Scattering of 30 MeV He3 from Re185
NASA Astrophysics Data System (ADS)
Garrett, P. E.; Phillips, A. A.; Demand, G. A.; Finlay, P.; Green, K. L.; Leach, K. G.; Schumaker, M. A.; Svensson, C. E.; Wong, J.; Hertenberger, R.; Wirth, H.-F.; Faestermann, T.; Krücken, R.; Burke, D. G.; Bettermann, L.; Braun, N.
2009-01-01
The scattering of 30 MeV He3 from a Re185 target has been investigated. The measured elastic scattering is in disagreement with calculations using common optical model parameter sets found in the literature. A new optical model parameter set has been determined that reproduces the data for both the elastic and the inelastic scattering channels.
Elastic scattering, polarization and absorption of relativistic antiprotons on nuclei
NASA Astrophysics Data System (ADS)
Larionov, A. B.; Lenske, H.
2017-01-01
We perform Glauber model calculations of the antiproton-nucleus elastic and quasielastic scattering and absorption in the beam momentum range ∼ 0.5 ÷ 10 GeV / c. A good agreement of our calculations with available LEAR data and with earlier Glauber model studies of the p bar A elastic scattering allows us to make predictions at the beam momenta of ∼10 GeV/c, i.e. at the regime of the PANDA experiment at FAIR. The comparison with the proton-nucleus elastic scattering cross sections shows that the diffractive minima are much deeper in the p bar A case due to smaller absolute value of the ratio of the real-to-imaginary part of the elementary elastic amplitude. Significant polarization signal for p bar A elastic scattering at 10 GeV/c is expected. We have also revealed a strong dependence of the p bar A absorption cross section on the slope parameter of the transverse momentum dependence of the elementary p bar N amplitude. The p bar A optical potential is discussed.
Modeling proton and alpha elastic scattering in liquid water in Geant4-DNA
NASA Astrophysics Data System (ADS)
Tran, H. N.; El Bitar, Z.; Champion, C.; Karamitros, M.; Bernal, M. A.; Francis, Z.; Ivantchenko, V.; Lee, S. B.; Shin, J. I.; Incerti, S.
2015-01-01
Elastic scattering of protons and alpha (α) particles by water molecules cannot be neglected at low incident energies. However, this physical process is currently not available in the "Geant4-DNA" extension of the Geant4 Monte Carlo simulation toolkit. In this work, we report on theoretical differential and integral cross sections of the elastic scattering process for 100 eV-1 MeV incident protons and for 100 eV-10 MeV incident α particles in liquid water. The calculations are performed within the classical framework described by Everhart et al., Ziegler et al. and by the ICRU 49 Report. Then, we propose an implementation of the corresponding classes into the Geant4-DNA toolkit for modeling the elastic scattering of protons and α particles. Stopping powers as well as ranges are also reported. Then, it clearly appears that the account of the elastic scattering process in the slowing-down of the charged particle improves the agreement with the existing data in particular with the ICRU recommendations.
Evolution of elastic x-ray scattering in laser-shocked warm dense lithium.
Kugland, N L; Gregori, G; Bandyopadhyay, S; Brenner, C M; Brown, C R D; Constantin, C; Glenzer, S H; Khattak, F Y; Kritcher, A L; Niemann, C; Otten, A; Pasley, J; Pelka, A; Roth, M; Spindloe, C; Riley, D
2009-12-01
We have studied the dynamics of warm dense Li with near-elastic x-ray scattering. Li foils were heated and compressed using shock waves driven by 4-ns-long laser pulses. Separate 1-ns-long laser pulses were used to generate a bright source of 2.96 keV Cl Ly- alpha photons for x-ray scattering, and the spectrum of scattered photons was recorded at a scattering angle of 120 degrees using a highly oriented pyrolytic graphite crystal operated in the von Hamos geometry. A variable delay between the heater and backlighter laser beams measured the scattering time evolution. Comparison with radiation-hydrodynamics simulations shows that the plasma is highly coupled during the first several nanoseconds, then relaxes to a moderate coupling state at later times. Near-elastic scattering amplitudes have been successfully simulated using the screened one-component plasma model. Our main finding is that the near-elastic scattering amplitudes are quite sensitive to the mean ionization state Z[over ] and by extension to the choice of ionization model in the radiation-hydrodynamics simulations used to predict plasma properties within the shocked Li.
Neutrino Nucleon Elastic Scattering in MiniBooNE
NASA Astrophysics Data System (ADS)
Cox, D. Christopher
2007-12-01
Neutrino nucleon elastic scattering νN→νN is a fundamental process of the weak interaction, and can be used to study the structure of the nucleon. This is the third largest scattering process in MiniBooNE comprising ˜15% of all neutrino interactions. Analysis of this sample has yielded a neutral current elastic differential cross section as a function of Q2 that agrees within errors to model predictions.
P(P bar)P elastic scattering and cosmic ray data
NASA Technical Reports Server (NTRS)
FAZAL-E-ALEEM; Saleem, M.
1985-01-01
It is shown that the total cross section for pp elastic scattering at cosmic ray energies, as well as the total cross section, the slope parameter b(s,t) and the differential cross section for small momentum transfer at ISR and collider energies for p(p)p elastic scattering can be simultaneously fitted by using a simple Regge pole model. The results of this theory is discussed in detail.
Berlin, Asher; Hooper, Dan; McDermott, Samuel D.
2015-12-28
We consider a complete list of simplifieed models in which Majorana dark matter particles annihilate at tree level to hh or hZ finnal states, and calculate the loop-induced elastic scattering cross section with nuclei in each case. Expressions for these annihilation and elastic scattering cross sections are provided, and can be easily applied to a variety of UV complete models. We identify several phenomenologically viable scenarios, including dark matter that annihilates through the s-channel exchange of a spin-zero mediator or through the t-channel exchange of a fermion. Although the elastic scattering cross sections predicted in this class of models aremore » generally quite small, XENON1Tand LZ should be sensitive to significant regions of this parameter space. Models in which the dark matter annihilates to hh or hZ can also generate a gamma-ray signal that is compatible with the excess observed from the Galactic Center.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berlin, Asher; Hooper, Dan; McDermott, Samuel D.
We consider a complete list of simplifieed models in which Majorana dark matter particles annihilate at tree level to hh or hZ finnal states, and calculate the loop-induced elastic scattering cross section with nuclei in each case. Expressions for these annihilation and elastic scattering cross sections are provided, and can be easily applied to a variety of UV complete models. We identify several phenomenologically viable scenarios, including dark matter that annihilates through the s-channel exchange of a spin-zero mediator or through the t-channel exchange of a fermion. Although the elastic scattering cross sections predicted in this class of models aremore » generally quite small, XENON1Tand LZ should be sensitive to significant regions of this parameter space. Models in which the dark matter annihilates to hh or hZ can also generate a gamma-ray signal that is compatible with the excess observed from the Galactic Center.« less
Radius anomaly in the diffraction model for heavy-ion elastic scattering
NASA Astrophysics Data System (ADS)
Pandey, L. N.; Mukherjee, S. N.
1984-04-01
The elastic scattering of heavy ions, 20Ne on 208Pb, 20Ne on 235U, 84Kr on 208Pb, and 84Kr on 232Th, is examined within the framework of Frahn's diffraction model. An analysis of the experiment using the "quarter point recipe" of the expected Fresnel cross sections yields a larger radius for 208Pb than the radii for 235U and 232Th. It is shown that inclusion of the nuclear deformation in the model removes the above anomaly in the radii, and the assumption of smooth cutoff of the angular momentum simultaneously leads to a better fit to elastic scattering data, compared to those obtained by the earlier workers on the assumption of sharp cutoff. [NUCLEAR REACTIONS Elastic scattering, 20Ne+208Pb (161.2 MeV), 20Ne+235U (175 MeV), 84Kr+208Pb (500 MeV), 84Kr+232Th (500 MeV), diffraction model, nuclear deformation.
Surface Electrochemistry of Metals
1993-04-30
maxima along the 12 directions of open channels .vhich are also the interatomic directions). Elastic scattering angular distributions always contain... scatterer geometric relationships for such samples. Distributions from ordered atomic bilayers reveal that the Auger signal from the underlayer is attenuated...are developing a theoretical model and computational code which include both elastic scattering and inhomogeneous inelastic scattering . We seek
Transverse enhancement model and MiniBooNE charge current quasi-elastic neutrino scattering data
NASA Astrophysics Data System (ADS)
Sobczyk, Jan T.
2012-01-01
Recently proposed Transverse Enhancement Model of nuclear effects in Charge Current Quasi-Elastic neutrino scattering (A. Bodek, H.S. Budd, M.E. Christy, Eur. Phys. J. C 71:1726, 2011) is confronted with the MiniBooNE high statistics experimental data.
Differential Cross Sections for Proton-Proton Elastic Scattering
NASA Technical Reports Server (NTRS)
Norman, Ryan B.; Dick, Frank; Norbury, John W.; Blattnig, Steve R.
2009-01-01
Proton-proton elastic scattering is investigated within the framework of the one pion exchange model in an attempt to model nucleon-nucleon interactions spanning the large range of energies important to cosmic ray shielding. A quantum field theoretic calculation is used to compute both differential and total cross sections. A scalar theory is then presented and compared to the one pion exchange model. The theoretical cross sections are compared to proton-proton scattering data to determine the validity of the models.
NASA Astrophysics Data System (ADS)
Kang, K.; Fried, H. M.; Tan, C.-I.
1994-02-01
The Table of Contents for the book is as follows: * Preface * `Overview' on Elastic Scattering and Total Cross-Sections * A Precise Measurement of the Real Part of the Elastic Scattering Amplitude at the {S bar{p}pS} * Luminosity Dependent Measurement of the p bar{p} Total Cross Section at √{s} = 541 GeV * Status of Fermilab E-710 * Luminosity-Independent Measurement of bar{p}p Elastic Scattering, Single Diffraction, Dissociation and Total Cross Section at √{s} = 546 and 1800 GeV * Phase Relations Revisited: A Challenge for SSC and LHC * Status of Near-Forward Elastic Scattering * bar{p}p Collisions at √{s} = 1.8 TeV: p, σt and B * p bar{p} Forward Scattering Parameters Results from Fermilab E760 * Photoproduction Results from H1 at HERA * Total and Jet Photoproduction Cross Sections at HERA and Fermilab * Minijet Model for High Energy γp Cross Sections * The Pomeron as Massive Gluons * Large N Theories with Glueball-like Spectra * Unitarity Relations for Gluonic Pomeron * The Donnachie-Landshoff Pomeron vs. QCD * The Odderon Intercept in Perturbative QCD * Theoret. and Phenomenol. Aspects of the Odderon * First Theorist's Gaze at HERA Data at Low xB * H1 Results for Structure Functions at Small x * Partial Photoproduction Cross Sections at √{s} ≈prox 180 GeV and First Results on F2 of the Proton from the ZEUS Experiment * Observation of a New Class of Events in Deep Inelastic Scattering * Jet Production in Muon-Proton and Muon-Nuclei Scattering at Fermilab-E665 * D0 Studies of Perturbative QCD * Large Rapidity Gaps and Single Diffraction Dissociation in High Energy pp and bar{p}p Collisions * Hadron and Reggeon Structure in High Energy Collisions * Monte Carlo Studies of Diffractive Processes in Deep Inelastic Scattering * Elastic Parton-Parton Amplitudes in Geometrical Models * Non-Perturbative QCD Calculations of High-Energy Observables * Effective Field Theory for Diffractive QCD Processes * High Energy Behavior of σtot, ρ, and B - Asymptotic Amplitude Analysis and a QCD-Inspired Analysis * Rapidity Gaps and Multiplicity Fluctuations * Branching Processes and Multi-Particle Production * High Energy Elastic Scattering and Nucleon as a Topological Soliton * The Behavior of Cross Sections at Very High Energies * The Pomeron and QCD with Many Light Quarks * Heterotic Pomeron: High Energy Hadronic Collisions in QCD * CDF Results on Electroweak Physics * DØ Results on Electroweak Physics * Search for the Top Quark and Other New Particles at DØ * Rapidity Gaps and Forward Physics at DØ * High Energy Asymptotics of Perturbative Multi-Color QCD * Rapidity Gaps in e+e- Collisions * Large Rapidity Gap, Jet Events at HERA: a PQCD Approach * High Energy Parton-Parton Elastic Scattering in QCD * Parton-Parton Elastic Scattering and Rapidity Gaps at Tevatron Energies * Hard Elastic Scattering * Hard Diffractive Processes * Three Successful Tests of Color Transparency and Nuclear Filtering * New KNO in QCD * A Chiral Condensate Search at the Tevatron * Cosmic Ray Evidences for Aligned High Energy Jets at Supertevatron Energy and Hard DDD * "New Hadronic State" Observed in Extremely High Energy Cosmic-Ray Interactions * Meson and Nucleon Form Factors in PQCD * Elastic Charge Form Factors for Pseudoscalar Mesons * The Ultimate Experiment * Search for Coherent Charm Production in 800 GeV/c Proton-Silicon Interactions * Chiral Quark Model and Hadron Scattering * Elastic Spin Experiments at UNK, Fermilab and SSC * Spin-Flip in Elastic and Diffractive Scattering * FNAL Polarized Beams and Spin Dependence at RHIC * Particle Tracking in the Close-to-Forward Region (η > 5.5) * Blois V: Experimental Summary * Blois V: Summary Talk * List of Participants
Ion mobilities in diatomic gases: measurement versus prediction with non-specular scattering models.
Larriba, Carlos; Hogan, Christopher J
2013-05-16
Ion/electrical mobility measurements of nanoparticles and polyatomic ions are typically linked to particle/ion physical properties through either application of the Stokes-Millikan relationship or comparison to mobilities predicted from polyatomic models, which assume that gas molecules scatter specularly and elastically from rigid structural models. However, there is a discrepancy between these approaches; when specular, elastic scattering models (i.e., elastic-hard-sphere scattering, EHSS) are applied to polyatomic models of nanometer-scale ions with finite-sized impinging gas molecules, predictions are in substantial disagreement with the Stokes-Millikan equation. To rectify this discrepancy, we developed and tested a new approach for mobility calculations using polyatomic models in which non-specular (diffuse) and inelastic gas-molecule scattering is considered. Two distinct semiempirical models of gas-molecule scattering from particle surfaces were considered. In the first, which has been traditionally invoked in the study of aerosol nanoparticles, 91% of collisions are diffuse and thermally accommodating, and 9% are specular and elastic. In the second, all collisions are considered to be diffuse and accommodating, but the average speed of the gas molecules reemitted from a particle surface is 8% lower than the mean thermal speed at the particle temperature. Both scattering models attempt to mimic exchange between translational, vibrational, and rotational modes of energy during collision, as would be expected during collision between a nonmonoatomic gas molecule and a nonfrozen particle surface. The mobility calculation procedure was applied considering both hard-sphere potentials between gas molecules and the atoms within a particle and the long-range ion-induced dipole (polarization) potential. Predictions were compared to previous measurements in air near room temperature of multiply charged poly(ethylene glycol) (PEG) ions, which range in morphology from compact to highly linear, and singly charged tetraalkylammonium cations. It was found that both non-specular, inelastic scattering rules lead to excellent agreement between predictions and experimental mobility measurements (within 5% of each other) and that polarization potentials must be considered to make correct predictions for high-mobility particles/ions. Conversely, traditional specular, elastic scattering models were found to substantially overestimate the mobilities of both types of ions.
Elastically Decoupling Dark Matter.
Kuflik, Eric; Perelstein, Maxim; Lorier, Nicolas Rey-Le; Tsai, Yu-Dai
2016-06-03
We present a novel dark matter candidate, an elastically decoupling relic, which is a cold thermal relic whose present abundance is determined by the cross section of its elastic scattering on standard model particles. The dark matter candidate is predicted to have a mass ranging from a few to a few hundred MeV, and an elastic scattering cross section with electrons, photons and/or neutrinos in the 10^{-3}-1 fb range.
Thermal vibrations in the metallic glass Cu64Zr36
NASA Astrophysics Data System (ADS)
Schönfeld, Bernd; Zemp, Jérôme; Stuhr, Uwe
2017-01-01
Neutrons with 14.7 and 34 meV energy were used to determine the elastic and inelastic part of the structure factor for the metallic glass Cu64Zr36 at 250 K. Based on the temperature dependence of the elastic scattering between 150 K and RT, an average mean-square displacement < {{u}2}> =0.027(3) ~{{{\\mathringA}}2} at 250 K is obtained. The experimental scattering-vector dependence of inelastic scattering in reference to elastic scattering is found to be well described by the Debye model. Both results are supported by molecular dynamics simulations. A procedure is presented to separate the elastic part also in total x-ray scattering. This allows the smearing of structural information due to thermal vibrations to be eliminated.
Eikonal solutions to optical model coupled-channel equations
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Khandelwal, Govind S.; Maung, Khin M.; Townsend, Lawrence W.; Wilson, John W.
1988-01-01
Methods of solution are presented for the Eikonal form of the nucleus-nucleus coupled-channel scattering amplitudes. Analytic solutions are obtained for the second-order optical potential for elastic scattering. A numerical comparison is made between the first and second order optical model solutions for elastic and inelastic scattering of H-1 and He-4 on C-12. The effects of bound-state excitations on total and reaction cross sections are also estimated.
Ion charge state distribution effects on elastic X-ray Thomson scattering
NASA Astrophysics Data System (ADS)
Iglesias, Carlos A.
2018-03-01
Analytic models commonly applied in elastic X-ray Thomson scattering cross-section calculations are used to generate results from a discrete ion charge distribution and an average charge description. Comparisons show that interchanging the order of the averaging procedure can appreciably alter the cross-section, especially for plasmas with partially filled K-shell bound electrons. In addition, two common approximations to describe the free electron density around an ion are shown to yield significantly different elastic X-ray Thomson scattering cross-sections.
Elastic Scattering of 65 MeV Protons from Several Nuclei between 16O and 209Bi
NASA Astrophysics Data System (ADS)
Ahmed, Syed; Akther, Parvin; Ferdous, Nasima; Begum, Amena; Gupta, Hiranmay
1997-10-01
Elastic scattering of 65 MeV polarized protons from twenty five nuclei ranging from 16O to 209Bi have been analysed within the framework of the nine parameter optical model. A set of optical model parameters has been obtained which shows the systematic behaviour of the target mass dependence of the real potential, volume integral and the r.m.s. radius. The isotopic spin dependence of the real potential has also been studied. Parameters obtained by fitting the elastic scattering data have been able to reproduce the pickup and stripping reaction cross sections as studied in a few cases.
Elastic and inelastic scattering of neutrons on 238U nucleus
NASA Astrophysics Data System (ADS)
Capote, R.; Trkov, A.; Sin, M.; Herman, M. W.; Soukhovitskiĩ, E. Sh.
2014-04-01
Advanced modelling of neutron induced reactions on the 238U nucleus is aimed at improving our knowledge of neutron scattering. Capture and fission channels are well constrained by available experimental data and neutron standard evaluation. A focus of this contribution is on elastic and inelastic scattering cross sections. The employed nuclear reaction model includes - a new rotational-vibrational dispersive optical model potential coupling the low-lying collective bands of vibrational character observed in even-even actinides; - the Engelbrecht-Weidenmüller transformation allowing for inclusion of compound-direct interference effects; - and a multi-humped fission barrier with absorption in the secondary well described within the optical model for fission. Impact of the advanced modelling on elastic and inelastic scattering cross sections including angular distributions and emission spectra is assessed both by comparison with selected microscopic experimental data and integral criticality benchmarks including measured reaction rates (e.g. JEMIMA, FLAPTOP and BIG TEN). Benchmark calculations provided feedback to improve the reaction modelling. Improvement of existing libraries will be discussed.
Quasi-elastic nuclear scattering at high energies
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Townsend, Lawrence W.; Wilson, John W.
1992-01-01
The quasi-elastic scattering of two nuclei is considered in the high-energy optical model. Energy loss and momentum transfer spectra for projectile ions are evaluated in terms of an inelastic multiple-scattering series corresponding to multiple knockout of target nucleons. The leading-order correction to the coherent projectile approximation is evaluated. Calculations are compared with experiments.
Study of 11Li and 10,11Be nuclei through elastic scattering and breakup reactions
NASA Astrophysics Data System (ADS)
Gaidarov, M. K.; Lukyanov, V. K.; Kadrev, D. N.; Zemlyanaya, E. V.; Antonov, A. N.; Lukyanov, K. V.; Spasova, K.
2016-01-01
The hybrid model of the microscopic optical potential (OP) is applied to calculate the 11Li+p, 10,11Be+p, and 10,11Be+12C elastic scattering cross sections at energies E < 100 MeV/nucleon. The OP's contain the folding-model real part (ReOP) with the direct and exchange terms included, while its imaginary part (ImOP) is derived within the high-energy approximation (HEA) theory. For the 11Li+p elastic scattering, the microscopic large-scale shell model (LSSM) density of 11Li is used, while the density distributions of 10,11Be nuclei obtained within the quantum Monte Carlo (QMC) model and the generator coordinate method (GCM) are utilized to calculate the microscopic OPs and cross sections of elastic scattering of these nuclei on protons and 12C. The depths of the real and imaginary parts of OP are fitted to the elastic scattering data, being simultaneously adjusted to reproduce the true energy dependence of the corresponding volume integrals. Also, the cluster models, in which 11Li consists of 2n-halo and the 9Li core having its own LSSM form of density and 11Be consists of a n-halo and the 10Be core, are adopted. Within the latter, we give predictions for the longitudinal momentum distributions of 9Li fragments produced in the breakup of 11Li at 62 MeV/nucleon on a proton target. It is shown that our results for the diffraction and stripping reaction cross sections in 11Be scattering on 9Be, 93Nb, 181Ta, and 238U targets at 63 MeV/nucleon are in a good agreement with the available experimental data.
Nuclear surface diffuseness revealed in nucleon-nucleus diffraction
NASA Astrophysics Data System (ADS)
Hatakeyama, S.; Horiuchi, W.; Kohama, A.
2018-05-01
The nuclear surface provides useful information on nuclear radius, nuclear structure, as well as properties of nuclear matter. We discuss the relationship between the nuclear surface diffuseness and elastic scattering differential cross section at the first diffraction peak of high-energy nucleon-nucleus scattering as an efficient tool in order to extract the nuclear surface information from limited experimental data involving short-lived unstable nuclei. The high-energy reaction is described by a reliable microscopic reaction theory, the Glauber model. Extending the idea of the black sphere model, we find one-to-one correspondence between the nuclear bulk structure information and proton-nucleus elastic scattering diffraction peak. This implies that we can extract both the nuclear radius and diffuseness simultaneously, using the position of the first diffraction peak and its magnitude of the elastic scattering differential cross section. We confirm the reliability of this approach by using realistic density distributions obtained by a mean-field model.
A Unified Treatment of the Acoustic and Elastic Scattered Waves from Fluid-Elastic Media
NASA Astrophysics Data System (ADS)
Denis, Max Fernand
In this thesis, contributions are made to the numerical modeling of the scattering fields from fluid-filled poroelastic materials. Of particular interest are highly porous materials that demonstrate strong contrast to the saturating fluid. A Biot's analysis of porous medium serves as the starting point of the elastic-solid and pore-fluid governing equations of motion. The longitudinal scattering waves of the elastic-solid mode and the pore-fluid mode are modeled by the Kirchhoff-Helmholtz integral equation. The integral equation is evaluated using a series approximation, describing the successive perturbation of the material contrasts. To extended the series' validity into larger domains, rational fraction extrapolation methods are employed. The local Pade□ approximant procedure is a technique that allows one to extrapolate from a scattered field of small contrast into larger values, using Pade□ approximants. To ensure the accuracy of the numerical model, comparisons are made with the exact solution of scattering from a fluid sphere. Mean absolute error analyses, yield convergent and accurate results. In addition, the numerical model correctly predicts the Bragg peaks for a periodic lattice of fluid spheres. In the case of trabecular bones, the far-field scattering pressure attenuation is a superposition of the elastic-solid mode and the pore-fluid mode generated waves from the surrounding fluid and poroelastic boundaries. The attenuation is linearly dependent with frequency between 0.2 and 0.6MHz. The slope of the attenuation is nonlinear with porosity, and does not reflect the mechanical properties of the trabecular bone. The attenuation shows the anisotropic effects of the trabeculae structure. Thus, ultrasound can possibly be employed to non-invasively predict the principal structural orientation of trabecular bones.
Acoustic scattering reduction using layers of elastic materials
NASA Astrophysics Data System (ADS)
Dutrion, Cécile; Simon, Frank
2017-02-01
Making an object invisible to acoustic waves could prove useful for military applications or measurements in confined space. Different passive methods have been proposed in recent years to avoid acoustic scattering from rigid obstacles. These techniques are exclusively based on acoustic phenomena, and use for instance multiple resonators or scatterers. This paper examines the possibility of designing an acoustic cloak using a bi-layer elastic cylindrical shell to eliminate the acoustic field scattered from a rigid cylinder hit by plane waves. This field depends on the dimensional and mechanical characteristics of the elastic layers. It is computed by a semi-analytical code modelling the vibrations of the coating under plane wave excitation. Optimization by genetic algorithm is performed to determine the characteristics of a bi-layer material minimizing the scattering. Considering an external fluid consisting of air, realistic configurations of elastic coatings emerge, composed of a thick internal orthotopic layer and a thin external isotropic layer. These coatings are shown to enable scattering reduction at a precise frequency or over a larger frequency band.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Biao
We use the NOvA near detector and the NuMI beam at Fermilab to study the neutrino- electron elastic scattering and the muon neutrino magnetic process beyond the Standard Model physics. The particle identications of neutrino on electron elastic scattering are trained by using the multi-layer neural networks. This thesis provides a general discussion of this technique and shows a good agreement between data and MC for the neutrino-electron elastic weak scattering. So that beneting from the precise cross-section of this channel, we are able to tune the neutrino beam ux simulation in the future. Giving the exposure of 3:62 1020more » POT in the NOvA near detector, we report 1:58 10« less
NASA Technical Reports Server (NTRS)
Hong, Byungsik; Buck, Warren W.; Maung, Khin M.
1989-01-01
Two kinds of number density distributions of the nucleus, harmonic well and Woods-Saxon models, are used with the t-matrix that is taken from the scattering experiments to find a simple optical potential. The parameterized two body inputs, which are kaon-nucleon total cross sections, elastic slope parameters, and the ratio of the real to imaginary part of the forward elastic scattering amplitude, are shown. The eikonal approximation was chosen as the solution method to estimate the total and absorptive cross sections for the kaon-nucleus scattering.
NASA Astrophysics Data System (ADS)
Hishiyama, N.; Hoshino, M.; Blanco, F.; García, G.; Tanaka, H.
2017-12-01
We report absolute elastic differential cross sections (DCSs) for electron collisions with phosphorus trifluoride, PF3, molecules (e- + PF3) in the impact energy range of 2.0-200 eV and over a scattering angle range of 10°-150°. Measured angular distributions of scattered electron intensities were normalized by reference to the elastic DCSs of He. Corresponding integral and momentum-transfer cross sections were derived by extrapolating the angular range from 0° to 180° with the help of a modified phase-shift analysis. In addition, due to the large dipole moment of the considered molecule, the dipole-Born correction for the forward scattering angles has also been applied. As a part of this study, independent atom model calculations in combination with screening corrected additivity rule were also performed for elastic and inelastic (electronic excitation plus ionization) scattering using a complex optical potential method. Rotational excitation cross sections have been estimated with a dipole-Born approximation procedure. Vibrational excitations are not considered in this calculation. Theoretical data, at the differential and integral levels, were found to reasonably agree with the present experimental results. Furthermore, we explore the systematics of the elastic DCSs for the four-atomic trifluoride molecules of XF3 (X = B, N, and P) and central P-atom in PF3, showing that, owing to the comparatively small effect of the F-atoms, the present angular distributions of elastic DCSs are essentially dominated by the characteristic of the central P-atom at lower impact energies. Finally, these quantitative results for e- - PF3 collisions were compiled together with the previous data available in the literature in order to obtain a cross section dataset for modeling purposes. To comprehensively describe such a considerable amount of data, we proceed by first discussing, in this paper, the vibrationally elastic scattering processes whereas vibrational and electronic excitation shall be the subject of our following paper devoted to inelastic collisions.
Elastic scattering of ^4He by ^6Li at E(^4He) = 24, 25, and 26 MeV
NASA Astrophysics Data System (ADS)
Bartosz, E. E.; Cathers, P. D.; Kemper, K. W.; Maréchal, F.; Rusek, K.
1998-11-01
A previous optical model analysis of the elastic scattering of ^4He by ^6Li at E(^4He) = 18.5 MeV (P. V. Green, K. W. Kemper, P. L. Kerr, K. Mohajeri, E. G. Myers, D. Robson, K. Rusek and I. J. Thompson, Phys. Rev. C 53) 2862 (1996)., as well as a cluster-folded continuum- discretized coupled channels analysis (K. Rusek, P. V. Green, P. L. Kerr, and K. W. Kemper, Phys. Rev. C 56) 1895 (1997)., resulted in a good description of the data set, but the optical model analysis yielded a poor description of the 25 MeV elastic scattering data measured at the same time. New elastic and inelastic scattering angular distribution cross sections are reported for ^4He + ^6Li at E(^4He) = 24, 25 and 26 MeV. Three energies were used to rule out anomalous scattering at 25 MeV. The results of a cluster-folded continuum- discretized coupled channels analysis similar to that used with the 18.5 MeV data are presented for the three new data sets at 24, 25, and 26 MeV.
Time-frequency analysis of acoustic scattering from elastic objects
NASA Astrophysics Data System (ADS)
Yen, Nai-Chyuan; Dragonette, Louis R.; Numrich, Susan K.
1990-06-01
A time-frequency analysis of acoustic scattering from elastic objects was carried out using the time-frequency representation based on a modified version of the Wigner distribution function (WDF) algorithm. A simple and efficient processing algorithm was developed, which provides meaningful interpretation of the scattering physics. The time and frequency representation derived from the WDF algorithm was further reduced to a display which is a skeleton plot, called a vein diagram, that depicts the essential features of the form function. The physical parameters of the scatterer are then extracted from this diagram with the proper interpretation of the scattering phenomena. Several examples, based on data obtained from numerically simulated models and laboratory measurements for elastic spheres and shells, are used to illustrate the capability and proficiency of the algorithm.
Low-Energy Elastic Electron Scattering by Atomic Oxygen
NASA Technical Reports Server (NTRS)
Zatsarinny O.; Bartschat, K.; Tayal, S. S.
2006-01-01
The B-spline R-matrix method is employed to investigate the low-energy elastic electron scattering by atomic oxygen. Flexible non-orthogonal sets of radial functions are used to construct the target description and to represent the scattering functions. A detailed investigation regarding the dependence of the predicted partial and total cross sections on the scattering model and the accuracy of the target description is presented. The predicted angle-integrated elastic cross sections are in good agreement with experiment, whereas significant discrepancies are found in the angle-differential elastic cross sections near the forward direction. .The near-threshold results are found to strongly depend on the treatment of inner-core short-range correlation effects in the target description, as well as on a proper account of the target polarizability. A sharp increase in the elastic cross sections below 1 eV found in some earlier calculations is judged to be an artifact of an unbalanced description of correlation in the N-electron target structure and the (N+l)-electron-collision problems.
NASA Technical Reports Server (NTRS)
Hong, Byungsik; Maung, Khin Maung; Wilson, John W.; Buck, Warren W.
1989-01-01
The derivations of the Lippmann-Schwinger equation and Watson multiple scattering are given. A simple optical potential is found to be the first term of that series. The number density distribution models of the nucleus, harmonic well, and Woods-Saxon are used without t-matrix taken from the scattering experiments. The parameterized two-body inputs, which are kaon-nucleon total cross sections, elastic slope parameters, and the ratio of the real to the imaginary part of the forward elastic scattering amplitude, are presented. The eikonal approximation was chosen as our solution method to estimate the total and absorptive cross sections for the kaon-nucleus scattering.
Elastic scattering of 8He on 4He and 4 n system
NASA Astrophysics Data System (ADS)
Wolski, R.; Sidorchuk, S. I.; Ter-Akopian, G. M.; Fomichev, A. S.; Rodin, A. M.; Stepantsov, S. V.; Mittig, W.; Roussel-Chomaz, P.; Savajols, H.; Alamanos, N.; Auger, F.; Lapoux, V.; Raabe, R.; Tchuvil'sky, Yu. M.; Rusek, K.
2003-07-01
Elastic scattering of a 26A MeV beam of 8He on a gaseous helium target has been studied. In spite of efforts made for the observation of backward angle enhancement only upper limits could be obtained for the elastic scattering cross section at backward angles. The angular distribution of 8He nuclei scattered to CM 20°-80° was was analyzed in terms of a phenomenological Optical Model. Possible contributions from transfer reactions were estimated. The DWBA calculations indicate that the two step 2n transfer is more important than the one step 4n transfer. The transfer reaction d( 8He, 6Li)4n is discussed in terms of possible tests of a four-neutron system.
Effect of channel coupling on the elastic scattering of lithium isotopes
NASA Astrophysics Data System (ADS)
Furumoto, T.; Suhara, T.; Itagaki, N.
2018-04-01
Herein, we investigated the channel coupling (CC) effect on the elastic scatterings of lithium (Li) isotopes (A =6 -9) for 12C and 28Si targets at E /A =50 -60 MeV. The wave functions of the Li isotopes were obtained using the stochastic multi-configuration mixing method based on the microscopic-cluster model. The proton radii of the 7Li, 8Li, and 9Li nuclei became smaller as the number of valence neutrons increased. The valence neutrons in the 8Li and 9Li nuclei exhibited a glue-like behavior, thereby attracting the α and t clusters. Based on the transition densities derived from these microscopic wave functions, the elastic-scattering cross section was calculated using a microscopic coupled-channel method with a complex G -matrix interaction. The existing experimental data for the elastic scatterings of the Li isotopes and 10Be nuclei were well reproduced. The Li isotope elastic cross sections were demonstrated for the 12C and 28Si targets at E /A =53 MeV. The glue-like effect of the valence neutrons on the Li isotope was clearly demonstrated by the CC effect on elastic scattering. Finally, we realize that the valence neutrons stabilized the bindings of the core parts and the CC effect related to core excitation was indeed reduced.
Nanoscale structure in AgSbTe2 determined by diffuse elastic neutron scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Specht, Eliot D; Ma, Jie; Delaire, Olivier A
2015-01-01
Diffuse elastic neutron scattering measurements confirm that AgSbTe2 has a hierarchical structure, with defects on length scales from nanometers to microns. While scattering from mesoscale structure is consistent with previously-proposed structures in which Ag and Sb order on a NaCl lattice, more diffuse scattering from nanoscale structure suggests a structural rearrangement in which hexagonal layers form a combination of (ABC), (ABA), and (AAB) stacking sequences. The AgCrSe2 structure is the best-fitting model for the local atomic arrangements.
Elastic scattering losses from colliding Bose-Einstein condensates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zin Pawel; Chwedenczuk, Jan; Trippenbach, Marek
2006-03-15
Bragg diffraction divides a Bose-Einstein condensate into two overlapping components, moving with respect to each other with high momentum. Elastic collisions between atoms from distinct wave packets can significantly deplete the condensate. Recently, Zin et al. [Phys. Rev. Lett. 94, 200401 (2005)] introduced a model of two counterpropagating atomic Gaussian wave packets incorporating the dynamics of the incoherent scattering processes. Here we study the properties of this model in detail, including the nature of the transition from spontaneous to stimulated scattering. Within the first-order approximation, we derive analytical expressions for the density matrix and anomalous density that provide excellent insightmore » into correlation properties of scattered atoms.« less
Antihydrogen-hydrogen elastic scattering at thermal energies using an atomic-orbital technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sinha, Prabal K.; Chaudhuri, Puspitapallab; Ghosh, A.S.
2003-05-01
In view of the recent interest in the trapping of antihydrogen atom H(bar sign), at very low temperatures, H-bar-H scattering has been investigated at low incident energies using a close-coupling model with the basis set H-bar(1s,2s,2p-bar)+H(1s,2s,2p-bar). The predicted s-wave elastic phase shifts, scattering length, and effective range are in a good agreement with the other recent predictions of Jonsell et al. and of Armour and Chamberlain. The results indicate that the atomic orbital expansion model is suitable to study the H-bar-H scattering at ultracold temperatures.
Elastic scattering of low energy electrons in partially ionized dense semiclassical plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dzhumagulova, K. N., E-mail: dzhumagulova.karlygash@gmail.com; Shalenov, E. O.; Ramazanov, T. S.
2015-08-15
Elastic scattering of electrons by hydrogen atoms in a dense semiclassical hydrogen plasma for low impact energies has been studied. Differential scattering cross sections were calculated within the effective model of electron-atom interaction taking into account the effect of screening as well as the quantum mechanical effect of diffraction. The calculations were carried out on the basis of the phase-function method. The influence of the diffraction effect on the Ramsauer–Townsend effect was studied on the basis of a comparison with results made within the effective polarization model of the Buckingham type.
Elastic scattering and total reaction cross section of {sup 6}He+{sup 120}Sn
DOE Office of Scientific and Technical Information (OSTI.GOV)
Faria, P. N. de; Lichtenthaeler, R.; Pires, K. C. C.
The elastic scattering of {sup 6}He on {sup 120}Sn has been measured at four energies above the Coulomb barrier using the {sup 6}He beam produced at the RIBRAS (Radioactive Ion Beams in Brasil) facility. The elastic angular distributions have been analyzed with the optical model and three- and four-body continuum-discretized coupled-channels calculations. The total reaction cross sections have been derived and compared with other systems of similar masses.
Structure of low-lying states of {sup 10,11}C from proton elastic and inelastic scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jouanne, C.; Lapoux, V.; Auger, F.
2005-07-01
To probe the ground state and transition densities, elastic and inelastic scattering on a proton target were measured in inverse kinematics for the unstable {sup 10}C and {sup 11}C nuclei at 45.3 and 40.6 MeV/nucleon, respectively. The detection of the recoil proton was performed by the MUST telescope array, in coincidence with a wall of scintillators for the quasiprojectile. The differential cross sections for elastic and inelastic scattering to the first excited states are compared to the optical model calculations performed within the framework of the microscopic nucleon-nucleus Jeukenne-Lejeune-Mahaux potential. Elastic scattering is sensitive to the matter-root-mean square radius foundmore » to be 2.42{+-}0.1 and 2.33{+-}0.1 fm, for {sup 10,11}C, respectively. The transition densities from cluster and mean-field models are tested, and the cluster model predicts the correct order of magnitude of cross sections for the transitions of both isotopes. Using the Bohr-Mottelson prescription, a profile for the {sup 10}C transition density from the 0{sup +} ground to the 2{sub 1}{sup +} state is deduced from the data. The corresponding neutron transition matrix element is extracted: M{sub n}=5.51{+-}1.09 fm{sup 2}.« less
NASA Astrophysics Data System (ADS)
Sharov, Vasily
2017-03-01
The features of the kinematics of elastic pp (dd) scattering in the collider system, as well as some issues concerning registration and selection of elastic scattering events in the NICA colliding beams are considered. Equality and the opposite direction of the scattered particle momenta provide a powerful selection criterion for elastic collisions. Variants of the organization of the trigger signal for recording tracks of secondary particles and DAQ system are given. The estimates of the characteristics of elastic NN processes are obtained from available dσ/dΩCM data for the elastic pp and np scattering. The paper presents examples of simulations using the Monte-Carlo of elastic pp scattering in the colliding proton beams and quasi-elastic np scattering in the colliding deuteron beams and evaluates the outputs of these processes at the NICA collider.
NASA Astrophysics Data System (ADS)
Marwa, N. El-Hammamy
2015-03-01
The experimental data on elastic and inelastic scattering of 270 MeV 3He particles to several low lying states in 90Zr, 116Sn and 208Pb are analyzed within the double folding model (DFM). Fermi density distribution (FDD) of target nuclei is used to obtain real potentials with different powers. DF results are introduced into a modified DWUCK4 code to calculate the elastic and inelastic scattering cross sections. Two choices of potentials form factors are used; Woods Saxon (WS) and Woods Saxon Squared (WS2) for real potential, while the imaginary part is taken as phenomenological Woods Saxon (PWS) and phenomenological Woods Saxon Squared (PWS2). This comparison provides information about the similarities and differences of the models used in calculations.
Spermatozoa scattering by a microchannel feature: an elastohydrodynamic model
Montenegro-Johnson, T. D.; Gadêlha, H.; Smith, D. J.
2015-01-01
Sperm traverse their microenvironment through viscous fluid by propagating flagellar waves; the waveform emerges as a consequence of elastic structure, internal active moments and low Reynolds number fluid dynamics. Engineered microchannels have recently been proposed as a method of sorting and manipulating motile cells; the interaction of cells with these artificial environments therefore warrants investigation. A numerical method is presented for large-amplitude elastohydrodynamic interaction of active swimmers with domain features. This method is employed to examine hydrodynamic scattering by a model microchannel backstep feature. Scattering is shown to depend on backstep height and the relative strength of viscous and elastic forces in the flagellum. In a ‘high viscosity’ parameter regime corresponding to human sperm in cervical mucus analogue, this hydrodynamic contribution to scattering is comparable in magnitude to recent data on contact effects, being of the order of 5°–10°. Scattering can be positive or negative depending on the relative strength of viscous and elastic effects, emphasizing the importance of viscosity on the interaction of sperm with their microenvironment. The modulation of scattering angle by viscosity is associated with variations in flagellar asymmetry induced by the elastohydrodynamic interaction with the boundary feature. PMID:26064617
NASA Astrophysics Data System (ADS)
Rahmat, M.; Modarres, M.
2018-03-01
The averaged effective two-body interaction (AEI), which can be generated through the lowest order constrained variational (LOCV) method for symmetric nuclear matter (SNM) with the input [Reid68, Ann. Phys. 50, 411 (1968), 10.1016/0003-4916(68)90126-7] nucleon-nucleon potential, is used as the effective nucleon-nucleon potential in the folding model to describe the heavy-ion (HI) elastic scattering cross sections. The elastic scattering cross sections of 12C-12C and 16O-16O systems are calculated in the above framework. The results are compared with the corresponding calculations coming from the fitting procedures with the input finite range D D M 3 Y 1 -Reid potential and the available experimental data at different incident energies. It is shown that a reasonable description of the elastic 12C-12C and 16O-16O scattering data at the low and medium energies can be obtained by using the above LOCV AEI, without any need to define a parametrized density-dependent function in the effective nucleon-nucleon potential, which is formally considered in the typical D D M 3 Y 1 -Reid interactions.
Ξ-P Scattering and STOPPED-Ξ-12C Reaction
NASA Astrophysics Data System (ADS)
Ahn, J. K.; Aoki, S.; Chung, K. S.; Chung, M. S.; En'yo, H.; Fukuda, T.; Funahashi, H.; Goto, Y.; Higashi, A.; Ieiri, M.; Iijima, T.; Iinuma, M.; Imai, K.; Itow, Y.; Lee, J. M.; Makino, S.; Masaike, A.; Matsuda, Y.; Matsuyama, Y.; Mihara, S.; Nagoshi, C.; Nomura, I.; Park, I. S.; Saito, N.; Sekimoto, M.; Shin, Y. M.; Sim, K. S.; Susukita, R.; Takashima, R.; Takeutchi, F.; Tlustý, P.; Weibe, S.; Yokkaichi, S.; Yoshida, K.; Yoshida, M.; Yoshida, T.; Yamashita, S.
2000-09-01
We report upper limits on the cross sections for the Ξ-p elastic and conversion processes based on the observation of one Ξ-p elastic scattering events with an invisible Λ decay. The cross section for the Ξ-p elastic scattering is, for simplicity, assumming an isotropic angular distribution, found to be 40 mb at 90% confidence level, whereas that for the Ξ-p → ΛΛ reaction is 11 mb at 90% confidence level. While the results on the elastic cross section give no stringent constraint on theoretical estimates, the upper limit on the conversion process suggests that the estimate of the RGM-F model prediction could be ruled out. We also report some preliminary results on the obervation of the stopped-Ξ- hyperon-nucleus interaction with respect to hypernuclear production and existence of doubly-strange H-dibaryon.
Intermediate energy proton-deuteron elastic scattering
NASA Technical Reports Server (NTRS)
Wilson, J. W.
1973-01-01
A fully symmetrized multiple scattering series is considered for the description of proton-deuteron elastic scattering. An off-shell continuation of the experimentally known twobody amplitudes that retains the exchange symmeteries required for the calculation is presented. The one boson exchange terms of the two body amplitudes are evaluated exactly in this off-shell prescription. The first two terms of the multiple scattering series are calculated explicitly whereas multiple scattering effects are obtained as minimum variance estimates from the 146-MeV data of Postma and Wilson. The multiple scattering corrections indeed consist of low order partial waves as suggested by Sloan based on model studies with separable interactions. The Hamada-Johnston wave function is shown consistent with the data for internucleon distances greater than about 0.84 fm.
Release of Continuous Representation for S(α,β) ACE Data
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conlin, Jeremy Lloyd; Parsons, Donald Kent
2014-03-20
For low energy neutrons, the default free gas model for scattering cross sections is not always appropriate. Molecular effects or crystalline structure effects can affect the neutron scattering cross sections. These effects are included in the S(α; β) thermal neutron scattering data and are tabulated in file 7 of the ENDF6 format files. S stands for scattering. α is a momentum transfer variable and is an energy transfer variable. The S(α; β) cross sections can include coherent elastic scattering (no E change for the neutron, but specific scattering angles), incoherent elastic scattering (no E change for the neutron, but continuousmore » scattering angles), and inelastic scattering (E change for the neutron, and change in angle as well). Every S(α; β) material will have inelastic scattering and may have either coherent or incoherent elastic scattering (but not both). Coherent elastic scattering cross sections have distinctive jagged-looking Bragg edges, whereas the other cross sections are much smoother. The evaluated files from the NNDC are processed locally in the THERMR module of NJOY. Data can be produced either for continuous energy Monte Carlo codes (using ACER) or embedded in multi-group cross sections for deterministic (or even multi-group Monte Carlo) codes (using GROUPR). Currently, the S(α; β) files available for MCNP use discrete energy changes for inelastic scattering. That is, the scattered neutrons can only be emitted at specific energies— rather than across a continuous spectrum of energies. The discrete energies are chosen to preserve the average secondary neutron energy, i.e., in an integral sense, but the discrete treatment does not preserve any differential quantities in energy or angle.« less
Xu, Min; Wu, Tao T; Qu, Jianan Y
2008-01-01
A unified Mie and fractal model for light scattering by biological cells is presented. This model is shown to provide an excellent global agreement with the angular dependent elastic light scattering spectroscopy of cells over the whole visible range (400 to 700 nm) and at all scattering angles (1.1 to 165 deg) investigated. Mie scattering from the bare cell and the nucleus is found to dominate light scattering in the forward directions, whereas the random fluctuation of the background refractive index within the cell, behaving as a fractal random continuous medium, is found to dominate light scattering at other angles. Angularly dependent elastic light scattering spectroscopy aided by the unified Mie and fractal model is demonstrated to be an effective noninvasive approach to characterize biological cells and their internal structures. The acetowhitening effect induced by applying acetic acid on epithelial cells is investigated as an example. The changes in morphology and refractive index of epithelial cells, nuclei, and subcellular structures after the application of acetic acid are successfully probed and quantified using the proposed approach. The unified Mie and fractal model may serve as the foundation for optical detection of precancerous and cancerous changes in biological cells and tissues based on light scattering techniques.
Liljequist, David
2012-01-01
Backscattering of very low energy electrons in thin layers of amorphous ice is known to provide experimental data for the elastic and inelastic cross sections and indicates values to be expected in liquid water. The extraction of cross sections was based on a transport analysis consistent with Monte Carlo simulation of electron trajectories. However, at electron energies below 20 eV, quantum coherence effects may be important and trajectory-based methods may be in significant error. This possibility is here investigated by calculating quantum multiple elastic scattering of electrons in a simple model of a very small, thin foil of amorphous ice. The average quantum multiple elastic scattering of electrons is calculated for a large number of simulated foils, using a point-scatterer model for the water molecule and taking inelastic absorption into account. The calculation is compared with a corresponding trajectory simulation. The difference between average quantum scattering and trajectory simulation at energies below about 20 eV is large, in particular in the forward scattering direction, and is found to be almost entirely due to coherence effects associated with the short-range order in the amorphous ice. For electrons backscattered at the experimental detection angle (45° relative to the surface normal) the difference is however small except at electron energies below about 10 eV. Although coherence effects are in general found to be strong, the mean free path values derived by trajectory-based analysis may actually be in fair agreement with the result of an analysis based on quantum scattering, at least for electron energies larger than about 10 eV.
NASA Astrophysics Data System (ADS)
Wang, Zaijun; Ren, Zhongzhou; Dong, Tiekuang; Xu, Chang
2014-08-01
The ground-state spins and parities of the odd-A phosphorus isotopes 25-47P are studied with the relativistic mean-field (RMF) model and relativistic elastic magnetic electron-scattering theory (REMES). Results of the RMF model with the NL-SH, TM2, and NL3 parameters show that the 2s1/2 and 1d3/2 proton level inversion may occur for the neutron-rich isotopes 37-47P, and, consequently, the possible spin-parity values of 37-47P may be 3/2+, which, except for P47, differs from those given by the NUBASE2012 nuclear data table by Audi et al. Calculations of the elastic magnetic electron scattering of 37-47P with the single valence proton in the 2s1/2 and 1d3/2 state show that the form factors have significant differences. The results imply that elastic magnetic electron scattering can be a possible way to study the 2s1/2 and 1d3/2 level inversion and the spin-parity values of 37-47P. The results can also provide new tests as to what extent the RMF model, along with its various parameter sets, is valid for describing the nuclear structures. In addition, the contributions of the upper and lower components of the Dirac four-spinors to the form factors and the isotopic shifts of the magnetic form factors are discussed.
Positron elastic scattering from alkaline earth targets
NASA Astrophysics Data System (ADS)
Poveda, Luis A.; Assafrão, Denise; Mohallem, José R.
2016-07-01
A previously reported model potential approach [Poveda et al., Phys. Rev. A 87, 052702 (2013)] was extended to study low energy positron elastic scattering from beryllium and magnesium. The cross sections were computed for energies ranging from 10-5 eV up to well above the positronium formation threshold. The present results are in good agreement with previous reports, including the prediction of a p-wave resonance in the cross section for magnesium. The emergence of this shape resonance is connected to a trend observed in the evolution of the partial wave cross section in going from Be to Mg target. This trend lead us to speculate that a sharp d-wave resonance should be observed in positron elastic scattering from calcium. The positron-target binding energies are investigated in detail, both using the scattering information and by direct computation of the bound state energies using the model potentials. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjd/e2016-70120-y
Study of 11Li+p elastic scattering using BHF formalism with three body force
NASA Astrophysics Data System (ADS)
Sharma, Manjari; Haider, W.
2018-04-01
In the present work we have analyzed the elastic scattering data of 11Li + p at 62, 68.4 and 75 MeV/nucleon, using the microscopic optical potential calculated within the framework of Brueckner-Hartree-Fock formalism (BHF). The calculation uses Argonne v18 and Urbana v14 inter-nucleon potentials and the Urbana IX (UVIX) model of three body force. The required nucleon-density distributions for 11Li are obtained using the semi-phenomenological model for nuclear density distributions. The optical potential has been obtained by folding the g-matrices as calculated in BHF (with and without three body forces) over the nucleon density distributions. We have used the exact method for calculating both the direct and the exchange parts of the spin-orbit potential. Our results reveal that the spin-orbit potential significantly contributes to 11Li+p elastic scattering at all three incident energies. Further, the calculated spin-orbit potential in BHF is much smaller and more diffused as compared with the phenomenological spin-orbit potential. The analysis reveals that the calculated microscopic optical potentials, with and without three body force using BHF approach with phenomenological form of density distribution, provides satisfactory agreement with the elastic scattering data for 11Li+p.
NASA Astrophysics Data System (ADS)
Gurbich, A. F.; Bokhovko, M. V.
2018-04-01
The alpha elastic scattering cross-sections for Ni, Cu, and Y were measured at the energies above the onset of the non-Rutherford scattering. The obtained experimental data along with data from literature were incorporated into the theoretical analysis in the framework of the optical model. The optimization of the model parameters provided a basis for the calculations of the differential cross-sections for Z = 28-38 elements in the energy range up to 10 MeV. The obtained cross sections were made available for common use through the SigmaCalc web site at http://sigmacalc.iate.obninsk.ru/.
Proton elastic scattering from stable and unstable nuclei - Extraction of nuclear densities
NASA Astrophysics Data System (ADS)
Sakaguchi, H.; Zenihiro, J.
2017-11-01
Progress in proton elastic scattering at intermediate energies to determine nuclear density distributions is reviewed. After challenges of about 15 years to explain proton elastic scattering and associated polarization phenomena at intermediate energies, we have reached to some conclusions regarding proton elastic scattering as a means of obtaining nuclear densities. During this same period, physics of unstable nuclei has become of interest, and the density distributions of protons and neutrons play more important roles in unstable nuclei, since the differences in proton and neutron numbers and densities are expected to be significant. As such, proton elastic scattering experiments at intermediate energies using the inverse kinematic method have started to determine density distributions of unstable nuclei. In the region of unstable nuclei, we are confronted with a new problem when attempting to find proton and neutron densities separately from elastic proton scattering data, since electron scattering data for unstable nuclei are not presently available. We introduce a new means of determining proton and neutron densities separately by double-energy proton elastic scattering at intermediate energies.
54Fe neutron elastic and inelastic scattering differential cross sections from 2-6 MeV
NASA Astrophysics Data System (ADS)
Vanhoy, J. R.; Liu, S. H.; Hicks, S. F.; Combs, B. M.; Crider, B. P.; French, A. J.; Garza, E. A.; Harrison, T.; Henderson, S. L.; Howard, T. J.; McEllistrem, M. T.; Nigam, S.; Pecha, R. L.; Peters, E. E.; Prados-Estévez, F. M.; Ramirez, A. P. D.; Rice, B. G.; Ross, T. J.; Santonil, Z. C.; Sidwell, L. C.; Steves, J. L.; Thompson, B. K.; Yates, S. W.
2018-04-01
Measurements of neutron elastic and inelastic scattering cross sections from 54Fe were performed for nine incident neutron energies between 2 and 6 MeV. Measured differential scattering cross sections are compared to those from previous measurements and the ENDF, JENDL, and JEFF data evaluations. TALYS calculations were performed and modifications of the default parameters are found to better describe the experimental cross sections. A spherical optical model treatment is generally adequate to describe the cross sections in this energy region; however, in 54Fe the direct coupling is found to increase suddenly above 4 MeV and requires an increase in the DWBA deformation parameter by approximately 25%. This has little effect on the elastic scattering differential cross sections but makes a significant improvement in both the strength and shape of the inelastic scattering angular distribution, which are found to be very sensitive to the size and extent of the surface absorption region.
Microscopic description of elastic and direct inelastic nucleon scattering off spherical nuclei
NASA Astrophysics Data System (ADS)
Dupuis, M.
2017-05-01
The purpose of this study is to improve the modeling of nucleon direct inelastic scattering to the continuum using a microscopic and parameter-free approach. For the first time, direct elastic scattering, inelastic scattering to discrete excitations and to the continuum are described within a microscopic approach without adjustable parameters. Proton scattering off 90Zr and 208Pb are the reactions used as test case examples of the calculations. The model uses the Melbourne g-matrix and the Random Phase Approximation description of nuclear states, implemented with the Gogny D1S interaction. The relevant optical and transition potentials in a finite nucleus are calculated within a local density approximation. As we use the nuclear matter approach we limit our study to incident energies above 40 MeV. We first checked that this model provides an accurate account of measured cross sections for elastic scattering and inelastic scattering to discrete states. It is then applied to the direct inelastic scattering to the continuum considering all one-phonon excitations predicted within the RPA approach. This accounts for a part of the direct pre-equilibrium emission, often labeled as the one-step direct process in quantum-based approaches. Our approach provides a very accurate description of angular distributions where the one-step process dominates. The impact of collective excitations is shown to be non negligible for energy transfer to the target up to 20 MeV, decreasing as the incident energy increases. For incident energies above 80 MeV, our modeling provides a good account of direct proton emission for an energy transfer to the target up to 30 MeV. However, the proton emission we predict underestimates the measured cross sections for incident energies below 80 MeV. We compare our prediction to those of the phenomenological exciton model to help interpret this result. Directions that may improve our modeling are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Delbar, T.; Gregoire, G.; Paic, G.
1978-09-01
Angular distributions for ..cap alpha.. particle elastic scattering by /sup 40,44/Ca and excitation of the 3.73 MeV 3/sup -/ collective state of /sup 40/Ca were measured for incident energies ranging from 40 to 62 MeV. An extensive optical model analysis of these elastic scattering cross sections and other available data, using squared Woods-Saxon form factors, results in potentials with fixed geometry for both real and imaginary parts and depths with smooth energy behavior over a broad incident energy range. These results are discussed in the frame of the semi-classical approximation developed by Brink and Takigawa. The sensitiveness of the calculatedmore » elastic scattering cross sections to the real part of the potentials as a function of the projectile-target distance has been investigated by means of a notch test. Distorted-wave Born-approximtion calculations for the excitation of the 3.73 MeV 3/sup -/ state of /sup 40/Ca are presented.« less
A fourth order accurate finite difference scheme for the computation of elastic waves
NASA Technical Reports Server (NTRS)
Bayliss, A.; Jordan, K. E.; Lemesurier, B. J.; Turkel, E.
1986-01-01
A finite difference for elastic waves is introduced. The model is based on the first order system of equations for the velocities and stresses. The differencing is fourth order accurate on the spatial derivatives and second order accurate in time. The model is tested on a series of examples including the Lamb problem, scattering from plane interf aces and scattering from a fluid-elastic interface. The scheme is shown to be effective for these problems. The accuracy and stability is insensitive to the Poisson ratio. For the class of problems considered here it is found that the fourth order scheme requires for two-thirds to one-half the resolution of a typical second order scheme to give comparable accuracy.
Charge distribution of the neven sulphur isotopes from elastic electron scattering
NASA Astrophysics Data System (ADS)
Rychel, D.; Emrich, H. J.; Miska, H.; Gyufko, R.; Wiedner, C. A.
1983-10-01
Elastic electron scattering experiments on the isotopes 32,34,36S were performed covering a range in momentum transfer q = 0.5-2.6 fm -. The cross sections were analysed with the Fourier-Bessel method yielding model-independent charge distributions and their differences. The extracted rms radii follow approximately the systematics of even-even nuclei; this also holds for the gross features as expressed in dms radii and skin thicknesses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harris, Christopher Matthew
The proton form factors provide information on the fundamental properties of the proton and provide a test for models based on QCD. In 1998 at Jefferson Lab (JLAB) in Newport News, VA, experiment E93026 measured the inclusive e-p scattering cross section from a polarized ammonia ( 15NH 3) target at a four momentum transfer squared of Q 2 = 0.5 (GeV/c) 2. Longitudinally polarized electrons were scattered from the polarized target and the scattered electron was detected. Data has been analyzed to obtain the asymmetry from elastically scattered electrons from hydrogen in 15NH 3. The asymmetry, A p, has beenmore » used to determine the proton elastic form factor G Ep. The result is consistent with the dipole model and data from previous experiments. However, due to the choice of kinematics, the uncertainty in the measurement is large.« less
Models of the elastic x-ray scattering feature for warm dense aluminum
Starrett, Charles Edward; Saumon, Didier
2015-09-03
The elastic feature of x-ray scattering from warm dense aluminum has recently been measured by Fletcher et al. [Nature Photonics 9, 274 (2015)] with much higher accuracy than had hitherto been possible. This measurement is a direct test of the ionic structure predicted by models of warm dense matter. We use the method of pseudoatom molecular dynamics to predict this elastic feature for warm dense aluminum with temperatures of 1–100 eV and densities of 2.7–8.1g/cm 3. We compare these predictions to experiments, finding good agreement with Fletcher et al. and corroborating the discrepancy found in analyses of an earlier experimentmore » of Ma et al. [Phys. Rev. Lett. 110, 065001 (2013)]. Lastly, we also evaluate the validity of the Thomas-Fermi model of the electrons and of the hypernetted chain approximation in computing the elastic feature and find them both wanting in the regime currently probed by experiments.« less
NASA Astrophysics Data System (ADS)
Lukyanov, V. K.; Kadrev, D. N.; Zemlyanaya, E. V.; Spasova, K.; Lukyanov, K. V.; Antonov, A. N.; Gaidarov, M. K.
2015-03-01
The density distributions of 10Be and 11Be nuclei obtained within the quantum Monte Carlo model and the generator coordinate method are used to calculate the microscopic optical potentials (OPs) and cross sections of elastic scattering of these nuclei on protons and 12C at energies E <100 MeV/nucleon. The real part of the OP is calculated using the folding model with the exchange terms included, while the imaginary part of the OP that reproduces the phase of scattering is obtained in the high-energy approximation. In this hybrid model of OP the free parameters are the depths of the real and imaginary parts obtained by fitting the experimental data. The well-known energy dependence of the volume integrals is used as a physical constraint to resolve the ambiguities of the parameter values. The role of the spin-orbit potential and the surface contribution to the OP is studied for an adequate description of available experimental elastic scattering cross-section data. Also, the cluster model, in which 11Be consists of a n -halo and the 10Be core, is adopted. Within the latter, the breakup cross sections of 11Be nucleus on 9Be,93Nb,181Ta , and 238U targets and momentum distributions of 10Be fragments are calculated and compared with the existing experimental data.
Analyzing power Ay(θ) of n-3He elastic scattering between 1.60 and 5.54 MeV.
Esterline, J; Tornow, W; Deltuva, A; Fonseca, A C
2013-04-12
Comprehensive and high-accuracy n-3He elastic scattering analyzing power Ay(θ) angular distributions were obtained at five incident neutron energies between 1.60 and 5.54 MeV. The data are compared to rigorous four-nucleon calculations using high-precision nucleon-nucleon potential models; three-nucleon force effects are found to be very small. The agreement between data and calculations is fair at the lower energies and becomes less satisfactory with increasing neutron energy. Comparison to p-3He scattering over the same energy range exhibits unexpectedly large isospin effects.
Fusion and elastic scattering of 6Li + 58Ni at low energies
NASA Astrophysics Data System (ADS)
Aguilera, Elí F.; Amador-Valenzuela, Paulina; Martinez-Quiroz, Enrique; Lizcano, David; Garcia-Flores, Araceli; Kolata, James J.
2017-11-01
Sub-barrier fusion cross sections (σfus) for the 6Li + 58Ni system, obtained from the respective evaporation protons, are examined in the present work. With respect to expectations of a simple one-dimensional barrier penetration model, a large enhancement of the data is observed. Good consistency with equivalent data reported previously for similar systems is found. A comparison with total reaction cross sections (σR), deduced from elastic scattering measurements reported previously, indicates that σfus is close to σR within the measured energy range. To estimate the contribution of complete fusion (CF), an optical model analysis of the elastic scattering data is performed where CF is identified with the absorption in a short range volume potential. A surface polarization potential is added to the bare nuclear potential to simulate the effect of peripheral reactions. The results obtained indicate that other mechanisms different from CF may be dominant, especially in the lower energy region.
Characterization of single particle aerosols by elastic light scattering at multiple wavelengths
NASA Astrophysics Data System (ADS)
Lane, P. A.; Hart, M. B.; Jain, V.; Tucker, J. E.; Eversole, J. D.
2018-03-01
We describe a system to characterize individual aerosol particles using stable and repeatable measurement of elastic light scattering. The method employs a linear electrodynamic quadrupole (LEQ) particle trap. Charged particles, continuously injected by electrospray into this system, are confined to move vertically along the stability line in the center of the LEQ past a point where they are optically interrogated. Light scattered in the near forward direction was measured at three different wavelengths using time-division multiplexed collinear laser beams. We validated our method by comparing measured silica microsphere data for four selected diameters (0.7, 1.0, 1.5 and 2.0 μm) to a model of collected scattered light intensities based upon Lorenz-Mie scattering theory. Scattered light measurements at the different wavelengths are correlated, allowing us to distinguish and classify inhomogeneous particles.
NASA Astrophysics Data System (ADS)
Shi, Fan; Lowe, Mike; Craster, Richard
2017-06-01
Elastic waves scattered by random rough interfaces separating two distinct media play an important role in modeling phonon scattering and impact upon thermal transport models, and are also integral to ultrasonic inspection. We introduce theoretical formulas for the diffuse field of elastic waves scattered by, and transmitted across, random rough solid-solid interfaces using the elastodynamic Kirchhoff approximation. The new formulas are validated by comparison with numerical Monte Carlo simulations, for a wide range of roughness (rms σ ≤λ /3 , correlation length λ0≥ wavelength λ ), demonstrating a significant improvement over the widely used small-perturbation approach, which is valid only for surfaces with small rms values. Physical analysis using the theoretical formulas derived here demonstrates that increasing the rms value leads to a considerable change of the scattering patterns for each mode. The roughness has different effects on the reflection and the transmission, with a strong dependence on the material properties. In the special case of a perfect match of the wave speed of the two solid media, the transmission is the same as the case for a flat interface. We pay particular attention to scattering in the specular direction, often used as an observable quantity, in terms of the roughness parameters, showing a peak at an intermediate value of rms; this rms value coincides with that predicted by the Rayleigh parameter.
Detecting Fragmentation of Kidney Stones in Lithotripsy by Means of Shock Wave Scattering
NASA Astrophysics Data System (ADS)
Sapozhnikov, Oleg A.; Trusov, Leonid A.; Owen, Neil R.; Bailey, Michael R.; Cleveland, Robin O.
2006-05-01
Although extracorporeal shock wave lithotripsy (a procedure of kidney stone comminution using focused shock waves) has been used clinically for many years, a proper monitoring of the stone fragmentation is still undeveloped. A method considered here is based on recording shock wave scattering signals with a focused receiver placed far from the stone, outside the patient body. When a fracture occurs in the stone or the stone becomes smaller, the elastic waves in the stone will propagate differently (e.g. shear waves will not cross a fracture) which, in turn, will change the scattered acoustic wave in the surrounding medium. Theoretical studies of the scattering phenomenon are based on a linear elastic model to predict shock wave scattering by a stone, with and without crack present in it. The elastic waves in the stone and the nearby liquid were modeled using a finite difference time domain approach. The subsequent acoustic propagation of the scattered waves into the far-field was calculated using the Helmholtz-Kirchhoff integral. Experimental studies were conducted using a research electrohydraulic lithotripter that produced the same acoustic output as an unmodified Dornier HM3 clinical lithotripter. Artificial stones, made from Ultracal-30 gypsum and acrylic, were used as targets. The stones had cylindrical shape and were positioned co-axially with the lithotripter axis. The scattered wave was measured by focused broadband PVDF hydrophone. It was shown that the size of the stone noticeably changed the signature of the reflected wave.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jinfeng, E-mail: jfzhang@xidian.edu.cn; Li, Yao; Yan, Ran
In a semiconductor hetero-junction, the stripe/line-shaped scatters located at the hetero-interface lead to the anisotropic transport of two-dimensional electron gas (2DEG). The elastic scattering of infinitely long and uniform stripe/line-shaped scatters to 2DEG is theoretically investigated based on a general theory of anisotropic 2DEG transport [J. Schliemann and D. Loss, Phys. Rev. B 68(16), 165311 (2003)], and the resulting 2DEG mobility along the applied electrical field is modeled to be a function of the angle between the field and the scatters. The anisotropy of the scattering and the mobility originate in essence from that the stripe/line-shaped scatters act upon themore » injecting two-dimensional wave vector by changing only its component perpendicular to the scatters. Three related scattering mechanisms in a nonpolar AlGaN/GaN hetero-junction are discussed as illustrations, including the striated morphology caused interface roughness scattering, and the polarization induced line charge dipole scattering and the misfit dislocation scattering at the AlGaN/GaN interface. Different anisotropic behaviors of the mobility limited by these scattering mechanisms are demonstrated, but analysis shows that all of them are determined by the combined effects of the anisotropic bare scattering potential and the anisotropic dielectric response of the 2DEG.« less
Acoustic and elastic multiple scattering and radiation from cylindrical structures
NASA Astrophysics Data System (ADS)
Amirkulova, Feruza Abdukadirovna
Multiple scattering (MS) and radiation of waves by a system of scatterers is of great theoretical and practical importance and is required in a wide variety of physical contexts such as the implementation of "invisibility" cloaks, the effective parameter characterization, and the fabrication of dynamically tunable structures, etc. The dissertation develops fast, rapidly convergent iterative techniques to expedite the solution of MS problems. The formulation of MS problems reduces to a system of linear algebraic equations using Graf's theorem and separation of variables. The iterative techniques are developed using Neumann expansion and Block Toeplitz structure of the linear system; they are very general, and suitable for parallel computations and a large number of MS problems, i.e. acoustic, elastic, electromagnetic, etc., and used for the first time to solve MS problems. The theory is implemented in Matlab and FORTRAN, and the theoretical predictions are compared to computations obtained by COMSOL. To formulate the MS problem, the transition matrix is obtained by analyzing an acoustic and an elastic single scattering of incident waves by elastic isotropic and anisotropic solids. The mathematical model of wave scattering from multilayered cylindrical and spherical structures is developed by means of an exact solution of dynamic 3D elasticity theory. The recursive impedance matrix algorithm is derived for radially heterogeneous anisotropic solids. An explicit method for finding the impedance in piecewise uniform, transverse-isotropic material is proposed; the solution is compared to elasticity theory solutions involving Buchwald potentials. Furthermore, active exterior cloaking devices are modeled for acoustic and elastic media using multipole sources. A cloaking device can render an object invisible to some incident waves as seen by some external observer. The active cloak is generated by a discrete set of multipole sources that destructively interfere with an incident wave to produce zero total field over a finite spatial region. The approach precisely determines the necessary source amplitudes and enables a cloaked region to be determined using Graf's theorem. To apply the approach, the infinite series of multipole expansions are truncated, and the accuracy of cloaking is studied by modifying the truncation parameter.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budzanowski, A.; Dabrowski, H.; Freindl, L.
1978-03-01
The differential cross sections for ..cap alpha.. particles elastically and inelastically scattered from /sup 5/8Ni (at 29, 34, 38, and 58 MeV) and elastically scattered from /sup 6/0Ni (at 29 and 34 MeV), are measured together with excitation functions in the 25--38 MeV region at 178.5/sup 0/ lab. These data together with the data of 26.5, 32.3, 104, and 139 MEV for /sup 5/8Ni and 32.3 and 104 MeV for /sup 6/0Ni from other sources were analyzed using an optical model with volume and surface absorptions and the Saxon-Woods square form factors. The analysis yielded energy dependent depths of bothmore » real and imaginary parts of the potential and constant geometric parameters. The analytical expressions for depths of the real and both absorption potentials are obtained. The coupled channel calculations using the above optical potential were performed for the first excited state of /sup 5/8Ni. Both elastic scattering data and coupling with the first excited state of /sup 5/8Ni are well reproduced using the above potential in the wide scattering energy range.« less
NASA Astrophysics Data System (ADS)
Li, Xiao-Hua; Guo, Wen-Jun; Li, Bao-An; Chen, Lie-Wen; Fattoyev, Farrukh J.; Newton, William G.
2015-04-01
The neutron-proton effective mass splitting in asymmetric nucleonic matter of isospin asymmetry δ and normal density is found to be mn-p* ≡ (mn* - mp*) / m = (0.41 ± 0.15) δ from analyzing globally 1088 sets of reaction and angular differential cross sections of proton elastic scattering on 130 targets with beam energies from 0.783 MeV to 200 MeV, and 1161 sets of data of neutron elastic scattering on 104 targets with beam energies from 0.05 MeV to 200 MeV within an isospin dependent non-relativistic optical potential model. It sets a useful reference for testing model predictions on the momentum dependence of the nucleon isovector potential necessary for understanding novel structures and reactions of rare isotopes.
NASA Astrophysics Data System (ADS)
Hamada, Sh.
2018-03-01
Available experimental data for protons elastically scattered from 14N and 16O target nuclei are reanalyzed within the framework of single folding optical potential (SFOP) model. In this model, the real part of the potential is derived on the basis of single folding potential. The renormalization factor N r is extracted for the two aforementioned nuclear systems. Theoretical calculations fairly reproduce the experimental data in the whole angular range. Energy dependence of real and imaginary volume integrals as well as reaction cross sections are discussed.
NASA Astrophysics Data System (ADS)
Deymier, P. A.; Runge, K.
2018-03-01
A Green's function-based numerical method is developed to calculate the phase of scattered elastic waves in a harmonic model of diatomic molecules adsorbed on the (001) surface of a simple cubic crystal. The phase properties of scattered waves depend on the configuration of the molecules. The configurations of adsorbed molecules on the crystal surface such as parallel chain-like arrays coupled via kinks are used to demonstrate not only linear but also non-linear dependency of the phase on the number of kinks along the chains. Non-linear behavior arises for scattered waves with frequencies in the vicinity of a diatomic molecule resonance. In the non-linear regime, the variation in phase with the number of kinks is formulated mathematically as unitary matrix operations leading to an analogy between phase-based elastic unitary operations and quantum gates. The advantage of elastic based unitary operations is that they are easily realizable physically and measurable.
Experimental and theoretical electron-scattering cross-section data for dichloromethane
NASA Astrophysics Data System (ADS)
Krupa, K.; Lange, E.; Blanco, F.; Barbosa, A. S.; Pastega, D. F.; Sanchez, S. d'A.; Bettega, M. H. F.; García, G.; Limão-Vieira, P.; Ferreira da Silva, F.
2018-04-01
We report on a combination of experimental and theoretical investigations into the elastic differential cross sections (DCSs) and integral cross sections for electron interactions with dichloromethane, C H2C l2 , in the incident electron energy over the 7.0-30 eV range. Elastic electron-scattering cross-section calculations have been performed within the framework of the Schwinger multichannel method implemented with pseudopotentials (SMCPP), and the independent-atom model with screening-corrected additivity rule including interference-effects correction (IAM-SCAR+I). The present elastic DCSs have been found to agree reasonably well with the results of IAM-SCAR+I calculations above 20 eV and also with the SMC calculations below 30 eV. Although some discrepancies were found for 7 eV, the agreement between the two theoretical methodologies is remarkable as the electron-impact energy increases. Calculated elastic DCSs are also reported up to 10000 eV for scattering angles from 0° to 180° together with total cross section within the IAM-SCAR+I framework.
Numerical solution of acoustic scattering by finite perforated elastic plates
2016-01-01
We present a numerical method to compute the acoustic field scattered by finite perforated elastic plates. A boundary element method is developed to solve the Helmholtz equation subjected to boundary conditions related to the plate vibration. These boundary conditions are recast in terms of the vibration modes of the plate and its porosity, which enables a direct solution procedure. A parametric study is performed for a two-dimensional problem whereby a cantilevered perforated elastic plate scatters sound from a point quadrupole near the free edge. Both elasticity and porosity tend to diminish the scattered sound, in agreement with previous work considering semi-infinite plates. Finite elastic plates are shown to reduce acoustic scattering when excited at high Helmholtz numbers k0 based on the plate length. However, at low k0, finite elastic plates produce only modest reductions or, in cases related to structural resonance, an increase to the scattered sound level relative to the rigid case. Porosity, on the other hand, is shown to be more effective in reducing the radiated sound for low k0. The combined beneficial effects of elasticity and porosity are shown to be effective in reducing the scattered sound for a broader range of k0 for perforated elastic plates. PMID:27274685
Numerical solution of acoustic scattering by finite perforated elastic plates.
Cavalieri, A V G; Wolf, W R; Jaworski, J W
2016-04-01
We present a numerical method to compute the acoustic field scattered by finite perforated elastic plates. A boundary element method is developed to solve the Helmholtz equation subjected to boundary conditions related to the plate vibration. These boundary conditions are recast in terms of the vibration modes of the plate and its porosity, which enables a direct solution procedure. A parametric study is performed for a two-dimensional problem whereby a cantilevered perforated elastic plate scatters sound from a point quadrupole near the free edge. Both elasticity and porosity tend to diminish the scattered sound, in agreement with previous work considering semi-infinite plates. Finite elastic plates are shown to reduce acoustic scattering when excited at high Helmholtz numbers k 0 based on the plate length. However, at low k 0 , finite elastic plates produce only modest reductions or, in cases related to structural resonance, an increase to the scattered sound level relative to the rigid case. Porosity, on the other hand, is shown to be more effective in reducing the radiated sound for low k 0 . The combined beneficial effects of elasticity and porosity are shown to be effective in reducing the scattered sound for a broader range of k 0 for perforated elastic plates.
Elastic and inelastic collisions of swarms
NASA Astrophysics Data System (ADS)
Armbruster, Dieter; Martin, Stephan; Thatcher, Andrea
2017-04-01
Scattering interactions of swarms in potentials that are generated by an attraction-repulsion model are studied. In free space, swarms in this model form a well-defined steady state describing the translation of a stable formation of the particles whose shape depends on the interaction potential. Thus, the collision between a swarm and a boundary or between two swarms can be treated as (quasi)-particle scattering. Such scattering experiments result in internal excitations of the swarm or in bound states, respectively. In addition, varying a parameter linked to the relative importance of damping and potential forces drives transitions between elastic and inelastic scattering of the particles. By tracking the swarm's center of mass, a refraction rule is derived via simulations relating the incoming and outgoing directions of a swarm hitting the wall. Iterating the map derived from the refraction law allows us to predict and understand the dynamics and bifurcations of swarms in square boxes and in channels.
Application of Polarization in Particle Reactions.
NASA Astrophysics Data System (ADS)
Arash, Firooz
In this dissertation we have utilized polarization phenomena in particle reactions to study the revealing features of the reaction. First, it is shown that it is impossible to design a non-dynamical null-experiment to test the time-reversal invariant. Second, the optimal formalism representation is used to determine proton-proton elastic scattering amplitudes at 579 MeV and 800 MeV. It is shown that, despite an extensive set of data at 579 MeV, the resulting amplitudes have a four-fold ambiguity. At 800 MeV, however, we managed to obtain a unique solution. Thirdly, the polarization structure of two-body reaction in a collinear configuration is investigated, and it is demonstrated that the structure becomes much simpler than it was for the general configuration. It is shown that in a collinear reaction all observables in which only one particle is polarized vanish. The results of this study are also applicable to all models in which helicity conservation holds, since they are formally identical with collinear reactions. Fourthly, an amplitude test is conducted to search for dibaryon resonances in p-p elastic scattering and it is found that at the energies around 800 MeV there is no evidence for any singlet partial wave state resonances. There exist, however, some tantalizing subliminal evidence for ('3)F(,3) resonance. This method is also applied for pion-deutron elastic scattering to pin point the effect of a dibaryon resonance. We have also given a practical guideline to carry out a complete set of experiments toward the reconstruction of pion-deutron scattering amplitudes. Fifthly, evidence for the preeminence of one-particle-exchange mechanism is p-p elastic scattering is also examined in the 300 MeV - 6 GeV/c range. Finally, a phenomenological model is developed to explain a striking feature of p-p scattering amplitudes pertaining to the amplitudes being either purely real or purely imaginary, and having three amplitudes almost equal in magnitudes and three times smaller than one amplitude in magnitude. This feature is extended to (pi)('+)p and k('+)p elastic scattering where spin flip and spin non -flip amplitudes appear to be equal in magnitude.
NASA Astrophysics Data System (ADS)
Zhang, G. L.; Zhang, G. X.; Lin, C. J.; Lubian, J.; Rangel, J.; Paes, B.; Ferreira, J. L.; Zhang, H. Q.; Qu, W. W.; Jia, H. M.; Yang, L.; Ma, N. R.; Sun, L. J.; Wang, D. X.; Zheng, L.; Liu, X. X.; Chu, X. T.; Yang, J. C.; Wang, J. S.; Xu, S. W.; Ma, P.; Ma, J. B.; Jin, S. L.; Bai, Z.; Huang, M. R.; Zang, H. L.; Yang, B.; Liu, Y.
2018-04-01
The elastic scattering angular distributions were measured for 50- and 59-MeV 17F radioactive ion beam on a 89Y target. The aim of this work is to study the effect of the breakup of the proton halo projectile on the elastic scattering angular distribution. The experimental data were analyzed by means of the optical model with the double-folding São Paulo potential for both real and imaginary parts. The theoretical calculations reproduced the experimental data reasonably well. It is shown that the method of the data analysis is correct. In order to clarify the difference observed at large angles for the 59-MeV incident energy data, Continuum-Discretized Coupled-Channels (CDCC) calculations were performed to consider the breakup coupling effect. It is found that the experimental data show the Coulomb rainbow peak and that the effect of the coupling to the continuum states is not very significant, producing only a small hindrance of the Coulomb rainbow peak and a very small enhancement of the elastic scattering angular distribution at backward angles, suggesting that the multipole response of the neutron halo projectiles is stronger than that of the proton halo systems.
Integrated Raman and angular scattering of single biological cells
NASA Astrophysics Data System (ADS)
Smith, Zachary J.
2009-12-01
Raman, or inelastic, scattering and angle-resolved elastic scattering are two optical processes that have found wide use in the study of biological systems. Raman scattering quantitatively reports on the chemical composition of a sample by probing molecular vibrations, while elastic scattering reports on the morphology of a sample by detecting structure-induced coherent interference between incident and scattered light. We present the construction of a multimodal microscope platform capable of gathering both elastically and inelastically scattered light from a 38 mum2 region in both epi- and trans-illumination geometries. Simultaneous monitoring of elastic and inelastic scattering from a microscopic region allows noninvasive characterization of a living sample without the need for exogenous dyes or labels. A sample is illuminated either from above or below with a focused 785 nm TEM00 mode laser beam, with elastic and inelastic scattering collected by two separate measurement arms. The measurements may be made either simultaneously, if identical illumination geometries are used, or sequentially, if the two modalities utilize opposing illumination paths. In the inelastic arm, Stokes-shifted light is dispersed by a spectrograph onto a CCD array. In the elastic scattering collection arm, a relay system images the microscope's back aperture onto a CCD detector array to yield an angle-resolved elastic scattering pattern. Post-processing of the inelastic scattering to remove fluorescence signals yields high quality Raman spectra that report on the sample's chemical makeup. Comparison of the elastically scattered pupil images to generalized Lorenz-Mie theory yields estimated size distributions of scatterers within the sample. In this thesis we will present validations of the IRAM instrument through measurements performed on single beads of a few microns in size, as well as on ensembles of sub-micron particles of known size distributions. The benefits and drawbacks of the epi- and trans-illumination modalities are also discussed. In addition, transilluminated Raman and elastic-scattering spectra were obtained from several biological test-cases, including Streptococcus pneumoniae, baker's yeast, and single human immune cells. Both the Raman and elastic-scattering channels extract information from these samples that are well in line with their known characteristics from the literature. Finally, we report on an experiment in which CD8+ T lymphocytes were stimulated by exposure to the antigens staphylococcal enterotoxin B and phorbol myristate acetate. Clear chemical and morphological differences were observed between the activated and unactivated cells, with the results correlating well to analysis performed on parallel samples using fluorescent stains and a flow cytometer.
Elastic electron scattering from the DNA bases cytosine and thymine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colyer, C. J.; Bellm, S. M.; Lohmann, B.
2011-10-15
Cross-section data for electron scattering from biologically relevant molecules are important for the modeling of energy deposition in living tissue. Relative elastic differential cross sections have been measured for cytosine and thymine using the crossed-beam method. These measurements have been performed for six discrete electron energies between 60 and 500 eV and for detection angles between 15 deg. and 130 deg. Calculations have been performed via the screen-corrected additivity rule method and are in good agreement with the present experiment.
Computational Modeling of Micro-Crack Induced Attenuation in CFRP Composites
NASA Technical Reports Server (NTRS)
Roberts, R. A.; Leckey, C. A. C.
2012-01-01
A computational study is performed to determine the contribution to ultrasound attenuation in carbon fiber reinforced polymer composite laminates of linear elastic scattering by matrix micro-cracking. Multiple scattering approximations are benchmarked against exact computational approaches. Results support linear scattering as the source of observed increased attenuation in the presence of micro-cracking.
Elastic electron scattering from formamide
NASA Astrophysics Data System (ADS)
Buk, M. V.; Bardela, F. P.; da Silva, L. A.; Iga, I.; Homem, M. G. P.
2018-05-01
Differential cross sections for elastic electron scattering by formamide (NH2CHO) were measured in the 30–800 eV and 10°–120° ranges. The angular distribution of scattered electrons was obtained using a crossed electron beam-molecular beam geometry. The relative flow technique was applied to normalize our data. Integral and momentum-transfer cross sections were derived from the measured differential cross sections. Theoretical results in the framework of the independent-atom model at the static-exchange-polarization plus absorption level of approximation are also given. The present measured and calculated results are compared with those available in the literature showing a generally good agreement.
Scattering of Airy elastic sheets by a cylindrical cavity in a solid.
Mitri, F G
2017-11-01
The prediction of the elastic scattering by voids (and cracks) in materials is an important process in structural health monitoring, phononic crystals, metamaterials and non-destructive evaluation/imaging to name a few examples. Earlier analytical theories and numerical computations considered the elastic scattering by voids in plane waves of infinite extent. However, current research suggesting the use of (limited-diffracting, accelerating and self-healing) Airy acoustical-sheet beams for non-destructive evaluation or imaging applications in elastic solids requires the development of an improved analytical formalism to predict the scattering efficiency used as a priori information in quantitative material characterization. Based on the definition of the time-averaged scattered power flow density, an analytical expression for the scattering efficiency of a cylindrical empty cavity (i.e., void) encased in an elastic medium is derived for compressional and normally-polarized shear-wave Airy beams. The multipole expansion method using cylindrical wave functions is utilized. Numerical computations for the scattering energy efficiency factors for compressional and shear waves illustrate the analysis with particular emphasis on the Airy beam parameters and the non-dimensional frequency, for various elastic materials surrounding the cavity. The ratio of the compressional to the shear wave speed stimulates the generation of elastic resonances, which are manifested as a series of peaks in the scattering efficiency plots. The present analysis provides an improved method for the computations of the scattering energy efficiency factors using compressional and shear-wave Airy beams in elastic materials as opposed to plane waves of infinite extent. Copyright © 2017 Elsevier B.V. All rights reserved.
Antonsson, E; Langer, B; Halfpap, I; Gottwald, J; Rühl, E
2017-06-28
In order to gain quantitative information on the surface composition of nanoparticles from X-ray photoelectron spectroscopy, a detailed understanding of photoelectron transport phenomena in these samples is needed. Theoretical results on the elastic and inelastic scattering have been reported, but a rigorous experimental verification is lacking. We report in this work on the photoelectron angular distribution from free SiO 2 nanoparticles (d = 122 ± 9 nm) after ionization by soft X-rays above the Si 2p and O 1s absorption edges, which gives insight into the relative importance of elastic and inelastic scattering channels in the sample particles. The photoelectron angular anisotropy is found to be lower for photoemission from SiO 2 nanoparticles than that expected from the theoretical values for the isolated Si and O atoms in the photoelectron kinetic energy range 20-380 eV. The reduced angular anisotropy is explained by elastic scattering of the outgoing photoelectrons from neighboring atoms, smearing out the atomic distribution. Photoelectron angular distributions yield detailed information on photoelectron elastic scattering processes allowing for a quantification of the number of elastic scattering events the photoelectrons have undergone prior to leaving the sample. The interpretation of the experimental photoelectron angular distributions is complemented by Monte Carlo simulations, which take inelastic and elastic photoelectron scattering into account using theoretical values for the scattering cross sections. The results of the simulations reproduce the experimental photoelectron angular distributions and provide further support for the assignment that elastic and inelastic electron scattering processes need to be considered.
Ultrastrong Coupling Few-Photon Scattering Theory
NASA Astrophysics Data System (ADS)
Shi, Tao; Chang, Yue; García-Ripoll, Juan José
2018-04-01
We study the scattering of individual photons by a two-level system ultrastrongly coupled to a waveguide. The scattering is elastic for a broad range of couplings and can be described with an effective U (1 )-symmetric Hamiltonian. This simple model allows the prediction of scattering resonance line shapes, validated up to α =0.3 , and close to the Toulouse point α =1 /2 , where inelastic scattering becomes relevant. Our predictions model experiments with superconducting circuits [P. Forn-Díaz et al., Nat. Phys. 13, 39 (2017), 10.1038/nphys3905] and can be extended to study multiphoton scattering.
Ultrastrong Coupling Few-Photon Scattering Theory.
Shi, Tao; Chang, Yue; García-Ripoll, Juan José
2018-04-13
We study the scattering of individual photons by a two-level system ultrastrongly coupled to a waveguide. The scattering is elastic for a broad range of couplings and can be described with an effective U(1)-symmetric Hamiltonian. This simple model allows the prediction of scattering resonance line shapes, validated up to α=0.3, and close to the Toulouse point α=1/2, where inelastic scattering becomes relevant. Our predictions model experiments with superconducting circuits [P. Forn-Díaz et al., Nat. Phys. 13, 39 (2017)NPAHAX1745-247310.1038/nphys3905] and can be extended to study multiphoton scattering.
(16) {C}16C-elastic scattering examined using several models at different energies
NASA Astrophysics Data System (ADS)
El-hammamy, M. N.; Attia, A.
2018-05-01
In the present paper, the first results concerning the theoretical analysis of the ^{16}C + p reaction by investigating two elastic scattering angular distributions measured at high energy compared to low energy for this system are reported. Several models for the real part of the nuclear potential are tested within the optical model formalism. The imaginary potential has a Woods-Saxon shape with three free parameters. Two types of density distribution and three different cluster structures for ^{16}C are assumed in the analysis. The results are compared with each other as well as with the experimental data to give evidence of the importance of these studied items.
Optical-model potential for electron and positron elastic scattering by atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salvat, Francesc
2003-07-01
An optical-model potential for systematic calculations of elastic scattering of electrons and positrons by atoms and positive ions is proposed. The electrostatic interaction is determined from the Dirac-Hartree-Fock self-consistent atomic electron density. In the case of electron projectiles, the exchange interaction is described by means of the local-approximation of Furness and McCarthy. The correlation-polarization potential is obtained by combining the correlation potential derived from the local density approximation with a long-range polarization interaction, which is represented by means of a Buckingham potential with an empirical energy-dependent cutoff parameter. The absorption potential is obtained from the local-density approximation, using the Born-Ochkurmore » approximation and the Lindhard dielectric function to describe the binary collisions with a free-electron gas. The strength of the absorption potential is adjusted by means of an empirical parameter, which has been determined by fitting available absolute elastic differential cross-section data for noble gases and mercury. The Dirac partial-wave analysis with this optical-model potential provides a realistic description of elastic scattering of electrons and positrons with energies in the range from {approx}100 eV up to {approx}5 keV. At higher energies, correlation-polarization and absorption corrections are small and the usual static-exchange approximation is sufficiently accurate for most practical purposes.« less
Influence of argon impurities on the elastic scattering of x-rays from imploding beryllium capsules
Saunders, A. M.; Chapman, D. A.; Kritcher, A. L.; ...
2018-03-01
Here, we investigate the effect of argon impurities on the elastic component of x-ray scattering spectra taken from directly driven beryllium capsule implosions at the OMEGA laser. The plasma conditions were obtained in a previous analysis [18] by fitting the inelastic scattering component. We show that the known argon impurity in the beryllium modifies the elastic scattering due to the larger number of bound electrons. We indeed find significant deviations in the elastic scattering from roughly 1 at.% argon contained in the beryllium. With knowledge of the argon impurity fraction, we use the elastic scattering component to determine the chargemore » state of the compressed beryllium, as the fits are rather insensitive to the argon charge state. Lastly, we discuss how doping small fractions of mid- or high-Z elements into low-Z materials could allow ionization balance studies in dense plasmas.« less
Influence of single-neutron stripping on near-barrier 6He+208Pb and 8He+208Pb elastic scattering
NASA Astrophysics Data System (ADS)
Marquínez-Durán, G.; Keeley, N.; Kemper, K. W.; Mackintosh, R. S.; Martel, I.; Rusek, K.; Sánchez-Benítez, A. M.
2017-02-01
The influence of single-neutron stripping on the near-barrier elastic scattering angular distributions for the He,86+208Pb systems is investigated through coupled reaction channels (CRC) calculations fitting recently published data to explore the differences in the absorptive potential found in the scattering of these two neutron-rich nuclei. The inclusion of the coupling reduces the elastic cross section in the Coulomb-nuclear interference region for 8He scattering, whereas for 6He its major impact is on the large-angle elastic scattering. The real and imaginary dynamic polarization potentials are obtained by inverting the CRC elastic scattering S -matrix elements. These show that the main absorptive features occur between 11 and 12 fm for both projectiles, while the attractive features are separated by about 1 fm, with their main structures occurring at 10.5 fm for 6He and 11.5 fm for 8He.
Influence of argon impurities on the elastic scattering of x-rays from imploding beryllium capsules
NASA Astrophysics Data System (ADS)
Saunders, A. M.; Chapman, D. A.; Kritcher, A. L.; Schoff, M.; Shuldberg, C.; Landen, O. L.; Glenzer, S. H.; Falcone, R. W.; Gericke, D. O.; Döppner, T.
2018-03-01
We investigate the effect of argon impurities on the elastic component of x-ray scattering spectra taken from directly driven beryllium capsule implosions at the OMEGA laser. The plasma conditions were obtained in a previous analysis [18] by fitting the inelastic scattering component. We show that the known argon impurity in the beryllium modifies the elastic scattering due to the larger number of bound electrons. We indeed find significant deviations in the elastic scattering from roughly 1 at.% argon contained in the beryllium. With knowledge of the argon impurity fraction, we use the elastic scattering component to determine the charge state of the compressed beryllium, as the fits are rather insensitive to the argon charge state. Finally, we discuss how doping small fractions of mid- or high-Z elements into low-Z materials could allow ionization balance studies in dense plasmas.
Li, Xiao -Hua; Guo, Wen -Jun; Li, Bao -An; ...
2015-04-01
The neutron–proton effective mass splitting in asymmetric nucleonic matter of isospin asymmetry δ and normal density is found to be m* n-p≡(m* n – m* p)/m = (0.41 ± 0.15)δ from analyzing globally 1088 sets of reaction and angular differential cross sections of proton elastic scattering on 130 targets with beam energies from 0.783 MeV to 200 MeV, and 1161 sets of data of neutron elastic scattering on 104 targets with beam energies from 0.05 MeV to 200 MeV within an isospin dependent non-relativistic optical potential model. It sets a useful reference for testing model predictions on the momentum dependencemore » of the nucleon isovector potential necessary for understanding novel structures and reactions of rare isotopes.« less
Finite element solution of transient fluid-structure interaction problems
NASA Technical Reports Server (NTRS)
Everstine, Gordon C.; Cheng, Raymond S.; Hambric, Stephen A.
1991-01-01
A finite element approach using NASTRAN is developed for solving time-dependent fluid-structure interaction problems, with emphasis on the transient scattering of acoustic waves from submerged elastic structures. Finite elements are used for modeling both structure and fluid domains to facilitate the graphical display of the wave motion through both media. For the liquid, the use of velocity potential as the fundamental unknown results in a symmetric matrix equation. The approach is illustrated for the problem of transient scattering from a submerged elastic spherical shell subjected to an incident tone burst. The use of an analogy between the equations of elasticity and the wave equation of acoustics, a necessary ingredient to the procedure, is summarized.
Quenching of Excited Na due to He Collisions
NASA Technical Reports Server (NTRS)
Lin, C. Y.; Stancil, P. C.; Liebermann, H. P.; Funke, P.; Buenker, R. J.
2006-01-01
The quenching and elastic scattering of excited Sodium by collisions with Helium have been investigated for energies between 10(exp -13) eV and 10 eV. With the ab initio adiabatic potentials and nonadiabatic radial and rotational couplings obtained from multireference single- and double-excitation configuration interaction approach, we carried out scattering calculations by the quantum-mechanical molecular-orbital close-coupling method. Cross sections for quenching reactions and elastic collisions are presented. Quenching and elastic collisional rate coefficients as a function of temperature between 1 micro-K and 10,000 K are also obtained. The results are relevant to modeling non-LTE effects on Na D absorption lines in extrasolar planets and brown dwarfs.
Pore-Scale Modeling of Pore Structure Effects on P-Wave Scattering Attenuation in Dry Rocks
Li, Tianyang; Qiu, Hao; Wang, Feifei
2015-01-01
Underground rocks usually have complex pore system with a variety of pore types and a wide range of pore size. The effects of pore structure on elastic wave attenuation cannot be neglected. We investigated the pore structure effects on P-wave scattering attenuation in dry rocks by pore-scale modeling based on the wave theory and the similarity principle. Our modeling results indicate that pore size, pore shape (such as aspect ratio), and pore density are important factors influencing P-wave scattering attenuation in porous rocks, and can explain the variation of scattering attenuation at the same porosity. From the perspective of scattering attenuation, porous rocks can safely suit to the long wavelength assumption when the ratio of wavelength to pore size is larger than 15. Under the long wavelength condition, the scattering attenuation coefficient increases as a power function as the pore density increases, and it increases exponentially with the increase in aspect ratio. For a certain porosity, rocks with smaller aspect ratio and/or larger pore size have stronger scattering attenuation. When the pore aspect ratio is larger than 0.5, the variation of scattering attenuation at the same porosity is dominantly caused by pore size and almost independent of the pore aspect ratio. These results lay a foundation for pore structure inversion from elastic wave responses in porous rocks. PMID:25961729
NASA Astrophysics Data System (ADS)
Araki, Samuel J.
2016-11-01
In the plumes of Hall thrusters and ion thrusters, high energy ions experience elastic collisions with slow neutral atoms. These collisions involve a process of momentum exchange, altering the initial velocity vectors of the collision pair. In addition to the momentum exchange process, ions and atoms can exchange electrons, resulting in slow charge-exchange ions and fast atoms. In these simulations, it is particularly important to accurately perform computations of ion-atom elastic collisions in determining the plume current profile and assessing the integration of spacecraft components. The existing models are currently capable of accurate calculation but are not fast enough such that the calculation can be a bottleneck of plume simulations. This study investigates methods to accelerate an ion-atom elastic collision calculation that includes both momentum- and charge-exchange processes. The scattering angles are pre-computed through a classical approach with ab initio spin-orbit free potential and are stored in a two-dimensional array as functions of impact parameter and energy. When performing a collision calculation for an ion-atom pair, the scattering angle is computed by a table lookup and multiple linear interpolations, given the relative energy and randomly determined impact parameter. In order to further accelerate the calculations, the number of collision calculations is reduced by properly defining two cut-off cross-sections for the elastic scattering. In the MCC method, the target atom needs to be sampled; however, it is confirmed that initial target atom velocity does not play a significant role in typical electric propulsion plume simulations such that the sampling process is unnecessary. With these implementations, the computational run-time to perform a collision calculation is reduced significantly compared to previous methods, while retaining the accuracy of the high fidelity models.
Including Delbrück scattering in GEANT4
NASA Astrophysics Data System (ADS)
Omer, Mohamed; Hajima, Ryoichi
2017-08-01
Elastic scattering of γ-rays is a significant interaction among γ-ray interactions with matter. Therefore, the planning of experiments involving measurements of γ-rays using Monte Carlo simulations usually includes elastic scattering. However, current simulation tools do not provide a complete picture of elastic scattering. The majority of these tools assume Rayleigh scattering is the primary contributor to elastic scattering and neglect other elastic scattering processes, such as nuclear Thomson and Delbrück scattering. Here, we develop a tabulation-based method to simulate elastic scattering in one of the most common open-source Monte Carlo simulation toolkits, GEANT4. We collectively include three processes, Rayleigh scattering, nuclear Thomson scattering, and Delbrück scattering. Our simulation more appropriately uses differential cross sections based on the second-order scattering matrix instead of current data, which are based on the form factor approximation. Moreover, the superposition of these processes is carefully taken into account emphasizing the complex nature of the scattering amplitudes. The simulation covers an energy range of 0.01 MeV ≤ E ≤ 3 MeV and all elements with atomic numbers of 1 ≤ Z ≤ 99. In addition, we validated our simulation by comparing the differential cross sections measured in earlier experiments with those extracted from the simulations. We find that the simulations are in good agreement with the experimental measurements. Differences between the experiments and the simulations are 21% for uranium, 24% for lead, 3% for tantalum, and 8% for cerium at 2.754 MeV. Coulomb corrections to the Delbrück amplitudes may account for the relatively large differences that appear at higher Z values.
Neutrino Exclusive Charged Current Quasi-Elastic Scattering in MINERvA
NASA Astrophysics Data System (ADS)
Walton, Tammy
2012-03-01
The MINERvA experiment will measure neutrino and antineutrino quasi-elastic scattering on helium, water, carbon, iron, and lead for neutrinos in the few GeV range. We will present an overview of MINERvA analysis plan for neutrino exclusive charged current quasi-elastic scattering on lead, iron, and carbon.
{alpha}+{alpha} scattering reexamined in the context of the Sao Paulo potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chamon, L. C.; Gasques, L. R.; Carlson, B. V.
2011-03-15
We have analyzed a large set of {alpha}+{alpha} elastic scattering data for bombarding energies ranging from 0.6 to 29.5 MeV. Because of the complete lack of open reaction channels, the optical interaction at these energies must have a vanishing imaginary part. Thus, this system is particularly important because the corresponding elastic scattering cross sections are very sensitive to the real part of the interaction. The data were analyzed in the context of the velocity-dependent Sao Paulo potential, which is a successful theoretical model for the description of heavy-ion reactions from sub-barrier to intermediate energies. We have verified that, even inmore » this low-energy region, the velocity dependence of the model is quite important for describing the data of the {alpha}+{alpha} system.« less
Inelastic effects in molecular transport junctions: The probe technique at high bias
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kilgour, Michael; Segal, Dvira, E-mail: dsegal@chem.utoronto.ca
2016-03-28
We extend the Landauer-Büttiker probe formalism for conductances to the high bias regime and study the effects of environmentally induced elastic and inelastic scattering on charge current in single molecule junctions, focusing on high-bias effects. The probe technique phenomenologically incorporates incoherent elastic and inelastic effects to the fully coherent case, mimicking a rich physical environment at trivial cost. We further identify environmentally induced mechanisms which generate an asymmetry in the current, manifested as a weak diode behavior. This rectifying behavior, found in two types of molecular junction models, is absent in the coherent-elastic limit and is only active in themore » case with incoherent-inelastic scattering. Our work illustrates that in the low bias-linear response regime, the commonly used “dephasing probe” (mimicking only elastic decoherence effects) operates nearly indistinguishably from a “voltage probe” (admitting inelastic-dissipative effects). However, these probes realize fundamentally distinct I-V characteristics at high biases, reflecting the central roles of dissipation and inelastic scattering processes on molecular electronic transport far-from-equilibrium.« less
NASA Astrophysics Data System (ADS)
Khalaf, A. M.; Khalifa, M. M.; Solieman, A. H. M.; Comsan, M. N. H.
2018-01-01
Owing to its doubly magic nature having equal numbers of protons and neutrons, the 40Ca nuclear scattering can be successfully described by the optical model that assumes a spherical nuclear potential. Therefore, optical model analysis was employed to calculate the elastic scattering cross section for p +40Ca interaction at energies from 9 to 22 MeV as well as the polarization at energies from 10 to 18.2 MeV. New optical model parameters (OMPs) were proposed based on the best fitting to experimental data. It is found that the best fit OMPs depend on the energy by smooth relationships. The results were compared with other OMPs sets regarding their chi square values (χ2). The obtained OMP's set was used to calculate the volume integral of the potentials and the root mean square (rms) value of nuclear matter radius of 40Ca. In addition, 40Ca bulk nuclear matter properties were discussed utilizing both the obtained rms radius and the Thomas-Fermi rms radius calculated using spherical Hartree-Fock formalism employing Skyrme type nucleon-nucleon force. The nuclear scattering SCAT2000 FORTRAN code was used for the optical model analysis.
Effect of repulsive and attractive three-body forces on nucleus-nucleus elastic scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furumoto, T.; Sakuragi, Y.; Yamamoto, Y.
2009-10-15
The effect of the three-body force (TBF) is studied in nucleus-nucleus elastic scattering on the basis of Brueckner theory for nucleon-nucleon (NN) effective interaction (complex G matrix) in the nuclear matter. A new G matrix called CEG07 proposed recently by the present authors includes the TBF effect and reproduces a realistic saturation curve in the nuclear matter, and it is shown to well reproduce proton-nucleus elastic scattering. The microscopic optical potential for the nucleus-nucleus system is obtained by folding the G matrix with nucleon density distributions in colliding nuclei. We first analyze in detail the {sup 16}O+{sup 16}O elastic scatteringmore » at E/A=70 MeV. The observed cross sections are nicely reproduced up to the most backward scattering angles only when the TBF effect is included. The use of the frozen-density approximation (FDA) is essentially important to properly estimate the effect of the TBF in nucleus-nucleus scattering. Other prescriptions for defining the local density have also been tested, but only the FDA prescription gives a proper description of the experimental cross sections as well as the effect of the TBF. The effects of the three-body attraction and the {omega}-rearrangement term are also analyzed. The CEG07 interaction is compared with CDM3Y6, which is a reliable and successful effective density-dependent NN interaction used in the double-folding model. The CEG07 G matrix is also tested in the elastic scattering of {sup 16}O by the {sup 12}C, {sup 28}Si, and {sup 40}Ca targets at E/A=93.9 MeV, and in the elastic scattering of {sup 12}C by the {sup 12}C target at E/A=135 MeV with great success. The decisive effect of the TBF is clearly seen also in those systems. Finally, we have tested CEG07a, CEG07b, and CEG07c for the {sup 16}O+{sup 16}O system at various energies.« less
Radiative corrections to elastic proton-electron scattering measured in coincidence
NASA Astrophysics Data System (ADS)
Gakh, G. I.; Konchatnij, M. I.; Merenkov, N. P.; Tomasi-Gustafsson, E.
2017-05-01
The differential cross section for elastic scattering of protons on electrons at rest is calculated, taking into account the QED radiative corrections to the leptonic part of interaction. These model-independent radiative corrections arise due to emission of the virtual and real soft and hard photons as well as to vacuum polarization. We analyze an experimental setup when both the final particles are recorded in coincidence and their energies are determined within some uncertainties. The kinematics, the cross section, and the radiative corrections are calculated and numerical results are presented.
NASA Astrophysics Data System (ADS)
Maréchal, F.; Suomijärvi, T.; Blumenfeld, Y.; Azhari, A.; Bazin, D.; Brown, J. A.; Cottle, P. D.; Fauerbach, M.; Glasmacher, T.; Hirzebruch, S. E.; Jewell, J. K.; Kemper, K. W.; Mantica, P. F.; Morrissey, D. J.; Riley, L. A.; Scarpaci, J. A.; Steiner, M.
1998-12-01
We have recently studied the structure of the neutron rich sulfur isotope 40S by using elastic and inelastic proton scattering in inverse kinematics. Optical potential and folding model calculations are compared with the elastic and inelastic angular distributions. Using coupled-channel calculations, the β2 value for the 21+ excited state is determined to be 0.35±0.05. The extracted value of Mn/Mp ratio indicates a small isovector contribution to the 21+ state of 40S. The microscopic analysis of the data is compatible with the presence of a neutron skin for this nucleus.
Measuring the Weak Charge of the Proton via Elastic Electron-Proton Scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, Donald C.
2015-10-01
The Qweak experiment which ran in Hall C at Jefferson Lab in Newport News, VA, and completed data taking in May 2012, measured the weak charge of the proton Q p W via elastic electron-proton scattering. Longitudinally polarized electrons were scattered from an unpolarized liquid hydrogen target. The helicity of the electron beam was flipped at approximately 1 kHz between left and right spin states. The Standard Model predicts a small parity-violating asymmetry of scattering rates between right and left helicity states due to the weak interaction. An initial result using 4% of the data was published in October 2013more » [1] with a measured parity-violating asymmetry of -279 ± 35(stat) ± 31 (syst) ppb. This asymmetry, along with other data from parity-violating electron scattering experiments, provided the world's first determination of the weak charge of the proton. The weak charge of the proton was found to be p W = 0.064 ± 0.012, in good agreement with the Standard Model prediction of p W(SM) = 0.0708 ± 0.0003[2].« less
Seabed roughness parameters from joint backscatter and reflection inversion at the Malta Plateau.
Steininger, Gavin; Holland, Charles W; Dosso, Stan E; Dettmer, Jan
2013-09-01
This paper presents estimates of seabed roughness and geoacoustic parameters and uncertainties on the Malta Plateau, Mediterranean Sea, by joint Bayesian inversion of mono-static backscatter and spherical wave reflection-coefficient data. The data are modeled using homogeneous fluid sediment layers overlying an elastic basement. The scattering model assumes a randomly rough water-sediment interface with a von Karman roughness power spectrum. Scattering and reflection data are inverted simultaneously using a population of interacting Markov chains to sample roughness and geoacoustic parameters as well as residual error parameters. Trans-dimensional sampling is applied to treat the number of sediment layers and the order (zeroth or first) of an autoregressive error model (to represent potential residual correlation) as unknowns. Results are considered in terms of marginal posterior probability profiles and distributions, which quantify the effective data information content to resolve scattering/geoacoustic structure. Results indicate well-defined scattering (roughness) parameters in good agreement with existing measurements, and a multi-layer sediment profile over a high-speed (elastic) basement, consistent with independent knowledge of sand layers over limestone.
Nucleon-nucleon elastic scattering analysis to 2.5 GeV
NASA Astrophysics Data System (ADS)
Arndt, Richard A.; Heon Oh, Chang; Strakovsky, Igor I.; Workman, Ron L.; Dohrmann, Frank
1997-12-01
A partial-wave analysis of NN elastic scattering data has been completed. This analysis covers an expanded energy range, from threshold to a laboratory kinetic energy of 2.5 GeV, in order to include recent elastic pp scattering data from the EDDA Collaboration. The results of both single-energy and energy-dependent analyses are described.
NASA Astrophysics Data System (ADS)
Corni, Federico; Michelini, Marisa
2018-01-01
Rutherford backscattering spectrometry is a nuclear analysis technique widely used for materials science investigation. Despite the strict technical requirements to perform the data acquisition, the interpretation of a spectrum is within the reach of general physics students. The main phenomena occurring during a collision between helium ions—with energy of a few MeV—and matter are: elastic nuclear collision, elastic scattering, and, in the case of non-surface collision, ion stopping. To interpret these phenomena, we use classical physics models: material point elastic collision, unscreened Coulomb scattering, and inelastic energy loss of ions with electrons, respectively. We present the educational proposal for Rutherford backscattering spectrometry, within the framework of the model of educational reconstruction, following a rationale that links basic physics concepts with quantities for spectra analysis. This contribution offers the opportunity to design didactic specific interventions suitable for undergraduate and secondary school students.
NASA Astrophysics Data System (ADS)
Salvat, Francesc; Jablonski, Aleksander; Powell, Cedric J.
2005-01-01
The FORTRAN 77 code system ELSEPA for the calculation of elastic scattering of electrons and positrons by atoms, positive ions and molecules is presented. These codes perform relativistic (Dirac) partial-wave calculations for scattering by a local central interaction potential V(r). For atoms and ions, the static-field approximation is adopted, with the potential set equal to the electrostatic interaction energy between the projectile and the target, plus an approximate local exchange interaction when the projectile is an electron. For projectiles with kinetic energies up to 10 keV, the potential may optionally include a semiempirical correlation-polarization potential to describe the effect of the target charge polarizability. Also, for projectiles with energies less than 1 MeV, an imaginary absorptive potential can be introduced to account for the depletion of the projectile wave function caused by open inelastic channels. Molecular cross sections are calculated by means of a single-scattering independent-atom approximation in which the electron density of a bound atom is approximated by that of the free neutral atom. Elastic scattering by individual atoms in solids is described by means of a muffin-tin model potential. Partial-wave calculations are feasible on modest personal computers for energies up to about 5 MeV. The ELSEPA code also implements approximate factorization methods that allow the fast calculation of elastic cross sections for much higher energies. The interaction model adopted in the calculations is defined by the user by combining the different options offered by the code. The nuclear charge distribution can be selected among four analytical models (point nucleus, uniformly charged sphere, Fermi's distribution and Helm's uniform-uniform distribution). The atomic electron density is handled in numerical form. The distribution package includes data files with electronic densities of neutral atoms of the elements hydrogen to lawrencium ( Z=1-103) obtained from multiconfiguration Dirac-Fock self-consistent calculations. For comparison purposes, three simple analytical approximations to the electron density of neutral atoms (corresponding to the Thomas-Fermi, the Thomas-Fermi-Dirac and the Dirac-Hartree-Fock-Slater models) are also included. For calculations of elastic scattering by ions, the electron density should be provided by the user. The exchange potential for electron scattering can be selected among three different analytical approximations (Thomas-Fermi, Furness-McCarthy, Riley-Truhlar). The offered options for the correlation-polarization potential are based on the empirical Buckingham potential. The imaginary absorption potential is calculated from the local-density approximation proposed by Salvat [Phys. Rev. A 68 (2003) 012708]. Program summaryTitle of program:ELSEPA Catalogue identifier: ADUS Program summary URL:http://cpc.cs.qub.ac.uk/cpc/summaries/ADUS Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland License provisions: none Computer for which the program is designed and others in which it is operable: Any computer with a FORTRAN 77 compiler Operating systems under which the program has been tested: Windows XP, Windows 2000, Debian GNU/Linux 3.0r0 (sarge) Compilers:Compaq Visual Fortran v6.5 (Windows); GNU FORTRAN, g77 (Windows and Linux) Programming language used: FORTRAN 77 No. of bits in a word: 32 Memory required to execute with typical data: 0.6 Mb No. of lines in distributed program, including test data, etc.:135 489 No. of bytes in distributed program, including test data, etc.: 1 280 006 Distribution format: tar.gz Keywords: Dirac partial-wave analysis, electron elastic scattering, positron elastic scattering, differential cross sections, momentum transfer cross sections, transport cross sections, scattering amplitudes, spin polarization, scattering by complex potentials, high-energy atomic screening functions Nature of the physical problem: The code calculates differential cross sections, total cross sections and transport cross sections for single elastic scattering of electrons and positrons by neutral atoms, positive ions and randomly oriented molecules. For projectiles with kinetic energies less than about 5 MeV, the programs can also compute scattering amplitudes and spin polarization functions. Method of solution: The effective interaction between the projectile and a target atom is represented by a local central potential that can optionally include an imaginary (absorptive) part to account approximately for the coupling with inelastic channels. For projectiles with kinetic energy less that about 5 MeV, the code performs a conventional relativistic Dirac partial-wave analysis. For higher kinetic energies, where the convergence of the partial-wave series is too slow, approximate factorization methods are used. Restrictions on the complexity of the program: The calculations are based on the static-field approximation. The optional correlation-polarization and inelastic absorption corrections are obtained from approximate, semiempirical models. Calculations for molecules are based on a single-scattering independent-atom approximation. To ensure accuracy of the results for scattering by ions, the electron density of the ion must be supplied by the user. Typical running time: on a 2.8 GHz Pentium 4, the calculation of elastic scattering by atoms and ions takes between a few seconds and about two minutes, depending on the atomic number of the target, the adopted potential model and the kinetic energy of the projectile. Unusual features of the program: The program calculates elastic cross sections for electrons and positrons with kinetic energies in a wide range, from a few tens of eV up to about 1 GeV. Calculations can be performed for neutral atoms of all elements, from hydrogen to lawrencium ( Z=1-103), ions and simple molecules. Commercial products are identified to specify the calculational procedures. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, the University of Barcelona or the Polish Academy of Sciences, nor does it imply that the products are necessarily the best available for the purpose.
Elastic scattering and total reaction cross section for the 6He +58Ni system
NASA Astrophysics Data System (ADS)
Morcelle, V.; Lichtenthäler, R.; Lépine-Szily, A.; Guimarães, V.; Mendes, D. R., Jr.; Pires, K. C. C.; de Faria, P. N.; Barioni, A.; Gasques, L.; Morais, M. C.; Shorto, J. M. B.; Zamora, J. C.; Scarduelli, V.; Condori, R. Pampa; Leistenschneider, E.
2014-11-01
Elastic scattering measurements of 6He + 58Ni system have been performed at the laboratory energy of 21.7 MeV. The 6He secondary beam was produced by a transfer reaction 9Be (7Li , 6He ) and impinged on 58Ni and 197Au targets, using the Radioactive Ion Beam (RIB) facility, RIBRAS, installed in the Pelletron Laboratory of the Institute of Physics of the University of São Paulo, Brazil. The elastic angular distribution was obtained in the angular range from 15° to 80° in the center of mass frame. Optical model calculations have been performed using a hybrid potential to fit the experimental data. The total reaction cross section was derived.
Pion Elastic Scattering and the (pion Pion' Proton) Reaction on HELIUM-4 in the DELTA(3,3) Region
NASA Astrophysics Data System (ADS)
Jones, Mark Kevin
This dissertation presents measurements and analyses of pi^+ and pi ^{-} elastic scattering, and ( pi^{+}, pi^ {+^'}p) and ( pi^{-},pi^{-^ '}p) reactions on ^4 He. Both experiments were done at the Los Alamos Meson Physics Facility using the Energetic Pion Channel and Spectrometer. The ^4He( pi,pi) elastic scattering cross sections were measured for pi^{+} scattering at scattering angles theta _{lab} = 110^circ -170^circ and five incident energies between T_{pi } = 90 and 180 MeV. Elastic pi ^{-} cross sections were measured only at T_{pi} = 180 MeV. The ^4He(pi, pi' p) angular correlation functions were measured for pi^{+} and pi^{-} at T_{pi} = 180 and theta_{pi^' } = 30^circ, 40 ^circ, 60^circ , 80^circ and at T _pi = 140 MeV and theta_{pi^'} = 40^circ. Using scintillators at eight angles the protons were detected in coincidence with the inelastically scattered pions. In the ^4He(pi, pi^' p) experiment unexpectedly large ratios R_{pi p} = {sigma(pi^{+}, pi^{+} p)}over{sigma( pi^{-},pi^{-} p)} of up to 50 were observed near the quasi -free angle in the angular correlation functions summed over 30.5 to 39.5 MeV in ^4He excitation energy. The (pi,pi' p) data were analyzed by a distorted wave impulse approximation code 3DEE (Ch 82), (Re 82). 3DEE models the ( pi,pi' p) reaction as a pion -induced proton knock-out and includes distortions in the incident pion, the outgoing pion, and the emitted proton waves. The calculations give R_{pi p} between 6 and 9 at all proton and pion angles. The pi^{+} calculations reproduce the absolute pi^ {+} cross sections fairly well. The pi^{-} calculations have a peak in the angular correlation function near the quasi-free angle, in contrast to the pi^ {-} data which displays a flat distribution. At proton angles near 180^circ in the center of mass of the struck mass 4 system, the measured pi^{-} cross sections are larger than the pi^ {+} cross section which is the reverse of the ratio at 0^circ. These features of the measured pi^- cross sections indicate that interference between a quasi -free process and another process is important in the ( pi,pi^' p) reaction. The measurement of ^4He( pi,pi) elastic scattering data at theta_pi = 110 ^circ-170^circ extends the angular range of previous ^4He(pi,pi) data measured at EPICS. The experiment provides high quality elastic scattering data at backward angles. The pi^{-} elastic cross section at T_pi = 180 MeV measured for this dissertation when extrapolated to theta _{cm} = 180^circ is about a factor of two smaller than the cross section measured previously at CERN (Ref. (Bi 78)). The data were analyzed using a microscopic optical model and by a phase shift fit.
Application of polarization in particle reactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arash, F.
In this dissertation polarization phenomena in particle reactions have been used to study the revealing features of the reactions. First, it is shown that it is impossible to design a non-dynamical null-experimental to test the time-reversal invariant. Second, the optimal formalism representation is used to determine proton-proton elastic scattering amplitudes at 579 MeV and 800 MeV. Thirdly, the polarization structure of two-body reaction in a collinear configuration is investigated, and it is demonstrated that the structure becomes much simpler than it was for the general configuration. Fourthly, an amplitude test is conducted to search for dibaryon resonances in p-p elasticmore » scattering and it is found that at the energies around 800 MeV there is no evidence for any singlet partial wave state resonances. There exist, however, some tantalizing subliminal evidence for /sup 3/F/sub 3/ resonance. This method is also applied for pion-deutron elastic scattering to pin point the effect of a dibaryon resonance. Fifthly, evidence for the preeminence of one-particle-exchange mechanism is p-p elastic scattering is also examined in the 300 MeV-6 GeV/c range. Finally, a phenomenological model is developed to explain a striking feature of p-p scattering amplitudes pertaining to the amplitudes being either purely real or purely imaginary, and having three amplitudes almost equal in magnitudes and three times smaller than one amplitude in magnitude. This feature is extended to ..pi../sup +/p and k/sup +/p elastic scattering where spin flip and spin non-flip amplitudes appear to be equal in magnitude.« less
Biophotonics of skin: method for correction of deep Raman spectra distorted by elastic scattering
NASA Astrophysics Data System (ADS)
Roig, Blandine; Koenig, Anne; Perraut, François; Piot, Olivier; Gobinet, Cyril; Manfait, Michel; Dinten, Jean-Marc
2015-03-01
Confocal Raman microspectroscopy allows in-depth molecular and conformational characterization of biological tissues non-invasively. Unfortunately, spectral distortions occur due to elastic scattering. Our objective is to correct the attenuation of in-depth Raman peaks intensity by considering this phenomenon, enabling thus quantitative diagnosis. In this purpose, we developed PDMS phantoms mimicking skin optical properties used as tools for instrument calibration and data processing method validation. An optical system based on a fibers bundle has been previously developed for in vivo skin characterization with Diffuse Reflectance Spectroscopy (DRS). Used on our phantoms, this technique allows checking their optical properties: the targeted ones were retrieved. Raman microspectroscopy was performed using a commercial confocal microscope. Depth profiles were constructed from integrated intensity of some specific PDMS Raman vibrations. Acquired on monolayer phantoms, they display a decline which is increasing with the scattering coefficient. Furthermore, when acquiring Raman spectra on multilayered phantoms, the signal attenuation through each single layer is directly dependent on its own scattering property. Therefore, determining the optical properties of any biological sample, obtained with DRS for example, is crucial to correct properly Raman depth profiles. A model, inspired from S.L. Jacques's expression for Confocal Reflectance Microscopy and modified at some points, is proposed and tested to fit the depth profiles obtained on the phantoms as function of the reduced scattering coefficient. Consequently, once the optical properties of a biological sample are known, the intensity of deep Raman spectra distorted by elastic scattering can be corrected with our reliable model, permitting thus to consider quantitative studies for purposes of characterization or diagnosis.
Measurement of two-photon exchange effect by comparing elastic e ± p cross sections
Rimal, D.; Adikaram, D.; Raue, B. A.; ...
2017-06-01
Here, the electromagnetic form factors of the proton measured by unpolarized and polarized electron scattering experiments show a significant disagreement that grows with the squared four momentum transfer (more » $$Q^{2}$$). Calculations have shown that the two measurements can be largely reconciled by accounting for the contributions of two-photon exchange (TPE). TPE effects are not typically included in the standard set of radiative corrections since theoretical calculations of the TPE effects are highly model dependent, and, until recently, no direct evidence of significant TPE effects has been observed. We measured the ratio of positron-proton to electron-proton elastic-scattering cross sections in order to determine the TPE contribution to elastic electron-proton scattering and thereby resolve the proton electric form factor discrepancy. We produced a mixed simultaneous electron-positron beam in Jefferson Lab's Hall B by passing the 5.6 GeV primary electron beam through a radiator to produce a bremsstrahlung photon beam and then passing the photon beam through a convertor to produce electron/positron pairs. The mixed electron-positron (lepton) beam with useful energies from approximately 0.85 to 3.5 GeV then struck a 30-cm long liquid hydrogen (LH$$_2$$) target located within the CEBAF Large Acceptance Spectrometer (CLAS). By detecting both the scattered leptons and the recoiling protons we identified and reconstructed elastic scattering events and determined the incident lepton energy. A detailed description of the experiment is presented.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zenihiro, J.; Sakaguchi, H.; Murakami, T.
Cross sections and analyzing powers for polarized proton elastic scattering from {sup 58}Ni, and {sup 204,206,208}Pb were measured at intermediate energy E{sub p}=295 MeV. An effective relativistic Love-Franey interaction is tuned to reproduce {sup 58}Ni scattering data within the framework of the relativistic impulse approximation. The neutron densities of the lead isotopes are deduced using model-independent sum-of-Gaussians distributions. Their error envelopes are estimated by a new {chi}{sup 2} criterion including uncertainties associated with the reaction model. The systematic behaviors of extracted error envelopes of the neutron density distributions in {sup 204,206,208}Pb are presented. The extracted neutron and proton density distributionmore » of {sup 208}Pb gives a neutron skin thickness of {Delta}r{sub np}=0.211{sub -0.063}{sup +0.054} fm.« less
Elastic/Inelastic Measurement Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yates, Steven; Hicks, Sally; Vanhoy, Jeffrey
2016-03-01
The work scope involves the measurement of neutron scattering from natural sodium ( 23Na) and two isotopes of iron, 56Fe and 54Fe. Angular distributions, i.e., differential cross sections, of the scattered neutrons will be measured for 5 to 10 incident neutron energies per year. The work of the first year concentrates on 23Na, while the enriched iron samples are procured. Differential neutron scattering cross sections provide information to guide nuclear reaction model calculations in the low-energy (few MeV) fast-neutron region. This region lies just above the isolated resonance region, which in general is well studied; however, model calculations are difficultmore » in this region because overlapping resonance structure is evident and direct nuclear reactions are becoming important. The standard optical model treatment exhibits good predictive ability for the wide-region average cross sections but cannot treat the overlapping resonance features. In addition, models that do predict the direct reaction component must be guided by measurements to describe correctly the strength of the direct component, e.g., β 2 must be known to describe the direct component of the scattering to the first excited state. Measurements of the elastic scattering differential cross sections guide the optical model calculations, while inelastic differential cross sections provide the crucial information for correctly describing the direct component. Activities occurring during the performance period are described.« less
Inclusive inelastic scattering of heavy ions and nuclear correlations
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Townsend, Lawrence W.; Wilson, John W.; Khandelwal, Govind S.
1990-01-01
Calculations of inclusive inelastic scattering distributions for heavy ion collisions are considered within the high energy optical model. Using ground state sum rules, the inclusive projectile and complete projectile-target inelastic angular distributions are treated in both independent particle and correlated nuclear models. Comparisons between the models introduced are made for alpha particles colliding with He-4, C-12, and O-16 targets and protons colliding with O-16. Results indicate that correlations contribute significantly, at small momentum transfers, to the inelastic sum. Correlation effects are hidden, however, when total scattering distributions are considered because of the dominance of elastic scattering at small momentum transfers.
A determination of relativistic shock jump conditions using Monte Carlo techniques
NASA Technical Reports Server (NTRS)
Ellison, Donald C.; Reynolds, Stephen P.
1991-01-01
Monte Carlo techniques are used, assuming isotropic elastic scattering of all particles, to calculate jump conditions in parallel relativistic collisionless shocks in the absence of Fermi acceleration. The shock velocity and compression ratios are shown for arbitrary flow velocities and for any upstream temperature. Both single-component electron-positron plasma and two-component proton-electron plasmas are considered. It is shown that protons and electrons must share energy, directly or through the mediation of plasma waves, in order to satisfy the basic conservation conditions, and the electron and proton temperatures are determined for a particular microscopic, kinetic-theory model, namely, that protons always scatter elastically. The results are directly applicable to shocks in which waves of scattering superthermal particles are absent.
Elastic Electron Scattering from Tritium and Helium-3
DOE R&D Accomplishments Database
Collard, H.; Hofstadter, R.; Hughes, E. B.; Johansson, A.; Yearian, M. R.; Day, R. B.; Wagner, R. T.
1964-10-01
The mirror nuclei of tritium and helium-3 have been studied by the method of elastic electron scattering. Absolute cross sections have been measured for incident electron energies in the range 110 - 690 MeV at scattering angles lying between 40 degrees and 135 degrees in this energy range. The data have been interpreted in a straightforward manner and form factors are given for the distributions of charge and magnetic moment in the two nuclei over a range of four-momentum transfer squared 1.0 - 8.0 F{sup -2}. Model-independent radii of the charge and magnetic moment distributions are given and an attempt is made to deduce form factors describing the spatial distribution of the protons in tritium and helium-3.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denisov, S. P., E-mail: denisov@ihep.ru; Kozelov, A. V.; Petrov, V. A.
Elastic-scattering data were analyzed, and it was concluded on the basis of this analysis that precisionmeasurements of differential cross sections for elastic proton–proton scattering at the accelerator of the Institute for High Energy Physics (IHEP, Protvino, Russia) over a broad momentum-transfer range are of importance and topical interest. The layout of the respective experimental facility detecting the scattered particle and recoil proton and possessing a high momentum-transfer resolution was examined along with the equipment constituting this facility. The facility in question is able to record up to a billion events of elastic proton–proton scattering per IHEP accelerator run (20 days).more » Other lines of physics research with this facility are briefly discussed.« less
NASA Astrophysics Data System (ADS)
MacMullin, Sean Patrick
In underground physics experiments, such as neutrinoless double-beta decay and dark matter searches, fast neutrons may be the dominant and potentially irreducible source of background. Experimental data for the elastic and inelastic scattering cross sections of neutrons from argon and neon, which are target and shielding materials of interest to the dark matter and neutrinoless double-beta decay communities, were previously unavailable. Unmeasured neutron scattering cross sections are often accounted for incorrectly in Monte-Carlo simulations. Elastic scattering cross sections were measured at the Triangle Universities Nuclear Laboratory (TUNL) using the neutron time-of-flight technique. Angular distributions for neon were measured at 5.0 and 8.0 MeV. One full angular distribution was measured for argon at 6.0 MeV. The cross-section data were compared to calculations using a global optical model. Data were also fit using the spherical optical model. These model fits were used to predict the elastic scattering cross section at unmeasured energies and also provide a benchmark where the global optical models are not well constrained. Partial gamma-ray production cross sections for (n,xngamma ) reactions in natural argon and neon were measured using the broad spectrum neutron beam at the Los Alamos Neutron Science Center (LANSCE). Neutron energies were determined using time of flight and resulting gamma rays from neutron-induced reactions were detected using the GErmanium Array for Neutron Induced Excitations (GEANIE). Partial gamma-ray production cross sections for six transitions in 40Ar, two transitions in 39Ar and the first excited state transitions is 20Ne and 22Ne were measured from threshold to a neutron energy where the gamma-ray yield dropped below the detection sensitivity. Measured (n,xngamma) cross sections were compared with calculations using the TALYS and CoH3 nuclear reaction codes. These new measurements will help to identify potential backgrounds in neutrinoless double-beta decay and dark matter experiments that use argon or neon. The measurements will also aid in the identification of neutron interactions in these experiments through the detection of gamma rays produced by ( n,xngamma) reactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghrayeb, Shadi Z.; Ougouag, Abderrafi M.; Ouisloumen, Mohamed
2014-01-01
A multi-group formulation for the exact neutron elastic scattering kernel is developed. It incorporates the neutron up-scattering effects, stemming from lattice atoms thermal motion and accounts for it within the resulting effective nuclear cross-section data. The effects pertain essentially to resonant scattering off of heavy nuclei. The formulation, implemented into a standalone code, produces effective nuclear scattering data that are then supplied directly into the DRAGON lattice physics code where the effects on Doppler Reactivity and neutron flux are demonstrated. The correct accounting for the crystal lattice effects influences the estimated values for the probability of neutron absorption and scattering,more » which in turn affect the estimation of core reactivity and burnup characteristics. The results show an increase in values of Doppler temperature feedback coefficients up to -10% for UOX and MOX LWR fuels compared to the corresponding values derived using the traditional asymptotic elastic scattering kernel. This paper also summarizes the results done on this topic to date.« less
2009-12-01
the validity of approximating poroelastic media with acoustic or acoustic /elastic models , and to characterize how scattering physics will differ for...elastic buried object (yellow rectangle in the figure) in three types of environments: • (1) Model 1: acoustic layer on top of a poroelastic medium with a...porosity gradient and no viscous damping. • (2) Model 2: acoustic layer on top of a poroelastic medium with a porosity gradient and viscous damping
K+-nucleus scattering using K {yields} {mu}{nu} decays as a normalization check
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michael, R.; Hicks, K.; Bart, S.
1995-04-01
Elastic scattering of 720 and 620 MeV/c positive kaons from targets of {sup 12}C and {sup 6}Li has been measured up to laboratory angles of 42{degrees}. Since the magnitude of the cross sections is sensitive to nuclear medium effects, the K{yields}{mu}{nu} decay mode has been used to check the normalization. GEANT has been used to mimic the kaon decays over a path length of 12cm, with a correlated beam structure matching the experimental kaon beam. The corresponding muon distribution has been passed thru Monte Carlo simulations of the moby dick spectrometer. The results are compared with the experimental number ofmore » decay muons with good agreement. These results also agree with the normalization found using p-p elastic scattering. The normalized K{sup +} elastic data are compared to recent optical model predictions based on both Klein-Gordon and KDP equations in the impulse approximation.« less
Le Gonidec, Yves; Gibert, Dominique
2006-11-01
We perform a multiscale analysis of the backscattering properties of a complex interface between water and a layer of randomly arranged glass beads with diameter D=1 mm. An acoustical experiment is done to record the wavelet response of the interface in a large frequency range from lambda/D=0.3 to lambda/D=15. The wavelet response is a physical analog of the mathematical wavelet transform which possesses nice properties to detect and characterize abrupt changes in signals. The experimental wavelet response allows to identify five frequency domains corresponding to different backscattering properties of the complex interface. This puts quantitative limits to the validity domains of the models used to represent the interface and which are flat elastic, flat visco-elastic, rough random half-space with multiple scattering, and rough elastic from long to short wavelengths respectively. A physical explanation based on Mie scattering theory is proposed to explain the origin of the five frequency domains identified in the wavelet response.
Tank measurements of scattering from a resin-filled fiberglass spherical shell with internal flaws.
Tesei, Alessandra; Guerrini, Piero; Zampolli, Mario
2008-08-01
This paper presents results of acoustic inversion and structural health monitoring achieved by means of low to midfrequency elastic scattering analysis of simple, curved objects, insonified in a water tank. Acoustic elastic scattering measurements were conducted between 15 and 100 kHz on a 60-mm-radius fiberglass spherical shell, filled with a low-shear-speed epoxy resin. Preliminary measurements were conducted also on the void shell before filling, and on a solid sphere of the same material as the filler. These data were used to estimate the constituent material parameters via acoustic inversion. The objects were measured in the backscatter direction, suspended at midwater, and insonified by a broadband directional transducer. From the inspection of the response of the solid-filled shell it was possible to detect and characterize significant inhomogeneities of the interior (air pockets), the presence of which were later confirmed by x-ray CT scan and ultrasound measurements. Elastic wave analysis and a model-data comparison study support the physical interpretation of the measurements.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Y.; Rizzo, F.J.
1997-08-01
In this paper, the composite boundary integral equation (BIE) formulation is applied to scattering of elastic waves from thin shapes with small but {ital finite} thickness (open cracks or thin voids, thin inclusions, thin-layer interfaces, etc.), which are modeled with {ital two surfaces}. This composite BIE formulation, which is an extension of the Burton and Miller{close_quote}s formulation for acoustic waves, uses a linear combination of the conventional BIE and the hypersingular BIE. For thin shapes, the conventional BIE, as well as the hypersingular BIE, will degenerate (or nearly degenerate) if they are applied {ital individually} on the two surfaces. Themore » composite BIE formulation, however, will not degenerate for such problems, as demonstrated in this paper. Nearly singular and hypersingular integrals, which arise in problems involving thin shapes modeled with two surfaces, are transformed into sums of weakly singular integrals and nonsingular line integrals. Thus, no finer mesh is needed to compute these nearly singular integrals. Numerical examples of elastic waves scattered from penny-shaped cracks with varying openings are presented to demonstrate the effectiveness of the composite BIE formulation. {copyright} {ital 1997 Acoustical Society of America.}« less
Elastic scattering spectroscopy of coagulated brain tissues
NASA Astrophysics Data System (ADS)
Ateş, Filiz; Tabakoğlu, Haşim Özgür; Bozkulak, Özgüncem; Canpolat, Murat; Gülsoy, Murat
2006-02-01
The goal of this study was to differentiate the parts of lamb brain according to elastic scattering spectroscopy and detect the optical alterations due to coagulation. Cells and tissues are not uniform and have complex structures and shapes. They can be referred to as scattering particles. The process of scattering depends on the light wavelength and on the scattering medium properties; especially on the size and the density of the medium. When elastic scattering spectroscopy (ESS) is employed, the morphological alterations of tissues can be detected using spectral measurements of the elastic scattered light over a wide range of wavelengths. In this study firstly, the slopes of ESS spectra were used to differentiate the parts of lamb brains (brainstem, cerebellum, gray matter, white matter) in vitro in the range of 450 - 750 nm. Secondly, tissues were coagulated at different temperatures (45, 60, and 80 °C) and ESS spectra were taken from native and coagulated tissues. It was observed that as the coagulation temperature increased, the slope of the elastic scattering spectra decreased. Thus, optical properties of tissues were changed with respect to the change in nuclear to cytoplasmic ratio due to the water loss. Results showed that the slopes of ESS spectra in the visible range revealed valuable information about the morphological changes caused by coagulation.
Boundary scattering in the Φ$$^{4}$$ model
Dorey, Patrick; Halavanau, Aliaksei; Mercer, James; ...
2017-05-19
Here, we study boundary scattering in themore » $$\\phi^4$$ model on a half-line with a one-parameter family of Neumann-type boundary conditions. A rich variety of phenomena is observed, which extends previously-studied behaviour on the full line to include regimes of near-elastic scattering, the restoration of a missing scattering window, and the creation of a kink or oscillon through the collision-induced decay of a metastable boundary state. We also study the decay of the vibrational boundary mode, and explore different scenarios for its relaxation and for the creation of kinks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Budzanowski, A.; Grotowski, K.
1962-10-15
Recentiy optical model analysis has been applied to fit the experimental angular distribution data of the elastic scattering of deuterons by nuclei. In view of a considerable dependence of sigma /sub R/ on the shape of the real and imaginary part of the potential at the nuclear surface, it was thought worthwhile to measure both sigma /sub el/ ( theta ) and sigma /sub R/ for 12.8 Mev deuterons on targets of separated Ni/sup 58/ and Ni/sup 60/ isotopes. (W.D.M.)
Development of bacterial colony phenotyping instrument using reflected scatter light
NASA Astrophysics Data System (ADS)
Doh, Iyll-Joon
Bacterial rapid detection using optical scattering technology (BARDOT) involves in differentiating elastic scattering pattern of bacterial colony. This elastic light scatter technology has shown promising label-free classification rate. However, there is limited success in certain circumstances where either a growth media or a colony has higher opacity. This situation is due to the physical principles of the current BARDOT which mainly relies on optical patterns generated by transmitted signals. Incoming light is obstructed and cannot be transmitted through the dense bacterial colonies, such as Lactobacillus, Yeast, mold and soil bacteria. Moreover, a blood agar, widely used in clinical field, is an example of an opaque media that does not allow light to be transmitted through. Therefore, in this research, a newly designed reflection type scatterometer is presented. The reflection type scatterometer measures the elastic scattering pattern generated by reflected signal. A theoretical model to study the optical pattern characteristic with respect to bacterial colony morphology is presented. Both theoretical and experiment results show good agreement that the size of backward scattering pattern has positive correlation to colony aspect ratio, a colony elevation to diameter ratio. Four pathogenic bacteria on blood agar, Escherichia coli K12, Listeria innocua, Salmonella Typhimurium, and Staphylococcus aureus, are tested and measured with proposed instrument. The measured patterns are analyzed with a classification software, and high classification rate can be achieved.
NASA Astrophysics Data System (ADS)
Tesei, A.; Maguer, A.; Fox, W. L. J.; Lim, R.; Schmidt, H.
2002-11-01
The use of low-frequency sonars (2-15 kHz) is explored to better exploit scattering features of buried targets that can contribute to their detection and classification. Compared to conventional mine countermeasure sonars, sound penetrates better into the sediment at these frequencies, and the excitation of structural waves in the targets is enhanced. The main contributions to target echo are the specular reflection, geometric diffraction effects, and the structural response, with the latter being particularly important for man-made elastic objects possessing particular symmetries such as bodies of revolution. The resonance response derives from elastic periodic phenomena such as surface circumferential waves revolving around the target. The GOATS'98 experiment, conducted jointly by SACLANTCEN and MIT off the island of Elba, involved controlled monostatic measurements of scattering by spherical shells which were partially and completely buried in sand, and suspended in the water column. The analysis mainly addresses a study of the effect of burial on the dynamics of backscattered elastic waves, which can be clearly identified in the target responses, and is based on the comparison of measurements with appropriate scattering models. Data interpretation results are in good agreement with theory. This positive result demonstrates the applicability of low-frequency methodologies based on resonance analysis to the classification of buried objects. copyright 2002 Acoustical Society of America.
Trans-dimensional joint inversion of seabed scattering and reflection data.
Steininger, Gavin; Dettmer, Jan; Dosso, Stan E; Holland, Charles W
2013-03-01
This paper examines joint inversion of acoustic scattering and reflection data to resolve seabed interface roughness parameters (spectral strength, exponent, and cutoff) and geoacoustic profiles. Trans-dimensional (trans-D) Bayesian sampling is applied with both the number of sediment layers and the order (zeroth or first) of auto-regressive parameters in the error model treated as unknowns. A prior distribution that allows fluid sediment layers over an elastic basement in a trans-D inversion is derived and implemented. Three cases are considered: Scattering-only inversion, joint scattering and reflection inversion, and joint inversion with the trans-D auto-regressive error model. Including reflection data improves the resolution of scattering and geoacoustic parameters. The trans-D auto-regressive model further improves scattering resolution and correctly differentiates between strongly and weakly correlated residual errors.
Measurement of the antineutrino neutral-current elastic differential cross section
Aguilar-Arevalo, A. A.; Brown, B. C.; Bugel, L.; ...
2015-01-08
We report the measurement of the flux-averaged antineutrino neutral current elastic scattering cross section (dσ ν-barN→ν-barN/dQ 2) on CH 2 by the MiniBooNE experiment using the largest sample of antineutrino neutral current elastic candidate events ever collected. The ratio of the antineutrino to neutrino neutral current elastic scattering cross sections and a ratio of the antineutrino neutral current elastic to antineutrino charged current quasi elastic cross sections are also presented.
Elastic proton-proton scattering at 13 TeV
NASA Astrophysics Data System (ADS)
Khoze, V. A.; Martin, A. D.; Ryskin, M. G.
2018-02-01
The predictions of a model which was tuned in 2013 to describe the elastic and diffractive p p - and/or p p ¯-data at collider energies up to 7 TeV are compared with the new 13 TeV TOTEM results. The possibility of the presence of an odd-signature Odderon exchange contribution is discussed.
Elastic and transport cross sections for inert gases in a hydrogen plasma
NASA Astrophysics Data System (ADS)
Krstic, Predrag
2005-05-01
Accurate elastic differential and integral scattering and transport cross sections have been computed using a fully quantum-mechanical approach for hydrogen ions (H^+, D^+ and T^+) colliding with Neon, Krypton and Xenon, in the center of mass energy range 0.1 to 200 eV. The momentum transfer and viscosity cross sections have been extended to higher keV collision energies using a classical, three-body scattering method. The results were compared with previously calculated values for Argon and Helium, as well as with simple analytical models. The cross sections, tabulated and available through the world wide web (www-cfadc.phy.ornl.gov) are of significance in fusion plasma modeling, gaseous electronics and other plasma applications.
Global optical model potential for A=3 projectiles
NASA Astrophysics Data System (ADS)
Pang, D. Y.; Roussel-Chomaz, P.; Savajols, H.; Varner, R. L.; Wolski, R.
2009-02-01
A global optical model potential (GDP08) for He3 projectiles has been obtained by simultaneously fitting the elastic scattering data of He3 from targets of 40⩽AT⩽209 at incident energies of 30⩽Einc⩽217 MeV. Uncertainties and correlation coefficients between the global potential parameters were obtained by using the bootstrap statistical method. GDP08 was found to satisfactorily account for the elastic scattering of H3 as well, which makes it a global optical potential for the A=3 nuclei. Optical model calculations using the GDP08 global potential are compared with the experimental angular distributions of differential cross sections for He3-nucleus and H3-nucleus scattering from different targets of 6⩽AT⩽232 at incident energies of 4⩽Einc⩽450 MeV. The optical potential for the doubly-magic nucleus Ca40, the low-energy correction to the real potential for nuclei with 58≲AT≲120 at Einc<30 MeV, the comparison with double-folding model calculations and the CH89 potential, and the spin-orbit potential parameters are discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kyriakou, Ioanna; Emfietzoglou, Dimitris; Nojeh, Alireza
A systematic study of electron-beam penetration and backscattering in multi-walled carbon nanotube (MWCNT) materials for beam energies of {approx}0.3 to 30 keV is presented based on event-by-event Monte Carlo simulation of electron trajectories using state-of-the-art scattering cross sections. The importance of different analytic approximations for computing the elastic and inelastic electron-scattering cross sections for MWCNTs is emphasized. We offer a simple parameterization for the total and differential elastic-scattering Mott cross section, using appropriate modifications to the Browning formula and the Thomas-Fermi screening parameter. A discrete-energy-loss approach to inelastic scattering based on dielectric theory is adopted using different descriptions of themore » differential cross section. The sensitivity of electron penetration and backscattering parameters to the underlying scattering models is examined. Our simulations confirm the recent experimental backscattering data on MWCNT forests and, in particular, the steep increase of the backscattering yield at sub-keV energies as well as the sidewalls escape effect at high-beam energies.« less
Peripheral elastic and inelastic scattering of O17,18 on light targets at 12 MeV/nucleon
NASA Astrophysics Data System (ADS)
Al-Abdullah, T.; Carstoiu, F.; Gagliardi, C. A.; Tabacaru, G.; Trache, L.; Tribble, R. E.
2014-06-01
A study of interaction of neutron-rich oxygen isotopes O17,18 with light targets has been undertaken in order to determine the optical potentials needed for the transfer reaction C13(O17,O18)C12. Optical potentials in both incoming and outgoing channels have been determined in a single experiment. This transfer reaction was used to infer the direct capture rate to the F17(p,γ)Ne18 which is essential to estimate the production of F18 at stellar energies in ONe novae. The success of the asymptotic normalization coefficient (ANC) as indirect method for astrophysics is guaranteed if the reaction mechanism is peripheral and the distorted wave Born approximation cross-section calculations are warranted and stable against the optical model potential (OMP) used. We demonstrate the stability of the ANC method and the OMP results by using good-quality elastic and inelastic-scattering data with stable beams before extending the procedures to rare-ion beams. The peripherality of our reaction is inferred from a semiclassical decomposition of the total-scattering amplitude into barrier and internal barrier components. Comparison between elastic scattering of O17, O18, and O16 projectiles is made.
NASA Astrophysics Data System (ADS)
Gouveia, Diego; Baars, Holger; Seifert, Patric; Wandinger, Ulla; Barbosa, Henrique; Barja, Boris; Artaxo, Paulo; Lopes, Fabio; Landulfo, Eduardo; Ansmann, Albert
2018-04-01
Lidar measurements of cirrus clouds are highly influenced by multiple scattering (MS). We therefore developed an iterative approach to correct elastic backscatter lidar signals for multiple scattering to obtain best estimates of single-scattering cloud optical depth and lidar ratio as well as of the ice crystal effective radius. The approach is based on the exploration of the effect of MS on the molecular backscatter signal returned from above cloud top.
Wave Scattering in Heterogeneous Media using the Finite Element Method
2016-10-21
AFRL-AFOSR-JP-TR-2016-0086 Wave Scattering in Heterogeneous Media using the Finite Element Method Chiruvai Vendhan INDIAN INSTITUTE OF TECHNOLOGY...Scattering in Heterogeneous Media using the Finite Element Method 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA2386-12-1-4026 5c. PROGRAM ELEMENT NUMBER 61102F 6...14. ABSTRACT The primary aim of this study is to develop a finite element model for elastic scattering by axisymmetric bodies submerged in a
NASA Astrophysics Data System (ADS)
Ding, M.; Hjelm, R.; Sussman, A. J.
2016-12-01
Low-permeability geomedia are prevalent in subsurface environments. They have become increasingly important in a wide range of applications such as CO2-sequestration, hydrocarbon recovery, enhanced geothermal systems, legacy waste stewardship, high-level radioactive waste disposal, and global security. The flow and transport characteristics of low-permeability geomedia are dictated by their exceedingly low permeability values ranging from 10-6 to 10-12 darcy with porosities dominated by nanoscale pores. Developing new characterization methods and robust computational models that allow estimation of transport properties of low-permeability geomedia has been identified as a critical basic research and technology development need for controlling subsurface and fluids flow. Due to its sensibility to hydrogen and flexible sample environment, neutron based elastic and inelastic scattering can, through various techniques, interrogate all the nanoscale pores in the sample whether they are fluid accessible or not, and readily characterize interfacial waters. In this presentation, we will present two studies revealing the effects of nanoscale pore confinement on fluid dynamics in geomedia. In one study, we use combined (ultra-small)/small-angle elastic neutron scatterings to probe nanoporous features responses in geological materials to transport processes. In the other study, incoherent inelastic neutron scattering was used to distingwish between intergranular pore water and fluid inclusion moisture in bedded rock salt, and to explore their thermal stablibility. Our work demonstrates that neutron based elastic and inelastic scatterings are techniques of choice for in situ probing hydrocarbon and water behavior in nanoporous materials, providing new insights into water-rock interaction and fluids transport in low-permeability geomaterials.
High-energy pp and pp-bar forward elastic scattering and total cross sections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Block, M.M.; Cahn, R.N.
1985-04-01
The present status of elastic pp and pp-bar scattering in the high-energy domain is reviewed, with emphasis on the forward and near-forward regions. The experimental techniques for measuring sigma/sub tot/, rho, and B are discussed, emphasizing the importance of the region in which the nuclear and Coulomb scattering interfere. The impact-parameter representation is exploited to give simple didactic demonstrations of important rigorous theorems based on analyticity, and to illuminate the significance of the slope parameter B and the curvature parameter C. Models of elastic scattering are discussed, and a criterion for the onset of ''asymptopia'' is given. A critique ofmore » dispersion relations is presented. Simple analytic functions are used to fit simultaneously the real and imaginary parts of forward scattering amplitudes for both pp and pp-bar, obtained from experimental data for sigma/sub tot/ and rho. It is found that a good fit can be obtained using only five parameters (with a cross section rising as ln/sup 2/s), over the energy range 5 < ..sqrt..s < 62 GeV. The possibilities that (a) the cross section rises only as lns, (b) the cross section rises only locally as ln/sup 2/s, and eventually goes to a constant value, and (c) the cross-section difference between pp and pp-bar does not vanish as s..-->..infinity are examined critically. The nuclear slope parameters B are also fitted in a model-independent fashion. Examination of the fits reveals a new regularity of the pp-bar and the pp systems.« less
Measurement of the n-p elastic scattering angular distribution at E{sub n}=14.9 MeV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boukharouba, N.; Bateman, F. B.; Carlson, A. D.
2010-07-15
The relative differential cross section for the elastic scattering of neutrons by protons was measured at an incident neutron energy E{sub n}=14.9 MeV and for center-of-mass scattering angles ranging from about 60 deg. to 180 deg. Angular distribution values were obtained from the normalization of the integrated data to the n-p total elastic scattering cross section. Comparisons of the normalized data to the predictions of the Arndt et al. phase-shift analysis, those of the Nijmegen group, and with the ENDF/B-VII.0 evaluation are sensitive to the value of the total elastic scattering cross section used to normalize the data. The resultsmore » of a fit to a first-order Legendre polynomial expansion are in good agreement in the backward scattering hemisphere with the predictions of the Arndt et al. phase-shift analysis, those of the Nijmegen group, and to a lesser extent, with the ENDF/B-VII.0 evaluation. A fit to a second-order expansion is in better agreement with the ENDF/B-VII.0 evaluation than with the other predictions, in particular when the total elastic scattering cross section given by Arndt et al. and the Nijmegen group is used to normalize the data. A Legendre polynomial fit to the existing n-p scattering data in the 14 MeV energy region, excluding the present measurement, showed that a best fit is obtained for a second-order expansion. Furthermore, the Kolmogorov-Smirnov test confirms the general agreement in the backward scattering hemisphere and shows that significant differences between the database and the predictions occur in the angular range between 60 deg. and 120 deg. and below 20 deg. Although there is good overall agreement in the backward scattering hemisphere, more precision small-angle scattering data and a better definition of the total elastic cross section are needed for an accurate determination of the shape and magnitude of the angular distribution.« less
NASA Astrophysics Data System (ADS)
Akther, P.; Johnstone, W. M.; El-Zein, A. A. A.; Campbell, L.; Teubner, P. J. O.; Brunger, M. J.; Newell, W. R.
2002-11-01
In this letter we report differential superelastic, elastic and inelastic electron scattering measurements from nitrous oxide (N2O) in its (010)* excited vibrational quantum. The incident electron energy was 2.5 eV and the scattered electron angular range was 10°- 40°. Unlike our previous results (1999 J. Phys. B: At. Mol. Opt. Phys. 32 5779) with the isoelectronic molecule carbon dioxide (CO2), where the elastic differential cross sections (DCSs) for scattering from the (010)* mode were 2.3 times larger than those for elastic scattering from the ground (000) state, in N2O the corresponding (010)* elastic cross sections are usually only a fraction of those for the ground state. To the best of our knowledge, the present data are the first DCSs which have been reported in the literature for electron scattering from an excited vibrational level of the N2O molecule.
Peripheral elastic and inelastic scattering of 17,18O on light targets at 12 MeV/nucleon
NASA Astrophysics Data System (ADS)
Carstoiu, F.; Al-Abdullah, T.; Gagliardi, C. A.; Trache, L.
2015-02-01
The elastic and inelastic scattering of 17,18O with light targets has been undertaken at 12 MeV/nucleon in order to determine the optical potentials needed for the transfer reaction 13C (17O ,18O )12C . Optical potentials in both incoming and outgoing channels have been determined in a single experiment. This transfer reaction was used to infer the direct capture rate to the 17F ( p ,γ)18Ne which is essential to estimate the production of 18F at stellar energies in ONe novae. We demonstrate the stability of the ANC method and OMP results using good quality elastic and inelastic scattering data with stable beams. The peripherality of our reaction is inferred from a semiclassical decomposition of the total scattering amplitude into barrier and internal barrier components. Comparison between elastic scattering of 17O , 18O and 16O projectiles is made.
Neutron Angular Scatter Effects in 3DHZETRN: Quasi-Elastic
NASA Technical Reports Server (NTRS)
Wilson, John W.; Werneth, Charles M.; Slaba, Tony C.; Badavi, Francis F.; Reddell, Brandon D.; Bahadori, Amir A.
2017-01-01
The current 3DHZETRN code has a detailed three dimensional (3D) treatment of neutron transport based on a forward/isotropic assumption and has been compared to Monte Carlo (MC) simulation codes in various geometries. In most cases, it has been found that 3DHZETRN agrees with the MC codes to the extent they agree with each other. However, a recent study of neutron leakage from finite geometries revealed that further improvements to the 3DHZETRN formalism are needed. In the present report, angular scattering corrections to the neutron fluence are provided in an attempt to improve fluence estimates from a uniform sphere. It is found that further developments in the nuclear production models are required to fully evaluate the impact of transport model updates. A model for the quasi-elastic neutron production spectra is therefore developed and implemented into 3DHZETRN.
NASA Astrophysics Data System (ADS)
Ouyang, Wei; Mao, Weijian
2018-03-01
An asymptotic quadratic true-amplitude inversion method for isotropic elastic P waves is proposed to invert medium parameters. The multicomponent P-wave scattered wavefield is computed based on a forward relationship using second-order Born approximation and corresponding high-frequency ray theoretical methods. Within the local double scattering mechanism, the P-wave transmission factors are elaborately calculated, which results in the radiation pattern for P-waves scattering being a quadratic combination of the density and Lamé's moduli perturbation parameters. We further express the elastic P-wave scattered wavefield in a form of generalized Radon transform (GRT). After introducing classical backprojection operators, we obtain an approximate solution of the inverse problem by solving a quadratic non-linear system. Numerical tests with synthetic data computed by finite-differences scheme demonstrate that our quadratic inversion can accurately invert perturbation parameters for strong perturbations, compared with the P-wave single-scattering linear inversion method. Although our inversion strategy here is only syncretized with P-wave scattering, it can be extended to invert multicomponent elastic data containing both P-wave and S-wave information.
NASA Astrophysics Data System (ADS)
Ouyang, Wei; Mao, Weijian
2018-07-01
An asymptotic quadratic true-amplitude inversion method for isotropic elastic P waves is proposed to invert medium parameters. The multicomponent P-wave scattered wavefield is computed based on a forward relationship using second-order Born approximation and corresponding high-frequency ray theoretical methods. Within the local double scattering mechanism, the P-wave transmission factors are elaborately calculated, which results in the radiation pattern for P-wave scattering being a quadratic combination of the density and Lamé's moduli perturbation parameters. We further express the elastic P-wave scattered wavefield in a form of generalized Radon transform. After introducing classical backprojection operators, we obtain an approximate solution of the inverse problem by solving a quadratic nonlinear system. Numerical tests with synthetic data computed by finite-differences scheme demonstrate that our quadratic inversion can accurately invert perturbation parameters for strong perturbations, compared with the P-wave single-scattering linear inversion method. Although our inversion strategy here is only syncretized with P-wave scattering, it can be extended to invert multicomponent elastic data containing both P- and S-wave information.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raynal, J.
1963-01-01
The FORTRAN program 5PM 037 calculates the effective elastic scattering cross section, polarizations, the effective total reaction cross section, and the polarization transfer coefficients for spin-1 particles of low charge and mass incident on a low charge and mass target at medium energy. The number of partial waves can not exceed 38, and calculations for different values of parameters for the optical model used can be made. The effect of tensorial potentials constructed from the distance of the deuteron from the target, and its angular momentum with respect to it, can also be studied. The optical model, necessary data, numericalmore » methods, and description of the problem are discussed. The program is described, and tables of equivalent statements necessary for modifying it are included. (auth)« less
Propagation of elastic wave in nanoporous material with distributed cylindrical nanoholes
NASA Astrophysics Data System (ADS)
Qiang, FangWei; Wei, PeiJun; Liu, XiQiang
2013-08-01
The effective propagation constants of plane longitudinal and shear waves in nanoporous material with random distributed parallel cylindrical nanoholes are studied. The surface elastic theory is used to consider the surface stress effects and to derive the nontraditional boundary condition on the surface of nanoholes. The plane wave expansion method is used to obtain the scattering waves from the single nanohole. The multiple scattering effects are taken into consideration by summing the scattered waves from all scatterers and performing the configuration averaging of random distributed scatterers. The effective propagation constants of coherent waves along with the associated dynamic effective elastic modulus are numerically evaluated. The influences of surface stress are discussed based on the numerical results.
Probing the interior of a solid volume with time reversal and nonlinear elastic wave spectroscopy.
Le Bas, P Y; Ulrich, T J; Anderson, B E; Guyer, R A; Johnson, P A
2011-10-01
A nonlinear scatterer is simulated in the body of a sample and demonstrates a technique to locate and define the elastic nature of the scatterer. Using the principle of time reversal, elastic wave energy is focused at the interface between blocks of optical grade glass and aluminum. Focusing of energy at the interface creates nonlinear wave scattering that can be detected on the sample perimeter with time-reversal mirror elements. The nonlinearly generated scattered signal is bandpass filtered about the nonlinearly generated components, time reversed and broadcast from the same mirror elements, and the signal is focused at the scattering location on the interface. © 2011 Acoustical Society of America
NASA Astrophysics Data System (ADS)
Lee, Hyung Jin; Lee, Heung Son; Ma, Pyung Sik; Kim, Yoon Young
2016-09-01
In this paper, the scattering (S-) parameter retrieval method is presented specifically for anisotropic elastic metamaterials; so far, no retrieval has been accomplished when elastic metamaterials exhibit fully anisotropic behavior. Complex constitutive property and intrinsic scattering behavior of elastic metamaterials make their characterization far more complicated than that for acoustic and electromagnetic metamaterials. In particular, elastic metamaterials generally exhibit anisotropic scattering behavior due to higher scattering modes associated with shear deformation. They also exhibit nonlocal responses to some degrees, which originate from strong multiple scattering interactions even in the long wavelength limit. Accordingly, the conventional S-parameter retrieval methods cannot be directly used for elastic metamaterials, because they determine only the diagonal components in effective tensor property. Also, the conventional methods simply use the analytic inversion formulae for the material characterization so that inherent nonlocality cannot be taken into account. To establish a retrieval method applicable to anisotropic elastic metamaterials, we propose an alternative S-parameter method to deal with full anisotropy of elastic metamaterials. To retrieve the whole effective anisotropic parameter, we utilize not only normal but also oblique wave incidences. For the retrieval, we first retrieve the ratio of the effective stiffness tensor to effective density and then determine the effective density. The proposed retrieval method is validated by characterizing the effective material parameters of various types of non-resonant anisotropic metamaterials. It is found that the whole effective parameters are retrieved consistently regardless of used retrieval conditions in spite of inherent nonlocality.
Elastic scattering and soft diffraction with ALFA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Puzo, P.
The ALFA detector in ATLAS aims at measuring the absolute luminosity and the total cross-section with 2-3% accuracy. Its uses elastically scattered protons whose impact position on a fiber detector, located 240 m away from the interaction point, allow a measurement of the scattering angle.
Improved Optics For Quasi-Elastic Light Scattering
NASA Technical Reports Server (NTRS)
Cheung, Harry Michael
1995-01-01
Improved optical train devised for use in light-scattering measurements of quasi-elastic light scattering (QELS) and laser spectroscopy. Measurements performed on solutions, microemulsions, micellular solutions, and colloidal dispersions. Simultaneous measurements of total intensity and fluctuations in total intensity of light scattered from sample at various angles provides data used, in conjunction with diffusion coefficients, to compute sizes of particles in sample.
Measurement of the antineutrino neutral-current elastic differential cross section
NASA Astrophysics Data System (ADS)
Aguilar-Arevalo, A. A.; Brown, B. C.; Bugel, L.; Cheng, G.; Church, E. D.; Conrad, J. M.; Dharmapalan, R.; Djurcic, Z.; Finley, D. A.; Ford, R.; Garcia, F. G.; Garvey, G. T.; Grange, J.; Huelsnitz, W.; Ignarra, C.; Imlay, R.; Johnson, R. A.; Karagiorgi, G.; Katori, T.; Kobilarcik, T.; Louis, W. C.; Mariani, C.; Marsh, W.; Mills, G. B.; Mirabal, J.; Moore, C. D.; Mousseau, J.; Nienaber, P.; Osmanov, B.; Pavlovic, Z.; Perevalov, D.; Polly, C. C.; Ray, H.; Roe, B. P.; Russell, A. D.; Shaevitz, M. H.; Spitz, J.; Stancu, I.; Tayloe, R.; Van de Water, R. G.; Wascko, M. O.; White, D. H.; Wickremasinghe, D. A.; Zeller, G. P.; Zimmerman, E. D.; MiniBooNE Collaboration
2015-01-01
We report the measurement of the flux-averaged antineutrino neutral current elastic scattering cross section (d σν ¯N →ν ¯N/d Q2) on CH2 by the MiniBooNE experiment using the largest sample of antineutrino neutral current elastic candidate events ever collected. The ratio of the antineutrino to neutrino neutral current elastic scattering cross sections and a ratio of the antineutrino neutral current elastic to antineutrino charged current quasielastic cross sections are also presented.
Elastic scattering and total reaction cross section for the {sup 6}He+{sup 58}Ni system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morcelle, V.; Lichtenthäler, R.; Lépine-Szily, A.
2014-11-11
Elastic scattering measurements of {sup 6}He + {sup 58}Ni system have been performed at the laboratory energy of 21.7 MeV. The {sup 6}He secondary beam was produced by a transfer reaction {sup 9}Be ({sup 7}Li, {sup 6}He) and impinged on {sup 58}Ni and {sup 197}Au targets, using the Radioactive Ion Beam (RIB) facility, RIBRAS, installed in the Pelletron Laboratory of the Institute of Physics of the University of São Paulo, Brazil. The elastic angular distribution was obtained in the angular range from 15° to 80° in the center of mass frame. Optical model calculations have been performed using a hybridmore » potential to fit the experimental data. The total reaction cross section was derived.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bigio, I.J.; Boyer, J.; Johnson, T.M.
1994-10-01
The Los Alamos National Laboratory has continued the development of the Optical Biopsy System (OBS) for noninvasive, real-time in situ diagnosis of tissue pathologies. Our clinical studies have expanded since the last Biomedical Optics Europe conference (Budapest, September 1993), and we report here on the latest results of clinical tests in gastrointestinal tract. The OBS invokes a unique approach to optical diagnosis of tissue pathologies based on the elastic scattering properties, over a wide range of wavelengths, of the tissue. The use of elastic scattering as the key to optical tissue diagnostics in the OBS is based on the factmore » that many tissue pathologies, including a majority of cancer forms, manifest significant architectural changes at the cellular and sub-cellular level. Since the cellular components that cause elastic scattering have dimensions typically on the order of visible to near-IR wavelengths, the elastic (Mie) scattering properties will be wavelength dependent. Thus, morphology and size changes can be expected to cause significant changes in an optical signature that is derived from the wavelength-dependence of elastic scattering. The OBS employs a small fiberoptic probe that is amenable to use with any endoscope or catheter, or to direct surface examination. The probe is designed to be used in optical contact with the tissue under examination and has separate illuminating and collecting fibers. Thus, the light that is collected and transmitted to the analyzing spectrometer must first scatter through a small volume of the tissue before entering the collection fiber(s). Consequently, the system is also sensitive to the optical absorption spectrum of the tissue, over an effective operating range of <300 to 950 nm, and such absorption adds valuable complexity to the scattering spectral signature.« less
NASA Astrophysics Data System (ADS)
Rajagopal, P.; Drozdz, M.; Lowe, M. J. S.
2009-03-01
A solution to the problem of improving the finite element (FE) modeling of elastic wave-defect interaction is sought by reconsidering the conventional opinion on meshing strategy. The standard approach using uniform square elements imposes severe limitations in representing complex defect outlines but this is thought to improve when the mesh is made finer. Free meshing algorithms available widely in commercial packages of late can cope with difficult features well but they are thought to cause scattering by the irregular mesh itself. This paper examines whether the benefits offered by free meshing in representing defects better outweigh the inaccuracies due to mesh scattering. If using the standard mesh, the questions whether mesh refinement leads to improved results and whether a practical strategy can be constructed are considered.
Extended optical theorem in isotropic solids and its application to the elastic radiation force
NASA Astrophysics Data System (ADS)
Leão-Neto, J. P.; Lopes, J. H.; Silva, G. T.
2017-04-01
In this article, we derive the extended optical theorem for the elastic-wave scattering by a spherical inclusion (with and without absorption) in a solid matrix. This theorem expresses the extinction cross-section, i.e., the time-averaged power extracted from the incoming beam per its intensity, regarding the partial-wave expansion coefficients of the incident and scattered waves. We also establish the connection between the optical theorem and the elastic radiation force by a plane wave in a linear and isotropic solid. We obtain the absorption, scattering, and extinction efficiencies (the corresponding power per characteristic incident intensity per sphere cross-section area) for a plane wave and a spherically focused beam. We discuss to which extent the radiation force theory for plane waves can be used to the focused beam case. Considering an iron sphere embedded in an aluminum matrix, we numerically compute the scattering and elastic radiation force efficiencies. The radiation force on a stainless steel sphere embedded in a tissue-like medium (soft solid) is also computed. In this case, resonances are observed in the force as a function of the sphere size parameter (the wavenumber times the sphere radius). Remarkably, the relative difference between our findings and previous lossless liquid models is about 100% in the long-wavelength limit. Regarding some applications, the obtained results have a direct impact on ultrasound-based elastography techniques and ultrasonic nondestructive testing, as well as implantable devices activated by ultrasound.
2016-07-10
Elastic Collision Scattering Angle for Electric Propulsion Plume Simulation 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...atom needs to be sampled; however, it is confirmed that initial target atom velocity does not play significant role in typical electric propulsion ...by ANSI Std. 239.18 Fast Computation of High Energy Elastic Collision Scattering Angle for Electric Propulsion Plume Simulation∗ Samuel J. Araki1
NASA Astrophysics Data System (ADS)
de Figueiredo, J. J. S.; Schleicher, J.; Stewart, R. R.; Dayur, N.; Omoboya, B.; Wiley, R.; William, A.
2013-04-01
To understand their influence on elastic wave propagation, anisotropic cracked media have been widely investigated in many theoretical and experimental studies. In this work, we report on laboratory ultrasound measurements carried out to investigate the effect of source frequency on the elastic parameters (wave velocities and the Thomsen parameter γ) and shear wave attenuation) of fractured anisotropic media. Under controlled conditions, we prepared anisotropic model samples containing penny-shaped rubber inclusions in a solid epoxy resin matrix with crack densities ranging from 0 to 6.2 per cent. Two of the three cracked samples have 10 layers and one has 17 layers. The number of uniform rubber inclusions per layer ranges from 0 to 100. S-wave splitting measurements have shown that scattering effects are more prominent in samples where the seismic wavelength to crack aperture ratio ranges from 1.6 to 1.64 than in others where the ratio varied from 2.72 to 2.85. The sample with the largest cracks showed a magnitude of scattering attenuation three times higher compared with another sample that had small inclusions. Our S-wave ultrasound results demonstrate that elastic scattering, scattering and anelastic attenuation, velocity dispersion and crack size interfere directly in shear wave splitting in a source-frequency dependent manner, resulting in an increase of scattering attenuation and a reduction of shear wave anisotropy with increasing frequency.
NASA Astrophysics Data System (ADS)
Huang, Jun-Wei; Bellefleur, Gilles; Milkereit, Bernd
2012-02-01
We present a conditional simulation algorithm to parameterize three-dimensional heterogeneities and construct heterogeneous petrophysical reservoir models. The models match the data at borehole locations, simulate heterogeneities at the same resolution as borehole logging data elsewhere in the model space, and simultaneously honor the correlations among multiple rock properties. The model provides a heterogeneous environment in which a variety of geophysical experiments can be simulated. This includes the estimation of petrophysical properties and the study of geophysical response to the heterogeneities. As an example, we model the elastic properties of a gas hydrate accumulation located at Mallik, Northwest Territories, Canada. The modeled properties include compressional and shear-wave velocities that primarily depend on the saturation of hydrate in the pore space of the subsurface lithologies. We introduce the conditional heterogeneous petrophysical models into a finite difference modeling program to study seismic scattering and attenuation due to multi-scale heterogeneity. Similarities between resonance scattering analysis of synthetic and field Vertical Seismic Profile data reveal heterogeneity with a horizontal-scale of approximately 50 m in the shallow part of the gas hydrate interval. A cross-borehole numerical experiment demonstrates that apparent seismic energy loss can occur in a pure elastic medium without any intrinsic attenuation of hydrate-bearing sediments. This apparent attenuation is largely attributed to attenuative leaky mode propagation of seismic waves through large-scale gas hydrate occurrence as well as scattering from patchy distribution of gas hydrate.
Excitation of phonons in medium-energy electron diffraction
NASA Astrophysics Data System (ADS)
Alvarez, M. A. Vicente; Ascolani, H.; Zampieri, G.
1996-03-01
The ``elastic'' backscattering of electrons from crystalline surfaces presents two regimes: a low-energy regime, in which the characteristic low-energy electron diffraction (LEED) pattern is observed, and a medium-energy regime, in which the diffraction pattern is similar to those observed in x-ray photoemission diffraction (XPD) and Auger electron diffraction (AED) experiments. We present a model for the electron scattering which, including the vibrational degrees of freedom of the crystal, contains both regimes and explains the passage from one regime to the other. Our model is based on a separation of the electron and atomic motions (adiabatic approximation) and on a cluster-type formulation of the multiple scattering of the electron. The inelastic scattering events (excitation and/or absorption of phonons) are treated as coherent processes and no break of the phase relation between the incident and the exit paths of the electron is assumed. The LEED and the medium-energy electron diffraction regimes appear naturally in this model as the limit cases of completely elastic scattering and of inelastic scattering with excitation and/or absorption of multiple phonons. Intensity patterns calculated with this model are in very good agreement with recent experiments of electron scattering on Cu(001) at low and medium energies. We show that there is a correspondence between the type of intensity pattern and the mean number of phonons excited and/or absorbed during the scattering: a LEED-like pattern is observed when this mean number is less than 2, LEED-like and XPD/AED-like features coexist when this number is 3-4, and a XPD/AED-like pattern is observed when this number is greater than 5-6.
Random acoustic metamaterial with a subwavelength dipolar resonance.
Duranteau, Mickaël; Valier-Brasier, Tony; Conoir, Jean-Marc; Wunenburger, Régis
2016-06-01
The effective velocity and attenuation of longitudinal waves through random dispersions of rigid, tungsten-carbide beads in an elastic matrix made of epoxy resin in the range of beads volume fraction 2%-10% are determined experimentally. The multiple scattering model proposed by Luppé, Conoir, and Norris [J. Acoust. Soc. Am. 131(2), 1113-1120 (2012)], which fully takes into account the elastic nature of the matrix and the associated mode conversions, accurately describes the measurements. Theoretical calculations show that the rigid particles display a local, dipolar resonance which shares several features with Minnaert resonance of bubbly liquids and with the dipolar resonance of core-shell particles. Moreover, for the samples under study, the main cause of smoothing of the dipolar resonance of the scatterers and the associated variations of the effective mass density of the dispersions is elastic relaxation, i.e., the finite time required for the shear stresses associated to the translational motion of the scatterers to propagate through the matrix. It is shown that its influence is governed solely by the value of the particle to matrix mass density contrast.
The exact solution of a four-body Coulomb problem
NASA Astrophysics Data System (ADS)
Ray, Hasi
2018-03-01
The elastic collision between two H-like atoms utilizing an ab initio static-exchange model (SEM) in the center of mass (CM) frame considering the system as a four-body Coulomb problem where all the Coulomb interaction terms in the direct and exchange channels are treated exactly, is studied thoroughly. A coupled-channel methodology in momentum space is used to solve Lippman-Schwinger equation following the integral approach. The new SEM code [Ray, Pramana 83, 907 (2014)] in which the Born-Oppenheimer (BO) scattering amplitude acts as input to derive the SEM amplitude using partial wave analysis, is utilized to study the s-, p-, d-wave elastic phase shifts and the corresponding partial cross sections. An augmented-Born approximation is used to include the contribution of higher partial waves more accurately to determine the total/integrated elastic cross sections. The effective range theory is used to determine the scattering lengths and effective ranges in the s-wave elastic scattering. The systems studied are Ps-Ps, Ps-Mu, Ps-H, Ps-D, Ps-T, Mu-Mu, Mu-H, Mu-D, Mu-T, H-H, H-D, H-T, D-D, D-T, T-T. The SEM includes the non-adiabatic short-range effects due to exchange. The MSEM code [Ray, Pramana 83, 907 (2014)] is used to study the effect of the long-range van der Waals interaction due to induced dipole polarizabilities of the atoms in H(1s)-H(1s) elastic collision. The dependence of scattering length on the reduced mass of the system and the dependence of scattering length on the strength of long-range van der Waals interaction that varies with the minimum interatomic distance are observed. Contribution to the Topical Issue "Low Energy Positron and Electron Interactions", edited by James Sullivan, Ron White, Michael Bromley, Ilya Fabrikant, and David Cassidy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yokosawa, A.
An extensive amount of data were obtained from measurements of proton-proton elastic scattering from 1 to 12 GeV/c using longitudinally polarized beams and targets. Physics learned from these data as well as other related experimental results is summarized. The topics include structures observed in nucleon-nucleon scattering at lower energies and dinucleon resonances, pp scattering-amplitude measurements at 6 GeV/c, and lerge p/sub perpendicular/ results in pp elastic scattering.
Dynamical properties of water in living cells
NASA Astrophysics Data System (ADS)
Piazza, Irina; Cupane, Antonio; Barbier, Emmanuel L.; Rome, Claire; Collomb, Nora; Ollivier, Jacques; Gonzalez, Miguel A.; Natali, Francesca
2018-02-01
With the aim of studying the effect of water dynamics on the properties of biological systems, in this paper, we present a quasi-elastic neutron scattering study on three different types of living cells, differing both in their morphological and tumor properties. The measured scattering signal, which essentially originates from hydrogen atoms present in the investigated systems, has been analyzed using a global fitting strategy using an optimized theoretical model that considers various classes of hydrogen atoms and allows disentangling diffusive and rotational motions. The approach has been carefully validated by checking the reliability of the calculation of parameters and their 99% confidence intervals. We demonstrate that quasi-elastic neutron scattering is a suitable experimental technique to characterize the dynamics of intracellular water in the angstrom/picosecond space/time scale and to investigate the effect of water dynamics on cellular biodiversity.
NASA Astrophysics Data System (ADS)
Li, Ning; Wu, Ya-Jie; Liu, Zhan-Wei
2018-01-01
The relations between the baryon-baryon elastic scattering phase shifts and the two-particle energy spectrum in the elongated box are established. We studied the cases with both the periodic boundary condition and twisted boundary condition in the center of mass frame. The framework is also extended to the system of nonzero total momentum with periodic boundary condition in the moving frame. Moreover, we discussed the sensitivity functions σ (q ) that represent the sensitivity of higher scattering phases. Our analytical results will be helpful to extract the baryon-baryon elastic scattering phase shifts in the continuum from lattice QCD data by using elongated boxes.
Glynne-Jones, Peter; Mishra, Puja P; Boltryk, Rosemary J; Hill, Martyn
2013-04-01
A finite element based method is presented for calculating the acoustic radiation force on arbitrarily shaped elastic and fluid particles. Importantly for future applications, this development will permit the modeling of acoustic forces on complex structures such as biological cells, and the interactions between them and other bodies. The model is based on a non-viscous approximation, allowing the results from an efficient, numerical, linear scattering model to provide the basis for the second-order forces. Simulation times are of the order of a few seconds for an axi-symmetric structure. The model is verified against a range of existing analytical solutions (typical accuracy better than 0.1%), including those for cylinders, elastic spheres that are of significant size compared to the acoustic wavelength, and spheroidal particles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mourant, J.R.; Boyer, J.; Johnson, T.M.
1995-03-01
The Los Alamos National Laboratory has continued the development of the Optical Biopsy System (OBS) for noninvasive, real-time in situ diagnosis of tissue pathologies. In proceedings of earlier SPIE conferences we reported on clinical measurements in the bladder, and we report here on recent results of clinical tests in the gastrointestinal tract. With the OBS, tissue pathologies are detected/diagnosed using spectral measurements of the elastic optical transport properties (scattering and absorption) of the tissue over a wide range of wavelengths. The use of elastic scattering as the key to optical tissue diagnostics in the OBS is based on the factmore » that many tissue pathologies, including a majority of cancer forms, exhibit significant architectural changes at the cellular and sub-cellular level. Since the cellular components that cause elastic scattering have dimensions typically on the order of visible to near-IR wavelengths, the elastic (Mie) scattering properties will be wavelength dependent. Thus, morphology and size changes can be expected to cause significant changes m an optical signature that is derived from the wavelength-dependence of elastic scattering. Additionally, the optical geometry of the OBS beneficially enhances its sensitivity for measuring absorption bands. The OBS employs a small fiber-optic probe that is amenable to use with any endoscope or catheter, or to direct surface examination, as well as interstitial needle insertion. Data acquistion/display time is <1 second.« less
NASA Astrophysics Data System (ADS)
Berk, N. F.
2014-03-01
We present a general approach to analyzing elastic scattering for those situations where the incident beam is prepared as an incoherent ensemble of wave packets of a given arbitrary shape. Although wave packets, in general, are not stationary solutions of the Schrödinger equation, the analysis of elastic scattering data treats the scattering as a stationary-state problem. We thus must gate the wave packet, coherently distorting its shape in a manner consistent with the elastic condition. The resulting gated scattering amplitudes (e.g., reflection coefficients) thus are weighted coherent sums of the constituent plane-wave scattering amplitudes, with the weights determined by the shape of the incident wave packet as "filtered" by energy gating. We develop the gating formalism in general and apply it to the problem of neutron scattering from ruled gratings described by Majkrzak et al. in a companion paper. The required exact solution of the associated problem of plane-wave reflection from gratings also is derived.
Evidence of a slight nuclear transparency in the alpha-nucleus systems
Chamon, L. C.; Gasques, L. R.; Nobre, G. P. A.; ...
2015-02-19
In earlier works, we proposed a model for the nuclear potential of the α + α and α + ¹²C systems. In addition, this theoretical model successfully described data related to the elastic and inelastic scattering processes as well as resonances that correspond to the capture reaction channel. In the present work, we extend the same model to obtain bare nuclear potentials for several α-nucleus systems. We adopt this parameter-free interaction to analyze fusion, elastic, and inelastic scattering data within the context of the coupled-channel formalism. Our results indicate that, for these systems, the absorption of flux of the elasticmore » channel at internal distances of interaction is not complete. In addition, we present new experimental angular distributions for the 2⁺ inelastic target excitation of α on ¹²⁰ ,¹³⁰Te.« less
NASA Astrophysics Data System (ADS)
Pettit, J. R.; Walker, A. E.; Lowe, M. J. S.
2015-03-01
Pulse-echo ultrasonic NDE examination of large pressure vessel forgings is a design and construction code requirement in the power generation industry. Such inspections aim to size and characterise potential defects that may have formed during the forging process. Typically these defects have a range of orientations and surface roughnesses which can greatly affect ultrasonic wave scattering behaviour. Ultrasonic modelling techniques can provide insight into defect response and therefore aid in characterisation. However, analytical approaches to solving these scattering problems can become inaccurate, especially when applied to increasingly complex defect geometries. To overcome these limitations a elastic Finite Element (FE) method has been developed to simulate pulse-echo inspections of embedded planar defects. The FE model comprises a significantly reduced spatial domain allowing for a Monte-Carlo based approach to consider multiple realisations of defect orientation and surface roughness. The results confirm that defects aligned perpendicular to the path of beam propagation attenuate ultrasonic signals according to the level of surface roughness. However, for defects orientated away from this plane, surface roughness can increase the magnitude of the scattered component propagating back along the path of the incident beam. This study therefore highlights instances where defect roughness increases the magnitude of ultrasonic scattered signals, as opposed to attenuation which is more often assumed.
Inclusive neutrino scattering off the deuteron from threshold to GeV energies
NASA Astrophysics Data System (ADS)
Shen, G.; Marcucci, L. E.; Carlson, J.; Gandolfi, S.; Schiavilla, R.
2012-09-01
Background: Neutrino-nucleus quasi-elastic scattering is crucial to interpret the neutrino oscillation results in long baseline neutrino experiments. There are rather large uncertainties in the cross section, due to insufficient knowledge on the role of two-body weak currents.Purpose: Determine the role of two-body weak currents in neutrino-deuteron quasi-elastic scattering up to GeV energies.Methods: Calculate cross sections for inclusive neutrino scattering off deuteron induced by neutral and charge-changing weak currents, from threshold up to GeV energies, using the Argonne v18 potential and consistent nuclear electroweak currents with one- and two-body terms.Results: Two-body contributions are found to be small, and increase the cross sections obtained with one-body currents by less than 10% over the whole range of energies. Total cross sections obtained by describing the final two-nucleon states with plane waves differ negligibly, for neutrino energies ≳ MeV, from those in which interaction effects in these states are fully accounted for. The sensitivity of the calculated cross sections to different models for the two-nucleon potential and/or two-body terms in the weak current is found to be weak. Comparing cross sections to those obtained in a naive model in which the deuteron is taken to consist of a free proton and neutron at rest, nuclear structure effects are illustrated to be non-negligible.Conclusion: Contributions of two-body currents in neutrino-deuteron quasi-elastic scattering up to GeV are found to be smaller than 10%. Finally, it should be stressed that the results reported in this work do not include pion production channels.
NASA Technical Reports Server (NTRS)
Bhatia, A. K.; Temkin, A.; Fisher, Richard R. (Technical Monitor)
2001-01-01
We report on the first part of a study of electron-hydrogen scattering, using a method which allows for the ab initio calculation of total and elastic cross sections at higher energies. In its general form the method uses complex 'radial' correlation functions, in a (Kohn) T-matrix formalism. The titled method, abbreviated Complex Correlation Kohn T (CCKT) method, is reviewed, in the context of electron-hydrogen scattering, including the derivation of the equation for the (complex) scattering function, and the extraction of the scattering information from the latter. The calculation reported here is restricted to S-waves in the elastic region, where the correlation functions can be taken, without loss of generality, to be real. Phase shifts are calculated using Hylleraas-type correlation functions with up to 95 terms. Results are rigorous lower bounds; they are in general agreement with those of Schwartz, but they are more accurate and outside his error bounds at a couple of energies,
Gabel, Frank; Bellissent-Funel, Marie-Claire
2007-01-01
We present a study of C-phycocyanin hydration water dynamics in the presence of trehalose by incoherent elastic neutron scattering. By combining data from two backscattering spectrometers with a 10-fold difference in energy resolution we extract a scattering law S(Q,ω) from the Q-dependence of the elastic intensities without sampling the quasielastic range. The hydration water is described by two dynamically different populations—one diffusing inside a sphere and the other diffusing quasifreely—with a population ratio that depends on temperature. The scattering law derived describes the experimental data from both instruments excellently over a large temperature range (235–320 K). The effective diffusion coefficient extracted is reduced by a factor of 10–15 with respect to bulk water at corresponding temperatures. Our approach demonstrates the benefits and the efficiency of using different energy resolutions in incoherent elastic neutron scattering over a large angular range for the study of biological macromolecules and hydration water. PMID:17350998
Envelope of coda waves for a double couple source due to non-linear elasticity
NASA Astrophysics Data System (ADS)
Calisto, Ignacia; Bataille, Klaus
2014-10-01
Non-linear elasticity has recently been considered as a source of scattering, therefore contributing to the coda of seismic waves, in particular for the case of explosive sources. This idea is analysed further here, theoretically solving the expression for the envelope of coda waves generated by a point moment tensor in order to compare with earthquake data. For weak non-linearities, one can consider each point of the non-linear medium as a source of scattering within a homogeneous and linear medium, for which Green's functions can be used to compute the total displacement of scattered waves. These sources of scattering have specific radiation patterns depending on the incident and scattered P or S waves, respectively. In this approach, the coda envelope depends on three scalar parameters related to the specific non-linearity of the medium; however these parameters only change the scale of the coda envelope. The shape of the coda envelope is sensitive to both the source time function and the intrinsic attenuation. We compare simulations using this model with data from earthquakes in Taiwan, with a good fit.
Elastic and inelastic neutron scattering cross sections for fission reactor applications
NASA Astrophysics Data System (ADS)
Hicks, S. F.; Chakraborty, A.; Combs, B.; Crider, B. P.; Downes, L.; Girgis, J.; Kersting, L. J.; Kumar, A.; Lueck, C. J.; McDonough, P. J.; McEllistrem, M. T.; Peters, E. E.; Prados-Estevz, F. M.; Schniederjan, J.; Sidwell, L.; Sigillito, A. J.; Vanhoy, J. R.; Watts, D.; Yates, S. W.
2013-04-01
Nuclear data important for the design and development of the next generation of light-water reactors and future fast reactors include neutron elastic and inelastic scattering cross sections on important structural materials, such as Fe, and on coolant materials, such as Na. These reaction probabilities are needed since neutron reactions impact fuel performance during irradiations and the overall efficiency of reactors. While neutron scattering cross sections from these materials are available for certain incident neutron energies, the fast neutron region, particularly above 2 MeV, has large gaps for which no measurements exist, or the existing uncertainties are large. Measurements have been made at the University of Kentucky Accelerator Laboratory to measure neutron scattering cross sections on both Fe and Na in the region where these gaps occur and to reduce the uncertainties on scattering from the ground state and first excited state of these nuclei. Results from measurements on Fe at incident neutron energies between 2 and 4 MeV will be presented and comparisons will be made to model calculations available from data evaluators.
8B + 208Pb Elastic Scattering at Coulomb Barrier Energies
NASA Astrophysics Data System (ADS)
La Commara, M.; Mazzocco, M.; Boiano, A.; Boiano, C.; Manea, C.; Parascandolo, C.; Pierroutsakou, D.; Signorini, C.; Strano, E.; Torresi, D.; Yamaguchi, H.; Kahl, D.; Di Meo, P.; Grebosz, J.; Imai, N.; Hirayama, Y.; Ishiyama, H.; Iwasa, N.; Jeong, S. C.; Jia, H. M.; Kim, Y. H.; Kimura, S.; Kubono, S.; Lin, C. J.; Miyatake, H.; Mukai, M.; Nakao, T.; Nicoletto, M.; Sakaguchi, Y.; Sánchez-Benítez, A. M.; Soramel, F.; Teranishi, T.; Wakabayashi, Y.; Watanabe, Y. X.; Yang, L.; Yang, Y. Y.
2018-02-01
The scattering process of weakly-bound nuclei at Coulomb barrier energies provides deep insights on the reaction dynamics induced by exotic nuclei. Within this framework, we measured for the first time the scattering process of the short-lived Radioactive Ion Beam (RIB) 8B (Sp = 0.1375 MeV) from a 208Pb target at 50 MeV beam energy. The 8B RIB was produced by means of the in-flight facility CRIB (RIKEN, Japan) with an average intensity on target of 10 kHz and a purity about 25%. Elastically scattering ions were detected in the angular range θc.m. = 10°-160° by means of the detector array EXPADES. A preliminary optical model analysis indicates a total reaction cross section of about 1 b, a value, once reduced, 2-3 times larger than those obtained for the reactions induced by the stable weakly-bound projectiles 6,7Li on a 208Pb target in the energy range around the Coulomb barrier.
8B + 208Pb Elastic Scattering at Coulomb Barrier Energies
NASA Astrophysics Data System (ADS)
La Commara, M.; Mazzocco, M.; Boiano, A.; Boiano, C.; Manea, C.; Parascandolo, C.; Pierroutsakou, D.; Signorini, C.; Strano, E.; Torresi, D.; Yamaguchi, H.; Kahl, D.; Di Meo, P.; Grebosz, J.; Imai, N.; Hirayama, Y.; Ishiyama, H.; Iwasa, N.; Jeong, S. C.; Jia, H. M.; Kim, Y. H.; Kimura, S.; Kubono, S.; Lin, C. J.; Miyatake, H.; Mukai, M.; Nakao, T.; Nicoletto, M.; Sakaguchi, Y.; Sánchez-Benítez, A. M.; Soramel, F.; Teranishi, T.; Wakabayashi, Y.; Watanabe, Y. X.; Yang, L.; Yang, Y. Y.
2017-11-01
The scattering process of weakly-bound nuclei at Coulomb barrier energies provides deep insights on the reaction dynamics induced by exotic nuclei. Within this framework, we measured for the first time the scattering process of the short-lived Radioactive Ion Beam (RIB) 8B (S p = 0.1375 MeV) from a 208Pb target at 50 MeV beam energy. The 8B RIB was produced by means of the in-flight facility CRIB (RIKEN, Japan) with an average intensity on target of 10 kHz and a purity about 25%. Elastically scattering ions were detected in the angular range θc.m. = 10°-160° by means of the detector array EXPADES. A preliminary optical model analysis indicates a total reaction cross section of about 1 b, a value, once reduced, 2-3 times larger than those obtained for the reactions induced by the stable weakly-bound projectiles 6,7Li on a 208Pb target in the energy range around the Coulomb barrier.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Waidyawansa, Dinayadura Buddhini
2013-08-01
The beam normal single spin asymmetry generated in the scattering of transversely polarized electrons from unpolarized nucleons is an observable of the imaginary part of the two-photon exchange process. Moreover, it is a potential source of false asymmetry in parity violating electron scattering experiments. The Q{sub weak} experiment uses parity violating electron scattering to make a direct measurement of the weak charge of the proton. The targeted 4% measurement of the weak charge of the proton probes for parity violating new physics beyond the Standard Model. The beam normal single spin asymmetry at Q{sub weak} kinematics is at least threemore » orders of magnitude larger than 5 ppb precision of the parity violating asymmetry. To better understand this parity conserving background, the Q{sub weak} Collaboration has performed elastic scattering measurements with fully transversely polarized electron beam on the proton and aluminum. This dissertation presents the analysis of the 3% measurement (1.3% statistical and 2.6% systematic) of beam normal single spin asymmetry in electronproton scattering at a Q2 of 0.025 (GeV/c)2. It is the most precise existing measurement of beam normal single spin asymmetry available at the time. A measurement of this precision helps to improve the theoretical models on beam normal single spin asymmetry and thereby our understanding of the doubly virtual Compton scattering process.« less
Beam-target double-spin asymmetry in quasielastic electron scattering off the deuteron with CLAS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayer, M.; Kuhn, S. E.; Adhikari, K. P.
Background: The deuteron plays a pivotal role in nuclear and hadronic physics, as both the simplest bound multi-nucleon system and as an ``effective neutron target''. Quasi-elastic electron scattering on the deuteron is a benchmark reaction to test our understanding of deuteron structure and the properties and interactions of the two nucleons bound in the deuteron. Purpose: The experimental data presented here test state-of-the-art models of the deuteron and the two-nucleon interaction in the final state after two-body breakup of the deuteron. Focusing on polarization degrees of freedom, we gain information on the limits of the Impulse Approximation (IA) picture andmore » put the interpretation of spin structure measurements with deuterium on a firmer footing. Information on this reaction can also be used to improve the determination of the deuteron polarization through quasi-elastic electron scattering. Method: We measured the beam-target double spin asymmetry (A||) for quasi-elastic electron scattering off the deuteron at several beam energies (1.6-1.7 GeV, 2.5 GeV, 4.2 GeV and 5.6-5.8 GeV), using the CEBAF Large Acceptance Spectrometer (CLAS) at Thomas Jefferson National Accelerator Facility. The deuterons were polarized along (or opposite to) the beam direction. The double spin asymmetries were measured as a function of photon virtuality Q2 (0.13-3.17 (GeV/c)2), missing momentum (pm = 0.0 - 0.5 GeV/c), and the angle between the (inferred) ``spectator'' neutron and the momentum transfer direction (θnq). Results: The results are compared with a recent model that includes Final State Interactions (FSI) using a complete parameterization of nucleon-nucleon scattering, as well as a simplified model using the Plane Wave Impulse Approximation (PWIA). We find overall good agreement with both the PWIA and FSI expectations at low to medium missing momenta (pm ≤ 0.25 GeV/c), including the change of the asymmetry due to the contribution of the deuteron D-state at higher momenta. At the highest missing momenta, our data clearly agree better with the calculations including FSI. Conclusions: Final state interactions seem to play a lesser role for polarization observables in deuteron two-body electro-disintegration than for absolute cross sections. Our data, while limited in statistical power, indicate that PWIA models work reasonably well to understand the asymmetries at lower missing momenta. In turn, this information can be used to extract the product of beam and target polarization (PbPt) from quasi-elastic electron-deuteron scattering, which is useful for measurements of spin observables in electron-neutron inelastic scattering. However, at the highest missing (neutron) momenta, FSI effects become important and must be accounted for.« less
Single-Crystal Elasticity of Iron-Bearing Bridgemanite in the Lower Mantle
NASA Astrophysics Data System (ADS)
Yang, J.; Lin, J. F.; Okuchi, T.; Tomioka, N.
2014-12-01
Bridgemanite is believed to be the most abundant mineral in the Earth's lower mantle. Knowing its elasticity is thus critical to our understanding of the lower-mantle seismology, geochemistry, and geophysics. Although single-crystal elasticity and elastic anisotropy of bridgemanite under high P-T have been reported theoretically, experimental results on the single-crystal elasticity of bridgemanite remain very limited[1, 2]. Published experimental results have been limited to ambient conditions due to technical challenges in high-pressure measurements to permit derivations of all nine elastic constants (C11, C22, C33, C44, C55, C66, C12, C23 and C13) of the crystal. A thorough understanding of the elastic properties of bridgemanite at relevant lower mantle conditions, as well as the effects of iron, is essentially needed to interpret seismic observations and to construct a reliable mineralogical and geochemical model. In order to solve all individual elastic constants of bridgemanite at high pressures via Christoffel's equations, we employed both Brillouin Light Scattering (BLS) which is sensitive to shear wave velocities (Vs) up to megabars, and Impulsive Stimulated Light Scattering (ISS) which is sensitive to compressional wave velocities (VP) at lower mantle pressures. The BLS and ISS allowed us to measure VP and VS sound velocities as a function of the azimuthal angle from two orientated single-crystal iron bearing bridgemanite platelets under lower mantle pressures. These experimental results permit the derivations of full elastic constants of single-crystal bridgemanite that are consistent with previous theoretical studies [3, 4]. We will discuss how pressure-temperature, as well as the iron spin/valence states and minor element aluminum, affect the single-crystal elasticity and seismic parameters (e.g. VP and VS anisotropy AVP, AVS) at lower mantle conditions. Within a pyrolite mineralogical model, these results are extrapolated using a thermoelastic model and compared with seismic profiles of the lower mantle to better understand the deep-mantle geophysics and geochemistry. References: Sinogeikon,S.V., et al., 2004, GRL 31. Yeganeh-Haeri, A., et al., 1994, PEPI 87. Wentzcovitch, R.M., et al., 1998, EPSL 164. Oganov, A.R., et al., 2001, Nature 411.
NASA Astrophysics Data System (ADS)
Lin, J. F.; Yang, J.; Fu, S.
2017-12-01
Elasticity of the candidate lower-mantle minerals at relevant P-T conditions of the region provides critical information in understanding seismic profiles, compositional and mineralogical models, and geodynamic processes of the Earth's interior. Here we will discuss recent major research advances in the investigation of the elasticity of major lower-mantle minerals in a high-pressure diamond anvil cell coupled with Brillouin Light Scattering, Impulsive Stimulated Scattering (ISS), and X-ray diffraction. These have permitted direct and reliable measurements of both Vp and Vs to derive full elastic constants of single-crystal ferropericlase and (Fe, Al)-bearing bridgmanite as well as velocity profiles of polycrystalline silicate post-perovskite at relevant lower-mantle pressures. The effects of the spin transition on the single-crystal elasticity of ferropericlase are now well understood experimentally and theoretically1,2: the spin transition causes drastic softening in elastic constants involving the compressive stress component (C11 and C12) due to the additional Gibbs free energy term arising from the mixing of the high-spin and low-spin states, while the elastic constant(s) related to the shear stress component (C44) is not affected. This leads to significant reduction in VP/VS ratio within the spin transition of ferropericlase in the mid-lower mantle. The derived single-crystal Cij of bridgmanite at lower mantle pressures display relatively small elastic Vp and Vs anisotropies as compared to the ferropericlase counterpart. Using thermoelastic modelling, we will discuss the application of the elasticity of ferropericlase, bridgmanite, and silicate post-perovskite at relevant conditions of the Earth's lower mantle to differentiate the role of the thermal vs. chemical perturbations as well as the spin transition and iron partitioning effects in the reported seismic lateral heterogeneity in lower mantle as well as the D″ zone region3,4. We will address how recent elasticity results are applied to advance our understanding of seismic structures, mineralogical models, and geodynamic processes of the deep Earth's interior. References: 1Yang et al., Sci. Rep., 2015; 2Fu et al., Phys. Rev. Lett., 2017; 3Yang et al., J. Geophys. Res., 2016; 4Wu et al., Nature Comm., 2017.
NASA Astrophysics Data System (ADS)
Fu, Suyu; Yang, Jing; Lin, Jung-Fu
2017-01-01
Brillouin light scattering and impulsive stimulated light scattering have been used to determine the full elastic constants of magnesiosiderite [(Mg0.35Fe0.65)CO3 ] up to 70 GPa at room temperature in a diamond-anvil cell. Drastic softening in C11 , C33 , C12 , and C13 elastic moduli associated with the compressive stress component and stiffening in C44 and C14 moduli associated with the shear stress component are observed to occur within the spin transition between ˜42.4 and ˜46.5 GPa . Negative values of C12 and C13 are also observed within the spin transition region. The Born criteria constants for the crystal remain positive within the spin transition, indicating that the mixed-spin state remains mechanically stable. Significant auxeticity can be related to the electronic spin transition-induced elastic anomalies based on the analysis of Poisson's ratio. These elastic anomalies are explained using a thermoelastic model for the rhombohedral system. Finally, we conclude that mixed-spin state ferromagnesite, which is potentially a major deep-carbon carrier, is expected to exhibit abnormal elasticity, including a negative Poisson's ratio of -0.6 and drastically reduced VP by 10%, in Earth's midlower mantle.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quaglioni, S.; Beck, B. R.
The Monte Carlo All Particle Method generator and collision physics library features two models for allowing a particle to either up- or down-scatter due to collisions with material at finite temperature. The two models are presented and compared. Neutron interaction with matter through elastic collisions is used as testing case.
At-edge minima in elastic photon scattering amplitudes for dilute aqueous ions
NASA Astrophysics Data System (ADS)
Bradley, D. A.; Hugtenburg, R. P.; Yusoff, A. L.
2006-11-01
Elastic photon scattering and absorption in the vicinity of core atomic orbital energies give rise to resonances in the elastic photon scattering cross-section. Of interest is whether a dilute-ion aqueous system provides an environment suitable for testing independent particle approximation (IPA) predictions. Predictions of the energy of these resonances have been determined for a Dirac-Slater exchange potential with a Latter tail. At BM28 (ESRF), tuneable X-rays were obtained at eV resolution using a 1 1 1 Si monochromator. From target systems including Cu 2+ and Zn 2+, the X-rays were scattered through high angle from an aqueous medium contained in a thin Perspex cell provided with 8 μm kaplan windows. An energy resolution of ˜500 eV from the HPGe detector was adequate to separate the elastic scattering signal from K α radiation but not from Compton or K β contributions. The Compton contribution from the medium was removed assuming validity of the relativistic impulse approximation. The contribution due to K β fluorescence and the resonant X-ray Raman scattering process were handled by assuming the branching ratio for K α and K β contributions to be constant and to be accurately described by fluorescent yields measured above edge. At ionic concentrations ranging from 0.01 to 0.1 mol/l, resonance structures accord with predictions of elastic scattering cross-sections calculated within IPA. Amplitudes calculated using modified form-factors and anomalous scatter factors computed from a Dirac-Slater exchange potential were convolved with a Lorentzian of several eV (FWHM).
A new detector for low Pt physics
NASA Astrophysics Data System (ADS)
Da Via, C.; DeSalvo, R.; Lundin, M.; Mondardini, M. R.; Orear, J.; Shimizu, T.; Shinji, O.
1992-12-01
Elastic pp (or poverlinep) scattering at microradian angles provides a measurement of the total pp (or poverlinep) cross sectio elastic scattering cross section with t (the square of the momentum transfer) and the ratio of real to imaginary scattering amplitudes, as well as an absolute luminosity calibration. A detector is proposed which can measure elastic scattering and small angle processes which are usually missed by a typical 4π detector. The detector consists of a bundle of scintillating fibers. Images from these fibers are transported via glass fiber optics and intensified with two proximity focused image intensifiers. Images are then reduced via an image taper and read out with a charge coupled device (CCD).
NASA Astrophysics Data System (ADS)
Silva, H.; Cruz, J.; Sánchez-Benítez, A. M.; Santos, C.; Luís, H.; Fonseca, M.; Jesus, A. P.
2017-09-01
In recent decades, the processes of fusion of 16O were studied both theoretically and experimentally. However, the theoretical calculations are unable to fit both elastic scattering cross sections and fusion S-factors. The use of 16O thin transmission targets is required to measure the elastic forward scattering 16O + 16O reaction. The areal density of the target must be high to maximize the reaction products yields, but not so high as to allow a correct calculation of the effective beam energy. Besides this, the target must withstand beam interactions without noticeable deterioration, and contaminants must be minimal. In this study, the production of thin targets is performed with an innovative technique. Beam characterization and preliminary spectrum for the elastic scattering are also presented, showing the suitability of these targets for the proposed reaction.
Covariance Matrix of a Double-Differential Doppler-Broadened Elastic Scattering Cross Section
NASA Astrophysics Data System (ADS)
Arbanas, G.; Becker, B.; Dagan, R.; Dunn, M. E.; Larson, N. M.; Leal, L. C.; Williams, M. L.
2012-05-01
Legendre moments of a double-differential Doppler-broadened elastic neutron scattering cross section on 238U are computed near the 6.67 eV resonance at temperature T = 103 K up to angular order 14. A covariance matrix of these Legendre moments is computed as a functional of the covariance matrix of the elastic scattering cross section. A variance of double-differential Doppler-broadened elastic scattering cross section is computed from the covariance of Legendre moments. Notice: This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.
NASA Astrophysics Data System (ADS)
Isakson, Marcia; Camin, H. John; Canepa, Gaetano
2005-04-01
The reflection coefficient from a sand/water interface is an important parameter in modeling the acoustics of littoral environments. Many models have been advanced to describe the influence of the sediment parameters and interface roughness parameters on the reflection coefficient. In this study, the magnitude and phase of the reflection coefficient from 30 to 160 kHz is measured in a bistatic experiment on a smoothed water/sand interface at grazing angles from 5 to 75 degrees. The measured complex reflection coefficient is compared with the fluid model, the elastic model and poro-elastic models. Effects of rough surface scattering are investigated using the Bottom Response from Inhomogeneities and Surface using Small Slope Approximation (BoRIS-SSA). Spherical wave effects are modeled using plane wave decomposition. Models are considered for their ability to predict the measured results using realistic parameters. [Work supported by ONR, Ocean Acoustics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiss, G. G.; Fueloep, Zs.; Gyuerky, Gy.
2011-06-15
The elastic scattering cross sections for the reactions {sup 110,116}Cd({alpha},{alpha}){sup 110,116}Cd at energies above and below the Coulomb barrier are presented to provide a sensitive test for the {alpha}-nucleus optical potential parameter sets. Additional constraints for the optical potential are taken from the analysis of elastic scattering excitation functions at backward angles which are available in literature. Moreover, the variation of the elastic {alpha} scattering cross sections along the Z=48 isotopic and N=62 isotonic chain is investigated by the study of the ratios of the {sup 106,110,116}Cd({alpha},{alpha}){sup 106,110,116}Cd scattering cross sections at E{sub cm{approx_equal}}15.6and18.8 MeV and the ratio of themore » {sup 110}Cd({alpha},{alpha}){sup 110}Cd and {sup 112}Sn({alpha},{alpha}){sup 112}Sn reaction cross sections at E{sub cm{approx_equal}}18.8 MeV, respectively. These ratios are sensitive probes for the {alpha}-nucleus optical potential parametrizations. The potentials under study are a basic prerequisite for the prediction of {alpha}-induced reaction cross sections (e.g., for the calculation of stellar reaction rates in the astrophysical p or {gamma} process).« less
Studies of electron-molecule collisions - Applications to e-H2O
NASA Technical Reports Server (NTRS)
Brescansin, L. M.; Lima, M. A. P.; Gibson, T. L.; Mckoy, V.; Huo, W. M.
1986-01-01
Elastic differential and momentum transfer cross sections for the elastic scattering of electrons by H2O are reported for collision energies from 2 to 20 eV. These fixed-nuclei static-exchange cross sections were obtained using the Schwinger variational approach. In these studies the exchange potential is directly evaluated and not approximated by local models. The calculated differential cross sections, obtained with a basis set expansion of the scattering wave function, agree well with available experimental data at intermediate and larger angles. As used here, the results cannot adequately describe the divergent cross sections at small angles. An interesting feature of the calculated cross sections, particularly at 15 and 20 eV, is their significant backward peaking. This peaking occurs in the experimentally inaccessible region beyond a scattering angle of 120 deg. The implication of this feature for the determination of momentum transfer cross sections is described.
Osti, Naresh C.; Mamontov, Eugene; Ramirez-cuesta, A.; ...
2015-12-10
Understanding the molecular behavior of water in spatially restricted environments is important to better understanding its role in many biological, chemical and geological processes. Here we examine the translational diffusion of water confined to a variety of substrates, from flat surfaces to nanoporous media, in the context of a recently proposed universal scaling law (Chiavazzo 2014) [1]. Using over a dozen previous neutron scattering results, we test the validity of this law, evaluating separately the influence of the hydration amount, and the effects of the size and morphology of the confining medium. Additionally, we investigate the effects of changing instrumentmore » resolutions and fitting models on the applicability of this law. Finally, we perform quasi-elastic neutron scattering measurements on water confined inside nanoporous silica to further evaluate this predictive law, in the temperature range 250≤T≤290 K.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hall, Nathan L.; Blunden, Peter G.; Melnitchouk, Wally
2015-12-08
We examine the interference \\gamma Z box corrections to parity-violating elastic electron--proton scattering in the light of the recent observation of quark-hadron duality in parity-violating deep-inelastic scattering from the deuteron, and the approximate isospin independence of duality in the electromagnetic nucleon structure functions down to Q 2 \\approx 1 GeV 2. Assuming that a similar behavior also holds for the \\gamma Z proton structure functions, we find that duality constrains the γ Z box correction to the proton's weak charge to be Re V γ Z V = (5.4 \\pm 0.4) \\times 10 -3 at the kinematics of the Qmore » weak experiment. Within the same model we also provide estimates of the γ Z corrections for future parity-violating experiments, such as MOLLER at Jefferson Lab and MESA at Mainz.« less
Acoustic dynamics of supercooled indomethacin probed by Brillouin light scattering.
De Panfilis, S; Pogna, E A A; Virga, A; Scopigno, T
2014-07-21
Acoustics dynamics of the molecular glass-former indomethacin (IMC) have been investigated by Brillouin light scattering (BLS) at GHz frequencies. Elastic response of the system has been tracked from the melting temperature down to the glass transition through the supercooled liquid. Both the structural arrest and the vibrational dynamics are described by modeling the experimentally determined dynamic structure factor within the framework of the Langevin equation, through a simplified choice of memory function which allows one to determine sound velocity and the acoustic attenuation coefficient as a function of temperature. The density fluctuation spectra in the glassy phase, as probed by BLS, are compared with time-domain results from photoacoustics experiments. The arising scenario is discussed in the context of current literature reporting inelastic X-ray scattering and BLS in platelet geometry. The link between the probed elastic properties and the non-ergodicity factor of the glass phase is finally scrutinized.
Djurado, David; Bée, Marc; Sniechowski, Maciej; Howells, Spencer; Rannou, Patrice; Pron, Adam; Travers, J P; Luzny, Wojciech
2005-03-21
Proton dynamics in films of poly(aniline) "plastdoped" with di-esters of sulfophthalic (or sulfosuccinic) acids have been investigated by using quasi-elastic neutron scattering techniques. A broad time range (10(-13)-10(-9) s) has been explored by using four different spectrometers. In this time range, the dynamics is exclusively due to protons attached to the flexible tails of the counter-ions. A model of limited diffusion in spheres whose radii are distributed in size gives a realistic view of the geometry of molecular motions. However, it is found that the characteristic times of these motions are widely distributed over several orders of magnitude. The time decay of the intermediate scattering function is well described by a time power law. This behaviour is qualitatively discussed in connection with the structure of the systems and by comparison with other so-called complex systems.
A time-domain finite element boundary integral approach for elastic wave scattering
NASA Astrophysics Data System (ADS)
Shi, F.; Lowe, M. J. S.; Skelton, E. A.; Craster, R. V.
2018-04-01
The response of complex scatterers, such as rough or branched cracks, to incident elastic waves is required in many areas of industrial importance such as those in non-destructive evaluation and related fields; we develop an approach to generate accurate and rapid simulations. To achieve this we develop, in the time domain, an implementation to efficiently couple the finite element (FE) method within a small local region, and the boundary integral (BI) globally. The FE explicit scheme is run in a local box to compute the surface displacement of the scatterer, by giving forcing signals to excitation nodes, which can lie on the scatterer itself. The required input forces on the excitation nodes are obtained with a reformulated FE equation, according to the incident displacement field. The surface displacements computed by the local FE are then projected, through time-domain BI formulae, to calculate the scattering signals with different modes. This new method yields huge improvements in the efficiency of FE simulations for scattering from complex scatterers. We present results using different shapes and boundary conditions, all simulated using this approach in both 2D and 3D, and then compare with full FE models and theoretical solutions to demonstrate the efficiency and accuracy of this numerical approach.
Antiplane wave scattering from a cylindrical cavity in pre-stressed nonlinear elastic media
Shearer, Tom; Parnell, William J.; Abrahams, I. David
2015-01-01
The effect of a longitudinal stretch and a pressure-induced inhomogeneous radial deformation on the scattering of antiplane elastic waves from a cylindrical cavity is determined. Three popular nonlinear strain energy functions are considered: the neo-Hookean, the Mooney–Rivlin and a two-term Arruda–Boyce model. A new method is developed to analyse and solve the governing wave equations. It exploits their properties to determine an asymptotic solution in the far-field, which is then used to derive a boundary condition to numerically evaluate the equations local to the cavity. This method could be applied to any linear ordinary differential equation whose inhomogeneous coefficients tend to a constant as its independent variable tends to infinity. The effect of the pre-stress is evaluated by considering the scattering cross section. A longitudinal stretch is found to decrease the scattered power emanating from the cavity, whereas a compression increases it. The effect of the pressure difference depends on the strain energy function employed. For a Mooney–Rivlin material, a cavity inflation increases the scattered power and a deflation decreases it; for a neo-Hookean material, the scattering cross section is unaffected by the radial deformation; and for a two-term Arruda–Boyce material, both inflation and deflation are found to decrease the scattered power. PMID:26543398
Elastic scattering and breakup reactions of the exotic nucleus 8B on nuclear targets
NASA Astrophysics Data System (ADS)
Lukyanov, V. K.; Kadrev, D. N.; Antonov, A. N.; Zemlyanaya, E. V.; Lukyanov, K. V.; Gaidarov, M. K.; Spasova, K.
2018-05-01
Microscopic calculations of the optical potentials (OPs) and elastic scattering cross sections of the proton-rich nucleus 8B on 12C, 58Ni and 208Pb targets are presented. The density distributions of 8B obtained within the variational Monte Carlo (VMC) model and the three-cluster model (3CM) are used to construct the optical potentials (OP). The real part of the hybrid OP (ReOP) is calculated using the folding model with the direct and exchange terms included, while the imaginary part (ImOP) is obtained on the base of the high energy approximation (HEA). In addition, the cluster model, in which 8B consists of a proton halo and a 7Be core is applied to calculate the breakup cross sections of 8B on 9Be, 12C and 197Au targets, as well as the momentum distributions of 7Be fragments. A comparison with the available experimental data is made and a good agreement is obtained.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yokosawa, A.
We review experimental results concerning polarization phenomena in nucleon-nucleon scattering in which both the elastic scattering and hadron-production reaction are included. We also present summary of S = 0 dibaryon resonances and candidates by reviewing experimental data in the nucleon-nucleon system, ..gamma..d channel, ..pi..d elastic scattering, pp ..-->.. ..pi..d channel, deuteron break-up reactions, and narrow structures in missing-mass spectra. 93 refs., 26 figs.
Ma, Guo -Liang; Bzdak, Adam
2014-11-04
In this study, we show that the incoherent elastic scattering of partons, as present in a multi-phase transport model (AMPT), with a modest parton–parton cross-section of σ = 1.5 – 3 mb, naturally explains the long-range two-particle azimuthal correlation as observed in proton–proton and proton–nucleus collisions at the Large Hadron Collider.
Relativistic proton-nucleus scattering and one-boson-exchange models
NASA Technical Reports Server (NTRS)
Maung, Khin Maung; Gross, Franz; Tjon, J. A.; Townsend, L. W.; Wallace, S. J.
1993-01-01
Relativistic p-(Ca-40) elastic scattering observables are calculated using four sets of relativistic NN amplitudes obtained from different one-boson-exchange (OBE) models. The first two sets are based upon a relativistic equation in which one particle is on mass shell and the other two sets are obtained from a quasipotential reduction of the Bethe-Salpeter equation. Results at 200, 300, and 500 MeV are presented for these amplitudes. Differences between the predictions of these models provide a study of the uncertainty in constructing Dirac optical potentials from OBE-based NN amplitudes.
NASA Astrophysics Data System (ADS)
Myers, S. C.; Pitarka, A.; Mellors, R. J.
2016-12-01
The Source Physics Experiment (SPE) is producing new data to study the generation of seismic waves from explosive sources. Preliminary results show that far-field S-waves are generated both within the non-elastic volume surrounding explosive sources and by P- to S-wave scattering. The relative contribution of non-elastic phenomenology and elastic-wave scattering to far-field S-waves has been debated for decades, and numerical simulations based on the SPE experiments are addressing this question. The match between observed and simulated data degrades with event-station distance and with increasing time in each seismogram. This suggests that a more accurate model of subsurface elastic properties could result in better agreement between observed and simulated seismograms. A detailed model of subsurface structure has been developed using geologic maps and the extensive database of borehole logs, but uncertainty in structural details remains high. The large N instrument deployment during the SPE-5 experiment offers an opportunity to use time-reversal techniques to back project the wave field into the subsurface to locate significant sources of scattered energy. The large N deployment was nominally 1000, 5 Hz sensors (500 Z and 500 3C geophones) deployed in a roughly rectangular array to the south and east of the SPE-5 shot. Sensor spacing was nominally 50 meters in the interior portion of the array and 100 meters in the outer region, with two dense lines at 25 m spacing. The array covers the major geologic boundary between the Yucca Flat basin and the granitic Climax Stock in which the SPE experiments have been conducted. Improved mapping of subsurface scatterers is expected to result in better agreement between simulated and observed seismograms and aid in our understanding of S-wave generation from explosions. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
a 2d Model of Ultrasonic Testing for Cracks Near a Nonplanar Surface
NASA Astrophysics Data System (ADS)
Westlund, Jonathan; Boström, Anders
2010-02-01
2D P-SV elastic wave scattering by a crack near a non-planar surface is investigated. The wave scattering problem is solved in the frequency domain using a combination of the boundary element method (BEM) for the back surface displacement and a Fourier series expansion of the crack opening displacement (COD). The model accounts for the action of the transmitting and receiving ultrasonic contact probes, and the time traces are obtained by applying an inverse temporal Fourier transform.
Cross sections for electron collision with difluoroacetylene
NASA Astrophysics Data System (ADS)
Gupta, Dhanoj; Choi, Heechol; Kwon, Deuk-Chul; Yoon, Jung-Sik; Antony, Bobby; Song, Mi-Young
2017-04-01
We report a detailed calculation of total elastic, differential elastic, momentum transfer and electronic excitation for electron impact on difluoroacetylene (C2F2) molecules using the R-matrix method at low energies. After testing many target models, the final results are reported for the target model that gave the best target properties and predicted the lowest value of the shape resonance. The shape resonance is detected at 5.86 eV and 6.49 eV with the close-coupling and static exchange models due to 2Πg (2B2g, 2B3g) states. We observed that the effect of polarization becomes prominent at low energies below 4 eV, decreasing the magnitude of the elastic cross section systematically as it increases for C2F2. We have also computed elastic cross sections for C2H2, C2F4 and C2H4 with a similar model and compared with the experimental data for these molecules along with C2F2. General agreement is found in terms of the shape and nature of the cross section. Such a comparison shows the reliability of the present method for obtaining the cross section for C2F2. The calculation of elastic scattering cross section is extended to higher energies up to 5 keV using the spherical complex optical potential method. The two methods are found to be consistent, merging at around 12 eV for the elastic scattering cross section. Finally we report the total ionization cross section using the binary encounter Bethe method for C2F2. The perfluorination effect in the shape and magnitude of the elastic, momentum transfer and ionization cross sections when compared with C2H2 showed a similar trend to that in the C2H4-C2F4 and C6H6-C6F6 systems. The cross-section data reported in this article could be an important input for the development of a C2F2 plasma model for selective etching of Si/SiO2 in the semiconductor industry.
Morozov, Andrey K; Colosi, John A
2017-09-01
Underwater sound scattering by a rough sea surface, ice, or a rough elastic bottom is studied. The study includes both the scattering from the rough boundary and the elastic effects in the solid layer. A coupled mode matrix is approximated by a linear function of one random perturbation parameter such as the ice-thickness or a perturbation of the surface position. A full two-way coupled mode solution is used to derive the stochastic differential equation for the second order statistics in a Markov approximation.
Uncertainty quantification for optical model parameters
Lovell, A. E.; Nunes, F. M.; Sarich, J.; ...
2017-02-21
Although uncertainty quantification has been making its way into nuclear theory, these methods have yet to be explored in the context of reaction theory. For example, it is well known that different parameterizations of the optical potential can result in different cross sections, but these differences have not been systematically studied and quantified. The purpose of our work is to investigate the uncertainties in nuclear reactions that result from fitting a given model to elastic-scattering data, as well as to study how these uncertainties propagate to the inelastic and transfer channels. We use statistical methods to determine a best fitmore » and create corresponding 95% confidence bands. A simple model of the process is fit to elastic-scattering data and used to predict either inelastic or transfer cross sections. In this initial work, we assume that our model is correct, and the only uncertainties come from the variation of the fit parameters. Here, we study a number of reactions involving neutron and deuteron projectiles with energies in the range of 5–25 MeV/u, on targets with mass A=12–208. We investigate the correlations between the parameters in the fit. The case of deuterons on 12C is discussed in detail: the elastic-scattering fit and the prediction of 12C(d,p) 13C transfer angular distributions, using both uncorrelated and correlated χ 2 minimization functions. The general features for all cases are compiled in a systematic manner to identify trends. This work shows that, in many cases, the correlated χ 2 functions (in comparison to the uncorrelated χ 2 functions) provide a more natural parameterization of the process. These correlated functions do, however, produce broader confidence bands. Further optimization may require improvement in the models themselves and/or more information included in the fit.« less
Nuclear rainbow in elastic scattering of {sup 9}Be nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Glukhov, Yu. A., E-mail: gloukhov@inbox.ru; Ogloblin, A. A.; Artemov, K. P.
2010-01-15
A systematic investigation of the elastic scattering of the {sup 9}Be nucleus, which is among themost loosely bound stable nuclei was performed.Differential cross sections for elastic {sup 9}Be + {sup 16}O scattering were measured at a c.m. energy of 47.5 MeV (beam of 132-MeV {sup 16}O nuclei). Available data at different energy values and data for neighboring nuclei were included in our analysis. As a result, the very fact of rainbow scattering was reliably established for the first time in systems involving {sup 9}Be. In addition, the analysis in question made it possible to identify Airy minima and to determinemore » unambiguously the nucleus-nucleus potential with a high probability.« less
NASA Astrophysics Data System (ADS)
Tewary, Vinod K.; Fortunko, Christopher M.
The present, time-dependent 3D Green's function method resembles that used to study the propagation of elastic waves in a general, anisotropic half-space in the lattice dynamics of crystals. The method is used to calculate the scattering amplitude of elastic waves from a discontinuity in the half-space; exact results are obtained for 3D pulse propagation in a general, anisotropic half-space that contains either an interior point or a planar scatterer. The results thus obtained are applicable in the design of ultrasonic scattering experiments, especially as an aid in the definition of the spatial and time-domain transducer responses that can maximize detection reliability for specific categories of flaws in highly anisotropic materials.
NASA Astrophysics Data System (ADS)
Auger, J.-C.; Fernandes, G. E.; Aptowicz, K. B.; Pan, Y.-L.; Chang, R. K.
2010-04-01
The relation between the surface roughness of aerosol particles and the appearance of island-like features in their angle-resolved elastic-light scattering patterns is investigated both experimentally and with numerical simulation. Elastic scattering patterns of polystyrene spheres, Bacillus subtilis spores and cells, and NaCl crystals are measured and statistical properties of the island-like intensity features in their patterns are presented. The island-like features for each class of particle are found to be similar; however, principal-component analysis applied to extracted features is able to differentiate between some of the particle classes. Numerically calculated scattering patterns of Chebyshev particles and aggregates of spheres are analyzed and show qualitative agreement with experimental results.
Sound scattering by several zooplankton groups. II. Scattering models.
Stanton, T K; Chu, D; Wiebe, P H
1998-01-01
Mathematical scattering models are derived and compared with data from zooplankton from several gross anatomical groups--fluidlike, elastic shelled, and gas bearing. The models are based upon the acoustically inferred boundary conditions determined from laboratory backscattering data presented in part I of this series [Stanton et al., J. Acoust. Soc. Am. 103, 225-235 (1998)]. The models use a combination of ray theory, modal-series solution, and distorted wave Born approximation (DWBA). The formulations, which are inherently approximate, are designed to include only the dominant scattering mechanisms as determined from the experiments. The models for the fluidlike animals (euphausiids in this case) ranged from the simplest case involving two rays, which could qualitatively describe the structure of target strength versus frequency for single pings, to the most complex case involving a rough inhomogeneous asymmetrically tapered bent cylinder using the DWBA-based formulation which could predict echo levels over all angles of incidence (including the difficult region of end-on incidence). The model for the elastic shelled body (gastropods in this case) involved development of an analytical model which takes into account irregularities and discontinuities of the shell. The model for gas-bearing animals (siphonophores) is a hybrid model which is composed of the summation of the exact solution to the gas sphere and the approximate DWBA-based formulation for arbitrarily shaped fluidlike bodies. There is also a simplified ray-based model for the siphonophore. The models are applied to data involving single pings, ping-to-ping variability, and echoes averaged over many pings. There is reasonable qualitative agreement between the predictions and single ping data, and reasonable quantitative agreement between the predictions and variability and averages of echo data.
NASA Astrophysics Data System (ADS)
Pan, Wenyong; Innanen, Kristopher A.; Geng, Yu
2018-03-01
Seismic full-waveform inversion (FWI) methods hold strong potential to recover multiple subsurface elastic properties for hydrocarbon reservoir characterization. Simultaneously updating multiple physical parameters introduces the problem of interparameter tradeoff, arising from the covariance between different physical parameters, which increases nonlinearity and uncertainty of multiparameter FWI. The coupling effects of different physical parameters are significantly influenced by model parameterization and acquisition arrangement. An appropriate choice of model parameterization is critical to successful field data applications of multiparameter FWI. The objective of this paper is to examine the performance of various model parameterizations in isotropic-elastic FWI with walk-away vertical seismic profile (W-VSP) dataset for unconventional heavy oil reservoir characterization. Six model parameterizations are considered: velocity-density (α, β and ρ΄), modulus-density (κ, μ and ρ), Lamé-density (λ, μ΄ and ρ‴), impedance-density (IP, IS and ρ″), velocity-impedance-I (α΄, β΄ and I_P^'), and velocity-impedance-II (α″, β″ and I_S^'). We begin analyzing the interparameter tradeoff by making use of scattering radiation patterns, which is a common strategy for qualitative parameter resolution analysis. In this paper, we discuss the advantages and limitations of the scattering radiation patterns and recommend that interparameter tradeoffs be evaluated using interparameter contamination kernels, which provide quantitative, second-order measurements of the interparameter contaminations and can be constructed efficiently with an adjoint-state approach. Synthetic W-VSP isotropic-elastic FWI experiments in the time domain verify our conclusions about interparameter tradeoffs for various model parameterizations. Density profiles are most strongly influenced by the interparameter contaminations; depending on model parameterization, the inverted density profile can be over-estimated, under-estimated or spatially distorted. Among the six cases, only the velocity-density parameterization provides stable and informative density features not included in the starting model. Field data applications of multicomponent W-VSP isotropic-elastic FWI in the time domain were also carried out. The heavy oil reservoir target zone, characterized by low α-to-β ratios and low Poisson's ratios, can be identified clearly with the inverted isotropic-elastic parameters.
Pan, Wenyong; Innanen, Kristopher A.; Geng, Yu
2018-03-06
We report seismic full-waveform inversion (FWI) methods hold strong potential to recover multiple subsurface elastic properties for hydrocarbon reservoir characterization. Simultaneously updating multiple physical parameters introduces the problem of interparameter tradeoff, arising from the covariance between different physical parameters, which increases nonlinearity and uncertainty of multiparameter FWI. The coupling effects of different physical parameters are significantly influenced by model parameterization and acquisition arrangement. An appropriate choice of model parameterization is critical to successful field data applications of multiparameter FWI. The objective of this paper is to examine the performance of various model parameterizations in isotropic-elastic FWI with walk-away vertical seismicmore » profile (W-VSP) dataset for unconventional heavy oil reservoir characterization. Six model parameterizations are considered: velocity-density (α, β and ρ'), modulus-density (κ, μ and ρ), Lamé-density (λ, μ' and ρ'''), impedance-density (IP, IS and ρ''), velocity-impedance-I (α', β' and I' P), and velocity-impedance-II (α'', β'' and I'S). We begin analyzing the interparameter tradeoff by making use of scattering radiation patterns, which is a common strategy for qualitative parameter resolution analysis. In this paper, we discuss the advantages and limitations of the scattering radiation patterns and recommend that interparameter tradeoffs be evaluated using interparameter contamination kernels, which provide quantitative, second-order measurements of the interparameter contaminations and can be constructed efficiently with an adjoint-state approach. Synthetic W-VSP isotropic-elastic FWI experiments in the time domain verify our conclusions about interparameter tradeoffs for various model parameterizations. Density profiles are most strongly influenced by the interparameter contaminations; depending on model parameterization, the inverted density profile can be over-estimated, under-estimated or spatially distorted. Among the six cases, only the velocity-density parameterization provides stable and informative density features not included in the starting model. Field data applications of multicomponent W-VSP isotropic-elastic FWI in the time domain were also carried out. Finally, the heavy oil reservoir target zone, characterized by low α-to-β ratios and low Poisson’s ratios, can be identified clearly with the inverted isotropic-elastic parameters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Wenyong; Innanen, Kristopher A.; Geng, Yu
We report seismic full-waveform inversion (FWI) methods hold strong potential to recover multiple subsurface elastic properties for hydrocarbon reservoir characterization. Simultaneously updating multiple physical parameters introduces the problem of interparameter tradeoff, arising from the covariance between different physical parameters, which increases nonlinearity and uncertainty of multiparameter FWI. The coupling effects of different physical parameters are significantly influenced by model parameterization and acquisition arrangement. An appropriate choice of model parameterization is critical to successful field data applications of multiparameter FWI. The objective of this paper is to examine the performance of various model parameterizations in isotropic-elastic FWI with walk-away vertical seismicmore » profile (W-VSP) dataset for unconventional heavy oil reservoir characterization. Six model parameterizations are considered: velocity-density (α, β and ρ'), modulus-density (κ, μ and ρ), Lamé-density (λ, μ' and ρ'''), impedance-density (IP, IS and ρ''), velocity-impedance-I (α', β' and I' P), and velocity-impedance-II (α'', β'' and I'S). We begin analyzing the interparameter tradeoff by making use of scattering radiation patterns, which is a common strategy for qualitative parameter resolution analysis. In this paper, we discuss the advantages and limitations of the scattering radiation patterns and recommend that interparameter tradeoffs be evaluated using interparameter contamination kernels, which provide quantitative, second-order measurements of the interparameter contaminations and can be constructed efficiently with an adjoint-state approach. Synthetic W-VSP isotropic-elastic FWI experiments in the time domain verify our conclusions about interparameter tradeoffs for various model parameterizations. Density profiles are most strongly influenced by the interparameter contaminations; depending on model parameterization, the inverted density profile can be over-estimated, under-estimated or spatially distorted. Among the six cases, only the velocity-density parameterization provides stable and informative density features not included in the starting model. Field data applications of multicomponent W-VSP isotropic-elastic FWI in the time domain were also carried out. Finally, the heavy oil reservoir target zone, characterized by low α-to-β ratios and low Poisson’s ratios, can be identified clearly with the inverted isotropic-elastic parameters.« less
NASA Astrophysics Data System (ADS)
Pan, Wenyong; Innanen, Kristopher A.; Geng, Yu
2018-06-01
Seismic full-waveform inversion (FWI) methods hold strong potential to recover multiple subsurface elastic properties for hydrocarbon reservoir characterization. Simultaneously updating multiple physical parameters introduces the problem of interparameter trade-off, arising from the simultaneous variations of different physical parameters, which increase the nonlinearity and uncertainty of multiparameter FWI. The coupling effects of different physical parameters are significantly influenced by model parametrization and acquisition arrangement. An appropriate choice of model parametrization is important to successful field data applications of multiparameter FWI. The objective of this paper is to examine the performance of various model parametrizations in isotropic-elastic FWI with walk-away vertical seismic profile (W-VSP) data for unconventional heavy oil reservoir characterization. Six model parametrizations are considered: velocity-density (α, β and ρ΄), modulus-density (κ, μ and ρ), Lamé-density (λ, μ΄ and ρ‴), impedance-density (IP, IS and ρ″), velocity-impedance-I (α΄, β΄ and I_P^' }) and velocity-impedance-II (α″, β″ and I_S^' }). We begin analysing the interparameter trade-off by making use of scattering radiation patterns, which is a common strategy for qualitative parameter resolution analysis. We discuss the advantages and limitations of the scattering radiation patterns and recommend that interparameter trade-offs be evaluated using interparameter contamination kernels, which provide quantitative, second-order measurements of the interparameter contaminations and can be constructed efficiently with an adjoint-state approach. Synthetic W-VSP isotropic-elastic FWI experiments in the time domain verify our conclusions about interparameter trade-offs for various model parametrizations. Density profiles are most strongly influenced by the interparameter contaminations; depending on model parametrization, the inverted density profile can be overestimated, underestimated or spatially distorted. Among the six cases, only the velocity-density parametrization provides stable and informative density features not included in the starting model. Field data applications of multicomponent W-VSP isotropic-elastic FWI in the time domain were also carried out. The heavy oil reservoir target zone, characterized by low α-to-β ratios and low Poisson's ratios, can be identified clearly with the inverted isotropic-elastic parameters.
Ionization, photoelectron dynamics and elastic scattering in relativistic, ultra-strong field
NASA Astrophysics Data System (ADS)
Luo, Sui
Ultrastrong laser-matter interaction has direct bearing to next generation technologies including plasma acceleration, laser fusion and attosecond X-ray generation. The commonly known physics in strong field becomes different as one progress to ultrastrong field. The works presented in this dissertation theoretically study the influence of relativistic effect and magnetic component of the laser field on the ionization, photoelectron dynamics and elastic scattering processes. The influence of magnetic component (B laser) of circularly polarized (CP) ultrastrong fields (up to3 x 1022 W/cm2) on atomic bound state dynamics is investigated. The Poincare plots are used to find the changes in trajectory energies are on the order of a few percent for intensities up to1 x 1022 W/cm2. It is found that at intensities where ionization approaches 50% for the bound state, the small changes from Blaser of the circular polarized light can actually result in a several-fold decrease in ionization probability. The force on the bound electron exerted by the Lorentz force from B laser is perpendicular to the rotating plane of the circular polarized light, and this nature makes those trajectories which are aligned away from the minimum in the potential barrier stabilized against tunneling ionization. Our results provide a classical understanding for ionization in ultrastrong fields and indicate that relativistic effects in ultrastrong field ionization may most easily be seen with CP fields. The photoelectron energy spectra from elastic rescattering in ultrastrong laser fields (up to 2x1019 W/cm2) is studied by using a relativistic adaption of a semi-classical three-step recollision model. The Hartree-Fock scattering potentials are used in calculating the elastic rescattering for both hydrogenlike and noble gas species. It is found that there is a reduction in elastic rescattering for intensities beyond 6 x 1016 W/cm2 when the laser Lorentz deflection of the photoelectron exceeds its wave-function spread. A relativistic rescattering enhancement occurs at 2 x 1018 W/cm2, commensurate with relativistic motion of a classical electron in a single field cycle. The good comparison between the results with available experiments suggests the theory approach is well suited to modeling scattering in the ultrastrong intensity regime. We investigate the elastic scattering process as it changes from strong to ultrastrong fields with the photoelectron angular distributions from Ne, Ar, and Xe. Noble gas species with Hartree-Fock scattering potentials show a reduction in elastic rescattering with the increasing energy of ultrastrong fields. It is found that as one increases the returning photoelectron energy, rescattering becomes the dominating mechanism behind the yield distribution as the emission angle for all the species extends from 0° to 90°. The relativistic effects and the magnetic field do not change the angular distribution until one is well into the Gamma r "1 regime where the Lorentz defection significantly reduces the yield. As we proceed to the highest energy, the angular emission range narrows as the mechanism changes over to backscattering into narrow angles along the electric field.
Repulsive nature of optical potentials for high-energy heavy-ion scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furumoto, T.; Sakuragi, Y.; Yamamoto, Y.
2010-10-15
The recent works by the present authors predicted that the real part of heavy-ion optical potentials changes its character from attraction to repulsion around the incident energy per nucleon E/A=200-300 MeV on the basis of the complex G-matrix interaction and the double-folding model (DFM) and revealed that the three-body force plays an important role there. In the present paper, we have precisely analyzed the energy dependence of the calculated DFM potentials and its relation to the elastic-scattering angular distributions in detail in the case of the {sup 12}C+{sup 12}C system in the energy range of E/A=100-400 MeV. The tensor forcemore » contributes substantially to the energy dependence of the real part of the DFM potentials and plays an important role to lower the attractive-to-repulsive transition energy. The nearside and farside (N/F) decompositions of the elastic-scattering amplitudes clarify the close relation between the attractive-to-repulsive transition of the potentials and the characteristic evolution of the calculated angular distributions with the increase of the incident energy. Based on the present analysis, we propose experimental measurements for the predicted strong diffraction phenomena of the elastic-scattering angular distribution caused by the N/F interference around the attractive-to-repulsive transition energy together with the reduced diffractions below and above the transition energy.« less
Review of total cross sections and forward scattering parameters at ultra-high energies
NASA Astrophysics Data System (ADS)
Block, M. M.; White, A. R.
1991-10-01
We review the field of the elastic scattering of pp and (bar p)p at the ultra-high energies. The recent total cross section, sigma (sub tot), and rho-value results from the Fermilab Tevatron Collider experiments presented at the 4th 'Blois' Workshop on Elastic and Diffractive Scattering (Elba, Italy, in May, 1991), allow us a comprehensive overview of the field.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pettit, J. R.; Lowe, M. J. S.; Walker, A. E.
2015-03-31
Pulse-echo ultrasonic NDE examination of large pressure vessel forgings is a design and construction code requirement in the power generation industry. Such inspections aim to size and characterise potential defects that may have formed during the forging process. Typically these defects have a range of orientations and surface roughnesses which can greatly affect ultrasonic wave scattering behaviour. Ultrasonic modelling techniques can provide insight into defect response and therefore aid in characterisation. However, analytical approaches to solving these scattering problems can become inaccurate, especially when applied to increasingly complex defect geometries. To overcome these limitations a elastic Finite Element (FE) methodmore » has been developed to simulate pulse-echo inspections of embedded planar defects. The FE model comprises a significantly reduced spatial domain allowing for a Monte-Carlo based approach to consider multiple realisations of defect orientation and surface roughness. The results confirm that defects aligned perpendicular to the path of beam propagation attenuate ultrasonic signals according to the level of surface roughness. However, for defects orientated away from this plane, surface roughness can increase the magnitude of the scattered component propagating back along the path of the incident beam. This study therefore highlights instances where defect roughness increases the magnitude of ultrasonic scattered signals, as opposed to attenuation which is more often assumed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bigio, I.J.; Loree, T.R.; Mourant, J.
1993-08-01
A non-invasive diagnostic tool that could identify malignancy in situ and in real time would have a major impact on the detection and treatment of cancer. We have developed and are testing early prototypes of an optical biopsy system (OBS) for detection of cancer and other tissue pathologies. The OBS invokes a unique approach to optical diagnosis of tissue pathologies based on the elastic scattering properties, over a wide range of wavelengths, of the microscopic structure of the tissue. The use of elastic scattering as the key to optical tissue diagnostics in the OBS is based on the fact thatmore » many tissue pathologies, including a majority of cancer forms, manifest significant architectural changes at the cellular and sub-cellular level. Since the cellular components that cause elastic scattering have dimensions typically on the order of visible to near-IR wavelengths, the elastic (Mie) scattering properties will be strongly wavelength dependent. Thus, morphology and size changes can be expected to cause significant changes in an optical signature that is derived from the wavelength dependence of elastic scattering. The data acquisition and storage/display time with the OBS instrument is {approximately}1 second. Thus, in addition to the reduced invasiveness of this technique compared with current state-of-the-art methods (surgical biopsy and pathology analysis), the OBS offers the possibility of impressively faster diagnostic assessment. The OBS employs a small fiber-optic probe that is amenable to use with any endoscope, catheter or hypodermic, or to direct surface examination (e.g. as in skin cancer or cervical cancer). It has been tested in vitro on animal and human tissue samples, and clinical testing in vivo is currently in progress.« less
Elastic electron-deuteron scattering within a relativistic potential model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khokhlov, N. A., E-mail: nikolakhokhlov@yandex.ru; Vakulyuk, A. A.
Elastic electron-deuteron scattering was considered in the point form of relativistic quantum mechanics. Observables of this process and the dependence of the deuteron form factors on the 4-momentum transfer Q up to 8 fm{sup −1} were calculated. The nucleon-nucleon potentials used in the calculations included the Nijmegen potentials NijmI and NijmII, the Bonn potential CD-Bonn, and the Moscow potential involving forbidden states. A parametrization of the nucleon form factors that complies with present-day experimental results was used as input data. The results of the calculations that employ all of the above potential types describe experimental data at least up tomore » Q ≈ 5 fm{sup −}1.« less
Lamb wave propagation in a restricted geometry composite pi-joint specimen
NASA Astrophysics Data System (ADS)
Blackshire, James L.; Soni, Som
2012-05-01
The propagation of elastic waves in a material can involve a number of complex physical phenomena, resulting in both subtle and dramatic effects on detected signal content. In recent years, the use of advanced methods for characterizing and imaging elastic wave propagation and scattering processes has increased, where for example the use of scanning laser vibrometry and advanced computational models have been used very effectively to identify propagating modes, scattering phenomena, and damage feature interactions. In the present effort, the propagation of Lamb waves within a narrow, constrained geometry composite pi-joint structure are studied using 3D finite element models and scanning laser vibrometry measurements, where the effects of varying sample thickness, complex joint curvatures, and restricted structure geometries are highlighted, and a direct comparison of computational and experimental results are provided for simulated and realistic geometry composite pi-joint samples.
Elastic properties of uniaxial-fiber reinforced composites - General features
NASA Astrophysics Data System (ADS)
Datta, Subhendu; Ledbetter, Hassel; Lei, Ming
The salient features of the elastic properties of uniaxial-fiber-reinforced composites are examined by considering the complete set of elastic constants of composites comprising isotropic uniaxial fibers in an isotropic matrix. Such materials exhibit transverse-isotropic symmetry and five independent elastic constants in Voigt notation: C(11), C(33), C(44), C(66), and C(13). These C(ij) constants are calculated over the entire fiber-volume-fraction range 0.0-1.0, using a scattered-plane-wave ensemple-average model. Some practical elastic constants such as the principal Young moduli and the principal Poisson ratios are considered, and the behavior of these constants is discussed. Also presented are the results for the four principal sound velocities used to study uniaxial-fiber-reinforced composites: v(11), v(33), v(12), and v(13).
Lopes, J H; Leão-Neto, J P; Silva, G T
2017-11-01
Analytical expressions of the absorption, scattering, and elastic radiation force efficiency factors are derived for the longitudinal plane wave scattering by a small viscoelastic particle in a lossless solid matrix. The particle is assumed to be much smaller than the incident wavelength, i.e., the so-called long-wavelength (Rayleigh) approximation. The efficiencies are dimensionless quantities that represent the absorbed and scattering powers and the elastic radiation force on the particle. In the quadrupole approximation, they are expressed in terms of contrast functions (bulk and shear moduli, and density) between the particle and solid matrix. The results for a high-density polyethylene particle embedded in an aluminum matrix agree with those obtained with the partial wave expansion method. Additionally, the connection between the elastic radiation force and forward scattering function is established through the optical theorem. The present results should be useful for ultrasound characterization of particulate composites, and the development of implanted devices activated by radiation force.
Huygens-Fresnel picture for electron-molecule elastic scattering★
NASA Astrophysics Data System (ADS)
Baltenkov, Arkadiy S.; Msezane, Alfred Z.
2017-11-01
The elastic scattering cross sections for a slow electron by C2 and H2 molecules have been calculated within the framework of the non-overlapping atomic potential model. For the amplitudes of the multiple electron scattering by a target the wave function of the molecular continuum is represented as a combination of a plane wave and two spherical waves generated by the centers of atomic spheres. This wave function obeys the Huygens-Fresnel principle according to which the electron wave scattering by a system of two centers is accompanied by generation of two spherical waves; their interaction creates a diffraction pattern far from the target. Each of the Huygens waves, in turn, is a superposition of the partial spherical waves with different orbital angular momenta l and their projections m. The amplitudes of these partial waves are defined by the corresponding phases of electron elastic scattering by an isolated atomic potential. In numerical calculations the s- and p-phase shifts are taken into account. So the number of interfering electron waves is equal to eight: two of which are the s-type waves and the remaining six waves are of the p-type with different m values. The calculation of the scattering amplitudes in closed form (rather than in the form of S-matrix expansion) is reduced to solving a system of eight inhomogeneous algebraic equations. The differential and total cross sections of electron scattering by fixed-in-space molecules and randomly oriented ones have been calculated as well. We conclude by discussing the special features of the S-matrix method for the case of arbitrary non-spherical potentials. Contribution to the Topical Issue "Low energy positron and electron interactions", edited by James Sullivan, Ron White, Michael Bromley, Ilya Fabrikant, and David Cassidy.
Elasticity of ferropericlase across the spin crossover in the Earth’s lower mantle
Yang, Jing; Tong, Xinyue; Lin, Jung-Fu; ...
2015-12-01
Knowing the elasticity of ferropericlase across the spin transition can help explain seismic and mineralogical models of the lower-mantle including the origin of seismic heterogeneities in the middle to lowermost parts of the lower mantle1–4. However, the effects of spin transition on full elastic constants of ferropericlase remain experimentally controversial due to technical challenges in directly measuring sound velocities under lower-mantle conditions1–5. Here we have reliably measured both V P and V S of a single-crystal ferropericlase ((Mg 0.92,Fe 0.08)O) using complementary Brillouin Light Scattering and Impulsive Stimulated Light Scattering coupled with a diamond anvil cell up to 96 GPa.more » The derived elastic constants show drastically softened C 11 and C 12 within the spin transition at 40–60 GPa while C 44 is not affected. The spin transition is associated with a significant reduction of the aggregate V P/V S via the aggregate V P softening because V S softening does not visibly occur within the transition. Based on thermoelastic modelling along an expected geotherm, the spin crossover in ferropericlase can contribute to 2% reduction in V P/V S in a pyrolite mineralogical model in mid lower-mantle. Our results indicate that the middle to lowermost parts of the lower-mantle would exhibit enhanced seismic heterogeneities due to the occurrence of the mixed-spin and low-spin ferropericlase.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoshino, M., E-mail: masami-h@sophia.ac.jp; Suga, A.; Kato, H.
2015-07-14
Absolute differential cross sections (DCSs) for electron interaction with BF{sub 3} molecules have been measured in the impact energy range of 1.5–200 eV and recorded over a scattering angle range of 15°–150°. These angular distributions have been normalized by reference to the elastic DCSs of the He atom and integrated by employing a modified phase shift analysis procedure to generate integral cross sections (ICSs) and momentum transfer cross sections (MTCSs). The calculations of DCSs and ICSs have been carried out using an independent atom model under the screening corrected additivity rule (IAM-SCAR). The present elastic DCSs have been found tomore » agree well with the results of IAM-SCAR calculation above 20 eV, and also with a recent Schwinger multichannel calculation below 30 eV. Furthermore, in the comparison with the XF{sub 3} (X = B, C, N, and CH) molecules, the elastic DCSs reveal a similar angular distribution which are approximately equal in magnitude from 30 to 200 eV. This feature suggests that the elastic scattering is dominated virtually by the 3-outer fluorine atoms surrounding the XF{sub 3} molecules. The vibrational DCSs have also been obtained in the energy range of 1.5–15 eV and vibrational analysis based on the angular correlation theory has been carried out to explain the nature of the shape resonances. Limited experiments on vibrational inelastic scattering confirmed the existence of a shape resonance with a peak at 3.8 eV, which is also observed in the vibrational ICS. Finally, the estimated elastic ICSs, MTCSs, as well as total cross sections are compared with the previous cross section data available.« less
Measurement of two-photon exchange effect by comparing elastic e ± p cross sections
Rimal, D.; Adikaram, D.; Raue, B. A.; ...
2017-06-01
Background: The electromagnetic form factors of the proton measured by unpolarized and polarized electron scattering experiments showa significant disagreement that grows with the squared four-momentum transfer (Q(2)). Calculations have shown that the two measurements can be largely reconciled by accounting for the contributions of two-photon exchange (TPE). TPE effects are not typically included in the standard set of radiative corrections since theoretical calculations of the TPE effects are highly model dependent, and, until recently, no direct evidence of significant TPE effects has been observed. Purpose: We measured the ratio of positron-proton to electron-proton elastic-scattering cross sections in order to determinemore » the TPE contribution to elastic electron-proton scattering and thereby resolve the proton electric form factor discrepancy. Methods: We produced a mixed simultaneous electron-positron beam in Jefferson Lab's Hall B by passing the 5.6-GeV primary electron beam through a radiator to produce a bremsstrahlung photon beam and then passing the photon beam through a convertor to produce electron-positron pairs. The mixed electron-positron (lepton) beam with useful energies from approximately 0.85 to 3.5 GeV then struck a 30-cm-long liquid hydrogen (LH2) target located within the CEBAF Large Acceptance Spectrometer (CLAS). By detecting both the scattered leptons and the recoiling protons, we identified and reconstructed elastic scattering events and determined the incident lepton energy. A detailed description of the experiment is presented. Results: We present previously unpublished results for the quantity R-2 gamma, the TPE correction to the elastic-scattering cross section, at Q(2) approximate to 0.85 and 1.45 GeV2 over a large range of virtual photon polarization epsilon. Conclusions: Our results, along with recently published results from VEPP-3, demonstrate a nonzero contribution from TPE effects and are in excellent agreement with the calculations that include TPE effects and largely reconcile the form-factor discrepancy up to Q(2) approximate to 2 GeV2. These data are consistent with an increase in R-2 gamma. with decreasing e at Q(2) approximate to 0.85 and 1.45 GeV2. There are indications of a slight increase in R-2 gamma with Q(2).« less
Measurement of two-photon exchange effect by comparing elastic e±p cross sections
NASA Astrophysics Data System (ADS)
Rimal, D.; Adikaram, D.; Raue, B. A.; Weinstein, L. B.; Arrington, J.; Brooks, W. K.; Ungaro, M.; Adhikari, K. P.; Afanasev, A. V.; Akbar, Z.; Pereira, S. Anefalos; Badui, R. A.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Boiarinov, S.; Briscoe, W. J.; Bültmann, S.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chetry, T.; Ciullo, G.; Clark, L.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; Deur, A.; Djalali, C.; Dupre, R.; Egiyan, H.; Alaoui, A. El; Fassi, L. El; Eugenio, P.; Fanchini, E.; Fedotov, G.; Fersch, R.; Filippi, A.; Fleming, J. A.; Forest, T. A.; Fradi, A.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gleason, C.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guo, L.; Hafidi, K.; Hanretty, C.; Harrison, N.; Hattawy, M.; Heddle, D.; Hicks, K.; Holtrop, M.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Jiang, H.; Joosten, S.; Keller, D.; Khachatryan, G.; Khandaker, M.; Kim, W.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Lanza, L.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; McKinnon, B.; Mestayer, M. D.; Mirazita, M.; Mokeev, V.; Movsisyan, A.; Munevar, E.; Camacho, C. Munoz; Nadel-Turonski, P.; Ni, A.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schumacher, R. A.; Seder, E.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Stankovic, Ivana; Stepanyan, S.; Strauch, S.; Sytnik, V.; Taiuti, M.; Torayev, B.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration
2017-06-01
Background: The electromagnetic form factors of the proton measured by unpolarized and polarized electron scattering experiments show a significant disagreement that grows with the squared four-momentum transfer (Q2). Calculations have shown that the two measurements can be largely reconciled by accounting for the contributions of two-photon exchange (TPE). TPE effects are not typically included in the standard set of radiative corrections since theoretical calculations of the TPE effects are highly model dependent, and, until recently, no direct evidence of significant TPE effects has been observed. Purpose: We measured the ratio of positron-proton to electron-proton elastic-scattering cross sections in order to determine the TPE contribution to elastic electron-proton scattering and thereby resolve the proton electric form factor discrepancy. Methods: We produced a mixed simultaneous electron-positron beam in Jefferson Lab's Hall B by passing the 5.6-GeV primary electron beam through a radiator to produce a bremsstrahlung photon beam and then passing the photon beam through a convertor to produce electron-positron pairs. The mixed electron-positron (lepton) beam with useful energies from approximately 0.85 to 3.5 GeV then struck a 30-cm-long liquid hydrogen (LH2) target located within the CEBAF Large Acceptance Spectrometer (CLAS). By detecting both the scattered leptons and the recoiling protons, we identified and reconstructed elastic scattering events and determined the incident lepton energy. A detailed description of the experiment is presented. Results: We present previously unpublished results for the quantity R2 γ, the TPE correction to the elastic-scattering cross section, at Q2≈0.85 and 1.45 GeV2 over a large range of virtual photon polarization ɛ . Conclusions: Our results, along with recently published results from VEPP-3, demonstrate a nonzero contribution from TPE effects and are in excellent agreement with the calculations that include TPE effects and largely reconcile the form-factor discrepancy up to Q2≈2 GeV2 . These data are consistent with an increase in R2 γ with decreasing ɛ at Q2≈0.85 and 1.45 GeV2. There are indications of a slight increase in R2 γ with Q2.
Sizing of single evaporating droplet with Near-Forward Elastic Scattering Spectroscopy
NASA Astrophysics Data System (ADS)
Woźniak, M.; Jakubczyk, D.; Derkachov, G.; Archer, J.
2017-11-01
We have developed an optical setup and related numerical models to study evolution of single evaporating micro-droplets by analysis of their spectral properties. Our approach combines the advantages of the electrodynamic trapping with the broadband spectral analysis with the supercontinuum laser illumination. The elastically scattered light within the spectral range of 500-900 nm is observed by a spectrometer placed at the near-forward scattering angles between 4.3 ° and 16.2 ° and compared with the numerically generated lookup table of the broadband Mie scattering. Our solution has been successfully applied to infer the size evolution of the evaporating droplets of pure liquids (diethylene and ethylene glycol) and suspensions of nanoparticles (silica and gold nanoparticles in diethylene glycol), with maximal accuracy of ± 25 nm. The obtained results have been compared with the previously developed sizing techniques: (i) based on the analysis of the Mie scattering images - the Mie Scattering Lookup Table Method and (ii) the droplet weighting. Our approach provides possibility to handle levitating objects with much larger size range (radius from 0.5 μm to 30 μm) than with the use of optical tweezers (typically radius below 8 μm) and analyse them with much wider spectral range than with commonly used LED sources.
Sonar Imaging of Elastic Fluid-Filled Cylindrical Shells.
NASA Astrophysics Data System (ADS)
Dodd, Stirling Scott
1995-01-01
Previously a method of describing spherical acoustic waves in cylindrical coordinates was applied to the problem of point source scattering by an elastic infinite fluid -filled cylindrical shell (S. Dodd and C. Loeffler, J. Acoust. Soc. Am. 97, 3284(A) (1995)). This method is applied to numerically model monostatic oblique incidence scattering from a truncated cylinder by a narrow-beam high-frequency imaging sonar. The narrow beam solution results from integrating the point source solution over the spatial extent of a line source and line receiver. The cylinder truncation is treated by the method of images, and assumes that the reflection coefficient at the truncation is unity. The scattering form functions, calculated using this method, are applied as filters to a narrow bandwidth, high ka pulse to find the time domain scattering response. The time domain pulses are further processed and displayed in the form of a sonar image. These images compare favorably to experimentally obtained images (G. Kaduchak and C. Loeffler, J. Acoust. Soc. Am. 97, 3289(A) (1995)). The impact of the s_{ rm o} and a_{rm o} Lamb waves is vividly apparent in the images.
Coupling between Inclusions and Membranes at the Nanoscale
NASA Astrophysics Data System (ADS)
Bories, Florent; Constantin, Doru; Galatola, Paolo; Fournier, Jean-Baptiste
2018-03-01
The activity of cell membrane inclusions (such as ion channels) is influenced by the host lipid membrane, to which they are elastically coupled. This coupling concerns the hydrophobic thickness of the bilayer (imposed by the length of the channel, as per the hydrophobic matching principle) but also its slope at the boundary of the inclusion. However, this parameter has never been measured so far. We combine small-angle x-ray scattering data and a complete elastic model to measure the slope for the model gramicidin channel and show that it is surprisingly steep in two membrane systems with very different elastic properties. This conclusion is confirmed and generalized by the comparison with recent results in the simulation literature and with conductivity measurements.
Recent CCQE results from MINERvA
NASA Astrophysics Data System (ADS)
Ghosh, Anushree; Minerva Collaboration
2017-01-01
The MINER νA detector situated in Fermilab, is designed to make precision cross section measurements for neutrino scattering processes on various nuclei. I will present the two most recent results from the MINER νA charged current quasi-elastic (CCQE) studies. The event sample for both analyses are the CCQE-like final state topology and contain contributions from quasi-elastic and inelastic processes where pions are absorbed in the nucleus. One of the analyses is the MINER νA experiment's first double-differential scattering cross sections for antineutrinos on the hydrocarbon target in the few-GeV range relevant to experiments such as DUNE and NOvA. We compare to models produced by different model generators, and are able to draw first conclusions about the predictions of these models. Another analysis, is the CCQE-like analysis for neutrinos on the nuclear targets of carbon, iron and lead. The ratio of differential cross sections on these targets to the differential cross section on the hydrocarbon target are examined to study nuclear effects.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dorey, Patrick; Halavanau, Aliaksei; Mercer, James
Here, we study boundary scattering in themore » $$\\phi^4$$ model on a half-line with a one-parameter family of Neumann-type boundary conditions. A rich variety of phenomena is observed, which extends previously-studied behaviour on the full line to include regimes of near-elastic scattering, the restoration of a missing scattering window, and the creation of a kink or oscillon through the collision-induced decay of a metastable boundary state. We also study the decay of the vibrational boundary mode, and explore different scenarios for its relaxation and for the creation of kinks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghrayeb, S. Z.; Ouisloumen, M.; Ougouag, A. M.
2012-07-01
A multi-group formulation for the exact neutron elastic scattering kernel is developed. This formulation is intended for implementation into a lattice physics code. The correct accounting for the crystal lattice effects influences the estimated values for the probability of neutron absorption and scattering, which in turn affect the estimation of core reactivity and burnup characteristics. A computer program has been written to test the formulation for various nuclides. Results of the multi-group code have been verified against the correct analytic scattering kernel. In both cases neutrons were started at various energies and temperatures and the corresponding scattering kernels were tallied.more » (authors)« less
Structure of 8B from elastic and inelastic 7Be+p scattering
NASA Astrophysics Data System (ADS)
Mitchell, J. P.; Rogachev, G. V.; Johnson, E. D.; Baby, L. T.; Kemper, K. W.; Moro, A. M.; Peplowski, P.; Volya, A. S.; Wiedenhöver, I.
2013-05-01
Background: Detailed experimental knowledge of the level structure of light weakly bound nuclei is necessary to guide the development of new theoretical approaches that combine nuclear structure with reaction dynamics.Purpose: The resonant structure of 8B is studied in this work.Method: Excitation functions for elastic and inelastic 7Be+p scattering were measured using a 7Be rare isotope beam. Excitation energies ranging between 1.6 and 3.4 MeV were investigated. An R-matrix analysis of the excitation functions was performed.Results: New low-lying resonances at 1.9, 2.54, and 3.3 MeV in 8B are reported with spin-parity assignment 0+, 2+, and 1+, respectively. Comparison to the time-dependent continuum shell (TDCSM) model and ab initio no-core shell model/resonating-group method (NCSM/RGM) calculations is performed. This work is a more detailed analysis of the data first published as a Rapid Communication. J. P. Mitchell, G. V. Rogachev, E. D. Johnson, L. T. Baby, K. W. Kemper , [Phys. Rev. CPRVCAN0556-281310.1103/PhysRevC.82.011601 82, 011601(R) (2010)].Conclusions: Identification of the 0+, 2+, 1+ states that were predicted by some models at relatively low energy but never observed experimentally is an important step toward understanding the structure of 8B. Their identification was aided by having both elastic and inelastic scattering data. Direct comparison of the cross sections and phase shifts predicted by the TDCSM and ab initio no-core shell model coupled with the resonating group method is of particular interest and provides a good test for these theoretical approaches.
Near-infrared spectroscopic tissue imaging for medical applications
Demos,; Stavros, Staggs [Livermore, CA; Michael, C [Tracy, CA
2006-03-21
Near infrared imaging using elastic light scattering and tissue autofluorescence are explored for medical applications. The approach involves imaging using cross-polarized elastic light scattering and tissue autofluorescence in the Near Infra-Red (NIR) coupled with image processing and inter-image operations to differentiate human tissue components.
Near-infrared spectroscopic tissue imaging for medical applications
Demos, Stavros [Livermore, CA; Staggs, Michael C [Tracy, CA
2006-12-12
Near infrared imaging using elastic light scattering and tissue autofluorescence are explored for medical applications. The approach involves imaging using cross-polarized elastic light scattering and tissue autofluorescence in the Near Infra-Red (NIR) coupled with image processing and inter-image operations to differentiate human tissue components.
The influence of polymer molecular weight in lamellar gels based on PEG-lipids.
Warriner, H E; Keller, S L; Idziak, S H; Slack, N L; Davidson, P; Zasadzinski, J A; Safinya, C R
1998-01-01
We report x-ray scattering, rheological, and freeze-fracture and polarizing microscopy studies of a liquid crystalline hydrogel called Lalpha,g. The hydrogel, found in DMPC, pentanol, water, and PEG-DMPE mixtures, differs from traditional hydrogels, which require high MW polymer, are disordered, and gel only at polymer concentrations exceeding an "overlap" concentration. In contrast, the Lalpha,g uses very low-molecular-weight polymer-lipids (1212, 2689, and 5817 g/mole), shows lamellar order, and requires a lower PEG-DMPE concentration to gel as water concentration increases. Significantly, the Lalpha,g contains fluid membranes, unlike Lbeta' gels, which gel via chain ordering. A recent model of gelation in Lalpha phases predicts that polymer-lipids both promote and stabilize defects; these defects, resisting shear in all directions, then produce elasticity. We compare our observations to this model, with particular attention to the dependence of gelation on the PEG MW used. We also use x-ray lineshape analysis of scattering from samples spanning the fluid-gel transition to obtain the elasticity coefficients kappa and B; this analysis demonstrates that although B in particular depends strongly on PEG-DMPE concentration, gelation is uncorrelated to changes in membrane elasticity. PMID:9649387
Possible violation of the optical theorem in LHC experiments
NASA Astrophysics Data System (ADS)
Kupczynski, M.
2014-12-01
The optical theorem (OT), allowing the determination of the total cross section for a hadron-hadron scattering from the imaginary part of the forward elastic scattering amplitude, is believed to be an unavoidable consequence of the conservation of probability and of the unitary S matrix. This is a fundamental theorem which contains an imaginary part of the forward elastic scattering amplitude that is not directly measurable. The impossibility of scattering phenomena without the elastic channel is considered to be a part of the quantum magic. However, if one takes seriously the idea that the hadrons are extended particles, one may define a unitary S matrix such that one cannot prove the OT. Moreover, data violating the OT do exist, but they are not conclusive due to the uncertainties related to the extrapolation of the differential elastic cross-section to the forward direction. These results were published several years ago, but they were forgotten. In this paper we will recall these results in an understandable way, and we will give the additional arguments why the OT can be violated in high energy strong interaction scattering and why it should be tested and not simply used as a tool in LHC experiments.
Coherent transmission of an ultrasonic shock wave through a multiple scattering medium.
Viard, Nicolas; Giammarinaro, Bruno; Derode, Arnaud; Barrière, Christophe
2013-08-01
We report measurements of the transmitted coherent (ensemble-averaged) wave resulting from the interaction of an ultrasonic shock wave with a two-dimensional random medium. Despite multiple scattering, the coherent waveform clearly shows the steepening that is typical of nonlinear harmonic generation. This is taken advantage of to measure the elastic mean free path and group velocity over a broad frequency range (2-15 MHz) in only one experiment. Experimental results are found to be in good agreement with a linear theoretical model taking into account spatial correlations between scatterers. These results show that nonlinearity and multiple scattering are both present, yet uncoupled.
NASA Astrophysics Data System (ADS)
Márquez Damián, J. I.; Granada, J. R.; Malaspina, D. C.
2014-04-01
In this work we present an evaluation in ENDF-6 format of the scattering law for light and heavy water computed using the LEAPR module of NJOY99. The models used in this evaluation are based on experimental data on light water dynamics measured by Novikov, partial structure factors obtained by Soper, and molecular dynamics calculations performed with GROMACS using a reparameterized version of the flexible SPC model by Toukan and Rahman. The models use the Egelstaff-Schofield diffusion equation for translational motion, and a continuous spectrum calculated from the velocity autocorrelation function computed with GROMACS. The scattering law for H in H2O is computed using the incoherent approximation, and the scattering law D and O in D2O are computed using the Sköld approximation for coherent scattering. The calculations show significant improvement over ENDF/B-VI and ENDF/B-VII when compared with measurements of the total cross section, differential scattering experiments and quasi-elastic neutron scattering experiments (QENS).
XUV and x-ray elastic scattering of attosecond electromagnetic pulses on atoms
NASA Astrophysics Data System (ADS)
Rosmej, F. B.; Astapenko, V. A.; Lisitsa, V. S.
2017-12-01
Elastic scattering of electromagnetic pulses on atoms in XUV and soft x-ray ranges is considered for ultra-short pulses. The inclusion of the retardation term, non-dipole interaction and an efficient scattering tensor approximation allowed studying the scattering probability in dependence of the pulse duration for different carrier frequencies. Numerical calculations carried out for Mg, Al and Fe atoms demonstrate that the scattering probability is a highly nonlinear function of the pulse duration and has extrema for pulse carrier frequencies in the vicinity of the resonance-like features of the polarization charge spectrum. Closed expressions for the non-dipole correction and the angular dependence of the scattered radiation are obtained.
NASA Astrophysics Data System (ADS)
Chakrabarti, Aloknath; Mohapatra, Smrutiranjan
2013-09-01
Two problems of scattering of surface water waves involving a semi-infinite elastic plate and a pair of semi-infinite elastic plates, separated by a gap of finite width, floating horizontally on water of finite depth, are investigated in the present work for a two-dimensional time-harmonic case. Within the frame of linear water wave theory, the solutions of the two boundary value problems under consideration have been represented in the forms of eigenfunction expansions. Approximate values of the reflection and transmission coefficients are obtained by solving an over-determined system of linear algebraic equations in each problem. In both the problems, the method of least squares as well as the singular value decomposition have been employed and tables of numerical values of the reflection and transmission coefficients are presented for specific choices of the parameters for modelling the elastic plates. Our main aim is to check the energy balance relation in each problem which plays a very important role in the present approach of solutions of mixed boundary value problems involving Laplace equations. The main advantage of the present approach of solutions is that the results for the values of reflection and transmission coefficients obtained by using both the methods are found to satisfy the energy-balance relations associated with the respective scattering problems under consideration. The absolute values of the reflection and transmission coefficients are presented graphically against different values of the wave numbers.
Henderson, B S; Ice, L D; Khaneft, D; O'Connor, C; Russell, R; Schmidt, A; Bernauer, J C; Kohl, M; Akopov, N; Alarcon, R; Ates, O; Avetisyan, A; Beck, R; Belostotski, S; Bessuille, J; Brinker, F; Calarco, J R; Carassiti, V; Cisbani, E; Ciullo, G; Contalbrigo, M; De Leo, R; Diefenbach, J; Donnelly, T W; Dow, K; Elbakian, G; Eversheim, P D; Frullani, S; Funke, Ch; Gavrilov, G; Gläser, B; Görrissen, N; Hasell, D K; Hauschildt, J; Hoffmeister, Ph; Holler, Y; Ihloff, E; Izotov, A; Kaiser, R; Karyan, G; Kelsey, J; Kiselev, A; Klassen, P; Krivshich, A; Lehmann, I; Lenisa, P; Lenz, D; Lumsden, S; Ma, Y; Maas, F; Marukyan, H; Miklukho, O; Milner, R G; Movsisyan, A; Murray, M; Naryshkin, Y; Perez Benito, R; Perrino, R; Redwine, R P; Rodríguez Piñeiro, D; Rosner, G; Schneekloth, U; Seitz, B; Statera, M; Thiel, A; Vardanyan, H; Veretennikov, D; Vidal, C; Winnebeck, A; Yeganov, V
2017-03-03
The OLYMPUS Collaboration reports on a precision measurement of the positron-proton to electron-proton elastic cross section ratio, R_{2γ}, a direct measure of the contribution of hard two-photon exchange to the elastic cross section. In the OLYMPUS measurement, 2.01 GeV electron and positron beams were directed through a hydrogen gas target internal to the DORIS storage ring at DESY. A toroidal magnetic spectrometer instrumented with drift chambers and time-of-flight scintillators detected elastically scattered leptons in coincidence with recoiling protons over a scattering angle range of ≈20° to 80°. The relative luminosity between the two beam species was monitored using tracking telescopes of interleaved gas electron multiplier and multiwire proportional chamber detectors at 12°, as well as symmetric Møller or Bhabha calorimeters at 1.29°. A total integrated luminosity of 4.5 fb^{-1} was collected. In the extraction of R_{2γ}, radiative effects were taken into account using a Monte Carlo generator to simulate the convolutions of internal bremsstrahlung with experiment-specific conditions such as detector acceptance and reconstruction efficiency. The resulting values of R_{2γ}, presented here for a wide range of virtual photon polarization 0.456<ε<0.978, are smaller than some hadronic two-photon exchange calculations predict, but are in reasonable agreement with a subtracted dispersion model and a phenomenological fit to the form factor data.
Two-photon exchange in elastic electron–proton scattering
Afanasev, A.; Blunden, P. G.; Hasell, D.; ...
2017-04-17
Here, we review recent theoretical and experimental progress on the role of two-photon exchange (TPE) in electron-proton scattering at low to moderate momentum transfers. We make a detailed comparison and analysis of the results of competing experiments on the ratio of e +p to e -p elastic scattering cross sections, and of the theoretical calculations describing them. A summary of the current experimental situation is provided, along with an outlook for future experiments.
Lamb wave scattering by a surface-breaking crack in a plate
NASA Technical Reports Server (NTRS)
Datta, S. K.; Al-Nassar, Y.; Shah, A. H.
1991-01-01
An NDE method based on finite-element representation and modal expansion has been developed for solving the scattering of Lamb waves in an elastic plate waveguide. This method is very powerful for handling discontinuities of arbitrary shape, weldments of different orientations, canted cracks, etc. The advantage of the method is that it can be used to study the scattering of Lamb waves in anisotropic elastic plates and in multilayered plates as well.
Kinnunen, Matti; Kauppila, Antti; Karmenyan, Artashes; Myllylä, Risto
2011-09-15
Optical tweezers can be used to manipulate small objects and cells. A trap can be used to fix the position of a particle during light scattering measurements. The places of two separately trapped particles can also be changed. In this Letter we present elastic light scattering measurements as a function of scattering angle when two trapped spheres are illuminated with a He-Ne laser. This setup is suitable for trapping noncharged homogeneous spheres. We also demonstrate measurement of light scattering patterns from two separately trapped red blood cells. Two different illumination schemes are used for both samples.
Acoustical scattering by multilayer spherical elastic scatterer containing electrorheological layer.
Cai, Liang-Wu; Dacol, Dacio K; Orris, Gregory J; Calvo, David C; Nicholas, Michael
2011-01-01
A computational procedure for analyzing acoustical scattering by multilayer concentric spherical scatterers having an arbitrary mixture of acoustic and elastic materials is proposed. The procedure is then used to analyze the scattering by a spherical scatterer consisting of a solid shell and a solid core encasing an electrorheological (ER) fluid layer, and the tunability in the scattering characteristics afforded by the ER layer is explored numerically. Tunable scatterers with two different ER fluids are analyzed. One, corn starch in peanut oil, shows that a significant increase in scattering cross-section is possible in moderate frequencies. Another, fine poly-methyl methacrylate (PMMA) beads in dodecane, shows only slight change in scattering cross-sections overall. But, when the shell is thin, a noticeable local resonance peak can appear near ka=1, and this resonance can be turned on or off by the external electric field.
Angular momentum dependence in 22 MeV $alpha$-particle elastic scattering by light nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lega, J.; Macq, P.C.
1974-01-01
Elastic scattering of 22 MeV alpha -particles by /sup 23, /sup 24,15,26/ Mg, /sup 27/Al and /sup 28/Si was measured between 24 and 174 deg lab. Partial angular distributions, from 120 to 174 deg , were also measured at incident energies of 18.4 and 20.7 MeV for /sup 24/Mg, and 18.9 and 20.5 MeV for /sup 28/ Si. The most striking feature of the data is the large-angle behavior spin-zero nuclei display more pronounced backward oscillations and the cross section rises more steeply towards 180 deg for 4n nuclei than for the others. Optical Model analyses with an l-dependent absorptionmore » and a minimum of free parameters are used to describe the general trend of the data for A = 23 to 28 nuclei at different energies; a spinorbit coupling term, 2.75 MeV deep, is added to describe the /sup 23/Na scattering data. (auth)« less
Elastic and inelastic scattering of neutrons from 56Fe
NASA Astrophysics Data System (ADS)
Ramirez, Anthony Paul; McEllistrem, M. T.; Liu, S. H.; Mukhopadhyay, S.; Peters, E. E.; Yates, S. W.; Vanhoy, J. R.; Harrison, T. D.; Rice, B. G.; Thompson, B. K.; Hicks, S. F.; Howard, T. J.; Jackson, D. T.; Lenzen, P. D.; Nguyen, T. D.; Pecha, R. L.
2015-10-01
The differential cross sections for elastic and inelastic scattered neutrons from 56Fe have been measured at the University of Kentucky Accelerator Laboratory (www.pa.uky.edu/accelerator) for incident neutron energies between 2.0 and 8.0 MeV and for the angular range 30° to 150°. Time-of-flight techniques and pulse-shape discrimination were employed for enhancing the neutron energy spectra and for reducing background. An overview of the experimental procedures and data analysis for the conversion of neutron yields to differential cross sections will be presented. These include the determination of the energy-dependent detection efficiencies, the normalization of the measured differential cross sections, and the attenuation and multiple scattering corrections. Our results will also be compared to evaluated cross section databases and reaction model calculations using the TALYS code. This work is supported by grants from the U.S. Department of Energy-Nuclear Energy Universities Program: NU-12-KY-UK-0201-05, and the Donald A. Cowan Physics Institute at the University of Dallas.
NASA Astrophysics Data System (ADS)
Donovan, Brian F.; Jensen, Wade A.; Chen, Long; Giri, Ashutosh; Poon, S. Joseph; Floro, Jerrold A.; Hopkins, Patrick E.
2018-05-01
We use aluminum nano-inclusions in silicon to demonstrate the dominance of elastic modulus mismatch induced scattering in phonon transport. We use time domain thermoreflectance to measure the thermal conductivity of thin films of silicon co-deposited with aluminum via molecular beam epitaxy resulting in a Si film with 10% clustered Al inclusions with nanoscale dimensions and a reduction in thermal conductivity of over an order of magnitude. We compare these results with well-known models in order to demonstrate that the reduction in the thermal transport is driven by elastic mismatch effects induced by aluminum in the system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terashima, S.; Sakaguchi, H.; Takeda, H.
Cross sections and analyzing powers for proton elastic scattering from {sup 116,118,120,122,124}Sn at 295 MeV have been measured for a momentum transfer of up to about 3.5 fm{sup -1} to deduce systematic changes of the neutron density distribution. We tuned the relativistic Love-Franey interaction to explain the proton elastic scattering of a nucleus whose density distribution is well known. Then, we applied this interaction to deduce the neutron density distributions of tin isotopes. The result of our analysis shows the clear systematic behavior of a gradual increase in the neutron skin thickness of tin isotopes with mass number.
Quasi-elastic neutron scattering studies of the slow dynamics of supercooled and glassy aspirin
NASA Astrophysics Data System (ADS)
Zhang, Yang; Tyagi, Madhusudan; Mamontov, Eugene; Chen, Sow-Hsin
2012-02-01
Aspirin, also known as acetylsalicylic acid (ASA), is not only a wonderful drug, but also a good glass former. Therefore, it serves as an important molecular system to study the near-arrest and arrested phenomena. In this paper, a high-resolution quasi-elastic neutron scattering (QENS) technique is used to investigate the slow dynamics of supercooled liquid and glassy aspirin from 410 down to 350 K. The measured QENS spectra can be analyzed with a stretched exponential model. We find that (i) the stretched exponent β(Q) is independent of the wavevector transfer Q in the measured Q range and (ii) the structural relaxation time τ(Q) follows a power-law dependence on Q. Consequently, the Q-independent structural relaxation time τ0 can be extracted for each temperature to characterize the slow dynamics of aspirin. The temperature dependence of τ0 can be fitted with the mode-coupling power law, the Vogel-Fulcher-Tammann equation and a universal equation for fragile glass forming liquids recently proposed by Tokuyama in the measured temperature range. The calculated dynamic response function χT(Q, t) using the experimentally determined self-intermediate scattering function of the hydrogen atoms of aspirin shows direct evidence of the enhanced dynamic fluctuations as the aspirin is increasingly supercooled, in agreement with the fixed-time mean squared displacement langx2rang and the non-Gaussian parameter α2 extracted from the elastic scattering.
Quasi-Elastic Neutron Scattering Studies of the Slow Dynamics of Supercooled and Glassy Aspirin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yang; Tyagi, M.; Mamontov, Eugene
Aspirin, also known as acetylsalicylic acid (ASA), is not only a wonderful drug, but also a good glass former. Therefore, it serves as an important molecular system to study the near-arrest and arrested phenomena. In this paper, a high-resolution quasi-elastic neutron scattering (QENS) technique is used to investigate the slow dynamics of supercooled liquid and glassy aspirin from 410 K down to 350 K. The measured QENS spectra can be analyzed with a stretched exponential model. We find that (i) the stretched exponent (Q) is independent of the wave vector transfer Q in the measured Q-range, and (ii) the structuralmore » relaxation time (Q) follows a power law dependence on Q. Consequently, the Q-independent structural relaxation time 0 can be extracted for each temperature to characterize the slow dynamics of aspirin. The temperature dependence of 0 can be fitted with the mode coupling power law, the Vogel-Fulcher-Tammann equation and a universal equation for fragile glass forming liquids recently proposed by M. Tokuyama in the measured temperature range. The calculated dynamic response function T(Q,t) using the experimentally determined self-intermediate scattering function of the hydrogen atoms of aspirin shows a direct evidence of the enhanced dynamic fluctuations as the aspirin is increasingly supercooled, in agreement with the fixed-time mean squared displacement x2 and non-Gaussian parameter 2 extracted from the elastic scattering.« less
Mode-converted diffuse ultrasonic backscatter.
Hu, Ping; Kube, Christopher M; Koester, Lucas W; Turner, Joseph A
2013-08-01
Diffuse ultrasonic backscatter describes the scattering of elastic waves from interfaces within heterogeneous materials. Previously, theoretical models have been developed for the diffuse backscatter of longitudinal-to-longitudinal (L-L) wave scattering within polycrystalline materials. Following a similar formalism, a mode-conversion scattering model is presented here to quantify the component of an incident longitudinal wave that scatters and is converted to a transverse (shear) wave within a polycrystalline sample. The model is then used to fit experimental measurements associated with a pitch-catch transducer configuration performed using a sample of 1040 steel. From these measurements, an average material correlation length is determined. This value is found to be in agreement with results from L-L scattering measurements and is on the order of the grain size as determined from optical micrographs. Mode-converted ultrasonic backscatter is influenced much less by the front-wall reflection than an L-L measurement and it provides additional microstructural information that is not accessible in any other manner.
Theory of bright-field scanning transmission electron microscopy for tomography
NASA Astrophysics Data System (ADS)
Levine, Zachary H.
2005-02-01
Radiation transport theory is applied to electron microscopy of samples composed of one or more materials. The theory, originally due to Goudsmit and Saunderson, assumes only elastic scattering and an amorphous medium dominated by atomic interactions. For samples composed of a single material, the theory yields reasonable parameter-free agreement with experimental data taken from the literature for the multiple scattering of 300-keV electrons through aluminum foils up to 25μm thick. For thin films, the theory gives a validity condition for Beer's law. For thick films, a variant of Molière's theory [V. G. Molière, Z. Naturforschg. 3a, 78 (1948)] of multiple scattering leads to a form for the bright-field signal for foils in the multiple-scattering regime. The signal varies as [tln(e1-2γt/τ)]-1 where t is the path length of the beam, τ is the mean free path for elastic scattering, and γ is Euler's constant. The Goudsmit-Saunderson solution interpolates numerically between these two limits. For samples with multiple materials, elemental sensitivity is developed through the angular dependence of the scattering. From the elastic scattering cross sections of the first 92 elements, a singular-value decomposition of a vector space spanned by the elastic scattering cross sections minus a delta function shows that there is a dominant common mode, with composition-dependent corrections of about 2%. A mathematically correct reconstruction procedure beyond 2% accuracy requires the acquisition of the bright-field signal as a function of the scattering angle. Tomographic reconstructions are carried out for three singular vectors of a sample problem with four elements Cr, Cu, Zr, and Te. The three reconstructions are presented jointly as a color image; all four elements are clearly identifiable throughout the image.
Flow Visualization by Elastic Light Scattering in the Boundary Layer of a Supersonic Flow
NASA Technical Reports Server (NTRS)
Herring, G. C.; Hillard, Mervin E., Jr.
2000-01-01
We demonstrate instantaneous flow visualization of the boundary layer region of a Mach 2.5 supersonic flow over a flat plate that is interacting with an impinging shock wave. Tests were performed in the Unitary Plan Wind Tunnel (UPWT) at NASA Langley Research Center. The technique is elastic light scattering using 10-nsec laser pulses at 532 nm. We emphasize that no seed material of any kind, including water (H2O), is purposely added to the flow. The scattered light comes from a residual impurity that normally exists in the flow medium after the air drying process. Thus, the technique described here differs from the traditional vapor-screen method, which is typically accomplished by the addition of extra H2O vapor to the airflow. The flow is visualized with a series of thin two-dimensional light sheets (oriented perpendicular to the streamwise direction) that are located at several positions downstream of the leading edge of the model. This geometry allows the direct observation of the unsteady flow structure in the spanwise dimension of the model and also allows the indirect observation of the boundary layer growth in the streamwise dimension.
NASA Astrophysics Data System (ADS)
Al-Rawashdeh, S. M.; Jaghoub, M. I.
2018-04-01
In this work we test the hypothesis that a properly deformed spherical optical potential, used within a channel-coupling scheme, provides a good description for the scattering data corresponding to neutron induced reactions on the heavy, statically deformed actinides and other lighter deformed nuclei. To accomplish our goal, we have deformed the Koning-Delaroche spherical global potential and then used it in a channel-coupling scheme. The ground-state is coupled to a sufficient number of inelastic rotational channels belonging to the ground-state band to ensure convergence. The predicted total cross sections, elastic and inelastic angular distributions are in good agreement with the experimental data. As a further test, we compare our results to those obtained by a global channel-coupled optical model whose parameters were obtained by fitting elastic and inelastic angular distributions in addition to total cross sections. Our results compare quite well with those obtained by the fitted, channel-coupled optical model. Below neutron incident energies of about 1MeV, our results show that scattering into the rotational excited states of the ground-state band plays a significant role in the scattering process and must be explicitly accounted for using a channel-coupling scheme.
Updated analysis of NN elastic scattering to 3 GeV
NASA Astrophysics Data System (ADS)
Arndt, R. A.; Briscoe, W. J.; Strakovsky, I. I.; Workman, R. L.
2007-08-01
A partial-wave analysis of NN elastic scattering data has been updated to include a number of recent measurements. Experiments carried out at the Cooler Synchrotron (COSY) by the EDDA Collaboration have had a significant impact above 1 GeV. Results are discussed in terms of the partial-wave and direct-reconstruction amplitudes.
The Current Status of High Energy Elastic Scattering
NASA Astrophysics Data System (ADS)
Block, Martin M.; Kang, Kyungsik; White, Alan R.
The recent total cross section, σtot, and ρ-value results from the Fermilab Tevatron Collider experiments,1,2 presented at the 4th “Blois” Workshop on Elastic and Diffractive Scattering, held at Elba in May 1991, provide a natural springboard from which to launch a focused review of the field.
NASA Astrophysics Data System (ADS)
Witała, H.; Golak, J.; Skibiński, R.; Topolnicki, K.; Kamada, H.
We discuss the importance of the three-nucleon isospin T = 3/2 component in elastic neutron-deuteron scattering and in the deuteron breakup reaction. The contribution of this amplitude originates from charge-independence breaking of the nucleon-nucleon potential. We study the magnitude of that contribution to the elastic scattering and breakup observables, taking the Av18 nucleon-nucleon potential alone or combined with the Urbana IX three-nucleon force as well as the locally regularized chiral N4LO nucleon-nucleon potential alone or supplemented by the chiral N2LO three-nucleon force. We find that the isospin T = 3/2 component is important for the breakup reaction and the proper treatment of charge-independence breaking in this case requires the inclusion of the 1S 0 state with isospin T = 3/2. For neutron-deuteron elastic scattering the T = 3/2 contributions are insignificant and charge-independence breaking can be accounted for by neglecting T = 3/2 component and using the effective t-matrix generated with the so-called “2/3 ‑ 1/3″ rule.
Radiation force of an arbitrary acoustic beam on an elastic sphere in a fluid
Sapozhnikov, Oleg A.; Bailey, Michael R.
2013-01-01
A theoretical approach is developed to calculate the radiation force of an arbitrary acoustic beam on an elastic sphere in a liquid or gas medium. First, the incident beam is described as a sum of plane waves by employing conventional angular spectrum decomposition. Then, the classical solution for the scattering of a plane wave from an elastic sphere is applied for each plane-wave component of the incident field. The net scattered field is expressed as a superposition of the scattered fields from all angular spectrum components of the incident beam. With this formulation, the incident and scattered waves are superposed in the far field to derive expressions for components of the radiation stress tensor. These expressions are then integrated over a spherical surface to analytically describe the radiation force on an elastic sphere. Limiting cases for particular types of incident beams are presented and are shown to agree with known results. Finally, the analytical expressions are used to calculate radiation forces associated with two specific focusing transducers. PMID:23363086
Trade-off of Elastic Structure and Q in Interpretations of Seismic Attenuation
NASA Astrophysics Data System (ADS)
Deng, Wubing; Morozov, Igor B.
2017-10-01
The quality factor Q is an important phenomenological parameter measured from seismic or laboratory seismic data and representing wave-energy dissipation rate. However, depending on the types of measurements and models or assumptions about the elastic structure, several types of Qs exist, such as intrinsic and scattering Qs, coda Q, and apparent Qs observed from wavefield fluctuations. We consider three general types of elastic structures that are commonly encountered in seismology: (1) shapes and dimensions of rock specimens in laboratory studies, (2) geometric spreading or scattering in body-, surface- and coda-wave studies, and (3) reflectivity on fine layering in reflection seismic studies. For each of these types, the measured Q strongly trades off with the (inherently limited) knowledge about the respective elastic structure. For the third of the above types, the trade-off is examined quantitatively in this paper. For a layered sequence of reflectors (e.g., an oil or gas reservoir or a hydrothermal zone), reflection amplitudes and phases vary with frequency, which is analogous to a reflection from a contrast in attenuation. We demonstrate a quantitative equivalence between phase-shifted reflections from anelastic zones and reflections from elastic layering. Reflections from the top of an elastic layer followed by weaker reflections from its bottom can appear as resulting from a low Q within or above this layer. This apparent Q can be frequency-independent or -dependent, according to the pattern of thin layering. Due to the layering, the interpreted Q can be positive or negative, and it can depend on source-receiver offsets. Therefore, estimating Q values from frequency-dependent or phase-shifted reflection amplitudes always requires additional geologic or rock-physics constraints, such as sparseness and/or randomness of reflectors, the absence of attenuation in certain layers, or specific physical mechanisms of attenuation. Similar conclusions about the necessity of extremely detailed models of the elastic structure apply to other types of Q measurements.
Characterizing Feshbach resonances in ultracold scattering calculations
NASA Astrophysics Data System (ADS)
Frye, Matthew D.; Hutson, Jeremy M.
2017-10-01
We describe procedures for converging on and characterizing zero-energy Feshbach resonances that appear in scattering lengths for ultracold atomic and molecular collisions as a function of an external field. The elastic procedure is appropriate for purely elastic scattering, where the scattering length is real and displays a true pole. The regularized scattering length procedure is appropriate when there is weak background inelasticity, so that the scattering length is complex and displays an oscillation rather than a pole, but the resonant scattering length ares is close to real. The fully complex procedure is appropriate when there is substantial background inelasticity and the real and imaginary parts of ares are required. We demonstrate these procedures for scattering of ultracold 85Rb in various initial states. All of them can converge on and provide full characterization of resonances, from initial guesses many thousands of widths away, using scattering calculations at only about ten values of the external field.
Myelin basic protein reduces molecular motions in DMPA, an elastic neutron scattering study
NASA Astrophysics Data System (ADS)
Natali, F.; Gliozzi, A.; Rolandi, R.; Cavatorta, P.; Deriu, A.; Fasano, A.; Riccio, P.
2001-07-01
We have studied the effect of physiological amounts of myelin basic protein (MBP) on pure dimyristoyl L- α-phosphatidic acid (DMPA) vesicles using the elastic neutron scattering technique. Elastic scans have been performed in a wide temperature range (20-300 K). In the lower temperature region the behaviour of the integrated elastic intensity was the typical one of harmonic systems. The analysis of the Q and T dependence performed in terms of an asymmetric double well potential clearly showed that the effect of the protein consisted in a significant reduction of the conformational mobility of the DMPA bilayers and in the stabilisation of the membrane.
Wang, Diancheng; Pan, Kai; Subedi, Ramesh R.; ...
2013-08-22
We report on parity-violating asymmetries in the nucleon resonance region measured using 5 - 6 GeV longitudinally polarized electrons scattering off an unpolarized deuterium target. These results are the first parity-violating asymmetry data in the resonance region beyond the Δ(1232), and provide a verification of quark-hadron duality in the nucleon electroweak γ Z interference structure functions at the (10-15)% level. The results are of particular interest to models relevant for calculating the γ Z box-diagram corrections to elastic parity-violating electron scattering measurements.
Ab initio method for calculating total cross sections
NASA Technical Reports Server (NTRS)
Bhatia, A. K.; Schneider, B. I.; Temkin, A.
1993-01-01
A method for calculating total cross sections without formally including nonelastic channels is presented. The idea is to use a one channel T-matrix variational principle with a complex correlation function. The derived T matrix is therefore not unitary. Elastic scattering is calculated from T-parallel-squared, but total scattering is derived from the imaginary part of T using the optical theorem. The method is applied to the spherically symmetric model of electron-hydrogen scattering. No spurious structure arises; results for sigma(el) and sigma(total) are in excellent agreement with calculations of Callaway and Oza (1984). The method has wide potential applicability.
NASA Astrophysics Data System (ADS)
Magazù, Salvatore; Mezei, Ferenc; Migliardo, Federica
2018-05-01
In a variety of applications of inelastic neutron scattering spectroscopy the goal is to single out the elastic scattering contribution from the total scattered spectrum as a function of momentum transfer and sample environment parameters. The elastic part of the spectrum is defined in such a case by the energy resolution of the spectrometer. Variable elastic energy resolution offers a way to distinguish between elastic and quasi-elastic intensities. Correlation spectroscopy lends itself as an efficient, high intensity approach for accomplishing this both at continuous and pulsed neutron sources. On the one hand, in beam modulation methods the Liouville theorem coupling between intensity and resolution is relaxed and time-of-flight velocity analysis of the neutron velocity distribution can be performed with 50 % duty factor exposure for all available resolutions. On the other hand, the (quasi)elastic part of the spectrum generally contains the major part of the integrated intensity at a given detector, and thus correlation spectroscopy can be applied with most favorable signal to statistical noise ratio. The novel spectrometer CORELLI at SNS is an example for this type of application of the correlation technique at a pulsed source. On a continuous neutron source a statistical chopper can be used for quasi-random time dependent beam modulation and the total time-of-flight of the neutron from the statistical chopper to detection is determined by the analysis of the correlation between the temporal fluctuation of the neutron detection rate and the statistical chopper beam modulation pattern. The correlation analysis can either be used for the determination of the incoming neutron velocity or for the scattered neutron velocity, depending of the position of the statistical chopper along the neutron trajectory. These two options are considered together with an evaluation of spectrometer performance compared to conventional spectroscopy, in particular for variable resolution elastic neutron scattering (RENS) studies of relaxation processes and the evolution of mean square displacements. A particular focus of our analysis is the unique feature of correlation spectroscopy of delivering high and resolution independent beam intensity, thus the same statistical chopper scan contains both high intensity and high resolution information at the same time, and can be evaluated both ways. This flexibility for variable resolution data handling represents an additional asset for correlation spectroscopy in variable resolution work. Changing the beam width for the same statistical chopper allows us to additionally trade resolution for intensity in two different experimental runs, similarly for conventional single slit chopper spectroscopy. The combination of these two approaches is a capability of particular value in neutron spectroscopy studies requiring variable energy resolution, such as the systematic study of quasi-elastic scattering and mean square displacement. Furthermore the statistical chopper approach is particularly advantageous for studying samples with low scattering intensity in the presence of a high, sample independent background.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MIchael A. Pope
Six early cores of the MASURCA R-Z program were modeled using ERANOS 2.1. These cores were designed such that their neutron spectra would be similar to that of an oxide-fueled sodium-cooled fast reactor, some containing enriched uranium and others containing depleted uranium and plutonium. Effects of modeling assumptions and solution methods both in ECCO lattice calculations and in BISTRO Sn flux solutions were evaluated using JEFF-3.1 cross-section libraries. Reactivity effects of differences between JEFF-3.1 and ENDF/B-VI.8 were also quantified using perturbation theory analysis. The most important nuclide with respect to reactivity differences between cross-section libraries was 23Na, primarily a resultmore » of differences in the angular dependence of elastic scattering which is more forward-peaked in ENDF/B-VI.8 than in JEFF-3.1. Differences in 23Na inelastic scattering cross-sections between libraries also generated significant differences in reactivity, more due to the differences in magnitude of the cross-sections than the angular dependence. The nuclide 238U was also found to be important with regard to reactivity differences between the two libraries mostly due to a large effect of inelastic scattering differences and two smaller effects of elastic scattering and fission cross-sections. In the cores which contained plutonium, 239Pu fission cross-section differences contributed significantly to the reactivity differences between libraries.« less
NASA Astrophysics Data System (ADS)
Qattan, I. A.
2017-06-01
I present a prediction of the e± elastic scattering cross-section ratio, Re+e-, as determined using a new parametrization of the two-photon exchange (TPE) corrections to electron-proton elastic scattering cross section σR. The extracted ratio is compared to several previous phenomenological extractions, TPE hadronic calculations, and direct measurements from the comparison of electron and positron scattering. The TPE corrections and the ratio Re+e- show a clear change of sign at low Q2, which is necessary to explain the high-Q2 form factors discrepancy while being consistent with the known Q2→0 limit. While my predictions are in generally good agreement with previous extractions, TPE hadronic calculations, and existing world data including the recent two measurements from the CLAS and VEPP-3 Novosibirsk experiments, they are larger than the new OLYMPUS measurements at larger Q2 values.
Spin entanglement in elastic electron scattering from lithium atoms
NASA Astrophysics Data System (ADS)
Bartschat, Klaus; Fonseca Dos Santos, Samantha
2017-04-01
In two recent papers, the possibility of continuously varying the degree of entanglement between an elastically scattered electron and the valence electron of an alkali target was discussed. In order to estimate how well such a scheme may work in practice, we present results for elastic electron scattering from lithium in the energy regime of 1 -5 eV and the full range of scattering angles 0° -180° . The most promising regime for Bell-correlations in this particular collision system are energies between about 1.5 eV and 3.0 eV, in an angular range around 110° +/-10° . In addition to the relative exchange asymmetry parameter, we present the differential cross section that is important when estimating the count rate and hence the feasibility of experiments using this system. Work supported by the NSF under PHY-1403245.
Re-evaluation of model-based light-scattering spectroscopy for tissue spectroscopy
Lau, Condon; Šćepanović, Obrad; Mirkovic, Jelena; McGee, Sasha; Yu, Chung-Chieh; Fulghum, Stephen; Wallace, Michael; Tunnell, James; Bechtel, Kate; Feld, Michael
2009-01-01
Model-based light scattering spectroscopy (LSS) seemed a promising technique for in-vivo diagnosis of dysplasia in multiple organs. In the studies, the residual spectrum, the difference between the observed and modeled diffuse reflectance spectra, was attributed to single elastic light scattering from epithelial nuclei, and diagnostic information due to nuclear changes was extracted from it. We show that this picture is incorrect. The actual single scattering signal arising from epithelial nuclei is much smaller than the previously computed residual spectrum, and does not have the wavelength dependence characteristic of Mie scattering. Rather, the residual spectrum largely arises from assuming a uniform hemoglobin distribution. In fact, hemoglobin is packaged in blood vessels, which alters the reflectance. When we include vessel packaging, which accounts for an inhomogeneous hemoglobin distribution, in the diffuse reflectance model, the reflectance is modeled more accurately, greatly reducing the amplitude of the residual spectrum. These findings are verified via numerical estimates based on light propagation and Mie theory, tissue phantom experiments, and analysis of published data measured from Barrett’s esophagus. In future studies, vessel packaging should be included in the model of diffuse reflectance and use of model-based LSS should be discontinued. PMID:19405760
Lohn, Andrew J.; Doyle, Barney L.; Stein, Gregory J.; ...
2014-04-03
We present a novel ion beam analysis technique combining Rutherford forward scattering and elastic recoil detection (RFSERD) and demonstrate its ability to increase efficiency in determining stoichiometry in ultrathin (5-50 nm) films as compared to Rutherford backscattering. In the conventional forward geometries, scattering from the substrate overwhelms the signal from light atoms but in RFSERD, scattered ions from the substrate are ranged out while forward scattered ions and recoiled atoms from the thin film are simultaneously detected in a single detector. Lastly, the technique is applied to tantalum oxide memristors but can be extended to a wide range of materialsmore » systems.« less
Neutrino scattering and the reactor antineutrino anomaly
NASA Astrophysics Data System (ADS)
Garcés, Estela; Cañas, Blanca; Miranda, Omar; Parada, Alexander
2017-12-01
Low energy threshold reactor experiments have the potential to give insight into the light sterile neutrino signal provided by the reactor antineutrino anomaly and the gallium anomaly. In this work we analyze short baseline reactor experiments that detect by elastic neutrino electron scattering in the context of a light sterile neutrino signal. We also analyze the sensitivity of experimental proposals of coherent elastic neutrino nucleus scattering (CENNS) detectors in order to exclude or confirm the sterile neutrino signal with reactor antineutrinos.
Semiempirical potentials for positron scattering by atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Assafrao, Denise; Walters, H. R. J.; Arretche, Felipe
2011-08-15
We report calculations of differential and integral cross sections for positron scattering by noble gas and alkaline-earth atoms within the same methodology. The scattering potentials are constructed by scaling adiabatic potentials so that their minima coincide with the covalent radii of the target atoms. Elastic differential and integral cross sections are calculated for Ne, Ar, Be, and Mg, and the results are very close to experimental and best theoretical data. Particularly, elastic differential cross sections for Be and Mg at low energies are reported.
Survey of background scattering from materials found in small-angle neutron scattering.
Barker, J G; Mildner, D F R
2015-08-01
Measurements and calculations of beam attenuation and background scattering for common materials placed in a neutron beam are presented over the temperature range of 300-700 K. Time-of-flight (TOF) measurements have also been made, to determine the fraction of the background that is either inelastic or quasi-elastic scattering as measured with a 3 He detector. Other background sources considered include double Bragg diffraction from windows or samples, scattering from gases, and phonon scattering from solids. Background from the residual air in detector vacuum vessels and scattering from the 3 He detector dome are presented. The thickness dependence of the multiple scattering correction for forward scattering from water is calculated. Inelastic phonon background scattering at small angles for crystalline solids is both modeled and compared with measurements. Methods of maximizing the signal-to-noise ratio by material selection, choice of sample thickness and wavelength, removal of inelastic background by TOF or Be filters, and removal of spin-flip scattering with polarized beam analysis are discussed.
Survey of background scattering from materials found in small-angle neutron scattering
Barker, J. G.; Mildner, D. F. R.
2015-01-01
Measurements and calculations of beam attenuation and background scattering for common materials placed in a neutron beam are presented over the temperature range of 300–700 K. Time-of-flight (TOF) measurements have also been made, to determine the fraction of the background that is either inelastic or quasi-elastic scattering as measured with a 3He detector. Other background sources considered include double Bragg diffraction from windows or samples, scattering from gases, and phonon scattering from solids. Background from the residual air in detector vacuum vessels and scattering from the 3He detector dome are presented. The thickness dependence of the multiple scattering correction for forward scattering from water is calculated. Inelastic phonon background scattering at small angles for crystalline solids is both modeled and compared with measurements. Methods of maximizing the signal-to-noise ratio by material selection, choice of sample thickness and wavelength, removal of inelastic background by TOF or Be filters, and removal of spin-flip scattering with polarized beam analysis are discussed. PMID:26306088
Elastic electron scattering by ethyl vinyl ether
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khakoo, M. A.; Hong, L.; Kim, B.
2010-02-15
We report measured and calculated results for elastic scattering of low-energy electrons by ethyl vinyl ether (ethoxyethene), a prototype system for studying indirect dissociative attachment processes that may play a role in DNA damage. The integral cross section displays the expected {pi}{sup *} shape resonance. The agreement between the calculated and measured cross sections is generally good.
Autofluorescence detection and imaging of bladder cancer realized through a cystoscope
Demos, Stavros G [Livermore, CA; deVere White, Ralph W [Sacramento, CA
2007-08-14
Near infrared imaging using elastic light scattering and tissue autofluorescence and utilizing interior examination techniques and equipment are explored for medical applications. The approach involves imaging using cross-polarized elastic light scattering and/or tissue autofluorescence in the Near Infra-Red (NIR) coupled with image processing and inter-image operations to differentiate human tissue components.
Soni, Jalpa; Purwar, Harsh; Lakhotia, Harshit; Chandel, Shubham; Banerjee, Chitram; Kumar, Uday; Ghosh, Nirmalya
2013-07-01
A novel spectroscopic Mueller matrix system has been developed and explored for both fluorescence and elastic scattering polarimetric measurements from biological tissues. The 4 × 4 Mueller matrix measurement strategy is based on sixteen spectrally resolved (λ = 400 - 800 nm) measurements performed by sequentially generating and analyzing four elliptical polarization states. Eigenvalue calibration of the system ensured high accuracy of Mueller matrix measurement over a broad wavelength range, either for forward or backscattering geometry. The system was explored for quantitative fluorescence and elastic scattering spectroscopic polarimetric studies on normal and precancerous tissue sections from human uterine cervix. The fluorescence spectroscopic Mueller matrices yielded an interesting diattenuation parameter, exhibiting differences between normal and precancerous tissues.
Phenomenology of ELDER dark matter
NASA Astrophysics Data System (ADS)
Kuflik, Eric; Perelstein, Maxim; Lorier, Nicolas Rey-Le; Tsai, Yu-Dai
2017-08-01
We explore the phenomenology of Elastically Decoupling Relic (ELDER) dark matter. ELDER is a thermal relic whose present density is determined primarily by the cross-section of its elastic scattering off Standard Model (SM) particles. Assuming that this scattering is mediated by a kinetically mixed dark photon, we argue that the ELDER scenario makes robust predictions for electron-recoil direct-detection experiments, as well as for dark photon searches. These predictions are independent of the details of interactions within the dark sector. Together with the closely related Strongly-Interacting Massive Particle (SIMP) scenario, the ELDER predictions provide a physically motivated, well-defined target region, which will be almost entirely accessible to the next generation of searches for sub-GeV dark matter and dark photons. We provide useful analytic approximations for various quantities of interest in the ELDER scenario, and discuss two simple renormalizable toy models which incorporate the required strong number-changing interactions among the ELDERs, as well as explicitly implement the coupling to electrons via the dark photon portal.
Mizukoshi, K; Nakamura, T; Oba, A
2016-08-01
The skin contains an undulating structure called the dermal papillary structure between the border of the epidermis and dermis. The physiological importance of the dermal papillary structures has been discussed, however, the dermal papillary structures have never been evaluated for their contribution to skin appearance. In this study, we investigated the correlation between the dermal papillary structure and skin color and elasticity. In addition, the relationship was validated with skin model experiments. The dermal papillary structures in the skin of the female cheek were quantitatively measured by in vivo confocal laser scanning microscopy images. In addition, the skin color and elasticity were measured at the same site. A skin model with dermal papilla-like structures was created by referring to the optical and shape properties of the skin using agar gel and a scattering sheet. Correlations were found between the dermal papillary structures and skin color irregularity and skin elasticity. These relationships were verified by the experiments employing a skin model. The results of this study indicated that the dermal papillary structure is also an important factor for skin appearance such as color and elasticity. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Binzoni, T; Leung, T S; Rüfenacht, D; Delpy, D T
2006-01-21
Based on quasi-elastic scattering theory (and random walk on a lattice approach), a model of laser-Doppler flowmetry (LDF) has been derived which can be applied to measurements in large tissue volumes (e.g. when the interoptode distance is >30 mm). The model holds for a semi-infinite medium and takes into account the transport-corrected scattering coefficient and the absorption coefficient of the tissue, and the scattering coefficient of the red blood cells. The model holds for anisotropic scattering and for multiple scattering of the photons by the moving scatterers of finite size. In particular, it has also been possible to take into account the simultaneous presence of both Brownian and pure translational movements. An analytical and simplified version of the model has also been derived and its validity investigated, for the case of measurements in human skeletal muscle tissue. It is shown that at large optode spacing it is possible to use the simplified model, taking into account only a 'mean' light pathlength, to predict the blood flow related parameters. It is also demonstrated that the 'classical' blood volume parameter, derived from LDF instruments, may not represent the actual blood volume variations when the investigated tissue volume is large. The simplified model does not need knowledge of the tissue optical parameters and thus should allow the development of very simple and cost-effective LDF hardware.
Neutron scattering cross section measurements for Fe 56
Ramirez, A. P. D.; Vanhoy, J. R.; Hicks, S. F.; ...
2017-06-09
Elastic and inelastic differential cross sections for neutron scattering from 56Fe have been measured for several incident energies from 1.30 to 7.96 MeV at the University of Kentucky Accelerator Laboratory. Scattered neutrons were detected using a C 6D 6 liquid scintillation detector using pulse-shape discrimination and time-of-flight techniques. The deduced cross sections have been compared with previously reported data, predictions from evaluation databases ENDF, JENDL, and JEFF, and theoretical calculations performed using different optical model potentials using the TALYS and EMPIRE nuclear reaction codes. The coupled-channel calculations based on the vibrational and soft-rotor models are found to describe the experimentalmore » (n,n 0) and (n,n 1) cross sections well.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibraheem, Awad A., E-mail: awad-ah-eb@hotmail.com
Elastic scattering of {sup 4}He+{sup 40}Ca and {sup 4}He+{sup 44}Ti reactions at backward angles has been analyzed using two different models, microscopic and semimicroscopic folding potentials. The derived real potentials supplemented with phenomenological Woods–Saxon imaginary potentials, provide good agreement with the experimental data at energy E{sub c.m.} = 21.8 MeV without need to renormalize the potentials. Coupled channels calculations are used to extract the inelastic scattering cross section to the low-lying state 2+ (1.083 MeV) of {sup 44}Ti. The deformation length is obtained and compared with the electromagnetic measurement values as well as those obtained from previous studies.
Neutron scattering cross section measurements for 56Fe
NASA Astrophysics Data System (ADS)
Ramirez, A. P. D.; Vanhoy, J. R.; Hicks, S. F.; McEllistrem, M. T.; Peters, E. E.; Mukhopadhyay, S.; Harrison, T. D.; Howard, T. J.; Jackson, D. T.; Lenzen, P. D.; Nguyen, T. D.; Pecha, R. L.; Rice, B. G.; Thompson, B. K.; Yates, S. W.
2017-06-01
Elastic and inelastic differential cross sections for neutron scattering from 56Fe have been measured for several incident energies from 1.30 to 7.96 MeV at the University of Kentucky Accelerator Laboratory. Scattered neutrons were detected using a C6D6 liquid scintillation detector using pulse-shape discrimination and time-of-flight techniques. The deduced cross sections have been compared with previously reported data, predictions from evaluation databases ENDF, JENDL, and JEFF, and theoretical calculations performed using different optical model potentials using the talys and empire nuclear reaction codes. The coupled-channel calculations based on the vibrational and soft-rotor models are found to describe the experimental (n ,n0 ) and (n ,n1 ) cross sections well.
NASA Astrophysics Data System (ADS)
Marquardt, H.; Speziale, S.; Reichmann, H. J.; Schmidt, C.; Schilling, F.
2007-12-01
Knowledge of the elastic properties of earth materials at relevant pressures and temperatures is prerequisite to adequately interpret seismic data and improve our understanding of the composition and mineralogy of the earth's interior. The study of pressure and temperature dependence of acoustic velocity in geo-fluids gives us information about their density with implications for the thermodynamic modelling of diagenetic and metamorphic processes. Furthermore elasticity of synthetic materials is of major interest for several industrial applications. We have recently completed the construction of a new Brillouin System at the GeoForschungsZentrum Potsdam. The new system has been designed to study elasticity of various geological as well as industrial materials at different pressure and temperature conditions. Our Brillouin system consists of a Nd:YVO4 solid state laser operating at a wavelength of 532 nm as light source and a Sandercock-type tandem multipass Fabry-Perot interferometer equipped with a photomultiplier tube for signal detection. Measurements can be performed in 60 or 90 degree symmetric forward scattering or in backscattering geometry. The large positioning system also allows for high temperature measurements in an externally heated diamond anvil cell. We present first results of elasticity measurements both on Earth's materials, such as silicates garnets and oxides, as well as hydroxides and commercially used garnet aluminates, and silicate and borate glasses as proxies for melts. Brillouin scattering has been measured to constrain the density of water-NaCl solutions, for the precise thermodynamic modelling of fluids in metamorphic systems.
Progress and challenges in global mantle attenuation tomography (Invited)
NASA Astrophysics Data System (ADS)
Romanowicz, B. A.
2009-12-01
Global anelastic tomography has lagged behind elastic tomography, because of the difficulty to separate elastic and anelastic effects accumulated in the amplitudes of seismic waves as they propagate long distances through the heterogeneous mantle. Specifically, amplitudes are very sensitive to scattering and lateral gradients in elastic structure. Until now, these gradients - or the short wavelength features of elastic models - have not been tightly enough constrained due to a combination of (1) use of approximate wave propagation theories; (2) necessary damping due to incomplete coverage and bandwidth. Different schemes have been designed to circumvent these shortcomings in attenuation tomography, which limit resolution to long wavelengths and introduce large uncertainties in the estimation of the strength of lateral variations in attenuation. We review the robust information on anelastic structure available so far from first and second generation global upper mantle models. We discuss improvements that can be expected with, in particular, the availability of accurate numerical schemes for wave propagation in a 3D elastic earth, as well as the associated challenges, and prospects for unraveling the 3D attenuation structure of the lower mantle.
9Be+120Sn scattering at near-barrier energies within a four-body model
NASA Astrophysics Data System (ADS)
Arazi, A.; Casal, J.; Rodríguez-Gallardo, M.; Arias, J. M.; Lichtenthäler Filho, R.; Abriola, D.; Capurro, O. A.; Cardona, M. A.; Carnelli, P. F. F.; de Barbará, E.; Fernández Niello, J.; Figueira, J. M.; Fimiani, L.; Hojman, D.; Martí, G. V.; Martínez Heimman, D.; Pacheco, A. J.
2018-04-01
Cross sections for elastic and inelastic scattering of the weakly bound 9Be nucleus on a 120Sn target have been measured at seven bombarding energies around and above the Coulomb barrier. The elastic angular distributions are analyzed with a four-body continuum-discretized coupled-channels (CDCC) calculation, which considers 9Be as a three-body projectile (α +α +n ). An optical model analysis using the São Paulo potential is also shown for comparison. The CDCC analysis shows that the coupling to the continuum part of the spectrum is important for the agreement with experimental data even at energies around the Coulomb barrier, suggesting that breakup is an important process at low energies. At the highest incident energies, two inelastic peaks are observed at 1.19(5) and 2.41(5) MeV. Coupled-channels (CC) calculations using a rotational model confirm that the first inelastic peak corresponds to the excitation of the 21+ state in 120Sn, while the second one likely corresponds to the excitation of the 31- state.
Study of p-4He total reaction cross-section using Glauber and Coulomb-modified Glauber models
NASA Astrophysics Data System (ADS)
Tag El-Din, Ibrahim M. A.; Taha, M. M.; Hassan, Samia S. A.
2014-02-01
The total nuclear reaction cross-section σR for p-4He in the energy range from 25 MeV to 1000 MeV is calculated within Glauber and Coulomb-modified Glauber models. The Coulomb-modified Glauber model (CMGM) is introduced via modification of the Coulomb trajectory of the projectile from a straight line, and calculation of the effective radius of interaction. The effects of in-medium nucleon-nucleon (NN) total cross-section, phase variation, high order momentum transfer component of nucleon-nucleon elastic scattering amplitude and Pauli blocking are studied. It is pointed out that the phase variation of the nucleon-nucleon amplitude plays a significant role in describing σR with γ = -1.6 fm2 at in-medium nuclear density ϱ = 0 and γ = -2 fm2 at ϱ = 0.17 fm-3 in the whole energy range. A remarkable fit to the available experimental data is obtained by invoking Pauli blocking and high order momentum transfer of nucleon-nucleon (NN) elastic scattering amplitude for Ep < 100 MeV.
Observation of coherent elastic neutrino-nucleus scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akimov, D.; Albert, J. B.; An, P.
The coherent elastic scattering of neutrinos off nuclei has eluded detection for four decades, even though its predicted cross section is by far the largest of all low-energy neutrino couplings. This mode of interaction offers new opportunities to study neutrino properties and leads to a miniaturization of detector size, with potential technological applications. In this paper, we observed this process at a 6.7σ confidence level, using a low-background, 14.6-kilogram CsI[Na] scintillator exposed to the neutrino emissions from the Spallation Neutron Source at Oak Ridge National Laboratory. Characteristic signatures in energy and time, predicted by the standard model for this process,more » were observed in high signal-to-background conditions. Finally, improved constraints on nonstandard neutrino interactions with quarks are derived from this initial data set.« less
Observation of coherent elastic neutrino-nucleus scattering
Akimov, D.; Albert, J. B.; An, P.; ...
2017-08-03
The coherent elastic scattering of neutrinos off nuclei has eluded detection for four decades, even though its predicted cross section is by far the largest of all low-energy neutrino couplings. This mode of interaction offers new opportunities to study neutrino properties and leads to a miniaturization of detector size, with potential technological applications. In this paper, we observed this process at a 6.7σ confidence level, using a low-background, 14.6-kilogram CsI[Na] scintillator exposed to the neutrino emissions from the Spallation Neutron Source at Oak Ridge National Laboratory. Characteristic signatures in energy and time, predicted by the standard model for this process,more » were observed in high signal-to-background conditions. Finally, improved constraints on nonstandard neutrino interactions with quarks are derived from this initial data set.« less
NASA Astrophysics Data System (ADS)
Ramírez Suárez, O. L.; Sparenberg, J.-M.
2017-09-01
We introduce a simplified effective-range function for charged nuclei, related to the modified K matrix but differing from it in several respects. Negative-energy zeros of this function correspond to bound states. Positive-energy zeros correspond to resonances and "echo poles" appearing in elastic-scattering phase-shifts, while its poles correspond to multiple-of-π phase shifts. Padé expansions of this function allow one to parametrize phase shifts on large energy ranges and to calculate resonance and bound-state properties in a very simple way, independently of any potential model. The method is first tested on a d -wave 12C+α potential model. It is shown to lead to a correct estimate of the subthreshold-bound-state asymptotic normalization constant (ANC) starting from the elastic-scattering phase shifts only. Next, the 12C+α experimental p -wave and d -wave phase shifts are analyzed. For the d wave, the relatively large error bars on the phase shifts do not allow one to improve the ANC estimate with respect to existing methods. For the p wave, a value agreeing with the 12C(6Li,d )16O transfer-reaction measurement and with the recent remeasurement of the 16Nβ -delayed α decay is obtained, with improved accuracy. However, the method displays two difficulties: the results are sensitive to the Padé-expansion order and the simplest fits correspond to an imaginary ANC, i.e., to a negative-energy "echo pole," the physical meaning of which is still debatable.
NASA Astrophysics Data System (ADS)
Marchetti, S.; Sbrana, F.; Toscano, A.; Fratini, E.; Carlà, M.; Vassalli, M.; Tiribilli, B.; Pacini, A.; Gambi, C. M. C.
2011-05-01
The three-dimensional structure and the mechanical properties of a β-connectin fragment from human cardiac muscle, belonging to the I band, from I27 to I34, were investigated by small-angle x-ray scattering (SAXS) and single-molecule force spectroscopy (SMFS). This molecule presents an entropic elasticity behavior, associated to globular domain unfolding, that has been widely studied in the last 10 years. In addition, atomic force microscopy based SMFS experiments suggest that this molecule has an additional elastic regime, for low forces, probably associated to tertiary structure remodeling. From a structural point of view, this behavior is a mark of the fact that the eight domains in the I27-I34 fragment are not independent and they organize in solution, assuming a well-defined three-dimensional structure. This hypothesis has been confirmed by SAXS scattering, both on a diluted and a concentrated sample. Two different models were used to fit the SAXS curves: one assuming a globular shape and one corresponding to an elongated conformation, both coupled with a Coulomb repulsion potential to take into account the protein-protein interaction. Due to the predominance of the structure factor, the effective shape of the protein in solution could not be clearly disclosed. By performing SMFS by atomic force microscopy, mechanical unfolding properties were investigated. Typical sawtooth profiles were obtained and the rupture force of each unfolding domain was estimated. By fitting a wormlike chain model to each peak of the sawtooth profile, the entropic elasticity of octamer was described.
A covariant multiple scattering series for elastic projectile-target scattering
NASA Technical Reports Server (NTRS)
Gross, Franz; Maung-Maung, Khin
1989-01-01
A covariant formulation of the multiple scattering series for the optical potential is presented. The case of a scalar nucleon interacting with a spin zero isospin zero A-body target through meson exchange, is considered. It is shown that a covariant equation for the projectile-target t-matrix can be obtained which sums the ladder and crossed ladder diagrams efficiently. From this equation, a multiple scattering series for the optical potential is derived, and it is shown that in the impulse approximation, the two-body t-matrix associated with the first order optical potential is the one in which one particle is kept on mass-shell. The meaning of various terms in the multiple scattering series is given. The construction of the first-order optical potential for elastic scattering calculations is described.
NASA Astrophysics Data System (ADS)
Stock, C.; Gehring, P. M.; Hiraka, H.; Swainson, I.; Xu, Guangyong; Ye, Z.-G.; Luo, H.; Li, J.-F.; Viehland, D.
2012-09-01
We use neutron inelastic scattering to characterize the acoustic phonons in the relaxor Pb(Mg1/3Nb2/3)O3 (PMN) and demonstrate the presence of a highly anisotropic damping mechanism that is directly related to short-range polar correlations. For a large range of temperatures above Tc˜210 K, where dynamic, short-range polar correlations are present, acoustic phonons propagating along [11¯0] and polarized along [110] (TA2 phonons) are overdamped and softened across most of the Brillouin zone. By contrast, acoustic phonons propagating along [100] and polarized along [001] (TA1 phonons) are overdamped and softened for a more limited range of wave vectors q. The anisotropy and temperature dependence of the acoustic phonon energy linewidth Γ are directly correlated with neutron diffuse scattering cross section, indicating that polar nanoregions are the cause of the anomalous behavior. The damping and softening vanish for q→0, i.e., for long-wavelength acoustic phonons near the zone center, which supports the notion that the anomalous damping is a result of the coupling between the relaxational component of the diffuse scattering and the harmonic TA phonons. Therefore, these effects are not due to large changes in the elastic constants with temperature because the elastic constants correspond to the long-wavelength limit. We compare the elastic constants we measure to those from Brillouin scattering experiments and to values reported for pure PbTiO3. We show that while the values of C44 are quite similar, those for C11 and C12 are significantly less in PMN and result in a softening of (C11-C12) over PbTiO3. The elastic constants also show an increased elastic anisotropy [2C44/(C11-C12)] in PMN versus that in PbTiO3. These results are suggestive of an instability to TA2 acoustic fluctuations in PMN and other relaxor ferroelectrics. We discuss our results in the context of the current debate over the “waterfall” effect and show that they are inconsistent with acoustic-optic phonon coupling or other models that invoke the presence of a second, low-energy optic mode.
Elastic constant and Brillouin oscillations in sputtered vitreous SiO2 thin films
NASA Astrophysics Data System (ADS)
Ogi, H.; Shagawa, T.; Nakamura, N.; Hirao, M.; Odaka, H.; Kihara, N.
2008-10-01
We studied the relationship between elastic constants and microstructure in sputtered vitreous SiO2 thin films using pump-probe picosecond laser ultrasound. The delayed probe light pulse is diffracted by the acoustic wave excited by the pump light pulse, inducing Brillouin oscillations, seen as reflectivity change in the probe pulse, whose frequency can be used to extract the sound velocity and elastic moduli. Theoretical calculations were made to explain the asymmetric response of Brillouin oscillations and to predict the possible error limit of the determined elastic constants. The thin films containing defects exhibited lower elastic constant. A micromechanics modeling was developed to evaluate defect porosity and attenuation caused by scattering was able to predict the defect size. Elastic moduli of the defect-free specimens increased with increasing sputtering power, eventually exceeding the bulk value, and correlated with phonon frequencies, indicating that the decrease in the Si-O-Si bond angle of the tetrahedral structure increased the stiffness.
Elastic Moduli of Permanently Densified Silica Glasses
Deschamps, T.; Margueritat, J.; Martinet, C.; Mermet, A.; Champagnon, B.
2014-01-01
Modelling the mechanical response of silica glass is still challenging, due to the lack of knowledge concerning the elastic properties of intermediate states of densification. An extensive Brillouin Light Scattering study on permanently densified silica glasses after cold compression in diamond anvil cell has been carried out, in order to deduce the elastic properties of such glasses and to provide new insights concerning the densification process. From sound velocity measurements, we derive phenomenological laws linking the elastic moduli of silica glass as a function of its densification ratio. The found elastic moduli are in excellent agreement with the sparse data extracted from literature, and we show that they do not depend on the thermodynamic path taken during densification (room temperature or heating). We also demonstrate that the longitudinal sound velocity exhibits an anomalous behavior, displaying a minimum for a densification ratio of 5%, and highlight the fact that this anomaly has to be distinguished from the compressibility anomaly of a-SiO2 in the elastic domain. PMID:25431218
Elastic properties and fracture strength of quasi-isotropic graphite/epoxy composites
NASA Technical Reports Server (NTRS)
Sullivan, T. L.
1977-01-01
A research program is described which was devised to determine experimentally the elastic properties in tension and bending of quasi-isotropic laminates made from high-modulus graphite fiber and epoxy. Four laminate configurations were investigated, and determinations were made of the tensile modulus, Poisson's ratio, bending stiffness, fracture strength, and fracture strain. The measured properties are compared with those predicted by laminate theory, reasons for scatter in the experimental data are discussed, and the effect of fiber misalignment on predicted elastic tensile properties is examined. The results strongly suggest that fiber misalignment in combination with variation in fiber volume content is responsible for the scatter in both elastic constants and fracture strength.
Proton-deuteron double scattering
NASA Technical Reports Server (NTRS)
Wilson, J. W.
1974-01-01
A simple but accurate form for the proton-deuteron elastic double scattering amplitude, which includes both projectile and target recoil motion and is applicable at all momentum transfer, is derived by taking advantage of the restricted range of Fermi momentum allowed by the deuteron wave function. This amplitude can be directly compared to approximations which have neglected target recoil or are limited to small momentum transfer; the target recoil and large momentum transfer effects are evaluated explicitly within the context of a Gaussian model.
Ion Beam Analysis of Diffusion in Diamondlike Carbon Films
NASA Astrophysics Data System (ADS)
Chaffee, Kevin Paul
The van de Graaf accelerator facility at Case Western Reserve University was developed into an analytical research center capable of performing Rutherford Backscattering Spectrometry, Elastic Recoil Detection Analysis for hydrogen profiling, Proton Enhanced Scattering, and ^4 He resonant scattering for ^{16 }O profiling. These techniques were applied to the study of Au, Na^+, Cs ^+, and H_2O water diffusion in a-C:H films. The results are consistent with the fully constrained network model of the microstructure as described by Angus and Jansen.
Investigation of condensed matter by means of elastic thermal-neutron scattering
NASA Astrophysics Data System (ADS)
Abov, Yu. G.; Dzheparov, F. S.; Elyutin, N. O.; Lvov, D. V.; Tyulyusov, A. N.
2016-07-01
The application of elastic thermal-neutron scattering in investigations of condensed matter that were performed at the Institute for Theoretical and Experimental Physics is described. An account of diffraction studies with weakly absorbing crystals, including studies of the anomalous-absorption effect and coherent effects in diffuse scattering, is given. Particular attention is given to exposing the method of multiple small-angle neutron scattering (MSANS). It is shown how information about matter inhomogeneities can be obtained by this method on the basis of Molière's theory. Prospects of the development of this method are outlined, and MSANS theory is formulated for a high concentration of matter inhomogeneities.
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. Ferro-Luzzi; M. Bouwhuis; E. Passchier
1996-09-23
We report an absolute measurement of the tensor analyzing powers T20 and T22 in elastic electron-deuteron scattering at a momentum transfer of 1.6 fm{sup -1}. The novel approach of this measurement is the use of a tensor polarized 2H target internal to an electron storage ring, with in situ measurement of the polarization of the target gas. Scattered electrons and recoil deuterons were detected in coincidence with two large acceptance nonmagnetic detectors. The techniques demonstrated have broad applicability to further measurements of spin-dependent electron scattering.
Propagating elastic vibrations dominate thermal conduction in amorphous silicon
NASA Astrophysics Data System (ADS)
Moon, Jaeyun; Latour, Benoit; Minnich, Austin J.
2018-01-01
The thermal atomic vibrations of amorphous solids can be distinguished by whether they propagate as elastic waves or do not propagate due to lack of atomic periodicity. In a -Si, prior works concluded that nonpropagating waves are the dominant contributors to heat transport, with propagating waves being restricted to frequencies less than a few THz and scattered by anharmonicity. Here, we present a lattice and molecular dynamics analysis of vibrations in a -Si that supports a qualitatively different picture in which propagating elastic waves dominate the thermal conduction and are scattered by local fluctuations of elastic modulus rather than anharmonicity. We explicitly demonstrate the propagating nature of waves up to around 10 THz, and further show that pseudoperiodic structures with homogeneous elastic properties exhibit a marked temperature dependence characteristic of anharmonic interactions. Our work suggests that most heat is carried by propagating elastic waves in a -Si and demonstrates that manipulating local elastic modulus variations is a promising route to realize amorphous materials with extreme thermal properties.
An IBEM solution to the scattering of plane SH-waves by a lined tunnel in elastic wedge space
NASA Astrophysics Data System (ADS)
Liu, Zhongxian; Liu, Lei
2015-02-01
The indirect boundary element method (IBEM) is developed to solve the scattering of plane SH-waves by a lined tunnel in elastic wedge space. According to the theory of single-layer potential, the scattered-wave field can be constructed by applying virtual uniform loads on the surface of lined tunnel and the nearby wedge surface. The densities of virtual loads can be solved by establishing equations through the continuity conditions on the interface and zero-traction conditions on free surfaces. The total wave field is obtained by the superposition of free field and scattered-wave field in elastic wedge space. Numerical results indicate that the IBEM can solve the diffraction of elastic wave in elastic wedge space accurately and efficiently. The wave motion feature strongly depends on the wedge angle, the angle of incidence, incident frequency, the location of lined tunnel, and material parameters. The waves interference and amplification effect around the tunnel in wedge space is more significant, causing the dynamic stress concentration factor on rigid tunnel and the displacement amplitude of flexible tunnel up to 50.0 and 17.0, respectively, more than double that of the case of half-space. Hence, considerable attention should be paid to seismic resistant or anti-explosion design of the tunnel built on a slope or hillside.
Antchev, G.; Aspell, P.; Atanassov, I.; ...
2016-11-30
Here, the TOTEM experiment at the CERN LHC has measured elastic proton–proton scattering at the centre-of-mass energy s√=8TeV and four-momentum transfers squared, |t|, from 6 × 10 –4 to 0.2 GeV 2. Near the lower end of the t-interval the differential cross-section is sensitive to the interference between the hadronic and the electromagnetic scattering amplitudes. This article presents the elastic cross-section measurement and the constraints it imposes on the functional forms of the modulus and phase of the hadronic elastic amplitude. The data exclude the traditional Simplified West and Yennie interference formula that requires a constant phase and a purelymore » exponential modulus of the hadronic amplitude. For parametrisations of the hadronic modulus with second- or third-order polynomials in the exponent, the data are compatible with hadronic phase functions giving either central or peripheral behaviour in the impact parameter picture of elastic scattering. In both cases, the ρ-parameter is found to be 0.12±0.03. The results for the total hadronic cross-section are σ tot = (102.9±2.3) mb and (103.0±2.3) mb for central and peripheral phase formulations, respectively. Both are consistent with previous TOTEM measurements.« less
Mishchenko, Michael I
2017-10-01
The majority of previous studies of the interaction of individual particles and multi-particle groups with electromagnetic field have focused on either elastic scattering in the presence of an external field or self-emission of electromagnetic radiation. In this paper we apply semi-classical fluctuational electrodynamics to address the ubiquitous scenario wherein a fixed particle or a fixed multi-particle group is exposed to an external quasi-polychromatic electromagnetic field as well as thermally emits its own electromagnetic radiation. We summarize the main relevant axioms of fluctuational electrodynamics, formulate in maximally rigorous mathematical terms the general scattering-emission problem for a fixed object, and derive such fundamental corollaries as the scattering-emission volume integral equation, the Lippmann-Schwinger equation for the dyadic transition operator, the multi-particle scattering-emission equations, and the far-field limit. We show that in the framework of fluctuational electrodynamics, the computation of the self-emitted component of the total field is completely separated from that of the elastically scattered field. The same is true of the computation of the emitted and elastically scattered components of quadratic/bilinear forms in the total electromagnetic field. These results pave the way to the practical computation of relevant optical observables.
Hard diffraction from quasi-elastic dipole scattering
NASA Astrophysics Data System (ADS)
Bialas, A.; Peschanski, R.
1996-02-01
The contribution to diffraction dissociation of virtual photons due to quasi-elastic scattering of the q- overlineq component is calculated in the framework of the QCD dipole picture. Both longitudinal and transverse components of the cross-section are given. It is shown that, at fixed mass of the diffractively produced system, quantum mechanical interference plays an important rôle. Phenomenological consequences are discussed.
Far-infrared elastic scattering proposal for the Avogadro Project's silicon spheres
NASA Astrophysics Data System (ADS)
Humayun, Muhammad Hamza; Khan, Imran; Azeem, Farhan; Chaudhry, Muhammad Rehan; Gökay, Ulaş Sabahattin; Murib, Mohammed Sharif; Serpengüzel, Ali
2018-05-01
Avogadro constant determines the number of particles in one mole of a substance, thus relating the molar mass of the substance to the mass of this substance. Avogadro constant is related to Système Internationale base units by defining the very concept of chemical quantity. Revisions of the base units created a need to redefine the Avogadro constant, where a collaborative work called the Avogadro Project is established to employ optical interferometry to measure the diameter of high quality 100 mm silicon spheres. We propose far-infrared spectroscopy for determining the Avogadro constant by using elastic scattering from the 100 mm Avogadro Project silicon spheres. Similar spectroscopic methods are already in use in the near-infrared, relating whispering gallery modes of the 1 mm silicon spheres to the diameter of the spheres. We present numerical simulations in the far-infrared and the near-infrared, as well as spatially scaled down elastic scattering measurements in the near-infrared. These numerical and experimental results show that, the diameter measurements of 100 mm single crystal silicon spheres with elastic scattering in the far-infrared can be considered as an alternative to optical interferometry.
Till, Ugo; Gaucher-Delmas, Mireille; Saint-Aguet, Pascale; Hamon, Glenn; Marty, Jean-Daniel; Chassenieux, Christophe; Payré, Bruno; Goudounèche, Dominique; Mingotaud, Anne-Françoise; Violleau, Frédéric
2014-12-01
Polymersomes formed from amphiphilic block copolymers, such as poly(ethyleneoxide-b-ε-caprolactone) (PEO-b-PCL) or poly(ethyleneoxide-b-methylmethacrylate), were characterized by asymmetrical flow field-flow fractionation coupled with quasi-elastic light scattering (QELS), multi-angle light scattering (MALS), and refractive index detection, leading to the determination of their size, shape, and molecular weight. The method was cross-examined with more classical ones, like batch dynamic and static light scattering, electron microscopy, and atomic force microscopy. The results show good complementarities between all the techniques; asymmetrical flow field-flow fractionation being the most pertinent one when the sample exhibits several different types of population.
Computation of Temperature-Dependent Legendre Moments of a Double-Differential Elastic Cross Section
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arbanas, Goran; Dunn, Michael E; Larson, Nancy M
2011-01-01
A general expression for temperature-dependent Legendre moments of a double-differential elastic scattering cross section was derived by Ouisloumen and Sanchez [Nucl. Sci. Eng. 107, 189-200 (1991)]. Attempts to compute this expression are hindered by the three-fold nested integral, limiting their practical application to just the zeroth Legendre moment of an isotropic scattering. It is shown that the two innermost integrals could be evaluated analytically to all orders of Legendre moments, and for anisotropic scattering, by a recursive application of the integration by parts method. For this method to work, the anisotropic angular distribution in the center of mass is expressedmore » as an expansion in Legendre polynomials. The first several Legendre moments of elastic scattering of neutrons on U-238 are computed at T=1000 K at incoming energy 6.5 eV for isotropic scattering in the center of mass frame. Legendre moments of the anisotropic angular distribution given via Blatt-Biedenharn coefficients are computed at ~1 keV. The results are in agreement with those computed by the Monte Carlo method.« less
Measurement of the proton form factor ratio at low momentum transfer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, Moshe
Experiment E08-007-II measured the proton elastic form factor ratio μG E=G M in the momentum transfer range of Q 2 ~ 0.02 - 0.08 GeV 2, the lowest ever measured by polarization transfer techniques. The experiment was performed at the Thomas Jefferson National Accelerator Facility in Newport News, Virginia, USA during 2012. A polarized electron beam with energies of 1.1, 1.7, and 2.2 GeV was elastically scattered off a polarized solid NH 3 target. The asymmetries between the cross section of positive and negative helicity states of the beam were determined. These asymmetries can be used to determine the formmore » factor ratio. In this thesis, we present the asymmetry analysis of the experiment, discuss the main challenges and show preliminary results for part of the data. Preliminary asymmetries indicate an increase in the form factor ratio above unity. However, a complete analysis is required before any conclusion can be made. Further analysis is ongoing, and final asymmetry results and form factor extraction is expected during 2017. We also present first results for 14N asymmetries for elastic and quasi-elastic scattering. The measured asymmetries are in agreement with the shell model approximation, within the low accuracy of the measurement. A change in the asymmetry sign between the elastic and the quasi-elastic processes is seen, and should motivate further theoretical studies. These experimental asymmetries will also be useful for systematic studies of other experiments using polarized NH 3 targets.« less
Proton-proton elastic scattering at the LHC energy of \\chem{\\sqrt{s} = 7\\,TeV}
NASA Astrophysics Data System (ADS)
TOTEM Collaboration; Antchev, G.; Aspell, P.; Atanassov, I.; Avati, V.; Baechler, J.; Berardi, V.; Berretti, M.; Bozzo, M.; Brücken, E.; Buzzo, A.; Cafagna, F. S.; Calicchio, M.; Catanesi, M. G.; Covault, C.; Csanád, M.; Csörgö, T.; Deile, M.; Dimovasili, E.; Doubek, M.; Eggert, K.; Eremin, V.; Ferro, F.; Fiergolski, A.; Garcia, F.; Giani, S.; Greco, V.; Grzanka, L.; Heino, J.; Hilden, T.; Janda, M.; Kašpar, J.; Kopal, J.; Kundrát, V.; Kurvinen, K.; Lami, S.; Latino, G.; Lauhakangas, R.; Leszko, T.; Lippmaa, E.; Lokajíček, M.; Lo Vetere, M.; Rodríguez, F. Lucas; Macrí, M.; Magaletti, L.; Magazzù, G.; Mercadante, A.; Minutoli, S.; Nemes, F.; Niewiadomski, H.; Noschis, E.; Novák, T.; Oliveri, E.; Oljemark, F.; Orava, R.; Oriunno, M.; Österberg, K.; Perrot, A.-L.; Palazzi, P.; Pedreschi, E.; Petäjäjärvi, J.; Procházka, J.; Quinto, M.; Radermacher, E.; Radicioni, E.; Ravotti, F.; Robutti, E.; Ropelewski, L.; Ruggiero, G.; Saarikko, H.; Santroni, A.; Scribano, A.; Sette, G.; Snoeys, W.; Spinella, F.; Sziklai, J.; Taylor, C.; Turini, N.; Vacek, V.; Vitek, M.; Welti, J.; Whitmore, J.
2011-08-01
Proton-proton elastic scattering has been measured by the TOTEM experiment at the CERN Large Hadron Collider at \\sqrt{s} = 7\\,TeV in dedicated runs with the Roman Pot detectors placed as close as seven times the transverse beam size (σbeam) from the outgoing beams. After careful study of the accelerator optics and the detector alignment, |t|, the square of four-momentum transferred in the elastic scattering process, has been determined with an uncertainty of \\delta t = 0.1\\,\\rm{GeV} \\sqrt{\\vert t\\vert } . In this letter, first results of the differential cross-section are presented covering a |t|-range from 0.36 to 2.5 GeV2. The differential cross-section in the range 0.36 < |t| < 0.47 GeV2 is described by an exponential with a slope parameter B = (23.6 ± 0.5stat ± 0.4syst) GeV-2, followed by a significant diffractive minimum at |t| = (0.53 ± 0.01stat ± 0.01syst) GeV2. For |t|-values larger than ~1.5 GeV2, the cross-section exhibits a power law behaviour with an exponent of -7.8 ± 0.3stat ± 0.1syst. When compared to predictions based on the different available models, the data show a strong discriminative power despite the small t-range covered.
Ye, Feng; Liu, Yaohua; Whitfield, Ross; Osborn, Ray; Rosenkranz, Stephan
2018-04-01
The CORELLI instrument at Oak Ridge National Laboratory is a statistical chopper spectrometer designed and optimized to probe complex disorder in crystalline materials through diffuse scattering experiments. On CORELLI, the high efficiency of white-beam Laue diffraction combined with elastic discrimination have enabled an unprecedented data collection rate to obtain both the total and the elastic-only scattering over a large volume of reciprocal space from a single measurement. To achieve this, CORELLI is equipped with a statistical chopper to modulate the incoming neutron beam quasi-randomly, and then the cross-correlation method is applied to reconstruct the elastic component from the scattering data. Details of the implementation of the cross-correlation method on CORELLI are given and its performance is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Feng; Liu, Yaohua; Whitfield, Ross
The CORELLI instrument at Oak Ridge National Laboratory is a statistical chopper spectrometer designed and optimized to probe complex disorder in crystalline materials through diffuse scattering experiments. On CORELLI, the high efficiency of white-beam Laue diffraction combined with elastic discrimination have enabled an unprecedented data collection rate to obtain both the total and the elastic-only scattering over a large volume of reciprocal space from a single measurement. To achieve this, CORELLI is equipped with a statistical chopper to modulate the incoming neutron beam quasi-randomly, and then the cross-correlation method is applied to reconstruct the elastic component from the scattering data.more » Lastly, details of the implementation of the cross-correlation method on CORELLI are given and its performance is discussed.« less
Ye, Feng; Liu, Yaohua; Whitfield, Ross; ...
2018-03-26
The CORELLI instrument at Oak Ridge National Laboratory is a statistical chopper spectrometer designed and optimized to probe complex disorder in crystalline materials through diffuse scattering experiments. On CORELLI, the high efficiency of white-beam Laue diffraction combined with elastic discrimination have enabled an unprecedented data collection rate to obtain both the total and the elastic-only scattering over a large volume of reciprocal space from a single measurement. To achieve this, CORELLI is equipped with a statistical chopper to modulate the incoming neutron beam quasi-randomly, and then the cross-correlation method is applied to reconstruct the elastic component from the scattering data.more » Lastly, details of the implementation of the cross-correlation method on CORELLI are given and its performance is discussed.« less
Elastic amplitudes studied with the LHC measurements at 7 and 8 TeV
NASA Astrophysics Data System (ADS)
Kohara, A. K.; Ferreira, E.; Kodama, T.; Rangel, M.
2017-12-01
Recent measurements of the differential cross sections in the forward region of pp elastic scattering at 7 and 8 TeV show the precise form of the t dependence. We present a detailed analysis of these measurements including the structures of the real and imaginary parts of the scattering amplitude. A good description is achieved, confirming in all experiments the existence of a zero in the real part in the forward region close to the origin, in agreement with the prediction of a theorem by Martin, with an important role in the observed form of dσ /dt. A universal value for the position of this zero and regularity in other features of the amplitudes are found, leading to quantitative predictions for the forward elastic scattering at 13 TeV.
Correlation between quarter-point angle and nuclear radius
NASA Astrophysics Data System (ADS)
Ma, Wei-Hu; Wang, Jian-Song; Mukherjee, S.; Wang, Qi; Patel, D.; Yang, Yan-Yun; Ma, Jun-Bing; Ma, Peng; Jin, Shi-Lun; Bai, Zhen; Liu, Xing-Quan
2017-04-01
The correlation between quarter-point angle of elastic scattering and nuclear matter radius is studied systematically. Various phenomenological formulae with parameters for nuclear radius are adopted and compared by fitting the experimental data of quarter point angle extracted from nuclear elastic scattering reaction systems. A parameterized formula related to binding energy is recommended, which gives a good reproduction of nuclear matter radii of halo nuclei. It indicates that the quarter-point angle of elastic scattering is quite sensitive to the nuclear matter radius and can be used to extract the nuclear matter radius. Supported by National Natural Science Foundation of China (U1432247, 11575256), National Basic Research Program of China (973 Program)(2014CB845405 and 2013CB83440x) and (SM) Chinese Academy of Sciences President’s International Fellowship Initiative (2015-FX-04)
Dapor, Maurizio
2018-03-29
Quantum information theory deals with quantum noise in order to protect physical quantum bits (qubits) from its effects. A single electron is an emblematic example of a qubit, and today it is possible to experimentally produce polarized ensembles of electrons. In this paper, the theory of the polarization of electron beams elastically scattered by atoms is briefly summarized. Then the POLARe program suite, a set of computer programs aimed at the calculation of the spin-polarization parameters of electron beams elastically interacting with atomic targets, is described. Selected results of the program concerning Ar, Kr, and Xe atoms are presented together with the comparison with experimental data about the Sherman function for low kinetic energy of the incident electrons (1.5eV-350eV). It is demonstrated that the quantum-relativistic theory of the polarization of electron beams elastically scattered by atoms is in good agreement with experimental data down to energies smaller than a few eV.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costa, Romarly F. da; Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-580 Santo André, São Paulo; Oliveira, Eliane M. de
2015-03-14
We report theoretical and experimental total cross sections for electron scattering by phenol (C{sub 6}H{sub 5}OH). The experimental data were obtained with an apparatus based in Madrid and the calculated cross sections with two different methodologies, the independent atom method with screening corrected additivity rule (IAM-SCAR), and the Schwinger multichannel method with pseudopotentials (SMCPP). The SMCPP method in the N{sub open}-channel coupling scheme, at the static-exchange-plus-polarization approximation, is employed to calculate the scattering amplitudes at impact energies ranging from 5.0 eV to 50 eV. We discuss the multichannel coupling effects in the calculated cross sections, in particular how the numbermore » of excited states included in the open-channel space impacts upon the convergence of the elastic cross sections at higher collision energies. The IAM-SCAR approach was also used to obtain the elastic differential cross sections (DCSs) and for correcting the experimental total cross sections for the so-called forward angle scattering effect. We found a very good agreement between our SMCPP theoretical differential, integral, and momentum transfer cross sections and experimental data for benzene (a molecule differing from phenol by replacing a hydrogen atom in benzene with a hydroxyl group). Although some discrepancies were found for lower energies, the agreement between the SMCPP data and the DCSs obtained with the IAM-SCAR method improves, as expected, as the impact energy increases. We also have a good agreement among the present SMCPP calculated total cross section (which includes elastic, 32 inelastic electronic excitation processes and ionization contributions, the latter estimated with the binary-encounter-Bethe model), the IAM-SCAR total cross section, and the experimental data when the latter is corrected for the forward angle scattering effect [Fuss et al., Phys. Rev. A 88, 042702 (2013)].« less
A wave-mechanical model of incoherent quasielastic scattering in complex systems.
Frauenfelder, Hans; Fenimore, Paul W; Young, Robert D
2014-09-02
Quasielastic incoherent neutron scattering (QENS) is an important tool for the exploration of the dynamics of complex systems such as biomolecules, liquids, and glasses. The dynamics is reflected in the energy spectra of the scattered neutrons. Conventionally these spectra are decomposed into a narrow elastic line and a broad quasielastic band. The band is interpreted as being caused by Doppler broadening due to spatial motion of the target molecules. We propose a quantum-mechanical model in which there is no separate elastic line. The quasielastic band is composed of sharp lines with twice the natural line width, shifted from the center by a random walk of the protein in the free-energy landscape of the target molecule. The walk is driven by vibrations and by external fluctuations. We first explore the model with the Mössbauer effect. In the subsequent application to QENS we treat the incoming neutron as a de Broglie wave packet. While the wave packet passes the protons in the protein and the hydration shell it exchanges energy with the protein during the passage time of about 100 ns. The energy exchange broadens the ensemble spectrum. Because the exchange involves the free-energy landscape of the protein, the QENS not only provides insight into the protein dynamics, but it may also illuminate the free-energy landscape of the protein-solvent system.
Vibrational excitation of water by electron impact
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khakoo, M. A.; Winstead, C.; McKoy, V.
2009-05-15
Experimental and calculated differential cross sections (DCSs) for electron-impact excitation of the (010) bending mode and unresolved (100) symmetric and (001) antisymmetric stretching modes of water are presented. Measurements are reported at incident energies of 1-100 eV and scattering angles of 10 deg. - 130 deg. and are normalized to the elastic-scattering DCSs for water determined earlier by our group. The calculated cross sections are obtained in the adiabatic approximation from fixed-nuclei, electronically elastic scattering calculations using the Schwinger multichannel method. The present results are compared to available experimental and theoretical data.
Low-energy elastic differential scattering of He/++/ by He.
NASA Technical Reports Server (NTRS)
Lam, S. K.; Doverspike, L. D.; Champion, R. L.
1973-01-01
Experimental results are developed for the relative elastic differential scattering of He(++) by He for collision energies in the range 4 equal to or less than E equal to or less than 75 eV. In the analysis of the data, semiclassical considerations are utilized, assuming that the dynamics of the scattering is governed solely by the B and E states of He2(++). It is shown that existing ab initio calculations for the intermolecular potentials predict differential cross sections which are not in particularly good agreement with the experimental data.
Maria Jose, Gonzalez Torres; Jürgen, Henniger
2018-01-01
In order to expand the Monte Carlo transport program AMOS to particle therapy applications, the ion module is being developed in the radiation physics group (ASP) at the TU Dresden. This module simulates the three main interactions of ions in matter for the therapy energy range: elastic scattering, inelastic collisions and nuclear reactions. The simulation of the elastic scattering is based on the Binary Collision Approximation and the inelastic collisions on the Bethe-Bloch theory. The nuclear reactions, which are the focus of the module, are implemented according to a probabilistic-based model developed in the group. The developed model uses probability density functions to sample the occurrence of a nuclear reaction given the initial energy of the projectile particle as well as the energy at which this reaction will take place. The particle is transported until the reaction energy is reached and then the nuclear reaction is simulated. This approach allows a fast evaluation of the nuclear reactions. The theory and application of the proposed model will be addressed in this presentation. The results of the simulation of a proton beam colliding with tissue will also be presented. Copyright © 2017.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patrick, Cheryl
Next-generation neutrino oscillation experiments, such as DUNE and Hyper-Kamiokande, hope to measure charge-parity (CP) violation in the lepton sector. In order to do this, they must dramatically reduce their current levels of uncertainty, particularly those due to neutrino-nucleus interaction models. As CP violation is a measure of the difference between the oscillation properties of neutrinos and antineutrinos, data about how the less-studied antineutrinos interact is especially valuable. We present the MINERvA experiment's first double-differential scattering cross sections for antineutrinos on scintillator, in the few-GeV range relevant to experiments such as DUNE and NOvA. We also present total antineutrino-scintillator quasi-elastic crossmore » sections as a function of energy, which we compare to measurements from previous experiments. As well as being useful to help reduce oscillation experiments' uncertainty, our data can also be used to study the prevalence of various cor relation and final-state interaction effects within the nucleus. We compare to models produced by different model generators, and are able to draw first conclusions about the predictions of these models.« less
Coupled NASTRAN/boundary element formulation for acoustic scattering
NASA Technical Reports Server (NTRS)
Everstine, Gordon C.; Henderson, Francis M.; Schuetz, Luise S.
1987-01-01
A coupled finite element/boundary element capability is described for calculating the sound pressure field scattered by an arbitrary submerged 3-D elastic structure. Structural and fluid impedances are calculated with no approximation other than discretization. The surface fluid pressures and normal velocities are first calculated by coupling a NASTRAN finite element model of the structure with a discretized form of the Helmholtz surface integral equation for the exterior field. Far field pressures are then evaluated from the surface solution using the Helmholtz exterior integral equation. The overall approach is illustrated and validated using a known analytic solution for scattering from submerged spherical shells.
A Precise Measurement of the Deuteron Elastic Structure Function A(Q 2)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Honegger, Andrian
1999-12-07
During summer 1997 experiment 394-018 measured the deuteron tensor polarization in D(e,e'more » $$vec\\{d}$$) scattering in Hall C at Jefferson Laboratory. In a momentum transfer range between 0.66 and 1.8 (GeV=c) 2, with slight changes in the experimental setup, the collaboration performed six precision measurements of the deuteron structure function A(Q 2) in elastic D(e,e'd) scattering . Scattered electrons and recoil deuterons were detected in coincidence in the High Momentum Spectrometer and the recoil polarimeter POLDER, respectively. At every kinematics H(e,e') data were taken to study systematic effects of the measurement. These new precise measurements resolve discrepancies between older data sets and put significant constraints on existing models of the deuteron electromagnetic structure. This work was supported by the Swiss National Science Foundation, the French Centre National de la Recherche Scientifique and the Commissariat 'a l'Energie Atomique, the U.S. Department of Energy and the National Science Foundation and the K.C. Wong Foundation.« less
Kritcher, A. L.; Neumayer, P.; Lee, H. J.; ...
2008-10-31
Here, we present K-α x-ray Thomson scattering from shock compressed matter for use as a diagnostic in determining the temperature, density, and ionization state with picosecond resolution. The development of this source as a diagnostic as well as stringent requirements for successful K-α x-ray Thomson scattering are addressed. Here, the first elastic and inelastic scattering measurements on a medium size laser facility have been observed. We present scattering data from solid density carbon plasmas with >1X 10 5 photons in the elastic peak that validate the capability of single shot characterization of warm dense matter and the ability to usemore » this scattering source at future free electron lasers and for fusion experiments at the National Ignition Facility (NIF), LLNL.« less
Thomson scattering from a three-component plasma.
Johnson, W R; Nilsen, J
2014-02-01
A model for a three-component plasma consisting of two distinct ionic species and electrons is developed and applied to study x-ray Thomson scattering. Ions of a specific type are assumed to be identical and are treated in the average-atom approximation. Given the plasma temperature and density, the model predicts mass densities, effective ionic charges, and cell volumes for each ionic type, together with the plasma chemical potential and free-electron density. Additionally, the average-atom treatment of individual ions provides a quantum-mechanical description of bound and continuum electrons. The model is used to obtain parameters needed to determine the dynamic structure factors for x-ray Thomson scattering from a three-component plasma. The contribution from inelastic scattering by free electrons is evaluated in the random-phase approximation. The contribution from inelastic scattering by bound electrons is evaluated using the bound-state and scattering wave functions obtained from the average-atom calculations. Finally, the partial static structure factors for elastic scattering by ions are evaluated using a two-component version of the Ornstein-Zernike equations with hypernetted chain closure, in which electron-ion interactions are accounted for using screened ion-ion interaction potentials. The model is used to predict the x-ray Thomson scattering spectrum from a CH plasma and the resulting spectrum is compared with experimental results obtained by Feltcher et al. [Phys. Plasmas 20, 056316 (2013)].
Delta-Isobar Production in the Hard Photodisintegration of a Deuteron
NASA Astrophysics Data System (ADS)
Granados, Carlos; Sargsian, Misak
2010-02-01
Hard photodisintegration of the deuteron in delta-isobar production channels is proposed as a useful process in identifying the quark structure of hadrons and of hadronic interactions at large momentum and energy transfer. The reactions are modeled using the hard re scattering model, HRM, following previous works on hard breakup of a nucleon nucleon (NN) system in light nuclei. Here,quantitative predictions through the HRM require the numerical input of fits of experimental NN hard elastic scattering cross sections. Because of the lack of data in hard NN scattering into δ-isobar channels, the cross section of the corresponding photodisintegration processes cannot be predicted in the same way. Instead, the corresponding NN scattering process is modeled through the quark interchange mechanism, QIM, leaving an unknown normalization parameter. The observables of interest are ratios of differential cross sections of δ-isobar production channels to NN breakup in deuteron photodisintegration. Both entries in these ratios are derived through the HRM and QIM so that normalization parameters cancel out and numerical predictions can be obtained. )
NASA Astrophysics Data System (ADS)
Albrow, M. G.
1993-09-01
The author gives a summary talk of the best experimental data given at the 5th Blois Workshop on Elastic and Diffractive Scattering. He addresses the following eight areas in his talk: total and elastic cross sections; single diffractive excitation; electron-proton scattering; di-jets and rapidity gaps; areas of future study; spins and asymmetries; high-transverse momentum and masses at the Tevatron; and disoriented chiral condensates and cosmic radiation.
NASA Astrophysics Data System (ADS)
Qiang, FangWei; Wei, PeiJun; Li, Li
2012-07-01
In the present paper, the effective propagation constants of elastic SH waves in composites with randomly distributed parallel cylindrical nanofibers are studied. The surface stress effects are considered based on the surface elasticity theory and non-classical interfacial conditions between the nanofiber and the host are derived. The scattering waves from individual nanofibers embedded in an infinite elastic host are obtained by the plane wave expansion method. The scattering waves from all fibers are summed up to obtain the multiple scattering waves. The interactions among random dispersive nanofibers are taken into account by the effective field approximation. The effective propagation constants are obtained by the configurational average of the multiple scattering waves. The effective speed and attenuation of the averaged wave and the associated dynamical effective shear modulus of composites are numerically calculated. Based on the numerical results, the size effects of the nanofibers on the effective propagation constants and the effective modulus are discussed.
Spin entanglement in elastic electron scattering from lithium atoms
NASA Astrophysics Data System (ADS)
Bartschat, K.; Santos, S. Fonseca dos
2017-04-01
In two recent papers [Blum and Lohmann, Phys. Rev. Lett. 116, 033201 (2016), 10.1103/PhysRevLett.116.033201; Lohmann et al., Phys. Rev. A 94, 032331 (2016), 10.1103/PhysRevA.94.032331], the possibility of continuously varying the degree of entanglement between an elastically scattered electron and the valence electron of an alkali-metal target was discussed. To estimate how well such a scheme may work in practice, we present results for elastic electron scattering from lithium in the energy regime of 1 -5 eV and the full range of scattering angles 0∘-180∘ . The most promising regime for Bell correlations in this particular collision system are energies between about 1.5 and 3.0 eV, in an angular range around 110∘±10∘ . In addition to the relative exchange asymmetry parameter, we present the differential cross section that is important when estimating the count rate and hence the feasibility of experiments using this system.
The interpretation of polycrystalline coherent inelastic neutron scattering from aluminium
Roach, Daniel L.; Ross, D. Keith; Gale, Julian D.; Taylor, Jon W.
2013-01-01
A new approach to the interpretation and analysis of coherent inelastic neutron scattering from polycrystals (poly-CINS) is presented. This article describes a simulation of the one-phonon coherent inelastic scattering from a lattice model of an arbitrary crystal system. The one-phonon component is characterized by sharp features, determined, for example, by boundaries of the (Q, ω) regions where one-phonon scattering is allowed. These features may be identified with the same features apparent in the measured total coherent inelastic cross section, the other components of which (multiphonon or multiple scattering) show no sharp features. The parameters of the model can then be relaxed to improve the fit between model and experiment. This method is of particular interest where no single crystals are available. To test the approach, the poly-CINS has been measured for polycrystalline aluminium using the MARI spectrometer (ISIS), because both lattice dynamical models and measured dispersion curves are available for this material. The models used include a simple Lennard-Jones model fitted to the elastic constants of this material plus a number of embedded atom method force fields. The agreement obtained suggests that the method demonstrated should be effective in developing models for other materials where single-crystal dispersion curves are not available. PMID:24282332
Electron collisions with ethylene
NASA Astrophysics Data System (ADS)
Panajotovic, R.; Kitajima, M.; Tanaka, H.; Jelisavcic, M.; Lower, J.; Campbell, L.; Brunger, M. J.; Buckman, S. J.
2003-04-01
We have measured absolute elastic scattering and vibrational excitation cross sections for electron impact on ethylene. The experimental data have been obtained on two different crossed-beam electron spectrometers and they cover the energy range from 1 to 100 eV and scattering angles between 10° and 130°. Both differential (in angle) and energy-dependent cross sections have been measured. The differential cross sections have also been analysed using a molecular phase shift analysis technique in order to derive the integral elastic and elastic momentum transfer cross sections. Comparison is made with earlier data, where available, and also with a number of recent theoretical calculations.
NASA Technical Reports Server (NTRS)
Sheu, Y. C.; Fu, L. S.
1983-01-01
The extended method of equivalent inclusions is applied to study the specific wave problems: (1) the transmission of elastic waves in an infinite medium containing a layer of inhomogeneity, and (2) the scattering of elastic waves in an infinite medium containing a perfect spherical inhomogeneity. Eigenstrains are expanded as a geometric series and a method of integration based on the inhomogeneous Helmholtz operator is adopted. This study compares results, obtained by using limited number of terms in the eigenstrain expansion, with exact solutions for the layer problem and that for a perfect sphere.
The practical Pomeron for high energy proton collimation
NASA Astrophysics Data System (ADS)
Appleby, R. B.; Barlow, R. J.; Molson, J. G.; Serluca, M.; Toader, A.
2016-10-01
We present a model which describes proton scattering data from ISR to Tevatron energies, and which can be applied to collimation in high energy accelerators, such as the LHC and FCC. Collimators remove beam halo particles, so that they do not impinge on vulnerable regions of the machine, such as the superconducting magnets and the experimental areas. In simulating the effect of the collimator jaws it is crucial to model the scattering of protons at small momentum transfer t, as these protons can subsequently survive several turns of the ring before being lost. At high energies these soft processes are well described by Pomeron exchange models. We study the behaviour of elastic and single-diffractive dissociation cross sections over a wide range of energy, and show that the model can be used as a global description of the wide variety of high energy elastic and diffractive data presently available. In particular it models low mass diffraction dissociation, where a rich resonance structure is present, and thus predicts the differential and integrated cross sections in the kinematical range appropriate to the LHC. We incorporate the physics of this model into the beam tracking code MERLIN and use it to simulate the resulting loss maps of the beam halo lost in the collimators in the LHC.
Electron and positron interaction with pyrimidine: A theoretical investigation
NASA Astrophysics Data System (ADS)
Sinha, Nidhi; Antony, Bobby
2018-03-01
Pyrimidine (C4H4N2) is considered as the building block of nucleobases, viz., cytosine, thymine and uracil. They provide a blueprint for probing the scattering of radiation by DNA and RNA bases. In this article, we report the elastic and total scattering cross-sections for electron and positron scattering from the pyrimidine molecule, employing a spherical complex optical potential (SCOP) formalism for an extensive energy range of 10 eV to 5 keV. In the case of positron scattering, the original SCOP formalism is modified to adequately solve the positron-target dynamics. Moreover, a reasonable agreement is observed between the present results and other available datasets, for both electron and positron scattering. The cross-sections for electron and positron impact scattering by pyrimidine are necessary input data for codes that seek to simulate radiation damage, and hence are useful to model biomolecular systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beckerman, M.; Auble, R.L.; Bertrand, F.E.
1987-08-01
High-resolution measurements have been made of elastic and inelastic scattering of /sup 58/Ni+ /sup 208/Pb at four bombarding energies from 10.3 to 17.4 MeV/nucleon. The considerable inelastic strength observed for excitation energies up to at least 7 MeV is dominated by Coulomb-driven quadrupole transitions. Analyses were done using both the distorted-wave Born approximation and coupled-channels models. At the highest bombarding energies the data can be described equally well by distorted-wave Born approximations and coupled channels analyses. We find that B(E2) = 0.062 e/sup 2/b/sup 2/ for the 1.454 MeV 2/sup +/ state in /sup 58/Ni and B(E2) = 0.34 e/supmore » 2/b/sup 2/ for the 4.09 MeV 2/sup +/ state in /sup 208/Pb.« less
NASA Astrophysics Data System (ADS)
Soles, Christopher; Peng, Hua-Gen; Page, Kirt; Snyder, Chad; Pandy, Ashoutosh; Jeong, Youmi; Runt, James; NIST Collaboration; Pennsylvania Collaboration
2011-03-01
The application of solid polymer electrolytes in rechargeable batteries has not been fully realized after decades of research due to its low conductivity. Dramatic increases of the ion conductivity are needed and this progress requires the understanding of conduction mechanism. We address this topic in two fronts, namely, the effect of plasticizer additives and geometric confinement on the charge transfer mechanism. To this end, we combine broadband dielectric spectroscopy (BDS) to characterize the ion mobility and quasi-elastic neutron scattering (QENS) to quantify segmental motion on a single-ion model polymer electrolyte. Deuterated small molecules were used as plasticizers so that the segmental motion of the polymer electrolyte could be monitored by QENS to understand the mechanism behind the increased conductivity. Anodic aluminum oxide (AAO) membranes with well defined channel sizes are used as the matrix to study the transport of ions solvated in a 1D polymer electrolyte.
CCC calculated integrated cross sections of electron-H2 scattering
NASA Astrophysics Data System (ADS)
Zammit, Mark; Fursa, Dmitry; Savage, Jeremy; Bray, Igor
2016-09-01
Recently we applied the molecular convergent close-coupling (CCC) method to electron scattering from molecular hydrogen H2. Convergence of the major integrated cross sections has been explicitly demonstrated in the fixed-nuclei approximation by increasing the number of H2 target states in the close-coupling expansion from 9 to 491. The calculations have been performed using a projectile partial wave expansion with maximum orbital angular momentum Lmax = 8 and total orbital angular momentum projections | M | <= 8 . Coupling to the ionization continuum is modeled via a large pseudo state expansion, which we found is required to obtain reliable elastic and excitation cross sections. Here we present benchmark elastic, single-ionization, electronic excitation and total integrated cross sections over a broad energy range (0.1 to 300 eV) and compare with available experiment and previous calculations. Los Alamos National Laboratory and Curtin University.
Low-energy electron scattering from atomic hydrogen. II. Elastic and inelastic scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
James, K.E. Jr.; Childers, J.G.; Khakoo, M.A.
2004-02-01
We present measurements of differential cross sections for elastic electron scattering from atomic hydrogen at 20 eV and 40 eV incident electron energies and ratios of differential cross sections for electron-impact excitation of atomic hydrogen to the n=2, 3, and 4 levels at incident electron energies of 14.6 eV, 15.6 eV, 17.6 eV, 20 eV, 25 eV, and 40 eV with scattering angles ranging from 10 deg. to 130 deg. We compare our results to available experimental measurements and recent convergent close-coupling calculations. Our results resolve significant discrepancies that existed between theory and past experiments.
Experimental Report: ORNL Proposal ID IPTS 8937
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mirmelstein, A.
2014-02-03
Neutron scattering experiment was performed using fine-resolution Fermi chopper spectrometer “SEQUOIA” installed at the Spallation Neutron Source, ORNL. Although this spectrometer is designed to measure inelastic neutron scattering spectra, during experiments a signal of elastic scattering is also recorded. The coherent nuclear component of this elastic scattering provides Bragg diffraction pattern of a sample, i.e., CeNi single crystal in our case. Therefore, it is possible to follow the CeNi structural variations as a function of pressure and to register structural phase transition. Measurements were performed at the temperature of 15 K under pressure of zero (ambient pressure at 15 K),more » 400, 800, and 2200 bars.« less
Noninvasive identification of bladder cancer with sub-surface backscattered light
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bigio, I.J.; Mourant, J.R.; Boyer, J.
1994-02-01
A non-invasive diagnostic tool that could identify malignancy in situ and in real time would have a major impact on the detection and treatment of cancer. We have developed and are testing early prototypes of an optical biopsy system (OBS) for detection of cancer and other tissue pathologies. The OBS invokes a unique approach to optical diagnosis of tissue pathologies based on the elastic scattering properties, over a wide range of wavelengths, of the microscopic structure of the tissue. Absorption bands in the tissue also add useful complexity to the spectral data collected. The use of elastic scattering as themore » key to optical tissue diagnostics in the OBS is based on the fact that many tissue pathologies, including a majority of cancer forms, manifest significant architectural changes at the cellular and sub-cellular level. Since the cellular components that cause elastic scattering have dimensions typically on the order of visible to near-IR wavelengths, the elastic (Mie) scattering properties will be strongly wavelength dependent. Thus, morphology and size changes can be expected to cause significant changes in an optical signature that is derived from the wavelength-dependence of elastic scattering as well as absorption. The data acquisition and storage/display time with the OBS instrument is {approximately}1 second. Thus, in addition to the reduced invasiveness of this technique compared with current state-of-the-art methods (surgical biopsy and pathology analysis), the OBS offers the possibility of impressively faster diagnostic assessment. The OBS employs a small fiber-optic probe that is amenable to use with any endoscope, catheter or hypodermic, or to direct surface examination (e.g., as in skin cancer or cervical cancer). We report here specifically on its potential application in the detection of bladder cancer.« less
Sharma, P; Córcoles, A; Bennett, R G; Parpia, J M; Cowan, B; Casey, A; Saunders, J
2011-11-04
We discuss the mass transport of a degenerate Fermi liquid ^{3}He film over a rough surface, and the film momentum relaxation time, in the framework of theoretical predictions. In the mesoscopic regime, the anomalous temperature dependence of the relaxation time is explained in terms of the interference between elastic boundary scattering and inelastic quasiparticle-quasiparticle scattering within the film. We exploit a quasiclassical treatment of quantum size effects in the film in which the surface roughness, whose power spectrum is experimentally determined, is mapped into an effective disorder potential within a film of uniform thickness. Confirmation is provided by the introduction of elastic scattering centers within the film. The improved understanding of surface roughness scattering may impact on enhancing the conductivity in thin metallic films.
NASA Technical Reports Server (NTRS)
Fu, L. S. W.
1982-01-01
The scattering of a single ellipsoidal inhomogeneity is studied via an eigenstrain approach. The displacement field is given in terms of volume integrals that involve eigenstrains that are related to mismatch in mass density and that in elastic moduli. The governing equations for these unknown eigenstrains are derived. Agreement with other approaches for the scattering problem is shown. The formulation is general and both the inhomogeneity and the host medium can be anisotrophic. The axisymmetric scattering of an ellipsoidal inhomogeneity in a linear elastic isotropic medium is given as an example. The angular and frequency dependence of the scattered displacement field, the differential and total cross sections are formally given in series expansions for the case of uniformly distributed eigenstrains.
Butler, Christopher John; Yang, Po-Ya; Sankar, Raman; Lien, Yen-Neng; Lu, Chun-I; Chang, Luo-Yueh; Chen, Chia-Hao; Wei, Ching-Ming; Chou, Fang-Cheng; Lin, Minn-Tsong
2016-09-28
Observations of quasiparticle interference have been used in recent years to examine exotic carrier behavior at the surfaces of emergent materials, connecting carrier dispersion and scattering dynamics to real-space features with atomic resolution. We observe quasiparticle interference in the strongly Rashba split 2DEG-like surface band found at the tellurium termination of BiTeBr and examine two mechanisms governing quasiparticle scattering: We confirm the suppression of spin-flip scattering by comparing measured quasiparticle interference with a spin-dependent elastic scattering model applied to the calculated spectral function. We also use atomically resolved STM maps to identify point defect lattice sites and spectro-microscopy imaging to discern their varying scattering strengths, which we understand in terms of the calculated orbital characteristics of the surface band. Defects on the Bi sublattice cause the strongest scattering of the predominantly Bi 6p derived surface band, with other defects causing nearly no scattering near the conduction band minimum.
NASA Astrophysics Data System (ADS)
Toyokawa, Masakazu; Yahiro, Masanobu; Matsumoto, Takuma; Kohno, Michio
2018-02-01
An important current subject is to clarify the properties of chiral three-nucleon forces (3NFs) not only in nuclear matter but also in scattering between finite-size nuclei. Particularly for elastic scattering, this study has just started and the properties are not understood for a wide range of incident energies (E_in). We investigate basic properties of chiral 3NFs in nuclear matter with positive energies by using the Brueckner-Hartree-Fock method with chiral two-nucleon forces at N3LO and 3NFs at NNLO, and analyze the effects of chiral 3NFs on 4He elastic scattering from targets ^{208}Pb, ^{58}Ni, and ^{40}Ca over a wide range of 30 ≲ E_in/A_P ≲ 200 MeV by using the g-matrix folding model, where A_P is the mass number of the projectile. In symmetric nuclear matter with positive energies, chiral 3NFs make the single-particle potential less attractive and more absorptive. The effects mainly come from the Fujita-Miyazawa 2π-exchange 3NF and become slightly larger as E_in increases. These effects persist in the optical potentials of 4He scattering. As for the differential cross sections of 4He scattering, chiral-3NF effects are large for E_in/A_P ≳ 60 MeV and improve the agreement of the theoretical results with the measured ones. Particularly for E_in/A_P ≳ 100 MeV, the folding model reproduces measured differential cross sections pretty well. Cutoff (Λ) dependence is investigated for both nuclear matter and 4He scattering by considering two cases of Λ=450 and 550 MeV. The uncertainty coming from the dependence is smaller than chiral-3NF effects even at E_in/A_P=175 MeV.
Electron Scattering Measurements applied to Neutrino Interactions on Nuclei
NASA Astrophysics Data System (ADS)
Christy, M. Eric
2013-04-01
The extraction of neutrino mass differences and flavor mixing parameters from oscillation experiments requires models of neutrino-nucleus scattering as input. With the reduction of other systematics, the uncertainties stemming from such models are expected to be one of the larger contributions to the systematic uncertainties for next generation oscillation experiments. The neutrino energy range sensitive to oscillations in long baseline experiments is typically the few GeV range, where the interactions with the nucleus and the subsequent production and propagation of hadrons within the nucleus is in the regime studied by nuclear physics experiments at facilities such as Jefferson Lab. While processes such as resonance production have been well studied in electron scattering, there is currently precious little corresponding data from neutrino scattering. Results from electron scattering experiments, therefore, have an important role to play in both building and constraining models for neutrino scattering. On the other hand, the study of nucleon structure via weak probes is very complementary to the program at Jefferson Lab utilizing electromagnetic probes. Neutrino scattering experiments such at MINERvA are expected to provide new experimental information on axial elastic and resonance transition form factors and on medium modifications via the axial coupling. This talk will focus on the application of electron scattering measurements to neutrino interactions on nuclei, but will also touch on where neutrino scattering measurements can add to our understanding of the nucleus.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tudyka, Konrad, E-mail: konrad.tudyka@polsl.pl; Adamiec, Grzegorz; Bluszcz, Andrzej
We report on a Monte Carlo simulation study of afterpulses due to trace gases in EMI 9235QA photomultipliers that are widely used in many luminescence detection systems operating in single photon counting mode. The numerical simulation takes into account the nonuniform electric field distribution and processes including elastic scattering: e + He → e + He, excitation: e + He → e + He{sup ∗}, ionization: e + He → 2e + He{sup +}, elastic scattering: He{sup +} + He → He{sup +} + He, charge transfer: He{sup +} + He → He{sub f} + He{sup +} (He{sub f} indicatesmore » a fast neutral) and elastic scattering: He{sub f} + He → He{sub f} + He{sub (f)}. The simulated and the measured time of flight distributions agree well. In addition, the above simulated processes demonstrate mechanisms of the observed series of pulses brought about by a single helium atom ionization.« less
Spin entanglement in elastic electron scattering from quasi-one electron atoms
NASA Astrophysics Data System (ADS)
Fonseca Dos Santos, Samantha; Bartschat, Klaus
2017-04-01
We have extended our work on e-Li collisions to investigate low-energy elastic electron collisions with atomic hydrogen and other alkali targets (Na,K,Rb). These systems have been suggested for the possibility of continuously varying the degree of entanglement between the elastically scattered projectile and the valence electron. In order to estimate how well such a scheme may work in practice, we carried out overview calculations for energies between 0 and 10 eV and the full range of scattering angles 0° -180° . In addition to the relative exchange asymmetry parameter that characterizes the entanglement, we present the differential cross section in order to estimate whether the count rates in the most interesting energy-angle regimes are sufficient to make such experiments feasible in practice. Work supported by the NSF under PHY-1403245.
NASA Astrophysics Data System (ADS)
Li, Qian; Matula, Thomas J.; Tu, Juan; Guo, Xiasheng; Zhang, Dong
2013-02-01
It has been accepted that the dynamic responses of ultrasound contrast agent (UCA) microbubbles will be significantly affected by the encapsulating shell properties (e.g., shell elasticity and viscosity). In this work, a new model is proposed to describe the complicated rheological behaviors in an encapsulating shell of UCA microbubbles by applying the nonlinear ‘Cross law’ to the shell viscous term in the Marmottant model. The proposed new model was verified by fitting the dynamic responses of UCAs measured with either a high-speed optical imaging system or a light scattering system. The comparison results between the measured radius-time curves and the numerical simulations demonstrate that the ‘compression-only’ behavior of UCAs can be successfully simulated with the new model. Then, the shell elastic and viscous coefficients of SonoVue microbubbles were evaluated based on the new model simulations, and compared to the results obtained from some existing UCA models. The results confirm the capability of the current model for reducing the dependence of bubble shell parameters on the initial bubble radius, which indicates that the current model might be more comprehensive to describe the complex rheological nature (e.g., ‘shear-thinning’ and ‘strain-softening’) in encapsulating shells of UCA microbubbles by taking into account the nonlinear changes of both shell elasticity and shell viscosity.
Li, Qian; Matula, Thomas J; Tu, Juan; Guo, Xiasheng; Zhang, Dong
2013-02-21
It has been accepted that the dynamic responses of ultrasound contrast agent (UCA) microbubbles will be significantly affected by the encapsulating shell properties (e.g., shell elasticity and viscosity). In this work, a new model is proposed to describe the complicated rheological behaviors in an encapsulating shell of UCA microbubbles by applying the nonlinear 'Cross law' to the shell viscous term in the Marmottant model. The proposed new model was verified by fitting the dynamic responses of UCAs measured with either a high-speed optical imaging system or a light scattering system. The comparison results between the measured radius-time curves and the numerical simulations demonstrate that the 'compression-only' behavior of UCAs can be successfully simulated with the new model. Then, the shell elastic and viscous coefficients of SonoVue microbubbles were evaluated based on the new model simulations, and compared to the results obtained from some existing UCA models. The results confirm the capability of the current model for reducing the dependence of bubble shell parameters on the initial bubble radius, which indicates that the current model might be more comprehensive to describe the complex rheological nature (e.g., 'shear-thinning' and 'strain-softening') in encapsulating shells of UCA microbubbles by taking into account the nonlinear changes of both shell elasticity and shell viscosity.
Aoun, Bachir; Pellegrini, Eric; Trapp, Marcus; Natali, Francesca; Cantù, Laura; Brocca, Paola; Gerelli, Yuri; Demé, Bruno; Marek Koza, Michael; Johnson, Mark; Peters, Judith
2016-04-01
Neutron scattering techniques have been employed to investigate 1,2-dimyristoyl-sn -glycero-3-phosphocholine (DMPC) membranes in the form of multilamellar vesicles (MLVs) and deposited, stacked multilamellar-bilayers (MLBs), covering transitions from the gel to the liquid phase. Neutron diffraction was used to characterise the samples in terms of transition temperatures, whereas elastic incoherent neutron scattering (EINS) demonstrates that the dynamics on the sub-macromolecular length-scale and pico- to nano-second time-scale are correlated with the structural transitions through a discontinuity in the observed elastic intensities and the derived mean square displacements. Molecular dynamics simulations have been performed in parallel focussing on the length-, time- and temperature-scales of the neutron experiments. They correctly reproduce the structural features of the main gel-liquid phase transition. Particular emphasis is placed on the dynamical amplitudes derived from experiment and simulations. Two methods are used to analyse the experimental data and mean square displacements. They agree within a factor of 2 irrespective of the probed time-scale, i.e. the instrument utilized. Mean square displacements computed from simulations show a comparable level of agreement with the experimental values, albeit, the best match with the two methods varies for the two instruments. Consequently, experiments and simulations together give a consistent picture of the structural and dynamical aspects of the main lipid transition and provide a basis for future, theoretical modelling of dynamics and phase behaviour in membranes. The need for more detailed analytical models is pointed out by the remaining variation of the dynamical amplitudes derived in two different ways from experiments on the one hand and simulations on the other.
NASA Astrophysics Data System (ADS)
So, W. Y.; Hong, S. W.; Kim, B. T.; Udagawa, T.
2004-06-01
Within the framework of an extended optical model, simultaneous χ2 analyses are performed for elastic scattering and fusion cross-section data for 9Be + 209 Bi and 6Li + 208 Pb systems, both involving loosely bound projectiles, at near-Coulomb-barrier energies to determine the polarization potential as decomposed into direct reaction (DR) and fusion parts. We show that both DR and fusion potentials extracted from χ2 analyses separately satisfy the dispersion relation, and that the expected threshold anomaly appears in the fusion part. The DR potential turns out to be a rather smooth function of the incident energy, and has a magnitude at the strong absorption radius much larger than the fusion potential, explaining why a threshold anomaly has not been seen in optical potentials deduced from fits to the elastic-scattering data without such a decomposition. Using the extracted DR potential, we examine the effects of projectile breakup on fusion cross sections σF . The observed suppression of σF in the above-barrier region can be explained in terms of the flux loss due to breakup. However, the observed enhancement of σF in the subbarrier region cannot be understood in terms of the breakup effect. Rather, the enhancement can be related to the Q value of the neutron transfer within the systems, supporting the ideas of
NASA Technical Reports Server (NTRS)
Linsker, R.
1972-01-01
Production cross sections for three types of hypothetical particles are calculated in the presented paper. Several (Z, Z') cases were studied corresponding to elastic scattering off protons and neutrons (either free or embedded within a Fermi sea), coherent scattering off a nucleus, and inelastic scattering off a proton (in which case Z' denotes a nucleon resonance or hadronic system in the continuum). Detailed structure-function data are used to improve the accuracy of the inelastic scattering calculation. Results of calculations are given for beam energies between 50 and 10,000 GeV, and masses between 5 and 40 GeV for the massive Lee-Wick spin-1 boson. Cross sections were computed for resonant and semiweak processes. The production cross section of spin-zero weak intermediate bosons was found to be at least one order of magnitude smaller than for spin-1 weak bosons in nearly all regions of interest. The production cross section of spin-zero weak intermediate bosons for inelastic scattering off protons compares with that for elastic scattering in the regions of interest. In the case of massive spin-1 bosons and spin-1 weak intermediates, the main contribution to total production cross section off protons is elastic.
Electron elastic scattering off endo-fullerenes
NASA Astrophysics Data System (ADS)
Dolmatov, Valeriy
2017-04-01
The given presentation highlights the physically transparent, relatively simple, and yet reasonably complete approximation to the problem of low-energy electron elastic scattering off endohedral fullerenes A@CN along with corresponding findings unraveled on its basis. It is believed that, as of today, the highlighted results provide the most complete information about features of e + A @CN elastic scattering brought about by the fullerene-cage-related, correlation-related, and polarization-related impacts of the individual and coupled members of the A@C60 target on the scattering process. Each of the impacts is shown to bring spectacular features into e + A @C60 scattering. A remarkable inherent quality of the developed approximation is its ability to account for mutual coupling between electronic excited configurations of CN with those of the encapsulated atom A without reference to complicated details of the electronic structure of CN itself. Spectacular effects in the scattering process, primarily associated with polarization of A@C60 by an incident electron, are thoughtfully detailed both quantitatively and qualitatively in a physically transparent manner for ease of understanding and convenience of the audience. This study was performed in collaboration with Professors M. Ya. Amusia, L. V. Chernysheva, and UNA undergraduate students. The past support by the NSF Grant PHY-1305085 is acknowledged.
Deformed shell model study of event rates for WIMP-73Ge scattering
NASA Astrophysics Data System (ADS)
Sahu, R.; Kota, V. K. B.
2017-12-01
The event detection rates for the Weakly Interacting Massive Particles (WIMP) (a dark matter candidate) are calculated with 73Ge as the detector. The calculations are performed within the deformed shell model (DSM) based on Hartree-Fock states. First, the energy levels and magnetic moment for the ground state and two low-lying positive parity states for this nucleus are calculated and compared with experiment. The agreement is quite satisfactory. Then the nuclear wave functions are used to investigate the elastic and inelastic scattering of WIMP from 73Ge; inelastic scattering, especially for the 9/2+ → 5/2+ transition, is studied for the first time. The nuclear structure factors which are independent of supersymmetric model are also calculated as a function of WIMP mass. The event rates are calculated for a given set of nucleonic current parameters. The calculation shows that 73Ge is a good detector for detecting dark matter.
Yurkin, Maxim A; Semyanov, Konstantin A; Tarasov, Peter A; Chernyshev, Andrei V; Hoekstra, Alfons G; Maltsev, Valeri P
2005-09-01
Elastic light scattering by mature red blood cells (RBCs) was theoretically and experimentally analyzed by use of the discrete dipole approximation (DDA) and scanning flow cytometry (SFC), respectively. SFC permits measurement of the angular dependence of the light-scattering intensity (indicatrix) of single particles. A mature RBC is modeled as a biconcave disk in DDA simulations of light scattering. We have studied the effect of RBC orientation related to the direction of the light incident upon the indicatrix. Numerical calculations of indicatrices for several axis ratios and volumes of RBC have been carried out. Comparison of the simulated indicatrices and indicatrices measured by SFC showed good agreement, validating the biconcave disk model for a mature RBC. We simulated the light-scattering output signals from the SFC with the DDA for RBCs modeled as a disk-sphere and as an oblate spheroid. The biconcave disk, the disk-sphere, and the oblate spheroid models have been compared for two orientations, i.e., face-on and rim-on incidence, relative to the direction of the incident beam. Only the oblate spheroid model for rim-on incidence gives results similar to those of the rigorous biconcave disk model.
Elasticity of biomembranes studied by dynamic light scattering
NASA Astrophysics Data System (ADS)
Fujime, Satoru; Miyamoto, Shigeaki
1991-05-01
Combination of osmotic swelling and dynamic light scattering makes it possible to measure the elastic modulus of biomembranes. By this technique we have observed a drastic increase in membrane flexibility on activation of Na/glucose cotransporters in membrane vesicles prepared from brush-borders of rat small intestine and on activation by micromolar [Ca2] of exocytosis in secretory granules isolated from rat pancreatic acinar cells and bovine adrenal chromaffin cells. 1 .
Scattering of In-Plane Waves by Elastic Wedges
NASA Astrophysics Data System (ADS)
Mohammadi, K.; Asimaki, D.; Fradkin, L.
2014-12-01
The scattering of seismic waves by elastic wedges has been a topic of interest in seismology and geophysics for many decades. Analytical, semi-analytical, experimental and numerical studies on idealized wedges have provided insight into the seismic behavior of continental margins, mountain roots and crustal discontinuities. Published results, however, have almost exclusively focused on incident Rayleigh waves and out-of-plane body (SH) waves. Complementing the existing body of work, we here present results from our study on the response of elastic wedges to incident P or SV waves, an idealized problem that can provide valuable insight to the understanding and parameterization of topographic amplification of seismic ground motion. We first show our earlier work on explicit finite difference simulations of SV-wave scattering by elastic wedges over a wide range of internal angles. We next present a semi-analytical solution that we developed using the approach proposed by Gautesen, to describe the scattered wavefield in the immediate vicinity of the wedge's tip (near-field). We use the semi-analytical solution to validate the numerical analyses, and improve resolution of the amplification factor at the wedge vertex that spikes when the internal wedge angle approaches the critical angle of incidence.
The stationary points and structure of high-energy scattering amplitude
NASA Astrophysics Data System (ADS)
Samokhin, A. P.; Petrov, V. A.
2018-06-01
The ISR and the 7 TeV LHC data indicate that the differential cross-section of elastic proton-proton scattering remains almost energy-independent at the transferred momentum t ≈ - 0.21GeV2 at the level of ≈ 7.5 mb /GeV2. This property of dσ / dt (the "first" stationary point) appears due to the correlated growth of the total cross-section and the local slope parameter and can be expressed as a relation between the latter quantities. We anticipate that this property will be true up to 13 TeV. This enables us to normalize the preliminary TOTEM data for dσ / dt at 13 TeV and 0.05 < | t | < 3.4GeV2 and predict the values of dσ / dt at this energy. These data give an evidence of the second stationary point at t ≈ - 2.3GeV2 at the level of ≈ 33 nb /GeV2. The energy evolution of dσ / dt looks as if the high energy elastic scattering amplitude is a sum of two similar terms. We argue that the existence of the two stationary points and the two-component structure of the high energy elastic scattering amplitude are general properties for all elastic processes.
Mechanisms of resonant low frequency Raman scattering from metallic nanoparticle Lamb modes
NASA Astrophysics Data System (ADS)
Girard, A.; Lermé, J.; Gehan, H.; Margueritat, J.; Mermet, A.
2017-05-01
The low frequency Raman scattering from gold nanoparticle bimodal assemblies with controlled size distributions has been studied. Special care has been paid to determining the size dependence of the Raman intensity corresponding to the quadrupolar Lamb mode. Existing models based on a microscopic description of the scattering mechanism in small particles (bond polarizability, dipole induced dipole models) predict, for any Raman-active Lamb modes, an inelastic intensity scaling as the volume of the nanoparticle. Surprisingly experimental intensity ratios are found to be anomalously much greater than theoretical ones, calling into question this scaling law. To explain these discrepancies, a simple mechanism of Raman scattering, based on the density fluctuations in the nanoparticles induced by the Lamb modes, is introduced. This modeling, in which the nanoparticle is described as an elastic isotropic continuous medium—as in Lamb theory, successfully explains the major features exhibited by low frequency Raman modes. Moreover this model provides a unified picture for any material, suitable for handling both small and large size ranges, as well as non-resonant and resonant excitation conditions in the case of metallic species.
A hadron-nucleus collision event generator for simulations at intermediate energies
NASA Astrophysics Data System (ADS)
Ackerstaff, K.; Bisplinghoff, J.; Bollmann, R.; Cloth, P.; Diehl, O.; Dohrmann, F.; Drüke, V.; Eisenhardt, S.; Engelhardt, H. P.; Ernst, J.; Eversheim, P. D.; Filges, D.; Fritz, S.; Gasthuber, M.; Gebel, R.; Greiff, J.; Gross, A.; Gross-Hardt, R.; Hinterberger, F.; Jahn, R.; Lahr, U.; Langkau, R.; Lippert, G.; Maschuw, R.; Mayer-Kuckuk, T.; Mertler, G.; Metsch, B.; Mosel, F.; Paetz gen. Schieck, H.; Petry, H. R.; Prasuhn, D.; von Przewoski, B.; Rohdjeß, H.; Rosendaal, D.; Roß, U.; von Rossen, P.; Scheid, H.; Schirm, N.; Schulz-Rojahn, M.; Schwandt, F.; Scobel, W.; Sterzenbach, G.; Theis, D.; Weber, J.; Wellinghausen, A.; Wiedmann, W.; Woller, K.; Ziegler, R.; EDDA-Collaboration
2002-10-01
Several available codes for hadronic event generation and shower simulation are discussed and their predictions are compared to experimental data in order to obtain a satisfactory description of hadronic processes in Monte Carlo studies of detector systems for medium energy experiments. The most reasonable description is found for the intra-nuclear-cascade (INC) model of Bertini which employs microscopic description of the INC, taking into account elastic and inelastic pion-nucleon and nucleon-nucleon scattering. The isobar model of Sternheimer and Lindenbaum is used to simulate the inelastic elementary collisions inside the nucleus via formation and decay of the Δ33-resonance which, however, limits the model at higher energies. To overcome this limitation, the INC model has been extended by using the resonance model of the HADRIN code, considering all resonances in elementary collisions contributing more than 2% to the total cross-section up to kinetic energies of 5 GeV. In addition, angular distributions based on phase shift analysis are used for elastic nucleon-nucleon as well as elastic and charge exchange pion-nucleon scattering. Also kaons and antinucleons can be treated as projectiles. Good agreement with experimental data is found predominantly for lower projectile energies, i.e. in the regime of the Bertini code. The original as well as the extended Bertini model have been implemented as shower codes into the high energy detector simulation package GEANT-3.14, allowing now its use also in full Monte Carlo studies of detector systems at intermediate energies. The GEANT-3.14 here have been used mainly for its powerful geometry and analysing packages due to the complex EDDA detector system.
Wounded quarks and diquarks in heavy ion collisions
NASA Astrophysics Data System (ADS)
Bialas, A.; Bzdak, A.
2007-06-01
A model in which the soft collisions of the nucleon are described in terms of interactions of its two constituents (a quark and a diquark) is proposed. When adjusted to describe precisely the elastic proton-proton scattering data and supplemented with the idea of wounded constituents, the model accounts rather well for the centrality dependence of particle production in the central rapidity region at RHIC energies.
NASA Astrophysics Data System (ADS)
Kolyari I., G.
2018-05-01
The proposed theoretical model allows for the perfectly elastic collision of three bodies (three mass points) to calculate: 1) the definite value of the three bodies' projected velocities after the collision with a straight line, along which the bodies moved before the collision; 2) the definite value of the scattering bodies' velocities on the plane and the definite value of the angles between the bodies' momenta (or velocities), which the bodies obtain after the collision when moving on the plane. The proposed calculation model of the velocities of the three collided bodies is consistent with the dynamic model of the same bodies' interaction during the collision, taking into account that the energy flow is conserved for the entire system before and after the collision. It is shown that under the perfectly elastic interaction during the collision of three bodies the energy flow is conserved in addition to the momentum and energy conservation.
Wang, Yu; Jiang, Jingfeng
2018-01-01
Shear wave elastography (SWE) has been used to measure viscoelastic properties for characterization of fibrotic livers. In this technique, external mechanical vibrations or acoustic radiation forces are first transmitted to the tissue being imaged to induce shear waves. Ultrasonically measured displacement/velocity is then utilized to obtain elastographic measurements related to shear wave propagation. Using an open-source wave simulator, k-Wave, we conducted a case study of the relationship between plane shear wave measurements and the microstructure of fibrotic liver tissues. Particularly, three different virtual tissue models (i.e., a histology-based model, a statistics-based model, and a simple inclusion model) were used to represent underlying microstructures of fibrotic liver tissues. We found underlying microstructures affected the estimated mean group shear wave speed (SWS) under the plane shear wave assumption by as much as 56%. Also, the elastic shear wave scattering resulted in frequency-dependent attenuation coefficients and introduced changes in the estimated group SWS. Similarly, the slope of group SWS changes with respect to the excitation frequency differed as much as 78% among three models investigated. This new finding may motivate further studies examining how elastic scattering may contribute to frequency-dependent shear wave dispersion and attenuation in biological tissues.
A Global Upper-Mantle Tomographic Model of Shear Attenuation
NASA Astrophysics Data System (ADS)
Karaoglu, H.; Romanowicz, B. A.
2016-12-01
Mapping anelastic 3D structure within the earth's mantle is key to understanding present day mantle dynamics, as it provides complementary constraints to those obtained from elastic structure, with the potential to distinguish between thermal and compositional heterogeneity. For this, we need to measure seismic wave amplitudes, which are sensitive to both elastic (through focusing and scattering) and anelastic structure. The elastic effects are less pronounced at long periods, so previous global upper-mantle attenuation models are based on teleseismic surface wave data, sometimes including overtones. In these studies, elastic effects are considered either indirectly, by eliminating data strongly contaminated by them (e.g. Romanowicz, 1995; Gung and Romanowicz, 2004), or by correcting for elastic focusing effects using an approximate linear approach (Dalton et al., 2008). Additionally, in these studies, the elastic structure is held fixed when inverting for intrinsic attenuation . The importance of (1) having a good starting elastic model, (2) accurate modeling of the seismic wavefield and (3) joint inversion for elastic and anelastic structure, becomes more evident as the targeted resolution level increases. Also, velocity dispersion effects due to anelasticity need to be taken into account. Here, we employ a hybrid full waveform inversion method, inverting jointly for global elastic and anelastic upper mantle structure, starting from the latest global 3D shear velocity model built by our group (French and Romanowicz, 2014), using the spectral element method for the forward waveform modeling (Capdeville et al., 2003), and normal-mode perturbation theory (NACT - Li and Romanowicz, 1995) for kernel computations. We present a 3D upper-mantle anelastic model built by using three component fundamental and overtone surface waveforms down to 60 s as well as long period body waveforms down to 30 s. We also include source and site effects to first order as frequency independent scalar factors. The robustness of the inversion method is assessed through synthetic and resolution tests. We discuss salient features of the resulting anelastic model and in particular the well-resolved strong correlation with tectonics observed in the first 200 km of the mantle.
Smith, Zachary J.; Wang, Jyh-Chiang E.; Quataert, Sally A.; Berger, Andrew J.
2010-01-01
Integrated Raman and angular-scattering microscopy (IRAM) is a multimodal platform capable of noninvasively probing both the chemistry and morphology of a single cell without prior labeling. Using this system, we are able to detect activation-dependent changes in the Raman and elastic-scattering signals from CD8+ T cells stimulated with either Staphylococcal enterotoxin B (SEB) or phorbol myristate acetate (PMA). In both cases, results obtained from the IRAM instrument correlate well with results obtained from traditional fluorescence-based flow cytometry for paired samples. SEB-mediated activation was distinguished from resting state in CD8+ T cells by an increase in the number and mean size of small (∼500-nm) elastic scatterers as well as a decrease in Raman bands, indicating changes in nuclear content. PMA-mediated activation induced a different profile in CD8+ T cells from SEB, showing a similar increase in small elastic scatterers but a different Raman change, with elevation of cellular protein and lipid bands. These results suggest the potential of this multimodal, label-free optical technique for studying processes in single cells. PMID:20615023
NASA Astrophysics Data System (ADS)
Nazarov, Vladimir U.; Silkin, Vyacheslav M.; Krasovskii, Eugene E.
2017-12-01
Inelastic scattering of the medium-energy (˜10 -100 eV) electrons underlies the method of the high-resolution electron energy-loss spectroscopy (HREELS), which has been successfully used for decades to characterize pure and adsorbate-covered surfaces of solids. With the emergence of graphene and other quasi-two-dimensional (Q2D) crystals, HREELS could be expected to become the major experimental tool to study this class of materials. We, however, identify a critical flaw in the theoretical picture of the HREELS of Q2D crystals in the context of the inelastic scattering only ("energy-loss functions" formalism), in contrast to its justifiable use for bulk solids and surfaces. The shortcoming is the neglect of the elastic scattering, which we show is inseparable from the inelastic one, and which, affecting the spectra dramatically, must be taken into account for the meaningful interpretation of the experiment. With this motivation, using the time-dependent density functional theory for excitations, we build a theory of the simultaneous inelastic and elastic electron scattering at Q2D crystals. We apply this theory to HREELS of graphene, revealing an effect of the strongly coupled excitation of the π +σ plasmon and elastic diffraction resonances. Our results open a path to the theoretically interpretable study of the excitation processes in crystalline mesoscopic materials by means of HREELS, with its supreme resolution on the meV energy scale, which is far beyond the capacity of the now overwhelmingly used EELS in transmission electron microscopy.
Elastic neutron scattering studies at 96 MeV for transmutation.
Osterlund, M; Blomgren, J; Hayashi, M; Mermod, P; Nilsson, L; Pomp, S; Ohrn, A; Prokofiev, A V; Tippawan, U
2007-01-01
Elastic neutron scattering from (12)C, (14)N, (16)O, (28)Si, (40)Ca, (56)Fe, (89)Y and (208)Pb has been studied at 96 MeV in the10-70 degrees interval, using the SCANDAL (SCAttered Nucleon Detection AssembLy) facility. The results for (12)C and (208)Pb have recently been published, while the data on the other nuclei are under analysis. The achieved energy resolution, 3.7 MeV, is about an order of magnitude better than for any previous experiment above 65 MeV incident energy. A novel method for normalisation of the absolute scale of the cross section has been used. The estimated normalisation uncertainty, 3%, is unprecedented for a neutron-induced differential cross section measurement on a nuclear target. Elastic neutron scattering is of utmost importance for a vast number of applications. Besides its fundamental importance as a laboratory for tests of isospin dependence in the nucleon-nucleon, and nucleon-nucleus, interaction, knowledge of the optical potentials derived from elastic scattering come into play in virtually every application where a detailed understanding of nuclear processes is important. Applications for these measurements are dose effects due to fast neutrons, including fast neutron therapy, as well as nuclear waste incineration and single event upsets in electronics. The results at light nuclei of medical relevance ((12)C, (14)N and (16)O) are presented separately. In the present contribution, results on the heavier nuclei are presented, among which several are of relevance to shielding of fast neutrons.
Mourant, Judith R.; Bocklage, Thérese J.; Powers, Tamara M.; Greene, Heather M.; Dorin, Maxine H.; Waxman, Alan G.; Zsemlye, Meggan M.; Smith, Harriet O.
2009-01-01
Objective To examine the utility of in vivo elastic light scattering measurements to identify cervical intraepithelial neoplasias (CIN) 2/3 and cancers in women undergoing colposcopy and to determine the effects of patient characteristics such as menstrual status on the elastic light scattering spectroscopic measurements. Materials and Methods A fiber optic probe was used to measure light transport in the cervical epithelium of patients undergoing colposcopy. Spectroscopic results from 151 patients were compared with histopathology of the measured and biopsied sites. A method of classifying the measured sites into two clinically relevant categories was developed and tested using five-fold cross-validation. Results Statistically significant effects by age at diagnosis, menopausal status, timing of the menstrual cycle, and oral contraceptive use were identified, and adjustments based upon these measurements were incorporated in the classification algorithm. A sensitivity of 77±5% and a specificity of 62±2% were obtained for separating CIN 2/3 and cancer from other pathologies and normal tissue. Conclusions The effects of both menstrual status and age should be taken into account in the algorithm for classifying tissue sites based on elastic light scattering spectroscopy. When this is done, elastic light scattering spectroscopy shows good potential for real-time diagnosis of cervical tissue at colposcopy. Guiding biopsy location is one potential near-term clinical application area, while facilitating ”see and treat” protocols is a longer term goal. Improvements in accuracy are essential. PMID:20694193
NASA Astrophysics Data System (ADS)
Bader, Kenneth B.
2018-05-01
Histotripsy is a form of therapeutic ultrasound that liquefies tissue mechanically via acoustic cavitation. Bubble expansion is paramount in the efficacy of histotripsy therapy, and the cavitation dynamics are strongly influenced by the medium elasticity. In this study, an analytic model to predict histotripsy-induced bubble expansion in a fluid was extended to include the effects of medium elasticity. Good agreement was observed between the predictions of the analytic model and numerical computations utilizing highly nonlinear excitations (shock-scattering histotripsy) and purely tensile pulses (microtripsy). No bubble expansion was computed for either form of histotripsy when the elastic modulus was greater than 20 MPa and the peak negative pressure was less than 50 MPa. Strain in the medium due to the expansion of a single bubble was also tabulated. The viability of red blood cells was calculated as a function of distance from the bubble wall based on empirical data of impulsive stretching of erythrocytes. Red blood cells remained viable at distances further than 44 µm from the bubble wall. As the medium elasticity increased, the distance over which bubble expansion-induced strain influenced red blood cells was found to decrease sigmoidally. These results highlight the relationship between tissue elasticity and the efficacy of histotripsy. In addition, an upper medium elasticity limit was identified, above which histotripsy may not be effective for tissue liquefaction.
NASA Astrophysics Data System (ADS)
Hall, Gregory; Xu, Hong; Forthomme, Damien; Dagdigian, Paul; Sears, Trevor
2017-06-01
We have combined experimental and theoretical approaches to the competition between elastic and inelastic collisions of CN radicals with Ar, and how this competition influences time-resolved saturation spectra. Experimentally, we have measured transient, two-color sub-Doppler saturation spectra of CN radicals with an amplitude chopped saturation laser tuned to selected Doppler offsets within rotational lines of the A-X (2-0) band, while scanning a frequency modulated probe laser across the hyperfine-resolved saturation features of corresponding rotational lines of the A-X (1-0) band. A steady-state depletion spectrum includes off-resonant contributions ascribed to velocity diffusion, and the saturation recovery rates depend on the sub-Doppler detuning. The experimental results are compared with Monte Carlo solutions to the Boltzmann equation for the collisional evolution of the velocity distributions of CN radicals, combined with a pressure-dependent and speed-dependent lifetime broadening. Velocity changing collisions are included by appropriately sampling the energy resolved differential cross sections for elastic scattering of selected rotational states of CN (X). The velocity space diffusion of Doppler tagged molecules proceeds through a series of small-angle scattering events, eventually terminating in an inelastic collision that removes the molecule from the coherently driven ensemble of interest. Collision energy-dependent total cross sections and differential cross sections for elastic scattering of selected CN rotational states with Ar were computed with Hibridon quantum scattering calculations, and used for sampling in the Monte Carlo modeling. Acknowledgments: Work at Brookhaven National Laboratory was carried out under Contract No. DE-SC0012704 with the U.S. Department of Energy, Office of Science, and supported by its Division of Chemical Sciences, Geosciences and Biosciences within the Office of Basic Energy Sciences.
Target correlation effects on neutron-nucleus total, absorption, and abrasion cross sections
NASA Technical Reports Server (NTRS)
Cucinotta, Francis A.; Townsend, Lawrence W.; Wilson, John W.
1991-01-01
Second order optical model solutions to the elastic scattering amplitude were used to evaluate total, absorption, and abrasion cross sections for neutron nucleus scattering. Improved agreement with experimental data for total and absorption cross sections is found when compared with first order (coherent approximation) solutions, especially below several hundred MeV. At higher energies, the first and second order solutions are similar. There are also large differences in abrasion cross section calculations; these differences indicate a crucial role for cluster knockout in the abrasion step.
Wave Propagation in Discontinuous Media by the Scattering Matrix Method
NASA Astrophysics Data System (ADS)
Perino, A.; Orta, R.; Barla, G.
2012-09-01
Propagation of elastic waves in discontinuous media is studied in this paper by the scattering matrix method (SMM). An electromagnetic transmission line analogy is also used to set up the mathematical model. The SMM operates in the frequency domain and allows for all wave polarizations (P, SV and SH). Rock masses are examples of discontinuous media in which the discontinuities (fractures or joints) influence wave propagation. Both elastic and viscoelastic joints are considered and the latter are described by Kelvin-Voigt, Maxwell and Burgers models. Rock joints with Coulomb slip behavior are also analyzed, by applying the averaging principle of Caughy (J Appl Mech 27:640-643, 1960). The evaluation of the effects of periodic discontinuities in a homogeneous medium is presented by introducing the concept of Bloch waves. The dispersion curves of these waves are useful to explain the existence of frequency bands of strong attenuation, also in the case of lossless (perfectly elastic) structures. Simple expressions of transmission and reflection coefficients are obtained. Finally, the SMM results are compared with those computed via the distinct element method (DEM). The comparisons are performed on a medium with joints with Coulomb slip behavior and the agreement is satisfactory, although the SMM must be applied in conjunction with the equivalent linearization technique. Even if the DEM is much more general, the SMM in these simple cases is extremely faster and provides a higher physical insight.
NASA Astrophysics Data System (ADS)
Fu, S.; Yang, J.; Lin, J. F.
2016-12-01
Carbon can be transported into deep Earth's interior via subduction of carbonated oceanic crust, hosted as Mg-Fe bearing carbonates. The existence of stable carbonate can significantly affect our understanding on geochemical and geophysical properties of the planet. Early studies have shown that iron spin-pairing transition could occur in the iron-enriched carbonates, generally called magnesiosiderite, under lower mantle conditions. The pressure-induced spin state change is accompanied by a sudden volume collaps. However, the effects of the spin-pairing transition on single-crystal elasticity of magnesiosiderite under high pressure conditions are still unclear. Understanding the elasticity of single-crystal magnesiosiderite at relevant lower mantle conditions plays an important role in better understanding the seismic signatures in the carbon-enriched region, and to constrain carbon storage and recycling in the mantle. In order to solve all individual elastic constants (C11, C22, C33, C44, C55, C66, C12, C23, and C13) of magnesiosiderite at high pressures via Christoffel's equations, we employed Brillouin Light Scattering (BLS) to measure shear wave (Vs) and compressional wave velocities (Vp) as a function of the azimuthal angle under lower mantle pressures, accompanied by Impulsive Stimulate Light Scattering (ISS) to measure the Vp when pressures are too high to measure it by BLS. A general thermoelastic modelling was developed to fit the elastic softening within the spin transition. We will further discuss the effects of pressures, as well as iron spin states, on the single-crystal elasticity and seismic parameters (Vp and Vs anisotropy AVp, AVs, etc) at lower mantle conditions. These results could provide clues in explaining regional seismic heterogeneities in deep mantle.
Supercritical Fuel Measurements
2012-09-01
TERMS Fuels, supercritical fluids , stimulated scattering, Brillouin scattering, Rayleigh scattering, elastic properties, thermal properties 16...10 Supercritical Cell and Fluid Handling ....................................................................................... 11...motion in supercritical fluids . Thus, the method can perform diagnostics on the heat transfer of high-temperature and high-pressure fuels, measuring
Wave Propagation and Inversion in Shallow Water and Poro-elastic Sediment
1997-09-30
water and high freq. acoustics LONG-TERM GOALS To create codes accurately model wave propagation and scattering in shallow water, and to quantify...is undergoing testing for the acoustic stratified Green’s function. We have adapted code generated by J. Schuster in Geophysics for the FDTD model ...inversions and modelling , and have repercussions in environmental imaging [5], acoustic imaging [1,4,5,6,7] and early breast cancer diagnosis
Scattering of a longitudinal Bessel beam by a sphere embedded in an isotropic elastic solid.
Leão-Neto, J P; Lopes, J H; Silva, G T
2017-11-01
The scattering of a longitudinal Bessel beam of arbitrary order by a sphere embedded in an isotropic solid matrix is theoretically analyzed. The spherical inclusion can be made of a viscoelastic, elastic, or fluid-filled isotropic material. In the analysis, the absorbing, scattering, and extinction efficiency factors are obtained, e.g., the corresponding power per characteristic beam intensity per sphere's cross-section area. Furthermore, the extended optical theorem, which expresses the extinction efficiency in terms of an integral of the longitudinal scattering function is derived. Several features of zeroth- and first-order Bessel beams scattering in solids are illustrated considering a polymer adhesive (cured) sphere embedded in a stainless steel matrix. For instance, omnidirectional scattering can be achieved by choosing specific values of the half-cone angle of the Bessel beam, which is the beam's geometrical parameter. Additionally, it is demonstrated that mode suppression leads to lower absorption inside the inclusion when compared to plane wave scattering results.
NASA Astrophysics Data System (ADS)
Rusz, Ján; Lubk, Axel; Spiegelberg, Jakob; Tyutyunnikov, Dmitry
2017-12-01
The complex interplay of elastic and inelastic scattering amenable to different levels of approximation constitutes the major challenge for the computation and hence interpretation of TEM-based spectroscopical methods. The two major approaches to calculate inelastic scattering cross sections of fast electrons on crystals—Yoshioka-equations-based forward propagation and the reciprocal wave method—are founded in two conceptually differing schemes—a numerical forward integration of each inelastically scattered wave function, yielding the exit density matrix, and a computation of inelastic scattering matrix elements using elastically scattered initial and final states (double channeling). Here, we compare both approaches and show that the latter is computationally competitive to the former by exploiting analytical integration schemes over multiple excited states. Moreover, we show how to include full nonlocality of the inelastic scattering event, neglected in the forward propagation approaches, at no additional computing costs in the reciprocal wave method. Detailed simulations show in some cases significant errors due to the z -locality approximation and hence pitfalls in the interpretation of spectroscopical TEM results.
Analysis of 4He+40Ca and 4He+44Ti scattering using different optical model potentials
NASA Astrophysics Data System (ADS)
Ibraheem, Awad A.
2016-09-01
Elastic scattering of 4He+40Ca and 4He+44Ti reactions at backward angles has been analyzed using two differentmodels, microscopic and semimicroscopic folding potentials. The derived real potentials supplemented with phenomenological Woods-Saxon imaginary potentials, provide good agreement with the experimental data at energy E c.m. = 21.8 MeV without need to renormalize the potentials. Coupledchannels calculations are used to extract the inelastic scattering cross section to the low-lying state 2+ (1.083 MeV) of 44Ti. The deformation length is obtained and compared with the electromagnetic measurement values as well as those obtained from previous studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandal, A.; Gupta, Y. M.
To understand the elastic-plastic deformation response of shock-compressed molybdenum (Mo) – a body-centered cubic (BCC) metal, single crystal samples were shocked along the [100] crystallographic orientation to an elastic impact stress of 12.5 GPa. Elastic-plastic wave profiles, measured at different propagation distances ranging between ~0.23 to 2.31 mm using laser interferometry, showed a time-dependent material response. Within experimental scatter, the measured elastic wave amplitudes were nearly constant over the propagation distances examined. These data point to a large and rapid elastic wave attenuation near the impact surface, before reaching a threshold value (elastic limit) of ~3.6 GPa. Numerical simulations ofmore » the measured wave profiles, performed using a dislocation-based continuum model, suggested that {110}<111> and/or {112}<111> slip systems are operative under shock loading. In contrast to shocked metal single crystals with close-packed structures, the measured wave profiles in Mo single crystals could not be explained in terms of dislocation multiplication alone. A dislocation generation mechanism, operative for shear stresses larger than that at the elastic limit, was required to model the rapid elastic wave attenuation and to provide a good overall match to the measured wave profiles. However, the physical basis for this mechanism was not established for the high-purity single crystal samples used in this study. As a result, the numerical simulations also suggested that Mo single crystals do not work harden significantly under shock loading in contrast to the behavior observed under quasi-static loading.« less
Electron-impact excitation of the low-lying electronic states of HCN
NASA Technical Reports Server (NTRS)
Chutjian, A.; Tanaka, H.; Srivastava, S. K.; Wicke, B. G.
1977-01-01
The first study of the low-energy electron-impact excitation of low-lying electronic transitions in the HCN molecule is reported. Measurements were made at incident electron energies of 11.6 and 21.6 eV in the energy-loss range of 3-10 eV, and at scattering angles of 20-130 deg. Inelastic scattering spectra were placed on the absolute cross-section scale by determining first the ratio of inelastic-to-elastic scattering cross sections, and then separately measuring the absolute elastic scattering cross section. Several new electronic transitions are observed which are intrinsically overlapped in the molecule itself. Assignments of these electronic transitions are suggested. These assignments are based on present spectroscopic and cross-sections measurements, high-energy electron scattering spectra, optical absorption spectra, and ab initio molecular orbital calculations.
Dispersive approach to two-photon exchange in elastic electron-proton scattering
Blunden, P. G.; Melnitchouk, W.
2017-06-14
We examine the two-photon exchange corrections to elastic electron-nucleon scattering within a dispersive approach, including contributions from both nucleon and Δ intermediate states. The dispersive analysis avoids off-shell uncertainties inherent in traditional approaches based on direct evaluation of loop diagrams, and guarantees the correct unitary behavior in the high energy limit. Using empirical information on the electromagnetic nucleon elastic and NΔ transition form factors, we compute the two-photon exchange corrections both algebraically and numerically. Finally, results are compared with recent measurements of e + p to e - p cross section ratios from the CLAS, VEPP-3 and OLYMPUS experiments.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferro-Luzzi, M.; Bouwhuis, M.; Passchier, E.
1996-09-01
We report an absolute measurement of the tensor analyzing powers {ital T}{sub 20} and {ital T}{sub 22} in elastic electron-deuteron scattering at a momentum transfer of 1.6 fm{sup {minus}1}. The novel approach of this measurement is the use of a tensor polarized {sup 2}H target internal to an electron storage ring, with {ital in} {ital situ} measurement of the polarization of the target gas. Scattered electrons and recoil deuterons were detected in coincidence with two large acceptance nonmagnetic detectors. The techniques demonstrated have broad applicability to further measurements of spin-dependent electron scattering. {copyright} {ital 1996 The American Physical Society.}
Shao, Yu; Wang, Shumin
2016-12-01
The numerical simulation of acoustic scattering from elastic objects near a water-sand interface is critical to underwater target identification. Frequency-domain methods are computationally expensive, especially for large-scale broadband problems. A numerical technique is proposed to enable the efficient use of finite-difference time-domain method for broadband simulations. By incorporating a total-field/scattered-field boundary, the simulation domain is restricted inside a tightly bounded region. The incident field is further synthesized by the Fourier transform for both subcritical and supercritical incidences. Finally, the scattered far field is computed using a half-space Green's function. Numerical examples are further provided to demonstrate the accuracy and efficiency of the proposed technique.
Scattering from phase-separated vesicles. I. An analytical form factor for multiple static domains
Heberle, Frederick A.; Anghel, Vinicius N. P.; Katsaras, John
2015-08-18
This is the first in a series of studies considering elastic scattering from laterally heterogeneous lipid vesicles containing multiple domains. Unique among biophysical tools, small-angle neutron scattering can in principle give detailed information about the size, shape and spatial arrangement of domains. A general theory for scattering from laterally heterogeneous vesicles is presented, and the analytical form factor for static domains with arbitrary spatial configuration is derived, including a simplification for uniformly sized round domains. The validity of the model, including series truncation effects, is assessed by comparison with simulated data obtained from a Monte Carlo method. Several aspects ofmore » the analytical solution for scattering intensity are discussed in the context of small-angle neutron scattering data, including the effect of varying domain size and number, as well as solvent contrast. Finally, the analysis indicates that effects of domain formation are most pronounced when the vesicle's average scattering length density matches that of the surrounding solvent.« less
Demonstration of a novel technique to measure two-photon exchange effects in elastic e±p scattering
Moteabbed, Maryam; Niroula, Megh; Raue, Brian A.; ...
2013-08-30
The discrepancy between proton electromagnetic form factors extracted using unpolarized and polarized scattering data is believed to be a consequence of two-photon exchange (TPE) effects. However, the calculations of TPE corrections have significant model dependence, and there is limited direct experimental evidence for such corrections. The TPE contributions depend on the sign of the lepton charge in e±p scattering, but the luminosities of secondary positron beams limited past measurement at large scattering angles, where the TPE effects are believe to be most significant. We present the results of a new experimental technique for making direct e±p comparisons, which has themore » potential to make precise measurements over a broad range in Q 2 and scattering angles. We use the Jefferson Laboratory electron beam and the Hall B photon tagger to generate a clean but untagged photon beam. The photon beam impinges on a converter foil to generate a mixed beam of electrons, positrons, and photons. A chicane is used to separate and recombine the electron and positron beams while the photon beam is stopped by a photon blocker. This provides a combined electron and positron beam, with energies from 0.5 to 3.2 GeV, which impinges on a liquid hydrogen target. The large acceptance CLAS detector is used to identify and reconstruct elastic scattering events, determining both the initial lepton energy and the sign of the scattered lepton. The data were collected in two days with a primary electron beam energy of only 3.3 GeV, limiting the data from this run to smaller values of Q 2 and scattering angle. Nonetheless, this measurement yields a data sample for e±p with statistics comparable to those of the best previous measurements. We have shown that we can cleanly identify elastic scattering events and correct for the difference in acceptance for electron and positron scattering. Because we ran with only one polarity for the chicane, we are unable to study the difference between the incoming electron and positron beams. This systematic effect leads to the largest uncertainty in the final ratio of positron to electron scattering: R=1.027±0.005±0.05 for < Q 2 >=0.206 GeV 2 and 0.830 ≤ ε ≤ 0.943. We have demonstrated that the tertiary e ± beam generated using this technique provides the opportunity for dramatically improved comparisons of e±p scattering, covering a significant range in both Q 2 and scattering angle. Combining data with different chicane polarities will allow for detailed studies of the difference between the incoming e + and e - beams.« less
Demonstration of a novel technique to measure two-photon exchange effects in elastic e±p scattering
NASA Astrophysics Data System (ADS)
Moteabbed, M.; Niroula, M.; Raue, B. A.; Weinstein, L. B.; Adikaram, D.; Arrington, J.; Brooks, W. K.; Lachniet, J.; Rimal, Dipak; Ungaro, M.; Afanasev, A.; Adhikari, K. P.; Aghasyan, M.; Amaryan, M. J.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Bennett, R. P.; Biselli, A. S.; Bono, J.; Boiarinov, S.; Briscoe, W. J.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Cole, P. L.; Collins, P.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dupre, R.; Egiyan, H.; Fassi, L. El; Eugenio, P.; Fedotov, G.; Fegan, S.; Fersch, R.; Fleming, J. A.; Gevorgyan, N.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Goetz, J. T.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guler, N.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Heddle, D.; Hicks, K.; Ho, D.; Holtrop, M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Kim, A.; Klein, F. J.; Koirala, S.; Kubarovsky, A.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Lewis, S.; Lu, H. Y.; MacCormick, M.; MacGregor, I. J. D.; Martinez, D.; Mayer, M.; McKinnon, B.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Moriya, K.; Moutarde, H.; Munevar, E.; Munoz Camacho, C.; Nadel-Turonski, P.; Nasseripour, R.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Park, S.; Phelps, E.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Protopopescu, D.; Puckett, A. J. R.; Ripani, M.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Seraydaryan, H.; Sharabian, Y. G.; Smith, E. S.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S.; Strauch, S.; Tang, W.; Taylor, C. E.; Tian, Ye; Tkachenko, S.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.
2013-08-01
Background: The discrepancy between proton electromagnetic form factors extracted using unpolarized and polarized scattering data is believed to be a consequence of two-photon exchange (TPE) effects. However, the calculations of TPE corrections have significant model dependence, and there is limited direct experimental evidence for such corrections.Purpose: The TPE contributions depend on the sign of the lepton charge in e±p scattering, but the luminosities of secondary positron beams limited past measurement at large scattering angles, where the TPE effects are believe to be most significant. We present the results of a new experimental technique for making direct e±p comparisons, which has the potential to make precise measurements over a broad range in Q2 and scattering angles.Methods: We use the Jefferson Laboratory electron beam and the Hall B photon tagger to generate a clean but untagged photon beam. The photon beam impinges on a converter foil to generate a mixed beam of electrons, positrons, and photons. A chicane is used to separate and recombine the electron and positron beams while the photon beam is stopped by a photon blocker. This provides a combined electron and positron beam, with energies from 0.5 to 3.2 GeV, which impinges on a liquid hydrogen target. The large acceptance CLAS detector is used to identify and reconstruct elastic scattering events, determining both the initial lepton energy and the sign of the scattered lepton.Results: The data were collected in two days with a primary electron beam energy of only 3.3 GeV, limiting the data from this run to smaller values of Q2 and scattering angle. Nonetheless, this measurement yields a data sample for e±p with statistics comparable to those of the best previous measurements. We have shown that we can cleanly identify elastic scattering events and correct for the difference in acceptance for electron and positron scattering. Because we ran with only one polarity for the chicane, we are unable to study the difference between the incoming electron and positron beams. This systematic effect leads to the largest uncertainty in the final ratio of positron to electron scattering: R=1.027±0.005±0.05 for
Elegent—An elastic event generator
NASA Astrophysics Data System (ADS)
Kašpar, J.
2014-03-01
Although elastic scattering of nucleons may look like a simple process, it presents a long-lasting challenge for theory. Due to missing hard energy scale, the perturbative QCD cannot be applied. Instead, many phenomenological/theoretical models have emerged. In this paper we present a unified implementation of some of the most prominent models in a C++ library, moreover extended to account for effects of the electromagnetic interaction. The library is complemented with a number of utilities. For instance, programs to sample many distributions of interest in four-momentum transfer squared, t, impact parameter, b, and collision energy √{s}. These distributions at ISR, Spp¯S, RHIC, Tevatron and LHC energies are available for download from the project web site. Both in the form of ROOT files and PDF figures providing comparisons among the models. The package includes also a tool for Monte-Carlo generation of elastic scattering events, which can easily be embedded in any other program framework. Catalogue identifier: AERT_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERT_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: GNU General Public License, version 3 No. of lines in distributed program, including test data, etc.: 10551 No. of bytes in distributed program, including test data, etc.: 126316 Distribution format: tar.gz Programming language: C++. Computer: Any in principle, tested on x86-64 architecture. Operating system: Any in principle, tested on GNU/Linux. RAM: Strongly depends on the task, but typically below 20MB Classification: 11.6. External routines: ROOT, HepMC Nature of problem: Monte-Carlo simulation of elastic nucleon-nucleon collisions Solution method: Implementation of some of the most prominent phenomenological/theoretical models providing cumulative distribution function that is used for random event generation. Running time: Strongly depends on the task, but typically below 1 h.
Protein dynamics as seen by (quasi) elastic neutron scattering.
Magazù, S; Mezei, F; Falus, P; Farago, B; Mamontov, E; Russina, M; Migliardo, F
2017-01-01
Elastic and quasielastic neutron scattering studies proved to be efficient probes of the atomic mean square displacement (MSD), a fundamental parameter for the characterization of the motion of individual atoms in proteins and its evolution with temperature and compositional environment. We present a technical overview of the different types of experimental situations and the information quasi-elastic neutron scattering approaches can make available. In particular, MSD can crucially depend on the time scale over which the averaging (building of the "mean") takes place, being defined by the instrumental resolution. Due to their high neutron scattering cross section, hydrogen atoms can be particularly sensitively observed with little interference by the other atoms in the sample. A few examples, including new data, are presented for illustration. The incoherent character of neutron scattering on hydrogen atoms restricts the information obtained to the self-correlations in the motion of individual atoms, simplifying at the same time the data analysis. On the other hand, the (often overlooked) exploration of the averaging time dependent character of MSD is crucial for unambiguous interpretation and can provide a wealth of information on micro- and nanoscale atomic motion in proteins. By properly exploiting the broad range capabilities of (quasi)elastic neutron scattering techniques to deliver time dependent characterization of atomic displacements, they offer a sensitive, direct and simple to interpret approach to exploration of the functional activity of hydrogen atoms in proteins. Partial deuteration can add most valuable selectivity by groups of hydrogen atoms. "This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo". Copyright © 2016 Elsevier B.V. All rights reserved.
Mature red blood cells: from optical model to inverse light-scattering problem.
Gilev, Konstantin V; Yurkin, Maxim A; Chernyshova, Ekaterina S; Strokotov, Dmitry I; Chernyshev, Andrei V; Maltsev, Valeri P
2016-04-01
We propose a method for characterization of mature red blood cells (RBCs) morphology, based on measurement of light-scattering patterns (LSPs) of individual RBCs with the scanning flow cytometer and on solution of the inverse light-scattering (ILS) problem for each LSP. We considered a RBC shape model, corresponding to the minimal bending energy of the membrane with isotropic elasticity, and constructed an analytical approximation, which allows rapid simulation of the shape, given the diameter and minimal and maximal thicknesses. The ILS problem was solved by the nearest-neighbor interpolation using a preliminary calculated database of 250,000 theoretical LSPs. For each RBC in blood sample we determined three abovementioned shape characteristics and refractive index, which also allows us to calculate volume, surface area, sphericity index, spontaneous curvature, hemoglobin concentration and content.
Mature red blood cells: from optical model to inverse light-scattering problem
Gilev, Konstantin V.; Yurkin, Maxim A.; Chernyshova, Ekaterina S.; Strokotov, Dmitry I.; Chernyshev, Andrei V.; Maltsev, Valeri P.
2016-01-01
We propose a method for characterization of mature red blood cells (RBCs) morphology, based on measurement of light-scattering patterns (LSPs) of individual RBCs with the scanning flow cytometer and on solution of the inverse light-scattering (ILS) problem for each LSP. We considered a RBC shape model, corresponding to the minimal bending energy of the membrane with isotropic elasticity, and constructed an analytical approximation, which allows rapid simulation of the shape, given the diameter and minimal and maximal thicknesses. The ILS problem was solved by the nearest-neighbor interpolation using a preliminary calculated database of 250,000 theoretical LSPs. For each RBC in blood sample we determined three abovementioned shape characteristics and refractive index, which also allows us to calculate volume, surface area, sphericity index, spontaneous curvature, hemoglobin concentration and content. PMID:27446656
Measurement of neutrino flux from neutrino-electron elastic scattering
Park, J.; Aliaga, L.; Altinok, O.; ...
2016-06-10
Muon-neutrino elastic scattering on electrons is an observable neutrino process whose cross section is precisely known. Consequently, a measurement of this process in an accelerator-based ν μ beam can improve the knowledge of the absolute neutrino flux impinging upon the detector; typically this knowledge is limited to ~10% due to uncertainties in hadron production and focusing. We also isolated a sample of 135±17 neutrino-electron elastic scattering candidates in the segmented scintillator detector of MINERvA, after subtracting backgrounds and correcting for efficiency. We show how this sample can be used to reduce the total uncertainty on the NuMI ν μ fluxmore » from 9% to 6%. Finally, our measurement provides a flux constraint that is useful to other experiments using the NuMI beam, and this technique is applicable to future neutrino beams operating at multi-GeV energies.« less
Measurement of neutrino flux from neutrino-electron elastic scattering
NASA Astrophysics Data System (ADS)
Park, J.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; Christy, M. E.; Chvojka, J.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman; Osta, J.; Paolone, V.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ramirez, M. A.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Solano Salinas, C. J.; Tagg, N.; Tice, B. G.; Valencia, E.; Walton, T.; Wolcott, J.; Wospakrik, M.; Zavala, G.; Zhang, D.; Miner ν A Collaboration
2016-06-01
Muon-neutrino elastic scattering on electrons is an observable neutrino process whose cross section is precisely known. Consequently a measurement of this process in an accelerator-based νμ beam can improve the knowledge of the absolute neutrino flux impinging upon the detector; typically this knowledge is limited to ˜10 % due to uncertainties in hadron production and focusing. We have isolated a sample of 135 ±17 neutrino-electron elastic scattering candidates in the segmented scintillator detector of MINERvA, after subtracting backgrounds and correcting for efficiency. We show how this sample can be used to reduce the total uncertainty on the NuMI νμ flux from 9% to 6%. Our measurement provides a flux constraint that is useful to other experiments using the NuMI beam, and this technique is applicable to future neutrino beams operating at multi-GeV energies.
Development of a multispectral light-scatter sensor for bacterial colonies
USDA-ARS?s Scientific Manuscript database
We report a multispectral elastic-light-scatter instrument that can simultaneously detect three-wavelength scatter patterns and associated optical densities from individual bacterial colonies, overcoming the limits of the single-wavelength predecessor. Absorption measurements on liquid bacterial sam...
Looking at hydrogen motions in confinement. The uniqueness of Quasi-Elastic Neutron Scattering
NASA Astrophysics Data System (ADS)
Fischer, J.; Tsapatsaris, N.; de Paula, E.; Bordallo, H. N.
2014-09-01
Why in a barren and hot desert, clays can contain a significant fraction of water? Why does concrete crack? How can we demonstrate that complexation of a drug does not alter its conformation in a way that affects its functionality? In this paper we present results on various studies using Quasi-Elastic Neutron Scattering aimed at clarifying these questions. To allow for a better understanding of neutron scattering, a brief introduction to the basics of its theory is presented. Following the theoretical part, experimental results dealing with the effects of confinement on the water dynamics caused by the interfaces in clays and the nano- and micro-pores of concrete are reviewed in detail. At the end, recent Quasi-Elastic Neutron Scattering investigations on the complexation of the local anesthetics Bupivacaine (BVC.HCl, C18H28N20.HCl.H2O) and Ropivacaine (RVC.HCl, C17H26N20.HCl.H2O) into the cyclic β-cyclodextrin oligosaccharide are presented. To conclude, the perspectives that the European Spallation Source brings to this subject are discussed.
Elastic-plastic deformation of molybdenum single crystals shocked along [100
Mandal, A.; Gupta, Y. M.
2017-01-24
To understand the elastic-plastic deformation response of shock-compressed molybdenum (Mo) – a body-centered cubic (BCC) metal, single crystal samples were shocked along the [100] crystallographic orientation to an elastic impact stress of 12.5 GPa. Elastic-plastic wave profiles, measured at different propagation distances ranging between ~0.23 to 2.31 mm using laser interferometry, showed a time-dependent material response. Within experimental scatter, the measured elastic wave amplitudes were nearly constant over the propagation distances examined. These data point to a large and rapid elastic wave attenuation near the impact surface, before reaching a threshold value (elastic limit) of ~3.6 GPa. Numerical simulations ofmore » the measured wave profiles, performed using a dislocation-based continuum model, suggested that {110}<111> and/or {112}<111> slip systems are operative under shock loading. In contrast to shocked metal single crystals with close-packed structures, the measured wave profiles in Mo single crystals could not be explained in terms of dislocation multiplication alone. A dislocation generation mechanism, operative for shear stresses larger than that at the elastic limit, was required to model the rapid elastic wave attenuation and to provide a good overall match to the measured wave profiles. However, the physical basis for this mechanism was not established for the high-purity single crystal samples used in this study. As a result, the numerical simulations also suggested that Mo single crystals do not work harden significantly under shock loading in contrast to the behavior observed under quasi-static loading.« less
Horkay, Ferenc; Basser, Peter J; Hecht, Anne-Marie; Geissler, Erik
2015-12-01
We discuss the main findings of a long-term research program exploring the consequences of sodium/calcium ion exchange on the macroscopic osmotic and elastic properties, and the microscopic structure of representative synthetic polyelectrolyte (sodium polyacrylate, (polyacrylic acid)) and biopolymer gels (DNA). A common feature of these gels is that above a threshold calcium ion concentration, they exhibit a reversible volume phase transition. At the macroscopic level, the concentration dependence of the osmotic pressure shows that calcium ions influence primarily the third-order interaction term in the Flory-Huggins model of polymer solutions. Mechanical tests reveal that the elastic modulus is practically unaffected by the presence of calcium ions, indicating that ion bridging does not create permanent cross-links. At the microscopic level, small-angle neutron scattering shows that polyacrylic acid and DNA gels exhibit qualitatively similar structural features in spite of important differences (e.g. chain flexibility and chemical composition) between the two polymers. The main effect of calcium ions is that the neutron scattering intensity increases due to the decrease in the osmotic modulus. At the level of the counterion cloud around dissolved macroions, anomalous small-angle X-ray scattering measurements made on DNA indicate that divalent ions form a cylindrical sheath enveloping the chain, but they are not localized. Small-angle neutron scattering and small-angle X-ray scattering provide complementary information on the structure and interactions in polymer solutions and gels. © IMechE 2015.
Improved constraints on supersymmetric dark matter from muon g-2
NASA Astrophysics Data System (ADS)
Baltz, E. A.; Gondolo, P.
2003-03-01
The new measurement of the anomalous magnetic moment of the muon by the Brookhaven AGS experiment 821 again shows a discrepancy with the standard model value. We investigate the consequences of these new data for neutralino dark matter, updating and extending our previous work [E. A. Baltz and P. Gondolo, Phys. Rev. Lett. 86, 5004 (2001)]. The measurement excludes the standard model value at 3.0σ confidence, assuming the evaluation using the hadronic e+e- cross section (the τ decay evaluation yields only a 1.6σ discrepancy). We analyze a phenomenological set of supersymmetric models with gaugino mass unification imposed but without a priori constraints on the Higgs sector. Taking the discrepancy as a sign of supersymmetry, we find that the lightest superpartner must be relatively light and it must have a relatively high elastic scattering cross section with nucleons, which brings it almost within reach of proposed direct dark matter searches. The SUSY signal from neutrino telescopes correlates fairly well with the elastic scattering cross section. The rate of cosmic ray antideuterons tends to be large in the allowed models, but the constraint has little effect on the rate of gamma ray lines. We stress that being more conservative may eliminate the discrepancy, but it does not eliminate the possibility of high astrophysical detection rates.
NASA Astrophysics Data System (ADS)
Zhu, Ying; Fearn, Tom; MacKenzie, Gary; Clark, Ben; Dunn, Jason M.; Bigio, Irving J.; Bown, Stephen G.; Lovat, Laurence B.
2009-07-01
Elastic scattering spectroscopy (ESS) may be used to detect high-grade dysplasia (HGD) or cancer in Barrett's esophagus (BE). When spectra are measured in vivo by a hand-held optical probe, variability among replicated spectra from the same site can hinder the development of a diagnostic model for cancer risk. An experiment was carried out on excised tissue to investigate how two potential sources of this variability, pressure and angle, influence spectral variability, and the results were compared with the variations observed in spectra collected in vivo from patients with Barrett's esophagus. A statistical method called error removal by orthogonal subtraction (EROS) was applied to model and remove this measurement variability, which accounted for 96.6% of the variation in the spectra, from the in vivo data. Its removal allowed the construction of a diagnostic model with specificity improved from 67% to 82% (with sensitivity fixed at 90%). The improvement was maintained in predictions on an independent in vivo data set. EROS works well as an effective pretreatment for Barrett's in vivo data by identifying measurement variability and ameliorating its effect. The procedure reduces the complexity and increases the accuracy and interpretability of the model for classification and detection of cancer risk in Barrett's esophagus.
Direct modeling of coda wave interferometry: comparison of numerical and experimental approaches
NASA Astrophysics Data System (ADS)
Azzola, Jérôme; Masson, Frédéric; Schmittbuhl, Jean
2017-04-01
The sensitivity of coda waves to small changes of the propagation medium is the principle of the coda waves interferometry, a technique which has been found to have a large range of applications over the past years. It exploits the evolution of strongly scattered waves in a limited region of space, to estimate slight changes like the wave velocity of the medium but also the location of scatterer positions or the stress field. Because of the sensitivity of the method, it is of a great value for the monitoring of geothermal EGS reservoir in order to detect fine changes. The aim of this work is thus to monitor the impact of different scatterer distributions and of the loading condition evolution using coda wave interferometry in the laboratory and numerically by modelling the scatter wavefield. In the laboratory, we analyze the scattering of an acoustic wave through a perforated loaded plate of DURAL. Indeed, the localized damages introduced behave as a scatter source. Coda wave interferometry is performed computing correlations of waveforms under different loading conditions, for different scatter distributions. Numerically, we used SPECFEM2D (a 2D spectral element code, (Komatitsch and Vilotte (1998)) to perform 2D simulations of acoustic and elastic seismic wave propagation and enables a direct comparison with laboratory and field results. An unstructured mesh is thus used to simulate the propagation of a wavelet in a loaded plate, before and after introduction of localized damages. The linear elastic deformation of the plate is simulated using Code Aster. The coda wave interferometry is performed similarly to experimental measurements. The accuracy of the comparison of the numerically and laboratory obtained results is strongly depending on the capacity to adapt the laboratory and numerical simulation conditions. In laboratory, the capacity to illuminate the medium in a similar way to that used in the numerical simulation deeply conditions among others the comparison. In the simulation, the gesture of the mesh and its dispersion also influences the rightness of the comparison and interpretation. Moreover, the spectral elements distribution of the mesh and its relative refinement could also be considered as an interesting scatter source.
The spectral expansion of the elasticity random field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malyarenko, Anatoliy; Ostoja-Starzewski, Martin
2014-12-10
We consider a deformable body that occupies a region D in the plane. In our model, the body’s elasticity tensor H(x) is the restriction to D of a second-order mean-square continuous random field. Under translation, the expected value and the correlation tensor of the field H(x) do not change. Under action of an arbitrary element k of the orthogonal group O(2), they transform according to the reducible orthogonal representation k ⟼ S{sup 2}(S{sup 2}(k)) of the above group. We find the spectral expansion of the correlation tensor R(x) of the elasticity field as well as the expansion of the fieldmore » itself in terms of stochastic integrals with respect to a family of orthogonal scattered random measures.« less
Proton-Nucleus Elastic Cross Sections Using Two-Body In-Medium Scattering Amplitudes
NASA Technical Reports Server (NTRS)
Tripathi, R. K.; Wilson, John W.; Cucinotta, Francis A.
2001-01-01
Recently, a method was developed of extracting nucleon-nucleon (NN) cross sections in the medium directly from experiment. The in-medium NN cross sections form the basic ingredients of several heavy-ion scattering approaches including the coupled-channel approach developed at the Langley Research Center. The ratio of the real to the imaginary part of the two-body scattering amplitude in the medium was investigated. These ratios are used in combination with the in-medium NN cross sections to calculate elastic proton-nucleus cross sections. The agreement is excellent with the available experimental data. These cross sections are needed for the radiation risk assessment of space missions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Golak, J.; Skibinski, R.; Topolnicki, K.
Here, we solve three-nucleon Faddeev equations with nucleon-nucleon and three-nucleon forces derived consistently in the framework of chiral perturbation theory at next-to-next-to-next-to-leading order in the chiral expansion. In this first investigation we include only matrix elements of the three-nucleon force for partial waves with the total two-nucleon (three-nucleon) angular momenta up to 3 (5/2). Low-energy neutron-deuteron elastic scattering and deuteron breakup reaction are studied. Emphasis is put on A y puzzle in elastic scattering and cross sections in symmetric-space-star and neutron-neutron quasi-free-scattering breakup configurations, for which large discrepancies between data and theory have been reported.
Generation of Shear Motion from an Isotropic Explosion Source by Scattering in Heterogeneous Media
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirakawa, Evan; Pitarka, Arben; Mellors, Robert
One challenging task in explosion seismology is the development of physical models for explaining the generation of S waves during underground explosions. Recent analysis of ground motion from chemical explosions during the Source Physics Experiment (Pitarka et al., 2015) suggests that, although a large component of shear motion was generated directly at the source, additional scattering from heterogeneous velocity structure and topography is necessary to better match the recorded data. In our paper, we used a stochastic representation of small-scale velocity variability to produce high-frequency scattering and to analyze its implication on shear-motion generation during underground explosions. In our stochasticmore » velocity model, the key parameters that affect scattering are the correlation length and the relative amplitude of velocity perturbations. Finally, based on finite-difference simulations of elastic wave propagation from an isotropic explosion source, we find that higher velocity perturbations result in larger shear motion, whereas the correlation length, which controls the scatterers size, affects the frequency range at which relative transverse motion is larger.« less
Generation of Shear Motion from an Isotropic Explosion Source by Scattering in Heterogeneous Media
Hirakawa, Evan; Pitarka, Arben; Mellors, Robert
2016-07-19
One challenging task in explosion seismology is the development of physical models for explaining the generation of S waves during underground explosions. Recent analysis of ground motion from chemical explosions during the Source Physics Experiment (Pitarka et al., 2015) suggests that, although a large component of shear motion was generated directly at the source, additional scattering from heterogeneous velocity structure and topography is necessary to better match the recorded data. In our paper, we used a stochastic representation of small-scale velocity variability to produce high-frequency scattering and to analyze its implication on shear-motion generation during underground explosions. In our stochasticmore » velocity model, the key parameters that affect scattering are the correlation length and the relative amplitude of velocity perturbations. Finally, based on finite-difference simulations of elastic wave propagation from an isotropic explosion source, we find that higher velocity perturbations result in larger shear motion, whereas the correlation length, which controls the scatterers size, affects the frequency range at which relative transverse motion is larger.« less
NASA Astrophysics Data System (ADS)
Ih Choi, Woon; Kim, Kwiseon; Narumanchi, Sreekant
2012-09-01
Thermal resistance between layers impedes effective heat dissipation in electronics packaging applications. Thermal conductance for clean and disordered interfaces between silicon (Si) and aluminum (Al) was computed using realistic Si/Al interfaces and classical molecular dynamics with the modified embedded atom method potential. These realistic interfaces, which include atomically clean as well as disordered interfaces, were obtained using density functional theory. At 300 K, the magnitude of interfacial conductance due to phonon-phonon scattering obtained from the classical molecular dynamics simulations was approximately five times higher than the conductance obtained using analytical elastic diffuse mismatch models. Interfacial disorder reduced the thermal conductance due to increased phonon scattering with respect to the atomically clean interface. Also, the interfacial conductance, due to electron-phonon scattering at the interface, was greater than the conductance due to phonon-phonon scattering. This indicates that phonon-phonon scattering is the bottleneck for interfacial transport at the semiconductor/metal interfaces. The molecular dynamics modeling predictions for interfacial thermal conductance for a 5-nm disordered interface between Si/Al were in-line with recent experimental data in the literature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramirez, A. P. D.; Vanhoy, J. R.; Hicks, S. F.
Elastic and inelastic differential cross sections for neutron scattering from 56Fe have been measured for several incident energies from 1.30 to 7.96 MeV at the University of Kentucky Accelerator Laboratory. Scattered neutrons were detected using a C 6D 6 liquid scintillation detector using pulse-shape discrimination and time-of-flight techniques. The deduced cross sections have been compared with previously reported data, predictions from evaluation databases ENDF, JENDL, and JEFF, and theoretical calculations performed using different optical model potentials using the TALYS and EMPIRE nuclear reaction codes. The coupled-channel calculations based on the vibrational and soft-rotor models are found to describe the experimentalmore » (n,n 0) and (n,n 1) cross sections well.« less
NASA Technical Reports Server (NTRS)
Sheu, Y. C.; Fu, L. S.
1982-01-01
The extended method of equivalent inclusion developed is applied to study the specific wave problems of the transmission of elastic waves in an infinite medium containing a layer of inhomogeneity, and of the scattering of elastic waves in an infinite medium containing a perfect spherical inhomogeneity. The eigenstrains are expanded as a geometric series and the method of integration for the inhomogeneous Helmholtz operator given by Fu and Mura is adopted. The results obtained by using a limited number of terms in the eigenstrain expansion are compared with exact solutions for the layer problem and for a perfect sphere. Two parameters are singled out for this comparison: the ratio of elastic moduli, and the ratio of the mass densities. General trends for three different situations are shown.
Problem of the Optical Model for Deuterons; ZAGADNIENIA MODELU OPTYCZNEGO DLA DEUTERONOW
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grotowski, K.
1963-01-01
Problems concerning parameters of the optical potential for deuterons are presented. Total cross-sections for the interaction of deuterons with nuclei were determined by the evaluation of the cross-sections for the emission of charged particles and neutrons. The angular distributions for the elastic scattering of deuterons were also measured, 47 references. (auth)
Acoustic and elastic waves in metamaterials for underwater applications
NASA Astrophysics Data System (ADS)
Titovich, Alexey S.
Elastic effects in acoustic metamaterials are investigated. Water-based periodic arrays of elastic scatterers, sonic crystals, suffer from low transmission due to the impedance and index mismatch of typical engineering materials with water. A new type of acoustic metamaterial element is proposed that can be tuned to match the acoustic properties of water in the quasi-static regime. The element comprises a hollow elastic cylindrical shell fitted with an optimized internal substructure consisting of a central mass supported by an axisymmetric distribution of elastic stiffeners, which dictate the shell's effective bulk modulus and density. The derived closed form scattering solution for this system shows that the subsonic flexural waves excited in the shell by the attachment of stiffeners are suppressed by including a sufficiently large number of such stiffeners. As an example of refraction-based wave steering, a cylindrical-to-plane wave lens is designed by varying the bulk modulus in the array according to the conformal mapping of a unit circle to a square. Elastic shells provide rich scattering properties, mainly due to their ability to support highly dispersive flexural waves. Analysis of flexural-borne waves on a pair of shells yields an analytical expression for the width of a flexural resonance, which is then used with the theory of multiple scattering to accurately predict the splitting of the resonance frequency. This analysis leads to the discovery of the acoustic Poisson-like effect in a periodic wave medium. This effect redirects an incident acoustic wave by 90° in an otherwise acoustically transparent sonic crystal. An unresponsive "deaf" antisymmetric mode locked to band gap boundaries is unlocked by matching Bragg scattering with a quadrupole flexural resonance of the shell. The dynamic effect causes normal unidirectional wave motion to strongly couple to perpendicular motion, analogous to the quasi-static Poisson effect in solids. The Poisson-like effect is demonstrated using the first flexural resonance of an acrylic shell. This represent a new type of material which cannot be accurately described as an effective acoustic medium. The study concludes with an analysis of a non-zero shear modulus in a pentamode cloak via the two-scale method with the shear modulus as the perturbation parameter.
Vibration band gaps for elastic metamaterial rods using wave finite element method
NASA Astrophysics Data System (ADS)
Nobrega, E. D.; Gautier, F.; Pelat, A.; Dos Santos, J. M. C.
2016-10-01
Band gaps in elastic metamaterial rods with spatial periodic distribution and periodically attached local resonators are investigated. New techniques to analyze metamaterial systems are using a combination of analytical or numerical method with wave propagation. One of them, called here wave spectral element method (WSEM), consists of combining the spectral element method (SEM) with Floquet-Bloch's theorem. A modern methodology called wave finite element method (WFEM), developed to calculate dynamic behavior in periodic acoustic and structural systems, utilizes a similar approach where SEM is substituted by the conventional finite element method (FEM). In this paper, it is proposed to use WFEM to calculate band gaps in elastic metamaterial rods with spatial periodic distribution and periodically attached local resonators of multi-degree-of-freedom (M-DOF). Simulated examples with band gaps generated by Bragg scattering and local resonators are calculated by WFEM and verified with WSEM, which is used as a reference method. Results are presented in the form of attenuation constant, vibration transmittance and frequency response function (FRF). For all cases, WFEM and WSEM results are in agreement, provided that the number of elements used in WFEM is sufficient to convergence. An experimental test was conducted with a real elastic metamaterial rod, manufactured with plastic in a 3D printer, without local resonance-type effect. The experimental results for the metamaterial rod with band gaps generated by Bragg scattering are compared with the simulated ones. Both numerical methods (WSEM and WFEM) can localize the band gap position and width very close to the experimental results. A hybrid approach combining WFEM with the commercial finite element software ANSYS is proposed to model complex metamaterial systems. Two examples illustrating its efficiency and accuracy to model an elastic metamaterial rod unit-cell using 1D simple rod element and 3D solid element are demonstrated and the results present good approximation to the experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Xin -Hu; Ye, Yun -Xiu; Chen, Jian -Ping
2015-07-17
The radiation and ionization energy loss are presented for single arm Monte Carlo simulation for the GDH sum rule experiment in Hall-A at Jefferson Lab. Radiation and ionization energy loss are discussed formore » $$^{12}C$$ elastic scattering simulation. The relative momentum ratio $$\\frac{\\Delta p}{p}$$ and $$^{12}C$$ elastic cross section are compared without and with radiation energy loss and a reasonable shape is obtained by the simulation. The total energy loss distribution is obtained, showing a Landau shape for $$^{12}C$$ elastic scattering. This simulation work will give good support for radiation correction analysis of the GDH sum rule experiment.« less
Scattering of Lamb waves by cracks in a composite graphite fiber-reinforced epoxy plate
NASA Technical Reports Server (NTRS)
Bratton, Robert; Datta, Subhendu K.; Shah, Arvind
1990-01-01
Recent investigations of space construction techniques have explored the used of composite materials in the construction of space stations and platforms. These composites offer superior strength to weight ratio and are thermally stable. For example, a composite material being considered is laminates of graphite fibers in an epoxy matrix. The overall effective elastic constants of such a medium can be calculated from fiber and matrix properties by using an effective modulus theory as shown in Datta, el. al. The investigation of propagation and scattering of elastic waves in composite materials is necessary in order to develop an ability to characterize cracks and predict the reliability of composite structures. The objective of this investigation is the characterization of a surface breaking crack by ultrasonic techniques. In particular, the use of Lamb waves for this purpose is studied here. The Lamb waves travel through the plate, encountering a crack, and scatter. Of interest is the modeling of the scattered wave in terms of the Lamb wave modes. The direct problem of propagation and scattering of Lamb waves by a surface breaking crack has been analyzed. This would permit an experimentalist to characterize the crack by comparing the measured response to the analytical model. The plate is assumed to be infinite in the x and y directions with a constant thickness in the z direction. The top and bottom surfaces are traction free. Solving the governing wave equations and using the stress-free boundary conditions results in the dispersion equation. This equation yields the guided modes in the homogeneous plate. The theoretical model is a hybrid method that combines analytical and finite elements techniques to describe the scattered displacements. A finite region containing the defects is discretized by finite elements. Outside the local region, the far field solution is expressed as a Fourier summation of the guided modes obtained from the dispersion equation. Continuity of tractions and displacements at the boundaries of the two regions provides the necessary equations to determine the expansion coefficients and the nodal displacements. In the hybrid method used here these defects can be of arbitrary shapes as well as inclusions of different materials.
NASA Astrophysics Data System (ADS)
Sharov, V. I.
2017-12-01
It is shown that the existing data on analyzing power An of the elastic pp scattering could be successfully applied for polarimetry of the colliding proton beams using the NICA detectors. Performed calculations of the count rates of the elastic events have revealed that the polarimeter based on using An for elastic pp will have a high polarization measurement velocity.
NASA Technical Reports Server (NTRS)
Kim, Myung-Hee Y.; Nounu, Hatem N.; Ponomarev, Artem L.; Cucinotta, Francis A.
2011-01-01
A new computer model, the GCR Event-based Risk Model code (GERMcode), was developed to describe biophysical events from high-energy protons and heavy ions that have been studied at the NASA Space Radiation Laboratory (NSRL) [1] for the purpose of simulating space radiation biological effects. In the GERMcode, the biophysical description of the passage of heavy ions in tissue and shielding materials is made with a stochastic approach that includes both ion track structure and nuclear interactions. The GERMcode accounts for the major nuclear interaction processes of importance for describing heavy ion beams, including nuclear fragmentation, elastic scattering, and knockout-cascade processes by using the quantum multiple scattering fragmentation (QMSFRG) model [2]. The QMSFRG model has been shown to be in excellent agreement with available experimental data for nuclear fragmentation cross sections
NASA Astrophysics Data System (ADS)
Tran, D. T.; Ong, H. J.; Nguyen, T. T.; Tanihata, I.; Aoi, N.; Ayyad, Y.; Chan, P. Y.; Fukuda, M.; Hashimoto, T.; Hoang, T. H.; Ideguchi, E.; Inoue, A.; Kawabata, T.; Khiem, L. H.; Lin, W. P.; Matsuta, K.; Mihara, M.; Momota, S.; Nagae, D.; Nguyen, N. D.; Nishimura, D.; Ozawa, A.; Ren, P. P.; Sakaguchi, H.; Tanaka, J.; Takechi, M.; Terashima, S.; Wada, R.; Yamamoto, T.; RCNP-E372 Collaboration
2016-12-01
We have measured for the first time the charge-changing cross sections (σCC) of C-1612 on a 12C target at energies below 100 A MeV. To analyze these low-energy data, we have developed a finite-range Glauber model with a global parameter set within the optical-limit approximation which is applicable to reaction cross section (σR) and σCC measurements at incident energies from 10 A to 2100 A MeV. Adopting the proton-density distribution of 12C known from the electron-scattering data, as well as the bare total nucleon-nucleon cross sections and the real-to-imaginary-part ratios of the forward proton-proton elastic scattering amplitude available in the literatures, we determine the energy-dependent slope parameter βp n of the proton-neutron elastic differential cross section so as to reproduce the existing σR and interaction cross-section data for 12C+12C over a wide range of incident energies. The Glauber model thus formulated is applied to calculate the σR's of 12C on a 9Be and 27Al targets at various incident energies. Our calculations show excellent agreement with the experimental data. Applying our model to the σR and σCC for the so-called neutron-skin 16C nucleus, we reconfirm the importance of measurements at incident energies below 100 A MeV. The proton root-mean-square radii of C-1612 are extracted using the measured σCC's and the existing σR data. The results for C-1412 are consistent with the values from the electron scatterings, demonstrating the feasibility, usefulness of the σCC measurement, and the present Glauber model.
Refractive effects and Airy structure in inelastic 16O+12C rainbow scattering
NASA Astrophysics Data System (ADS)
Ohkubo, S.; Hirabayashi, Y.; Ogloblin, A. A.; Gloukhov, Yu. A.; Dem'yanova, A. S.; Trzaska, W. H.
2014-12-01
Inelastic 16O+12C rainbow scattering to the 2+ (4.44 MeV) state of 12C was measured at the incident energies, EL = 170, 181, 200, 260, and 281 MeV. A systematic analysis of the experimental angular distributions was performed using the coupled-channels method with an extended double folding potential derived from realistic wave functions for 12C and 16O calculated with a microscopic α cluster model and a finite-range density-dependent nucleon-nucleon force. The coupled-channels analysis of the measured inelastic-scattering data shows consistently some Airy-like structure in the inelastic-scattering cross sections for the first 2+ state of 12C, which is somewhat obscured and still not clearly visible in the measured data. The Airy minimum was identified from the analysis and the systematic energy evolution of the Airy structure was studied. The Airy minimum in inelastic scattering is found to be shifted backward compared with that in elastic scattering.
Hard quark-quark scattering with exclusive reactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barton, D.S.; Bunce, G.M.; Carroll, A.S.
1984-07-19
We have begun a program designed to study hard quark-quark scattering with exclusive reactions, focusing on quasi-elastic two-body reactions with all possible quark flavor exchanges. Examples are ..pi../sup -/p ..-->.. ..pi../sup -/p, rho/sup -/p, ..pi../sup +/..delta../sup -/, K/sup +/..sigma../sup -/, or K..lambda... Of the two-body exclusives, only elastic scattering had been measured at such large t previous to our experiment. By comparing the relative importance of different final states, the energy dependence of the production ratios of these states, the prominence of resonances such as rho/sup -/ over background in this region, and measuring polarizations where accessible, we have collectedmore » a large body of data on hard scattering in a completely new domain. Previously, essential all short distance QCD tests have been for inclusive processes. We have taken data with both negative and positive incident beam at 10 GeV/c on a hydrogen target and will present the first results, for ..pi../sup -/p ..-->.. ..pi../sup -/p and rho/sup -/p at THETA/sub cm/ = 90/sup 0/, -t = 9 GeV/sup 2//c/sup 2/. The apparatus consists of a magnetic spectrometer, with Cerenkov particle identification, which selects stable charged particles (protons in this case) at high momentum near 90/sup 0/ in the center-of-mass. A large aperture array of PWCs observes the recoil particle or charged decay products. Cross sections are extremely low, approximately a 1 nb/(GeV/c)/sup 2/ for elastic scattering. We will report on a sample of more than 1000 ..pi../sup -/p elastic events, and on rho/sup -/p, where the rho/sup -/ decay distribution was observed. We find a surprisingly large rho/sup -/p cross section in this large momentum transfer region, with rho/sup -/p about half the elastic cross section, and a striking spin alignment of the rho/sup -/.« less
Background studies for the MINER Coherent Neutrino Scattering reactor experiment
NASA Astrophysics Data System (ADS)
Agnolet, G.; Baker, W.; Barker, D.; Beck, R.; Carroll, T. J.; Cesar, J.; Cushman, P.; Dent, J. B.; De Rijck, S.; Dutta, B.; Flanagan, W.; Fritts, M.; Gao, Y.; Harris, H. R.; Hays, C. C.; Iyer, V.; Jastram, A.; Kadribasic, F.; Kennedy, A.; Kubik, A.; Lang, K.; Mahapatra, R.; Mandic, V.; Marianno, C.; Martin, R. D.; Mast, N.; McDeavitt, S.; Mirabolfathi, N.; Mohanty, B.; Nakajima, K.; Newhouse, J.; Newstead, J. L.; Ogawa, I.; Phan, D.; Proga, M.; Rajput, A.; Roberts, A.; Rogachev, G.; Salazar, R.; Sander, J.; Senapati, K.; Shimada, M.; Soubasis, B.; Strigari, L.; Tamagawa, Y.; Teizer, W.; Vermaak, J. I. C.; Villano, A. N.; Walker, J.; Webb, B.; Wetzel, Z.; Yadavalli, S. A.
2017-05-01
The proposed Mitchell Institute Neutrino Experiment at Reactor (MINER) experiment at the Nuclear Science Center at Texas A&M University will search for coherent elastic neutrino-nucleus scattering within close proximity (about 2 m) of a 1 MW TRIGA nuclear reactor core using low threshold, cryogenic germanium and silicon detectors. Given the Standard Model cross section of the scattering process and the proposed experimental proximity to the reactor, as many as 5-20 events/kg/day are expected. We discuss the status of preliminary measurements to characterize the main backgrounds for the proposed experiment. Both in situ measurements at the experimental site and simulations using the MCNP and GEANT4 codes are described. A strategy for monitoring backgrounds during data taking is briefly discussed.
Proton scattering by short lived sulfur isotopes
NASA Astrophysics Data System (ADS)
Maréchal, F.; Suomijärvi, T.; Blumenfeld, Y.; Azhari, A.; Bauge, E.; Bazin, D.; Brown, J. A.; Cottle, P. D.; Delaroche, J. P.; Fauerbach, M.; Girod, M.; Glasmacher, T.; Hirzebruch, S. E.; Jewell, J. K.; Kelley, J. H.; Kemper, K. W.; Mantica, P. F.; Morrissey, D. J.; Riley, L. A.; Scarpaci, J. A.; Scheit, H.; Steiner, M.
1999-09-01
Elastic and inelastic proton scattering has been measured in inverse kinematics on the unstable nucleus 40S. A phenomenological distorted wave Born approximation analysis yields a quadrupole deformation parameter β2=0.35+/-0.05 for the 2+1 state. Consistent phenomenological and microscopic proton scattering analyses have been applied to all even-even sulfur isotopes from A=32 to A=40. The second analysis used microscopic collective model densities and a modified Jeukenne-Lejeune-Mahaux nucleon-nucleon effective interaction. This microscopic analysis suggests the presence of a neutron skin in the heavy sulfur isotopes. The analysis is consistent with normalization values for λv and λw of 0.95 for both the real and imaginary parts of the Jeukenne-Lejeune-Mahaux potential.
Ultrasound scatter in heterogeneous 3D microstructures: Parameters affecting multiple scattering
NASA Astrophysics Data System (ADS)
Engle, B. J.; Roberts, R. A.; Grandin, R. J.
2018-04-01
This paper reports on a computational study of ultrasound propagation in heterogeneous metal microstructures. Random spatial fluctuations in elastic properties over a range of length scales relative to ultrasound wavelength can give rise to scatter-induced attenuation, backscatter noise, and phase front aberration. It is of interest to quantify the dependence of these phenomena on the microstructure parameters, for the purpose of quantifying deleterious consequences on flaw detectability, and for the purpose of material characterization. Valuable tools for estimation of microstructure parameters (e.g. grain size) through analysis of ultrasound backscatter have been developed based on approximate weak-scattering models. While useful, it is understood that these tools display inherent inaccuracy when multiple scattering phenomena significantly contribute to the measurement. It is the goal of this work to supplement weak scattering model predictions with corrections derived through application of an exact computational scattering model to explicitly prescribed microstructures. The scattering problem is formulated as a volume integral equation (VIE) displaying a convolutional Green-function-derived kernel. The VIE is solved iteratively employing FFT-based con-volution. Realizations of random microstructures are specified on the micron scale using statistical property descriptions (e.g. grain size and orientation distributions), which are then spatially filtered to provide rigorously equivalent scattering media on a length scale relevant to ultrasound propagation. Scattering responses from ensembles of media representations are averaged to obtain mean and variance of quantities such as attenuation and backscatter noise levels, as a function of microstructure descriptors. The computational approach will be summarized, and examples of application will be presented.
NASA Astrophysics Data System (ADS)
Heili, Manon; Bielawski, Andrew; Kieffer, John
The cure kinetics of a DGEBA/DETA epoxy is investigated using concurrent Raman and Brillouin light scattering. Raman scattering allows us to monitor the in-situ reaction and quantitatively assess the degree of cure. Brillouin scattering yields the elastic properties of the system, providing a measure of network connectivity. We show that the adiabatic modulus evolves non-uniquely as a function of cure degree, depending on the cure temperature and the molar ratio of the epoxy. Two mechanisms contribute to the increase in the elastic modulus of the material during curing. First, there is the formation of covalent bonds in the network during the curing process. Second, following bond formation, the epoxy undergoes structural relaxation toward an optimally packed network configuration, enhancing non-bonded interactions. We investigate to what extent the non-bonded interaction contribution to structural rigidity in cross-linked polymers is reversible, and to what extent it corresponds to the difference between adiabatic and isothermal moduli obtained from static tensile, i.e. the so-called relaxational modulus. To this end, we simultaneously measure the adiabatic and isothermal elastic moduli as a function of applied strain and deformation rate.
Volterra integral equation-factorisation method and nucleus-nucleus elastic scattering
NASA Astrophysics Data System (ADS)
Laha, U.; Majumder, M.; Bhoi, J.
2018-04-01
An approximate solution for the nuclear Hulthén plus atomic Hulthén potentials is constructed by solving the associated Volterra integral equation by series substitution method. Within the framework of supersymmetry-inspired factorisation method, this solution is exploited to construct higher partial wave interactions. The merit of our approach is examined by computing elastic scattering phases of the α {-}α system by the judicious use of phase function method. Reasonable agreements in phase shifts are obtained with standard data.
Scatter of elastic waves by a thin flat elliptical inhomogeneity
NASA Technical Reports Server (NTRS)
Fu, L. S.
1983-01-01
Elastodynamic fields of a single, flat, elliptical inhomogeneity embedded in an infinite elastic medium subjected to plane time harmonic waves are studied. Scattered displacement amplitudes and stress intensities are obtained in series form for an incident wave in an arbitrary direction. The cases of a penny shaped crack and an elliptical crack are given as examples. The analysis is valid for alpha a up to about two, where alpha is longitudinal wave number and a is a typical geometric parameter.
Elastic scattering and particle production in two-prong. pi. /sup -/p interactions at 8 GeV/c
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kitagaki, T.; Tanaka, S.; Yuta, H.
1982-10-01
Results of a high-statistics study of elastic scattering and meson resonances produced by ..pi../sup -/p interactions at 8 GeV/c are presented. Large statistics and small systematic errors permit examination of the complete kinematic region. Total differential cross sections are given for rho/sup 0,-/, f/sup 0/, g/sup 0,-/, ..delta../sup + -/, ..delta../sup 0/, and N* resonances. Spin-density matrix elements and Legendre-polynomial moments are given for rho, f, and ..delta.. resonances. The results for rho/sup 0/ and f/sup 0/ resonances are compared with the predictions of a Regge-pole-exchange model. Properties of the above resonances are compared and discussed. In particular, we presentmore » evidence that the rho/sup 0/ and f/sup 0/ production mechanisms are similar. The similarity of the g/sup 0/ t distribution to that of the rho/sup 0/ and f/sup 0/ suggests a common production mechanism for all three resonances.« less
NASA Astrophysics Data System (ADS)
Bai, M.; Miskowiec, A.; Wang, S.-K.; Taub, H.; Jenkins, T.; Tyagi, M.; Neumann, D. A.; Hansen, F. Y.
2010-03-01
Bilayer lipid membranes supported on a solid surface are attractive model systems for understanding the structure and dynamics of more complex biological membranes that form the outer boundary of living cells. We have recently demonstrated the feasibility of using quasielastic neutron scattering to study on a ˜1 ns time scale the diffusion of water bound to single-supported bilayer lipid membranes. Two different membrane samples characterized by AFM were investigated: protonated DMPC + D2O and tail-deuterated DMPC + H2O. Both fully hydrated membranes were deposited onto SiO2-coated Si(100) substrates. Measurements of elastic neutron intensity as a function of temperature on the High Flux Backscattering Spectrometer at NIST reveal features in the diffusive motion of water that have not been observed previously using multilayer membrane stacks. On slow cooling, the elastic intensity shows sharp step-like increases in the temperature range 265 to 272 K that we tentatively interpret as successive mobile-to-immobile transitions of water bound to the membrane.
DeGiuli, Eric; Laversanne-Finot, Adrien; Düring, Gustavo; Lerner, Edan; Wyart, Matthieu
2014-08-14
Connectedness and applied stress strongly affect elasticity in solids. In various amorphous materials, mechanical stability can be lost either by reducing connectedness or by increasing pressure. We present an effective medium theory of elasticity that extends previous approaches by incorporating the effect of compression, of amplitude e, allowing one to describe quantitative features of sound propagation, transport, the boson peak, and elastic moduli near the elastic instability occurring at a compression ec. The theory disentangles several frequencies characterizing the vibrational spectrum: the onset frequency where strongly-scattered modes appear in the vibrational spectrum, the pressure-independent frequency ω* where the density of states displays a plateau, the boson peak frequency ωBP found to scale as , and the Ioffe-Regel frequency ωIR where scattering length and wavelength become equal. We predict that sound attenuation crosses over from ω(4) to ω(2) behaviour at ω0, consistent with observations in glasses. We predict that a frequency-dependent length scale ls(ω) and speed of sound ν(ω) characterize vibrational modes, and could be extracted from scattering data. One key result is the prediction of a flat diffusivity above ω0, in agreement with previously unexplained observations. We find that the shear modulus does not vanish at the elastic instability, but drops by a factor of 2. We check our predictions in packings of soft particles and study the case of covalent networks and silica, for which we predict ωIR ≈ ωBP. Overall, our approach unifies sound attenuation, transport and length scales entering elasticity in a single framework where disorder is not the main parameter controlling the boson peak, in agreement with observations. This framework leads to a phase diagram where various glasses can be placed, connecting microscopic structure to vibrational properties.
NASA Astrophysics Data System (ADS)
Bravo, Jaime J.; Davis, Scott C.; Roberts, David W.; Paulsen, Keith D.; Kanick, Stephen C.
2016-06-01
Quantification of multiple fluorescence markers during neurosurgery has the potential to provide complementary contrast mechanisms between normal and malignant tissues, and one potential combination involves fluorescein sodium (FS) and aminolevulinic acid-induced protoporphyrin IX (PpIX). We focus on the interpretation of reflectance spectra containing contributions from elastically scattered (reflected) photons as well as fluorescence emissions from a strong fluorophore (i.e., FS). A model-based approach to extract μa and μs‧ in the presence of FS emission is validated in optical phantoms constructed with Intralipid (1% to 2% lipid) and whole blood (1% to 3% volume fraction), over a wide range of FS concentrations (0 to 1000 μg/ml). The results show that modeling reflectance as a combination of elastically scattered light and attenuation-corrected FS-based emission yielded more accurate tissue parameter estimates when compared with a nonmodified reflectance model, with reduced maximum errors for blood volume (22% versus 90%), microvascular saturation (21% versus 100%), and μs‧ (13% versus 207%). Additionally, quantitative PpIX fluorescence sampled in the same phantom as FS showed significant differences depending on the reflectance model used to estimate optical properties (i.e., maximum error 29% versus 86%). These data represent a first step toward using quantitative optical spectroscopy to guide surgeries through simultaneous assessment of FS and PpIX.
Cross sections for elastic scattering of electrons by CF3Cl, CF2Cl2, and CFCl3
NASA Astrophysics Data System (ADS)
Hoshino, M.; Horie, M.; Kato, H.; Blanco, F.; García, G.; Limão-Vieira, P.; Sullivan, J. P.; Brunger, M. J.; Tanaka, H.
2013-06-01
Differential, integral, and momentum transfer cross sections have been determined for the elastic scattering of electrons from the molecules CF3Cl, CF2Cl2, and CFCl3.With the help of a crossed electron beam-molecular beam apparatus using the relative flow technique, the ratios of the elastic differential cross sections (DCSs) of CF3Cl, CF2Cl2, and CFCl3 to those of He were measured in the energy region from 1.5 to 100 eV and at scattering angles in the range 15° to 130°. From those ratios, the absolute DCSs were determined by utilizing the known DCS of He. For CF3Cl and CF2Cl2, at the common energies of measurement, we find generally good agreement with the results from the independent experiments of Mann and Linder [J. Phys. B 25, 1621 (1992), 10.1088/0953-4075/25/7/030; Mann and Linder J. Phys. B 25, 1633 (1992), 10.1088/0953-4075/25/7/031]. In addition, as a result of progressively substituting a Cl-atom, undulations in the angular distributions have been found to vary in a largely systematic manner in going from CF4 to CF3Cl to CF2Cl2 to CFCl3 and to CCl4. These observed features suggest that the elastic scattering process is, in an independently additive manner, dominated by the atomic-Cl atoms of the molecules. The present independent atom method calculation typically supports the experimental evidence, within the screened additivity rule formulation, for each species and for energies greater than about 10-20 eV. Integral elastic and momentum transfer cross sections were also derived from the measured DCSs, and are compared to the other available theoretical and experimental results. The elastic integral cross sections are also evaluated as a part of their contribution to the total cross section.
Giant elastic tunability in strained BiFeO 3 near an electrically induced phase transition
Yu, Pu; Vasudevan, Rama K.; Tselev, Alexander; ...
2015-11-24
Elastic anomalies are signatures of phase transitions in condensed matters and have traditionally been studied using various techniques spanning from neutron scattering to static mechanical testing. Here, using band-excitation elastic/piezoresponse spectroscopy, we probed sub-MHz elastic dynamics of a tip bias-induced rhombohedral–tetragonal phase transition of strained (001)-BiFeO 3 (rhombohedral) ferroelectric thin films from ~10 3 nm 3 sample volumes. Near this transition, we observed that the Young's modulus intrinsically softens by over 30% coinciding with 2-3 folds enhancement of local piezoresponse. Coupled with phase-field modeling, we also addressed the influence of polarization switching and mesoscopic structural heterogeneities (e.g., domain walls) onmore » the kinetics of this phase transition, thereby providing fresh insights into the morphotropic phase boundary (MPB) in ferroelectrics. Moreover, the giant electrically tunable elastic stiffness and corresponding electromechanical properties observed here suggest potential applications of BiFeO 3 in next-generation frequency-agile electroacoustic devices, based on utilization of the soft modes underlying successive ferroelectric phase transitions.« less
Giant elastic tunability in strained BiFeO3 near an electrically induced phase transition
Li, Q; Cao, Y.; Yu, P.; Vasudevan, R. K.; Laanait, N.; Tselev, A.; Xue, F.; Chen, L. Q.; Maksymovych, P.; Kalinin, S. V.; Balke, N.
2015-01-01
Elastic anomalies are signatures of phase transitions in condensed matters and have traditionally been studied using various techniques spanning from neutron scattering to static mechanical testing. Here, using band-excitation elastic/piezoresponse spectroscopy, we probed sub-MHz elastic dynamics of a tip bias-induced rhombohedral−tetragonal phase transition of strained (001)-BiFeO3 (rhombohedral) ferroelectric thin films from ∼103 nm3 sample volumes. Near this transition, we observed that the Young's modulus intrinsically softens by over 30% coinciding with two- to three-fold enhancement of local piezoresponse. Coupled with phase-field modelling, we also addressed the influence of polarization switching and mesoscopic structural heterogeneities (for example, domain walls) on the kinetics of this phase transition, thereby providing fresh insights into the morphotropic phase boundary in ferroelectrics. Furthermore, the giant electrically tunable elastic stiffness and corresponding electromechanical properties observed here suggest potential applications of BiFeO3 in next-generation frequency-agile electroacoustic devices, based on the utilization of the soft modes underlying successive ferroelectric phase transitions. PMID:26597483
Low-energy neutron-deuteron reactions with N 3LO chiral forces
Golak, J.; Skibinski, R.; Topolnicki, K.; ...
2014-11-27
Here, we solve three-nucleon Faddeev equations with nucleon-nucleon and three-nucleon forces derived consistently in the framework of chiral perturbation theory at next-to-next-to-next-to-leading order in the chiral expansion. In this first investigation we include only matrix elements of the three-nucleon force for partial waves with the total two-nucleon (three-nucleon) angular momenta up to 3 (5/2). Low-energy neutron-deuteron elastic scattering and deuteron breakup reaction are studied. Emphasis is put on A y puzzle in elastic scattering and cross sections in symmetric-space-star and neutron-neutron quasi-free-scattering breakup configurations, for which large discrepancies between data and theory have been reported.
Weakly interacting massive particle-nucleus elastic scattering response
NASA Astrophysics Data System (ADS)
Anand, Nikhil; Fitzpatrick, A. Liam; Haxton, W. C.
2014-06-01
Background: A model-independent formulation of weakly interacting massive particle (WIMP)-nucleon scattering was recently developed in Galilean-invariant effective field theory. Purpose: Here we complete the embedding of this effective interaction in the nucleus, constructing the most general elastic nuclear cross section as a factorized product of WIMP and nuclear response functions. This form explicitly defines what can and cannot be learned about the low-energy constants of the effective theory—and consequently about candidate ultraviolet theories of dark matter—from elastic scattering experiments. Results: We identify those interactions that cannot be reliably treated in a spin-independent/spin-dependent (SI/SD) formulation: For derivative- or velocity-dependent couplings, the SI/SD formulation generally mischaracterizes the relevant nuclear operator and its multipolarity (e.g., scalar or vector) and greatly underestimates experimental sensitivities. This can lead to apparent conflicts between experiments when, in fact, none may exist. The new nuclear responses appearing in the factorized cross section are related to familiar electroweak nuclear operators such as angular momentum l⃗(i) and the spin-orbit coupling σ⃗(i).l⃗(i). Conclusions: To unambiguously interpret experiments and to extract all of the available information on the particle physics of dark matter, experimentalists will need to (1) do a sufficient number of experiments with nuclear targets having the requisite sensitivities to the various operators and (2) analyze the results in a formalism that does not arbitrarily limit the candidate operators. In an appendix we describe a code that is available to help interested readers implement such an analysis.
Scattering of Femtosecond Laser Pulses on the Negative Hydrogen Ion
NASA Astrophysics Data System (ADS)
Astapenko, V. A.; Moroz, N. N.
2018-05-01
Elastic scattering of ultrashort laser pulses (USLPs) on the negative hydrogen ion is considered. Results of calculations of the USLP scattering probability are presented and analyzed for pulses of two types: the corrected Gaussian pulse and wavelet pulse without carrier frequency depending on the problem parameters.
Semimicroscopic analysis of 6Li+28Si elastic scattering at 76 to 318 MeV
NASA Astrophysics Data System (ADS)
Hassanain, M. A.; Anwar, M.; Behairy, Kassem O.
2018-04-01
Using the α-cluster structure of colliding nuclei, the elastic scattering of 6Li+28Si at energies from 76 to 318 MeV has been investigated by the use of the real folding cluster approach. The results of the cluster analysis are compared with those obtained by the CDM3Y6 effective density- and energy-dependent nucleon-nucleon (NN) interaction based upon G -matrix elements of the M3Y-Paris potential. A Woods-Saxon (WS) form was used for the imaginary potential. For all energies and derived potentials, the diffraction region was well reproduced, except at Elab=135 and 154 MeV at large angle. These results suggest that the addition of the surface (DWS) imaginary potential term to the volume imaginary potential is essential for a correct description of the refractive structure of the 6Li elastic scattering distribution at these energies. The energy dependence of the total reaction cross sections and that of the real and imaginary volume integrals is also discussed.
A predictive theory for elastic scattering and recoil of protons from 4He
Hupin, Guillaume; Quaglioni, Sofia; Navratil, Petr
2014-12-08
Low-energy cross sections for elastic scattering and recoil of protons from 4He nuclei (also known as α particles) are calculated directly by solving the Schrodinger equation for five nucleons interacting through accurate two- and three-nucleon forces derived within the framework of chiral effective field theory. Precise knowledge of these processes at various proton backscattering/recoil angles and energies is needed for the ion-beam analysis of numerous materials, from the surface layers of solids, to thin films, to fusion-reactor materials. Indeed, the same elastic scattering process, in two different kinematic configurations, can be used to probe the concentrations and depth profiles ofmore » either hydrogen or helium. Furthermore, we compare our results to available experimental data and show that direct calculations with modern nuclear potentials can help to resolve remaining inconsistencies among data sets and can be used to predict these cross sections when measurements are not available.« less
Elastic and Inelastic Scattering of Neutrons using a CLYC array
NASA Astrophysics Data System (ADS)
Brown, Tristan; Doucet, E.; Chowdhury, P.; Lister, C. J.; Wilson, G. L.; Devlin, M.; Mosby, S.
2015-10-01
CLYC scintillators, which have dual neutron and gamma response, have recently ushered in the possibility of fast neutron spectroscopy without time-of-flight (TOF). A 16-element array of 1'' x 1'' 6Li-depleted CLYC crystals, where pulse-shape-discrimination is achieved via digital pulse processing, has been commissioned at UMass Lowell. In an experiment at LANSCE, high energy neutrons were used to bombard 56Fe and 238U targets, in order to measure elastic and inelastic neutron scattering cross sections as a function of energy and angle with the array. The array is placed very close to the targets for enhanced geometrical solid angles for scattered neutrons compared to standard neutron-TOF measurements. A pulse-height spectrum of scattered neutrons in the detectors is compared to the energy of the incident neutrons, which is measured via the TOF of the pulsed neutrons from the source to the detectors. Recoil corrections are necessary to combine the energy spectra from all the detectors to obtain angle-integrated elastic and inelastic cross-sections. The detection techniques, analysis procedures and results will be presented. Supported by NNSA-SSAA program through DOE Grant DE-NA00013008.
NASA Astrophysics Data System (ADS)
Hassan, M. A. M.; Nour El-Din, M. S. M.; Ellithi, A.; Hosny, H.; Salama, T. N. E.
2017-10-01
In the framework of Glauber optical limit approximation where Coulomb effect is taken into account, the elastic scattering differential cross section for halo nuclei with {}^{12}{C} at 800 MeV/N has been calculated. Its sensitivity to the halo densities and the root mean square of the core and halo is the main goal of the current study. The projectile nuclei are taken to be one-neutron and two-neutron halo. The calculations are carried out for Gaussian-Gaussian, Gaussian-Oscillator and Gaussian-2 s phenomenological densities for each considered projectile in the mass number range 6-29. Also included a comparison between the obtained results of phenomenological densities and the results within the microscopic densities LSSM of {}6{He} and {}^{11}{Li} and microscopic densities GCM of {}^{11}{Be} where the density of the target nucleus {}^{12}{C} obtained from electron-{}^{12}{C} scattering is used. The zero range approximation is considered in the calculations. We found that the sensitivity of elastic scattering differential cross section to the halo density is clear if the nucleus appears as two clear different clusters, core and halo.
NASA Astrophysics Data System (ADS)
Lazri, H.; Ogam, E.; Amar, B.; Fellah, Z. E. A.; Sayoud, N.; Boumaiza, Y.
2018-05-01
Flexible, supple thermoplastic thin films (PVB and PET) placed on elastic substrates were probed using ultrasonic waves to identify their mechanical moduli and density. The composite medium immersed in a fluid host medium (water) was excited using a 50 Mhz transducer operating at normal incidence in reflection mode. Elastic wave propagation data from the stratified medium was captured in the host medium as scattered field. These data were used along with theoretical fluid-solid interaction forward models for stratified-media developed using elasticity theory, to solve an inverse problem for the recovery of the model parameters of the thin films. Two configurations were modeled, one considering the substrate as a semi-infinite elastic medium and the second the substrate having a finite thickness and flanked by a semi-infinite host medium. Transverse slip for the sliding interface between the films and substrate was chosen. This was found to agree with the experiments whereby the thin films were just placed on the substrate without bonding. The inverse problems for the recovery of the mechanical parameters were successful in retrieving the thin films’ parameters under the slip boundary condition. The possible improvements to the new method for the characterization of thin films are discussed.
Cross Sections, relic abundance, and detection rates for neutralino dark matter
NASA Technical Reports Server (NTRS)
Griest, Kim
1988-01-01
Neutralino annihilation and elastic scattering cross sections are derived which differ in important ways from previous work. These are applied to relic abundance calculations and to direct detection of neutralino dark matter from the galactic halo. Assuming the neutralino to be the lightest supersymmetric particle and that it is less massive than the Z sup 0, we find relic densities of neutralinos greater than 4 percent of critical density for almost all values of the supersymmetric parameters. We constrain the parameter space by using results from PETRA (chargino mass less than 23 GeV) and ASP, and then assuming a critical density of neutralinos, display event rates in a cryogenic detector for a variety of models. A new term implies spin independent elastic scattering even for those majorana particles and inclusion of propagator momenta increases detection rates by 10 to 300 percent for pure photinos. Z sup 0-squark interference leads to very low detection rates for some values of the parameters. The new term in the elastic cross section dominates for heavy, mostly spinless materials and mitigates the negative interference cancellations in light materials; except for the pure photino or pure higgsinos cases where it does not contribute. In general, the rates can be substantially different from the pure photino and pure higgsino special cases usually considered.
Acoustic excitations in glassy sorbitol and their relation with the fragility and the boson peak
NASA Astrophysics Data System (ADS)
Ruta, B.; Baldi, G.; Scarponi, F.; Fioretto, D.; Giordano, V. M.; Monaco, G.
2012-12-01
We report a detailed analysis of the dynamic structure factor of glassy sorbitol by using inelastic X-ray scattering and previously measured light scattering data [B. Ruta, G. Monaco, F. Scarponi, and D. Fioretto, Philos. Mag. 88, 3939 (2008), 10.1080/14786430802317586]. The thus obtained knowledge on the density-density fluctuations at both the mesoscopic and macroscopic length scale has been used to address two debated topics concerning the vibrational properties of glasses. The relation between the acoustic modes and the universal boson peak (BP) appearing in the vibrational density of states of glasses has been investigated, also in relation with some recent theoretical models. Moreover, the connection between the elastic properties of glasses and the slowing down of the structural relaxation process in supercooled liquids has been scrutinized. For what concerns the first issue, it is here shown that the wave vector dependence of the acoustic excitations can be used, in sorbitol, to quantitatively reproduce the shape of the boson peak, supporting the relation between BP and acoustic modes. For what concerns the second issue, a proper study of elasticity over a wide spatial range is shown to be fundamental in order to investigate the relation between elastic properties and the slowing down of the dynamics in the corresponding supercooled liquid phase.
NASA Astrophysics Data System (ADS)
Rohdjeß, H.; Altmeier, M.; Bauer, F.; Bisplinghoff, J.; Bollmann, R.; Büßer, K.; Busch, M.; Diehl, O.; Dohrmann, F.; Engelhardt, H. P.; Ernst, J.; Eversheim, P. D.; Eyser, K. O.; Felden, O.; Gebel, R.; Groß, A.; Groß-Hardt, R.; Hinterberger, F.; Langkau, R.; Lindlein, J.; Maier, R.; Mosel, F.; Prasuhn, D.; von Rossen, P.; Scheid, N.; Schulz-Rojahn, M.; Schwandt, F.; Schwarz, V.; Scobel, W.; Trelle, H.-J.; Ulbrich, K.; Weise, E.; Wellinghausen, A.; Woller, K.; Ziegler, R.
2006-04-01
Recently published excitation functions in proton-proton ( pp) elastic scattering observables in the laboratory energy range 0.5-2.5GeV provide an excellent data base to establish firm upper limits on the elasticities ηel = Γel/Γtot of possible isovector resonant contributions to the nucleon-nucleon ( NN) system. Such contributions have been predicted to arise from dibaryonic states, with c.m. masses between 2.1-2.9GeV/c2, but have not been confirmed experimentally. A method to determine quantitatively the maximum value of ηel compatible with experimental data is presented. We use energy-dependent phase shift fits to the pp data base to model the non-resonant interaction. Based upon the differential cross-section data measured by the EDDA Collaboration an unbiased statistical test is constructed to obtain upper limits on ηel, that exclude larger values with a 99% confidence level. Results in the c.m. mass range 2.05-2.85GeV/c2 and total widths of 10-100MeV/c2 in the partial waves 1 S 0, 1 D 2, 3 P 0, 3 P 1, and 3 F 3 are presented and discussed.
A Quasi-Elastic Neutron Scattering Study of the Dynamics of Electrically Constrained Water.
Fuchs, Elmar C; Bitschnau, Brigitte; Wexler, Adam D; Woisetschläger, Jakob; Freund, Friedemann T
2015-12-31
We have measured the quasi-elastic neutron scattering (QENS) of an electrohydrodynamic liquid bridge formed between two beakers of pure water when a high voltage is applied, a setup allowing to investigate water under high-voltage without high currents. From this experiment two proton populations were distinguished: one consisting of protons strongly bound to oxygen atoms (immobile population, elastic component) and a second one of quasi-free protons (mobile population, inelastic component) both detected by QENS. The diffusion coefficient of the quasi-free protons was found to be D = (26 ± 10) × 10(-5) cm(2) s(-1) with a jump length lav ∼ 3 Å and an average residence time of τ0 = 0.55 ± 0.08 ps. The associated proton mobility in the proton channel of the bridge is ∼9.34 × 10(-7) m(2) V(-1) s(-1), twice as fast as diffusion-based proton mobility in bulk water. It also matches the so-called electrohydrodynamic or "apparent" charge mobility, an experimental quantity which so far has lacked molecular interpretation. These results further corroborate the proton channel model for liquid water under high voltage and give new insights into the molecular mechanisms behind electrohydrodynamic charge transport phenomena and delocalization of protons in liquid water.
Electron collisions with coherently prepared atomic targets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trajmar, S.; Kanik, I.; LeClair, L.R.
1998-02-01
The subject of electron scattering by laser-excited atoms is briefly reviewed. To demonstrate some aspects of these electron collision processes, the authors describe the procedures and the results of a joint experimental and theoretical study concerning elastic scattering by coherently excited {sup 138}Ba (...6s6p {sup 1}P{sub 1}) atoms. Examples of experimental and theoretical collision parameters and magnetic sublevel differential cross sections for elastic scattering are given and compared. The convergent close coupling calculations (with the neglect of spin-orbit interaction) are in good agreement with experiment at 20 eV impact energy and 10, 15 and 20{degree} scattering angles and can bemore » expected to yield reliable integral magnetic sublevel and alignment creation cross sections. The role of these quantities in plasma polarization spectroscopy is pointed out.« less
Comment on de-averaged back-angle heavy-ion elastic scattering excitation functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hussein, M.S.; Canto, L.F.; Donangelo, R.
1984-06-01
It is suggested that the de-averaged 180/sup 0/ excitation function of /sup 16/O+ /sup 28/Si, recently considered by Frahn and Kaufmann, is strongly model dependent. Within a multistep ..cap alpha..-transfer description of the back-angle anomaly, we obtain a de-averaged 180/sup 0/ excitation function that exhibits a more regular gross structure.
NASA Technical Reports Server (NTRS)
Mikellides, Ioannis G.; Mandell, Myron J.; Kuharski, Robert A.; Davis, D. A.; Gardner, Barbara M.; Minor, Jody
2003-01-01
Science Applications International Corporation is currently developing the Electric Propulsion Interactions Code, EPIC, as part of a project sponsored by the Space Environments and Effects Program at NASA Marshall Space Flight Center. Now in its second year of development, EPIC is an interactive computer toolset that allows the construction of a 3-D spacecraft model, and the assessment of a variety of interactions between its subsystems and the plume from an electric thruster. This paper reports on the progress of EPZC including the recently added ability to exchange results the NASA Charging Analyzer Program, Nascap-2k. The capability greatly enhances EPIC's range of applicability. Expansion of the toolset's various physics models proceeds in parallel with the overall development of the software. Also presented are recent upgrades of the elastic scattering algorithm in the electric propulsion Plume Tool. These upgrades are motivated by the need to assess the effects of elastically scattered ions on the SIC for ion beam energies that exceed loo0 eV. Such energy levels are expected in future high-power (>10 kW) ion propulsion systems empowered by nuclear sources.
Experimental Demonstration of Underwater Acoustic Scattering Cancellation
Rohde, Charles A.; Martin, Theodore P.; Guild, Matthew D.; Layman, Christopher N.; Naify, Christina J.; Nicholas, Michael; Thangawng, Abel L.; Calvo, David C.; Orris, Gregory J.
2015-01-01
We explore an acoustic scattering cancellation shell for buoyant hollow cylinders submersed in a water background. A thin, low-shear, elastic coating is used to cancel the monopole scattering from an air-filled, neutrally buoyant steel shell for all frequencies where the wavelength is larger than the object diameter. By design, the uncoated shell also has an effective density close to the aqueous background, independently canceling its dipole scattering. Due to the significantly reduced monopole and dipole scattering, the compliant coating results in a hollow cylindrical inclusion that is simultaneously impedance and sound speed matched to the water background. We demonstrate the proposed cancellation method with a specific case, using an array of hollow steel cylinders coated with thin silicone rubber shells. These experimental results are matched to finite element modeling predictions, confirming the scattering reduction. Additional calculations explore the optimization of the silicone coating properties. Using this approach, it is found that scattering cross-sections can be reduced by 20 dB for all wavelengths up to k0a = 0.85. PMID:26282067
Asymptotic quantum elastic generalized Lorenz Mie theory
NASA Astrophysics Data System (ADS)
Gouesbet, G.
2006-10-01
The (electromagnetic) generalized Lorenz-Mie theory describes the interaction between an electromagnetic arbitrary shaped beam and a homogeneous sphere. It is a generalization of the Lorenz-Mie theory which deals with the simpler case of a plane-wave illumination. In a recent paper, we established that, if we restrict ourselves to the study of cross-sections, both for elastic and inelastic scatterings, a macroscopic sphere in Lorenz-Mie theory is formally equivalent to a quantum-like radial potential. To generalize this result, a prerequisite is to possess an asymptotic quantum generalized Lorenz-Mie theory expressing cross-sections in the case of a quantum radial potential interacting with a sub-class of quantum arbitrary wave-packets. Such a theory, restricted however to elastic scattering, is presented in this paper.
NASA Astrophysics Data System (ADS)
Zhang, X.; Stoddart, P. R.; Comins, J. D.; Every, A. G.
2001-03-01
Surface Brillouin scattering (SBS) has been used to study the thermally induced surface vibrations (phonons) and thereby obtain the elastic properties of the nickel-based superalloy CMSX-4. SBS spectra have been acquired for a range of wavevector directions in the (001) surface in the single-crystal specimen to determine the angular variation of SAW velocities and the nature of the various excitations. Rayleigh and pseudo-surface acoustic waves as well as the details of the Lamb shoulder are studied, and the elastic constants and engineering moduli are determined using different, but self-consistent, methods at ambient and high temperatures. Calculations of the SBS spectra using surface Green function methods are in good agreement with the experimental results.
X-ray scattering measurements on imploding CH spheres at the National Ignition Facility
Kraus, D.; Chapman, D. A.; Kritcher, A. L.; ...
2016-07-21
In this study, we have performed spectrally resolved x-ray scattering measurements on highly compressed polystyrene at pressures of several tens of TPa (100 Mbar) created by spherically convergent shocks at the National Ignition Facility. Scattering data of line radiation at 9.0 keV were recorded from the dense plasma shortly after shock coalescence. Accounting for spatial gradients, opacity effects, and source broadening, we demonstrate the sensitivity of the elastic scattering component to carbon K -shell ionization while at the same time constraining the temperature of the dense plasma. Finally, for six times compressed polystyrene, we find an average temperature of 86more » eV and carbon ionization state of 4.9, indicating that widely used ionization models need revision in order to be suitable for the extreme states of matter tested in our experiment.« less
Effect of strong elastic contrasts on the propagation of seismic wave in hard-rock environments
NASA Astrophysics Data System (ADS)
Saleh, R.; Zheng, L.; Liu, Q.; Milkereit, B.
2013-12-01
Understanding the propagation of seismic waves in a presence of strong elastic contrasts, such as topography, tunnels and ore-bodies is still a challenge. Safety in mining is a major concern and seismic monitoring is the main tool here. For engineering purposes, amplitudes (peak particle velocity/acceleration) and travel times of seismic events (mostly blasts or microseismic events) are critical parameters that have to be determined at various locations in a mine. These parameters are useful in preparing risk maps or to better understand the process of spatial and temporal stress distributions in a mine. Simple constant velocity models used for monitoring studies in mining, cannot explain the observed complexities in scattered seismic waves. In hard-rock environments modeling of elastic seismic wavefield require detailed 3D petrophysical, infrastructure and topographical data to simulate the propagation of seismic wave with a frequencies up to few kilohertz. With the development of efficient numerical techniques, and parallel computation facilities, a solution for such a problem is achievable. In this study, the effects of strong elastic contrasts such as ore-bodies, rough topography and tunnels will be illustrated using 3D modeling method. The main tools here are finite difference code (SOFI3D)[1] that has been benchmarked for engineering studies, and spectral element code (SPECFEM) [2], which was, developed for global seismology problems. The modeling results show locally enhanced peak particle velocity due to presence of strong elastic contrast and topography in models. [1] Bohlen, T. Parallel 3-D viscoelastic finite difference seismic modeling. Computers & Geosciences 28 (2002) 887-899 [2] Komatitsch, D., and J. Tromp, Introduction to the spectral-element method for 3-D seismic wave propagation, Geophys. J. Int., 139, 806-822, 1999.
Thomson, R; Kawrakow, I
2012-06-01
Widely-used classical trajectory Monte Carlo simulations of low energy electron transport neglect the quantum nature of electrons; however, at sub-1 keV energies quantum effects have the potential to become significant. This work compares quantum and classical simulations within a simplified model of electron transport in water. Electron transport is modeled in water droplets using quantum mechanical (QM) and classical trajectory Monte Carlo (MC) methods. Water droplets are modeled as collections of point scatterers representing water molecules from which electrons may be isotropically scattered. The role of inelastic scattering is investigated by introducing absorption. QM calculations involve numerically solving a system of coupled equations for the electron wavefield incident on each scatterer. A minimum distance between scatterers is introduced to approximate structured water. The average QM water droplet incoherent cross section is compared with the MC cross section; a relative error (RE) on the MC results is computed. RE varies with electron energy, average and minimum distances between scatterers, and scattering amplitude. The mean free path is generally the relevant length scale for estimating RE. The introduction of a minimum distance between scatterers increases RE substantially (factors of 5 to 10), suggesting that the structure of water must be modeled for accurate simulations. Inelastic scattering does not improve agreement between QM and MC simulations: for the same magnitude of elastic scattering, the introduction of inelastic scattering increases RE. Droplet cross sections are sensitive to droplet size and shape; considerable variations in RE are observed with changing droplet size and shape. At sub-1 keV energies, quantum effects may become non-negligible for electron transport in condensed media. Electron transport is strongly affected by the structure of the medium. Inelastic scatter does not improve agreement between QM and MC simulations of low energy electron transport in condensed media. © 2012 American Association of Physicists in Medicine.
NASA Technical Reports Server (NTRS)
Reiss, N.; Schotland, R. M.
1973-01-01
A remote sensing technique is described which utilizes elastic scattering and rotational Raman scattering of laser light in the atmosphere to obtain soundings of turbidity, transmissivity and density. A scheme is devised whereby, through selective weighting of the rotational Raman lines, the effect of atmospheric temperature structure may be eliminated. The close spectral proximity of the elastic and Raman-scattered signals, combined with the fact that the Raman scattering is quite weak, produces special requirements for the spectroscopic and light-gathering components of a rotational Raman laser radar system. These requirements are investigated. A computation of typical signal-to-noise ratios is made. It is shown that daytime signal-to-noise ratios greater than 10 db are to be expected for observation heights of 5 km and below. For nighttime work, 10 db signal-to-noise ratios are achievable to altitudes as high as 15 km.
Adiabatic-nuclei calculations of positron scattering from molecular hydrogen
Zammit, Mark Christian; Fursa, Dmitry V.; Savage, Jeremy S.; ...
2017-02-06
The single-center adiabatic-nuclei convergent close-coupling method is used to investigate positron collisions with molecular hydrogen (H 2) in the ground and first vibrationally excited states. Cross sections are presented over the energy range from 1 to 1000 eV for elastic scattering, vibrational excitation, total ionization, and the grand total cross section. The present adiabatic-nuclei positron- H 2 scattering length is calculated as A = $-$ 2.70 a 0 for the ground state and A = $-$ 3.16 a 0 for the first vibrationally excited state. The present elastic differential cross sections are also used to “correct” the low-energy grand totalmore » cross-section measurements of the Trento group [A. Zecca et al., Phys. Rev. A 80, 032702 (2009)] for the forward-angle-scattering effect. In general, the comparison with experiment is good. In conclusion, by performing convergence studies, we estimate that our R m = 1.448 a 0 fixed-nuclei results are converged to within ± 5 % for the major scattering integrated cross sections.« less
The Aharonov–Bohm effect in scattering theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sitenko, Yu.A., E-mail: yusitenko@bitp.kiev.ua; Vlasii, N.D.
2013-12-15
The Aharonov–Bohm effect is considered as a scattering event with nonrelativistic charged particles of the wavelength which is less than the transverse size of an impenetrable magnetic vortex. The quasiclassical WKB method is shown to be efficient in solving this scattering problem. We find that the scattering cross section consists of two terms, one describing the classical phenomenon of elastic reflection and another one describing the quantum phenomenon of diffraction; the Aharonov–Bohm effect is manifested as a fringe shift in the diffraction pattern. Both the classical and the quantum phenomena are independent of the choice of a boundary condition atmore » the vortex edge, providing that probability is conserved. We show that a propagation of charged particles can be controlled by altering the flux of a magnetic vortex placed on their way. -- Highlights: •Aharonov–Bohm effect as a scattering event. •Impenetrable magnetic vortex of nonzero transverse size. •Scattering cross section is independent of a self-adjoint extension employed. •Classical phenomenon of elastic reflection and quantum phenomenon of diffraction. •Aharonov–Bohm effect as a fringe shift in the diffraction pattern.« less
Bayesian analysis of multiple direct detection experiments
NASA Astrophysics Data System (ADS)
Arina, Chiara
2014-12-01
Bayesian methods offer a coherent and efficient framework for implementing uncertainties into induction problems. In this article, we review how this approach applies to the analysis of dark matter direct detection experiments. In particular we discuss the exclusion limit of XENON100 and the debated hints of detection under the hypothesis of a WIMP signal. Within parameter inference, marginalizing consistently over uncertainties to extract robust posterior probability distributions, we find that the claimed tension between XENON100 and the other experiments can be partially alleviated in isospin violating scenario, while elastic scattering model appears to be compatible with the frequentist statistical approach. We then move to model comparison, for which Bayesian methods are particularly well suited. Firstly, we investigate the annual modulation seen in CoGeNT data, finding that there is weak evidence for a modulation. Modulation models due to other physics compare unfavorably with the WIMP models, paying the price for their excessive complexity. Secondly, we confront several coherent scattering models to determine the current best physical scenario compatible with the experimental hints. We find that exothermic and inelastic dark matter are moderatly disfavored against the elastic scenario, while the isospin violating model has a similar evidence. Lastly the Bayes' factor gives inconclusive evidence for an incompatibility between the data sets of XENON100 and the hints of detection. The same question assessed with goodness of fit would indicate a 2 σ discrepancy. This suggests that more data are therefore needed to settle this question.
NASA Astrophysics Data System (ADS)
Gennari, Michael; Vorabbi, Matteo; Calci, Angelo; Navrátil, Petr
2018-03-01
Background: The nuclear optical potential is a successful tool for the study of nucleon-nucleus elastic scattering and its use has been further extended to inelastic scattering and other nuclear reactions. The nuclear density of the target nucleus is a fundamental ingredient in the construction of the optical potential and thus plays an important role in the description of the scattering process. Purpose: In this paper we derive a microscopic optical potential for intermediate energies using ab initio translationally invariant nonlocal one-body nuclear densities computed within the no-core shell model (NCSM) approach utilizing two- and three-nucleon chiral interactions as the only input. Methods: The optical potential is derived at first order within the spectator expansion of the nonrelativistic multiple scattering theory by adopting the impulse approximation. Nonlocal nuclear densities are derived from the NCSM one-body densities calculated in the second quantization. The translational invariance is generated by exactly removing the spurious center-of-mass (COM) component from the NCSM eigenstates. Results: The ground-state local and nonlocal densities of
Concept for maritime near-surface surveillance using water Raman scattering
Shokair, Isaac R.; Johnson, Mark S.; Schmitt, Randal L.; ...
2018-06-08
Here, we discuss a maritime surveillance and detection concept based on Raman scattering of water molecules. Using a range-gated scanning lidar that detects Raman scattered photons from water, the absence or change of signal indicates the presence of a non-water object. With sufficient spatial resolution, a two-dimensional outline of the object can be generated by the scanning lidar. Because Raman scattering is an inelastic process with a relatively large wavelength shift for water, this concept avoids the often problematic elastic scattering for objects at or very close to the water surface or from the bottom surface for shallow waters. Themore » maximum detection depth for this concept is limited by the attenuation of the excitation and return Raman light in water. If excitation in the UV is used, fluorescence can be used for discrimination between organic and non-organic objects. In this paper, we present a lidar model for this concept and discuss results of proof-of-concept measurements. Using published cross section values, the model and measurements are in reasonable agreement and show that a sufficient number of Raman photons can be generated for modest lidar parameters to make this concept useful for near-surface detection.« less
Concept for maritime near-surface surveillance using water Raman scattering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shokair, Isaac R.; Johnson, Mark S.; Schmitt, Randal L.
Here, we discuss a maritime surveillance and detection concept based on Raman scattering of water molecules. Using a range-gated scanning lidar that detects Raman scattered photons from water, the absence or change of signal indicates the presence of a non-water object. With sufficient spatial resolution, a two-dimensional outline of the object can be generated by the scanning lidar. Because Raman scattering is an inelastic process with a relatively large wavelength shift for water, this concept avoids the often problematic elastic scattering for objects at or very close to the water surface or from the bottom surface for shallow waters. Themore » maximum detection depth for this concept is limited by the attenuation of the excitation and return Raman light in water. If excitation in the UV is used, fluorescence can be used for discrimination between organic and non-organic objects. In this paper, we present a lidar model for this concept and discuss results of proof-of-concept measurements. Using published cross section values, the model and measurements are in reasonable agreement and show that a sufficient number of Raman photons can be generated for modest lidar parameters to make this concept useful for near-surface detection.« less
NASA Astrophysics Data System (ADS)
Rimal, Dipak
The electromagnetic form factors are the most fundamental observables that encode information about the internal structure of the nucleon. The electric (GE) and the magnetic ( GM) form factors contain information about the spatial distribution of the charge and magnetization inside the nucleon. A significant discrepancy exists between the Rosenbluth and the polarization transfer measurements of the electromagnetic form factors of the proton. One possible explanation for the discrepancy is the contributions of two-photon exchange (TPE) effects. Theoretical calculations estimating the magnitude of the TPE effect are highly model dependent, and limited experimental evidence for such effects exists. Experimentally, the TPE effect can be measured by comparing the ratio of positron-proton elastic scattering cross section to that of the electron-proton [R = sigma(e +p)/sigma(e+p)]. The ratio R was measured over a wide range of kinematics, utilizing a 5.6 GeV primary electron beam produced by the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab. This dissertation explored dependence of R on kinematic variables such as squared four-momentum transfer (Q2) and the virtual photon polarization parameter (epsilon). A mixed electron-positron beam was produced from the primary electron beam in experimental Hall B. The mixed beam was scattered from a liquid hydrogen (LH2) target. Both the scattered lepton and the recoil proton were detected by the CEBAF Large Acceptance Spectrometer (CLAS). The elastic events were then identified by using elastic scattering kinematics. This work extracted the Q2 dependence of R at high epsilon(epsilon > 0.8) and the $epsilon dependence of R at approx 0.85 GeV2. In these kinematics, our data confirm the validity of the hadronic calculations of the TPE effect by Blunden, Melnitchouk, and Tjon. This hadronic TPE effect, with additional corrections contributed by higher excitations of the intermediate state nucleon, largely reconciles the Rosenbluth and the polarization transfer measurements of the electromagnetic form factors.
A fresh look into the interacting dark matter scenario
NASA Astrophysics Data System (ADS)
Escudero, Miguel; Lopez-Honorez, Laura; Mena, Olga; Palomares-Ruiz, Sergio; Villanueva-Domingo, Pablo
2018-06-01
The elastic scattering between dark matter particles and radiation represents an attractive possibility to solve a number of discrepancies between observations and standard cold dark matter predictions, as the induced collisional damping would imply a suppression of small-scale structures. We consider this scenario and confront it with measurements of the ionization history of the Universe at several redshifts and with recent estimates of the counts of Milky Way satellite galaxies. We derive a conservative upper bound on the dark matter-photon elastic scattering cross section of σγ DM < 8 × 10‑10 σT (mDM/GeV) at 95% CL, about one order of magnitude tighter than previous constraints from satellite number counts. Due to the strong degeneracies with astrophysical parameters, the bound on the dark matter-photon scattering cross section derived here is driven by the estimate of the number of Milky Way satellite galaxies. Finally, we also argue that future 21 cm probes could help in disentangling among possible non-cold dark matter candidates, such as interacting and warm dark matter scenarios. Let us emphasize that bounds of similar magnitude to the ones obtained here could be also derived for models with dark matter-neutrino interactions and would be as constraining as the tightest limits on such scenarios.
Extraction of shear viscosity in stationary states of relativistic particle systems
NASA Astrophysics Data System (ADS)
Reining, F.; Bouras, I.; El, A.; Wesp, C.; Xu, Z.; Greiner, C.
2012-02-01
Starting from a classical picture of shear viscosity we construct a stationary velocity gradient in a microscopic parton cascade. Employing the Navier-Stokes ansatz we extract the shear viscosity coefficient η. For elastic isotropic scatterings we find an excellent agreement with the analytic values. This confirms the applicability of this method. Furthermore, for both elastic and inelastic scatterings with pQCD based cross sections we extract the shear viscosity coefficient η for a pure gluonic system and find a good agreement with already published calculations.
Tensor Analyzing Powers for Quasi-Elastic Electron Scattering from Deuterium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Z.-L. Zhou; M. Bouwhuis; M. Ferro-Luzzi
1999-01-01
We report on a first measurement of tensor analyzing powers in quasi-elastic electron-deuteron scattering at an average three-momentum transfer of 1.7 fm{sup -1}. Data sensitive to the spin-dependent nucleon density in the deuteron were obtained for missing momenta up to 150 MeV/c with a tensor polarized {sup 2}H target internal to an electron storage ring. The data are well described by a calculation that includes the effects of final-state interaction, meson-exchange and isobar currents, and leading-order relativistic contributions.
Evaluation of beam halo from beam-gas scattering at the KEK Accelerator Test Facility
NASA Astrophysics Data System (ADS)
Yang, R.; Naito, T.; Bai, S.; Aryshev, A.; Kubo, K.; Okugi, T.; Terunuma, N.; Zhou, D.; Faus-Golfe, A.; Kubytskyi, V.; Liu, S.; Wallon, S.; Bambade, P.
2018-05-01
In circular colliders, as well as in damping rings and synchrotron radiation light sources, beam halo is one of the critical issues limiting the performance as well as potentially causing component damage and activation. It is imperative to clearly understand the mechanisms that lead to halo formation and to test the available theoretical models. Elastic beam-gas scattering can drive particles to large oscillation amplitudes and be a potential source of beam halo. In this paper, numerical estimation and Monte Carlo simulations of this process at the ATF of KEK are presented. Experimental measurements of beam halo in the ATF2 beam line using a diamond sensor detector are also described, which clearly demonstrate the influence of the beam-gas scattering process on the transverse halo distribution.
The Weak Charge of the Proton. A Search For Physics Beyond the Standard Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacEwan, Scott J.
2015-05-01
The Q weak experiment, which completed running in May of 2012 at Jefferson Laboratory, has measured the parity-violating asymmetry in elastic electron-proton scattering at four-momentum transfer Q 2 =0.025 (GeV/c) 2 in order to provide the first direct measurement of the proton's weak charge, Q W p. The Standard Model makes firm predictions for the weak charge; deviations from the predicted value would provide strong evidence of new physics beyond the Standard Model. Using an 89% polarized electron beam at 145 microA scattering from a 34.4 cm long liquid hydrogen target, scattered electrons were detected using an array of eightmore » fused-silica detectors placed symmetric about the beam axis. The parity-violating asymmetry was then measured by reversing the helicity of the incoming electrons and measuring the normalized difference in rate seen in the detectors. The low Q 2 enables a theoretically clean measurement; the higher-order hadronic corrections are constrained using previous parity-violating electron scattering world data. The experimental method will be discussed, with recent results constituting 4% of our total data and projections of our proposed uncertainties on the full data set.« less
Quasi-Elastic Light Scattering in Ophthalmology
NASA Astrophysics Data System (ADS)
Ansari, Rafat R.
The eye is not just a "window to the soul"; it can also be a "window to the human body." The eye is built like a camera. Light which travels from the cornea to the retina traverses through tissues that are representative of nearly every tissue type and fluid type in the human body. Therefore, it is possible to diagnose ocular and systemic diseases through the eye. Quasi-elastic light scattering (QELS) also known as dynamic light scattering (DLS) is a laboratory technique routinely used in the characterization of macromolecular dispersions. QELS instrumentation has now become more compact, sensitive, flexible, and easy to use. These developments have made QELS/DLS an important tool in ophthalmic research where disease can be detected early and noninvasively before the clinical symptoms appear.
Recent Results of TMD Measurements from Jefferson Lab Hall A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Xiaodong
2013-10-01
This slide-show presents results on transverse momentum distributions. The presentation covers: target single-spin asymmetry (SSA) (in parity conserving interactions); • Results of JLab Hall A polarized {sup 3}He target TMD measurement; • Semi-inclusive deep-inelastic scattering channels (E06-010); • Target single-spin asymmetry A{sub UT}, Collins and Sivers SSA on neutron; • Double-spin asymmetry A{sub LT}, extract TMD g{sub 1T} on neutron; • Inclusive channels SSA (E06-010, E05-015, E07-013) • Target SSA: inclusive {sup 3}He(e,e’) quasi-elastic scattering; • Target SSA: inclusive {sup 3}He(e,e’) deep inelastic-elastic scattering; • New SIDIS experiments planned in Hall-A for JLab-12 GeV.
Rachek, I. A.; Arrington, J.; Dmitriev, V. F.; ...
2015-02-12
The ratio of the elastic e +p to e –p scattering cross sections has been measured precisely, allowing the determination of the two-photon exchange contribution to these processes. This neglected contribution is believed to be the cause of the discrepancy between the Rosenbluth and polarization transfer methods of measuring the proton electromagnetic form factors. The experiment was performed at the VEPP-3 storage ring at beam energies of 1.6 and 1.0 GeV and at lepton scattering angles between 15° and 105°. The data obtained show evidence of a significant two-photon exchange effect. Furthermore, the results are compared with several theoretical predictions.
Correlations of π N partial waves for multireaction analyses
Doring, M.; Revier, J.; Ronchen, D.; ...
2016-06-15
In the search for missing baryonic resonances, many analyses include data from a variety of pion- and photon-induced reactions. For elastic πN scattering, however, usually the partial waves of the SAID (Scattering Analysis Interactive Database) or other groups are fitted, instead of data. We provide the partial-wave covariance matrices needed to perform correlated χ 2 fits, in which the obtained χ 2 equals the actual χ 2 up to nonlinear and normalization corrections. For any analysis relying on partial waves extracted from elastic pion scattering, this is a prerequisite to assess the significance of resonance signals and to assign anymore » uncertainty on results. Lastly, the influence of systematic errors is also considered.« less
Desmin filaments studied by quasi-elastic light scattering.
Hohenadl, M; Storz, T; Kirpal, H; Kroy, K; Merkel, R
1999-01-01
We studied polymers of desmin, a muscle-specific type III intermediate filament protein, using quasi-elastic light scattering. Desmin was purified from chicken gizzard. Polymerization was induced either by 2 mM MgCl(2) or 150 mM NaCl. The polymer solutions were in the semidilute regime. We concluded that the persistence length of the filaments is between 0.1 and 1 microm. In all cases, we found a hydrodynamic diameter of desmin filaments of 16-18 nm. The filament dynamics exhibits a characteristic frequency in the sense that correlation functions measured on one sample but at different scattering vectors collapse onto a single master curve when time is normalized by the experimentally determined initial decay rate. PMID:10512839
Evaluation of Shielding Performance for Newly Developed Composite Materials
NASA Astrophysics Data System (ADS)
Evans, Beren Richard
This work details an investigation into the contributing factors behind the success of newly developed composite neutron shield materials. Monte Carlo simulation methods were utilized to assess the neutron shielding capabilities and secondary radiation production characteristics of aluminum boron carbide, tungsten boron carbide, bismuth borosilicate glass, and Metathene within various neutron energy spectra. Shielding performance and secondary radiation data suggested that tungsten boron carbide was the most effective composite material. An analysis of the macroscopic cross-section contributions from constituent materials and interaction mechanisms was then performed in an attempt to determine the reasons for tungsten boron carbide's success over the other investigated materials. This analysis determined that there was a positive correlation between a non-elastic interaction contribution towards a material's total cross-section and shielding performance within the thermal and epi-thermal energy regimes. This finding was assumed to be a result of the boron-10 absorption reaction. The analysis also determined that within the faster energy regions, materials featuring higher non-elastic interaction contributions were comparable to those exhibiting primarily elastic scattering via low Z elements. This allowed for the conclusion that composite shield success within higher energy neutron spectra does not necessitate the use elastic scattering via low Z elements. These findings suggest that the inclusion of materials featuring high thermal absorption properties is more critical to composite neutron shield performance than the presence of constituent materials more inclined to maximize elastic scattering energy loss.
Material model measurements and predictions for a random pore poly(epsilon-caprolactone) scaffold.
Quinn, T P; Oreskovic, T L; Landis, F A; Washburn, N R
2007-07-01
We investigated material models for a polymeric scaffold used for bone. The material was made by co-extruding poly(epsilon-caprolactone) (PCL), a biodegradable polyester, and poly(ethylene oxide) (PEO). The water soluble PEO was removed resulting in a porous scaffold. The stress-strain curve in compression was fit with a phenomenological model in hyperbolic form. This material model will be useful for designers for quasi-static analysis as it provides a simple form that can easily be used in finite element models. The ASTM D-1621 standard recommends using a secant modulus based on 10% strain. The resulting modulus has a smaller scatter in its value compared with the coefficients of the hyperbolic model, and it is therefore easier to compare differences in material processing and ensure quality of the scaffold. A prediction of the small-strain elastic modulus was constructed from images of the microstructure. Each pixel of the micrographs was represented with a brick finite element and assigned the Young's modulus of bulk PCL or a value of 0 for a pore. A compressive strain was imposed on the model and the resulting stresses were calculated. The elastic constants of the scaffold were then computed with Hooke's law for a linear-elastic isotropic material. The model was able to predict the small-strain elastic modulus measured in the experiments to within one standard deviation. Thus, by knowing the microstructure of the scaffold, its bulk properties can be predicted from the material properties of the constituents. Copyright 2006 Wiley Periodicals, Inc.
Coupled π π , K K ¯ scattering in P -wave and the ρ resonance from lattice QCD
Wilson, David J.; Briceño, Raúl A.; Dudek, Jozef J.; ...
2015-11-02
In this study, we determine elastic and coupled-channel amplitudes for isospin-1 meson-meson scattering inmore » $P$-wave, by calculating correlation functions using lattice QCD with light quark masses such that $$m_\\pi = 236$$ MeV in a cubic volume of $$\\sim (4 \\,\\mathrm{fm})^3$$. Variational analyses of large matrices of correlation functions computed using operator constructions resembling $$\\pi\\pi$$, $$K\\overline{K}$$ and $$q\\bar{q}$$, in several moving frames and several lattice irreducible representations, leads to discrete energy spectra from which scattering amplitudes are extracted. In the elastic $$\\pi\\pi$$ scattering region we obtain a detailed energy-dependence for the phase-shift, corresponding to a $$\\rho$$ resonance, and we extend the analysis into the coupled-channel $$K\\overline{K}$$ region for the first time, finding a small coupling between the channels.« less
NASA Technical Reports Server (NTRS)
Diana, L. M.; Chaplin, R. L.; Brooks, D. L.; Adams, J. T.; Reyna, L. K.
1990-01-01
An improved technique is presented for employing the 2.3m spectrometer to measure total ionization cross sections, Q sub ion, for positrons incident on He. The new ionization cross section agree with the values reported earlier. Estimates are also presented of total elastic scattering cross section, Q sub el, obtained by subtracting from total scattering cross sections, Q sub tot, reported in the literature, the Q sub ion and Q sub Ps (total positronium formation cross sections) and total excitation cross sections, Q sub ex, published by another researcher. The Q sub ion and Q sub el measured with the 3m high resolution time-of-flight spectrometer for 54.9eV positrons are in accord with the results from the 2.3m spectrometer. The ionization cross sections are in fair agreement with theory tending for the most part to be higher, especially at 76.3 and 88.5eV. The elastic cross section agree quite well with theory to the vicinity of 50eV, but at 60eV and above the experimental elastic cross sections climb to and remain at about 0.30 pi a sub o sq while the theoretical values steadily decrease.
Opportunities for Undergraduate Research in Nuclear Physics
Hicks, S. F.; Nguyen, T. D.; Jackson, D. T.; ...
2017-10-26
University of Dallas (UD) physics majors are offered a variety of undergraduate research opportunities in nuclear physics through an established program at the University of Kentucky Accelerator Laboratory (UKAL). The 7-MV Model CN Van de Graaff accelerator and the neutron production and detection facilities located there are used by UD students to investigate how neutrons scatter from materials that are important in nuclear energy production and for our basic understanding of how neutrons interact with matter. Recent student projects include modeling of the laboratory using the neutron transport code MCNP to investigate the effectiveness of laboratory shielding, testing the long-termmore » gain stability of C 6D 6 liquid scintillation detectors, and deducing neutron elastic and inelastic scattering cross sections for 12C. Finally, results of these student projects are presented that indicate the pit below the scattering area reduces background by as much as 30%; the detectors show no significant gain instabilities; and new insights into existing 12C neutron inelastic scattering cross-section discrepancies near a neutron energy of 6.0 MeV are obtained.« less
Opportunities for Undergraduate Research in Nuclear Physics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hicks, S. F.; Nguyen, T. D.; Jackson, D. T.
University of Dallas (UD) physics majors are offered a variety of undergraduate research opportunities in nuclear physics through an established program at the University of Kentucky Accelerator Laboratory (UKAL). The 7-MV Model CN Van de Graaff accelerator and the neutron production and detection facilities located there are used by UD students to investigate how neutrons scatter from materials that are important in nuclear energy production and for our basic understanding of how neutrons interact with matter. Recent student projects include modeling of the laboratory using the neutron transport code MCNP to investigate the effectiveness of laboratory shielding, testing the long-termmore » gain stability of C 6D 6 liquid scintillation detectors, and deducing neutron elastic and inelastic scattering cross sections for 12C. Finally, results of these student projects are presented that indicate the pit below the scattering area reduces background by as much as 30%; the detectors show no significant gain instabilities; and new insights into existing 12C neutron inelastic scattering cross-section discrepancies near a neutron energy of 6.0 MeV are obtained.« less
Elastic precursor wave decay in shock-compressed aluminum over a wide range of temperature
NASA Astrophysics Data System (ADS)
Austin, Ryan A.
2018-01-01
The effect of temperature on the dynamic flow behavior of aluminum is considered in the context of precursor wave decay measurements and simulations. In this regard, a dislocation-based model of high-rate metal plasticity is brought into agreement with previous measurements of evolving wave profiles at 300 to 933 K, wherein the amplification of the precursor structure with temperature arises naturally from the dislocation mechanics treatment. The model suggests that the kinetics of inelastic flow and stress relaxation are governed primarily by phonon scattering and radiative damping (sound wave emission from dislocation cores), both of which intensify with temperature. The manifestation of these drag effects is linked to low dislocation density ahead of the precursor wave and the high mobility of dislocations in the face-centered cubic lattice. Simulations performed using other typical models of shock wave plasticity do not reproduce the observed temperature-dependence of elastic/plastic wave structure.
P- and S-wave Receiver Function Imaging with Scattering Kernels
NASA Astrophysics Data System (ADS)
Hansen, S. M.; Schmandt, B.
2017-12-01
Full waveform inversion provides a flexible approach to the seismic parameter estimation problem and can account for the full physics of wave propagation using numeric simulations. However, this approach requires significant computational resources due to the demanding nature of solving the forward and adjoint problems. This issue is particularly acute for temporary passive-source seismic experiments (e.g. PASSCAL) that have traditionally relied on teleseismic earthquakes as sources resulting in a global scale forward problem. Various approximation strategies have been proposed to reduce the computational burden such as hybrid methods that embed a heterogeneous regional scale model in a 1D global model. In this study, we focus specifically on the problem of scattered wave imaging (migration) using both P- and S-wave receiver function data. The proposed method relies on body-wave scattering kernels that are derived from the adjoint data sensitivity kernels which are typically used for full waveform inversion. The forward problem is approximated using ray theory yielding a computationally efficient imaging algorithm that can resolve dipping and discontinuous velocity interfaces in 3D. From the imaging perspective, this approach is closely related to elastic reverse time migration. An energy stable finite-difference method is used to simulate elastic wave propagation in a 2D hypothetical subduction zone model. The resulting synthetic P- and S-wave receiver function datasets are used to validate the imaging method. The kernel images are compared with those generated by the Generalized Radon Transform (GRT) and Common Conversion Point stacking (CCP) methods. These results demonstrate the potential of the kernel imaging approach to constrain lithospheric structure in complex geologic environments with sufficiently dense recordings of teleseismic data. This is demonstrated using a receiver function dataset from the Central California Seismic Experiment which shows several dipping interfaces related to the tectonic assembly of this region. Figure 1. Scattering kernel examples for three receiver function phases. A) direct P-to-s (Ps), B) direct S-to-p and C) free-surface PP-to-s (PPs).
Electron scattering by molecules. II - Experimental methods and data
NASA Technical Reports Server (NTRS)
Trajmar, S.; Chutjian, A.; Register, D. F.
1983-01-01
Experimental techniques for measuring electron-molecule collision cross sections are briefly summarized. A survey of the available experimental cross section data is presented. The emphasis here is on elastic scattering, rotational, vibrational and electronic excitations, total electron scattering, and momentum transfer in the few eV to few hundred eV impact energy range. Reference is made to works concerned with high energy electron scattering, innershell and multi-electron excitations, conicidence methods and electron scattering in laser fields.
Marston, Philip L
2014-03-01
The phase and group velocities of elastic guided waves are important in the physical interpretation of high frequency scattering by fluid-loaded elastic shells. Outside the context of scattering, those properties are also important for understanding the energy flow in acoustic metamaterials. In a recent investigation of acoustic metamaterials exhibiting anomalous wave propagation [J. Acoust. Soc. Am. 132, 2887-2895 (2012)] criticism of negative group velocity terminology was generalized to elastic waves guided on ordinary materials. Some context and justification for retaining the identification of negative group velocities associated with a type of backscattering enhancement for shells are explained here. The phase evolution direction is determined by the boundary conditions.
Forward ultrasonic model validation using wavefield imaging methods
NASA Astrophysics Data System (ADS)
Blackshire, James L.
2018-04-01
The validation of forward ultrasonic wave propagation models in a complex titanium polycrystalline material system is accomplished using wavefield imaging methods. An innovative measurement approach is described that permits the visualization and quantitative evaluation of bulk elastic wave propagation and scattering behaviors in the titanium material for a typical focused immersion ultrasound measurement process. Results are provided for the determination and direct comparison of the ultrasonic beam's focal properties, mode-converted shear wave position and angle, and scattering and reflection from millimeter-sized microtexture regions (MTRs) within the titanium material. The approach and results are important with respect to understanding the root-cause backscatter signal responses generated in aerospace engine materials, where model-assisted methods are being used to understand the probabilistic nature of the backscatter signal content. Wavefield imaging methods are shown to be an effective means for corroborating and validating important forward model predictions in a direct manner using time- and spatially-resolved displacement field amplitude measurements.
X-ray and Neutron Scattering Study of the Formation of Core–Shell-Type Polyoxometalates
Yin, Panchao; Wu, Bin; Mamontov, Eugene; ...
2016-02-05
A typical type of core-shell polyoxometalates can be obtained through the Keggin-type polyoxometalate-templated growth of a layer of spherical shell structure of {Mo 72Fe 30}. Small angle X-ray scattering is used to study the structural features and stability of the core-shell structures in aqueous solutions. Time-resolved small angle X-ray scattering is applied to monitor the synthetic reactions and a three-stage formation mechanism is proposed to describe the synthesis of the core-shell polyoxometalates based on the monitoring results. Quasi-elastic and inelastic neutron scattering are used to probe the dynamics of water molecules in the core-shell structures and two different types ofmore » water molecules, the confined and structured water, are observed. These water molecules play an important role in bridging core and shell structures and stabilizing the cluster structures. A typical type of core shell polyoxometalates can be obtained through the Keggin-type polyoxometalate-templated growth of a layer of spherical shell structure of {Mo 72Fe 30}. Small-angle X-ray scattering is used to study the structural features and stability of the core shell structures in aqueous solutions. Time-resolved small-angle X-ray scattering is applied to monitor the synthetic reactions, and a three-stage formation mechanism is proposed to describe the synthesis of the core shell polyoxometalates based on the monitoring results. New protocols have been developed by fitting the X-ray data with custom physical models, which provide more convincing, objective, and completed data interpretation. Quasi-elastic and inelastic neutron scattering are used to probe the dynamics of water molecules in the core shell structures, and two different types of water molecules, the confined and structured water, are observed. These water molecules play an important role in bridging core and shell structures and stabilizing the cluster structures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lukyanov, V. K., E-mail: lukyanov@theor.jinr.ru; Zemlyanaya, E. V.; Lukyanov, K. V.
The folding-model optical potential is generalized in such a way as to apply it to calculating the cross sections for inelastic scattering of π{sup ±}-mesons on {sup 28}Si, {sup 40}Ca, {sup 58}Ni, and {sup 208}Pb nuclei at the energies of 162, 180, 226, and 291 MeV leading to the excitation of the 2{sup +} and 3{sup −} collective states. In doing this, use is made of known nucleon-density distributions in nuclei and the pion–nucleon scattering amplitude whose parameters were obtained previously by fitting the elastic scattering cross sections for the same nuclei. Thus, the values of quadrupole (β{sub 2}) andmore » octupole (β{sub 3}) deformations of nuclei appear here as the only adjustable parameters. The scattering cross section is calculated by solving the relativistic wave equation, whereby effects of relativization and distortion in the entrance and exit scattering channels are taken exactly into account. The cross sections calculated in this way for inelastic scattering are in good agreement with respective experimental data. The importance of the inclusion of in-medium effects in choosing parameters of the pion–nucleon amplitude is emphasized.« less
The search for dark matter in xenon: Innovative calibration strategies and novel search channels
NASA Astrophysics Data System (ADS)
Reichard, Shayne Edward
The direct detection dark matter experiment XENON1T became operational in early 2016, heralding the era of tonne-scale dark matter detectors. Direct detection experiments typically search for elastic scatters of dark matter particles off target nuclei. XENON1T's larger xenon target provides the advantage of stronger dark matter signals and lower background rates compared to its predecessors, XENON10 and XENON100; but, at the same time, calibration of the detector's response to backgrounds with traditional external sources becomes exceedingly more difficult. A 220Rn source is deployed on the XENON100 dark matter detector in order to address the challenges in calibration of tonne-scale liquid noble element detectors. I show that the subsequent 212Pb beta emission can be used for low-energy electronic recoil calibration in searches for dark matter. The isotope spreads throughout the entire active region of the detector, and its activity naturally decays below background level within a week after the source is closed. I find no increase in the activity of the troublesome 222Rn background after calibration. Alpha emitters are also distributed throughout the detector and facilitate calibration of its response to 222Rn. Using the delayed coincidence of 220Rn/216Po, I map for the first time the convective motion of particles in the XENON100 detector. Additionally, I make a competitive measurement of the half-life of 212Po, t1/2=293.9+/-(1.0)stat+/-(0.6)ns. In contrast to the elastic scattering of dark matter particles off nuclei, I explore inelastic scattering where the nucleus is excited to a low-lying state of 10-100 keV, with a subsequent prompt de-excitation. I use the inelastic structure factors for the odd-mass xenon isotopes based on state-of-the-art large-scale shell-model calculations with chiral effective field theory WIMP-nucleon currents, finding that the inelastic channel is comparable to or can dominate the elastic channel for momentum transfers around 150 MeV. I calculate the inelastic recoil spectra in the standard halo model, compare these to the elastic case, and discuss the expected signatures in a xenon detector, along with implications for existing and future experiments. The combined information from elastic and inelastic scattering will allow for the determination of the dominant interaction channel within one experiment. In addition, the two channels probe different regions of the dark matter velocity distribution and can provide insight into the dark halo structure. The allowed recoil energy domain and the recoil energy at which the integrated inelastic rates start to dominate the elastic channel depend on the mass of the dark matter particle, thus providing a potential handle to constrain its mass. Similarly, now that liquid xenon detectors have reached the tonne scale, they have sensitivity to all flavors of supernova neutrinos via coherent elastic neutrino-nucleus scattering. I consider for the first time a realistic detector model to simulate the expected supernova neutrino signal for different progenitor masses and nuclear equations of state in existing and upcoming dual-phase liquid xenon experiments. I show that the proportional scintillation signal (S2) of a dual-phase detector allows for a clear observation of the neutrino signal and guarantees a particularly low energy threshold, while the backgrounds are rendered negligible during the supernova burst. XENON1T (XENONnT and LZ; DARWIN) experiments will be sensitive to a supernova burst up to 25 (35; 65) kpc from Earth at a significance of more than 5 sigma, observing approximately 35 (123; 704) events from a 27 Solar mass supernova progenitor at 10 kpc. Moreover, it will be possible to measure the average neutrino energy of all flavors, to constrain the total explosion energy, and to reconstruct the supernova neutrino light curve. My results suggest that a large xenon detector such as DARWIN will be competitive with dedicated neutrino telescopes, while providing complementary information that is not otherwise accessible.
Elastic scattering and vibrational excitation for electron impact on para-benzoquinone
NASA Astrophysics Data System (ADS)
Jones, D. B.; Blanco, F.; García, G.; da Costa, R. F.; Kossoski, F.; Varella, M. T. do N.; Bettega, M. H. F.; Lima, M. A. P.; White, R. D.; Brunger, M. J.
2017-12-01
We report on theoretical elastic and experimental vibrational-excitation differential cross sections (DCSs) for electron scattering from para-benzoquinone (C6H4O2), in the intermediate energy range 15-50 eV. The calculations were conducted with two different theoretical methodologies, the Schwinger multichannel method with pseudopotentials (SMCPP) and the independent atom method with screening corrected additivity rule (IAM-SCAR) that also now incorporates a further interference (I) term. The SMCPP with N energetically open electronic states (Nopen) at the static-exchange-plus-polarisation (Nopench-SEP) level was used to calculate the scattering amplitudes using a channel coupling scheme that ranges from 1ch-SE up to the 89ch-SEP level of approximation. We found that in going from the 38ch-SEP to the 89ch-SEP, at all energies considered here, the elastic DCSs did not change significantly in terms of both their shapes and magnitudes. This is a good indication that our SMCPP 89ch-SEP elastic DCSs are converged with respect to the multichannel coupling effect for the investigated intermediate energies. While agreement between our IAM-SCAR+I and SMCPP 89ch-SEP computations improves as the incident electron energy increases from 15 eV, overall the level of accord is only marginal. This is particularly true at middle scattering angles, suggesting that our SCAR and interference corrections are failing somewhat for this molecule below 50 eV. We also report experimental DCS results, using a crossed-beam apparatus, for excitation of some of the unresolved ("hybrid") vibrational quanta (bands I-III) of para-benzoquinone. Those data were derived from electron energy loss spectra that were measured over a scattered electron angular range of 10°-90° and put on an absolute scale using our elastic SMCPP 89ch-SEP DCS results. The energy resolution of our measurements was ˜80 meV, which is why, at least in part, the observed vibrational features were only partially resolved. To the best of our knowledge, there are no other experimental or theoretical vibrational excitation results against which we might compare the present measurements.
Laser-induced speckle scatter patterns in Bacillus colonies
Kim, Huisung; Singh, Atul K.; Bhunia, Arun K.; Bae, Euiwon
2014-01-01
Label-free bacterial colony phenotyping technology called BARDOT (Bacterial Rapid Detection using Optical scattering Technology) provided successful classification of several different bacteria at the genus, species, and serovar level. Recent experiments with colonies of Bacillus species provided strikingly different characteristics of elastic light scatter (ELS) patterns, which were comprised of random speckles compared to other bacteria, which are dominated by concentric rings and spokes. Since this laser-based optical sensor interrogates the whole volume of the colony, 3-D information of micro- and macro-structures are all encoded in the far-field scatter patterns. Here, we present a theoretical model explaining the underlying mechanism of the speckle formation by the colonies from Bacillus species. Except for Bacillus polymyxa, all Bacillus spp. produced random bright spots on the imaging plane, which presumably dependent on the cellular and molecular organization and content within the colony. Our scatter model-based analysis revealed that colony spread resulting in variable surface roughness can modify the wavefront of the scatter field. As the center diameter of the Bacillus spp. colony grew from 500 to 900 μm, average speckles area decreased two-fold and the number of small speckles increased seven-fold. In conclusion, as Bacillus colony grows, the average speckle size in the scatter pattern decreases and the number of smaller speckle increases due to the swarming growth characteristics of bacteria within the colony. PMID:25352840
Ab initio optical potentials and nucleon scattering on medium mass nuclei
NASA Astrophysics Data System (ADS)
Idini, A.; Barbieri, C.; Navrátil, P.
2018-03-01
We show first results for the elastic scattering of neutrons off oxygen and calcium isotopes obtained from ab initio optical potentials. The potential is derived using self-consistent Green’s function theory (SCGF) with the saturating chiral interaction NNLOsat. Calculations are compared to available scattering data and show that it is possible to reproduce low energy scattering observables in medium mass nuclei from first principles.
NASA Astrophysics Data System (ADS)
Cha, Moon Hoe
2007-02-01
The NearFar program is a package for carrying out an interactive nearside-farside decomposition of heavy-ion elastic scattering amplitude. The program is implemented in Java to perform numerical operations on the nearside and farside angular distributions. It contains a graphical display interface for the numerical results. A test run has been applied to the elastic O16+Si28 scattering at E=1503 MeV. Program summaryTitle of program: NearFar Catalogue identifier: ADYP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADYP_v1_0 Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: none Computers: designed for any machine capable of running Java, developed on PC-Pentium-4 Operating systems under which the program has been tested: Microsoft Windows XP (Home Edition) Program language used: Java Number of bits in a word: 64 Memory required to execute with typical data: case dependent No. of lines in distributed program, including test data, etc.: 3484 Number of bytes distributed program, including test data, etc.: 142 051 Distribution format: tar.gz Other software required: A Java runtime interpreter, or the Java Development Kit, version 5.0 Nature of physical problem: Interactive nearside-farside decomposition of heavy-ion elastic scattering amplitude. Method of solution: The user must supply a external data file or PPSM parameters which calculates theoretical values of the quantities to be decomposed. Typical running time: Problem dependent. In a test run, it is about 35 s on a 2.40 GHz Intel P4-processor machine.
Quasi-elastic neutron scattering study of a re-entrant side-chain liquid-crystal polyacrylate
NASA Astrophysics Data System (ADS)
Benguigui, L.; Noirez, L.; Kahn, R.; Keller, P.; Lambert, M.; Cohen de Lara, E.
1991-04-01
We present a first investigation of the dynamics of a side chain liquid crystal polyacrylate in the isotropic (I), nematic (N), smectic A (SA), and re-entrant nematic (NRe) phases by means of quasi-elastic neutron scattering. The motion or/and the mobility of the mesogen protons decreases as soon as the temperature decreases after the isotropic-nematic transition. The I-N and SA-NRe transitions corrspond to a jump in the curve of the Elastic Incoherent Structure Factor (ratio: elastic scattering/ total scattering) versus temperature, on the other hand the transition N-SA occurs without any change of slope. We conclude that the local order is very similar in the nematic and the smectic A phases. Nous présentons une première étude dynamique par diffusion quasi-élastique des neutrons, d'un échantillon de polyacrylate mésomorphe en peigne dans chacune des phases : isotrope, nématique, smectique et nématique rentrante. On montre que le mouvement et/ou la mobilité des protons du mésogène se restreint à mesure que la température diminue après la transition isotrope-nématique. Contrairement à la transition N-SA, les transitions I-N et SA-NRe correspondent à une discontinuité dans la courbe du Facteur de Structure Incohérent Elastique (rapport : intensité élastique/intensité totale) en fonction de la température ; l'ordre local semble donc très proche pour les phases nématique et smectique.
Field Experiments on SAR Detection of Film Slicks
NASA Astrophysics Data System (ADS)
Ermakov, S.; da Silva, J. C. B.; Kapustin, I.; Sergievskaya, I.
2013-03-01
Field experiments on radar detection of film slicks using satellite synthetic aperture radar TerraSAR-X and X-band scatterometer on board a research vessel are described. The experiments were carried out with surfactant films with known physical parameters, the surface tension and the film elasticity, at low to moderate wind conditions and at different radar incidence angles. It is shown that the depression of radar backscatter (contrast) in films slicks for X-band SAR weakly depends on wind velocity/direction, film elasticity and incidence angles within the range of 200-400. Scatterometer contrasts obtained at incidence angles of about 600 are larger than SAR contrasts. Theoretical analysis of radar contrasts for low-to-moderate incidence angles has been carried out based on a hydrodynamic model of wind wave damping due to films and on a composite radar imaging model. The hydrodynamic model takes into account wave damping due to viscoelastic films, wind wave generation and a phenomenological term describing nonlinear limitation of the wind wave spectrum. The radar model takes into account Bragg scattering and specular scattering mechanisms, the latter is usually negligible compared to the Bragg mechanism at moderate incidence angles (larger than 30-35 degrees), but gives noticeable contribution to radar backscattering at smaller incidence angles particularly for slick areas when cm-scale ripples are strongly depressed by films. Calculated radar contrasts in slicks are compared with experiments and it is concluded that development of the model is needed to predict quantitatively observations.
QCD dipole model and k T factorization
NASA Astrophysics Data System (ADS)
Bialas, A.; Navelet, H.; Peschanski, R.
2001-01-01
It is shown that the colour dipole approach to hard scattering at high energy is fully compatible with k T factorization at the leading logarithm approximation (in - logx Bj). The relations between the dipole amplitudes and unintegrated diagonal and non-diagonal gluon distributions are given. It is also shown that including the exact gluon kinematics in the k T factorization formula destroys the conservation of transverse position vectors and thus is incompatible with the dipole model for both elastic and diffractive amplitudes.
2013-03-01
This third random variable, with some optimisation, means that the second model can predict the mean and scatter of the observed fatigue lives. KIDS...Barishpolsky [65] studied this effect using a FE model of ellipsoidal voids and cracked or decohered ellipsoidal inclusions in an elastic body . They...Specifically, the first strike is long and thin, the second is square and the third is short and wide. Five centroid positions (d = 0, 30, 38 and
NASA Astrophysics Data System (ADS)
Ahmed, S. A.; Hassebo, Y. Y.; Gross, B.; Oo, M.; Moshary, F.
2006-09-01
We examine the potential, range of application, and limiting factors of a polarization selection technique, recently devised by us, which takes advantage of naturally occurring polarization properties of scattered sky light to minimize the detected sky background signal and which can be used in conjunction with linearly polarized elastic backscatter lidars to maximize lidar receiver SNR. In this approach, a polarization selective lidar receiver is aligned to minimize detected skylight, while the polarization of the transmitted lidar signal is rotated to maintain maximum lidar backscatter signal throughput to the receiver detector, consequently maximizing detected signal to noise ratio. Results presented include lidar elastic backscatter measurements, at 532 nm which show as much as a factor of √10 improvement in signal-to-noise ratio over conventional un-polarized schemes. For vertically pointing lidars, the largest improvements are limited to symmetric early morning and late afternoon hours. For non-vertical scanning lidars, significant improvements are achievable over much more extended time periods, depending on the specific angle between the lidar and solar axes. A theoretical model that simulates the background skylight within the single scattering approximation showed good agreement with measured SNR improvement factors. Diurnally asymmetric improvement factors, sometimes observed, are explained by measured increases in PWV and subsequent modification of aerosol optical depth by dehydration from morning to afternoon. Finally, since the polarization axis follows the solar azimuth angle even for high aerosol loading, as demonstrated using radiative transfer simulations, it is possible to conceive automation of the technique. In addition, it is shown that while multiple scattering reduces the SNR improvement, the orientation of the minimum noise state remains the same.