Science.gov

Sample records for elastic scattering research

  1. Elastic scattering phenomenology

    NASA Astrophysics Data System (ADS)

    Mackintosh, R. S.

    2017-04-01

    We argue that, in many situations, fits to elastic scattering data that were historically, and frequently still are, considered "good", are not justifiably so describable. Information about the dynamics of nucleon-nucleus and nucleus-nucleus scattering is lost when elastic scattering phenomenology is insufficiently ambitious. It is argued that in many situations, an alternative approach is appropriate for the phenomenology of nuclear elastic scattering of nucleons and other light nuclei. The approach affords an appropriate means of evaluating folding models, one that fully exploits available empirical data. It is particularly applicable for nucleons and other light ions.

  2. Elastic pion Compton scattering

    SciTech Connect

    Kowalewski, R.V.; Berg, D.; Chandlee, C.; Cihangir, S.; Ferbel, T.; Huston, J.; Jensen, T.; Kornberg, R.; Lobkowicz, F.; Ohshima, T.

    1984-03-01

    We present evidence for elastic pion Compton scattering as observed via the Primakoff process on nulcear targets. We find production cross sections for ..pi../sup -/A..--> pi../sup -/..gamma..A on lead and copper of 0.249 +- 0.027 and 0.029 +- 0.006 mb, respectively, in agreement with the values expected from the one-photon-exchange mechanism of 0.268 +- 0.018 and 0.035 +- 0.004 mb in the region of our experimental acceptance. This reaction provides a clean test of the Primakoff formalism.

  3. Electron-H Elastic Scattering

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.

    2003-01-01

    Precision calculations for e^{-}-H and e^{-}-He^{+} for S-wave scattering in the elastic region have been carried out using the optical potential approach. This formalism is now extended to e^{-}-H P-wave scattering in the elastic region. The scattering equations are solved by the non-iterative method. Phase shifts are calculated using Hylleraas-type correlation functions up to 84 terms. Results are rigorous lower bounds to the exact phase shifts and they are compared to those obtained in previous calculations.

  4. Elastic scattering research at a 1 MW long pulse spallation neutron source

    SciTech Connect

    Crawford, R.K.

    1995-12-31

    The elastic scattering working group investigated instrumentation for powder diffraction, single-crystal diffraction, small-angle diffraction, and reflectometry. For this purpose, three subgroups were formed; one for powder diffraction and single-crystal diffraction, one for small-angle diffraction, and one for reflectometry. For the most part these subgroups worked separately, but for part of the time the reflectometry and small-angle diffraction subgroups met together to discuss areas of common interest. Contributors in each of these subgroups are indicated below along with the discussion of these subgroup deliberations.

  5. Electron-Hydrogen Elastic Scattering

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.

    2004-01-01

    Scattering by single-electron systems is always of interest because the wave function of the target is known exactly. Various approximations have been employed to take into account distortion produced in the target. Among them are the method of polarized orbitals and the close coupling approximation. Recently, e-H and e-He+ S-wave scattering in the elastic region has been studied using the Feshbach projection operator formalism. In this approach, the usual Hartree-Fock and exchange potentials are augmented by an optical potential and the resulting phase shifts have rigorous lower bounds. Now this method is being applied to the e-H P-wave scattering in the elastic region. The number of terms in the Hylleraas-type wave function for the 1,3 P phase shifts is 84 and the resulting phase shifts (preliminary) are given. The results have been given up to five digits because to that accuracy they are rigorous lower bounds. They are in general agreement with the variational (VAR) results of Armstead, and those obtained from the intermediate energy R-matrix method (RM) of Scholz et al., and the finite element method (FEM) of Botero and Shertzer. The later two methods do not provide any bounds on phase shifts.

  6. Electron-Hydrogen Elastic Scattering

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.

    2004-01-01

    Scattering by single-electron systems is always of interest because the wave function of the target is known exactly. Various approximations have been employed to take into account distortion produced in the target. Among them are the method of polarized orbitals and the close coupling approximation. Recently, e-H and e-He+ S-wave scattering in the elastic region has been studied using the Feshbach projection operator formalism. In this approach, the usual Hartree-Fock and exchange potentials are augmented by an optical potential and the resulting phase shifts have rigorous lower bounds. Now this method is being applied to the e-H P-wave scattering in the elastic region. The number of terms in the Hylleraas-type wave function for the 1,3 P phase shifts is 84 and the resulting phase shifts (preliminary) are given. The results have been given up to five digits because to that accuracy they are rigorous lower bounds. They are in general agreement with the variational (VAR) results of Armstead, and those obtained from the intermediate energy R-matrix method (RM) of Scholz et al., and the finite element method (FEM) of Botero and Shertzer. The later two methods do not provide any bounds on phase shifts.

  7. Elastic scattering with weakly bound projectiles

    SciTech Connect

    Figueira, J. M.; Abriola, D.; Arazi, A.; Capurro, O. A.; Marti, G. V.; Martinez Heinmann, D.; Pacheco, A. J.; Testoni, J. E.; Barbara, E. de; Fernandez Niello, J. O.; Padron, I.; Gomes, P. R. S.; Lubian, J.

    2007-02-12

    Possible effects of the break-up channel on the elastic scattering threshold anomaly has been investigated. We used the weakly bound 6,7Li nuclei, which is known to undergo break-up, as projectiles in order to study the elastic scattering on a 27Al target. In this contribution we present preliminary results of these experiments, which were analyzed in terms of the Optical Model and compared with other elastic scattering data using weakly bound nuclei as projectile.

  8. Cancellation of acoustic scattering from an elastic sphere.

    PubMed

    Guild, Matthew D; Alù, Andrea; Haberman, Michael R

    2011-03-01

    Recent research has suggested the possibility of creating acoustic cloaks using metamaterial layers to eliminate the acoustic field scattered from an elastic object. This paper explores the possibility of applying the scattering cancellation cloaking technique to acoustic waves and the use of this method to investigate its effectiveness in cloaking elastic and fluid spheres using only a single isotropic elastic layer. Parametric studies showing the influence of cloak stiffness and geometry on the frequency dependent scattering cross-section of spheres have been developed to explore the design space of the cloaking layer. This analysis shows that an appropriately designed single isotropic elastic cloaking layer can provide up to 30 dB of scattering reduction for ka values up to 1.6. This work also illustrates the importance of accounting for the elasticity of the object and the relevant limitations of simplistic quasi-static analyses proposed in recent papers.

  9. Quasi-Elastic Light Scattering in Ophthalmology

    NASA Astrophysics Data System (ADS)

    Ansari, Rafat R.

    The eye is not just a "window to the soul"; it can also be a "window to the human body." The eye is built like a camera. Light which travels from the cornea to the retina traverses through tissues that are representative of nearly every tissue type and fluid type in the human body. Therefore, it is possible to diagnose ocular and systemic diseases through the eye. Quasi-elastic light scattering (QELS) also known as dynamic light scattering (DLS) is a laboratory technique routinely used in the characterization of macromolecular dispersions. QELS instrumentation has now become more compact, sensitive, flexible, and easy to use. These developments have made QELS/DLS an important tool in ophthalmic research where disease can be detected early and noninvasively before the clinical symptoms appear.

  10. Positron-inert gas differential elastic scattering

    NASA Technical Reports Server (NTRS)

    Kauppila, W. E.; Smith, Steven J.; Kwan, C. K.; Stein, T. S.

    1990-01-01

    Measurements are being made in a crossed beam experiment of the relative elastic differential cross section (DCS) for 5 to 300 eV positrons scattering from inert gas atoms (He, Ne, Ar, Kr, and Xe) in the angular range from 30 to 134 deg. Results obtained at energies around the positronium (Ps) formation threshold provide evidence that Ps formation and possibly other inelastic channels have an effect on the elastic scattering channel.

  11. Dark matter elastic scattering through Higgs loops

    NASA Astrophysics Data System (ADS)

    Berlin, Asher; Hooper, Dan; McDermott, Samuel D.

    2015-12-01

    We consider a complete list of simplified models in which Majorana dark matter particles annihilate at tree level to h h or h Z final states and calculate the loop-induced elastic scattering cross section with nuclei in each case. Expressions for these annihilation and elastic scattering cross sections are provided and can be easily applied to a variety of UV-complete models. We identify several phenomenologically viable scenarios, including dark matter that annihilates through the s -channel exchange of a spin-zero mediator or through the t -channel exchange of a fermion. Although the elastic scattering cross sections predicted in this class of models are generally quite small, XENON1T and LZ should be sensitive to significant regions of this parameter space. Models in which the dark matter annihilates to h h or h Z can also generate a gamma-ray signal that is compatible with the excess observed from the Galactic center.

  12. Acoustical scattering by multilayer spherical elastic scatterer containing electrorheological layer.

    PubMed

    Cai, Liang-Wu; Dacol, Dacio K; Orris, Gregory J; Calvo, David C; Nicholas, Michael

    2011-01-01

    A computational procedure for analyzing acoustical scattering by multilayer concentric spherical scatterers having an arbitrary mixture of acoustic and elastic materials is proposed. The procedure is then used to analyze the scattering by a spherical scatterer consisting of a solid shell and a solid core encasing an electrorheological (ER) fluid layer, and the tunability in the scattering characteristics afforded by the ER layer is explored numerically. Tunable scatterers with two different ER fluids are analyzed. One, corn starch in peanut oil, shows that a significant increase in scattering cross-section is possible in moderate frequencies. Another, fine poly-methyl methacrylate (PMMA) beads in dodecane, shows only slight change in scattering cross-sections overall. But, when the shell is thin, a noticeable local resonance peak can appear near ka=1, and this resonance can be turned on or off by the external electric field.

  13. Spin observables in elastic proton scattering

    NASA Astrophysics Data System (ADS)

    Aas, B.; Hynes, M. V.; Picklesimer, A.; Tandy, P. C.; Thaler, R. M.

    1985-07-01

    The use of alternative representations of spin observables for elastic scattering is investigated within the context of comparing relativistic and nonrelativistic approaches. The results of calculations of the observables Ay and Q together with the alternatives S and β are presented for elastic scattering of 650, 500, and 318 MeV protons from 40Ca. At the lower energy, the spin observables S and β appear to be particularly sensitive to the nature of the theoretical treatment. The implications of theoretical input uncertainties for the possibility of extracting nuclear target information in the relativistic approach are considered.

  14. Relativistic analysis of proton elastic scattering

    NASA Astrophysics Data System (ADS)

    El Nohy, N. A.; El-Hammamy, M. N.; Yoseph, S. I.; Abdel-Moneim, A. M.

    2015-04-01

    The Dirac equation as the relevant wave equation, is used in modified DWUCK4 program to calculate the elastic scattering cross section throughout the energy range suitable for relativistic treatment of proton elastic scattering by nuclei 40Ca, 58Ni, 90Zr and 208Pb. A good fit to the experimental data is presented. The real and imaginary potentials are well determined and behave regularly with energy. The behaviour of the real central effective potential shows the development of a "wine-bottle" shape in the transition energy region and the persistence of a small attractive potential in the nuclear surface region, even at 800 MeV.

  15. Full Elasticity Tensor from Thermal Diffuse Scattering

    NASA Astrophysics Data System (ADS)

    Wehinger, Björn; Mirone, Alessandro; Krisch, Michael; Bosak, Alexeï

    2017-01-01

    We present a method for the precise determination of the full elasticity tensor from a single crystal diffraction experiment using monochromatic x rays. For the two benchmark systems calcite and magnesium oxide, we show that the measurement of thermal diffuse scattering in the proximity of Bragg reflections provides accurate values of the complete set of elastic constants. This approach allows for a reliable and model-free determination of the elastic properties and can be performed together with crystal structure investigation in the same experiment.

  16. Elastic proton-proton scattering at RHIC

    SciTech Connect

    Yip, K.

    2011-09-03

    Here we describe elastic proton+proton (p+p) scattering measurements at RHIC in p+p collisions with a special optics run of {beta}* {approx} 21 m at STAR, at the center-of-mass energy {radical}s = 200 GeV during the last week of the RHIC 2009 run. We present preliminary results of single and double spin asymmetries.

  17. Differential elastic electron scattering by pentane

    NASA Astrophysics Data System (ADS)

    Fedus, Kamil; Navarro, C.; Hargreaves, L. R.; Khakoo, M. A.; Barbosa, Alessandra Souza; Bettega, M. H. F.

    2015-04-01

    We report measurements and calculations of the differential cross sections for elastic scattering of low-energy electrons by pentane, C5H12 . The incident energies measured are at 1, 1.5, 2, 3, 5, 10, 15, 20, 30, 50, and 100 eV, and the calculations covered energies up to 100 eV. The range of experimental scattering angles is from 5° to 130°. We compare our experimental and theoretical values to each other and to available experimental and theoretical data for linear n -alkanes.

  18. Positron elastic scattering from alkaline earth targets

    NASA Astrophysics Data System (ADS)

    Poveda, Luis A.; Assafrão, Denise; Mohallem, José R.

    2016-07-01

    A previously reported model potential approach [Poveda et al., Phys. Rev. A 87, 052702 (2013)] was extended to study low energy positron elastic scattering from beryllium and magnesium. The cross sections were computed for energies ranging from 10-5 eV up to well above the positronium formation threshold. The present results are in good agreement with previous reports, including the prediction of a p-wave resonance in the cross section for magnesium. The emergence of this shape resonance is connected to a trend observed in the evolution of the partial wave cross section in going from Be to Mg target. This trend lead us to speculate that a sharp d-wave resonance should be observed in positron elastic scattering from calcium. The positron-target binding energies are investigated in detail, both using the scattering information and by direct computation of the bound state energies using the model potentials. Contribution to the Topical Issue "Advances in Positron and Electron Scattering", edited by Paulo Limao-Vieira, Gustavo Garcia, E. Krishnakumar, James Sullivan, Hajime Tanuma and Zoran Petrovic.Supplementary material in the form of one pdf file available from the Journal web page at http://dx.doi.org/10.1140/epjd/e2016-70120-y

  19. Parity nonconserving proton-proton elastic scattering

    NASA Astrophysics Data System (ADS)

    Partanen, T. M.; Niskanen, J. A.; Iqbal, M. J.

    2012-09-01

    The parity nonconserving longitudinal analyzing power bar A_L is calculated in elastic ěc pp scattering at the energies below the approximate inelastic region T lab = 350 MeV. The short-ranged heavy meson ρ and ω exchanges as well as the longer-ranged 2 π exchanges (with and without intermediate NΔ configurations) are considered as the mediators of the parity nonconserving interactions. The DDH "best" coupling values are used as the parity nonconserving meson- NN couplings. Also three different parity nonconserving two-pion exchange potentials by various authors are compared.

  20. Elastic and diffractive scattering at D0

    SciTech Connect

    Edwards, Tamsin; /Manchester U.

    2004-04-01

    The first search for diffractively produced Z bosons in the muon decay channel is presented, using a data set collected by the D0 detector at the Fermilab Tevatron at {radical}s = 1.96 TeV between April and September 2003, corresponding to an integrated luminosity of approximately 110 pb{sup -1}. The first dN/d|t| distribution for proton-antiproton elastic scattering at this c.o.m. energy is also presented, using data collected by the D0 Forward Proton Detector between January and May 2002. The measured slope is reproduced by theoretical predictions.

  1. Elastic scattering of10C +27Al

    NASA Astrophysics Data System (ADS)

    Aguilera, E. F.; Kolata, J. J.; Martinez-Quiroz, E.; Lizcano, D.; Amador-Valenzuela, P.; García-Flores, A.; Bardayan, D. W.; O'Malley, P. D.; Monteiro, D. S.; Morcelle, V.; Carmichael, S.; Henderson, S. L.; Blankstein, D.; Hall, M. R.; Schultz, B.; Allen, J.; Kelly, J.

    2017-07-01

    Preliminary results for the elastic scattering of the Super-Borromean nucleus10C on27Al are presented, at E lab = 29 MeV. Taking the Sao Paulo potential as the bare potential, possible polarization potentials are investigated by adding a volume and a surface complex term to account for fusion and direct couplings, respectively. Besides an imaginary short-range potential to simulate the bulk of fusion, the best-fit polarization potential turns out to be real and has the effect of shifting the barrier radius up by 0.6 fm, thus suggesting a fusion enhancement.

  2. Inverse obstacle scattering for elastic waves

    NASA Astrophysics Data System (ADS)

    Li, Peijun; Wang, Yuliang; Wang, Zewen; Zhao, Yue

    2016-11-01

    Consider the scattering of a time-harmonic plane wave by a rigid obstacle which is embedded in an open space filled with a homogeneous and isotropic elastic medium. An exact transparent boundary condition is introduced to reduce the scattering problem into a boundary value problem in a bounded domain. Given the incident field, the direct problem is to determine the displacement of the wave field from the known obstacle; the inverse problem is to determine the obstacle’s surface from the measurement of the displacement on an artificial boundary enclosing the obstacle. In this paper, we consider both the direct and inverse problems. The direct problem is shown to have a unique weak solution by examining its variational formulation. The domain derivative is derived for the displacement with respect to the variation of the surface. A continuation method with respect to the frequency is developed for the inverse problem. Numerical experiments are presented to demonstrate the effectiveness of the proposed method.

  3. Electron Elastic-Scattering Cross-Section Database

    National Institute of Standards and Technology Data Gateway

    SRD 64 NIST Electron Elastic-Scattering Cross-Section Database (PC database, no charge)   This database provides values of differential elastic-scattering cross sections, corresponding total elastic-scattering cross sections, phase shifts, and transport cross sections for elements with atomic numbers from 1 to 96 and for electron energies between 50 eV and 20,000 eV (in steps of 1 eV).

  4. Generalizations of Karp's theorem to elastic scattering theory

    NASA Astrophysics Data System (ADS)

    Tuong, Ha-Duong

    Karp's theorem states that if the far field pattern corresponding to the scattering of a time-harmonic acoustic plane wave by a sound-soft obstacle in R2 is invariant under the group of rotations, then the scatterer is a circle. The theorem is generalized to the elastic scattering problems and the axisymmetric scatterers in R3.

  5. Rigid and elastic acoustic scattering signal separation for underwater target.

    PubMed

    Jia, Hongjian; Li, Xiukun; Meng, Xiangxia

    2017-08-01

    Underwater target elastic acoustic scattering and other acoustic scattering components are aliasing together in the time and frequency domains, and the existing signal processing methods cannot recognize the elastic scattering features under the aliasing condition because of the resolution limitation. To address this problem, this study, which is based on the target echo highlight model, analyzes the characteristics of target acoustic scattering components when the transmitted signal is a linear frequency modulation pulse. The target acoustic scattering structure in the fractional Fourier transform (FRFT) domain is deduced theoretically. Then, filtering is used in the FRFT domain to separate the target elastic acoustic scattering components. In addition, noise suppression performance and filter resolution are discussed. The target rigid and elastic acoustic scattering components are separated. Experimental results show that filtering in the FRFT domain can separate the elastic scattering components from the target echoes. Moreover, separated elastic acoustic scattering components have consistent theoretical features, which lay the foundation for studying the elastic scattering characteristics further.

  6. Elastic Compton Scattering from 3He

    NASA Astrophysics Data System (ADS)

    Margaryan, Arman; Griesshammer, Harald W.; Phillips, Daniel R.; Strandberg, Bruno; McGovern, Judith A.; Shukla, Deepshikha

    2017-01-01

    We study elastic Compton scattering on 3He using chiral effective field theory (χEFT) at photon energies from 60 MeV to approximately 120 MeV. Experiments to measure this process have been proposed for both MAMI at Mainz and the HI γS facility at TUNL. I will present the revised results of a full calculation at third order in the expansion (O (Q3)). The amplitude involves a sum of both one- and two-nucleon Compton-scattering mechanisms. We have recently computed the fourth-order two-nucleon diagrams. The numerical impact they have on the cross-section results will be discussed. I will also present results in which amplitudes used so far are augmented by the leading effects from Δ (1232) degrees of freedom, a step which has already been performed for the proton and deuteron processes. Both cross sections and doubly-polarized asymmetries will be presented, and the sensitivity of these observables to the values of neutron scalar and spin polarizabilities will be assessed. This material is based upon work supported in part by DOE and George Washington University.

  7. Support minimized inversion of acoustic and elastic wave scattering

    SciTech Connect

    Safaeinili, Ali

    1994-04-24

    This report discusses the following topics on support minimized inversion of acoustic and elastic wave scattering: Minimum support inversion; forward modelling of elastodynamic wave scattering; minimum support linearized acoustic inversion; support minimized nonlinear acoustic inversion without absolute phase; and support minimized nonlinear elastic inversion.

  8. Improved Optics For Quasi-Elastic Light Scattering

    NASA Technical Reports Server (NTRS)

    Cheung, Harry Michael

    1995-01-01

    Improved optical train devised for use in light-scattering measurements of quasi-elastic light scattering (QELS) and laser spectroscopy. Measurements performed on solutions, microemulsions, micellular solutions, and colloidal dispersions. Simultaneous measurements of total intensity and fluctuations in total intensity of light scattered from sample at various angles provides data used, in conjunction with diffusion coefficients, to compute sizes of particles in sample.

  9. Numerical solution of acoustic scattering by finite perforated elastic plates.

    PubMed

    Cavalieri, A V G; Wolf, W R; Jaworski, J W

    2016-04-01

    We present a numerical method to compute the acoustic field scattered by finite perforated elastic plates. A boundary element method is developed to solve the Helmholtz equation subjected to boundary conditions related to the plate vibration. These boundary conditions are recast in terms of the vibration modes of the plate and its porosity, which enables a direct solution procedure. A parametric study is performed for a two-dimensional problem whereby a cantilevered perforated elastic plate scatters sound from a point quadrupole near the free edge. Both elasticity and porosity tend to diminish the scattered sound, in agreement with previous work considering semi-infinite plates. Finite elastic plates are shown to reduce acoustic scattering when excited at high Helmholtz numbers k0 based on the plate length. However, at low k0, finite elastic plates produce only modest reductions or, in cases related to structural resonance, an increase to the scattered sound level relative to the rigid case. Porosity, on the other hand, is shown to be more effective in reducing the radiated sound for low k0. The combined beneficial effects of elasticity and porosity are shown to be effective in reducing the scattered sound for a broader range of k0 for perforated elastic plates.

  10. Numerical solution of acoustic scattering by finite perforated elastic plates

    PubMed Central

    2016-01-01

    We present a numerical method to compute the acoustic field scattered by finite perforated elastic plates. A boundary element method is developed to solve the Helmholtz equation subjected to boundary conditions related to the plate vibration. These boundary conditions are recast in terms of the vibration modes of the plate and its porosity, which enables a direct solution procedure. A parametric study is performed for a two-dimensional problem whereby a cantilevered perforated elastic plate scatters sound from a point quadrupole near the free edge. Both elasticity and porosity tend to diminish the scattered sound, in agreement with previous work considering semi-infinite plates. Finite elastic plates are shown to reduce acoustic scattering when excited at high Helmholtz numbers k0 based on the plate length. However, at low k0, finite elastic plates produce only modest reductions or, in cases related to structural resonance, an increase to the scattered sound level relative to the rigid case. Porosity, on the other hand, is shown to be more effective in reducing the radiated sound for low k0. The combined beneficial effects of elasticity and porosity are shown to be effective in reducing the scattered sound for a broader range of k0 for perforated elastic plates. PMID:27274685

  11. Numerical solution of acoustic scattering by finite perforated elastic plates

    NASA Astrophysics Data System (ADS)

    Cavalieri, A. V. G.; Wolf, W. R.; Jaworski, J. W.

    2016-04-01

    We present a numerical method to compute the acoustic field scattered by finite perforated elastic plates. A boundary element method is developed to solve the Helmholtz equation subjected to boundary conditions related to the plate vibration. These boundary conditions are recast in terms of the vibration modes of the plate and its porosity, which enables a direct solution procedure. A parametric study is performed for a two-dimensional problem whereby a cantilevered perforated elastic plate scatters sound from a point quadrupole near the free edge. Both elasticity and porosity tend to diminish the scattered sound, in agreement with previous work considering semi-infinite plates. Finite elastic plates are shown to reduce acoustic scattering when excited at high Helmholtz numbers k0 based on the plate length. However, at low k0, finite elastic plates produce only modest reductions or, in cases related to structural resonance, an increase to the scattered sound level relative to the rigid case. Porosity, on the other hand, is shown to be more effective in reducing the radiated sound for low k0. The combined beneficial effects of elasticity and porosity are shown to be effective in reducing the scattered sound for a broader range of k0 for perforated elastic plates.

  12. Two-photon exchange in electron-trinucleon elastic scattering

    NASA Astrophysics Data System (ADS)

    Kobushkin, A. P.; Timoshenko, Ju. V.

    2013-10-01

    We discuss two-photon exchange (TPE) in elastic electron scattering off the trinucleon systems, 3He and 3H. The calculations are done in the semirelativistic approximation with the trinucleon wave functions obtained with the Paris and CD-Bonn nucleon-nucleon potentials. An applicability area of the model is wide enough and includes the main part of kinematical domain where experimental data exist. All three TPE amplitudes (generalized form factors) for electron 3He elastic scattering are calculated. We find that the TPE amplitudes are a few times more significant in the scattering of electrons off 3He then in the electron-proton scattering.

  13. Transformational Acoustics Applied to Scattering from a Thin Elastic Shell

    DTIC Science & Technology

    2011-06-01

    invariant form.” New Journal of Physics, 8 (248), 2006. [6] H. Chen and C. T. Chan. “ Acoustic cloaking in three dimensions using acoustic metamaterials ...NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS TRANSFORMATIONAL ACOUSTICS APPLIED TO SCATTERING FROM A THIN ELASTIC SHELL by Ana Margarida R...Prescribed by ANSI Std. Z39.18 22–6–2011 Master’s Thesis 2102-06-01—2104-10-31 Transformational Acoustics Applied to Scattering From a Thin Elastic

  14. Quasi-elastic neutron scattering studies of protein dynamics

    SciTech Connect

    Rorschach, H.E.

    1993-05-25

    Results that shed new light on the study of protein dynamics were obtained by quasi-elastic neutron scattering. The triple axis instrument H-9 supplied by the cold source was used to perform a detailed study of the quasi-elastic spectrum and the Debye-Waller factor for trypsin in powder form, in solution, and in crystals. A preliminary study of myoglobin crystals was also done. A new way to view the results of quasi-elastic scattering experiments is sketched, and the data on trypsin are presented and analyze according to this new picture.

  15. Momentum-space optical potential SND elastic scattering calculations

    NASA Astrophysics Data System (ADS)

    Wolfe, D. H.; Hynes, M. V.; Picklesimer, A.; Tandy, P. C.; Thaler, R. M.

    1983-03-01

    Initial results are presented for proton-nucleus elastic scattering observables calculated with a newly developed microscopic momentum-space code. This is the first phase of a program to treat elastic and inelastic scatterig consistently via an integral equation approach. A number of microscopic features which are often approximated or ignored are quite amenable to exact treatment within this approach, e.g. non-local effectss in elastic scattering, and inelastic effects which are non-linear in the NN t-matrix and target densities but nevertheless confined to one participating nucleon.

  16. Quasi-elastic nuclear scattering at high energies

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Townsend, Lawrence W.; Wilson, John W.

    1992-01-01

    The quasi-elastic scattering of two nuclei is considered in the high-energy optical model. Energy loss and momentum transfer spectra for projectile ions are evaluated in terms of an inelastic multiple-scattering series corresponding to multiple knockout of target nucleons. The leading-order correction to the coherent projectile approximation is evaluated. Calculations are compared with experiments.

  17. Scattering of antiplane shear waves by layered circular elastic cylinder.

    PubMed

    Cai, Liang-Wu

    2004-02-01

    An exact analytical solution for the scattering of antiplane elastic waves by a layered elastic circular cylinder is obtained. The solution and its degenerate cases are compared with other simpler models of circular cylindrical scatterers. The effects of the geometrical and physical properties of the interphase are studied. Numerical results confirm the existence of a resonance mode in which the scatterer's core undergoes a rigid-body motion when the outer layer of the scatterer is very compliant. This resonance mode has been attributed [Liu et al., Science 289, 1734 (2000)] to a new mechanism for the band gap formed in the extremely low frequency range for phononic crystals made of layered spherical scatterers. Numerical results also show the existence of a similar resonance mode when the outer layer of the scatterer has very high mass density.

  18. Proton elastic and charge-exchange scattering from exotic nuclei

    SciTech Connect

    Arellano, H.F.; Love, W.G.; Brieva, F.A.

    1993-10-01

    Calculations of elastic and charge-exchange scattering of protons from exotic nuclei are made using density-dependent nucleon-nucleon interactions. These results are compared with similar calculations for nearby nuclei in order to identify signatures of the proposed neutron halos in these processes. In the case of elastic scattering we compare our results with available data. For charge/exchange scattering our calculations are intended to provide a guide of the sizes and shapes of cross sections to be expected for this process. Results over a range of projectile energies are presented and discussed.

  19. Diffraction phenomena in elastic scattering of heavy ions

    SciTech Connect

    Kotlyar, V.V.; Shebeko, A.V.

    1981-08-01

    Nuclear diffraction phenomena in elastic scattering of heavy ions are studied in the intermediate energy range. Examination is carried out using the strong absorption models for the S-matrix in the angular momentum representation. New asymptotic expressions for the diffraction scattering amplitudes are obtained. The main attention is paid to the study of the relation between the Fresnel and the Fraunhofer parts of the amplitudes obtained in different regions of scattering angles.

  20. Dissipation induced by phonon elastic scattering in crystals

    PubMed Central

    Li, Guolong; Ren, Zhongzhou; Zhang, Xin

    2016-01-01

    We demonstrate that the phonon elastic scattering leads to a dominant dissipation in crystals at low temperature. The two-level systems (TLSs) should be responsible for the elastic scattering, whereas the dissipation induced by static-point defects (SPDs) can not be neglected. One purpose of this work is to show how the energy splitting distribution of the TLS ensemble affects the dissipation. Besides, this article displays the proportion of phonon-TLS elastic scattering to total phonon dissipation. The coupling coefficient of phonon-SPD scattering and the constant P0 of the TLS distribution are important that we estimate their magnitudes in this paper. Our results is useful to understand the phonon dissipation mechanism, and give some clues to improve the performance of mechanical resonators, apply the desired defects, or reveal the atom configuration in lattice structure of disordered crystals. PMID:27669517

  1. Elastic proton-deuteron scattering at intermediate energies

    NASA Astrophysics Data System (ADS)

    Ramazani-Moghaddam-Arani, A.; Amir-Ahmadi, H. R.; Bacher, A. D.; Bailey, C. D.; Biegun, A.; Eslami-Kalantari, M.; Gašparić, I.; Joulaeizadeh, L.; Kalantar-Nayestanaki, N.; Kistryn, St.; Kozela, A.; Mardanpour, H.; Messchendorp, J. G.; Micherdzinska, A. M.; Moeini, H.; Shende, S. V.; Stephan, E.; Stephenson, E. J.; Sworst, R.

    2008-07-01

    Observables in elastic proton-deuteron scattering are sensitive probes of the nucleon-nucleon interaction and three-nucleon force effects. The present experimental database for this reaction is large, but contains a large discrepancy between data sets for the differential cross section taken at 135 MeV/nucleon by two experimental research groups. This article reviews the background of this problem and presents new data taken at Kernfysisch Versneller Instituute (KVI). Differential cross sections and analyzing powers for the 2H(p→,d)p and 1H(d→,d)p reactions at 135 MeV/nucleon and 65 MeV/nucleon, respectively, have been measured. The differential cross-section data differ significantly from previous measurements and consistently follow the energy dependence as expected from an interpolation of published data taken over a large range at intermediate energies.

  2. Elastic np → np( pn) scattering at intermediate energies

    NASA Astrophysics Data System (ADS)

    Troyan, Yu. A.; Anikina, M. Kh.; Belyaev, A. V.; Ierusalimov, A. P.; Troyan, A. Yu.

    2014-03-01

    The study of the elastic np → np( pn) scattering was carried out at the momenta of incident quasimonochromatic neutrons P 0 = 1.43, 2.23 and 5.20 GeV/ c. The differential cross sections of the processes of elastic np scattering, both without (cos Φ* p < 0) and with charge exchange (cos Φ* p >0) of nucleons, are analyzed. The results are compared with the data of other experiments. The suggested pole model takes into account exchange by π meson, ρ meson, and includes the peripheral exchange mechanism. This model permits one to get a good description of the data of elastic np scattering at the energy region 1-10 GeV.

  3. Scattering of Airy elastic sheets by a cylindrical cavity in a solid.

    PubMed

    Mitri, F G

    2017-11-01

    The prediction of the elastic scattering by voids (and cracks) in materials is an important process in structural health monitoring, phononic crystals, metamaterials and non-destructive evaluation/imaging to name a few examples. Earlier analytical theories and numerical computations considered the elastic scattering by voids in plane waves of infinite extent. However, current research suggesting the use of (limited-diffracting, accelerating and self-healing) Airy acoustical-sheet beams for non-destructive evaluation or imaging applications in elastic solids requires the development of an improved analytical formalism to predict the scattering efficiency used as a priori information in quantitative material characterization. Based on the definition of the time-averaged scattered power flow density, an analytical expression for the scattering efficiency of a cylindrical empty cavity (i.e., void) encased in an elastic medium is derived for compressional and normally-polarized shear-wave Airy beams. The multipole expansion method using cylindrical wave functions is utilized. Numerical computations for the scattering energy efficiency factors for compressional and shear waves illustrate the analysis with particular emphasis on the Airy beam parameters and the non-dimensional frequency, for various elastic materials surrounding the cavity. The ratio of the compressional to the shear wave speed stimulates the generation of elastic resonances, which are manifested as a series of peaks in the scattering efficiency plots. The present analysis provides an improved method for the computations of the scattering energy efficiency factors using compressional and shear-wave Airy beams in elastic materials as opposed to plane waves of infinite extent. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Elastic electron scattering from formic acid

    SciTech Connect

    Trevisan, Cynthia S.; Orel, Ann E.; Rescigno, Thomas N.

    2006-07-31

    Following our earlier study on the dynamics of low energy electron attachment to formic acid, we report the results of elastic low-energy electron collisions with formic acid. Momentum transfer and angular differential cross sections were obtained by performing fixed-nuclei calculations employing the complex Kohn variational method. We make a brief description of the technique used to account for the polar nature of this polyatomic target and compare our results with available experimental data.

  5. Elastic scattering, polarization and absorption of relativistic antiprotons on nuclei

    NASA Astrophysics Data System (ADS)

    Larionov, A. B.; Lenske, H.

    2017-01-01

    We perform Glauber model calculations of the antiproton-nucleus elastic and quasielastic scattering and absorption in the beam momentum range ∼ 0.5 ÷ 10 GeV / c. A good agreement of our calculations with available LEAR data and with earlier Glauber model studies of the p bar A elastic scattering allows us to make predictions at the beam momenta of ∼10 GeV/c, i.e. at the regime of the PANDA experiment at FAIR. The comparison with the proton-nucleus elastic scattering cross sections shows that the diffractive minima are much deeper in the p bar A case due to smaller absolute value of the ratio of the real-to-imaginary part of the elementary elastic amplitude. Significant polarization signal for p bar A elastic scattering at 10 GeV/c is expected. We have also revealed a strong dependence of the p bar A absorption cross section on the slope parameter of the transverse momentum dependence of the elementary p bar N amplitude. The p bar A optical potential is discussed.

  6. E710, Proton, Antiproton Elastic Scattering at Tevatron Energies

    NASA Astrophysics Data System (ADS)

    Sadr, Sasan

    Experiment E710, located at site E0 of the Tevatron collider at Fermilab, was conceived in order to measure pp elastic scattering. The measured parameters were: the total cross section sigma_{t }, the ratio of the real to the imaginary part of the forward scattering amplitude rho, the nuclear slope parameter B, the nuclear curvature parameter C, the total elastic cross section sigma _{el}, and the single diffractive cross section sigma_{sd} . These measurements were taken at center-of-mass energies of sqrt{s}=1.02 and 1.8 TeV.

  7. Elastic scattering of electrons from Rb, Cs and Fr atoms

    NASA Astrophysics Data System (ADS)

    Gangwar, R. K.; Tripathi, A. N.; Sharma, L.; Srivastava, R.

    2010-04-01

    Differential, integrated elastic, momentum-transfer and total cross sections as well as differential S, T and U spin parameters for scattering of electrons from rubidium, caesium and francium atoms in the incident energy range up to 300 eV are calculated using a relativistic Dirac equation. The projectile electron-target atom interaction is represented by both real and complex parameter-free optical potentials for obtaining the solution of a Dirac equation for scattered electrons. The Dirac-Fock wavefunctions have been used to represent the Rb, Cs and Fr target atoms. The results of differential cross sections and spin asymmetry parameter S for e-Rb and e-Cs have been compared with the available experimental and theoretical results. Detailed results are reported for the elastic scattering of electrons from the ground states of a francium atom for the first time in the wide range of incident electron energies. The results of electron-Fr elastic scattering show the similar features to those obtained in the case of e-Rb and e-Cs elastic scattering.

  8. Elastic and Viscoelastic Wave Scattering and Diffraction.

    DTIC Science & Technology

    1981-01-01

    scattering and diffration at various discon- tinuities is dicsussed by Keller(1958, 1962), Keller and Karal(1964) and Kouyoumjian (1975). Excellent...and the receiver are kept far enough from each end of the cylinder so that diffrations from the ends do not interfere with the arrivals of pri- mary

  9. Beam normal spin asymmetry in elastic lepton-nucleon scattering

    SciTech Connect

    M. Gorchtein; P.A.M. Guichon; M. Vanderhaeghen

    2004-04-01

    We discuss the two-photon exchange contribution to observables which involve lepton helicity flip in elastic lepton-nucleon scattering. This contribution is accessed through the spin asymmetry for a lepton beam polarized normal to the scattering plane. We estimate this beam normal spin asymmetry at large momentum transfer using a parton model and we express the corresponding amplitude in terms of generalized parton distributions.

  10. Elastic scattering of light nuclei through a simple potential model

    SciTech Connect

    Bhoi, J. Laha, U.

    2016-05-15

    The phase function method is adapted to deal with the scattering on our proposed interactions for α–α and α–{sup 3}He systems. The effect of the electromagnetic interaction is included in terms of a screened Coulomb potential. Based on our proposed potential models we present results for α–α and α–{sup 3}He elastic scattering phase shifts which compare well with more detailed calculations.

  11. Isospin effects in elastic proton-nucleus scattering

    NASA Astrophysics Data System (ADS)

    Chinn, C. R.; Elster, Ch.; Thaler, R. M.

    1993-05-01

    Isovector effects in proton-nucleus elastic scattering at medium energies are studied. The accuracy of the Kerman-McManus-Thaler isospin averaging procedure is found to be very good for nuclei larger than 4He. Studies of 40Ca and 208Pb suggest that the surface neutrons may be pulled in somewhat relative to the protons, although uncertainties in the detailed applicability of the present truncation of the multiple scattering treatment render firm conclusions premature.

  12. Two-photon exchange in elastic electron–proton scattering

    DOE PAGES

    Afanasev, A.; Blunden, P. G.; Hasell, D.; ...

    2017-04-17

    Here, we review recent theoretical and experimental progress on the role of two-photon exchange (TPE) in electron-proton scattering at low to moderate momentum transfers. We make a detailed comparison and analysis of the results of competing experiments on the ratio of e+p to e-p elastic scattering cross sections, and of the theoretical calculations describing them. A summary of the current experimental situation is provided, along with an outlook for future experiments.

  13. Differential cross sections for positron-xenon elastic scattering

    SciTech Connect

    Marler, J. P.; Surko, C. M.; McEachran, R. P.; Stauffer, A. D.

    2006-06-15

    Absolute measurements of differential cross sections for the elastic scattering of positrons from xenon are made at 2, 5 and 8 eV using a trap-based beam and the technique of measuring scattering cross sections in a strong magnetic field. Calculations are carried out using the relativistic Dirac equations with a static plus polarization potential. Generally good absolute agreement is found between experiment and theory.

  14. Energy distribution of elastically scattered electrons from double layer samples

    NASA Astrophysics Data System (ADS)

    Tőkési, K.; Varga, D.

    2016-02-01

    We present a theoretical description of the spectra of electrons elastically scattered from thin double layered Au-C samples. The analysis is based on the Monte Carlo simulation of the recoil and Doppler effects in reflection and transmission geometries of the scattering at a fixed angle of 44.3 ° and a primary energy of 40 keV. The relativistic correction is taken into account. Besides the experimentally measurable energy distributions the simulations give many partial distributions separately, depending on the number of elastic scatterings (single, and multiple scatterings of different types). Furthermore, we present detailed analytical calculations for the main parameters of the single scattering, taking into account both the ideal scattering geometry, i.e. infinitesimally small angular range, and the effect of the real, finite angular range used in the measurements. We show our results for intensity ratios, peak shifts and broadenings for four cases of measurement geometries and layer thicknesses. While in the peak intensity ratios of gold and carbon for transmission geometries were found to be in good agreement with the results of the single scattering model, especially large deviations were obtained in reflection geometries. The separation of the peaks, depending on the geometry and the thickness, generally smaller, and the peak width generally larger than it can be expected from the nominal values of the primary energy, scattering angle, and mean kinetic energy of the atoms. We also show that the peaks are asymmetric even for the case of the single scattering due to the finite solid angle. Finally, we present a qualitative comparison with the experimental data. We find our resulting energy distribution of elastically scattered electrons to be in good agreement with recent measurements.

  15. Contraband detection via neutron elastic scattering

    SciTech Connect

    Gomberg, H.J.; Charatis, G.; Brundage, J.

    1993-04-01

    Reliable detection of explosives and narcotics depends on generating signatures of compounds which characterize them. Major explosives and also alkaloid narcotics contain unique concentrations of Carbon (C), Nitrogen (N), and Oxygen (O). The kinematic energy shifts of neutrons scattered through angles larger than 140{degrees} allows separate determinations of C, N, and O; ratios of N/C and O/C together give clear signatures of the presence of plastic explosives or narcotics. The ability to detect these signatures under conditions similar to those that would obtain for airport screening has been demonstrated for neutrons for energies less {le} 3 MeV. Strong N resonances and a deep window for scattering from O enhance the confidence of element quantification. Detection of contraband in large cargo containers presents a much more difficult problem. Use of higher energy neutrons is now being tested for shielding penetration, so narcotic signatures could be identified behind the shielding of cargo containers. Scattered neutron spectra, or {open_quotes}signatures{close_quotes} of different organic compounds will be presented.

  16. High energy parton-parton elastic scattering in QCD

    SciTech Connect

    Tang, W.K.

    1993-08-01

    We show that the high energy limit of quark-quark, or gluon-gluon, elastic scattering is calculable in terms of the BFKL pomeron when {minus}t {much_gt} {Lambda}{sub QCD}{sup 2}. Surprisingly, this on-shell amplitudes does not have infrared divergences in the high energy limit.

  17. Rayleigh scattering and nonlinear inversion of elastic waves

    SciTech Connect

    Gritto, Roland

    1995-12-01

    Rayleigh scattering of elastic waves by an inclusion is investigated and the limitations determined. In the near field of the inhomogeneity, the scattered waves are up to a factor of 300 stronger than in the far field, excluding the application of the far field Rayleigh approximation for this range. The investigation of the relative error as a function of parameter perturbation shows a range of applicability broader than previously assumed, with errors of 37% and 17% for perturbations of -100% and +100%, respectively. The validity range for the Rayleigh limit is controlled by large inequalities, and therefore, the exact limit is determined as a function of various parameter configurations, resulting in surprisingly high values of up to kpR = 0.9. The nonlinear scattering problem can be solved by inverting for equivalent source terms (moments) of the scatterer, before the elastic parameters are determined. The nonlinear dependence between the moments and the elastic parameters reveals a strong asymmetry around the origin, which will produce different results for weak scattering approximations depending on the sign of the anomaly. Numerical modeling of cross hole situations shows that near field terms are important to yield correct estimates of the inhomogeneities in the vicinity of the receivers, while a few well positioned sources and receivers considerably increase the angular coverage, and thus the model resolution of the inversion parameters. The pattern of scattered energy by an inhomogeneity is complicated and varies depending on the object, the wavelength of the incident wave, and the elastic parameters involved. Therefore, it is necessary to investigate the direction of scattered amplitudes to determine the best survey geometry.

  18. Diffractive approach to elastic hadron scattering and the {rho} - parameter

    SciTech Connect

    Menon, M.J.; Pimentel, B.M.

    1993-02-01

    Making use of the ISR and SPS experimental data, the free parameters in a diffractive approach to elastic pp and {bar p}p scattering are parametrized as function of the center of mass energy. In this approach the ratio of the forward real and imaginary parts of the scattering amplitude ({rho}) is the only input variable at each energy. With this formalism we then analize the {bar p}p scattering at 1.8 TeV in detail, taking as input the recently reported value of {rho} and showing how the experimental uncertainty in this parameter affects the predictions. 24 refs., 4 figs., 2 tabs.

  19. Antinucleon-nucleus elastic and inelastic scattering

    SciTech Connect

    Dover, C.B.; Millener, D.J.

    1985-01-01

    A general overview of the utility of antinucleon (anti N)-nucleus inelastic scattering studies is presented, emphasizing both the sensitivity of the cross sections to various components of the N anti N transition amplitudes and the prospects for the exploration of some novel aspects of nuclear structure. We start with an examination of the relation between NN and N anti N potentials, focusing on the coherences predicted for the central, spin-orbit and tensor components, and how these may be revealed by measurements of two-body spin observables. We next discuss the role of the nucleus as a spin and isospin filter, and show how, by a judicious choice of final state quantum numbers (natural or unnatural parity states, isospin transfer ..delta..T = 0 or 1) and momentum transfer q, one can isolate different components of the N anti N transition amplitude. Various models for the N anti N interaction which give reasonable fits to the available two-body data are shown to lead to strikingly different predictions for certain spin-flip nuclear transitions. We suggest several possible directions for future anti N-nucleus inelastic scattering experiments, for instance the study of spin observables which would be accessible with polarized anti N beams, charge exchange reactions, and higher resolution studies of the (anti p, anti p') reaction. We compare the antinucleon and the nucleon as a probe of nuclear modes of excitation. 40 refs., 13 figs.

  20. Acoustic scattering reduction using layers of elastic materials

    NASA Astrophysics Data System (ADS)

    Dutrion, Cécile; Simon, Frank

    2017-02-01

    Making an object invisible to acoustic waves could prove useful for military applications or measurements in confined space. Different passive methods have been proposed in recent years to avoid acoustic scattering from rigid obstacles. These techniques are exclusively based on acoustic phenomena, and use for instance multiple resonators or scatterers. This paper examines the possibility of designing an acoustic cloak using a bi-layer elastic cylindrical shell to eliminate the acoustic field scattered from a rigid cylinder hit by plane waves. This field depends on the dimensional and mechanical characteristics of the elastic layers. It is computed by a semi-analytical code modelling the vibrations of the coating under plane wave excitation. Optimization by genetic algorithm is performed to determine the characteristics of a bi-layer material minimizing the scattering. Considering an external fluid consisting of air, realistic configurations of elastic coatings emerge, composed of a thick internal orthotopic layer and a thin external isotropic layer. These coatings are shown to enable scattering reduction at a precise frequency or over a larger frequency band.

  1. Elastic positron-cadmium scattering at low energies

    SciTech Connect

    Bromley, M. W. J.; Mitroy, J.

    2010-05-15

    The elastic and annihilation cross sections for positron-cadmium scattering are reported up to the positronium-formation threshold (at 2.2 eV). The low-energy phase shifts for the elastic scattering of positrons from cadmium were derived from the bound and pseudostate energies of a very large basis configuration-interaction calculation of the e{sup +}-Cd system. The s-wave binding energy is estimated to be 126{+-}42 meV, with a scattering length of A{sub scat}=(14.2{+-}2.1)a{sub 0}, while the threshold annihilation parameter, Z{sub eff}, was 93.9{+-}26.5. The p-wave phase shift exhibits a weak shape resonance that results in a peak Z{sub eff} of 91{+-}17 at a collision energy of about 490{+-}50 meV.

  2. Nuclear rainbow in elastic scattering of {sup 9}Be nuclei

    SciTech Connect

    Glukhov, Yu. A. Ogloblin, A. A.; Artemov, K. P.; Rudakov, V. P.

    2010-01-15

    A systematic investigation of the elastic scattering of the {sup 9}Be nucleus, which is among themost loosely bound stable nuclei was performed.Differential cross sections for elastic {sup 9}Be + {sup 16}O scattering were measured at a c.m. energy of 47.5 MeV (beam of 132-MeV {sup 16}O nuclei). Available data at different energy values and data for neighboring nuclei were included in our analysis. As a result, the very fact of rainbow scattering was reliably established for the first time in systems involving {sup 9}Be. In addition, the analysis in question made it possible to identify Airy minima and to determine unambiguously the nucleus-nucleus potential with a high probability.

  3. Barrier distribution of quasi-elastic backward scattering

    SciTech Connect

    Mitsuoka, S.; Ikezoe, H.; Nishio, K.; Watanabe, Y.; Jeong, S. C.; Ishiyama, H.; Hirayama, Y.; Imai, N.; Miyatake, H.

    2009-05-04

    In order to study the nucleus-nucleus interaction in Pb-based cold fusion, we have measured excitation functions for quasi-elastic scattering of {sup 48}Ti, {sup 54}Cr, {sup 56}Fe, {sup 64}Ni, {sup 70}Zn and {sup 86}Kr projectiles on {sup 208}Pb target at backward angles. The barrier distributions were derived from the first derivative of measured quasi-elastic scattering cross sections relative to the Rutherford scattering cross section. The centroids of the barrier distributions show a deviation from several predicted barrier heights toward the low energy side. The shape of the barrier distributions is well reproduced by the results of a coupled-channel calculation taking account of the coupling effects of two phonon excitations of the quadrupole vibration for the projectiles and of the octupole vibration for the {sup 208}Pb target.

  4. Barrier distribution of quasi-elastic backward scattering

    NASA Astrophysics Data System (ADS)

    Mitsuoka, S.; Ikezoe, H.; Nishio, K.; Watanabe, Y.; Jeong, S. C.; Ishiyama, H.; Hirayama, Y.; Imai, N.; Miyatake, H.

    2009-05-01

    In order to study the nucleus-nucleus interaction in Pb-based cold fusion, we have measured excitation functions for quasi-elastic scattering of 48Ti, 54Cr, 56Fe, 64Ni, 70Zn and 86Kr projectiles on 208Pb target at backward angles. The barrier distributions were derived from the first derivative of measured quasi-elastic scattering cross sections relative to the Rutherford scattering cross section. The centroids of the barrier distributions show a deviation from several predicted barrier heights toward the low energy side. The shape of the barrier distributions is well reproduced by the results of a coupled-channel calculation taking account of the coupling effects of two phonon excitations of the quadrupole vibration for the projectiles and of the octupole vibration for the 208Pb target.

  5. ELASTIC AND INELASTIC ELECTRON SCATTERING FROM C12 AND O16,

    DTIC Science & Technology

    ELASTIC SCATTERING, *INELASTIC SCATTERING, CARBON, OXYGEN, ELECTRONS, NUCLEAR ENERGY LEVELS, EXCITATION, DIFFERENTIAL CROSS SECTIONS, ELECTRON BEAMS, MAGNETIC FIELDS, NUCLEAR SHELL MODELS, MEASUREMENT, MOMENTUM.

  6. Low-Energy Elastic Electron Scattering by Atomic Oxygen

    NASA Technical Reports Server (NTRS)

    Zatsarinny O.; Bartschat, K.; Tayal, S. S.

    2006-01-01

    The B-spline R-matrix method is employed to investigate the low-energy elastic electron scattering by atomic oxygen. Flexible non-orthogonal sets of radial functions are used to construct the target description and to represent the scattering functions. A detailed investigation regarding the dependence of the predicted partial and total cross sections on the scattering model and the accuracy of the target description is presented. The predicted angle-integrated elastic cross sections are in good agreement with experiment, whereas significant discrepancies are found in the angle-differential elastic cross sections near the forward direction. .The near-threshold results are found to strongly depend on the treatment of inner-core short-range correlation effects in the target description, as well as on a proper account of the target polarizability. A sharp increase in the elastic cross sections below 1 eV found in some earlier calculations is judged to be an artifact of an unbalanced description of correlation in the N-electron target structure and the (N+l)-electron-collision problems.

  7. Quasi-Elastic Scattering in MINERvA

    NASA Astrophysics Data System (ADS)

    McFarland, Kevin S.

    2011-11-01

    Determination of the quasi-elastic scattering cross-section over a broad range of neutrino energies, nuclear targets and Q2 is a primary goal of the MINERvA experiment. We present preliminary comparisons of data and simulation in a sample rich in ν¯μp→μ+n events from approximately one eighth of the total ν¯ events collected by MINERvA to date. We discuss future plans for quasi-elastic analyses in MINERvA.

  8. Polarized e-p elastic scattering in the collider frame

    SciTech Connect

    Sofiatti, C.; Donnelly, T. W.

    2011-07-15

    Double polarization elastic e-vector-p-vector cross sections and asymmetries are considered in collider kinematics. Covariant expressions are derived for the general situation involving crossed beams; these are checked against the well-known results obtained when the proton is at rest. Results are given using modern models for the proton electromagnetic form factors for kinematics of interest in e-p colliders such as the Electron-Ion Collider facility which is in its planning stage. In context, parity-violating elastic e-vector-p scattering is compared and contrasted with these double-polarization (parity-conserving) results.

  9. Tensor polarization in pion-deuteron elastic scattering

    SciTech Connect

    Holt, R.J.

    1983-01-01

    The angular dependence of the tensor polarization t/sub 20//sup lab/ of recoiling deuterons in ..pi..-d elastic scattering was measured as a function of incident pion energy in the range 134 to 256 MeV. No evidence was found for rapid energy or angular dependences in t/sub 20//sup lab/. The results agree most favorably with theoretical calculations in which the P/sub 11/ ..pi..-N amplitude has been removed altogether. This agreement is consistent with a small effect of pion absorption on the elastic channel. 14 references.

  10. Scattering of time-harmonic elastic waves by an elastic inclusion with quadratic nonlinearity.

    PubMed

    Tang, Guangxin; Jacobs, Laurence J; Qu, Jianmin

    2012-04-01

    This paper considers the scattering of a plane, time-harmonic wave by an inclusion with heterogeneous nonlinear elastic properties embedded in an otherwise homogeneous linear elastic solid. When the inclusion and the surrounding matrix are both isotropic, the scattered second harmonic fields are obtained in terms of the Green's function of the surrounding medium. It is found that the second harmonic fields depend on two independent acoustic nonlinearity parameters related to the third order elastic constants. Solutions are also obtained when these two acoustic nonlinearity parameters are given as spatially random functions. An inverse procedure is developed to obtain the statistics of these two random functions from the measured forward and backscattered second harmonic fields.

  11. Relativistic effects in elastic scattering of electrons in TEM.

    PubMed

    Rother, Axel; Scheerschmidt, Kurt

    2009-01-01

    Transmission electron microscopy typically works with highly accelerated thus relativistic electrons. Consequently the scattering process is described within a relativistic formalism. In the following, we will examine three different relativistic formalisms for elastic electron scattering: Dirac, Klein-Gordon and approximated Klein-Gordon, the standard approach. This corresponds to a different consideration of spin effects and a different coupling to electromagnetic potentials. A detailed comparison is conducted by means of explicit numerical calculations. For this purpose two different formalisms have been applied to the approaches above: a numerical integration with predefined boundary conditions and the multislice algorithm, a standard procedure for such simulations. The results show a negligibly small difference between the different relativistic equations in the vicinity of electromagnetic potentials, prevailing in the electron microscope. The differences between the two numeric approaches are found to be small for small-angle scattering but eventually grow large for large-angle scattering, recorded for instance in high-angle annular dark field.

  12. NN inversion potentials intermediate energy proton-nucleus elastic scattering

    SciTech Connect

    Arellano, H.F.; Brieva, F.A.; Love, W.G.; Geramb, H.V. von

    1995-10-01

    Recently developed nucleon-nucleon interactions using the quantum inverse scattering method shed new fight on the off-shell properties of the internucleon effective force for nucleon-nucleus scattering. Calculations of proton elastic scattering from {sup 40}Ca and {sup 208}Pb in the 500 MeV region show that variations in off-shell contributions are determined to a great extent by the accuracy with which the nucleon-nucleon phase shifts are reproduced. The study is based on the full-folding approach to the nucleon-nucleus optical potential which allows a deep understanding of the interplay between on- and off-shell effects in nucleon scattering. Results and the promising extension offered by the inversion potentials beyond the range of validity of the low-energy internucleon forces will be discussed.

  13. Spin observables in neutron-proton elastic scattering

    SciTech Connect

    Ahmidouch, A.; Arnold, J.; van den Brandt, B.; Daum, M.; Demierre, P.; Drevenak, R.; Finger, M. |; Finger, M. Jr.; Franz, J.; Goujon, N.; Hautle, P.; Janout, Z. Jr.; Hajdas, W.; Heer, E.; Hess, R.; Koger, R.; Konter, J.A.; Lacker, H.; Lechanoine-LeLuc, C.; Lehar, F.; Mango, S.; Mascarini, C.; Rapin, D.; Roessle, E.; Schmelzbach, P.A.; Schmitt, H.; Sereni, P.; Slunecka, M.

    1995-07-15

    We describe here two experiments presently running at PSI using the NA2 polarized neutron beam. They are devoted to the measurement of 2- and 3-spin observables in {ital np} elastic scattering for kinetic energies from 230 to 590 MeV with a center of mass angular range from 60 to 180 degrees. The goal is to determine the five {ital NN} scattering amplitudes for isospin 0 in a model independent way. Preliminary results for {ital K}{sub {ital OSKO}} and {ital K}{sub {ital OSSO}} spin-transfers are presented.

  14. Differential Cross Sections for Proton-Proton Elastic Scattering

    NASA Technical Reports Server (NTRS)

    Norman, Ryan B.; Dick, Frank; Norbury, John W.; Blattnig, Steve R.

    2009-01-01

    Proton-proton elastic scattering is investigated within the framework of the one pion exchange model in an attempt to model nucleon-nucleon interactions spanning the large range of energies important to cosmic ray shielding. A quantum field theoretic calculation is used to compute both differential and total cross sections. A scalar theory is then presented and compared to the one pion exchange model. The theoretical cross sections are compared to proton-proton scattering data to determine the validity of the models.

  15. Electron-H P-Wave Elastic Scattering

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.

    2004-01-01

    In previous papers [Bhatia and Temkin, Phys. Rev. A 64, 032709-1 (2001), Phys. Rev. A 66, 064702 (2002)], electron-hydrogen and electron-He(+) S-wave scattering phase shifts were calculated using the optical potential approach. This method is now extended to the singlet and triplet electron-H P-wave scattering in the elastic region. Phase shifts are calculated using Hylleraas-type correlation functions with up to 220 terms. Results are rigorous lower bounds to the exact phase shifts and they are compared to phase shifts obtained from previous calculations.

  16. Characteristic Dirac Signature in Elastic Proton Scattering at Intermediate Energies

    NASA Astrophysics Data System (ADS)

    Hynes, M. V.; Picklesimer, A.; Tandy, P. C.; Thaler, R. M.

    1984-03-01

    Nonrelativistic nucleon-nucleus first-order multiple-scattering calculations are extended to include virtual (Dirac) negative energy states of just the projectile. This effect may be thought of as virtual NN¯ pair production and annihilation in the field of the nucleus. This extension leads to a parameter-free Dirac description of the projectile in elastic proton scattering which produces a characteristic effect in spin observables over a wide range of energies which is in agreement with experiment. This Dirac signature is extremely stable with respect to uncertainties in the microscopic input.

  17. Ultracold elastic H(bar sign)-He scattering

    SciTech Connect

    Sinha, Prabal K.; Ghosh, A. S.

    2003-08-01

    In view of the current interest in trapping antihydrogen H(bar sign) atoms below 1 K, the s-wave elastic-scattering parameters for the antihydrogen scattering off atomic helium target are calculated in the energy range 1x10{sup -16}-1x10{sup -2} a.u. using close-coupling models. The predicted cross section will help to simulate the evolution of a realistic mixture of He and H{sub 2} through the process involving ejection of H(bar sign) from the trap. The trend of the present results with different basis sets conclusively indicates the reliability of the predicted results.

  18. Low-energy elastic differential scattering of He/++/ by He.

    NASA Technical Reports Server (NTRS)

    Lam, S. K.; Doverspike, L. D.; Champion, R. L.

    1973-01-01

    Experimental results are developed for the relative elastic differential scattering of He(++) by He for collision energies in the range 4 equal to or less than E equal to or less than 75 eV. In the analysis of the data, semiclassical considerations are utilized, assuming that the dynamics of the scattering is governed solely by the B and E states of He2(++). It is shown that existing ab initio calculations for the intermolecular potentials predict differential cross sections which are not in particularly good agreement with the experimental data.

  19. Phenomenological models of elastic nucleon scattering and predictions for LHC

    NASA Astrophysics Data System (ADS)

    Kašpar, Jan; Kundrát, Vojtěch; Lokajíček, Miloš; Procházka, Jiří

    2011-02-01

    The hitherto analyses of elastic collisions of charged nucleons involving common influence of Coulomb and hadronic scattering have been based practically on West and Yennie formula. However, this approach has been shown recently to be inadequate from experimental as well as theoretical points of view. The eikonal model enabling to determine physical characteristics in impact parameter space seems to be more pertinent. The contemporary phenomenological models admit, of course, different distributions of collision processes in the impact parameter space and cannot give any definite answer. Nevertheless, some predictions for the planned LHC energy that have been given on their basis may be useful, as well as the possibility of determining the luminosity from elastic scattering.

  20. Measurement of neutrino flux from neutrino-electron elastic scattering

    NASA Astrophysics Data System (ADS)

    Park, J.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; Christy, M. E.; Chvojka, J.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman; Osta, J.; Paolone, V.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ramirez, M. A.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Solano Salinas, C. J.; Tagg, N.; Tice, B. G.; Valencia, E.; Walton, T.; Wolcott, J.; Wospakrik, M.; Zavala, G.; Zhang, D.; Miner ν A Collaboration

    2016-06-01

    Muon-neutrino elastic scattering on electrons is an observable neutrino process whose cross section is precisely known. Consequently a measurement of this process in an accelerator-based νμ beam can improve the knowledge of the absolute neutrino flux impinging upon the detector; typically this knowledge is limited to ˜10 % due to uncertainties in hadron production and focusing. We have isolated a sample of 135 ±17 neutrino-electron elastic scattering candidates in the segmented scintillator detector of MINERvA, after subtracting backgrounds and correcting for efficiency. We show how this sample can be used to reduce the total uncertainty on the NuMI νμ flux from 9% to 6%. Our measurement provides a flux constraint that is useful to other experiments using the NuMI beam, and this technique is applicable to future neutrino beams operating at multi-GeV energies.

  1. Measurement of neutrino flux from neutrino-electron elastic scattering

    SciTech Connect

    Park, J.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; Christy, M. E.; Chvojka, J.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman,; Osta, J.; Paolone, V.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ramirez, M. A.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Solano Salinas, C. J.; Tagg, N.; Tice, B. G.; Valencia, E.; Walton, T.; Wolcott, J.; Wospakrik, M.; Zavala, G.; Zhang, D.

    2016-06-10

    Muon-neutrino elastic scattering on electrons is an observable neutrino process whose cross section is precisely known. Consequently, a measurement of this process in an accelerator-based νμ beam can improve the knowledge of the absolute neutrino flux impinging upon the detector; typically this knowledge is limited to ~10% due to uncertainties in hadron production and focusing. We also isolated a sample of 135±17 neutrino-electron elastic scattering candidates in the segmented scintillator detector of MINERvA, after subtracting backgrounds and correcting for efficiency. We show how this sample can be used to reduce the total uncertainty on the NuMI νμ flux from 9% to 6%. Finally, our measurement provides a flux constraint that is useful to other experiments using the NuMI beam, and this technique is applicable to future neutrino beams operating at multi-GeV energies.

  2. Measurement of neutrino flux from neutrino-electron elastic scattering

    SciTech Connect

    Park, J.; Aliaga, L.; Altinok, O.; Bellantoni, L.; Bercellie, A.; Betancourt, M.; Bodek, A.; Bravar, A.; Budd, H.; Cai, T.; Carneiro, M. F.; Christy, M. E.; Chvojka, J.; da Motta, H.; Dytman, S. A.; Díaz, G. A.; Eberly, B.; Felix, J.; Fields, L.; Fine, R.; Gago, A. M.; Galindo, R.; Ghosh, A.; Golan, T.; Gran, R.; Harris, D. A.; Higuera, A.; Kleykamp, J.; Kordosky, M.; Le, T.; Maher, E.; Manly, S.; Mann, W. A.; Marshall, C. M.; Martinez Caicedo, D. A.; McFarland, K. S.; McGivern, C. L.; McGowan, A. M.; Messerly, B.; Miller, J.; Mislivec, A.; Morfín, J. G.; Mousseau, J.; Naples, D.; Nelson, J. K.; Norrick, A.; Nuruzzaman,; Osta, J.; Paolone, V.; Patrick, C. E.; Perdue, G. N.; Rakotondravohitra, L.; Ramirez, M. A.; Ray, H.; Ren, L.; Rimal, D.; Rodrigues, P. A.; Ruterbories, D.; Schellman, H.; Solano Salinas, C. J.; Tagg, N.; Tice, B. G.; Valencia, E.; Walton, T.; Wolcott, J.; Wospakrik, M.; Zavala, G.; Zhang, D.

    2016-06-10

    Muon-neutrino elastic scattering on electrons is an observable neutrino process whose cross section is precisely known. Consequently, a measurement of this process in an accelerator-based νμ beam can improve the knowledge of the absolute neutrino flux impinging upon the detector; typically this knowledge is limited to ~10% due to uncertainties in hadron production and focusing. We also isolated a sample of 135±17 neutrino-electron elastic scattering candidates in the segmented scintillator detector of MINERvA, after subtracting backgrounds and correcting for efficiency. We show how this sample can be used to reduce the total uncertainty on the NuMI νμ flux from 9% to 6%. Finally, our measurement provides a flux constraint that is useful to other experiments using the NuMI beam, and this technique is applicable to future neutrino beams operating at multi-GeV energies.

  3. Electron- and positron-proton elastic scattering in CLAS

    SciTech Connect

    Weinstein, L. B.

    2009-09-02

    There is a significant disagreement between measurements of the proton electric form factor, G{sup p}{sub E}, using Rosenbluth separations and polarization transfer. This disagreement, if not explained, could pose a fundamental challenge to our understanding of electron scattering or proton structure. Two-photon exchange (TPE) processes, although not fully calculable, are the most likely explanation of this disagreement. We will definitively test this assertion by comparing the electron-proton and positron-proton elastic scattering cross section in the Jefferson Lab CLAS. We will make a mixed identical electron and positron tertiary beam by passing a 5.5 GeV primary electron beam through a radiator to make a photon beam and then passing the photon beam through a converter to make electron-positron pairs. Measuring the elastic cross sections simultaneously using identical lepton beams should significantly reduce systematic uncertainties.

  4. Electron- and positron-proton elastic scattering in CLAS

    SciTech Connect

    L.B. Weinstein

    2009-08-01

    There is a significant disagreement between measurements of the proton electric form factor, G{sup p}{sub E}, using Rosenbluth separations and polarization transfer. This disagreement, if not explained, could pose a fundamental challenge to our understanding of electron scattering or proton structure. Two-photon exchange (TPE) processes, although not fully calculable, are the most likely explanation of this disagreement. We will definitively test this assertion by comparing the electron-proton and positron-proton elastic scattering cross section in the Jefferson Lab CLAS. We will make a mixed identical electron and positron tertiary beam by passing a 5.5 GeV primary electron beam through a radiator to make a photon beam and then passing the photon beam through a converter to make electron-positron pairs. Measuring the elastic cross sections simultaneously using identical lepton beams should significantly reduce systematic uncertainties.

  5. Measurement of neutrino flux from neutrino-electron elastic scattering

    DOE PAGES

    Park, J.; Aliaga, L.; Altinok, O.; ...

    2016-06-10

    Muon-neutrino elastic scattering on electrons is an observable neutrino process whose cross section is precisely known. Consequently, a measurement of this process in an accelerator-based νμ beam can improve the knowledge of the absolute neutrino flux impinging upon the detector; typically this knowledge is limited to ~10% due to uncertainties in hadron production and focusing. We also isolated a sample of 135±17 neutrino-electron elastic scattering candidates in the segmented scintillator detector of MINERvA, after subtracting backgrounds and correcting for efficiency. We show how this sample can be used to reduce the total uncertainty on the NuMI νμ flux from 9%more » to 6%. Finally, our measurement provides a flux constraint that is useful to other experiments using the NuMI beam, and this technique is applicable to future neutrino beams operating at multi-GeV energies.« less

  6. Scatter of elastic waves by a thin flat elliptical inhomogeneity

    NASA Technical Reports Server (NTRS)

    Fu, L. S.

    1983-01-01

    Elastodynamic fields of a single, flat, elliptical inhomogeneity embedded in an infinite elastic medium subjected to plane time harmonic waves are studied. Scattered displacement amplitudes and stress intensities are obtained in series form for an incident wave in an arbitrary direction. The cases of a penny shaped crack and an elliptical crack are given as examples. The analysis is valid for alpha a up to about two, where alpha is longitudinal wave number and a is a typical geometric parameter.

  7. Deconstruction and elastic ππ scattering in Higgsless models

    NASA Astrophysics Data System (ADS)

    Chivukula, R. Sekhar; Simmons, Elizabeth H.; He, Hong-Jian; Kurachi, Masafumi; Tanabashi, Masaharu

    2007-02-01

    We study elastic pion-pion scattering in global linear moose models and apply the results to a variety of Higgsless models in flat and anti-de Sitter (AdS) space using the equivalence theorem. In order to connect the global moose to Higgsless models, we first introduce a block-spin transformation which corresponds, in the continuum, to the freedom to perform coordinate transformations in the Higgsless model. We show that it is possible to make an “f-flat” deconstruction in which all of the f-constants fj of the linear moose model are identical; the phenomenologically relevant f-flat models are those in which the coupling constants of the groups at either end of the moose are small—corresponding to the global linear moose. In studying pion-pion scattering, we derive various sum rules, including one analogous to the Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin (KSRF) relation, and use them in evaluating the low-energy and high-energy forms of the leading elastic partial-wave scattering amplitudes. We obtain elastic unitarity bounds as a function of the mass of the lightest KK mode and discuss their physical significance.

  8. Deconstruction and elastic {pi}{pi} scattering in Higgsless models

    SciTech Connect

    Chivukula, R. Sekhar; Simmons, Elizabeth H.; He, Hong-Jian; Kurachi, Masafumi; Tanabashi, Masaharu

    2007-02-01

    We study elastic pion-pion scattering in global linear moose models and apply the results to a variety of Higgsless models in flat and anti-de Sitter (AdS) space using the equivalence theorem. In order to connect the global moose to Higgsless models, we first introduce a block-spin transformation which corresponds, in the continuum, to the freedom to perform coordinate transformations in the Higgsless model. We show that it is possible to make an 'f-flat' deconstruction in which all of the f-constants f{sub j} of the linear moose model are identical; the phenomenologically relevant f-flat models are those in which the coupling constants of the groups at either end of the moose are small--corresponding to the global linear moose. In studying pion-pion scattering, we derive various sum rules, including one analogous to the Kawarabayashi-Suzuki-Riazuddin-Fayyazuddin (KSRF) relation, and use them in evaluating the low-energy and high-energy forms of the leading elastic partial-wave scattering amplitudes. We obtain elastic unitarity bounds as a function of the mass of the lightest KK mode and discuss their physical significance.

  9. Polarization observables in the elastic scattering of protons from {sup 4,6,8}He

    SciTech Connect

    Crespo, R.; Moro, A. M.

    2007-11-15

    We have calculated the p-{sup 4,6,8}He elastic scattering differential cross section and polarizations at 297 MeV using the Multiple Scattering expansion of the Optical potential (MSO) reaction scattering framework. The role of the core and valence neutrons contribution to the interaction in the description of the elastic scattering observables is analyzed.

  10. Quasi-elastic X-ray scattering divergence analysis calculation

    NASA Astrophysics Data System (ADS)

    Reid, John S.; Milne, Gordon J.

    1989-08-01

    A FORTRAN 77 program is described that enables a numerical investigation to be made of the variation of instrumental resolution corrections with apparatus configuration for quasi-elastic X-ray scattering. The program is useful for scattering from phonons, defects, low angle Comptom processes and all instances where the energy change on scattering is at most a small fraction of the incident energy. Account can be taken of an irregular incident beam distribution (in angle and in space), a sample crystal mosaic spread and a finite area detector. The numerical convolutions for each smearing effect are performed separately but cumulatively, allowing the effects of individual processes to be investigated or treated in variant fashion. The program provides a shell of organisation that could be adapted to related problems.

  11. A Double Scattering Analytical Model For Elastic Recoil Detection Analysis

    SciTech Connect

    Barradas, N. P.; Lorenz, K.; Alves, E.; Darakchieva, V.

    2011-06-01

    We present an analytical model for calculation of double scattering in elastic recoil detection measurements. Only events involving the beam particle and the recoil are considered, i.e. 1) an ion scatters off a target element and then produces a recoil, and 2) an ion produces a recoil which then scatters off a target element. Events involving intermediate recoils are not considered, i.e. when the primary ion produces a recoil which then produces a second recoil. If the recoil element is also present in the stopping foil, recoil events in the stopping foil are also calculated. We included the model in the standard code for IBA data analysis NDF, and applied it to the measurement of hydrogen in Si.

  12. Low energy analyzing powers in pion-proton elastic scattering

    NASA Astrophysics Data System (ADS)

    Meier, R.; Cröni, M.; Bilger, R.; van den Brandt, B.; Breitschopf, J.; Clement, H.; Comfort, J. R.; Denz, H.; Erhardt, A.; Föhl, K.; Friedman, E.; Gräter, J.; Hautle, P.; Hofman, G. J.; Konter, J. A.; Mango, S.; Pätzold, J.; Pavan, M. M.; Wagner, G. J.; von Wrochem, F.

    2004-05-01

    Analyzing powers of pion-proton elastic scattering have been measured at PSI with the Low Energy Pion Spectrometer LEPS and a novel polarized scintillator target. Angular distributions between 40 and 120 deg (c.m.) were taken at 45.2, 51.2, 57.2, 68.5, 77.2, and 87.2 MeV incoming pion kinetic energy for π+p scattering, and at 67.3 and 87.2 MeV for π-p scattering. These new measurements constitute a substantial extension of the polarization data base at low energies. Predictions from phase shift analyses are compared with the experimental results, and deviations are observed at low energies.

  13. Effect of the Pauli principle in elastic scattering

    NASA Astrophysics Data System (ADS)

    Picklesimer, A.; Thaler, R. M.

    1981-01-01

    The effect of imposition of the Pauli principle for two-fragment elastic nuclear scattering is examined. It is shown that the antisymmetrized problem can be cast into the Lippmann-Schwinger form with an effective interaction in which the effect of the Pauli principle is entirely absorbed into the effective interaction potential operator. This result enables the formalism to be developed in analogy with the unsymmetrized formulation. Central to the approach is the choice of the off-shell extension of the transition operator. Comparison is made with a previously proposed treatment based on a different off-shell extension. It is shown that both the antisymmetrized transition operator and the associated optical potential proposed herein are readily expressed as spectator expansions in which the effect of the Pauli principle among the active fermions is incorporated in a physically appealing fashion at each stage of the expansion. NUCLEAR REACTIONS Antisymmetrization incorporated in elastic scattering and optical potential theory. Multiple scattering series and spectator expansion.

  14. Elastic and inelastic scattering of neutrons on 238U nucleus

    NASA Astrophysics Data System (ADS)

    Capote, R.; Trkov, A.; Sin, M.; Herman, M. W.; Soukhovitskiĩ, E. Sh.

    2014-04-01

    Advanced modelling of neutron induced reactions on the 238U nucleus is aimed at improving our knowledge of neutron scattering. Capture and fission channels are well constrained by available experimental data and neutron standard evaluation. A focus of this contribution is on elastic and inelastic scattering cross sections. The employed nuclear reaction model includes - a new rotational-vibrational dispersive optical model potential coupling the low-lying collective bands of vibrational character observed in even-even actinides; - the Engelbrecht-Weidenmüller transformation allowing for inclusion of compound-direct interference effects; - and a multi-humped fission barrier with absorption in the secondary well described within the optical model for fission. Impact of the advanced modelling on elastic and inelastic scattering cross sections including angular distributions and emission spectra is assessed both by comparison with selected microscopic experimental data and integral criticality benchmarks including measured reaction rates (e.g. JEMIMA, FLAPTOP and BIG TEN). Benchmark calculations provided feedback to improve the reaction modelling. Improvement of existing libraries will be discussed.

  15. Measurement of Spin Observables for Proton-Deuteron Elastic Scattering.

    NASA Astrophysics Data System (ADS)

    Zhao, Jie

    The spin transfer coefficients D_ {NN}, D_{SS}, D_{LL }, D_{SL}, D_{LS}, the analyzing power A_ N, and the induced polarization P_ N for proton-deuteron elastic scattering have been measured at TRIUMF, using the 290 and 400 MeV polarized proton beams and a solid CD_2 target. This work represents the first measurement of the p-d spin observables in this proton energy region. The results of the measurement are consistent with time-reversal invariance within the experimental uncertainties. The comparison of the experimental data with the results of a multiple scattering based calculation limited to single and double scatterings using T.-S. H. Lee's Nucleon-Nucleon interaction model with the A and C Wolfenstein coefficients has revealed a generally better agreement between the spin observable data and the calculation results with the input of off-shell N-N amplitude and both the single and double scattering terms. Calculations with higher order multiple scattering terms and more spin dependent forces are desired for further investigation with the data.

  16. Parity Non-Conservation in Proton-Proton Elastic Scattering

    SciTech Connect

    V.R. Brown; B.F. Gibson; J.A. Carlson; R. Schiavilla

    2002-06-01

    The parity non-conserving longitudinal asymmetry in proton-proton (pp) elastic scattering is calculated in the lab-energy range 0-350 MeV using contemporary, realistic strong-interaction potentials combined with a weak-interaction potential comprised of rho- and omega-meson exchanges as exemplified by the DDH model. Values for the rho- and omega-meson coupling constants, h{sup rho rho}{sub rho} and h{sup rho rho}{sub omega}, are determined from comparison with the measured asymmetries at 13.6 MeV, 45 MeV, and 221 MeV.

  17. Angular distribution of electrons elastically scattered from hydrogen atoms

    SciTech Connect

    Shyn, T. W.; Cho, S. Y.

    1989-08-01

    Absolute elastic differential cross sections of atomic hydrogen have been measured by a modulated crossed-beam method. The energy and angular range covered were from 5 to 30 eV and from 12/degree/ to 156/degree/, respectively. The present results agree with the previous measurements within the experimental uncertainty below 15 eV, but it is found that the present results show stronger backward scattering (/gt/120/degree/) than the previous measurement and theoretical results by more than a factor of 2 above 20 eV.

  18. Tensor analyzing power in πd elastic scattering

    NASA Astrophysics Data System (ADS)

    Smith, G. R.; Altman, A.; Delheij, P.; Gill, D. R.; Healey, D.; Johnson, R. R.; Jones, G.; Ottewell, D.; Rozon, F. M.; Sevior, M. E.; Tervisidis, F.; Trelle, R. P.; Wait, G. D.; Walden, P.; Mathie, E. L.; Lolos, G. J.; Naqvi, S. I.; Boschitz, E. T.; Ottermann, C. R.; Kyle, G. S.; Amaudruz, P. A.

    1986-08-01

    A tensor-polarized deuteron target has been employed for the first measurements of the tensor analyzing power, T20, in πd elastic scattering. Data at six angles were measured at pion bombarding energies of 133.8 and 150.9 MeV. The results settle a long-standing controversy over conflicting measurements of the tensor polarization t20, and dispute evidence for dibaryon resonances predicated on one of these t20 measurements. The data are shown to be in reasonable agreement with recent Faddeev calculations which have reduced contributions from pion absorption.

  19. Quasi-Elastic Scattering with Neutrinos in MINERvA

    NASA Astrophysics Data System (ADS)

    Osta, Jyotsna; Hurtado, Kenyi; Minerva Collaboration

    2014-09-01

    MINERvA is a few GeV neutrino-nucleus scattering experiment designed to study low energy neutrino interactions both in support of neutrino oscillation experiments as well as a pure weak probe of the nuclear medium. The experiment uses a fine-grained, high resolution detector. The active region is composed of plastic scintillator with additional targets of helium, carbon, iron, lead and water placed upstream of the active region. We present preliminary results from the double differential cross section analysis that aims to study quasi-elastic scattering of neutrinos in the phase space of the muon transverse and longitudinal momenta. This analysis uses the low energy neutrino dataset recorded from November 2009 to April 2012.

  20. Elastic Electron Scattering from Tritium and Helium-3

    DOE R&D Accomplishments Database

    Collard, H.; Hofstadter, R.; Hughes, E. B.; Johansson, A.; Yearian, M. R.; Day, R. B.; Wagner, R. T.

    1964-10-01

    The mirror nuclei of tritium and helium-3 have been studied by the method of elastic electron scattering. Absolute cross sections have been measured for incident electron energies in the range 110 - 690 MeV at scattering angles lying between 40 degrees and 135 degrees in this energy range. The data have been interpreted in a straightforward manner and form factors are given for the distributions of charge and magnetic moment in the two nuclei over a range of four-momentum transfer squared 1.0 - 8.0 F{sup -2}. Model-independent radii of the charge and magnetic moment distributions are given and an attempt is made to deduce form factors describing the spatial distribution of the protons in tritium and helium-3.

  1. Elastic scattering of Beryllium isotopes near the Coulomb barrier

    SciTech Connect

    Di Pietro, A.; Figuera, P.; Amorini, F.; Fisichella, M.; Lattuada, M.; Musumarra, A.; Pellegriti, M. G.; Randisi, G.; Rizzo, F.; Santonocito, D.; Scalia, G.; Scuderi, V.; Strano, E.; Torresi, D.; Papa, M.; Acosta, L.; Martel, I.; Perez-Bernal, F.; Borge, M. J. G.; Tengblad, O.

    2011-10-28

    In this contribution, results of experiments performed with the three Beryllium isotopes {sup 9,10,11}Be on a medium mass {sup 64}Zn target, at a center of mass energy of {approx_equal}1.4 the Coulomb barrier, will be discussed. Elastic scattering angular distributions have been measured for the {sup 9,10}Be reactions. In the {sup 11}Be case the quasielastic scattering angular distribution was obtained. In the halo nucleus case, the angular distribution exhibit a non-Fresnel-type pattern with a strong damping of the Coulomb-nuclear interference peak. Moreover, it is found that the total reaction cross-section for the halo nucleus induced collision is more than double the ones extracted in the collisions induced by the non-halo Beryllium isotopes. A large contribution to the total-reaction cross-section in the {sup 11}Be case could be attributed to transfer and/or break-up events.

  2. Charged current quasi elastic scattering of muon neutrino with nuclei

    NASA Astrophysics Data System (ADS)

    Saraswat, Kapil; Shukla, Prashant; Kumar, Vineet; Singh, Venktesh

    2017-08-01

    We present a study on the charge current quasi elastic scattering of ν _μ from nucleon and nuclei which gives a charged muon in the final state. To describe nuclei, the Fermi Gas model has been used with proposed Pauli suppression factor. The diffuseness parameter of the Fermi distribution has been obtained using experimental data. We also investigate different parametrizations for electric and magnetic Sach's form factors of nucleons. Calculations have been made for CCQES total and differential cross-sections for the cases of ν _{μ }-N , ν _{μ }-{^{12}}C and ν _{μ }-{^{56}}Fe scatterings and are compared with the data for different values of the axial mass. The present model gives excellent description of measured differential cross-section for all the systems.

  3. Hadronic uncertainties in the elastic scattering of supersymmetric dark matter

    SciTech Connect

    Ellis, John; Olive, Keith A.; Savage, Christopher

    2008-03-15

    We review the uncertainties in the spin-independent and spin-dependent elastic scattering cross sections of supersymmetric dark matter particles on protons and neutrons. We propagate the uncertainties in quark masses and hadronic matrix elements that are related to the {pi}-nucleon {sigma} term and the spin content of the nucleon. By far the largest single uncertainty is that in spin-independent scattering induced by our ignorance of the matrix elements linked to the {pi}-nucleon {sigma} term, which affects the ratio of cross sections on proton and neutron targets as well as their absolute values. This uncertainty is already impacting the interpretations of experimental searches for cold dark matter. We plead for an experimental campaign to determine better the {pi}-nucleon {sigma} term. Uncertainties in the spin content of the proton affect significantly, but less strongly, the calculation of rates used in indirect searches.

  4. Angular distribution of electrons elastically scattered from water vapor

    NASA Astrophysics Data System (ADS)

    Shyn, T. W.; Grafe, Alan

    1992-10-01

    The angular distributions of electrons elastically scattered from H2O have been measured by electron impact using a modulated crossed-beam method. The energy and angular range measured were from 30 to 200 eV and 12° to 156°, respectively. The present results show a high backward scattering for low incident energies, but this falls off for high incident energies. The present results are in qualitative agreement with the measurements of Danjo and Nishimura [J. Phys. Soc. Jpn. 54, 1224 (1985)] and in quantitative agreement with the measurements of Katase et al. [J. Phys. B 19, 2715 (1986)]. Agreement between the present results and the calculation of Jain, Tripathi, and Jain [Phys. Rev. A 37, 2893 (1988)] is good except at 200-eV impact.

  5. Desmin filaments studied by quasi-elastic light scattering.

    PubMed Central

    Hohenadl, M; Storz, T; Kirpal, H; Kroy, K; Merkel, R

    1999-01-01

    We studied polymers of desmin, a muscle-specific type III intermediate filament protein, using quasi-elastic light scattering. Desmin was purified from chicken gizzard. Polymerization was induced either by 2 mM MgCl(2) or 150 mM NaCl. The polymer solutions were in the semidilute regime. We concluded that the persistence length of the filaments is between 0.1 and 1 microm. In all cases, we found a hydrodynamic diameter of desmin filaments of 16-18 nm. The filament dynamics exhibits a characteristic frequency in the sense that correlation functions measured on one sample but at different scattering vectors collapse onto a single master curve when time is normalized by the experimentally determined initial decay rate. PMID:10512839

  6. Extracting the hexadecapole deformation from backward quasi-elastic scattering

    NASA Astrophysics Data System (ADS)

    Jia, H. M.; Lin, C. J.; Yang, F.; Xu, X. X.; Zhang, H. Q.; Liu, Z. H.; Wu, Z. D.; Yang, L.; Ma, N. R.; Bao, P. F.; Sun, L. J.

    2014-09-01

    Background: The hexadecapole deformation β4 is usually difficult to determine experimentally, especially its sign. The rapidly accumulated knowledge of β2 inspires the desire of β4 for radioactive nuclei, but the current low-quality beam is a severe experimental challenge. Therefore, a simple but sensitive method to extract β4 in such a condition is urgently called for. Purpose: To study the feasibility of extracting β4 from the lower-energy backward quasi-elastic (QEL) scattering. Methods: The QEL scattering at sub-barrier energy region is sensitive to the coupled-channels (CC) effect and consequently may be used to extract β4. The QEL scattering excitation functions for O16+Sm152,Er170, and Yb174 were measured at a backward angle with small energy intervals at energies near the Coulomb barrier. Experimental fusion barrier distributions were also derived. The lower-energy data were analyzed to extract β4 with the help of the CC calculations. Results: The obtained β4 agrees with the available results reasonably well. Conclusions: We have demonstrated that the QEL scattering at sub-barrier energies provides a feasible and sensitive method to extract the value of β4, which is essentially meaningful for the radioactive nucleus because of its low beam intensity.

  7. Elastic scattering of slow electrons by n-pentanol alcohol

    NASA Astrophysics Data System (ADS)

    de Oliveira, Eliane M.; Varella, Márcio T. do N.; Bettega, Márcio H. F.; Lima, Marco A. P.

    2014-03-01

    We report elastic integral (ICS), differential (DCS) and momentum transfer cross sections (MTCS) for low-energy electron scattering by n-pentanol alcohol in the gas phase. The Schwinger multichannel method implemented with pseudopotentials was employed in the calculations. The DCSs were computed for energies from 1 to 50 eV and the ICS and MTCS from 1 to 100 eV. Due to the significant value of the electric dipole moment, the DCSs are dominated by strong forward scattering. Despite this fact, the DCS around 10 eV displays a behavior related to a f-wave scattering pattern at intermediate angles which may be associated with shape resonances. This result is consistent with the ICS and the MTCS since they show a pronounced peak near this energy. For energies below 1 eV, the MTCS obtained in the static-exchange plus polarization approximation does not increase, as expected for polar molecules, suggesting that a Ramsauer-Townsend minimum could be present. This finding motivated us to revisit the previously studied methanol, ethanol, n-propanol and n-butanol molecules and to perform new calculations for impact energies below 1 eV (not addressed before). With the inclusion of polarization effects, the MTCS for the five alcohols suggest a Ramsauer-Townsend minimum coming from the negative to the positive scattering energies. To the best of our knowledge, there are neither experimental nor calculated cross sections for comparison with the present results.

  8. Proton-{sup 3}He elastic scattering at low energies

    SciTech Connect

    Fisher, B. M.; Brune, C. R.; Karwowski, H. J.; Leonard, D. S.; Ludwig, E. J.; Black, T. C.; Viviani, M.; Kievsky, A.; Rosati, S.

    2006-09-15

    We present new accurate measurements of the differential cross section {sigma}({theta}) and the proton analyzing power A{sub y} for proton-{sup 3}He elastic scattering at various energies. A supersonic gas-jet target has been employed to obtain these low-energy cross-section measurements. The {sigma}({theta}) distributions have been measured at E{sub p}=0.99, 1.59, 2.24, 3.11, and 4.02 MeV. Full angular distributions of A{sub y} have been measured at E{sub p}=1.60, 2.25, 3.13, and 4.05 MeV. This set of high-precision data is compared to four-body variational calculations employing realistic nucleon-nucleon (NN) and three-nucleon (3N) interactions. For the unpolarized cross section, the agreement between the theoretical calculation and data is good when a 3N potential is used. The comparison between the calculated and measured proton analyzing powers reveals discrepancies of approximately 50% at the maximum of each distribution. This is analogous to the existing 'A{sub y} puzzle' known for the past 20 years in nucleon-deuteron elastic scattering.

  9. Exploring central opacity and asymptotic scenarios in elastic hadron scattering

    NASA Astrophysics Data System (ADS)

    Fagundes, D. A.; Menon, M. J.; Silva, P. V. R. G.

    2016-02-01

    In the absence of a global description of the experimental data on elastic and soft diffractive scattering from the first principles of QCD, model-independent analyses may provide useful phenomenological insights for the development of the theory in the soft sector. With that in mind, we present an empirical study on the energy dependence of the ratio X between the elastic and total cross sections; a quantity related to the evolution of the hadronic central opacity. The dataset comprises all the experimental information available on proton-proton and antiproton-proton scattering in the c.m. energy interval 5 GeV-8 TeV. Generalizing previous works, we discuss four model-independent analytical parameterizations for X, consisting of sigmoid functions composed with elementary functions of the energy and three distinct asymptotic scenarios: either the standard black disk limit or scenarios above or below that limit. Our two main conclusions are the following: (1) although consistent with the experimental data, the black disk does not represent an unique solution; (2) the data reductions favor a semi-transparent scenario, with asymptotic average value for the ratio X bar = 0.30 ± 0.12. In this case, within the uncertainty, the asymptotic regime may already be reached around 1000 TeV. We present a comparative study of the two scenarios, including predictions for the inelastic channel (diffraction dissociation) and the ratio associated with the total cross-section and the elastic slope. Details on the selection of our empirical ansatz for X and physical aspects related to a change of curvature in this quantity at 80-100 GeV, indicating the beginning of a saturation effect, are also presented and discussed.

  10. A covariant multiple scattering series for elastic projectile-target scattering

    NASA Technical Reports Server (NTRS)

    Gross, Franz; Maung-Maung, Khin

    1989-01-01

    A covariant formulation of the multiple scattering series for the optical potential is presented. The case of a scalar nucleon interacting with a spin zero isospin zero A-body target through meson exchange, is considered. It is shown that a covariant equation for the projectile-target t-matrix can be obtained which sums the ladder and crossed ladder diagrams efficiently. From this equation, a multiple scattering series for the optical potential is derived, and it is shown that in the impulse approximation, the two-body t-matrix associated with the first order optical potential is the one in which one particle is kept on mass-shell. The meaning of various terms in the multiple scattering series is given. The construction of the first-order optical potential for elastic scattering calculations is described.

  11. Fast-neutron elastic scattering from elemental vanadium

    SciTech Connect

    Smith, A.B.; Guenther, P.T.; Lawson, R.D.

    1988-03-01

    Differential neutron elastic- and inelastic-scattering cross sections of vanadium were measured from 4.5 to 10 MeV. These results were combined with previous 1.5 to 4.0 MeV data from this laboratory, the 11.1 MeV elastic-scattering results obtained at Ohio University, and the reported neutron total cross sections to energies of approx.20.0 MeV, to form a data base which was interpreted in terms of the spherical optical-statistical model. A fit to the data was achieved by making both the strengths and geometries of the optical-model potential energy dependent. This energy dependence was large below approx.6.0 MeV. Above approx.6.0 MeV the energy dependencies are smaller, and similar to those characteristic of global models. Using the dispersion relationship and the method of moments, the optical-model potential energy deduced from 0.0 to 11.1 MeV neutron-scattering data was extrapolated to higher energies and to the bound-state regime. This extrapolation leads to predicted neutron total cross sections that are within 3% of the experimental values throughout the energy range 0.0 to 20.0 MeV. Furthermore, the values of the volume-integral-per-nucleon of the real potential are in excellent agreement with those needed to reproduce the observed binding energies of particle- and hole-states. The latter gives clear evidence of the Fermi surface anomaly. Using only the 0.0 to 11.1 MeV data, the predicted E < O behavior of the strength and radius of the real shell-model Woods-Saxon potential are somewhat different from those obtained by Mahaux and Sartor in their analysis of nuclei near closed shells. 61 refs., 9 figs., 2 tabs.

  12. Signal sources in elastic light scattering by biological cells and tissues: what can elastic light scattering spectroscopy tell us?

    NASA Astrophysics Data System (ADS)

    Xu, M.; Wu, Tao T.; Qu, Jianan Y.

    2008-02-01

    We used a unified Mie and fractal model to analyze elastic light spectroscopy of cell suspensions to obtain the size distributions of cells and nuclei, their refractive indices, and the background refractive index fluctuation inside the cell, for different types of cells, including human cervical squamous carcinoma epithelial (SiHa) cells, androgen-independent malignant rat prostate carcinoma epithelial (AT3.1) cells, non-tumorigenic fibroblast (Rat1p) cells in the plateau phase of growth, and tumorigenic fibroblast (Rat1-T1E) cells in the exponential phase of growth. Signal sources contributing to the scattering (μs) and reduced scattering (μ 's) coefficients for these cells of various types or at different growth stages are compared. It is shown that the contribution to μ s from the nucleus is much more important than that from the background refractive index fluctuation. This trend is more significant with increase of the probing wavelength. On the other hand, the background refractive index fluctuation overtakes the nucleus and may even dominate in the contribution to reduced scattering. The implications of the above findings on biomedical light scattering techniques are discussed.

  13. Determination of the cervical transformation zone using elastic-scattering spectroscopy

    SciTech Connect

    Bigio, I.J.; Johnson, T.M.; Mourant, J.R.

    1996-04-01

    Optical measurements of the cervical transformation zone (sometimes referred to as the transition zone) using elastic-scattering spectroscopy, demonstrate sensitivity to the epithelial cell-type differences.

  14. Relativistic (Dirac equation) effects in microscopic elastic scattering calculations

    NASA Astrophysics Data System (ADS)

    Hynes, M. V.; Picklesimer, A.; Tandy, P. C.; Thaler, R. M.

    1985-04-01

    A simple relativistic extension of the first-order multiple scattering mechanism for the optical potential is employed within the context of a Dirac equation description of elastic nucleon-nucleus scattering. A formulation of this problem in terms of a momentum-space integral equation displaying an identifiable nonrelativistic sector is described and applied. Extensive calculations are presented for proton scattering from 40Ca and 16O at energies between 100 and 500 MeV. Effects arising from the relativistic description of the propagation of the projectile are isolated and are shown to be responsible for most of the departures from typical nonrelativistic (Schrödinger) results. Off-shell and nonlocal effects are included and these, together with uncertainties in the nuclear densities, are shown not to compromise the characteristic improvement of forward angle spin observable predictions provided by the relativistic approach. The sensitivity to ambiguities in the Lorentz scalar and vector composition of the optical potential is displayed and discussed.

  15. On the possibility for precision measurements of differential cross sections for elastic proton–proton scattering at the Protvino accelerator

    SciTech Connect

    Denisov, S. P. Kozelov, A. V.; Petrov, V. A.

    2016-03-15

    Elastic-scattering data were analyzed, and it was concluded on the basis of this analysis that precisionmeasurements of differential cross sections for elastic proton–proton scattering at the accelerator of the Institute for High Energy Physics (IHEP, Protvino, Russia) over a broad momentum-transfer range are of importance and topical interest. The layout of the respective experimental facility detecting the scattered particle and recoil proton and possessing a high momentum-transfer resolution was examined along with the equipment constituting this facility. The facility in question is able to record up to a billion events of elastic proton–proton scattering per IHEP accelerator run (20 days). Other lines of physics research with this facility are briefly discussed.

  16. Theoretical and experimental investigations of elastic scattering spectroscopy as a potential diagnostic for tissue pathologies

    SciTech Connect

    Boyer, J.; Mourant, J.R.; Bigio, I.J.

    1994-04-01

    The spectral distribution of the diffuse reflectance of five sizes of polystyrene microspheres has been measured with an elastic scatter spectrometer designed for optical biopsy of living tissue. The microsphere sizes are representative of the suspected scattering centers in living tissue. The experiment data are discussed and interpreted in the framework of Mie scattering theory and Monte-Carlo transport analysis. Present results support the assertion that Mie theory is necessary to describe the spectral features of elastic scatter spectroscopy in tissue.

  17. The calibration of elastic scattering angular distribution at low energies on HIRFL-RIBLL

    NASA Astrophysics Data System (ADS)

    Zhang, G. X.; Zhang, G. L.; Lin, C. J.; Qu, W. W.; Yang, L.; Ma, N. R.; Zheng, L.; Jia, H. M.; Sun, L. J.; Liu, X. X.; Chu, X. T.; Yang, J. C.; Wang, J. S.; Xu, S. W.; Ma, P.; Ma, J. B.; Jin, S. L.; Bai, Z.; Huang, M. R.; Zang, H. L.; Yang, B.; Liu, Y.

    2017-02-01

    The precise calibration of angular distribution of heavy-ion elastic scattering induced by Radioactive Ion Beams (RIBs) at energies around Coulomb barrier on the Radioactive Ion Beam Line in Lanzhou (RIBLL) at the Heavy-Ion Research Facility in Lanzhou (HIRFL) is presented. The beam profile and the scattering angles on the target are deduced by a measurement with two Multi Wire Proportional Chambers (MWPC), and four sets of detector telescopes (including Double-sided Silicon Strip Detectors (DSSD) placed systematically along the beam line, incorporating with Monte Carlo simulation. The MWPCs were used to determine the beam trajectory before the target, and the energies and the positions of scattered particles on the detectors were measured by the DSSDs. Minor corrections on the beam spot and the detector position are performed by assuming the pure Rutherford scattering at angles which are smaller than the related grazing angle. This method is applied for the elastic scattering of 17F on 89Y target at Elab=59 MeV and 50 MeV.

  18. Small Angle Elastic Scattering of Protons off of Spinless Nuclei.

    NASA Astrophysics Data System (ADS)

    Ling, Alan Graham

    1988-12-01

    Elastic differential cross sections and analyzing powers for 800 MeV protons incident on ^ {12}C, ^{40} Ca, and ^{208}Pb in the momentum transfer range 20 MeV/c < q < 130 MeV/c have been measured. The data was taken with the High Resolution Spectrometer (HRS) at the Los Alamos Meson Physics Facility. Special delay -line drift chambers with dead regions for the beam to pass through them were used to obtain the data. Through the interference of the Coulomb and nuclear contributions to the differential cross section in the small angle region, the ratio of the real to imaginary part of the forward nuclear amplitude alpha_{rm n}(0) = Ref_{rm n}(0)/Imf_{rm n }(0) is extracted. The importance of knowing this quantity at lower energies in order to study the differences between relativistic and non-relativistic scattering theories is discussed.

  19. Proton-Proton Elastic Scattering Excitation Functions at Intermediate Energies

    SciTech Connect

    Bisplinghoff, J.; Daniel, R.; Diehl, O.; Engelhardt, H.; Ernst, J.; Eversheim, P.; Gro-Hardt, R.; Heider, S.; Heine, A.; Hinterberger, F.; Jahn, R.; Jeske, M.; Lahr, U.; Maschuw, R.; Mayer-Kuckuk, T.; Mosel, F.; Rohdje, H.; Rosendaal, D.; Ro, U.; Scheid, H.; Schulz-Rojahn, M.; Schwandt, F.; Schwarz, V.; Trelle, H.; Wiedmann, W.; Ziegler, R.; Albers, D.; Bollmann, R.; Bueer, K.; Dohrmann, F.; Gasthuber, M.; Greiff, J.; Gro, A.; Igelbrink, M.; Langkau, R.; Lindlein, J.; Mueller, M.; Muenstermann, M.; Schirm, N.; Scobel, W.; Wellinghausen, A.; Woller, K.; Cloth, P.; Gebel, R.; Maier, R.; Prasuhn, D.; von Rossen, P.; Sterzenbach, G.

    1997-03-01

    Excitation functions of proton-proton elastic scattering cross sections have been measured in narrow steps for projectile momenta p{sub p} (energies T{sub p}) from 1100 to 3300MeV/c (500 to 2500MeV) in the angular range 35{degree}{le}{Theta}{sub c.m.}{le}90{degree} with a detector providing {Delta}{Theta}{sub c.m.}{approx}1.4{degree} resolution. Measurements have been performed continuously during projectile acceleration in the cooler synchrotron COSY with an internal CH{sub 2} fiber target, taking particular care to monitor luminosity as a function of T{sub p}. The advantages of this experimental technique are demonstrated, and the excitation functions obtained are compared to existing cross section data. No evidence for narrow structures was found. {copyright} {ital 1997} {ital The American Physical Society}

  20. Folding model calculations for 6He+12C elastic scattering

    NASA Astrophysics Data System (ADS)

    Awad, A. Ibraheem

    2016-03-01

    In the framework of the double folding model, we used the α+2n and di-triton configurations for the nuclear matter density of the 6He nucleus to generate the real part of the optical potential for the system 6He+12C. As an alternative, we also use the high energy approximation to generate the optical potential for the same system. The derived potentials are employed to analyze the elastic scattering differential cross section at energies of 38.3, 41.6 and 82.3 MeV/u. For the imaginary part of the potential we adopt the squared Woods-Saxon form. The obtained results are compared with the corresponding measured data as well as with available results in the literature. The calculated total reaction cross sections are investigated and compared with the optical limit Glauber model description.

  1. RFUNC: A code to analyze differential elastic-scattering data

    SciTech Connect

    Perey, F.G.

    1989-03-01

    The code RFUNC is used at ORELA to analyze high resolution differential elastic scattering data from spin zero nuclides in the resonance energy region. This report presents the real R-Function formalism used in RFUNC and gives details of how the finite size corrections are currently made. Appendix A describes the input to the code RFUNC. Appendix B describes the input to a utility code MAKPA that transforms a resonance parameter file in SAMMY format into a resonance parameter file in RFUNC format. Appendix C describes the input to an adjunct code RFUNCXT that generates the contributions to the total cross section from resonances of different orbital and total angular momenta. The FORTRAN listing of the code RFUNC is given in Appendix D. 3 figs.

  2. Neutron Angular Scatter Effects in 3DHZETRN: Quasi-Elastic

    NASA Technical Reports Server (NTRS)

    Wilson, John W.; Werneth, Charles M.; Slaba, Tony C.; Badavi, Francis F.; Reddell, Brandon D.; Bahadori, Amir A.

    2017-01-01

    The current 3DHZETRN code has a detailed three dimensional (3D) treatment of neutron transport based on a forward/isotropic assumption and has been compared to Monte Carlo (MC) simulation codes in various geometries. In most cases, it has been found that 3DHZETRN agrees with the MC codes to the extent they agree with each other. However, a recent study of neutron leakage from finite geometries revealed that further improvements to the 3DHZETRN formalism are needed. In the present report, angular scattering corrections to the neutron fluence are provided in an attempt to improve fluence estimates from a uniform sphere. It is found that further developments in the nuclear production models are required to fully evaluate the impact of transport model updates. A model for the quasi-elastic neutron production spectra is therefore developed and implemented into 3DHZETRN.

  3. Application of multiple scattering theory to lower-energy elastic nucleon-nucleus scattering

    NASA Astrophysics Data System (ADS)

    Chinn, C. R.; Elster, Ch.; Thaler, R. M.; Weppner, S. P.

    1995-03-01

    The optical model potentials for nucleon-nucleus elastic scattering at 65 meV are calculated for 12C, 16O, 28Si, 40Ca, 56Fe, 90Zr, and 208Pb in first-order multiple scattering theory, following the prescription of the spectator expansion, where the only inputs are the free nucleon-nucleon (NN) potentials, the nuclear densities, and the nuclear mean field as derived from microscopic nuclear structure calculations. These potentials are used to predict differential cross sections, analyzing powers, and spin rotation functions for neutron and proton scattering at 65 MeV projectile energy and compared with available experimental data. The theoretical curves are in very good agreement with the data. The modification of the propagator due to the coupling of the struck nucleon to the residual nucleus is seen to be significant at this energy and invariably improves the congruence of theoretical prediction and measurement.

  4. Low-energy elastic electron scattering from furan

    SciTech Connect

    Khakoo, M. A.; Muse, J.; Ralphs, K.; Costa, R. F.; Bettega, M. H. F.; Lima, M. A. P.

    2010-06-15

    We report normalized experimental and theoretical differential cross sections for elastic electron scattering by C{sub 4}H{sub 4}O (furan) molecules from a collaborative project between several Brazilian theoretical groups and an experimental group at California State Fullerton, USA. The measurements are obtained by using the relative flow method with helium as the standard gas and a thin aperture target gas collimating source. The relative flow method is applied without the restriction imposed by the relative flow pressure condition on helium and the unknown gas. The experimental data were taken at incident electron energies of 1, 1.5, 1.73, 2, 2.7, 3, 5, 7, 10, 20, 30, and 50 eV and covered the angular range between 10 deg. and 130 deg. The measurements verify observed {pi}* shape resonances at 1.65{+-}0.05eV and 3.10{+-}0.05 eV scattering energies, in good agreement with the transmission electron data of Modelli and Burrow [J. Phys. Chem. A 108, 5721 (2004)]. Furthermore, the present results also indicated both resonances dominantly in the d-wave channel. The differential cross sections are integrated in the standard way to obtain integral elastic cross sections and momentum transfer cross sections. The calculations employed the Schwinger multichannel method with pseudopotentials and were performed in the static-exchange and in the static-exchange plus polarization approximations. The calculated integral and momentum transfer cross sections clearly revealed the presence of two shape resonances located at 1.95 and 3.56 eV and ascribed to the B{sub 1} and A{sub 2} symmetries of the C{sub 2v} point group, respectively, in very good agreement with the experimental findings. Overall agreement between theory and experiment regarding the differential, momentum transfer, and integral cross sections is very good, especially for energies below 10 eV.

  5. Weakly interacting massive particle-nucleus elastic scattering response

    NASA Astrophysics Data System (ADS)

    Anand, Nikhil; Fitzpatrick, A. Liam; Haxton, W. C.

    2014-06-01

    Background: A model-independent formulation of weakly interacting massive particle (WIMP)-nucleon scattering was recently developed in Galilean-invariant effective field theory. Purpose: Here we complete the embedding of this effective interaction in the nucleus, constructing the most general elastic nuclear cross section as a factorized product of WIMP and nuclear response functions. This form explicitly defines what can and cannot be learned about the low-energy constants of the effective theory—and consequently about candidate ultraviolet theories of dark matter—from elastic scattering experiments. Results: We identify those interactions that cannot be reliably treated in a spin-independent/spin-dependent (SI/SD) formulation: For derivative- or velocity-dependent couplings, the SI/SD formulation generally mischaracterizes the relevant nuclear operator and its multipolarity (e.g., scalar or vector) and greatly underestimates experimental sensitivities. This can lead to apparent conflicts between experiments when, in fact, none may exist. The new nuclear responses appearing in the factorized cross section are related to familiar electroweak nuclear operators such as angular momentum l⃗(i) and the spin-orbit coupling σ⃗(i).l⃗(i). Conclusions: To unambiguously interpret experiments and to extract all of the available information on the particle physics of dark matter, experimentalists will need to (1) do a sufficient number of experiments with nuclear targets having the requisite sensitivities to the various operators and (2) analyze the results in a formalism that does not arbitrarily limit the candidate operators. In an appendix we describe a code that is available to help interested readers implement such an analysis.

  6. The recoil proton polarization in. pi. p elastic scattering

    SciTech Connect

    Seftor, C.J.

    1988-09-01

    The polarization of the recoil proton for ..pi../sup +/p and ..pi../sup -/p elastic scattering has been measured for various angles at 547 MeV/c and 625 MeV/c by a collaboration involving The George Washington University; the University of California, Los Angeles; and Abilene Christian University. The experiment was performed at the P/sup 3/ East experimental area of the Los Alamos Meson Physics Facility. Beam intensities varied from 0.4 to 1.0 x 10/sup 7/ ..pi../sup -/'s/sec and from 3.0 to 10.0 x 10/sup 7/ ..pi../sup +/'s/sec. The beam spot size at the target was 1 cm in the horizontal direction by 2.5 cm in the vertical direction. A liquid-hydrogen target was used in a flask 5.7 cm in diameter and 10 cm high. The scattered pion and recoil proton were detected in coincidence using the Large Acceptance Spectrometer (LAS) to detect and momentum analyze the pions and the JANUS recoil proton polarimeter to detect and measure the polarization of the protons. Results from this experiment are compared with previous measurements of the polarization, with analyzing power data previously taken by this group, and to partial-wave analysis predictions. 12 refs., 53 figs., 18 tabs.

  7. Neutrino Exclusive Charged Current Quasi-Elastic Scattering in MINERvA

    NASA Astrophysics Data System (ADS)

    Walton, Tammy

    2012-10-01

    MINERvA part 3. The MINERvA experiment will measure neutrino and antineutrino quasi-elastic scattering on helium, water, carbon, iron, and lead for neutrinos in the few GeV range. We will present an overview and status of the analysis for neutrino exclusive charged current quasi-elastic scattering on lead, iron, and carbon.

  8. Neutrino Exclusive Charged Current Quasi-Elastic Scattering in MINERvA

    NASA Astrophysics Data System (ADS)

    Walton, Tammy

    2012-03-01

    The MINERvA experiment will measure neutrino and antineutrino quasi-elastic scattering on helium, water, carbon, iron, and lead for neutrinos in the few GeV range. We will present an overview of MINERvA analysis plan for neutrino exclusive charged current quasi-elastic scattering on lead, iron, and carbon.

  9. Simulation of nucleon elastic scattering in the MARS14 code system

    SciTech Connect

    Igor L Rakhno et al.

    2001-11-26

    Correct modeling of nucleon elastic scattering is of special importance in many applications at high energy accelerators, such as deep penetration, beam loss and collimation studies. In present paper, the work performed to update the MARS elastic scattering model at E < 5 GeV is described. Modern evaluated nuclear data as well as fitting formulae are used in the new model. For protons as projectiles, Coulomb scattering and Coulomb-nuclear interference are taken into account in addition to nuclear elastic scattering. Comparisons with experimental angular distributions and calculations by means of other codes are presented.

  10. Rough surface scattering from an elastic scale model of an ocean bottom

    NASA Astrophysics Data System (ADS)

    Soukup, Raymond J.; Gragg, Robert F.; Wiley, Robert W.; Inanli, Burcin

    2003-10-01

    Monostatic and bistatic scattering strength measurements with a rough PVC surface were collected during two experiments in an acoustic tank facility at the Allied Geophysical Laboratories in the University of Houston. The PVC surface was analogous to limestone ocean bottoms in its two-dimensional power-law roughness spectrum and its large dependence of scattering strength on the roughness parameters. The experiments represent an initial effort to use physical models with ground-truth measurements of roughness and compressional/shear speeds and attenuations to verify the predicted effects of interface scattering models, e.g., the small-slope model developed at the Naval Research Laboratory for elastic bottoms. Comparisons between the small-slope model, perturbation theory, and the observed data are shown for the various geometries using acoustic transmissions in the 100-400 kHz band. The success in obtaining a good model-data fit is shown to be directly related to the ensonification of an area that represents a sufficient statistical sample of the roughness. Plans for a series of tank experiments with physical models for verifying predictions of rough surface scattering theories and elastic PE are described. [Work supported by ONR.

  11. Rhodopsin photoactivation dynamics revealed by quasi-elastic neutron scattering

    DOE PAGES

    Bhowmik, Debsindhu; Shrestha, Utsab; Perera, Suchithranga M.d.c.; ...

    2015-01-27

    Rhodopsin is a G-protein-coupled receptor (GPCR) responsible for vision under dim light conditions. During rhodopsin photoactivation, the chromophore retinal undergoes cis-trans isomerization, and subsequently dissociates from the protein yielding the opsin apoprotein [1]. What are the changes in protein dynamics that occur during the rhodopsin photoactivation process? Here, we studied the microscopic dynamics of the dark-state rhodopsin and the ligand-free opsin using quasi-elastic neutron scattering (QENS). The QENS technique tracks the individual hydrogen atom motions in the protein molecules, because the neutron scattering cross-section of hydrogen is much higher than other atoms [2-4]. We used protein (rhodopsin/opsin) samples with CHAPSmore » detergent hydrated with heavy water. The solvent signal is suppressed due to the heavy water, so that only the signals from proteins and detergents are detected. The activation of proteins is confirmed at low temperatures up to 300 K by the mean-square displacement (MSD) analysis. Our QENS experiments conducted at temperatures ranging from 220 K to 300 K clearly indicate that the protein dynamic behavior increases with temperature. The relaxation time for the ligand-bound protein rhodopsin was longer compared to opsin, which can be correlated with the photoactivation. Moreover, the protein dynamics are orders of magnitude slower than the accompanying CHAPS detergent, which forms a band around the protein molecule in the micelle. Unlike the protein, the CHAPS detergent manifests localized motions that are the same as in the bulk empty micelles. Furthermore QENS provides unique understanding of the key dynamics involved in the activation of the GPCR involved in the visual process.« less

  12. Rhodopsin photoactivation dynamics revealed by quasi-elastic neutron scattering

    SciTech Connect

    Bhowmik, Debsindhu; Shrestha, Utsab; Perera, Suchithranga M.d.c.; Chawla, Udeep; Mamontov, Eugene; Brown, Michael F.; Chu, Xiang -Qiang

    2015-01-27

    Rhodopsin is a G-protein-coupled receptor (GPCR) responsible for vision under dim light conditions. During rhodopsin photoactivation, the chromophore retinal undergoes cis-trans isomerization, and subsequently dissociates from the protein yielding the opsin apoprotein [1]. What are the changes in protein dynamics that occur during the rhodopsin photoactivation process? Here, we studied the microscopic dynamics of the dark-state rhodopsin and the ligand-free opsin using quasi-elastic neutron scattering (QENS). The QENS technique tracks the individual hydrogen atom motions in the protein molecules, because the neutron scattering cross-section of hydrogen is much higher than other atoms [2-4]. We used protein (rhodopsin/opsin) samples with CHAPS detergent hydrated with heavy water. The solvent signal is suppressed due to the heavy water, so that only the signals from proteins and detergents are detected. The activation of proteins is confirmed at low temperatures up to 300 K by the mean-square displacement (MSD) analysis. Our QENS experiments conducted at temperatures ranging from 220 K to 300 K clearly indicate that the protein dynamic behavior increases with temperature. The relaxation time for the ligand-bound protein rhodopsin was longer compared to opsin, which can be correlated with the photoactivation. Moreover, the protein dynamics are orders of magnitude slower than the accompanying CHAPS detergent, which forms a band around the protein molecule in the micelle. Unlike the protein, the CHAPS detergent manifests localized motions that are the same as in the bulk empty micelles. Furthermore QENS provides unique understanding of the key dynamics involved in the activation of the GPCR involved in the visual process.

  13. Detecting skin malignancy using elastic light scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Canpolat, Murat; Akman, Ayşe; Çiftçioğlu, M. Akif; Alpsoy, Erkan

    2007-07-01

    We have used elastic light scattering spectroscopy to differentiate between malign and benign skin lesions. The system consists of a UV spectrometer, a single optical fiber probe and a laptop. The single optical fiber probe was used for both delivery and detection of white light to tissue and from the tissue. The single optical fiber probe received singly scattered photons rather than diffused photons in tissue. Therefore, the spectra are correlated with morphological differences of the cells. It has been shown that spectra of malign skin lesions are different than spectra of benign skin lesions. While slopes of the spectra taken on benign lesions or normal skin tissues were positive, slopes of the spectra taken on malign skin lesions tissues were negative. In vivo experiments were conducted on 20 lesions from 18 patients (11 men with mean age of 68 +/- 9 years and 7 women with mean age of 52 +/- 20 years) applied to the Department of Dermatology and Venerology. Before the biopsy, spectra were taken on the lesion and adjacent (approximately 1 cm distant) normal-appearing skin. Spectra of the normal skin were used as a control group. The spectra were correlated to the pathology results with sensitivity and specificity of 82% and 89%, respectively. Due to small diameter of fiber probe and limited number of sampling (15), some positive cases are missed, which is lowered the sensitivity of the system. The results are promising and could suggest that the system may be able to detect malignant skin lesion non-invasively and in real time.

  14. Small angle elastic scattering of protons off of spinless nuclei

    SciTech Connect

    Ling, A.G.

    1988-07-01

    Elastic differential cross sections and analyzing powers for 800 MeV protons incident on /sup 12/C, /sup 40/Ca, and /sup 208/Pb in the momentum transfer range 20 MeV/c < q < 130 MeV/c have been measured. The data was taken with the High Resolution Spectrometer (HRS) at the Los Alamos Meson Physics Facility. Special delay-line drift chambers with dead regions for the beam to pass through them were used to obtain the data. Through the interference of the Coulomb and nuclear contributions to the differential cross section in the small angle region, the ratio of the real to imaginary part of the forward nuclear amplitude ..cap alpha../sub n/(0) = Ref/sub n/(0)/Imf/sub n/(0) is extracted. The importance of knowing this quantity at lower energies in order to study the differences between relativistic and non-relativistic scattering theories is discussed. 130 refs., 60 figs., 12 tabs.

  15. PROTON-4He Elastic Scattering at ~ 1 GeV

    NASA Astrophysics Data System (ADS)

    Khan, Z. A.; Singh, Minita

    Based on the (spin-independent) Sugar-Blanckenbecler eikonal expansion for the T-matrix, we parametrize the (spin-dependent) NN amplitude (SNN) which successfully describes the pp and pn elastic scattering observables at ~ 1 GeV up to the available momentum transfers. Using SNN, we calculate the differential cross-section, polarization, and spin-rotation function of ~ 1 GeV protons on 4He within the framework of the Glauber model. The analysis also includes the phase variation in the NN amplitude. It is found that the use of SNN, in comparision with the usually parametrized one-term amplitude, improves the agreement with the experimental data. The introduction of a global phase variation provides only a slight improvement over the results with a constant phase. However, if we allow different phases in the central- and spin-dependent parts of the NN amplitude, the agreement with the polarization data improves further without affecting the differential cross-section results.

  16. Maximum likelihood techniques applied to quasi-elastic light scattering

    NASA Technical Reports Server (NTRS)

    Edwards, Robert V.

    1992-01-01

    There is a necessity of having an automatic procedure for reliable estimation of the quality of the measurement of particle size from QELS (Quasi-Elastic Light Scattering). Getting the measurement itself, before any error estimates can be made, is a problem because it is obtained by a very indirect measurement of a signal derived from the motion of particles in the system and requires the solution of an inverse problem. The eigenvalue structure of the transform that generates the signal is such that an arbitrarily small amount of noise can obliterate parts of any practical inversion spectrum. This project uses the Maximum Likelihood Estimation (MLE) as a framework to generate a theory and a functioning set of software to oversee the measurement process and extract the particle size information, while at the same time providing error estimates for those measurements. The theory involved verifying a correct form of the covariance matrix for the noise on the measurement and then estimating particle size parameters using a modified histogram approach.

  17. Next-to-leading order corrections to the elastic scattering of an electron off of a static scattering center

    NASA Astrophysics Data System (ADS)

    Khalil, Abdullah; Horowitz, W. A.

    2017-01-01

    We calculate the elastic scattering cross section for an electron off of a classical point source in weak-coupling perturbative quantum electrodynamics at next-to-leading order accuracy in the renormalization scheme. Since we use the \\overline {MS} renormalization scheme, our result is valid up to arbitrary large momentum transfers between the source and the scattered electron.

  18. Total elastic cross section for H-bar-H scattering at thermal energies

    SciTech Connect

    Sinha, Prabal K.; Chaudhuri, Puspitapallab; Ghosh, A. S.

    2004-01-01

    This paper reports the elastic scattering cross sections for a few low-lying partial waves and also the converged elastic cross sections with added partial waves in the energy range 10{sup -10}-10{sup -2} a.u. for the H-bar-H system using atomic orbital techniques. The present s-wave predictions are in good agreement with the other existing theoretical estimates. Nonzero low-order partial-wave elastic cross sections show dips like for s-wave scattering. The converged elastic cross section shows structurelike behavior in the energy range 4.2x10{sup -4}-10{sup -2} a.u.

  19. Covariance Matrix of a Double-Differential Doppler-broadened Elastic Scattering Cross Section

    SciTech Connect

    Arbanas, Goran; Becker, B.; Dagan, R; Dunn, Michael E; Larson, Nancy M; Leal, Luiz C; Williams, Mark L

    2012-01-01

    Legendre moments of a double-differential Doppler-broadened elastic neutron scattering cross section on {sup 238}U are computed near the 6.67 eV resonance at temperature T = 10{sup 3} K up to angular order 14. A covariance matrix of these Legendre moments is computed as a functional of the covariance matrix of the elastic scattering cross section. A variance of double-differential Doppler-broadened elastic scattering cross section is computed from the covariance of Legendre moments.

  20. Alignment creaction by elastic electron scattering by ions in a plasma

    SciTech Connect

    Csanak, G. Y.; Kilcrease, D. P.; Bray, I; Fursa, D. V.

    2004-01-01

    Alignment creation by elastic hcavy particle scattering has been studied for many years by Oniont, by Dyakonov and Perel, and by Petrashen, Rebane, and Rebane. The technique has been adapted for arbitrary perturbers (including electrons) by Fujimoto et al. and by Fujimoto and Kazantsev. In the case of heavy particle perturbers (e.g. ions) there was an argument by Petrashen, Rebane, and Rebane that under certain conditions (namely only elastic scattering is possible and the semi-classical straight-line trajectory assumption holds) in the case of an isolated level, alignment can not be created by elastic scattering. This contention has been questioned by Dashevskaya and Nikitin who argued that the above conclusion of Petrashen et al. is due to an extra symmetry introduced into the problem by the straight-line trajectory approximation (which introduces detailed balance for magnetic sublevel to magnetic sublevel transitions) and if a more accurate approximation is made alignment creation can be obtained by elastic scattering. See the discussion in Fujimoto et al. In the case of inelastic scattering Kazantsev et al. gave a quantum-mechanical definition of the alignment creation cross section. In carlier works, Trdjrnaf et al. and Csanak et al. adopted the inelastic alignment creation cross section definition of Kazantsev et al. for elastic electron scattering and reported results for Ba and O V ions based on that formula. (Apparently Dashevskaya and Nikitin used the same formula.) However, a closer inspection of the semi-classical formula of Fujimoto et al. and Fujimoto and Kazantsev 1141 as well as the quantum-mechanical rate equations of Ben-Reuven and Nienhuis and Bommier and Sahal-Brechot also indicated that the inelastic scattering fomiula might not hold for elastic scattering. The present work reinvestigates this problem, and shows that indeed the alignment creation cross section formula is different for elastic scattering, as compared to the inelastic Scattering

  1. Proton-Nucleus Elastic Cross Sections Using Two-Body In-Medium Scattering Amplitudes

    NASA Technical Reports Server (NTRS)

    Tripathi, R. K.; Wilson, John W.; Cucinotta, Francis A.

    2001-01-01

    Recently, a method was developed of extracting nucleon-nucleon (NN) cross sections in the medium directly from experiment. The in-medium NN cross sections form the basic ingredients of several heavy-ion scattering approaches including the coupled-channel approach developed at the Langley Research Center. The ratio of the real to the imaginary part of the two-body scattering amplitude in the medium was investigated. These ratios are used in combination with the in-medium NN cross sections to calculate elastic proton-nucleus cross sections. The agreement is excellent with the available experimental data. These cross sections are needed for the radiation risk assessment of space missions.

  2. Generalized Chou-Yang Model and Meson-Proton Elastic Scattering at High Energies

    NASA Astrophysics Data System (ADS)

    Saleem, Mohammad; Aleem, Fazal-E.; Rashid, Haris

    The various characteristics of meson-proton elastic scattering at high energies are explained by using the generalized Chou-Yang model which takes into consideration the anisotropic scattering of objects constituting pions(kaons) and protons. A new parametrization of the proton form factor consistent with the recent experimental data is proposed. It is then shown that all the data for meson-proton elastic scattering at 200 and 250 GeV/c are in agreement with theoretical computations. The physical picture of generalized Chou-Yang model which is based on multiple scattering theory is given in detail.

  3. Analytical representation of elastic scattering cross sections of low energy electrons by atmospheric gases

    NASA Technical Reports Server (NTRS)

    Ivanov, V. Y.; Sipov, N. K.; Shneyder, V. A.

    1977-01-01

    Analytical representations of the elastic scattering cross sections of electrons with energies of 0.01-1 keV in atmospheric gases of N2, O2, O are given. These representations are suitable for the Monte Carlo method.

  4. Cancer detection using NIR elastic light scattering and tissue fluorescence imaging

    SciTech Connect

    Demos, S G; Staggs, M; Radousky, H B; Gandour-Edwards, R; deVere White, R

    2000-12-04

    Near infrared imaging using elastic light scattering and tissue fluorescence under long-wavelength laser excitation are explored for cancer detection. Various types of normal and malignant human tissue samples were utilized in this investigation.

  5. 14O+p elastic scattering in a microscopic cluster model

    SciTech Connect

    Descouvemont, P.; Baye, D.; Leo, F.

    2006-04-26

    The 14O+p elastic scattering is analyzed in a fully microscopic cluster model. With the Resonating Group Method associated with the microscopic R-matrix theory, phase shifts and cross sections are calculated. Data on 16O+p are used to test the precision of the model. For the 14O+p elastic scattering, an excellent agreement is found with recent experimental data. Resonances properties in 15F are discussed.

  6. P(P bar)P elastic scattering and cosmic ray data

    NASA Technical Reports Server (NTRS)

    FAZAL-E-ALEEM; Saleem, M.

    1985-01-01

    It is shown that the total cross section for pp elastic scattering at cosmic ray energies, as well as the total cross section, the slope parameter b(s,t) and the differential cross section for small momentum transfer at ISR and collider energies for p(p)p elastic scattering can be simultaneously fitted by using a simple Regge pole model. The results of this theory is discussed in detail.

  7. Elastic properties of a polyimide film determined by Brillouin scattering and mechanical techniques

    SciTech Connect

    Kumar, R.S.; Schuller, I.K.; Kumar, S.S.; Fartash, A.; Grimsditch, M.

    1993-06-01

    We discuss here the complete determination of the elastic properties of a polyimide film using two experimental techniques. One technique employs the polymer film as a vibrating membrane and allows a direct determination of the ``macroscopic`` biaxial modulus. Brillouin scattering, which measures the elastic properties on a {approximately} 100{mu} scale, allows for a complete characterization of the elastic behavior. Results obtained by the two techniques are in agreement within reported error bars.

  8. The elastic constants of rubrene determined by Brillouin scattering and density functional theory

    NASA Astrophysics Data System (ADS)

    Zhang, Yaqi; Manke, David R.; Sharifzadeh, Sahar; Briseno, Alejandro L.; Ramasubramaniam, Ashwin; Koski, Kristie J.

    2017-02-01

    The linear elastic stiffness tensor of the crystalline organic semiconductor, rubrene, is measured using Brillouin light scattering spectroscopy and computed from first-principles van der Waals density functional theory calculations. Results are compared with recent measurements of in-plane reduced elastic constants c¯ 22, c¯ 33 , and c¯ 23 determined through anisotropic buckling experiments.

  9. Scattering resonance of elastic wave and low-frequency equivalent slow wave

    NASA Astrophysics Data System (ADS)

    Meng, X.; Liu, H.; Hu, T.; Yang, L.

    2015-12-01

    Transmitted wave occurs as fast p-wave and slow p-wave in certain conditions when seismic waves travel through inhomogeneous layers. Energy of slow p-waves is strongest at some frequency band, but rather weak at both high frequency band and low frequency band, called scattering resonance. For practical seismic exploration, the frequency of slow p-wave occurs is below 10Hz, which cannot be explained by Biot's theory which predicts existence of the slow p-wave at ultrasonic band in the porous media. The slow p-wave equation have been derived, but which only adapted to explaining slow p-wave in the ultrasonic band. Experimental observations exhibit that slow p-wave also exists in nonporous media but with enormous low-velocity interbeds. When vertical incidence, elastic wave is simplified as compressing wave, the generation of slow waves is independent on shear wave. In the case of flat interbed and gas bubble, Liu (2006) has studied the transmission of acoustic waves, and found that the slow waves below the 10Hz frequency band can be explained. In the case of general elastic anisotropy medium, the tiheoretical research on the generation of slow waves is insufficient. Aiming at this problem, this paper presents an exponential mapping method based on transmitted wave (Magnus 1954), which can successfully explain the generation of the slow wave transmission in that case. Using the prediction operator (Claerbout 1985) to represent the transmission wave, this can be derived as first order partial differential equation. Using expansions in the frequency domain and the wave number domain, we find that the solutions have different expressions in the case of weak scattering and strong scattering. Besides, the method of combining the prediction operator and the exponential map is needed to extend to the elastic wave equation. Using the equation (Frazer and Fryer 1984, 1987), we derive the exponential mapping solution for the prediction operator of the general elastic medium

  10. Coherent-form energy conservation relation for the elastic scattering of a guided mode in a symmetric scattering system.

    PubMed

    Liu, Haitao

    2013-10-07

    We propose a coherent-form energy conservation relation (ECR) that is generally valid for the elastic transmission and reflection of a guided mode in a symmetric scattering system. In contrast with the classical incoherent-form ECR, |τ|2 + |ρ|2≤1 with τ and ρ denoting the elastic transmission and reflection coefficients of a guided mode, the coherent-form ECR is expressed as |τ + ρ|≤1, which imposes a constraint on a coherent superposition of the transmitted and reflected modes. The coherent-form ECR is rigorously demonstrated and is numerically tested by considering different types of modes in various scattering systems. Further discussions with the scattering matrix formalism indicate that two coherent-form ECRs, |τ + ρ|≤1 and |τ-ρ|≤1, along with the classical ECR |τ|2 + |ρ|2≤1 constitute a complete description of the energy conservation for the elastic scattering of a guided mode in a symmetric scattering system. The coherent-form ECR provides a common tool in terms of energy transfer for understanding and analyzing the scattering dynamics in currently interested scattering systems.

  11. Contribution of Δ(1232) to real photon radiative corrections for elastic electron-proton scattering

    NASA Astrophysics Data System (ADS)

    Gerasimov, R. E.; Fadin, V. S.

    2016-12-01

    Here we consider the contribution of the Δ(1232) resonance to the real photon radiative corrections for elastic ep-scattering. The effect is found to be small for past experiments studying the unpolarized cross section, as well as for the recent VEPP-3 experiment investigating two-photon exchange effects by the precision measurement of the {e}+/- p-scattering cross section ratio.

  12. The relationship study between texture vibrating plate dynamic wettability and elastic wave scattering

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Li, Bin; Zhou, Chuanping; Xiao, Jing; Ni, Jing

    2017-07-01

    An experimental investigation of wetting behavior of liquid droplet on texture vibrating substrate and the theoretical calculations of elastic wave scattering with two holes which based on the elastodynamics, employing complex functions are investigated to study the relationship between texture vibrating plate dynamic wettability and elastic wave scattering. Experimental results show the dynamic behavior of droplet was unstable. In 0 to π/2 cycle, droplet appeared the waveform with front steep and rear gentle along the flow direction. In π/2 to π cycle, droplet appeared slightly periodic oscillation and accompanied by a certain ripple. Based on the dynamic wetting phenomenon in a single cycle, the influence of elastic wave scattering on wetting property are analyzed. Analysis has shown that the stress concentration is caused by complex elastic wave scattering. The more concentrated the stress, the more concentrated the elastic wave energy. Compared with the single hole, the variations of dynamic stress concentration factors for two holes are complex due to the influence of interaction between two holes. Droplet emerge movement is response to the local vibration. The vibration spread in elastic plate at a time of strain, this elastic force cause droplet displacement and vibration, and accompanied with energy transfer.

  13. Two-photon exchange correction to muon-proton elastic scattering at low momentum transfer

    NASA Astrophysics Data System (ADS)

    Tomalak, Oleksandr; Vanderhaeghen, Marc

    2016-03-01

    We evaluate the two-photon exchange (TPE) correction to the muon-proton elastic scattering at small momentum transfer. Besides the elastic (nucleon) intermediate state contribution, which is calculated exactly, we account for the inelastic intermediate states by expressing the TPE process approximately through the forward doubly virtual Compton scattering. The input in our evaluation is given by the unpolarized proton structure functions and by one subtraction function. For the latter, we provide an explicit evaluation based on a Regge fit of high-energy proton structure function data. It is found that, for the kinematics of the forthcoming muon-proton elastic scattering data of the MUSE experiment, the elastic TPE contribution dominates, and the size of the inelastic TPE contributions is within the anticipated error of the forthcoming data.

  14. A method for using neutron elastic scatter to create a variable energy neutron beam from a nearly monoenergetic neutron source

    NASA Astrophysics Data System (ADS)

    Whetstone, Z. D.; Kearfott, K. J.

    2015-07-01

    This work describes preliminary investigation into the design of a compact, portable, variable energy neutron source. The proposed method uses elastic neutron scatter at specific angles to reduce the energy of deuterium-deuterium or deuterium-tritium (D-T) neutrons. The research focuses on D-T Monte Carlo simulations, both in idealized and more realistic scenarios. Systematic uncertainty of the method is also analyzed. The research showed promise, but highlighted the need for discrimination of multiply-scattered neutrons, either through a pulsed generator or associated particle imaging.

  15. Analysis of α-12C elastic scattering at intermediate energies by the S-matrix model

    NASA Astrophysics Data System (ADS)

    Berezhnoy, Yu. A.; Onyshchenko, G. M.; Pilipenko, V. V.

    The results of calculations of differential cross-sections for α-12C elastic scattering by the S-matrix model are presented for 10 energy values in the energy range 65MeV ≤ Eα ≤ 386MeV in a wide range of scattering angles. The behavior of various scattering characteristics as functions of the projectile energy is analyzed. It is shown that the chosen parametrization of S-matrix allows describing correctly the Fraunhofer oscillations of the cross-sections in the region of small scattering angles and the rainbow scattering pattern in the region of sufficiently large angles.

  16. Finite-element modelling of elastic wave propagation and scattering within heterogeneous media

    PubMed Central

    Sha, G.; Rokhlin, S. I.; Lowe, M. J. S.

    2017-01-01

    The scattering treated here arises when elastic waves propagate within a heterogeneous medium defined by random spatial fluctuation of its elastic properties. Whereas classical analytical studies are based on lower-order scattering assumptions, numerical methods conversely present no such limitations by inherently incorporating multiple scattering. Until now, studies have typically been limited to two or one dimension, however, owing to computational constraints. This article seizes recent advances to realize a finite-element formulation that solves the three-dimensional elastodynamic scattering problem. The developed methodology enables the fundamental behaviour of scattering in terms of attenuation and dispersion to be studied. In particular, the example of elastic waves propagating within polycrystalline materials is adopted, using Voronoi tessellations to randomly generate representative models. The numerically observed scattering is compared against entirely independent but well-established analytical scattering theory. The quantitative agreement is found to be excellent across previously unvisited scattering regimes; it is believed that this is the first quantitative validation of its kind which provides significant support towards the existence of the transitional scattering regime and facilitates future deployment of numerical methods for these problems. PMID:28265198

  17. Finite-element modelling of elastic wave propagation and scattering within heterogeneous media

    NASA Astrophysics Data System (ADS)

    Van Pamel, A.; Sha, G.; Rokhlin, S. I.; Lowe, M. J. S.

    2017-01-01

    The scattering treated here arises when elastic waves propagate within a heterogeneous medium defined by random spatial fluctuation of its elastic properties. Whereas classical analytical studies are based on lower-order scattering assumptions, numerical methods conversely present no such limitations by inherently incorporating multiple scattering. Until now, studies have typically been limited to two or one dimension, however, owing to computational constraints. This article seizes recent advances to realize a finite-element formulation that solves the three-dimensional elastodynamic scattering problem. The developed methodology enables the fundamental behaviour of scattering in terms of attenuation and dispersion to be studied. In particular, the example of elastic waves propagating within polycrystalline materials is adopted, using Voronoi tessellations to randomly generate representative models. The numerically observed scattering is compared against entirely independent but well-established analytical scattering theory. The quantitative agreement is found to be excellent across previously unvisited scattering regimes; it is believed that this is the first quantitative validation of its kind which provides significant support towards the existence of the transitional scattering regime and facilitates future deployment of numerical methods for these problems.

  18. Hulthén potential models for α-α and α-He 3 elastic scattering

    NASA Astrophysics Data System (ADS)

    BHOI, J.; LAHA, U.

    2017-03-01

    Simple Hulthén-type potential models are proposed to treat the α- α and α {-} {He}3 elastic scattering. The merit of our approach is examined by computing elastic scattering phases through the judicious use of the phase function method. Reasonable agreements in scattering phase shifts are obtained with the standard data.

  19. Anisotropic Elastic Resonance Scattering model for the Neutron Transport equation

    SciTech Connect

    Mohamed Ouisloumen; Abderrafi M. Ougouag; Shadi Z. Ghrayeb

    2014-11-24

    The resonance scattering transfer cross-section has been reformulated to account for anisotropic scattering in the center-of-mass of the neutron-nucleus system. The main innovation over previous implementations is the relaxation of the ubiquitous assumption of isotropic scattering in the center-of-mass and the actual effective use of scattering angle distributions from evaluated nuclear data files in the computation of the angular moments of the resonant scattering kernels. The formulas for the high order anisotropic moments in the laboratory system are also derived. A multi-group numerical formulation is derived and implemented into a module incorporated within the NJOY nuclear data processing code. An ultra-fine energy mesh cross section library was generated using these new theoretical models and then was used for fuel assembly calculations with the PARAGON lattice physics code. The results obtained indicate a strong effect of this new model on reactivity, multi-group fluxes and isotopic inventory during depletion.

  20. Comparison of exact and approximate evaluations of the single-scattering integral in nucleon-deuteron elastic scattering

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.

    1972-01-01

    The exact nucleon-deuteron elastic single scattering integral was calculated numerically in order to evaluate errors in sticking factor approximations. A similar analysis made by using S wave separable potentials concluded that errors for these approximations were negligible except near backward angles where they were found to be about 10 percent.

  1. Neutron scattering for materials science. Materials Research Society proceedings

    SciTech Connect

    Shapiro, S.M. ); Moss, S.C. ); Jorgensen, J.D. )

    1990-01-01

    Neutron Scattering is by now a well-established technique which has been used by condensed matter scientists to probe both the structure and the dynamical interactions in solids and liquids. The use of neutron scattering methods in materials science research has in turn increased dramatically in recent years. The symposium presented in this book was assembled to bring together scientists with a wide range of interest, including high-T{sub c} superconducting materials, phase transformations, neutron depth profiling, structure and dynamics of glasses and liquids, surfaces and interfaces, porous media, intercalation compounds and lower dimensional systems, structure and dynamics of polymers, residual stress analysis, ordering and phase separation in alloys, and magnetism in alloys and multilayers. The symposium included talks covering the latest advances in broad areas of interest such as Rietveld structure refinement, triple axis spectrometry, quasi elastic scattering and diffusion, small angle scattering and surface scattering.

  2. Three-dimensional elastic wave scattering by a layer containing vertical periodic fractures

    NASA Astrophysics Data System (ADS)

    Nakagawa, Seiji; Nihei, Kurt T.; Myer, Larry R.; Majer, Ernest L.

    2003-06-01

    Elastic wave scattering off a layer containing a single set of vertical periodic fractures is examined using a numerical technique based on the work of Hennion et al. [J. Acoust. Soc. Am. 87, 1861-1870 (1990)]. This technique combines the finite element method and plane wave method to simulate three-dimensional scattering off a two-dimensional fractured layer structure. Each fracture is modeled explicitly, so that the model can simulate both discrete arrivals of scattered waves from individual fractures and multiply scattered waves between the fractures. Using this technique, we examine changes in scattering characteristics of plane elastic waves as a function of wave frequency, angle of incidence, and fracture properties such as fracture stiffness, height, and regular and irregular spacing.

  3. Backward elastic light scattering of malaria infected red blood cells

    NASA Astrophysics Data System (ADS)

    Lee, Seungjun; Lu, Wei

    2011-08-01

    We investigated the backward light scattering pattern of healthy and malaria (Plasmodium falciparum) parasitized red blood cells. The spectrum could clearly distinguish between predominant ring stage infected blood cells and healthy blood cells. Further, we found that infected samples mixed with different stages of P. falciparum showed different signals, suggesting that even variance in parasite stages could also be detected by the spectrum. These results together with the backward scattering technique suggest the potential of non-invasive diagnosis of malaria through light scattering of blood cells near the surface of human body, such as using eyes or skin surface.

  4. Differential cross-sections for elastic and inelastic electron scattering from fundamental polyatomic molecules

    NASA Astrophysics Data System (ADS)

    Khakoo, Murtadha A.

    2011-10-01

    The near-threshold scattering of electrons from polyatomic molecules of fundamental interest, e.g. water, primary alcohols and ring molecules e.g. furan, benzene are important in plasma fuel processes, plasmas used in biological processes e.g. in the treatment of skin diseases, astrophysical plasmas, etc. The determination of cross-sections for such molecules has gathered impetus because of the increasing number of applications industrial plasma and biomedical processes and the need to understand and model these complex processes. It is now possible to determine accurate differential cross-sections for electron scattering from these polyatomic molecules. We will present recent normalized, absolute low energy electron scattering differential cross-sections for near-threshold elastic and inelastic scattering from water, primary alcohols, furan and benzene using a well-tested electron spectrometer apparatus. We will also compare our results with those of other experiments and available theoretical models, which show an encouragingly overall improved picture in terms of agreement between the different research groups. Funded by the National Science Foundation Research in an Undergraduate Institution Grant #s 0653452 and 1135203. This work was done collaboratively with Drs. V. Mckoy and C. Winstead, Caltech, USA (National Science Foundation Grant # 0653396 and Office of Basic Energy Sciences, US DOE Grant) and Dr. M. C. A. Lopes, U. Fed. de Juiz de Fora, Minas Gerais, Brazil; Dr. M. H. F. Bettega, U. Fed. do Parana, Curitiba, Brazil Drs. R. F. da Costa and M. A. P. Lima, Universidade Estadual de Campinas UNICAMP and CTBE, Campinas, Brazil (CNPq, FAPESP, FAPEMG, Finep, CENAPAD-SP and CAPES grants). Funded by US-NSF Grant #s 0653452 and 1135203.

  5. Coupled channel effect in elastic scattering and fusion for 6,7Li+28Si

    NASA Astrophysics Data System (ADS)

    Sinha, Mandira; Roy, Subinit; Basu, P.; Majumdar, H.; Santra, S.; Parkar, V. V.; Golda, K. S.; Kailas, S.

    2011-10-01

    The fusion excitation and elastic angular distribution were measured for 6,7Li+28Si from below to above Coulomb barrier (≤ 3Vb) energies. The barrier distribution derived from the fusion data was found to be broad and asymmetric at the sub-barrier region, compared to 1D BPM estimation. Effect of rotational coupling on fusion was found to be not so dominant. Phenomenological optical potential parameters, with surface and volume type imaginary potentials, were obtained from f tting of elastic scattering data and energy dependence of real and imaginary surface strengths were investigated around the barrier. CDCC calculations considering only breakup of projectile were performed for 6,7Li+28Si with the elastic scattering data, using the code FRESCO. The effects of breakup of projectile on elastic cross section do not agree with the energy dependence of real and imaginary strength with volume type imaginary potential around the barrier.

  6. Nonlinear coda wave analysis of hysteretic elastic behavior in strongly scattering media

    NASA Astrophysics Data System (ADS)

    Ouarabi, M. Ait; Boubenider, F.; Gliozzi, A. S.; Scalerandi, M.

    2016-10-01

    Strongly scattering elastic media, such as consolidated granular materials, respond to ultrasonic pulse excitations with a long response signal with peculiar properties. The portion of the signal at late times, termed coda, is due to multiple scattering. It contains information about the elastic properties of the material, and it has been proven to be very sensitive to small variations in the modulus. Here we propose a technique based on a nonlinear analysis of the coda of a signal, which might be applied to quantify the nonlinear elastic response in consolidated granular media exhibiting a hysteretic elastic behavior. The method proposed allows for an intrinsic definition of the reference signal which is normally needed for applying coda-based methods.

  7. Elastic and inelastic scattering of 158 MeV 9Be ions

    NASA Astrophysics Data System (ADS)

    Fulmer, C. B.; Satchler, G. R.; Erb, K. A.; Hensley, D. C.; Auble, R. L.; Ball, J. R.; Bertrand, F. E.; Gross, E. E.

    1984-10-01

    The elastic scattering of 158 MeV 9Be ions was measured for seven targets ranging in mass from 12 to 197. Inelastic data for exciting the lowest 2 + states of 12C, 26Mg and 60Ni were also obtained. The elastic data for 12C and 16O show pronounced structures at the most forward angles which are rapidly damped as the scattering angle increases. The distributions for 26Mg and 27Al show marked structure with significant odd-even differences that can be ascribed to quadrupole scattering from the 27Al ground state. The elastic data were analyzed using the optical model with both Woods-Saxon and folding-model potentials. The folded potentials are too strong and require renormalization; they do not give good fits to the data for the lighter targets. The inelastic data were compared to distorted-wave calculations.

  8. Complex Correlation Kohn-T Method of Calculating Total and Elastic Cross Sections. Part 1; Electron-Hydrogen Elastic Scattering

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Temkin, A.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We report on the first part of a study of electron-hydrogen scattering, using a method which allows for the ab initio calculation of total and elastic cross sections at higher energies. In its general form the method uses complex 'radial' correlation functions, in a (Kohn) T-matrix formalism. The titled method, abbreviated Complex Correlation Kohn T (CCKT) method, is reviewed, in the context of electron-hydrogen scattering, including the derivation of the equation for the (complex) scattering function, and the extraction of the scattering information from the latter. The calculation reported here is restricted to S-waves in the elastic region, where the correlation functions can be taken, without loss of generality, to be real. Phase shifts are calculated using Hylleraas-type correlation functions with up to 95 terms. Results are rigorous lower bounds; they are in general agreement with those of Schwartz, but they are more accurate and outside his error bounds at a couple of energies,

  9. Elastic scattering and total reaction cross section of {sup 6}He+{sup 120}Sn

    SciTech Connect

    Faria, P. N. de; Lichtenthaeler, R.; Pires, K. C. C.; Lepine-Szily, A.; Guimaraes, V.; Mendes, D. R. Jr.; Barioni, A.; Morcelle, V.; Morais, M. C.; Camargo, O. Jr.; Alcantara Nunez, J.; Moro, A. M.; Arazi, A.; Rodriguez-Gallardo, M.; Assuncao, M.

    2010-04-15

    The elastic scattering of {sup 6}He on {sup 120}Sn has been measured at four energies above the Coulomb barrier using the {sup 6}He beam produced at the RIBRAS (Radioactive Ion Beams in Brasil) facility. The elastic angular distributions have been analyzed with the optical model and three- and four-body continuum-discretized coupled-channels calculations. The total reaction cross sections have been derived and compared with other systems of similar masses.

  10. Single-crystal elasticity of hydrous wadsleyite by Brillouin scattering

    NASA Astrophysics Data System (ADS)

    Mao, Z.; Jiang, F.; Jacobsen, S. D.; Smyth, J. R.; Holl, C.; Duffy, T. S.; Frost, D. J.

    2006-12-01

    Wadsleyite (β-Mg2SiO4) is the high-pressure polymorph of olivine that is expected to be a dominant mineral in the transition zone from 410 km to 520 km depth in the mantle. The elasticity of wadsleyite is crucial to constrain the mineralogy of the transition zone. Previous studies show wadsleyite can incorporate variable amounts of water up to 3.3 wt% of water (Kohlstedt et al. 1996; Inoue et al. 1995; Smyth et al. 1987, 1994). The effect of water on the bulk modulus of wadsleyite was studied by x-ray diffraction (Yusa and Inoue, 1997; Smyth et al. 2005) but no constraints on the shear modulus exist. We have measured the single-crystal elastic constants of hydrous wadsleyite with varying water content using Brillouin spectroscopy at ambient conditions. We carried out measurements for samples containing 0.3 wt%, 0.6 wt% and 1.6 wt% water using at least 2 crystal planes for each sample. By computing the aggregate elastic properties, we find that the bulk (K0S) and shear modulus (G0) of hydrous wadsleyite decrease linearly with water content according to the following relations: K0S=169.0-11.8X_W; G0=115.1-12.5X_W; where X_W is the water H2O weight percent. Compared with anhydrous wadsleyite, 1 wt% of water will lead to 7.0% decrease in bulk modulus, 10.9% decrease in shear modulus. Water has a greater effect on the elastic moduli of wadsleyite than that of olivine or ringwoodite. The olivine to wadsleyite phase transition is believed to be the origin of the seismic discontinuity near 410 km. Using these new results, the possible effect of water content on the velocity contrast across the 410-km discontinuity will be examined.

  11. Evolution of elastic x-ray scattering in laser-shocked warm dense lithium.

    PubMed

    Kugland, N L; Gregori, G; Bandyopadhyay, S; Brenner, C M; Brown, C R D; Constantin, C; Glenzer, S H; Khattak, F Y; Kritcher, A L; Niemann, C; Otten, A; Pasley, J; Pelka, A; Roth, M; Spindloe, C; Riley, D

    2009-12-01

    We have studied the dynamics of warm dense Li with near-elastic x-ray scattering. Li foils were heated and compressed using shock waves driven by 4-ns-long laser pulses. Separate 1-ns-long laser pulses were used to generate a bright source of 2.96 keV Cl Ly- alpha photons for x-ray scattering, and the spectrum of scattered photons was recorded at a scattering angle of 120 degrees using a highly oriented pyrolytic graphite crystal operated in the von Hamos geometry. A variable delay between the heater and backlighter laser beams measured the scattering time evolution. Comparison with radiation-hydrodynamics simulations shows that the plasma is highly coupled during the first several nanoseconds, then relaxes to a moderate coupling state at later times. Near-elastic scattering amplitudes have been successfully simulated using the screened one-component plasma model. Our main finding is that the near-elastic scattering amplitudes are quite sensitive to the mean ionization state Z[over ] and by extension to the choice of ionization model in the radiation-hydrodynamics simulations used to predict plasma properties within the shocked Li.

  12. Evolution of Elastic X-ray Scattering in Laser-Shocked Warm Dense Li

    SciTech Connect

    Kugland, N L; Gregori, G; Bandyopadhyay, S; Brenner, C; Brown, C; Constantin, C; Glenzer, S H; Khattak, F; Kritcher, A L; Niemann, C; Otten, A; Pasley, J; Pelka, A; Roth, M; Spindloe, C; Riley, D

    2009-06-02

    We have studied the dynamics of warm dense Li with near-elastic x-ray scattering. Li foils were heated and compressed using shock waves driven by 4 ns long laser pulses. Separate 1 ns long laser pulses were used to generate a bright source of 2.96 keV Cl Ly-{alpha} photons for x-ray scattering, and the spectrum of scattered photons was recorded at a scattering angle of 120{sup o} using a HOPG crystal operated in the von Hamos geometry. A variable delay between the heater and backlighter laser beams measured the scattering time evolution. Comparison with radiation hydrodynamics simulations shows that the plasma is highly coupled during the first several nanoseconds, then relaxes to a moderate coupling state at later times. Near-elastic scattering amplitudes have been successfully simulated using the screened one-component plasma model. Our main finding is that the near-elastic scattering amplitudes are quite sensitive to the mean ionization state {bar Z}, and by extension to the choice of ionization model in the radiation-hydrodynamics simulations used to predict plasma properties within the shocked Li.

  13. Measurements of angular distributions for7Li elastically scattered from58Ni at energies around the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Amador-Valenzuela, P.; Aguilera, E. F.; Martinez-Quiroz, E.; Lizcano, D.; Morales-Rivera, J. C.

    2017-07-01

    Recently, experimental measurements of elastic scattering angular distributions for the system7Li+58Ni at ten different energies around the Coulomb barrier were made by the Heavy-Ion Group. The measurements were made at the Tandem Van de Graaff Particle Accelerator Laboratory in the National Institute for Nuclear Research (ININ) in Mexico. In this work, preliminary elastic scattering angular distributions for five energies (E lab , = 12.0, 12.5, 13.0, 13.5 and 14.22 MeV) are presented. The preliminary experimental data were analyzed using the São Paulo Optical Model Potential (SPP) which is based on a double-folding potential, reproducing very well these data. A comparison is made with old data reported back in 1973 and in 2012. Further analysis is in progress in order to fully understand this particular system, specially because7Li is known to be a weakly bound nucleus.

  14. The energy dependence of the diffraction minimum in the elastic scattering and new LHC data

    NASA Astrophysics Data System (ADS)

    Selyugin, O. V.

    2017-03-01

    The soft diffraction phenomena in the elastic proton-proton scattering are reviewed from the viewpoint of experiments at the LHC (TOTEM and ATLAS collaboration). In the framework of the High Energy Generalized Structure (HEGS) model the form of the diffraction minimum in the nucleon-nucleon elastic scattering in a wide energy region is analyzed. The energy dependencies of the main characteristics of the diffraction dip are obtained. The numerical predictions at LHC energies are presented. The comparison of the model predictions with the new LHC data at √{ s} = 13 TeV is made.

  15. Elastic scattering of 17O ions from 58Ni at near-barrier energies

    NASA Astrophysics Data System (ADS)

    Torresi, D.; Strano, E.; Mazzocco, M.; Boiano, A.; Boiano, C.; Di Meo, P.; Guglielmetti, A.; La Commara, M.; Manea, C.; Nicoletto, M.; Parascandolo, C.; Parascandolo, L.; Pierroutsakou, D.; Sandoli, M.; Signorini, C.; Soramel, F.; Toniolo, N.; Grebosz, J.; Filipescu, D.; Gheorghe, A.; Glodariu, T.; Stroe, L.; Miyatake, H.; Watanabe, Y.; Jeong, S.; Kim, Y. H.; Pakou, A.; Sgouros, O.; Soukeras, V.; Zerva, K.

    2014-03-01

    Elastic scattering has been studied for the collisions induced by 17O on 58Ni target at energies around and above the Coulomb barrier. The elastic scattering angular distributions were measured for several energies and were analyzed within the framework of the optical model to obtain total reaction cross sections. The reaction cross-sections of the tightly bound 17O were compared with those of weakly bound 17F on the same targets in order to investigate the effects of the low binding energy in the reaction dynamics.

  16. New measurements and phase shift analysis of p16O elastic scattering at astrophysical energies

    NASA Astrophysics Data System (ADS)

    Dubovichenko, Sergey; Burtebayev, Nassurlla; Dzhazairov-Kakhramanov, Albert; Zazulin, Denis; Kerimkulov, Zhambul; Nassurlla, Marzhan; Omarov, Chingis; Tkachenko, Alesya; Shmygaleva, Tatyana; Kliczewski, Stanislaw; Sadykov, Turlan

    2017-01-01

    The results of new experimental measurements of p16O elastic scattering in the energy range of 0.6-1.0 MeV at angles of 40°-160° are given. Phase shift analysis of p16O elastic scattering was made using these and other experimental data on differential cross sections in excitation functions and angular distributions at energies of up to 2.5 MeV. Supported by the Ministry of Education and Science of the Republic of Kazakhstan (0073/PCF-IS-MES)

  17. Anti-Neutrino Quasi-Elastic Scattering at MINERvA

    NASA Astrophysics Data System (ADS)

    Maher, Emily

    2012-10-01

    Quasi-elastic neutrino scattering provides a means of measuring the axial form factor of the nucleon, and is a valuable tool for determining the neutrino beam energy in oscillation experiments. There are disagreements between measurements for neutrino energies below 1 GeV on scintillator and those at higher energies. MINERvA provides a bridge between the two regimes. Preliminary results for charge current quasi-elastic scattering results for anti-neutrinos (νμ+ p ->&+circ;+ n) on scintillator will be presented.

  18. Measurement of p p elastic scattering parameters at radical s = 1. 8 TeV

    SciTech Connect

    Shukla, S.

    1991-08-01

    A measurement of the total nuclear cross section, {sigma}{sub t}, the ratio of the real to the imaginary part of the forward nuclear elastic scattering amplitude, {rho}, and the nuclear slope parameter, B, for {bar p}p elastic scattering at {radical}{bar S} = 1.8 Te V, is presented. We find {sigma}{sub t} = 72.8 {plus minus} 3.1 mb, {rho} = 0.140 {plus minus} 0.69 and B = 16.99 {plus minus}.47 (GeV/c){sup {minus}2}. 5 refs., 13 figs., 2 tabs.

  19. Transverse Beam Spin Asymmetries in Forward-Angle Elastic Electron-Proton Scattering

    SciTech Connect

    Armstrong, D. S.; Averett, T.; Bailey, S. L.; Finn, J. M.; Griffioen, K. A.; Moffit, B.; Phillips, S. K.; Secrest, J.; Sulkosky, V.; Arvieux, J.; Bimbot, L.; Guler, H.; Lenoble, J.; Marchand, D.; Morlet, M.; Ong, S.; Van de Wiele, J.

    2007-08-31

    We have measured the beam-normal single-spin asymmetry in elastic scattering of transversely polarized 3 GeV electrons from unpolarized protons at Q{sup 2}=0.15, 0.25 (GeV/c){sup 2}. The results are inconsistent with calculations solely using the elastic nucleon intermediate state and generally agree with calculations with significant inelastic hadronic intermediate state contributions. A{sub n} provides a direct probe of the imaginary component of the 2{gamma} exchange amplitude, the complete description of which is important in the interpretation of data from precision electron-scattering experiments.

  20. Optical diagnostics based on elastic scattering: An update of clinical demonstrations with the Optical Biopsy System

    SciTech Connect

    Bigio, I.J.; Boyer, J.; Johnson, T.M.; Lacey, J.; Mourant, J.R.; Conn, R.; Bohorfoush, A.

    1994-10-01

    The Los Alamos National Laboratory has continued the development of the Optical Biopsy System (OBS) for noninvasive, real-time in situ diagnosis of tissue pathologies. Our clinical studies have expanded since the last Biomedical Optics Europe conference (Budapest, September 1993), and we report here on the latest results of clinical tests in gastrointestinal tract. The OBS invokes a unique approach to optical diagnosis of tissue pathologies based on the elastic scattering properties, over a wide range of wavelengths, of the tissue. The use of elastic scattering as the key to optical tissue diagnostics in the OBS is based on the fact that many tissue pathologies, including a majority of cancer forms, manifest significant architectural changes at the cellular and sub-cellular level. Since the cellular components that cause elastic scattering have dimensions typically on the order of visible to near-IR wavelengths, the elastic (Mie) scattering properties will be wavelength dependent. Thus, morphology and size changes can be expected to cause significant changes in an optical signature that is derived from the wavelength-dependence of elastic scattering. The OBS employs a small fiberoptic probe that is amenable to use with any endoscope or catheter, or to direct surface examination. The probe is designed to be used in optical contact with the tissue under examination and has separate illuminating and collecting fibers. Thus, the light that is collected and transmitted to the analyzing spectrometer must first scatter through a small volume of the tissue before entering the collection fiber(s). Consequently, the system is also sensitive to the optical absorption spectrum of the tissue, over an effective operating range of <300 to 950 nm, and such absorption adds valuable complexity to the scattering spectral signature.

  1. Elastic and inelastic scattering of positrons in gases and solids

    NASA Technical Reports Server (NTRS)

    Mcgowan, J. W.

    1972-01-01

    Three apparatuses were designed and built: The first, which is now operative, was designed to study the details of positron thermalization in solids and the subsequent emission of the low energy positrons from moderating foils; The second apparatus now under test is a positron bottle similar in design to an electron trap. It was built to store positrons at a fixed energy and to look at the number of stored positrons (storage time) as a function of a scattering gas in the vacuum chamber. The third apparatus is a crossed beam apparatus where positron-, alkali scattering will be studied. Much of the apparatus is now under test with electrons.

  2. Fluorescence and Elastic Scattering from Laser Dye-Filled Capillaries

    DTIC Science & Technology

    1989-08-23

    learning. I also thank John Pattison f *s electronic expertise; Tom Wentzel and Dave Abromson for their assistance with the computer; Ka Chun Yu and Jim...34 M.S. Thesis. University of Arizona, 1981. 4. H. C. Van De Hulst, Light Scattering by Small Particles ( John Wiley & Sons. Inc., N.Y., 1957). 5. R. E...Scattering by Molecules Embedded in Concentric Spheres." Journal of the Optical Society of America, 66, 440 (1976). 12. H. Chew, M. Sculley , M. Kerker, P. J

  3. Hybrid Theory of Electron-Hydrogenic Systems Elastic Scattering

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.

    2007-01-01

    Accurate electron-hydrogen and electron-hydrogenic cross sections are required to interpret fusion experiments, laboratory plasma physics and properties of the solar and astrophysical plasmas. We have developed a method in which the short-range and long-range correlations can be included at the same time in the scattering equations. The phase shifts have rigorous lower bounds and the scattering lengths have rigorous upper bounds. The phase shifts in the resonance region can be used to calculate very accurately the resonance parameters.

  4. Scattering of waves by three-dimensional obstacles in elastic metamaterials with zero index

    NASA Astrophysics Data System (ADS)

    Liu, Fengming; Zhang, Feng; Wei, Wei; Hu, Ni; Deng, Gang; Wang, Ziyu

    2016-12-01

    The scattering of elastic waves by three-dimensional obstacles in isotropic elastic zero-index-metamaterials (ZIM) is theoretically investigated. We show that the zero values of each single effective parameter and their various combinations of the elastic ZIM can produce different types of wave propagation. Particularly, there is no mode conversion when either longitudinal (P ) wave or transverse (S ) wave is scattered by the obstacles in a specific type of double-ZIM (DZIM), possessing near zero reciprocal of shear modulus and near zero mass density. When the obstacle is off resonance, elastic waves are scarcely scattered; nevertheless, the scattering cross section of the obstacle can be drastically enhanced by orders of magnitude when it is on resonance. While in another type of DZIM possessing near zero reciprocal of bulk modulus and near zero mass density, mode conversion occurs during the scattering process and many other transmission characteristics are also different to the former. Moreover, enhanced transmission can be realized for various types of single-ZIM (SZIM) by introducing obstacles, and numerical analysis shows that the enhanced transmission is due to resonant modes arisen in the embedded obstacles. We expect that our findings could have potential practical application, such as seismic protection and on-chip phononic devices.

  5. Resonance estimates for single spin asymmetries in elastic electron-nucleon scattering

    SciTech Connect

    Barbara Pasquini; Marc Vanderhaeghen

    2004-07-01

    We discuss the target and beam normal spin asymmetries in elastic electron-nucleon scattering which depend on the imaginary part of two-photon exchange processes between electron and nucleon. We express this imaginary part as a phase space integral over the doubly virtual Compton scattering tensor on the nucleon. We use unitarity to model the doubly virtual Compton scattering tensor in the resonance region in terms of {gamma}* N {yields} {pi} N electroabsorption amplitudes. Taking those amplitudes from a phenomenological analysis of pion electroproduction observables, we present results for beam and target normal single spin asymmetries for elastic electron-nucleon scattering for beam energies below 1 GeV and in the 1-3 GeV region, where several experiments are performed or are in progress.

  6. Elastic electron scattering in krypton in the energy range from 5 to 10 eV

    SciTech Connect

    Linert, Ireneusz; Mielewska, Brygida; Zubek, Mariusz; King, George C.

    2010-01-15

    Differential cross sections for elastic electron scattering in krypton have been measured at the energies of 5,7.5, and 10 eV over the scattering angle range from 30 deg. to 180 deg. The measurements for backward scattering employed the magnetic angle-changing technique. These differential cross sections have been integrated to yield the elastic integral and momentum transfer cross sections at the above energies. These new results are compared with the most recent measurements and calculations of the respective cross sections in krypton. The dependence of the differential cross sections on atomic polarizability of the heavier rare gas atoms argon, krypton, and xenon has also been investigated over the electron energy range 5-30 eV and for forward, backward, and intermediate scattering angles.

  7. Contribution of σ meson exchange to elastic lepton-proton scattering

    NASA Astrophysics Data System (ADS)

    Koshchii, Oleksandr; Afanasev, Andrei

    2016-12-01

    Lepton mass effects play a decisive role in the description of elastic lepton-proton scattering when the beam's energy is comparable to the mass of the lepton. The future Muon Scattering Experiment (MUSE) experiment, which is devised to solve the "Proton Radius Puzzle," is going to cover the corresponding kinematic region for a scattering of muons by a proton target. We anticipate that helicity-flip meson exchanges will make a difference in the comparison of elastic electron-proton vs muon-proton scattering in MUSE. In this article, we estimate the σ meson exchange contribution in the t channel. This contribution, mediated by two-photon coupling of σ , is calculated to be at most ˜0.1 % for muons in the kinematics of MUSE, and it appears to be about 3 orders of magnitude larger than for electrons because of the lepton-mass difference.

  8. A level set-based shape optimization method for periodic sound barriers composed of elastic scatterers

    NASA Astrophysics Data System (ADS)

    Hashimoto, Hiroshi; Kim, Min-Geun; Abe, Kazuhisa; Cho, Seonho

    2013-10-01

    This paper presents a level set-based topology optimization method for noise barriers formed from an assembly of scatterers. The scattering obstacles are modeled by elastic bodies arranged periodically along the wall. Due to the periodicity, the problem can be reduced to that in a unit cell. The interaction between the elastic scatterers and the acoustic field is described in the context of the level set analysis. The semi-infinite acoustic wave regions located on the both sides of the barrier are represented by impedance matrices. The objective function is defined by the energy transmission passing the barrier. The design sensitivity is evaluated analytically by the aid of adjoint equations. The dependency of the optimal profile on the stiffness of scatterers and on the target frequency band is examined. The feasibility of the developed optimization method is proved through numerical examples.

  9. Elastic scattering spectroscopy as a diagnostic for tissue pathologies

    SciTech Connect

    Bigio, I.J.; Mourant, J.R.; Boyer, J.; Johnson, T.

    1994-03-01

    The wavelength dependence of multiple Mie scattering can be expected to vary with changes in the cellular architecture of tissues. A fiber-optic-mediated instrument based on these principles has been tested clinically. Clinical results and theoretical modeling will be presented.

  10. Elastic and Inelastic Light Scattering of Colloidal Particles.

    DTIC Science & Technology

    1985-06-10

    hydrosols , silver organosols and roughened silver electrodes, the effect of aggregates on SERS. In addition there have been ancillary studies dealing...effect of dielectric cavities. The experi mental work included SERSkIfrom citrate on silver hydrosols , su rface enhanced resonance Ramnan scattering

  11. Some inverse problems arising from elastic scattering by rigid obstacles

    NASA Astrophysics Data System (ADS)

    Hu, Guanghui; Kirsch, Andreas; Sini, Mourad

    2013-01-01

    In the first part of this paper, it is proved that a C2-regular rigid scatterer in { {R}}^3 can be uniquely identified by the shear part (i.e. S-part) of the far-field pattern corresponding to all incident shear waves at any fixed frequency. The proof is short and it is based on a kind of decoupling of the S-part of scattered wave from its pressure part (i.e. P-part) on the boundary of the scatterer. Moreover, uniqueness using the S-part of the far-field pattern corresponding to only one incident plane shear wave holds for a ball or a convex Lipschitz polyhedron. In the second part, we adapt the factorization method to recover the shape of a rigid body from the scattered S-waves (resp. P-waves) corresponding to all incident plane shear (resp. pressure) waves. Numerical examples illustrate the accuracy of our reconstruction in { {R}}^2. In particular, the factorization method also leads to some uniqueness results for all frequencies excluding possibly a discrete set.

  12. A measurement of two-photon exchange in unpolarized elastic electron-proton scattering

    NASA Astrophysics Data System (ADS)

    Yurov, Mikhail

    2016-03-01

    Jefferson Lab experiment E05-017 was designed to study 2-photon exchange contributions to elastic electron-proton scattering over a wide kinematic range. By detecting the scattered proton instead of the electron these measurements will be very sensitive to the ɛ dependence of the cross section and consequently the ratio GE/GM. The goals of the experiment, the experimental technique and the kinematic range will be presented. The analysis sequence and results of the early steps will be outlined.

  13. A measurement of two-photon exchange in unpolarized elastic electron-proton scattering

    NASA Astrophysics Data System (ADS)

    Yurov, Mikhail

    2014-03-01

    Jefferson Lab experiment E05-017 was designed to study 2-photon exchange contributions to elastic electron-proton scattering over a wide kinematic range. By detecting the scattered proton instead of the electron these measurements will be very sensitive to the ɛ dependence of the cross section and consequently the ratio GE/GM. The goals of the experiment, the experimental technique and the kinematic range will be presented. The analysis sequence and results of the early steps will be outlined.

  14. Sensitivity of cross sections for elastic nucleus-nucleus scattering to halo nucleus density distributions

    SciTech Connect

    Alkhazov, G. D.; Sarantsev, V. V.

    2012-12-15

    In order to clear up the sensitivity of the nucleus-nucleus scattering to the nuclear matter distributions in exotic halo nuclei, we have calculated differential cross sections for elastic scattering of the {sup 6}He and {sup 11}Li nuclei on several nuclear targets at the energy of 0.8 GeV/nucleon with different assumed nuclear density distributions in {sup 6}He and {sup 11}Li.

  15. Energy resolution and dynamical heterogeneity effects on elastic incoherent neutron scattering from molecular systems.

    PubMed

    Becker, Torsten; Smith, Jeremy C

    2003-02-01

    Incoherent neutron scattering is widely used to probe picosecond-nanosecond time scale dynamics of molecular systems. In systems of spatially confined atoms the relatively high intensity of elastic incoherent neutron scattering is often used to obtain a first estimate of the dynamics present. For many complex systems, however, experimental elastic scattering is difficult to interpret unambiguously using analytical dynamical models that go beyond the determination of an average mean-square displacement. To circumvent this problem a description of the scattering is derived here that encompasses a variety of analytical models in a common framework. The framework describes the time-converged part of the dynamic structure factor [the elastic incoherent scattering function (EISF)] and lends itself to practical use by explicitly incorporating effects due to the finite energy resolution of the instrument used. The dependence of the elastic scattering on wave vector is examined, and it is shown how heterogeneity in the distribution of mean-square displacements can be related to deviations of the scattering from Gaussian behavior. In this case, a correction to fourth order in the scattering vector can be used to extract the variance of the distribution of mean-square displacements. The formalism is used in a discussion of measurements on dynamics accompanying the glass transition in molecular systems. By fitting to experimental data obtained on a protein solution the present methodology is used to show how the existence of a temperature-dependent relaxation frequency can lead to a transition in the measured mean-square displacement in the absence of an EISF change.

  16. Elastic scattering of 400-MeV protons by Pb-208

    NASA Technical Reports Server (NTRS)

    Hutcheon, D. A.; Cameron, J. M.; Liljestrand, R. P.; Kitching, P.; Miller, C. A.; Mcdonald, W. J.; Sheppard, D. M.; Olsen, W. C.; Neilson, G. C.; Sherif, H. S.

    1981-01-01

    Cross-section and analyzing-power angular distributions for elastic scattering of 400-MeV protons by Pb-208 have been measured between 3 and 51 deg. Results have been compared to second-order Kerman-McManus-Thaler (1959) calculations of the optical potential. There is evidence that free nucleon-nucleon scattering amplitudes do not adequately describe nucleon propagation in nuclear matter at this energy.

  17. Scaling analysis of bio-molecular dynamics derived from elastic incoherent neutron scattering experiments

    SciTech Connect

    Doster, W.; Nakagawa, H.; Appavou, M. S.

    2013-07-28

    Numerous neutron scattering studies of bio-molecular dynamics employ a qualitative analysis of elastic scattering data and atomic mean square displacements. We provide a new quantitative approach showing that the intensity at zero energy exchange can be a rich source of information of bio-structural fluctuations on a pico- to nano-second time scale. Elastic intensity scans performed either as a function of the temperature (back-scattering) and/or by varying the instrumental resolution (time of flight spectroscopy) yield the activation parameters of molecular motions and the approximate structural correlation function in the time domain. The two methods are unified by a scaling function, which depends on the ratio of correlation time and instrumental resolution time. The elastic scattering concept is illustrated with a dynamic characterization of alanine-dipeptide, protein hydration water, and water-coupled protein motions of lysozyme, per-deuterated c-phycocyanin (CPC) and hydrated myoglobin. The complete elastic scattering function versus temperature, momentum exchange, and instrumental resolution is analyzed instead of focusing on a single cross-over temperature of mean square displacements at the apparent onset temperature of an-harmonic motions. Our method predicts the protein dynamical transition (PDT) at T{sub d} from the collective (α) structural relaxation rates of the solvation shell as input. By contrast, the secondary (β) relaxation enhances the amplitude of fast local motions in the vicinity of the glass temperature T{sub g}. The PDT is specified by step function in the elastic intensity leading from elastic to viscoelastic dynamic behavior at a transition temperature T{sub d}.

  18. Scaling analysis of bio-molecular dynamics derived from elastic incoherent neutron scattering experiments

    NASA Astrophysics Data System (ADS)

    Doster, W.; Nakagawa, H.; Appavou, M. S.

    2013-07-01

    Numerous neutron scattering studies of bio-molecular dynamics employ a qualitative analysis of elastic scattering data and atomic mean square displacements. We provide a new quantitative approach showing that the intensity at zero energy exchange can be a rich source of information of bio-structural fluctuations on a pico- to nano-second time scale. Elastic intensity scans performed either as a function of the temperature (back-scattering) and/or by varying the instrumental resolution (time of flight spectroscopy) yield the activation parameters of molecular motions and the approximate structural correlation function in the time domain. The two methods are unified by a scaling function, which depends on the ratio of correlation time and instrumental resolution time. The elastic scattering concept is illustrated with a dynamic characterization of alanine-dipeptide, protein hydration water, and water-coupled protein motions of lysozyme, per-deuterated c-phycocyanin (CPC) and hydrated myoglobin. The complete elastic scattering function versus temperature, momentum exchange, and instrumental resolution is analyzed instead of focusing on a single cross-over temperature of mean square displacements at the apparent onset temperature of an-harmonic motions. Our method predicts the protein dynamical transition (PDT) at Td from the collective (α) structural relaxation rates of the solvation shell as input. By contrast, the secondary (β) relaxation enhances the amplitude of fast local motions in the vicinity of the glass temperature Tg. The PDT is specified by step function in the elastic intensity leading from elastic to viscoelastic dynamic behavior at a transition temperature Td.

  19. Extraction of structure functions for lepton-nucleus scattering in the quasi-elastic region

    NASA Astrophysics Data System (ADS)

    Kim, K. S.; Kim, Hungchong; Cheoun, Myung-Ki; So, W. Y.

    2016-12-01

    Within the framework of a relativistic single-particle model, we calculate inclusive electron-nucleus scattering by electromagnetic current, and neutrino-nucleus scattering by neutral and charged current in the quasi-elastic region. The longitudinal, the transverse, and the transverse-interference structure functions are extracted from the theoretical cross section by using the Rosenbluth separation method at fixed momentum transfer and scattering angle and then compared with each other from the viewpoint of these current interactions. The position of peak for the electron scattering shifts to higher energy transfer than that for the neutrino scattering. The axial and pseudoscalar terms turn out to play an important role in the neutrino-nucleus scattering.

  20. Elastic and Inelastic Scattering of Positrons by Potassium Atoms

    NASA Astrophysics Data System (ADS)

    El-Bakry, Salah Yaseen

    The investigations of the elastic and inelastic collisions of positrons with potassium atoms, K (1s2, 2s2, 2p6, 3s2, 3p6, 4s), are presented. The potassium target atoms are described using Clementi-Roetti wavefunctions within the framework of the one-valence-electron model. The total cross-sections which correspond to eight partial cross-sections are calculated at 34 values of the incident energy k21 (2.5 eV <= k12<= 100 eV) using the coupled-static approximation. The resulting total elastic, ground- and excited-positronium formation cross-sections are compared with experimental results and those calculated by other authors. In the vicinity of 6 eV, and consistent with the measurements of Parikh et al.,2 our total cross-section displays a pronounced peak. We support the conclusion of McAlinden et al.15 and Hewitt et al.14 that above about 4 eV, positronium formation is mainly into excited states. Good agreement is obtained with the total cross-section measurements of Kwan et al.1 and Parikh et al.2 Positronium formation is not important above about 50 eV.

  1. A coherent analysis of elastic electron-proton scattering data

    NASA Astrophysics Data System (ADS)

    Bernauer, Jan

    2016-09-01

    The extraction of form factors and radii from scattering data is a treacherous business, and it is easy to bias the result with the choice of an unsuitable fit function. In the first part of the talk, I will present our analysis of the Mainz and world data sets, and the checks we have made to ensure that the results are accurate and unbiased. Recently, several authors have reanalyzed the Mainz and world data sets on electron-proton scattering, with the aim to extract the proton charge radius. The results fall into two groups: radii around 0.88 fm and around 0.84 fm, respectively. We find that the latter group typically is affected by various problems, discussed in the second part of the talk.

  2. Correlation effects in elastic e-N2 scattering

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Lima, Marco A. P.; Gibson, Thomas L.; Mckoy, Vincent

    1987-01-01

    The Schwinger multichannel formulation has been applied to study the role of electron correlation in low-energy e-N2 scattering. For the five nonresonant partial-wave channels studied here, angular correlation is found to be much more important than radial correlation. The calculated total and differential cross sections agree well with experiment except for the differential cross sections at 1.5 eV.

  3. Evaluation of anemia diagnosis based on elastic light scattering (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tong, Lieshu; Wang, Xinrui; Xie, Dengling; Chen, Xiaoya; Chu, Kaiqin; Dou, Hu; Smith, Zachary J.

    2017-03-01

    Currently, one-third of humanity is still suffering from anemia. In China the most common forms of anemia are iron deficiency and Thalassemia minor. Differentiating these two is the key to effective treatment. Iron deficiency is caused by malnutrition and can be cured by iron supplementation. Thalassemia is a hereditary disease in which the hemoglobin β chain is lowered or absent. Iron therapy is not effective, and there is evidence that iron therapy may be harmful to patients with Thalassemia. Both anemias can be diagnosed using red blood cell morphology: Iron deficiency presents a smaller mean cell volume compared to normal cells, but with a wide distribution; Thalassemia, meanwhile, presents a very small cell size and tight particle size distribution. Several researchers have proposed diagnostic indices based on red cell morphology to differentiate these two diseases. However, these indices lack sensitivity and specificity and are constructed without statistical rigor. Using multivariate methods we demonstrate a new classification method based on red cell morphology that diagnoses anemia in a Chinese population with enough accuracy for its use as a screening method. We further demonstrate a low cost instrument that precisely measures red cell morphology using elastic light scattering. This instrument is combined with an automated analysis program that processes scattering data to report red cell morphology without the need for user intervention. Despite using consumer-grade components, when comparing our experimental results with gold-standard measurements, the device can still achieve the high precision required for sensing clinically significant changes in red cell morphology.

  4. Flow Visualization by Elastic Light Scattering in the Boundary Layer of a Supersonic Flow

    NASA Technical Reports Server (NTRS)

    Herring, G. C.; Hillard, Mervin E., Jr.

    2000-01-01

    We demonstrate instantaneous flow visualization of the boundary layer region of a Mach 2.5 supersonic flow over a flat plate that is interacting with an impinging shock wave. Tests were performed in the Unitary Plan Wind Tunnel (UPWT) at NASA Langley Research Center. The technique is elastic light scattering using 10-nsec laser pulses at 532 nm. We emphasize that no seed material of any kind, including water (H2O), is purposely added to the flow. The scattered light comes from a residual impurity that normally exists in the flow medium after the air drying process. Thus, the technique described here differs from the traditional vapor-screen method, which is typically accomplished by the addition of extra H2O vapor to the airflow. The flow is visualized with a series of thin two-dimensional light sheets (oriented perpendicular to the streamwise direction) that are located at several positions downstream of the leading edge of the model. This geometry allows the direct observation of the unsteady flow structure in the spanwise dimension of the model and also allows the indirect observation of the boundary layer growth in the streamwise dimension.

  5. Determination of the proton charge radius from elastic electron-proton scattering

    NASA Astrophysics Data System (ADS)

    Horbatsch, Marko; Hessels, Eric A.

    2016-05-01

    Precisely measured electron-proton elastic scattering cross sections are reanalyzed to evaluate their strength for determining the rms charge radius (RE) of the proton. More than half of the cross sections at lowest Q2 are fit using two single-parameter form-factor models, with the first based on a dipole parametrization, and the second on a linear fit to a conformal-mapping variable. These low-Q2 fits extrapolate the slope of the form factor to Q2 = 0 and determine RE values of approximately 0.84 and 0.89 fm, respectively. Fits spanning all Q2, in which the single constants are replaced with cubic splines at larger Q2, lead to similar results for RE. We conclude that the scattering data are consistent with RE ranging from at least 0.84 to 0.89 fm, and therefore is consistent with both of the discrepant determinations of RE made using muonic and electronic hydrogen-atom spectroscopy. NSERC Canada, Canada Research Chair Program.

  6. Low energy positron interactions with uracil—Total scattering, positronium formation, and differential elastic scattering cross sections

    SciTech Connect

    Anderson, E. K.; Boadle, R. A.; Machacek, J. R.; Makochekanwa, C.; Sullivan, J. P.; Chiari, L.; Buckman, S. J.; Brunger, M. J.; Garcia, G.; Blanco, F.; Ingolfsson, O.

    2014-07-21

    Measurements of the grand total and total positronium formation cross sections for positron scattering from uracil have been performed for energies between 1 and 180 eV, using a trap-based beam apparatus. Angular, quasi-elastic differential cross section measurements at 1, 3, 5, 10, and 20 eV are also presented and discussed. These measurements are compared to existing experimental results and theoretical calculations, including our own calculations using a variant of the independent atom approach.

  7. Selective Observation of Elastic-Body Resonances via Their Ringing in Transient Acoustic Scattering.

    DTIC Science & Technology

    1984-09-12

    evident but have not been discussed by him. Subsequent studies of pulse scattering from rigid spheres by Rudgers 3 , or from elastic 4 cylinders by Veksler...Lucite 1.182 2680 1380 1. J. J. Faran, J "" - -’,:. Amer. 23, 405 (1951) 2. R. Hicklinc, J. ,w.L t. Soc. Amer. 34, 1582 (1962). 3. A. J. Rudgers , J

  8. Measurement of the tensor polarization in electron-deuteron elastic scattering

    SciTech Connect

    Schulze, M.E.; Beck, D.; Farkhondeh, M.; Gilad, S.; Goloskie, R.; Holt, R.J.; Kowalski, S.; Laszewski, R.M.; Leitch, M.J.; Moses, J.D.

    1984-02-20

    This paper reports the first measurement of the tensor polarization t/sub 20/ in e-d elastic scattering. The polarization of the recoil deuterons was measured for two values of momentum transfer, q = 1.74 and 2.03 fm/sup -1/, with a high-efficiency polarimeter. The results are in good agreement with reasonable models for the deuteron.

  9. Pion-proton backward elastic scattering between 30 and 90 GeV/c

    SciTech Connect

    Baker, W.F.; Eartly, D.P.; Kalbach, R.M.; Klinger, J.S.; Lennox, A.J.; Polakos, P.A.; Pifer, A.E.; Rubinstein, R.

    1982-11-01

    Backward elastic scattering of ..pi..+- on protons has been measured for incident pion momenta between 30 and 90 GeV/c and 0<-u <0.5 (GeV/c)/sup 2/. The u-dependence of the cross sections is similar to that observed at lower momenta, and Regge models give acceptable fits to the data.

  10. Meson-proton elastic scattering At 250 GeV/c

    NASA Astrophysics Data System (ADS)

    Saleem, Mohammad; Rashid, Haris; Aleem, Fazal-e.

    1988-01-01

    Very recent measurements of pi-+p and K+p elastic scattering at 250GeV/c have been explained by using the generalised Chou-Yang model. Dips are predicted to occur at -t=3.63 and 4.36(GeV/c)2 respectively.

  11. Van der Waals Type Model for Neutron-Proton Elastic Scattering at High Energies

    NASA Astrophysics Data System (ADS)

    Aleem, F.

    1980-12-01

    The most recent measurements of the angular distribution and total cross-section for neutron-proton elastic scattering between 70< pL <400 GeV/c with squared four momentum transfer -t ≤ 3.6 (GeV/c)2 have been explained using Van der Waals type model.

  12. X-Ray Elastic and Inelastic Scattering Factors for Neutral Atoms Z = 2-92

    NASA Astrophysics Data System (ADS)

    Wang, J. H.; Sagar, R. P.; Schmider, H.; Smith, V. H.

    1993-03-01

    X-ray elastic and inelastic scattering factors are calculated for the ground states of the neutral atoms, helium to uranium, from the Roothaan-Hartree-Fock nonrelativistic self-consistent-field wave functions of Clementi and Roetti, (Atomic Data and Nuclear Data Tables 14, 177, 1974) and McLean and McLean (Atomic Data and Nuclear Data Tables 26, 197, 1981).

  13. a Technique to Calibrate Neutron-Proton Elastic Scattering Spin Observables Near 183 Mev

    NASA Astrophysics Data System (ADS)

    Bowyer, Theodore William

    Free neutron-proton scattering is one of the most fundamental reactions we can study in the field of nuclear physics, yet the n-p scattering data base is quite sparse. The data that does exist is often plagued by systematic uncertainties associated with the determination of beam and/or target polarizations. In contrast, there is an abundance of high quality, high statistics p-p elastic scattering data. We report on a technique which we have developed which exploits the high quality of the p-p data to calibrate n-p elastic scattering spin observables by simultaneous measurement of vec n-vec p and p-vec p elastic scattering by bombarding a polarized proton target with a mixed beam of polarized neutrons and protons. This technique has allowed us to calibrate the n-p elastic spin observables at 183 MeV: the beam and target analyzing powers A _{n}(theta_{p}),A _{p}(theta p), and the spin correlation coefficient, C_{NN}( theta_{p}). The mixed secondary beam was produced by bombarding a liquid deuterium target with a 200 MeV beam of polarized protons. The experiment was preformed in the Polarized Neutron Facility at the Indiana University Cyclotron Facility utilizing a left-right symmetric detection system, sensitive to both scattered protons and neutrons, and spanned the laboratory angular range of 24^circ to 62^circ. We identified free scattering events through a number of kinematic correlations. We compare our results to various phase shift calculations and potential models and examine the sensitivity of magnitude of various phase shifts results to the inclusion of our data into the n-p data base.

  14. First Elastic Electron Scattering from 132Xe at the SCRIT Facility

    NASA Astrophysics Data System (ADS)

    Tsukada, K.; Enokizono, A.; Ohnishi, T.; Adachi, K.; Fujita, T.; Hara, M.; Hori, M.; Hori, T.; Ichikawa, S.; Kurita, K.; Matsuda, K.; Suda, T.; Tamae, T.; Togasaki, M.; Wakasugi, M.; Watanabe, M.; Yamada, K.

    2017-06-01

    The first elastic electron scattering has been successfully performed at the self-confining radioactive-isotope ion target (SCRIT) facility, the world's first electron scattering facility for SCRIT technique achieved high luminosity (over 1027 cm-2 s-1 , sufficient for determining the nuclear shape) with only 108 target ions. While 132Xe used in this time as a target is a stable isotope, the charge density distribution was first extracted from the momentum transfer distributions of the scattered electrons by comparing the results with those calculated by a phase shift calculation.

  15. The two-photon exchange contribution to elastic electron-nucleon scattering at large momentum transfer

    SciTech Connect

    Andrei V. Afanasev; Stanley J. Brodsky; Carl E. Carlson; Yu-Chun Chen; Marc Vanderhaeghen

    2005-01-01

    We estimate the two-photon exchange contribution to elastic electron-proton scattering at large momentum transfer by using a quark-parton representation of virtual Compton scattering. We thus can relate the two-photon exchange amplitude to the generalized parton distributions which also enter in other wide angle scattering processes. We find that the interference of one- and two-photon exchange contribution is able to substantially resolve the difference between electric form factor measurements from Rosenbluth and polarization transfer experiments.

  16. Nanoscale Structure in AgSbTe2 Determined by Diffuse Elastic Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Specht, E. D.; Ma, J.; Delaire, O.; Budai, J. D.; May, A. F.; Karapetrova, E. A.

    2015-06-01

    Diffuse elastic neutron scattering measurements have confirmed that AgSbTe2 has a hierarchical structure, with defects on length scales from nanometers to microns. While scattering from this mesoscale structure is consistent with previously proposed structures in which Ag and Sb order on a NaCl lattice, more diffuse scattering from nanoscale structures suggests a structural rearrangement in which hexagonal layers form a combination of ( ABC), ( ABA), and ( AAB) polytypes. Consequently, the AgCrSe2 structure is the best-fitting model for the local atomic arrangements.

  17. Off-shell and nonlocal effects in proton-nucleus elastic scattering

    NASA Astrophysics Data System (ADS)

    Picklesimer, A.; Tandy, P. C.; Thaler, R. M.; Wolfe, D. H.

    1984-04-01

    The influence of off-shell and nonlocal effects in the first-order nonrelativistic microscopic optical potential is investigated for elastic proton scattering above 100 MeV. With the free nucleon-nucleon t matrix taken from the model of Love and Franey, these effects are significant only for scattering angles greater than about 60° and energies below about 300 MeV. The inadequacy of the standard first-order theory for predictions of spin observables at forward scattering angles remains unchanged when these effects are included and the need for higher order processes including medium and relativistic effects is reinforced.

  18. Investigation of condensed matter by means of elastic thermal-neutron scattering

    SciTech Connect

    Abov, Yu. G.; Dzheparov, F. S.; Elyutin, N. O.; Lvov, D. V. Tyulyusov, A. N.

    2016-07-15

    The application of elastic thermal-neutron scattering in investigations of condensed matter that were performed at the Institute for Theoretical and Experimental Physics is described. An account of diffraction studies with weakly absorbing crystals, including studies of the anomalous-absorption effect and coherent effects in diffuse scattering, is given. Particular attention is given to exposing the method of multiple small-angle neutron scattering (MSANS). It is shown how information about matter inhomogeneities can be obtained by this method on the basis of Molière’s theory. Prospects of the development of this method are outlined, and MSANS theory is formulated for a high concentration of matter inhomogeneities.

  19. Elastic electron scattering from ortho-, meta-, and paraxylenes, C8H10

    NASA Astrophysics Data System (ADS)

    Sakaamini, A.; Khakoo, S. M.; Hargreaves, L.; Khakoo, M. A.; Pastega, D. F.; Bettega, M. H. F.

    2017-02-01

    Ab initio calculations and normalized experimental measurements of the differential, momentum transfer and integral cross sections for vibrationally elastic scattering of low-energy electrons from orthoxylene, metaxylene, and paraxylene are presented. The calculated cross sections are obtained using the Schwinger multichannel method implemented with norm-conserving pseudopotentials. The differential cross sections are measured at incident energies from 1 to 30 eV and scattering angles from 10∘ to 130∘. These cross sections are compared to experimental results for toluene. The comparisons illuminate the role of molecular structure in determining the integral cross sections and the angular distributions of resonantly scattered electrons.

  20. Two-photon exchange correction in elastic unpolarized electron-proton scattering at small momentum transfer

    NASA Astrophysics Data System (ADS)

    Tomalak, O.; Vanderhaeghen, M.

    2016-01-01

    We evaluate the two-photon exchange (TPE) correction to the unpolarized elastic electron-proton scattering at small momentum transfer Q2 . We account for the inelastic intermediate states approximating the double virtual Compton scattering by the unpolarized forward virtual Compton scattering. The unpolarized proton structure functions are used as input for the numerical evaluation of the inelastic contribution. Our calculation reproduces the leading terms in the Q2 expansion of the TPE correction and goes beyond this approximation by keeping the full Q2 dependence of the proton structure functions. In the range of small momentum transfer, our result is in good agreement with the empirical TPE fit to existing data.

  1. Nanoscale structure in AgSbTe2 determined by diffuse elastic neutron scattering

    SciTech Connect

    Specht, Eliot D; Ma, Jie; Delaire, Olivier A; Budai, John D; May, Andrew F; Karapetrova, Evguenia A.

    2015-01-01

    Diffuse elastic neutron scattering measurements confirm that AgSbTe2 has a hierarchical structure, with defects on length scales from nanometers to microns. While scattering from mesoscale structure is consistent with previously-proposed structures in which Ag and Sb order on a NaCl lattice, more diffuse scattering from nanoscale structure suggests a structural rearrangement in which hexagonal layers form a combination of (ABC), (ABA), and (AAB) stacking sequences. The AgCrSe2 structure is the best-fitting model for the local atomic arrangements.

  2. Elastic Scattering of Low-Energy Electrons byTetrahydrofuran

    SciTech Connect

    Trevisan, Cynthia S.; Orel, Ann E.; Rescigno, Thomas N.

    2006-05-09

    We present the results of ab initio calculations for elasticelectron scattering by tetrahydrofuran (THF) using the complex Kohnvariational method. We carried out fixed-nuclei calculations at theequilibrium geometry of the target molecule for incident electronenergies up to 20 eV. The calculated momentum transfer cross sectionsclearly reveal the presence of broad shape resonance behavior in the 8-10eV energy range, in agreement with recent experiments. The calculateddifferential cross sections at 20 eV, which include the effects of thelong-range electron-dipole interaction, are alsofound to be in agreementwith the most recent experimental findings.

  3. Rhodopsin Photoactivation Dynamics Revealed by Quasi-Elastic Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Bhowmik, Debsindhu; Shrestha, Utsab; Perera, Suchhithranga M. C. D.; Chawla, Udeep; Mamontov, Eugene; Brown, Michael; Chu, Xiang-Qiang

    2015-03-01

    Rhodopsin is a G-protein-coupled receptor (GPCR) responsible for vision. During photoactivation, the chromophore retinal dissociates from protein yielding the opsin apoprotein. What are the changes in protein dynamics that occur during the photoactivation process? Here, we studied the microscopic dynamics of dark-state rhodopsin and the ligand-free opsin using quasielastic neutron scattering (QENS). The QENS technique tracks individual hydrogen atom motion because of the much higher neutron scattering cross-section of hydrogen than other atoms. We used protein with CHAPS detergent hydrated with heavy water. The activation of proteins is confirmed at low temperatures up to 300 K by mean-square displacement (MSD) analysis. The QENS experiments at temperatures ranging from 220 K to 300 K clearly indicate an increase in protein dynamic behavior with temperature. The relaxation time for the ligand-bound protein rhodopsin is faster compared to opsin, which can be correlated with the photoactivation. Moreover, the protein dynamics are orders of magnitude slower than the accompanying CHAPS detergent, which unlike protein, manifests localized motions.

  4. Protein Dynamics Studied by Quasi-elastic Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Chu, Xiang-Qiang; Mamontov, Eugene; Lagi, Marco; Chen, Sow-Hsin; Gajapathy, Manavalan; Ng, Joseph; Weiss, Kevin; Coates, Leighton; Fratini, Emiliano; Baglioni, Piero

    2012-02-01

    The biological function and activities of proteins are intimately related to their structures and dynamics. Nowadays, neutron scattering is one of the most powerful tools to study the protein dynamics. In this study, we use quasielastic neutron scattering (QENS) at the Spallation Neutron Source, ORNL, to study relaxational dynamics of two structurally different proteins --- hen egg white lysozyme and an inorganic pyrophosphatase from a hyperthermophile, in the time range of 10ps to 1ns. We experimentally prove that the slow dynamics of globular proteins can be described by the mode-coupling theory (MCT) that was originally developed for glass-forming molecular liquids. The MCT predicts the appearance of a logarithmic decay for a glass-forming liquid. Such dynamic behavior is also observed by recent molecular dynamics (MD) simulations on protein molecules. In addition, we compare the temperature dependence of the dynamics of the two proteins with completely different activity profiles. Our results greatly help understanding the relation between protein dynamics and their biological functions.

  5. Momentum space approach to microscopic effects in elastic proton scattering

    NASA Astrophysics Data System (ADS)

    Picklesimer, A.; Tandy, P. C.; Thaler, R. M.; Wolfe, D. H.

    1984-12-01

    The microscopic nonrelativistic first-order optical potential for proton-nucleus scattering is studied in some detail. Momentum-space calculations have been performed for a number of different target nuclei at proton energies above ~100 MeV and these microscopic predictions are compared with experimental cross section, analyzing power, and spin-rotation function data. The input to these calculations consists of the free on-shell nucleon-nucleon t matrix, its nonlocal and off-shell structure, the treatment of the full-folding integral, and target densities obtained from electron scattering. Off-shell and nonlocal effects, as well as various factorization approximations, are studied. The sensitivity to uncertainties in the off-shell extension of the t matrix, within the context of the Love-Franey model, is explicity displayed. Similarly, uncertainties due to nonlocalities and incomplete knowledge of nuclear densities are shown. Explicit calculations using the t matrix of Love and Franey indicate that these effects play significant roles only for relatively large angles (θ<~60°) and/or lower energies (~150 MeV). These studies reinforce the conclusion that the lack of agreement between such first-order predictions and the data for spin observables at small angles arises from a physical effect not included in the nonrelativistic first-order theory, rather than from any uncertainty in the calculation or in its input.

  6. Optical diagnostics based on elastic scattering: Recent clinical demonstrations with the Los Alamos Optical Biopsy System

    SciTech Connect

    Bigio, I.J.; Loree, T.R.; Mourant, J.; Shimada, T.; Story-Held, K.; Glickman, R.D.; Conn, R.

    1993-08-01

    A non-invasive diagnostic tool that could identify malignancy in situ and in real time would have a major impact on the detection and treatment of cancer. We have developed and are testing early prototypes of an optical biopsy system (OBS) for detection of cancer and other tissue pathologies. The OBS invokes a unique approach to optical diagnosis of tissue pathologies based on the elastic scattering properties, over a wide range of wavelengths, of the microscopic structure of the tissue. The use of elastic scattering as the key to optical tissue diagnostics in the OBS is based on the fact that many tissue pathologies, including a majority of cancer forms, manifest significant architectural changes at the cellular and sub-cellular level. Since the cellular components that cause elastic scattering have dimensions typically on the order of visible to near-IR wavelengths, the elastic (Mie) scattering properties will be strongly wavelength dependent. Thus, morphology and size changes can be expected to cause significant changes in an optical signature that is derived from the wavelength dependence of elastic scattering. The data acquisition and storage/display time with the OBS instrument is {approximately}1 second. Thus, in addition to the reduced invasiveness of this technique compared with current state-of-the-art methods (surgical biopsy and pathology analysis), the OBS offers the possibility of impressively faster diagnostic assessment. The OBS employs a small fiber-optic probe that is amenable to use with any endoscope, catheter or hypodermic, or to direct surface examination (e.g. as in skin cancer or cervical cancer). It has been tested in vitro on animal and human tissue samples, and clinical testing in vivo is currently in progress.

  7. Test of 600 and 750 MeV NN matrix on elastic scattering Glauber model calculations

    NASA Astrophysics Data System (ADS)

    Brissaud, I.

    1980-09-01

    The 600 and 750 MeV proton nucleus elastic scattering cross section and polarization calculations have been performed in the framework of the Glauber model to test the pp and pn scattering amplitudes deduced from a phase shift analysis by Bystricky, Lechanoine and Lehar. It is well known that up to now we do not possess a non-phenomenological NN scattering matrix at intermediate energies. However proton-nucleus scattering analyses are used to extract information about short range correlations1), Δ resonance2) or pion condensation presences)... etc. Most scattering calculations made at these energies have been done with phenomenological NN amplitudes having a gaussian q-dependence 10050_2005_Article_BF01438168_TeX2GIFE1.gif A(q) = {kσ }/{4π }(α + i) e^{ - β ^2 q^2 /2} and 10050_2005_Article_BF01438168_TeX2GIFE2.gif C(q) = {kσ }/{4π }iq(α + i) D_e - β ^2 q^2 /2 K and σ being respectively the projectile momentum and the total pN total cross section. The parameters α, β and D are badly known and are adjusted by fitting some specific reactions as p+4He elastic scattering4). Even when these amplitudes provide good fits to the data, our understanding of the dynamics of the scattering remains obscure.

  8. Two-photon exchange corrections in elastic lepton-proton scattering at small momentum transfer

    NASA Astrophysics Data System (ADS)

    Tomalak, Oleksandr; Vanderhaeghen, Marc

    2016-03-01

    In recent years, elastic electron-proton scattering experiments, with and without polarized protons, gave strikingly different results for the electric over magnetic proton form factor ratio. A mysterious discrepancy (``the proton radius puzzle'') has been observed in the measurement of the proton charge radius in muon spectroscopy experiments versus electron spectroscopy and electron scattering. Two-photon exchange (TPE) contributions are the largest source of the hadronic uncertainty in these experiments. We compare the existing models of the elastic contribution to TPE correction in lepton-proton scattering. A subtracted dispersion relation formalism for the TPE in electron-proton scattering has been developed and tested. Its relative effect on cross section is in the 1 - 2 % range for a low value of the momentum transfer. An alternative dispersive evaluation of the TPE correction to the hydrogen hyperfine splitting was found and applied. For the inelastic TPE contribution, the low momentum transfer expansion was studied. In addition with the elastic TPE it describes the experimental TPE fit to electron data quite well. For a forthcoming muon-proton scattering experiment (MUSE) the resulting TPE was found to be in the 0 . 5 - 1 % range, which is the planned accuracy goal.

  9. In-medium full-folding optical model for nucleon-nucleus elastic scattering

    SciTech Connect

    Arellano, H.F.; Brieva, F.A.; Love, W.G. |

    1995-07-01

    We develop an approach for incorporating both medium and off-shell effects in the calculation of full-folding nucleon-nucleus optical potentials for elastic scattering. The approach is based on a flexible scheme for calculating the nucleon-nucleon effective interaction in the nuclear medium. Using this scheme, we calculate a fully off-shell, energy-dependent effective force which includes effects arising from Pauli blocking and the nuclear mean field via an interacting nuclear matter model. Calculations of the elastic scattering observables for {ital p}+{sup 40}Ca and for {ital p}+{sup 208}Pb at energies between 30 and 400 MeV are presented and discussed. We also study total cross sections for neutron scattering off {sup 40}Ca, {sup 90}Zr, and {sup 208}Pb in the 5--400 MeV energy range. The theory gives a reasonable overall description of the data in the energy range under study.

  10. Elastic and inelastic scattering of 59.54 keV gamma rays

    NASA Astrophysics Data System (ADS)

    Varier, K. M.; Unnikrishnan, M. P.

    1989-08-01

    Cross sections for the elastic scattering of 59.54 keV gamma rays through 141° by Al, Cu, Mo, Yb, Ta, Au and Pb have been accurately determined using a Si(Li) detector. The values of the cross sections have been obtained by a normalization technique based on a comparison with the Compton scattering from the essentially free electrons from an Al scatterer. For the lower- Z elements Al, Cu and Mo the experimental cross sections are more or less in agreement with the form-factor predictions as well as the S-matrix calculations. For the heavier elements Ta, Au and Pb the experimental results deviate strongly from the form-factor values but agree favourably with the S-matrix values. As a by-product, incoherent scattering functions have been evaluated for Cu, Mo and Yb. Also, a clear indication has been obtained for resonant Raman scattering in the case of Yb.

  11. Modelling of nonlinear wave scattering in a delaminated elastic bar

    PubMed Central

    Khusnutdinova, K. R.; Tranter, M. R.

    2015-01-01

    Integrity of layered structures, extensively used in modern industry, strongly depends on the quality of their interfaces; poor adhesion or delamination can lead to a failure of the structure. Can nonlinear waves help us to control the quality of layered structures? In this paper, we numerically model the dynamics of a long longitudinal strain solitary wave in a split, symmetric layered bar. The recently developed analytical approach, based on matching two asymptotic multiple-scales expansions and the integrability theory of the Korteweg–de Vries equation by the inverse scattering transform, is used to develop an effective semi-analytical numerical approach for these types of problems. We also employ a direct finite-difference method and compare the numerical results with each other, and with the analytical predictions. The numerical modelling confirms that delamination causes fission of an incident solitary wave and, thus, can be used to detect the defect. PMID:26730218

  12. Investigation of the elastic and inelastic scattering of α-particles from 13C in the energy range 26.6-65MeV

    NASA Astrophysics Data System (ADS)

    Burtebayev, N.; Sakhiyev, S. K.; Janseitov, D. M.; Kerimkulov, Zh.; Alimov, D.; Danilov, A. N.

    2016-09-01

    We have measured the differential cross-sections for the elastic and inelastic scattering of α-particles on 13C target at the isochronous cyclotron U-150 M INP Republic of Kazakhstan. The beam energies of α-particles were 29MeV and 50MeV. As a result of research we obtained new experimental data for the α + 13C elastic scattering and inelastic one leading to the 3.68 (3/2-), 6.86 (5/2+) and 7.5 (5/2-)MeV excited states of 13C nucleus. The experimental results on elastic scattering were analyzed within the framework of the optical model using Woods-Saxon potential and the double folding one. The theoretical calculations for the concerned excited states were performed using the coupled channel (CC) method. The optimal deformation parameters for the excited states of 13C nucleus were extracted.

  13. Coupling effects in the elastic scattering of 6He on 12C

    NASA Astrophysics Data System (ADS)

    Lapoux, V.; Alamanos, N.; Auger, F.; Fékou-Youmbi, V.; Gillibert, A.; Marie, F.; Ottini-Hustache, S.; Sida, J.-L.; Khoa, D. T.; Blumenfeld, Y.; Maréchal, F.; Scarpaci, J.-A.; Suomijärvi, T.; Kelley, J. H.; Casandjian, J.-M.; Chartier, M.; Cortina-Gil, M. D.; Mac Cormick, M.; Mittig, W.; de Oliveira Santos, F.; Ostrowski, A. N.; Roussel-Chomaz, P.; Kemper, K. W.; Orr, N.; Winfield, J. S.

    2002-09-01

    To study the effect of the weak binding energy on the interaction potential between a light exotic nucleus and a target, elastic scattering of 6He at 38.3 MeV/nucleon on a 12C target was measured at Grand Accélérateur National d'Ions Lourds (GANIL). The 6He beam was produced by fragmentation. The detection of the scattered particles was performed by the GANIL spectrometer. The energy resolution was good enough to separate elastic from inelastic scattering contributions. The measured elastic data have been analyzed within the optical model, with the real part of the optical potential calculated in the double-folding model using a realistic density-dependent nucleon-nucleon interaction and the imaginary part taken in the conventional Woods-Saxon (WS) form. A failure of the ``bare'' real folded potential to reproduce the measured angular distribution over the whole angular range suggests quite a strong coupling of the higher-order breakup channels to the elastic channel. To estimate the strength of the breakup effects, a complex surface potential with a repulsive real part (designed to simulate the polarization effects caused by the projectile breakup) was added to the real folded and imaginary WS potentials. A realistic estimate of the polarization potential caused by the breakup of the weakly bound 6He was made based on a parallel study of 6He+12C and 6Li+12C optical potentials at about the same energies.

  14. Optimized determination of elastic constants of crystals and their uncertainties from surface Brillouin scattering.

    PubMed

    Every, A G; Sumanya, C; Mathe, B A; Zhang, X; Comins, J D

    2016-07-01

    Surface Brillouin scattering of light allows the angular-dependent velocities of Rayleigh surface acoustic waves (SAW), pseudo-SAW and longitudinal lateral waves (L) on the surface of an opaque crystal to be measured, and the elastic constants thereby determined. Closed form expressions exist for the surface wave velocities in high symmetry directions on crystallographic symmetry planes, and these have been exploited in the past for obtaining the values of the elastic constants. This paper describes a procedure for obtaining an optimized set of elastic constants from SAW, pseudo-SAW and L velocities measured in arbitrary directions in the (001) and (110) surfaces of cubic crystals. It does so by affecting a linearization of the numerically determined angular-dependent SAW and pseudo-SAW velocities near the best fit, and using analytic expressions for the L velocity. The method also generates covariance ellipsoids, from which the uncertainties in the determined values of the elastic constants can be read off. The method is illustrated using surface Brillouin scattering data to obtain the room-temperature elastic constants C11, C12 and C44 of the cubic crystals VC0.75 and Rh3Nb. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Ultracold Three-body Elastic Scattering in the Adiabatic Hyperspherical Representation

    NASA Astrophysics Data System (ADS)

    Colussi, Victor; D'Incao, Jose; Greene, Chris; Holland, Murray

    2016-05-01

    In the past few years, advances in ultracold quantum gases together with the ability to control interatomic interactions have opened up important questions related to three-body contributions to collective phenomena observables. In order to theoretically understand such contributions one needs to explore the three-body elastic scattering problem, which is fundamentally different than its two-body counterpart. The main difficulty is in the necessity to determine contributions to three-body scattering that originate from multiple scattering events where two atoms interact while the third spectates. These contributions must be subtracted out in order to determine scattering events that are truly of a three-body nature, i.e., collision events in which all three atoms participate. Here, we study this problem in the adiabatic hyperspherical representation and identify how unwanted two-body scattering events manifest in this picture. This opens up ways to develop a simple procedure capable of extracting truly three-body contributions to elastic scattering. This work was supported by the U. S. National Science Foundation.

  16. Parity nonconservation in elastic p→p scattering

    NASA Astrophysics Data System (ADS)

    Liu, C.-P.; Hyun, C. H.; Desplanques, B.

    2006-06-01

    By looking at the parity-nonconserving (PNC) asymmetries for different energies in p→p scattering, it is in principle possible to determine the PNC ρNN and ωNN couplings of a single-meson-exchange model of the PNC NN force. Analysis of the experimental data at 13.6, 45, and 221 MeV was performed by Carlson , [Phys. Rev. C 65, 035502 (2002)] who concluded the data were in agreement with the uncertainties accorded the original DDH estimates for the PNC meson-nucleon couplings. In this work it is shown first that a comparison with updated hadronic predictions of these couplings suggests the existence of some discrepancy for the PNC ωNN coupling. The effect of varying the strong coupling constants and introducing cutoffs in the one-boson-exchange weak potential is then investigated. As expected, the resulting asymmetry is quite sensitive to these parameters regardless of the energy. However, the above mentioned discrepancy persists. The dependence of this conclusion on various ingredients entering an improved description of the PNC NN force is also examined. Additional mechanisms include the two-pion resonance nature of the rho meson and some momentum dependence of the isoscalar PNC ρNN vertex. None of these corrections removes or even alleviates the above discrepancy. Their impact on the theoretical determination of the vector meson-nucleon couplings, the description of the PNC force in terms of single-meson exchange, and the interpretation of measurements are examined.

  17. Velocity-dependent optical potential for neutron elastic scattering from 1 p -shell nuclei

    NASA Astrophysics Data System (ADS)

    Ghabar, I. N.; Jaghoub, M. I.

    2015-06-01

    Background: The conventional optical model is quite successful in describing the nucleon elastic scattering data from medium and heavy nuclei. However, its success in describing the light 1 p -shell nuclei is somewhat limited. The velocity-dependent optical potential resulted in a significant improvement in describing the elastic angular distributions for light nuclei in the low energy region. Purpose: To extend the formalism of the velocity-dependent potential to higher energies, and to assess its importance in describing neutron elastic scattering data from light 1 p -shell nuclei at high energies. Method: We fit the angular distribution data for neutron elastic scattering from 12C and 16O using (i) the velocity-dependent optical potential and (ii) the conventional optical potential. The results of the two models are then compared. At low energies, we compare our angular distribution fits with the fits of other works that exist in the literature. Furthermore, the total integrated cross sections in addition to the analyzing power are calculated using the velocity-dependent optical potential and compared to the experimental data. Results: The velocity-dependent potential resulted in significant improvements in describing the angular distributions particularly in the large-angle scattering region and for certain energy ranges. This model is important where the experimental data show structural effects from nuclear surface deformations, which are important in light nuclei. Furthermore, the calculated total elastic cross sections and analyzing power are in good agreement with the experimental data. Conclusions: The velocity-dependent potential gives rise to surface-peaked real terms in the optical model. Such terms account, at least partly, for the structural effects seen in the angular distribution data. The energy range over which the surface terms are needed is found to depend on the target nucleus. Other works that have introduced real surface terms in the optical

  18. Revisiting Elastic Scattering of D(n, n)D reaction

    SciTech Connect

    Stanoiu, M.; Canton, L.; Kozier, K. S.; Rao, R.; Roubtsov, D.; Nankov, N.; Plompen, A.; Rouki, C.; Svenne, J. P.

    2010-04-30

    Interest has risen recently concerning the angular distribution of neutron elastic scattering on deuterium at low incident energies. The main subject is the amount of backscattering at energies below 3.2 MeV observed in differential cross-section measurements and represented in various evaluations. These various angles of approach encompass fundamental nuclear-data measurements, three-body nuclear-theory calculations, evaluated nuclear -data libraries and associated data processing, and the simulation of critical experiments involving heav y water. A new theoretical approach on the basis of three -nucleon theory was made that resulted in new angular distributions. At the GELINA neutron time-of-flight facility a new experimental setup was developed to measure elastic scattering of neutrons on deuterium in the energy range of interest. The technique proposed is complementary to the earlier works by detecting the scattered neutron instead of the recoiling deuterium. The setup is an array of two HPGe detectors, each with a {sup 10}B neutron-gamma converter. Preliminary GELINA findings using a C6D6 target indicate less backscatter than predicted by ENDF/B -VII.0, in contrast to the nuclear-theory results. It is expected that completion of the planned work will reduce the uncertainty of the energy-angle distributions for deuterium elastic scattering and contribute to an improved deuterium evaluation in a future release of ENDF/B -VII.

  19. Equivalence of a tip bremsstrahlung quantum and an elastically scattered electron at ultrahigh energies

    NASA Astrophysics Data System (ADS)

    Jakubassa-Amundsen, D. H.

    2012-04-01

    In the scattering of relativistic spin-polarized electrons from point nuclei, two types of polarization correlations are compared: those of a left- or right-circular bremsstrahlung photon at the short-wavelength limit (when the outgoing electron is not observed) and those of an elastically scattered, left- or right-handed electron. Bremsstrahlung is calculated from the Dirac-Sommerfeld-Maue model, and elastic electron scattering is obtained from a partial-wave analysis. By considering a gold target and electron energies Ei up to 20 MeV, a striking similarity of the respective polarization correlations is found to develop when the collision energy is increased beyond 5 MeV. From analytical Born results for light targets it is shown that only for a longitudinally spin-polarized electron do the respective polarization correlations agree in the limit Ei→∞. In the general case, a very high nuclear charge is needed in addition, leading to a sum rule for bremsstrahlung well known from elastic electron scattering.

  20. Effects of target polarization in electron elastic scattering off endohedral A @C60

    NASA Astrophysics Data System (ADS)

    Dolmatov, V. K.; Amusia, M. Ya.; Chernysheva, L. V.

    2017-01-01

    We have developed an efficient approximation to describe the low-energy electron elastic scattering off an endohedral fullerene A @CN . It accounts for polarization of A @CN by incoming electrons without reference to complicated details of the electronic structure of CN itself. The developed approach has permitted us to unravel spectacular A @CN polarization effects in low-energy e-+A @CN elastic scattering, particularly the effects due to interelectron interaction between the electrons of both CN and A . We show that contribution of a single atom A remains unscreened by the multiatomic CN despite the fact that the projectile's wavelength is bigger than the size of the target. Inclusion of A and CN polarizability interference leads to violation of the previously predicted phase additivity rule. The partial scattering cross sections acquire prominent Ramsauer-type minima which, however, disappear in the total cross section. The study reveals notable trends in e-+A @CN elastic scattering versus the polarizability of an encapsulated atom. We also predict the existence of certain negative ions A @CN- . We chose Ne, Xe, and Ba as atoms A , and C60 as the endohedral CN, as the case study. The work focuses on a reasonable compromise between the qualitative and quantitative aspects of the problem in general rather than on carrying out detailed calculations for one particular system.

  1. Elastic scattering and rotational excitation of a polyatomic molecule by electron impact - Acetylene

    NASA Technical Reports Server (NTRS)

    Thirumalai, D.; Truhlar, D. G.; Onda, K.

    1981-01-01

    Differential, integral, momentum transfer, and partial cross sections have been calculated for elastic scattering and rotational excitation of C2H2 by 10-eV electrons. The effective potential includes static, exchange, and polarization interactions calculated by the INDOX/1s method and the semiclassical exchange approximation with adiabatic polarization at large electron-molecule distances. The scattering is treated by well converged rotational close coupling using the centrifugal dominant scheme to select the channels included and including up to 32 coupled channels for a given total angular momentum. The calculated integral cross sections for pure elastic scattering and rotation excitation are 54.5 and 41.4 a(0)squared, respectively. These are much larger than the values (34.4 and 18.6 a(0)squared) previously (Onda and Truhlar, 1979) calculated for the isoelectronic molecule N2, at this energy. This illustrates how the greater spatial extent of C2H2 greatly increases the cross sections for pure elastic and rotationally inelastic scattering.

  2. Small Angle X-Ray Scattering and Quasi-Elastic Light Scattering Studies of Polymer Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Ao, Xiaolei

    In order to understand the structural properties of semiflexible polymer liquid crystals, small angle X -ray scattering data from the synthetic polypeptide poly -gamma-benzyl glutamate (PBG) in the nematic phase are presented. The important features of the data are discussed in terms of the current understanding of the nature of nematic ordering in main chain polymer systems. This includes analysis of the angular distribution function for the polymer segments, long wavelength fluctuations dictated by elastic phenomena, the effects of finite chain lengths, and the effects due to the short range interactions and packing of the chains. The rigid rod-like biological macromolecule, tobacco mosaic virus (TMV), in the nematic and the smectic A phases is studied by quasi-elastic light scattering in order to understand the hydrodynamic properties of rigid rod-like lyotropic liquid crystals. A nonlocal behavior of the elasticity in the nematic phase is observed and discussed in terms of a recent developed nonlocal theory. The relative diffusion and undulation modes in the smectic A phase are observed. The results are compared with theory.

  3. Threshold anomaly in the elastic scattering of {sup 6}He on {sup 209}Bi

    SciTech Connect

    Garcia, A. R.; Padron, I.; Lubian, J.; Gomes, P. R. S.; Lacerda, T.; Garcia, V. N.

    2007-12-15

    The energy dependence of the optical potential for the elastic scattering of {sup 6}He on {sup 209}Bi at near and subbarrier energies is studied. Elastic angular distributions and the reaction cross section were simultaneously fitted by performing some modifications in the ECIS code. A phenomenological optical model potential with the Woods-Saxon form was used. There are signatures that the so-called breakup threshold anomaly (BTA) is present in this system having a halo projectile {sup 6}He, as it had been found earlier for systems involving stable weakly bound nuclei.

  4. Spin analyzing power in p-p elastic scattering at 28 GeV/c

    SciTech Connect

    Hansen, P.H.; O'Fallon, J.R.; Danby, G.T.

    1983-03-14

    The analyzing power, A, was measured in proton-proton elastic scattering with use of a polarized proton target and 28-GeV/c primary protons from the alternating-gradient synchrotron. Over the P/sub perpendicular//sup 2/ range of 0.5 to 2.8 (GeV/c)/sup 2/, the data show interesting structure. There is a rather sharp dip at P/sub perpendicular//sup 2/ = 0.8 (GeV/c)/sup 2/ corresponding to the break in the elastic differential cross section at the end of the diffraction peak.

  5. Dispersive approach to two-photon exchange in elastic electron-proton scattering

    DOE PAGES

    Blunden, P. G.; Melnitchouk, W.

    2017-06-14

    We examine the two-photon exchange corrections to elastic electron-nucleon scattering within a dispersive approach, including contributions from both nucleon and Δ intermediate states. The dispersive analysis avoids off-shell uncertainties inherent in traditional approaches based on direct evaluation of loop diagrams, and guarantees the correct unitary behavior in the high energy limit. Using empirical information on the electromagnetic nucleon elastic and NΔ transition form factors, we compute the two-photon exchange corrections both algebraically and numerically. Finally, results are compared with recent measurements of e+ p to e- p cross section ratios from the CLAS, VEPP-3 and OLYMPUS experiments.

  6. H-He elastic scattering at low energies: Contribution of nonzero partial waves

    SciTech Connect

    Sinha, Prabal K.; Ghosh, A.S.

    2005-01-01

    The present study reports the nonzero partial wave elastic cross sections together with s-wave results for the scattering of an antihydrogen atom off a gaseous helium target at thermal energies (up to 10{sup -2} a.u.). We have used a nonadiabatic atomic orbital method having different basis sets to investigate the system. The consideration of all the significant partial waves (up to J=24) reduces the oscillatory nature present in the individual partial wave cross section. The added elastic cross section is almost constant up to 10{sup -7} a.u. and then decreases steadily and very slowly with increasing energy.

  7. Study of 11Li and 10,11Be nuclei through elastic scattering and breakup reactions

    NASA Astrophysics Data System (ADS)

    Gaidarov, M. K.; Lukyanov, V. K.; Kadrev, D. N.; Zemlyanaya, E. V.; Antonov, A. N.; Lukyanov, K. V.; Spasova, K.

    2016-01-01

    The hybrid model of the microscopic optical potential (OP) is applied to calculate the 11Li+p, 10,11Be+p, and 10,11Be+12C elastic scattering cross sections at energies E < 100 MeV/nucleon. The OP's contain the folding-model real part (ReOP) with the direct and exchange terms included, while its imaginary part (ImOP) is derived within the high-energy approximation (HEA) theory. For the 11Li+p elastic scattering, the microscopic large-scale shell model (LSSM) density of 11Li is used, while the density distributions of 10,11Be nuclei obtained within the quantum Monte Carlo (QMC) model and the generator coordinate method (GCM) are utilized to calculate the microscopic OPs and cross sections of elastic scattering of these nuclei on protons and 12C. The depths of the real and imaginary parts of OP are fitted to the elastic scattering data, being simultaneously adjusted to reproduce the true energy dependence of the corresponding volume integrals. Also, the cluster models, in which 11Li consists of 2n-halo and the 9Li core having its own LSSM form of density and 11Be consists of a n-halo and the 10Be core, are adopted. Within the latter, we give predictions for the longitudinal momentum distributions of 9Li fragments produced in the breakup of 11Li at 62 MeV/nucleon on a proton target. It is shown that our results for the diffraction and stripping reaction cross sections in 11Be scattering on 9Be, 93Nb, 181Ta, and 238U targets at 63 MeV/nucleon are in a good agreement with the available experimental data.

  8. Parity nonconservation in elastic p-vectorp scattering

    SciTech Connect

    Liu, C.-P.; Hyun, C.H.; Desplanques, B.

    2006-06-15

    By looking at the parity-nonconserving (PNC) asymmetries for different energies in p-vectorp scattering, it is in principle possible to determine the PNC {rho}NN and {omega}NN couplings of a single-meson-exchange model of the PNC NN force. Analysis of the experimental data at 13.6, 45, and 221 MeV was performed by Carlson et al., [Phys. Rev. C 65, 035502 (2002)] who concluded the data were in agreement with the uncertainties accorded the original DDH estimates for the PNC meson-nucleon couplings. In this work it is shown first that a comparison with updated hadronic predictions of these couplings suggests the existence of some discrepancy for the PNC {omega}NN coupling. The effect of varying the strong coupling constants and introducing cutoffs in the one-boson-exchange weak potential is then investigated. As expected, the resulting asymmetry is quite sensitive to these parameters regardless of the energy. However, the above mentioned discrepancy persists. The dependence of this conclusion on various ingredients entering an improved description of the PNC NN force is also examined. Additional mechanisms include the two-pion resonance nature of the rho meson and some momentum dependence of the isoscalar PNC {rho}NN vertex. None of these corrections removes or even alleviates the above discrepancy. Their impact on the theoretical determination of the vector meson-nucleon couplings, the description of the PNC force in terms of single-meson exchange, and the interpretation of measurements are examined.

  9. Elastic Scattering Spectroscopy (ESS): an Instrument-Concept for Dynamics of Complex (Bio-) Systems From Elastic Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Benedetto, Antonio; Kearley, Gordon J.

    2016-10-01

    A new type of neutron-scattering spectroscopy is presented that is designed specifically to measure dynamics in bio-systems that are difficult to obtain in any other way. The temporal information is largely model-free and is analogous to relaxation processes measured with dielectric spectroscopy, but provides additional spacial and geometric aspects of the underlying dynamics. Numerical simulations of the basic instrument design show the neutron beam can be highly focussed, giving efficiency gains that enable the use of small samples. Although we concentrate on continuous neutron sources, the extension to pulsed neutron sources is proposed, both requiring minimal data-treatment and being broadly analogous with dielectric spectroscopy, they will open the study of dynamics to new areas of biophysics.

  10. Elastic Scattering Spectroscopy (ESS): an Instrument-Concept for Dynamics of Complex (Bio-) Systems From Elastic Neutron Scattering.

    PubMed

    Benedetto, Antonio; Kearley, Gordon J

    2016-10-05

    A new type of neutron-scattering spectroscopy is presented that is designed specifically to measure dynamics in bio-systems that are difficult to obtain in any other way. The temporal information is largely model-free and is analogous to relaxation processes measured with dielectric spectroscopy, but provides additional spacial and geometric aspects of the underlying dynamics. Numerical simulations of the basic instrument design show the neutron beam can be highly focussed, giving efficiency gains that enable the use of small samples. Although we concentrate on continuous neutron sources, the extension to pulsed neutron sources is proposed, both requiring minimal data-treatment and being broadly analogous with dielectric spectroscopy, they will open the study of dynamics to new areas of biophysics.

  11. Elastic Scattering Spectroscopy (ESS): an Instrument-Concept for Dynamics of Complex (Bio-) Systems From Elastic Neutron Scattering

    PubMed Central

    Benedetto, Antonio; Kearley, Gordon J.

    2016-01-01

    A new type of neutron-scattering spectroscopy is presented that is designed specifically to measure dynamics in bio-systems that are difficult to obtain in any other way. The temporal information is largely model-free and is analogous to relaxation processes measured with dielectric spectroscopy, but provides additional spacial and geometric aspects of the underlying dynamics. Numerical simulations of the basic instrument design show the neutron beam can be highly focussed, giving efficiency gains that enable the use of small samples. Although we concentrate on continuous neutron sources, the extension to pulsed neutron sources is proposed, both requiring minimal data-treatment and being broadly analogous with dielectric spectroscopy, they will open the study of dynamics to new areas of biophysics. PMID:27703184

  12. New Frontier in Probing Fluid Transport in Low-Permeability Geomedia: Applications of Elastic and Inelastic Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Ding, M.; Hjelm, R.; Sussman, A. J.

    2016-12-01

    Low-permeability geomedia are prevalent in subsurface environments. They have become increasingly important in a wide range of applications such as CO2-sequestration, hydrocarbon recovery, enhanced geothermal systems, legacy waste stewardship, high-level radioactive waste disposal, and global security. The flow and transport characteristics of low-permeability geomedia are dictated by their exceedingly low permeability values ranging from 10-6 to 10-12 darcy with porosities dominated by nanoscale pores. Developing new characterization methods and robust computational models that allow estimation of transport properties of low-permeability geomedia has been identified as a critical basic research and technology development need for controlling subsurface and fluids flow. Due to its sensibility to hydrogen and flexible sample environment, neutron based elastic and inelastic scattering can, through various techniques, interrogate all the nanoscale pores in the sample whether they are fluid accessible or not, and readily characterize interfacial waters. In this presentation, we will present two studies revealing the effects of nanoscale pore confinement on fluid dynamics in geomedia. In one study, we use combined (ultra-small)/small-angle elastic neutron scatterings to probe nanoporous features responses in geological materials to transport processes. In the other study, incoherent inelastic neutron scattering was used to distingwish between intergranular pore water and fluid inclusion moisture in bedded rock salt, and to explore their thermal stablibility. Our work demonstrates that neutron based elastic and inelastic scatterings are techniques of choice for in situ probing hydrocarbon and water behavior in nanoporous materials, providing new insights into water-rock interaction and fluids transport in low-permeability geomaterials.

  13. Total cross sections for positrons scattered elastically from helium based on new measurements of total ionization cross sections

    NASA Technical Reports Server (NTRS)

    Diana, L. M.; Chaplin, R. L.; Brooks, D. L.; Adams, J. T.; Reyna, L. K.

    1990-01-01

    An improved technique is presented for employing the 2.3m spectrometer to measure total ionization cross sections, Q sub ion, for positrons incident on He. The new ionization cross section agree with the values reported earlier. Estimates are also presented of total elastic scattering cross section, Q sub el, obtained by subtracting from total scattering cross sections, Q sub tot, reported in the literature, the Q sub ion and Q sub Ps (total positronium formation cross sections) and total excitation cross sections, Q sub ex, published by another researcher. The Q sub ion and Q sub el measured with the 3m high resolution time-of-flight spectrometer for 54.9eV positrons are in accord with the results from the 2.3m spectrometer. The ionization cross sections are in fair agreement with theory tending for the most part to be higher, especially at 76.3 and 88.5eV. The elastic cross section agree quite well with theory to the vicinity of 50eV, but at 60eV and above the experimental elastic cross sections climb to and remain at about 0.30 pi a sub o sq while the theoretical values steadily decrease.

  14. Small-slope scattering from rough elastic ocean floors: general theory and computational algorithm.

    PubMed

    Gragg, R F; Wurmser, D; Gauss, R C

    2001-12-01

    In this article acoustic scattering by a random rough interface that separates a fluid incident medium from an underlying uniform scattering medium, either fluid or elastic solid, in cases for which the Bragg scale lies within the power-law tail of the roughness spectrum is dealt with. The physical foundation is an inherently reciprocity-preserving, local small-slope theory. A fully bistatic formulation is developed for the scattering strength, together with a robust numerical implementation that allows a wide range of spectral exponent values. The practical result for ocean acoustics is a significantly improved description of the interface component of sea floor scattering. Calculations are presented to demonstrate the advantage of this approach over perturbation theory, and to illustrate its dependence on frequency and environmental parameters as well as its operation in bistatic geometries.

  15. Elastic Proton Scattering of Medium Mass Nuclei from Coupled-Cluster Theory

    SciTech Connect

    Hagen, G.; MichelN.,

    2012-01-01

    Using coupled-cluster theory and interactions from chiral effective field theory, we compute overlap functions for transfer and scattering of low-energy protons on the target nucleus 40Ca. Effects of three-nucleon forces are included phenomenologically as in-medium two-nucleon interactions. Using known asymptotic forms for one-nucleon overlap functions we derive a simple and intuitive way of computing scattering observables such as elastic scattering phase shifts and cross sections. As a first application and proof of principle, we compute phase shifts and differential interaction cross sections at energies of 9.6 and 12.44 MeV and compare with experimental data. Our computed diffraction minima are in fair agreement with experimental results, while we tend to overestimate the cross sections at large scattering angles.

  16. Elastic scattering of polarized protons on deuterium at 800 MeV

    SciTech Connect

    Weston, G.S.

    1984-07-01

    A specific set of spin transfer coefficients has been measured for proton-deuteron elastic scattering at 800 MeV using an unpolarized liquid deuterium target. The experiment was done using the High Resolution Spectrometer (HRS) at the Los Alamos Meson Physics Facility (LAMPF) with a polarized proton beam. The scattered proton spin direction was determined using the Focal Plane Polarimeter (FPP) of the HRS, which employs a carbon analyzer. Some of the spin dependent parameters measured in this experiment are of considerable interest because they provide selective information about the nucleon-nucleon (NN) amplitude. Since the deuteron is the simplest bound nucleus, pd elastic scattering is particularly well suited for testing multiple scattering theories. These measurements will also be used to eventually determine the full pd collision matrix, which contains all possible information about the scattering process. In addition, the experimental setup is described for a polarized proton-polarized deuterium target spin transfer experiment also done at the HRS at 800 MeV incident proton energy. 71 references.

  17. Monte Carlo investigations of elastic scattering spectroscopy applied to latex spheres used as tissue phantoms

    SciTech Connect

    Boyer, J.; Mourant, J.R.; Bigio, I.J.

    1995-05-01

    An optical-fiber-coupled, elastic-scatter spectrometer has proven effective in discriminating between malignant and non-malignant tissue in the human bladder and gastrointestinal tract. The system injects broadband light into the tissue with an optical fiber and spectrally analyzes the returning light collected by an adjacent fiber. The collected photons have experienced multiple scattering events and therefore arrive at the analysis fiber after traveling varied paths.the diameter of the source fiber is comparable to its separation from the collection fiber. The diffusion model is inappropriate for this geometry; therefore, Monte Carlo simulations are used. In addition, the size of the scattering sites in tissue are expected to be of the same order as the excitation wavelengths, and Mie theory is expected to provide the best description of the scattering and extinction. The authors will present and compare the results of simulations and measurements of the elastic scatter signal for suspensions of latex spheres in hemoglobin solutions of varying concentrations.

  18. Low-energy elastic electron scattering from chloromethane, CH3Cl

    NASA Astrophysics Data System (ADS)

    Navarro, C.; Sakaamini, A.; Cross, J.; Hargreaves, L. R.; Khakoo, M. A.; Fedus, Kamil; Winstead, C.; McKoy, V.

    2015-10-01

    We report theoretical as well as (normalized) experimental differential and integral cross sections for vibrationally elastic scattering of low-energy electrons from chloromethane, CH3Cl, also known as methyl chloride. The theoretical cross sections were computed using the Schwinger multichannel variational method in the single-channel approximation, with polarization effects included via virtual excitations. Cross section measurements were made at incident energies ranging from 0.5 to 100 eV and at scattering angles from {5}\\circ to {125}\\circ . We compare our data to earlier previous results for this molecule.

  19. Low-energy elastic electron scattering form chloroethane, C2H5Cl

    NASA Astrophysics Data System (ADS)

    Sakaamini, A.; Navarro, C.; Cross, J.; Hargreaves, L. R.; Khakoo, M. A.; Fedus, Kamil; Winstead, C.; McKoy, V.

    2015-10-01

    We report theoretical as well as (normalized) experimental differential and integral cross sections for vibrationally elastic scattering of low-energy electrons from chloroethane, C2H5Cl, also known as ethyl chloride. The theoretical cross sections were computed using the Schwinger multichannel variational method in the single-channel approximation, with polarization effects included via virtual excitations. Cross section measurements were made at incident energies ranging from 1 to 30 eV and at scattering angles from {10}\\circ to {125}\\circ . We compare our data to previous results for C2H5Cl and for the related molecule chloromethane.

  20. Measurement of T{sub 20} in elastic electron-deuteron scattering

    SciTech Connect

    Bouwhis, M.; Alarcon, R.; Botto, T.

    1999-02-01

    The authors report on a measurement of the tensor analyzing power T{sub 20} in elastic electron-deuteron scattering in the range of four-momentum transfer from 1.8 to 3.2 fm{sup {minus}1}. Electrons of 704 MeV were scattered from a polarized deuterium internal target. The tensor polarization of the deuterium nuclei was determined with an ion-extraction system, allowing an absolute measurement of T{sub 20}. The data are described well by a non-relativistic calculation that includes the effects of meson-exchange currents.

  1. Electromagnetic properties of massive neutrinos in low-energy elastic neutrino-electron scattering

    NASA Astrophysics Data System (ADS)

    Kouzakov, Konstantin A.; Studenikin, Alexander I.

    2017-03-01

    A thorough account of electromagnetic interactions of massive neutrinos in the theoretical formulation of low-energy elastic neutrino-electron scattering is given. The formalism of neutrino charge, magnetic, electric, and anapole form factors defined as matrices in the mass basis is employed under the assumption of three-neutrino mixing. The flavor change of neutrinos traveling from the source to the detector is taken into account and the role of the source-detector distance is inspected. The effects of neutrino flavor-transition millicharges and charge radii in the scattering experiments are pointed out.

  2. Breakup threshold anomaly in the elastic scattering of {sup 6}Li on {sup 27}Al

    SciTech Connect

    Figueira, J. M.; Niello, J. O. Fernandez; Abriola, D.; Arazi, A.; Capurro, O. A.; Barbara, E. de; Marti, G. V.; Heimann, D. Martinez; Negri, A. E.; Pacheco, A. J.; Padron, I.; Gomes, P. R. S.; Lubian, J.; Correa, T.; Paes, B.

    2007-01-15

    Elastic scattering of the weakly bound {sup 6}Li on {sup 27}Al was measured at near-barrier energies. The data analysis was performed using a Woods-Saxon shape optical potential and also using the double-folding Sao Paulo potential. The results show the presence of the breakup threshold anomaly (BTA), an anomalous behavior when compared with the scattering of tightly bound nuclei. This behavior is attributed to a repulsive polarization potential produced by the coupling to the continuum breakup states.

  3. Propagator modifications in elastic nucleon-nucleus scattering within the spectator expansion

    NASA Astrophysics Data System (ADS)

    Chinn, C. R.; Elster, Ch.; Thaler, R. M.; Weppner, S. P.

    1995-10-01

    The theory of the elastic scattering of a nucleon from a nucleus is presented in the form of a spectator expansion of the optical potential. Particular attention is paid to the treatment of the free projectile-nucleus propagator when the coupling of the struck target nucleon to the residual target must be taken into consideration. First order calculations within this framework are shown for neutron total cross sections and for proton scattering for a number of target nuclides at a variety of energies. The calculated values of these observables are in very good agreement with measurement.

  4. Absolute Beam Energy Measurement using Elastic ep Scattering at Thomas Jefferson National Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Deur, Alexandre

    1999-10-01

    The Jefferson Lab beam energy measurement in Hall A using the elastic ep scattering will be described. This new, non-magnetic, energy measurement method allows a ( triangle E/E=10-4 ) precision. First-order corrections are canceled by the measurements of the electron and proton scattering angles for two symmetric kinematics. The measurement principle will be presented as well as the device and measurement results. Comparison with independent magnetic energy measurements of the same accuracy will be shown. This project is the result of a collaboration between the LPC: université Blaise Pascal/in2p3), Saclay and Jefferson Lab.

  5. Elastic scattering of low energy electrons in partially ionized dense semiclassical plasma

    SciTech Connect

    Dzhumagulova, K. N. Shalenov, E. O.; Ramazanov, T. S.

    2015-08-15

    Elastic scattering of electrons by hydrogen atoms in a dense semiclassical hydrogen plasma for low impact energies has been studied. Differential scattering cross sections were calculated within the effective model of electron-atom interaction taking into account the effect of screening as well as the quantum mechanical effect of diffraction. The calculations were carried out on the basis of the phase-function method. The influence of the diffraction effect on the Ramsauer–Townsend effect was studied on the basis of a comparison with results made within the effective polarization model of the Buckingham type.

  6. Elastic scattering of low energy electrons in partially ionized dense semiclassical plasma

    NASA Astrophysics Data System (ADS)

    Dzhumagulova, K. N.; Shalenov, E. O.; Ramazanov, T. S.

    2015-08-01

    Elastic scattering of electrons by hydrogen atoms in a dense semiclassical hydrogen plasma for low impact energies has been studied. Differential scattering cross sections were calculated within the effective model of electron-atom interaction taking into account the effect of screening as well as the quantum mechanical effect of diffraction. The calculations were carried out on the basis of the phase-function method. The influence of the diffraction effect on the Ramsauer-Townsend effect was studied on the basis of a comparison with results made within the effective polarization model of the Buckingham type.

  7. Two Photon Exchange in Quasi-elastic and Deep-inelastic Scattering

    SciTech Connect

    Averett, Todd D.; Katich, Joseph; Zhao Bo

    2011-10-24

    In this paper, I present an overview and preliminary results from three experiments at Jefferson Lab that were recently completed using a {sup 3}He gas target with polarization oriented normal to the scattering plane of unpolarized incident electrons. A target single spin asymmetry was formed by periodically flipping the direction of the target spin. In the reaction {up_arrow}{sup 3}He(e,e'), the Born contribution is expected to be zero, giving direct sensitivity to two photon exchange. This asymmetry was measured in the quasi-elastic and deep-inelastic regimes with 0.1 < Q{sup 2} < 1.0 GeV{sup 2}. The asymmetry is predicted to decrease by two-orders of magnitude for deep-inelastic versus quasi-elastic scattering. Preliminary results from these experiments will be presented.

  8. Compton sources for the observation of elastic photon-photon scattering events

    NASA Astrophysics Data System (ADS)

    Micieli, D.; Drebot, I.; Bacci, A.; Milotti, E.; Petrillo, V.; Conti, M. Rossetti; Rossi, A. R.; Tassi, E.; Serafini, L.

    2016-09-01

    We present the design of a photon-photon collider based on conventional Compton gamma sources for the observation of elastic γ γ scattering. Two symmetric electron beams, generated by photocathodes and accelerated in linacs, produce two primary gamma rays through Compton backscattering with two high energy lasers. The elastic photon-photon scattering is analyzed by start-to-end simulations from the photocathodes to the detector. A new Monte Carlo code has been developed ad hoc for the counting of the QED events. Realistic numbers of the secondary gamma yield, obtained by using the parameters of existing or approved Compton devices, a discussion of the feasibility of the experiment and of the nature of the background are presented.

  9. Improved input for multi-reaction hadronic analyses from elastic pion-nucleon scattering

    NASA Astrophysics Data System (ADS)

    Revier, Joseph; Roenchen, Deborah; Doering, Michael; Workman`, Ronald

    2017-01-01

    In the search for missing baryonic resonances, many analyses include data from a variety of pion and photon induced reactions. For elastic πN scattering, however, usually the partial waves of the SAID or other groups are fitted, instead of data. We provide the partial-wave covariance matrices needed to perform correlated χ2 fits, in which the obtained χ2 equals the actual χ2 up to non-linear and normalization corrections. For any analysis relying on partial waves extracted from elastic pion scattering, this is a prerequisite to assess the significance of resonance signals and to assign any uncertainty on results. The compilation of the necessary data to improve hadronic analyses is presented in detail. Supported by the U.S. Department of Energy Grant DE-SC0014133, contract DE-AC05-06OR23177, and by the National Science Foundation (CAREER grant No. 1452055, PIF Grant No. 1415459).

  10. Transverse Beam Spin Asymmetries in Forward-Angle Elastic Electron-Proton Scattering

    SciTech Connect

    David Armstrong; Francois Arvieux; Razmik Asaturyan; Todd Averett; Stephanie Bailey; Guillaume Batigne; Douglas Beck; Elizabeth Beise; Jay Benesch; Louis Bimbot; James Birchall; Angela Biselli; Peter Bosted; Elodie Boukobza; Herbert Breuer; Roger Carlini; Robert Carr; Nicholas Chant; Yu-Chiu Chao; Swapan Chattopadhyay; Russell Clark; Silviu Covrig; Anthony Cowley; Daniel Dale; Charles Davis; Willie Falk; John Finn; Tony Forest; Gregg Franklin; Christophe Furget; David Gaskell; Joseph Grames; Keith Griffioen; Klaus Grimm; Benoit Guillon; Hayko Guler; Lars Hannelius; Richard HASTY; Alice Hawthorne Allen; Tanja Horn; Kathleen Johnston; Mark Jones; Peter Kammel; Reza Kazimi; Paul King; Ameya Kolarkar; Elie Korkmaz; Wolfgang Korsch; Serge Kox; Joachim Kuhn; Jeff Lachniet; Lawrence Lee; Jason Lenoble; Eric Liatard; Jianglai Liu; Berenice Loupias; Allison Lung; Dominique Marchand; Jeffery Martin; Kenneth McFarlane; David McKee; Robert McKeown; Fernand Merchez; Hamlet Mkrtchyan; Bryan Moffit; M. Morlet; Itaru Nakagawa; Kazutaka Nakahara; Retief Neveling; Silvia Niccolai; S. Ong; Shelley Page; Vassilios Papavassiliou; Stephen Pate; Sarah Phillips; Mark Pitt; Benard Poelker; Tracy Porcelli; Gilles Quemener; Brian Quinn; William Ramsay; Aamer Rauf; Jean-Sebastien Real; Julie Roche; Philip Roos; Gary Rutledge; Jeffery Secrest; Neven Simicevic; Gregory Smith; Damon Spayde; Samuel Stepanyan; Marcy Stutzman; Vince Sulkosky; Vincent Sulkosky; Vince Sulkosky; Vincent Sulkosky; Vardan Tadevosyan; Raphael Tieulent; Jacques Van de Wiele; Willem van Oers; Eric Voutier; William Vulcan; Glen Warren; Steven Wells; Steven Williamson; Stephen Wood; Chen Yan; Junho Yun; Valdis Zeps

    2007-08-01

    We have measured the beam-normal single-spin asymmetry in elastic scattering of transversely-polarized 3 GeV electrons from unpolarized protons at Q^2 values of 0.15 and 0.25 (GeV/c)^2 with results of A_n = -4.06 +- 0.99(stat) +- 0.63(syst) and A_n = -4.82 +- 1.87(stat) +- 0.98(syst) ppm. These results are inconsistent with calculations solely using the elastic nucleon intermediate state, and generally agree with calculations with significant inelastic hadronic intermediate state contributions. A_n provides a direct probe of the imaginary component of the two-photon exchange amplitude, the complete description of which is important in the interpretation of data from precision electron-scattering experiments.

  11. Microscopic cluster model analysis of {sup 14}O+p elastic scattering

    SciTech Connect

    Baye, D.; Descouvemont, P.; Leo, F.

    2005-08-01

    The {sup 14}O+p elastic scattering is discussed in detail in a fully microscopic cluster model. The {sup 14}O cluster is described by a closed p shell for protons and a closed p3/2 subshell for neutrons in the translation-invariant harmonic-oscillator model. The exchange and spin-orbit parameters of the effective forces are tuned on the energy levels of the {sup 15}C mirror system. With the generator-coordinate and microscopic R-matrix methods, phase shifts and cross sections are calculated for the {sup 14}O+p elastic scattering. An excellent agreement is found with recent experimental data. A comparison is performed with phenomenological R-matrix fits. Resonances properties in {sup 15}F are discussed.

  12. Fusion and quasi-elastic scattering in the Li6,7+Au197 systems

    NASA Astrophysics Data System (ADS)

    Palshetkar, C. S.; Thakur, Shital; Nanal, V.; Shrivastava, A.; Dokania, N.; Singh, V.; Parkar, V. V.; Rout, P. C.; Palit, R.; Pillay, R. G.; Bhattacharyya, S.; Chatterjee, A.; Santra, S.; Ramachandran, K.; Singh, N. L.

    2014-02-01

    Fusion and quasi-elastic scattering measurements have been carried out for Li6,7+Au197 systems in the energy range E /Vb˜0.7 to 1.5. Coupled-channel calculations including coupling to inelastic states of the target and projectiles are able to explain an enhancement in measured fusion cross sections at energies below the barrier. At energies above the barrier the complete fusion cross sections are found to be suppressed compared to the coupled-channel predictions for both systems. A systematic comparison of fusion cross sections of the weakly bound stable nuclei Li6,7 and halo nuclei He6,8 on a Au197 target is presented. Barrier distributions from quasi-elastic scattering are seen to shift towards higher energies with respect to fusion after inclusion of the breakup-α channel for both Li6 and Li7.

  13. A predictive theory for elastic scattering and recoil of protons from 4He

    SciTech Connect

    Hupin, Guillaume; Quaglioni, Sofia; Navratil, Petr

    2014-12-08

    Low-energy cross sections for elastic scattering and recoil of protons from 4He nuclei (also known as α particles) are calculated directly by solving the Schrodinger equation for five nucleons interacting through accurate two- and three-nucleon forces derived within the framework of chiral effective field theory. Precise knowledge of these processes at various proton backscattering/recoil angles and energies is needed for the ion-beam analysis of numerous materials, from the surface layers of solids, to thin films, to fusion-reactor materials. Indeed, the same elastic scattering process, in two different kinematic configurations, can be used to probe the concentrations and depth profiles of either hydrogen or helium. Furthermore, we compare our results to available experimental data and show that direct calculations with modern nuclear potentials can help to resolve remaining inconsistencies among data sets and can be used to predict these cross sections when measurements are not available.

  14. Elastic Scattering and Reaction Mechanisms of the Halo Nucleus {sup 11}Be around the Coulomb Barrier

    SciTech Connect

    Di Pietro, A.; Figuera, P.; Papa, M.; Santonocito, D.; Randisi, G.; Scuderi, V.; Amorini, F.; Fisichella, M.; Lattuada, M.; Pellegriti, M. G.; Rizzo, F.; Scalia, G.; Torresi, D.; Acosta, L.; Martel, I.; Perez-Bernal, F.; Borge, M. J. G.; Tengblad, O.; Vidal, A. Maira; Fraile, L. M.

    2010-07-09

    Collisions induced by {sup 9,10,11}Be on a {sup 64}Zn target at the same c.m. energy were studied. For the first time, strong effects of the {sup 11}Be halo structure on elastic-scattering and reaction mechanisms at energies near the Coulomb barrier are evidenced experimentally. The elastic-scattering cross section of the {sup 11}Be halo nucleus shows unusual behavior in the Coulomb-nuclear interference peak angular region. The extracted total-reaction cross section for the {sup 11}Be collision is more than double the ones measured in the collisions induced by {sup 9,10}Be. It is shown that such a strong enhancement of the total-reaction cross section with {sup 11}Be is due to transfer and breakup processes.

  15. Electron-He(+) P-wave Elastic Scattering and Photoabsorption in Two-electron Systems

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.

    2006-01-01

    In a previous paper [Bhatia, Phys. Rev. A 69,032714 (2004)], electron-hydrogen P-wave scattering phase shifts were calculated using the optical potential approach based on the Feshbach projection operator formalism. This method is now extended to the singlet and triplet electron-He(+) P-wave scattering in the elastic region. Phase shifts are calculated using Hylleraas-type correlation functions with up to 220 terms. Results are rigorous lower bounds to the exact phase shifts and they are compared to phase shifts obtained from the method of polarized orbitals and close-coupling calculations. The continuum functions calculated here are used to calculate photoabsorption cross sections. Photoionization cross sections of He and photodetachment cross sections of H(-) are calculated in the elastic region, i.e. leaving He(+) and H in their respective ground states, and compared with previous calculations. Radiative attachment rates are also calculated.

  16. A predictive theory for elastic scattering and recoil of protons from 4He

    DOE PAGES

    Hupin, Guillaume; Quaglioni, Sofia; Navratil, Petr

    2014-12-08

    Low-energy cross sections for elastic scattering and recoil of protons from 4He nuclei (also known as α particles) are calculated directly by solving the Schrodinger equation for five nucleons interacting through accurate two- and three-nucleon forces derived within the framework of chiral effective field theory. Precise knowledge of these processes at various proton backscattering/recoil angles and energies is needed for the ion-beam analysis of numerous materials, from the surface layers of solids, to thin films, to fusion-reactor materials. Indeed, the same elastic scattering process, in two different kinematic configurations, can be used to probe the concentrations and depth profiles ofmore » either hydrogen or helium. Furthermore, we compare our results to available experimental data and show that direct calculations with modern nuclear potentials can help to resolve remaining inconsistencies among data sets and can be used to predict these cross sections when measurements are not available.« less

  17. Elastic and inelastic scattering of 50-MeV pions from 28Si and 30Si

    NASA Astrophysics Data System (ADS)

    Wienands, U.; Hessey, N.; Barnett, B. M.; Rozon, F. M.; Roser, H. W.; Altman, A.; Johnson, R. R.; Gill, D. R.; Smith, G. R.; Wiedner, C. A.; Manley, D. M.; Berman, B. L.; Crawford, H. J.; Grion, N.

    1987-02-01

    Angular distributions of the differential cross section for elastic and inelastic scattering of 50-MeV π+ and π- on 28Si and 30Si have been measured to a relative accuracy of 5-10 We fitted the cross section of elastic π+ and π- scattering from 28Si simultaneously with an optical model using a second-order potential of the Michigan State University form. Our best-fit parameters differ from those given previously. The ratio of the neutron and proton transition-matrix elements for the first Jπ=2+ state in 28Si is found from the inelastic cross section to be 1.13+/-0.09. For 30Si, the ratio is found to be 0.93+/-0.09, which differs significantly from the value derived from lifetime measurements on mirror nuclei.

  18. Microscopic cluster model analysis of 14O+p elastic scattering

    NASA Astrophysics Data System (ADS)

    Baye, D.; Descouvemont, P.; Leo, F.

    2005-08-01

    The 14O+p elastic scattering is discussed in detail in a fully microscopic cluster model. The 14O cluster is described by a closed p shell for protons and a closed p3/2 subshell for neutrons in the translation-invariant harmonic-oscillator model. The exchange and spin-orbit parameters of the effective forces are tuned on the energy levels of the 15C mirror system. With the generator-coordinate and microscopic R-matrix methods, phase shifts and cross sections are calculated for the 14O+p elastic scattering. An excellent agreement is found with recent experimental data. A comparison is performed with phenomenological R-matrix fits. Resonances properties in 15F are discussed.

  19. Anharmonic behavior in the multisubunit protein apoferritin as revealed by quasi-elastic neutron scattering.

    PubMed

    Telling, Mark T F; Neylon, Cameron; Kilcoyne, Susan H; Arrighi, Valeria

    2008-09-04

    Quasi-elastic neutron scattering (QENS) has been used to study the deviation from Debye-law harmonic behavior in lyophilized and hydrated apoferritin, a naturally occurring, multisubunit protein. Whereas analysis of the measured mean squared displacement (msd) parameter reveals a hydration-dependent inflection above 240 K, characteristic of diffusive motion, a hydration-independent inflection is observed at 100 K. The mechanism responsible for this low-temperature anharmonic response is further investigated, via analysis of the elastic incoherent neutron scattering intensity, by applying models developed to describe side-group motion in glassy polymers. Our results suggest that the deviation from harmonic behavior is due to the onset of methyl group rotations which exhibit a broad distribution of activated processes ( E a,ave = 12.2 kJ.mol (-1), sigma = 5.0 kJ x mol (-1)). Our results are likened to those reported for other proteins.

  20. 12C+p resonant elastic scattering in the Maya active target

    NASA Astrophysics Data System (ADS)

    Sambi, S.; Raabe, R.; Borge, M. J. G.; Caamano, M.; Damoy, S.; Fernández-Domínguez, B.; Flavigny, F.; Fynbo, H.; Gibelin, J.; Grinyer, G. F.; Heinz, A.; Jonson, B.; Khodery, M.; Nilsson, T.; Orlandi, R.; Pancin, J.; Perez-Loureiro, D.; Randisi, G.; Ribeiro, G.; Roger, T.; Suzuki, D.; Tengblad, O.; Thies, R.; Datta, U.

    2015-03-01

    In a proof-of-principle measurement, the Maya active target detector was employed for a 12C( p, p) resonant elastic scattering experiment in inverse kinematics. The excitation energy region from 0 to 3MeV above the proton breakup threshold in 13N was investigated in a single measurement. By using the capability of the detector to localize the reaction vertex and record the tracks of the recoiling protons, data covering a large solid angle could be utilized, at the same time keeping an energy resolution comparable with that of direct-kinematics measurements. The excitation spectrum in 13N was fitted using the R-matrix formalism. The level parameters extracted are in good agreement with previous studies. The active target proved its potential for the study of resonant elastic scattering in inverse kinematics with radioactive beams, when detection efficiency is of primary importance.

  1. The scattering potential of partial derivative wavefields in 3-D elastic orthorhombic media: an inversion prospective

    NASA Astrophysics Data System (ADS)

    Oh, Ju-Won; Alkhalifah, Tariq

    2016-09-01

    Multiparameter full waveform inversion (FWI) applied to an elastic orthorhombic model description of the subsurface requires in theory a nine-parameter representation of each pixel of the model. Even with optimal acquisition on the Earth surface that includes large offsets, full azimuth, and multicomponent sensors, the potential for trade-off between the elastic orthorhombic parameters are large. The first step to understanding such trade-off is analysing the scattering potential of each parameter, and specifically, its scattering radiation patterns. We investigate such radiation patterns for diffraction and for scattering from a horizontal reflector considering a background isotropic model. The radiation patterns show considerable potential for trade-off between the parameters and the potentially limited resolution in their recovery. The radiation patterns of C11, C22, and C33 are well separated so that we expect to recover these parameters with limited trade-offs. However, the resolution of their recovery represented by recovered range of model wavenumbers varies between these parameters. We can only invert for the short wavelength components (reflection) of C33 while we can mainly invert for the long wavelength components (transmission) of the elastic coefficients C11 and C22 if we have large enough offsets. The elastic coefficients C13, C23, and C12 suffer from strong trade-offs with C55, C44, and C66, respectively. The trade-offs between C13 and C55, as well as C23 and C44, can be partially mitigated if we acquire P-SV and SV-SV waves. However, to reduce the trade-offs between C12 and C66, we require credible SH-SH waves. The analytical radiation patterns of the elastic constants are supported by numerical gradients of these parameters.

  2. Research on UV scattering communication

    NASA Astrophysics Data System (ADS)

    Dong, Ke-yan; Lou, Yan; Ding, Ying; Wang, Shuo; Wang, Hongliang; Jiang, Hui-lin

    2013-08-01

    Ultraviolet (UV) scattering communication is a broadcast communication mode of information transmission by particles in the atmosphere scattering effect on the blind band ultraviolet light, there are many advantages such as unaffected by electromagnetic radiation, good confidentiality, non-line-of sight communication. This type communication mainly used in a short distance, secure communication, which was superior to no line communication in aspect of anti-jamming and secrecy. Firstly the military requirement of UV scattering communication is analyzed in this paper, The development trend is introduced, then the composition and working principle of ultraviolet scattering communication system are also discussed, The key influential factors of UV communication system path transmission loss effects on parameters such as receiver, transmitter and received beam divergence angle, pitch angle and the communication distance were analyzed. Attenuation was quantitatively simulated under different atmospheres, communication patterns and structure parameters. The results show that: transmission distance increases with increasing beam divergence angle and decreasing field angle. And the received view angle of influence on the communication distance is far greater than the emission beam divergence angle; transmission distance increases with increasing beam divergence angle and decreasing field and field angle effects on communication distance is greater than beam divergence angle.

  3. Direct experimental reconstruction of the pp elastic scattering matrix at 579 MeV

    SciTech Connect

    Aprile, E.; Eisenegger, C.; Hausammann, R.; Heer, E.; Hess, R.; Lechanoine-Leluc, C.; Leo, W.R.; Morenzoni, S.; Onel, Y.; Rapin, D.; Mango, S.

    1981-04-20

    We have made, for the first time, a direct reconstruction of the pp elastic scattering matrix at 579 MeV from a series of experiments performed with a polarized beam line. Fifteen observables consisting of the polarization, two-spin correlation and transfer parameters, and three-spin parameters were measured at seven angles between 66/sup 0/ and 90/sup 0/ center of mass. The experimental results and reconstructed amplitudes are presented and compared to a phase-shift analysis.

  4. Elastic proton scattering on tritium below the n-{sup 3}He threshold

    SciTech Connect

    Lazauskas, Rimantas

    2009-05-15

    Elastic proton scattering on the {sup 3}H nucleus is studied between p-{sup 3}H and n-{sup 3}He thresholds, in the energy region where the first excited state of the {alpha} particle is embedded in the continuum. Faddeev-Yakubovski equations are solved in configuration space by fully considering effects from isospin breaking and rigorously treating the Coulomb interaction. Different realistic nuclear Hamiltonians are tested, elucidating open problems in the description of the nuclear interaction.

  5. Elastic pd scattering at 316, 364, 470, and 590 MeV in the backward hemisphere.

    NASA Technical Reports Server (NTRS)

    Alder, J. C.; Dollhoff, W.; Lunke, C.; Perdrisat, C. F.; Roberts, W. K.; Kitching, P.; Moss, G.; Olsen, W. C.; Priest, J. R.

    1972-01-01

    The elastic pd differential cross section at center-of-mass angles between 91 and 164 deg was determined for 316, 364, 470, and 590 MeV proton scattering in a backward hemisphere. For the three largest energies, the cross sections were within 10% of each other at any given angle larger than 130 deg. The extrapolated 180 deg differential cross section remained nearly constant from 316 to 590 MeV.

  6. Elastic scattering of 9Be+51V near the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Morales-Rivera, J. C.; Martinez-Quiroz, E.; Belyaeva, T. L.; Aguilera, E. F.; Lizcano, D.; Amador-Valenzuela, P.

    2016-05-01

    Elastic scattering angular distributions for the 9Be+51V system were measured at three near Coulomb barrier energies, Elab = 16.35, 17.44 and 18.53 MeV. The data were analyzed by using a Semimicroscopic Optical Model. This combines a microscopic calculation of the mean-field double folding potential and a phenomenological construction of the dynamical polarization potential. The calculations reproduced the data very well and the total reaction cross sections were also calculated.

  7. Two-Photon Exchange in Elastic Electron-Proton Scattering: A QCD Factorization Approach

    SciTech Connect

    Kivel, Nikolai; Vanderhaeghen, Marc

    2009-08-28

    We estimate the two-photon exchange contribution to elastic electron-proton scattering at large momentum transfer Q{sup 2}. It is shown that the leading two-photon exchange amplitude behaves as 1/Q{sup 4}, and can be expressed in a model independent way in terms of the leading twist nucleon distribution amplitudes. Using several models for the nucleon distribution amplitudes, we provide estimates for existing data and for ongoing experiments.

  8. A Comparative Evaluation of Elasticity in Pentaerythritol tetranitrate using Brillouin Scattering and Resonant Ultrasound Spectroscopy

    SciTech Connect

    Stevens, L.; Hooks, D; Migliori, A

    2010-01-01

    Elastic tensors for organic molecular crystals vary significantly among different measurements. To understand better the origin of these differences, Brillouin scattering and resonant ultrasound spectroscopy measurements were made on the same specimen for single crystal pentaerythritol tetranitrate. The results differ significantly despite mitigation of sample-dependent contributions to errors. The frequency dependence and vibrational modes probed for both measurements are discussed in relation to the observed tensor variance.

  9. Anti-Neutrino Quasi-Elastic Scattering in MINERvA

    NASA Astrophysics Data System (ADS)

    Chvojka, Jesse; Minerva Collaboration

    2011-04-01

    We present recent measurements of anti-neutrino quasi-elastic scattering (nubar_mu+p- >mu+n) at energies of a few GeV which is an important interaction channel and energy range for measuring leptonic CP violation with neutrino oscillation. The interactions were observed in the NuMI beam at Fermilab by the MINERvA detector. We discuss sample selection and reconstruction techniques and show data and simulation comparisons.

  10. Elastic pd scattering at 316, 364, 470, and 590 MeV in the backward hemisphere.

    NASA Technical Reports Server (NTRS)

    Alder, J. C.; Dollhoff, W.; Lunke, C.; Perdrisat, C. F.; Roberts, W. K.; Kitching, P.; Moss, G.; Olsen, W. C.; Priest, J. R.

    1972-01-01

    The elastic pd differential cross section at center-of-mass angles between 91 and 164 deg was determined for 316, 364, 470, and 590 MeV proton scattering in a backward hemisphere. For the three largest energies, the cross sections were within 10% of each other at any given angle larger than 130 deg. The extrapolated 180 deg differential cross section remained nearly constant from 316 to 590 MeV.

  11. Elastic Scattering and Fusion of {sup 6}Li on {sup 64}Zn at the Barrier

    SciTech Connect

    Scuderi, V.; Strano, E.; Amorini, F.; Lattuada, M.; Musumarra, A.; Pellegriti, M. G.; Rizzo, F.; Torresi, D.; Di Pietro, A.; Figuera, P.; Fisichella, M.; Maiolino, C.; Santonocito, D.; Goryunov, O.; Ostashko, V.; Papa, M.; Zadro, M.

    2011-10-28

    Elastic-scattering angular distributions for the {sup 6}Li+{sup 64}Zn system were measured at energies from below to above the Coulomb barrier. The experimental data were analyzed within the optical model to study the energy dependence of the interaction potential. The results suggest the presence of the breakup threshold anomaly. Preliminary results on the fusion cross-sections for the same system are also reported.

  12. Van der Waals Type Model and Structure in π-p Elastic Scattering at High Energies

    NASA Astrophysics Data System (ADS)

    Aleem, F.

    1982-10-01

    The most recent measurement of the angular distribution for π-p elastic scattering at pL =50 and 200 GeV/c which show a structure near -t ≈ 4(GeV/c)2, with squared four momentum transfer -t extended to 10(GeV/c)2, and the total cross section data for 50 ≤ pL ≤ 370 GeV/c have been simultaneously explained by using Van der Waal's type model.

  13. Single-spin asymmetries from two-photon exchange in elastic electron proton scattering

    SciTech Connect

    A.V. Afanasev; N.P. Merenkov

    2005-02-01

    The parity-conserving single-spin beam asymmetry of elastic electron-proton scattering is induced by an absorptive part of the two-photon exchange amplitude. We demonstrate that this asymmetry has logarithmic and double-logarithmic enhancement due to contributions of hard collinear quasi-real photons. An optical theorem is used to evaluate the asymmetry in terms of the total photoproduction cross section on the proton.

  14. Spin cloud induced around an elastic scatterer by the intrinsic spin hall effect.

    PubMed

    Mal'shukov, A G; Chu, C S

    2006-08-18

    Similar to the Landauer electric dipole created around an impurity by the electric current, a spin polarized cloud of electrons can be induced by the intrinsic spin Hall effect near a spin independent elastic scatterer. It is shown that in the ballistic range around the impurity, such a cloud appears in the case of Rashba spin-orbit interaction, even though the bulk spin Hall current is absent.

  15. Development of a microbial high-throughput screening instrument based on elastic light scatter patterns

    NASA Astrophysics Data System (ADS)

    Bae, Euiwon; Patsekin, Valery; Rajwa, Bartek; Bhunia, Arun K.; Holdman, Cheryl; Davisson, V. Jo; Hirleman, E. Daniel; Robinson, J. Paul

    2012-04-01

    A microbial high-throughput screening (HTS) system was developed that enabled high-speed combinatorial studies directly on bacterial colonies. The system consists of a forward scatterometer for elastic light scatter (ELS) detection, a plate transporter for sample handling, and a robotic incubator for automatic incubation. To minimize the ELS pattern-capturing time, a new calibration plate and correction algorithms were both designed, which dramatically reduced correction steps during acquisition of the circularly symmetric ELS patterns. Integration of three different control software programs was implemented, and the performance of the system was demonstrated with single-species detection for library generation and with time-resolved measurement for understanding ELS colony growth correlation, using Escherichia coli and Listeria. An in-house colony-tracking module enabled researchers to easily understand the time-dependent variation of the ELS from identical colony, which enabled further analysis in other biochemical experiments. The microbial HTS system provided an average scan time of 4.9 s per colony and the capability of automatically collecting more than 4000 ELS patterns within a 7-h time span.

  16. Development of a microbial high-throughput screening instrument based on elastic light scatter patterns

    PubMed Central

    Bae, Euiwon; Patsekin, Valery; Rajwa, Bartek; Bhunia, Arun K.; Holdman, Cheryl; Davisson, V. Jo; Hirleman, E. Daniel; Robinson, J. Paul

    2012-01-01

    A microbial high-throughput screening (HTS) system was developed that enabled high-speed combinatorial studies directly on bacterial colonies. The system consists of a forward scatterometer for elastic light scatter (ELS) detection, a plate transporter for sample handling, and a robotic incubator for automatic incubation. To minimize the ELS pattern-capturing time, a new calibration plate and correction algorithms were both designed, which dramatically reduced correction steps during acquisition of the circularly symmetric ELS patterns. Integration of three different control software programs was implemented, and the performance of the system was demonstrated with single-species detection for library generation and with time-resolved measurement for understanding ELS colony growth correlation, using Escherichia coli and Listeria. An in-house colony-tracking module enabled researchers to easily understand the time-dependent variation of the ELS from identical colony, which enabled further analysis in other biochemical experiments. The microbial HTS system provided an average scan time of 4.9 s per colony and the capability of automatically collecting more than 4000 ELS patterns within a 7-h time span. PMID:22559555

  17. Elastic scattering of 17O+208Pb at energies near the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Torresi, D.; Strano, E.; Mazzocco, M.; Boiano, A.; Boiano, C.; Di Meo, P.; La Commara, M.; Manea, C.; Nicoletto, M.; Grebosz, J.; Guglielmetti, A.; Molini, P.; Parascandolo, C.; Pierroutsakou, D.; Signorini, C.; Soramel, F.; Toniolo, N.; Filipescu, D.; Gheorghe, A.; Glodariu, T.; Jeong, S.; Kim, Y. H.; Lay, J. A.; Miyatake, H.; Pakou, A.; Sgouros, O.; Soukeras, V.; Stroe, L.; Vitturi, A.; Watanabe, Y.; Zerva, K.

    2016-05-01

    Within the frame of the commissioning of a new experimental apparatus EXPADES we undertook the measurement of the elastic scattering angular distribution for the system 17O+208Pb at energy around the Coulomb barrier. The reaction dynamics induced by loosely bound Radioactive Ion Beams is currently being extensively studied [4]. In particular the study of the elastic scattering process allows to obtain direct information on the total reaction cross section of the exotic nuclei. In order to understand the effect of the low binding energy on the reaction mechanism it is important to compare radioactive weakly bound nuclei with stable strongly-bound nuclei. In this framework the study of the 17O+208Pb elastic scattering can be considered to be complementary to a previous measurement of the total reaction cross section for the system 17F+208Pb at energies of 86, 90.4 MeV [5, 6]. The data will be compared with those obtained for the neighboring systems 16,18O+208Pb and others available in literature.

  18. Investigation of 17F+p elastic scattering at near-barrier energies

    NASA Astrophysics Data System (ADS)

    El-Azab Farid, M.; Ibraheem, Awad A.; Al-Hajjaji, Arwa S.

    2015-10-01

    The 17F +p elastic scattering at two near-barrier energies of 3.5 and 4.3 MeV/nucleon, have been analyzed in the framework of the single folding approach. The folded potentials are constructed by folding the density-dependent (DDM3Y) effective nucleon-nucleon interaction over the nuclear density of the one-proton halo nucleus 17F. Two versions of the density are considered. In addition, two versions of the one-nucleon knock-on exchange potentials are introduced to construct the real microscopic potentials. The derived potentials supplemented by phenomenological Woods-Saxon imaginary and spin-orbit potentials produced excellent description of the differential elastic scattering cross sections at the higher energy without need to introduce any renormalization. At the lower energy, however, in order to successfully reproduce the data, it is necessary to reduce the strength of the constructed real DDM3Y potential by about 25% of its original value. Furthermore, good agreement with data is obtained using the extracted microscopic DDM3Y potentials for both real and imaginary parts. Moreover, the interesting notch test is applied to investigate the sensitivity of the elastic scattering cross section to the radial distribution of the constructed microscopic potentials. The extracted reaction (absorption) cross sections are, also, investigated.

  19. Derivation of mean-square displacements for protein dynamics from elastic incoherent neutron scattering.

    PubMed

    Yi, Zheng; Miao, Yinglong; Baudry, Jerome; Jain, Nitin; Smith, Jeremy C

    2012-04-26

    The derivation of mean-square displacements from elastic incoherent neutron scattering (EINS) of proteins is examined, with the aid of experiments on camphor-bound cytochrome P450cam and complementary molecular dynamics simulations. It is shown that a q(4) correction to the elastic incoherent structure factor (where q is the scattering vector) can be simply used to reliably estimate from the experiment both the average mean-square atomic displacement, <Δr(2)> of the nonexchanged hydrogen atoms in the protein and its variance, σ(2). The molecular dynamics simulation results are in broad agreement with the experimentally derived <Δr(2)> and σ(2) derived from EINS on instruments at two different energy resolutions, corresponding to dynamics on the ∼100 ps and ∼1 ns time scales. Significant dynamical heterogeneity is found to arise from methyl-group rotations. The easy-to-apply q(4) correction extends the information extracted from elastic incoherent neutron scattering experiments and should be of wide applicability.

  20. α-particle elastic scattering from 12C, 16O, 24Mg, and 28Si

    NASA Astrophysics Data System (ADS)

    Behairy, Kassem O.; Mahmoud, Zakaria M. M.; Anwar, M.

    2017-01-01

    The elastic scattering of α-particle is analyzed in terms of the optical model over the energy 104-172.2 MeV for 12C, 48.7-146 MeV for 16O, 50-119 MeV for 24Mg, and 104, 166, 120 and 240 MeV for 28Si. We generate the real part of the optical model potential using the single folding model. In the single folding procedure, the ground state density of the target is folded with an effective density dependent α-nucleon interaction. For the imaginary part, the usual Woods-Saxon form is used. The parameters of the effective density dependent α-nucleon interaction are determined by fitting the experimental data of elastic scattering. The effective interaction's parameters are optimized using the χ2 criterion. We reasonably reproduce the elastic scattering cross sections for all studied systems. The obtained results reflect the success of our obtained α-nucleon effective interaction.

  1. Quasi-free elastic deuteron-proton scattering in the three-body break-up reaction of deuteron-deuteron scattering

    NASA Astrophysics Data System (ADS)

    Ramazani-Moghaddam-Arani, A.; Amir-Ahmadi, H. R.; Bacher, A. D.; Bailey, C. D.; Biegun, A.; Eslami-Kalantari, M.; Gašparić, I.; Joulaeizadeh, L.; Kalantar-Nayestanaki, N.; Kistryn, St.; Kozela, A.; Mardanpour, H.; Messchendorp, J. G.; Micherdzinska, A. M.; Moeini, H.; Shende, S. V.; Stephan, E.; Stephenson, E. J.; Sworst, R.

    2011-05-01

    This paper discusses some of the recent results obtained in a deuteron-deuteron scattering experiment using a polarized beam of deuterons with an incident energy of 130 MeV. A 4π detection system allowed to measure cross sections and spin observables for various final-state configurations. Here, we discuss the quasi-free elastic deuteron-proton scattering process in deuteron-deuteron scattering which has been observed by analyzing kinematical configurations for which the target neutron acts as a spectator particle. This part of the data can be compared directly to three-nucleon calculations and with existing data for the elastic deuteron-proton scattering process. The results for the polarization observables iT11 and T22 agree well with elastic scattering data published so-far and measured concurrently using a proton target. Surprisingly, the tensor observable T20 shows significant discrepancies with data taken using a proton target.

  2. {sup 7,9,10}Be elastic scattering and total reaction cross sections on a {sup 12}C target

    SciTech Connect

    Zamora, J. C.; Guimaraes, V.; Barioni, A.; Lepine-Szily, A.; Lichtenthaeler, R.; Faria, P. N. de; Mendes, D. R. Jr.; Gasques, L. R.; Scarduelli, V.; Pires, K. C. C.; Morcelle, V.; Leistenschneider, E.; Condori, R. P.; Zagatto, V. A.; Morais, M. C.; Crema, E.; Shorto, J. M. B.

    2011-09-15

    Elastic scattering angular distributions for {sup 7}Be, {sup 9}Be, and {sup 10}Be isotopes on {sup 12}C target were measured at laboratory energies of 18.8, 26.0, and 23.2 MeV, respectively. The analysis was performed in terms of optical model potentials using Woods-Saxon and double-folding form factors. Also, continuum discretized coupled-channels calculations were performed for {sup 7}Be and {sup 9}Be + {sup 12}C systems to infer the role of breakup in the elastic scattering. For the {sup 10}Be + {sup 12}C system, bound states coupled-channels calculations were considered. Moreover, total reaction cross sections were deduced from the elastic scattering analysis and compared with published data on other weakly and tightly bound projectiles elastically scattered on the {sup 12}C target, as a function of energy.

  3. Quadrupole contributions to 10,11B + 16O elastic scattering

    NASA Astrophysics Data System (ADS)

    Parks, L. A.; Stanley, D. P.; Courtney, L. H.; Kemper, K. W.

    1980-01-01

    Elastic scattering angular distributions have been measured for the systems 10B + 16O at EL=33.7, 41.6, and 49.5 MeV and 11B + 16O at EL=41.6 and 49.5 MeV. The 10B and 11B data are oscillatory and similar for angles less than 50° c.m. For angles greater than 50° c.m., the oscillations in the 10B data are damped and the data stop decreasing with increasing angle. Elastic scattering angular distributions have been calculated for 10,11B + 16O with the coupling to the ground-state quadrupole moment included explicitly. Potentials which describe the scattering are extracted with the double folding model. It is found that the quadrupole coupling is necessary to explain the difference in 10B and 11B scattering from 16O. NUCLEAR REACTIONS 16O (10B, 10B) 16O, EL=33.7, 41.6, and 49.5 MeV, 16O (11B, 11B) 16O, EL=41.6 and 49.5 MeV. Measured σ(θ), deduced Woods-Saxon, and double-folding model parameters. Coupled channels calculations for the ground-state quadrupole moment contributions.

  4. The Glauber model and heavy ion reaction and elastic scattering cross sections

    NASA Astrophysics Data System (ADS)

    Mehndiratta, Ajay; Shukla, Prashant

    2017-05-01

    We revisit the Glauber model to study the heavy ion reaction cross sections and elastic scattering angular distributions at low and intermediate energies. The Glauber model takes nucleon-nucleon cross sections and nuclear densities as inputs and has no free parameter and thus can predict the cross sections for unknown systems. The Glauber model works at low energies down to Coulomb barrier with very simple modifications. We present new parametrization of measured total cross sections as well as ratio of real to imaginary parts of the scattering amplitudes for pp and np collisions as a function of nucleon kinetic energy. The nuclear (charge) densities obtained by electron scattering form factors measured in large momentum transfer range are used in the calculations. The heavy ion reaction cross sections are calculated for light and heavy systems and are compared with available data measured over large energy range. The model gives excellent description of the data. The elastic scattering angular distributions are calculated for various systems at different energies. The model gives good description of the data at small momentum transfer but the calculations deviate from the data at large momentum transfer.

  5. Unified quantum theory of elastic and inelastic atomic scattering from a physisorbed monolayer solid

    NASA Astrophysics Data System (ADS)

    Bruch, L. W.; Hansen, F. Y.; Dammann, B.

    2017-06-01

    A unified quantum theory of the elastic and inelastic scattering of low energy He atoms by a physisorbed monolayer solid in the one-phonon approximation is given. It uses a time-dependent wave packet with phonon creation and annihilation components and has a self-consistent feedback between the wave functions for elastic and inelastic scattered atoms. An attenuation of diffraction scattering by inelastic processes thus is inherent in the theory. The atomic motion and monolayer vibrations in the harmonic approximation are treated quantum mechanically and unitarity is preserved. The evaluation of specific one-phonon events includes contributions from diffuse inelastic scattering in other phonon modes. Effects of thermally excited phonons are included using a mean field approximation. The theory is applied to an incommensurate Xe/Pt(111) monolayer (incident energy Ei=4 -16 meV), a commensurate Xe/graphite monolayer (Ei≃64 meV), and an incommensurate Xe/Cu(001) monolayer (Ei≃8 meV). The monolayers are very corrugated targets and there are transient closed diffraction and inelastic channels in the calculations. In many cases, the energy gain events have strengths comparable to the energy loss events.

  6. Three-body calculation of elastic and inelastic scattering of deuterons on 24Mg

    NASA Astrophysics Data System (ADS)

    Deltuva, A.

    2016-03-01

    Deuteron-nucleus scattering is described using exact three-particle equations. The theory is formulated in an extended Hilbert space allowing the excitation of the target nucleus. Alt, Grassberger, and Sandhas equations for transition operators are solved in the momentum-space framework including the Coulomb interaction via the screening and renormalization method. The calculations are performed for elastic and inelastic scattering of deuterons on 24Mg using the rotational model for the excitation potential. A reasonable agreement with the experimental data for the first excited state 2+ of 24Mg is achieved when the quadrupole deformation parameter β2 = 0.47 is used. This new value is more consistent with the inelastic proton scattering data requiring β2 ≈ 0.5 than previous determinations β2 ≈ 0.4 based on two-body deuteron-nucleus models.

  7. Elastic Scattering of Ultracold 23Na and 39K Atoms in the Singlet State

    NASA Astrophysics Data System (ADS)

    Hu, Qiu-Bo; Zhang, Yong-Sheng; Sun, Jin-Feng

    2010-02-01

    The elastic scattering properties for collisions between ultracold Na and K atoms in the singlet state are investigated. Based on the recent theoretical and experimental results, the improved hybrid potential is presented for the singlet X1 Σg+ ground state of NaK. By means of the Numerov and semiclassical methods, the values of the s-wave scattering length a for the singlet state are calculated to be 33.3757a0 and 37.9399a0, respectively. Pronounced shape resonances appear for the l = 1 partial wave for the X1 Σg+ state. In addition, the s-wave scattering cross section, total cross section and energy positions of shape resonances for the X1 Σg+ state are discussed.

  8. Electron-atomic-hydrogen ``elastic" scattering in the presence of a laser field

    NASA Astrophysics Data System (ADS)

    Li, S.-M.; Chen, J.; Zhou, Z.-F.

    2002-05-01

    Laser-assisted electron-atomic-hydrogen “elastic" scattering is studied in the first Born approximation. The initial and final states of projectile electron are described by the Volkov wavefunctions; the dressed state of target described by a time-dependent perturbative wavefunction in soft photon approximation. The laser modified cross-sections are calculated in two distinct geometries for laser polarization either parallel or perpendicular to the incident direction of electron. The numerical results shows that the multiphoton cross-sections oscillate by a few orders over the whole scattering angular region. The results for a parallel geometry oscillate more frequently in the intermediate angles; while the results for a perpendicular geometry oscillate more frequently in the forward and backward angles. At large scattering angles, the sum rule of Kroll and Watson is noticeably violated. The laser modification on summed total cross-section increases with field strength, but decreases with field frequency and polarization deviation from the incident direction.

  9. Quark structure of the nucleon and angular asymmetry of proton-neutron hard elastic scattering.

    PubMed

    Granados, Carlos G; Sargsian, Misak M

    2009-11-20

    We investigate an asymmetry in the angular distribution of hard elastic proton-neutron scattering with respect to the 90 degrees center of mass scattering angle and demonstrate that it's magnitude is related to the helicity-isospin symmetry of the quark wave function of the nucleon. Our estimate of the asymmetry within the quark-interchange model of hard scattering demonstrates that the quark wave function of a nucleon based on the exact SU(6) symmetry predicts an angular asymmetry opposite to that of experimental observations. We found that the quark wave function based on the diquark picture of the nucleon produces a correct asymmetry. Comparison with the data allowed us to show that the vector diquarks contribute around 10% in the nucleon wave function and they are in negative phase relative to the scalar diquarks. These observations are essential in constraining QCD models of a nucleon.

  10. Antihydrogen-hydrogen elastic scattering at thermal energies using an atomic-orbital technique

    SciTech Connect

    Sinha, Prabal K.; Chaudhuri, Puspitapallab; Ghosh, A.S.

    2003-05-01

    In view of the recent interest in the trapping of antihydrogen atom H(bar sign), at very low temperatures, H-bar-H scattering has been investigated at low incident energies using a close-coupling model with the basis set H-bar(1s,2s,2p-bar)+H(1s,2s,2p-bar). The predicted s-wave elastic phase shifts, scattering length, and effective range are in a good agreement with the other recent predictions of Jonsell et al. and of Armour and Chamberlain. The results indicate that the atomic orbital expansion model is suitable to study the H-bar-H scattering at ultracold temperatures.

  11. Deuteron elastic and inelastic scattering at intermediate energies from nuclei in the mass range 6⩽A⩽116

    NASA Astrophysics Data System (ADS)

    Korff, A.; Haefner, P.; Bäumer, C.; van den Berg, A. M.; Blasi, N.; Davids, B.; de Frenne, D.; de Leo, R.; Frekers, D.; Grewe, E.-W.; Harakeh, M. N.; Hofmann, F.; Hunyadi, M.; Jacobs, E.; Junk, B. C.; Negret, A.; von Neumann-Cosel, P.; Popescu, L.; Rakers, S.; Richter, A.; Wörtche, H. J.

    2004-12-01

    Angular distributions of differential cross sections for elastic and inelastic deuteron scattering from 6Li , 16O , 32S , 50,51 V , and 70,72 Ge at an incident energy of 171 MeV and from 90Zr and 116Sn at an incident energy of 183 MeV are presented. Phenomenological optical-model parameters for elastic scattering are extracted from the data and compared to existing deuteron-nucleus global optical potentials.

  12. Fast computation of high energy elastic collision scattering angle for electric propulsion plume simulation

    NASA Astrophysics Data System (ADS)

    Araki, Samuel J.

    2016-11-01

    In the plumes of Hall thrusters and ion thrusters, high energy ions experience elastic collisions with slow neutral atoms. These collisions involve a process of momentum exchange, altering the initial velocity vectors of the collision pair. In addition to the momentum exchange process, ions and atoms can exchange electrons, resulting in slow charge-exchange ions and fast atoms. In these simulations, it is particularly important to accurately perform computations of ion-atom elastic collisions in determining the plume current profile and assessing the integration of spacecraft components. The existing models are currently capable of accurate calculation but are not fast enough such that the calculation can be a bottleneck of plume simulations. This study investigates methods to accelerate an ion-atom elastic collision calculation that includes both momentum- and charge-exchange processes. The scattering angles are pre-computed through a classical approach with ab initio spin-orbit free potential and are stored in a two-dimensional array as functions of impact parameter and energy. When performing a collision calculation for an ion-atom pair, the scattering angle is computed by a table lookup and multiple linear interpolations, given the relative energy and randomly determined impact parameter. In order to further accelerate the calculations, the number of collision calculations is reduced by properly defining two cut-off cross-sections for the elastic scattering. In the MCC method, the target atom needs to be sampled; however, it is confirmed that initial target atom velocity does not play a significant role in typical electric propulsion plume simulations such that the sampling process is unnecessary. With these implementations, the computational run-time to perform a collision calculation is reduced significantly compared to previous methods, while retaining the accuracy of the high fidelity models.

  13. Antiplane wave scattering from a cylindrical cavity in pre-stressed nonlinear elastic media

    PubMed Central

    Shearer, Tom; Parnell, William J.; Abrahams, I. David

    2015-01-01

    The effect of a longitudinal stretch and a pressure-induced inhomogeneous radial deformation on the scattering of antiplane elastic waves from a cylindrical cavity is determined. Three popular nonlinear strain energy functions are considered: the neo-Hookean, the Mooney–Rivlin and a two-term Arruda–Boyce model. A new method is developed to analyse and solve the governing wave equations. It exploits their properties to determine an asymptotic solution in the far-field, which is then used to derive a boundary condition to numerically evaluate the equations local to the cavity. This method could be applied to any linear ordinary differential equation whose inhomogeneous coefficients tend to a constant as its independent variable tends to infinity. The effect of the pre-stress is evaluated by considering the scattering cross section. A longitudinal stretch is found to decrease the scattered power emanating from the cavity, whereas a compression increases it. The effect of the pressure difference depends on the strain energy function employed. For a Mooney–Rivlin material, a cavity inflation increases the scattered power and a deflation decreases it; for a neo-Hookean material, the scattering cross section is unaffected by the radial deformation; and for a two-term Arruda–Boyce material, both inflation and deflation are found to decrease the scattered power. PMID:26543398

  14. A time-domain finite element boundary integral approach for elastic wave scattering

    NASA Astrophysics Data System (ADS)

    Shi, F.; Lowe, M. J. S.; Skelton, E. A.; Craster, R. V.

    2017-08-01

    The response of complex scatterers, such as rough or branched cracks, to incident elastic waves is required in many areas of industrial importance such as those in non-destructive evaluation and related fields; we develop an approach to generate accurate and rapid simulations. To achieve this we develop, in the time domain, an implementation to efficiently couple the finite element (FE) method within a small local region, and the boundary integral (BI) globally. The FE explicit scheme is run in a local box to compute the surface displacement of the scatterer, by giving forcing signals to excitation nodes, which can lie on the scatterer itself. The required input forces on the excitation nodes are obtained with a reformulated FE equation, according to the incident displacement field. The surface displacements computed by the local FE are then projected, through time-domain BI formulae, to calculate the scattering signals with different modes. This new method yields huge improvements in the efficiency of FE simulations for scattering from complex scatterers. We present results using different shapes and boundary conditions, all simulated using this approach in both 2D and 3D, and then compare with full FE models and theoretical solutions to demonstrate the efficiency and accuracy of this numerical approach.

  15. Antiplane wave scattering from a cylindrical cavity in pre-stressed nonlinear elastic media.

    PubMed

    Shearer, Tom; Parnell, William J; Abrahams, I David

    2015-10-08

    The effect of a longitudinal stretch and a pressure-induced inhomogeneous radial deformation on the scattering of antiplane elastic waves from a cylindrical cavity is determined. Three popular nonlinear strain energy functions are considered: the neo-Hookean, the Mooney-Rivlin and a two-term Arruda-Boyce model. A new method is developed to analyse and solve the governing wave equations. It exploits their properties to determine an asymptotic solution in the far-field, which is then used to derive a boundary condition to numerically evaluate the equations local to the cavity. This method could be applied to any linear ordinary differential equation whose inhomogeneous coefficients tend to a constant as its independent variable tends to infinity. The effect of the pre-stress is evaluated by considering the scattering cross section. A longitudinal stretch is found to decrease the scattered power emanating from the cavity, whereas a compression increases it. The effect of the pressure difference depends on the strain energy function employed. For a Mooney-Rivlin material, a cavity inflation increases the scattered power and a deflation decreases it; for a neo-Hookean material, the scattering cross section is unaffected by the radial deformation; and for a two-term Arruda-Boyce material, both inflation and deflation are found to decrease the scattered power.

  16. Elastic scattering of polarized protons on helium three at 800 MeV

    SciTech Connect

    Azizi, A.

    1985-07-01

    A set of spin dependent parameters and cross sections has been measured for polarized p-/sup 3/He elastic scattering over the range of q .7 to 4.2 fm/sup -1/. The experiment was done at the Los Alamos Meson Physics Facility (LAMPF) using the High Resolution Spectrometer (HRS) with a polarized proton beam at .8 GeV. The focal plane polarimeter of the HRS was used to determine the spin direction of the scattered proton. Since /sup 3/He is one of the simplest nuclei, polarized p-/sup 3/He scattering provides a very sensitive test of multiple scattering theories. The theoretical analysis was done by using two different wave functions for /sup 3/He as input to the multiple scattering theory. The theoretical calculations and experimental data together will give us useful information about nucleon-nucleon amplitudes and also help us to obtain a better understanding of the scattering process. 68 refs., 55 figs., 9 tabs.

  17. Muon Neutrino on Electron Elastic Scattering in the NOvA Near Detector and its Applications Beyond the Standard Model

    NASA Astrophysics Data System (ADS)

    Wang, Biao; Bian, Jianming; Coan, Thomas E.; Kotelnikov, Sergey; Duyang, Hongyue; Hatzikoutelis, Athanasios; NOvA Collaboration

    2017-09-01

    Using the NuMI beam at Fermilab and the NOvA near detector, we study the process by which a muon neutrino elastically scatters off an electron in the detector to produce a very forward going electromagnetic shower. By comparing dE/dx for various particle hypotheses for both longitudinal and transverse directions in a multilayer perceptron neural network, we trained a Particle ID algorithm to identify the scattered electron in an inclusive dataset. Muon-neutrino-on-e elastic scattering provides a clean, purely leptonic process free from nuclear effects for understanding neutral current scattering and constraining the NuMI beam flux. Also, this technique can be applied in two broad areas of beyond the standard model physics: a large neutrino transition magnetic moment and light dark matter particles produced in the NuMI target, both of which would create an energy dependent enhancement in the elastic scattering cross section.

  18. Elastic neutron scattering studies at 96 MeV for transmutation.

    PubMed

    Osterlund, M; Blomgren, J; Hayashi, M; Mermod, P; Nilsson, L; Pomp, S; Ohrn, A; Prokofiev, A V; Tippawan, U

    2007-01-01

    Elastic neutron scattering from (12)C, (14)N, (16)O, (28)Si, (40)Ca, (56)Fe, (89)Y and (208)Pb has been studied at 96 MeV in the10-70 degrees interval, using the SCANDAL (SCAttered Nucleon Detection AssembLy) facility. The results for (12)C and (208)Pb have recently been published, while the data on the other nuclei are under analysis. The achieved energy resolution, 3.7 MeV, is about an order of magnitude better than for any previous experiment above 65 MeV incident energy. A novel method for normalisation of the absolute scale of the cross section has been used. The estimated normalisation uncertainty, 3%, is unprecedented for a neutron-induced differential cross section measurement on a nuclear target. Elastic neutron scattering is of utmost importance for a vast number of applications. Besides its fundamental importance as a laboratory for tests of isospin dependence in the nucleon-nucleon, and nucleon-nucleus, interaction, knowledge of the optical potentials derived from elastic scattering come into play in virtually every application where a detailed understanding of nuclear processes is important. Applications for these measurements are dose effects due to fast neutrons, including fast neutron therapy, as well as nuclear waste incineration and single event upsets in electronics. The results at light nuclei of medical relevance ((12)C, (14)N and (16)O) are presented separately. In the present contribution, results on the heavier nuclei are presented, among which several are of relevance to shielding of fast neutrons.

  19. PREFACE: REXS 2013 - Workshop on Resonant Elastic X-ray Scattering in Condensed Matter

    NASA Astrophysics Data System (ADS)

    Beutier, G.; Mazzoli, C.; Yakhou, F.; Brown, S. D.; Bombardi, A.; Collins, S. P.

    2014-05-01

    The aim of this workshop was to bring together experts in experimental and theoretical aspects of resonant elastic x-ray scattering, along with researchers who are new to the field, to discuss important recent results and the fundamentals of the technique. The meeting was a great success, with the first day dedicated to students and new researchers in the field, who received introductory lectures and tutorials. All conference delegates were invited either to make an oral presentation or to present a poster, accompanied by a short talk. The first two papers selected for the REXS13 proceedings (Grenier & Joly and Helliwell) give a basic background to the theory of REXS and applications across a wide range of scientific areas. The remainder of the papers report on some of the latest scientific results obtained by applying the REXS technique to contemporary problems in condensed matter, materials and x-ray physics. It is hoped that these proceedings provide a snapshot of the current status of a vibrant and diverse scientific technique that will be of value not just to those who attended the workshop but also to any other reader with an interest in the subject. Local Scientific Committee REXS13 International Scientific Advisory Committee M Altarelli, European XFEL, Germany F de Bergevin, European Synchrotron Radiation Facility, France J Garcia-Ruiz, Universidad de Zaragoza, Spain A I Goldman, Iowa State University, USA M Goldmann, Institut Nanosciences, France T Schulli, European Synchrotron Radiation Facility, France C R Natoli, Laboratori Nazionali de Frascati, Italy G Materlik, Diamond Light Source, UK L Paolasini, European Synchrotron Radiation Facility, France U Staub, Paul Scherrer Institut, Switzerland K Finkelstein, Cornell University, USA Y Murakami, Photon Factory, Japan REXS13 Local Scientific Committee G Beutier, CNRS Grenoble, France C Mazzoli, Politecnico di Milano, Italy F Yakhou, European Synchrotron Radiation Facility, France S D Brown, XMaS UK CRG

  20. Hard Two-Photon Contribution to Elastic Lepton-Proton Scattering Determined by the OLYMPUS Experiment.

    PubMed

    Henderson, B S; Ice, L D; Khaneft, D; O'Connor, C; Russell, R; Schmidt, A; Bernauer, J C; Kohl, M; Akopov, N; Alarcon, R; Ates, O; Avetisyan, A; Beck, R; Belostotski, S; Bessuille, J; Brinker, F; Calarco, J R; Carassiti, V; Cisbani, E; Ciullo, G; Contalbrigo, M; De Leo, R; Diefenbach, J; Donnelly, T W; Dow, K; Elbakian, G; Eversheim, P D; Frullani, S; Funke, Ch; Gavrilov, G; Gläser, B; Görrissen, N; Hasell, D K; Hauschildt, J; Hoffmeister, Ph; Holler, Y; Ihloff, E; Izotov, A; Kaiser, R; Karyan, G; Kelsey, J; Kiselev, A; Klassen, P; Krivshich, A; Lehmann, I; Lenisa, P; Lenz, D; Lumsden, S; Ma, Y; Maas, F; Marukyan, H; Miklukho, O; Milner, R G; Movsisyan, A; Murray, M; Naryshkin, Y; Perez Benito, R; Perrino, R; Redwine, R P; Rodríguez Piñeiro, D; Rosner, G; Schneekloth, U; Seitz, B; Statera, M; Thiel, A; Vardanyan, H; Veretennikov, D; Vidal, C; Winnebeck, A; Yeganov, V

    2017-03-03

    The OLYMPUS Collaboration reports on a precision measurement of the positron-proton to electron-proton elastic cross section ratio, R_{2γ}, a direct measure of the contribution of hard two-photon exchange to the elastic cross section. In the OLYMPUS measurement, 2.01 GeV electron and positron beams were directed through a hydrogen gas target internal to the DORIS storage ring at DESY. A toroidal magnetic spectrometer instrumented with drift chambers and time-of-flight scintillators detected elastically scattered leptons in coincidence with recoiling protons over a scattering angle range of ≈20° to 80°. The relative luminosity between the two beam species was monitored using tracking telescopes of interleaved gas electron multiplier and multiwire proportional chamber detectors at 12°, as well as symmetric Møller or Bhabha calorimeters at 1.29°. A total integrated luminosity of 4.5  fb^{-1} was collected. In the extraction of R_{2γ}, radiative effects were taken into account using a Monte Carlo generator to simulate the convolutions of internal bremsstrahlung with experiment-specific conditions such as detector acceptance and reconstruction efficiency. The resulting values of R_{2γ}, presented here for a wide range of virtual photon polarization 0.456<ε<0.978, are smaller than some hadronic two-photon exchange calculations predict, but are in reasonable agreement with a subtracted dispersion model and a phenomenological fit to the form factor data.

  1. Hard Two-Photon Contribution to Elastic Lepton-Proton Scattering Determined by the OLYMPUS Experiment

    NASA Astrophysics Data System (ADS)

    Henderson, B. S.; Ice, L. D.; Khaneft, D.; O'Connor, C.; Russell, R.; Schmidt, A.; Bernauer, J. C.; Kohl, M.; Akopov, N.; Alarcon, R.; Ates, O.; Avetisyan, A.; Beck, R.; Belostotski, S.; Bessuille, J.; Brinker, F.; Calarco, J. R.; Carassiti, V.; Cisbani, E.; Ciullo, G.; Contalbrigo, M.; de Leo, R.; Diefenbach, J.; Donnelly, T. W.; Dow, K.; Elbakian, G.; Eversheim, P. D.; Frullani, S.; Funke, Ch.; Gavrilov, G.; Gläser, B.; Görrissen, N.; Hasell, D. K.; Hauschildt, J.; Hoffmeister, Ph.; Holler, Y.; Ihloff, E.; Izotov, A.; Kaiser, R.; Karyan, G.; Kelsey, J.; Kiselev, A.; Klassen, P.; Krivshich, A.; Lehmann, I.; Lenisa, P.; Lenz, D.; Lumsden, S.; Ma, Y.; Maas, F.; Marukyan, H.; Miklukho, O.; Milner, R. G.; Movsisyan, A.; Murray, M.; Naryshkin, Y.; Perez Benito, R.; Perrino, R.; Redwine, R. P.; Rodríguez Piñeiro, D.; Rosner, G.; Schneekloth, U.; Seitz, B.; Statera, M.; Thiel, A.; Vardanyan, H.; Veretennikov, D.; Vidal, C.; Winnebeck, A.; Yeganov, V.; Olympus Collaboration

    2017-03-01

    The OLYMPUS Collaboration reports on a precision measurement of the positron-proton to electron-proton elastic cross section ratio, R2 γ , a direct measure of the contribution of hard two-photon exchange to the elastic cross section. In the OLYMPUS measurement, 2.01 GeV electron and positron beams were directed through a hydrogen gas target internal to the DORIS storage ring at DESY. A toroidal magnetic spectrometer instrumented with drift chambers and time-of-flight scintillators detected elastically scattered leptons in coincidence with recoiling protons over a scattering angle range of ≈20 ° to 80°. The relative luminosity between the two beam species was monitored using tracking telescopes of interleaved gas electron multiplier and multiwire proportional chamber detectors at 12°, as well as symmetric Møller or Bhabha calorimeters at 1.29°. A total integrated luminosity of 4.5 fb-1 was collected. In the extraction of R2 γ, radiative effects were taken into account using a Monte Carlo generator to simulate the convolutions of internal bremsstrahlung with experiment-specific conditions such as detector acceptance and reconstruction efficiency. The resulting values of R2 γ, presented here for a wide range of virtual photon polarization 0.456 <ɛ <0.978 , are smaller than some hadronic two-photon exchange calculations predict, but are in reasonable agreement with a subtracted dispersion model and a phenomenological fit to the form factor data.

  2. Quasi-elastic neutron scattering studies of protein dynamics. Progress report, November 1, 1992--May 25, 1993

    SciTech Connect

    Rorschach, H.E.

    1993-05-25

    Results that shed new light on the study of protein dynamics were obtained by quasi-elastic neutron scattering. The triple axis instrument H-9 supplied by the cold source was used to perform a detailed study of the quasi-elastic spectrum and the Debye-Waller factor for trypsin in powder form, in solution, and in crystals. A preliminary study of myoglobin crystals was also done. A new way to view the results of quasi-elastic scattering experiments is sketched, and the data on trypsin are presented and analyze according to this new picture.

  3. Photoelectron angular distribution from free SiO2 nanoparticles as a probe of elastic electron scattering.

    PubMed

    Antonsson, E; Langer, B; Halfpap, I; Gottwald, J; Rühl, E

    2017-06-28

    In order to gain quantitative information on the surface composition of nanoparticles from X-ray photoelectron spectroscopy, a detailed understanding of photoelectron transport phenomena in these samples is needed. Theoretical results on the elastic and inelastic scattering have been reported, but a rigorous experimental verification is lacking. We report in this work on the photoelectron angular distribution from free SiO2 nanoparticles (d = 122 ± 9 nm) after ionization by soft X-rays above the Si 2p and O 1s absorption edges, which gives insight into the relative importance of elastic and inelastic scattering channels in the sample particles. The photoelectron angular anisotropy is found to be lower for photoemission from SiO2 nanoparticles than that expected from the theoretical values for the isolated Si and O atoms in the photoelectron kinetic energy range 20-380 eV. The reduced angular anisotropy is explained by elastic scattering of the outgoing photoelectrons from neighboring atoms, smearing out the atomic distribution. Photoelectron angular distributions yield detailed information on photoelectron elastic scattering processes allowing for a quantification of the number of elastic scattering events the photoelectrons have undergone prior to leaving the sample. The interpretation of the experimental photoelectron angular distributions is complemented by Monte Carlo simulations, which take inelastic and elastic photoelectron scattering into account using theoretical values for the scattering cross sections. The results of the simulations reproduce the experimental photoelectron angular distributions and provide further support for the assignment that elastic and inelastic electron scattering processes need to be considered.

  4. Photoelectron angular distribution from free SiO2 nanoparticles as a probe of elastic electron scattering

    NASA Astrophysics Data System (ADS)

    Antonsson, E.; Langer, B.; Halfpap, I.; Gottwald, J.; Rühl, E.

    2017-06-01

    In order to gain quantitative information on the surface composition of nanoparticles from X-ray photoelectron spectroscopy, a detailed understanding of photoelectron transport phenomena in these samples is needed. Theoretical results on the elastic and inelastic scattering have been reported, but a rigorous experimental verification is lacking. We report in this work on the photoelectron angular distribution from free SiO2 nanoparticles (d = 122 ± 9 nm) after ionization by soft X-rays above the Si 2p and O 1s absorption edges, which gives insight into the relative importance of elastic and inelastic scattering channels in the sample particles. The photoelectron angular anisotropy is found to be lower for photoemission from SiO2 nanoparticles than that expected from the theoretical values for the isolated Si and O atoms in the photoelectron kinetic energy range 20-380 eV. The reduced angular anisotropy is explained by elastic scattering of the outgoing photoelectrons from neighboring atoms, smearing out the atomic distribution. Photoelectron angular distributions yield detailed information on photoelectron elastic scattering processes allowing for a quantification of the number of elastic scattering events the photoelectrons have undergone prior to leaving the sample. The interpretation of the experimental photoelectron angular distributions is complemented by Monte Carlo simulations, which take inelastic and elastic photoelectron scattering into account using theoretical values for the scattering cross sections. The results of the simulations reproduce the experimental photoelectron angular distributions and provide further support for the assignment that elastic and inelastic electron scattering processes need to be considered.

  5. Proton form factors and two-photon exchange in elastic electron-proton scattering

    SciTech Connect

    Nikolenko, D. M.; Arrington, J.; Barkov, L. M.; Vries, H. de; Gauzshtein, V. V.; Golovin, R. A.; Gramolin, A. V.; Dmitriev, V. F.; Zhilich, V. N.; Zevakov, S. A.; Kaminsky, V. V.; Lazarenko, B. A.; Mishnev, S. I.; Muchnoi, N. Yu.; Neufeld, V. V.; Rachek, I. A.; Sadykov, R. Sh.; Stibunov, V. N.; Toporkov, D. K.; Holt, R. J.; and others

    2015-05-15

    Proton electromagnetic form factors are among the most important sources of information about the internal structure of the proton. Two different methods for measuring these form factors, the method proposed by Rosenbluth and the polarization-transfer method, yield contradictory results. It is assumed that this contradiction can be removed upon taking into account the hard part of the contribution of two-photon exchange to the cross section for elastic electron-proton scattering. This contribution can measured experimentally via a precision comparison of the cross sections for the elastic scattering of positrons and electrons on protons. Such a measurement, performed at the VEPP-3 storage ring in Novosibirsk at the beam energies of 1.6 and 1.0 GeV for positron (electron) scattering angles in the ranges of θ{sub e} = 15°–25° and 55°–75° in the first case and in the range of θ{sub e} = 65°–105° in the second case is described in the present article. Preliminary results of this experiment and their comparison with theoretical predictions are described.

  6. Quasi-Elastic Neutron Scattering Studies of the Slow Dynamics of Supercooled and Glassy Aspirin

    SciTech Connect

    Zhang, Yang; Tyagi, M.; Mamontov, Eugene; Chen, Sow-hsin H

    2011-01-01

    Aspirin, also known as acetylsalicylic acid (ASA), is not only a wonderful drug, but also a good glass former. Therefore, it serves as an important molecular system to study the near-arrest and arrested phenomena. In this paper, a high-resolution quasi-elastic neutron scattering (QENS) technique is used to investigate the slow dynamics of supercooled liquid and glassy aspirin from 410 K down to 350 K. The measured QENS spectra can be analyzed with a stretched exponential model. We find that (i) the stretched exponent (Q) is independent of the wave vector transfer Q in the measured Q-range, and (ii) the structural relaxation time (Q) follows a power law dependence on Q. Consequently, the Q-independent structural relaxation time 0 can be extracted for each temperature to characterize the slow dynamics of aspirin. The temperature dependence of 0 can be fitted with the mode coupling power law, the Vogel-Fulcher-Tammann equation and a universal equation for fragile glass forming liquids recently proposed by M. Tokuyama in the measured temperature range. The calculated dynamic response function T(Q,t) using the experimentally determined self-intermediate scattering function of the hydrogen atoms of aspirin shows a direct evidence of the enhanced dynamic fluctuations as the aspirin is increasingly supercooled, in agreement with the fixed-time mean squared displacement x2 and non-Gaussian parameter 2 extracted from the elastic scattering.

  7. Quasi-elastic neutron scattering studies of the slow dynamics of supercooled and glassy aspirin

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Tyagi, Madhusudan; Mamontov, Eugene; Chen, Sow-Hsin

    2012-02-01

    Aspirin, also known as acetylsalicylic acid (ASA), is not only a wonderful drug, but also a good glass former. Therefore, it serves as an important molecular system to study the near-arrest and arrested phenomena. In this paper, a high-resolution quasi-elastic neutron scattering (QENS) technique is used to investigate the slow dynamics of supercooled liquid and glassy aspirin from 410 down to 350 K. The measured QENS spectra can be analyzed with a stretched exponential model. We find that (i) the stretched exponent β(Q) is independent of the wavevector transfer Q in the measured Q range and (ii) the structural relaxation time τ(Q) follows a power-law dependence on Q. Consequently, the Q-independent structural relaxation time τ0 can be extracted for each temperature to characterize the slow dynamics of aspirin. The temperature dependence of τ0 can be fitted with the mode-coupling power law, the Vogel-Fulcher-Tammann equation and a universal equation for fragile glass forming liquids recently proposed by Tokuyama in the measured temperature range. The calculated dynamic response function χT(Q, t) using the experimentally determined self-intermediate scattering function of the hydrogen atoms of aspirin shows direct evidence of the enhanced dynamic fluctuations as the aspirin is increasingly supercooled, in agreement with the fixed-time mean squared displacement langx2rang and the non-Gaussian parameter α2 extracted from the elastic scattering.

  8. Barrier Distribution of Quasi-Elastic Backwad Scattering in Very Heavy Reaction Systems

    NASA Astrophysics Data System (ADS)

    Mitsuoka, S.; Ikezoe, H.; Nishio, K.; Watanabe, Y.; Jeong, S. C.; Ishiyama, H.; Hirayama, Y.; Imai, N.; Miyatake, H.

    We have measured quasi-elastic backward scattering in the reactions of 48Ti, 54Cr, 56Fe, 64Ni, 70Zn, 76Ge and 86Kr + 208Pb to study the nucleus-nucleus interaction in Pb-based cold fusion. The barrier distributions were obtained from the first derivative of the measured excitation functions of quasi-elastic scattering cross sections normalized to the Rutherford scattering cross sections. The centroids of the barrier distributions showed deviations from several predicted barrier heights toward the low energy side except for the Christensen-Winther potential and the Aküz-Winther potential. The shapes of the barrier distributions were well reproduced by the results of a coupled-channel calculation taking account of the coupling effects of multi-phonon excitations of the quadrupole vibration for the projectiles and of the octupole vibration for the 208Pb target. The present barrier distributions were also well reproduced by a semiclassical calculation taking into account the couplings of transfer channels and single-phonon excitations in the projectiles and the target.

  9. Looking at hydrogen motions in confinement. The uniqueness of Quasi-Elastic Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Fischer, J.; Tsapatsaris, N.; de Paula, E.; Bordallo, H. N.

    2014-09-01

    Why in a barren and hot desert, clays can contain a significant fraction of water? Why does concrete crack? How can we demonstrate that complexation of a drug does not alter its conformation in a way that affects its functionality? In this paper we present results on various studies using Quasi-Elastic Neutron Scattering aimed at clarifying these questions. To allow for a better understanding of neutron scattering, a brief introduction to the basics of its theory is presented. Following the theoretical part, experimental results dealing with the effects of confinement on the water dynamics caused by the interfaces in clays and the nano- and micro-pores of concrete are reviewed in detail. At the end, recent Quasi-Elastic Neutron Scattering investigations on the complexation of the local anesthetics Bupivacaine (BVC.HCl, C18H28N20.HCl.H2O) and Ropivacaine (RVC.HCl, C17H26N20.HCl.H2O) into the cyclic β-cyclodextrin oligosaccharide are presented. To conclude, the perspectives that the European Spallation Source brings to this subject are discussed.

  10. Biophotonics of skin: method for correction of deep Raman spectra distorted by elastic scattering

    NASA Astrophysics Data System (ADS)

    Roig, Blandine; Koenig, Anne; Perraut, François; Piot, Olivier; Gobinet, Cyril; Manfait, Michel; Dinten, Jean-Marc

    2015-03-01

    Confocal Raman microspectroscopy allows in-depth molecular and conformational characterization of biological tissues non-invasively. Unfortunately, spectral distortions occur due to elastic scattering. Our objective is to correct the attenuation of in-depth Raman peaks intensity by considering this phenomenon, enabling thus quantitative diagnosis. In this purpose, we developed PDMS phantoms mimicking skin optical properties used as tools for instrument calibration and data processing method validation. An optical system based on a fibers bundle has been previously developed for in vivo skin characterization with Diffuse Reflectance Spectroscopy (DRS). Used on our phantoms, this technique allows checking their optical properties: the targeted ones were retrieved. Raman microspectroscopy was performed using a commercial confocal microscope. Depth profiles were constructed from integrated intensity of some specific PDMS Raman vibrations. Acquired on monolayer phantoms, they display a decline which is increasing with the scattering coefficient. Furthermore, when acquiring Raman spectra on multilayered phantoms, the signal attenuation through each single layer is directly dependent on its own scattering property. Therefore, determining the optical properties of any biological sample, obtained with DRS for example, is crucial to correct properly Raman depth profiles. A model, inspired from S.L. Jacques's expression for Confocal Reflectance Microscopy and modified at some points, is proposed and tested to fit the depth profiles obtained on the phantoms as function of the reduced scattering coefficient. Consequently, once the optical properties of a biological sample are known, the intensity of deep Raman spectra distorted by elastic scattering can be corrected with our reliable model, permitting thus to consider quantitative studies for purposes of characterization or diagnosis.

  11. Geometry Survey of the Time-of-Flight Neutron-Elastic Scattering (Antonella) Experiment

    SciTech Connect

    Oshinowo, Babatunde O.; Izraelevitch, Federico

    2016-10-17

    The Antonella experiment is a measurement of the ionization efficiency of nuclear recoils in silicon at low energies [1]. It is a neutron elastic scattering experiment motivated by the search for dark matter particles. In this experiment, a proton beam hits a lithium target and neutrons are produced. The neutron shower passes through a collimator that produces a neutron beam. The beam illuminates a silicon detector. With a certain probability, a neutron interacts with a silicon nucleus of the detector producing elastic scattering. After the interaction, a fraction of the neutron energy is transferred to the silicon nucleus which acquires kinetic energy and recoils. This kinetic energy is then dissipated in the detector producing ionization and thermal energy. The ionization produced is measured with the silicon detector electronics. On the other hand, the neutron is scattered out of the beam. A neutron-detector array (made of scintillator bars) registers the neutron arrival time and the scattering angle to reconstruct the kinematics of the neutron-nucleus interaction with the time-of-flight technique [2]. In the reconstruction equations, the energy of the nuclear recoil is a function of the scattering angle with respect to the beam direction, the time-of-flight of the neutron and the geometric distances between components of the setup (neutron-production target, silicon detector, scintillator bars). This paper summarizes the survey of the different components of the experiment that made possible the off-line analysis of the collected data. Measurements were made with the API Radian Laser Tracker and I-360 Probe Wireless. The survey was completed at the University of Notre Dame, Indiana, USA in February 2015.

  12. Forward pd elastic scattering and total spin-dependent pd cross sections at intermediate energies

    SciTech Connect

    Uzikov, Yu. N.; Haidenbauer, J.

    2009-02-15

    Spin-dependent total pd cross sections are considered using the optical theorem. For this aim the full spin dependence of the forward pd elastic scattering amplitude is considered in a model independent way. The single-scattering approximation is used to relate this amplitude to the elementary amplitudes of pp and pn scattering and the deuteron form factor. A formalism allowing to take into account Coulomb-nuclear interference effects in polarized pd cross sections is developed. Numerical calculations for the polarized total pd cross sections are performed at beam energies 20-300 MeV using the NN interaction models developed by the Juelich group. Double-scattering effects are estimated within the Glauber approach and found to be in the order of 10-20%. Existing experimental data on differential pd cross sections are in good agreement with the performed Glauber calculations. It is found that for the used NN models the total longitudinal and transversal pd cross sections are comparable in absolute value to those for pp scattering.

  13. The SEXTANTS beamline at SOLEIL: a new facility for elastic, inelastic and coherent scattering of soft X-rays

    NASA Astrophysics Data System (ADS)

    Sacchi, M.; Jaouen, N.; Popescu, H.; Gaudemer, R.; Tonnerre, J. M.; Chiuzbaian, S. G.; Hague, C. F.; Delmotte, A.; Dubuisson, J. M.; Cauchon, G.; Lagarde, B.; Polack, F.

    2013-03-01

    SEXTANTS is a new SOLEIL beamline dedicated to soft X-ray scattering techniques. The beamline, covering the 50-1700 eV energy range, features two Apple-II undulators for polarization control and a fixed-deviation monochromator. Two branch-lines host three end-stations for elastic, inelastic and coherent scattering experiments.

  14. Finite Element Prediction of Acoustic Scattering and Radiation from Submerged Elastic Structures

    NASA Technical Reports Server (NTRS)

    Everstine, G. C.; Henderson, F. M.; Lipman, R. R.

    1984-01-01

    A finite element formulation is derived for the scattering and radiation of acoustic waves from submerged elastic structures. The formulation uses as fundamental unknowns the displacement in the structure and a velocity potential in the field. Symmetric coefficient matrices result. The outer boundary of the fluid region is terminated with an approximate local wave-absorbing boundary condition which assumes that outgoing waves are locally planar. The finite element model is capable of predicting only the near-field acoustic pressures. Far-field sound pressure levels may be determined by integrating the surface pressures and velocities over the wet boundary of the structure using the Helmholtz integral. Comparison of finite element results with analytic results show excellent agreement. The coupled fluid-structure problem may be solved with general purpose finite element codes by using an analogy between the equations of elasticity and the wave equation of linear acoustics.

  15. Elastic scattering measurements for {sup 7}Be+{sup 27}Al system at RIBRAS facility

    SciTech Connect

    Morcelle, V.; Lichtenthaeler, R.; Morais, M. C.; Lepine-Szily, A.; Guimaraes, V.; Faria, P. N. de; Gasques, L.; Pires, K. C. C.; Condori, R. P.; Gomes, P. R. S.; Lubian, J.; Mendes, D. R. Jr.; Barioni, A.; Shorto, J. M. B.; Zamora, J. C.

    2013-05-06

    Elastic scattering angular distribution measurements of {sup 7}Be+{sup 27}Al system were performed at the laboratory energy of 15.6 MeV. The {sup 7}Be secondary beam was produced by the proton transfer reaction {sup 3}He({sup 6}Li,{sup 7}Be) and impinged on {sup 27}Al and {sup 197}Au targets, using the Radioactive Ion Beam (RIB) facility, RIBRAS. The elastic angular distribution was obtained within the angular range of 15{sup 0} - 80{sup 0} at the center of mass frame. Optical model calculations have been performed using the Woods- Saxon form factors and the Sao Paulo potential to fit the experimental data. The total reaction cross section was derived.

  16. Low-energy photodetachment of Ga- and elastic electron scattering from neutral Ga

    NASA Astrophysics Data System (ADS)

    Wang, Kedong; Zatsarinny, Oleg; Bartschat, Klaus

    2016-08-01

    We present a comprehensive study of the photodetachment of the negative gallium ion and elastic electron scattering from neutral Ga for photon and electron energies ranging from threshold to 12 eV. The calculations are carried out with the B -spline R -matrix method. A multiconfiguration Hartree-Fock method with nonorthogonal term-dependent orbitals is employed to generate accurate initial- and final-state wave functions. The close-coupling expansions include the 4 s 24 p n l (k l ) bound and continuum states of Ga and the 4 s -excited autoionizing states 4 s 4 p2 . The calculated photodetachment and elastic cross sections exhibit prominent resonance features. In order to clarify the origin of these resonances, the contributions of the major ionization channels to the partial cross sections are analyzed in detail.

  17. s-wave elastic scattering of antihydrogen off atomic alkali-metal targets

    SciTech Connect

    Sinha, Prabal K.; Ghosh, A. S.

    2006-03-15

    We have investigated the s-wave elastic scattering of antihydrogen atoms off atomic alkali-metal targets (Li, Na, K, and Rb) at thermal energies (10{sup -16}-10{sup -4} a.u.) using an atomic orbital expansion technique. The elastic cross sections of these systems at thermal energies are found to be very high compared to H-H and H-He systems. The theoretical models employed in this study are so chosen to consider long-range forces dynamically in the calculation. The mechanism of cooling suggests that Li may be considered to be a good candidate as a buffer gas for enhanced cooling of antihydrogen atoms to ultracold temperature.

  18. Elastic incoherent neutron scattering from homologous disaccharides/H2O mixtures

    NASA Astrophysics Data System (ADS)

    Magazú, S.; Migliardo, F.; Mondelli, C.

    2003-12-01

    An analysis in terms of elastic scans of the neutron intensity of homologous disaccharide (trehalose, maltose, sucrose)/H2O mixtures as a function of temperature and exchanged wave vector has been carried out. The experimental findings, showing a crossover in molecular fluctuations between harmonic and anharmonic dynamical regimes, allow us to characterize the system "flexibility." A new operative definition for the "fragility" degree, by using elastic incoherent neutron scattering, is furnished. In this frame the lower flexibility and fragility character of trehalose/H2O mixture with respect to maltose and sucrose/H2O mixtures indicate a better attitude to encapsulate biostructures in more rigid and temperature insensitive structures in approaching the glass transition.

  19. Modification of nucleon-nucleon interactions in nuclear medium and neutron densities extracted via proton elastic scattering at intermediate energies

    NASA Astrophysics Data System (ADS)

    Takeda, Hiroyuki

    2003-03-01

    Spin rotation parameters of proton elastic scattering from 58Ni have been measured at Ep=200, 300 and 400 MeV. By combining them with the previously measured cross sections and analyzing powers at the same energies, the series of measurements has become the "complete" experiment. Cross sections and analyzing powers of proton elastic scattering from 58Ni at 250 MeV, those of 120Sn at Ep=200, 250, 300 and 400 MeV and spin rotation parameters of 120Sn at Ep=300 MeV have been also newly measured. The experiment has been performed at Research Center for Nuclear Phyiscs, Osaka University. In order to explain the 58Ni data, it has been necessary to use realistic density distributions deduced from the nuclear charge distribution and to modify coupling constants and masses of σ and ω mesons. For 120Sn, we have assumed the same modification and used the proton distribution deduced from the charge distribution, we have searched the neutron density distribution which has reproduced 120Sn data at 300 MeV. The deduced neutron distribution has an increase at the nuclear center, which seems to be due to wave functions of neutrons in the 3s1/2 orbit. It also explains the 120Sn data at other energies than 300 MeV. Effects of ρ meson modifications on neutron densities are also mentioned.

  20. Elastic scattering and vibrational excitation of CO2 by 4, 10, 20 and 50 eV electrons

    NASA Technical Reports Server (NTRS)

    Register, D. F.; Trajmar, S.; Nishimura, H.

    1980-01-01

    Elastic and vibrationally inelastic differential, integral and momentum-transfer cross sections for electrons scattered by CO2 molecules are reported at 4, 10, 20 and 50 eV impact energies. The elastic cross sections are placed on an absolute scale by means of a relative flow technique. The inelastic cross sections are normalised to the elastic ones by using the inelastic to elastic intensity ratios. Data are reported for up to ten features in the 0.0 to 0.4 eV energy-loss region.

  1. Workshop on Research Techniques in Wave Propagation and Scattering

    NASA Astrophysics Data System (ADS)

    Varadan, V. V.; Varadan, V. K.

    1983-05-01

    A Workshop/Symposium on Research Techniques in Wave Propagation and Scattering was held at the Ohio State University October 18-21, 1982. This workshop was co-sponsored with the generous financial support of the U.S. Army Research Office, U.S. Office of Naval Research, the Center for Welding Research, O.S.U., and the Department of Engineering Mechanics, O.S.U. The workshop format consisted of a core of a general lectures of fifty minutes duration each and several shorter contributions that were of twenty minutes duration each. In addition, there were three panel discussions. The general lectures were of an expository nature on fundamental concepts and basic analytical/numerical techniques for the solution of wave scattering and propagation problems. The speakers were noted for their contribution to these techniques and in many cases have pioneered the techniques that they elaborated upon. These lectures were invaluable to the participants since they were of a pedagogical nature and easily understood by even those not very familiar with the particular method. The written version of many of these lectures will appear in a four volume Handbook on Acoustic, Electromagnetic and Elastic Wave Scattering to be published by North Holland as a separate project.

  2. High-resolution experiments and B-spline R-matrix calculations for elastic electron scattering from krypton

    SciTech Connect

    Zatsarinny, O.; Bartschat, K.; Allan, M.

    2011-03-15

    In a joint experimental and theoretical effort, we carried out a detailed study of elastic electron scattering from Kr atoms. Absolute angle-differential cross sections for elastic electron scattering were measured over the energy range 0.3-9.8 eV with an energy width of about 13 meV at scattering angles between 0 deg. and 180 deg. Excellent agreement is obtained between our experimental data and predictions from a fully relativistic Dirac B-spline R-matrix (close-coupling) model that accounts for the atomic dipole polarizability through a specially designed pseudostate.

  3. A recoil detector for the measurement of antiproton-proton elastic scattering at angles close to 90°

    NASA Astrophysics Data System (ADS)

    Hu, Q.; Bechstedt, U.; Gillitzer, A.; Grzonka, D.; Khoukaz, A.; Klehr, F.; Lehrach, A.; Prasuhn, D.; Ritman, J.; Sefzick, T.; Stockmanns, T.; Täschner, A.; Wuestner, P.; Xu, H.

    2014-10-01

    The design and construction of a recoil detector for the measurement of recoil protons of antiproton-proton elastic scattering at scattering angles close to are described. The performance of the recoil detector has been tested in the laboratory with radioactive sources and at COSY with proton beams by measuring proton-proton elastic scattering. The results of laboratory tests and commissioning with beam are presented. Excellent energy resolution and proper working performance of the recoil detector validate the conceptual design of the KOALA experiment at HESR to provide the cross section data needed to achieve a precise luminosity determination at the PANDA experiment.

  4. Phenomenological optical potential analysis of proton-carbon elastic scattering at 200 MeV

    NASA Technical Reports Server (NTRS)

    Bidasaria, H. B.; Townsend, L. W.

    1982-01-01

    Differential cross sections for 200 MeV protons elastically scattered from C-12 were analyzed utilizing a local, complex, spin-dependent optical potential with a harmonic well radial dependence. Analyses were performed using the WKB and eikonal approximations. For the latter, first-order corrections to he phase shifts were incorporated to account for the spin-orbit contribution. Large disagreement between theory and experiment was observed when the usual Thomas form for the spin-orbit potential was utilized. Substantial improvement was obtained by allowing the parameters in the central and spin-orbit potential terms to vary independently.

  5. Measurement of Tensor Polarization in Elastic Electron-Deuteron Scattering at Large Momentum Transfer

    SciTech Connect

    David Abbott; Abdellah Ahmidouch; Heinz Anklin; Francois Arvieux; Jacques Ball; S. Beedoe; Elizabeth Beise; Louis Bimbot; Werner Boeglin; Herbert Breuer; Roger Carlini; Nicholas Chant; Samuel Danagoulian; K. Dow; Jean-Eric Ducret; James Dunne; Lars Ewell; Laurent Eyraud; Christophe Furget; Michel Garcon; Ronald Gilman; Charles Glashausser; Paul Gueye; Kenneth Gustafsson; Kawtar Hafidi; Adrian Honegger; Juerg Jourdan; Serge Kox; Gerfried Kumbartzki; L. Lu; Allison Lung; David Mack; Pete Markowitz; Justin McIntyre; David Meekins; Fernand Merchez; Joseph Mitchell; R. Mohring; Sekazi Mtingwa; Hamlet Mkrtchyan; David Pitz; Liming Qin; Ronald Ransome; Jean-Sebastien Real; Philip Roos; Paul Rutt; Reyad Sawafta; Samuel Stepanyan; Raphael Tieulent; Egle Tomasi-Gustafsson; William Turchinetz; Kelley Vansyoc; Jochen Volmer; Eric Voutier; William Vulcan; Claude Williamson; Stephen Wood; Chen Yan; Jie Zhao; Wenxia Zhao

    2000-05-01

    Tensor polarization observables (t20, t21 and t22) have been measured in elastic electron-deuteron scattering for six values of momentum transfer between 0.66 and 1.7 (GeV/c){sup 2}. The experiment was performed at the Jefferson Laboratory in Hall C using the electron HMS Spectrometer, a specially designed deuteron magnetic channel and the recoil deuteron polarimeter POLDER. The new data determine to much larger Q{sup 2} the deuteron charge form factors G{sub C} and G{sub Q}. They are in good agreement with relativistic calculations and disagree with pQCD predictions.

  6. Double Folding Potential of Different Interaction Models for 16O + 12C Elastic Scattering

    NASA Astrophysics Data System (ADS)

    Hamada, Sh.; Bondok, I.; Abdelmoatmed, M.

    2016-12-01

    The elastic scattering angular distributions for 16O + 12C nuclear system have been analyzed using double folding potential of different interaction models: CDM3Y1, CDM3Y6, DDM3Y1 and BDM3Y1. We have extracted the renormalization factor N r for the different concerned interaction models. Potential created by BDM3Y1 model of interaction has the shallowest depth which reflects the necessity to use higher renormalization factor. The experimental angular distributions for 16O + 12C nuclear system in the energy range 115.9-230 MeV exhibited unmistakable refractive features and rainbow phenomenon.

  7. Short Range Correlations in Nuclei at Large xbj through Inclusive Quasi-Elastic Electron Scattering

    SciTech Connect

    Ye, Zhihong

    2013-12-01

    The experiment, E08-014, in Hall-A at Jefferson Lab aims to study the short-range correlations (SRC) which are necessary to explain the nuclear strength absent in the mean field theory. The cross sections for 2H, 3He, 4He, 12C, 40Ca and 48Ca, were measured via inclusive quasi-elastic electron scattering from these nuclei in a Q2 range between 0.8 and 2.8 (GeV/c)2 for x>1. The cross section ratios of heavy nuclei to 2H were extracted to study two-nucleon SRC for 1

  8. Systematic analysis of α elastic scattering with the São Paulo potential

    SciTech Connect

    Charry-Pastrana, F. E. Pinilla, E. C.

    2016-07-07

    We describe systematically by collision energy and target mass, alpha elastic scattering angular distributions by using the São Paulo potential as the real part of the optical potential. The imaginary part is proportional to the real one by a factor N{sub i}. We find this parameter by fitting the theoretical angular distributions to the experimental cross sections through a χ{sup 2} minimization. The N{sub i} and their respective uncertainties, σ{sub Ni}, fall in the range 0.4 ≤ N{sub i} ± σ{sub N{sub i}} ≤ 0.8 for all the systems studied.

  9. Systematic analysis of α elastic scattering with the São Paulo potential

    NASA Astrophysics Data System (ADS)

    Charry-Pastrana, F. E.; Pinilla, E. C.

    2016-07-01

    We describe systematically by collision energy and target mass, alpha elastic scattering angular distributions by using the São Paulo potential as the real part of the optical potential. The imaginary part is proportional to the real one by a factor Ni. We find this parameter by fitting the theoretical angular distributions to the experimental cross sections through a χ2 minimization. The Ni and their respective uncertainties, σNi, fall in the range 0.4 ≤ Ni ± σNi ≤ 0.8 for all the systems studied.

  10. Assessment of blood supply in superficial tissue by polarization-gated elastic light-scattering spectroscopy.

    PubMed

    Siegel, Michael P; Kim, Young L; Roy, Hemant K; Wali, Ramesh K; Backman, Vadim

    2006-01-10

    We report the feasibility of monitoring both hemoglobin oxygen saturation and hemoglobin concentration in the superficial layer of tissue using polarization-gated elastic light-scattering spectroscopy. We detail our analysis technique, the experimental validation of our analysis, and the detection of an early increase in blood supply to the superficial layer of colon tissue in human patients with colonic adenomas as well as in an animal model of colon carcinogenesis. To the best of our knowledge, this study represents the first evidence that polarization gating can be used as a spectroscopic tool to quantify hemoglobin concentration as well as oxygen saturation in the uppermost tissue layer.

  11. Prospects for using coherent elastic neutrino-nucleus scattering to measure the nuclear neutron form factor

    NASA Astrophysics Data System (ADS)

    Patton, Kelly; McLaughlin, Gail; Scholberg, Kate; Engel, Jon; Schunck, Nicolas

    2017-01-01

    Coherent elastic neutrino-nucleus scattering is a potential probe of nuclear neutron form factors. We show that the neutron root-mean-square (RMS) radius can be measured with tonne-scale detectors of argon, germanium, or xenon. In addition, the fourth moment of the neutron distribution can be studied experimentally using this method. The impacts of both detector size and detector shape uncertainty on such a measurement were considered. The important limiting factor was found to be the detector shape uncertainty. In order to measure the neutron RMS radius to 5%, comparable to current experimental uncertainties, the detector shape uncertainty needs to be known to 1% or better.

  12. Radiative corrections to elastic proton-electron scattering measured in coincidence

    NASA Astrophysics Data System (ADS)

    Gakh, G. I.; Konchatnij, M. I.; Merenkov, N. P.; Tomasi-Gustafsson, E.

    2017-05-01

    The differential cross section for elastic scattering of protons on electrons at rest is calculated, taking into account the QED radiative corrections to the leptonic part of interaction. These model-independent radiative corrections arise due to emission of the virtual and real soft and hard photons as well as to vacuum polarization. We analyze an experimental setup when both the final particles are recorded in coincidence and their energies are determined within some uncertainties. The kinematics, the cross section, and the radiative corrections are calculated and numerical results are presented.

  13. Convergence of Legendre Expansion of Doppler-Broadened Double Differential Elastic Scattering Cross Section

    SciTech Connect

    Arbanas, Goran; Dunn, Michael E; Larson, Nancy M; Leal, Luiz C; Williams, Mark L

    2012-01-01

    Convergence properties of Legendre expansion of a Doppler-broadened double-differential elastic neutron scattering cross section of {sup 238}U near the 6.67 eV resonance at temperature 10{sup 3} K are studied. A variance of Legendre expansion from a reference Monte Carlo computation is used as a measure of convergence and is computed for as many as 15 terms in the Legendre expansion. When the outgoing energy equals the incoming energy, it is found that the Legendre expansion converges very slowly. Therefore, a supplementary method of computing many higher-order terms is suggested and employed for this special case.

  14. Elastic scattering of {sup 9}Li on {sup 208}Pb at energies around the Coulomb barrier

    SciTech Connect

    Cubero, M.; Fernandez-Garcia, J. P.; Alvarez, M. A. G.; Lay, J. A.; Moro, A. M.; Acosta, L.; Martel, I.; Sanchez-Benitez, A. M.; Alcorta, M.; Borge, M. J. G.; Tengblad, O.; Buchmann, L.; Shotter, A.; Walden, P.; Diget, D. G.; Fulton, B.; Fynbo, H. O. U.; Galaviz, D.; Gomez-Camacho, J.; Mukha, I.

    2011-10-28

    We have studied the dynamical effects of the halo structure of {sup 11}Li on the scattering on heavy targets at energies around the Coulomb barrier. This experiment was performed at ISAC-II at TRIUMF with a world record in production of the post-accelerated {sup 11}Li beam. As part of this study we report here on the first measurement of the elastic cross section of the core nucleus, i.e. {sup 9}Li on {sup 208}Pb, at energies around the Coulomb barrier. A preliminary optical model analysis has been performed in order to extract a global optical potential to describe the measured angular distributions.

  15. Elastic scattering for the system {sup 6}Li+p at near barrier energies with MAGNEX

    SciTech Connect

    Soukeras, V.; Pakou, A.; Sgouros, O.; Cappuzzello, F.; Bondi, M.; Nicolosi, D.; Acosta, L.; Marquinez-Duran, G.; Martel, I.; Agodi, C.; Carbone, D.; Cavallaro, M.; Cunsolo, A.; Di Pietro, A.; Fernández-García, J. P.; Figuera, P.; Fisichella, M.; Alamanos, N.; De Napoli, M.; Foti, A.; and others

    2015-02-24

    Elastic scattering measurements have been performed for the {sup 6}Li+p system in inverse kinematics at the energies of 16, 20, 25 and 29 MeV. The heavy ejectile was detected by the large acceptance MAGNEX spectrometer at the Laboratori Nazionali del Sud (LNS) in Catania, in the angular range between ∼2{sup 0} and 12{sup 0} in the laboratory system, giving us the possibility to span almost a full angular range in the center of mass system. Results will be presented and discussed for one of the energies.

  16. Partonic calculation of the two-photon exchange contribution to elastic electron-proton scattering at large momentum transfer

    SciTech Connect

    Y. C. Chen; A. Afanasev; S. J. Brodsky; C. E. Carlson; Marc Vanderhaeghen

    2004-03-01

    We estimate the two-photon exchange contribution to elastic electron-proton scattering at large momentum transfer through the scattering off a parton in the proton. We relate the process on the nucleon to the generalized parton distributions which also enter in other wide angle scattering processes. We find that when taking the polarization transfer determinations of the form factors as input, adding in the 2 photon correction, does reproduce the Rosenbluth data.

  17. Single-scattering parabolic equation solutions for elastic media propagation, including Rayleigh waves.

    PubMed

    Metzler, Adam M; Siegmann, William L; Collins, Michael D

    2012-02-01

    The parabolic equation method with a single-scattering correction allows for accurate modeling of range-dependent environments in elastic layered media. For problems with large contrasts, accuracy and efficiency are gained by subdividing vertical interfaces into a series of two or more single-scattering problems. This approach generates several computational parameters, such as the number of interface slices, an iteration convergence parameter τ, and the number of iterations n for convergence. Using a narrow-angle approximation, the choices of n=1 and τ=2 give accurate solutions. Analogous results from the narrow-angle approximation extend to environments with larger variations when slices are used as needed at vertical interfaces. The approach is applied to a generic ocean waveguide that includes the generation of a Rayleigh interface wave. Results are presented in both frequency and time domains.

  18. Characteristic Features of Water Dynamics in Restricted Geometries Investigated with Quasi-Elastic Neutron Scattering

    DOE PAGES

    Osti, Naresh C.; Mamontov, Eugene; Ramirez-cuesta, A.; ...

    2015-12-10

    Understanding the molecular behavior of water in spatially restricted environments is important to better understanding its role in many biological, chemical and geological processes. Here we examine the translational diffusion of water confined to a variety of substrates, from flat surfaces to nanoporous media, in the context of a recently proposed universal scaling law (Chiavazzo 2014) [1]. Using over a dozen previous neutron scattering results, we test the validity of this law, evaluating separately the influence of the hydration amount, and the effects of the size and morphology of the confining medium. Additionally, we investigate the effects of changing instrumentmore » resolutions and fitting models on the applicability of this law. Finally, we perform quasi-elastic neutron scattering measurements on water confined inside nanoporous silica to further evaluate this predictive law, in the temperature range 250≤T≤290 K.« less

  19. Characteristic features of water dynamics in restricted geometries investigated with quasi-elastic neutron scattering

    SciTech Connect

    Osti, N. C.; Coté, A.; Mamontov, E.; Ramirez-Cuesta, A.; Wesolowski, D. J.; Diallo, S. O.

    2016-02-01

    Understanding the molecular behavior of water in spatially restricted environments is key to better understanding its role in many biological, chemical and geological processes. Here we examine the translational diffusion of water confined to a variety of substrates, from flat surfaces to nanoporous media, in the context of a recently proposed universal scaling law (Chiavazzo 2014) [1]. Using over a dozen previous neutron scattering results, we test the validity of this law, evaluating separately the influence of the hydration amount, and the effects of the size and morphology of the confining medium. Additionally, we investigate the effects of changing instrument resolutions and fitting models on the applicability of this law. Finally, we perform quasi-elastic neutron scattering measurements on water confined inside nanoporous silica to further evaluate this predictive law, in the temperature range 250≤T≤290 K.

  20. Energy-Dependent microscopic optical potential for p+{sup 9}Be elastic scattering

    SciTech Connect

    Maridi, H. M.; Farag, M. Y. H. Esmael, E. H.

    2016-06-10

    The p+{sup 9}Be elastic scattering at an energy range up to 200 MeV/nucleon is analyzed using the single-folding model. The density- and isospin-dependent M3Y-Paris nucleon-nucleon (NN) interaction is used for the real part and the NN-scattering amplitude of the high-energy approximation for the imaginary one. The analysis reveals that the cross-section data are reproduced well at energies up to 100 MeV/nucleon by use of the partial-wave expansion. For higher energies, the eikonal approximation give results better than the partial-wave expansion calculations. The volume integrals of the optical-potential parts have systematic energy dependencies, and they are parameterized in empirical formulas.

  1. Analyses of PION-40Ca Elastic Scattering Data Using the Klein-Gordon Equation

    NASA Astrophysics Data System (ADS)

    Shehadeh, Zuhair F.

    The elastic scattering data for incident pion energies of 130, 163.3, 180, and 230 MeV on 40Ca have been analyzed using the full Klein-Gordon equation (KGE), as opposed to its approximate form which renders it to the format of a Schrödinger equation with an energy-dependent potential (RSE). Calculated angular distributions, using KGE and RSE, for all four cases are nearly the same up to about 70° but differ significantly at larger angles. To fit the large-angle data of 163.3 MeV, the nature of the old potential determined by using RSE needs to be revised. The new potentials in four cases are presented and they are compatible with those determined from the inverse scattering theory at a fixed energy in the surface region.

  2. Fast proton hopping detection in ice I{sub h} by quasi-elastic neutron scattering.

    SciTech Connect

    Presiado, I.; Lal, J.; Mamontov, E.; Kolesnikov, A. I.; Huppert, D.

    2011-01-01

    Quasi-elastic neutron scattering was employed on samples of HCl-doped polycrystalline ice I{sub h}. The analysis of the scattering signal provides the excess proton hopping time, {tau}{sub hop}, in the temperature range of 140-195 K. The hopping time strongly depends on the temperature of the sample, and the activation energy of a hopping step is 17 kJ/mol. The values of {tau}{sub hop} of the current experiment are in good agreement with calculated values derived from previous photochemical experiments, in which we found that the proton hopping time at T > 242 K is on the order of 200 fs, roughly 10 times shorter than in liquid water at room temperature.

  3. Fast Proton Hopping Detection in Ice Ih by Quasi-Elastic Neutron Scattering

    SciTech Connect

    Presiado, Itay; Lal, Jyotsana; Mamontov, Eugene; Kolesnikov, Alexander I; Huppert, Dan I

    2011-01-01

    Quasi-elastic neutron scattering was employed on samples of HCl-doped polycrystalline ice I{sub h}. The analysis of the scattering signal provides the excess proton hopping time, {tau}{sub hop}, in the temperature range of 140-195 K. The hopping time strongly depends on the temperature of the sample, and the activation energy of a hopping step is 17 kJ/mol. The values of {tau}{sub hop} of the current experiment are in good agreement with calculated values derived from previous photochemical experiments,(1) in which we found that the proton hopping time at T > 242 K is on the order of 200 fs, roughly 10 times shorter than in liquid water at room temperature.

  4. Swimming speed distributions of bull spermatozoa as determined by quasi-elastic light scattering.

    PubMed Central

    Hallett, F R; Craig, T; Marsh, J

    1978-01-01

    88 semen samples from 39 bulls have been investigated by the quasi-elastic light scattering technique. Normal, defective, and dead cells each yielded characteristic autocorrelation functions. The form of these functions indicates that the swimming speed distribution of normal cells is a gamma distribution with two degrees of freedom while that for defective or circular swimmers is a gamma distribution with one degree of freedom. The resulting analysis of the experimental autocorrelation functions yields the fraction of the sample that is normal, the fraction that is defective, and the average speed of each group. The average helical swimming speed of normal cells was found to be 384 micron/s, while the average trajectory speed of the circular swimmers was found to be 103 micron/s. The overall quality of the semen samples as determined by light scattering is compared to quality determination on the same samples by technicians from the artificial insemination industry. PMID:630041

  5. Hydration of NaDNA by neutron quasi-elastic scattering.

    PubMed Central

    Schreiner, L J; Pintar, M M; Dianoux, A J; Volino, F; Rupprecht, A

    1988-01-01

    Preliminary results of neutron quasi-elastic scattering experiments are reported for hydrated paracrystals of sodium deoxyribonucleic acid (NaDNA). The samples were investigated at two water contents: 3.5 +/- 1.0 and 9.5 +/- 1.5 mol H2O per mole nucleotide. The results of the scattering experiments were almost independent of whether the NaDNA fibers were oriented parallel or perpendicular to the momentum transfer. The data indicate that at the lower hydration the water molecules do not diffuse appreciably on the time scale of the neutron measurements (approximately 3 X 10(-10) s). At the higher hydration the water molecules diffuse isotropically in a sphere of 9 A in diameter with a diffusion coefficient of (5 +/- 2) X 10(-6) cm2 s-1. PMID:3342269

  6. Large Logarithms in the Beam Normal Spin Asymmetry of Elastic Electron--Proton Scattering

    SciTech Connect

    Andrei Afanasev; Mykola Merenkov

    2004-06-01

    We study a parity-conserving single-spin beam asymmetry of elastic electron-proton scattering induced by an absorptive part of the two-photon exchange amplitude. It is demonstrated that excitation of inelastic hadronic intermediate states by the consecutive exchange of two photons leads to logarithmic and double-logarithmic enhancement due to contributions of hard collinear quasi-real photons. The asymmetry at small electron scattering angles is expressed in terms of the total photoproduction cross section on the proton, and is predicted to reach the magnitude of 20-30 parts per million. At these conditions and fixed 4-momentum transfers, the asymmetry is rising logarithmically with increasing electron beam energy, following the high-energy diffractive behavior of total photoproduction cross section on the proton.

  7. Characteristic Features of Water Dynamics in Restricted Geometries Investigated with Quasi-Elastic Neutron Scattering

    SciTech Connect

    Osti, Naresh C.; Mamontov, Eugene; Ramirez-cuesta, A.; Wesolowski, David J.; Diallo, S. O.

    2015-12-10

    Understanding the molecular behavior of water in spatially restricted environments is important to better understanding its role in many biological, chemical and geological processes. Here we examine the translational diffusion of water confined to a variety of substrates, from flat surfaces to nanoporous media, in the context of a recently proposed universal scaling law (Chiavazzo 2014) [1]. Using over a dozen previous neutron scattering results, we test the validity of this law, evaluating separately the influence of the hydration amount, and the effects of the size and morphology of the confining medium. Additionally, we investigate the effects of changing instrument resolutions and fitting models on the applicability of this law. Finally, we perform quasi-elastic neutron scattering measurements on water confined inside nanoporous silica to further evaluate this predictive law, in the temperature range 250≤T≤290 K.

  8. Relativistic impulse approximation analysis of elastic proton scattering from He isotopes

    NASA Astrophysics Data System (ADS)

    Kaki, Kaori

    2014-01-01

    Recent relativistic mean field (RMF) calculations have provided nuclear distributions of some isotopes whose mass numbers are much larger than atomic numbers. For helium isotopes, the RMF calculation seems to be inappropriate because of the small mass numbers; however, applicable results are obtained for 6,8He nuclei. The author calculates observables of proton elastic scattering from the helium isotopes and discusses relations between observables and nuclear distributions of the isotopes by comparison of the calculated results with experimental data. The calculations are based on relativistic impulse approximation (RIA) at incident proton energy: 71 MeV for 4,6,8He, 300 and 500 MeV for 4He, and 0.7 GeV for 6He. Scattering observables are predicted for 6,8He at 200 MeV.

  9. Absolute differential cross sections for elastic scattering of electrons from pyrimidine

    SciTech Connect

    Maljkovic, J. B.; Milosavljevic, A. R.; Sevic, D.; Marinkovic, B. P.; Blanco, F.

    2009-05-15

    Differential cross sections (DCSs) for elastic scattering of electrons from pyrimidine (C{sub 4}H{sub 4}N{sub 2}) are presented for incident energies from 50 to 300 eV. The measurements were performed using a cross beam technique, for scattering angles from 20 deg. to 110 deg. The relative DCSs were measured as a function of both the angle and incident energy and the absolute DCSs were determined using the relative flow method. The calculations of electron interaction cross sections are based on a corrected form of the independent-atom method, known as the screen corrected additivity rule procedure and using an improved quasifree absorption model. Calculated results agree very well with the experiment.

  10. Investigations of homologous disaccharides by elastic incoherent neutron scattering and wavelet multiresolution analysis

    NASA Astrophysics Data System (ADS)

    Magazù, S.; Migliardo, F.; Vertessy, B. G.; Caccamo, M. T.

    2013-10-01

    In the present paper the results of a wavevector and thermal analysis of Elastic Incoherent Neutron Scattering (EINS) data collected on water mixtures of three homologous disaccharides through a wavelet approach are reported. The wavelet analysis allows to compare both the spatial properties of the three systems in the wavevector range of Q = 0.27 Å-1 ÷ 4.27 Å-1. It emerges that, differently from previous analyses, for trehalose the scalograms are constantly lower and sharper in respect to maltose and sucrose, giving rise to a global spectral density along the wavevector range markedly less extended. As far as the thermal analysis is concerned, the global scattered intensity profiles suggest a higher thermal restrain of trehalose in respect to the other two homologous disaccharides.

  11. Quark-hadron duality constraints on $$\\gamma Z$$ box corrections to parity-violating elastic scattering

    DOE PAGES

    Hall, Nathan L.; Blunden, Peter G.; Melnitchouk, Wally; ...

    2015-12-08

    We examine the interference \\gamma Z box corrections to parity-violating elastic electron--proton scattering in the light of the recent observation of quark-hadron duality in parity-violating deep-inelastic scattering from the deuteron, and the approximate isospin independence of duality in the electromagnetic nucleon structure functions down to Q2 \\approx 1 GeV2. Assuming that a similar behavior also holds for the \\gamma Z proton structure functions, we find that duality constrains the γ Z box correction to the proton's weak charge to be Re V γ Z V = (5.4 \\pm 0.4) \\times 10-3 at the kinematics of the Qweak experiment. Within themore » same model we also provide estimates of the γ Z corrections for future parity-violating experiments, such as MOLLER at Jefferson Lab and MESA at Mainz.« less

  12. Optical elastic scattering for early label-free identification of clinical pathogens

    NASA Astrophysics Data System (ADS)

    Genuer, Valentin; Gal, Olivier; Méteau, Jérémy; Marcoux, Pierre; Schultz, Emmanuelle; Lacot, Éric; Maurin, Max; Dinten, Jean-Marc

    2016-03-01

    We report here on the ability of elastic light scattering in discriminating Gram+, Gram- and yeasts at an early stage of growth (6h). Our technique is non-invasive, low cost and does require neither skilled operators nor reagents. Therefore it is compatible with automation. It is based on the analysis of the scattering pattern (scatterogram) generated by a bacterial microcolony growing on agar, when placed in the path of a laser beam. Measurements are directly performed on closed Petri dishes. The characteristic features of a given scatterogram are first computed by projecting the pattern onto the Zernike orthogonal basis. Then the obtained data are compared to a database so that machine learning can yield identification result. A 10-fold cross-validation was performed on a database over 8 species (15 strains, 1906 scatterograms), at 6h of incubation. It yielded a 94% correct classification rate between Gram+, Gram- and yeasts. Results can be improved by using a more relevant function basis for projections, such as Fourier-Bessel functions. A fully integrated instrument has been installed at the Grenoble hospital's laboratory of bacteriology and a validation campaign has been started for the early screening of MSSA and MRSA (Staphylococcus aureus, methicillin-resistant S. aureus) carriers. Up to now, all the published studies about elastic scattering were performed in a forward mode, which is restricted to transparent media. However, in clinical diagnostics, most of media are opaque, such as blood-supplemented agar. That is why we propose a novel scheme capable of collecting back-scattered light which provides comparable results.

  13. Resonance effects in elastic cross sections for electron scattering on pyrimidine: Experiment and theory

    NASA Astrophysics Data System (ADS)

    Regeta, Khrystyna; Allan, Michael; Winstead, Carl; McKoy, Vincent; Mašín, Zdeněk; Gorfinkiel, Jimena D.

    2016-01-01

    We measured differential cross sections for elastic (rotationally integrated) electron scattering on pyrimidine, both as a function of angle up to 180∘ at electron energies of 1, 5, 10, and 20 eV and as a function of electron energy in the range 0.1-14 eV. The experimental results are compared to the results of the fixed-nuclei Schwinger variational and R-matrix theoretical methods, which reproduce satisfactorily the magnitudes and shapes of the experimental cross sections. The emphasis of the present work is on recording detailed excitation functions revealing resonances in the excitation process. Resonant structures are observed at 0.2, 0.7, and 4.35 eV and calculations for different symmetries confirm their assignment as the X˜ 2A2, A˜ 2B1, and B˜ 2B1 shape resonances. As a consequence of superposition of coherent resonant amplitudes with background scattering the B˜ 2B1 shape resonance appears as a peak, a dip, or a step function in the cross sections recorded as a function of energy at different scattering angles and this effect is satisfactorily reproduced by theory. The dip and peak contributions at different scattering angles partially compensate, making the resonance nearly invisible in the integral cross section. Vibrationally integrated cross sections were also measured at 1, 5, 10 and 20 eV and the question of whether the fixed-nuclei cross sections should be compared to vibrationally elastic or vibrationally integrated cross section is discussed.

  14. Elastic Electron Scattering by Laser-Excited (sup 138)Ba (...6s6p (sup 1)P(sub 1)) Atoms

    NASA Technical Reports Server (NTRS)

    Csanak, G.

    1997-01-01

    The result of a joint experimental and theoretical study concerning elastic electron scattering by laser-excited (sup 138)Ba (...6s6p (sup 1)P(sub 1)) atoms are presented. From these studies, we extracted differential scattering cross sections (DCS's) and collision parameters for elastic scattering by the coherently prepared (sup 1)P(sub 1) atoms.

  15. Resonant unidirectional and elastic scattering of surface plasmon polaritons by high refractive index dielectric nanoparticles

    NASA Astrophysics Data System (ADS)

    Evlyukhin, Andrey B.; Bozhevolnyi, Sergey I.

    2015-12-01

    We consider scattering of surface plasmon polaritons (SPPs) and light by individual high refractive index dielectric nanoparticles (NPs) located on a metal (gold) substrate and supporting electric and magnetic dipole resonances in the visible spectral range. Numerical calculations are carried out by making use of the discrete dipole approximation including the multipole decomposition procedure. Extinction and scattering cross-section spectra of spheroid silicon NPs in visible and near infrared are presented and discussed. The roles of the in-plane and out-of-plane components of electric and magnetic dipoles in the scattering processes are clarified and demonstrated. It is revealed that, owing to the NP interaction with electromagnetic fields reflected from the substrate (that leads to bianisotropy), the in-plane electric and magnetic dipoles can resonantly be excited at the same wavelength. Due to this effect, the resonant unidirectional (forward) and elastic (in-plane) scattering of SPPs by oblate spheroid NPs can be realized within a narrow spectral range. In the case of normal light incidence, the bianisotropy effect can provide significant suppression of the SPP excitation because of the destructive interference between the SPP waves generated by induced electric and magnetic dipole moments. The results obtained open new possibilities for the development of SPP-based photonic components and metasurfaces, whose operation involves resonant excitations of dielectric NPs.

  16. Lepton mass effects in elastic lepton-proton scattering beyond the leading order of QED

    NASA Astrophysics Data System (ADS)

    Koshchii, Oleksandr; Afanasev, Andrei

    2017-01-01

    The future MUSE experiment is devised to solve the ``Proton Radius Puzzle'' by considering simultaneously elastic e+/- p and μ+/- p scattering. This experiment requires a per cent level accuracy in comparison of electron-proton and muon-proton scattering. Our goal is to provide all the relevant radiative corrections calculations for MUSE without using ultrarelativistic (ml -> 0) approximation. This approximation is not applicable for the scattering of muons in kinematics of MUSE. In this talk, we will present our up-to-date results on radiative corrections calculations obtained by using a Monte Carlo generator ELRADGEN modified to treat the lepton mass effects with no ultra-relativistic approximation. Next, we will discuss our estimations of the important helicity-flip contribution represented by a scalar σ meson exchange in the t-channel. This term vanishes in the ultra-relativistic and/or one-photon exchange approximation, and makes a difference in comparison of electron vs muon scattering in MUSE. This work was supported by the NSF under Grants Nos. PHY-1404342, PHY-1309130 and by The George Washington University through the Gus Weiss endowment.

  17. Elastic and inelastic neutron scattering cross sections for fission reactor applications

    NASA Astrophysics Data System (ADS)

    Hicks, S. F.; Chakraborty, A.; Combs, B.; Crider, B. P.; Downes, L.; Girgis, J.; Kersting, L. J.; Kumar, A.; Lueck, C. J.; McDonough, P. J.; McEllistrem, M. T.; Peters, E. E.; Prados-Estevz, F. M.; Schniederjan, J.; Sidwell, L.; Sigillito, A. J.; Vanhoy, J. R.; Watts, D.; Yates, S. W.

    2013-04-01

    Nuclear data important for the design and development of the next generation of light-water reactors and future fast reactors include neutron elastic and inelastic scattering cross sections on important structural materials, such as Fe, and on coolant materials, such as Na. These reaction probabilities are needed since neutron reactions impact fuel performance during irradiations and the overall efficiency of reactors. While neutron scattering cross sections from these materials are available for certain incident neutron energies, the fast neutron region, particularly above 2 MeV, has large gaps for which no measurements exist, or the existing uncertainties are large. Measurements have been made at the University of Kentucky Accelerator Laboratory to measure neutron scattering cross sections on both Fe and Na in the region where these gaps occur and to reduce the uncertainties on scattering from the ground state and first excited state of these nuclei. Results from measurements on Fe at incident neutron energies between 2 and 4 MeV will be presented and comparisons will be made to model calculations available from data evaluators.

  18. Measuring the Weak Charge of the Proton via Elastic Electron-Proton Scattering

    SciTech Connect

    Jones, Donald C.

    2015-10-01

    The Qweak experiment which ran in Hall C at Jefferson Lab in Newport News, VA, and completed data taking in May 2012, measured the weak charge of the proton QpW via elastic electron-proton scattering. Longitudinally polarized electrons were scattered from an unpolarized liquid hydrogen target. The helicity of the electron beam was flipped at approximately 1 kHz between left and right spin states. The Standard Model predicts a small parity-violating asymmetry of scattering rates between right and left helicity states due to the weak interaction. An initial result using 4% of the data was published in October 2013 [1] with a measured parity-violating asymmetry of -279 ± 35(stat) ± 31 (syst) ppb. This asymmetry, along with other data from parity-violating electron scattering experiments, provided the world's first determination of the weak charge of the proton. The weak charge of the proton was found to be pW = 0.064 ± 0.012, in good agreement with the Standard Model prediction of pW(SM) = 0.0708 ± 0.0003[2].

  19. Elastic light single-scattering spectroscopy for detection of dysplastic tissues

    NASA Astrophysics Data System (ADS)

    Canpolat, Murat; Denkçeken, Tuba; Akman, Ayşe.; Alpsoy, Erkan; Tuncer, Recai; Akyüz, Mahmut; Baykara, Mehmet; Yücel, Selçuk; Başsorgun, Ibrahim; ćiftçioǧlu, M. Akif; Gökhan, Güzide Ayşe.; Gürer, ElifInanç; Peştereli, Elif; Karaveli, Šeyda

    2013-11-01

    Elastic light single-scattering spectroscopy (ELSSS) system has been developed and tested in diagnosis of cancerous tissues of different organs. ELSSS system consists of a miniature visible light spectrometer, a single fiber optical probe, a halogen tungsten light source and a laptop. Measurements were performed on excised brain, skin, cervix and prostate tumor specimens and surrounding normal tissues. Single fiber optical probe with a core diameter of 100 μm was used to deliver white light to and from tissue. Single optical fiber probe mostly detects singly scattered light from tissue rather than diffused light. Therefore, measured spectra are sensitive to size of scatters in tissue such as cells, nuclei, mitochondria and other organelles of cells. Usually, nuclei of tumor cells are larger than nuclei of normal cells. Therefore, spectrum of singly scattered light of tumor tissue is different than normal tissue. The spectral slopes were shown to be positive for normal brain, skin and prostate and cervix tissues and negative for the tumors of the same tissues. Signs of the spectral slopes were used as a discrimination parameter to differentiate tumor from normal tissues for the three organ tissues. Sensitivity and specificity of the system in differentiation between tumors from normal tissues were 93% and %100 for brain, 87% and 85% for skin, 93.7% and 46.1% for cervix and 98% and 100% for prostate.

  20. [Particle Size and Number Density Online Analysis for Particle Suspension with Polarization-Differentiation Elastic Light Scattering Spectroscopy].

    PubMed

    Chen, Wei-kang; Fang, Hui

    2016-03-01

    The basic principle of polarization-differentiation elastic light scattering spectroscopy based techniques is that under the linear polarized light incidence, the singlely scattered light from the superficial biological tissue and diffusively scattered light from the deep tissue can be separated according to the difference of polarization characteristics. The novel point of the paper is to apply this method to the detection of particle suspension and, to realize the simultaneous measurement of its particle size and number density in its natural status. We design and build a coaxial cage optical system, and measure the backscatter signal at a specified angle from a polystyrene microsphere suspension. By controlling the polarization direction of incident light with a linear polarizer and adjusting the polarization direction of collected light with another linear polarizer, we obtain the parallel polarized elastic light scattering spectrum and cross polarized elastic light scattering spectrum. The difference between the two is the differential polarized elastic light scattering spectrum which include only the single scattering information of the particles. We thus compare this spectrum to the Mie scattering calculation and extract the particle size. We then also analyze the cross polarized elastic light scattering spectrum by applying the particle size already extracted. The analysis is based on the approximate expressions taking account of light diffusing, from which we are able to obtain the number density of the particle suspension. We compare our experimental outcomes with the manufacturer-provided values and further analyze the influence of the particle diameter standard deviation on the number density extraction, by which we finally verify the experimental method. The potential applications of the method include the on-line particle quality monitoring for particle manufacture as well as the fat and protein density detection of milk products.

  1. Deep-Elastic pp Scattering at Lhc from LOW-x Gluons

    NASA Astrophysics Data System (ADS)

    Islam, M. M.; Kašpar, J.; Luddy, R. J.

    Deep-elastic pp scattering at c.m. energy 14 TeV at LHC in the momentum transfer range 4 GeV2 ≲ |t| ≲ 10 GeV2 is planned to be measured by the TOTEM group. We study this process in a model where the deep-elastic scattering is due to a single hard collision of a valence quark from one proton with a valence quark from the other proton. The hard collision originates from the low-x gluon cloud around one valence quark interacting with that of the other. The low-x gluon cloud can be identified as color glass condensate and has size ≃0.3 F. Our prediction is that pp dσ/dt in the large |t| region decreases smoothly as momentum transfer increases. This is in contrast to the prediction of pp dσ/dt with visible oscillations and smaller cross sections by a large number of other models.

  2. Information-theoretic wavelet noise removal for inverse elastic wave scattering theory

    NASA Astrophysics Data System (ADS)

    van Nevel, Alan J.; Defacio, Brian; Neal, Steven P.

    1999-03-01

    A discussion of noise removal in ultrasound (elastic wave) scattering for nondestructive evaluation is given. The methods used in this paper include a useful suboptimal Wiener filter, information theory and orthonormal wavelets. The multiresolution analysis (MRA), due to Mallat, is the key wavelet feature used here. Whereas Fourier transforms have a translational symmetry, wavelets have a dilation or affine symmetry which consists of the semi-direct product of a translation with a change of scale of the variable. The MRA describes the scale change features of orthonormal wavelet families. First, an empirical method of noise removal from scattered elastic waves using wavelets is shown to markedly improve the l1 and l2 error norms. This suggests that the wavelet scale can act as dial to ``tune out'' noise. Maximization of the Kullback-Liebler information is also shown to provide a scale-dependent noise removal technique that supports (but does not prove) the intuition that certain small energy coefficients that are retained contain large information content. The wavelet MRA thereby locates ``islands of information'' in the phase space of the signal. It is conjectured that this method holds more generally.

  3. Precise measurement of near-barrier 8He+208Pb elastic scattering: Comparison with 6He

    NASA Astrophysics Data System (ADS)

    Marquínez-Durán, G.; Martel, I.; Sánchez-Benítez, A. M.; Acosta, L.; Berjillos, R.; Dueñas, J.; Rusek, K.; Keeley, N.; Álvarez, M. A. G.; Borge, M. J. G.; Chbihi, A.; Cruz, C.; Cubero, M.; Fernández-García, J. P.; Fernández-Martínez, B.; Flores, J. L.; Gómez-Camacho, J.; Kemper, K. W.; Labrador, J. A.; Marqués, M.; Moro, A. M.; Mazzocco, M.; Pakou, A.; Parkar, V. V.; Patronis, N.; Pesudo, V.; Pierroutsakou, D.; Raabe, R.; Silvestri, R.; Soic, N.; Standyło, Ł.; Strojek, I.; Tengblad, O.; Wolski, R.; Abou-Haidar, Z.

    2016-12-01

    Dramatic differences in the elastic scattering of the neutron rich nuclei 6He and 8He are found when new high quality data for the 8He+208Pb system are compared with previously published 6He+208Pb data at the same laboratory frame incident energy. The new 8He data are of the same level of detail as for stable beams. When comparing them with those previously obtained for 6He+208Pb at the same energy, it is possible to determine from the data alone that 6He has a much longer range absorption than 8He. However, both nuclei show significant absorption beyond their strong absorption radii. While it has been known for a long time that elastic scattering at energies around the barrier only determines the optical potential over a small distance in radial space, typically ±0.5 fm or so, both the 6He and the 8He imaginary potentials obtained from various optical model fits to these data are the same over a much wider range of ±1.5 fm.

  4. Low energy elastic electron scattering from CF{sub 3}Br molecules

    SciTech Connect

    Hargreaves, L. R.; Brunton, J. R.; Maddern, T. M.; Brunger, M. J.

    2015-03-28

    CF{sub 3}Br is a potentially valuable precursor molecule for generating beams of gas phase Br radicals suitable for electron collisions studies. However, the utility of CF{sub 3}Br for this purpose depends critically on the availability of sound scattering cross sections to allow the contribution of the precursor to be isolated within the total scattering signal. To this end, here we present elastic differential cross section (DCS) measurements for CF{sub 3}Br at incident energies between 15 and 50 eV. Comparison of these DCSs to those from the only other available experimental study [Sunohara et al., J. Phys. B: At., Mol. Opt. Phys. 36, 1843 (2003)] and a Schwinger multichannel with pseudo potentials (SMCPPs) calculation [Bettega et al., J. Phys. B: At., Mol. Opt. Phys. 36, 1263 (2003)] shows generally a very good accord. Integral elastic and momentum transfer cross sections, derived from our DCSs, are also found to be in quite good agreement with the SMCPP results.

  5. A Microscopic Optical Potential Approach to {sup 6,8}He+p Elastic Scattering

    SciTech Connect

    Lukyanov, V. K.; Zemlyanaya, E. V.; Lukyanov, K. V.; Kadrev, D. N.; Antonov, A. N.; Gaidarov, M. K.; Massen, S. E.

    2009-08-26

    A microscopic approach to calculate the optical potential (OP) with the real part obtained by a folding procedure and with the imaginary part inherent in the high-energy approximation (HEA) is applied to study the {sup 6,8}He+p elastic scattering data at energies of tens of MeV/N. The OP's and the cross sections are calculated using different models for the neutron and proton densities of {sup 6,8}He. The role of the spin-orbit (SO) potential and effects of the energy and density dependence of the effective NN forces are studied. Comparison of the calculations with the available experimental data on the elastic scattering differential cross sections at beam energies <100 MeV/N is performed and conclusions on the role of the aforesaid effects are made. It is shown that the present approach, which uses only parameters that renormalize the depths of the OP, can be applied along with other methods like that from the microscopic g-matrix description of the complex proton optical potential.

  6. Elastic Scattering of ^6He and ^8Li on ^58Ni---

    NASA Astrophysics Data System (ADS)

    Kolata, Jj; Guimares, V.; Peterson, D.; Santi, P.; von Schwarzenberg, J.; Staples, Cj; Deyoung, P.; Jolivette, Pl; Peaslee, G.; Hinnefeld, Jd; Becchetti, Fd; Lee, My; Roberts, Da

    1997-10-01

    Elastic scattering of ^6He and ^8Li on ^58Ni has been measured at beam energies of approximately 30 MeV, or 4 MeV per nucleon. This was the `commissioning' experiment for the recently upgraded radioactive nuclear beam (RNB) facility at the University of Notre Dame. A total energy resolution of about 300 keV was achieved, and the beam purity exceeded 75%. Remarkably, no ^7Li primary beam could be detected in the secondary beam in either case, implying beam rejection factors exceeding 1x10^12. The experiment was designed to respond to the challenge to study elastic and inelastic scattering of RNB's at angles well beyond `grazing'. In the case of ^8Li, previous inelastic data at energies below(J.A. Brown,et al.) , Phys. Rev. Lett.66 , 2452 (1991). and above(R.J. Smith,et al.), Phys. Rev.C43 , 2346 (1991). the Coulomb barrier indicated an anomalously strong transition to the excited state of the projectile. Data that relate to these two issues will be presented. This work was supported by the US National Science Foundation.

  7. Detection of gastrointestinal cancer by elastic scattering and absorption spectroscopies with the Los Alamos Optical Biopsy System

    SciTech Connect

    Mourant, J.R.; Boyer, J.; Johnson, T.M.; Lacey, J.; Bigio, I.J.; Bohorfoush, A.; Mellow, M.

    1995-03-01

    The Los Alamos National Laboratory has continued the development of the Optical Biopsy System (OBS) for noninvasive, real-time in situ diagnosis of tissue pathologies. In proceedings of earlier SPIE conferences we reported on clinical measurements in the bladder, and we report here on recent results of clinical tests in the gastrointestinal tract. With the OBS, tissue pathologies are detected/diagnosed using spectral measurements of the elastic optical transport properties (scattering and absorption) of the tissue over a wide range of wavelengths. The use of elastic scattering as the key to optical tissue diagnostics in the OBS is based on the fact that many tissue pathologies, including a majority of cancer forms, exhibit significant architectural changes at the cellular and sub-cellular level. Since the cellular components that cause elastic scattering have dimensions typically on the order of visible to near-IR wavelengths, the elastic (Mie) scattering properties will be wavelength dependent. Thus, morphology and size changes can be expected to cause significant changes m an optical signature that is derived from the wavelength-dependence of elastic scattering. Additionally, the optical geometry of the OBS beneficially enhances its sensitivity for measuring absorption bands. The OBS employs a small fiber-optic probe that is amenable to use with any endoscope or catheter, or to direct surface examination, as well as interstitial needle insertion. Data acquistion/display time is <1 second.

  8. Micro-Brillouin scattering study of low temperature elastic properties of protein crystals

    NASA Astrophysics Data System (ADS)

    Ike, Yuji; Hashimoto, Eiji; Aoki, Yuichiro; Kanazawa, Hitoshi; Kojima, Seiji

    2009-04-01

    Recently the crystal structures of small protein crystals have been well studied, whereas elastic properties of these crystals are not yet fully understood. The elastic properties of a tetragonal hen egg white lysozyme (HEWL) crystal is studied over a wide temperature range by using micro-Brillouin scattering (MBS), which is a powerful tool to measure the elastic properties of a very small crystal. A HEWL crystal is immersed in the cryoprotective liquid of glycerol which undergoes a glass transition around 185 K without any crystallization. The sound velocity of hypersonic acoustic phonons shows continuous increase with decreasing temperature and no abrupt jump due to crystallization. Typical relaxation behavior is observed in the gigahertz frequency range, and the relaxation time obeys the Arrhenius law. Its relaxation parameters are much different from those of bulk glycerol. The relaxation times of a HEWL crystal immersed in glycerol suggests that the observed dynamical process is probably related to the local motion of protein and solvent molecules near the surface of protein molecule.

  9. Models of the elastic x-ray scattering feature for warm dense aluminum

    NASA Astrophysics Data System (ADS)

    Starrett, C. E.; Saumon, D.

    2015-09-01

    The elastic feature of x-ray scattering from warm dense aluminum has recently been measured by Fletcher et al. [Nature Photonics 9, 274 (2015)], 10.1038/nphoton.2015.41 with much higher accuracy than had hitherto been possible. This measurement is a direct test of the ionic structure predicted by models of warm dense matter. We use the method of pseudoatom molecular dynamics to predict this elastic feature for warm dense aluminum with temperatures of 1-100 eV and densities of 2.7 -8.1 g/cm 3 . We compare these predictions to experiments, finding good agreement with Fletcher et al. and corroborating the discrepancy found in analyses of an earlier experiment of Ma et al. [Phys. Rev. Lett. 110, 065001 (2013)], 10.1103/PhysRevLett.110.065001. We also evaluate the validity of the Thomas-Fermi model of the electrons and of the hypernetted chain approximation in computing the elastic feature and find them both wanting in the regime currently probed by experiments.

  10. A rigid sphere approach to positron elastic scattering by noble gases, molecular hydrogen, nitrogen and methane

    NASA Astrophysics Data System (ADS)

    Fedus, Kamil

    2016-12-01

    A simple potential model of a rigid sphere combined with an adiabatic dipole polarization ( r -4) is tested for positron-atom and positron-molecule elastic collisions. The numerical model, which is based on the analytical solution of radial Schrödinger equation for r -4 potential, depends solely upon the average dipole polarizability of the target and one adjustable parameter - the radius of a hard core. The validity of model is assessed by an extensive comparative study against numerous experimental cross-sections and theoretical phase-shifts of angular momentum partial waves for positrons scattered elastically by He, Ne, Ar, Kr, Xe, H2, N2 and CH4. In particular it is shown that this very simple approach can be used to model positron elastic collisions with targets characterized by moderate dipole polarizabilities (Ar, Kr, H2, N2) in good agreement with experiments for impact energies covering almost entire range from the positronium formation threshold down to the zero energy.

  11. Models of the elastic x-ray scattering feature for warm dense aluminum

    DOE PAGES

    Starrett, Charles Edward; Saumon, Didier

    2015-09-03

    The elastic feature of x-ray scattering from warm dense aluminum has recently been measured by Fletcher et al. [Nature Photonics 9, 274 (2015)] with much higher accuracy than had hitherto been possible. This measurement is a direct test of the ionic structure predicted by models of warm dense matter. We use the method of pseudoatom molecular dynamics to predict this elastic feature for warm dense aluminum with temperatures of 1–100 eV and densities of 2.7–8.1g/cm3. We compare these predictions to experiments, finding good agreement with Fletcher et al. and corroborating the discrepancy found in analyses of an earlier experiment ofmore » Ma et al. [Phys. Rev. Lett. 110, 065001 (2013)]. Lastly, we also evaluate the validity of the Thomas-Fermi model of the electrons and of the hypernetted chain approximation in computing the elastic feature and find them both wanting in the regime currently probed by experiments.« less

  12. Models of the elastic x-ray scattering feature for warm dense aluminum

    SciTech Connect

    Starrett, Charles Edward; Saumon, Didier

    2015-09-03

    The elastic feature of x-ray scattering from warm dense aluminum has recently been measured by Fletcher et al. [Nature Photonics 9, 274 (2015)] with much higher accuracy than had hitherto been possible. This measurement is a direct test of the ionic structure predicted by models of warm dense matter. We use the method of pseudoatom molecular dynamics to predict this elastic feature for warm dense aluminum with temperatures of 1–100 eV and densities of 2.7–8.1g/cm3. We compare these predictions to experiments, finding good agreement with Fletcher et al. and corroborating the discrepancy found in analyses of an earlier experiment of Ma et al. [Phys. Rev. Lett. 110, 065001 (2013)]. Lastly, we also evaluate the validity of the Thomas-Fermi model of the electrons and of the hypernetted chain approximation in computing the elastic feature and find them both wanting in the regime currently probed by experiments.

  13. Cross section measurements for quasi-elastic neutrino-nucleus scattering with the MINOS near detector

    SciTech Connect

    Dorman, Mark Edward

    2008-04-01

    The Main Injector Neutrino Oscillation Search (MINOS) is a long baseline neutrino oscillation experiment based at the Fermi National Accelerator Laboratory (FNAL) in Chicago, Illinois. MINOS measures neutrino interactions in two large iron-scintillator tracking/sampling calorimeters; the Near Detector on-site at FNAL and the Far Detector located in the Soudan mine in northern Minnesota. The Near Detector has recorded a large number of neutrino interactions and this high statistics dataset can be used to make precision measurements of neutrino interaction cross sections. The cross section for charged-current quasi-elastic scattering has been measured by a number of previous experiments and these measurements disagree by up to 30%. A method to select a quasi-elastic enriched sample of neutrino interactions in the MINOS Near Detector is presented and a procedure to fit the kinematic distributions of this sample and extract the quasi-elastic cross section is introduced. The accuracy and robustness of the fitting procedure is studied using mock data and finally results from fits to the MINOS Near Detector data are presented.

  14. Imaging and characterization of a subhorizontal non-welded interface from point source elastic scattering response

    NASA Astrophysics Data System (ADS)

    Minato, Shohei; Ghose, Ranajit

    2014-05-01

    The inverse scattering of seismic waves can reveal the spatial distribution of the elastic compliances along a non-welded interface, such as a fracture surface. The spatial heterogeneity along the surface of a fracture is a key determinant for fracture-associated hydraulic properties. In this paper, we demonstrate that the inverse scattering solution can be successfully applied to the point source response of a subhorizontal fracture. In the scale of seismic exploration, it is more appropriate to consider spherical waves from a point source than plane waves. Further, from only the P-wave point source response it is possible to estimate both normal and tangential fracture compliances. The synthetic seismic wavefield due to a P-wave point source in a 2-D elastic medium was computed using a time-domain finite difference approach. On this spherical wave data set, the correct estimation of the position and dip of the non-welded interface was possible through reverse-time migration followed by least-square fitting of the maximum amplitude of the P-P reflection. In order to estimate the heterogeneity along the non-welded interface, we first extract the elastic wavefield at the interface position. The extrapolated wavefield is then rotated such that the horizontal axis aligns along the fracture plane. Next, using this extrapolated and rotated wavefield, we solve the linear-slip boundary condition to obtain the distribution of normal and tangential compliances. Our result shows that the estimates of normal compliance are very accurate around the dominant frequency of the incident seismic wavefield. At lower frequencies, the estimated compliance distribution is less accurate and rather smooth due to the presence of evanescent waves. Extracting the distribution of the tangential compliance requires a larger stabilization factor. For a correct estimation of the tangential compliance, one needs S-wave sources or multiple sources providing more grazing angles to avoid the shadow

  15. Elasticity of Stishovite and Acoustic Mode Softening Under High Pressure by Brillouin Scattering

    SciTech Connect

    Jiang, F.; Gwanmesia, G; Dyuzheva, T; Duffy, T

    2009-01-01

    Brillouin scattering measurements on single-crystal stishovite, a high-pressure polymorph of SiO2, were carried out to 22 GPa. Acoustic velocities in three 30-em thick crystal platelets of synthetic stishovite were measured in a forward symmetric scattering geometry, and the full set of elastic constants were retrieved to 12 GPa. The measured velocity data were fit to Christoffel's equation, yielding ambient-pressure elastic constants of C11 = 455(1) GPa, C33 = 762(2) GPa, C12 = 199(2) GPa, C13 = 192(2) GPa, C44 = 258(1) GPa, and C66 = 321(1) GPa. The elastic modulus (C11 - C12)/2 was observed to decrease with pressure, indicating acoustic mode softening, consistent with theoretical predications for the behavior of stishovite as it approaches the transition to the CaCl2-type phase. The bounds on the aggregate adiabatic bulk and shear moduli are KS0 = 315(1) GPa, G0 = 240(1) GPa for the Voigt bound, KS0 = 301(1) GPa, G0 = 216(1) GPa for the Reuss bound. Pressure derivatives of aggregate bulk and shear moduli were constrained to be (?KS/?P)T0 = 4.34(16) and (?G/?P)0 = 0.7(1) for the Reuss bound, and (?KS/?P)T0 = 4.0(1) and (?G/?P)0 = 1.1(1) for the Voigt-Reuss-Hill (VRH) average, respectively, by fitting the data to Eulerian finite strain equations. The volume compression curve obtained from our Brillouin measurement is in very good agreement with previous compression studies up to 50 GPa.

  16. Multilevel fast multipole algorithm for elastic wave scattering by large three-dimensional objects

    NASA Astrophysics Data System (ADS)

    Tong, Mei Song; Chew, Weng Cho

    2009-02-01

    Multilevel fast multipole algorithm (MLFMA) is developed for solving elastic wave scattering by large three-dimensional (3D) objects. Since the governing set of boundary integral equations (BIE) for the problem includes both compressional and shear waves with different wave numbers in one medium, the double-tree structure for each medium is used in the MLFMA implementation. When both the object and surrounding media are elastic, four wave numbers in total and thus four FMA trees are involved. We employ Nyström method to discretize the BIE and generate the corresponding matrix equation. The MLFMA is used to accelerate the solution process by reducing the complexity of matrix-vector product from O(N2) to O(NlogN) in iterative solvers. The multiple-tree structure differs from the single-tree frame in electromagnetics (EM) and acoustics, and greatly complicates the MLFMA implementation due to the different definitions for well-separated groups in different FMA trees. Our Nyström method has made use of the cancellation of leading terms in the series expansion of integral kernels to handle hyper singularities in near terms. This feature is kept in the MLFMA by seeking the common near patches in different FMA trees and treating the involved near terms synergistically. Due to the high cost of the multiple-tree structure, our numerical examples show that we can only solve the elastic wave scattering problems with 0.3-0.4 millions of unknowns on our Dell Precision 690 workstation using one core.

  17. Determination of second-order elastic constants of cyclotetramethylene tetranitramine (β-HMX) using impulsive stimulated thermal scattering

    NASA Astrophysics Data System (ADS)

    Sun, B.; Winey, J. M.; Gupta, Y. M.; Hooks, D. E.

    2009-09-01

    The second-order elastic constants for cyclotetramethylene tetranitramine (β-HMX) single crystals were determined using the impulsive stimulated thermal scattering (ISTS) method. Despite the low symmetry of these crystals, the complete set of 13 elastic constants were determined accurately from acoustic velocity measurements using samples cut parallel to three different crystal planes. Our acoustic velocities are consistent with the limited sound speed data available from ultrasonic measurements. However, significant differences are observed between the elastic constants determined from our experiments and those obtained previously using Brillouin scattering. Our results demonstrate the usefulness and efficiency of the ISTS method for determining the full set of elastic constants of low-symmetry molecular crystals, including energetic crystals.

  18. Backward-forward reaction asymmetry of neutron elastic scattering on deuterium

    NASA Astrophysics Data System (ADS)

    Pirovano, E.; Beyer, R.; Junghans, A. R.; Nankov, N.; Nolte, R.; Nyman, M.; Plompen, A. J. M.

    2017-02-01

    A new measurement of the angular distribution of neutron elastic scattering on deuterium was carried out at the neutron time-of-flight facility nELBE. The backward-forward asymmetry of the reaction was investigated via the direct detection of neutrons scattered at the laboratory angle of 15∘ and 165∘ from a polyethylene sample enriched with deuterium. In order to extend the measurement to neutron energies below 1 MeV, 6Li glass scintillators were employed. The data were corrected for the background and the multiple scattering in the target, the events due to scattering on deuterium were separated from those due to carbon, and the ratio of the differential cross section at 15∘ and 165∘ was determined. The results, covering the energy range from 200 keV to 2 MeV, were found to be in agreement with the theoretical predictions calculated by Canton et al. [Eur. Phys. J. A 14, 225 (2002)], 10.1140/epja/i2001-10122-3 and by Golak et al. [Eur. Phys. J. A 50, 177 (2014)], 10.1140/epja/i2014-14177-7. The comparison with the evaluated nuclear data libraries indicated CENDL-3.1, JEFF-3.2, and JENDL-4.0 as the evaluations that best describe the asymmetry of n -d scattering. ENDF/B-VII.1 is compatible with the data for energies below 700 keV, but above the backward to forward ratio is higher than measured. ROSFOND-2010 and BROND-2.2 resulted to have little compatibility with the data.

  19. Elastic scattering measurements for the system 7Be +28Si at 17.2 MeV

    NASA Astrophysics Data System (ADS)

    Sgouros, O.; Pakou, A.; Pierroutsakou, D.; Mazzocco, M.; Acosta, L.; Aslanoglou, X.; Boiano, A.; Boiano, C.; Grebosz, J.; Keeley, N.; La Commara, M.; Marquinez-Duran, G.; Martel, I.; Parascandolo, C.; Rusek, K.; Sánchez-Benítez, A. M.; Signorini, C.; Soukeras, V.; Stiliaris, E.; Strano, E.; Strojek, I.; Torresi, D.

    2015-02-01

    Elastic scattering of 7Be +28Si was studied at several near barrier energies for probing the energy dependence of the optical potential. Our analysis at 17.2 MeV will be presented in this article and discussed, in terms of Continuum Coupled Channel Calculations (CDCC). This research is part of a long term plan concerning the energy dependence of the optical potential for weakly bound projectiles, at near barrier energies and for probing the potential threshold anomaly. The experiment took place at the EXOTIC facility - Laboratori Nationali di Legnaro (LNL), and refers to an angular distribution measurement, using the detector array EXPADES (Exotic Particle Detection System). Results at 9 MeV (Rutherford region) were also analyzed and were used for estimating the solid angle. Our analysis for other energies is under process.

  20. Elastic scattering measurements for the system {sup 7}Be+{sup 28}Si at 17.2 MeV

    SciTech Connect

    Sgouros, O.; Pakou, A.; Aslanoglou, X.; Soukeras, V.; Pierroutsakou, D.; Boiano, A.; Mazzocco, M.; Parascandolo, C.; Signorini, C.; Strano, E.; Torresi, D.; Acosta, L.; Marquinez-Duran, G.; Martel, I.; Boiano, C.; Grebosz, J.; Keeley, N.; Strojek, I.; La Commara, M.; Rusek, K.; and others

    2015-02-24

    Elastic scattering of {sup 7}Be+{sup 28}Si was studied at several near barrier energies for probing the energy dependence of the optical potential. Our analysis at 17.2 MeV will be presented in this article and discussed, in terms of Continuum Coupled Channel Calculations (CDCC). This research is part of a long term plan concerning the energy dependence of the optical potential for weakly bound projectiles, at near barrier energies and for probing the potential threshold anomaly. The experiment took place at the EXOTIC facility - Laboratori Nationali di Legnaro (LNL), and refers to an angular distribution measurement, using the detector array EXPADES (Exotic Particle Detection System). Results at 9 MeV (Rutherford region) were also analyzed and were used for estimating the solid angle. Our analysis for other energies is under process.

  1. Elastic scattering and breakup of 11Be on deuterons at 26.9 A MeV

    NASA Astrophysics Data System (ADS)

    Chen, J.; Lou, J. L.; Ye, Y. L.; Rangel, J.; Moro, A. M.; Pang, D. Y.; Li, Z. H.; Ge, Y. C.; Li, Q. T.; Li, J.; Jiang, W.; Sun, Y. L.; Zang, H. L.; Zhang, Y.; Aoi, N.; Ideguchi, E.; Ong, H. J.; Lee, J.; Wu, J.; Liu, H. N.; Wen, C.; Ayyad, Y.; Hatanaka, K.; Tran, T. D.; Yamamoto, T.; Tanaka, M.; Suzuki, T.; Nguyen, T. T.

    2016-12-01

    The elastic scattering and breakup reactions of the halo nucleus 11Be on deuterons at an incident energy of 26.9 A MeV are reported for the first time. Special attention has been paid to the determination and subtraction of the proton contaminations in the deuterated polyethylene (CD2)n target (where D2 denotes H22 ). The cross sections for elastic scattering are analyzed with the systematic optical potentials of Daehnick et al. and DA1p, as well as with single-folding potentials, derived from the Jeukenne-Lejeune-Mahaux effective nucleon-nucleon interaction. An extended version of the continuum-discretized coupled-channels (XCDCC) formalism, including dynamic core excitation (DCX) effects, is applied to analyze the elastic scattering and breakup data. Comparisons of the full XCDCC calculation with that omitting DCX effects indicate that the core excitation plays a remarkable role in reproducing breakup reactions of 11Be+d .

  2. Dark Matter Elastic Scattering Through Higgs Loops [Everything you always wanted to know but were afraid to ask

    SciTech Connect

    Berlin, Asher; Hooper, Dan; McDermott, Samuel D.

    2015-12-28

    We consider a complete list of simplifieed models in which Majorana dark matter particles annihilate at tree level to hh or hZ finnal states, and calculate the loop-induced elastic scattering cross section with nuclei in each case. Expressions for these annihilation and elastic scattering cross sections are provided, and can be easily applied to a variety of UV complete models. We identify several phenomenologically viable scenarios, including dark matter that annihilates through the s-channel exchange of a spin-zero mediator or through the t-channel exchange of a fermion. Although the elastic scattering cross sections predicted in this class of models are generally quite small, XENON1Tand LZ should be sensitive to significant regions of this parameter space. Models in which the dark matter annihilates to hh or hZ can also generate a gamma-ray signal that is compatible with the excess observed from the Galactic Center.

  3. Rutherford forward scattering and elastic recoil detection (RFSERD) as a method for characterizing ultra-thin films

    SciTech Connect

    Lohn, Andrew J.; Doyle, Barney L.; Stein, Gregory J.; Mickel, Patrick R.; Stevens, Jim E.; Marinella, Matthew J.

    2014-04-03

    We present a novel ion beam analysis technique combining Rutherford forward scattering and elastic recoil detection (RFSERD) and demonstrate its ability to increase efficiency in determining stoichiometry in ultrathin (5-50 nm) films as compared to Rutherford backscattering. In the conventional forward geometries, scattering from the substrate overwhelms the signal from light atoms but in RFSERD, scattered ions from the substrate are ranged out while forward scattered ions and recoiled atoms from the thin film are simultaneously detected in a single detector. Lastly, the technique is applied to tantalum oxide memristors but can be extended to a wide range of materials systems.

  4. Rutherford forward scattering and elastic recoil detection (RFSERD) as a method for characterizing ultra-thin films

    DOE PAGES

    Lohn, Andrew J.; Doyle, Barney L.; Stein, Gregory J.; ...

    2014-04-03

    We present a novel ion beam analysis technique combining Rutherford forward scattering and elastic recoil detection (RFSERD) and demonstrate its ability to increase efficiency in determining stoichiometry in ultrathin (5-50 nm) films as compared to Rutherford backscattering. In the conventional forward geometries, scattering from the substrate overwhelms the signal from light atoms but in RFSERD, scattered ions from the substrate are ranged out while forward scattered ions and recoiled atoms from the thin film are simultaneously detected in a single detector. Lastly, the technique is applied to tantalum oxide memristors but can be extended to a wide range of materialsmore » systems.« less

  5. Experiment to measure total cross sections, differential cross sections and polarization effects in pp elastic scattering at RHIC

    SciTech Connect

    Guryn, W.

    1998-02-01

    The authors are describing an experiment to study proton-proton (pp) elastic scattering experiment at the Relativistic Heavy Ion Collider (RHIC). Using both polarized and unpolarized beams, the experiment will study pp elastic scattering from {radical}s = 50 GeV to {radical}s = 500 GeV in two kinematical regions. In the Coulomb Nuclear Interference (CNI) region, 0.0005 < {vert_bar}t{vert_bar} < 0.12 (GeV/c){sup 2}, they will measure and study the s dependence of the total and elastic cross sections, {sigma}{sub tot} and {sigma}{sub el}; the ratio of the real to the imaginary part of the forward elastic scattering amplitude, {rho}; and the nuclear slope parameter of the pp elastic scattering, b. In the medium {vert_bar}t{vert_bar}-region, {vert_bar}t{vert_bar} < 1.5 (GeV/c){sup 2}, they plan to study the evolution of the dip structure with s, as observed at ISR in the differential elastic cross section, d{sigma}{sub el}/dt, and the s and {vert_bar}t{vert_bar} dependence of b. With the polarized beams the following can be measured: the difference in the total cross sections as function of initial transverse spin states {Delta}{sigma}{sub T}, the analyzing power, A{sub N}, and the transverse spin correlation parameter A{sub NN}. The behavior of the analyzing power A{sub N} at RHIC energies in the dip region of d{sigma}{sub el}/dt, where a pronounced structure was found at fixed-target experiments will be studied. The relation of pp elastic scattering to the beam polarization measurement at RHIC is also discussed.

  6. Low-energy elastic electron scattering from isobutanol and related alkyl amines

    NASA Astrophysics Data System (ADS)

    Fedus, Kamil; Navarro, C.; Hargreaves, L. R.; Khakoo, M. A.; Silva, F. M.; Bettega, M. H. F.; Winstead, C.; McKoy, V.

    2014-09-01

    Normalized experimental differential and integral cross sections for vibrationally elastic scattering of low-energy electrons from isobutanol (C4H9OH ) are presented. The differential cross sections are measured at incident energies from 1 to 100 eV and scattering angles from 5∘ to 130∘. These cross sections are compared to earlier experimental and theoretical results for isobutanol and n-butanol, as well as to results for smaller alcohols and for alkanes. Further comparisons are made with calculated cross sections for isobutylamine (C4H9NH2) and for smaller amines, including ethylamine (C2H5NH2), dimethylamine (CH3NHCH3), the two C3H7NH2 isomers n-propylamine and isopropylamine, and ethylene diamine (NH2C2H4NH2). The calculated cross sections are obtained using the Schwinger multichannel method. The comparisons illuminate the role of molecular structure in determining the angular distribution of resonantly scattered electrons.

  7. The contribution of small angle and quasi-elastic scattering to the physics of liquid water

    NASA Astrophysics Data System (ADS)

    Teixeira, José

    2017-05-01

    Many properties of liquid water at low temperature show anomalous behaviour. For example, density, isothermal compressibility, heat capacity pass by maxima or minima and transport properties show a super-Arrhenius behaviour. Extrapolations performed beyond the homogeneous nucleation temperature are at the origin of models that predict critical points, liquid-liquid transitions or dynamic cross-overs in the large domain of temperature and pressure not accessible to experiments because of ice nucleation. A careful analysis of existing data can be used to test some of these models. Small angle X-ray or neutron scattering data are incompatible with models where two liquids or heterogeneities are present. Quasi-elastic neutron scattering, taking advantage and combining both coherent and incoherent scattering show that two relaxation times are present in liquid water and that one of them, related to hydrogen bond dynamics, has an Arrhenian behaviour, suggesting that the associated dynamics of the bonds, similar to the β relaxation of polymers, determines the glass transition temperature of water.

  8. Plane wave solution for elastic wave scattering by a heterogeneous fracture

    NASA Astrophysics Data System (ADS)

    Nakagawa, Seiji; Nihei, Kurt T.; Myer, Larry R.

    2004-06-01

    A plane-wave method for computing the three-dimensional scattering of propagating elastic waves by a planar fracture with heterogeneous fracture compliance distribution is presented. This method is based upon the spatial Fourier transform of the seismic displacement-discontinuity (SDD) boundary conditions (also called linear slip interface conditions), and therefore, called the wave-number-domain SDD method (wd-SDD method). The resulting boundary conditions explicitly show the coupling between plane waves with an incident wave number component (specular component) and scattered waves which do not follow Snell's law (nonspecular components) if the fracture is viewed as a planar boundary. For a spatially periodic fracture compliance distribution, these boundary conditions can be cast into a linear system of equations that can be solved for the amplitudes of individual wave modes and wave numbers. We demonstrate the developed technique for a simulated fracture with a stochastic (correlated) surface compliance distribution. Low- and high-frequency solutions of the method are also compared to the predictions by low-order Born series in the weak and strong scattering limit.

  9. Elastic pion-nucleon scattering in chiral perturbation theory: A fresh look

    NASA Astrophysics Data System (ADS)

    Siemens, D.; Bernard, V.; Epelbaum, E.; Gasparyan, A.; Krebs, H.; Meißner, Ulf-G.

    2016-07-01

    Elastic pion-nucleon scattering is analyzed in the framework of chiral perturbation theory up to fourth order within the heavy-baryon expansion and a covariant approach based on an extended on-mass-shell renormalization scheme. We discuss in detail the renormalization of the various low-energy constants and provide explicit expressions for the relevant β functions and the finite subtractions of the power-counting breaking terms within the covariant formulation. To estimate the theoretical uncertainty from the truncation of the chiral expansion, we employ an approach which has been successfully applied in the most recent analysis of the nuclear forces. This allows us to reliably extract the relevant low-energy constants from the available scattering data at low energy. The obtained results provide clear evidence that the breakdown scale of the chiral expansion for this reaction is related to the Δ resonance. The explicit inclusion of the leading contributions of the Δ isobar is demonstrated to substantially increase the range of applicability of the effective field theory. The resulting predictions for the phase shifts are in an excellent agreement with the predictions from the recent Roy-Steiner-equation analysis of pion-nucleon scattering.

  10. Spin observables in quasi-elastic proton-nucleus scattering near 1 GeV

    SciTech Connect

    Smith, R.D.; Wallace, S.J.

    1985-11-01

    The spin dependence of quasi-elastic proton-nucleus scattering is studied using Glauber's eikonal multiple scattering theory, which is extended to include multiple knockout collisions as well as the full spin dependence of the NN amplitudes. Calculations of the cross section d/sup 2/sigma/d..cap omega.. dp and spin observables DNN, DLL, DSS, DSL, DLS, Ay are presented and compared to data for d/sup 2/sigma/d..cap omega.. dp and Ay from inclusive (p,p') experiments on /sup 12/C at T/sub lab/ = 800 MeV. The main feature seen is a drop in the spin observables in the kinematic region where two nucleon knockout dominates the cross section. As an initial study of the contribution of quasi-free ..delta.. production to the inclusive cross section, multiple scattering theory is used to normalize a plane-wave impulse approximation calculation of d/sup 2/sigma/d..cap omega.. dp for p+/sup 12/C..-->..p+..pi..+/sup 12/C(. .AE

  11. Plane wave method for elastic wave scattering by a heterogeneous fracture

    SciTech Connect

    Nakagawa, Seiji; Nihei, Kurt T.; Myer, Larry R.

    2003-02-21

    A plane-wave method for computing the three-dimensional scattering of propagating elastic waves by a planar fracture with heterogeneous fracture compliance distribution is presented. This method is based upon the spatial Fourier transform of the seismic displacement-discontinuity (SDD) boundary conditions (also called linear slip interface conditions), and therefore, called the wave-number-domain SDD method (wd-SDD method). The resulting boundary conditions explicitly show the coupling between plane waves with an incident wave number component (specular component) and scattered waves which do not follow Snell's law (nonspecular components) if the fracture is viewed as a planar boundary. For a spatially periodic fracture compliance distribution, these boundary conditions can be cast into a linear system of equations that can be solved for the amplitudes of individual wave modes and wave numbers. We demonstrate the developed technique for a simulated fracture with a stochastic (correlated) surface compliance distribution. Low- and high-frequency solutions of the method are also compared to the predictions by low-order Born series in the weak and strong scattering limit.

  12. Results for quasi-elastic anti-neutrino scattering on scintillator from the MINERvA experiment

    NASA Astrophysics Data System (ADS)

    Schellman, Heidi; Minerva Collaboration

    2016-09-01

    We present a new preliminary measurement of the charge-current quasi-elastic scattering cross section for anti-neutrinos on scintillator (CH) over the energy range 1.5-10 GeV. The data were taken with the MINERvA detector in the NuMI beamline at Fermilab and cover the energy range of interest for the proposed DUNE long-baseline neutrino oscillation experiment and of JLAB elastic scattering experiments. Of particular interest to the nuclear community are possible signatures for short range correlations and/or meson exchange currents in these data. We present comparisons to a range of nuclear models.

  13. Important influence of single neutron stripping coupling on near-barrier 8Li + 90Zr quasi-elastic scattering

    NASA Astrophysics Data System (ADS)

    Pakou, A.; Keeley, N.; Pierroutsakou, D.; Mazzocco, M.; Acosta, L.; Aslanoglou, X.; Boiano, A.; Boiano, C.; Carbone, D.; Cavallaro, M.; Grebosz, J.; La Commara, M.; Manea, C.; Marquinez-Duran, G.; Martel, I.; Parascandolo, C.; Rusek, K.; Sánchez-Benítez, A. M.; Sgouros, O.; Signorini, C.; Soramel, F.; Soukeras, V.; Stiliaris, E.; Strano, E.; Torresi, D.; Trzcińska, A.; Watanabe, Y. X.; Yamaguchi, H.

    2015-07-01

    Quasi-elastic scattering data were obtained for the radioactive nucleus 8Li on a 90Zr target at the near-barrier energy of 18.5MeV over the angular range to 80°. They were analyzed within the coupled channels and coupled reaction channels frameworks pointing to a strong coupling effect for single neutron stripping, in contrast to 6, 7 Li + 90 Zr elastic scattering at similar energies, a non-trivial result linked to detailed differences in the structure of these Li isotopes.

  14. Equivalence of expressions for the acoustic scattering of a progressive high-order Bessel beam by an elastic sphere.

    PubMed

    Mitri, Farid G

    2009-05-01

    The exact analytical solution for the acoustic scattering of a high-order (commonly known as generalized) Bessel beam (HOBB) by an elastic sphere immersed in an ideal fluid and centered along the beam axis is revisited. The far-field acoustic scattering field is expressed as a partial wave series involving the scattering angle relative to the beam axis, the order, and the half-conical angle of the wave number components of the generalized Bessel beam. Using an appropriate grouping of terms, the expressions for the incident and scattered pressures, as well as the scattering (complex) form function provided in a recent work are transformed into expressions involving the partial wave series starting from the order m of the generalized Bessel beam. In this new formulation, the scattering coefficients for a HOBB are found to equal those obtained from the study of sound scattering of plane progressive waves by an elastic sphere. This suggests that the (complex) form function presented here may be used to advantage toward studying the acoustic scattering of a HOBB by spherical shells, coated spheres, and coated spherical shells using their corresponding scattering partial wave coefficients available in standard and recent literature texts.

  15. Folding model analysis of pion elastic and inelastic scattering from {sup 6}Li and {sup 12}C

    SciTech Connect

    Ebrahim, A. A.

    2013-04-15

    {pi}{sup {+-}}-Nucleus scattering cross sections are calculated applying the Watanabe superposition model with a phenomenological Woods-Saxon potential. The phenomenological potential parameters are searched for {pi}{sup {+-}} scattering from {sup 6}Li and {sup 12}C to reproduce not only differential elastic cross sections but also inelastic and total and reaction cross sections at pion kinetic energies from 50 to 672 MeV. The optical potentials of {sup 6}Li and {sup 12}C are calculated in terms of the alpha particle and deuteron optical potentials. Inelastic scattering has been analyzed using the distorted waves from elastic-scattering data. The values of deformation lengths thus obtained compare very well with the ones reported earlier.

  16. Analysis of four-wave mixing of high-power lasers for the detection of elastic photon-photon scattering

    SciTech Connect

    Lundin, J.; Marklund, M.; Lundstroem, E.; Brodin, G.; Collier, J.; Bingham, R.; Mendonca, J. T.; Norreys, P.

    2006-10-15

    We derive expressions for the coupling coefficients for electromagnetic four-wave mixing in the nonlinear quantum vacuum. An experimental setup for detection of elastic photon-photon scattering is suggested, where three incoming laser pulses collide and generate a fourth wave with a new frequency and direction of propagation. An expression for the number of scattered photons is derived and, using beam parameters for the Astra Gemini system at the Rutherford Appleton Laboratory, it is found that the signal can reach detectable levels. Problems with shot-to-shot reproducibility are reviewed, and the magnitude of the noise arising from competing scattering processes is estimated. It is found that detection of elastic photon-photon scattering may be achieved.

  17. Recent advances and open questions in neutrino-induced quasi-elastic scattering and single photon production

    NASA Astrophysics Data System (ADS)

    Garvey, G. T.; Harris, D. A.; Tanaka, H. A.; Tayloe, R.; Zeller, G. P.

    2015-06-01

    The study of neutrino-nucleus interactions has recently seen rapid development with a new generation of accelerator-based neutrino experiments employing medium and heavy nuclear targets for the study of neutrino oscillations. A few unexpected results in the study of quasi-elastic scattering and single photon production have spurred a revisiting of the underlying nuclear physics and connections to electron-nucleus scattering. A thorough understanding and resolution of these issues is essential for future progress in the study of neutrino oscillations. A recent workshop hosted by the Institute of Nuclear Theory at the University of Washington (INT-13-54W) examined experimental and theoretical developments in neutrino-nucleus interactions and related measurements from electron and pion scattering. We summarize the discussions at the workshop pertaining to the aforementioned issues in quasi-elastic scattering and single photon production, particularly where there was consensus on the highest priority issues to be resolved and the path towards resolving them.

  18. Anelastic Attenuation and Elastic Scattering of Seismic Waves in the Los Angeles Region

    NASA Astrophysics Data System (ADS)

    Song, X.; Jordan, T. H.

    2013-12-01

    The accuracy of earthquake simulations needed for physics-based seismic hazard analysis depends on good information about crustal structure. For low-frequency (f < 0.3 Hz) simulations, the most important structural parameters are the seismic wave velocities, but as the frequencies increase, seismic wave attenuation becomes more important. We compare attenuation models that have been recently used in the CyberShake hazard model (Graves et al., 2011) and other simulation studies for the Los Angeles region (Olsen et al., 2009; Taborda & Bielak, 2013) with constraints from local earthquake data out to 10 Hz, which include those from Hauksson & Shearer's (2006) attenuation tomography as well as our own measurements. We show that the velocity-attenuation scaling relationship for shear waves employed by CyberShake (QS = 50VS, where VS is in km/s) provides a good approximation to the average crustal structure at f = 0.3 Hz, but it does not capture the lateral variations in QS at shallow depths. Moreover, this frequency-independent model is inconsistent with the high QS values observed throughout most of the crust at f > 1 Hz. The data indicate a frequency-dependent attenuation of the form QS ~ f γ, where 0.5 ≤ γ ≤ 0.8. Anomalously low QS factors are observed at very shallow depths, which can be explained by a combination of anelastic attenuation and elastic scattering. The scattering parameters are roughly consistent with small-scale, near-surface heterogeneities observed in well-logs and seismic reflection surveys in the Los Angeles basin. High-frequency scattering may also play a role in explaining Hauksson & Shearer's (2006) observation that the QP/QS ratio is anomalously low (~ unity). We summarize the observations in a new attenuation and scattering model for the CyberShake region that is laterally heterogeneous and frequency dependent.

  19. Measurement of the absolute differential cross section of proton–proton elastic scattering at small angles

    SciTech Connect

    Mchedlishvili, D.; Chiladze, D.; Dymov, S.; Bagdasarian, Z.; Barsov, S.; Gebel, R.; Gou, B.; Hartmann, M.; Kacharava, A.; Keshelashvili, I.; Khoukaz, A.; Kulessa, P.; Kulikov, A.; Lehrach, A.; Lomidze, N.; Lorentz, B.; Maier, R.; Macharashvili, G.; Merzliakov, S.; Mikirtychyants, S.; Nioradze, M.; Ohm, H.; Prasuhn, D.; Rathmann, F.; Serdyuk, V.; Schroer, D.; Shmakova, V.; Stassen, R.; Stein, H. J.; Stockhorst, H.; Strakovsky, I. I.; Stroher, H.; Tabidze, M.; Taschner, A.; Trusov, S.; Tsirkov, D.; Uzikov, Yu.; Valdau, Yu.; Wilkin, C.; Workman, R. L.; Wustner, P.

    2016-02-03

    The differential cross section for proton-proton elastic scattering has been measured at a beam kinetic energy of 1.0 GeV and in 200 MeV steps from 1.6 to 2.8 GeV for centre-of-mass angles in the range from 12°-16° to 25°-30°, depending on the energy. A precision in the overall normalisation of typically 3% was achieved by studying the energy losses of the circulating beam of the COSY storage ring as it passed repeatedly through the windowless hydrogen target of the ANKE magnetic spectrometer. It is shown that the data have a significant impact upon the results of a partial wave analysis. Furthermore, after extrapolating the differential cross sections to the forward direction, the results are broadly compatible with the predictions of forward dispersion relations.

  20. Background Neutron Studies for Coherent Elastic Neutrino-Nucleus Scattering Measurements at the SNS

    NASA Astrophysics Data System (ADS)

    Markoff, Diane; Coherent Collaboration

    2015-10-01

    The COHERENT collaboration has proposed to measure coherent, elastic neutrino-nucleus scattering (CE νNS) cross sections on several nuclear targets using neutrinos produced at the Spallation Neutron Source (SNS) located at the Oak Ridge National Laboratory. The largest background of concern arises from beam-induced, fast neutrons that can mimic a nuclear recoil signal event in the detector. Multiple technologies of neutron detection have been employed at prospective experiment sites at the SNS. Analysis of these data have produced a consistent picture of the backgrounds expected for a CE νNS measurement. These background studies show that at suitable locations, the fast neutrons of concern arrive mainly in the prompt 1.3 μs window and the neutrons in the delayed window are primarily of lower energies that are relatively easier to shield.

  1. Coherent Elastic Neutrino Nucleus Scattering (CENNS) Experiment at the Fermilab Booster Neutrino Beam

    NASA Astrophysics Data System (ADS)

    Tayloe, Rex; Cenns Collaboration

    2015-04-01

    The coherent elastic neutrino-nucleus scattering (CENNS) process is important to understand supernovae, nuclear form factors, and low-energy behavior of the Standard Model. It will also become more important as a background in direct-detection dark matter experiments. The process has yet to be observed because of the low-energy detection thresholds and neutron background reduction required. Recent advances in cryogenic detector technology now make it possible. The CENNS collaboration proposes to deploy a 1-ton-scale, single-phase, liquid argon scintillation detector near the Fermilab Booster Neutrino Beam (BNB) for a first measurement. A detector near the neutrino production target at 90 degrees off-axis will observe a low-energy flux of 10-50 MeV stopped-pion neutrinos for CENNS. The details of this effort including prototype detectors and neutron background measurements will be presented.

  2. New Measurements of the Transverse Beam Asymmetry for Elastic Electron Scattering from Selected Nuclei

    NASA Astrophysics Data System (ADS)

    Abrahamyan, S.; Acha, A.; Afanasev, A.; Ahmed, Z.; Albataineh, H.; Aniol, K.; Armstrong, D. S.; Armstrong, W.; Arrington, J.; Averett, T.; Babineau, B.; Bailey, S. L.; Barber, J.; Barbieri, A.; Beck, A.; Bellini, V.; Beminiwattha, R.; Benaoum, H.; Benesch, J.; Benmokhtar, F.; Bertin, P.; Bielarski, T.; Boeglin, W.; Bosted, P.; Butaru, F.; Burtin, E.; Cahoon, J.; Camsonne, A.; Canan, M.; Carter, P.; Chang, C. C.; Cates, G. D.; Chao, Y.-C.; Chen, C.; Chen, J.-P.; Choi, Seonho; Chudakov, E.; Cisbani, E.; Craver, B.; Cusanno, F.; Dalton, M. M.; De Leo, R.; de Jager, K.; Deconinck, W.; Decowski, P.; Deepa, D.; Deng, X.; Deur, A.; Dutta, D.; Etile, A.; Ferdi, C.; Feuerbach, R. J.; Finn, J. M.; Flay, D.; Franklin, G. B.; Friend, M.; Frullani, S.; Fuchey, E.; Fuchs, S. A.; Fuoti, K.; Garibaldi, F.; Gasser, E.; Gilman, R.; Giusa, A.; Glamazdin, A.; Glesener, L. E.; Gomez, J.; Gorchtein, M.; Grames, J.; Grimm, K.; Gu, C.; Hansen, O.; Hansknecht, J.; Hen, O.; Higinbotham, D. W.; Holmes, R. S.; Holmstrom, T.; Horowitz, C. J.; Hoskins, J.; Huang, J.; Humensky, T. B.; Hyde, C. E.; Ibrahim, H.; Itard, F.; Jen, C.-M.; Jensen, E.; Jiang, X.; Jin, G.; Johnston, S.; Katich, J.; Kaufman, L. J.; Kelleher, A.; Kliakhandler, K.; King, P. M.; Kolarkar, A.; Kowalski, S.; Kuchina, E.; Kumar, K. S.; Lagamba, L.; Lambert, D.; LaViolette, P.; Leacock, J.; Leckey, J., IV; Lee, J. H.; LeRose, J. J.; Lhuillier, D.; Lindgren, R.; Liyanage, N.; Lubinsky, N.; Mammei, J.; Mammoliti, F.; Margaziotis, D. J.; Markowitz, P.; Mazouz, M.; McCormick, K.; McCreary, A.; McNulty, D.; Meekins, D. G.; Mercado, L.; Meziani, Z.-E.; Michaels, R. W.; Mihovilovic, M.; Moffit, B.; Monaghan, P.; Muangma, N.; Muñoz-Camacho, C.; Nanda, S.; Nelyubin, V.; Neyret, D.; Nuruzzaman; Oh, Y.; Otis, K.; Palmer, A.; Parno, D.; Paschke, K. D.; Phillips, S. K.; Poelker, M.; Pomatsalyuk, R.; Posik, M.; Potokar, M.; Prok, K.; Puckett, A. J. R.; Qian, X.; Qiang, Y.; Quinn, B.; Rakhman, A.; Reimer, P. E.; Reitz, B.; Riordan, S.; Roche, J.; Rogan, P.; Ron, G.; Russo, G.; Saenboonruang, K.; Saha, A.; Sawatzky, B.; Shahinyan, A.; Silwal, R.; Singh, J.; Sirca, S.; Slifer, K.; Snyder, R.; Solvignon, P.; Souder, P. A.; Sperduto, M. L.; Subedi, R.; Stutzman, M. L.; Suleiman, R.; Sulkosky, V.; Sutera, C. M.; Tobias, W. A.; Troth, W.; Urciuoli, G. M.; Ulmer, P.; Vacheret, A.; Voutier, E.; Waidyawansa, B.; Wang, D.; Wang, K.; Wexler, J.; Whitbeck, A.; Wilson, R.; Wojtsekhowski, B.; Yan, X.; Yao, H.; Ye, Y.; Ye, Z.; Yim, V.; Zana, L.; Zhan, X.; Zhang, J.; Zhang, Y.; Zheng, X.; Ziskin, V.; Zhu, P.

    2012-11-01

    We have measured the beam-normal single-spin asymmetry An in the elastic scattering of 1-3 GeV transversely polarized electrons from H1 and for the first time from He4, C12, and Pb208. For H1, He4, and C12, the measurements are in agreement with calculations that relate An to the imaginary part of the two-photon exchange amplitude including inelastic intermediate states. Surprisingly, the Pb208 result is significantly smaller than the corresponding prediction using the same formalism. These results suggest that a systematic set of new An measurements might emerge as a new and sensitive probe of the structure of heavy nuclei.

  3. mQfit, a new program for analyzing quasi-elastic neutron scattering data

    NASA Astrophysics Data System (ADS)

    Martinez, Nicolas; Natali, Francesca; Peters, Judith

    2015-01-01

    Analysis of Quasi-elastic Neutron Scattering (QENS) data of complex systems such as biological or soft matter samples in a comprehensive and explicit way often requires great efforts. Most popular software only allows to fit spectra originating from one single instrument and does not permit to extract parameters from a model that is fitted simultaneously to data taken at different instrumental resolutions. We present here a new program, mQfit (multiple QENS dataset fitting), that enables to fit QENS data taken at different spectrometers (with typical resolutions between 0.01 and 0.1 meV) and momentum transfer ranges. This allows drastically reducing the number of fitting parameters. The routine is implemented with a user friendly Graphical User's Interface (GUI), and freely available. As an example, we will present results obtained on E. coli bacterial pellets, and compare them to values published in the literature.

  4. Single-crystal elastic properties of aluminum oxynitride (AlON) from brillouin scattering

    DOE PAGES

    Satapathy, Sikhanda; Ahart, Muhtar; Dandekar, Dattatraya; ...

    2016-01-19

    The Brillouin light-scattering technique was used to determine experimentally the three independent elastic constants of cubic aluminum oxynitride at the ambient condition. They are C11=334.8(±1.8) GPa, C12=164.4(± 1.2) GPa, and C44=178.6(± 1.1) GPa. Its bulk modulus is 221.2 GPa. The magnitude of Zener anisotropic ratio is 2.1 similar to other spinels. Here, the anisotropic nature of the material is shown by a large variation in the Young’s modulus and Poisson’s ratio with crystallographic directions. The material was found to be auxetic in certain orientations.

  5. Cross sections for elastic electron scattering by tetramethylsilane in the intermediate-energy range

    SciTech Connect

    Sugohara, R. T.; Lee, M.-T.; Iga, I.; Souza, G. L. C. de; Homem, M. G. P.

    2011-12-15

    Organosilicon compounds are of current interest due to the numerous applications of these species in industries. Some of these applications require the knowledge of electron collision cross sections, which are scarce for such compounds. In this work, we report absolute values of differential, integral, and momentum-transfer cross sections for elastic electron scattering by tetramethylsilane (TMS) measured in the 100-1000 eV energy range. The relative-flow technique is used to normalize our data. In addition, the independent-atom-model (IAM) and the additivity rule (AR), widely used to model electron collisions with light hydrocarbons, are also applied for e{sup -}-TMS interaction. The comparison of our measured results of cross sections and the calculated data shows good agreement, particularly near the higher-end of incident energies.

  6. Elastic scattering spectroscopy for detection of sentinel lymph node metastases in breast carcinoma

    NASA Astrophysics Data System (ADS)

    Chicken, D. W.; Lee, A. C.; Johnson, K. S.; Clarke, B.; Falzon, M.; Bigio, I. J.; Bown, S. G.; Keshtgar, M. R. S.

    2005-08-01

    Sentinel node biopsy is the new standard for lymphatic staging of breast carcinoma. Intraoperative detection of sentinel node metastases avoids a second operation for those patients with metastatic lymph nodes. Elastic scattering spectroscopy is an optical technique which is sensitive to cellular and subcellular changes occurring in malignancy. We analyzed 2078 ESS spectra from 324 axillary sentinel nodes from patients with breast carcinoma. ESS was able to detect metastatic lymph nodes with an overall sensitivity of 60% and specificity of 94%, which is comparable to existing pathological techniques. Nodes completely replaced with metastatic tumour were detected with 100% sensitivity, suggesting that further improvement in sensitivity is likely with more intensive optical sampling of the nodes.

  7. Measurement of the absolute differential cross section of proton–proton elastic scattering at small angles

    DOE PAGES

    Mchedlishvili, D.; Chiladze, D.; Dymov, S.; ...

    2016-02-03

    The differential cross section for proton-proton elastic scattering has been measured at a beam kinetic energy of 1.0 GeV and in 200 MeV steps from 1.6 to 2.8 GeV for centre-of-mass angles in the range from 12°-16° to 25°-30°, depending on the energy. A precision in the overall normalisation of typically 3% was achieved by studying the energy losses of the circulating beam of the COSY storage ring as it passed repeatedly through the windowless hydrogen target of the ANKE magnetic spectrometer. It is shown that the data have a significant impact upon the results of a partial wave analysis.more » Furthermore, after extrapolating the differential cross sections to the forward direction, the results are broadly compatible with the predictions of forward dispersion relations.« less

  8. Elastic scattering by hot electrons and apparent lifetime of longitudinal optical phonons in gallium nitride

    SciTech Connect

    Khurgin, Jacob B.; Bajaj, Sanyam; Rajan, Siddharth

    2015-12-28

    Longitudinal optical (LO) phonons in GaN generated in the channel of high electron mobility transistors (HEMT) are shown to undergo nearly elastic scattering via collisions with hot electrons. The net result of these collisions is the diffusion of LO phonons in the Brillouin zone causing reduction of phonon and electron temperatures. This previously unexplored diffusion mechanism explicates how an increase in electron density causes reduction of the apparent lifetime of LO phonons, obtained from the time resolved Raman studies and microwave noise measurements, while the actual decay rate of the LO phonons remains unaffected by the carrier density. Therefore, the saturation velocity in GaN HEMT steadily declines with increased carrier density, in a qualitative agreement with experimental results.

  9. Two-photon exchange contribution to elastic electron-proton scattering

    NASA Astrophysics Data System (ADS)

    Yurov, Mikhail

    2015-04-01

    Two experimental techniques, Rosenbluth separation and recoil polarization transfer, used to extract proton's electromagnetic form factors ratio GE/GM yield markedly different results. Modern theoretical calculations suggest that two-photon exchange might be responsible for the observed discrepancy and that it is epsilon dependent. Jefferson Lab Experiment E05-017 was designed to measure the two-photon exchange contribution over a wide range of ɛ and Q2. In contrast with the conventional Rosenbluth method, E05-017 detected the elastically scattered proton rather than the electron. This approach returns a much more precise extraction of the form factor ratios. After a brief description of the experimental goals and techniques, the current status of the analysis will be presented.

  10. Spin-Momentum Correlations in Quasi-Elastic Electron Scattering from Deuterium

    SciTech Connect

    I. Passchier; L.D. van Buuren; D. Szczerba; R. Alarcon; Th.S. Bauer; D. Boersma; J.F.J. van den Brand; H.J. Bulten; R. Ent; M. Ferro-Luzzi; M. Harvey; P. Heimberg; D.W. Higinbotham; S. Klous; H. Kolster; J. Lang; B.L. Militsyn; D. Nikolenko; G.J.L. Nooren; B.E. Norum; H.R. Poolman; I. Rachek; M.C. Simani; E. Six; H. de Vries; K. Wang; Z.-L. Zhou

    2002-02-25

    We report on a measurement of spin-momentum correlations in quasi-elastic scattering of longitudinally polarized electrons with an energy of 720 MeV from vector-polarized deuterium. The spin correlation parameter A{sub ed}{sup V} was measured for the 2{rvec H}({rvec e},e{prime}p)n reaction for missing momenta up to 350 MeV/c at a four-momentum transfer squared of 0.21 (GeV/c){sup 2}. The data give detailed information about the spin structure of the deuteron, and are in good agreement with the predictions of microscopic calculations based on realistic nucleon-nucleon potentials and including various spin-dependent reaction mechanism effects. The experiment demonstrates in a most direct manner the effects of the D-state in the deuteron ground-state wave function and shows the importance of isobar configurations for this reaction.

  11. Lithium Transport in an Amorphous LixSi Anode Investigated by Quasi-elastic Neutron Scattering

    DOE PAGES

    Sacci, Robert L.; Lehmann, Michelle L.; Diallo, Souleymane O.; ...

    2017-04-27

    Here, we demonstrate the room temperature mechanochemical synthesis of highly defective LixSi anode materials and characterization of the Li transport. We probed the Li+ self-diffusion using quasi-elastic neutron scattering (QENS) to measure the Li self-diffusion in the alloy. Li diffusion was found to be significantly greater (3.0 × 10–6 cm2 s–1) than previously measured crystalline and electrochemically made Li–Si alloys; the energy of activation was determined to be 0.20 eV (19 kJ mol–1). Amorphous Li–Si structures are known to have superior Li diffusion to their crystalline counterparts; therefore, the isolation and stabilization of defective Li–Si structures may improve the utilitymore » of Si anodes for Li-ion batteries.« less

  12. Analysis of Elastic Scattering of 8He+208Pb System at around the Coulomb Barrier Energies

    NASA Astrophysics Data System (ADS)

    Direkci, M.; Kucuk, Y.; Boztosun, I.

    2015-04-01

    The elastic scattering angular distribution of 8He+208Pb system is investigated at Elab = 22.0 MeV within the framework of Optical Model by using phenomenological and microscopic potentials. For the phenomenological Optical Model calculations, both real and imaginary parts of the complex nuclear potential have been chosen to have the Wood-Saxon shape. In the microscopic Optical Model calculations, we have used double folding procedure to calculate the real part of optical potential for different kinds of density distributions of 8He. A comparative study of this system has been conducted for the fist time by using phenomenological and microscopic potentials. It is observed that large imaginary radius value due to the existence of long-range absorption mechanism acting at large distances provides a very good agreement between theoretical results and experimental data with small χ2/N values.

  13. Microscopic study of {sup 6}He elastic scattering around the Coulomb barrier

    SciTech Connect

    Descouvemont, P.

    2016-07-07

    We investigate {sup 6}He scattering on {sup 27}Al, {sup 58}Ni, {sup 120}Sn, and {sup 208}Pb in a microscopic version of the Continuum Discretized Coupled Channel (CDCC) method. We essentially focus on energies around the Coulomb barrier. The {sup 6}He nucleus is described by an antisymmetric 6-nucleon wave function, defined in the Resonating Group Method. The {sup 6}He continuum is simulated by square-integrable positive-energy states. The model does not depend on any adjustable parameter as it is based only on well known nucleon-target potentials. We show that experimental elastic cross sections are fairly well reproduced. The calculation suggests that breakup effects increase for high target masses. For a light system such as {sup 6}He+{sup 27}Al, breakup effects are small, and a single-channel approximation provides fair results.

  14. Single-crystal elastic properties of aluminum oxynitride (AlON) from brillouin scattering

    SciTech Connect

    Satapathy, Sikhanda; Ahart, Muhtar; Dandekar, Dattatraya; Hemley, Russell J.; Schuster, Brian; Khoma, Petro

    2016-01-19

    The Brillouin light-scattering technique was used to determine experimentally the three independent elastic constants of cubic aluminum oxynitride at the ambient condition. They are C11=334.8(±1.8) GPa, C12=164.4(± 1.2) GPa, and C44=178.6(± 1.1) GPa. Its bulk modulus is 221.2 GPa. The magnitude of Zener anisotropic ratio is 2.1 similar to other spinels. Here, the anisotropic nature of the material is shown by a large variation in the Young’s modulus and Poisson’s ratio with crystallographic directions. The material was found to be auxetic in certain orientations.

  15. Soft and hard Pomerons in hadron elastic scattering at small t

    SciTech Connect

    Cudell, J.R.; Lengyel, A.; Martynov, E.

    2006-02-01

    We consider simple-pole descriptions of soft elastic scattering for pp, pp, {pi}{sup {+-}}p and K{sup {+-}}p. We work at t and s small enough for rescatterings to be effectively absorbed in a simple-pole parametrization, and allow for the presence of a hard Pomeron. After building and discussing an exhaustive dataset, we show that simple poles provide an excellent description of the data in the region -0.5 GeV{sup 2}{<=}t{<=}-0.1 GeV{sup 2}, 6 GeV{<=}{radical}(s){<=}63 GeV. We show that new form factors have to be used, and get information on the trajectories of the soft and hard Pomerons.

  16. Contributions From yZ Box Diagrams to Parity Violating Elastic e-p Scattering

    SciTech Connect

    Benjamin Rislow, Carl Carlson

    2011-06-01

    Parity-violating (PV) elastic electron-proton scattering measures Q-weak for the proton, Q{sub W}{sup p}. To extract Q{sub W}{sup p} from data, all radiative corrections must be well-known. Recently, disagreement on the {gamma}Z box contribution to Q{sub W}{sup p} has prompted the need for further analysis of this term. Here, we support one choice of a debated factor, go beyond the previously assumed equality of electromagnetic and {gamma}Z structure functions, and find an analytic result for one of the {gamma}Z box integrals. Our numerical evaluation of the {gamma}Z box is in agreement within errors with previous reports, albeit somewhat larger in central value, and is within the uncertainty requirements of current experiments.

  17. Nuclear Force Imprints Revealed on the Elastic Scattering of Protons with 10C

    NASA Astrophysics Data System (ADS)

    Kumar, A.; Kanungo, R.; Calci, A.; Navrátil, P.; Sanetullaev, A.; Alcorta, M.; Bildstein, V.; Christian, G.; Davids, B.; Dohet-Eraly, J.; Fallis, J.; Gallant, A. T.; Hackman, G.; Hadinia, B.; Hupin, G.; Ishimoto, S.; Krücken, R.; Laffoley, A. T.; Lighthall, J.; Miller, D.; Quaglioni, S.; Randhawa, J. S.; Rand, E. T.; Rojas, A.; Roth, R.; Shotter, A.; Tanaka, J.; Tanihata, I.; Unsworth, C.

    2017-06-01

    How does nature hold together protons and neutrons to form the wide variety of complex nuclei in the Universe? Describing many-nucleon systems from the fundamental theory of quantum chromodynamics has been the greatest challenge in answering this question. The chiral effective field theory description of the nuclear force now makes this possible but requires certain parameters that are not uniquely determined. Defining the nuclear force needs identification of observables sensitive to the different parametrizations. From a measurement of proton elastic scattering on 10C at TRIUMF and ab initio nuclear reaction calculations, we show that the shape and magnitude of the measured differential cross section is strongly sensitive to the nuclear force prescription.

  18. Elastic scattering by hot electrons and apparent lifetime of longitudinal optical phonons in gallium nitride

    NASA Astrophysics Data System (ADS)

    Khurgin, Jacob B.; Bajaj, Sanyam; Rajan, Siddharth

    2015-12-01

    Longitudinal optical (LO) phonons in GaN generated in the channel of high electron mobility transistors (HEMT) are shown to undergo nearly elastic scattering via collisions with hot electrons. The net result of these collisions is the diffusion of LO phonons in the Brillouin zone causing reduction of phonon and electron temperatures. This previously unexplored diffusion mechanism explicates how an increase in electron density causes reduction of the apparent lifetime of LO phonons, obtained from the time resolved Raman studies and microwave noise measurements, while the actual decay rate of the LO phonons remains unaffected by the carrier density. Therefore, the saturation velocity in GaN HEMT steadily declines with increased carrier density, in a qualitative agreement with experimental results.

  19. Fully microscopic description of elastic and inelastic scattering at intermediate incident energies

    NASA Astrophysics Data System (ADS)

    Minomo, Kosho; Kohno, Michio; Toyokawa, Masakazu; Yahiro, Masanobu; Ogata, Kazuyuki

    2016-06-01

    We aim for fully microscopic understanding of many-body nuclear reactions starting from two- and three-nucleon forces based on chiral effective field theory (Ch-EFT). We first construct a g-matrix with the nuclear forces based on Ch-EFT using Brueckner-Hartree-Fock theory, in which the three-nucleon force effects are represented through the density dependence of the g-matrix. Then, the folding model and microscopic coupled-channels method with the g-matrix are applied to nucleon-nucleus and nucleus-nucleus scattering at intermediate incident energies. This new microscopic framework well describes the elastic and inelastic cross sections with no ad-hoc parameters. In addition, the three-nucleon force and coupled-channels effects on many-body nuclear reactions are clarified.

  20. Analysis of 11Be + p elastic scattering using a BHF approach

    NASA Astrophysics Data System (ADS)

    Sharma, Manjari; Haider, W.; Bhagwat, A.

    2017-10-01

    The elastic scattering of the halo nucleus 11Be on the proton at various incident energies has been analysed using the microscopic optical potential (OP) calculated within the first order non-relativistic Brueckner–Hartree–Fock (BHF) approach. Argonne v-18 inter-nucleon potential is employed to calculate the microscopic OP. The nuclear density distribution has been obtained using a semi-phenomenological model. The density used shows extended neutron distribution indicating a possible halo structure. We have also compared our results with an empirical analysis using CH89 global OP. The analysis reveals that the BHF approach provides good agreement with the experimental data for all incident energies considered in this paper.

  1. New Measurements of the Transverse Beam Asymmetry for Elastic Electron Scattering from Selected Nuclei

    SciTech Connect

    Abrahamyan, S; Afanasev, A; Ahmed, Z; Albataineh, H; Aniol, K; Armstrong, D S; Armstrong, W; Arrington, J; Averett, T; Babineau, B; Bailey, S L; Barber, J; Barbieri, A; Beck, A; Bellini, V; Beminiwattha, R; Benaoum, H; Benesch, J; Benmokhtar, F; Bertin, P; Bielarski, T; Boeglin, W; Bosted, P; Butaru, F; Burtin, E; Cahoon, J; Camsonne, A; Canan, M; Carter, P; Chang, C C; Cates, G D; Chao, Y -C; Chen, C; Chen, J -P; Choi, Seonho; Chudakov, E; Cisbani, E; Craver, B; Cusanno, F; Dalton, M M; De Leo, R; de Jager, K; Deconinck, W; Decowski, P; Deepa, D; Deng, X; Dutta, D; Etile, A; Ferdi, C; Feuerbach, J; Finn, J M; Flay, D; Franklin, G B; Friend, M; Frullani, S; Fuchey, E; Fuchs, S A; Fuoti, K; Garibaldi, F; Gasser, E; Gilman, R; Guisa, A; Glamazdin, A; Glesener, L E; Gomez, J; Gorchtein, M; Grames, J; Grimm, K; Gu, C; Hansen, O; Hansknecht, J; Hen, O; Higinbotham, D W; Holmes, R S; Holmstrom, T; Horowitz, C J; Hoskins, J; Huang, J; Humensky, T B; Hyde, C E; Ibrahim, H; Itard, F; Jen, C -M; Jensen, E; Jiang, X; Jin, G; Johnston, S; Katich, J; Kaufman, L J; Kelleher, A; Kliakhandler, K; King, P M; Kolarkar, A; Kowalski, S; Kuchina, E; Kumar, K S; Lagamba, L; Lambert, D; LaViolette, P; Leacock, J; Leckey IV, J; Lee, J H; LeRose, J J; Lhuillier, D; Lindgren, R; Liyanage, N; Lubinsky, N; Mammei, J; Mammoliti, F; Margaziotis, D J; Markowitz, P; Mazouz, M; McCormick, K; McCreary, A; McNulty, D; Meekins, D G; Mercado, L; Meziani, Z -E; Michaels, R W; Mihovilovic, M; Moffit, B; Monaghan, P; Muangma, N; Munoz-Camacho, C; Nanda, S; Nelyubin, V; Neyret, D; Nuruzzaman,; Oh, Y; Otis, K; Palmer, A; Parno, D; Paschke, K D; Phillips, S K; Poelker, M; Pomatsalyuk, R; Posik, M; Potokar, M; Prok, K; Puckett, A.J.R.; Qian, X; Qiang, Y; Quinn, B; Rakhman, A; Reimer, P E; Reitz, B; Riordan, S; Roche, J; Rogan, P; Ron, G; Russo, G; Saenboonruang, K; Saha, A; Sawatzky, B; Shahinyan, A; Silwal, R; Singh, J; Sirca, S; Slifer, K; Snyder, R; Solvignon, P; Souder, P A; Sperduto, M L; Subedi, R; Stutzman, M L; Suleiman, R; Sulkosky, V; Sutera, C M; Tobias, W A; Troth, W; Urciuoli, G M; Ulmer, P; Vacheret, A; Voutier, A; Waidyawansa, B; Wang, D; Wang, K; Wexler, J; Whitbeck, A; Wilson, R; Wojtsekhowski, B; Yan, X; Yao, H; Ye, Y; Ye, Z; Yim, V; Zana, L; Zhan, X; Zhang, J; Zhang, Y; Zheng, X; Ziskin, V; Zhu, P

    2012-11-05

    Here we have measured the beam-normal single-spin asymmetry A{sub n} in the elastic scattering of 1-3 GeV transversely polarized electrons from 1H and for the first time from 4He, 12C, and 208Pb. For 1H, 4He and 12C, the measurements are in agreement with calculations that relate An to the imaginary part of the two-photon exchange amplitude including inelastic intermediate states. Surprisingly, the 208Pb result is significantly smaller than the corresponding prediction using the same formalism. Our results suggest that a systematic set of new An measurements might emerge as a new and sensitive probe of the structure of heavy nuclei.

  2. Quasi-elastic light scattering of platinum dendrimer-encapsulated nanoparticles.

    PubMed

    Wales, Christina H; Berger, Jacob; Blass, Samuel; Crooks, Richard M; Asherie, Neer

    2011-04-05

    Platinum dendrimer-encapsulated nanoparticles (DENs) containing an average 147 atoms were prepared within sixth-generation, hydroxyl-terminated poly(amidoamine) dendrimers (G6-OH). The hydrodynamic radii (R(h)) of the dendrimer/nanoparticle composites (DNCs) were determined by quasi-elastic light scattering (QLS) at high (pH ∼10) and neutral pH for various salt concentrations and identities. At high pH, the size of the DNC (R(h) ∼4 nm) is close to that of the empty dendrimer. At neutral pH, the size of the DNC approximately doubles (R(h) ∼8 nm) whereas that of the empty dendrimer remains unchanged. Changes in ionic strength also alter the size of the DNCs. The increase in size of the DNC is likely due to electrostatic interactions involving the metal nanoparticle.

  3. Elastic scattering of {sup 6}Li on {sup 64}Zn at near-barrier energies

    SciTech Connect

    Zadro, M.; Figuera, P.; Pietro, A. Di; Fisichella, M.; Maiolino, C.; Santonocito, D.; Amorini, F.; Lattuada, M.; Musumarra, A.; Pellegriti, M. G.; Rizzo, F.; Scuderi, V.; Torresi, D.; Goryunov, O.; Ostashko, V.; Papa, M.

    2009-12-15

    Elastic-scattering angular distributions for the {sup 6}Li+{sup 64}Zn system were measured at eight beam energies from below to above the Coulomb barrier, 12.0{<=}E{sub lab}{<=}22.0 MeV. The experimental data were analyzed within the optical model to study the energy dependence of the interaction potential and to obtain total reaction cross sections. The results obtained using several optical model potentials show similar behavior. The energy dependence of the strengths of the real and imaginary potentials suggests the presence of the breakup threshold anomaly. It is shown that the extracted energy dependence of the interaction potential at sub-barrier energies is very sensitive to possible experimental errors.

  4. Curve crossing for low energy elastic scattering of He (plus) by Ne

    NASA Technical Reports Server (NTRS)

    Bobbio, S. M.; Doverspike, L. D.; Champion, R. L.

    1972-01-01

    The perturbation seen in the experimental differential elastic scattering cross section for the 40 eV He(+) + Ne system was attributed to a single crossing of two intermolecular potential energy curves. A new theoretical treatment of the curve crossing problem, that of Delos and Thorson, is employed to obtain the crossing probabilities and phases associated with the crossing. These are determined by utilizing ab initio potentials involved in the crossing and are further used in a partial wave calculation of the cross section, which is compared with our experiment. The origin of the oscillatory structure observed in the differential cross section is discussed in semiclassical terms by defining the problem in terms of two pseudo-deflection functions. A rainbow effect is shown to be related to a particular feature (a maximum rather than a minimum) of these deflection functions.

  5. {ital S}-matrix analysis of heavy-ion elastic scattering

    SciTech Connect

    Chiste, V.; Lichtenthaeler, R.; Villari, A.C.; Gomes, L.C.

    1996-08-01

    A procedure to minimize {chi}{sup 2} is described which explores the fact that the {chi}{sup 2} distribution is of the fourth degree in the {ital S}-matrix elements. The fact that all three roots of the scale parameter for the minimum of {chi}{sup 2} in its gradient direction are algebraically determined gives the present procedure some global features that previous methods did not contemplate. The automatic search procedure also preserves the unitary bound constraint of the {ital S}-matrix at every step. When the search in the gradient direction slows down, the procedure reverts to the traditional quadratic approximation with zero-order regularization. The method is applied to the elastic scattering of the {sup 12}C+{sup 16}O reaction near the Coulomb barrier. {copyright} {ital 1996 The American Physical Society.}

  6. Nuclear Proton-proton Elastic Scattering via the Trojan Horse Method

    SciTech Connect

    Tumino, A.; Spitaleri, C.; Rapisarda, G. G.; Cherubini, S.; Crucilla, V.; Gulino, M.; La Cognata, M.; Lamia, L.; Pizzone, R. G.; Puglia, S. M. R.; Romano, S.; Sergi, M. L.; Mukhamedzhanov, A.; Campajola, L.; Elekes, Z.; Fueloep, Zs.; Gyuerky, G.; Kiss, G. G.; Somorjai, E.; Gialanella, L.

    2009-08-26

    We present here an important test of the main feature of the Trojan Horse Method (THM), namely the suppression of Coulomb effects in the entrance channel due to off-energy-shell effects. This is done by measuring the THM p--p elastic scattering via the p+d{yields}p+p+n reaction at 4.7 and 5 MeV, corresponding to a p--p relative energy ranging from 80 to 670 keV. In contrast to the on-energy-shell (OES) case, the extracted p-p cross section does not exhibit the Coulomb-nuclear interference minimum due to the suppression of the Coulomb amplitude. This is confirmed by the half-off-energy shell (HOES) calculations and strengthened by the agreement with the calculated OES nuclear cross sections.

  7. Low-energy electron elastic scattering cross sections for excited Au and Pt atoms

    NASA Astrophysics Data System (ADS)

    Felfli, Zineb; Eure, Amanda R.; Msezane, Alfred Z.; Sokolovski, Dmitri

    2010-05-01

    Electron elastic total cross sections (TCSs) and differential cross sections (DCSs) in both impact energy and scattering angle for the excited Au and Pt atoms are calculated in the electron impact energy range 0 ⩽ E ⩽ 4.0 eV. The cross sections are found to be characterized by very sharp long-lived resonances whose positions are identified with the binding energies of the excited anions formed during the collisions. The recent novel Regge-pole methodology wherein is embedded through the Mulholland formula the electron-electron correlations is used together with a Thomas-Fermi type potential incorporating the crucial core-polarization interaction for the calculations of the TCSs. The DCSs are evaluated using a partial wave expansion. The Ramsauer-Townsend minima, the shape resonances and the binding energies of the excited Au - and Pt - anions are extracted from the cross sections, while the critical minima are determined from the DCSs.

  8. Global analysis of parity-violating asymmetry data for elastic electron scattering

    NASA Astrophysics Data System (ADS)

    González-Jiménez, R.; Caballero, J. A.; Donnelly, T. W.

    2014-08-01

    We perform a statistical analysis of the full set of parity-violating asymmetry data for elastic electron scattering including the most recent high precision measurement from Q-weak. Given the basis of the present analysis, our estimates appear to favor nonzero vector strangeness, specifically, positive (negative) values for the electric (magnetic) strange form factors. We also provide an accurate estimate of the axial-vector nucleon form factor at zero momentum transfer, GAep(0). Our study shows GAep(0) to be importantly reduced with respect to the currently accepted value. We also find our analysis of data to be compatible with the Standard Model values for the weak charges of the proton and neutron.

  9. Study of elastic scattering of mirror nuclei 7Be + 7Li

    NASA Astrophysics Data System (ADS)

    Barua, S.; Das, J. J.; Jhingan, A.; Varughese, T.; Madhavan, N.; Sugathan, P.; Verma, S.; Kalita, K.; Bhattacharjee, B.; Datta, S. K.; Boruah, K.

    2004-12-01

    The angular distribution of 7Be + 7Li elastic scattering has been measured using 7Be from the Radioactive beam at Nuclear Science Centre, New Delhi at E cm = 9.87 MeV. A compact and highly efficient detector system in kinematic coincidence mode and an in-vacuum target transfer system have been developed to minimise contributions from unwanted channels. The angular ranges covered were θcm = 42°- 66°and θcm = 114°- 138°. The experimental angular distribution shows higher cross sections than the theoretical predictions at the backward angles. The experimental data could be fitted with an isospin dependent complex potential that is analogous to the Lane potential.

  10. Hydrogen Species Motion in Piezoelectrics: A Quasi-Elastic Neutron Scattering Study

    SciTech Connect

    Alvine, Kyle J.; Tyagi, Madhu; Brown, Craig; Udovic, Terrence J.; Jenkins, T. J.; Pitman, Stan G.

    2012-03-05

    Hydrogen is known to damage or degrade piezoelectric materials, at low pressure for ferroelectric random access memory applications, and at high pressure for hydrogen powered vehicle applications. The piezoelectric degradation is in part governed by the motion of hydrogen species within the piezoelectric materials. We present here Quasi-Elastic Neutron Scattering (QENS) measurements of the local hydrogen species motion within lead zirconate titanate (PZT) and barium titanate (BTO) on samples charged by gaseous exposure to high-pressure gaseous hydrogen {approx}17 MPa. Filter Analyzed Neutron Spectroscopy (FANS) studies of the hydrogen enhanced vibrational modes are presented as well. Results are discussed in context of theoretically predicted interstitial hydrogen lattice sites and compared to comparable bulk diffusion studies of hydrogen diffusion in lead zirconate titanate.

  11. Direct comparison of elastic incoherent neutron scattering experiments with molecular dynamics simulations of DMPC phase transitions.

    PubMed

    Aoun, Bachir; Pellegrini, Eric; Trapp, Marcus; Natali, Francesca; Cantù, Laura; Brocca, Paola; Gerelli, Yuri; Demé, Bruno; Marek Koza, Michael; Johnson, Mark; Peters, Judith

    2016-04-01

    Neutron scattering techniques have been employed to investigate 1,2-dimyristoyl-sn -glycero-3-phosphocholine (DMPC) membranes in the form of multilamellar vesicles (MLVs) and deposited, stacked multilamellar-bilayers (MLBs), covering transitions from the gel to the liquid phase. Neutron diffraction was used to characterise the samples in terms of transition temperatures, whereas elastic incoherent neutron scattering (EINS) demonstrates that the dynamics on the sub-macromolecular length-scale and pico- to nano-second time-scale are correlated with the structural transitions through a discontinuity in the observed elastic intensities and the derived mean square displacements. Molecular dynamics simulations have been performed in parallel focussing on the length-, time- and temperature-scales of the neutron experiments. They correctly reproduce the structural features of the main gel-liquid phase transition. Particular emphasis is placed on the dynamical amplitudes derived from experiment and simulations. Two methods are used to analyse the experimental data and mean square displacements. They agree within a factor of 2 irrespective of the probed time-scale, i.e. the instrument utilized. Mean square displacements computed from simulations show a comparable level of agreement with the experimental values, albeit, the best match with the two methods varies for the two instruments. Consequently, experiments and simulations together give a consistent picture of the structural and dynamical aspects of the main lipid transition and provide a basis for future, theoretical modelling of dynamics and phase behaviour in membranes. The need for more detailed analytical models is pointed out by the remaining variation of the dynamical amplitudes derived in two different ways from experiments on the one hand and simulations on the other.

  12. Phase-shift parametrization and extraction of asymptotic normalization constants from elastic-scattering data

    NASA Astrophysics Data System (ADS)

    Ramírez Suárez, O. L.; Sparenberg, J.-M.

    2017-09-01

    We introduce a simplified effective-range function for charged nuclei, related to the modified K matrix but differing from it in several respects. Negative-energy zeros of this function correspond to bound states. Positive-energy zeros correspond to resonances and "echo poles" appearing in elastic-scattering phase-shifts, while its poles correspond to multiple-of-π phase shifts. Padé expansions of this function allow one to parametrize phase shifts on large energy ranges and to calculate resonance and bound-state properties in a very simple way, independently of any potential model. The method is first tested on a d -wave 12C+α potential model. It is shown to lead to a correct estimate of the subthreshold-bound-state asymptotic normalization constant (ANC) starting from the elastic-scattering phase shifts only. Next, the 12C+α experimental p -wave and d -wave phase shifts are analyzed. For the d wave, the relatively large error bars on the phase shifts do not allow one to improve the ANC estimate with respect to existing methods. For the p wave, a value agreeing with the 12C(6Li,d )16O transfer-reaction measurement and with the recent remeasurement of the 16Nβ -delayed α decay is obtained, with improved accuracy. However, the method displays two difficulties: the results are sensitive to the Padé-expansion order and the simplest fits correspond to an imaginary ANC, i.e., to a negative-energy "echo pole," the physical meaning of which is still debatable.

  13. Structure of 8B from elastic and inelastic 7Be+p scattering

    NASA Astrophysics Data System (ADS)

    Mitchell, J. P.; Rogachev, G. V.; Johnson, E. D.; Baby, L. T.; Kemper, K. W.; Moro, A. M.; Peplowski, P.; Volya, A. S.; Wiedenhöver, I.

    2013-05-01

    Background: Detailed experimental knowledge of the level structure of light weakly bound nuclei is necessary to guide the development of new theoretical approaches that combine nuclear structure with reaction dynamics.Purpose: The resonant structure of 8B is studied in this work.Method: Excitation functions for elastic and inelastic 7Be+p scattering were measured using a 7Be rare isotope beam. Excitation energies ranging between 1.6 and 3.4 MeV were investigated. An R-matrix analysis of the excitation functions was performed.Results: New low-lying resonances at 1.9, 2.54, and 3.3 MeV in 8B are reported with spin-parity assignment 0+, 2+, and 1+, respectively. Comparison to the time-dependent continuum shell (TDCSM) model and ab initio no-core shell model/resonating-group method (NCSM/RGM) calculations is performed. This work is a more detailed analysis of the data first published as a Rapid Communication. J. P. Mitchell, G. V. Rogachev, E. D. Johnson, L. T. Baby, K. W. Kemper , [Phys. Rev. CPRVCAN0556-281310.1103/PhysRevC.82.011601 82, 011601(R) (2010)].Conclusions: Identification of the 0+, 2+, 1+ states that were predicted by some models at relatively low energy but never observed experimentally is an important step toward understanding the structure of 8B. Their identification was aided by having both elastic and inelastic scattering data. Direct comparison of the cross sections and phase shifts predicted by the TDCSM and ab initio no-core shell model coupled with the resonating group method is of particular interest and provides a good test for these theoretical approaches.

  14. Ambiguities in the elastic scattering of 8 MeV neutrons from adjacent nuclei

    SciTech Connect

    Smith, A.B.; Lawson, R.D.; Guenther, P.T.

    1989-10-01

    Ratios of the cross sections for elastic scattering of 8 MeV neutrons from adjacent nuclei are measured over the angular range {approx}20{degree} {minus} 160{degree} for the target pairs {sup 51}V/Cr, {sup 59}Co/{sup 58}Ni, Cu/Zn, {sup 89}Y/{sup 93}Nb, {sup 89}Y/Zr, {sup 93}Nb/Zr, In/Cd and {sup 209}Bi/Pb. The observed ratios vary from unity by as much as a factor of {approx}2 at some angles for the lighter target pairs. Approximately half the measured ratios are reasonably explained by a simple spherical optical model, including size and isospin contributions. In all cases, the geometry of the real optical--model potential is essentially the same for neighboring nuclei, and the real--potential strengths are consistent with the Lane model. In contrast, it is found that the imaginary potential may be quite different for adjacent nuclei, and the nature of this difference is examined. It is shown that the spin--spin interaction has a negligible effect on the calculation of the elastic--scattering ratios, but that channel coupling, leading to a large reorientation of the target ground state, can be a consideration, particularly in the {sup 59}Co/{sup 58}Ni case. In the A {approx} 50--60 region the calculated ratios are sensitive to spin--orbit effects, but the exact nature of this interaction must await more definitive polarization measurements. The measured and calculated results suggest that the concept of a conventional global'' or even regional'' optical potential provides no more than a qualitative representation of the physical reality for a number of cases. 48 refs., 14 figs., 3 tabs.

  15. Direct comparison of elastic incoherent neutron scattering experiments with molecular dynamics simulations of DMPC phase transitions

    SciTech Connect

    Aoun, Bachir; Pellegrini, Eric; Trapp, Marcus; Natali, Francesca; Cantù, Laura; Brocca, Paola; Gerelli, Yuri; Demé, Bruno; Koza, Michael Marek; Johnson, Mark; Peters, Judith

    2016-04-01

    Neutron scattering techniques have been employed to investigate 1,2-dimyristoyl-sn-glycero-3- phosphocholine (DMPC) membranes in the form of multilamellar vesicles (MLVs) and deposited, stacked multilamellar-bilayers (MLBs), covering transitions from the gel to the liquid phase. Neutron diffraction was used to characterise the samples in terms of transition temperatures, whereas elastic incoherent neutron scattering (EINS) demonstrates that the dynamics on the sub-macromolecular length-scale and pico- to nano-second time-scale are correlated with the structural transitions through a discontinuity in the observed elastic intensities and the derived mean square displacements. Molecular dynamics simulations have been performed in parallel focussing on the length-, time- and temperature-scales of the neutron experiments. They correctly reproduce the structural features of the main gel-liquid phase transition. Particular emphasis is placed on the dynamical amplitudes derived from experiment and simulations. Two methods are used to analyse the experimental data and mean square displacements. They agree within a factor of 2 irrespective of the probed time-scale, i.e. the instrument utilized. Mean square displacements computed from simulations show a comparable level of agreement with the experimental values, albeit, the best match with the two methods varies for the two instruments. Consequently, experiments and simulations together give a consistent picture of the structural and dynamical aspects of the main lipid transition and provide a basis for future, theoretical modelling of dynamics and phase behaviour in membranes. The need for more detailed analytical models is pointed out by the remaining variation of the dynamical amplitudes derived in two different ways from experiments on the one hand and simulations on the other.

  16. Elastic deuteron scattering and optical model parameters at 100 MeV/u

    NASA Astrophysics Data System (ADS)

    Patel, D.; Garg, U.; Itoh, M.; Akimune, H.; Iwamoto, C.; Okamoto, A.; Berg, G. P. A.; Howard, K.; Matta, J. T.; Morgan, E.; Schlax, K. W.; White, M.; Fujiwara, M.; Takahashi, F.; Yosoi, M.; Harakeh, M. N.; Kawabata, T.; Murakami, T.; Kawase, K.; Sako, T.

    2014-09-01

    The advent of the radioactive ion beam facilities would render possible the measurement of giant resonances in nuclei far from the stability line. The centroid energy of the isoscalar giant monopole resonance and the isoscalar giant dipole resonance play an important role in constraining the nuclear incompressibility, an important parameter in nuclear equation of state. However, these experiments would have to be done in inverse kinematics and the most appropriate target appears to be deuteron gas in an AT-TPC. It thus becomes important to explore the features of deuteron optical model at high energy with a view of obtaining higher cross-sections. Elastic scattering measurements have been made on 24Mg, 28Si, 58Ni, 90Zr, 116Sn and 208Pb nuclei using 100 MeV/u deuteron beam at RCNP, Osaka University, Japan. Various features of the optical model parameters will be discussed. The advent of the radioactive ion beam facilities would render possible the measurement of giant resonances in nuclei far from the stability line. The centroid energy of the isoscalar giant monopole resonance and the isoscalar giant dipole resonance play an important role in constraining the nuclear incompressibility, an important parameter in nuclear equation of state. However, these experiments would have to be done in inverse kinematics and the most appropriate target appears to be deuteron gas in an AT-TPC. It thus becomes important to explore the features of deuteron optical model at high energy with a view of obtaining higher cross-sections. Elastic scattering measurements have been made on 24Mg, 28Si, 58Ni, 90Zr, 116Sn and 208Pb nuclei using 100 MeV/u deuteron beam at RCNP, Osaka University, Japan. Various features of the optical model parameters will be discussed. This work has been supported in part by the National Science Foundation (Grants No. PHY1068192 and No. PHY0822648).

  17. A study of quasi-elastic muon neutrino and antineutrino scattering in the NOMAD experiment

    NASA Astrophysics Data System (ADS)

    Lyubushkin, V.; Popov, B.; Kim, J. J.; Camilleri, L.; Levy, J.-M.; Mezzetto, M.; Naumov, D.; Alekhin, S.; Astier, P.; Autiero, D.; Baldisseri, A.; Baldo-Ceolin, M.; Banner, M.; Bassompierre, G.; Benslama, K.; Besson, N.; Bird, I.; Blumenfeld, B.; Bobisut, F.; Bouchez, J.; Boyd, S.; Bueno, A.; Bunyatov, S.; Cardini, A.; Cattaneo, P. W.; Cavasinni, V.; Cervera-Villanueva, A.; Challis, R.; Chukanov, A.; Collazuol, G.; Conforto, G.; Conta, C.; Contalbrigo, M.; Cousins, R.; Daniels, D.; Degaudenzi, H.; Del Prete, T.; de Santo, A.; Dignan, T.; di Lella, L.; Do Couto E Silva, E.; Dumarchez, J.; Ellis, M.; Feldman, G. J.; Ferrari, R.; Ferrère, D.; Flaminio, V.; Fraternali, M.; Gaillard, J.-M.; Gangler, E.; Geiser, A.; Geppert, D.; Gibin, D.; Gninenko, S.; Godley, A.; Gomez-Cadenas, J.-J.; Gosset, J.; Gößling, C.; Gouanère, M.; Grant, A.; Graziani, G.; Guglielmi, A.; Hagner, C.; Hernando, J.; Hubbard, D.; Hurst, P.; Hyett, N.; Iacopini, E.; Joseph, C.; Juget, F.; Kent, N.; Kirsanov, M.; Klimov, O.; Kokkonen, J.; Kovzelev, A.; Krasnoperov, A.; Kulagin, S.; Kustov, D.; Lacaprara, S.; Lachaud, C.; Lakić, B.; Lanza, A.; La Rotonda, L.; Laveder, M.; Letessier-Selvon, A.; Ling, J.; Linssen, L.; Ljubičić, A.; Long, J.; Lupi, A.; Marchionni, A.; Martelli, F.; Méchain, X.; Mendiburu, J.-P.; Meyer, J.-P.; Mishra, S. R.; Moorhead, G. F.; Nédélec, P.; Nefedov, Yu.; Nguyen-Mau, C.; Orestano, D.; Pastore, F.; Peak, L. S.; Pennacchio, E.; Pessard, H.; Petti, R.; Placci, A.; Polesello, G.; Pollmann, D.; Polyarush, A.; Poulsen, C.; Rebuffi, L.; Rico, J.; Riemann, P.; Roda, C.; Rubbia, A.; Salvatore, F.; Samoylov, O.; Schahmaneche, K.; Schmidt, B.; Schmidt, T.; Sconza, A.; Seaton, M.; Sevior, M.; Sillou, D.; Soler, F. J. P.; Sozzi, G.; Steele, D.; Stiegler, U.; Stipčević, M.; Stolarczyk, Th.; Tareb-Reyes, M.; Taylor, G. N.; Tereshchenko, V.; Toropin, A.; Touchard, A.-M.; Tovey, S. N.; Tran, M.-T.; Tsesmelis, E.; Ulrichs, J.; Vacavant, L.; Valdata-Nappi, M.; Valuev, V.; Vannucci, F.; Varvell, K. E.; Veltri, M.; Vercesi, V.; Vidal-Sitjes, G.; Vieira, J.-M.; Vinogradova, T.; Weber, F. V.; Weisse, T.; Wilson, F. F.; Winton, L. J.; Wu, Q.; Yabsley, B. D.; Zaccone, H.; Zuber, K.; Zuccon, P.

    2009-10-01

    We have studied the muon neutrino and antineutrino quasi-elastic (QEL) scattering reactions ( ν μ n→ μ - p and bar{ν }_{μ}ptoμ+n ) using a set of experimental data collected by the NOMAD Collaboration. We have performed measurements of the cross-section of these processes on a nuclear target (mainly carbon) normalizing it to the total ν μ ( bar{ν}_{μ} ) charged-current cross section. The results for the flux-averaged QEL cross sections in the (anti)neutrino energy interval 3-100 GeV are < σ_{qel}rangle_{ν_{μ}}=(0.92±0.02(stat)±0.06(syst))×10^{-38} cm2 and <σ_{qel}rangle_{bar{ν}_{μ}}=(0.81±0.05(stat)±0.09(syst))×10^{-38} cm2 for neutrino and antineutrino, respectively. The axial mass parameter M A was extracted from the measured quasi-elastic neutrino cross section. The corresponding result is M A =1.05±0.02(stat)±0.06(syst) GeV. It is consistent with the axial mass values recalculated from the antineutrino cross section and extracted from the pure Q 2 shape analysis of the high purity sample of ν μ quasi-elastic 2-track events, but has smaller systematic error and should be quoted as the main result of this work. Our measured M A is found to be in good agreement with the world average value obtained in previous deuterium filled bubble chamber experiments. The NOMAD measurement of M A is lower than those recently published by K2K and MiniBooNE Collaborations. However, within the large errors quoted by these experiments on M A , these results are compatible with the more precise NOMAD value.

  18. A study of quasi-elastic muon (anti)neutrino scattering in he NOMAD experiment

    NASA Astrophysics Data System (ADS)

    Lyubushkin, Vladimir

    2009-11-01

    We have studied the muon neutrino and antineutrino quasi-elastic (QEL) scattering reactions (vμn→μ-p and v¯μp→μ+n using a set of experimental data collected by the NOMAD collaboration. We have performed measurements of the cross-section of these processes on a nuclear target (mainly Carbon) normalizing it to the total vμ (v¯μ) charged current cross-section. The results for the flux averaged QEL cross-sections in the (anti)neutrino energy interval 3-100 GeV are <σqel>vμ = (0.92±0.02(stat)±0.06(syst))×10-38 cm2 and <σqel>v¯μ = (0.81±0.05(stat)±0.09(syst))×10-38 cm2 for neutrino and antineutrino, respectively. The axial mass parameter MA was extracted from the measured quasi-elastic neutrino cross-section. The corresponding result is MA = 1.05±0.02(stat)±0.06(syst) GeV. It is consistent with the axial mass values recalculated from the antineutrino cross-section and extracted from the pure Q2 shape analysis of the high purity sample of vμ quasi-elastic 2-track events, but has smaller systematic error and should be quoted as the main result of this work. Our measured MA is found to be in good agreement with the world average value obtained in previous deuterium filled bubble chamber experiments. The NOMAD measurement of MA is lower than those recently published by K2K and MiniBooNE collaborations. However, within the large errors quoted by these experiments on MA, these results are compatible with the more precise NOMAD value.

  19. Measuring Quasi-Elastic e-n and e-p Scattering from Deuterium

    NASA Astrophysics Data System (ADS)

    Balsamo, Alexander; Sherman, Keegan; Gilfoyle, Gerard

    2016-09-01

    The main physics goal of Jefferson Lab is to understand how quarks and gluons form nuclei. We are developing algorithms to extract the relative amounts of electron-neutron (e-n) to electron-proton (e-p) scattering events from deuterium in quasi-elastic (QE) kinematics for an approved experiment with the CLAS12 detector. Our analysis focuses on neutrons detected in the CLAS12 calorimeters and protons measured with the CLAS12 toroidal magnetic field. Events were generated with the Quasi-Elastic Event Generator (QUEEG) and passed through the Monte Carlo code gemc to simulate the CLAS12 response. These simulated events were then reconstructed using CLAS12 Common Tools. We first match the solid angle for e-n and e-p events. The electron information is used to predict the trajectory of both a neutron and proton through CLAS12. If both particles would interact in the CLAS12 volume, we know the sample has the same solid angle for e-n and e-p events. We then select QE events by searching for a nucleon near the predicted position. The angle between the predicted 3-momentum of the nucleon and the measured value, θpq, reaches a peak near zero for QE events, but not for other inelastic events. A cut on θpq separates QE events from inelastic ones. Work supported by the University of Richmond and the US Department of Energy.

  20. An efficient Monte Carlo interior penalty discontinuous Galerkin method for elastic wave scattering in random media

    NASA Astrophysics Data System (ADS)

    Feng, X.; Lorton, C.

    2017-03-01

    This paper develops and analyzes an efficient Monte Carlo interior penalty discontinuous Galerkin (MCIP-DG) method for elastic wave scattering in random media. The method is constructed based on a multi-modes expansion of the solution of the governing random partial differential equations. It is proved that the mode functions satisfy a three-term recurrence system of partial differential equations (PDEs) which are nearly deterministic in the sense that the randomness only appears in the right-hand side source terms, not in the coefficients of the PDEs. Moreover, the same differential operator applies to all mode functions. A proven unconditionally stable and optimally convergent IP-DG method is used to discretize the deterministic PDE operator, an efficient numerical algorithm is proposed based on combining the Monte Carlo method and the IP-DG method with the $LU$ direct linear solver. It is shown that the algorithm converges optimally with respect to both the mesh size $h$ and the sampling number $M$, and practically its total computational complexity is only amount to solving very few deterministic elastic Helmholtz equations using the $LU$ direct linear solver. Numerically experiments are also presented to demonstrate the performance and key features of the proposed MCIP-DG method.

  1. A linear sampling approach to inverse elastic scattering in piecewise-homogeneous domains

    NASA Astrophysics Data System (ADS)

    Guzina, Bojan B.; Madyarov, Andrew I.

    2007-08-01

    The focus of this study is a 3D inverse scattering problem underlying non-invasive reconstruction of piecewise-homogeneous (PH) defects in a layered semi-infinite solid from near-field, surface elastic waveforms. The solution approach revolves around the use of Green's function for the layered reference domain and a generalization of the linear sampling method to deal with the featured class of PH configurations. For a rigorous treatment of the full-waveform integral equation that is used as a basis for obstacle reconstruction, the developments include an extension of the Holmgren's uniqueness theorem to piecewise-homogeneous domains and an in-depth analysis of the situation when the sampling point is outside the support of the obstacle that employs the method of topological sensitivity. Owing to the ill-posed nature of the featured integral equation, a stable approximate solution is sought via Tikhonov regularization. A set of numerical examples is included to demonstrate the feasibility of 3D obstacle reconstruction when the defects are buried in a multi-layered elastic solid.

  2. Neutron scattering at the OPAL research reactor

    NASA Astrophysics Data System (ADS)

    McIntyre, Garry J.; Holden, Peter J.

    2016-09-01

    The current suite of 14 neutron scattering instruments at the multipurpose OPAL research reactor is described. All instruments have been constructed following best practice, using state-of-the-art components and in close consultation with the regional user base. First results from the most recently commissioned instruments match their design performance parameters. Selected recent scientific highlights illustrate some unique combinations of instrumentation and the regional flavour of topical applications.

  3. Recommendations for Future Research in Scattering

    DTIC Science & Technology

    1976-12-01

    l. ’ COMMUNICATIONS LABORATORY t AFOSR-TR· 7 7- 1 0 1 0 Oepertment; of lnformetiion Er)Sin-r-ing Unive,..ltiy of llllnole et; Chicego Cir...CLMMriCATMN P THK Ml PB AMTCOT« -i— ! COMMUNICATIONS LABORATORY Department at Information Engineering University of Illinois et Chicago Circle Bo» 4348...Chicago IL 60600.USA P.L.E. Uslenghl (Editor) RECOMMENDATIONS FOR FUTURE RESEARCH IN SCATTERING Communications Laboratory Report 76-3 December

  4. Scanning elastic scattering spectroscopy detects metastatic breast cancer in sentinel lymph nodes

    NASA Astrophysics Data System (ADS)

    Austwick, Martin R.; Clark, Benjamin; Mosse, Charles A.; Johnson, Kristie; Chicken, D. Wayne; Somasundaram, Santosh K.; Calabro, Katherine W.; Zhu, Ying; Falzon, Mary; Kocjan, Gabrijela; Fearn, Tom; Bown, Stephen G.; Bigio, Irving J.; Keshtgar, Mohammed R. S.

    2010-07-01

    A novel method for rapidly detecting metastatic breast cancer within excised sentinel lymph node(s) of the axilla is presented. Elastic scattering spectroscopy (ESS) is a point-contact technique that collects broadband optical spectra sensitive to absorption and scattering within the tissue. A statistical discrimination algorithm was generated from a training set of nearly 3000 clinical spectra and used to test clinical spectra collected from an independent set of nodes. Freshly excised nodes were bivalved and mounted under a fiber-optic plate. Stepper motors raster-scanned a fiber-optic probe over the plate to interrogate the node's cut surface, creating a 20×20 grid of spectra. These spectra were analyzed to create a map of cancer risk across the node surface. Rules were developed to convert these maps to a prediction for the presence of cancer in the node. Using these analyses, a leave-one-out cross-validation to optimize discrimination parameters on 128 scanned nodes gave a sensitivity of 69% for detection of clinically relevant metastases (71% for macrometastases) and a specificity of 96%, comparable to literature results for touch imprint cytology, a standard technique for intraoperative diagnosis. ESS has the advantage of not requiring a pathologist to review the tissue sample.

  5. Search for Effects Beyond the Born Approximation in Polarization Transfer Observables in ep Elastic Scattering

    NASA Astrophysics Data System (ADS)

    Meziane, Mehdi

    Intensive theoretical and experimental efforts over the past decade have aimed at explaining the discrepancy between data for the proton electric to magnetic form factor ratio, GE/GM, obtained separately from cross section and polarization transfer measurements. One possible explanation for this difference is a two-photon-exchange (TPEX) contribution. In an effort to search for effects beyond the one-photon-exchange or Born approximation, this thesis reports measurements, of the GEp2gamma experiment, of polarization transfer observables in the elastic H ( e⃗,e' p⃗ ) reaction for three different beam energies at a fixed squared momentum transfer Q² = 2.5 GeV², spanning a wide range of the virtual photon polarization parameter, epsilon. The scattered electrons were detected in coincidence with the protons by the new electromagnetic lead-glass calorimeter BigCal and the High Momentum Spectrometer (HMS), respectively. We extract the polarization of the recoil proton by measuring the azymuthal asymmetry in the angular distribution after a secondary scattering in the CH2 analyzer blocks of the new, double focal plane polarimeter (FPP) installed in the detector hut of the HMS.

  6. Investigation of the structure of light exotic nuclei by proton elastic scattering in inverse kinematics

    SciTech Connect

    Alkhazov, G. D.; Vorobyov, A. A.; Dobrovolsky, A. V. Inglessi, A. G.; Korolev, G. A.; Khanzadeev, A. V.

    2015-05-15

    In order to study the spatial structure of exotic nuclei, it was proposed at the Petersburg Nuclear Physics Institute (PNPI) to measure the differential cross section for small-angle proton elastic scattering in inverse kinematics. Several experiments in beams of 0.7-GeV/nucleon exotic nuclei were performed at the heavy-ion accelerator facility of GSI (Gesellschaft für Schwerionenforschung, Darmstadt, Germany) by using the IKAR ionization spectrometer developed at PNPI. The IKAR ionization chamber filled with hydrogen at a pressure of 10 bar served simultaneously as a target and as a recoil-proton detector, which measured the recoil-proton energy. The beam-particle scattering angle was also measured. The results obtained for the cross sections in question were analyzed on the basis of the Glauber-Sitenko theory using phenomenological nuclear-density distributions with two free parameters. Nuclear-matter distributions and root-mean-square radii were found for the nuclei under investigation. The size of the halo in the {sup 6}He, {sup 8}He, {sup 11}Li, and {sup 14}Be nuclei was determined among other things. Information about neutron distributions in nuclei was deduced by combining the data obtained here with the known values of the radii of proton distributions. A sizable neutron skin was revealed in the {sup 8}Li, {sup 9}Li, and {sup 12}Be nuclei.

  7. The total, elastic and inelastic scattering fast neutron cross sections of natural chromium

    SciTech Connect

    Guenther, P.T.; Smith, J.F.; Whalen, A.B.

    1982-12-01

    The present experimental results comprise a comprehensive intermediate resolution neutron total and scattering cross-section data base for elemental chromium over the energy range from 1.5 to 4.0 MeV. Nonetheless, due to the fluctuating nature of the cross sections involved, the definition of energy-averaged cross sections is uncertain. The consequences of these energy-dependent fluctuations and attendant complications influence the data analysis and interpretation. All finite sample total crosssection measurements result in effective cross sections that have to be corrected to yield the true energyaveraged cross sections. This was accomplished by concurrent multiple sample thickness measurements the results of which were then linearly extrapolated to the zero thickness cross section. It was noted that the resulting sample thickness correction showed marked local fluctuations necessitating an energy by energy treatment. Furthermore, the cross sections, even after averaging over wide energy intervals, retained undulations that complicated comparisons with model calculations. Quantitative comparisons of the present elastic and inelastic scattering results with those obtained at isolated energies by other authors were difficult, if not deceptive, due to persistent fluctuations.

  8. Quasi-elastic light scattering determination of the size distribution of extruded vesicles.

    PubMed

    Kölchens, S; Ramaswami, V; Birgenheier, J; Nett, L; O'Brien, D F

    1993-04-01

    The size distribution of phospholipid vesicles prepared by the freeze thaw-extrusion method were determined by the non-perturbing technique of quasi-elastic light scattering (QELS) and compared to latex particles of known size. Multiangle QELS experiments were performed to avoid errors due to the angular dependence of the scattering function of the particles. The experimentally determined autocorrelation function was analyzed by multiple mathematical procedures, i.e. single exponential, CUMULANT, exponential sampling, non-negatively constrained least square and CONTIN, in order to select suitable models for vesicle characterization. The most consistent results were obtained with CUMULANT, non-negatively constrained least square and CONTIN. In many instances single exponential analysis gave comparable results to these procedures, which indicates the vesicles have a narrow distribution of sizes. The influence of filter pore size, extrusion pressure and lipid concentration on the size and size distribution of extruded vesicles was determined. Extrusion through 100-, 200- and 400-nm pore size filters produced a unimodal distribution of vesicles, with somewhat smaller diameters as the extrusion pressure increased. The larger the filter pore size, the more dependent the vesicle size was on applied pressure. The observed vesicle size was independent of the lipid concentration between 0.1 and 10 mg ml-1.

  9. Scattering of elastic waves by a 2-D crack using the Indirect Boundary Element Method (IBEM)

    NASA Astrophysics Data System (ADS)

    Iturrarán-Viveros, Ursula; Vai, Rossana; Sánchez-Sesma, Francisco J.

    2005-09-01

    The scattering of elastic waves by cracks is an old problem and various ways to solve it have been proposed in the last decades. One approach is using dual integral equations, another useful and common formulation is the Boundary Element Method (BEM). With the last one, the boundary conditions of the crack lead to hyper-singularities and particular care should be taken to regularize and solve the resulting integral equations. In this work, instead, the Indirect Boundary Element Method (IBEM) is applied to study problems of zero-thickness 2-D cracks. The IBEM yields the Crack Opening Displacement (COD) which is used to evaluate the solution away from the crack. We use a multiregional approach which consists of splitting a boundary S into two identical boundaries S+ and S- chosen such that the cracks lie in the interface. The resulting integral equations are not hyper-singular and wave propagation within media that contain zero-thickness cracks can be rigorously solved. In order to validate the method, we deal with the scalar case, namely the scattering of antiplane SH waves by a 2-D crack. We compare results against a recently published analytic solution, obtaining an excellent agreement. This comparison gives us confidence to study cases where no analytic solutions exist. Some examples of incidence of P- or SV waves are depicted and the salient aspects of the method are also discussed.

  10. Investigation of the structure of light exotic nuclei by proton elastic scattering in inverse kinematics

    NASA Astrophysics Data System (ADS)

    Alkhazov, G. D.; Vorobyov, A. A.; Dobrovolsky, A. V.; Inglessi, A. G.; Korolev, G. A.; Khanzadeev, A. V.

    2015-05-01

    In order to study the spatial structure of exotic nuclei, it was proposed at the Petersburg Nuclear Physics Institute (PNPI) to measure the differential cross section for small-angle proton elastic scattering in inverse kinematics. Several experiments in beams of 0.7-GeV/nucleon exotic nuclei were performed at the heavy-ion accelerator facility of GSI (Gesellschaft für Schwerionenforschung, Darmstadt, Germany) by using the IKAR ionization spectrometer developed at PNPI. The IKAR ionization chamber filled with hydrogen at a pressure of 10 bar served simultaneously as a target and as a recoil-proton detector, which measured the recoil-proton energy. The beam-particle scattering angle was also measured. The results obtained for the cross sections in question were analyzed on the basis of the Glauber-Sitenko theory using phenomenological nuclear-density distributions with two free parameters. Nuclear-matter distributions and root-mean-square radii were found for the nuclei under investigation. The size of the halo in the 6He, 8He, 11Li, and 14Be nuclei was determined among other things. Information about neutron distributions in nuclei was deduced by combining the data obtained here with the known values of the radii of proton distributions. A sizable neutron skin was revealed in the 8Li, 9Li, and 12Be nuclei.

  11. a Measurement of the Isovector Giant Quadrupole Resonance in LEAD-208 Using Elastic Polarized Photon Scattering

    NASA Astrophysics Data System (ADS)

    Dale, Daniel Stanton

    This experiment used highly polarized tagged photons to measure polarization asymmetries for elastic scattering in ^{208}Pb in the energy region of the isovector giant quadrupole resonance (IVGQR). These measurements were performed at excitation energies between 16 and 30 MeV. Photons with enhanced linear polarization were obtained from an off-axis tagged photon beam by making a kinematic selection on the post-bremsstrahlung electrons. Scattered photons were detected in two large NaI(Tl) crystals. The polarization asymmetries clearly show the signature for interference between the isovector giant quadrupole resonance and the underlying electric dipole strength. The gross features of the IVGQR strength distribution were obtained in a relatively model independent manner. An isovector giant quadrupole resonance was observed at an excitation energy of 20.1 +/- 0.5 MeV, with a width of 6.3 +/- 0.5 MeV, and an energy weighted strength of 1.4 +/- 0.3 isovector sum rule units.

  12. Elastic alpha scattering experiments and the alpha-nucleus optical potential at low energies

    SciTech Connect

    Mohr, P.; Kiss, G.G.; Fülöp, Zs.; Galaviz, D.; Gyürky, Gy.; Somorjai, E.

    2013-11-15

    High precision angular distribution data of (α,α) elastic scattering are presented for the nuclei {sup 89}Y, {sup 92}Mo, {sup 106,110,116}Cd, {sup 112,124}Sn, and {sup 144}Sm at energies around the Coulomb barrier. Such data with small experimental uncertainties over the full angular range (20–170°) are the indispensable prerequisite for the extraction of local optical potentials and for the determination of the total reaction cross section σ{sub reac}. A systematic fitting procedure was applied to the experimental scattering data presented to obtain comprehensive local potential parameter sets that are composed of a real folding potential and an imaginary potential of Woods–Saxon surface type. The potential parameters obtained were used in turn to construct a new systematic α-nucleus potential with very few parameters. Although this new potential cannot reproduce the angular distributions with the same small deviations as the local potential, the new potential is able to predict the total reaction cross sections for all cases under study.

  13. Breakup and Elastic Scattering in the {sup 9}Be + {sup 144}Sm system at near barrier energies

    SciTech Connect

    Paes, B.; Garcia, V. N.; Lubian, J.; Gomes, P. R. S.; Padron, I.

    2010-05-21

    Breakup and elastic scattering in the Be + {sup 144}Sm system, at near barrier energies, are investigated. We calculate theoretically the non-capture breakup cross section by performing coupled reaction channel calculations. The energy dependence of the optical potential does not show the usual threshold anomaly found in tightly bound systems.

  14. Noncentral interactions in elastic scattering with arbitrary spins: The case of N{Delta}{r_arrow}N{Delta}

    SciTech Connect

    Ramachandran, G.; Vidya, M.S.; Prakash, M.M.

    1997-11-01

    The role of noncentral forces is brought out in elastic scattering involving particles with arbitrary spins using a formalism employing projection operator techniques. The particular case of N{Delta}{r_arrow}N{Delta} is considered explicitly. {copyright} {ital 1997} {ital The American Physical Society}

  15. High Energy Proton-Proton Elastic Scattering for Large Momentum Transfers and Van der Waals Type Model

    NASA Astrophysics Data System (ADS)

    Aleem, F.

    1980-03-01

    The most recent measurements of the angular distribution in proton-proton elastic scattering at sqrt{s}=27.4, 45 and 62GeV with squared four momentum transfer, -t, extending up to 14(GeV/c)2, have been explained using Van der Waals type model.

  16. Elastic scattering of electrons from SO2. [relevant to discovery of sulfur dioxide in Venus and Io atmospheres

    NASA Technical Reports Server (NTRS)

    Orient, O. J.; Srivastava, S. K.; Iga, I.

    1982-01-01

    A crossed electron beam-molecular beam scattering geometry and the relative-flow technique are used to measure the ratios of the elastic differential cross sections of SO2 to those of He at electron impact energies of 12, 20, 50, 100, 150, and 200 eV. At each energy, an angular range of 15-150 deg is covered. The ratios are multiplied by previously known He elastic differential cross sections to obtain elastic differential cross sections for SO2. Integral and momentum transfer cross sections are then determined from a knowledge of differential cross sections. With the aid of the two-potential theory of e-molecule scattering, calculations are also performed and compared with the measurements.

  17. Elastic scattering, inelastic excitation, and neutron transfer for 7Li+120Sn at energies around the Coulomb barrier

    NASA Astrophysics Data System (ADS)

    Zagatto, V. A. B.; Lubian, J.; Gasques, L. R.; Alvarez, M. A. G.; Chamon, L. C.; Oliveira, J. R. B.; Alcántara-Núñez, J. A.; Medina, N. H.; Scarduelli, V.; Freitas, A.; Padron, I.; Rossi, E. S.; Shorto, J. M. B.

    2017-06-01

    Experimental angular distributions for the 7Li+120Sn elastic and inelastic (projectile and target excitations) scattering, and for the neutron stripping reaction, have been obtained at ELAB= 20 , 22, 24, and 26 MeV, covering an energy range around the Coulomb barrier (VB(LAB )≈21.4 MeV). Coupled channel and coupled reaction channel calculations were performed and both describe satisfactorily the experimental data sets. The 1/2- state 7Li inelastic excitation (using a rotational model), as well as the projectile coupling to the continuum (α plus a tritium particle) play a fundamental role on the proper description of elastic, inelastic, and transfer channels. Couplings to the one-neutron stripping channel do not significantly affect the theoretical elastic scattering angular distributions. The spectroscopic amplitudes of the transfer channel were obtained through a shell model calculation. The theoretical angular distributions for the one-neutron stripping reaction agreed with the experimental data.

  18. Absolute elastic differential electron scattering cross sections for He - A proposed calibration standard from 5 to 200 eV

    NASA Technical Reports Server (NTRS)

    Register, D. F.; Trajmar, S.; Srivastava, S. K.

    1980-01-01

    Absolute differential, integral, and momentum-transfer cross sections for electrons elastically scattered from helium are reported for the impact energy range of 5 to 200 eV. Angular distributions for elastically scattered electrons are measured in a crossed-beam geometry using a collimated, differentially pumped atomic-beam source which requires no effective-path-length correction. Below the first inelastic threshold the angular distributions were placed on an absolute scale by use of a phase-shift analysis. Above this threshold, the angular distributions from 10 to 140 deg were fitted using the phase-shift technique, and the resulting integral cross sections were normalized to a semiempirically derived integral elastic cross section. Depending on the impact energy, the data are estimated to be accurate to within 5 to 9%.

  19. Elastic scattering of 1-GeV protons and the distribution of matter in 1p-shell nuclei

    SciTech Connect

    Alkhazov, G.D.; Belostotskii, S.L.; Vorob'ev, A.A.; Domchenkov, O.A.; Dotsenko, Y.V.; Kuropatkin, N.P.; Nikulin, V.N.

    1985-07-01

    We report measurements of the differential cross sections for elastic scattering of 1-GeV protons by the nuclei /sup 9/Be, /sup 11/B, /sup 12/C, /sup 13/C, /sup 14/N, and /sup 16/O. In scattering by /sup 9/Be and /sup 11/B a strong effect of quadrupole filling of the diffraction minima was observed. The cross sections are analyzed in the framework of the Glauber-Sitenko theory and information is obtained on the parameters of both the spherical and nonspherical components of the density. Data on scattering of protons by /sup 6/Li nuclei are also analyzed.

  20. Higher-Order Effects in the Elastic Scattering of Electrons and Positrons from LEAD-208 and CARBON-12

    NASA Astrophysics Data System (ADS)

    Linzey, Andrew Joseph

    Here we report on a precise study of the ratio of elastic scattering cross sections of electrons and positrons from ^{12}C and ^{208}Pb, in an effort to observe and quantify deviations from the predictions of a phase shift calculation of the scattering from a static charge density. Any deviations observed can be attributed to higher-order processes sensitive to the sign of the charge of the scattered particle. The beam energies were ~450 MeV and the angular ranges covered were 26-37^circ for ^{12}C and 26-53^ circ for ^{208}Pb. No deviations were observed within the uncertainties of the measurement.

  1. Elastic Scattering of Low Energy Pions by Nuclei and the In-Medium Isovector πN Amplitude

    NASA Astrophysics Data System (ADS)

    Friedman, E.; Bauer, M.; Breitschopf, J.; Clement, H.; Denz, H.; Doroshkevich, E.; Erhardt, A.; Hofman, G. J.; Kritchman, S.; Meier, R.; Wagner, G. J.; Yaari, G.

    2006-07-01

    Measurements of elastic scattering of 21.5 MeV π± by Si, Ca, Ni and Zr were made using a single arm magnetic spectrometer and absolute calibration was made by parallel measurements of Coulomb scattering of muons. Optical model fits to the data reveal the `anomalous' s-wave repulsion known from pionic atoms. Introducing a chiral-motivated density dependence of the isovector scattering amplitude, and considering the energy dependence of the free πN interaction greatly improve fits to the data and remove the `anomaly'.

  2. Use of fluorescence signals generated by elastic scattering under monochromatic incident light for determining the scattering efficiencies of various plasmonic nanoparticles.

    PubMed

    Song, Ji Eun; Park, Ji Hoon; La, Ju A; Park, Seyeon; Jeong, Min Kuk; Cho, Eun Chul

    2016-08-07

    We present a route that estimates the scattering/absorption characteristics of plasmonic nanoparticles by using fluorescence and UV-visible spectroscopy. Because elastic scattering of nanoparticles caused by a monochromatic incident light is reflected in fluorescence emission spectra when recording at the excitation wavelength, the scattering intensities at the excitation wavelength during fluorescence emission scans are used to compare the scattering characteristics of various plasmonic nanoparticles under conditions where the extinction values of all of the nanoparticles are kept constant at this wavelength. For the two excitation wavelengths (519 and 560 nm) we investigated, the scattering intensities of spherical gold nanoparticles increase with increasing size (15, 33, 51, 73, and 103 nm in diameter). These results are correlated with the nanoparticles' scattering efficiencies (the ratios of scattering to the extinction cross-sections), which are theoretically calculated in the literature using Mie theory. Then, linear calibration equations at each wavelength are derived to estimate the scattering efficiencies of two Au nanorods, Au nanocages, and spherical Ag nanoparticles (15, 25, 37, and 62 nm). The values are very comparable with literature values. For various purposes such as biomedicine and optoelectronics, the present method could be beneficial to those who wish to easily compare and determine the scattering characteristics of various plasmonic nanoparticles at a certain wavelength by using commercially-available spectroscopic techniques.

  3. Measurement of Neutrino-Nucleon Neutral-Current Elastic Scattering Cross-section at SciBooNE

    SciTech Connect

    Takei, Hideyuki

    2009-02-01

    In this thesis, results of neutrino-nucleon neutral current (NC) elastic scattering analysis are presented. Neutrinos interact with other particles only with weak force. Measurement of cross-section for neutrino-nucleon reactions at various neutrino energy are important for the study of nucleon structure. It also provides data to be used for beam flux monitor in neutrino oscillation experiments. The cross-section for neutrino-nucleon NC elastic scattering contains the axial vector form factor GA(Q2) as well as electromagnetic form factors unlike electromagnetic interaction. GA is propotional to strange part of nucleon spin (Δs) in Q2 → 0 limit. Measurement of NC elastic cross-section with smaller Q2 enables us to access Δs. NC elastic cross-sections of neutrino-nucleon and antineutrino-nucleon were measured earlier by E734 experiment at Brookheaven National Laboratory (BNL) in 1987. In this experiment, cross-sections were measured in Q2 > 0.4 GeV2 region. Result from this experiment was the only published data for NC elastic scattering cross-section published before our experiment. SciBooNE is an experiment for the measurement of neutrino-nucleon scattering cross-secitons using Booster Neutrino Beam (BNB) at FNAL. BNB has energy peak at 0.7 GeV. In this energy region, NC elastic scattering, charged current elastic scattering, charged current pion production, and neutral current pion production are the major reaction branches. SciBar, electromagnetic calorimeter, and Muon Range Detector are the detectors for SciBooNE. The SciBar consists of finely segmented scintillators and 14336 channels of PMTs. It has a capability to reconstruct particle track longer than 8 cm and separate proton from muons and pions using energy deposit information. Signal of NC elastic scattering is a single proton track. In vp → vp process, the recoil proton is detected. On the other hand, most of vn → vn is

  4. Mixed simulation of the multiple elastic scattering of electrons and positrons using partial-wave differential cross-sections

    NASA Astrophysics Data System (ADS)

    Benedito, E.; Fernández-Varea, J. M.; Salvat, F.

    2001-03-01

    We describe an algorithm for mixed (class II) simulation of electron multiple elastic scattering using numerical differential cross-sections (DCS), which is applicable in a wide energy range, from ˜100 eV to ˜1 GeV. DCSs are calculated by partial-wave analysis, or from a suitable high-energy approximation, and tabulated on a grid of scattering angles and electron energies. The size of the required DCS table is substantially reduced by means of a change of variable that absorbs most of the energy dependence of the DCS. That is, the scattering angle θ is replaced by a variable u, whose probability distribution function varies smoothly with the kinetic energy of the electron. A fast procedure to generate random values of u in restricted intervals is described. The algorithm for the simulation of electron transport in pure elastic scattering media (with energy-loss processes switched off) is obtained by combining this sampling procedure with a simple model for space displacements. The accuracy and stability of this algorithm is demonstrated by comparing results with those from detailed, event by event, simulations using the same DCSs. A complete transport code, including energy losses and the production of secondary radiations, is obtained by coupling the present elastic scattering simulation algorithm to the general-purpose Monte Carlo program PENELOPE. Simulated angular distributions of MeV electrons backscattered in aluminium and gold are in good agreement with experimental data.

  5. Elastic and inelastic light scattering spectroscopy and its possible use for label-free brain tumor typing.

    PubMed

    Ostertag, Edwin; Stefanakis, Mona; Rebner, Karsten; Kessler, Rudolf W

    2017-09-16

    This paper presents an approach for label-free brain tumor tissue typing. For this application, our dual modality microspectroscopy system combines inelastic Raman scattering spectroscopy and Mie elastic light scattering spectroscopy. The system enables marker-free biomedical diagnostics and records both the chemical and morphologic changes of tissues on a cellular and subcellular level. The system setup is described and the suitability for measuring morphologic features is investigated. Graphical Abstract Bimodal approach for label-free brain tumor typing. Elastic and inelastic light scattering spectra are collected laterally resolved in one measurement setup. The spectra are investigated by multivariate data analysis for assigning the tissues to specific WHO grades according to their malignancy.

  6. Single spin asymmetry AN in polarized proton-proton elastic scattering at s=200 GeV

    NASA Astrophysics Data System (ADS)

    STAR Collaboration; Adamczyk, L.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alakhverdyants, A. V.; Alekseev, I.; Alford, J.; Anson, C. D.; Arkhipkin, D.; Aschenauer, E.; Averichev, G. S.; Balewski, J.; Banerjee, A.; Barnovska, Z.; Beavis, D. R.; Bellwied, R.; Betancourt, M. J.; Betts, R. R.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Borowski, W.; Bouchet, J.; Brandin, A. V.; Brovko, S. G.; Bruna, E.; Bültmann, S.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Cai, X. Z.; Caines, H.; Calderón de la Barca Sánchez, M.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, J. Y.; Chen, L.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Chung, P.; Chwastowski, J.; Codrington, M. J. M.; Corliss, R.; Cramer, J. G.; Crawford, H. J.; Cui, X.; Das, S.; Davila Leyva, A.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derradi de Souza, R.; Dhamija, S.; Didenko, L.; Ding, F.; Dion, A.; Djawotho, P.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Elnimr, M.; Engelage, J.; Eppley, G.; Eun, L.; Evdokimov, O.; Fatemi, R.; Fazio, S.; Fedorisin, J.; Fersch, R. G.; Filip, P.; Finch, E.; Fisyak, Y.; Gagliardi, C. A.; Gangadharan, D. R.; Geurts, F.; Gibson, A.; Gliske, S.; Gorbunov, Y. N.; Grebenyuk, O. G.; Grosnick, D.; Gupta, S.; Guryn, W.; Haag, B.; Hajkova, O.; Hamed, A.; Han, L.-X.; Harris, J. W.; Hays-Wehle, J. P.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Huo, L.; Igo, G.; Jacobs, W. W.; Jena, C.; Judd, E. G.; Kabana, S.; Kang, K.; Kapitan, J.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Kesich, A.; Kikola, D. P.; Kiryluk, J.; Kisel, I.; Kisiel, A.; Kizka, V.; Klein, S. R.; Koetke, D. D.; Kollegger, T.; Konzer, J.; Koralt, I.; Koroleva, L.; Korsch, W.; Kotchenda, L.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Lamont, M. A. C.; Landgraf, J. M.; LaPointe, S.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Leight, W.; LeVine, M. J.; Li, C.; Li, L.; Li, W.; Li, X.; Li, X.; Li, Y.; Li, Z. M.; Lima, L. M.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Longacre, R. S.; Lu, Y.; Luo, X.; Luszczak, A.; Ma, G. L.; Ma, Y. G.; Madagodagettige Don, D. M. M. D.; Mahapatra, D. P.; Majka, R.; Mall, O. I.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; McShane, T. S.; Mioduszewski, S.; Mitrovski, M. K.; Mohammed, Y.; Mohanty, B.; Mondal, M. M.; Morozov, B.; Munhoz, M. G.; Mustafa, M. K.; Naglis, M.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nogach, L. V.; Novak, J.; Odyniec, G.; Ogawa, A.; Oh, K.; Ohlson, A.; Okorokov, V.; Oldag, E. W.; Oliveira, R. A. N.; Olson, D.; Ostrowski, P.; Pachr, M.; Page, B. S.; Pal, S. K.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Peryt, W.; Pile, P.; Planinic, M.; Pluta, J.; Plyku, D.; Poljak, N.; Porter, J.; Poskanzer, A. M.; Powell, C. B.; Pruneau, C.; Pruthi, N. K.; Przybycien, M.; Pujahari, P. R.; Putschke, J.; Qiu, H.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Redwine, R.; Reed, R.; Riley, C. K.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ross, J. F.; Ruan, L.; Rusnak, J.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandacz, A.; Sandweiss, J.; Sangaline, E.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, B.; Schmitz, N.; Schuster, T. R.; Seele, J.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shao, M.; Sharma, B.; Sharma, M.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Singaraju, R. N.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Solanki, D.; Sorensen, P.; deSouza, U. G.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Steadman, S. G.; Stevens, J. R.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Suarez, M. C.; Sumbera, M.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Svirida, D. N.; Symons, T. J. M.; Szanto de Toledo, A.; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarini, L. H.; Tarnowsky, T.; Thein, D.; Thomas, J. H.; Tian, J.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van Nieuwenhuizen, G.; Vanfossen, J. A.; Varma, R.; Vasconcelos, G. M. S.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wada, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J. S.; Wang, Q.; Wang, X. L.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Whitten, C.; Wieman, H.; Wissink, S. W.; Witt, R.; Witzke, W.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, H.; Xu, N.; Xu, Q. H.; Xu, W.; Xu, Y.; Xu, Z.; Xue, L.; Yang, Y.; Yang, Y.; Yepes, P.; Yi, Y.; Yip, K.; Yoo, I.-K.; Zawisza, M.; Zbroszczyk, H.; Zhang, J. B.; Zhang, S.; Zhang, X. P.; Zhang, Y.; Zhang, Z. P.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, X.; Zhu, Y. H.; Zoulkarneeva, Y.; Zyzak, M.

    2013-02-01

    We report a high precision measurement of the transverse single spin asymmetry AN at the center of mass energy s=200 GeV in elastic proton-proton scattering by the STAR experiment at RHIC. The AN was measured in the four-momentum transfer squared t range 0.003⩽|t|⩽0.035 (, the region of a significant interference between the electromagnetic and hadronic scattering amplitudes. The measured values of AN and its t-dependence are consistent with a vanishing hadronic spin-flip amplitude, thus providing strong constraints on the ratio of the single spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated by the Pomeron amplitude at this s, we conclude that this measurement addresses the question about the presence of a hadronic spin flip due to the Pomeron exchange in polarized proton-proton elastic scattering.

  7. Single spin asymmetry AN in polarized proton-proton elastic scattering at √{ s} = 200 GeV

    NASA Astrophysics Data System (ADS)

    Adamczyk, L.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alakhverdyants, A. V.; Alekseev, I.; Alford, J.; Anson, C. D.; Arkhipkin, D.; Aschenauer, E.; Averichev, G. S.; Balewski, J.; Banerjee, A.; Barnovska, Z.; Beavis, D. R.; Bellwied, R.; Betancourt, M. J.; Betts, R. R.; Bhasin, A.; Bhati, A. K.; Bichsel, H.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Borowski, W.; Bouchet, J.; Brandin, A. V.; Brovko, S. G.; Bruna, E.; Bültmann, S.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Cai, X. Z.; Caines, H.; Calderón de la Barca Sánchez, M.; Cebra, D.; Cendejas, R.; Cervantes, M. C.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, H. F.; Chen, J. H.; Chen, J. Y.; Chen, L.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Chung, P.; Chwastowski, J.; Codrington, M. J. M.; Corliss, R.; Cramer, J. G.; Crawford, H. J.; Cui, X.; Das, S.; Davila Leyva, A.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derradi de Souza, R.; Dhamija, S.; Didenko, L.; Ding, F.; Dion, A.; Djawotho, P.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Elnimr, M.; Engelage, J.; Eppley, G.; Eun, L.; Evdokimov, O.; Fatemi, R.; Fazio, S.; Fedorisin, J.; Fersch, R. G.; Filip, P.; Finch, E.; Fisyak, Y.; Gagliardi, C. A.; Gangadharan, D. R.; Geurts, F.; Gibson, A.; Gliske, S.; Gorbunov, Y. N.; Grebenyuk, O. G.; Grosnick, D.; Gupta, S.; Guryn, W.; Haag, B.; Hajkova, O.; Hamed, A.; Han, L.-X.; Harris, J. W.; Hays-Wehle, J. P.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, B.; Huang, H. Z.; Huck, P.; Humanic, T. J.; Huo, L.; Igo, G.; Jacobs, W. W.; Jena, C.; Judd, E. G.; Kabana, S.; Kang, K.; Kapitan, J.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Kesich, A.; Kikola, D. P.; Kiryluk, J.; Kisel, I.; Kisiel, A.; Kizka, V.; Klein, S. R.; Koetke, D. D.; Kollegger, T.; Konzer, J.; Koralt, I.; Koroleva, L.; Korsch, W.; Kotchenda, L.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Lamont, M. A. C.; Landgraf, J. M.; LaPointe, S.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Leight, W.; LeVine, M. J.; Li, C.; Li, L.; Li, W.; Li, X.; Li, X.; Li, Y.; Li, Z. M.; Lima, L. M.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Longacre, R. S.; Lu, Y.; Luo, X.; Luszczak, A.; Ma, G. L.; Ma, Y. G.; Madagodagettige Don, D. M. M. D.; Mahapatra, D. P.; Majka, R.; Mall, O. I.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; McShane, T. S.; Mioduszewski, S.; Mitrovski, M. K.; Mohammed, Y.; Mohanty, B.; Mondal, M. M.; Morozov, B.; Munhoz, M. G.; Mustafa, M. K.; Naglis, M.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nogach, L. V.; Novak, J.; Odyniec, G.; Ogawa, A.; Oh, K.; Ohlson, A.; Okorokov, V.; Oldag, E. W.; Oliveira, R. A. N.; Olson, D.; Ostrowski, P.; Pachr, M.; Page, B. S.; Pal, S. K.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlak, T.; Pawlik, B.; Pei, H.; Perkins, C.; Peryt, W.; Pile, P.; Planinic, M.; Pluta, J.; Plyku, D.; Poljak, N.; Porter, J.; Poskanzer, A. M.; Powell, C. B.; Pruneau, C.; Pruthi, N. K.; Przybycien, M.; Pujahari, P. R.; Putschke, J.; Qiu, H.; Raniwala, R.; Raniwala, S.; Ray, R. L.; Redwine, R.; Reed, R.; Riley, C. K.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Ross, J. F.; Ruan, L.; Rusnak, J.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandacz, A.; Sandweiss, J.; Sangaline, E.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, B.; Schmitz, N.; Schuster, T. R.; Seele, J.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shao, M.; Sharma, B.; Sharma, M.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Singaraju, R. N.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Solanki, D.; Sorensen, P.; deSouza, U. G.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Steadman, S. G.; Stevens, J. R.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Suaide, A. A. P.; Suarez, M. C.; Sumbera, M.; Sun, X. M.; Sun, Y.; Sun, Z.; Surrow, B.; Svirida, D. N.; Symons, T. J. M.; Szanto de Toledo, A.; Takahashi, J.; Tang, A. H.; Tang, Z.; Tarini, L. H.; Tarnowsky, T.; Thein, D.; Thomas, J. H.; Tian, J.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Trzeciak, B. A.; Tsai, O. D.; Turnau, J.; Ullrich, T.; Underwood, D. G.; Van Buren, G.; van Nieuwenhuizen, G.; Vanfossen, J. A.; Varma, R.; Vasconcelos, G. M. S.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wada, M.; Wang, F.; Wang, G.; Wang, H.; Wang, J. S.; Wang, Q.; Wang, X. L.; Wang, Y.; Webb, G.; Webb, J. C.; Westfall, G. D.; Whitten, C.; Wieman, H.; Wissink, S. W.; Witt, R.; Witzke, W.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, H.; Xu, N.; Xu, Q. H.; Xu, W.; Xu, Y.; Xu, Z.; Xue, L.; Yang, Y.; Yang, Y.; Yepes, P.; Yi, Y.; Yip, K.; Yoo, I.-K.; Zawisza, M.; Zbroszczyk, H.; Zhang, J. B.; Zhang, S.; Zhang, X. P.; Zhang, Y.; Zhang, Z. P.; Zhao, F.; Zhao, J.; Zhong, C.; Zhu, X.; Zhu, Y. H.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2013-02-01

    We report a high precision measurement of the transverse single spin asymmetry AN at the center of mass energy √{ s} = 200 GeV in elastic proton-proton scattering by the STAR experiment at RHIC. The AN was measured in the four-momentum transfer squared t range 0.003 ⩽ | t | ⩽ 0.035 (GeV / c) 2, the region of a significant interference between the electromagnetic and hadronic scattering amplitudes. The measured values of AN and its t-dependence are consistent with a vanishing hadronic spin-flip amplitude, thus providing strong constraints on the ratio of the single spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated by the Pomeron amplitude at this √{ s}, we conclude that this measurement addresses the question about the presence of a hadronic spin flip due to the Pomeron exchange in polarized proton-proton elastic scattering.

  8. The Intermediate Energy Elastic Scattering of Protons by α-CLUSTER 20Ne and 24Mg Nuclei

    NASA Astrophysics Data System (ADS)

    Berezhnoy, Yu. A.; Mikhailyuk, V. P.; Pilipenko, V. V.

    The multiple diffraction scattering theory and the α-cluster model with dispersion have been applied for calculations of the observables for the elastic scattering of intermediate energy protons by 20Ne and 24Mg nuclei. The target nuclei are considered as composed of the core (16O nucleus) and additional α-clusters (one α-cluster for 20Ne nucleus and a dumb-bell α-cluster configuration for 24Mg nucleus). Taking into account the α-cluster configuration of the core, it was supposed that the additional α-cluster or center of mass of the dumb-bell are arranged with the most probability inside or outside of the core. The calculated observables for the elastic p-20Ne and p-24Mg scattering are in agreement with the existing experimental data. The influence of the deformed core contribution on the behavior of the calculated observables also is tested.

  9. Influence of surface roughness on the elastic-light scattering patterns of micron-sized aerosol particles

    NASA Astrophysics Data System (ADS)

    Auger, J.-C.; Fernandes, G. E.; Aptowicz, K. B.; Pan, Y.-L.; Chang, R. K.

    2010-04-01

    The relation between the surface roughness of aerosol particles and the appearance of island-like features in their angle-resolved elastic-light scattering patterns is investigated both experimentally and with numerical simulation. Elastic scattering patterns of polystyrene spheres, Bacillus subtilis spores and cells, and NaCl crystals are measured and statistical properties of the island-like intensity features in their patterns are presented. The island-like features for each class of particle are found to be similar; however, principal-component analysis applied to extracted features is able to differentiate between some of the particle classes. Numerically calculated scattering patterns of Chebyshev particles and aggregates of spheres are analyzed and show qualitative agreement with experimental results.

  10. 2005 PathfinderPlus Aero-Elastic Research Flight

    NASA Technical Reports Server (NTRS)

    Navarro, Robert

    2005-01-01

    This viewgraph presentation describes the 2005 Pathfinder along with an investigation of its aeroelastic responses. The contents include: 1) HALE Class of Vehicles; 2) Aero-elastic Research Flights Overall Objective; 3) General Arrangement; 4) Sensor Locations; 5) NASA Ramp Operations; 6) Lakebed Operations; 7) 1st Flight Data Set; 8) Tool development / data usage; 9) HALE Tool Development & Validation; 10) Building a HALE Foundation; 11) Compelling Needs Drive HALE Efforts; and 12) Team Photo

  11. Unified model-independent S -matrix description of nuclear rainbow, prerainbow, and anomalous large-angle scattering in 4He-40Ca elastic scattering

    NASA Astrophysics Data System (ADS)

    Korda, V. Yu.; Molev, A. S.; Klepikov, V. F.; Korda, L. P.

    2015-02-01

    Using the evolutionary model-independent S -matrix approach, we show that a simultaneous correct description of the pictures of nuclear rainbow, prerainbow, and anomalous large-angle scattering (ALAS) in the 4He-40Ca elastic scattering can be achieved with help of the S -matrix moduli and the real nuclear phases exhibiting smooth monotonic dependencies on angular momentum, while the quantum deflection functions have a form characteristic of the nuclear rainbow case. The special role of the surface partial waves in the formation of ALAS is revealed.

  12. Elastic Wave Scattering off a Fracture With Non-uniform Stiffness Distribution

    NASA Astrophysics Data System (ADS)

    Nakagawa, S.; Nihei, K. T.; Myer, L. R.

    2002-12-01

    Elastic wave scattering by a fracture in rock has been commonly modeled using the seismic displacement discontinuity model (SDDM). This model uses a parameter called fracture stiffness that linearly relates small relative displacement across a fracture and the applied stress. Theoretically the fracture stiffness is frequency-independent, since the SDDM is essentially a static model. However, laboratory measurements on the static and dynamic stiffness of fractures in rocks and synthetic materials often exhibit significant discrepancies, the dynamic stiffness being much higher than the static stiffness. In this study, we hypothesize that these discrepancies occur due to the violation of the assumptions of the SDDM: the characteristic dimension of the fracture such as roughness and contacting asperities should be much smaller than the seismic wavelength. To examine the effect of the random heterogeneous features on a fracture that alter the characteristics of the scattered seismic waves, we model the randomness as a distribution of fracture stiffness on the fracture plane. Using a semi-analytical, frequency-wavenumber domain technique based on the Fourier optics, the dynamic interaction between incoming plane waves and the fracture with random stiffness distribution can be computed to examine the frequency dependent (from static to high frequency dynamic) transmission and reflection coefficient of the fracture. It is noted that this approach is different from the Pyrak-Nolte et al (1990)'s work based on the geometrical optics. The presented technique provides not only statistical guidelines to correlate the dynamically measured stiffness of the fracture to the static stiffness but also a linear inversion scheme that images the distribution of fracture stiffness from measured seismic waves in the far field.

  13. Spectroscopic information of 6Li from elastic scattering of deuterons, 3He and 4He by 6Li

    NASA Astrophysics Data System (ADS)

    Amar, A.

    2014-07-01

    The elastic scattering of deuterons, 3He and 4He on 6Li at different incident energies have been analyzed in the framework of the optical model (OM) using ECIS88 as well as SPI GENOA codes. The optical potential parameters were extracted in the phenomenological treatment. A good agreement between theoretical and experimental differential cross-sections was obtained in whole angular range. Parameters for real part of potential have been also calculated microscopically with double-folding model for the d, 3He and 4He scattering, respectively, using DFPOT code. The elastic transfer mechanism has been studied by coupled reaction channel (CRC) method using FRESCO code. Spectroscopic amplitudes of 6Li ≡ t + 3He and 6Li ≡ α + d configurations have been extracted from d, 3He and 4He scattering on 6Li at wide energy range. A comparison between spectroscopic amplitudes obtained from deuteron and α elastically scattering from 6Li has been made. The extracted spectroscopic amplitudes of 6Li ≡ 4He + d(SF = SA2) from 6Li(d, 6Li)d and 6Li(α, 6Li)α are not the same as expected theoretically.

  14. Peripheral elastic and inelastic scattering of {sup 17,18}O on light targets at 12 MeV/nucleon

    SciTech Connect

    Carstoiu, F.; Al-Abdullah, T.; Gagliardi, C. A.; Trache, L.

    2015-02-24

    The elastic and inelastic scattering of {sup 17,18}O with light targets has been undertaken at 12 MeV/nucleon in order to determine the optical potentials needed for the transfer reaction {sup 13}C({sup 17}O,{sup 18}O){sup 12}C. Optical potentials in both incoming and outgoing channels have been determined in a single experiment. This transfer reaction was used to infer the direct capture rate to the {sup 17}F(p,γ){sup 18}Ne which is essential to estimate the production of {sup 18}F at stellar energies in ONe novae. We demonstrate the stability of the ANC method and OMP results using good quality elastic and inelastic scattering data with stable beams. The peripherality of our reaction is inferred from a semiclassical decomposition of the total scattering amplitude into barrier and internal barrier components. Comparison between elastic scattering of {sup 17}O, {sup 18}O and {sup 16}O projectiles is made.

  15. Evaluating Elastic Network Models of Crystalline Biological Molecules with Temperature Factors, Correlated Motions, and Diffuse X-Ray Scattering

    PubMed Central

    Riccardi, Demian; Cui, Qiang; Phillips, George N.

    2010-01-01

    In this study, the variance-covariance matrix of protein motions is used to compare several elastic network models within the theoretical framework of x-ray scattering from crystals. A set of 33 ultra-high resolution structures is used to characterize the average scaling behavior of the vibrational density of states and make comparisons between experimental and theoretical temperature factors. Detailed investigations of the vibrational density of states, correlations, and predicted diffuse x-ray scatter are carried out for crystalline Staphylococcal nuclease; correlations and diffuse x-ray scatter are also compared to predictions from the translation, libration, screw model and a liquid-like dynamics model. We show that elastic network models developed to best predict temperature factors without regard for the crystal environment have relatively strong long-range interactions that yield very short-ranged atom-atom correlations. Further, we find that the low-frequency modes dominate the variance-covariance matrix only for those models with a physically reasonable vibrational density of states, and the fraction of modes required to converge the correlations is higher than that typically used for elastic network model studies. The practical implications are explored using computed diffuse x-ray scatter, which can be measured experimentally. PMID:20959103

  16. Elastic scattering of ^4He by ^6Li at E(^4He) = 24, 25, and 26 MeV

    NASA Astrophysics Data System (ADS)

    Bartosz, E. E.; Cathers, P. D.; Kemper, K. W.; Maréchal, F.; Rusek, K.

    1998-11-01

    A previous optical model analysis of the elastic scattering of ^4He by ^6Li at E(^4He) = 18.5 MeV (P. V. Green, K. W. Kemper, P. L. Kerr, K. Mohajeri, E. G. Myers, D. Robson, K. Rusek and I. J. Thompson, Phys. Rev. C 53) 2862 (1996)., as well as a cluster-folded continuum- discretized coupled channels analysis (K. Rusek, P. V. Green, P. L. Kerr, and K. W. Kemper, Phys. Rev. C 56) 1895 (1997)., resulted in a good description of the data set, but the optical model analysis yielded a poor description of the 25 MeV elastic scattering data measured at the same time. New elastic and inelastic scattering angular distribution cross sections are reported for ^4He + ^6Li at E(^4He) = 24, 25 and 26 MeV. Three energies were used to rule out anomalous scattering at 25 MeV. The results of a cluster-folded continuum- discretized coupled channels analysis similar to that used with the 18.5 MeV data are presented for the three new data sets at 24, 25, and 26 MeV.

  17. The transmission or scattering of elastic waves by an inhomogeneity of simple geometry: A comparison of theories

    NASA Technical Reports Server (NTRS)

    Sheu, Y. C.; Fu, L. S.

    1983-01-01

    The extended method of equivalent inclusions is applied to study the specific wave problems: (1) the transmission of elastic waves in an infinite medium containing a layer of inhomogeneity, and (2) the scattering of elastic waves in an infinite medium containing a perfect spherical inhomogeneity. Eigenstrains are expanded as a geometric series and a method of integration based on the inhomogeneous Helmholtz operator is adopted. This study compares results, obtained by using limited number of terms in the eigenstrain expansion, with exact solutions for the layer problem and that for a perfect sphere.

  18. Near- and subbarrier elastic and quasielastic scattering of the weakly bound {sup 6}Li projectile on {sup 144}Sm

    SciTech Connect

    Monteiro, D. S.; Otomar, D. R.; Lubian, J.; Gomes, P. R. S.; Arazi, A.; Figueira, J. M.; Heimann, D. Martinez; Negri, A. E.; Pacheco, A. J.; Niello, J. O. Fernandez; Guimaraes, V.

    2009-01-15

    High-precision data of backward-angle elastic and quasielastic scattering for the weakly bound {sup 6}Li projectile on {sup 144}Sm target at deep-sub-barrier, near-, and above-barrier energies were measured. From the deep-sub-barrier data, the surface diffuseness of the nuclear interacting potential was studied. Barrier distributions were extracted from the first derivatives of the elastic and quasielastic excitation functions. It is shown that sequential breakup through the first resonant state of the {sup 6}Li is an important channel to be included in coupled-channels calculations, even at deep-sub-barrier energies.

  19. A discontinuous Galerkin method with a modified penalty flux for the propagation and scattering of acousto-elastic waves

    NASA Astrophysics Data System (ADS)

    Ye, Ruichao; de Hoop, Maarten V.; Petrovitch, Christopher L.; Pyrak-Nolte, Laura J.; Wilcox, Lucas C.

    2016-05-01

    We develop an approach for simulating acousto-elastic wave phenomena, including scattering from fluid-solid boundaries, where the solid is allowed to be anisotropic, with the discontinuous Galerkin method. We use a coupled first-order elastic strain-velocity, acoustic velocity-pressure formulation, and append penalty terms based on interior boundary continuity conditions to the numerical (central) flux so that the consistency condition holds for the discretized discontinuous Galerkin weak formulation. We incorporate the fluid-solid boundaries through these penalty terms and obtain a stable algorithm. Our approach avoids the diagonalization into polarized wave constituents such as in the approach based on solving elementwise Riemann problems.

  20. Detection of precancerous cervical conditions using elastic light single-scattering spectroscopy

    NASA Astrophysics Data System (ADS)

    Canpolat, Murat; Denkceken, Tuba; Karaveli, Seyda; Pestereli, Elif; Erdoğan, Gülgün; Özel, Deniz; Bilge, Uğur; Simsek, Tayup

    2010-02-01

    We have investigated the potential application of elastic light single-scattering spectroscopy (ELSSS) as an adjunctive tool for screening of cervical precancerous lesions non-invasively and in real time. Ex-vivo measurements were performed on 95 cervix biopsy tissue of 60 patients. Normal cervix tissue from 10 patients after hysterectomy was used as a control group. Correlation between ELSSS spectra and histopathology results were investigated. It was found that the spectral slope was positive for all the spectra taken on normal cervix tissue samples from the control group. We assumed that if there is only one spectrum with a negative spectral slope among the all spectra taken on a biopsy specimen, the biopsy specimen is pathologically abnormal. This shows that pap smear and ELSSS results are in good agreement. Most biopsy tissue samples had both positive and negative spectral slopes. Therefore, we calculated the percentage of negative spectral slopes and hypothesized that this was correlated to dysplastic percentage of the epithelial tissue of the biopsy material. The ROC curve was calculated using the dysplastic percentage and high squamous intraepithelial lesion (HSIL) and low squamous intraepitherlial lesions (LSIL) biopsy specimens were differentiated from non HSIL and LSIL with a sensitivity and specificity of 70.4% and 66.7% respectively, with p < 0.05.