed to a total radiation of 10 Grays in 10 days. The animals were sacrificed at the end of 2 weeks and the leg bones were surgically removed, cleaned and fixed with a buffered solution. The mechanical strength of the bone (elastic modulus) was determined from measurement of bending of a bone when under an applied force. Two methodologies were used: i) a 3-point bending technique and ii) classical bending where bending is accomplished keeping one end fixed. Three point bending method used a captive actuator controlled by a programmable IDEA drive. This allowed incremental steps of 0.047 mm for which the force is measured. The data is used to calculate the stress and the strain. In the second method a mirror attached to the free end of the bone allowed a reflected laser beam spot to be tracked. This provided the displacement measurement as stress levels changed. Analysis of stress vs. strain graph together with solution of Euler-Bernoulli equation for a cantilever beam allowed determination of the elastic modulus of the leg bone for (i) control samples, (ii) HLS samples and (iii) HLS samples with radiation effects. To ascertain changes in the bone lattice structure, the bones were cross-sectioned and imaged with a 20 keV beam of electrons in a Scanning Electron Microscope (SEM). A backscattered detector and a secondary electron detector in the SEM provided the images from well-defined parts of the leg bones. Elemental compositions in combination with mechanical properties (elastic modulus and lattice structure) changes indicated weakening of the bones under space-like conditions of microgravity and radiation.
Conjunctive Conceptual Clustering: A Methodology and Experimentation.
1987-09-01
observing a typical restaurant table on vhich there are such objects as food on a plate, a salad, utensils, salt and pepper, napkins , a ase with flowers, a...colored graph has nodes and inks that match only if they have corre-ponding link-olor and node-color labelg 4w 80 [SEtexture sa lif ba p S M i e d If...LINK LINK LINK LINK LINK 9 0 1 OPENdRECT RECTLOD 1 2 CL 10 0 0 LINK LINK INK LINK LINK ,~ . 0.5. Input file for attribute-based clustering The
The Search for Equity in School Finance: Michigan School District Response to a Guaranteed Tax Base.
ERIC Educational Resources Information Center
Park, Rolla Edward; Carroll, Stephen J.
Part of a three-volume report on the effects of school finance reform, this volume examines the effects of reform on Michigan school districts' budgets from 1971 to 1976. Econometric models were used. Researchers found a very small "price" effect--an elasticity of -.02. The data provide no evidence that state matching grants stimulate…
Elastic limit and microplastic response of hardened steels
NASA Astrophysics Data System (ADS)
Zaccone, M. A.; Krauss, G.
1993-10-01
Tempered martensite-retained austenite microstructures were produced by direct quenching a series of 41XX medium carbon steels, direct quenching and reheating a series of five 0.8C-Cr- Ni-Mo steels and intercritically austenitizing at various temperatures, and quenching a SAE 52100 steel. All specimens were tempered either at 150 °C or at 200 °C. Specimens were subjected to compression and tension testing in the microstrain regime to determine the elastic limits and microplastic response of the microstructures. The retained austenite and matrix carbon content of the intercritically austenized specimens were measured by X-ray diffraction and Mossbauer spectroscopy. The elastic limit of the microstructures decreases with increasing amounts of retained austenite. Refining of the austenite distribution increases the elastic limit. Low elastic limits are mainly due to low flow stresses in the austenite and not internal stresses. The elastic limit correlates with the largest austenite free-mean path by a Hall-Petch type equation. The elastic limit increases with decreasing intercritical austenitizing temperature in the SAE 52100 due to (1) a lower carbon content in the matrix reducing the retained austenite levels and (2) retained carbides that refine grain size and, therefore, the austenite distribution in quenched specimens. The microplastic response of stable austenite-martensite composites may be modeled by a rule of mixtures. In the microplastic region, the strain is accommodated by successively smaller austenite regions until the flow strength matches that of the martensite. Reheating and quenching refines the microstructure and renders the austenite unstable in the microplastic regime, causing transformation of the austenite to martensite by a strain-induced mechanism. The transformation of austenite to martensite occurs by a stress-assisted mechanism in medium carbon steels. The low elastic limits in medium carbon steels were due to the inability of the strain from the stress-assisted transformation of austenite to martensite to balance the plastic strain accumulated in the austenite.
Bayesian estimation of dynamic matching function for U-V analysis in Japan
NASA Astrophysics Data System (ADS)
Kyo, Koki; Noda, Hideo; Kitagawa, Genshiro
2012-05-01
In this paper we propose a Bayesian method for analyzing unemployment dynamics. We derive a Beveridge curve for unemployment and vacancy (U-V) analysis from a Bayesian model based on a labor market matching function. In our framework, the efficiency of matching and the elasticities of new hiring with respect to unemployment and vacancy are regarded as time varying parameters. To construct a flexible model and obtain reasonable estimates in an underdetermined estimation problem, we treat the time varying parameters as random variables and introduce smoothness priors. The model is then described in a state space representation, enabling the parameter estimation to be carried out using Kalman filter and fixed interval smoothing. In such a representation, dynamic features of the cyclic unemployment rate and the structural-frictional unemployment rate can be accurately captured.
NASA Astrophysics Data System (ADS)
Zhan, Zongqian; Wang, Chendong; Wang, Xin; Liu, Yi
2018-01-01
On the basis of today's popular virtual reality and scientific visualization, three-dimensional (3-D) reconstruction is widely used in disaster relief, virtual shopping, reconstruction of cultural relics, etc. In the traditional incremental structure from motion (incremental SFM) method, the time cost of the matching is one of the main factors restricting the popularization of this method. To make the whole matching process more efficient, we propose a preprocessing method before the matching process: (1) we first construct a random k-d forest with the large-scale scale-invariant feature transform features in the images and combine this with the pHash method to obtain a value of relatedness, (2) we then construct a connected weighted graph based on the relatedness value, and (3) we finally obtain a planned sequence of adding images according to the principle of the minimum spanning tree. On this basis, we attempt to thin the minimum spanning tree to reduce the number of matchings and ensure that the images are well distributed. The experimental results show a great reduction in the number of matchings with enough object points, with only a small influence on the inner stability, which proves that this method can quickly and reliably improve the efficiency of the SFM method with unordered multiview images in complex scenes.
NASA Astrophysics Data System (ADS)
Aronchik, V.
1996-03-01
Thin cement mortar plates reinforced by perforated thin steel sheets have been tested in four-point flexure loading. Six kinds of sheet reinforcement and to additional ones (for control) were used. Perforated sheets of the Daugavpils Factory of Machinery Chains differed by their thickness (0.6-1.8 mm), shape (round, rectangular, oval, "dumbbell"), and mark of steel (St. 08, 50, 70). Dimensions of plantes were 100×20×2 cm. Cements-sand mortar with a 1∶2 ratio of cement PZ35 and river sand of 3 mm grains was used as a matrix. Control specimens of similar dimensions and matrix were reinforced by wire cages and meshes (ferrocement). The testing was performed using an UMM-5 testing machine. Maximum deflection (at the midspan), tension, and shear strains were recorded. The expeimental data are presented in tables and graphs. The testing results showed that the elasticity modulus of material was in good agreement with the "admixture rule;" an onset of cracking for all types (excluding one) practically did not differ from reference samples; the mode of fracture in typical cases included an adhesion failure and significant shear strains. In one case the limit of the tension strength of the reinforcement was achieved.
NASA Astrophysics Data System (ADS)
Mönkölä, Sanna
2013-06-01
This study considers developing numerical solution techniques for the computer simulations of time-harmonic fluid-structure interaction between acoustic and elastic waves. The focus is on the efficiency of an iterative solution method based on a controllability approach and spectral elements. We concentrate on the model, in which the acoustic waves in the fluid domain are modeled by using the velocity potential and the elastic waves in the structure domain are modeled by using displacement. Traditionally, the complex-valued time-harmonic equations are used for solving the time-harmonic problems. Instead of that, we focus on finding periodic solutions without solving the time-harmonic problems directly. The time-dependent equations can be simulated with respect to time until a time-harmonic solution is reached, but the approach suffers from poor convergence. To overcome this challenge, we follow the approach first suggested and developed for the acoustic wave equations by Bristeau, Glowinski, and Périaux. Thus, we accelerate the convergence rate by employing a controllability method. The problem is formulated as a least-squares optimization problem, which is solved with the conjugate gradient (CG) algorithm. Computation of the gradient of the functional is done directly for the discretized problem. A graph-based multigrid method is used for preconditioning the CG algorithm.
A long baseline global stereo matching based upon short baseline estimation
NASA Astrophysics Data System (ADS)
Li, Jing; Zhao, Hong; Li, Zigang; Gu, Feifei; Zhao, Zixin; Ma, Yueyang; Fang, Meiqi
2018-05-01
In global stereo vision, balancing the matching efficiency and computing accuracy seems to be impossible because they contradict each other. In the case of a long baseline, this contradiction becomes more prominent. In order to solve this difficult problem, this paper proposes a novel idea to improve both the efficiency and accuracy in global stereo matching for a long baseline. In this way, the reference images located between the long baseline image pairs are firstly chosen to form the new image pairs with short baselines. The relationship between the disparities of pixels in the image pairs with different baselines is revealed by considering the quantized error so that the disparity search range under the long baseline can be reduced by guidance of the short baseline to gain matching efficiency. Then, the novel idea is integrated into the graph cuts (GCs) to form a multi-step GC algorithm based on the short baseline estimation, by which the disparity map under the long baseline can be calculated iteratively on the basis of the previous matching. Furthermore, the image information from the pixels that are non-occluded under the short baseline but are occluded for the long baseline can be employed to improve the matching accuracy. Although the time complexity of the proposed method depends on the locations of the chosen reference images, it is usually much lower for a long baseline stereo matching than when using the traditional GC algorithm. Finally, the validity of the proposed method is examined by experiments based on benchmark datasets. The results show that the proposed method is superior to the traditional GC method in terms of efficiency and accuracy, and thus it is suitable for long baseline stereo matching.
Sun, Hokeun; Wang, Shuang
2013-05-30
The matched case-control designs are commonly used to control for potential confounding factors in genetic epidemiology studies especially epigenetic studies with DNA methylation. Compared with unmatched case-control studies with high-dimensional genomic or epigenetic data, there have been few variable selection methods for matched sets. In an earlier paper, we proposed the penalized logistic regression model for the analysis of unmatched DNA methylation data using a network-based penalty. However, for popularly applied matched designs in epigenetic studies that compare DNA methylation between tumor and adjacent non-tumor tissues or between pre-treatment and post-treatment conditions, applying ordinary logistic regression ignoring matching is known to bring serious bias in estimation. In this paper, we developed a penalized conditional logistic model using the network-based penalty that encourages a grouping effect of (1) linked Cytosine-phosphate-Guanine (CpG) sites within a gene or (2) linked genes within a genetic pathway for analysis of matched DNA methylation data. In our simulation studies, we demonstrated the superiority of using conditional logistic model over unconditional logistic model in high-dimensional variable selection problems for matched case-control data. We further investigated the benefits of utilizing biological group or graph information for matched case-control data. We applied the proposed method to a genome-wide DNA methylation study on hepatocellular carcinoma (HCC) where we investigated the DNA methylation levels of tumor and adjacent non-tumor tissues from HCC patients by using the Illumina Infinium HumanMethylation27 Beadchip. Several new CpG sites and genes known to be related to HCC were identified but were missed by the standard method in the original paper. Copyright © 2012 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
da Silva Figueiredo Celestino Gomes, Priscila; Da Silva, Franck; Bret, Guillaume; Rognan, Didier
2018-01-01
A novel docking challenge has been set by the Drug Design Data Resource (D3R) in order to predict the pose and affinity ranking of a set of Farnesoid X receptor (FXR) agonists, prior to the public release of their bound X-ray structures and potencies. In a first phase, 36 agonists were docked to 26 Protein Data Bank (PDB) structures of the FXR receptor, and next rescored using the in-house developed GRIM method. GRIM aligns protein-ligand interaction patterns of docked poses to those of available PDB templates for the target protein, and rescore poses by a graph matching method. In agreement with results obtained during the previous 2015 docking challenge, we clearly show that GRIM rescoring improves the overall quality of top-ranked poses by prioritizing interaction patterns already visited in the PDB. Importantly, this challenge enables us to refine the applicability domain of the method by better defining the conditions of its success. We notably show that rescoring apolar ligands in hydrophobic pockets leads to frequent GRIM failures. In the second phase, 102 FXR agonists were ranked by decreasing affinity according to the Gibbs free energy of the corresponding GRIM-selected poses, computed by the HYDE scoring function. Interestingly, this fast and simple rescoring scheme provided the third most accurate ranking method among 57 contributions. Although the obtained ranking is still unsuitable for hit to lead optimization, the GRIM-HYDE scoring scheme is accurate and fast enough to post-process virtual screening data.
A new mathematical modelling based shape extraction technique for Forensic Odontology.
G, Jaffino; A, Banumathi; Gurunathan, Ulaganathan; B, Vijayakumari; J, Prabin Jose
2017-04-01
Forensic Odontology is a specific means for identifying a person in which deceased, and particularly in fatality incidents. The algorithm can be proposed to identify a person by comparing both postmortem (PM) and antemortem (AM) dental radiographs and photographs. This work aims to introduce a new mathematical algorithm for photographs in addition with radiographs. Isoperimetric graph partitioning method is used to extract the shape of dental images in forensic identification. Shape matching is done by comparing AM and PM dental images using both similarity and distance measures. Experimental results prove that the higher matching distance is observed by distance metric rather than similarity measures. The results of this algorithm show that a high hit rate is observed for distance based performance measures and it is well suited for forensic odontologist to identify a person. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Optimised robot-based system for the exploration of elastic joint properties.
Frey, M; Burgkart, R; Regenfelder, F; Riener, R
2004-09-01
Numerous publications provide measured biomechanical data relating to synovial joints. However, in general, they do not reflect the non-linear elastic joint properties in detail or do not consider all degrees of freedom (DOF), or the quantity of data is sparse. To perform more comprehensive, extended measurements of elastic joint properties, an optimised robot-based approach was developed. The basis was an industrial, high-precision robot that was capable of applying loads to the joint and measuring the joint displacement in 6 DOF. The system was equipped with novel, custom-made control hardware. In contrast to the commonly used sampling rates that are below 100 Hz, a rate of 4 kHz was realised for each DOF. This made it possible to implement advanced, highly dynamic, quasi-continuous closed-loop controllers. Thus oscillations of the robot were avoided, and measurements were speeded up. The stiffness of the entire system was greater than 44 kNm(-1) and 22 Nm deg(-1), and the maximum difference between two successive measurements was less than 0.5 deg. A sophisticated CT-based referencing routine facilitated the matching of kinematic data with the individual anatomy of the tested joint. The detailed detection of the elastic varus-valgus properties of a human knee joint is described, and the need for high spatial resolution is demonstrated.
Energy Bounds for a Compressed Elastic Film on a Substrate
NASA Astrophysics Data System (ADS)
Bourne, David P.; Conti, Sergio; Müller, Stefan
2017-04-01
We study pattern formation in a compressed elastic film which delaminates from a substrate. Our key tool is the determination of rigorous upper and lower bounds on the minimum value of a suitable energy functional. The energy consists of two parts, describing the two main physical effects. The first part represents the elastic energy of the film, which is approximated using the von Kármán plate theory. The second part represents the fracture or delamination energy, which is approximated using the Griffith model of fracture. A simpler model containing the first term alone was previously studied with similar methods by several authors, assuming that the delaminated region is fixed. We include the fracture term, transforming the elastic minimisation into a free boundary problem, and opening the way for patterns which result from the interplay of elasticity and delamination. After rescaling, the energy depends on only two parameters: the rescaled film thickness, {σ }, and a measure of the bonding strength between the film and substrate, {γ }. We prove upper bounds on the minimum energy of the form {σ }^a {γ }^b and find that there are four different parameter regimes corresponding to different values of a and b and to different folding patterns of the film. In some cases, the upper bounds are attained by self-similar folding patterns as observed in experiments. Moreover, for two of the four parameter regimes we prove matching, optimal lower bounds.
Hmiel, A.; Winey, J. M.; Gupta, Y. M.; ...
2016-05-23
Accurate theoretical calculations of the nonlinear elastic response of strong solids (e.g., diamond) constitute a fundamental and important scientific need for understanding the response of such materials and for exploring the potential synthesis and design of novel solids. However, without corresponding experimental data, it is difficult to select between predictions from different theoretical methods. Recently the complete set of third-order elastic constants (TOECs) for diamond was determined experimentally, and the validity of various theoretical approaches to calculate the same may now be assessed. We report on the use of density functional theory (DFT) methods to calculate the six third-order elasticmore » constants of diamond. Two different approaches based on homogeneous deformations were used: (1) an energy-strain fitting approach using a prescribed set of deformations, and (2) a longitudinal stress-strain fitting approach using uniaxial compressive strains along the [100], [110], and [111] directions, together with calculated pressure derivatives of the second-order elastic constants. The latter approach provides a direct comparison to the experimental results. The TOECs calculated using the energy-strain approach differ significantly from the measured TOECs. In contrast, calculations using the longitudinal stress-uniaxial strain approach show good agreement with the measured TOECs and match the experimental values significantly better than the TOECs reported in previous theoretical studies. Lastly, our results on diamond have demonstrated that, with proper analysis procedures, first-principles calculations can indeed be used to accurately calculate the TOECs of strong solids.« less
Brito, Irene; Mena, Filipe C
2017-08-01
We prove that, for a given spherically symmetric fluid distribution with tangential pressure on an initial space-like hypersurface with a time-like boundary, there exists a unique, local in time solution to the Einstein equations in a neighbourhood of the boundary. As an application, we consider a particular elastic fluid interior matched to a vacuum exterior.
Structural lumber laminated from 1/4 -inch rotary-peeled southern pine veneer
P. Koch
1973-01-01
By the lamination process evaluated, 60 percent of total log volume ended as kiln-dry, end-trimmed, sized, salable 2 by 4's-approximately 50 percent more than that achieved by conventional bandsawing of matched lop. Moreover, modulus of elasticity of the laminated 2 by 4's (adjusted to 12 percent moisture content) averaged 1,950,-000 psi compared to 1,790,...
Structural lumber laminated from 1/4-inch rotary-peeled southern pine veneer
Peter Koch
1972-01-01
By the lamination process evaluated, 60 percent of total log volume ended as kiln-dry, end-trimmed, sized, salable 2 by 4's - approximately 50 percent more than that acheived by conventional bandsawing of matched logs. Moreover, modulus of elasticity of the laminated 2 by 4's (adjusted to 12 percent moisture content) averaged 1,950,000 psi compared to 1,790,...
Yang, Y; Schmitt, H P
2001-03-01
A graph method was employed to analyze the spatial neuronal patterns of nuclear grays of the pontine tegmentum with ascending aminergic projections to the forebrain in 12 cases of frontotemporal dementia (FTD). The nuclear grays examined were the nucleus centralis superior (NCS), a part of the nucleus raphae dorsalis (NRD), and the locus coeruleus (LC). The results were compared with 30 cases of Alzheimer's disease (AD) and 35 non-demented controls. In addition to the graph evaluations, neuronal cytoplasmic inclusion bodies were stained by silver impregnation and ubiquitin (Ub) and tau immunohistochemistry. The FTD cases showed a significant, 40%, decline in number of neurons in the NCS and NRD, while the LC was spared. The magnitude of neuronal loss matched that of AD where, by contrast, the LC was also severely changed. Amyloid deposition and Alzheimer neurofibrillary tangles occurred in the aminergic nuclei almost exclusively in AD and, to a minor extent, in some aged controls. No cytoplasmic inclusion bodies were found in the aminergic nuclei of the FTD cases. However, 6 cases had Ub-positive but tau-negative neuronal inclusions in the hippocampal dentate fascia and in layer 2 of the prefrontal isocortex, and 3 showed clinical and histological signs of motor neuron disease. Our results suggest that the serotoninergic raphe nuclei with ascending projections to the forebrain, but not the LC, become directly or indirectly involved in frontotemporal dementia both with and without motor neuron disease.
Graph-theoretical analysis of resting-state fMRI in pediatric obsessive-compulsive disorder
Armstrong, Casey C.; Moody, Teena D.; Feusner, Jamie D.; McCracken, James T.; Chang, Susanna; Levitt, Jennifer G.; Piacentini, John C.; O'Neill, Joseph
2018-01-01
Background fMRI graph theory reveals resting-state brain networks, but has never been used in pediatric OCD. Methods Whole-brain resting-state fMRI was acquired at 3 T from 21 children with OCD and 20 age-matched healthy controls. BOLD connectivity was analyzed yielding global and local graph-theory metrics across 100 child-based functional nodes. We also compared local metrics between groups in frontopolar, supplementary motor, and sensorimotor cortices, regions implicated in recent neuroimaging and/or brain stimulation treatment studies in OCD. Results As in adults, the global metric small-worldness was significantly (P<0.05) lower in patients than controls, by 13.5% (%mean difference = 100%×(OCD mean – control mean)/control mean). This suggests less efficient information transfer in patients. In addition, modularity was lower in OCD (15.1%, P<0.01), suggesting less granular-- or differently organized-- functional brain parcellation. Higher clustering coefficients (23.9-32.4%, P<0.05) were observed in patients in frontopolar, supplementary motor, sensorimotor, and cortices with lower betweenness centrality (-63.6%, P<0.01) at one frontopolar site. These findings are consistent with more locally intensive connectivity or less interaction with other brain regions at these sites. Limitations Relatively large node size; relatively small sample size, comorbidities in some patients. Conclusions Pediatric OCD patients demonstrate aberrant global and local resting-state network connectivity topologies compared to healthy children. Local results accord with recent views of OCD as a disorder with sensorimotor component. PMID:26773910
Detecting misinformation and knowledge conflicts in relational data
NASA Astrophysics Data System (ADS)
Levchuk, Georgiy; Jackobsen, Matthew; Riordan, Brian
2014-06-01
Information fusion is required for many mission-critical intelligence analysis tasks. Using knowledge extracted from various sources, including entities, relations, and events, intelligence analysts respond to commander's information requests, integrate facts into summaries about current situations, augment existing knowledge with inferred information, make predictions about the future, and develop action plans. However, information fusion solutions often fail because of conflicting and redundant knowledge contained in multiple sources. Most knowledge conflicts in the past were due to translation errors and reporter bias, and thus could be managed. Current and future intelligence analysis, especially in denied areas, must deal with open source data processing, where there is much greater presence of intentional misinformation. In this paper, we describe a model for detecting conflicts in multi-source textual knowledge. Our model is based on constructing semantic graphs representing patterns of multi-source knowledge conflicts and anomalies, and detecting these conflicts by matching pattern graphs against the data graph constructed using soft co-reference between entities and events in multiple sources. The conflict detection process maintains the uncertainty throughout all phases, providing full traceability and enabling incremental updates of the detection results as new knowledge or modification to previously analyzed information are obtained. Detected conflicts are presented to analysts for further investigation. In the experimental study with SYNCOIN dataset, our algorithms achieved perfect conflict detection in ideal situation (no missing data) while producing 82% recall and 90% precision in realistic noise situation (15% of missing attributes).
Elisa, Baldelli; B., Haura Eric; Lucio, Crinò; Douglas, Cress W.; Vienna, Ludovini; B., Schabath Matthew; A., Liotta Lance; F., Petricoin Emanuel; Mariaelena, Pierobon
2015-01-01
Purpose The aim of this study was to evaluate whether upfront cellular enrichment via laser capture microdissection is necessary for accurately quantifying predictive biomarkers in non-small cell lung cancer tumors. Experimental design Fifteen snap frozen surgical biopsies were analyzed. Whole tissue lysate and matched highly enriched tumor epithelium via laser capture microdissection (LCM) were obtained for each patient. The expression and activation/phosphorylation levels of 26 proteins were measured by reverse phase protein microarray. Differences in signaling architecture of dissected and undissected matched pairs were visualized using unsupervised clustering analysis, bar graphs, and scatter plots. Results Overall patient matched LCM and undissected material displayed very distinct and differing signaling architectures with 93% of the matched pairs clustering separately. These differences were seen regardless of the amount of starting tumor epithelial content present in the specimen. Conclusions and clinical relevance These results indicate that LCM driven upfront cellular enrichment is necessary to accurately determine the expression/activation levels of predictive protein signaling markers although results should be evaluated in larger clinical settings. Upfront cellular enrichment of the target cell appears to be an important part of the workflow needed for the accurate quantification of predictive protein signaling biomarkers. Larger independent studies are warranted. PMID:25676683
Concurrent Tumor Segmentation and Registration with Uncertainty-based Sparse non-Uniform Graphs
Parisot, Sarah; Wells, William; Chemouny, Stéphane; Duffau, Hugues; Paragios, Nikos
2014-01-01
In this paper, we present a graph-based concurrent brain tumor segmentation and atlas to diseased patient registration framework. Both segmentation and registration problems are modeled using a unified pairwise discrete Markov Random Field model on a sparse grid superimposed to the image domain. Segmentation is addressed based on pattern classification techniques, while registration is performed by maximizing the similarity between volumes and is modular with respect to the matching criterion. The two problems are coupled by relaxing the registration term in the tumor area, corresponding to areas of high classification score and high dissimilarity between volumes. In order to overcome the main shortcomings of discrete approaches regarding appropriate sampling of the solution space as well as important memory requirements, content driven samplings of the discrete displacement set and the sparse grid are considered, based on the local segmentation and registration uncertainties recovered by the min marginal energies. State of the art results on a substantial low-grade glioma database demonstrate the potential of our method, while our proposed approach shows maintained performance and strongly reduced complexity of the model. PMID:24717540
Semi-Automated Annotation of Biobank Data Using Standard Medical Terminologies in a Graph Database.
Hofer, Philipp; Neururer, Sabrina; Goebel, Georg
2016-01-01
Data describing biobank resources frequently contains unstructured free-text information or insufficient coding standards. (Bio-) medical ontologies like Orphanet Rare Diseases Ontology (ORDO) or the Human Disease Ontology (DOID) provide a high number of concepts, synonyms and entity relationship properties. Such standard terminologies increase quality and granularity of input data by adding comprehensive semantic background knowledge from validated entity relationships. Moreover, cross-references between terminology concepts facilitate data integration across databases using different coding standards. In order to encourage the use of standard terminologies, our aim is to identify and link relevant concepts with free-text diagnosis inputs within a biobank registry. Relevant concepts are selected automatically by lexical matching and SPARQL queries against a RDF triplestore. To ensure correctness of annotations, proposed concepts have to be confirmed by medical data administration experts before they are entered into the registry database. Relevant (bio-) medical terminologies describing diseases and phenotypes were identified and stored in a graph database which was tied to a local biobank registry. Concept recommendations during data input trigger a structured description of medical data and facilitate data linkage between heterogeneous systems.
A large-grain mapping approach for multiprocessor systems through data flow model. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Kim, Hwa-Soo
1991-01-01
A large-grain level mapping method is presented of numerical oriented applications onto multiprocessor systems. The method is based on the large-grain data flow representation of the input application and it assumes a general interconnection topology of the multiprocessor system. The large-grain data flow model was used because such representation best exhibits inherited parallelism in many important applications, e.g., CFD models based on partial differential equations can be presented in large-grain data flow format, very effectively. A generalized interconnection topology of the multiprocessor architecture is considered, including such architectural issues as interprocessor communication cost, with the aim to identify the 'best matching' between the application and the multiprocessor structure. The objective is to minimize the total execution time of the input algorithm running on the target system. The mapping strategy consists of the following: (1) large-grain data flow graph generation from the input application using compilation techniques; (2) data flow graph partitioning into basic computation blocks; and (3) physical mapping onto the target multiprocessor using a priority allocation scheme for the computation blocks.
Directable weathering of concave rock using curvature estimation.
Jones, Michael D; Farley, McKay; Butler, Joseph; Beardall, Matthew
2010-01-01
We address the problem of directable weathering of exposed concave rock for use in computer-generated animation or games. Previous weathering models that admit concave surfaces are computationally inefficient and difficult to control. In nature, the spheroidal and cavernous weathering rates depend on the surface curvature. Spheroidal weathering is fastest in areas with large positive mean curvature and cavernous weathering is fastest in areas with large negative mean curvature. We simulate both processes using an approximation of mean curvature on a voxel grid. Both weathering rates are also influenced by rock durability. The user controls rock durability by editing a durability graph before and during weathering simulation. Simulations of rockfall and colluvium deposition further improve realism. The profile of the final weathered rock matches the shape of the durability graph up to the effects of weathering and colluvium deposition. We demonstrate the top-down directability and visual plausibility of the resulting model through a series of screenshots and rendered images. The results include the weathering of a cube into a sphere and of a sheltered inside corner into a cavern as predicted by the underlying geomorphological models.
Combining computational models, semantic annotations and simulation experiments in a graph database
Henkel, Ron; Wolkenhauer, Olaf; Waltemath, Dagmar
2015-01-01
Model repositories such as the BioModels Database, the CellML Model Repository or JWS Online are frequently accessed to retrieve computational models of biological systems. However, their storage concepts support only restricted types of queries and not all data inside the repositories can be retrieved. In this article we present a storage concept that meets this challenge. It grounds on a graph database, reflects the models’ structure, incorporates semantic annotations and simulation descriptions and ultimately connects different types of model-related data. The connections between heterogeneous model-related data and bio-ontologies enable efficient search via biological facts and grant access to new model features. The introduced concept notably improves the access of computational models and associated simulations in a model repository. This has positive effects on tasks such as model search, retrieval, ranking, matching and filtering. Furthermore, our work for the first time enables CellML- and Systems Biology Markup Language-encoded models to be effectively maintained in one database. We show how these models can be linked via annotations and queried. Database URL: https://sems.uni-rostock.de/projects/masymos/ PMID:25754863
Finite plateau in spectral gap of polychromatic constrained random networks
NASA Astrophysics Data System (ADS)
Avetisov, V.; Gorsky, A.; Nechaev, S.; Valba, O.
2017-12-01
We consider critical behavior in the ensemble of polychromatic Erdős-Rényi networks and regular random graphs, where network vertices are painted in different colors. The links can be randomly removed and added to the network subject to the condition of the vertex degree conservation. In these constrained graphs we run the Metropolis procedure, which favors the connected unicolor triads of nodes. Changing the chemical potential, μ , of such triads, for some wide region of μ , we find the formation of a finite plateau in the number of intercolor links, which exactly matches the finite plateau in the network algebraic connectivity (the value of the first nonvanishing eigenvalue of the Laplacian matrix, λ2). We claim that at the plateau the spontaneously broken Z2 symmetry is restored by the mechanism of modes collectivization in clusters of different colors. The phenomena of a finite plateau formation holds also for polychromatic networks with M ≥2 colors. The behavior of polychromatic networks is analyzed via the spectral properties of their adjacency and Laplacian matrices.
Traumatic brain injury impairs small-world topology
Pandit, Anand S.; Expert, Paul; Lambiotte, Renaud; Bonnelle, Valerie; Leech, Robert; Turkheimer, Federico E.
2013-01-01
Objective: We test the hypothesis that brain networks associated with cognitive function shift away from a “small-world” organization following traumatic brain injury (TBI). Methods: We investigated 20 TBI patients and 21 age-matched controls. Resting-state functional MRI was used to study functional connectivity. Graph theoretical analysis was then applied to partial correlation matrices derived from these data. The presence of white matter damage was quantified using diffusion tensor imaging. Results: Patients showed characteristic cognitive impairments as well as evidence of damage to white matter tracts. Compared to controls, the graph analysis showed reduced overall connectivity, longer average path lengths, and reduced network efficiency. A particular impact of TBI is seen on a major network hub, the posterior cingulate cortex. Taken together, these results confirm that a network critical to cognitive function shows a shift away from small-world characteristics. Conclusions: We provide evidence that key brain networks involved in supporting cognitive function become less small-world in their organization after TBI. This is likely to be the result of diffuse white matter damage, and may be an important factor in producing cognitive impairment after TBI. PMID:23596068
Supervised graph hashing for histopathology image retrieval and classification.
Shi, Xiaoshuang; Xing, Fuyong; Xu, KaiDi; Xie, Yuanpu; Su, Hai; Yang, Lin
2017-12-01
In pathology image analysis, morphological characteristics of cells are critical to grade many diseases. With the development of cell detection and segmentation techniques, it is possible to extract cell-level information for further analysis in pathology images. However, it is challenging to conduct efficient analysis of cell-level information on a large-scale image dataset because each image usually contains hundreds or thousands of cells. In this paper, we propose a novel image retrieval based framework for large-scale pathology image analysis. For each image, we encode each cell into binary codes to generate image representation using a novel graph based hashing model and then conduct image retrieval by applying a group-to-group matching method to similarity measurement. In order to improve both computational efficiency and memory requirement, we further introduce matrix factorization into the hashing model for scalable image retrieval. The proposed framework is extensively validated with thousands of lung cancer images, and it achieves 97.98% classification accuracy and 97.50% retrieval precision with all cells of each query image used. Copyright © 2017 Elsevier B.V. All rights reserved.
Approximate labeling via graph cuts based on linear programming.
Komodakis, Nikos; Tziritas, Georgios
2007-08-01
A new framework is presented for both understanding and developing graph-cut-based combinatorial algorithms suitable for the approximate optimization of a very wide class of Markov Random Fields (MRFs) that are frequently encountered in computer vision. The proposed framework utilizes tools from the duality theory of linear programming in order to provide an alternative and more general view of state-of-the-art techniques like the \\alpha-expansion algorithm, which is included merely as a special case. Moreover, contrary to \\alpha-expansion, the derived algorithms generate solutions with guaranteed optimality properties for a much wider class of problems, for example, even for MRFs with nonmetric potentials. In addition, they are capable of providing per-instance suboptimality bounds in all occasions, including discrete MRFs with an arbitrary potential function. These bounds prove to be very tight in practice (that is, very close to 1), which means that the resulting solutions are almost optimal. Our algorithms' effectiveness is demonstrated by presenting experimental results on a variety of low-level vision tasks, such as stereo matching, image restoration, image completion, and optical flow estimation, as well as on synthetic problems.
SOPanG: online text searching over a pan-genome.
Cislak, Aleksander; Grabowski, Szymon; Holub, Jan
2018-06-22
The many thousands of high-quality genomes available nowadays imply a shift from single genome to pan-genomic analyses. A basic algorithmic building brick for such a scenario is online search over a collection of similar texts, a problem with surprisingly few solutions presented so far. We present SOPanG, a simple tool for exact pattern matching over an elastic-degenerate string, a recently proposed simplified model for the pan-genome. Thanks to bit-parallelism, it achieves pattern matching speeds above 400MB/s, more than an order of magnitude higher than of other software. SOPanG is available for free from: https://github.com/MrAlexSee/sopang. Supplementary data are available at Bioinformatics online.
Elastic stability of DNA configurations. II. Supercoiled plasmids with self-contact
NASA Astrophysics Data System (ADS)
Coleman, Bernard D.; Swigon, David; Tobias, Irwin
2000-01-01
Configurations of protein-free DNA miniplasmids are calculated with the effects of impenetrability and self-contact forces taken into account by using exact solutions of Kirchhoff's equations of equilibrium for elastic rods of circular cross section. Bifurcation diagrams are presented as graphs of excess link, ΔL, versus writhe, W, and the stability criteria derived in paper I of this series are employed in a search for regions of such diagrams that correspond to configurations that are stable, in the sense that they give local minima to elastic energy. Primary bifurcation branches that originate at circular configurations are composed of configurations with Dm symmetry (m=2,3,...). Among the results obtained are the following. (i) There are configurations with C2 symmetry forming secondary bifurcation branches which emerge from the primary branch with m=3, and bifurcation of such secondary branches gives rise to tertiary branches of configurations without symmetry. (ii) Whether or not self-contact occurs, a noncircular configuration in the primary branch with m=2, called branch α, is stable when for it the derivative dΔL/dW, computed along that branch, is strictly positive. (iii) For configurations not in α, the condition dΔL/dW>0 is not sufficient for stability; in fact, each nonplanar contact-free configuration that is in a branch other than α is unstable. A rule relating the number of points of self-contact and the occurrence of intervals of such contact to the magnitude of ΔL, which in paper I was found to hold for segments of DNA subject to strong anchoring end conditions, is here observed to hold for computed configurations of protein-free miniplasmids.
Self-assembly of skyrmion-dressed chiral nematic colloids with tangential anchoring.
Pandey, M B; Porenta, T; Brewer, J; Burkart, A; Copar, S; Zumer, S; Smalyukh, Ivan I
2014-06-01
We describe dipolar nematic colloids comprising mutually bound solid microspheres, three-dimensional skyrmions, and point defects in a molecular alignment field of chiral nematic liquid crystals. Nonlinear optical imaging and numerical modeling based on minimization of Landau-de Gennes free energy reveal that the particle-induced skyrmions resemble torons and hopfions, while matching surface boundary conditions at the interfaces of liquid crystal and colloidal spheres. Laser tweezers and videomicroscopy reveal that the skyrmion-colloidal hybrids exhibit purely repulsive elastic pair interactions in the case of parallel dipoles and an unexpected reversal of interaction forces from repulsive to attractive as the center-to-center distance decreases for antiparallel dipoles. The ensuing elastic self-assembly gives rise to colloidal chains of antiparallel dipoles with particles entangled by skyrmions.
The ZnSe(110) puzzle - Comparison with GaAs(110)
NASA Technical Reports Server (NTRS)
Duke, C. B.; Paton, A.; Kahn, A.; Tu, D.-W.
1984-01-01
The surface structure of monocrystalline ZnSe(110) and of 4-5-nm-thick ZnSe(110) layers epitaxially grown on GaAs(110) is investigated by means of elastic LEED and AES; the results are analyzed using the computer programs and R-factor methods of Duke et al. (1981 and 1983), presented in graphs and tables, and compared to those for GaAs(110). Significant differences are attributed to bond-length-conserving outward rotation of Se and inward rotation of Zn in the top layer, with an angle of 4 deg between the actual plane of the cation-anion chain and the truncated bulk surface. The R intensities measured for ZnSe(110) and GaAs(110) are given as Rx = 0.22 and RI = 0.21 and Rx = 0.24 and RI = 0.16, respectively.
A multiscale red blood cell model with accurate mechanics, rheology, and dynamics.
Fedosov, Dmitry A; Caswell, Bruce; Karniadakis, George Em
2010-05-19
Red blood cells (RBCs) have highly deformable viscoelastic membranes exhibiting complex rheological response and rich hydrodynamic behavior governed by special elastic and bending properties and by the external/internal fluid and membrane viscosities. We present a multiscale RBC model that is able to predict RBC mechanics, rheology, and dynamics in agreement with experiments. Based on an analytic theory, the modeled membrane properties can be uniquely related to the experimentally established RBC macroscopic properties without any adjustment of parameters. The RBC linear and nonlinear elastic deformations match those obtained in optical-tweezers experiments. The rheological properties of the membrane are compared with those obtained in optical magnetic twisting cytometry, membrane thermal fluctuations, and creep followed by cell recovery. The dynamics of RBCs in shear and Poiseuille flows is tested against experiments and theoretical predictions, and the applicability of the latter is discussed. Our findings clearly indicate that a purely elastic model for the membrane cannot accurately represent the RBC's rheological properties and its dynamics, and therefore accurate modeling of a viscoelastic membrane is necessary. Copyright 2010 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Ahmad, Sahar; Khan, Muhammad Faisal
2015-12-01
In this paper, we present a new non-rigid image registration method that imposes a topology preservation constraint on the deformation. We propose to incorporate the time varying elasticity model into the deformable image matching procedure and constrain the Jacobian determinant of the transformation over the entire image domain. The motion of elastic bodies is governed by a hyperbolic partial differential equation, generally termed as elastodynamics wave equation, which we propose to use as a deformation model. We carried out clinical image registration experiments on 3D magnetic resonance brain scans from IBSR database. The results of the proposed registration approach in terms of Kappa index and relative overlap computed over the subcortical structures were compared against the existing topology preserving non-rigid image registration methods and non topology preserving variant of our proposed registration scheme. The Jacobian determinant maps obtained with our proposed registration method were qualitatively and quantitatively analyzed. The results demonstrated that the proposed scheme provides good registration accuracy with smooth transformations, thereby guaranteeing the preservation of topology. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Bayati, I.; Belloli, M.; Bernini, L.; Mikkelsen, R.; Zasso, A.
2016-09-01
This paper illustrates the aero-elastic optimal design, the realization and the verification of the wind tunnel scale model blades for the DTU 10 MW wind turbine model, within LIFES50+ project. The aerodynamic design was focused on the minimization of the difference, in terms of thrust coefficient, with respect to the full scale reference. From the Selig low Reynolds database airfoils, the SD7032 was chosen for this purpose and a proper constant section wing was tested at DTU red wind tunnel, providing force and distributed pressure coefficients for the design, in the Reynolds range 30-250 E3 and for different angles of attack. The aero-elastic design algorithm was set to define the optimal spanwise thickness over chord ratio (t/c), the chord length and the twist to match the first flapwise scaled natural frequency. An aluminium mould for the carbon fibre was CNC manufactured based on B-Splines CAD definition of the external geometry. Then the wind tunnel tests at Politecnico di Milano confirmed successful design and manufacturing approaches.
A Multiscale Red Blood Cell Model with Accurate Mechanics, Rheology, and Dynamics
Fedosov, Dmitry A.; Caswell, Bruce; Karniadakis, George Em
2010-01-01
Abstract Red blood cells (RBCs) have highly deformable viscoelastic membranes exhibiting complex rheological response and rich hydrodynamic behavior governed by special elastic and bending properties and by the external/internal fluid and membrane viscosities. We present a multiscale RBC model that is able to predict RBC mechanics, rheology, and dynamics in agreement with experiments. Based on an analytic theory, the modeled membrane properties can be uniquely related to the experimentally established RBC macroscopic properties without any adjustment of parameters. The RBC linear and nonlinear elastic deformations match those obtained in optical-tweezers experiments. The rheological properties of the membrane are compared with those obtained in optical magnetic twisting cytometry, membrane thermal fluctuations, and creep followed by cell recovery. The dynamics of RBCs in shear and Poiseuille flows is tested against experiments and theoretical predictions, and the applicability of the latter is discussed. Our findings clearly indicate that a purely elastic model for the membrane cannot accurately represent the RBC's rheological properties and its dynamics, and therefore accurate modeling of a viscoelastic membrane is necessary. PMID:20483330
Dexter: Data Extractor for scanned graphs
NASA Astrophysics Data System (ADS)
Demleitner, Markus
2011-12-01
The NASA Astrophysics Data System (ADS) now holds 1.3 million scanned pages, containing numerous plots and figures for which the original data sets are lost or inaccessible. The availability of scans of the figures can significantly ease the regeneration of the data sets. For this purpose, the ADS has developed Dexter, a Java applet that supports the user in this process. Dexter's basic functionality is to let the user manually digitize a plot by marking points and defining the coordinate transformation from the logical to the physical coordinate system. Advanced features include automatic identification of axes, tracing lines and finding points matching a template.
A High-Purity Alumina for Use in Studies of Shock Loaded Samples
NASA Astrophysics Data System (ADS)
Lacina, David; Neel, Christopher
2017-06-01
We report the results of plate impact experiments on a potential new ``standard'' material, Coorstek Plasmapure-UC (99.9% purity) polycrystalline alumina, for use in non-conduction, impact environment, shock loading studies. This work was motivated by a desire to find a 99.9% purity alumina to replace the now unavailable Coors Vistal (99.9%) alumina, as it was hoped the Hugoniot elastic limit (HEL) of the new standard would match the 9-11 GPa value of Vistal. Shock response data, including the HEL, Hugoniot particle velocities, Hugoniot shock velocities, stress vs volume, and release wave speeds, was obtained up to 14 GPa. This data will be compared with Hugoniot curve data for other high purity alumina to contrast differences in the shock response, and is intended to be useful in impedance matching calculations. We will show that the HEL of Plasmapure-UC alumina is 5.5 GPa and speculate on causes for this lower than expected value. We will also explore why the elastic-plastic response for Plasmapure-UC alumina differs from what has been observed from other high purity alumina. The final result of this work is to recommend a well-characterized, lower purity alumina (Coorstek AD-995) as a potential new ``standard'' material.
Loose fusion based on SLAM and IMU for indoor environment
NASA Astrophysics Data System (ADS)
Zhu, Haijiang; Wang, Zhicheng; Zhou, Jinglin; Wang, Xuejing
2018-04-01
The simultaneous localization and mapping (SLAM) method based on the RGB-D sensor is widely researched in recent years. However, the accuracy of the RGB-D SLAM relies heavily on correspondence feature points, and the position would be lost in case of scenes with sparse textures. Therefore, plenty of fusion methods using the RGB-D information and inertial measurement unit (IMU) data have investigated to improve the accuracy of SLAM system. However, these fusion methods usually do not take into account the size of matched feature points. The pose estimation calculated by RGB-D information may not be accurate while the number of correct matches is too few. Thus, considering the impact of matches in SLAM system and the problem of missing position in scenes with few textures, a loose fusion method combining RGB-D with IMU is proposed in this paper. In the proposed method, we design a loose fusion strategy based on the RGB-D camera information and IMU data, which is to utilize the IMU data for position estimation when the corresponding point matches are quite few. While there are a lot of matches, the RGB-D information is still used to estimate position. The final pose would be optimized by General Graph Optimization (g2o) framework to reduce error. The experimental results show that the proposed method is better than the RGB-D camera's method. And this method can continue working stably for indoor environment with sparse textures in the SLAM system.
Vu, Long T.; Keschrumrus, Vic; Zhang, Xi; Zhong, Jiang F.; Su, Qingning; Kabeer, Mustafa H.; Loudon, William G.; Li, Shengwen Calvin
2015-01-01
Background The tumor microenvironment consists of both physical and chemical factors. Tissue elasticity is one physical factor contributing to the microenvironment of tumor cells. To test the importance of tissue elasticity in cell culture, primitive neuroectodermal tumor (PNET) stem cells were cultured on soft polyacrylamide (PAA) hydrogel plates that mimics the elasticity of brain tissue compared with PNET on standard polystyrene (PS) plates. We report the molecular profiles of PNET grown on either PAA or PS. Methodology/Principal Findings A whole-genome microarray profile of transcriptional expression between the two culture conditions was performed as a way to probe effects of substrate on cell behavior in culture. The results showed more genes downregulated on PAA compared to PS. This led us to propose microRNA (miRNA) silencing as a potential mechanism for downregulation. Bioinformatic analysis predicted a greater number of miRNA binding sites from the 3' UTR of downregulated genes and identified as specific miRNA binding sites that were enriched when cells were grown on PAA—this supports the hypothesis that tissue elasticity plays a role in influencing miRNA expression. Thus, Dicer was examined to determine if miRNA processing was affected by tissue elasticity. Dicer genes were downregulated on PAA and had multiple predicted miRNA binding sites in its 3' UTR that matched the miRNA binding sites found enriched on PAA. Many differentially regulated genes were found to be present on PS but downregulated on PAA were mapped onto intron sequences. This suggests expression of alternative polyadenylation sites within intron regions that provide alternative 3' UTRs and alternative miRNA binding sites. This results in tissue specific transcriptional downregulation of mRNA in humans by miRNA. We propose a mechanism, driven by the physical characteristics of the microenvironment by which downregulation of genes occur. We found that tissue elasticity-mediated cytokines (TGFβ2 and TNFα) signaling affect expression of ECM proteins. Conclusions Our results suggest that tissue elasticity plays important roles in miRNA expression, which, in turn, regulate tumor growth or tumorigenicity. PMID:25774514
Schlötzer-Schrehardt, Ursula; Hammer, Christian M; Krysta, Anita W; Hofmann-Rummelt, Carmen; Pasutto, Francesca; Sasaki, Takako; Kruse, Friedrich E; Zenkel, Matthias
2012-09-01
To test the hypothesis that a primary disturbance in lysyl oxidase-like 1 (LOXL1) and elastin metabolism in the lamina cribrosa of eyes with pseudoexfoliation syndrome constitutes an independent risk factor for glaucoma development and progression. Observational, consecutive case series. Posterior segment tissues obtained from 37 donors with early and late stages of pseudoexfoliation syndrome without glaucoma, 37 normal age-matched control subjects, 5 eyes with pseudoexfoliation-associated open-angle glaucoma, and 5 eyes with primary open-angle glaucoma (POAG). Protein and mRNA expression of major elastic fiber components (elastin, fibrillin-1, fibulin-4), collagens (types I, III, and IV), and lysyl oxidase crosslinking enzymes (LOX, LOXL1, LOXL2) were assessed in situ by quantitative real-time polymerase chain reaction, (immuno)histochemistry, and light and electron microscopy. Lysyl oxidase-dependent elastin fiber assembly was assessed by primary optic nerve head astrocytes in vitro. Expression levels of elastic proteins, collagens, and lysyl oxidases in the lamina cribrosa. Lysyl oxidase-like 1 proved to be the major lysyl oxidase isoform in the normal lamina cribrosa in association with a complex elastic fiber network. Compared with normal and POAG specimens, lamina cribrosa tissues obtained from early and late stages of pseudoexfoliation syndrome without and with glaucoma consistently revealed a significant coordinated downregulation of LOXL1 and elastic fiber constituents on mRNA and protein level. In contrast, expression levels of collagens and other lysyl oxidase isoforms were not affected. Dysregulated expression of LOXL1 and elastic proteins was associated with pronounced (ultra)structural alterations of the elastic fiber network in the laminar beams of pseudoexfoliation syndrome eyes. Inhibition of LOXL1 interfered with elastic fiber assembly by optic nerve head astrocytes in vitro. The findings provide evidence for a pseudoexfoliation-specific elastinopathy of the lamina cribrosa resulting from a primary disturbance in LOXL1 regulation and elastic fiber homeostasis, possibly rendering pseudoexfoliation syndrome eyes more vulnerable to pressure-induced optic nerve damage and glaucoma development and progression. Copyright © 2012 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
Falland-Cheung, Lisa; Waddell, J Neil; Chun Li, Kai; Tong, Darryl; Brunton, Paul
2017-04-01
Conducting in vitro research for forensic, impact and injury simulation modelling generally involves the use of a skull simulant with mechanical properties similar to those found in the human skull. For this study epoxy resin, fibre filled epoxy resin, 3D-printing filaments (PETG, PLA) and self-cure acrylic denture base resin were used to fabricate the specimens (n=20 per material group), according to ISO 527-2 IBB and ISO20795-1. Tensile and flexural testing in a universal testing machine was used to measure their tensile/flexural elastic modulus and strength. The results showed that the epoxy resin and fibre filled epoxy resin had similar tensile elastic moduli (no statistical significant difference) with lower values observed for the other materials. The fibre filled epoxy resin had a considerably higher flexural elastic modulus and strength, possibly attributed to the presence of fibres. Of the simulants tested, epoxy resin had an elastic modulus and flexural strength close to that of mean human skull values reported in the literature, and thus can be considered as a suitable skull simulant for a skin/skull/brain model for lower impact forces that do not exceed the fracture stress. For higher impact forces a 3D printing filament (PLA) may be a more suitable skull simulant material, due to its closer match to fracture stresses found in human skull bone. Influencing factors were also anisotropy, heterogeneity and viscoelasticity of human skull bone and simulant specimens. Copyright © 2017 Elsevier Ltd. All rights reserved.
Anifah, Lilik; Purnama, I Ketut Eddy; Hariadi, Mochamad; Purnomo, Mauridhi Hery
2013-01-01
Localization is the first step in osteoarthritis (OA) classification. Manual classification, however, is time-consuming, tedious, and expensive. The proposed system is designed as decision support system for medical doctors to classify the severity of knee OA. A method has been proposed here to localize a joint space area for OA and then classify it in 4 steps to classify OA into KL-Grade 0, KL-Grade 1, KL-Grade 2, KL-Grade 3 and KL-Grade 4, which are preprocessing, segmentation, feature extraction, and classification. In this proposed system, right and left knee detection was performed by employing the Contrast-Limited Adaptive Histogram Equalization (CLAHE) and the template matching. The Gabor kernel, row sum graph and moment methods were used to localize the junction space area of knee. CLAHE is used for preprocessing step, i.e.to normalize the varied intensities. The segmentation process was conducted using the Gabor kernel, template matching, row sum graph and gray level center of mass method. Here GLCM (contrast, correlation, energy, and homogeinity) features were employed as training data. Overall, 50 data were evaluated for training and 258 data for testing. Experimental results showed the best performance by using gabor kernel with parameters α=8, θ=0, Ψ=[0 π/2], γ=0,8, N=4 and with number of iterations being 5000, momentum value 0.5 and α0=0.6 for the classification process. The run gave classification accuracy rate of 93.8% for KL-Grade 0, 70% for KL-Grade 1, 4% for KL-Grade 2, 10% for KL-Grade 3 and 88.9% for KL-Grade 4.
Anifah, Lilik; Purnama, I Ketut Eddy; Hariadi, Mochamad; Purnomo, Mauridhi Hery
2013-01-01
Localization is the first step in osteoarthritis (OA) classification. Manual classification, however, is time-consuming, tedious, and expensive. The proposed system is designed as decision support system for medical doctors to classify the severity of knee OA. A method has been proposed here to localize a joint space area for OA and then classify it in 4 steps to classify OA into KL-Grade 0, KL-Grade 1, KL-Grade 2, KL-Grade 3 and KL-Grade 4, which are preprocessing, segmentation, feature extraction, and classification. In this proposed system, right and left knee detection was performed by employing the Contrast-Limited Adaptive Histogram Equalization (CLAHE) and the template matching. The Gabor kernel, row sum graph and moment methods were used to localize the junction space area of knee. CLAHE is used for preprocessing step, i.e.to normalize the varied intensities. The segmentation process was conducted using the Gabor kernel, template matching, row sum graph and gray level center of mass method. Here GLCM (contrast, correlation, energy, and homogeinity) features were employed as training data. Overall, 50 data were evaluated for training and 258 data for testing. Experimental results showed the best performance by using gabor kernel with parameters α=8, θ=0, Ψ=[0 π/2], γ=0,8, N=4 and with number of iterations being 5000, momentum value 0.5 and α0=0.6 for the classification process. The run gave classification accuracy rate of 93.8% for KL-Grade 0, 70% for KL-Grade 1, 4% for KL-Grade 2, 10% for KL-Grade 3 and 88.9% for KL-Grade 4. PMID:23525188
Discovering interesting molecular substructures for molecular classification.
Lam, Winnie W M; Chan, Keith C C
2010-06-01
Given a set of molecular structure data preclassified into a number of classes, the molecular classification problem is concerned with the discovering of interesting structural patterns in the data so that "unseen" molecules not originally in the dataset can be accurately classified. To tackle the problem, interesting molecular substructures have to be discovered and this is done typically by first representing molecular structures in molecular graphs, and then, using graph-mining algorithms to discover frequently occurring subgraphs in them. These subgraphs are then used to characterize different classes for molecular classification. While such an approach can be very effective, it should be noted that a substructure that occurs frequently in one class may also does occur in another. The discovering of frequent subgraphs for molecular classification may, therefore, not always be the most effective. In this paper, we propose a novel technique called mining interesting substructures in molecular data for classification (MISMOC) that can discover interesting frequent subgraphs not just for the characterization of a molecular class but also for the distinguishing of it from the others. Using a test statistic, MISMOC screens each frequent subgraph to determine if they are interesting. For those that are interesting, their degrees of interestingness are determined using an information-theoretic measure. When classifying an unseen molecule, its structure is then matched against the interesting subgraphs in each class and a total interestingness measure for the unseen molecule to be classified into a particular class is determined, which is based on the interestingness of each matched subgraphs. The performance of MISMOC is evaluated using both artificial and real datasets, and the results show that it can be an effective approach for molecular classification.
Hursh, Steven R.
1984-01-01
Economics, like behavioral psychology, is a science of behavior, albeit highly organized human behavior. The value of economic concepts for behavioral psychology rests on (1) their empirical validity when tested in the laboratory with individual subjects and (2) their uniqueness when compared to established behavioral concepts. Several fundamental concepts are introduced and illustrated by reference to experimental data: open and closed economies, elastic and inelastic demand, and substitution versus complementarity. Changes in absolute response rate are analyzed in relation to elasticity and intensity of demand. The economic concepts of substitution and complementarity are related to traditional behavioral studies of choice and to the matching relation. The economic approach has many implications for the future of behavioral research and theory. In general, economic concepts are grounded on a dynamic view of reinforcement. The closed-economy methodology extends the generality of behavioral principles to situations in which response rate and obtained rate of reinforcement are interdependent. Analysis of results in terms of elasticity and intensity of demand promises to provide a more direct method for characterizing the effects of “motivational” variables. Future studies of choice should arrange heterogeneous reinforcers with varying elasticities, use closed economies, and modulate scarcity or income. The economic analysis can be extended to the study of performances that involve subtle discriminations or skilled movements that vary in accuracy or quality as opposed to rate or quantity, and thus permit examination of time/accuracy trade-offs. PMID:16812401
Couette shear of an ideal 2D photo-elastic granular system
NASA Astrophysics Data System (ADS)
Behringer, Robert; Zheng, Hu; Barés, Jonathan; Wang, Dong
2016-11-01
In this study, Couette shear experiments are conducted using 2D photoelastic granular particles, which allows us to apply infinite shear strain to the granular system. We obtain force information at the granular scale using the calibrated photo-elastic grain force response. The whole granular system is density matched in salt solution, which guarantees an ideal 2D system without basal friction between the particles and the table. The viscosity is negligible at the very small shear strain rate (0.017 rpm). This talk will address two main points: i) how does the system reach a jammed state; ii) how does system reach a long term stable state and what are the properties of that state. We acknowledge support from NSF Grant No. DMR1206351, NASA Grant No. NNX15AD38G and the W.M. Keck Foundation.
Couette shear of an ideal 2D photo-elastic granular system
NASA Astrophysics Data System (ADS)
Wang, Meimei; Zheng, Hu; BaréS, Jonathan; Wang, Dong; Behringe, Robert
In this study, Couette shear experiments are conducted using 2D photoelastic granular particles, which allows us to apply infinite shear strain to the granular system. We obtain force information st the granular scale using the calibrated photo-elastic grain force response. The whole granular system is density matched in salt solution, which guarantees an ideal 2D system without basal friction between the particles and the table. The viscosity is negligible at the very small shear strain rate (0.017 rpm). This talk will address two main points: i) how does the system reach a jammed state; ii) how does system reach a long term stable state and what are the properties of that state. NSF Grant No. DMR1206351, NASA Grant No. NNX15AD38G and the W.M. Keck Foundation.
Couple Graph Based Label Propagation Method for Hyperspectral Remote Sensing Data Classification
NASA Astrophysics Data System (ADS)
Wang, X. P.; Hu, Y.; Chen, J.
2018-04-01
Graph based semi-supervised classification method are widely used for hyperspectral image classification. We present a couple graph based label propagation method, which contains both the adjacency graph and the similar graph. We propose to construct the similar graph by using the similar probability, which utilize the label similarity among examples probably. The adjacency graph was utilized by a common manifold learning method, which has effective improve the classification accuracy of hyperspectral data. The experiments indicate that the couple graph Laplacian which unite both the adjacency graph and the similar graph, produce superior classification results than other manifold Learning based graph Laplacian and Sparse representation based graph Laplacian in label propagation framework.
Multi-Centrality Graph Spectral Decompositions and Their Application to Cyber Intrusion Detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Pin-Yu; Choudhury, Sutanay; Hero, Alfred
Many modern datasets can be represented as graphs and hence spectral decompositions such as graph principal component analysis (PCA) can be useful. Distinct from previous graph decomposition approaches based on subspace projection of a single topological feature, e.g., the centered graph adjacency matrix (graph Laplacian), we propose spectral decomposition approaches to graph PCA and graph dictionary learning that integrate multiple features, including graph walk statistics, centrality measures and graph distances to reference nodes. In this paper we propose a new PCA method for single graph analysis, called multi-centrality graph PCA (MC-GPCA), and a new dictionary learning method for ensembles ofmore » graphs, called multi-centrality graph dictionary learning (MC-GDL), both based on spectral decomposition of multi-centrality matrices. As an application to cyber intrusion detection, MC-GPCA can be an effective indicator of anomalous connectivity pattern and MC-GDL can provide discriminative basis for attack classification.« less
Graphs, matrices, and the GraphBLAS: Seven good reasons
Kepner, Jeremy; Bader, David; Buluç, Aydın; ...
2015-01-01
The analysis of graphs has become increasingly important to a wide range of applications. Graph analysis presents a number of unique challenges in the areas of (1) software complexity, (2) data complexity, (3) security, (4) mathematical complexity, (5) theoretical analysis, (6) serial performance, and (7) parallel performance. Implementing graph algorithms using matrix-based approaches provides a number of promising solutions to these challenges. The GraphBLAS standard (istcbigdata.org/GraphBlas) is being developed to bring the potential of matrix based graph algorithms to the broadest possible audience. The GraphBLAS mathematically defines a core set of matrix-based graph operations that can be used to implementmore » a wide class of graph algorithms in a wide range of programming environments. This paper provides an introduction to the GraphBLAS and describes how the GraphBLAS can be used to address many of the challenges associated with analysis of graphs.« less
Altered brain network measures in patients with primary writing tremor.
Lenka, Abhishek; Jhunjhunwala, Ketan Ramakant; Panda, Rajanikant; Saini, Jitender; Bharath, Rose Dawn; Yadav, Ravi; Pal, Pramod Kumar
2017-10-01
Primary writing tremor (PWT) is a rare task-specific tremor, which occurs only while writing or while adopting the hand in the writing position. The basic pathophysiology of PWT has not been fully understood. The objective of this study is to explore the alterations in the resting state functional brain connectivity, if any, in patients with PWT using graph theory-based analysis. This prospective case-control study included 10 patients with PWT and 10 age and gender matched healthy controls. All subjects underwent MRI in a 3-Tesla scanner. Several parameters of small-world functional connectivity were compared between patients and healthy controls by using graph theory-based analysis. There were no significant differences in age, handedness (all right handed), gender distribution (all were males), and MMSE scores between the patients and controls. The mean age at presentation of tremor in the patient group was 51.7 ± 8.6 years, and the mean duration of tremor was 3.5 ± 1.9 years. Graph theory-based analysis revealed that patients with PWT had significantly lower clustering coefficient and higher path length compared to healthy controls suggesting alterations in small-world architecture of the brain. The clustering coefficients were lower in PWT patients in left and right medial cerebellum, right dorsolateral prefrontal cortex (DLPFC), and left posterior parietal cortex (PPC). Patients with PWT have significantly altered small-world brain connectivity in bilateral medial cerebellum, right DLPFC, and left PPC. Further studies with larger sample size are required to confirm our results.
Resting-state theta band connectivity and graph analysis in generalized social anxiety disorder.
Xing, Mengqi; Tadayonnejad, Reza; MacNamara, Annmarie; Ajilore, Olusola; DiGangi, Julia; Phan, K Luan; Leow, Alex; Klumpp, Heide
2017-01-01
Functional magnetic resonance imaging (fMRI) resting-state studies show generalized social anxiety disorder (gSAD) is associated with disturbances in networks involved in emotion regulation, emotion processing, and perceptual functions, suggesting a network framework is integral to elucidating the pathophysiology of gSAD. However, fMRI does not measure the fast dynamic interconnections of functional networks. Therefore, we examined whole-brain functional connectomics with electroencephalogram (EEG) during resting-state. Resting-state EEG data was recorded for 32 patients with gSAD and 32 demographically-matched healthy controls (HC). Sensor-level connectivity analysis was applied on EEG data by using Weighted Phase Lag Index (WPLI) and graph analysis based on WPLI was used to determine clustering coefficient and characteristic path length to estimate local integration and global segregation of networks. WPLI results showed increased oscillatory midline coherence in the theta frequency band indicating higher connectivity in the gSAD relative to HC group during rest. Additionally, WPLI values positively correlated with state anxiety levels within the gSAD group but not the HC group. Our graph theory based connectomics analysis demonstrated increased clustering coefficient and decreased characteristic path length in theta-based whole brain functional organization in subjects with gSAD compared to HC. Theta-dependent interconnectivity was associated with state anxiety in gSAD and an increase in information processing efficiency in gSAD (compared to controls). Results may represent enhanced baseline self-focused attention, which is consistent with cognitive models of gSAD and fMRI studies implicating emotion dysregulation and disturbances in task negative networks (e.g., default mode network) in gSAD.
Wada, Akihiko; Shizukuishi, Takashi; Kikuta, Junko; Yamada, Haruyasu; Watanabe, Yusuke; Imamura, Yoshiki; Shinozaki, Takahiro; Dezawa, Ko; Haradome, Hiroki; Abe, Osamu
2017-05-01
Burning mouth syndrome (BMS) is a chronic intraoral pain syndrome featuring idiopathic oral pain and burning discomfort despite clinically normal oral mucosa. The etiology of chronic pain syndrome is unclear, but preliminary neuroimaging research has suggested the alteration of volume, metabolism, blood flow, and diffusion at multiple brain regions. According to the neuromatrix theory of Melzack, pain sense is generated in the brain by the network of multiple pain-related brain regions. Therefore, the alteration of pain-related network is also assumed as an etiology of chronic pain. In this study, we investigated the brain network of BMS brain by using probabilistic tractography and graph analysis. Fourteen BMS patients and 14 age-matched healthy controls underwent 1.5T MRI. Structural connectivity was calculated in 83 anatomically defined regions with probabilistic tractography of 60-axis diffusion tensor imaging and 3D T1-weighted imaging. Graph theory network analysis was used to evaluate the brain network at local and global connectivity. In BMS brain, a significant difference of local brain connectivity was recognized at the bilateral rostral anterior cingulate cortex, right medial orbitofrontal cortex, and left pars orbitalis which belong to the medial pain system; however, no significant difference was recognized at the lateral system including the somatic sensory cortex. A strengthened connection of the anterior cingulate cortex and medial prefrontal cortex with the basal ganglia, thalamus, and brain stem was revealed. Structural brain network analysis revealed the alteration of the medial system of the pain-related brain network in chronic pain syndrome.
Adjusting protein graphs based on graph entropy.
Peng, Sheng-Lung; Tsay, Yu-Wei
2014-01-01
Measuring protein structural similarity attempts to establish a relationship of equivalence between polymer structures based on their conformations. In several recent studies, researchers have explored protein-graph remodeling, instead of looking a minimum superimposition for pairwise proteins. When graphs are used to represent structured objects, the problem of measuring object similarity become one of computing the similarity between graphs. Graph theory provides an alternative perspective as well as efficiency. Once a protein graph has been created, its structural stability must be verified. Therefore, a criterion is needed to determine if a protein graph can be used for structural comparison. In this paper, we propose a measurement for protein graph remodeling based on graph entropy. We extend the concept of graph entropy to determine whether a graph is suitable for representing a protein. The experimental results suggest that when applied, graph entropy helps a conformational on protein graph modeling. Furthermore, it indirectly contributes to protein structural comparison if a protein graph is solid.
Adjusting protein graphs based on graph entropy
2014-01-01
Measuring protein structural similarity attempts to establish a relationship of equivalence between polymer structures based on their conformations. In several recent studies, researchers have explored protein-graph remodeling, instead of looking a minimum superimposition for pairwise proteins. When graphs are used to represent structured objects, the problem of measuring object similarity become one of computing the similarity between graphs. Graph theory provides an alternative perspective as well as efficiency. Once a protein graph has been created, its structural stability must be verified. Therefore, a criterion is needed to determine if a protein graph can be used for structural comparison. In this paper, we propose a measurement for protein graph remodeling based on graph entropy. We extend the concept of graph entropy to determine whether a graph is suitable for representing a protein. The experimental results suggest that when applied, graph entropy helps a conformational on protein graph modeling. Furthermore, it indirectly contributes to protein structural comparison if a protein graph is solid. PMID:25474347
Novel Spectral Representations and Sparsity-Driven Algorithms for Shape Modeling and Analysis
NASA Astrophysics Data System (ADS)
Zhong, Ming
In this dissertation, we focus on extending classical spectral shape analysis by incorporating spectral graph wavelets and sparsity-seeking algorithms. Defined with the graph Laplacian eigenbasis, the spectral graph wavelets are localized both in the vertex domain and graph spectral domain, and thus are very effective in describing local geometry. With a rich dictionary of elementary vectors and forcing certain sparsity constraints, a real life signal can often be well approximated by a very sparse coefficient representation. The many successful applications of sparse signal representation in computer vision and image processing inspire us to explore the idea of employing sparse modeling techniques with dictionary of spectral basis to solve various shape modeling problems. Conventional spectral mesh compression uses the eigenfunctions of mesh Laplacian as shape bases, which are highly inefficient in representing local geometry. To ameliorate, we advocate an innovative approach to 3D mesh compression using spectral graph wavelets as dictionary to encode mesh geometry. The spectral graph wavelets are locally defined at individual vertices and can better capture local shape information than Laplacian eigenbasis. The multi-scale SGWs form a redundant dictionary as shape basis, so we formulate the compression of 3D shape as a sparse approximation problem that can be readily handled by greedy pursuit algorithms. Surface inpainting refers to the completion or recovery of missing shape geometry based on the shape information that is currently available. We devise a new surface inpainting algorithm founded upon the theory and techniques of sparse signal recovery. Instead of estimating the missing geometry directly, our novel method is to find this low-dimensional representation which describes the entire original shape. More specifically, we find that, for many shapes, the vertex coordinate function can be well approximated by a very sparse coefficient representation with respect to the dictionary comprising its Laplacian eigenbasis, and it is then possible to recover this sparse representation from partial measurements of the original shape. Taking advantage of the sparsity cue, we advocate a novel variational approach for surface inpainting, integrating data fidelity constraints on the shape domain with coefficient sparsity constraints on the transformed domain. Because of the powerful properties of Laplacian eigenbasis, the inpainting results of our method tend to be globally coherent with the remaining shape. Informative and discriminative feature descriptors are vital in qualitative and quantitative shape analysis for a large variety of graphics applications. We advocate novel strategies to define generalized, user-specified features on shapes. Our new region descriptors are primarily built upon the coefficients of spectral graph wavelets that are both multi-scale and multi-level in nature, consisting of both local and global information. Based on our novel spectral feature descriptor, we developed a user-specified feature detection framework and a tensor-based shape matching algorithm. Through various experiments, we demonstrate the competitive performance of our proposed methods and the great potential of spectral basis and sparsity-driven methods for shape modeling.
Materials and optimized designs for human-machine interfaces via epidermal electronics.
Jeong, Jae-Woong; Yeo, Woon-Hong; Akhtar, Aadeel; Norton, James J S; Kwack, Young-Jin; Li, Shuo; Jung, Sung-Young; Su, Yewang; Lee, Woosik; Xia, Jing; Cheng, Huanyu; Huang, Yonggang; Choi, Woon-Seop; Bretl, Timothy; Rogers, John A
2013-12-17
Thin, soft, and elastic electronics with physical properties well matched to the epidermis can be conformally and robustly integrated with the skin. Materials and optimized designs for such devices are presented for surface electromyography (sEMG). The findings enable sEMG from wide ranging areas of the body. The measurements have quality sufficient for advanced forms of human-machine interface. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Liu, Iching; Sun, Ying
1992-10-01
A system for reconstructing 3-D vascular structure from two orthogonally projected images is presented. The formidable problem of matching segments between two views is solved using knowledge of the epipolar constraint and the similarity of segment geometry and connectivity. The knowledge is represented in a rule-based system, which also controls the operation of several computational algorithms for tracking segments in each image, representing 2-D segments with directed graphs, and reconstructing 3-D segments from matching 2-D segment pairs. Uncertain reasoning governs the interaction between segmentation and matching; it also provides a framework for resolving the matching ambiguities in an iterative way. The system was implemented in the C language and the C Language Integrated Production System (CLIPS) expert system shell. Using video images of a tree model, the standard deviation of reconstructed centerlines was estimated to be 0.8 mm (1.7 mm) when the view direction was parallel (perpendicular) to the epipolar plane. Feasibility of clinical use was shown using x-ray angiograms of a human chest phantom. The correspondence of vessel segments between two views was accurate. Computational time for the entire reconstruction process was under 30 s on a workstation. A fully automated system for two-view reconstruction that does not require the a priori knowledge of vascular anatomy is demonstrated.
Evaluation of the health status of six volunteers from the Mars 500 project using pulse analysis.
Shi, Hong-Zhi; Fan, Quan-Chun; Gao, Jian-Yi; Liu, Jun-Lian; Bai, Gui-E; Mi, Tao; Zhao, Shuang; Liu, Yu; Xu, Dong; Guo, Zhi-Feng; Li, Yong-Zhi
2017-08-01
To comprehensively evaluate the health status of 6 volunteers from the Mars 500 Project through analyzing their pulse graphs and determining the changes in cardiovascular function, degree of fatigue and autonomic nervous function. Six volunteers were recruited; all were male aged 26-38 years (average 31.83±4.96 years). Characteristic parameters reflflecting the status of cardiovascular functions were extracted, which included left ventricular contraction, vascular elasticity and peripheral resistance. The degree of fatigue was determined depending on the difference between the calendar age and biological age, which was calculated through the analysis of blood pressure value and characteristic parameters. Based on the values of pulse height variation and pulse time variation on a 30-s pulse graph, autonomic nervous function was evaluated. All parameters examined were marked on an equilateral polygon to form an irregular polygon of the actual fifigure, then health status was evaluated based on the coverage area of the actual fifigure. The results demonstrated: (1) volunteers developed weakened pulse power, increased vascular tension and peripheral resistance, and slight decreased ventricular systolic function; (2) the degree of fatigue was basically mild or moderate; and (3) autonomic nervous function was excited but generally balanced. These volunteers were in the state of sub-health. According to Chinese medicine theories, such symptoms are mainly caused by the weakening of healthy qi, Gan (Liver) failing in free coursing, and disharmony between Gan and Wei (Stomach), which manifests as a weak and string-like pulse.
Topology Counts: Force Distributions in Circular Spring Networks.
Heidemann, Knut M; Sageman-Furnas, Andrew O; Sharma, Abhinav; Rehfeldt, Florian; Schmidt, Christoph F; Wardetzky, Max
2018-02-09
Filamentous polymer networks govern the mechanical properties of many biological materials. Force distributions within these networks are typically highly inhomogeneous, and, although the importance of force distributions for structural properties is well recognized, they are far from being understood quantitatively. Using a combination of probabilistic and graph-theoretical techniques, we derive force distributions in a model system consisting of ensembles of random linear spring networks on a circle. We show that characteristic quantities, such as the mean and variance of the force supported by individual springs, can be derived explicitly in terms of only two parameters: (i) average connectivity and (ii) number of nodes. Our analysis shows that a classical mean-field approach fails to capture these characteristic quantities correctly. In contrast, we demonstrate that network topology is a crucial determinant of force distributions in an elastic spring network. Our results for 1D linear spring networks readily generalize to arbitrary dimensions.
Effect of inhomogeneity due to temperature on the propagation of shear waves in an anisotropic layer
NASA Astrophysics Data System (ADS)
Prasad, Bishwanath; Pal, Prakash Chandra; Kundu, Santimoy; Prasad, Narayan
2017-07-01
The present paper is concerned with the propagation of shear waves in an anisotropic inhomogeneous layer whose elastic constants are functions of temperature. The dependence of material properties on temperature gives rise to inhomogeneity of the layer which is one of the trivial characteristics of the constituent layers of earth which may cause due to the presence of various types of elements and compounds beneath the earth. The layer is lying over a rigid foundation and there is no loading on the upper boundary. The dispersion equation of shear waves has been obtained in closed form. Numerical computations are performed and graphs are plotted to show the effect of inhomogeneity and anisotropy factors on the dimensionless phase velocity. It is found that the phase velocity is considerably influenced by the inhomogeneity and anisotropy of the layer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, C.N.
The objectives of the SNAP-7D program were to design, manufacture, test and deliver a thirty-watt electric generating system for a modified U. S. Navy NOMAD-class weather buoy to be stationed in the Gulf of Mexico. The sixty-watt Sr/sup 90/ thermoelectric generator, the relay panel, the batteries, and the installation of the system in a boattype buoy are described. In addition to delivering the power supply, many tests were required for the SNAP-7D system to demonstrate its conformance to the contract statement of work. The electrical tests of the generator and of the system, the shock and vibration tests, and themore » tests at the environmental temperature extremes are discussed. (auth) Quantitative studies were made of the angular distribution of elastic and inelastic scattering of 25-kev electrons on noble gases, and the results were compared with scattering theory in the Born approximation. Results are presented in tables and graphs. (M.C.G.)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qui, Renhui; Ren, Xiaofeng; Fifield, Leonard S.
2011-02-25
The processing variables for making hemp-fiber-reinforced unsaturated polyester (UPE) composites were optimized through orthogonal experiments. It was found that the usage of initiator, methyl ethyl ketone peroxide, had the most significant effect on the tensile strength of the composites. The treatment of hemp fibers with a combination of 1, 6-diisocyanatohexane (DIH) and 2-hydroxylethyl acrylate (HEA) significantly increased tensile strength, flexural modulus of rupture and flexural modulus of elasticity, and water resistance of the resulting hemp-UPE composites. FTIR spectra revealed that DIH and HEA were covalently bonded to hemp fibers. Scanning electronic microscopy graphs of the fractured hemp-UPE composites demonstrated thatmore » treatment of hemp fibers with a combination of DIH and HEA greatly improved the interfacial adhesion between hemp fibers and UPE. The mechanism of improving the interfacial adhesion is proposed.« less
Characterizing Containment and Related Classes of Graphs,
1985-01-01
Math . to appear. [G2] Golumbic,. Martin C., D. Rotem and J. Urrutia. "Comparability graphs and intersection graphs" Discrete Math . 43 (1983) 37-40. [G3...intersection classes of graphs" Discrete Math . to appear. [S2] Scheinerman, Edward R. Intersection Classes and Multiple Intersection Parameters of Graphs...graphs and of interval graphs" Canad. Jour. of blath. 16 (1964) 539-548. [G1] Golumbic, Martin C. "Containment graphs: and. intersection graphs" Discrete
A Collection of Features for Semantic Graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eliassi-Rad, T; Fodor, I K; Gallagher, B
2007-05-02
Semantic graphs are commonly used to represent data from one or more data sources. Such graphs extend traditional graphs by imposing types on both nodes and links. This type information defines permissible links among specified nodes and can be represented as a graph commonly referred to as an ontology or schema graph. Figure 1 depicts an ontology graph for data from National Association of Securities Dealers. Each node type and link type may also have a list of attributes. To capture the increased complexity of semantic graphs, concepts derived for standard graphs have to be extended. This document explains brieflymore » features commonly used to characterize graphs, and their extensions to semantic graphs. This document is divided into two sections. Section 2 contains the feature descriptions for static graphs. Section 3 extends the features for semantic graphs that vary over time.« less
Hegarty, Peter; Lemieux, Anthony F; McQueen, Grant
2010-03-01
Graphs seem to connote facts more than words or tables do. Consequently, they seem unlikely places to spot implicit sexism at work. Yet, in 6 studies (N = 741), women and men constructed (Study 1) and recalled (Study 2) gender difference graphs with men's data first, and graphed powerful groups (Study 3) and individuals (Study 4) ahead of weaker ones. Participants who interpreted graph order as evidence of author "bias" inferred that the author graphed his or her own gender group first (Study 5). Women's, but not men's, preferences to graph men first were mitigated when participants graphed a difference between themselves and an opposite-sex friend prior to graphing gender differences (Study 6). Graph production and comprehension are affected by beliefs and suppositions about the groups represented in graphs to a greater degree than cognitive models of graph comprehension or realist models of scientific thinking have yet acknowledged.
ERIC Educational Resources Information Center
Yoder, Sharon K.
This book discusses four kinds of graphs that are taught in mathematics at the middle school level: pictographs, bar graphs, line graphs, and circle graphs. The chapters on each of these types of graphs contain information such as starting, scaling, drawing, labeling, and finishing the graphs using "LogoWriter." The final chapter of the…
Zhou, Yongxia; Yu, Fang; Duong, Timothy
2014-01-01
This study employed graph theory and machine learning analysis of multiparametric MRI data to improve characterization and prediction in autism spectrum disorders (ASD). Data from 127 children with ASD (13.5±6.0 years) and 153 age- and gender-matched typically developing children (14.5±5.7 years) were selected from the multi-center Functional Connectome Project. Regional gray matter volume and cortical thickness increased, whereas white matter volume decreased in ASD compared to controls. Small-world network analysis of quantitative MRI data demonstrated decreased global efficiency based on gray matter cortical thickness but not with functional connectivity MRI (fcMRI) or volumetry. An integrative model of 22 quantitative imaging features was used for classification and prediction of phenotypic features that included the autism diagnostic observation schedule, the revised autism diagnostic interview, and intelligence quotient scores. Among the 22 imaging features, four (caudate volume, caudate-cortical functional connectivity and inferior frontal gyrus functional connectivity) were found to be highly informative, markedly improving classification and prediction accuracy when compared with the single imaging features. This approach could potentially serve as a biomarker in prognosis, diagnosis, and monitoring disease progression.
A new graph-based method for pairwise global network alignment
Klau, Gunnar W
2009-01-01
Background In addition to component-based comparative approaches, network alignments provide the means to study conserved network topology such as common pathways and more complex network motifs. Yet, unlike in classical sequence alignment, the comparison of networks becomes computationally more challenging, as most meaningful assumptions instantly lead to NP-hard problems. Most previous algorithmic work on network alignments is heuristic in nature. Results We introduce the graph-based maximum structural matching formulation for pairwise global network alignment. We relate the formulation to previous work and prove NP-hardness of the problem. Based on the new formulation we build upon recent results in computational structural biology and present a novel Lagrangian relaxation approach that, in combination with a branch-and-bound method, computes provably optimal network alignments. The Lagrangian algorithm alone is a powerful heuristic method, which produces solutions that are often near-optimal and – unlike those computed by pure heuristics – come with a quality guarantee. Conclusion Computational experiments on the alignment of protein-protein interaction networks and on the classification of metabolic subnetworks demonstrate that the new method is reasonably fast and has advantages over pure heuristics. Our software tool is freely available as part of the LISA library. PMID:19208162
Concurrent tumor segmentation and registration with uncertainty-based sparse non-uniform graphs.
Parisot, Sarah; Wells, William; Chemouny, Stéphane; Duffau, Hugues; Paragios, Nikos
2014-05-01
In this paper, we present a graph-based concurrent brain tumor segmentation and atlas to diseased patient registration framework. Both segmentation and registration problems are modeled using a unified pairwise discrete Markov Random Field model on a sparse grid superimposed to the image domain. Segmentation is addressed based on pattern classification techniques, while registration is performed by maximizing the similarity between volumes and is modular with respect to the matching criterion. The two problems are coupled by relaxing the registration term in the tumor area, corresponding to areas of high classification score and high dissimilarity between volumes. In order to overcome the main shortcomings of discrete approaches regarding appropriate sampling of the solution space as well as important memory requirements, content driven samplings of the discrete displacement set and the sparse grid are considered, based on the local segmentation and registration uncertainties recovered by the min marginal energies. State of the art results on a substantial low-grade glioma database demonstrate the potential of our method, while our proposed approach shows maintained performance and strongly reduced complexity of the model. Copyright © 2014 Elsevier B.V. All rights reserved.
A novel optical fibre doped with the nano-material as InP
NASA Astrophysics Data System (ADS)
Chen, Xi; Lee, Ly Guat; Zhang, Ru
2007-11-01
As the key of these optical devices which are widely used in the communication system, high nonlinear optical fibre will play an important role in the future optical fibre communication. With recent growth of nano-technology, researchers are hoping to obtain some kinds of optical fibre by combining the optical fibre with the nanotechnology. According to this current situation, the optical fibre doped with nano-material as InP (indium phosphide) is manufactured by using the MCVD (modified chemical vapor deposition) technology after our comprehensive consideration of many relative factors. Proved by experiments, this novel optical fibre has an excellent waveguide characteristic. After a consideration of the model of this novel optical fibre, its propagation constant β has been simulated by using the FEM (finite element method), and the graphs of presentation of magnetic field of the core are also obtained. In accordance with the results, the effective refractive index n eff = 1.401 has be calculated. Both the calculated result and the simulated graphs are matching well with the test, and this result is a step-stone bridge for future research of nonlinear parameter on this novel optical fiber.
Graph-based surface reconstruction from stereo pairs using image segmentation
NASA Astrophysics Data System (ADS)
Bleyer, Michael; Gelautz, Margrit
2005-01-01
This paper describes a novel stereo matching algorithm for epipolar rectified images. The method applies colour segmentation on the reference image. The use of segmentation makes the algorithm capable of handling large untextured regions, estimating precise depth boundaries and propagating disparity information to occluded regions, which are challenging tasks for conventional stereo methods. We model disparity inside a segment by a planar equation. Initial disparity segments are clustered to form a set of disparity layers, which are planar surfaces that are likely to occur in the scene. Assignments of segments to disparity layers are then derived by minimization of a global cost function via a robust optimization technique that employs graph cuts. The cost function is defined on the pixel level, as well as on the segment level. While the pixel level measures the data similarity based on the current disparity map and detects occlusions symmetrically in both views, the segment level propagates the segmentation information and incorporates a smoothness term. New planar models are then generated based on the disparity layers' spatial extents. Results obtained for benchmark and self-recorded image pairs indicate that the proposed method is able to compete with the best-performing state-of-the-art algorithms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farhi, David; Feige, Ilya; Freytsis, Marat
Some of the most arduous and error-prone aspects of precision resummed calculations are related to the partonic hard process, having nothing to do with the resummation. In particular, interfacing to parton-distribution functions, combining various channels, and performing the phase space integration can be limiting factors in completing calculations. Conveniently, however, most of these tasks are already automated in many Monte Carlo programs, such as MadGraph [1], Alpgen [2] or Sherpa [3]. In this paper, we show how such programs can be used to produce distributions of partonic kinematics with associated color structures representing the hard factor in a resummed distribution.more » These distributions can then be used to weight convolutions of jet, soft and beam functions producing a complete resummed calculation. In fact, only around 1000 unweighted events are necessary to produce precise distributions. A number of examples and checks are provided, including e +e – two- and four-jet event shapes, n-jettiness and jet-mass related observables at hadron colliders at next-to-leading-log (NLL) matched to leading order (LO). Furthermore, the attached code can be used to modify MadGraph to export the relevant LO hard functions and color structures for arbitrary processes.« less
Streamlining resummed QCD calculations using Monte Carlo integration
Farhi, David; Feige, Ilya; Freytsis, Marat; ...
2016-08-18
Some of the most arduous and error-prone aspects of precision resummed calculations are related to the partonic hard process, having nothing to do with the resummation. In particular, interfacing to parton-distribution functions, combining various channels, and performing the phase space integration can be limiting factors in completing calculations. Conveniently, however, most of these tasks are already automated in many Monte Carlo programs, such as MadGraph [1], Alpgen [2] or Sherpa [3]. In this paper, we show how such programs can be used to produce distributions of partonic kinematics with associated color structures representing the hard factor in a resummed distribution.more » These distributions can then be used to weight convolutions of jet, soft and beam functions producing a complete resummed calculation. In fact, only around 1000 unweighted events are necessary to produce precise distributions. A number of examples and checks are provided, including e +e – two- and four-jet event shapes, n-jettiness and jet-mass related observables at hadron colliders at next-to-leading-log (NLL) matched to leading order (LO). Furthermore, the attached code can be used to modify MadGraph to export the relevant LO hard functions and color structures for arbitrary processes.« less
Streaming data analytics via message passing with application to graph algorithms
Plimpton, Steven J.; Shead, Tim
2014-05-06
The need to process streaming data, which arrives continuously at high-volume in real-time, arises in a variety of contexts including data produced by experiments, collections of environmental or network sensors, and running simulations. Streaming data can also be formulated as queries or transactions which operate on a large dynamic data store, e.g. a distributed database. We describe a lightweight, portable framework named PHISH which enables a set of independent processes to compute on a stream of data in a distributed-memory parallel manner. Datums are routed between processes in patterns defined by the application. PHISH can run on top of eithermore » message-passing via MPI or sockets via ZMQ. The former means streaming computations can be run on any parallel machine which supports MPI; the latter allows them to run on a heterogeneous, geographically dispersed network of machines. We illustrate how PHISH can support streaming MapReduce operations, and describe streaming versions of three algorithms for large, sparse graph analytics: triangle enumeration, subgraph isomorphism matching, and connected component finding. Lastly, we also provide benchmark timings for MPI versus socket performance of several kernel operations useful in streaming algorithms.« less
Detecting duplicate biological entities using Shortest Path Edit Distance.
Rudniy, Alex; Song, Min; Geller, James
2010-01-01
Duplicate entity detection in biological data is an important research task. In this paper, we propose a novel and context-sensitive Shortest Path Edit Distance (SPED) extending and supplementing our previous work on Markov Random Field-based Edit Distance (MRFED). SPED transforms the edit distance computational problem to the calculation of the shortest path among two selected vertices of a graph. We produce several modifications of SPED by applying Levenshtein, arithmetic mean, histogram difference and TFIDF techniques to solve subtasks. We compare SPED performance to other well-known distance algorithms for biological entity matching. The experimental results show that SPED produces competitive outcomes.
Associative Pattern Recognition In Analog VLSI Circuits
NASA Technical Reports Server (NTRS)
Tawel, Raoul
1995-01-01
Winner-take-all circuit selects best-match stored pattern. Prototype cascadable very-large-scale integrated (VLSI) circuit chips built and tested to demonstrate concept of electronic associative pattern recognition. Based on low-power, sub-threshold analog complementary oxide/semiconductor (CMOS) VLSI circuitry, each chip can store 128 sets (vectors) of 16 analog values (vector components), vectors representing known patterns as diverse as spectra, histograms, graphs, or brightnesses of pixels in images. Chips exploit parallel nature of vector quantization architecture to implement highly parallel processing in relatively simple computational cells. Through collective action, cells classify input pattern in fraction of microsecond while consuming power of few microwatts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fangyan; Zhang, Song; Chung Wong, Pak
Effectively visualizing large graphs and capturing the statistical properties are two challenging tasks. To aid in these two tasks, many sampling approaches for graph simplification have been proposed, falling into three categories: node sampling, edge sampling, and traversal-based sampling. It is still unknown which approach is the best. We evaluate commonly used graph sampling methods through a combined visual and statistical comparison of graphs sampled at various rates. We conduct our evaluation on three graph models: random graphs, small-world graphs, and scale-free graphs. Initial results indicate that the effectiveness of a sampling method is dependent on the graph model, themore » size of the graph, and the desired statistical property. This benchmark study can be used as a guideline in choosing the appropriate method for a particular graph sampling task, and the results presented can be incorporated into graph visualization and analysis tools.« less
An algorithm for finding a similar subgraph of all Hamiltonian cycles
NASA Astrophysics Data System (ADS)
Wafdan, R.; Ihsan, M.; Suhaimi, D.
2018-01-01
This paper discusses an algorithm to find a similar subgraph called findSimSubG algorithm. A similar subgraph is a subgraph with a maximum number of edges, contains no isolated vertex and is contained in every Hamiltonian cycle of a Hamiltonian Graph. The algorithm runs only on Hamiltonian graphs with at least two Hamiltonian cycles. The algorithm works by examining whether the initial subgraph of the first Hamiltonian cycle is a subgraph of comparison graphs. If the initial subgraph is not in comparison graphs, the algorithm will remove edges and vertices of the initial subgraph that are not in comparison graphs. There are two main processes in the algorithm, changing Hamiltonian cycle into a cycle graph and removing edges and vertices of the initial subgraph that are not in comparison graphs. The findSimSubG algorithm can find the similar subgraph without using backtracking method. The similar subgraph cannot be found on certain graphs, such as an n-antiprism graph, complete bipartite graph, complete graph, 2n-crossed prism graph, n-crown graph, n-möbius ladder, prism graph, and wheel graph. The complexity of this algorithm is O(m|V|), where m is the number of Hamiltonian cycles and |V| is the number of vertices of a Hamiltonian graph.
A first-order k-space model for elastic wave propagation in heterogeneous media.
Firouzi, K; Cox, B T; Treeby, B E; Saffari, N
2012-09-01
A pseudospectral model of linear elastic wave propagation is described based on the first order stress-velocity equations of elastodynamics. k-space adjustments to the spectral gradient calculations are derived from the dyadic Green's function solution to the second-order elastic wave equation and used to (a) ensure the solution is exact for homogeneous wave propagation for timesteps of arbitrarily large size, and (b) also allows larger time steps without loss of accuracy in heterogeneous media. The formulation in k-space allows the wavefield to be split easily into compressional and shear parts. A perfectly matched layer (PML) absorbing boundary condition was developed to effectively impose a radiation condition on the wavefield. The staggered grid, which is essential for accurate simulations, is described, along with other practical details of the implementation. The model is verified through comparison with exact solutions for canonical examples and further examples are given to show the efficiency of the method for practical problems. The efficiency of the model is by virtue of the reduced point-per-wavelength requirement, the use of the fast Fourier transform (FFT) to calculate the gradients in k space, and larger time steps made possible by the k-space adjustments.
Nonlinear reflection of shock shear waves in soft elastic media.
Pinton, Gianmarco; Coulouvrat, François; Gennisson, Jean-Luc; Tanter, Mickaël
2010-02-01
For fluids, the theoretical investigation of shock wave reflection has a good agreement with experiments when the incident shock Mach number is large. But when it is small, theory predicts that Mach reflections are physically unrealistic, which contradicts experimental evidence. This von Neumann paradox is investigated for shear shock waves in soft elastic solids with theory and simulations. The nonlinear elastic wave equation is approximated by a paraxial wave equation with a cubic nonlinear term. This equation is solved numerically with finite differences and the Godunov scheme. Three reflection regimes are observed. Theory is developed for shock propagation by applying the Rankine-Hugoniot relations and entropic constraints. A characteristic parameter relating diffraction and non-linearity is introduced and its theoretical values are shown to match numerical observations. The numerical solution is then applied to von Neumann reflection, where curved reflected and Mach shocks are observed. Finally, the case of weak von Neumann reflection, where there is no reflected shock, is examined. The smooth but non-monotonic transition between these three reflection regimes, from linear Snell-Descartes to perfect grazing case, provides a solution to the acoustical von Neumann paradox for the shear wave equation. This transition is similar to the quadratic non-linearity in fluids.
Model updating in flexible-link multibody systems
NASA Astrophysics Data System (ADS)
Belotti, R.; Caneva, G.; Palomba, I.; Richiedei, D.; Trevisani, A.
2016-09-01
The dynamic response of flexible-link multibody systems (FLMSs) can be predicted through nonlinear models based on finite elements, to describe the coupling between rigid- body and elastic behaviour. Their accuracy should be as high as possible to synthesize controllers and observers. Model updating based on experimental measurements is hence necessary. By taking advantage of the experimental modal analysis, this work proposes a model updating procedure for FLMSs and applies it experimentally to a planar robot. Indeed, several peculiarities of the model of FLMS should be carefully tackled. On the one hand, nonlinear models of a FLMS should be linearized about static equilibrium configurations. On the other, the experimental mode shapes should be corrected to be consistent with the elastic displacements represented in the model, which are defined with respect to a fictitious moving reference (the equivalent rigid link system). Then, since rotational degrees of freedom are also represented in the model, interpolation of the experimental data should be performed to match the model displacement vector. Model updating has been finally cast as an optimization problem in the presence of bounds on the feasible values, by also adopting methods to improve the numerical conditioning and to compute meaningful updated inertial and elastic parameters.
Spectral element method for elastic and acoustic waves in frequency domain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi, Linlin; Zhou, Yuanguo; Wang, Jia-Min
Numerical techniques in time domain are widespread in seismic and acoustic modeling. In some applications, however, frequency-domain techniques can be advantageous over the time-domain approach when narrow band results are desired, especially if multiple sources can be handled more conveniently in the frequency domain. Moreover, the medium attenuation effects can be more accurately and conveniently modeled in the frequency domain. In this paper, we present a spectral-element method (SEM) in frequency domain to simulate elastic and acoustic waves in anisotropic, heterogeneous, and lossy media. The SEM is based upon the finite-element framework and has exponential convergence because of the usemore » of GLL basis functions. The anisotropic perfectly matched layer is employed to truncate the boundary for unbounded problems. Compared with the conventional finite-element method, the number of unknowns in the SEM is significantly reduced, and higher order accuracy is obtained due to its spectral accuracy. To account for the acoustic-solid interaction, the domain decomposition method (DDM) based upon the discontinuous Galerkin spectral-element method is proposed. Numerical experiments show the proposed method can be an efficient alternative for accurate calculation of elastic and acoustic waves in frequency domain.« less
Petersson, N. Anders; Sjogreen, Bjorn
2015-07-20
We develop a fourth order accurate finite difference method for solving the three-dimensional elastic wave equation in general heterogeneous anisotropic materials on curvilinear grids. The proposed method is an extension of the method for isotropic materials, previously described in the paper by Sjögreen and Petersson (2012) [11]. The method we proposed discretizes the anisotropic elastic wave equation in second order formulation, using a node centered finite difference method that satisfies the principle of summation by parts. The summation by parts technique results in a provably stable numerical method that is energy conserving. Also, we generalize and evaluate the super-grid far-fieldmore » technique for truncating unbounded domains. Unlike the commonly used perfectly matched layers (PML), the super-grid technique is stable for general anisotropic material, because it is based on a coordinate stretching combined with an artificial dissipation. Moreover, the discretization satisfies an energy estimate, proving that the numerical approximation is stable. We demonstrate by numerical experiments that sufficiently wide super-grid layers result in very small artificial reflections. Applications of the proposed method are demonstrated by three-dimensional simulations of anisotropic wave propagation in crystals.« less
Design of controlled elastic and inelastic structures
NASA Astrophysics Data System (ADS)
Reinhorn, A. M.; Lavan, O.; Cimellaro, G. P.
2009-12-01
One of the founders of structural control theory and its application in civil engineering, Professor Emeritus Tsu T. Soong, envisioned the development of the integral design of structures protected by active control devices. Most of his disciples and colleagues continuously attempted to develop procedures to achieve such integral control. In his recent papers published jointly with some of the authors of this paper, Professor Soong developed design procedures for the entire structure using a design — redesign procedure applied to elastic systems. Such a procedure was developed as an extension of other work by his disciples. This paper summarizes some recent techniques that use traditional active control algorithms to derive the most suitable (optimal, stable) control force, which could then be implemented with a combination of active, passive and semi-active devices through a simple match or more sophisticated optimal procedures. Alternative design can address the behavior of structures using Liapunov stability criteria. This paper shows a unified procedure which can be applied to both elastic and inelastic structures. Although the implementation does not always preserve the optimal criteria, it is shown that the solutions are effective and practical for design of supplemental damping, stiffness enhancement or softening, and strengthening or weakening.
Mathematical foundations of the GraphBLAS
Kepner, Jeremy; Aaltonen, Peter; Bader, David; ...
2016-12-01
The GraphBLAS standard (GraphBlas.org) is being developed to bring the potential of matrix-based graph algorithms to the broadest possible audience. Mathematically, the GraphBLAS defines a core set of matrix-based graph operations that can be used to implement a wide class of graph algorithms in a wide range of programming environments. This study provides an introduction to the mathematics of the GraphBLAS. Graphs represent connections between vertices with edges. Matrices can represent a wide range of graphs using adjacency matrices or incidence matrices. Adjacency matrices are often easier to analyze while incidence matrices are often better for representing data. Fortunately, themore » two are easily connected by matrix multiplication. A key feature of matrix mathematics is that a very small number of matrix operations can be used to manipulate a very wide range of graphs. This composability of a small number of operations is the foundation of the GraphBLAS. A standard such as the GraphBLAS can only be effective if it has low performance overhead. Finally, performance measurements of prototype GraphBLAS implementations indicate that the overhead is low.« less
Nennig, Benoit; Perrey-Debain, Emmanuel; Ben Tahar, Mabrouk
2010-12-01
A mode matching method for predicting the transmission loss of a cylindrical shaped dissipative silencer partially filled with a poroelastic foam is developed. The model takes into account the solid phase elasticity of the sound-absorbing material, the mounting conditions of the foam, and the presence of a uniform mean flow in the central airway. The novelty of the proposed approach lies in the fact that guided modes of the silencer have a composite nature containing both compressional and shear waves as opposed to classical mode matching methods in which only acoustic pressure waves are present. Results presented demonstrate good agreement with finite element calculations provided a sufficient number of modes are retained. In practice, it is found that the time for computing the transmission loss over a large frequency range takes a few minutes on a personal computer. This makes the present method a reliable tool for tackling dissipative silencers lined with poroelastic materials.
1990-01-09
data structures can easily be presented to the user interface. An emphasis of the Graph Browser was the realization of graph views and graph animation ... animation of the graph. Anima- tion of the graph includes changing node shapes, changing node and arc colors, changing node and arc text, and making...many graphs tend to be tree-like. Animtion of a graph is a useful feature. One of the primary goals of GMB was to support animated graphs. For animation
Enhancement in Elastic Bending Rigidity of Polymer Loaded Reverse Microemulsions.
Geethu, P M; Yadav, Indresh; Aswal, Vinod K; Satapathy, Dillip K
2017-11-14
Elastic bending rigidity of the surfactant shell is a crucial parameter which determines the phase behavior and stability of microemulsion droplets. For water-in-oil reverse microemulsions stabilized by AOT (sodium 1,4-bis(2-ethylhexoxy)-1,4-dioxobutane-2-sulfonate) surfactant, the elastic bending rigidity is close to thermal energy at room temperature (k B T) and can be modified by the presence of hydrophilic polymers. Here, we explore the influence of two polymers polyethylene glycol (PEG) and polyvinylpyrrolidone (PVP), both having nearly same size (radius of gyration, R g ) but different dipole moment, on elastic bending rigidity of water-AOT-n-decane reverse microemulsions via estimating the percolation temperatures (T P ) and droplet radii using dielectric relaxation spectroscopy (DRS) and small-angle neutron scattering (SANS) techniques. Notably, an increase in T P is observed on introducing PEG and PVP polymers and is attributed to the adsorption of polymer chains onto the surfactant monolayer. The stability of the droplet phase of microemulsion after the incorporation of PEG and PVP polymers is confirmed by contrast matching SANS experiments. An enhancement in elastic bending rigidity of AOT surfactant shell amounting to ∼46% is observed upon incorporation of PVP into the droplet core, whereas for PEG addition, a smaller increase of about 17% is recorded. We conjecture that the considerable increase in elastic bending rigidity of the surfactant monolayer upon introducing PVP is because of the strong ion-dipole interaction between anionic AOT and dipoles present along the PVP polymer chains. Scaling exponents extracted from the temperature dependent electrical conductivity measurements and the frequency dependent scaling of conductivity at percolation indicate the dynamic nature of percolation for both pure and polymer loaded reverse microemulsions. The decrease in activation energy of percolation upon incorporating PEG and PVP polymer molecules also reflects the increased stability of microemulsion droplets against thermal fluctuations.
Low Velocity Sphere Impact of a Soda Lime Silicate Glass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wereszczak, Andrew A; Fox, Ethan E; Morrissey, Timothy G
2011-10-01
This report summarizes TARDEC-sponsored work at Oak Ridge National Laboratory (ORNL) during the FY11 involving low velocity (< 30 m/s or < 65 mph) ball impact testing of Starphire soda lime silicate glass. The intent was to better understand low velocity impact response in the Starphire for sphere densities that bracketed that of rock. Five sphere materials were used: borosilicate glass, soda-lime silicate glass, steel, silicon nitride, and alumina. A gas gun was fabricated to produce controlled velocity delivery of the spheres against Starphire tile targets. Minimum impact velocities to initiate fracture in the Starphire were measured and interpreted inmore » context to the kinetic energy of impact and the elastic property mismatch between the any of the five sphere-Starphire-target combinations. The primary observations from this low velocity (< 30 m/s or < 65 mph) testing were: (1) Frictional effects contribute to fracture initiation. (2) Spheres with a lower elastic modulus require less force to initiate fracture in the Starphire than spheres with a higher elastic modulus. (3) Contact-induced fracture did not initiate in the Starphire SLS for impact kinetic energies < 150 mJ. Fracture sometimes initiated or kinetic energies between {approx} 150-1100 mJ; however, it tended to occur when lower elastic modulus spheres were impacting it. Contact-induced fracture would always occur for impact energies > 1100 mJ. (4) The force necessary to initiate contact-induced fracture is higher under dynamic or impact conditions than it is under quasi-static indentation conditions. (5) Among the five used sphere materials, silicon nitride was the closest match to 'rock' in terms of both density and (probably) elastic modulus.« less
Nash, Mark S; Jacobs, Patrick L; Woods, Jeffrey M; Clark, James E; Pray, Tanya A; Pumarejo, Alex E
2002-02-01
To test whether acute metabolic (VO(2)), chronotropic (heart rate), and perceptual (rating of perceived exertion; RPE) responses to exercise by persons with paraplegia differ when the exercise is on a multistation isoinertial exercise system (MultiGym) or on a customized system of Thera-Band resistance bands (ElasticGym). Within-subjects comparison of 2 treatments. Academic medical center. Sixteen men and 1 woman with complete paraplegia (T4-L1), as defined by the American Spinal Injury Association. A circuit resistance training (CRT) program for persons with paraplegia was adapted to both a MultiGym and a customized ElasticGym. Exercises used for training and testing used 6 resistance maneuvers at 50% of the 1-repetition maximum (1-RM), with interposed rapid arm spinning. Subjects were habituated to both conditions for 2 weeks before testing on randomized nonconsecutive days. VO(2) (L/min) was measured by portable spirometry, heart rate (beats/min) by a chest strap monitor, and RPE by the Borg Scale of Perceived Exertion (6-20). No significant effects of test condition on average VO(2) or heart rate were observed, with differences between conditions reflecting only .08L/min and 6.4 beats/min, respectively. Average RPE was significantly higher in testing under the ElasticGym condition (P < .05). CRT on a customized ElasticGym system elicited acute metabolic and chronotropic responses that did not differ from responses to exercise on a MultiGym, though RPE was greater with the ElasticGym. Copyright 2002 by the American Congress of Rehabilitation Medicine and the American Academy of Physical Medicine and Rehabilitation
Critical Buckling Pressure in Mouse Carotid Arteries with Altered Elastic Fibers
Luetkemeyer, Callan M.; James, Rhys H.; Devarakonda, Siva Teja; Le, Victoria P.; Liu, Qin; Han, Hai-Chao; Wagenseil, Jessica E.
2015-01-01
Arteries can buckle axially under applied critical buckling pressure due to a mechanical instability. Buckling can cause arterial tortuosity leading to flow irregularities and stroke. Genetic mutations in elastic fiber proteins are associated with arterial tortuosity in humans and mice, and may be the result of alterations in critical buckling pressure. Hence, the objective of this study is to investigate how genetic defects in elastic fibers affect buckling pressure. We use mouse models of human disease with reduced amounts of elastin (Eln+/−) and with defects in elastic fiber assembly due to the absence of fibulin-5 (Fbln5−/−). We find that Eln+/− arteries have reduced buckling pressure compared to their wild-type controls. Fbln5−/− arteries have similar buckling pressure to wild-type at low axial stretch, but increased buckling pressure at high stretch. We fit material parameters to mechanical test data for Eln+/−, Fbln5−/− and wild-type arteries using Fung and four-fiber strain energy functions. Fitted parameters are used to predict theoretical buckling pressure based on equilibrium of an inflated, buckled, thick-walled cylinder. In general, the theoretical predictions underestimate the buckling pressure at low axial stretch and overestimate the buckling pressure at high stretch. The theoretical predictions with both models replicate the increased buckling pressure at high stretch for Fbln5−/− arteries, but the four-fiber model predictions best match the experimental trends in buckling pressure changes with axial stretch. This study provides experimental and theoretical methods for further investigating the influence of genetic mutations in elastic fibers on buckling behavior and the development of arterial tortuosity. PMID:25771258
ERIC Educational Resources Information Center
Phage, Itumeleng B.; Lemmer, Miriam; Hitge, Mariette
2017-01-01
Students' graph comprehension may be affected by the background of the students who are the readers or interpreters of the graph, their knowledge of the context in which the graph is set, and the inferential processes required by the graph operation. This research study investigated these aspects of graph comprehension for 152 first year…
Research Studies on Photons and Biphotons
2013-10-01
harmonic transmit through the crystal . Scattered photons are detected by a YAP:Ce scintillation detector with energy resolution of 30. We choose to phase...counts as a function of photon energy is shown in Fig. 2a at full intensity (no filter before the diamond crystal ) and at the peak of the phase matching...are generated in the crystal or due to elastic scattering from the residual harmonic content in the incident beam. The absorption coefficients for Al
NASA Astrophysics Data System (ADS)
Xiong, B.; Oude Elberink, S.; Vosselman, G.
2014-07-01
In the task of 3D building model reconstruction from point clouds we face the problem of recovering a roof topology graph in the presence of noise, small roof faces and low point densities. Errors in roof topology graphs will seriously affect the final modelling results. The aim of this research is to automatically correct these errors. We define the graph correction as a graph-to-graph problem, similar to the spelling correction problem (also called the string-to-string problem). The graph correction is more complex than string correction, as the graphs are 2D while strings are only 1D. We design a strategy based on a dictionary of graph edit operations to automatically identify and correct the errors in the input graph. For each type of error the graph edit dictionary stores a representative erroneous subgraph as well as the corrected version. As an erroneous roof topology graph may contain several errors, a heuristic search is applied to find the optimum sequence of graph edits to correct the errors one by one. The graph edit dictionary can be expanded to include entries needed to cope with errors that were previously not encountered. Experiments show that the dictionary with only fifteen entries already properly corrects one quarter of erroneous graphs in about 4500 buildings, and even half of the erroneous graphs in one test area, achieving as high as a 95% acceptance rate of the reconstructed models.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Junsong; Hao, Shijie; Jiang, Daqiang
This study explored a novel intermetallic composite design concept based on the principle of lattice strain matching enabled by the collective atomic load transfer. It investigated the hard-soft microscopic deformation behavior of a Ti3Sn/TiNi eutectic hard-soft dual phase composite by means of in situ synchrotron high-energy X-ray diffraction (HE-XRD) during compression. The composite provides a unique micromechanical system with distinctive deformation behaviors and mechanisms from the two components, with the soft TiNi matrix deforming in full compliance via martensite variant reorientation and the hard Ti3Sn lamellae deforming predominantly by rigid body rotation, producing a crystallographic texture for the TiNi matrixmore » and a preferred alignment for the Ti3Sn lamellae. HE-XRD reveals continued martensite variant reorientation during plastic deformation well beyond the stress plateau of TiNi. The hard and brittle Ti3Sn is also found to produce an exceptionally large elastic strain of 1.95% in the composite. This is attributed to the effect of lattice strain matching between the transformation lattice distortion of the TiNi matrix and the elastic strain of Ti3Sn lamellae. With such unique micromechanic characteristics, the composite exhibits high strength and large ductility.« less
Theoretical model of impact damage in structural ceramics
NASA Technical Reports Server (NTRS)
Liaw, B. M.; Kobayashi, A. S.; Emery, A. G.
1984-01-01
This paper presents a mechanistically consistent model of impact damage based on elastic failures due to tensile and shear overloading. An elastic axisymmetric finite element model is used to determine the dynamic stresses generated by a single particle impact. Local failures in a finite element are assumed to occur when the primary/secondary principal stresses or the maximum shear stress reach critical tensile or shear stresses, respectively. The succession of failed elements thus models macrocrack growth. Sliding motions of cracks, which closed during unloading, are resisted by friction and the unrecovered deformation represents the 'plastic deformation' reported in the literature. The predicted ring cracks on the contact surface, as well as the cone cracks, median cracks, radial cracks, lateral cracks, and damage-induced porous zones in the interior of hot-pressed silicon nitride plates, matched those observed experimentally. The finite element model also predicted the uplifting of the free surface surrounding the impact site.
Surface phonons and elastic surface waves
NASA Astrophysics Data System (ADS)
Büscher, H.; Klein-Heßling, W.; Ludwig, W.
Theoretical investigations on the dynamics of the (001), (110) and (111) surfaces of some cubic metals (Ag, Cu, Ni) will be reviewed. Both, lattice dynamical and continuum theoretical results are obtained via a Green's function formalism. The main attitude of this paper is the comparison of our results with experiments and with results obtained via slab-calculations. The calculation of elastic surface waves has been performed using a modified surface-green-function-matching method. We have used two different approaches of calculation the bulk Green's function (a) using the spectral representation and (b) a method, what works on residues. The investigations are carried out using shortrange phenomenological potentials. The atomic force constants in the first surface layers are modified to describe surface phonon anomalies, observed by experiments. In the case of Ag (100) and Ag(110) we conclude that the detection of odd symmetry shear modes by Erskine et al. [1 a, b] was not very accurate.
Measurement of the K- pi+ S-wave system in D+ ---> K- pi+ pi+ decays from Fermilab E791
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meadows, B.; /Cincinnati U.
A new approach to the analysis of three body decays is presented. Measurements of the S-wave K{pi} amplitude are made in independent ranges of invariant mass from threshold up to the upper kinematic limit in D{sup +} {yields} K{sup -}{pi}{sup +}{pi}{sup +} decays. These are compared with results obtained from a fit where the S-wave is assumed to have {kappa} and K{sub 0}{sup +}(1430) resonances. Results are also compared with measurements of K{sup -} {pi}{sup +} elastic scattering. Contributions from I = 1/2 and I = 3/2 are not resolved in this study. If I = 1/2 dominates, however, themore » Watson theorem prediction, that the phase behavior below K{eta}' threshold should match that in elastic scattering, is not well supported by these data. Production of K{sup -} {pi}{sup +} from these D decays is also studied.« less
Development of a Fatigue Crack Growth Coupon for Highly Plastic Stress Conditions
NASA Technical Reports Server (NTRS)
Allen, Phillip A.; Aggarwal, Pravin K.; Swanson, Gregory R.
2003-01-01
The analytical approach used to develop a novel fatigue crack growth coupon for highly plastic stress field condition is presented in this paper. The flight hardware investigated is a large separation bolt that has a deep notch, which produces a large plastic zone at the notch root when highly loaded. Four test specimen configurations are analyzed in an attempt to match the elastic-plastic stress field and crack constraint conditions present in the separation bolt. Elastic-plastic finite element analysis is used to compare the stress fields and critical fracture parameters. Of the four test specimens analyzed, the modified double-edge notch tension - 3 (MDENT-3) most closely approximates the stress field, J values, and crack constraint conditions found in the flight hardware. The MDENT-3 is also most insensitive to load misalignment and/or load redistribution during crack growth.
Coarse-graining of proteins based on elastic network models
NASA Astrophysics Data System (ADS)
Sinitskiy, Anton V.; Voth, Gregory A.
2013-08-01
To simulate molecular processes on biologically relevant length- and timescales, coarse-grained (CG) models of biomolecular systems with tens to even hundreds of residues per CG site are required. One possible way to build such models is explored in this article: an elastic network model (ENM) is employed to define the CG variables. Free energy surfaces are approximated by Taylor series, with the coefficients found by force-matching. CG potentials are shown to undergo renormalization due to roughness of the energy landscape and smoothing of it under coarse-graining. In the case study of hen egg-white lysozyme, the entropy factor is shown to be of critical importance for maintaining the native structure, and a relationship between the proposed ENM-mode-based CG models and traditional CG-bead-based models is discussed. The proposed approach uncovers the renormalizable character of CG models and offers new opportunities for automated and computationally efficient studies of complex free energy surfaces.
Comparison and Enumeration of Chemical Graphs
Akutsu, Tatsuya; Nagamochi, Hiroshi
2013-01-01
Chemical compounds are usually represented as graph structured data in computers. In this review article, we overview several graph classes relevant to chemical compounds and the computational complexities of several fundamental problems for these graph classes. In particular, we consider the following problems: determining whether two chemical graphs are identical, determining whether one input chemical graph is a part of the other input chemical graph, finding a maximum common part of two input graphs, finding a reaction atom mapping, enumerating possible chemical graphs, and enumerating stereoisomers. We also discuss the relationship between the fifth problem and kernel functions for chemical compounds. PMID:24688697
Mean square cordial labelling related to some acyclic graphs and its rough approximations
NASA Astrophysics Data System (ADS)
Dhanalakshmi, S.; Parvathi, N.
2018-04-01
In this paper we investigate that the path Pn, comb graph Pn⊙K1, n-centipede graph,centipede graph (n,2) and star Sn admits mean square cordial labeling. Also we proved that the induced sub graph obtained by the upper approximation of any sub graph H of the above acyclic graphs admits mean square cordial labeling.
Relating zeta functions of discrete and quantum graphs
NASA Astrophysics Data System (ADS)
Harrison, Jonathan; Weyand, Tracy
2018-02-01
We write the spectral zeta function of the Laplace operator on an equilateral metric graph in terms of the spectral zeta function of the normalized Laplace operator on the corresponding discrete graph. To do this, we apply a relation between the spectrum of the Laplacian on a discrete graph and that of the Laplacian on an equilateral metric graph. As a by-product, we determine how the multiplicity of eigenvalues of the quantum graph, that are also in the spectrum of the graph with Dirichlet conditions at the vertices, depends on the graph geometry. Finally we apply the result to calculate the vacuum energy and spectral determinant of a complete bipartite graph and compare our results with those for a star graph, a graph in which all vertices are connected to a central vertex by a single edge.
Xuan, Junyu; Lu, Jie; Zhang, Guangquan; Luo, Xiangfeng
2015-12-01
Graph mining has been a popular research area because of its numerous application scenarios. Many unstructured and structured data can be represented as graphs, such as, documents, chemical molecular structures, and images. However, an issue in relation to current research on graphs is that they cannot adequately discover the topics hidden in graph-structured data which can be beneficial for both the unsupervised learning and supervised learning of the graphs. Although topic models have proved to be very successful in discovering latent topics, the standard topic models cannot be directly applied to graph-structured data due to the "bag-of-word" assumption. In this paper, an innovative graph topic model (GTM) is proposed to address this issue, which uses Bernoulli distributions to model the edges between nodes in a graph. It can, therefore, make the edges in a graph contribute to latent topic discovery and further improve the accuracy of the supervised and unsupervised learning of graphs. The experimental results on two different types of graph datasets show that the proposed GTM outperforms the latent Dirichlet allocation on classification by using the unveiled topics of these two models to represent graphs.
Rode, Christian; Sutedja, Yefta; Kilbourne, Brandon M; Blickhan, Reinhard; Andrada, Emanuel
2016-02-01
Small birds move with pronograde trunk orientation and crouched legs. Although the pronograde trunk has been suggested to be beneficial for grounded running, the cause(s) of the specific leg kinematics are unknown. Here we show that three charadriiform bird species (northern lapwing, oystercatcher, and avocet; great examples of closely related species that differ remarkably in their hind limb design) move their leg segments during stance in a way that minimizes the cost of locomotion. We imposed measured trunk motions and ground reaction forces on a kinematic model of the birds. The model was used to search for leg configurations that minimize leg work that accounts for two factors: elastic recoil in the intertarsal joint, and cheaper negative muscle work relative to positive muscle work. A physiological level of elasticity (∼ 0.6) yielded segment motions that match the experimental data best, with a root mean square of angular deviations of ∼ 2.1 deg. This finding suggests that the exploitation of elastic recoil shapes the crouched leg kinematics of small birds under the constraint of pronograde trunk motion. Considering that an upright trunk and more extended legs likely decrease the cost of locomotion, our results imply that the cost of locomotion is a secondary movement criterion for small birds. Scaling arguments suggest that our approach may be utilized to provide new insights into the motion of extinct species such as dinosaurs. © 2016. Published by The Company of Biologists Ltd.
Preserving Differential Privacy in Degree-Correlation based Graph Generation
Wang, Yue; Wu, Xintao
2014-01-01
Enabling accurate analysis of social network data while preserving differential privacy has been challenging since graph features such as cluster coefficient often have high sensitivity, which is different from traditional aggregate functions (e.g., count and sum) on tabular data. In this paper, we study the problem of enforcing edge differential privacy in graph generation. The idea is to enforce differential privacy on graph model parameters learned from the original network and then generate the graphs for releasing using the graph model with the private parameters. In particular, we develop a differential privacy preserving graph generator based on the dK-graph generation model. We first derive from the original graph various parameters (i.e., degree correlations) used in the dK-graph model, then enforce edge differential privacy on the learned parameters, and finally use the dK-graph model with the perturbed parameters to generate graphs. For the 2K-graph model, we enforce the edge differential privacy by calibrating noise based on the smooth sensitivity, rather than the global sensitivity. By doing this, we achieve the strict differential privacy guarantee with smaller magnitude noise. We conduct experiments on four real networks and compare the performance of our private dK-graph models with the stochastic Kronecker graph generation model in terms of utility and privacy tradeoff. Empirical evaluations show the developed private dK-graph generation models significantly outperform the approach based on the stochastic Kronecker generation model. PMID:24723987
A general method for computing Tutte polynomials of self-similar graphs
NASA Astrophysics Data System (ADS)
Gong, Helin; Jin, Xian'an
2017-10-01
Self-similar graphs were widely studied in both combinatorics and statistical physics. Motivated by the construction of the well-known 3-dimensional Sierpiński gasket graphs, in this paper we introduce a family of recursively constructed self-similar graphs whose inner duals are of the self-similar property. By combining the dual property of the Tutte polynomial and the subgraph-decomposition trick, we show that the Tutte polynomial of this family of graphs can be computed in an iterative way and in particular the exact expression of the formula of the number of their spanning trees is derived. Furthermore, we show our method is a general one that is easily extended to compute Tutte polynomials for other families of self-similar graphs such as Farey graphs, 2-dimensional Sierpiński gasket graphs, Hanoi graphs, modified Koch graphs, Apollonian graphs, pseudofractal scale-free web, fractal scale-free network, etc.
Bipartite separability and nonlocal quantum operations on graphs
NASA Astrophysics Data System (ADS)
Dutta, Supriyo; Adhikari, Bibhas; Banerjee, Subhashish; Srikanth, R.
2016-07-01
In this paper we consider the separability problem for bipartite quantum states arising from graphs. Earlier it was proved that the degree criterion is the graph-theoretic counterpart of the familiar positive partial transpose criterion for separability, although there are entangled states with positive partial transpose for which the degree criterion fails. Here we introduce the concept of partially symmetric graphs and degree symmetric graphs by using the well-known concept of partial transposition of a graph and degree criteria, respectively. Thus, we provide classes of bipartite separable states of dimension m ×n arising from partially symmetric graphs. We identify partially asymmetric graphs that lack the property of partial symmetry. We develop a combinatorial procedure to create a partially asymmetric graph from a given partially symmetric graph. We show that this combinatorial operation can act as an entanglement generator for mixed states arising from partially symmetric graphs.
On the local edge antimagicness of m-splitting graphs
NASA Astrophysics Data System (ADS)
Albirri, E. R.; Dafik; Slamin; Agustin, I. H.; Alfarisi, R.
2018-04-01
Let G be a connected and simple graph. A split graph is a graph derived by adding new vertex v‧ in every vertex v‧ such that v‧ adjacent to v in graph G. An m-splitting graph is a graph which has m v‧-vertices, denoted by mSpl(G). A local edge antimagic coloring in G = (V, E) graph is a bijection f:V (G)\\to \\{1,2,3,\\ldots,|V(G)|\\} in which for any two adjacent edges e 1 and e 2 satisfies w({e}1)\
Survey of Approaches to Generate Realistic Synthetic Graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Seung-Hwan; Lee, Sangkeun; Powers, Sarah S
A graph is a flexible data structure that can represent relationships between entities. As with other data analysis tasks, the use of realistic graphs is critical to obtaining valid research results. Unfortunately, using the actual ("real-world") graphs for research and new algorithm development is difficult due to the presence of sensitive information in the data or due to the scale of data. This results in practitioners developing algorithms and systems that employ synthetic graphs instead of real-world graphs. Generating realistic synthetic graphs that provide reliable statistical confidence to algorithmic analysis and system evaluation involves addressing technical hurdles in a broadmore » set of areas. This report surveys the state of the art in approaches to generate realistic graphs that are derived from fitted graph models on real-world graphs.« less
Apparatuses and Methods for Producing Runtime Architectures of Computer Program Modules
NASA Technical Reports Server (NTRS)
Abi-Antoun, Marwan Elia (Inventor); Aldrich, Jonathan Erik (Inventor)
2013-01-01
Apparatuses and methods for producing run-time architectures of computer program modules. One embodiment includes creating an abstract graph from the computer program module and from containment information corresponding to the computer program module, wherein the abstract graph has nodes including types and objects, and wherein the abstract graph relates an object to a type, and wherein for a specific object the abstract graph relates the specific object to a type containing the specific object; and creating a runtime graph from the abstract graph, wherein the runtime graph is a representation of the true runtime object graph, wherein the runtime graph represents containment information such that, for a specific object, the runtime graph relates the specific object to another object that contains the specific object.
Moran-Santa Maria, Megan M; Vanderweyen, Davy C; Camp, Christopher C; Zhu, Xun; McKee, Sherry A; Cosgrove, Kelly P; Hartwell, Karen J; Brady, Kathleen T; Joseph, Jane E
2018-06-07
The goal of this study was to conduct a preliminary network analysis (using graph-theory measures) of intrinsic functional connectivity in adult smokers, with an exploration of sex differences in smokers. Twenty-seven adult smokers (13 males; mean age = 35) and 17 sex and age-matched controls (11 males; mean age = 35) completed a blood oxygen level-dependent resting state functional magnetic resonance imaging experiment. Data analysis involved preprocessing, creation of connectivity matrices using partial correlation, and computation of graph-theory measures using the Brain Connectivity Toolbox. Connector hubs and additional graph-theory measures were examined for differences between smokers and controls and correlations with nicotine dependence. Sex differences were examined in a priori regions of interest based on prior literature. Compared to nonsmokers, connector hubs in smokers emerged primarily in limbic (parahippocampus) and salience network (cingulate cortex) regions. In addition, global influence of the right insula and left nucleus accumbens was associated with higher nicotine dependence. These trends were present in male but not female smokers. Network communication was altered in smokers, primarily in limbic and salience network regions. Network topology was associated with nicotine dependence in male but not female smokers in regions associated with reinforcement (nucleus accumbens) and craving (insula), consistent with the idea that male smokers are more sensitive to the reinforcing aspects of nicotine than female smokers. Identifying alterations in brain network communication in male and female smokers can help tailor future behavioral and pharmacological smoking interventions. Male smokers showed alterations in brain networks associated with the reinforcing effects of nicotine more so than females, suggesting that pharmacotherapies targeting reinforcement and craving may be more efficacious in male smokers.
Structural scene analysis and content-based image retrieval applied to bone age assessment
NASA Astrophysics Data System (ADS)
Fischer, Benedikt; Brosig, André; Deserno, Thomas M.; Ott, Bastian; Günther, Rolf W.
2009-02-01
Radiological bone age assessment is based on global or local image regions of interest (ROI), such as epiphyseal regions or the area of carpal bones. Usually, these regions are compared to a standardized reference and a score determining the skeletal maturity is calculated. For computer-assisted diagnosis, automatic ROI extraction is done so far by heuristic approaches. In this work, we apply a high-level approach of scene analysis for knowledge-based ROI segmentation. Based on a set of 100 reference images from the IRMA database, a so called structural prototype (SP) is trained. In this graph-based structure, the 14 phalanges and 5 metacarpal bones are represented by nodes, with associated location, shape, as well as texture parameters modeled by Gaussians. Accordingly, the Gaussians describing the relative positions, relative orientation, and other relative parameters between two nodes are associated to the edges. Thereafter, segmentation of a hand radiograph is done in several steps: (i) a multi-scale region merging scheme is applied to extract visually prominent regions; (ii) a graph/sub-graph matching to the SP robustly identifies a subset of the 19 bones; (iii) the SP is registered to the current image for complete scene-reconstruction (iv) the epiphyseal regions are extracted from the reconstructed scene. The evaluation is based on 137 images of Caucasian males from the USC hand atlas. Overall, an error rate of 32% is achieved, for the 6 middle distal and medial/distal epiphyses, 23% of all extractions need adjustments. On average 9.58 of the 14 epiphyseal regions were extracted successfully per image. This is promising for further use in content-based image retrieval (CBIR) and CBIR-based automatic bone age assessment.
Zhou, Chaoyang; Hu, Xiaofei; Hu, Jun; Liang, Minglong; Yin, Xuntao; Chen, Lin; Zhang, Jiuquan; Wang, Jian
2016-01-01
Amyotrophic lateral sclerosis (ALS) is a rare degenerative disorder characterized by loss of upper and lower motor neurons. Neuroimaging has provided noticeable evidence that ALS is a complex disease, and shown that anatomical and functional lesions extend beyond precentral cortices and corticospinal tracts, to include the corpus callosum; frontal, sensory, and premotor cortices; thalamus; and midbrain. The aim of this study is to investigate graph theory-based functional network abnormalities at voxel-wise level in ALS patients on a whole brain scale. Forty-three ALS patients and 44 age- and sex-matched healthy volunteers were enrolled. The voxel-wise network degree centrality (DC), a commonly employed graph-based measure of network organization, was used to characterize the alteration of whole brain functional network. Compared with the controls, the ALS patients showed significant increase of DC in the left cerebellum posterior lobes, bilateral cerebellum crus, bilateral occipital poles, right orbital frontal lobe, and bilateral prefrontal lobes; significant decrease of DC in the bilateral primary motor cortex, bilateral sensory motor region, right prefrontal lobe, left bilateral precuneus, bilateral lateral temporal lobes, left cingulate cortex, and bilateral visual processing cortex. The DC's z-scores of right inferior occipital gyrus were significant negative correlated with the ALSFRS-r scores. Our findings confirm that the regions with abnormal network DC in ALS patients were located in multiple brain regions including primary motor, somatosensory and extra-motor areas, supporting the concept that ALS is a multisystem disorder. Specifically, our study found that DC in the visual areas was altered and ALS patients with higher DC in right inferior occipital gyrus have more severity of disease. The result demonstrated that the altered DC value in this region can probably be used to assess severity of ALS.
Functional classification of protein structures by local structure matching in graph representation.
Mills, Caitlyn L; Garg, Rohan; Lee, Joslynn S; Tian, Liang; Suciu, Alexandru; Cooperman, Gene; Beuning, Penny J; Ondrechen, Mary Jo
2018-03-31
As a result of high-throughput protein structure initiatives, over 14,400 protein structures have been solved by structural genomics (SG) centers and participating research groups. While the totality of SG data represents a tremendous contribution to genomics and structural biology, reliable functional information for these proteins is generally lacking. Better functional predictions for SG proteins will add substantial value to the structural information already obtained. Our method described herein, Graph Representation of Active Sites for Prediction of Function (GRASP-Func), predicts quickly and accurately the biochemical function of proteins by representing residues at the predicted local active site as graphs rather than in Cartesian coordinates. We compare the GRASP-Func method to our previously reported method, structurally aligned local sites of activity (SALSA), using the ribulose phosphate binding barrel (RPBB), 6-hairpin glycosidase (6-HG), and Concanavalin A-like Lectins/Glucanase (CAL/G) superfamilies as test cases. In each of the superfamilies, SALSA and the much faster method GRASP-Func yield similar correct classification of previously characterized proteins, providing a validated benchmark for the new method. In addition, we analyzed SG proteins using our SALSA and GRASP-Func methods to predict function. Forty-one SG proteins in the RPBB superfamily, nine SG proteins in the 6-HG superfamily, and one SG protein in the CAL/G superfamily were successfully classified into one of the functional families in their respective superfamily by both methods. This improved, faster, validated computational method can yield more reliable predictions of function that can be used for a wide variety of applications by the community. © 2018 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.
Abnormal functional global and local brain connectivity in female patients with anorexia nervosa
Geisler, Daniel; Borchardt, Viola; Lord, Anton R.; Boehm, Ilka; Ritschel, Franziska; Zwipp, Johannes; Clas, Sabine; King, Joseph A.; Wolff-Stephan, Silvia; Roessner, Veit; Walter, Martin; Ehrlich, Stefan
2016-01-01
Background Previous resting-state functional connectivity studies in patients with anorexia nervosa used independent component analysis or seed-based connectivity analysis to probe specific brain networks. Instead, modelling the entire brain as a complex network allows determination of graph-theoretical metrics, which describe global and local properties of how brain networks are organized and how they interact. Methods To determine differences in network properties between female patients with acute anorexia nervosa and pairwise matched healthy controls, we used resting-state fMRI and computed well-established global and local graph metrics across a range of network densities. Results Our analyses included 35 patients and 35 controls. We found that the global functional network structure in patients with anorexia nervosa is characterized by increases in both characteristic path length (longer average routes between nodes) and assortativity (more nodes with a similar connectedness link together). Accordingly, we found locally decreased connectivity strength and increased path length in the posterior insula and thalamus. Limitations The present results may be limited to the methods applied during preprocessing and network construction. Conclusion We demonstrated anorexia nervosa–related changes in the network configuration for, to our knowledge, the first time using resting-state fMRI and graph-theoretical measures. Our findings revealed an altered global brain network architecture accompanied by local degradations indicating wide-scale disturbance in information flow across brain networks in patients with acute anorexia nervosa. Reduced local network efficiency in the thalamus and posterior insula may reflect a mechanism that helps explain the impaired integration of visuospatial and homeostatic signals in patients with this disorder, which is thought to be linked to abnormal representations of body size and hunger. PMID:26252451
Abnormal functional global and local brain connectivity in female patients with anorexia nervosa.
Geisler, Daniel; Borchardt, Viola; Lord, Anton R; Boehm, Ilka; Ritschel, Franziska; Zwipp, Johannes; Clas, Sabine; King, Joseph A; Wolff-Stephan, Silvia; Roessner, Veit; Walter, Martin; Ehrlich, Stefan
2016-01-01
Previous resting-state functional connectivity studies in patients with anorexia nervosa used independent component analysis or seed-based connectivity analysis to probe specific brain networks. Instead, modelling the entire brain as a complex network allows determination of graph-theoretical metrics, which describe global and local properties of how brain networks are organized and how they interact. To determine differences in network properties between female patients with acute anorexia nervosa and pairwise matched healthy controls, we used resting-state fMRI and computed well-established global and local graph metrics across a range of network densities. Our analyses included 35 patients and 35 controls. We found that the global functional network structure in patients with anorexia nervosa is characterized by increases in both characteristic path length (longer average routes between nodes) and assortativity (more nodes with a similar connectedness link together). Accordingly, we found locally decreased connectivity strength and increased path length in the posterior insula and thalamus. The present results may be limited to the methods applied during preprocessing and network construction. We demonstrated anorexia nervosa-related changes in the network configuration for, to our knowledge, the first time using resting-state fMRI and graph-theoretical measures. Our findings revealed an altered global brain network architecture accompanied by local degradations indicating wide-scale disturbance in information flow across brain networks in patients with acute anorexia nervosa. Reduced local network efficiency in the thalamus and posterior insula may reflect a mechanism that helps explain the impaired integration of visuospatial and homeostatic signals in patients with this disorder, which is thought to be linked to abnormal representations of body size and hunger.
Extended phase graph formalism for systems with magnetization transfer and exchange
Teixeira, Rui Pedro A.G.; Hajnal, Joseph V.
2017-01-01
Purpose An extended phase graph framework (EPG‐X) for modeling systems with exchange or magnetization transfer (MT) is proposed. Theory EPG‐X models coupled two‐compartment systems by describing each compartment with separate phase graphs that exchange during evolution periods. There are two variants: EPG‐X(BM) for systems governed by the Bloch‐McConnell equations, and EPG‐X(MT) for the pulsed MT formalism. For the MT case, the “bound” protons have no transverse components, so their phase graph consists of only longitudinal states. Methods The EPG‐X model was validated against steady‐state solutions and isochromat‐based simulation of gradient‐echo sequences. Three additional test cases were investigated: (i) MT effects in multislice turbo spin‐echo; (ii) variable flip angle gradient‐echo imaging of the type used for MR fingerprinting; and (iii) water exchange in multi‐echo spin‐echo T2 relaxometry. Results EPG‐X was validated successfully against isochromat based transient simulations and known steady‐state solutions. EPG‐X(MT) simulations matched in‐vivo measurements of signal attenuation in white matter in multislice turbo spin‐echo images. Magnetic resonance fingerprinting–style experiments with a bovine serum albumin (MT) phantom showed that the data were not consistent with a single‐pool model, but EPG‐X(MT) could be used to fit the data well. The EPG‐X(BM) simulations of multi‐echo spin‐echo T2 relaxometry suggest that exchange could lead to an underestimation of the myelin‐water fraction. Conclusions The EPG‐X framework can be used for modeling both steady‐state and transient signal response of systems exhibiting exchange or MT. This may be particularly beneficial for relaxometry approaches that rely on characterizing transient rather than steady‐state sequences. Magn Reson Med 80:767–779, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:29243295
MEDRank: using graph-based concept ranking to index biomedical texts
Herskovic, Jorge R.; Cohen, Trevor; Subramanian, Devika; Iyengar, M. Sriram; Smith, Jack W.; Bernstam, Elmer V.
2011-01-01
BACKGROUND As the volume of biomedical text increases exponentially, automatic indexing becomes increasingly important. However, existing approaches do not distinguish central (or core) concepts from concepts that were mentioned in passing. We focus on the problem of indexing MEDLINE records, a process that is currently performed by highly-trained humans at the National Library of Medicine (NLM). NLM indexers are assisted by a system called the Medical Text Indexer (MTI) that suggests candidate indexing terms. OBJECTIVE To improve the ability of MTI to select the core terms in MEDLINE abstracts. These core concepts are deemed to be most important and are designated as “major headings” by MEDLINE indexers. We introduce and evaluate a graph-based indexing methodology called MEDRank that generates concept graphs from biomedical text and then ranks the concepts within these graphs to identify the most important ones. METHODS We insert a MEDRank step into the MTI and compare MTI’s output with and without MEDRank to the MEDLINE indexers’ selected terms for a sample of 11,803 PubMed Central articles. We also tested whether human raters prefer terms generated by the MEDLINE indexers, MTI without MEDRank, and MTI with MEDRank for a sample of 36 PubMed Central articles. RESULTS MEDRank improved recall of major headings designated by 30% over MTI without MEDRank (0.489 vs 0.376). Overall recall was only slightly (6.5%) higher (0.490 vs 0.460) as was F2 (3%, 0.408 vs 0.396). However, overall precision was 3.9% lower (0.268 vs 0.279). Human raters preferred terms generated by MTI with MEDRank over terms generated by MTI without MEDRank (by an average of 1.00 more term per article), and preferred terms generated by MTI with MEDRank and the MEDLINE indexers at the same rate. CONCLUSIONS The addition of MEDRank to MTI significantly improved the retrieval of core concepts in MEDLINE abstracts and more closely matched human expectations compared to MTI without MEDRank. In addition, MEDRank slightly improved overall recall and F2. PMID:21439897
MEDRank: using graph-based concept ranking to index biomedical texts.
Herskovic, Jorge R; Cohen, Trevor; Subramanian, Devika; Iyengar, M Sriram; Smith, Jack W; Bernstam, Elmer V
2011-06-01
As the volume of biomedical text increases exponentially, automatic indexing becomes increasingly important. However, existing approaches do not distinguish central (or core) concepts from concepts that were mentioned in passing. We focus on the problem of indexing MEDLINE records, a process that is currently performed by highly trained humans at the National Library of Medicine (NLM). NLM indexers are assisted by a system called the Medical Text Indexer (MTI) that suggests candidate indexing terms. To improve the ability of MTI to select the core terms in MEDLINE abstracts. These core concepts are deemed to be most important and are designated as "major headings" by MEDLINE indexers. We introduce and evaluate a graph-based indexing methodology called MEDRank that generates concept graphs from biomedical text and then ranks the concepts within these graphs to identify the most important ones. We insert a MEDRank step into the MTI and compare MTI's output with and without MEDRank to the MEDLINE indexers' selected terms for a sample of 11,803 PubMed Central articles. We also tested whether human raters prefer terms generated by the MEDLINE indexers, MTI without MEDRank, and MTI with MEDRank for a sample of 36 PubMed Central articles. MEDRank improved recall of major headings designated by 30% over MTI without MEDRank (0.489 vs. 0.376). Overall recall was only slightly (6.5%) higher (0.490 vs. 0.460) as was F(2) (3%, 0.408 vs. 0.396). However, overall precision was 3.9% lower (0.268 vs. 0.279). Human raters preferred terms generated by MTI with MEDRank over terms generated by MTI without MEDRank (by an average of 1.00 more term per article), and preferred terms generated by MTI with MEDRank and the MEDLINE indexers at the same rate. The addition of MEDRank to MTI significantly improved the retrieval of core concepts in MEDLINE abstracts and more closely matched human expectations compared to MTI without MEDRank. In addition, MEDRank slightly improved overall recall and F(2). Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Dimitrakopoulos, Christos; Theofilatos, Konstantinos; Pegkas, Andreas; Likothanassis, Spiros; Mavroudi, Seferina
2016-07-01
Proteins are vital biological molecules driving many fundamental cellular processes. They rarely act alone, but form interacting groups called protein complexes. The study of protein complexes is a key goal in systems biology. Recently, large protein-protein interaction (PPI) datasets have been published and a plethora of computational methods that provide new ideas for the prediction of protein complexes have been implemented. However, most of the methods suffer from two major limitations: First, they do not account for proteins participating in multiple functions and second, they are unable to handle weighted PPI graphs. Moreover, the problem remains open as existing algorithms and tools are insufficient in terms of predictive metrics. In the present paper, we propose gradually expanding neighborhoods with adjustment (GENA), a new algorithm that gradually expands neighborhoods in a graph starting from highly informative "seed" nodes. GENA considers proteins as multifunctional molecules allowing them to participate in more than one protein complex. In addition, GENA accepts weighted PPI graphs by using a weighted evaluation function for each cluster. In experiments with datasets from Saccharomyces cerevisiae and human, GENA outperformed Markov clustering, restricted neighborhood search and clustering with overlapping neighborhood expansion, three state-of-the-art methods for computationally predicting protein complexes. Seven PPI networks and seven evaluation datasets were used in total. GENA outperformed existing methods in 16 out of 18 experiments achieving an average improvement of 5.5% when the maximum matching ratio metric was used. Our method was able to discover functionally homogeneous protein clusters and uncover important network modules in a Parkinson expression dataset. When used on the human networks, around 47% of the detected clusters were enriched in gene ontology (GO) terms with depth higher than five in the GO hierarchy. In the present manuscript, we introduce a new method for the computational prediction of protein complexes by making the realistic assumption that proteins participate in multiple protein complexes and cellular functions. Our method can detect accurate and functionally homogeneous clusters. Copyright © 2016 Elsevier B.V. All rights reserved.
G-Hash: Towards Fast Kernel-based Similarity Search in Large Graph Databases.
Wang, Xiaohong; Smalter, Aaron; Huan, Jun; Lushington, Gerald H
2009-01-01
Structured data including sets, sequences, trees and graphs, pose significant challenges to fundamental aspects of data management such as efficient storage, indexing, and similarity search. With the fast accumulation of graph databases, similarity search in graph databases has emerged as an important research topic. Graph similarity search has applications in a wide range of domains including cheminformatics, bioinformatics, sensor network management, social network management, and XML documents, among others.Most of the current graph indexing methods focus on subgraph query processing, i.e. determining the set of database graphs that contains the query graph and hence do not directly support similarity search. In data mining and machine learning, various graph kernel functions have been designed to capture the intrinsic similarity of graphs. Though successful in constructing accurate predictive and classification models for supervised learning, graph kernel functions have (i) high computational complexity and (ii) non-trivial difficulty to be indexed in a graph database.Our objective is to bridge graph kernel function and similarity search in graph databases by proposing (i) a novel kernel-based similarity measurement and (ii) an efficient indexing structure for graph data management. Our method of similarity measurement builds upon local features extracted from each node and their neighboring nodes in graphs. A hash table is utilized to support efficient storage and fast search of the extracted local features. Using the hash table, a graph kernel function is defined to capture the intrinsic similarity of graphs and for fast similarity query processing. We have implemented our method, which we have named G-hash, and have demonstrated its utility on large chemical graph databases. Our results show that the G-hash method achieves state-of-the-art performance for k-nearest neighbor (k-NN) classification. Most importantly, the new similarity measurement and the index structure is scalable to large database with smaller indexing size, faster indexing construction time, and faster query processing time as compared to state-of-the-art indexing methods such as C-tree, gIndex, and GraphGrep.
GraphReduce: Processing Large-Scale Graphs on Accelerator-Based Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengupta, Dipanjan; Song, Shuaiwen; Agarwal, Kapil
2015-11-15
Recent work on real-world graph analytics has sought to leverage the massive amount of parallelism offered by GPU devices, but challenges remain due to the inherent irregularity of graph algorithms and limitations in GPU-resident memory for storing large graphs. We present GraphReduce, a highly efficient and scalable GPU-based framework that operates on graphs that exceed the device’s internal memory capacity. GraphReduce adopts a combination of edge- and vertex-centric implementations of the Gather-Apply-Scatter programming model and operates on multiple asynchronous GPU streams to fully exploit the high degrees of parallelism in GPUs with efficient graph data movement between the host andmore » device.« less
Comparing Internet Probing Methodologies Through an Analysis of Large Dynamic Graphs
2014-06-01
comparable Internet topologies in less time. We compare these by modeling union of traceroute outputs as graphs, and using standard graph theoretical...topologies in less time. We compare these by modeling union of traceroute outputs as graphs, and using standard graph theoretical measurements as well...We compare these by modeling union of traceroute outputs as graphs, and study the graphs by using vertex and edge count, average vertex degree
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sukumar, Sreenivas R.; Hong, Seokyong; Lee, Sangkeun
2016-06-01
GraphBench is a benchmark suite for graph pattern mining and graph analysis systems. The benchmark suite is a significant addition to conducting apples-apples comparison of graph analysis software (databases, in-memory tools, triple stores, etc.)
Link-Gelles, Ruth; Westreich, Daniel; Aiello, Allison E; Shang, Nong; Weber, David J; Holtzman, Corinne; Scherzinger, Karen; Reingold, Arthur; Schaffner, William; Harrison, Lee H; Rosen, Jennifer B; Petit, Susan; Farley, Monica; Thomas, Ann; Eason, Jeffrey; Wigen, Christine; Barnes, Meghan; Thomas, Ola; Zansky, Shelley; Beall, Bernard; Whitney, Cynthia G; Moore, Matthew R
2016-12-01
In 2010, 13-valent pneumococcal conjugate vaccine (PCV13) was introduced in the US for prevention of invasive pneumococcal disease in children. Individual-level socioeconomic status (SES) is a potential confounder of the estimated effectiveness of PCV13 and is often controlled for in observational studies using zip code as a proxy. We assessed the utility of zip code matching for control of SES in a post-licensure evaluation of the effectiveness of PCV13 (calculated as [1-matched odds ratio]*100). We used a directed acyclic graph to identify subsets of confounders and collected SES variables from birth certificates, geo-coding, a parent interview, and follow-up with medical providers. Cases tended to be more affluent than eligible controls (for example, 48.3% of cases had private insurance vs. 44.6% of eligible controls), but less affluent than enrolled controls (52.9% of whom had private insurance). Control of confounding subsets, however, did not result in a meaningful change in estimated vaccine effectiveness (original estimate: 85.1%, 95% CI 74.8-91.9%; adjusted estimate: 82.5%, 95% CI 65.6-91.1%). In the context of a post-licensure vaccine effectiveness study, zip code appears to be an adequate, though not perfect, proxy for individual SES.
Asymptote Misconception on Graphing Functions: Does Graphing Software Resolve It?
ERIC Educational Resources Information Center
Öçal, Mehmet Fatih
2017-01-01
Graphing function is an important issue in mathematics education due to its use in various areas of mathematics and its potential roles for students to enhance learning mathematics. The use of some graphing software assists students' learning during graphing functions. However, the display of graphs of functions that students sketched by hand may…
Generalized graph states based on Hadamard matrices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Shawn X.; Yu, Nengkun; Department of Mathematics and Statistics, University of Guelph, Guelph, Ontario N1G 2W1
2015-07-15
Graph states are widely used in quantum information theory, including entanglement theory, quantum error correction, and one-way quantum computing. Graph states have a nice structure related to a certain graph, which is given by either a stabilizer group or an encoding circuit, both can be directly given by the graph. To generalize graph states, whose stabilizer groups are abelian subgroups of the Pauli group, one approach taken is to study non-abelian stabilizers. In this work, we propose to generalize graph states based on the encoding circuit, which is completely determined by the graph and a Hadamard matrix. We study themore » entanglement structures of these generalized graph states and show that they are all maximally mixed locally. We also explore the relationship between the equivalence of Hadamard matrices and local equivalence of the corresponding generalized graph states. This leads to a natural generalization of the Pauli (X, Z) pairs, which characterizes the local symmetries of these generalized graph states. Our approach is also naturally generalized to construct graph quantum codes which are beyond stabilizer codes.« less
Graph processing platforms at scale: practices and experiences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Seung-Hwan; Lee, Sangkeun; Brown, Tyler C
2015-01-01
Graph analysis unveils hidden associations of data in many phenomena and artifacts, such as road network, social networks, genomic information, and scientific collaboration. Unfortunately, a wide diversity in the characteristics of graphs and graph operations make it challenging to find a right combination of tools and implementation of algorithms to discover desired knowledge from the target data set. This study presents an extensive empirical study of three representative graph processing platforms: Pegasus, GraphX, and Urika. Each system represents a combination of options in data model, processing paradigm, and infrastructure. We benchmarked each platform using three popular graph operations, degree distribution,more » connected components, and PageRank over a variety of real-world graphs. Our experiments show that each graph processing platform shows different strength, depending the type of graph operations. While Urika performs the best in non-iterative operations like degree distribution, GraphX outputforms iterative operations like connected components and PageRank. In addition, we discuss challenges to optimize the performance of each platform over large scale real world graphs.« less
A fast algorithm for vertex-frequency representations of signals on graphs
Jestrović, Iva; Coyle, James L.; Sejdić, Ervin
2016-01-01
The windowed Fourier transform (short time Fourier transform) and the S-transform are widely used signal processing tools for extracting frequency information from non-stationary signals. Previously, the windowed Fourier transform had been adopted for signals on graphs and has been shown to be very useful for extracting vertex-frequency information from graphs. However, high computational complexity makes these algorithms impractical. We sought to develop a fast windowed graph Fourier transform and a fast graph S-transform requiring significantly shorter computation time. The proposed schemes have been tested with synthetic test graph signals and real graph signals derived from electroencephalography recordings made during swallowing. The results showed that the proposed schemes provide significantly lower computation time in comparison with the standard windowed graph Fourier transform and the fast graph S-transform. Also, the results showed that noise has no effect on the results of the algorithm for the fast windowed graph Fourier transform or on the graph S-transform. Finally, we showed that graphs can be reconstructed from the vertex-frequency representations obtained with the proposed algorithms. PMID:28479645