Science.gov

Sample records for elastic-plastic annular plates

  1. Elastic-plastic analysis of annular plate problems using NASTRAN

    NASA Technical Reports Server (NTRS)

    Chen, P. C. T.

    1983-01-01

    The plate elements of the NASTRAN code are used to analyze two annular plate problems loaded beyond the elastic limit. The first problem is an elastic-plastic annular plate loaded externally by two concentrated forces. The second problem is stressed radially by uniform internal pressure for which an exact analytical solution is available. A comparison of the two approaches together with an assessment of the NASTRAN code is given.

  2. Analyses of elastic-plastic problems based on the principle of superposition. II - Elastic-plastic analysis of an infinite plate with an elliptic hole or a crack

    NASA Astrophysics Data System (ADS)

    Chen, Dai-Heng; Nisitani, Hironobu

    This article is concerned with the elastic-plastic analysis of an infinite plate with an elliptic hole or a crack. The method of analysis is the body force method extended to the elastic-plastic problems. In this method, the solutions are obtained by superposing the elastic fields due to the force doublets acting in an infinite plate with an elliptic hole or a crack, so as to satisfy the constitutive equation of plasticity. The elastic-plastic behaviors near a notch root or a crack tip are discussed from the viewpoint of the linear notch mechanics.

  3. Analytical Round Robin for Elastic-Plastic Analysis of Surface Cracked Plates: Phase I Results

    NASA Technical Reports Server (NTRS)

    Wells, D. N.; Allen, P. A.

    2012-01-01

    An analytical round robin for the elastic-plastic analysis of surface cracks in flat plates was conducted with 15 participants. Experimental results from a surface crack tension test in 2219-T8 aluminum plate provided the basis for the inter-laboratory study (ILS). The study proceeded in a blind fashion given that the analysis methodology was not specified to the participants, and key experimental results were withheld. This approach allowed the ILS to serve as a current measure of the state of the art for elastic-plastic fracture mechanics analysis. The analytical results and the associated methodologies were collected for comparison, and sources of variability were studied and isolated. The results of the study revealed that the J-integral analysis methodology using the domain integral method is robust, providing reliable J-integral values without being overly sensitive to modeling details. General modeling choices such as analysis code, model size (mesh density), crack tip meshing, or boundary conditions, were not found to be sources of significant variability. For analyses controlled only by far-field boundary conditions, the greatest source of variability in the J-integral assessment is introduced through the constitutive model. This variability can be substantially reduced by using crack mouth opening displacements to anchor the assessment. Conclusions provide recommendations for analysis standardization.

  4. Hydrodynamic instability of elastic-plastic solid plates at the early stage of acceleration

    NASA Astrophysics Data System (ADS)

    Piriz, A. R.; Sun, Y. B.; Tahir, N. A.

    2015-03-01

    A model is presented for the linear Rayleigh-Taylor instability taking place at the early stage of acceleration of an elastic-plastic solid, when the shock wave is still running into the solid and is driven by a time varying pressure on the interface. When the the shock is formed sufficiently close to the interface, this stage is considered to follow a previous initial phase controlled by the Ritchmyer-Meshkov instability that settles new initial conditions. The model reproduces the behavior of the instability observed in former numerical simulation results and provides a relatively simpler physical picture than the currently existing one for this stage of the instability evolution.

  5. Finite stretching of an annular plate.

    NASA Technical Reports Server (NTRS)

    Biricikoglu, V.; Kalnins, A.

    1971-01-01

    The problem of the finite stretching of an annular plate which is bonded to a rigid inclusion at its inner edge is considered. The material is assumed to be isotropic and incompressible with a Mooney-type constitutive law. It is shown that the inclusion of the effect of the transverse normal strain leads to a rapid variation in thickness which is confined to a narrow edge zone. The explicit solutions to the boundary layer equations, which govern the behavior of the plate near the edges, are presented.

  6. North America-Pacific plate boundary, an elastic-plastic megashear - Evidence from very long baseline interferometry

    NASA Technical Reports Server (NTRS)

    Ward, Steven N.

    1988-01-01

    Data obtained by Mark III VLBI measurements of radio signals from permanent and mobile VLBI sites for 5.5 years of observations, starting in October 1982, were used to derive a picture of the earth crust deformation near the North America-Pacific plate boundary. The data, which included the vector positions of the VLBI sites and their rate of change, were used for comparison with a number of lithospheric deformation models based upon the concept that the motions of points near the North America-Pacific plate boundary are a linear combination of North America and Pacific velocities. The best of these models were found to fit 95 percent of the variance in 139 VLBI length and transverse velocity observations. Instantaneous shear deformation associated with plate tectonics is apparently developing in a zone 450 km wide paralleling the San Andreas Fault; some of this deformation will be recovered through elastic rebound, while the rest will be permanently set through plastic processes. Because the VLBI data have not been collected for a significant fraction of the earthquake cycle, they cannot discriminate between elastic and plastic behaviors.

  7. Stability of Three-Layered Annular Plate with Composite Facings

    NASA Astrophysics Data System (ADS)

    Pawlus, D.

    2017-02-01

    Paper presents the behaviour of three-layered annular plates subjected to loads acting in plate plane. Plates are composed of laminated fibre-reinforced composite facings and foam core. The static and dynamic parameters of plate critical state were evaluated. The sensitivity of composite structure of plate to the acting of quickly increasing in time loads is shown. The problem has been solved numerically using the finite element method. Results have been compared with ones obtained for plate models with isotropic layers. These plate models have also been calculated solving formulated task analytically and numerically by means of the finite difference method. Solutions to the problem concern the axisymmetrical and asymmetrical plate buckling modes. Numerous presented tables and figures create the image of the stability behaviour of examined composite plates.

  8. Stability of Three-Layered Annular Plate with Composite Facings

    NASA Astrophysics Data System (ADS)

    Pawlus, D.

    2016-10-01

    Paper presents the behaviour of three-layered annular plates subjected to loads acting in plate plane. Plates are composed of laminated fibre-reinforced composite facings and foam core. The static and dynamic parameters of plate critical state were evaluated. The sensitivity of composite structure of plate to the acting of quickly increasing in time loads is shown. The problem has been solved numerically using the finite element method. Results have been compared with ones obtained for plate models with isotropic layers. These plate models have also been calculated solving formulated task analytically and numerically by means of the finite difference method. Solutions to the problem concern the axisymmetrical and asymmetrical plate buckling modes. Numerous presented tables and figures create the image of the stability behaviour of examined composite plates.

  9. Standing wave acoustic levitation on an annular plate

    NASA Astrophysics Data System (ADS)

    Kandemir, Mehmet Hakan; Çalışkan, Mehmet

    2016-11-01

    In standing wave acoustic levitation technique, a standing wave is formed between a source and a reflector. Particles can be attracted towards pressure nodes in standing waves owing to a spring action through which particles can be suspended in air. This operation can be performed on continuous structures as well as in several numbers of axes. In this study an annular acoustic levitation arrangement is introduced. Design features of the arrangement are discussed in detail. Bending modes of the annular plate, known as the most efficient sound generation mechanism in such structures, are focused on. Several types of bending modes of the plate are simulated and evaluated by computer simulations. Waveguides are designed to amplify waves coming from sources of excitation, that are, transducers. With the right positioning of the reflector plate, standing waves are formed in the space between the annular vibrating plate and the reflector plate. Radiation forces are also predicted. It is demonstrated that small particles can be suspended in air at pressure nodes of the standing wave corresponding to a particular bending mode.

  10. Elastic-plastic models for multi-site damage

    NASA Technical Reports Server (NTRS)

    Actis, Ricardo L.; Szabo, Barna A.

    1994-01-01

    This paper presents recent developments in advanced analysis methods for the computation of stress site damage. The method of solution is based on the p-version of the finite element method. Its implementation was designed to permit extraction of linear stress intensity factors using a superconvergent extraction method (known as the contour integral method) and evaluation of the J-integral following an elastic-plastic analysis. Coarse meshes are adequate for obtaining accurate results supported by p-convergence data. The elastic-plastic analysis is based on the deformation theory of plasticity and the von Mises yield criterion. The model problem consists of an aluminum plate with six equally spaced holes and a crack emanating from each hole. The cracks are of different sizes. The panel is subjected to a remote tensile load. Experimental results are available for the panel. The plasticity analysis provided the same limit load as the experimentally determined load. The results of elastic-plastic analysis were compared with the results of linear elastic analysis in an effort to evaluate how plastic zone sizes influence the crack growth rates. The onset of net-section yielding was determined also. The results show that crack growth rate is accelerated by the presence of adjacent damage, and the critical crack size is shorter when the effects of plasticity are taken into consideration. This work also addresses the effects of alternative stress-strain laws: The elastic-ideally-plastic material model is compared against the Ramberg-Osgood model.

  11. Practical solution of plastic deformation problems in elastic-plastic range

    NASA Technical Reports Server (NTRS)

    Mendelson, A; Manson, S

    1957-01-01

    A practical method for solving plastic deformation problems in the elastic-plastic range is presented. The method is one of successive approximations and is illustrated by four examples which include a flat plate with temperature distribution across the width, a thin shell with axial temperature distribution, a solid cylinder with radial temperature distribution, and a rotating disk with radial temperature distribution.

  12. Semi Inextensional Post Buckling Analysis of Annular Plates,

    DTIC Science & Technology

    1981-09-01

    exhibit rather large rotations and curvature changes while the midsurface extensional strains have a rather limited influence on the deformation patterns...length measure s’. The radial displacement of a material point on the plate midsurface is denoted by u (Fig. 2). The angle between the normal t3 the...deformed plate and the z axis is denoted by * , and the radius of curvature of the deformed plate midsurface is r’. The following relationships hold: 1

  13. Converging shocks in elastic-plastic solids.

    PubMed

    Ortega, A López; Lombardini, M; Hill, D J

    2011-11-01

    We present an approximate description of the behavior of an elastic-plastic material processed by a cylindrically or spherically symmetric converging shock, following Whitham's shock dynamics theory. Originally applied with success to various gas dynamics problems, this theory is presently derived for solid media, in both elastic and plastic regimes. The exact solutions of the shock dynamics equations obtained reproduce well the results obtained by high-resolution numerical simulations. The examined constitutive laws share a compressible neo-Hookean structure for the internal energy e=e(s)(I(1))+e(h)(ρ,ς), where e(s) accounts for shear through the first invariant of the Cauchy-Green tensor, and e(h) represents the hydrostatic contribution as a function of the density ρ and entropy ς. In the strong-shock limit, reached as the shock approaches the axis or origin r=0, we show that compression effects are dominant over shear deformations. For an isothermal constitutive law, i.e., e(h)=e(h)(ρ), with a power-law dependence e(h) is proportional to ρ(α), shock dynamics predicts that for a converging shock located at r=R(t) at time t, the Mach number increases as M is proportional to [log(1/R)](α), independently of the space index s, where s=2 in cylindrical geometry and 3 in spherical geometry. An alternative isothermal constitutive law with p(ρ) of the arctanh type, which enforces a finite density in the strong-shock limit, leads to M is proportional to R(-(s-1)) for strong shocks. A nonisothermal constitutive law, whose hydrostatic part e(h) is that of an ideal gas, is also tested, recovering the strong-shock limit M is proportional to R(-(s-1)/n(γ)) originally derived by Whitham for perfect gases, where γ is inherently related to the maximum compression ratio that the material can reach, (γ+1)/(γ-1). From these strong-shock limits, we also estimate analytically the density, radial velocity, pressure, and sound speed immediately behind the shock. While the

  14. Converging shocks in elastic-plastic solids

    NASA Astrophysics Data System (ADS)

    López Ortega, A.; Lombardini, M.; Hill, D. J.

    2011-11-01

    We present an approximate description of the behavior of an elastic-plastic material processed by a cylindrically or spherically symmetric converging shock, following Whitham's shock dynamics theory. Originally applied with success to various gas dynamics problems, this theory is presently derived for solid media, in both elastic and plastic regimes. The exact solutions of the shock dynamics equations obtained reproduce well the results obtained by high-resolution numerical simulations. The examined constitutive laws share a compressible neo-Hookean structure for the internal energy e=es(I1)+eh(ρ,ς), where es accounts for shear through the first invariant of the Cauchy-Green tensor, and eh represents the hydrostatic contribution as a function of the density ρ and entropy ς. In the strong-shock limit, reached as the shock approaches the axis or origin r=0, we show that compression effects are dominant over shear deformations. For an isothermal constitutive law, i.e., eh=eh(ρ), with a power-law dependence eh∝ρα, shock dynamics predicts that for a converging shock located at r=R(t) at time t, the Mach number increases as M∝[log(1/R)]α, independently of the space index s, where s=2 in cylindrical geometry and 3 in spherical geometry. An alternative isothermal constitutive law with p(ρ) of the arctanh type, which enforces a finite density in the strong-shock limit, leads to M∝R-(s-1) for strong shocks. A nonisothermal constitutive law, whose hydrostatic part eh is that of an ideal gas, is also tested, recovering the strong-shock limit M∝R-(s-1)/n(γ) originally derived by Whitham for perfect gases, where γ is inherently related to the maximum compression ratio that the material can reach, (γ+1)/(γ-1). From these strong-shock limits, we also estimate analytically the density, radial velocity, pressure, and sound speed immediately behind the shock. While the hydrostatic part of the energy essentially commands the strong-shock behavior, the shear

  15. Experimental investigation of Rayleigh Taylor instability in elastic-plastic materials

    NASA Astrophysics Data System (ADS)

    Haley, Aaron Alan; Banerjee, Arindam

    2010-11-01

    The interface of an elastic-plastic plate accelerated by a fluid of lower density is Rayleigh Taylor (RT) unstable, the growth being mitigated by the mechanical strength of the plate. The instability is observed when metal plates are accelerated by high explosives, in explosive welding, and in volcanic island formation due to the strength of the inner crust. In contrast to the classical case involving Newtonian fluids, RT instability in accelerated solids is not well understood. The difficulties for constructing a theory for the linear growth phase in solids is essentially due to the character of elastic-plastic constitutive properties which has a nonlinear dependence on the magnitude of the rate of deformation. Experimental investigation of the phenomena is difficult due to the exceedingly small time scales (in high energy density experiments) and large measurement uncertainties of material properties. We performed experiments on our Two-Wheel facility to study the linear stage of the incompressible RT instability in elastic-plastic materials (yogurt) whose properties were well characterized. Rotation of the wheels imparted a constant centrifugal acceleration on the material interface that was cut with a small sinusoidal ripple. The controlled initial conditions and precise acceleration amplitudes are levied to investigate transition from elastic to plastic deformation and allow accurate and detailed measurements of flow properties.

  16. In-plane vibration analysis of annular plates with arbitrary boundary conditions.

    PubMed

    Shi, Xianjie; Shi, Dongyan; Qin, Zhengrong; Wang, Qingshan

    2014-01-01

    In comparison with the out-of-plane vibrations of annular plates, far less attention has been paid to the in-plane vibrations which may also play a vital important role in affecting the sound radiation from and power flows in a built-up structure. In this investigation, a generalized Fourier series method is proposed for the in-plane vibration analysis of annular plates with arbitrary boundary conditions along each of its edges. Regardless of the boundary conditions, the in-plane displacement fields are invariantly expressed as a new form of trigonometric series expansions with a drastically improved convergence as compared with the conventional Fourier series. All the unknown expansion coefficients are treated as the generalized coordinates and determined using the Rayleigh-Ritz technique. Unlike most of the existing studies, the presented method can be readily and universally applied to a wide spectrum of in-plane vibration problems involving different boundary conditions, varying material, and geometric properties with no need of modifying the basic functions or adapting solution procedures. Several numerical examples are presented to demonstrate the effectiveness and reliability of the current solution for predicting the in-plane vibration characteristics of annular plates subjected to different boundary conditions.

  17. Implementation of elastic-plastic structural analysis into NASTRAN

    NASA Technical Reports Server (NTRS)

    Levy, A.; Pifko, A. B.; Ogilvie, P. L.

    1983-01-01

    Elastic-plastic analytic capabilities were incorporated into the NASTRAN program. The present implementation includes a general rigid format and additional bulk data cards as well as to two new modules. The modules are specialized to include only perfect plasticity of the CTRMEN and CROD elements but can easily be expanded to include other plasticity theories and elements. The practical problem of an elastic-plastic analysis of a ship's bracket connection is demonstrated and compared to an equivalent analysis using Grumman's PLANS program. The present work demonstrates the feasibility of incorporating general elastic-plastic capabilities into NASTRAN.

  18. 3-D vibration analysis of annular sector plates using the Chebyshev-Ritz method

    NASA Astrophysics Data System (ADS)

    Zhou, D.; Lo, S. H.; Cheung, Y. K.

    2009-02-01

    The three-dimensional free vibration of annular sector plates with various boundary conditions is studied by means of the Chebyshev-Ritz method. The analysis is based on the three-dimensional small strain linear elasticity theory. The product of Chebyshev polynomials satisfying the necessary boundary conditions is selected as admissible functions in such a way that the governing eigenvalue equation can be conveniently derived through an optimization process by the Ritz method. The boundary functions guarantee the satisfaction of the geometric boundary conditions of the plates and the Chebyshev polynomials provide the robustness for numerical calculation. The present study provides a full vibration spectrum for the thick annular sector plates, which cannot be given by the two-dimensional (2-D) theories such as the Mindlin theory. Comprehensive numerical results with high accuracy are systematically produced, which can be used as benchmark to evaluate other numerical methods. The effect of radius ratio, thickness ratio and sector angle on natural frequencies of the plates with a sector angle from 120° to 360° is discussed in detail. The three-dimensional vibration solutions for plates with a re-entrant sector angle (larger than 180°) and shallow helicoidal shells (sector angle larger than 360°) with a small helix angle are presented for the first time.

  19. Elastic-plastic response charts for nuclear overpressures. Final report

    SciTech Connect

    Guice, L.K.; Kiger, S.A.

    1984-06-01

    The single-degree-of-freedom equation of motion for an elastic-plastic system with forcing functions that are representative of nuclear weapon simulations is nondimensionalized and solved. Numerical solutions are calculated by the Newmark Beta method, and response charts incorporating nondimensionalized structural and loading parameters for the Speicher-Brode nuclear pressure history description are provided. A computer code is presented for solving the elastic-plastic problem for Speicher-Brode overpressure as well as triangular-shaped overpressures.

  20. Internal (Annular) and Compressible External (Flat Plate) Turbulent Flow Heat Transfer Correlations.

    SciTech Connect

    Dechant, Lawrence; Smith, Justin

    2016-01-01

    Here we provide a discussion regarding the applicability of a family of traditional heat transfer correlation based models for several (unit level) heat transfer problems associated with flight heat transfer estimates and internal flow heat transfer associated with an experimental simulation design (Dobranich 2014). Variability between semi-empirical free-flight models suggests relative differences for heat transfer coefficients on the order of 10%, while the internal annular flow behavior is larger with differences on the order of 20%. We emphasize that these expressions are strictly valid only for the geometries they have been derived for e.g. the fully developed annular flow or simple external flow problems. Though, the application of flat plate skin friction estimate to cylindrical bodies is a traditional procedure to estimate skin friction and heat transfer, an over-prediction bias is often observed using these approximations for missile type bodies. As a correction for this over-estimate trend, we discuss a simple scaling reduction factor for flat plate turbulent skin friction and heat transfer solutions (correlations) applied to blunt bodies of revolution at zero angle of attack. The method estimates the ratio between axisymmetric and 2-d stagnation point heat transfer skin friction and Stanton number solution expressions for sub-turbulent Reynolds numbers %3C1x10 4 . This factor is assumed to also directly influence the flat plate results applied to the cylindrical portion of the flow and the flat plate correlations are modified by

  1. Description of the M-integral in an elastic plastic material

    NASA Astrophysics Data System (ADS)

    Tao, Huiyu; Gao, Cheng; Xu, Jinyong; Tang, Yan; Cai, Dayong; Huang, Ranran

    2017-01-01

    By use of finite element analysis method of elastic-plasticity, a calculation of M-integral for 7075 aluminum alloy plate containing different configuration defects was conducted. The effect of plastic energy on path independence of the M-integral is discussed, The variation of M-integral of the holes before and after coalescence under tension loading is studied. Analysis result indicates that M-integral will be path dependent when the plastic zone is passed through by the selected integration contours. There is a jump of the M-integral when coalescence of the holes in a plate occurs. The value of the M-integral is always configuration dependent.

  2. Elastic-Plastic J-Integral Solutions or Surface Cracks in Tension Using an Interpolation Methodology

    NASA Technical Reports Server (NTRS)

    Allen, P. A.; Wells, D. N.

    2013-01-01

    No closed form solutions exist for the elastic-plastic J-integral for surface cracks due to the nonlinear, three-dimensional nature of the problem. Traditionally, each surface crack must be analyzed with a unique and time-consuming nonlinear finite element analysis. To overcome this shortcoming, the authors have developed and analyzed an array of 600 3D nonlinear finite element models for surface cracks in flat plates under tension loading. The solution space covers a wide range of crack shapes and depths (shape: 0.2 less than or equal to a/c less than or equal to 1, depth: 0.2 less than or equal to a/B less than or equal to 0.8) and material flow properties (elastic modulus-to-yield ratio: 100 less than or equal to E/ys less than or equal to 1,000, and hardening: 3 less than or equal to n less than or equal to 20). The authors have developed a methodology for interpolating between the goemetric and material property variables that allows the user to reliably evaluate the full elastic-plastic J-integral and force versus crack mouth opening displacement solution; thus, a solution can be obtained very rapidly by users without elastic-plastic fracture mechanics modeling experience. Complete solutions for the 600 models and 25 additional benchmark models are provided in tabular format.

  3. Vibrations of Base Plates in Annular Cylindrical Tanks: Theory and Experiments

    NASA Astrophysics Data System (ADS)

    Amabili, M.; Dalpiaz, G.

    1998-02-01

    In this paper, the bulging modes (i.e., modes where the walls oscillate moving the liquid) of the flexible bottom annular plate of an otherwise rigid annular cylindrical container are studied. The tank has a vertical axis and is partially filled with liquid, so that the free surface of the liquid is orthogonal to the tank axis. The volume occupied by the liquid is delimited by two coaxial rigid cylinders and the liquid deformation potential is obtained by using variables separation. First, by using the simplifying hypothesis that the mode shapes of the plates in contact with the liquid (wet modes) are the samein vacuo, the approach based on the non-dimensionalized added virtual mass incremental (NAVMI) factor is applied, so that all numerical computations can be made non-dimensional. Second, the accuracy of this method is checked by using the Rayleigh-Ritz method, which removes the restrictive hypothesis on the wet mode shapes. Finally, several experimental modal analyses were performed on two different test tanks filled with different water levels in order to verify the accuracy of the theoretical results.

  4. Aerodynamic performance of an annular flat plate airfoil cascade with nonuniform inlet velocity

    NASA Technical Reports Server (NTRS)

    Buffum, D.; Fleeter, S.

    1986-01-01

    The demand for increased gas turbine engine efficiency with minimum weight is leading to more complex blading designs, in which viscous and three-dimensional effects are significant. As a result, design procedures based on first principle, experimentally verified, three-dimensional aerodynamic analyses are required. This paper describes a series of experiments performed in a large-scale, subsonic, annular cascade facility specifically designed to provide three-dimensional aerodynamic data suitable for code verification. In particular, the effect of inlet velocity profile on the overall three-dimensional performance of a classical flat plate airfoil cascade is investigated over a range of incidence angles including those resulting in airfoil surface flow separation. All of the data are analyzed and correlated with appropriate nonseparated flow predictions.

  5. Shock Compression of Metal Crystals: A Comparison of Eulerian and Lagrangian Elastic-Plastic Theories

    DTIC Science & Technology

    2014-11-01

    Shock Compression of Metal Crystals: A Comparison of Eulerian and Lagrangian Elastic- Plastic Theories by JD Clayton ARL-RP-0513...of Metal Crystals: A Comparison of Eulerian and Lagrangian Elastic- Plastic Theories JD Clayton Weapons and Materials Research Directorate, ARL...SUBTITLE Shock Compression of Metal Crystals: A Comparison of Eulerian and Lagrangian Elastic- Plastic Theories 5a. CONTRACT NUMBER 5b. GRANT

  6. Elastic-plastic-brittle transitions and avalanches in disordered media.

    PubMed

    Kale, Sohan; Ostoja-Starzewski, Martin

    2014-01-31

    A spring lattice model with the ability to simulate elastic-plastic-brittle transitions in a disordered medium is presented. The model is based on bilinear constitutive law defined at the spring level and power-law-type disorder introduced in the yield and failure limits of the springs. The key parameters of the proposed model effectively control the disorder distribution, significantly affecting the stress-strain response, the damage accumulation process, and the fracture surfaces. The model demonstrates a plastic strain avalanche behavior for perfectly plastic as well as hardening materials with a power-law distribution, in agreement with the experiments and related models. The strength of the model is in its generality and ability to interpolate between elastic-plastic hardening and elastic-brittle transitions.

  7. Elastic-plastic behavior of non-woven fibrous mats

    NASA Astrophysics Data System (ADS)

    Silberstein, Meredith N.; Pai, Chia-Ling; Rutledge, Gregory C.; Boyce, Mary C.

    2012-02-01

    Electrospinning is a novel method for creating non-woven polymer mats that have high surface area and high porosity. These attributes make them ideal candidates for multifunctional composites. Understanding the mechanical properties as a function of fiber properties and mat microstructure can aid in designing these composites. Further, a constitutive model which captures the membrane stress-strain behavior as a function of fiber properties and the geometry of the fibrous network would be a powerful design tool. Here, mats electrospun from amorphous polyamide are used as a model system. The elastic-plastic behavior of single fibers are obtained in tensile tests. Uniaxial monotonic and cyclic tensile tests are conducted on non-woven mats. The mat exhibits elastic-plastic stress-strain behavior. The transverse strain behavior provides important complementary data, showing a negligible initial Poisson's ratio followed by a transverse:axial strain ratio greater than -1:1 after an axial strain of 0.02. A triangulated framework has been developed to emulate the fibrous network structure of the mat. The micromechanically based model incorporates the elastic-plastic behavior of single fibers into a macroscopic membrane model of the mat. This representative volume element based model is shown to capture the uniaxial elastic-plastic response of the mat under monotonic and cyclic loading. The initial modulus and yield stress of the mat are governed by the fiber properties, the network geometry, and the network density. The transverse strain behavior is linked to discrete deformation mechanisms of the fibrous mat structure including fiber alignment, fiber bending, and network consolidation. The model is further validated in comparison to experiments under different constrained axial loading conditions and found to capture the constraint effect on stiffness, yield, post-yield hardening, and post-yield transverse strain behavior. Due to the direct connection between

  8. Elastic-plastic analysis of the SS-3 tensile specimen

    SciTech Connect

    Majumdar, S.

    1998-09-01

    Tensile tests of most irradiated specimens of vanadium alloys are conducted using the miniature SS-3 specimen which is not ASTM approved. Detailed elastic-plastic finite element analysis of the specimen was conducted to show that, as long as the ultimate to yield strength ratio is less than or equal to 1.25 (which is satisfied by many irradiated materials), the stress-plastic strain curve obtained by using such a specimen is representative of the true material behavior.

  9. Efficient parallel algorithms for elastic plastic finite element analysis

    NASA Astrophysics Data System (ADS)

    Ding, K. Z.; Qin, Q.-H.; Cardew-Hall, M.; Kalyanasundaram, S.

    2008-03-01

    This paper presents our new development of parallel finite element algorithms for elastic plastic problems. The proposed method is based on dividing the original structure under consideration into a number of substructures which are treated as isolated finite element models via the interface conditions. Throughout the analysis, each processor stores only the information relevant to its substructure and generates the local stiffness matrix. A parallel substructure oriented preconditioned conjugate gradient method, which is combined with MR smoothing and diagonal storage scheme are employed to solve linear systems of equations. After having obtained the displacements of the problem under consideration, a substepping scheme is used to integrate elastic plastic stress strain relations. The procedure outlined controls the error of the computed stress by choosing each substep size automatically according to a prescribed tolerance. The combination of these algorithms shows a good speedup when increasing the number of processors and the effective solution of 3D elastic plastic problems whose size is much too large for a single workstation becomes possible.

  10. ZIP3D: An elastic and elastic-plastic finite-element analysis program for cracked bodies

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Newman, J. C., Jr.

    1990-01-01

    ZIP3D is an elastic and an elastic-plastic finite element program to analyze cracks in three dimensional solids. The program may also be used to analyze uncracked bodies or multi-body problems involving contacting surfaces. For crack problems, the program has several unique features including the calculation of mixed-mode strain energy release rates using the three dimensional virtual crack closure technique, the calculation of the J integral using the equivalent domain integral method, the capability to extend the crack front under monotonic or cyclic loading, and the capability to close or open the crack surfaces during cyclic loading. The theories behind the various aspects of the program are explained briefly. Line-by-line data preparation is presented. Input data and results for an elastic analysis of a surface crack in a plate and for an elastic-plastic analysis of a single-edge-crack-tension specimen are also presented.

  11. Void growth in an elastic-plastic medium.

    NASA Technical Reports Server (NTRS)

    Needleman, A.

    1972-01-01

    The uniaxial deformation of an elastic-plastic medium containing a doubly periodic square array of circular cylindrical voids is studied under plane-strain conditions. Both the effects of geometrical nonlinearities resulting from large deformation and physical nonlinearities arising from plastic material behavior are included in formulating the problem. A variational principle is used as the basis for implementing a finite-element solution. Results are obtained for the change in void shape and size under increasing overall strain, the overall tensile behavior of the material with voids, and the development of the plastic zone about a void.

  12. Engineering approach for elastic-plastic fracture analysis

    SciTech Connect

    Kumar, V; German, M D; Shih, C F

    1981-07-01

    This report for RP1237-1 presents formulas, charts, and background material that allow calculation of safety margins in ductile structures containing flaws. It is intended as a reference book for engineers who are concerned with design and analysis of flawed structures. The work extends the analysis procedures already available for brittle elastic materials to the tough and ductile steels used in the construction of pressure-boundary components. These new elastic-plastic methods more accurately describe the behavior of ductile materials and show more tolerance to flaws than the elastic methods contained in the ASME Boiler and Pressure Vessel Code and the Code of Federal Regulations.

  13. Acoustic radiation from out-of-plane modes of an annular disk using thin and thick plate theories

    NASA Astrophysics Data System (ADS)

    Lee, Hyeongill; Singh, Rajendra

    2005-04-01

    Out-of-plane (flexural) vibration is a major source of sound radiation from many mechanical or structural components having annular or circular disk shape. The typical thickness of practical components is often beyond the thin plate theory limit and it may have considerable effect on sound radiation. But, traditionally, thin annular disk models have been employed for such structures neglecting the thickness effect. In this article, structural eigensolutions for the out-of-plane modes and sound radiation from the modal vibration of a thick annular disk with free-free boundaries have been calculated using both thick and thin plate theories. A new analytical formulation is proposed for the sound radiation problem. In addition, the same problem has been solved by a semi-analytical procedure in which the disk surface velocity is numerically defined by a finite-element model and sound radiation is then analytically obtained using a modified circular radiator model. Also, the effects of radii and thickness ratios on the structural and acoustic radiation characteristics are investigated using the analytical procedure. Finally, the effect of boundary conditions is briefly examined.

  14. Elastic/Plastic Drop Analysis Using Finite Element Techniques

    SciTech Connect

    R. E. Spears

    1999-08-01

    A Spent Nuclear Fuel (SNF) can, which is called the High Integrity Can (HIC), is being designed at the Idaho National Engineering and Environmental Laboratory (INEEL). Its intended use is to contain SNF sent to the Idaho Nuclear Technology and Engineering Center (INTEC). INTEC will then do the final work with the HIC to send it to the repository at Yucca Mountain, Nevada, for long-term storage. One portion of the analysis, which was required for the HIC, was accidental drop scenarios. This consisted of 19 simulated drops from a height of 30-feet with impact on a flat rigid surface. Elastic/plastic analyses were performed for the simulated drops. Additionally, two elastic/plastic analyses were performed for drops from a height of 17-feet with impact on a rigid surface having a narrow raised portion across its center. The purpose of the analyses was to determine if any breach occurred which opened a crack wider than 0.05-inches from these drop scenarios. Also some plastic deformations were needed from certain drop scenarios to support the Criticality Safety documentation. The analytical results for the simulated drop scenarios showed that, though the seal in the lid may be broken, no 0.05-inch breach occurred. Also, the deformations for Criticality Safety documentation were calculated and show on the applicable output plots.

  15. Elastic plastic fracture mechanics methodology for surface cracks

    NASA Technical Reports Server (NTRS)

    Ernst, Hugo A.; Lambert, D. M.

    1994-01-01

    The Elastic Plastic Fracture Mechanics Methodology has evolved significantly in the last several years. Nevertheless, some of these concepts need to be extended further before the whole methodology can be safely applied to structural parts. Specifically, there is a need to include the effect of constraint in the characterization of material resistance to crack growth and also to extend these methods to the case of 3D defects. As a consequence, this project was started as a 36 month research program with the general objective of developing an elastic plastic fracture mechanics methodology to assess the structural reliability of pressure vessels and other parts of interest to NASA which may contain flaws. The project is divided into three tasks that deal with (1) constraint and thickness effects, (2) three-dimensional cracks, and (3) the Leak-Before-Burst (LBB) criterion. This report period (March 1994 to August 1994) is a continuation of attempts to characterize three dimensional aspects of fracture present in 'two dimensional' or planar configuration specimens (Chapter Two), especially, the determination of, and use of, crack face separation data. Also, included, are a variety of fracture resistance testing results (J(m)R-curve format) and a discussion regarding two materials of NASA interest (6061-T651 Aluminum alloy and 1N718-STA1 nickel-base super alloy) involving a bases for like constraint in terms of ligament dimensions, and their comparison to the resulting J(m)R-curves (Chapter Two).

  16. Elastic plastic fracture mechanics methodology for surface cracks

    NASA Technical Reports Server (NTRS)

    Ernst, Hugo A.; Boatwright, D. W.; Curtin, W. J.; Lambert, D. M.

    1993-01-01

    The Elastic Plastic Fracture Mechanics (EPFM) Methodology has evolved significantly in the last several years. Nevertheless, some of these concepts need to be extended further before the whole methodology can be safely applied to structural parts. Specifically, there is a need to include the effect of constraint in the characterization of material resistance to crack growth and also to extend these methods to the case of 3D defects. As a consequence, this project was started as a 36 month research program with the general objective of developing an EPFM methodology to assess the structural reliability of pressure vessels and other parts of interest to NASA containing defects. This report covers a computer modelling algorithm used to simulate the growth of a semi-elliptical surface crack; the presentation of a finite element investigation that compared the theoretical (HRR) stress field to that produced by elastic and elastic-plastic models; and experimental efforts to characterize three dimensional aspects of fracture present in 'two dimensional', or planar configuration specimens.

  17. Elastic-plastic mixed-iterative finite element analysis: Implementation and performance assessment

    NASA Technical Reports Server (NTRS)

    Sutjahjo, Edhi; Chamis, Christos C.

    1993-01-01

    An elastic-plastic algorithm based on Von Mises and associative flow criteria is implemented in MHOST-a mixed iterative finite element analysis computer program developed by NASA Lewis Research Center. The performance of the resulting elastic-plastic mixed-iterative analysis is examined through a set of convergence studies. Membrane and bending behaviors of 4-node quadrilateral shell finite elements are tested for elastic-plastic performance. Generally, the membrane results are excellent, indicating the implementation of elastic-plastic mixed-iterative analysis is appropriate.

  18. Elastic-plastic analysis of crack in ductile adhesive joint

    SciTech Connect

    Ikeda, Toru; Miyazaki, Noriyuki; Yamashita, Akira; Munakata, Tsuyoshi

    1995-11-01

    The fracture of a crack in adhesive is important to the structural integrity of adhesive structures and composite materials. Though the fracture toughness of a material should be constant according to fracture mechanics, it is said that the fracture toughness of a crack in an adhesive joint depends on the bond thickness. In the present study, the elastic-plastic stress analyses of a crack in a thin adhesive layer are performed by the combination of the boundary element method and the finite element method. The effect of adhesive thickness on the J-integral, the Q`-factor which is a modified version of the Q-factor, and the crack tip opening displacement (CTOD) are investigated. It is found from the analyses that the CTOD begins to decrease at very thin bond thickness, the Q`-factor being almost constant. The decrease of the fracture toughness at very thin adhesive layer is expected by the present analysis.

  19. Derivation of a variational principle for plane strain elastic-plastic silk biopolymers

    NASA Astrophysics Data System (ADS)

    He, J. H.; Liu, F. J.; Cao, J. H.; Zhang, L.

    2014-01-01

    Silk biopolymers, such as spider silk and Bombyx mori silk, behave always elastic-plastically. An elastic-plastic model is adopted and a variational principle for the small strain, rate plasticity problem is established by semi-inverse method. A trial Lagrangian is constructed where an unknown function is included which can be identified step by step.

  20. Finite element elastic-plastic-creep and cyclic life analysis of a cowl lip

    NASA Technical Reports Server (NTRS)

    Arya, Vinod K.; Melis, Matthew E.; Halford, Gary R.

    1990-01-01

    Results are presented of elastic, elastic-plastic, and elastic-plastic-creep analyses of a test-rig component of an actively cooled cowl lip. A cowl lip is part of the leading edge of an engine inlet of proposed hypersonic aircraft and is subject to severe thermal loadings and gradients during flight. Values of stresses calculated by elastic analysis are well above the yield strength of the cowl lip material. Such values are highly unrealistic, and thus elastic stress analyses are inappropriate. The inelastic (elastic-plastic and elastic-plastic-creep) analyses produce more reasonable and acceptable stress and strain distributions in the component. Finally, using the results from these analyses, predictions are made for the cyclic crack initiation life of a cowl lip. A comparison of predicted cyclic lives shows the cyclic life prediction from the elastic-plastic-creep analysis to be the lowest and, hence, most realistic.

  1. Three-dimensional elastic-plastic finite-element analyses of constraint variations in cracked bodies

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Bigelow, C. A.; Shivakumar, K. N.

    1993-01-01

    Three-dimensional elastic-plastic (small-strain) finite-element analyses were used to study the stresses, deformations, and constraint variations around a straight-through crack in finite-thickness plates for an elastic-perfectly plastic material under monotonic and cyclic loading. Middle-crack tension specimens were analyzed for thicknesses ranging from 1.25 to 20 mm with various crack lengths. Three local constraint parameters, related to the normal, tangential, and hydrostatic stresses, showed similar variations along the crack front for a given thickness and applied stress level. Numerical analyses indicated that cyclic stress history and crack growth reduced the local constraint parameters in the interior of a plate, especially at high applied stress levels. A global constraint factor alpha(sub g) was defined to simulate three-dimensional effects in two-dimensional crack analyses. The global constraint factor was calculated as an average through-the-thickness value over the crack-front plastic region. Values of alpha(sub g) were found to be nearly independent of crack length and were related to the stress-intensity factor for a given thickness.

  2. Finite elastic-plastic deformation of polycrystalline metals

    NASA Technical Reports Server (NTRS)

    Iwakuma, T.; Nemat-Nasser, S.

    1984-01-01

    Applying Hill's self-consistent method to finite elastic-plastic deformations, the overall moduli of polycrystalline solids are estimated. The model predicts a Bauschinger effect, hardening, and formation of vertex or corner on the yield surface for both microscopically non-hardening and hardening crystals. The changes in the instantaneous moduli with deformation are examined, and their asymptotic behavior, especially in relation to possible localization of deformations, is discussed. An interesting conclusion is that small second-order quantities, such as shape changes of grains and residual stresses (measured relative to the crystal elastic moduli), have a first-order effect on the overall response, as they lead to a loss of the overall stability by localized deformation. The predicted incipience of localization for a uniaxial deformation in two dimensions depends on the initial yield strain, but the orientation of localization is slightly less than 45 deg with respect to the tensile direction, although the numerical instability makes it very difficult to estimate this direction accurately.

  3. Elastic, Plastic, Cracking Aspects of the Hardness of Materials

    NASA Astrophysics Data System (ADS)

    Armstrong, R. W.; Elban, W. L.; Walley, S. M.

    2013-03-01

    The hardness properties of materials are tracked from early history until the present time. Emphasis is placed on the hardness test being a useful probe for determining the local elastic, plastic and cracking properties of single crystal, polycrystalline, polyphase or amorphous materials. Beginning from connection made between individual hardness pressure measurements and the conventional stress-strain properties of polycrystalline materials, the newer consideration is described of directly specifying a hardness-type stress-strain relationship based on a continuous loading curve, particularly, as obtained with a spherical indenter. Such effort has received impetus from order-of-magnitude improvements in load and displacement measuring capabilities that are demonstrated for nanoindentation testing. Details of metrology assessments involved in various types of hardness tests are reviewed. A compilation of measurements is presented for the separate aspects of Hertzian elastic, dislocation-mechanics-based plasticity and indentation-fracture-mechanics-based cracking behaviors of materials, including elastic and plastic deformation rate effects. A number of test applications are reviewed, most notably involving the hardness of thin film materials and coatings.

  4. Elastic Plastic Fracture Analysis of an Aluminum COPV Liner

    NASA Technical Reports Server (NTRS)

    Forth, Scott; Gregg, Bradley; Bailey, Nathaniel

    2012-01-01

    Onboard any space-launch vehicle, composite over-wrapped pressure vessels (COPVs) may be utilized by propulsion or environmental control systems. The failure of a COPV has the potential to be catastrophic, resulting in the loss of vehicle, crew or mission. The latest COPV designs have reduced the wall-thickness of the metallic liner to the point where the material strains plastically during operation. At this time, the only method to determine the damage tolerance lifetime (safe-life) of a plastically responding metallic liner is through full-scale COPV testing. Conducting tests costs substantially more and can be far more time consuming than performing an analysis. As a result of this cost, there is a need to establish a qualifying process through the use of a crack growth analysis tool. This paper will discuss fracture analyses of plastically responding metallic liners in COPVs. Uni-axial strain tests have been completed on laboratory specimens to collect elastic-plastic crack growth data. This data has been modeled with the crack growth analysis tool, NASGRO 6.20 to predict the response of laboratory specimens and subsequently the complexity of a COPV.

  5. A More Accurate Solution to the Elastic-Plastic Problem of Pressurized Thick-Walled Cylinders

    DTIC Science & Technology

    1985-02-01

    ACCURATE SOLUTION TO THE ELASTIC- PLASTIC PROBLEM OF PRESSURIZED THICK-WALLED CYLINDERS S. TYPE OF REPORT 4’ PERIOD COVERED Final 8. PERFORMING...o £ ) A MORE ACCURATE SOLUTION TO THE ELASTIC- PLASTIC PROBLEM OF PREr SURIZED THICK-WALLED CYLINDERS < • Peter C. T. Chen U.S. Army Armament...Watervllet, NY 12189 I iJSTRACT. A new method has been developed for solving the partially plastic problems of thlc’ -walled cylinders made of strain

  6. Application of elastic and elastic-plastic fracture mechanics methods to surface flaws

    NASA Technical Reports Server (NTRS)

    Mccabe, Donald E.; Ernst, Hugo A.; Newman, James C., Jr.

    1992-01-01

    Fuel tanks that are a part of the External Tank assembly for the Space Shuttle are made of relatively thin 2219-T87 aluminum plate. These tanks contain about 917 m of fusion weld seam, all of which is nondestructively inspected for flaws and all those found are repaired. The tanks are subsequently proof-tested to a pressure that is sufficiently severe to cause weld metal yielding in a few local regions of the weld seam. The work undertaken in the present project was to develop a capability to predict flaw growth from undetected surface flaws that are assumed to be located in the highly stressed regions. The technical challenge was to develop R-curve prediction capability for surface cracks in specimens that contain the flaws of unusual sizes and shapes deemed to be of interest. The test techniques developed and the elastic-plastic analysis concepts adopted are presented. The flaws of interest were quite small surface cracks that were narrow-deep ellipses that served to exacerbate the technical difficulties involved.

  7. Application of elastic and elastic-plastic fracture mechanics methods to surface flaws

    NASA Astrophysics Data System (ADS)

    McCabe, Donald E.; Ernst, Hugo A.; Newman, James C., Jr.

    Fuel tanks that are a part of the External Tank assembly for the Space Shuttle are made of relatively thin 2219-T87 aluminum plate. These tanks contain about 917 m of fusion weld seam, all of which is nondestructively inspected for flaws and all those found are repaired. The tanks are subsequently proof-tested to a pressure that is sufficiently severe to cause weld metal yielding in a few local regions of the weld seam. The work undertaken in the present project was to develop a capability to predict flaw growth from undetected surface flaws that are assumed to be located in the highly stressed regions. The technical challenge was to develop R-curve prediction capability for surface cracks in specimens that contain the flaws of unusual sizes and shapes deemed to be of interest. The test techniques developed and the elastic-plastic analysis concepts adopted are presented. The flaws of interest were quite small surface cracks that were narrow-deep ellipses that served to exacerbate the technical difficulties involved.

  8. Comparison of aerogrids and punched plates for smoothing flow from short annular diffusers

    NASA Technical Reports Server (NTRS)

    Rumpf, R. L.; Shippen, W. B.

    1972-01-01

    Scale model tests were conducted to evaluate the effectiveness of aerogrids and punched plates in producing flat velocity profiles downstream of short diffusers as would be used between the compressor and combustor of advanced aircraft engines. The diffuser had an area ratio of 4.17 and a length-to-inlet-height ratio of 2.07. The aerogrids tested were plates containing 1123 contoured venturis in parallel with geometric blockages of 83, 74, and 61 percent, respectively. The punched plates contained 1123 sharp-edged orifices with blockages of 58 and 30 percent. The results show that aerogrids, with higher effective blockage for the same pressure loss, are more effective flow-smoothing devices than the punched plates. Also, the overall pressure loss decreases and the exit velocity profile becomes flatter as either type of grid is moved closer to the diffuser exit plane.

  9. Time-resolved x-ray diffraction experiments to examine the elastic-plastic transition in shocked magnesium-doped LiF

    NASA Astrophysics Data System (ADS)

    Jensen, B. J.; Gupta, Y. M.

    2008-07-01

    Time-resolved x-ray diffraction measurements were used to examine the lattice deformation during elastic-plastic deformation in Mg-doped (approximately 100 ppm) LiF single crystals shocked along [100]. The magnesium impurities significantly increase the elastic limit of the LiF crystals, as compared to the low values observed for ultrapure LiF crystals, leading to a large amplitude elastic wave and significant stress relaxation behind the elastic wave. The objective of the current work was to examine lattice deformation throughout this wave profile using time-resolved, x-ray diffraction methods (2 ns resolution) for plate impact experiments to gain insight into time-dependent, elastic-plastic deformation at the microscopic level. The diffraction data were analyzed using an x-ray model coupled to an existing wave propagation code that incorporated dislocation mechanisms for elastic-plastic deformation including stress relaxation. All experimental results revealed a uniaxial lattice compression at the elastic wave front followed by a rapid transition toward isotropic unit cell compression during stress relaxation. Furthermore, comparison between the experimental data and the calculated streak records indicated that the lattice transition proceeds at a faster rate than predicted by the model. Further implications of these results are discussed.

  10. Fabrication of two-color annular hybrid wave plate for three-dimensional super-resolution microscopy

    NASA Astrophysics Data System (ADS)

    Kumagai, Hiroshi; Iketaki, Yoshinori; Jahn, Kornel; Bokor, Nador

    2016-03-01

    In super-resolution microscopy, we use fluorescence depletion, where an erase beam quenches a molecule in the S1 state generated by a pump beam, and then prevents fluorescence from the S1 state. When a tight doughnut shaped erase beam with is focused on the dyed sample together with a Gaussian pump beam, the remaining fluorescence spot in the focal plane becomes smaller than the diffraction-limited size. Applying destructive interference to the erase beam, erase beam has a minute three-dimensional dark spot surrounded by the light near the focal region. Since this spot introduces fluorescence depletion along the optical axis as in the focal plane, we can achieve three-dimensional super-resolution microscopy. However, to overcome the diffraction limit, an extremely precise optical alignment is required for projecting the focused pump beam into the dark spot of the erase beam. To resolve this technical issue, we fabricated a two-color annular hybrid wave plate (TAHWP) by combining two multi-order wave quartz plates. Although the pump and erase beams co-axially pass through the plate; the pump beam retains its original Gaussian shape, while the erase beam undergoes destructive interference. Inserting the TAHWP into a commercial scanning laser microscope, a three-dimensional spherical fluorescence spot with a volume of (~100 nm)3 can be created. Beside eliminating alignment problems and yielding a compact setup, the TAHWP makes our proposed method very suitable for commercial microscope systems. In this study, we report about detailed fabrication procedure and three-dimensional image properties given by the TAHWP.

  11. Finite-element formulations for problems of large elastic-plastic deformation

    NASA Technical Reports Server (NTRS)

    Mcmeeking, R. M.; Rice, J. R.

    1975-01-01

    An Eulerian finite element formulation is presented for problems of large elastic-plastic flow. The method is based on Hill's variational principle for incremental deformations, and is ideally suited to isotropically hardening Prandtl-Reuss materials. Further, the formulation is given in a manner which allows any conventional finite element program, for 'small strain' elastic-plastic analysis, to be simply and rigorously adapted to problems involving arbitrary amounts of deformation and arbitrary levels of stress in comparison to plastic deformation moduli. The method is applied to a necking bifurcation analysis of a bar in plane-strain tension. The paper closes with a unified general formulation of finite element equations, both Lagrangian and Eulerian, for large deformations, with arbitrary choice of the conjugate stress and strain measures. Further, a discussion is given of other proposed formulations for elastic-plastic finite element analysis at large strain, and the inadequacies of some of these are commented upon.

  12. Nanoindentation study of electrodeposited Ag thin coating: An inverse calculation of anisotropic elastic-plastic properties

    SciTech Connect

    Cheng, Guang; Sun, Xin; Wang, Yuxin; Tay, See Leng; Gao, Wei

    2017-01-01

    A new inverse method was proposed to calculate the anisotropic elastic-plastic properties (flow stress) of thin electrodeposited Ag coating utilizing nanoindentation tests, previously reported inverse method for isotropic materials and three-dimensional (3-D) finite element analyses (FEA). Indentation depth was ~4% of coating thickness (~10 μm) to avoid substrate effect and different indentation responses were observed in the longitudinal (L) and the transverse (T) directions. The estimated elastic-plastic properties were obtained in the newly developed inverse method by matching the predicted indentation responses in the L and T directions with experimental measurements considering indentation size effect (ISE). The results were validated with tensile flow curves measured from free-standing (FS) Ag film. The current method can be utilized to characterize the anisotropic elastic-plastic properties of coatings and to provide the constitutive properties for coating performance evaluations.

  13. Elastic-plastic finite-element analyses of thermally cycled single-edge wedge specimens

    NASA Technical Reports Server (NTRS)

    Kaufman, A.

    1982-01-01

    Elastic-plastic stress-strain analyses were performed for single-edge wedge alloys subjected to thermal cycling in fluidized beds. Three cases (NASA TAZ-8A alloy under one cycling condition and 316 stainless steel alloy under two cycling conditions) were analyzed by using the MARC nonlinear, finite-element computer program. Elastic solutions from MARC showed good agreement with previously reported solutions that used the NASTRAN and ISO3DQ computer programs. The NASA TAZ-8A case exhibited no plastic strains, and the elastic and elastic-plastic analyses gave identical results. Elastic-plastic analyses of the 316 stainless steel alloy showed plastic strain reversal with a shift of the mean stresses in the compressive direction. The maximum equivalent total strain ranges for these cases were 13 to 22 percent greater than that calculated from elastic analyses.

  14. Elastic-plastic finite-element analyses of thermally cycled double-edge wedge specimens

    NASA Technical Reports Server (NTRS)

    Kaufman, A.; Hunt, L. E.

    1982-01-01

    Elastic-plastic stress-strain analyses were performed for double-edge wedge specimens subjected to thermal cycling in fluidized beds at 316 and 1088 C. Four cases involving different nickel-base alloys (IN 100, Mar M-200, NASA TAZ-8A, and Rene 80) were analyzed by using the MARC nonlinear, finite element computer program. Elastic solutions from MARC showed good agreement with previously reported solutions obtained by using the NASTRAN and ISO3DQ computer programs. Equivalent total strain ranges at the critical locations calculated by elastic analyses agreed within 3 percent with those calculated from elastic-plastic analyses. The elastic analyses always resulted in compressive mean stresses at the critical locations. However, elastic-plastic analyses showed tensile mean stresses for two of the four alloys and an increase in the compressive mean stress for the highest plastic strain case.

  15. Implementation of a trapezoidal ring element in NASTRAN for elastic-plastic analysis

    NASA Technical Reports Server (NTRS)

    Chen, P. C. T.; Ohara, G. P.

    1980-01-01

    The explicit expressions for an elastic-plastic trapezoidal ring element are presented and implemented in NASTRAN computer program. The material is assumed to obey the von Mises' yield criterion, isotropic hardening rule and the Prandtl-Reuss flow relations. For the purpose of demonstration, two elastic-plastic problems are solved and compared with previous results. The first is a plane-strain tube under uniform internal pressure and the second, a finite-length tube loaded over part of its inner surface. A very good agreement was found in both test problems.

  16. An Elastic Plastic Contact Model with Strain Hardening for the LAMMPS Granular Package

    SciTech Connect

    Kuhr, Bryan; Brake, Matthew Robert; Lechman, Jeremy B.

    2015-03-01

    The following details the implementation of an analytical elastic plastic contact model with strain hardening for normal im pacts into the LAMMPS granular package. The model assumes that, upon impact, the co llision has a period of elastic loading followed by a period of mixed elastic plas tic loading, with contributions to each mechanism estimated by a hyperbolic seca nt weight function. This function is implemented in the LAMMPS source code as the pair style gran/ep/history. Preliminary tests, simulating the pouring of pure nickel spheres, showed the elastic/plastic model took 1.66x as long as similar runs using gran/hertz/history.

  17. Thermo-Elastic Finite Element Analyses of Annular Nuclear Fuels

    NASA Astrophysics Data System (ADS)

    Kwon, Y. D.; Kwon, S. B.; Rho, K. T.; Kim, M. S.; Song, H. J.

    In this study, we tried to examine the pros and cons of the annular type of fuel concerning mainly with the temperatures and stresses of pellet and cladding. The inner and outer gaps between pellet and cladding may play an important role on the temperature distribution and stress distribution of fuel system. Thus, we tested several inner and outer gap cases, and we evaluated the effect of gaps on fuel systems. We conducted thermo-elastic-plastic-creep analyses using an in-house thermo-elastic-plastic-creep finite element program that adopted the 'effective-stress-function' algorithm. Most analyses were conducted until the gaps disappeared; however, certain analyses lasted for 1582 days, after which the fuels were replaced. Further study on the optimal gaps sizes for annular nuclear fuel systems is still required.

  18. Large strain elastic-plastic theory and nonlinear finite element analysis based on metric transformation tensors

    NASA Astrophysics Data System (ADS)

    Brünig, M.

    The present paper is concerned with an efficient framework for a nonlinear finite element procedure for the rate-independent finite strain analysis of solids undergoing large elastic-plastic deformations. The formulation relies on the introduction of a mixed-variant metric transformation tensor which will be multiplicatively decomposed into a plastic and an elastic part. This leads to the definition of an appropriate logarithmic strain measure whose rate is shown to be additively decomposed into elastic and plastic strain rate tensors. The mixed-variant logarithmic elastic strain tensor provides a basis for the definition of a local isotropic hyperelastic stress response in the elastic-plastic solid. Additionally, the plastic material behavior is assumed to be governed by a generalized J2 yield criterion and rate-independent isochoric plastic strain rates are computed using an associated flow rule. On the numerical side, the computation of the logarithmic strain tensors is based on 1st and higher order Padé approximations. Estimates of the stress and strain histories are obtained via a highly stable and accurate explicit scalar integration procedure which employs a plastic predictor followed by an elastic corrector step. The development of a consistent elastic-plastic tangent operator as well as its implementation into a nonlinear finite element program will also be discussed. Finally, the numerical solution of finite strain elastic-plastic problems is presented to demonstrate the efficiency of the algorithm.

  19. A Displacement Pattern Matching Application in Elastic-Plastic Hybrid Stress Analysis

    DTIC Science & Technology

    1988-08-01

    the iterative solution scheme for the elastic- plastic problem is detailed. In order to simplify the following discussion, body forces are neglected...to Elasto- Plastic Problems ," in PROC. ASME CONF. ON BIEM, AMD-Vol. 11 (T. A. Cruse and F. J. Rizzo Eds.), ASME, Troy, New York, pp.47-84, 1975. 36

  20. Development of Advanced Life Prediction Tools for Elastic-Plastic Fatigue Crack Growth

    NASA Technical Reports Server (NTRS)

    Gregg, Wayne; McGill, Preston; Swanson, Greg; Wells, Doug; Throckmorton, D. A. (Technical Monitor)

    2001-01-01

    The objective of this viewgraph presentation is to develop a systematic approach to improving the fracture control process, including analytical tools, standards, guidelines, and awareness. Analytical tools specifically for elastic-plastic fracture analysis is a regime that is currently empirical for the Space Shuttle External Tank (ET) and is handled by simulated service testing of pre-cracked panels.

  1. An Elastic-Plastic Damage Model for Long-Fiber Thermoplastics

    SciTech Connect

    Nguyen, Ba Nghiep; Kunc, Vlastimil

    2009-08-11

    This article proposes an elastic-plastic damage model that combines micromechanical modeling with continuum damage mechanics to predict the stress-strain response of injection-molded long-fiber thermoplastics. The model accounts for distributions of orientation and length of elastic fibers embedded in a thermoplastic matrix whose behavior is elastic-plastic and damageable. The elastic-plastic damage behavior of the matrix is described by the modified Ramberg-Osgood relation and the three-dimensional damage model in deformation assuming isotropic hardening. Fiber/matrix debonding is accounted for using a parameter that governs the fiber/matrix interface compliance. A linear relationship between this parameter and the matrix damage variable is assumed. First, the elastic-plastic damage behavior of the reference aligned-fiber composite containing the same fiber volume fraction and length distribution as the actual composite is computed using an incremental Eshelby-Mori-Tanaka mean field approach. The incremental response of the latter is then obtained from the solution for the aligned-fiber composite by averaging over all fiber orientations. The model is validated against the experimental stress-strain results obtained for long-glass-fiber/polypropylene specimens.

  2. SMITE - A Second Order Eulerian Code for Hydrodynamic and Elastic-Plastic Problems

    DTIC Science & Technology

    1975-08-01

    et al Mathematical Applications Group, Incorporated Prepared for: Ballistic Research Laboratories August 1975 DISTRIBI,TED BY: mi] National...SMITE - A SECOND ORDER EULERIAN CODE FOR HYDRODYNAMIC AND ELASTIC-PLASTIC PROBLEMS Prepared by Mathematical Applications Group, Inc. 3...AODRcis jMathematical Applications Group, Inc. 13 Westchester Plaza IFlmsford, New York 10523 10. PROGRAM ELEMENT, PROJECT, TASK AREA t WORK

  3. Elastic-plastic-creep analysis of brazed carbon-carbon/OFHC divertor tile concepts for TPX

    SciTech Connect

    Chin, E.; Reis, E.E.

    1995-12-31

    The 7.5 MW/m{sup 2} heat flux requirements for the TPX divertor necessitate the use of high conductivity carbon-carbon (C-C) tiles that are brazed to annealed copper (OFHC) coolant tubes. Significant residual stresses are developed in the C-C tiles during the braze process due to large differences in the thermal expansion coefficients between these materials. Analyses which account for only the elastic-plastic strains developed in the OFHC tube may not accurately characterize the behavior of the tube during brazing. The elevated temperature creep behavior of the copper coolant tubes intuitively should reduce the calculated residual stresses in the C-C tiles. Two divertor tile concepts, the monoblock and the archblock, were analyzed for residual stress using 2-D finite element analysis for elastic-plastic-creep behavior of the OFHC tube during an assumed braze cooldown cycle. The results show that the inclusion of elevated temperature creep effects decrease the calculated residual stresses by only about 10% when compared to those analyses in which only elastic-plastic behavior of the OFHC is accounted for. The primary reason that creep effects at higher temperatures are not more significant is due to the low yield stress and nearly flat-top stress-strain curve of annealed OFHC. Since high temperature creep plays less of a role in the residual stress levels than previously thought, future scoping studies can be done in an elastic-plastic analysis with confidence that the stresses will be within approximately 10% of an elastic-plastic-creep analysis.

  4. The impact force acting on a flat plate exposed normally to a rarefied plasma plume issuing from an annular or circular nozzle

    NASA Astrophysics Data System (ADS)

    Chen, Xi

    2010-08-01

    With the indirect thrust measurement of electric thrusters working at a low vacuum chamber pressure as the research background, this paper analyses the impact force acting on a flat plate exposed normally to a rarefied plasma plume issuing from a thruster with an annular or circular exit section for the free-molecule flow regime (at large Knudsen numbers). The constraint relation proposed by Cai and Boyd (2007 J. Spacecr. Rockets 44 619, 1326) about the velocity components of gas particles leaving a location on the nozzle exit section and arriving at a given spatial point outside the nozzle has been employed here to derive the analytical expressions for calculating the impact force. Sample calculation results show that if the flat plate is sufficiently large, the impact force acting on the flat plate calculated for the case without accounting for gas particle reflection at the plate surface agrees well with the axial momentum flux calculated at the thruster exit or the theoretical thrust force of the studied thruster, while accounting for the contribution of gas particles reflected from the plate surface to the impact force production may significantly increase the calculated impact force acting on the flat plate. For a Hall-effect thruster in which the thrust force is dominantly produced by the ions with high directional kinetic energy and the ions are not directly reflected from the plate surface, the contribution to the impact force production of atom species and of gas particles reflected from the plate surface is negligibly small and thus the measured axial impact force acting on a sufficiently large plate can well represent the thrust force of the thruster. On the other hand, if the contribution of the gas particles reflected from the plate surface to the impact force production cannot be neglected (e.g. for the electric thrusters with comparatively low thruster exit temperatures), appreciable error would appear in the indirect thrust measurement.

  5. Finite element formulations for problems of large elastic-plastic deformation

    NASA Technical Reports Server (NTRS)

    Mcmeeking, R. M.; Rice, J. R.

    1974-01-01

    An Eulerian finite element formulation is presented for problems of large elastic-plastic flow. The method is based on Hill's variational principle for incremental deformations, and is suited to isotropically hardening Prandtl-Reuss materials. The formulation is given in a manner which allows any conventional finite element program, for "small strain" elasticplastic analysis, to be simply and rigorously adapted to problems involving arbitrary amounts of deformation and arbitrary levels of stress in comparison to plastic deformation moduli. The method is applied to a necking bifurcation analysis of a bar in plane-strain tension. A unified general formulation of finite element equations, both Lagrangian and Eulerian, for large deformations, with arbitrary choice of the conjugate stress and strain measures, and a discussion is given of other proposed formulations for elastic-plastic finite element analysis at large strain.

  6. Coupled elastic-plastic thermomechanically assisted diffusion: Theory development, numerical implementation, and application

    SciTech Connect

    Weinacht, Daniel J.

    1995-12-01

    A fully coupled thermomechanical diffusion theory describing the thermal and mechanically assisted mass transport of dilute mobile constituents in an elastic solid is extended to include the effects of elastic-plastic deformation. Using the principles of modern continuum mechanics and classical plasticity theory, balance laws and constitutive equations are derived for a continuum composed of an immobile, but deformable, parent material and a dilute mobile constituent. The resulting equations are cast into a finite element formulation for incorporation into a finite element code. This code serves as a tool for modeling thermomechanically assisted phenomena in elastic-plastic solids. A number of simplified problems for which analytical solutions can be derived are used to benchmark the theory and finite element code. Potential uses of the numerical implementation of the theory are demonstrated using two problems. Specifically, tritium diffusion in a titanium alloy and hydrogen diffusion in a multiphase stainless steel are examined.

  7. On the solution of elastic-plastic static and dynamic postbuckling collapse of general structure

    NASA Technical Reports Server (NTRS)

    Padovan, J.; Tovichakchaikul, S.

    1983-01-01

    Many investigations have considered structural collapse from strictly the transient point of view. While such an approach is ideally correct, certain difficulties have to be overcome in its implementation. The present investigation is concerned with the development of self-adaptive algorithms which make it possible to conduct the analysis of both static elastic and elastic-plastic postbuckling, as well as static loading to the onset of buckling followed by subsequent dynamic postbuckling. The approach employed to solve the static portion of loading is to extend the constrained Incremental Newton-Raphson (INR) algorithm by incorporating elastic-plastic constitutive characterizations. Large deformation moderate strain theory is adopted to establish the overall strategy. Attention is given to governing field equations, aspects of algorithmic development, and numerical experiments conducted to illustrate the efficiency and stability of the developed schemes.

  8. Restrictions on dynamically propagating surfaces of strong discontinuity in elastic-plastic solids

    NASA Astrophysics Data System (ADS)

    Drugan, W. J.; Shen, Yinong

    F OR DYNAMIC three-dimensional deformations of elastic-plastic materials, we elicit conditions necessary for the existence of propagating surfaces of strong discontinuity (across which components of stress, strain or material velocity jump). This is accomplished within a small-displacement-gradient formulation of standard weak continuum-mechanical assumptions of momentum conservation and geometrical compatibility, and skeletal constitutive assumptions which permit very general elastic and plastic anisotropy including yield surface vertices and anisotropic hardening. In addition to deriving very explicit restrictions on propagating strong discontinuities in general deformations, we prove that for anti-plane strain and incompressible plane strain deformations, such strong discontinuities can exist only at elastic wave speeds in generally anisotropic elastic-ideally plastic materials unless a material's yield locus in stress space contains a linear segment. The results derived seem essential for correct and complete construction of solutions to dynamic elastic-plastic boundary-value problems.

  9. Energy dissipation associated with crack extension in an elastic-plastic material

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Crews, J. H., Jr.

    1987-01-01

    Crack extension in elastic-plastic material involves energy dissipation through the creation of new crack surfaces and additional yielding around the crack front. An analytical procedure, using a two-dimensional elastic-plastic finite element method, was developed to calculate the energy dissipation components during a quasi-static crack extension. The fracture of an isotropic compact specimen was numerically simulated using the critical crack-tip-opening-displacement (CTOD) growth criterion. Two specimen sizes were analyzed for three values of critical CTOD. Results from the analyses showed that the total energy dissipation rate consisted of three components: the crack separation energy rate, the plastic energy dissipation rate, and the residual strain energy rate. All three energy dissipation components and the total energy dissipation rate initially increased with crack extension and finally reached constant values.

  10. Damage mechanics approach to remove the constraint dependence of elastic-plastic fracture toughness

    NASA Astrophysics Data System (ADS)

    Wang, T.-J.; Kuang, Z.-B.

    1995-02-01

    It is now generally agreed that the applicability of a one-parameter J-based ductile fracture approach is limited to so-called high constraint crack geometries, and that the elastic-plastic fracture toughness J(Ic) is not a material constant but strongly specimen geometry constraint-dependent. In this paper, the constraint effect on elastic-plastic fracture toughness is investigated by use of a continuum damage mechanics approach. Based on a new local damage theory for ductile fracture (proposed by the author) which has a clear physical meaning and can describe both deformation and constraint effects on ductile fracture, a relationship is described between the conventional elastic-plastic fracture toughness, J(Ic), and crack tip constraint, characterized by crack tip stress triaxiality T. Then, a new parameter J(dc) (and associated criterion, J(d) = J(dc)) for ductile fracture is proposed. Experiments show that toughness variation with specimen geometry constraint changes can effectively be removed by use of the constraint correction procedure proposed in this paper, and that the new parameter J(dc) is a material constant independent of specimen geometry (constraint). This parameter can serve as a new parameter to differentiate the elastic-plastic fracture toughness of engineering materials, which provides a new approach for fracture assessments of structures. It is not necessary to determine which laboratory specimen matches the structural constraint; rather, any specimen geometry can be tested to measure the size-independent fracture toughness J(dc). The potential advantage is clear and the results are very encouraging.

  11. Elastic-Plastic Finite-Difference Analysis of Unidirectional Composites Subjected to Thermomechanical Cyclic Loading

    DTIC Science & Technology

    1992-12-01

    1Nb matrix was attained using a bilinear elastic -plastic model with temperature dependent elastic and plastic moduli , yield stress and coefficient of...J., "Investigation of the Thermomechanical Response of a Titanium - Aluminide /Silicon-Carbide Composite using a Unified State Variable Model and the...Analysis of MMC Subjected to Thermomechanical Fatigue", Titanium Aluminide Composites, WL-TR-91- 4020, Wright Laboratory, Wright-Patterson AFB, Ohio

  12. Elastic-plastic analysis using a triangular ring element in NASTRAN

    NASA Technical Reports Server (NTRS)

    Chen, P. C. T.

    1980-01-01

    An elastic plastic triangular ring element is implemented in NASTRAN computer program. The plane strain problem of partially plastic thick walled cylinder under internal pressure is solved and compared with the earlier finite difference solution. A very good agreement has been reached. In order to demonstrate its application to more general problems, an overloaded thread problem for the British Standard Buttress is examined. The maximum axial and principal stresses are located and their values are determined as functions of loadings.

  13. Elastic-plastic deformations of a beam with the SD-effect

    SciTech Connect

    Pavilaynen, Galina V.

    2015-03-10

    The results for the bending of a cantilever beam with the SD-effect under a concentrated load are discussed. To solve this problem, the standard Bernoulli-Euler hypotheses for beams and the Ilyushin model of perfect plasticity are used. The problem is solved analytically for structural steel A40X. The SD-effect for elastic-plastic deformations is studied. The solutions for beam made of isotropic material and material with the SD-effect are compared.

  14. Evolutions of elastic-plastic shock compression waves in different materials

    NASA Astrophysics Data System (ADS)

    Kanel, G. I.; Zaretsky, E. B.; Razorenov, S. V.; Savinykh, A. S.; Garkushin, G. V.

    2017-01-01

    In the paper, we discuss such unexpected features in the wave evolution in solids as a departure from self-similar development of the wave process which is accompanied with apparent sub-sonic wave propagation, changes of shape of elastic precursor wave as a result of variations in the material structure and the temperature, unexpected peculiarities of reflection of elastic-plastic waves from free surface, effects of internal friction at shock compression of glasses and some other effects.

  15. Deformation partitioning provides insight into elastic, plastic, and viscous contributions to bone material behavior.

    PubMed

    Ferguson, V L

    2009-08-01

    The relative contributions of elastic, plastic, and viscous material behavior are poorly described by the separate extraction and analysis of the plane strain modulus, E('), the contact hardness, H(c) (a hybrid parameter encompassing both elastic and plastic behavior), and various viscoelastic material constants. A multiple element mechanical model enables the partitioning of a single indentation response into its fundamental elastic, plastic, and viscous deformation components. The objective of this study was to apply deformation partitioning to explore the role of hydration, tissue type, and degree of mineralization in bone and calcified cartilage. Wet, ethanol-dehydrated, and PMMA-embedded equine cortical bone samples and PMMA-embedded human femoral head tissues were analyzed for contributions of elastic, plastic and viscous deformation to the overall nanoindentation response at each site. While the alteration of hydration state had little effect on any measure of deformation, unembedded tissues demonstrated significantly greater measures of resistance to plastic deformation than PMMA-embedded tissues. The PMMA appeared to mechanically stabilize the tissues and prevent extensive permanent deformation within the bone material. Increasing mineral volume fraction correlated with positive changes in E('), H(c), and resistance to plastic deformation, H; however, the partitioned deformation components were generally unaffected by mineralization. The contribution of viscous deformation was minimal and may only play a significant role in poorly mineralized tissues. Deformation partitioning enables a detailed interpretation of the elastic, plastic, and viscous contributions to the nanomechanical behavior of mineralized tissues that is not possible when examining modulus and contact hardness alone. Varying experimental or biological factors, such as hydration or mineralization level, enables the understanding of potential mechanisms for specific mechanical behavior

  16. Solution of elastic-plastic stress analysis problems by the p-version of the finite element method

    NASA Astrophysics Data System (ADS)

    Szabo, Barna A.; Actis, Ricardo L.; Holzer, Stefan M.

    1993-11-01

    The solution of small strain elastic-plastic stress analysis problems by the p-version of the finite element method is discussed. The formulation is based on the deformation theory of plasticity and the displacement method. Practical realization of controlling discretization errors for elastic-plastic problems is the main focus. Numerical examples which include comparisons between the deformation and incremental theories of plasticity under tight control of discretization errors are presented.

  17. Solution of elastic-plastic stress analysis problems by the p-version of the finite element method

    NASA Technical Reports Server (NTRS)

    Szabo, Barna A.; Actis, Ricardo L.; Holzer, Stefan M.

    1993-01-01

    The solution of small strain elastic-plastic stress analysis problems by the p-version of the finite element method is discussed. The formulation is based on the deformation theory of plasticity and the displacement method. Practical realization of controlling discretization errors for elastic-plastic problems is the main focus. Numerical examples which include comparisons between the deformation and incremental theories of plasticity under tight control of discretization errors are presented.

  18. Elastic-Plastic J-Integral Solutions or Surface Cracks in Tension Using an Interpolation Methodology. Appendix C -- Finite Element Models Solution Database File, Appendix D -- Benchmark Finite Element Models Solution Database File

    NASA Technical Reports Server (NTRS)

    Allen, Phillip A.; Wells, Douglas N.

    2013-01-01

    No closed form solutions exist for the elastic-plastic J-integral for surface cracks due to the nonlinear, three-dimensional nature of the problem. Traditionally, each surface crack must be analyzed with a unique and time-consuming nonlinear finite element analysis. To overcome this shortcoming, the authors have developed and analyzed an array of 600 3D nonlinear finite element models for surface cracks in flat plates under tension loading. The solution space covers a wide range of crack shapes and depths (shape: 0.2 less than or equal to a/c less than or equal to 1, depth: 0.2 less than or equal to a/B less than or equal to 0.8) and material flow properties (elastic modulus-to-yield ratio: 100 less than or equal to E/ys less than or equal to 1,000, and hardening: 3 less than or equal to n less than or equal to 20). The authors have developed a methodology for interpolating between the goemetric and material property variables that allows the user to reliably evaluate the full elastic-plastic J-integral and force versus crack mouth opening displacement solution; thus, a solution can be obtained very rapidly by users without elastic-plastic fracture mechanics modeling experience. Complete solutions for the 600 models and 25 additional benchmark models are provided in tabular format.

  19. Finite Element Prediction of Sheet Forming Defects Using Elastic-Plastic, Damage and Localization Models

    NASA Astrophysics Data System (ADS)

    Haddag, Badis; Abed-Meraim, Farid; Balan, Tudor

    2007-05-01

    In this work, an advanced anisotropic elastic-plasticity model is combined with a damage model and a strain localization criterion in the aim to describe accurately the mechanical behavior of sheet metals. Large strain, fully three-dimensional, implicit time integration algorithms are developed for this model and implemented in the finite element code Abaqus. The resulting code is used to predict the strain localization limits as well as the springback after forming of sheet steels. The impact of strain-path dependent hardening models on the limit strains and on the amount of springback is addressed.

  20. Elastic-plastic analysis of a propagating crack under cyclic loading

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Armen, H., Jr.

    1974-01-01

    Development and application of a two-dimensional finite-element analysis to predict crack-closure and crack-opening stresses during specified histories of cyclic loading. An existing finite-element computer program which accounts for elastic-plastic material behavior under cyclic loading was modified to account for changing boundary conditions - crack growth and intermittent contact of crack surfaces. This program was subsequently used to study the crack-closure behavior under constant-amplitude and simple block-program loading.

  1. Dynamic Response in an Elastic-Plastic Projectile Due to Normal Impact

    DTIC Science & Technology

    1985-06-01

    A^’Avm^l ™A/679o/ TECHNICAL REPORT ARLCB-TR-8501 9 DYNAMIC RESPONSE IN AN ELASTIC-PLASTIC PROJECTILE DUE TO NORMAL IMPACT P . C. T. CHEN J. E...PROJECTILE DUE TO NORMAL IMPACT 5. TYPE OF REPORT 4 PERIOD COVERED Final S. PERFORMING ORG. REPORT NUMBER 7. AUTHORfa; P . C. T. Chen, J...the following material data will be used: E = 208 GPa, p = 0.783 g/cc, v = 0.293 ay = 1.3 GPa, Ep = 4 GPa, CD 1 Cristescu, N., Dynamic

  2. Effects of acceleration rate on Rayleigh-Taylor instability in elastic-plastic materials

    NASA Astrophysics Data System (ADS)

    Banerjee, Arindam; Polavarapu, Rinosh

    2016-11-01

    The effect of acceleration rate in the elastic-plastic transition stage of Rayleigh-Taylor instability in an accelerated non-Newtonian material is investigated experimentally using a rotating wheel experiment. A non-Newtonian material (mayonnaise) was accelerated at different rates by varying the angular acceleration of a rotating wheel and growth patterns of single mode perturbations with different combinations of amplitude and wavelength were analyzed. Experiments were run at two different acceleration rates to compare with experiments presented in prior years at APS DFD meetings and the peak amplitude responses are captured using a high-speed camera. Similar to the instability acceleration, the elastic-plastic transition acceleration is found to be increasing with increase in acceleration rate for a given amplitude and wavelength. The experimental results will be compared to various analytical strength models and prior experimental studies using Newtonian fluids. Authors acknowledge funding support from Los Alamos National Lab subcontract(370333) and DOE-SSAA Grant (DE-NA0001975).

  3. Elastic-Plastic Strain Acceptance Criteria for Structures Subject to Rapidly Applied Transient Dynamic Loading

    SciTech Connect

    W.R. Solonick

    2003-04-01

    Rapidly applied transient dynamic loads produce stresses and deflections in structures that typically exceed those from static loading conditions. Previous acceptance criteria for structures designed for rapidly applied transient dynamic loading limited stresses to those determined from elastic analysis. Different stress limits were established for different grades of structure depending upon the amount of permanent set considered acceptable. Structure allowed to sustain very limited permanent set is designed to stress limits not significantly greater than yield stress. Greater permanent set in structure under rapidly applied transient dynamic loading conditions is permitted by establishing stress limits that are significantly greater than yield stress but still provide adequate safety margin (with respect to failure). This paper presents a strain-based elastic-plastic (i.e., inelastic) analysis criterion developed as an alternative to the more conservative stress-based elastic analysis stress criterion for structures subjected to rapidly applied transient dynamic loading. The strain limits established are based on material ductility considerations only and are set as a fraction of the strain at ultimate stress obtained from an engineering stress/strain curve of the material. Strains limits are categorized by type as membrane or surface and by region as general, local , or concentrated. The application of the elastic-plastic criterion provides a more accurate, less conservative design/analysis basis for structures than that used in elastic stress-based analysis criteria, while still providing adequate safety margins.

  4. Analytical modeling of elastic-plastic wave behavior near grain boundaries in crystalline materials

    SciTech Connect

    Loomis, Eric; Greenfield, Scott; Luo, Shengnian; Swift, Damian; Peralta, Pedro

    2009-01-01

    It is well known that changes in material properties across an interface will produce differences in the behavior of reflected and transmitted waves. This is seen frequently in planar impact experiments, and to a lesser extent, oblique impacts. In anisotropic elastic materials, wave behavior as a function of direction is usually accomplished with the aid of velocity surfaces, a graphical method for predicting wave scattering configurations. They have expanded this method to account for inelastic deformation due to crystal plasticity. The set of derived equations could not be put into a characteristic form, but instead led to an implicit problem. to overcome this difficulty an algorithm was developed to search the parameters space defined by a wave normal vector, particle velocity vector, and a wave speed. A solution was said to exist when a set from this parameter space satisfied the governing vector equation. Using this technique they can predict the anisotropic elastic-plastic velocity surfaces and grain boundary scattering configuration for crystalline materials undergoing deformation by slip. Specifically, they have calculated the configuration of scattered elastic-plastic waves in anisotropic NiAl for an incident compressional wave propagating along a <111> direction and contacting a 45 degree inclined grain boundary and found that large amplitude transmitted waves exist owing to the fact that the wave surface geometry forces it to propagate near the zero Schmid factor direction <100>.

  5. Development of a Practical Methodology for Elastic-Plastic and Fully Plastic Fatigue Crack Growth

    NASA Technical Reports Server (NTRS)

    McClung, R. C.; Chell, G. G.; Lee, Y. -D.; Russell, D. A.; Orient, G. E.

    1999-01-01

    A practical engineering methodology has been developed to analyze and predict fatigue crack growth rates under elastic-plastic and fully plastic conditions. The methodology employs the closure-corrected effective range of the J-integral, delta J(sub eff) as the governing parameter. The methodology contains original and literature J and delta J solutions for specific geometries, along with general methods for estimating J for other geometries and other loading conditions, including combined mechanical loading and combined primary and secondary loading. The methodology also contains specific practical algorithms that translate a J solution into a prediction of fatigue crack growth rate or life, including methods for determining crack opening levels, crack instability conditions, and material properties. A critical core subset of the J solutions and the practical algorithms has been implemented into independent elastic-plastic NASGRO modules. All components of the entire methodology, including the NASGRO modules, have been verified through analysis and experiment, and limits of applicability have been identified.

  6. Elastic-plastic strain acceptance criterion for structures subject to rapidly applied transient dynamic loading

    SciTech Connect

    Solonick, W.

    1996-11-01

    Rapidly applied transient dynamic loads produce stresses and deflections in structures that typically exceed those from static loading conditions. Previous acceptance criteria for structures designed for rapidly applied transient dynamic loading limited stresses to those determined from elastic analysis. Different stress limits were established for different grades of structure depending upon the amount of permanent set considered acceptable. Structure allowed to sustain very limited permanent set is designed to stress limits not significantly greater than yield stress. Greater permanent set in structure under rapidly applied transient dynamic loading conditions is permitted by establishing stress limits that are significantly greater than yield stress but still provide adequate safety margin (with respect to failure). This paper presents a strain-based elastic-plastic (i.e., inelastic) analysis criterion developed as an alternative to the more conservative stress-based elastic analysis stress criterion for structures subjected to rapidly applied transient dynamic loading. The strain limits established are based on a fraction of the strain at ultimate stress obtained from an engineering stress/strain curve of the material. Strains limits are categorized by type as membrane or surface and by region as general, local, or concentrated. The application of the elastic-plastic criterion provides a more accurate, less conservative design/analysis basis for structures than that used in elastic stress-based analysis criteria, while still providing adequate safety margins.

  7. Development of a Practical Methodology for Elastic-Plastic and Fully Plastic Fatigue Crack Growth

    NASA Technical Reports Server (NTRS)

    McClung, R. C.; Chell, G. G.; Lee, Y.-D.; Russell, D. A.; Orient, G. E.

    1999-01-01

    A practical engineering methodology has been developed to analyze and predict fatigue crack growth rates under elastic-plastic and fully plastic conditions. The methodology employs the closure-corrected effective range of the J-integral, (Delta)J(sub eff), as the governing parameter. The methodology contains original and literature J and (Delta)J solutions for specific geometries, along with general methods for estimating J for other geometries and other loading conditions, including combined mechanical loading and combined primary and secondary loading. The methodology also contains specific practical algorithms that translate a J solution into a prediction of fatigue crack growth rate or life, including methods for determining crack opening levels, crack instability conditions, and material properties. A critical core subset of the J solutions and the practical algorithms has been implemented into independent elastic-plastic NASGRO modules. All components of the entire methodology, including the NASGRO modules, have been verified through analysis and experiment, and limits of applicability have been identified.

  8. An Elastic-Plastic and Strength Prediction Model for Injection-Molded Long-Fiber Thermoplastics

    SciTech Connect

    Nguyen, Ba Nghiep; Kunc, Vlastimil; Phelps, Jay; Tucker III, Charles L.; Bapanapalli, Satish K.

    2008-09-01

    This paper applies a recently developed model to predict the elastic-plastic stress/strain response and strength of injection-molded long-fiber thermoplastics (LFTs). The model combines a micro-macro constitutive modeling approach with experimental characterization and modeling of the composite microstructure to determine the composite stress/strain response and strength. Specifically, it accounts for elastic fibers embedded in a thermoplastic resin that exhibits the elastic-plastic behavior obeying the Ramberg-Osgood relation and J-2 deformation theory of plasticity. It also accounts for fiber length, orientation and volume fraction distributions in the composite formed by the injection-molding process. Injection-molded-long-glass-fiber/polypropylene (PP) specimens were prepared for mechanical characterization and testing. Fiber length, orientation, and volume fraction distributions were then measured at some selected locations for use in the computation. Fiber orientations in these specimens were also predicted using an anisotropic rotary diffusion model developed for LFTs. The stress-strain response of the as-formed composite was computed by an incremental procedure that uses the Eshelby’s equivalent inclusion method, the Mori-Tanaka assumption and a fiber orientation averaging technique. The model has been validated against the experimental stress-strain results obtained for these long-glass-fiber/PP specimens.

  9. Elastic-plastic characterization of a cast stainless steep pipe elbow material

    SciTech Connect

    Joyce, J.A.; Hackett, E.M.; Roe, C.

    1992-01-01

    Tests conducted in Japan as part of the High Level Vibration Test (HLVT) program for reactor piping systems revealed fatigue crack growth in a cast stainless steel pipe elbow. The material tested was equivalent to ASME SA-351CF8M. The David Taylor Research Center (DTRC) was tasked to developed the appropriate material property data to characterize cyclic deformation, cyclic elastic-plastic crack growth and ductile tearing resistance in the pipe elbow material. It was found that the cast stainless steel was very resistant to ductile crack extension. J-R curves essentially followed a blunting behavior to very high J levels. Low cycle fatigue crack growth rate data obtained on this material using a cyclic J integral approach was consistent with the high cycle fatigue crack growth rate and with a standard textbook correlation equation typical for this type of material. Evaluation of crack closure effects was essential to accurately determine the crack driving force for cyclic elastic- plastic crack growth in this material. SEM examination of several of the cyclic J test fracture surfaces indicated that fatigue was the primary mode of fracture with ductile crack extension intervening only during the last few cycles of loading.

  10. Procedures for construction of anisotropic elastic plastic property closures for face-centered cubic polycrystals using first-order bounding relations

    NASA Astrophysics Data System (ADS)

    Proust, Gwénaëlle; Kalidindi, Surya R.

    2006-08-01

    Microstructure-sensitive design (MSD) is a novel mathematical framework that facilitates a rigorous consideration of the material microstructure as a continuous design variable in the engineering design enterprise [Adams, B.L., Henrie, A., Henrie, B., Lyon, M., Kalidindi, S.R., Garmestani, H., 2001. Microstructure-sensitive design of a compliant beam. J. Mech. Phys. Solids 49(8), 1639-1663; Adams, B.L., Lyon, M., Henrie, B., 2004. Microstructures by design: linear problems in elastic-plastic design. Int. J. Plasticity 20(8-9), 1577-1602; Kalidindi, S.R., Houskamp, J.R., Lyons, M., Adams, B.L., 2004. Microstructure sensitive design of an orthotropic plate subjected to tensile load. Int. J. Plasticity 20(8-9), 1561-1575]. MSD employs spectral representations of the local state distribution functions in describing the microstructure quantitatively, and these in turn enable development of invertible linkages between microstructure and effective properties using established homogenization (composite) theories. As a natural extension of the recent publications in MSD, we provide in this paper a detailed account of the methods that can be readily used by mechanical designers to construct first-order elastic-plastic property closures. The main focus in this paper is on the crystallographic texture (also called Orientation Distribution Function or ODF) as the main microstructural parameter controlling the elastic and yield properties of cubic (fcc and bcc) polycrystalline metals. The following specific advances are described in this paper: (i) derivation of rigorous first-order bounds for the off-diagonal terms of the effective elastic stiffness tensor and their incorporation in the MSD framework, (ii) delineation of the union of the property closures corresponding to both the upper and lower bound theories resulting in comprehensive first-order closures, (iii) development of generalized and readily usable expressions for effective anisotropic elastic-plastic properties

  11. Bifurcation analysis of the onset of necking in an elastic/plastic cylinder under uniaxial tension

    NASA Technical Reports Server (NTRS)

    Hutchinson, J. W.; Miles, J. P.

    1974-01-01

    The bifurcation problem governing the onset of axisymmetric necking in a circular cylindrical specimen in uniaxial tension is analysed. The specimen is made of an incompressible elastic/plastic material. One end is subject to a prescribed uniform axial displacement relative to the other and both ends are shear free. The true stress at bifurcation is greater than the stress at which the maximum load is attained by an amount which depends on (a) the radius to length ratio of the specimen, (b) the ratio of the elastic shear modulus to the tangent modulus, and (c) the derivative of the tangent modulus with respect to the stress. Bifurcation takes place immediately following attainment of the maximum load when the specimen is sufficiently slender.

  12. Straightening of a wavy strip: An elastic-plastic contact problem including snap-through

    NASA Technical Reports Server (NTRS)

    Fischer, D. F.; Rammerstorfer, F. G.

    1980-01-01

    The nonlinear behavior of a wave like deformed metal strip during the levelling process were calculated. Elastic-plastic material behavior as well as nonlinearities due to large deformations were considered. The considered problem lead to a combined stability and contact problem. It is shown that, despite the initially concentrated loading, neglecting the change of loading conditions due to altered contact domains may lead to a significant error in the evaluation of the nonlinear behavior and particularly to an underestimation of the stability limit load. The stability was examined by considering the load deflection path and the behavior of a load-dependent current stiffness parameter in combination with the determinant of the current stiffness matrix.

  13. Simplified computational methods for elastic and elastic-plastic fracture problems

    NASA Technical Reports Server (NTRS)

    Atluri, Satya N.

    1992-01-01

    An overview is given of some of the recent (1984-1991) developments in computational/analytical methods in the mechanics of fractures. Topics covered include analytical solutions for elliptical or circular cracks embedded in isotropic or transversely isotropic solids, with crack faces being subjected to arbitrary tractions; finite element or boundary element alternating methods for two or three dimensional crack problems; a 'direct stiffness' method for stiffened panels with flexible fasteners and with multiple cracks; multiple site damage near a row of fastener holes; an analysis of cracks with bonded repair patches; methods for the generation of weight functions for two and three dimensional crack problems; and domain-integral methods for elastic-plastic or inelastic crack mechanics.

  14. Large deflection elastic-plastic dynamic response of stiffened shells of revolution

    NASA Technical Reports Server (NTRS)

    Stricklin, J. A.; Haisler, W. E.; Vonriesemann, W. A.; Leick, R. D.; Hunsaker, B.; Saczalski, K. J.

    1972-01-01

    The formulation and check out porblems for a computer code DYNAPLAS, which analyzes the large deflection elastic-plastic dynamic response of stiffened shells of revolution, are presented. The formulation for special discretization is by the finite element method with finite differences being used for the evaluation of the pseudo forces due to material and geometric nonlinearities. Time integration is by the Houbolt method. The stiffeners may be due to concentrated or distributed eccentric rings and spring supports at arbitrary angles around the circumference of the elements. Check out porblems include the comparison of solutions from DYNAPLAS with experimental and other computer solutions for rings, conical and cylindrical shells and a curved panel. A hypothetical submarine including stiffeners and missile tube is studied under a combination of hydrostatic and dynamically applied asymmetrical pressure loadings.

  15. Large deflection elastic-plastic dynamic response of stiffened shells of revolution

    NASA Technical Reports Server (NTRS)

    Stricklin, J. A.; Haisler, W. E.; Von Riesemann, W. A.

    1974-01-01

    This paper presents the formulation and check-out problems for a computer code DYNAPLAS, which analyzes the large deflection elastic-plastic dynamic response of stiffened shells of revolution. The formulation for spacial discretization is by the finite element method with finite differences being used for the evaluation of the pseudo forces due to material and geometric nonlinearities. Time integration is by the Houbolt method or central differences. The stiffeners may be due to concentrated or distributed eccentric rings and spring supports at arbitrary angles around the circumference of the elements. Check-out problems include the comparison of solutions from DYNAPLAS with experimental and other computer solutions for rings and conical and cylindrical shells. A hypothetical submarine including stiffeners and missile tube is studied under a combination of hydrostatic and dynamically applied asymmetrical pressure loadings.

  16. Elastic, plastic, and creep buckling of imperfect cylinders under mechanical and thermal loading

    SciTech Connect

    Eslami, M.R.; Shariyat, M.

    1997-02-01

    Based on the concept of secant and tangent modulus, the nonlinear equilibrium and stability equations of thin cylindrical shells under axial compression, external pressure, or external fluid pressure are derived. The resulting equations are applicable to shells without length limitation as the rotations and transverse shears are included in the derivations. The reduction factors for plastic and creep buckling are then obtained. A procedure for determining secant and tangent modulus in the very general case of elastic, plastic, or creep stress in the presence of temperature gradient is proposed. Then, using Donnell`s nonlinear theory of shells, the effect of initial imperfection on the strength of the elastic shell is discussed. The foregoing results are extended to plastic and creep buckling of cylindrical shells of arbitrary length and temperature gradient. Some design curves are proposed using the obtained equations. Finally, the present results are compared with available results in the literature and the accuracy of the method is examined.

  17. Determining Pore Pressures Along a Slip Surface Within a Saturated Elastic-Plastic Porous Medium

    NASA Astrophysics Data System (ADS)

    Viesca, R. C.; Rice, J. R.; Dunham, E. M.

    2008-12-01

    Here we consider shear rupture along a slip surface in a fluid-saturated elastic-plastic porous medium, like in landslide and earthquake modeling, and assume that there are different poro-elasto-plastic response properties on the two sides of the slip surface. This different response may be because the fault bordering materials are dissimilar, or just because one side is actively yielding and the other is not, or is yielding but in a different mode. In effect, we are representing a core about a slip surface that divides two similar or contrasting materials. This representation is especially relevant in earthquake rupture dynamics. Studies of mature fault zones have noted a trend of fractured host rock extending 10--100m from the fault, with an ultracataclastic core ~100mm about or to one side of the principal slip surface (e.g., Chester and Chester, Tectonophys, 1998; Chester et al., Columbia Univ Pr, 2004). Furthermore, there is likely to exist a material contrast that may come from accumulating km of slip and a bias in accumulated damage. The local pore pressure at the slip surface influences the rupture dynamics because, through the effective stress concept, it controls the local shear strength along the fault, a feature neglected as a simplification in our preliminary poro-elasto-plastic modeling of dynamic rupture (Viesca et al., JGR, 2008). To determine pore pressures at the slip surface under locally elastic-plastic response, we must consider pore pressure discontinuities about that surface that arise in an undrained treatment of off-fault material and their amelioration within resulting thin diffusive boundary layers, such that pore pressure and fluid mass flux in the normal direction are continuous at the slip surface. Our approach builds on previous work considering the effect of contrasts in poroelastic properties on rupture propagation (Rudnicki and Rice, JGR, 2006; Dunham and Rice, JGR, 2008). Here we find expressions for the undrained pore pressure

  18. Addendum to the User Manual for NASGRO Elastic-Plastic Fracture Mechanics Software Module

    NASA Technical Reports Server (NTRS)

    Gregg, M. Wayne (Technical Monitor); Chell, Graham; Gardner, Brian

    2003-01-01

    The elastic-plastic fracture mechanics modules in NASGRO have been enhanced by the addition of of the following: new J-integral solutions based on the reference stress method and finite element solutions; the extension of the critical crack and critical load modules for cracks with two degrees of freedom that tear and failure by ductile instability; the addition of a proof test analysis module that includes safe life analysis, calculates proof loads, and determines the flaw screening 1 capability for a given proof load; the addition of a tear-fatigue module for ductile materials that simultaneously tear and extend by fatigue; and a multiple cycle proof test module for estimating service reliability following a proof test.

  19. Application of an Uncoupled Elastic-plastic-creep Constitutive Model to Metals at High Temperature

    NASA Technical Reports Server (NTRS)

    Haisler, W. E.

    1983-01-01

    A uniaxial, uncoupled constitutive model to predict the response of thermal and rate dependent elastic-plastic material behavior is presented. The model is based on an incremental classicial plasticity theory extended to account for thermal, creep, and transient temperature conditions. Revisions to he combined hardening rule of the theory allow for better representation of cyclic phenomenon including the high rate of strain hardening upon cyclic reyield and cyclic saturation. An alternative approach is taken to model the rate dependent inelastic deformation which utilizes hysteresis loops and stress relaxation test data at various temperatures. The model is evaluated and compared to experiments which involve various thermal and mechanical load histories on 5086 aluminum alloy, 304 stainless steel and Hastelloy-X.

  20. Elastic-plastic cube model for ultrasonic friction reduction via Poisson's effect.

    PubMed

    Dong, Sheng; Dapino, Marcelo J

    2014-01-01

    Ultrasonic friction reduction has been studied experimentally and theoretically. This paper presents a new elastic-plastic cube model which can be applied to various ultrasonic lubrication cases. A cube is used to represent all the contacting asperities of two surfaces. Friction force is considered as the product of the tangential contact stiffness and the deformation of the cube. Ultrasonic vibrations are projected onto three orthogonal directions, separately changing contact parameters and deformations. Hence, the overall change of friction forces. Experiments are conducted to examine ultrasonic friction reduction using different materials under normal loads that vary from 40 N to 240 N. Ultrasonic vibrations are generated both in longitudinal and vertical (out-of-plane) directions by way of the Poisson effect. The tests show up to 60% friction reduction; model simulations describe the trends observed experimentally.

  1. Elastic-plastic model identification for rock surrounding an underground excavation based on immunized genetic algorithm.

    PubMed

    Gao, Wei; Chen, Dongliang; Wang, Xu

    2016-01-01

    To compute the stability of underground engineering, a constitutive model of surrounding rock must be identified. Many constitutive models for rock mass have been proposed. In this model identification study, a generalized constitutive law for an elastic-plastic constitutive model is applied. Using the generalized constitutive law, the problem of model identification is transformed to a problem of parameter identification, which is a typical and complicated optimization. To improve the efficiency of the traditional optimization method, an immunized genetic algorithm that is proposed by the author is applied in this study. In this new algorithm, the principle of artificial immune algorithm is combined with the genetic algorithm. Therefore, the entire computation efficiency of model identification will be improved. Using this new model identification method, a numerical example and an engineering example are used to verify the computing ability of the algorithm. The results show that this new model identification algorithm can significantly improve the computation efficiency and the computation effect.

  2. The surface-forming energy release rate based fracture criterion for elastic-plastic crack propagation

    NASA Astrophysics Data System (ADS)

    Xiao, Si; Wang, He-Ling; Liu, Bin; Hwang, Keh-Chih

    2015-11-01

    The J-integral based criterion is widely used in elastic-plastic fracture mechanics. However, it is not rigorously applicable when plastic unloading appears during crack propagation. One difficulty is that the energy density with plastic unloading in the J-integral cannot be defined unambiguously. In this paper, we alternatively start from the analysis on the power balance, and propose a surface-forming energy release rate (ERR), which represents the energy available for separating the crack surfaces during the crack propagation and excludes the loading-mode-dependent plastic dissipation. Therefore the surface-forming ERR based fracture criterion has wider applicability, including elastic-plastic crack propagation problems. Several formulae are derived for calculating the surface-forming ERR. From the most concise formula, it is interesting to note that the surface-forming ERR can be computed using only the stress and deformation of the current moment, and the definition of the energy density or work density is avoided. When an infinitesimal contour is chosen, the expression can be further simplified. For any fracture behaviors, the surface-forming ERR is proven to be path-independent, and the path-independence of its constituent term, so-called Js-integral, is also investigated. The physical meanings and applicability of the proposed surface-forming ERR, traditional ERR, Js-integral and J-integral are compared and discussed. Besides, we give an interpretation of Rice paradox by comparing the cohesive fracture model and the surface-forming ERR based fracture criterion.

  3. Elastic-Plastic Thermal Stress Analysis of a High-Pressure Cryogenic Storage Tank

    NASA Technical Reports Server (NTRS)

    Barker, J. Mark; Field, Robert E. (Technical Monitor)

    2003-01-01

    The thermal stresses on a cryogenic storage tank contribute strongly to the state of stress of the tank material and its ability to withstand operational stresses. These thermal stresses also affect the growth of any surface damage that might occur in the tank walls. These stresses are particularly of concern during the initial cooldown period for a new tank placed into service, and during any subsequent thermal cycles. A previous preliminary elastic analysis showed that the thermal stress on the inner wall would reach approximately 1,000MPa (145,000 psi). This stress far exceeds the ASTM specified room temperature values for both yield (170MPa) and ultimate (485 MPa) strength for 304L stainless steel. The present analysis determines the thermal stresses using an elastic-plastic model. The commercial software application ANSYS was used to determine the transient spatial temperature profile and the associated spatial thermal stress profiles in a segment of a thick-walled vessel during a typical cooldown process. A strictly elastic analysis using standard material properties for 304L stainless steel showed that the maximum thermal stress on the inner and outer walls was approximately 960 MPa (tensile) and - 270 MPa (compressive) respectively. These values occurred early in the cooldown process, but at different times, An elastic-plastic analysis showed significantly reducing stress, as expected due to the plastic deformation of the material. The maximum stress for the inner wall was approximately 225 MPa (tensile), while the maximum stress for the outer wall was approximately - 130 MPa (compressive).

  4. Elastic-plastic deformation of molybdenum single crystals shocked along [100

    DOE PAGES

    Mandal, A.; Gupta, Y. M.

    2017-01-24

    To understand the elastic-plastic deformation response of shock-compressed molybdenum (Mo) – a body-centered cubic (BCC) metal, single crystal samples were shocked along the [100] crystallographic orientation to an elastic impact stress of 12.5 GPa. Elastic-plastic wave profiles, measured at different propagation distances ranging between ~0.23 to 2.31 mm using laser interferometry, showed a time-dependent material response. Within experimental scatter, the measured elastic wave amplitudes were nearly constant over the propagation distances examined. These data point to a large and rapid elastic wave attenuation near the impact surface, before reaching a threshold value (elastic limit) of ~3.6 GPa. Numerical simulations ofmore » the measured wave profiles, performed using a dislocation-based continuum model, suggested that {110}<111> and/or {112}<111> slip systems are operative under shock loading. In contrast to shocked metal single crystals with close-packed structures, the measured wave profiles in Mo single crystals could not be explained in terms of dislocation multiplication alone. A dislocation generation mechanism, operative for shear stresses larger than that at the elastic limit, was required to model the rapid elastic wave attenuation and to provide a good overall match to the measured wave profiles. However, the physical basis for this mechanism was not established for the high-purity single crystal samples used in this study. As a result, the numerical simulations also suggested that Mo single crystals do not work harden significantly under shock loading in contrast to the behavior observed under quasi-static loading.« less

  5. Elastic-plastic deformation of molybdenum single crystals shocked along [100

    NASA Astrophysics Data System (ADS)

    Mandal, A.; Gupta, Y. M.

    2017-01-01

    To understand the elastic-plastic deformation response of shock-compressed molybdenum (Mo) - a body-centered cubic metal, single crystal samples were shocked along the [100] crystallographic orientation to an elastic impact stress of 12.5 GPa. Elastic-plastic wave profiles, measured at different propagation distances ranging between ˜0.23 to 2.31 mm using laser interferometry, showed a time-dependent material response. Within the experimental scatter, the measured elastic wave amplitudes were nearly constant over the propagation distances examined. These data point to a large and rapid elastic wave attenuation near the impact surface, before reaching a threshold value (elastic limit) of ˜3.6 GPa. Numerical simulations of the measured wave profiles, performed using a dislocation-based continuum model, suggested that {110}⟨111⟩ and/or {112}⟨111⟩ slip systems are operative under shock loading. In contrast to shocked metal single crystals with close-packed structures, the measured wave profiles in Mo single crystals could not be explained in terms of dislocation multiplication alone. A dislocation generation mechanism, operative for shear stresses larger than that at the elastic limit, was required to model the rapid elastic wave attenuation and to provide a good overall match to the measured wave profiles. However, the physical basis for this mechanism was not established for the high-purity single crystal samples used in this study. The numerical simulations also suggested that Mo single crystals do not work harden significantly under shock loading in contrast to the behavior observed under quasi-static loading.

  6. A new subregion mesh method for the investigation of the elastic-plastic impact in flexible multibody systems

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Liu, Jin-Yang; Lu, Guang-Can

    2017-02-01

    Impact processes between flexible bodies often lead to local stress concentration and wave propagation of high frequency. Therefore, the modeling of flexible multibody systems involving impact should consider the local plastic deformation and the strict requirements of the spatial discretization. Owing to the nonlinearity of the stiffness matrix, the reduction of the element number is extremely important. For the contact-impact problem, since different regions have different requirements regarding the element size, a new subregion mesh method is proposed to reduce the number of the unnecessary elements. A dynamic model for flexible multibody systems with elastic-plastic contact impact is established based on a floating frame of reference formulation and complete Lagrange incremental nonlinear finite-element method to investigate the effect of the elastic-plastic deformation as well as spatial discretization. Experiments on the impact between two bodies are carried out to validate the correctness of the elastic-plastic model. The proposed formulation is applied to a slider-crank system with elastic-plastic impact.

  7. Annular wing

    NASA Technical Reports Server (NTRS)

    Walker, H. J. (Inventor)

    1981-01-01

    An annular wing particularly suited for use in supporting in flight an aircraft characterized by the absence of directional stabilizing surfaces is described. The wing comprises a rigid annular body of a substantially uniformly symmetrical configuration characterized by an annular positive lifting surface and cord line coincident with the segment of a line radiating along the surface of an inverted truncated cone. A decalage is established for the leading and trailing semicircular portions of the body, relative to instantaneous line of flight, and a dihedral for the laterally opposed semicircular portions of the body, relative to the line of flight. The direction of flight and climb angle or glide slope angle are established by selectively positioning the center of gravity of the wing ahead of the aerodynamic center along the radius coincident with an axis for a selected line of flight.

  8. A critical appraisal of nanoindentation with application to elastic-plastic solids and soft materials

    NASA Astrophysics Data System (ADS)

    Poon, Poh Chieh Benny

    This study examines the accuracy of the extracted elastic properties using nanoindentation. Since the conventional method to extract these properties utilizes Sneddon's elastic solution, this study first considers indentations of linearly elastic solids for direct comparison. The study proposes a criterion for a converged specimen's geometry and modifies Sneddon's equation to account for the finite tip radius and specimen compressibility effects. A composite correction factor is derived to account for the violations of the underlying assumptions behind Sneddon's derivation. This factor is a function of indentation depth, and a critical depth is derived beyond which the finite tip radius effect will be insignificant. Techniques to identify the radius of curvature of the indenter and to decouple the elastic constants for linear elastic materials are proposed. Experimental results on nanoindentation of natural latex are reported and discussed in light of the proposed modified relation and techniques.The second part of the study examines the accuracy of the extracted material properties in elastic-plastic nanoindentations. The study establishes that the accurate determination of the projected area of contact, A, is crucial. However, the conventional method to determine A is largely limited to elastic materials, hence a new electrical resistance method is proposed to measure A for elastic-plastic materials. With an accurate A, the error associated with the extracted elastic material properties is reduced by more than 50% in some cases. This error remains to be a function of the material's Poisson's ratio, which is identified to influence the amount of residual stresses at the plastic imprint.Finally, this study examines the accuracy of the extracted material properties in the nanoindentation of soft materials using an Atomic Force Microscope (AFM). The effects of cantilever stiffness, preload, and surface interaction forces are observed to influence the measurements

  9. A review of path-independent integrals in elastic-plastic fracture mechanics

    NASA Technical Reports Server (NTRS)

    Kim, Kwang S.; Orange, Thomas W.

    1988-01-01

    The objective of this paper is to review the path-independent (P-I) integrals in elastic plastic fracture mechanics which have been proposed in recent years to overcome the limitations imposed on the J-integral. The P-I integrals considered are the J-integral by Rice (1968), the thermoelastic P-I integrals by Wilson and Yu (1979) and Gurtin (1979), the J-integral by Blackburn (1972), the J(theta)-integral by Ainsworth et al. (1978), the J-integral by Kishimoto et al. (1980), and the Delta-T(p) and Delta T(p)-asterisk integrals by Alturi et al. (1982). The theoretical foundation of the P-I integrals is examined with an emphasis on whether or not the path independence is maintained in the presence of nonproportional loading and unloading in the plastic regime, thermal gradient, and material inhomogeneities. The simularities, difference, salient features, and limitations of the P-I integrals are discussed. Comments are also made with regard to the physical meaning, the possibility of experimental measurement, and computational aspects.

  10. Elastic-Plastic Constitutive Equation of WC-Co Cemented Carbides with Anisotropic Damage

    NASA Astrophysics Data System (ADS)

    Hayakawa, Kunio; Nakamura, Tamotsu; Tanaka, Shigekazu

    2007-05-01

    Elastic-plastic constitutive equation of WC-Co cemented carbides with anisotropic damage is proposed to predict a precise service life of cold forging tools. A 2nd rank symmetric tensor damage tensor is introduced in order to express the stress unilaterality; a salient difference in uniaxial behavior between tension and compression. The conventional framework of irreversible thermodynamics is used to derive the constitutive equation. The Gibbs potential is formulated as a function of stress, damage tensor, isotropic hardening variable and kinematic hardening variable. The elastic-damage constitutive equation, conjugate forces of damage, isotropic hardening and kinematic hardening variable is derived from the potential. For the kinematic hardening variable, the superposition of three kinematic hardening laws is employed in order to improve the cyclic behavior of the material. For the evolution equation of the damage tensor, the damage is assumed to progress by fracture of the Co matrix — WC particle interface and by the mechanism of fatigue, i.e. the accumulation of microscopic plastic strain in matrix and particles. By using the constitutive equations, calculation of uniaxial tensile and compressive test is performed and the results are compared with the experimental ones in the literature. Furthermore, finite element analysis on cold forward extrusion was carried out, in which the proposed constitutive equation was employed as die insert material.

  11. Elastic plastic self-consistent (EPSC) modeling of plastic deformation in fayalite olivine

    DOE PAGES

    Burnley, Pamela C

    2015-07-01

    Elastic plastic self-consistent (EPSC) simulations are used to model synchrotron X-ray diffraction observations from deformation experiments on fayalite olivine using the deformation DIA apparatus. Consistent with results from other in situ diffraction studies of monomineralic polycrystals, the results show substantial variations in stress levels among grain populations. Rather than averaging the lattice reflection stresses or choosing a single reflection to determine the macroscopic stress supported by the specimen, an EPSC simulation is used to forward model diffraction data and determine a macroscopic stress that is consistent with lattice strains of all measured diffraction lines. The EPSC simulation presented here includesmore » kink band formation among the plastic deformation mechanisms in the simulation. The inclusion of kink band formation is critical to the success of the models. This study demonstrates the importance of kink band formation as an accommodation mechanism during plastic deformation of olivine as well as the utility of using EPSC models to interpret diffraction from in situ deformation experiments.« less

  12. Elastic plastic self-consistent (EPSC) modeling of plastic deformation in fayalite olivine

    SciTech Connect

    Burnley, Pamela C

    2015-07-01

    Elastic plastic self-consistent (EPSC) simulations are used to model synchrotron X-ray diffraction observations from deformation experiments on fayalite olivine using the deformation DIA apparatus. Consistent with results from other in situ diffraction studies of monomineralic polycrystals, the results show substantial variations in stress levels among grain populations. Rather than averaging the lattice reflection stresses or choosing a single reflection to determine the macroscopic stress supported by the specimen, an EPSC simulation is used to forward model diffraction data and determine a macroscopic stress that is consistent with lattice strains of all measured diffraction lines. The EPSC simulation presented here includes kink band formation among the plastic deformation mechanisms in the simulation. The inclusion of kink band formation is critical to the success of the models. This study demonstrates the importance of kink band formation as an accommodation mechanism during plastic deformation of olivine as well as the utility of using EPSC models to interpret diffraction from in situ deformation experiments.

  13. Trust-region based return mapping algorithm for implicit integration of elastic-plastic constitutive models

    DOE PAGES

    Lester, Brian; Scherzinger, William

    2017-01-19

    Here, a new method for the solution of the non-linear equations forming the core of constitutive model integration is proposed. Specifically, the trust-region method that has been developed in the numerical optimization community is successfully modified for use in implicit integration of elastic-plastic models. Although attention here is restricted to these rate-independent formulations, the proposed approach holds substantial promise for adoption with models incorporating complex physics, multiple inelastic mechanisms, and/or multiphysics. As a first step, the non-quadratic Hosford yield surface is used as a representative case to investigate computationally challenging constitutive models. The theory and implementation are presented, discussed, andmore » compared to other common integration schemes. Multiple boundary value problems are studied and used to verify the proposed algorithm and demonstrate the capabilities of this approach over more common methodologies. Robustness and speed are then investigated and compared to existing algorithms. Through these efforts, it is shown that the utilization of a trust-region approach leads to superior performance versus a traditional closest-point projection Newton-Raphson method and comparable speed and robustness to a line search augmented scheme.« less

  14. Three-dimensional elastic-plastic finite-element analysis of fatigue crack propagation

    NASA Technical Reports Server (NTRS)

    Goglia, G. L.; Chermahini, R. G.

    1985-01-01

    Fatigue cracks are a major problem in designing structures subjected to cyclic loading. Cracks frequently occur in structures such as aircraft and spacecraft. The inspection intervals of many aircraft structures are based on crack-propagation lives. Therefore, improved prediction of propagation lives under flight-load conditions (variable-amplitude loading) are needed to provide more realistic design criteria for these structures. The main thrust was to develop a three-dimensional, nonlinear, elastic-plastic, finite element program capable of extending a crack and changing boundary conditions for the model under consideration. The finite-element model is composed of 8-noded (linear-strain) isoparametric elements. In the analysis, the material is assumed to be elastic-perfectly plastic. The cycle stress-strain curve for the material is shown Zienkiewicz's initial-stress method, von Mises's yield criterion, and Drucker's normality condition under small-strain assumptions are used to account for plasticity. The three-dimensional analysis is capable of extending the crack and changing boundary conditions under cyclic loading.

  15. A review of path-independent integrals in elastic-plastic fracture mechanics, task 4

    NASA Technical Reports Server (NTRS)

    Kim, K. S.

    1985-01-01

    The path independent (P-I) integrals in elastic plastic fracture mechanics which have been proposed in recent years to overcome the limitations imposed on the J integral are reviewed. The P-I integrals considered herein are the J integral by Rice, the thermoelastic P-I integrals by Wilson and Yu and by Gurtin, the J* integral by Blackburn, the J sub theta integral by Ainsworth et al., the J integral by Kishimoto et al., and the delta T sub p and delta T* sub p integrals by Atluri et al. The theoretical foundation of these P-I integrals is examined with emphasis on whether or not path independence is maintained in the presence of nonproportional loading and unloading in the plastic regime, thermal gradients, and material inhomogeneities. The similarities, differences, salient features, and limitations of these P-I integrals are discussed. Comments are also made with regard to the physical meaning, the possibility of experimental measurement, and computational aspects.

  16. Evolutions of elastic-plastic shock compression waves in different materials

    NASA Astrophysics Data System (ADS)

    Kanel, G. I.; Zaretsky, E. B.; Razorenov, S. V.; Savinykh, A. S.; Garkushin, G. V.

    2015-06-01

    Measurements of decay of the elastic precursor wave are used to determine the initial plastic strain rate as a function of the stress. Last years we performed large series of such kind experiments with metals and alloys at various temperatures, ceramics and glasses. In course of these measurements we observed several unexpected effects which have not got exhaustive explanations yet. In the presentation, we'll discuss a departure from self-similar development of the wave process which is accompanied with apparent sub-sonic wave propagation, changes of shape of elastic precursor wave as a result of variations in the material structure and the temperature, unexpected peculiarities of reflection of elastic-plastic waves from free surface, effects of internal friction at shock compression of glasses and some other effects. It seems the experimental data contain more information about kinetics of the time-dependent phenomena than we are able to get from their analysis now. Financial support from the Russian Science Foundation via Grant No 14-12-01127 is gratefully acknowledged.

  17. Segmented annular combustor

    DOEpatents

    Reider, Samuel B.

    1979-01-01

    An industrial gas turbine engine includes an inclined annular combustor made up of a plurality of support segments each including inner and outer walls of trapezoidally configured planar configuration extents and including side flanges thereon interconnected by means of air cooled connector bolt assemblies to form a continuous annular combustion chamber therebetween and wherein an air fuel mixing chamber is formed at one end of the support segments including means for directing and mixing fuel within a plenum and a perforated header plate for directing streams of air and fuel mixture into the combustion chamber; each of the outer and inner walls of each of the support segments having a ribbed lattice with tracks slidably supporting porous laminated replaceable panels and including pores therein for distributing combustion air into the combustion chamber while cooling the inner surface of each of the panels by transpiration cooling thereof.

  18. (In)stability of quasi-static paths of some finite dimensional smooth or elastic-plastic systems

    NASA Astrophysics Data System (ADS)

    Martins, J. A. C.; Monteiro Marques, M. D. P.; Petrov, A.; Rebrova, N. V.; Sobolev, V. A.; Coelho, I.

    2005-01-01

    In this paper we discuss some mathematical issues related to the stability of quasistatic paths of finite dimensional mechanical systems that have a smooth or an elastic-plastic behavior. The concept of stability of quasi-static paths used here is essentially a continuity property relatively to the size of the initial perturbations (as in Lyapunov stability) and to the smallness of the rate of application of the external forces (which here plays the role of the small parameter in singular perturbation problems). A related concept of attractiveness is also proposed. Sufficient conditions for attractiveness or for instability of quasi-static paths of smooth systems are presented. The Ziegler column and other examples illustrate these situations. Mathematical formulations (plus existence and uniqueness results) for dynamic and quasi-static elastic-plastic problems with linear hardening are recalled. A stability result is proved for the quasi-static evolution of these systems.

  19. Elastic-Plastic Nonlinear Response of a Space Shuttle External Tank Stringer. Part 2; Thermal and Mechanical Loadings

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Warren, Jerry E.; Elliott, Kenny B.; Song, Kyongchan; Raju, Ivatury S.

    2012-01-01

    Elastic-plastic, large-deflection nonlinear thermo-mechanical stress analyses are performed for the Space Shuttle external tank s intertank stringers. Detailed threedimensional finite element models are developed and used to investigate the stringer s elastic-plastic response for different thermal and mechanical loading events from assembly through flight. Assembly strains caused by initial installation on an intertank panel are accounted for in the analyses. Thermal loading due to tanking was determined to be the bounding loading event. The cryogenic shrinkage caused by tanking resulted in a rotation of the intertank chord flange towards the center of the intertank, which in turn loaded the intertank stringer feet. The analyses suggest that the strain levels near the first three fasteners remain sufficiently high that a failure may occur. The analyses also confirmed that the installation of radius blocks on the stringer feet ends results in an increase in the stringer capability.

  20. Prediction of the Elastic-Plastic Stress/Strain Response for Injection-Molded Long-Fiber Thermoplastics

    SciTech Connect

    Nguyen, Ba Nghiep; Bapanapalli, Satish K.; Kunc, Vlastimil; Phelps, Jay; Tucker III, Charles L.

    2009-01-26

    This paper proposes a model to predict the elastic-plastic response of injection-molded long-fiber thermoplastics (LFTs). The model accounts for elastic fibers embedded in a thermoplastic resin that exhibits the elastic-plastic behavior obeying the Ramberg-Osgood relation and J-2 deformation theory of plasticity. It also accounts for fiber length and orientation distributions in the composite formed by the injection-molding process. Fiber orientation was predicted using the anisotropic rotary diffusion model recently developed by Phelps and Tucker for LFTs. An incremental procedure using the Eshelby’s equivalent inclusion method and the Mori-Tanaka model is proposed to compute the overall stress increment resulting from an overall strain increment for an aligned fiber composite that contains the same fiber volume fraction and length distribution as the actual composite. The incremental response of the later is then obtained from the solution for the aligned fiber composite that is averaged over all possible fiber orientations using the orientation averaging method. Failure during incremental loading is predicted using the Van Hattum-Bernado model. The elastic-plastic and strength prediction model for LFTs was validated against the experimental stress-strain results obtained for long glass fiber/polypropylene specimens.

  1. How tough is bone? Application of elastic-plastic fracture mechanics to bone.

    PubMed

    Yan, Jiahau; Mecholsky, John J; Clifton, Kari B

    2007-02-01

    Bone, with a hierarchical structure that spans from the nano-scale to the macro-scale and a composite design composed of nano-sized mineral crystals embedded in an organic matrix, has been shown to have several toughening mechanisms that increases its toughness. These mechanisms can stop, slow, or deflect crack propagation and cause bone to have a moderate amount of apparent plastic deformation before fracture. In addition, bone contains a high volumetric percentage of organics and water that makes it behave nonlinearly before fracture. Many researchers used strength or critical stress intensity factor (fracture toughness) to characterize the mechanical property of bone. However, these parameters do not account for the energy spent in plastic deformation before bone fracture. To accurately describe the mechanical characteristics of bone, we applied elastic-plastic fracture mechanics to study bone's fracture toughness. The J integral, a parameter that estimates both the energies consumed in the elastic and plastic deformations, was used to quantify the total energy spent before bone fracture. Twenty cortical bone specimens were cut from the mid-diaphysis of bovine femurs. Ten of them were prepared to undergo transverse fracture and the other 10 were prepared to undergo longitudinal fracture. The specimens were prepared following the apparatus suggested in ASTM E1820 and tested in distilled water at 37 degrees C. The average J integral of the transverse-fractured specimens was found to be 6.6 kPa m, which is 187% greater than that of longitudinal-fractured specimens (2.3 kPa m). The energy spent in the plastic deformation of the longitudinal-fractured and transverse-fractured bovine specimens was found to be 3.6-4.1 times the energy spent in the elastic deformation. This study shows that the toughness of bone estimated using the J integral is much greater than the toughness measured using the critical stress intensity factor. We suggest that the J integral method is

  2. Elastic-Plastic Finite Element Analysis of Fatigue Crack Growth in Mode 1 and Mode 2 Conditions

    NASA Technical Reports Server (NTRS)

    Nakagaki, M.; Atluri, S. N.

    1978-01-01

    Presented is an alternate cost-efficient and accurate elastic-plastic finite element procedure to analyze fatigue crack closure and its effects under general spectrum loading. Both Modes 1 and 2 type cycling loadings are considered. Also presented are the results of an investigation, using the newly developed procedure, of various factors that cause crack growth acceleration or retardation and delay effects under high-to-low, low-to-high, single overload, and constant amplitude type cyclic loading in a Mode 1 situation. Further, the results of an investigation of a centercracked panel under external pure shear (Mode 2) cyclic loading, of constant amplitude, are reported.

  3. Finite deformation analysis of continuum structures with time dependent anisotropic elastic plastic material behavior (LWBR/AWBA Development Program)

    SciTech Connect

    Hutula, D.N.

    1980-03-01

    A finite element procedure is presented for finite deformation analysis of continuum structures with time-dependent anisotropic elastic-plastic material behavior. An updated Lagrangian formulation is used to describe the kinematics of deformation. Anisotropic constitutive relations are referred, at each material point, to a set of three mutually orthogonal axes which rotate as a unit with an angular velocity equal to the spin at the point. The time-history of the solution is generated by using a linear incremental procedure with residual force correction, along with an automatic time step control algorithm which chooses time step sizes to control the accuracy and numerical stability of the solution.

  4. Investigation and modeling of the elastic-plastic fracture behavior of continuous woven fabric-reinforced ceramic composites

    SciTech Connect

    Kahl, W.K.

    1997-03-01

    The paper describes a study which attempted to extrapolate meaningful elastic-plastic fracture toughness data from flexure tests of a chemical vapor-infiltrated SiC/Nicalon fiber-reinforced ceramic matrix composite. Fibers in the fabricated composites were pre-coated with pyrolytic carbon to varying thicknesses. In the tests, crack length was not measured and the study employed an estimate procedure, previously used successfully for ductile metals, to derive J-R curve information. Results are presented in normalized load vs. normalized displacements and comparative J{sub Ic} behavior as a function of fiber precoating thickness.

  5. Constrained Self-adaptive Solutions Procedures for Structure Subject to High Temperature Elastic-plastic Creep Effects

    NASA Technical Reports Server (NTRS)

    Padovan, J.; Tovichakchaikul, S.

    1983-01-01

    This paper will develop a new solution strategy which can handle elastic-plastic-creep problems in an inherently stable manner. This is achieved by introducing a new constrained time stepping algorithm which will enable the solution of creep initiated pre/postbuckling behavior where indefinite tangent stiffnesses are encountered. Due to the generality of the scheme, both monotone and cyclic loading histories can be handled. The presentation will give a thorough overview of current solution schemes and their short comings, the development of constrained time stepping algorithms as well as illustrate the results of several numerical experiments which benchmark the new procedure.

  6. Nano-scale elastic-plastic properties and indentation-induced deformation of single crystal 4H-SiC.

    PubMed

    Nawaz, A; Mao, W G; Lu, C; Shen, Y G

    2017-02-01

    The nanoscale elastic-plastic response of single crystal 4H-SiC has been investigated by nanoindentationwith a Berkovich tip. The hardness (H) and elastic modulus (E) determined in the load-independent region were 36±2GPa and 413±8GPa, respectively. The indentation size effect (ISE) of hardness within an indentation depth of 60nm was systematically analyzed by the Nix-Gao model. Pop-in events occurring at a depth of ~23nm with indentation loads of 0.60-0.65mN were confirmed to indicate the elastic-plastic transition of the crystal, on the basis of the Hertzian contact theory and Johnson's cavity model. Theoritically calculated maximum tensile strength (13.5GPa) and cleavage strength (33GPa) also affirms the deformation due to the first pop-in rather than tensile stresses. Further analyses of deformation behavior across the indent was done in 4H-SiC by a combined technique of focused ion beam and transmission electron microscope, revealing that slippage occurred in the (0001) plane after indentation.

  7. A combined parametric quadratic programming and precise integration method based dynamic analysis of elastic-plastic hardening/softening problems

    NASA Astrophysics Data System (ADS)

    Hongwu, Zhang; Xinwei, Zhang

    2002-12-01

    The objective of the paper is to develop a new algorithm for numerical solution of dynamic elastic-plastic strain hardening/softening problems. The gradient dependent model is adopted in the numerical model to overcome the result mesh-sensitivity problem in the dynamic strain softening or strain localization analysis. The equations for the dynamic elastic-plastic problems are derived in terms of the parametric variational principle, which is valid for associated, non-associated and strain softening plastic constitutive models in the finite element analysis. The precise integration method, which has been widely used for discretization in time domain of the linear problems, is introduced for the solution of dynamic nonlinear equations. The new algorithm proposed is based on the combination of the parametric quadratic programming method and the precise integration method and has all the advantages in both of the algorithms. Results of numerical examples demonstrate not only the validity, but also the advantages of the algorithm proposed for the numerical solution of nonlinear dynamic problems.

  8. Evaluation of Accuracy for 2D Elastic-Plastic Analysis by Embedded Force Doublet Model Combined with Automated Delaunay Tessellation

    NASA Astrophysics Data System (ADS)

    Ino, Takuichiro; Hasib, M. D. Abdul; Takase, Toru; Saimoto, Akihide

    2015-03-01

    An embedded force doublet (EFD) model is proposed to express the presence of permanent strain in body force method (BFM). BFM is known as a boundary type method for elastic stress analysis based on the principle of superposition. In EFD model, the permanent strain is replaced by distributed force doublets. In an actual elastic-plastic analysis, the plastic region whose shape is not clear a priori, have to be discretized into elements where the magnitude of embedded force doublets is unknown to be determined numerically. In general, the determination process of magnitude of EFD is considerably difficult due to nonlinear nature of yield criterion and plastic constitutive relations. In this study, by introducing the automated Delaunay tessellation scheme for discretizing the prospective plastic region, appreciable reduction in input data was realized. Adding to this, in order to improve the computational efficiency, influence coefficients used for determining the magnitude of EFD are stored in a database. The effectiveness of these two inventions was examined by computing the elastic-plastic problem of an infinite medium with circular hole subjected to uniform internal pressure. The numerical solution was compared with Nadai’s closed form solution and found a good agreement.

  9. Probing the Elastic-Plastic, Time-Dependant Response of Test Fasteners using Finite Element Analysis (FEA)

    SciTech Connect

    ML Renauld; H Lien

    2004-12-13

    The evolution of global and local stress/strain conditions in test fasteners under test conditions is investigated using elastic-plastic, time-dependent finite element analyses (FEA). For elastic-plastic response, tensile data from multiple specimens, material heats and test temperatures are integrated into a single, normalized flow curve from which temperature dependency is extracted. A primary creep model is calibrated with specimen- and fastener-based thermal relaxation data generated under a range of times, temperatures, stress levels and environments. These material inputs are used in analytical simulations of experimental test conditions for several types of fasteners. These fastener models are constructed with automated routines and contact conditions prescribed at all potentially mating surfaces. Thermal or mechanical room temperature pre-loading, as appropriate for a given fastener, is followed by a temperature ramp and a dwell time at constant temperature. While the amount of thermal stress relaxation is limited for the conditions modeled, local stress states are highly dependent upon geometry (thread root radius, for example), pre-loading history and thermal expansion differences between the test fastener and test fixture. Benefits of this FE approach over an elastic methodology for stress calculation will be illustrated with correlations of Stress Corrosion Cracking (SCC) initiation time and crack orientations in stress concentrations.

  10. Elastic-plastic analysis of the PVRC burst disk tests with comparison to the ASME code -- Primary stress limits

    SciTech Connect

    Jones, D.P.; Holliday, J.E.

    1999-02-01

    This paper provides a comparison between finite element analysis results and test data from the Pressure Vessel Research Council (PVRC) burst disk program. Testing sponsored by the PVRC over 20 years ago was done by pressurizing circular flat disks made from three different materials until failure by bursting. The purpose of this re-analysis is to investigate the use of finite element analysis (FEA) to assess the primary stress limits of the ASME Boiler and Pressure Vessel Code (1998) and to qualify the use of elastic-plastic (EP-FEA) for limit load calculations. The three materials tested represent the range of strength and ductility found in modern pressure vessel construction and include a low strength high ductility material, a medium strength medium ductility material, and a high strength low ductility low alloy material. Results of elastic and EP-FEA are compared to test data. Stresses from the elastic analyses are linearized for comparison of Code primary stress limits to test results. Elastic-plastic analyses are done using both best-estimate and elastic-perfectly plastic (EPP) stress-strain curves. Both large strain-large displacement (LSLD) and small strain-small displacement (SSSD) assumptions are used with the EP-FEA. Analysis results are compared to test results to evaluate the various analysis methods, models, and assumptions as applied to the bursting of thin disks.

  11. Means of manufacturing annular arrays

    DOEpatents

    Day, R.A.

    1985-10-10

    A method is described for manufacturing an annular acoustic transducer array from a plate of transducer material, which enables production of precision aligned arrays at low cost. The circular plate is sawed along at least two lines that are radial to the axis of the plate. At steps along each radial cut, the plate is rotated first in one direction and then in an opposite direction by a predetermined angle such as slightly less than 90/sup 0/. The cuts result in the forming of several largely ring-shaped lands, each largely ring-shaped land being joined to the other rings of different radii by thin portions of the plate, and each ring being cut into segments. The bridges that join different rings hold the transducer together until it can be mounted on a lens.

  12. Richtmyer-Meshkov instability for elastic-plastic solids in converging geometries

    NASA Astrophysics Data System (ADS)

    López Ortega, A.; Lombardini, M.; Barton, P. T.; Pullin, D. I.; Meiron, D. I.

    2015-03-01

    We present a detailed study of the interface instability that develops at the boundary between a shell of elastic-plastic material and a cylindrical core of confined gas during the inbound implosive motion generated by a shock-wave. The main instability in this configuration is the so-called Richtmyer-Meshkov instability that arises when the shock wave crosses the material interface. Secondary instabilities, such as Rayleigh-Taylor, due to the acceleration of the interface, and Kelvin-Helmholtz, due to slip between solid and fluid, arise as the motion progresses. The reflection of the shock wave at the axis and its second interaction with the material interface as the shock moves outbound, commonly known as re-shock, results in a second Richtmyer-Meshkov instability that potentially increases the growth rate of interface perturbations, resulting in the formation of a mixing zone typical of fluid-fluid configurations and the loss of the initial perturbation length scales. The study of this problem is of interest for achieving stable inertial confinement fusion reactions but its complexity and the material conditions produced by the implosion close to the axis prove to be challenging for both experimental and numerical approaches. In this paper, we attempt to circumvent some of the difficulties associated with a classical numerical treatment of this problem, such as element inversion in Lagrangian methods or failure to maintain the relationship between the determinant of the deformation tensor and the density in Eulerian approaches, and to provide a description of the different events that occur during the motion of the interface. For this purpose, a multi-material numerical solver for evolving in time the equations of motion for solid and fluid media in an Eulerian formalism has been implemented in a Cartesian grid. Equations of state are derived using thermodynamically consistent hyperelastic relations between internal energy and stresses. The resolution required

  13. Elastic?plastic FEM analysis on low cycle fatigue behavior for alumina dispersion-strengthened copper/stainless steel joint

    NASA Astrophysics Data System (ADS)

    Nishi, H.

    2004-08-01

    Since the first wall and divertor components of fusion power plants are subjected to severe stresses caused by thermal expansion and electromagnetic forces, it is important to evaluate the fatigue strength of joints. In this study, elastic-plastic finite element analysis was performed for low cycle fatigue behavior of stainless steel/alumina dispersion-strengthened copper (DS Cu) joint in order to investigate the fatigue life and the fracture behavior of the joint. The results showed that a strain concentration occurred at the interface during low cycle fatigue, but as the strain range increased the strain concentration shifted away from the interface and into the DS Cu. The fatigue life and fracture location were evaluated taking into account of the strain concentration. Predictions of the fatigue life and fracture location were consistent with those measured by the low cycle fatigue test.

  14. Three-dimensional elastic-plastic analysis of shallow cracks in single-edge-crack-tension specimens

    NASA Technical Reports Server (NTRS)

    Shivakumar, Kunigal N.; Newman, James C., Jr.

    1990-01-01

    Three dimensional, elastic-plastic, finite element results are presented for single-edge crack-tension specimens with several shallow crack-length-to-width ratios (0.05 less than or equal to a/W less than or equal to 0.5). Results showed the need to model the initial yield plateau in the stress-strain behavior to accurately model deformation of the A36 steel specimens. The crack-tip-opening-displacement was found to be linearly proportional to the crack-mouth-opening displacement. A new deformation dependent plastic-eta factor equation is presented for calculating the J-integral from test load-displacement records. This equation was shown to be accurate for all crack lengths considered.

  15. Rigid-plastic and elastic-plastic finite element analysis on the clinching joint process of thin metal sheets

    NASA Astrophysics Data System (ADS)

    Jayasekara, Vishara; Min, Kyung Ho; Noh, Jeong Hoon; Kim, Min Tae; Seo, Jeong Min; Lee, Ho Yong; Hwang, Beong Bok

    2010-04-01

    This article describes the joining of thin metal sheets by a single stroke clinching process. Elastic-plastic and rigid-plastic finite element analysis were applied by employing Coulomb friction and constant shear friction in order to investigate the behavior of the clinch joint formation process. Four process variables, such as die diameter, die depth, groove width, and groove corner radius were selected to investigate the parametric effect on the clinch joint. The strength of clinch joints were evaluated by examining the separation strengths, such as peel strength and tensile shear strength, respectively. A failure diagram was constructed that summarizes the analysis results. The simulation results showed that die diameter and depth were the most decisive parameters for controlling the quality of the clinch joint, while the bottom's thickness was the most important evaluation parameter to determine the separation strengths.

  16. AFWL (Air Force Weapons Laboratory) vectorized EPHULL (Elastic/Plastic HULL) code user manual. Final report, March 1985-May 1986

    SciTech Connect

    Bell, R.L.

    1988-02-01

    This report was prepared as a user manual for implementing the vectorized Elastic/Plastic HULL (EPHULL) Composite HULL code and SAIL code on the AFWL CRAY computer. Major programs required to operate the Composite HULL code and supporting programs and files on the AFWL CRAY are described. The Composite HULL code developed through this work is usable over the range of problems formerly accommodated by either Vector HULL or EPHULL, and is simpler and less time-consuming for new users to learn. The Cylinder In Situ Test (CIST) Equation of State (EOS) in this manual was rewritten from the California Research Arbitrary Lagrangian-Eulerian (CRALE) code for use with a variety of soils.

  17. Elastic-Plastic Nonlinear Response of a Space Shuttle External Tank Stringer. Part 1; Stringer-Feet Imperfections and Assembly

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Song, Kyongchan; Elliott, Kenny B.; Raju, Ivatury S.; Warren, Jerry E.

    2012-01-01

    Elastic-plastic, large-deflection nonlinear stress analyses are performed for the external hat-shaped stringers (or stiffeners) on the intertank portion of the Space Shuttle s external tank. These stringers are subjected to assembly strains when the stringers are initially installed on an intertank panel. Four different stringer-feet configurations including the baseline flat-feet, the heels-up, the diving-board, and the toes-up configurations are considered. The assembly procedure is analytically simulated for each of these stringer configurations. The location, size, and amplitude of the strain field associated with the stringer assembly are sensitive to the assumed geometry and assembly procedure. The von Mises stress distributions from these simulations indicate that localized plasticity will develop around the first eight fasteners for each stringer-feet configuration examined. However, only the toes-up configuration resulted in high assembly hoop strains.

  18. On the Relationship Between J-Integral and Crack Tip Opening Displacement in Elastic-Plastic Fracture Mechanics

    NASA Astrophysics Data System (ADS)

    Pereira, Marcos Venicius; Darwish, Fathi Aref; Campelo, Eduardo

    2013-08-01

    The relationship between J-integral ( J) and crack tip opening displacement (δ), considered fundamental for elastic-plastic fracture mechanics, can be established based on prior knowledge of the constraint factor m, which depends on the work hardening exponent and the material's yield strain. Both J and δ were simultaneously determined at fracture initiation and at different points along the resistance curves for a number of structural steels. The corresponding m values were calculated and then compared with the predictions made by different models. The results indicate that the experimentally determined m values are in fair agreement with the predictions made by ASTM over the whole range of flow parameters considered in this study. The Hutchinson-Rice-Rosengren singularity-based predictions result in overestimating m for steels considered to be of low strength and high strain hardening exponent. Predictions made by other models are predominantly higher in comparison with their experimental counterparts.

  19. Three-dimensional elastic-plastic analysis of shallow cracks in single-edge-crack-tension specimens

    NASA Technical Reports Server (NTRS)

    Shivakumar, Kunigal N.; Newman, James C., Jr.

    1990-01-01

    Three-dimensional, elastic-plastic, finite-element results are presented for single-edge crack-tension specimens with several shallow crack-length-to-width ratios (0.05 less than or equal to a/W less than or equal to 0.5). Results showed the need to model the initial yield plateau in the stress-strain behavior to accurately model deformation of the A36 steel specimens. The crack-tip-opening-displacement was found to be linearly proportional to the crack-mouth-opening displacement. A new deformation dependent plastic-eta factor equation is presented for calculating the J-integral from test load-displacement records. This equation was shown to be accurate for all crack lengths considered.

  20. Contact mechanics analysis of oscillatory sliding of a rigid fractal surface against an elastic-plastic half-space

    NASA Astrophysics Data System (ADS)

    Song, Z.; Komvopoulos, K.

    2014-10-01

    Oscillatory sliding contact between a rigid rough surface and an elastic-plastic half-space is examined in the context of numerical simulations. Stick-slip at asperity contacts is included in the analysis in the form of a modified Mindlin theory. Two friction force components are considered - adhesion (depending on the real area of contact, shear strength and interfacial adhesive strength) and plowing (accounting for the deformation resistance of the plastically deformed half-space). Multi-scale surface roughness is described by fractal geometry, whereas the interfacial adhesive strength is represented by a floating parameter that varies between zero (adhesionless surfaces) and one (perfectly adhered surfaces). The effects of surface roughness, apparent contact pressure, oscillation amplitude, elastic-plastic properties of the half-space and interfacial adhesion on contact deformation are interpreted in the light of numerical results of the energy dissipation, maximum tangential (friction) force and slip index. A non-monotonic trend of the energy dissipation and maximum tangential force is observed with increasing surface roughness, which is explained in terms of the evolution of the elastic and plastic fractions of truncated asperity contact areas. The decrease of energy dissipation with increasing apparent contact pressure is attributed to the increase of the elastic contact area fraction and the decrease of the slip index. For a half-space with fixed yield strength, a lower elastic modulus produces a higher tangential force, whereas a higher elastic modulus yields a higher slip index. These two competing effects lead to a non-monotonic dependence of the energy dissipation on the elastic modulus-to-yield strength ratio of the half-space. The effect of interfacial adhesion on the oscillatory contact behaviour is more pronounced for smoother surfaces because the majority of asperity contacts deform elastically and adhesion is the dominant friction mechanism. For

  1. Dynamics of shock waves and cavitation bubbles in bilinear elastic-plastic media, and the implications to short-pulsed laser surgery

    NASA Astrophysics Data System (ADS)

    Brujan, E.-A.

    2005-01-01

    The dynamics of shock waves and cavitation bubbles generated by short laser pulses in water and elastic-plastic media were investigated theoretically in order to get a better understanding of their role in short-pulsed laser surgery. Numerical simulations were performed using a spherical model of bubble dynamics which include the elastic-plastic behaviour of the medium surrounding the bubble, compressibility, viscosity, density and surface tension. Breakdown in water produces a monopolar acoustic signal characterized by a compressive wave. Breakdown in an elastic-plastic medium produces a bipolar acoustic signal, with a leading positive compression wave and a trailing negative tensile wave. The calculations revealed that consideration of the tissue elasticity is essential to describe the bipolar shape of the shock wave emitted during optical breakdown. The elastic-plastic response of the medium surrounding the bubble leads to a significant decrease of the maximum size of the cavitation bubble and pressure amplitude of the shock wave emitted during bubble collapse, and shortening of the oscillation period of the bubble. The results are discussed with respect to collateral damage in short-pulsed laser surgery.

  2. Calculation of elastic-plastic wave propagation on the connection machine

    NASA Astrophysics Data System (ADS)

    Olson, Mark A.; Kimsey, Kent D.

    1992-06-01

    This report describes the parallel algorithms and data structures for implementing a 2-D multimaterial kernel of the wave-propagation code, HULL, on a Connection Machine. Computational performance is illustrated for a rod-plate impact problem with material strength described through an elastic-perfectly plastic formulation. The hydrodynamic behavior of materials is modeled via the gamma law and Mie-Gruneisen equations of state.

  3. Elastic-Plastic Fracture Mechanics Analysis of Critical Flaw Size in ARES I-X Flange-to-Skin Welds

    NASA Technical Reports Server (NTRS)

    Chell, G. Graham; Hudak, Stephen J., Jr.

    2008-01-01

    NASA's Ares 1 Upper Stage Simulator (USS) is being fabricated from welded A516 steel. In order to insure the structural integrity of these welds it is of interest to calculate the critical initial flaw size (CIFS) to establish rational inspection requirements. The CIFS is in turn dependent on the critical final flaw size (CFS), as well as fatigue flaw growth resulting from transportation, handling and service-induced loading. These calculations were made using linear elastic fracture mechanics (LEFM), which are thought to be conservative because they are based on a lower bound, so called elastic, fracture toughness determined from tests that displayed significant plasticity. Nevertheless, there was still concern that the yield magnitude stresses generated in the flange-to-skin weld by the combination of axial stresses due to axial forces, fit-up stresses, and weld residual stresses, could give rise to significant flaw-tip plasticity, which might render the LEFM results to be non-conservative. The objective of the present study was to employ Elastic Plastic Fracture Mechanics (EPFM) to determine CFS values, and then compare these values to CFS values evaluated using LEFM. CFS values were calculated for twelve cases involving surface and embedded flaws, EPFM analyses with and without plastic shakedown of the stresses, LEFM analyses, and various welding residual stress distributions. For the cases examined, the computed CFS values based on elastic analyses were the smallest in all instances where the failures were predicted to be controlled by the fracture toughness. However, in certain cases, the CFS values predicted by the elastic-plastic analyses were smaller than those predicted by the elastic analyses; in these cases the failure criteria were determined by a breakdown in stress intensity factor validity limits for deep flaws (a greater than 0.90t), rather than by the fracture toughness. Plastic relaxation of stresses accompanying shakedown always increases the

  4. An elastic-plastic iceberg material model considering temperature gradient effects and its application to numerical study

    NASA Astrophysics Data System (ADS)

    Shi, Chu; Hu, Zhiqiang; Luo, Yu

    2016-12-01

    To simulate the FPSO-iceberg collision process more accurately, an elastic-plastic iceberg material model considering temperature gradient effects is proposed and applied. The model behaves linearly elastic until it reaches the `Tsai-Wu' yield surfaces, which are a series of concentric elliptical curves of different sizes. Decreasing temperature results in a large yield surface. Failure criteria, based on the influence of accumulated plastic strain and hydrostatic pressure, are built into the model. Based on published experimental data on the relationship between depth and temperature in icebergs, three typical iceberg temperature profiles are proposed. According to these, ice elements located at different depths have different temperatures. The model is incorporated into LS-DYNA using a user-defined subroutine and applied to a simulation of FPSO collisions with different types of iceberg. Simulated area-pressure curves are compared with design codes to validate the iceberg model. The influence of iceberg shape and temperature on the collision process is analyzed. It is indicated that FPSO structural damage not only depends on the relative strength between the iceberg and the structure, but also depends on the local shape of the iceberg.

  5. Development of methods for predicting large crack growth in elastic-plastic work-hardening materials in fully plastic conditions

    NASA Technical Reports Server (NTRS)

    Ford, Hugh; Turner, C. E.; Fenner, R. T.; Curr, R. M.; Ivankovic, A.

    1995-01-01

    The objects of the first, exploratory, stage of the project were listed as: (1) to make a detailed and critical review of the Boundary Element method as already published and with regard to elastic-plastic fracture mechanics, to assess its potential for handling present concepts in two-dimensional and three-dimensional cases. To this was subsequently added the Finite Volume method and certain aspects of the Finite Element method for comparative purposes; (2) to assess the further steps needed to apply the methods so far developed to the general field, covering a practical range of geometries, work hardening materials, and composites: to consider their application under higher temperature conditions; (3) to re-assess the present stage of development of the energy dissipation rate, crack tip opening angle and J-integral models in relation to the possibilities of producing a unified technology with the previous two items; and (4) to report on the feasibility and promise of this combined approach and, if appropriate, make recommendations for the second stage aimed at developing a generalized crack growth technology for its application to real-life problems.

  6. The load separation technique in the elastic-plastic fracture analysis of two- and three-dimensional geometries

    NASA Technical Reports Server (NTRS)

    Sharobeam, Monir H.

    1994-01-01

    Load separation is the representation of the load in the test records of geometries containing cracks as a multiplication of two separate functions: a crack geometry function and a material deformation function. Load separation is demonstrated in the test records of several two-dimensional geometries such as compact tension geometry, single edge notched bend geometry, and center cracked tension geometry and three-dimensional geometries such as semi-elliptical surface crack. The role of load separation in the evaluation of the fracture parameter J-integral and the associated factor eta for two-dimensional geometries is discussed. The paper also discusses the theoretical basis and the procedure for using load separation as a simplified yet accurate approach for plastic J evaluation in semi-elliptical surface crack which is a three-dimensional geometry. The experimental evaluation of J, and particularly J(sub pl), for three-dimensional geometries is very challenging. A few approaches have been developed in this regard and they are either complex or very approximate. The paper also presents the load separation as a mean to identify the blunting and crack growth regions in the experimental test records of precracked specimens. Finally, load separation as a methodology in elastic-plastic fracture mechanics is presented.

  7. Comparison between viscous elastic plastic behaviour of the composites reinforced with plain glass fabric and chopped strand mat

    NASA Astrophysics Data System (ADS)

    Stanciu, M. D.; Harapu, A.; Teodorescu Drăghicescu, H.; Curtu, I.; Savin, A.

    2016-08-01

    Composite structures are used mainly two types of reinforcement materials: woven glass fabric and the chopped strand mat, each contributing either to increase the resistance of the composite whole or in isotropic distribution of stresses. This paper presents a comparison of the visco-elastic characteristics of composites reinforced with glass fabric and the chopped strand mat and the breaking mode of the two types of the composite. The first type of samples contain three layers of chopped strand mat known as MAT with density of 450g/m2 and 225g/m2) and the second type is composed of four layers of woven glass fabric type RT500 (density of 500g/m2). Both specimens were cut in accordance with EN ISO 527-2 SR. Characteristic curve of the two types of specimens highlights visco-elastic-plastic behavior which largely depends on the type of reinforcement used as the matrix resin is the same in both cases (orthophthalic polyester resin). Breaking mode of those types of specimens were observed and analyzed by electronic microscope.

  8. Finite element analysis of large transient elastic-plastic deformations of simple structures, with application to the engine rotor fragment containment/deflection problem

    NASA Technical Reports Server (NTRS)

    Wu, R. W.; Witmer, E. A.

    1972-01-01

    Assumed-displacement versions of the finite-element method are developed to predict large-deformation elastic-plastic transient deformations of structures. Both the conventional and a new improved finite-element variational formulation are derived. These formulations are then developed in detail for straight-beam and curved-beam elements undergoing (1) Bernoulli-Euler-Kirchhoff or (2) Timoshenko deformation behavior, in one plane. For each of these categories, several types of assumed-displacement finite elements are developed, and transient response predictions are compared with available exact solutions for small-deflection, linear-elastic transient responses. The present finite-element predictions for large-deflection elastic-plastic transient responses are evaluated via several beam and ring examples for which experimental measurements of transient strains and large transient deformations and independent finite-difference predictions are available.

  9. Development of a plasticity band near the tip of a crack of arbitrary orientation in a semiinfinite thin plate

    NASA Astrophysics Data System (ADS)

    Savruk, Mikhailo P.; Danilovich, A. M.

    1992-06-01

    The elastic-plastic equilibrium of a thin semiinfinite plate with a rectilinear crack of arbitrary orientation is analyzed assuming that local strains are localized along a narrow band originating at the crack tip. The elastic-plastic problem is reduced to that of solving a plane elasticity problem with a broken-line edge crack with loaded faces. The problem is solved by the singular integral equation method. Numerical results are obtained for the cases where the crack faces are loaded by a tensile force at infinity or by constant pressure. The effect of the free edge of the plate on the magnitude and orientation of the plasticity band is estimated.

  10. Elastic-plastic finite element analyses of an unidirectional, 9 vol percent tungsten fiber reinforced copper matrix composite

    NASA Technical Reports Server (NTRS)

    Sanfeliz, Jose G.

    1993-01-01

    Micromechanical modeling via elastic-plastic finite element analyses were performed to investigate the effects that the residual stresses and the degree of matrix work hardening (i.e., cold-worked, annealed) have upon the behavior of a 9 vol percent, unidirectional W/Cu composite, undergoing tensile loading. The inclusion of the residual stress-containing state as well as the simulated matrix material conditions proved to be significant since the Cu matrix material exhibited plastic deformation, which affected the subsequent tensile response of the composite system. The stresses generated during cooldown to room temperature from the manufacturing temperature were more of a factor on the annealed-matrix composite, since they induced the softened matrix to plastically flow. This event limited the total load-carrying capacity of this matrix-dominated, ductile-ductile type material system. Plastic deformation of the hardened-matrix composite during the thermal cooldown stage was not considerable, therefore, the composite was able to sustain a higher stress before showing any appreciable matrix plasticity. The predicted room temperature, stress-strain response, and deformation stages under both material conditions represented upper and lower bounds characteristic of the composite's tensile behavior. The initial deformation stage for the hardened material condition showed negligible matrix plastic deformation while for the annealed state, its initial deformation stage showed extensive matrix plasticity. Both material conditions exhibited a final deformation stage where the fiber and matrix were straining plastically. The predicted stress-strain results were compared to the experimental, room temperature, tensile stress-strain curve generated from this particular composite system. The analyses indicated that the actual thermal-mechanical state of the composite's Cu matrix, represented by the experimental data, followed the annealed material condition.

  11. Annular feed air breathing fuel cell stack

    DOEpatents

    Wilson, Mahlon S.

    1996-01-01

    A stack of polymer electrolyte fuel cells is formed from a plurality of unit cells where each unit cell includes fuel cell components defining a periphery and distributed along a common axis, where the fuel cell components include a polymer electrolyte membrane, an anode and a cathode contacting opposite sides of the membrane, and fuel and oxygen flow fields contacting the anode and the cathode, respectively, wherein the components define an annular region therethrough along the axis. A fuel distribution manifold within the annular region is connected to deliver fuel to the fuel flow field in each of the unit cells. In a particular embodiment, a single bolt through the annular region clamps the unit cells together. In another embodiment, separator plates between individual unit cells have an extended radial dimension to function as cooling fins for maintaining the operating temperature of the fuel cell stack.

  12. Annular pancreas (image)

    MedlinePlus

    Annular pancreas is an abnormal ring or collar of pancreatic tissue that encircles the duodenum (the part of the ... intestine that connects to stomach). This portion of pancreas can constrict the duodenum and block or impair ...

  13. Mechanically expandable annular seal

    DOEpatents

    Gilmore, R.F.

    1983-07-19

    A mechanically expandable annular reusable seal assembly to form an annular hermetic barrier between two stationary, parallel, and planar containment surfaces is described. A rotatable ring, attached to the first surface, has ring wedges resembling the saw-tooth array of a hole saw. Matching seal wedges are slidably attached to the ring wedges and have their motion restricted to be perpendicular to the second surface. Each seal wedge has a face parallel to the second surface. An annular elastomer seal has a central annular region attached to the seal wedges' parallel faces and has its inner and outer circumferences attached to the first surface. A rotation of the ring extends the elastomer seal's central region perpendicularly towards the second surface to create the fluid tight barrier. A counter rotation removes the barrier. 6 figs.

  14. Mechanically expandable annular seal

    DOEpatents

    Gilmore, Richard F.

    1983-01-01

    A mechanically expandable annular reusable seal assembly to form an annular hermetic barrier between two stationary, parallel, and planar containment surfaces. A rotatable ring, attached to the first surface, has ring wedges resembling the saw-tooth array of a hole saw. Matching seal wedges are slidably attached to the ring wedges and have their motion restricted to be perpendicular to the second surface. Each seal wedge has a face parallel to the second surface. An annular elastomer seal has a central annular region attached to the seal wedges' parallel faces and has its inner and outer circumferences attached to the first surface. A rotation of the ring extends the elastomer seal's central region perpendicularly towards the second surface to create the fluidtight barrier. A counterrotation removes the barrier.

  15. Annular nozzle engine technology

    NASA Technical Reports Server (NTRS)

    Martinez, AL

    1992-01-01

    The topics covered include: (1) driver rocket subsystem; (2) annular nozzle engine technology; (3) expansion-deflection nozzle; (4) aerospike-nozzled engine background; (5) aerospike testing; (6) linear aerospike; and (7) the combined cycle engine.

  16. Partial annular pancreas

    PubMed Central

    Jindal, Gunjan; Mittal, Amit; Singal, Rikki; Singal, Samita

    2016-01-01

    Annular pancreas is a developmental anomaly that can be associated with other conditions such as Down syndrome, duodenal atresia, and Hirschsprung disease. A band of pancreatic tissue, in continuity with the pancreatic head, completely or incompletely encircles the descending duodenum, sometimes assuming a “crocodile jaw” configuration. We present the case of an adult who presented with epigastric pain and vomiting and was found to have annular pancreas. PMID:27695176

  17. Computer program: Jet 3 to calculate the large elastic plastic dynamically induced deformations of free and restrained, partial and/or complete structural rings

    NASA Technical Reports Server (NTRS)

    Wu, R. W.; Witmer, E. A.

    1972-01-01

    A user-oriented FORTRAN 4 computer program, called JET 3, is presented. The JET 3 program, which employs the spatial finite-element and timewise finite-difference method, can be used to predict the large two-dimensional elastic-plastic transient Kirchhoff-type deformations of a complete or partial structural ring, with various support conditions and restraints, subjected to a variety of initial velocity distributions and externally-applied transient forcing functions. The geometric shapes of the structural ring can be circular or arbitrarily curved and with variable thickness. Strain-hardening and strain-rate effects of the material are taken into account.

  18. ACCEPT: a three-dimensional finite element program for large deformation elastic-plastic-creep analysis of pressurized tubes (LWBR/AWBA Development Program)

    SciTech Connect

    Hutula, D.N.; Wiancko, B.E.

    1980-03-01

    ACCEPT is a three-dimensional finite element computer program for analysis of large-deformation elastic-plastic-creep response of Zircaloy tubes subjected to temperature, surface pressures, and axial force. A twenty-mode, tri-quadratic, isoparametric element is used along with a Zircaloy materials model. A linear time-incremental procedure with residual force correction is used to solve for the time-dependent response. The program features an algorithm which automatically chooses the time step sizes to control the accuracy and numerical stability of the solution. A contact-separation capability allows modeling of interaction of reactor fuel rod cladding with fuel pellets or external supports.

  19. Annular array and method of manufacturing same

    DOEpatents

    Day, Robert A.

    1989-01-01

    A method for manufacturing an annular acoustic transducer array from a plate of transducer material, which enables production of precision aligned arrays at low cost. The circular plate is sawed along at least two lines that are radial to the axis of the plate. At steps along each radial cut, the plate is rotated first in one direction and then in an opposite direction by a predetermined angle such as slightly less than 90.degree.. The cuts result in the forming of several largely ring-shaped lands, each largely ring-shaped land being joined to the other rings of different radii by thin portions of the plate, and each ring being cut into segments. The bridges that join different rings, hold the transducer together until it can be mounted on a lens.

  20. Lumped element modeling of air-coupled capacitive micromachined ultrasonic transducers with annular cell geometry.

    PubMed

    Na, Shuai; Wong, Lawrence L P; Chen, Albert I H; Li, Zhenhao; Macecek, Mirek; Yeow, John T W

    2017-04-01

    Air-coupled capacitive micromachined ultrasonic transducers (CMUTs) based on annular cell geometry have recently been reported. Finite element analysis and experimental studies have demonstrated their significant improvement in transmit efficiency compared with the conventional circular-cell CMUTs. Extending the previous work, this paper proposed a lumped element model of annular-cell CMUTs. Explicit expressions of the resonance frequency, modal vector, and static displacement of a clamped annular plate under uniform pressure were first derived based on the plate theory and curve fitting method. The lumped model of an annular CMUT cell was then developed by adopting the average displacement as the spatial variable. Using the proposed model, the ratio of average-to-maximum displacement was derived to be 8/15. Experimental and simulation studies on a fabricated annular CMUT cell verified the effectiveness of the lumped model. The proposed model provides an effective and efficient way to analyze and design air-coupled annular-cell CMUTs.

  1. Simulation of Impact on a Ductile Polymer Plate

    NASA Technical Reports Server (NTRS)

    Cremona, Rebecca L.; Hinkley, Jeffrey A.

    2005-01-01

    Explicit finite element calculations were used to visualize the deformation and temperature rise in an elastic-plastic plate impacted by a rigid projectile. Results were compared to results of experiments involving ballistic penetration of a "self-healing" thermoplastic. The calculated temperature rise agreed well with the experimental observation, but the total energy absorbed in the penetration event was underestimated in the calculation, which neglected friction.

  2. Calculation of the exerting force necessary to form the aircraft hull plate in the symmetry plate bender with three rolls and the feeding value of the centre roll

    NASA Astrophysics Data System (ADS)

    Xu, Furen

    1991-07-01

    In this paper, forces and deformations of the aircraft hull plate in the symmetry plate bender with three rolls are systematically analyzed and investigated by means of elasticity-plasticity theory, and a group of theoretical calculation formulas is put forward by which the feeding value and the exerting force of the center roll may be determined according to the thickness of the hull plate, the elasticity modulus and yield point of the hull plate material, and the curvature which the aircraft hull plate should have after forming.

  3. Low Activation Joining of SiC/SiC Composites for Fusion Applications: Modeling Miniature Torsion Tests with Elastic and Elastic-Plastic Models

    SciTech Connect

    Henager, Charles H.; Nguyen, Ba Nghiep; Kurtz, Richard J.; Roosendaal, Timothy J.; Borlaug, Brennan A.; Ferraris, Monica; Ventrella, Andrea; Katoh, Yutai

    2015-03-01

    The use of SiC and SiC-composites in fission or fusion environments requires joining methods for assembling systems. The international fusion community designed miniature torsion specimens for joint testing and irradiation in test reactors with limited irradiation volumes. These torsion specimens fail out-of-plane when joints are strong and when elastic moduli are within a certain range compared to SiC, which causes difficulties in determining shear strengths for joints or for comparing unirradiated and irradiated joints. A finite element damage model was developed that indicates fracture is likely to occur within the joined pieces to cause out-of-plane failures for miniature torsion specimens when a certain modulus and strength ratio between the joint material and the joined material exists. The model was extended to treat elastic-plastic joints such as SiC/epoxy and steel/epoxy joints tested as validation of the specimen design.

  4. The load separation criterion in elastic-plastic fracture mechanics: Rate and temperature dependence of the material plastic deformation function in an ABS resin

    NASA Astrophysics Data System (ADS)

    Agnelli, Silvia; Baldi, Francesco; Riccò, Theonis

    2012-07-01

    This work is aimed at analyzing the effects of temperature and loading rate on the plastic deformation behavior of an acrylonitrile-butadiene-styrene (ABS) resin during a fracture process. According to the load separation criterion, the plastic deformation behavior during the fracture process of an elastic-plastic material is described by a plastic deformation function. For the ABS here examined, the material plastic deformation function was constructed at different temperatures and loading rates, by single edge notched in bending (SEB) tests on blunt notched specimens. Both low and moderately high (impact) loading rates were explored. For the various conditions of temperature and loading rate the material yield stress was also measured by uniaxial tensile tests. The relationships between material deformation function and yield stress were researched and discussed.

  5. ZIP2DL: An Elastic-Plastic, Large-Rotation Finite-Element Stress Analysis and Crack-Growth Simulation Program

    NASA Technical Reports Server (NTRS)

    Deng, Xiaomin; Newman, James C., Jr.

    1997-01-01

    ZIP2DL is a two-dimensional, elastic-plastic finte element program for stress analysis and crack growth simulations, developed for the NASA Langley Research Center. It has many of the salient features of the ZIP2D program. For example, ZIP2DL contains five material models (linearly elastic, elastic-perfectly plastic, power-law hardening, linear hardening, and multi-linear hardening models), and it can simulate mixed-mode crack growth for prescribed crack growth paths under plane stress, plane strain and mixed state of stress conditions. Further, as an extension of ZIP2D, it also includes a number of new capabilities. The large-deformation kinematics in ZIP2DL will allow it to handle elastic problems with large strains and large rotations, and elastic-plastic problems with small strains and large rotations. Loading conditions in terms of surface traction, concentrated load, and nodal displacement can be applied with a default linear time dependence or they can be programmed according to a user-defined time dependence through a user subroutine. The restart capability of ZIP2DL will make it possible to stop the execution of the program at any time, analyze the results and/or modify execution options and resume and continue the execution of the program. This report includes three sectons: a theoretical manual section, a user manual section, and an example manual secton. In the theoretical secton, the mathematics behind the various aspects of the program are concisely outlined. In the user manual section, a line-by-line explanation of the input data is given. In the example manual secton, three types of examples are presented to demonstrate the accuracy and illustrate the use of this program.

  6. Annular feed air breathing fuel cell stack

    DOEpatents

    Wilson, Mahlon S.; Neutzler, Jay K.

    1997-01-01

    A stack of polymer electrolyte fuel cells is formed from a plurality of unit cells where each unit cell includes fuel cell components defining a periphery and distributed along a common axis, where the fuel cell components include a polymer electrolyte membrane, an anode and a cathode contacting opposite sides of the membrane, and fuel and oxygen flow fields contacting the anode and the cathode, respectively, wherein the components define an annular region therethrough along the axis. A fuel distribution manifold within the annular region is connected to deliver fuel to the fuel flow field in each of the unit cells. The fuel distribution manifold is formed from a hydrophilic-like material to redistribute water produced by fuel and oxygen reacting at the cathode. In a particular embodiment, a single bolt through the annular region clamps the unit cells together. In another embodiment, separator plates between individual unit cells have an extended radial dimension to function as cooling fins for maintaining the operating temperature of the fuel cell stack.

  7. Annular recuperator design

    DOEpatents

    Kang, Yungmo

    2005-10-04

    An annular heat recuperator is formed with alternating hot and cold cells to separate counter-flowing hot and cold fluid streams. Each cold cell has a fluid inlet formed in the inner diameter of the recuperator near one axial end, and a fluid outlet formed in the outer diameter of the recuperator near the other axial end to evenly distribute fluid mass flow throughout the cell. Cold cells may be joined with the outlet of one cell fluidly connected to the inlet of an adjacent downstream cell to form multi-stage cells.

  8. Granuloma annulare - close-up (image)

    MedlinePlus

    Granuloma annulare is usually a self-limiting disorder characterized by raised lesions arranged in an annular shape. ... This picture shows a close-up of a granuloma annulare that is subcutaneous (deeper). It demonstrates the ...

  9. Multiple annular linear diffractive axicons.

    PubMed

    Bialic, Emilie; de la Tocnaye, Jean-Louis de Bougrenet

    2011-04-01

    We propose a chromatic analysis of multiple annular linear diffractive axicons. Large aperture axicons are optical devices providing achromatic nondiffracting beams, with an extended depth of focus, when illuminated by a white light source, due to chromatic foci superimposition. Annular apertures introduce chromatic foci separation, and because chromatic aberrations result in focal segment axial shifts, polychromatic imaging properties are partially lost. We investigate here various design parameters that can be used to achieve color splitting, filtering, and combining using these properties. In order to improve the low-power efficiency of a single annular axicon, we suggest a spatial multiplexing of concentric annular axicons with different sizes and periods we call multiple annular aperture diffractive axicons (MALDAs). These are chosen to maintain focal depths while enabling color imaging with sufficient diffraction efficiency. Illustrations are given for binary phase diffractive axicons, considering technical aspects such as grating design wavelength and phase dependence due to the grating thickness.

  10. Low Activation Joining of SiC/SiC Composites for Fusion Applications: Modeling Miniature Torsion Tests with Elastic and Elastic-Plastic Models

    SciTech Connect

    Henager, Charles H.; Nguyen, Ba Nghiep; Kurtz, Richard J.; Ferraris, Monica; Katoh, Yutai

    2015-06-30

    The international fusion community designed miniature torsion specimens for joint testing and irradiation in test reactors with limited irradiation volumes since SiC and SiC-composites used in fission or fusion environments require joining methods for assembling systems. Torsion specimens fail out-of-plane when joints are strong and when elastic moduli are comparable to SiC, which causes difficulties in determining shear strengths for many joints or for comparing unirradiated and irradiated joints. A finite element damage model was developed to treat elastic joints such as SiC/Ti3SiC2+SiC and elastic-plastic joints such as SiC/epoxy and steel/epoxy. The model uses constitutive shear data and is validated using epoxy joint data. The elastic model indicates fracture is likely to occur within the joined pieces to cause out-of-plane failures for miniature torsion specimens when a certain modulus and strength ratio between the joint material and the joined material exists. Lower modulus epoxy joints always fail in plane and provide good model validation.

  11. Composite Behavior of Lath Martensite Steels Induced by Plastic Strain, a New Paradigm for the Elastic-Plastic Response of Martensitic Steels

    NASA Astrophysics Data System (ADS)

    Ungár, Tamás; Harjo, Stefanus; Kawasaki, Takuro; Tomota, Yo; Ribárik, Gábor; Shi, Zengmin

    2017-01-01

    Based on high-resolution neutron diffraction experiments, we will show that in lath martensite steels, the initially homogeneous dislocation structure, i.e., homogeneous on the length scale of grain size, is disrupted by plastic deformation, which, in turn, produces a composite on the length scale of martensite lath packets. The diffraction patterns of plastically strained martensitic steel reveal characteristically asymmetric peak profiles in the same way as has been observed in materials with heterogeneous dislocation structures. The quasi homogeneous lath structure, formed by quenching, is disrupted by plastic deformation producing a composite structure. Lath packets oriented favorably or unfavorably for dislocation glide become soft or hard. Two lath packet types develop by work softening or work hardening in which the dislocation densities become smaller or larger compared to the initial average dislocation density. The decomposition into soft and hard lath packets is accompanied by load redistribution and the formation of long-range internal stresses between the two lath packet types. The composite behavior of plastically deformed lath martensite opens a new way to understand the elastic-plastic response in this class of materials.

  12. Axisymmetric annular curtain stability

    NASA Astrophysics Data System (ADS)

    Ahmed, Zahir U.; Khayat, Roger E.; Maissa, Philippe; Mathis, Christian

    2012-06-01

    A temporal stability analysis was carried out to investigate the stability of an axially moving viscous annular liquid jet subject to axisymmetric disturbances in surrounding co-flowing viscous gas media. We investigated in this study the effects of inertia, surface tension, the gas-to-liquid density ratio, the inner-to-outer radius ratio and the gas-to-liquid viscosity ratio on the stability of the jet. With an increase in inertia, the growth rate of the unstable disturbances is found to increase. The dominant (or most unstable) wavenumber decreases with increasing Reynolds number for larger values of the gas-to-liquid viscosity ratio. However, an opposite tendency for the most unstable wavenumber is predicted for small viscosity ratio in the same inertia range. The surrounding gas density, in the presence of viscosity, always reduces the growth rate, hence stabilizing the flow. There exists a critical value of the density ratio above which the flow becomes stable for very small viscosity ratio, whereas for large viscosity ratio, no stable flow appears in the same range of the density ratio. The curvature has a significant destabilizing effect on the thin annular jet, whereas for a relatively thick jet, the maximum growth rate decreases as the inner radius increases, irrespective of the surrounding gas viscosity. The degree of instability increases with Weber number for a relatively large viscosity ratio. In contrast, for small viscosity ratio, the growth rate exhibits a dramatic dependence on the surface tension. There is a small Weber number range, which depends on the viscosity ratio, where the flow is stable. The viscosity ratio always stabilizes the flow. However, the dominant wavenumber increases with increasing viscosity ratio. The range of unstable wavenumbers is affected only by the curvature effect.

  13. Entrance and exit region friction factor models for annular seal analysis. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Elrod, David Alan

    1988-01-01

    The Mach number definition and boundary conditions in Nelson's nominally-centered, annular gas seal analysis are revised. A method is described for determining the wall shear stress characteristics of an annular gas seal experimentally. Two friction factor models are developed for annular seal analysis; one model is based on flat-plate flow theory; the other uses empirical entrance and exit region friction factors. The friction factor predictions of the models are compared to experimental results. Each friction model is used in an annular gas seal analysis. The seal characteristics predicted by the two seal analyses are compared to experimental results and to the predictions of Nelson's analysis. The comparisons are for smooth-rotor seals with smooth and honeycomb stators. The comparisons show that the analysis which uses empirical entrance and exit region shear stress models predicts the static and stability characteristics of annular gas seals better than the other analyses. The analyses predict direct stiffness poorly.

  14. Laser-produced annular plasmas

    SciTech Connect

    Veloso, F.; Chuaqui, H.; Aliaga-Rossel, R.; Favre, M.; Mitchell, I. H.; Wyndham, E.

    2006-06-15

    A new technique is presented for the formation of annular plasmas on a metal surface with a high-power laser using a combination of axicon and converging lenses. The annular plasma formed on a titanium target in a chamber of hydrogen gas was investigated using schlieren imaging and Mach Zehnder interferometry. Expansion of the plasma was shown to be anisotropic with velocities of {approx}10{sup 3}-10{sup 4} m/s. Electron densities of 10{sup 18} cm{sup -3} were measured with radial profiles that confirm the presence of a hollow structure. The interferometric observations also show the presence of an inward shock wave traveling to the center of the annular plasma, which compresses the background neutrals, reaching a density around 18 times initial gas density, at 95 ns after the initial annular plasma is produced.

  15. The Langley Annular Transonic Tunnel

    NASA Technical Reports Server (NTRS)

    Habel, Louis W; Henderson, James H; Miller, Mason F

    1952-01-01

    Report describes the development of the Langley annular transonic tunnel, a facility in which test Mach numbers from 0.6 to slightly over 1.0 are achieved by rotating the test model in an annular passage between two concentric cylinders. Data obtained for two-dimensional airfoil models in the Langley annular transonic tunnel at subsonic and sonic speeds are shown to be in reasonable agreement with experimental data from other sources and with theory when comparisons are made for nonlifting conditions or for equal normal-force coefficients rather than for equal angles of attack. The trends of pressure distributions obtained from measurements in the Langley annular transonic tunnel are consistent with distributions calculated for Prandtl-Meyer flow.

  16. A nominally second-order cell-centered Lagrangian scheme for simulating elastic-plastic flows on two-dimensional unstructured grids

    NASA Astrophysics Data System (ADS)

    Maire, Pierre-Henri; Abgrall, Rémi; Breil, Jérôme; Loubère, Raphaël; Rebourcet, Bernard

    2013-02-01

    In this paper, we describe a cell-centered Lagrangian scheme devoted to the numerical simulation of solid dynamics on two-dimensional unstructured grids in planar geometry. This numerical method, utilizes the classical elastic-perfectly plastic material model initially proposed by Wilkins [M.L. Wilkins, Calculation of elastic-plastic flow, Meth. Comput. Phys. (1964)]. In this model, the Cauchy stress tensor is decomposed into the sum of its deviatoric part and the thermodynamic pressure which is defined by means of an equation of state. Regarding the deviatoric stress, its time evolution is governed by a classical constitutive law for isotropic material. The plasticity model employs the von Mises yield criterion and is implemented by means of the radial return algorithm. The numerical scheme relies on a finite volume cell-centered method wherein numerical fluxes are expressed in terms of sub-cell force. The generic form of the sub-cell force is obtained by requiring the scheme to satisfy a semi-discrete dissipation inequality. Sub-cell force and nodal velocity to move the grid are computed consistently with cell volume variation by means of a node-centered solver, which results from total energy conservation. The nominally second-order extension is achieved by developing a two-dimensional extension in the Lagrangian framework of the Generalized Riemann Problem methodology, introduced by Ben-Artzi and Falcovitz [M. Ben-Artzi, J. Falcovitz, Generalized Riemann Problems in Computational Fluid Dynamics, Cambridge Monogr. Appl. Comput. Math. (2003)]. Finally, the robustness and the accuracy of the numerical scheme are assessed through the computation of several test cases.

  17. Epidermal activity in annular dermatophytosis.

    PubMed

    Berk, S H; Penneys, N S; Weinstein, G D

    1976-04-01

    In five patients with annular tinea corporis, the tritated thymidine labeling indexes were determined in the rim, center, and intermediate areas of the lesion and compared with normal skin. Labeling indexes at the rim were much higher than those of normal skin (mean, 4.2 times). Labeling indexes elsewhere in the lesion were not significantly different from those of normal skin. Histologic examination showed epidermal thickening in all areas of the lesion as compared with normal skin. This study suggests that there is an increased epidermal turnover at the rim of annular dermatophytosis that may be important in the pathophysiology and morphogenesis of such lesions.

  18. Annular Eclipse as Seen by Hinode

    NASA Video Gallery

    This timelapse shows an annular eclipse as seen by JAXA's Hinode satellite on Jan. 4, 2011. An annular eclipse occurs when the moon, slightly more distant from Earth than on average, moves directly...

  19. Development of annular targets for {sup 99}MO production.

    SciTech Connect

    Conner, C.; Lewandowski, E. F.; Snelgrove, J. L.; Liberatore, M. W.; Walker, D. E.; Wiencek, T. C.; McGann, D. J.; Hofman, G. L.; Vandegrift, G. F.

    1999-09-30

    The new annular target performed well during irradiation. The target is inexpensive and provides good heat transfer during irradiation. Based on these and previous tests, we conclude that targets with zirconium tubes and either nickel-plated or zinc-plated foils work well. We proved that we could use aluminum target tubes, which are much cheaper and easier to work with than the zirconium tubes. In aluminum target tubes nickel-plated fission-recoil barriers work well and prevent bonding of the foil to the new target tubes during irradiation. Also, zinc-plated and aluminum-foil barriers appear promising in anodized aluminum tubes. Additional tests are anticipated to address such issues as fission-recoil barrier thickness and uranium foil composition. Overall, however, the target was successful and will provide an inexpensive, efficient way to irradiate LEU metal foil for the production of {sup 99}Mo.

  20. Energy and Exergy Analysis of an Annular Thermoelectric Heat Pump

    NASA Astrophysics Data System (ADS)

    Kaushik, S. C.; Manikandan, S.; Hans, Ranjana

    2016-07-01

    In this paper, the concept of an annular thermoelectric heat pump (ATEHP) has been introduced. An exoreversible thermodynamic model of the ATEHP considering the Thomson effect in conjunction with Peltier, Joule and Fourier heat conduction has been investigated using exergy analysis. New expressions for dimensionless heating power, optimum current at the maximum energy, exergy efficiency conditions and dimensionless irreversibilities in the ATEHP are derived. The results show that the heating power, energy and exergy efficiency of the ATEHP are lower than the flat-plate thermoelectric heat pump. The effects of annular shape parameter ( S r = r 2 /r 1), dimensionless temperature ratio ( θ = T h /T c) and the electrical contact resistances on the heating power, energy/exergy efficiency of an ATEHP have been studied. This study will help in the designing of actual ATEHP systems.

  1. Capacitive micromachined ultrasonic transducers based on annular cell geometry for air-coupled applications.

    PubMed

    Na, Shuai; Chen, Albert I H; Wong, Lawrence L P; Li, Zhenhao; Macecek, Mirek; Yeow, John T W

    2016-09-01

    A novel design of an air-coupled capacitive micromachined ultrasonic transducer (CMUT) with annular cell geometry (annular CMUT) is proposed. Finite element analysis shows that an annular cell has a ratio of average-to-maximum displacement (RAMD) of 0.52-0.58 which is 58-76% higher than that of a conventional circular cell. The increased RAMD leads to a larger volume displacement which results in a 48.4% improved transmit sensitivity and 127.3% improved power intensity. Single-cell annular CMUTs were fabricated with 20-μm silicon plates on 13.7-μm deep and 1.35-mm wide annular cavities using the wafer bonding technique. The measured RAMD of the fabricated CMUTs is 0.54. The resonance frequency was measured to be 94.5kHz at 170-V DC bias. The transmit sensitivity was measured to be 33.83Pa/V and 25.85Pa/V when the CMUT was excited by a continuous wave and a 20-cycle burst, respectively. The receive sensitivity at 170-V DC bias was measured to be 7.7mV/Pa for a 20-cycle burst, and 15.0mV/Pa for a continuous incident wave. The proposed annular CMUT design demonstrates a significant improvement in transmit efficiency, which is an important parameter for air-coupled ultrasonic transducers.

  2. Annular Solar Eclipse of 10 May 1994

    NASA Technical Reports Server (NTRS)

    Espenak, Fred; Anderson, Jay

    1993-01-01

    An annular eclipse of the Sun will be widely visible from the Western Hemisphere on 10 May 1994. The path of the Moon's shadow passes through Mexico, the United States of America, maritime Canada, the North Atlantic, the Azores and Morocco. Detailed predictions for this event are presented and include tables of geographic coordinates of the annular path, local circumstances for hundreds of cities, maps of the path of annular and partial eclipse, weather prospects, and the lunar limb profile.

  3. Digital controller design: Analysis of the annular suspension pointing system

    NASA Technical Reports Server (NTRS)

    Kuo, B. C.

    1979-01-01

    The Annular Suspension and Pointing System (ASPS) is a payload auxiliary pointing device of the Space Shuttle. The ASPS is comprised of two major subassemblies, a vernier and a coarse pointing subsystem. The experiment is attached to a mounting plate/rim combination which is suspended on magnetic bearing/actuators (MBA) strategically located about the rim. Fine pointing is achieved by gimballing the plate/rim within the MBA gaps. Control about the experiment line-of-sight is obtained through the use of a non-contacting rim drive and positioning torquer. All sensors used to close the servo loops on the vernier system are noncontacting elements. Therefore, the experiment is a free-flyer constrained only by the magnetic forces generated by the control loops.

  4. The Annular Suspension and Pointing (ASP) system for space experiments and predicted pointing accuracies

    NASA Technical Reports Server (NTRS)

    Anderson, W. W.; Joshi, S. M.

    1975-01-01

    An annular suspension and pointing system consisting of pointing assemblies for coarse and vernier pointing is described. The first assembly is attached to a carrier spacecraft (e.g., the space shuttle) and consists of an azimuth gimbal and an elevation gimbal which provide 'coarse' pointing. The second or vernier pointing assembly is made up of magnetic actuators of suspension and fine pointing, roll motor segments, and an instrument or experiment mounting plate around which is attached a continuous annular rim similar to that used in the annular momentum control device. The rim provides appropriate magnetic circuits for the actuators and the roll motor segments for any instrument roll position. The results of a study to determine the pointing accuracy of the system in the presence of crew motion disturbances are presented. Typical 3 sigma worst-case errors are found to be of the order of 0.001 arc-second.

  5. Elastic Properties of the Annular Ligament of the Human Stapes--AFM Measurement.

    PubMed

    Kwacz, Monika; Rymuza, Zygmunt; Michałowski, Marcin; Wysocki, Jarosław

    2015-08-01

    Elastic properties of the human stapes annular ligament were determined in the physiological range of the ligament deflection using atomic force microscopy and temporal bone specimens. The annular ligament stiffness was determined based on the experimental load-deflection curves. The elastic modulus (Young's modulus) for a simplified geometry was calculated using the Kirchhoff-Love theory for thin plates. The results obtained in this study showed that the annular ligament is a linear elastic material up to deflections of about 100 nm, with a stiffness of about 120 N/m and a calculated elastic modulus of about 1.1 MPa. These parameters can be used in numerical and physical models of the middle and/or inner ear.

  6. Higher modes in the coupling cells of coaxial and annular-ring coupled linac structures

    SciTech Connect

    Hoffswell, R.A.; Laszewski, R.M.

    1983-08-01

    Dipole- and quadrupole-like modes in the coupling cells of coaxial and annular-ring coupled structures have been examined up to a frequency of 4 GHz. The quadrupole mode frequencies appear to lie high enough above the frequency of the accelerating mode to make coupling between the two unlikely. In the annular-ring case, however, a dipole mode was found very near the accelerating mode frequency. Evidence is presented which suggests that some power may couple between these two modes in a real cavity.

  7. Method and apparatus for continuous annular electrochromatography

    DOEpatents

    Scott, Charles D.

    1987-01-01

    Separation of complex mixtures and solutions can be carried out using a method and apparatus for continuous annular electrochromatography. Solutes are diverted radially by an imposed electrical field as they move downward in a rotating chromatographic column.

  8. Multiple Granuloma Annulare in a 2-year-old Child

    PubMed Central

    Siddalingappa, Karjigi; Murthy, Sambasiviah Chidambara; Herakal, Kallappa; Kusuma, Marganahalli Ramachandra

    2015-01-01

    Granuloma annulare is a benign, self-limiting, inflammatory and granulomatous disease of unknown etiology occurring in both adults and children. An 18-month-old male child had multiple progressive annular plaques over the lower extremities. Clinical and histopathological features were consistent with granuloma annulare. Localized granuloma annulare is the most common form in children. We report a young child with multiple, progressive granuloma annulare over the lower extremities. PMID:26677301

  9. Adaptive optics scanning ophthalmoscopy with annular pupils.

    PubMed

    Sulai, Yusufu N; Dubra, Alfredo

    2012-07-01

    Annular apodization of the illumination and/or imaging pupils of an adaptive optics scanning light ophthalmoscope (AOSLO) for improving transverse resolution was evaluated using three different normalized inner radii (0.26, 0.39 and 0.52). In vivo imaging of the human photoreceptor mosaic at 0.5 and 10° from fixation indicates that the use of an annular illumination pupil and a circular imaging pupil provides the most benefit of all configurations when using a one Airy disk diameter pinhole, in agreement with the paraxial confocal microscopy theory. Annular illumination pupils with 0.26 and 0.39 normalized inner radii performed best in terms of the narrowing of the autocorrelation central lobe (between 7 and 12%), and the increase in manual and automated photoreceptor counts (8 to 20% more cones and 11 to 29% more rods). It was observed that the use of annular pupils with large inner radii can result in multi-modal cone photoreceptor intensity profiles. The effect of the annular masks on the average photoreceptor intensity is consistent with the Stiles-Crawford effect (SCE). This indicates that combinations of images of the same photoreceptors with different apodization configurations and/or annular masks can be used to distinguish cones from rods, even when the former have complex multi-modal intensity profiles. In addition to narrowing the point spread function transversally, the use of annular apodizing masks also elongates it axially, a fact that can be used for extending the depth of focus of techniques such as adaptive optics optical coherence tomography (AOOCT). Finally, the positive results from this work suggest that annular pupil apodization could be used in refractive or catadioptric adaptive optics ophthalmoscopes to mitigate undesired back-reflections.

  10. Annular gel reactor for chemical pattern formation

    DOEpatents

    Nosticzius, Zoltan; Horsthemke, Werner; McCormick, William D.; Swinney, Harry L.; Tam, Wing Y.

    1990-01-01

    The present invention is directed to an annular gel reactor suitable for the production and observation of spatiotemporal patterns created during a chemical reaction. The apparatus comprises a vessel having at least a first and second chamber separated one from the other by an annular polymer gel layer (or other fine porous medium) which is inert to the materials to be reacted but capable of allowing diffusion of the chemicals into it.

  11. Annular-Cross-Section CFE Chamber

    NASA Technical Reports Server (NTRS)

    Sharnez, Rizwan; Sammons, David W.

    1994-01-01

    Proposed continuous-flow-electrophoresis (CFE) chamber of annular cross section offers advantages over conventional CFE chamber, and wedge-cross-section chamber described in "Increasing Sensitivity in Continuous-Flow Electrophoresis" (MFS-26176). In comparison with wedge-shaped chamber, chamber of annular cross section virtually eliminates such wall effects as electro-osmosis and transverse gradients of velocity. Sensitivity enhanced by incorporating gradient maker and radial (collateral) flow.

  12. Aerodynamic performance of an annular classical airfoil cascade

    NASA Technical Reports Server (NTRS)

    Bergsten, D. E.; Stauter, R. C.; Fleeter, S.

    1983-01-01

    Results are presented for a series of experiments that were performed in a large-scale subsonic annular cascade facility that was specifically designed to provide three-dimensional aerodynamic data for the verification of numerical-calculation codes. In particular, the detailed three-dimensional aerodynamic performance of a classical flat-plate airfoil cascade is determined for angles of incidence of 0, 5, and 10 deg. The resulting data are analyzed and are correlated with predictions obtained from NASA's MERIDL and TSONIC numerical programs. It is found that: (1) at 0 and 5 deg, the airfoil surface data show a good correlation with the predictions; (2) at 10 deg, the data are in fair agreement with the numerical predictions; and (3) the two-dimensional Gaussian similarity relationship is appropriate for the wake velocity profiles in the mid-span region of the airfoil.

  13. What causes Mars' annular polar vortices?

    NASA Astrophysics Data System (ADS)

    Toigo, A. D.; Waugh, D. W.; Guzewich, S. D.

    2017-01-01

    A distinctive feature of the Martian atmosphere is that the winter polar vortices exhibit annuli of high potential vorticity (PV) with a local minimum near the pole. These annuli are seen in observations, reanalyses, and free-running general circulation model simulations of Mars, but are not generally a feature of Earth's polar vortices, where there is a monotonic increase in magnitude of PV with latitude. The creation and maintenance of the annular polar vortices on Mars are not well understood. Here we use simulations with a Martian general circulation model to the show that annular vortices are related to another distinctive, and possibly unique in the solar system, feature of the Martian atmosphere: the condensation of the predominant atmospheric gas species (CO2) in polar winter regions. The latent heat associated with CO2 condensation leads to destruction of PV in the polar lower atmosphere, inducing the formation of an annular PV structure.

  14. User's guide to computer programs JET 5A and CIVM-JET 5B to calculate the large elastic-plastic dynamically-induced deformations of multilayer partial and/or complete structural rings

    NASA Technical Reports Server (NTRS)

    Wu, R. W. H.; Stagliano, T. R.; Witmer, E. A.; Spilker, R. L.

    1978-01-01

    These structural ring deflections lie essentially in one plane and, hence, are called two-dimensional (2-d). The structural rings may be complete or partial; the former may be regarded as representing a fragment containment ring while the latter may be viewed as a 2-d fragment-deflector structure. These two types of rings may be either free or supported in various ways (pinned-fixed, locally clamped, elastic-foundation supported, mounting-bracket supported, etc.). The initial geometry of each ring may be circular or arbitrarily curved; uniform-thickness or variable-thickness rings may be analyzed. Strain-hardening and strain-rate effects of initially-isotropic material are taken into account. An approximate analysis utilizing kinetic energy and momentum conservation relations is used to predict the after-impact velocities of each fragment and of the impact-affected region of the ring; this procedure is termed the collision-imparted velocity method (CIVM) and is used in the CIVM-JET 5 B program. This imparted-velocity information is used in conjunction with a finite-element structural response computation code to predict the transient, large-deflection, elastic-plastic responses of the ring. Similarly, the equations of motion of each fragment are solved in small steps in time. Provisions are made in the CIVM-JET 5B code to analyze structural ring response to impact attack by from 1 to 3 fragments, each with its own size, mass, translational velocity components, and rotational velocity. The effects of friction between each fragment and the impacted ring are included.

  15. Annular lichenoid syphilis: A rare entity.

    PubMed

    Khurana, Ananta; Singal, Archana; Gupta, Seema

    2014-01-01

    Syphilis is a disease known for centuries, but still continues to be a diagnostic challenge as the myriad manifestations of secondary syphilis can mimic a lot many dermatological disorders. Lichenoid syphilis is an uncommon entity, reported only occasionally in the penicillin era. We present the case of a 32-year-old woman presenting with localized annular lichenoid lesions on the neck.

  16. Annular Pressure Seals and Hydrostatic Bearings

    DTIC Science & Technology

    2006-11-01

    affecting the rotordynamics of liquid turbopumps, in particular those handling large density fluids. Highlights on the bulk-flow analysis of annular seals... rotordynamic stability. Hydrostatic bearings rely on external fluid pressurization to generate load support and large centering stiffnesses, even in...SEALS IN PUMP APPLICATIONS Seal rotordynamic characteristic have a primary influence on the stability response of high-performance turbomachinery [1

  17. Annular lichenoid syphilis: A rare entity

    PubMed Central

    Khurana, Ananta; Singal, Archana; Gupta, Seema

    2014-01-01

    Syphilis is a disease known for centuries, but still continues to be a diagnostic challenge as the myriad manifestations of secondary syphilis can mimic a lot many dermatological disorders. Lichenoid syphilis is an uncommon entity, reported only occasionally in the penicillin era. We present the case of a 32-year-old woman presenting with localized annular lichenoid lesions on the neck. PMID:26396452

  18. Experimental equipment for measuring physical properties of the annular hydrostatic thrust bearing

    NASA Astrophysics Data System (ADS)

    Kozdera, Michal; Drábková, Sylva; Bojko, Marian

    2014-03-01

    The hydraulic circuit, through which the mineral oil is brought, is an important part of hydrostatic bearings. The annular hydrostatic thrust bearing consists of two sliding plates divided by a layer of mineral oil. In the lower plate, there are oil grooves which distribute the liquid between the sliding areas. The hydraulic circuit is made of two basic parts: the energy source and the controlling part. The hydraulic pump, which brings the liquid into the sliding bearing, is the source of the pressure energy. The sliding bearing is weighted down by axial force, which can be changed during the process. That's why in front of the particular oil grooves control components adjusting pressure and flow size are located. This paper deals with a project of a hydraulic circuit for regulation of fluid layer in the annular hydrostatic thrust bearing and the testing equipment for measuring its physical properties. It will include the issue of measuring loading capacity and height of the fluid layer in the annular hydrostatic thrust bearing.

  19. The effect of material strain hardening on the buckling strength of a perforated plate under uniaxial loading

    NASA Astrophysics Data System (ADS)

    Patil, Mayuri Suresh

    Plates or members containing plate elements have been used in the offshore, aerospace and construction industry. Cutouts are often located to lighten the weight of the structure, but these cutouts reduce the ultimate strength of the plate. A number of studies have taken place for determining the buckling strength of a perforated plated but few discuss the effect of material strain hardening on the buckling strength of a perforated plate. Buckling strength is often considered as an important criterial to determine the serviceable limit of the perforated plate in the offshore structure. The aim of the present study is to investigate the effect of material strain hardening on the strength characteristic of a perforated plate under uniaxial loading. This load at some point could lead to a possibility of instability. A square plate with perforation is considered here. The plate is considered to be simply supported at all four edges and has been kept straight. The perforation is located at the center of the plate. A number of ANSYS static nonlinear analysis are undertaken with different strain hardening material properties for AL7075. The Ramberg-Osgood method is used to determine the stress-strain curve for different strain hardening values. The plate thickness and the cutout size of the perforation are varied to determine the effect on the strength. The study covers the behavior of the system in the elastic buckling and the elastic-plastic region.

  20. Effect of wall edge suction on the performance of a short annular dump diffuser with exit passage flow resistance

    NASA Technical Reports Server (NTRS)

    Juhasz, A. J.

    1975-01-01

    The effect of wall edge suction on the performance of a short annular dump diffuser having a perforated plate flow resistance device in the exit passage was evaluated. Testing was conducted with air at near ambient pressure and temperature at inlet Mach numbers of 0.18 and 0.27 with suction rates up to 13.5 percent. Results show that pressure recovery downstream of the perforated plate was improved significantly by suction. Optimum performance was obtained with the flow resistance plate located at one inlet passage height downstream of the dump plane.

  1. Elastic-Plastic Properties: Simulation and Experiment

    NASA Astrophysics Data System (ADS)

    Fiedler, Thomas; Öchsner, Andreas

    This chapter addresses the elasto-plastic properties of novel metallic hollow sphere structures (MHSS). Numerical finite element analyses and experimental tests are conducted. The influence of the morphology, topology, joining technology and material composition on their mechanical properties is numerically investigated. Uni-axial compressive tests with adhesively bonded MHSS are performed in order to confirm the numerical findings. Young’s modulus, Poisson’s ratio and the initial plastic yield stress are determined. Furthermore, the elastic anisotropy of simple cubic MHSS is investigated.

  2. Elastic-Plastic Fracture Toughness Testing Methods.

    DTIC Science & Technology

    1983-12-01

    regression f it to the data must be loe than flow stress (d/da < Fs). 25 IV. RESULTS A. TEST RESULTS Specimen HY80 -5B, prepared from the bass metal of the...Notch Crack Test Figure 8. Tracing of HY80 -SB Fracture Surface 37 APPENDIX A TESTING METHODS A. INTRODUCTION The steps required to perform a J-integral...specimen HY80 -5B load limits: upper limit --- small positive load for example 40 lbs (should never be positive) +40 lbs * 10 v / 4000 lbs a +0.1 v

  3. Elastic-plastic fracture mechanics technology

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr. (Editor); Loss, F. J. (Editor)

    1985-01-01

    Among the topics discussed are: fracture analysis methods evaluation; instability prediction using the K sub R-curve approach; and the deformation failure assessment diagram. Consideration is also given to: instability prediction based on the modified J, J sub M-resistance curve approach; and stable crack growth and instability prediction on the V by means of the V sub R-curve method.

  4. Management of Periocular Granuloma Annulare Using Topical Dapsone

    PubMed Central

    Patel, Mayha; Shitabata, Paul; Horowitz, David

    2015-01-01

    Granuloma annulare is a disease characterized by granulomatous inflammation of the dermis. Localized granuloma annulare may resolve spontaneously, while generalized granuloma annulare may persist for decades. The authors present the case of a 41-year-old Hispanic man with a two-week history of periocular granuloma annulare. Due to previously reported success in the use of systemic dapsone for the treatment of granuloma annulare, and the periocular proximity of the patient’s lesion, topical dapsone was used for treatment. Various additional therapies for the management of granuloma annulare have been reported, such as topical and systemic steroids, isotretinoin, pentoxifylline, cyclosporine, Interferon gamma, potassium iodide, nicotinamide, niacinamide, salicylic acid, fumaric acid ester, etanercept, infliximab, and hydroxychloroquine. Additional clinical trials are necessary to further evaluate the effectiveness of topical dapsone in the management of granuloma annulare. PMID:26203321

  5. Development of an Advanced Annular Combustor

    NASA Technical Reports Server (NTRS)

    Rusnak, J. P.; Shadowen, J. H.

    1969-01-01

    The objective of the effort described in this report was to determine the structural durability of a full-scale advanced annular turbojet combustor using ASTM A-1 type fuel and operating at conditions typical of advanced supersonic aircraft. A full-scale annular combustor of the ram-induction type was fabricated and subjected to a 325-hour cyclic endurance test at conditions representative of operation in a Mach 3.0 aircraft. The combustor exhibited extensive cracking and scoop burning at the end of the test program. But these defects had no appreciable effect on combustor performance, as performance remained at a high level throughout the endurance program. Most performance goals were achieved with pressure loss values near 6% and 8%, and temperature rise variation ratio (deltaTVR) values near 1.25 and l.22 at takeoff and cruise conditions, respectively. Combustion efficiencies approached l004 and the exit radial temperature profiles were approximately as desired.

  6. LDV Measurements in an Annular Combustor Model

    NASA Technical Reports Server (NTRS)

    Barron, Dean A.

    1996-01-01

    This thesis covers the design and setup of a laser doppler velocimeter (LDV) system used to take velocity measurements in an annular combustor model. The annular combustor model is of contemporary design using 60 degree flat vane swirlers, producing a strong recirculation zone. Detailed measurements are taken of the swirler inlet air flow and of the downstream enclosed swirling flow. The laser system used is a two color, two component system set up in forward scatter. Detailed are some of the special considerations needed for LDV use in the confined turbulent flow of the combustor model. LDV measurements in a single swirler rig indicated that the flow changes radically in the first duct height. After this, a flow profile is set up and remains constant in shape. The magnitude of the velocities gradually decays due to viscous damping.

  7. Continuous separation of proteins by annular chromatography

    SciTech Connect

    Bloomingburg, G.F.; Bauer, J.S.; Carta, G. ); Byers, C.H. )

    1991-05-01

    In this paper, the separation of protein mixtures by continuous annular chromatography (CAC) is studied in a preparative-scale apparatus. S-Sepharose, a strong-acid porous cation-exchange resin is used as the separation medium, and mixtures of albumin, hemoglobin and cytochrome c are used as model separation system. Equilibrium and mass-transfer parameters are developed for this system on the basis of fixed-bed chromatograph experiments. A mathematical model is then successfully used in conjunction with these parameters to simulate the performance of the CAC separations. The continuous separation performance of the annular apparatus is found to be essentially the same as the batchwise performance of an equivalent conventional chromatograph, making the unit attractive for preparative and process-scale applications where continuous throughput is desirable.

  8. Endoscopic measurements using a panoramic annular lens

    NASA Technical Reports Server (NTRS)

    Gilbert, John A.; Matthys, Donald R.

    1992-01-01

    The objective of this project was to design, build, demonstrate, and deliver a prototype system for making measurements within cavities. The system was to utilize structured lighting as the means for making measurements and was to rely on a stationary probe, equipped with a unique panoramic annular lens, to capture a cylindrical view of the illuminated cavity. Panoramic images, acquired with a digitizing camera and stored in a desk top computer, were to be linearized and analyzed by mouse-driven interactive software.

  9. Annular and Total Solar Eclipses of 2003

    NASA Technical Reports Server (NTRS)

    Espenak, Fred; Anderson, Jay

    2002-01-01

    On Saturday, 2003 May 31, an annular eclipse of the Sun will be visible from a broad corridor that traverses the North Atlantic. The path of the Moon's antumbral shadow begins in northern Scotland, crosses Iceland and central Greenland, and ends at sunrise in Baffin Bay (Canada). A partial eclipse will be seen within the much broader path of the Moon's penumbral shadow, which includes most of Europe, the Middle East, central and northern Asia, and northwestern North America. The trajectory of the Moon's shadow is quite unusual during this event. The shadow axis passes to the far north where it barely grazes Earth's surface. In fact, the northern edge of the antumbra actually misses Earth so that one path limit is defined by the day/night terminator rather than by the shadow's upper edge. As a result, the track of annularity has a peculiar "D" shape that is nearly 1200 kilometers wide. Since the eclipse occurs just three weeks prior to the northern summer solstice, Earth's northern axis is pointed sunwards by 22.8 deg. As seen from the Sun, the antumbral shadow actually passes between the North Pole and the terminator. As a consequence of this extraordinary geometry, the path of annularity runs from east to west rather than the more typical west to east. The event transpires near the Moon's ascending node in Taurus five degrees north of Aldebaran. Since apogee occurs three days earlier (May 28 at 13 UT), the Moon's apparent diameter (29.6 arc-minutes) is still too small to completely cover the Sun (31.6 arc-minutes) resulting in an annular eclipse.

  10. The Annular Suspension and Pointing System /ASPS/

    NASA Technical Reports Server (NTRS)

    Anderson, W. W.; Woolley, C. T.

    1978-01-01

    The Annular Suspension and Pointing System (ASPS) may be attached to a carrier vehicle for orientation, mechanical isolation, and fine pointing purposes applicable to space experiments. It has subassemblies for both coarse and vernier pointing. A fourteen-degree-of-freedom simulation of the ASPS mounted on a Space Shuttle has yielded initial performance data. The simulation describes: the magnetic actuators, payload sensors, coarse gimbal assemblies, control algorithms, rigid body dynamic models of the payload and Shuttle, and a control system firing model.

  11. Annular flow film characteristics in variable gravity.

    PubMed

    MacGillivray, Ryan M; Gabriel, Kamiel S

    2002-10-01

    Annular flow is a frequently occurring flow regime in many industrial applications. The need for a better understanding of this flow regime is driven by the desire to improve the design of many terrestrial and space systems. Annular two-phase flow occurs in the mining and transportation of oil and natural gas, petrochemical processes, and boilers and condensers in heating and refrigeration systems. The flow regime is also anticipated during the refueling of space vehicles, and thermal management systems for space use. Annular flow is mainly inertia driven with little effect of buoyancy. However, the study of this flow regime is still desirable in a microgravity environment. The influence of gravity can create an unstable, chaotic film. The absence of gravity, therefore, allows for a more stable and axisymmetric film. Such conditions allow for the film characteristics to be easily studied at low gas flow rates. Previous studies conducted by the Microgravity Research Group dealt with varying the gas or liquid mass fluxes at a reduced gravitational acceleration.(1,2) The study described here continues this work by examining the effect of changing the gravitational acceleration (hypergravity) on the film characteristics. In particular, the film thickness and the associated pressure drops are examined. The film thickness was measured using a pair of two-wire conductance probes. Experimental data was collected over a range of annular flow set points by changing the liquid and gas mass flow rates, the liquid-to-gas density ratio and the gravitational acceleration. The liquid-to-gas density ratio was varied by collecting data with helium-water and air-water at the same flow rates. The gravitational effect was examined by collecting data during the microgravity and pull-up (hypergravity) portions of the parabolic flights.

  12. Plate motion

    SciTech Connect

    Gordon, R.G. )

    1991-01-01

    The motion of tectonic plates on the earth is characterized in a critical review of U.S. research from the period 1987-1990. Topics addressed include the NUVEL-1 global model of current plate motions, diffuse plate boundaries and the oceanic lithosphere, the relation between plate motions and distributed deformations, accelerations and the steadiness of plate motions, the distribution of current Pacific-North America motion across western North America and its margin, plate reconstructions and their uncertainties, hotspots, and plate dynamics. A comprehensive bibliography is provided. 126 refs.

  13. Annular-slot arrays as far-infrared bandpass filters.

    PubMed

    Krug, P A; Dawes, D H; McPhedran, R C; Wright, W; Macfarlane, J C; Whitbourn, L B

    1989-09-01

    Arrays of both annular and square annular slots in a conducting sheet on a dielectric substrate have been fabricated photolithographically. The structures are shown to behave as bandpass filters in the far infrared, with a resonant wavelength slightly larger than the average circumference or perimeter of the slot. The measured far-infrared transmittance of the annular array is approximately 76% of that predicted by theory, while its resonant frequency agrees with theory to within 5%.

  14. Functional specifications of the annular suspension pointing system, appendix A

    NASA Technical Reports Server (NTRS)

    Edwards, B.

    1980-01-01

    The Annular Suspension Pointing System is described. The Design Realization, Evaluation and Modelling (DREAM) system, and its design description technique, the DREAM Design Notation (DDN) is employed.

  15. Arcuate, annular, and polycyclic inflammatory and infectious lesions.

    PubMed

    Sharma, Amit; Lambert, Phelps J; Maghari, Amin; Lambert, W Clark

    2011-01-01

    Common shapes encountered in dermatologic diseases include linear, nummular, annular, polycyclic, and arciform. The last three have a relatively restricted differential, which must be entirely explored. It is not uncommon for a single disease to present in annular, arciform or polycyclic configurations; moreover, the lesions may evolve from being arciform to annular and then become polycyclic. Regardless, recognizing the arrangement of the defect will undoubtedly help in making a diagnosis and guiding subsequent management. We explore diseases that often present in annular, arciform, and/or polycyclic forms.

  16. Effect of shell drilling stiffness on response calculations of rectangular plates and tubes of rectangular cross-section under compression.

    SciTech Connect

    Gorman, Jhana; Hales, Jason Dean; Corona, Edmundo

    2010-05-01

    This report considers the calculation of the quasi-static nonlinear response of rectangular flat plates and tubes of rectangular cross-section subjected to compressive loads using quadrilateralshell finite element models. The principal objective is to assess the effect that the shell drilling stiffness parameter has on the calculated results. The calculated collapse load of elastic-plastic tubes of rectangular cross-section is of particular interest here. The drilling stiffness factor specifies the amount of artificial stiffness that is given to the shell element drilling Degree of freedom (rotation normal to the plane of the element). The element formulation has no stiffness for this degree of freedom, and this can lead to numerical difficulties. The results indicate that in the problems considered it is necessary to add a small amount of drilling tiffness to obtain converged results when using both implicit quasi-statics or explicit dynamics methods. The report concludes with a parametric study of the imperfection sensitivity of the calculated responses of the elastic-plastic tubes with rectangular cross-section.

  17. Design and fabrication of a 40-MHz annular array transducer

    PubMed Central

    Ketterling, Jeffrey A.; Lizzi, Frederic L.; Aristizábal, Orlando; Turnbull, Daniel H.

    2006-01-01

    This paper investigates the feasibility of fabricating a 5-ring, focused annular array transducer operating at 40 MHz. The active piezoelectric material of the transducer was a 9-μm thick polyvinylidene fluoride (PVDF) film. One side of the PVDF was metallized with gold and forms the ground plane of the transducer. The array pattern of the transducer and electrical traces to each annulus were formed on a copper-clad polyimide film. The PVDF and polyimide were bonded with a thin layer of epoxy, pressed into a spherically curved shape, and then back filled with epoxy. A 5-ring transducer with equal area elements and 100 μm kerfs between annuli was fabricated and tested. The transducer had a total aperture of 6 mm and a geometric focus of 12 mm. The pulse/echo response from a quartz plate located at the geometric focus, two-way insertion loss (IL), complex impedance, electrical cross-talk, and lateral beamwidth were all measured for each annulus. The complex impedance data from each element were used to perform electrical matching and the measurements were repeated. After impedance matching, fc ≈ 36 MHz and BWs ranged from 31 to 39%. The ILs for the matched annuli ranged from −28 to −38 dB. PMID:16060516

  18. Endoscopic inspection using a panoramic annular lens

    NASA Technical Reports Server (NTRS)

    Gilbert, John A.; Matthys, Donald R.

    1991-01-01

    The objective of this one year study was to design, build, and demonstrate a prototype system for cavity inspection. A cylindrical view of the cavity interior was captured in real time through a compound lens system consisting of a unique panoramic annular lens and a collector lens. Images, acquired with a digitizing camera and stored in a desktop computer, were manipulated using image processing software to aid in visual inspection and qualitative analysis. A detailed description of the lens and its applications is given.

  19. Annular pancreas associated with duodenal carcinoma

    PubMed Central

    Brönnimann, Enrico; Potthast, Silke; Vlajnic, Tatjana; Oertli, Daniel; Heizmann, Oleg

    2010-01-01

    Annular pancreas (AP) is a rare congenital anomaly. Coexisting malignancy has been reported only in a few cases. We report what is, to the best of our knowledge, the first case in the English literature of duodenal adenocarcinoma in a patient with AP. In a 55-year old woman with duodenal outlet stenosis magnetic resonance cholangiopancreatography showed an aberrant pancreatic duct encircling the duodenum. Duodenojejunostomy was performed. Eight weeks later she presented with painless jaundice. Duodenopancreatectomy revealed a duodenal adenocarcinoma, surrounded by an incomplete AP. Thus, co-existent malignancy with AP can be present without obstructive jaundice and without being visible through preoperative diagnostics. PMID:20593508

  20. Duration test of an annular colloid thruster.

    NASA Technical Reports Server (NTRS)

    Perel, J.; Mahoney, J. F.; Daley, H. L.

    1972-01-01

    An annular colloid thruster was continuously operated for 1023 hours. Performance was stable with no sparking and negligible drain currents observed. An average thrust of 25.1 micropounds and an average specific impulse of 1160 seconds were obtained at an accelerating voltage of 15 k he thruster exhaust beam was continuously neutralized using electrons and electrostatic vectoring was demonstrated periodically. The only clear trend with time was an increase in specific impulse during the last third of the test period. From these results the thruster lifetime was estimated to be over an order of magnitude greater than the test duration.

  1. Displacement separations by continuous annular chromatography

    SciTech Connect

    DeCarli, J.P. II; Carta, G. ); Byers, C.H. . Chemical Technology Div.)

    1988-01-01

    Continuous annular chromatography (CAC) has been introduced as an effective means of carrying out chromatographic separations in a truly continuous manner. Process applications have been demonstrated. In this work the authors demonstrate how CAC can be operated for displacement development separations. In this mode of operation of the apparatus separation and concentration of multicomponent mixtures can be obtained simultaneously and continuously. Experimental results and model simulations for this novel separation device are presented along with a comparison of different modes of operation and a discussion of industrial applications.

  2. The Annular Momentum Control Device (AMCD)

    NASA Technical Reports Server (NTRS)

    Anderson, W. W.; Groom, N. J.

    1975-01-01

    An annular momentum control device consisting principally of a spinning rim, a set of noncontacting magnetic bearings for supporting the rim, a noncontacting electric motor for driving the rim, and, for some applications, one or more gimbals is described. The device is intended for applications where requirements for control torque and momentum storage exist. Hardware requirements and potential unit configurations are discussed. Theoretical considerations for the passive use of the device are discussed. Potential applications of the device in other than passive configurations for the attitude control, stabilization, and maneuvering of spacecraft are reported.

  3. Seeing double: annular diaper rash in twins.

    PubMed

    Sommer, Lacy L; Manders, Steven M

    2015-01-01

    We report a case of dichorionic, diamniotic twins who developed similar erythematous, annular, erosive plaques in the inguinal folds in the first few weeks of life that were refractory to topical antifungals and oral antibiotics. The twins were found to have high transaminase levels, antinuclear antibody positivity, and anti-SSS/Ro) and anti-SSB/La autoantibodies. The rash resolved without scarring by 7 months of age with the use of low-potency topical corticosteroids. We suggest that physicians consider neonatal lupus erythematosus in neonates with atypical eruptions occurring in sun-protected skin.

  4. Wave turbulence in annular wave tank

    NASA Astrophysics Data System (ADS)

    Onorato, Miguel; Stramignoni, Ettore

    2014-05-01

    We perform experiments in an annular wind wave tank at the Dipartimento di Fisica, Universita' di Torino. The external diameter of the tank is 5 meters while the internal one is 1 meter. The tank is equipped by two air fans which can lead to a wind of maximum 5 m/s. The present set up is capable of studying the generation of waves and the development of wind wave spectra for large duration. We have performed different tests including different wind speeds. For large wind speed we observe the formation of spectra consistent with Kolmogorv-Zakharov predictions.

  5. Nonlinear features of Northern Annular Mode variability

    NASA Astrophysics Data System (ADS)

    Fu, Zuntao; Shi, Liu; Xie, Fenghua; Piao, Lin

    2016-05-01

    Nonlinear features of daily Northern Annular Mode (NAM) variability at 17 pressure levels are quantified by two different measures. One is nonlinear correlation, and the other is time-irreversible symmetry. Both measures show that there are no significant nonlinear features in NAM variability at the higher pressure levels, however as the pressure level decreases, the strength of nonlinear features in NAM variability becomes predominant. This indicates that in order to reach better prediction of NAM variability in the lower pressure levels, nonlinear features must be taken into consideration to build suitable models.

  6. Plate impact simulations of polymeric composites using an anisotropic material model

    NASA Astrophysics Data System (ADS)

    Rajendran, A. M.; Grove, D. J.

    1997-07-01

    Recently, an elastic-plastic anisotropic model based on the Tsai-Hill failure surface has been implemented in the 1995 version of the EPIC code. In the model, a strain rate dependent behavior has been assumed in the thickness direction. We simulated several plate impact experiments and analyzed the shock wave propagation in S-2 glass fiber/polyester matrix composite targets under one dimensional strain loading conditions. The modified Mie-Gruneisen equation of state includes the deviatoric part of the normal strain components. Since the deviatoric strains are calculated using a strain rate dependent strength model, this indirectly introduces a weak strain rate dependency in the bulk behavior of the composite. We also investigated the effect of strain rate dependency on the attenuation of the shock wave under one dimensional strain.

  7. Annular and Total Solar Eclipses of 2010

    NASA Technical Reports Server (NTRS)

    Espenak, Fred; Anderson, J.

    2008-01-01

    While most NASA eclipse bulletins cover a single eclipse, this publication presents predictions for two solar eclipses during 2010. This has required a different organization of the material into the following sections. Section 1 -- Eclipse Predictions: The section consists of a general discussion about the eclipse path maps, Besselian elements, shadow contacts, eclipse path tables, local circumstances tables, and the lunar limb profile. Section 2 -- Annular Solar Eclipse of 2010 Ja n 15: The section covers predictions and weather prospects for the annular eclipse. Section 3 -- Total Solar Eclipse of 2010 Jul 11: The se ction covers predictions and weather prospects for the total eclipse. Section 4 -- Observing Eclipses: The section provides information on eye safety, solar filters, eclipse photography, and making contact timings from the path limits. Section 5 -- Eclipse Resources: The final section contains a number of resources including information on the IAU Working Group on Eclipses, the Solar Eclipse Mailing List, the NASA eclipse bulletins on the Internet, Web sites for the two 2010 eclipses, and a summary identifying the algorithms, ephemerides, and paramete rs used in the eclipse predictions.

  8. Signatures of an annular Fermi sea

    NASA Astrophysics Data System (ADS)

    Jo, Insun; Liu, Yang; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W.; Shayegan, M.; Winkler, R.

    2017-01-01

    The concept of a Fermi surface, the constant-energy surface containing all the occupied electron states in momentum, or wave-vector (k ) , space plays a key role in determining electronic properties of conductors. In two-dimensional (2D) carrier systems, the Fermi surface becomes a contour which, in the simplest case, encircles the occupied states. In this case, the area enclosed by the contour, which we refer to as the Fermi sea (FS), is a simple disk. Here we report the observation of an FS with a new topology, namely, an FS in the shape of an annulus. Such an FS is expected in a variety of 2D systems where the energy band dispersion supports a ring of extrema at finite k , but its experimental observation has been elusive. Our study provides (1) theoretical evidence for the presence of an annular FS in 2D hole systems confined to wide GaAs quantum wells and (2) experimental signatures of the onset of its occupation as an abrupt rise in the sample resistance, accompanied by a sudden appearance of Shubnikov-de Haas oscillations at an unexpectedly high frequency whose value does not simply correspond to the (negligible) density of holes contained within the annular FS.

  9. Controlling the pressure within an annular volume of a wellbore

    DOEpatents

    Hermes, Robert E.; Gonzalez, Manuel E.; Llewellyn, Brian C.; Bloys, James B.

    2010-06-29

    A process is described for replacing at least a portion of the liquid within the annular volume of a casing system within a wellbore with a second liquid. The second liquid is preselected to provide a measure of control of the pressure within the annular volume as the fluid within the volume is being heated.

  10. Controlling the pressure within an annular volume of a wellbore

    DOEpatents

    Hermes, Robert E.; Gonzalez, Manuel E.; Llewellyn, Brian C.; Bloys, James B.

    2011-01-18

    A process is described for replacing at least a portion of the liquid within the annular volume of a casing system within a wellbore with a second liquid. The second liquid is preselected to provide a measure of control of the pressure within the annular volume as the fluid within the volume is being heated.

  11. Controlling the pressure within an annular volume of a wellbore

    SciTech Connect

    Hermes, Robert E.; Gonzalez, Manuel E.; Llewellyn, Brian C.; Bloys, James B.; Coates, Don M.

    2011-06-21

    A process is described for replacing at least a portion of the liquid within the annular volume of a casing system within a wellbore with a second liquid. The second liquid is preselected to provide a measure of control of the pressure within the annular volume as the fluid within the volume is being heated.

  12. Controlling the pressure within an annular volume of a wellbore

    SciTech Connect

    Hermes, Robert E.; Gonzalez, Manuel E.; Llewellyn, Brian C.; Bloys, James B.; Coates, Don M.

    2011-05-31

    A process is described for replacing at least a portion of the liquid within the annular volume of a casing system within a wellbore with a second liquid. The second liquid is preselected to provide a measure of control of the pressure within the annular volume as the fluid within the volume is being heated.

  13. Localized interstitial granuloma annulare induced by subcutaneous injections for desensitization.

    PubMed

    Spring, Philipp; Vernez, Maxime; Maniu, Christa-Maria; Hohl, Daniel

    2013-06-15

    We describe a patient with interstitial granuloma annulare associated with subcutaneous injection therapy (SIT) for desensitization to a type I allergy. Asymptomatic, erythematous, violaceous annular patches were located at the injection sites on both her arms. Medical history revealed perennial rhinoconjonctivitis treated with SIT (Phostal Stallergen® cat 100% and D. pteronyssinus/D.farinae 50%:50%).

  14. Design of a personal annular denuder sampler to measure atmospheric aerosols and gases

    NASA Astrophysics Data System (ADS)

    Koutrakis, P.; Fasano, A. M.; Slater, J. L.; Spengler, J. D.; McCarthy, J. F.; Leaderer, B. P.

    A personal sampling device has been designed to measure atmospheric gases and particles. This sampling system includes a glass impactor, an annular denuder and a filter pack. The glass impactor consists of an entrance section containing the inlet tube, the acceleration jet, and the impaction plate which is mounted at the entrance to the annular denuder. The impaction plate is a removable porous glass disk which can be impregnated with mineral oil to avoid bounce-off of the collected particles during sampling. The impactor has been designed to have a 50% aerodynamic particle cut-off point of 2.5μm, at flow rates of 4 and 2 ℓ min -1. For each flow, a different inlet has been designed with acceleration jet diameter of 0.250 and 0.190 mm, respectively. The annular denuder can be coated with citric acid to collect NH 3 and nicotine vapors. Also collection of SO 2, HNO 3 and HNO 2 is possible by coating the denuder with sodium carbonate. The last component of the designed personal sampler is a filter pack containing a 37-mm Teflon filter which is used to measure fine particle mass, aerosol strong acidity, sulfates and nitrates. The Teflon filter can be followed by a citric acid coated glass fiber filter used to collect nicotine which originates from the volatilization of the particle-phase nicotine collected on the Teflon filter. The ability of the personal sampler to collect fine particles was examined by conducting indoor aerosol sampling experiments. Also, ammonia collection efficiency tests were performed to characterize the personal denuder. The findings of these experiments showed that the designed personal sampler can be adequate for measuring human exposures to acid aerosols. In addition, the performance evaluation of the sampler to collect environmental tobacco smoke was investigated by conducting chamber tests.

  15. Vortex beam based more stable annular laser guide star

    NASA Astrophysics Data System (ADS)

    Luo, Ruiyao; Cui, Wenda; Li, Lei; Sun, Quan; He, Yulong; Wang, Hongyan; Ning, Yu; Xu, Xiaojun

    2016-11-01

    We present an annular laser guide star (LGS) concept for large ground-based telescopes in this paper. The more stable annular LGS is generated by turbulence-resisted vortex beam. In the uplink, a vortex beam tends to wander more slightly than a Gaussian beam does in atmospheric turbulence. This may enable an annular LGS to wander more slightly than a traditional Gaussian beam generated LGS does, which would ease the burden of uplink tip-tilt mirror and benefit a dynamical closed-loop adaptive optics system. We conducted numerical simulation to validate the feasibility of this concept. And we have gotten 31% reduced variance of spot wandering of annular LGS. Besides, we set up a spatial light modulator based laser guide star simulator for beam propagation in turbulent atmosphere to experimentally test the annular LGS concept. Preliminary experimental results are given. To the best of our knowledge, it is the first time this concept is formulated.

  16. Research of annular polishing asymmetric ZnS plane window

    NASA Astrophysics Data System (ADS)

    Guo, Weijin; Tong, Yi; Jin, Yuzhu; Lin, Nana

    2016-10-01

    Due the annular polishing technology for planar optical components do not have the sharp selectivity, annular polishing technology is a very import process to fabricate irregular planar elements which with high precision surface shape and low surface roughness. According to the characteristics of annular polishing, the zns asymmetric plane window annular polishing process and key technical parameters control was researched. In this paper, one pair of asymmetric planar ZnS window parts were machined which diagonal length is 147mm, through technology experiments, obtained process test samples. The surface figures of the plane zns window are measured by a Zygo interferometer and the reflect wavefront P-V value is better than 1.5λ, the reflect wavefront local error rms value is better than 0.05λ (λ=632.8nm). Experiments results demonstrate the effectiveness of annular processing technology was used to manufacture zinc sulfide asymmetric shape plane window.

  17. Vaginal delivery through annular placenta – case report

    PubMed Central

    Živković, Nikica; Krezo, Stipe; Matijević, Ratko; Živković, Krešimir

    2013-01-01

    Annular placenta is an extremely rare morphological type of human placenta. It is commonly related to placental vessel abnormalities frequently causing antenatal and postnatal hemorrhage and operative delivery. Gravida 4 para 1 had an uneventful course of pregnancy and normal vaginal delivery followed by moderate postpartum hemorrhage. Hemorrhage was found to be local in origin but the placenta was annular in shape and the newborn was delivered through one of the openings. Annular placenta was not recognized before delivery. Its implantation site was in the lower uterine segment but high enough to allow the passage of the fetus through its annular defect and vaginal birth. To our knowledge, this is a first report of annular placenta ending in normal vaginal delivery. PMID:23630149

  18. Reflective plasmonic waveplates based on metal-insulator-metal subwavelength rectangular annular arrays

    NASA Astrophysics Data System (ADS)

    Chen, Zhonghui; Wang, Chinhua; Xu, Fuyang; Lou, Yimin; Cao, Bing; Li, Xiaofeng

    2014-04-01

    We propose and present a quarter-wave plate using metal-insulator-metal (MIM) structure with sub-wavelength rectangular annular arrays (RAA) patterned in the upper Au film. It is found that by manipulating asymmetric width of the annular gaps along two orthogonal directions, the reflected amplitude and phase of the two orthogonal components can be well controlled via the RAA metasurface tuned by the MIM cavity effect, in which the localized surface plasmon resonance dip can be flattened with the cavity length. A quarter-wave plate has been realized through an optimized design at 1.55 μm, in which the phase difference variation of less than 2% of the π/2 between the two orthogonal components can be obtained in an ultra-wide wavelength range of about 130 nm, and the reflectivity is up to ˜90% within the whole working wavelength band. It provides a great potential for applications in advanced nanophotonic devices and integrated photonic systems.

  19. An equivalent network representation of a clamped bimorph piezoelectric micromachined ultrasonic transducer with circular and annular electrodes using matrix manipulation techniques.

    PubMed

    Sammoura, Firas; Smyth, Katherine; Kim, Sang-Gook

    2013-09-01

    An electric circuit model for a clamped circular bimorph piezoelectric micromachined ultrasonic transducer (pMUT) was developed for the first time. The pMUT consisted of two piezoelectric layers sandwiched between three thin electrodes. The top and bottom electrodes were separated into central and annular electrodes by a small gap. While the middle electrode was grounded, the central and annular electrodes were biased with two independent voltage sources. The strain mismatch between the piezoelectric layers caused the plate to vibrate and transmit a pressure wave, whereas the received echo generated electric charges resulting from plate deformation. The clamped pMUT plate was separated into a circular and an annular plate, and the respective electromechanical transformation matrices were derived. The force and velocity vectors were properly selected using Hamilton's principle and the necessary boundary conditions were invoked. The electromechanical transformation matrix for the clamped circular pMUT was deduced using simple matrix manipulation techniques. The pMUT performance under three biasing schemes was elaborated: 1) central electrode only, 2) central and annular electrodes with voltages of the same magnitude and polarity, and 3) central and annular electrodes with voltages of the same magnitude and opposite polarity. The circuit parameters of the pMUT were extracted for each biasing scheme, including the transformer ratio, the clamped electric impedance, and the open-circuit mechanical impedance. Each pMUT scheme was characterized under different acoustic loadings using the theoretically developed model, which was verified with finite element modeling (FEM) simulation. The electrode size was optimized to maximize the electromechanical transformer ratio. As such, the developed model could provide more insight into the design, optimization, and characterization of pMUTs and allow for performance comparison with their cMUT counterparts.

  20. Non-elastic Plate Weakening at Tonga, Costa Rica and Japanese Subduction Zones

    NASA Astrophysics Data System (ADS)

    Arredondo, K.; Billen, M. I.

    2010-12-01

    Traditionally studies of plate bending in subduction zones have utilized elastic, viscous or elastic-plastic rheologies to model the deformation of subducting plates, yet they are based on averaged plate properties and do not take into account variations in plate strength. Direct measurements of plate strength at subduction zones could permit more detailed models of how plates deform during subduction and may allow differentiation between the elastic and viscous or plastic rheologies. Additionally, weakening of the subducting plate is important for understanding the degree of coupling of the surface plate to the negative buoyancy of descending slabs. To obtain quantitative measurements of changes in plate strength along profiles parallel to the trench, we use analysis of the gravity-topography admittance in three subduction zones: Tonga, Costa Rica and Japan. We show that the plate flexural rigidity decreases near and inside the trench of the Tonga and Japan subduction zones, in agreement with previous results for the Kermadec subduction zone (1). Near the trench the flexural rigidity values are consistently smaller than those predicted by an elastic rheology and the plate age (2). This degree of weakening, by up to 3 orders magnitude, suggests that the plate does not act elastically as it is subducted, possibly due to lithospheric-scale weakening by extensional faulting and plastic yielding at depth. In contrast lithospheric-scale weakening in the Costa Rica subduction zone is less clear. This may be due to the younger age of the subducting plate and the small age difference between the seamounts and surrounding plate, which limits the sensitivity of the gravity field to changes in the non-isostatic support of topographic feature. These results suggest that this technique is only applicable to older plates with large seamounts that are appreciably younger than the subducting plate. Comparison of the flexural rigidity results to the tectonic characteristics of all

  1. Dense annular flows of granular media

    NASA Astrophysics Data System (ADS)

    de Ryck, Alain; Louisnard, Olivier

    2013-06-01

    Dense granular flows constitute an important topic for geophysics and process engineering. To describe them, a rheology based on the coaxiality between the stress and strain tensors with a Mohr-Coulomb yield criterion has been proposed. We propose here an analytic study of flows in an annular cell, with this rheology. This geometry is relevant for a series of powder rheometers or mixing devices, but the discussion is focused on the split-bottom geometry, for which the internal flow has been investigated by NMR technique. In this case, the full resolution of the velocity and stress fields allow to localize the shear deformations. The theoretical results obtained for the latter are compared with the torque measurements by Dijksman et al. [Phys. Rev. E, 82 (2010) 060301].

  2. Annular Ion Engine Concept and Development Status

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.

    2016-01-01

    The Annular Ion Engine (AIE) concept represents an evolutionary development in gridded ion thruster technology with the potential for delivering revolutionary capabilities. It has this potential because the AIE concept: (a) enables scaling of ion thruster technology to high power at specific impulse (Isp) values of interest for near-term mission applications, 5000 sec; and (b) it enables an increase in both thrust density and thrust-to-power (FP) ratio exceeding conventional ion thrusters and other electric propulsion (EP) technology options, thereby yielding the highest performance over a broad range in Isp. The AIE concept represents a natural progression of gridded ion thruster technology beyond the capabilities embodied by NASAs Evolutionary Xenon Thruster (NEXT) [1]. The AIE would be appropriate for: (a) applications which require power levels exceeding NEXTs capabilities (up to about 14 kW [2]), with scalability potentially to 100s of kW; and/or (b) applications which require FP conditions exceeding NEXTs capabilities.

  3. Separation of sugars by continuous annular chromatography

    SciTech Connect

    Howard, A.J.; Carta, G.; Byers, C.H.

    1987-08-01

    Continuous chromatographic separations of aqueous fructose-glucose-sucrose solutions have been investigated in a laboratory-scale continuous annular chromatograph (CAC) using calcium-exchanged Dowex 50W-X8 resin. Comparative studies have also been conducted using a conventional fixed-bed column packed with the same resin. Complete resolution of fructose-glucose mixtures could be obtained both in a 60-cm-long CAC and in a conventional column of the same length with a sugar feed concentration of up to 200 g/L. Partial resolution of sucrose in three component mixtures was also obtained, and the three sugars were completely separated from added higher-molecular-weight saccharides. Results have been analyzed in terms of approximate linear chromatographic theories and orthogonal collocation of exact mass transfer model equations for fixed and rotating beds. A systematic, comparative evaluation of factors affecting process performance and design procedures is presented.

  4. Annular nanoantenna on fibre micro-axicon.

    PubMed

    Grosjean, T; Fahys, A; Suarez, M; Charraut, D; Salut, R; Courjon, D

    2008-02-01

    In this paper, we propose to extend the concept of loop antenna to the optical domain. The aim is to develop a new generation of optical nanocollectors that are sensitive to specific electric or magnetic vectorial field components. For validating our approach, a preliminary one-micron-diameter gold nanoring is micromachined on the apex of a cone lens obtained from a tapered optical fibre. It is shown that such a nano-object behaves as a nano-antenna able to detect the longitudinal electric field from a Bessel beam in radial polarization and the longitudinal magnetic component from a Bessel beam in azimuthal polarization. In the latter case, the annular nano-antenna exhibits the properties of an optical inductance.

  5. Simulation of cryogenic turbopump annular seals

    NASA Technical Reports Server (NTRS)

    Palazzolo, Alan B.

    1992-01-01

    The goal of the current work is to develop software that can accurately predict the dynamic coefficients, forces, leakage and horsepower loss for annular seals which have a potential for affecting the rotordynamic behavior of the pumps. The fruit of last year's research was the computer code SEALPAL which included capabilities for linear tapered geometry, Moody friction factor and inlet pre-swirl. This code produced results which in most cases compared very well with check cases presented in the literature. TAMUSEAL Icode, which was written to improve SEALPAL by correcting a bug and by adding more accurate integration algorithms and additional capabilities, was then used to predict dynamic coefficients and leakage for the NASA/Pratt and Whitney Alternate Turbopump Development (ATD) LOX Pump's seal.

  6. Trauma-related papular granuloma annular.

    PubMed

    Hu, Stephanie W; Kaplan, Jennifer; Patel, Rishi R; Kamino, Hideko

    2013-12-16

    Granuloma annulare (GA) is a benign, granulomatous disease with several clinical manifestations, which include localized, generalized, perforating, subcutaneous, patch, papular, and linear forms. We report a case of papular GA of the dorsal aspects of the hands that arose after repeated, direct trauma to the site of subsequent involvement. Although multiple etiologies for GA have been proposed, which include ultraviolet light, arthropod bites, trauma, tuberculin skin tests, viral infections, and PUVA photochemotherapy, the underlying pathogenesis of the disorder remains unclear. However, owing to the key histopathologic findings of focal collagen and elastic fiber degeneration and mucin deosition in GA, it is not surprising that cutaneous trauma may have played a role in connective tissue injury, subsequent degeneration, and the production of a granulomatous response with increased mucin deposition.

  7. Annular MHD Physics for Turbojet Energy Bypass

    NASA Technical Reports Server (NTRS)

    Schneider, Steven J.

    2011-01-01

    The use of annular Hall type MHD generator/accelerator ducts for turbojet energy bypass is evaluated assuming weakly ionized flows obtained from pulsed nanosecond discharges. The equations for a 1-D, axisymmetric MHD generator/accelerator are derived and numerically integrated to determine the generator/accelerator performance characteristics. The concept offers a shockless means of interacting with high speed inlet flows and potentially offers variable inlet geometry performance without the complexity of moving parts simply by varying the generator loading parameter. The cycle analysis conducted iteratively with a spike inlet and turbojet flying at M = 7 at 30 km altitude is estimated to have a positive thrust per unit mass flow of 185 N-s/kg. The turbojet allowable combustor temperature is set at an aggressive 2200 deg K. The annular MHD Hall generator/accelerator is L = 3 m in length with a B(sub r) = 5 Tesla magnetic field and a conductivity of sigma = 5 mho/m for the generator and sigma= 1.0 mho/m for the accelerator. The calculated isentropic efficiency for the generator is eta(sub sg) = 84 percent at an enthalpy extraction ratio, eta(sub Ng) = 0.63. The calculated isentropic efficiency for the accelerator is eta(sub sa) = 81 percent at an enthalpy addition ratio, eta(sub Na) = 0.62. An assessment of the ionization fraction necessary to achieve a conductivity of sigma = 1.0 mho/m is n(sub e)/n = 1.90 X 10(exp -6), and for sigma = 5.0 mho/m is n(sub e)/n = 9.52 X 10(exp -6).

  8. Actinic Granuloma Annulare With Scarring and Open Comedones.

    PubMed

    Gavioli, Cfb; Valente, Nys; Sangueza, M; Nico, M M

    2017-02-14

    Actinic granuloma and annular elastolytic giant cell granuloma are variants of granuloma annulare affecting, respectively, sun-exposed and sun-covered skin sites on where, besides classical findings, abundant elastophagocytosis is observed. Here, we report a case of exuberant actinic granuloma annulare that, in addition to extensive scarring, showed multiple overlying open comedones. Markedly dilated follicular infundibula filled with compact masses of laminated keratinous material were observed in proximity to dermal inflammation composed of many histiocytes and multinucleated giant cells in close association with degenerated elastic fibers and abundant elastophagocytosis.

  9. How Plates Pull Transforms Apart: 3-D Numerical Models of Oceanic Transform Fault Response to Changes in Plate Motion Direction

    NASA Astrophysics Data System (ADS)

    Morrow, T. A.; Mittelstaedt, E. L.; Olive, J. A. L.

    2015-12-01

    Observations along oceanic fracture zones suggest that some mid-ocean ridge transform faults (TFs) previously split into multiple strike-slip segments separated by short (<~50 km) intra-transform spreading centers and then reunited to a single TF trace. This history of segmentation appears to correspond with changes in plate motion direction. Despite the clear evidence of TF segmentation, the processes governing its development and evolution are not well characterized. Here we use a 3-D, finite-difference / marker-in-cell technique to model the evolution of localized strain at a TF subjected to a sudden change in plate motion direction. We simulate the oceanic lithosphere and underlying asthenosphere at a ridge-transform-ridge setting using a visco-elastic-plastic rheology with a history-dependent plastic weakening law and a temperature- and stress-dependent mantle viscosity. To simulate the development of topography, a low density, low viscosity 'sticky air' layer is present above the oceanic lithosphere. The initial thermal gradient follows a half-space cooling solution with an offset across the TF. We impose an enhanced thermal diffusivity in the uppermost 6 km of lithosphere to simulate the effects of hydrothermal circulation. An initial weak seed in the lithosphere helps localize shear deformation between the two offset ridge axes to form a TF. For each model case, the simulation is run initially with TF-parallel plate motion until the thermal structure reaches a steady state. The direction of plate motion is then rotated either instantaneously or over a specified time period, placing the TF in a state of trans-tension. Model runs continue until the system reaches a new steady state. Parameters varied here include: initial TF length, spreading rate, and the rotation rate and magnitude of spreading obliquity. We compare our model predictions to structural observations at existing TFs and records of TF segmentation preserved in oceanic fracture zones.

  10. Principle of radial transport in low temperature annular plasmas

    NASA Astrophysics Data System (ADS)

    Zhang, Yunchao; Charles, Christine; Boswell, Rod

    2015-07-01

    Radial transport in low temperature annular plasmas is investigated theoretically in this paper. The electrons are assumed to be in quasi-equilibrium due to their high temperature and light inertial mass. The ions are not in equilibrium and their transport is analyzed in three different situations: a low electric field (LEF) model, an intermediate electric field (IEF) model, and a high electric field (HEF) model. The universal IEF model smoothly connects the LEF and HEF models at their respective electric field strength limits and gives more accurate results of the ion mobility coefficient and effective ion temperature over the entire electric field strength range. Annular modelling is applied to an argon plasma and numerical results of the density peak position, the annular boundary loss coefficient and the electron temperature are given as functions of the annular geometry ratio and Paschen number.

  11. Principle of radial transport in low temperature annular plasmas

    SciTech Connect

    Zhang, Yunchao Charles, Christine; Boswell, Rod

    2015-07-15

    Radial transport in low temperature annular plasmas is investigated theoretically in this paper. The electrons are assumed to be in quasi-equilibrium due to their high temperature and light inertial mass. The ions are not in equilibrium and their transport is analyzed in three different situations: a low electric field (LEF) model, an intermediate electric field (IEF) model, and a high electric field (HEF) model. The universal IEF model smoothly connects the LEF and HEF models at their respective electric field strength limits and gives more accurate results of the ion mobility coefficient and effective ion temperature over the entire electric field strength range. Annular modelling is applied to an argon plasma and numerical results of the density peak position, the annular boundary loss coefficient and the electron temperature are given as functions of the annular geometry ratio and Paschen number.

  12. Virtual cathode microwave generator having annular anode slit

    DOEpatents

    Kwan, Thomas J. T.; Snell, Charles M.

    1988-01-01

    A microwave generator is provided for generating microwaves substantially from virtual cathode oscillation. Electrons are emitted from a cathode and accelerated to an anode which is spaced apart from the cathode. The anode has an annular slit therethrough effective to form the virtual cathode. The anode is at least one range thickness relative to electrons reflecting from the virtual cathode. A magnet is provided to produce an optimum magnetic field having the field strength effective to form an annular beam from the emitted electrons in substantial alignment with the annular anode slit. The magnetic field, however, does permit the reflected electrons to axially diverge from the annular beam. The reflected electrons are absorbed by the anode in returning to the real cathode, such that substantially no reflexing electrons occur. The resulting microwaves are produced with a single dominant mode and are substantially monochromatic relative to conventional virtual cathode microwave generators.

  13. Modeling of Kipp-Grady plate impact experiments on ceramics using the Rajendran-Grove ceramic model

    NASA Astrophysics Data System (ADS)

    Grove, D. J.; Rajendran, A. M.

    1994-07-01

    The recently reported Rajendran-Grove ceramic model decomposes the total strain into elastic, plastic, and microcracking components. The constitutive equations model the effects of damage through degradation of the ceramic's strength and elastic constants under both tensile and compressive loadings. Damage, defined in terms of a crack density parameter, is assumed to evolve in the form of randomly distributed penny shaped microcracks. A dynamic crack propagation equation, based on a strain energy release rate, defines the damage evolution rate. The model has been implemented in the 1991 version of the EPIC Research code (EPIC91R). Six ceramic plate impact tests, performed by Kipp and Grady, were simulated. Model parameters were determined for three ceramic materials by matching the experimentally measured velocity profiles.

  14. Description of a laboratory model Annular Momentum Control Device (AMCD)

    NASA Technical Reports Server (NTRS)

    Groom, N. J.

    1984-01-01

    The basic concept of the Annular Momentum Control Device (AMCD) is that of a rotating annular rim suspended by noncontacting magnetic bearings and driven by a noncontacting electromagnetic spin motor. The purpose of this paper is to highlight some of the design requirements for AMCD's in general and describe how these requirements were met in the implementation of laboratory test model AMCD. An AMCD background summary is presented.

  15. Annular elastolytic giant cell granuloma: A report of 10 cases

    PubMed Central

    Arora, Sandeep; Malik, Ajay; Patil, Chetan; Balki, Anil

    2015-01-01

    Annular elastolytic giant cell granuloma initially described by O’Brien in 1975 is a disorder of uncertain etiopathogenesis presenting with annular erythematous plaques predominantly on the sun-exposed areas. Hisptopathologically, it is characterized by elastin degenration, multinucleate giant cells, and elastophagocytosis. The authors came across 10 such cases, which were managed with hydroxychloroquine resulting in complete resolution in 4–6 months. PMID:26904442

  16. Experimental Results for an Annular Aerospike with Differential Throttling

    NASA Technical Reports Server (NTRS)

    Ruf, Joseph H.; McDaniels, David M.

    2005-01-01

    A) MSFC funded an internal study on Altitude Compensating Nozzles: 1) Develop an ACN design and performance prediction tool. 2) Design, build and test cold flow ACN nozzles. 3) An annular aerospike nozzle was designed and tested. 4) Incorporated differential throttling to assess Thrust Vector Control. B) Objective of the test hardware: 1) Provide design tool verification. 2) Provide benchmark data for CFD calculations. 3) Experimentally measure side force, or TVC, for a differentially throttled annular aerospike.

  17. Evaluation of a laboratory test model annular momentum control device

    NASA Technical Reports Server (NTRS)

    Groom, N. J.; Terray, D. E.

    1978-01-01

    A 4068 Nm Sec laboratory test model annular momentum control device (AMCD) was described and static and dynamic test results were presented. An AMCD is a spinning annular rim suspended by noncontacting magnetic bearings and powered by a noncontacting linear electromagnetic motor. Test results include spin motor torque characteristics and spin motor and magnetic bearing drag losses. Limitations of some of the design approaches taken was also discussed.

  18. New mitral annular force transducer optimized to distinguish annular segments and multi-plane forces.

    PubMed

    Skov, Søren Nielsen; Røpcke, Diana Mathilde; Ilkjær, Christine; Rasmussen, Jonas; Tjørnild, Marcell Juan; Jimenez, Jorge H; Yoganathan, Ajit P; Nygaard, Hans; Nielsen, Sten Lyager; Jensen, Morten Olgaard

    2016-03-21

    Limited knowledge exists about the forces acting on mitral valve annuloplasty repair devices. The aim of this study was to develop a new mitral annular force transducer to measure the forces acting on clinically used mitral valve annuloplasty devices. The design of an X-shaped transducer in the present study was optimized for simultaneous in- and out-of-plane force measurements. Each arm was mounted with strain gauges on four circumferential elements to measure out-of-plane forces, and the central parts of the X-arms were mounted with two strain gauges to measure in-plane forces. A dedicated calibration setup was developed to calibrate isolated forces with tension and compression for in- and out-of-plane measurements. With this setup, it was possible with linear equations to isolate and distinguish measured forces between the two planes and minimize transducer arm crosstalk. An in-vitro test was performed to verify the crosstalk elimination method and the assumptions behind it. The force transducer was implanted and evaluated in an 80kg porcine in-vivo model. Following crosstalk elimination, in-plane systolic force accumulation was found to be in average 4.0±0.1N and the out-of-plane annular segments experienced an average force of 1.4±0.4N. Directions of the systolic out-of-plane forces indicated movements towards a saddle shaped annulus, and the transducer was able to measure independent directional forces in individual annular segments. Further measurements with the new transducer coupled with clinical annuloplasty rings will provide a detailed insight into the biomechanical dynamics of these devices.

  19. Peen plating

    NASA Technical Reports Server (NTRS)

    Babecki, A. J. (Inventor); Haehner, C. L.

    1973-01-01

    A process for metal plating which comprises spraying a mixture of metallic powder and small peening particles at high velocity against a surface is described. The velocity must be sufficient to impact and bond metallic powder onto the surface. In the case of metal surfaces, the process has as one of its advantages providing mechanical working (hardening) of the surface simultaneously with the metal plating.

  20. Impulsively started, steady and pulsated annular inflows

    NASA Astrophysics Data System (ADS)

    Abdel-Raouf, Emad; Sharif, Muhammad A. R.; Baker, John

    2017-04-01

    A computational investigation was carried out on low Reynolds number laminar inflow starting annular jets using multiple blocking ratios and atmospheric ambient conditions. The jet exit velocity conditions are imposed as steady, unit pulsed, and sinusoidal pulsed while the jet surroundings and the far-field jet inlet upstream conditions are left atmospheric. The reason is to examine the flow behavior in and around the jet inlet under these conditions. The pulsation mode behavior is analyzed based on the resultant of the momentum and pressure forces at the entry of the annulus, the circulation and vortex formation, and the propulsion efficiency of the inflow jets. The results show that under certain conditions, the net force of inflow jets (sinusoidal pulsed jets in particular) could point opposite to the flow direction due to the adverse pressure drops in the flow. The propulsion efficiency is also found to increase with pulsation frequency and the sinusoidal pulsed inflow jets are more efficient than the unit pulsed inflow jets. In addition, steady inflow jets did not trigger the formation of vortices, while unit and sinusoidal pulsed inflow jets triggered the formation of vortices under a certain range of frequencies.

  1. Solar cycle modulation of Southern Annular Mode

    NASA Astrophysics Data System (ADS)

    Kuroda, Yuhji

    2016-04-01

    Climate is known to be affected by various factors, including oceanic changes and volcanic eruptions. 11-year solar cycle change is one of such important factors. Observational analysis shows that the winter-mean North Atlantic Oscillation (NAO) and late-winter/spring Southern Annular Mode (SAM) show structural modulation associated with 11-year solar cycle. In fact, these signals tend to extend from surface to upper stratosphere and persistent longer period only in the High Solar (HS) years. In the present study, we used 35-year record of ERA-Interim reanalysis data and performed wave-energy and momentum analysis on the solar-cycle modulation of the SAM to examine key factors to create such solar-SAM relationship. It is found that enhanced wave-mean flow interaction tends to take place in the middle stratosphere in association with enhanced energy input from diabatic heating on September only in HS years. The result suggests atmospheric and solar conditions on September are keys to create solar-SAM relationship.

  2. Results of fracture mechanics tests on PNC SUS 304 plate

    SciTech Connect

    Mills, W.J.; James, L.A.; Blackburn, L.D.

    1985-08-01

    PNC provided SUS 304 plate to be irradiated in FFTF at about 400/sup 0/C to a target fluence of 5 x 10/sup 21/ n/cm/sup 2/ (E > 0.1 MeV). The actual irradiation included two basically different exposure levels to assure that information would be available for the exposure of interest. After irradiation, tensile properties, fatigue-crack growth rates and J-integral fracture toughness response were determined. These same properties were also measured for the unirradiated material so radiation damage effects could be characterized. This report presents the results of this program. It is expected that these results would be applicable for detailed fracture analysis of reactor components. Recent advances in elastic-plastic fracture mechanics enable reasonably accurate predictions of failure conditions for flawed stainless steel components. Extensive research has focused on the development of J-integral-based engineering approach for assessing the load carrying capacity of low-strength, high-toughness structural materials. Furthermore, Kanninen, et al., have demonstrated that J-integral concepts can accurately predict the fracture response for full-scale cracked structures manufactured from Type 304 stainless steel.

  3. X-ray diffraction from bone employing annular and semi-annular beams.

    PubMed

    Dicken, A J; Evans, J P O; Rogers, K D; Stone, N; Greenwood, C; Godber, S X; Prokopiou, D; Clement, J G; Lyburn, I D; Martin, R M; Zioupos, P

    2015-08-07

    There is a compelling need for accurate, low cost diagnostics to identify osteo-tissues that are associated with a high risk of fracture within an individual. To satisfy this requirement the quantification of bone characteristics such as 'bone quality' need to exceed that provided currently by densitometry. Bone mineral chemistry and microstructure can be determined from coherent x-ray scatter signatures of bone specimens. Therefore, if these signatures can be measured, in vivo, to an appropriate accuracy it should be possible by extending terms within a fracture risk model to improve fracture risk prediction.In this preliminary study we present an examination of a new x-ray diffraction technique that employs hollow annular and semi-annular beams to measure aspects of 'bone quality'. We present diffractograms obtained with our approach from ex vivo bone specimens at Mo Kα and W Kα energies. Primary data is parameterized to provide estimates of bone characteristics and to indicate the precision with which these can be determined.

  4. X-ray diffraction from bone employing annular and semi-annular beams

    NASA Astrophysics Data System (ADS)

    Dicken, A. J.; Evans, J. P. O.; Rogers, K. D.; Stone, N.; Greenwood, C.; Godber, S. X.; Prokopiou, D.; Clement, J. G.; Lyburn, I. D.; Martin, R. M.; Zioupos, P.

    2015-08-01

    There is a compelling need for accurate, low cost diagnostics to identify osteo-tissues that are associated with a high risk of fracture within an individual. To satisfy this requirement the quantification of bone characteristics such as ‘bone quality’ need to exceed that provided currently by densitometry. Bone mineral chemistry and microstructure can be determined from coherent x-ray scatter signatures of bone specimens. Therefore, if these signatures can be measured, in vivo, to an appropriate accuracy it should be possible by extending terms within a fracture risk model to improve fracture risk prediction. In this preliminary study we present an examination of a new x-ray diffraction technique that employs hollow annular and semi-annular beams to measure aspects of ‘bone quality’. We present diffractograms obtained with our approach from ex vivo bone specimens at Mo Kα and W Kα energies. Primary data is parameterized to provide estimates of bone characteristics and to indicate the precision with which these can be determined.

  5. Critical heat flux estimation for annular channel geometry

    NASA Astrophysics Data System (ADS)

    Pagh, Richard T.

    Critical Heat Flux (CHF) is an important safety parameter for the design of nuclear reactors. The most commonly used predictive tool for determination of CHF is a look-up table developed using tube data with an average hydraulic test diameter of 8 mm. There exist in the world today nuclear reactors whose geometry is annular, not tubular, and whose hydraulic diameter is significantly smaller than 8 mm. In addition, any sub-channel thermal hydraulic model of fuel assemblies is annular and not tubular. Comparisons were made between this predictive tool and annular correlations developed from test data. These comparisons showed the look-up table over-predicts the CHF values for annular channels, thus questioning its ability to perform correct safety evaluations. Since no better tool exists to predict CHF for annular geometry, an effort was undertaken to produce one. A database of open literature annular CHF values was created as a basis for this new tool. By compiling information from eighteen sources and requiring that the data be inner wall, unilaterally, uniformly heated with no spacers or heat transfer enhancement devices, a database of 1630 experimental values was produced. After a review of the data in the database, a new look-up table was created. A look-up table provides localized control of the prediction to overcome sparseness of data. Using Shepard's Method as the extrapolation technique, a regular mesh look-up table was produced using four main variables: pressure, quality, mass flux, and hydraulic diameter. The root mean square error of this look-up table was found to be 0.8267. However, by fixing the hydraulic diameter locations to the database values, the root mean square error was further reduced to 0.2816. This look-up table can now predict CHF values for annular channels over a wide range of fluid conditions.

  6. The modeling and design of the Annular Suspension and Pointing System /ASPS/. [for Space Shuttle

    NASA Technical Reports Server (NTRS)

    Kuo, B. C.; Lin, W. C. W.

    1979-01-01

    The Annular Suspension and Pointing System (ASPS) is a payload auxiliary pointing device of the Space Shuttle. The ASPS is comprised of two major subassemblies, a vernier and a coarse pointing subsystem. The three functions provided by the ASPS are related to the pointing of the payload, centering the payload in the magnetic actuator assembly, and tracking the payload mounting plate and shuttle motions by the coarse gimbals. The equations of motion of a simplified planar model of the ASPS are derived. Attention is given to a state diagram of the dynamics of the ASPS with position-plus-rate controller, the nonlinear spring characteristic for the wire-cable torque of the ASPS, the design of the analog ASPS through decoupling and pole placement, and the time response of different components of the continuous control system.

  7. On the mixing enhancement in annular flows

    NASA Astrophysics Data System (ADS)

    Moradi, H. V.; Floryan, J. M.

    2017-02-01

    The potential for mixing enhancement associated with the use of axisymmetric ribs in annular flows has been analyzed. The enhancement relies on the use of streamwise vortices produced by the centrifugal instability. Conditions leading to the formation of such vortices have been established for a wide range of geometric parameters of interest using linear stability theory. It has been demonstrated that vortices can be formed only in the presence of ribs with O(1) wavelengths. Slopes of the bounding walls in the case of the long wavelength ribs are too small to create centrifugal forces sufficient for flow destabilization. In the case of short wavelength ribs, the slopes become excessively large, resulting in the stream moving away from the wall and becoming rectilinear and, thus, reducing the magnitude of the centrifugal force field. It has been shown that decreasing the annulus' radius reduces the critical Reynolds number when ribs are placed at the inner cylinder but increases when the ribs are placed at the outer cylinder. The onset of the shear-driven instability has been investigated as the resulting travelling waves may interfere with the formation of vortices. It has been shown that the axisymmetric waves play the critical role for annuli with large radii while the spiral waves play the critical role for annuli with small radii. The ribs always reduce the critical Reynolds number for the travelling waves when compared with the onset conditions for smooth annuli. The conduit geometries giving preference to the formation of vortices while avoiding creation of the travelling waves have been identified. It is demonstrated that predictions of flow characteristics determined through the analysis of sinusoidal ribs provide a good approximation of the flow response to ribs of arbitrary shape.

  8. Stratospheric Annular Modes Induced By Stationary Wave Forcing

    NASA Astrophysics Data System (ADS)

    Körnich, H.; Schmitz, G.

    The variability of the winter stratosphere shows distinguishable features in the north- ern and southern hemisphere. Since these differences are based on the different plan- etary waves of the underlying atmosphere, we explore the mechanism how stationary wave forcing in the troposphere can induce a stratospheric Annular Mode using a simple GCM. The model KMCM (Kühlungsborn Mechanistic Circulation Model) extends from the ground up to 60 km height and produces a reasonable winter climate. It takes into account the different large-scale wave forcings in the troposphere as prescribed pro- cesses. This allows us to examine the stratospheric Annular-Mode generation depend- ing on different wave forcings under perpetual January conditions. Principal com- ponent analysis is applied to identify the variability patterns of the geopotential and of the zonally averaged zonal wind. By this way, it is shown that the amplitude and composition of the orographic and thermal eddy forcing determines the stratospheric Annular Mode and the related downward propagation in the temperature field. Further model simplifications are introduced in order to understand the mechanism of the stratospheric AM-generation. Using a linear model version we illuminate the influence of the different wave forcing processes on the Annular Modes. Addition- ally, a constant-troposphere model is used to clarify the importance of transient and stationary waves. Finally, the Annular Mode is interpreted in terms of the dynamical coupling of the troposphere and stratosphere.

  9. Non-axisymmetric annular curtain stability

    NASA Astrophysics Data System (ADS)

    Ahmed, Zahir U.; Khayat, Roger E.; Maissa, Philippe; Mathis, Christian

    2013-08-01

    A stability analysis of non-axisymmetric annular curtain is carried out for an axially moving viscous jet subject in surrounding viscous gas media. The effect of inertia, surface tension, gas-to-liquid density ratio, inner-to-outer radius ratio, and gas-to-liquid viscosity ratio on the stability of the jet is studied. In general, the axisymmetric disturbance is found to be the dominant mode. However, for small wavenumber, the non-axisymmetric mode is the most unstable mode and the one likely observed in reality. Inertia and the viscosity ratio for non-axisymmetric disturbances show a similar stability influence as observed for axisymmetric disturbances. The maximum growth rate in non-axisymmetric flow, interestingly, appears at very small wavenumber for all inertia levels. The dominant wavenumber increases (decreases) with inertia for non-axisymmetric (axisymmetric) flow. Gas-to-liquid density ratio, curvature effect, and surface tension, however, exhibit an opposite influence on growth rate compared to axisymmetric disturbances. Surface tension tends to stabilize the flow with reductions of the unstable wavenumber range and the maximum growth rate as well as the dominant wavenumber. The dominant wavenumber remains independent of viscosity ratio indicating the viscosity ratio increases the breakup length of the sheet with very little influence on the size of the drops. The range of unstable wavenumbers is affected only by curvature in axisymmetric flow, whereas all the stability parameters control the range of unstable wavenumbers in non-axisymmetric flow. Inertia and gas density increase the unstable wavenumber range, whereas the radius ratio, surface tension, and the viscosity ratio decrease the unstable wavenumber range. Neutral curves are plotted to separate the stable and unstable domains. Critical radius ratio decreases linearly and nonlinearly with the wavenumber for axisymmetric and non-axisymmetric disturbances, respectively. At smaller Weber numbers, a

  10. Annular lupus vulgaris: an unusual case undiagnosed for five years.

    PubMed

    Gönül, Müzeyyen; Kiliç, Arzu; Külcü Cakmak, Seray; Gül, Ulker; Koçak, Oğuzhan; Demiriz, Murat

    2007-01-01

    Tuberculosis is still a serious problem in both developing and developed countries. It is often confused with various cutaneous disorders both clinically and histopathologically.A 46-year-old woman attended our clinic with progressive, asymptomatic, annular skin lesions on her right upper extremity for 5 years. She had received many different therapies for these lesions at other institutions previously but these medications were not effective and the lesions deteriorated. On dermatological examination, well-demarcated, irregular bordered, violaceous colored, elevated and crusted annular lesions on her right hand dorsum and forearm were observed. She was diagnosed as having lupus vulgaris clinically and histopathologically. Antituberculosis therapy was administered and regression of the lesions started in the second week of medication.We report a case of long-standing, undiagnosed and uncommon, annular form of lupus vulgaris. We want to stress that clinical and histopathological findings are still important for the diagnosis of cutaneous tuberculosis.

  11. Imaging performance of annular apertures. II - Line spread functions

    NASA Technical Reports Server (NTRS)

    Tschunko, H. F. A.

    1978-01-01

    Line images formed by aberration-free optical systems with annular apertures are investigated in the whole range of central obstruction ratios. Annular apertures form lines images with central and side line groups. The number of lines in each line group is given by the ratio of the outer diameter of the annular aperture divided by the width of the annulus. The theoretical energy fraction of 0.889 in the central line of the image formed by an unobstructed aperture increases for centrally obstructed apertures to 0.932 for the central line group. Energy fractions for the central and side line groups are practically constant for all obstruction ratios and for each line group. The illumination of rectangular secondary apertures of various length/width ratios by apertures of various obstruction ratios is discussed.

  12. Portal Annular Pancreas: A Rare and Overlooked Anomaly

    PubMed Central

    Mittal, Puneet; Gupta, Ranjana; Mittal, Amit; Ahmed, Arshad

    2017-01-01

    Summary Background Portal annular pancreas is a rare pancreatic developmental anomaly which is often overlooked at imaging, and often diagnosed retrospectively when it is detected incidentally at the time of surgery. Although the anomaly itself is asymptomatic, it becomes important in cases where pancreatic resection/anastomosis is planned, because of varying ductal anatomy, risk of ductal injury and increased risk of postoperative pancreatic fistula formation. Case Report We present imaging findings in a case of portal annular pancreas in a 45-year-old male patient. Conclusions Portal annular pancreas is a rare and often neglected pancreatic anomaly due to a lack of awareness of this entity. With the advent of MDCT and MRI, accurate preoperative diagnosis of this condition is possible. PMID:28203311

  13. Design of wavefront coding optical system with annular aperture

    NASA Astrophysics Data System (ADS)

    Chen, Xinhua; Zhou, Jiankang; Shen, Weimin

    2016-10-01

    Wavefront coding can extend the depth of field of traditional optical system by inserting a phase mask into the pupil plane. In this paper, the point spread function (PSF) of wavefront coding system with annular aperture are analyzed. Stationary phase method and fast Fourier transform (FFT) method are used to compute the diffraction integral respectively. The OTF invariance is analyzed for the annular aperture with cubic phase mask under different obscuration ratio. With these analysis results, a wavefront coding system using Maksutov-Cassegrain configuration is designed finally. It is an F/8.21 catadioptric system with annular aperture, and its focal length is 821mm. The strength of the cubic phase mask is optimized with user-defined operand in Zemax. The Wiener filtering algorithm is used to restore the images and the numerical simulation proves the validity of the design.

  14. Development of ITER Divertor Vertical Target with Annular Flow Concept - I: Thermal-Hydraulic Characteristics of Annular Swirl Tube

    SciTech Connect

    Ezato, K.; Dairaku, M.; Taniguchi, M.; Sato, K.; Suzuki, S.; Akiba, M.; Ibbott, C.; Tivey, R.

    2004-12-15

    Thermal-hydraulic tests for pressurized water in an annular tube with a twist fin have been performed to examine its applicability to high-heat-flux components of the International Thermonuclear Experimental Reactor (ITER) divertor. The annular swirl tube consists of two concentric tubes: an outer smooth tube and an inner tube with an external twist fin to enhance heat transfer of the cooling water in the annulus section between the outer and the inner tubes. Critical heat flux (CHF) tests under one-sided-heating conditions show that the annular swirl tube has as high removal limitation as the conventional swirl tube, the dimensions of which are similar to those of the outer tube of the annular swirl tube. A minimum axial velocity of 7.1 m/s is required for 28 MW/m{sup 2}, the ITER design value. Pressure drops in the annulus section and the end return have been measured. The applicability of the existing correlations for heat transfer and CHF to the annular swirl tube has also been examined.

  15. Annular elastolytic giant cell granuloma in association with Hashimoto's thyroiditis

    PubMed Central

    Hassan, Rishi; Arunprasath, P.; Padmavathy, L.; Srivenkateswaran, K.

    2016-01-01

    Annular elastolytic giant cell granuloma (AEGCG) is a rare granulomatous skin disease characterized clinically by annular plaques with elevated borders and atrophic centers found mainly on sun-exposed skin and histologically by diffuse granulomatous infiltrates composed of multinucleated giant cells, histiocytes and lymphocytes in the dermis along with phagocytosis of elastic fibers by multinucleated giant cells. We report a case of AEGCG in a 50-year-old woman and is highlighted for the classical clinical and histological findings of the disease and its rare co-existence with Hashimoto's thyroiditis. PMID:27057492

  16. Flutter Analysis of Annular Cascades in Counter Rotation

    NASA Astrophysics Data System (ADS)

    Nishino, Ryohei; Namba, Masanobu

    The paper studies the effect of neighboring blade rows on flutter characteristics of cascading blades. For this purpose the computation program to calculate the unsteady blade loading based on the unsteady lifting surface theory for contra-rotating annular cascades was formulated and coded. Then a computation program to solve the coupled bending-torsion flutter equation for the contra-rotating annular cascades was also developed. Some results of the flutter analysis are presented. The presence of the neighboring blade row gives rise to significant change in the critical flutter condition when the main acoustic duct mode is of cut-on state.

  17. Topological suppression of optical tunneling in a twisted annular fiber

    SciTech Connect

    Ornigotti, M.; Valle, G. Della; Gatti, D.; Longhi, S.

    2007-08-15

    A classical wave-optics analog of topological (Aharonov-Bohm) suppression of tunneling in a double-well potential on a ring threaded by a magnetic flux is proposed. The optical system consists of a uniformly twisted optical fiber with a structured annular core, in which the fiber twist mimics the role of the magnetic flux in the corresponding quantum-mechanical problem. Light waves trapped in the annular core of the fiber experience an additional topological (Aharonov-Bohm) phase, which may lead to the destruction of optical tunneling at certain values of the twist rate.

  18. Polarization-independent waveguiding with annular photonic crystals.

    PubMed

    Cicek, Ahmet; Ulug, Bulent

    2009-09-28

    A linear waveguide in an annular photonic crystal composed of a square array of annular dielectric rods in air is demonstrated to guide transverse electric and transverse magnetic modes simultaneously. Overlapping of the guided bands in the full band gap of the photonic crystal is shown to be achieved through an appropriate set of geometric parameters. Results of Finite-Difference Time-Domain simulations to demonstrate polarization-independent waveguiding with low loss and wavelength-order confinement are presented. Transmission through a 90 degrees bend is also demonstrated.

  19. Multi-functional annular fairing for coupling launch abort motor to space vehicle

    NASA Technical Reports Server (NTRS)

    Camarda, Charles J. (Inventor); Scotti, Stephen J. (Inventor); Buning, Pieter G. (Inventor); Bauer, Steven X. S. (Inventor); Engelund, Walter C. (Inventor); Schuster, David M. (Inventor)

    2011-01-01

    An annular fairing having aerodynamic, thermal, structural and acoustic attributes couples a launch abort motor to a space vehicle having a payload of concern mounted on top of a rocket propulsion system. A first end of the annular fairing is fixedly attached to the launch abort motor while a second end of the annular fairing is attached in a releasable fashion to an aft region of the payload. The annular fairing increases in diameter between its first and second ends.

  20. Plate electronics

    NASA Astrophysics Data System (ADS)

    Carlowicz, Michael

    Using a Cray T3D supercomputer and a simple assumption about the physical character of Earth's mantle, a pair of researchers from the University of California at Berkeley have built a computer model that may help explain why the planet's tectonic plates look the way they do.In creating a three-dimensional numerical simulation of convection in the Earth's interior, UC researchers Hans-Peter Bunge and Mark Richards simplified their model to account for just one major physical effect: that the viscosity of the mantle increases with depth. Reviewing some recent—but not yet widely accepted—seismic data, Bunge and Richards assumed for the sake of the model that the viscosity of the mantle increases by a factor of 30 from the lithosphere to the core-mantle boundary. Relying on that assumption, the pair ran the model for nearly three weeks on a supercomputer at Los Alamos National Laboratory and found that the simulation produced an effect similar to what we see on the surface of Earth. The model produced a surface paralleling the actual width of plates and the geometry of the plate boundaries.

  1. Ultrasonic guided waves in eccentric annular pipes

    SciTech Connect

    Pattanayak, Roson Kumar; Balasubramaniam, Krishnan; Rajagopal, Prabhu

    2014-02-18

    This paper studies the feasibility of using ultrasonic guided waves to rapidly inspect tubes and pipes for possible eccentricity. While guided waves are well established in the long range inspection of structures such as pipes and plates, studies for more complex cross sections are limited and analytical solutions are often difficult to obtain. Recent developments have made the Semi Analytical Finite Element (SAFE) method widely accessible for researchers to study guided wave properties in complex structures. Here the SAFE method is used to study the effect of eccentricity on the modal structures and velocities of lower order guided wave modes in thin pipes of diameters typically of interest to the industry. Results are validated using experiments. The paper demonstrates that even a small eccentricity in the pipe can strongly affect guided wave mode structures and velocities and hence shows potential for pipe eccentricity inspection.

  2. RESIDENCE TIME DISTRIBUTION OF FLUIDS IN STIRRED ANNULAR PHOTOREACTORS

    EPA Science Inventory

    When gases flow through an annular photoreactor at constant rate, some of the gas spends more or less than the average residence time in the reactor. This spread of residence time can have an important effect on the performance of the reactor. this study tested how the residence...

  3. An experimental investigation of straight and curved annular wall jets

    NASA Technical Reports Server (NTRS)

    Rodman, L. C.; Wood, N. J.; Roberts, L.

    1987-01-01

    Accurate turbulence measurements taken in wall jet flows are difficult to obtain, due to high intensity turbulence and problems in achieving two-dimensionality. The problem is compounded when streamwise curvature of the flow is introduced, since the jet entrainment and turbulence levels are greatly increased over the equivalent planar values. In this experiment, two-dimensional straight and curved incompressible wall jet flows are simulated by having a jet blow axially over a cylinder. Hot wire measurements and some Laser Doppler Velocimetry measurements are presented for straight and curved wall jet flows. The results for the straight wall showed good agreement between the annular flow data and the rectangular data taken by previous researchers. For the jets with streamwise curvature, there was agreement between the annular and corresponding rectangular jets for the flow region closest to the slot exit. An integral analysis was used as a simple technique to interpret the experimental results. Integral momentum calculations were performed for both straight and curved annular and two dimensional wall jets. The results of the calculation were used to identify transverse curvature parameters and to predict the values of those parameters which would delineate the region where the annular flow can satisfactorily simulate two dimensional flow.

  4. Dynamic-Receive Focusing with High-Frequency Annular Arrays

    NASA Astrophysics Data System (ADS)

    Ketterling, J. A.; Mamou, J.; Silverman, R. H.

    High-frequency ultrasound is commonly employed for ophthalmic and small-animal imaging because of the fine-resolution images it affords. Annular arrays allow improved depth of field and lateral resolution versus commonly used single-element, focused transducers. The best image quality from an annular array is achieved by using synthetic transmit-to-receive focusing while utilizing data from all transmit-to-receive element combinations. However, annular arrays must be laterally scanned to form an image and this requires one pass for each of the array elements when implementing full synthetic transmit-to-receive focusing. A dynamic-receive focusing approach permits a single pass, although at a sacrifice of depth of field and lateral resolution. A five-element, 20-MHz annular array is examined to determine the acoustic beam properties for synthetic and dynamic-receive focusing. A spatial impulse response model is used to simulate the acoustic beam properties for each focusing case and then data acquired from a human eye-bank eye are processed to demonstrate the effect of each approach on image quality.

  5. Thermal hydraulic analysis of annular fuel-based assemblies

    SciTech Connect

    Kyu Hyun Han; Soon Heung Chang

    2004-07-01

    Thermal hydraulic characteristics of thorium-based fuel assemblies loaded with annular seed pins have been analyzed using AMAP combined with MATRA, and compared with those of the existing thorium-based assemblies. MATRA and AMAP showed good agreements for the pressure drops at the internal subchannels. The pressure drop generally increased in the cases of the assemblies loaded with annular seed pins due to the larger wetted perimeter, but an exception existed. In the inner subchannels of the seed pins, mass fluxes were high due to the grid form losses in the outer subchannels. About 43% of the heat generated from the seed pin flowed into the inner subchannel and the rest into the outer subchannel, which implies the inner to outer wall heat flux ratio was approximately 1.2. The maximum temperatures of the annular seed pins were slightly above 500 deg. C. The MDNBRs of the assemblies loaded with annular seed pins were higher than those of the existing assemblies. Due to the fact that inter-channel mixing cannot occur in the inner subchannels, temperatures and enthalpies were higher in the inner subchannels. (authors)

  6. Digital controller design: Analysis of the annular suspension pointing system

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The annular suspension and pointing system (ASPS) a payload auxiliary pointing device of the space shuttle is briefly described along with the function of the digital controller. The equations of motion of a simplified plan planar model of the ASPS are derived. Results of computer simulations are discussed.

  7. Subsonic annular wing theory with application to flow about nacelles

    NASA Technical Reports Server (NTRS)

    Mann, M. J.

    1974-01-01

    A method has recently been developed for calculating the flow over a subsonic nacelle at zero angle of attack. The method makes use of annular wing theory and boundary-layer theory and has shown good agreement with both experimental data and more complex theoretical solutions. The method permits variation of the mass flow by changing the size of a center body.

  8. Annular linear induction pump with an externally supported duct

    DOEpatents

    Craig, Edwin R.; Semken, Robert S.

    1979-01-01

    Several embodiments of an annular linear induction pump for pumping liquid metals are disclosed having the features of generally one pass flow of the liquid metal through the pump and an increased efficiency resulting from the use of thin duct walls to enclose the stator. The stator components of this pump are removable for repair and replacement.

  9. [Erythema annulare centrifugum-like psoriasis cum pustulatione].

    PubMed

    Albert, A; Hein, R; Ring, J; Jakob, T

    2007-09-01

    Erythema annulare centrifugum-type psoriasis with pustules represents a subtype of psoriasis pustulosa generalisata von Zumbusch. It presents with a typical morphology characterized by a lack of classical erythematosquamous skin lesions during its acute eruption phase. Diagnosis is usually established on the basis of clinical presentation and dermatopathology, which often shows a substrate typical for psoriasis, sometimes with spongiform pustules.

  10. Design curves for circular and annular duct silencers

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Ramakrishnan, R.

    1989-01-01

    Conventional models of sound propagation between porous walls (Scott, 1946) are adapted in order to calculate design curves for the lined circular and annular-duct silencers used in HVAC systems. The derivation of the governing equations is outlined, and results for two typical cases are presented graphically. Good agreement with published experimental data is demonstrated.

  11. Global regularity for MHD Sisko fluid in annular pipe

    NASA Astrophysics Data System (ADS)

    Rahman, S.; Hayat, T.; Ahmad, B.

    2016-08-01

    The flow of Sisko fluid in an annular pipe is considered. The governing nonlinear equation of an incompressible Sisko fluid is modelled. The purpose of present paper is to obtain the global classical solutions for unsteady flow of magnetohydrodynamic Sisko fluid in terms of the bounded mean oscillations norm. Uniqueness of solution is also verified.

  12. A new fluid-solid interface algorithm for simulating fluid structure problems in FGM plates

    NASA Astrophysics Data System (ADS)

    Eghtesad, A.; Shafiei, A. R.; Mahzoon, M.

    2012-04-01

    The capability to track material interfaces, especially in fluid structure problems, is among the advantages of meshless methods. In the present paper, the Smoothed Particle Hydrodynamics (SPH) method is used to investigate elastic-plastic deformation of AL and ceramic-metal FGM (Functionally Graded Materials) plates under the impact of water in a fluid-solid interface. Instead of using an accidental repulsive force which is not stable at higher pressures, a new scheme is proposed to improve the interface contact behavior between fluid and solid structure. This treatment not only prevents the interpenetration of fluid and solid particles significantly, but also maintains the gap distance between fluid and solid boundary particles in a reasonable range. A new scheme called corrected smooth particle method (CSPM) is applied to both fluid and solid particles to improve the free surface behavior. In order to have a more realistic free surface behavior in fluid, a technique is used to detect the free surface boundary particles during the solution process. The results indicate that using the proposed interface algorithm together with CSPM correction, one can predict the dynamic behavior of FGM plates under the impact of fluid very promisingly.

  13. Vibrational mode and sound radiation of electrostatic speakers using circular and annular diaphragms

    NASA Astrophysics Data System (ADS)

    Huang, Yu-Hsi; Chiang, Hsin-Yuan

    2016-06-01

    This study modeled two diaphragms comprising a pair of indium tin oxide (ITO) transparent plates sandwiching a vibrating diaphragm to create circular (30 mm radius) and annular (30 mm outer and 3 mm inner radius) push-pull electrostatic speakers. We then measured the displacement amplitudes and mode shapes produced by the devices. Vibration characteristics were used to predict sound pressure levels (SPLs) using the lumped parameter method (LPM) and distributed parameter method (DPM). The two measurement results obtained using a laser system were compared to the SPLs obtained using traditional acoustic measurement (AM) from 20 Hz to 20 kHz in order to verify our predictions. When using LPM and DPM, the SPL prediction results in the first three symmetric modes were in good agreement with the AM results. Under the assumption of linear operations, the DPM and amplitude-fluctuation electronic speckle pattern interferometry (ESPI) techniques proved effective in determining the visualization of mode shape (0,1)-(0,3). The use of ITO plates is a practical technique for the prediction of SPL, as well as measurement of mode shapes. The four evaluation methods, i.e. LPM, DPM, ESPI and AM, present a high degree of consistency with regard to vibrational mode and sound radiation characteristics.

  14. Seal plate with concentrate annular segments for a gas turbine engine

    SciTech Connect

    Harris, D.P.; Light, S.H.

    1991-12-24

    This patent describes a gas turbine engine. It comprises a radial outflow, rotary compressor; a radial inflow turbine wheel; means coupling the compressor and the turbine wheel in slightly spaced back to back relating so that the turbine wheel may drive the compressor; a housing surrounding the compressor and the turbine wheel; and a stationary seal mounted on the housing and extending into the space between the compressor and the turbine wheel, the seal including a main sealing and support section adjacent the compressor and a multiple piece diaphragm mounted to the main section, but generally spaced therefrom, the pieces of the diaphragm being movable with respect to each other and with respect to the main section, and including a radially inner ring and a radially outer ring, one of the rings including a lip which overlaps an edge of the other of the rings, the lip and the edge being in sliding, sealing engagement.

  15. Buckling of Delaminated Long Panels Under Pressure and of Radially-Loaded Stiffened Annular Plates.

    DTIC Science & Technology

    1985-10-01

    Sheinman [7-10]. The governing equations for the nonlinear analysis of imperfect, stiffened, laminated, circular, cylindrical thin shells, subjected to...No. 4, 1985, pp. 529-544. 7. Simi tses, G. J.I Sheinman , I., and Shaw, D., "Stability of Laminated ComposJte Shells Subjected to Uniform Axial... Sheinman , I., "Imperfect, Laminated, Cyl ndri cal Shells in Torsion and Axial Compression", Acta -,Ftronautica, v. 10, No. 5-6, 1983, pp. 395-400

  16. Ultrafast laser parallel microdrilling using multiple annular beams generated by a spatial light modulator

    NASA Astrophysics Data System (ADS)

    Kuang, Zheng; Perrie, Walter; Edwardson, Stuart P.; Fearon, Eamonn; Dearden, Geoff

    2014-03-01

    Ultrafast laser parallel microdrilling using diffractive multiple annular beam patterns is demonstrated in this paper. The annular beam was generated by diffractive axicon computer generated holograms (CGHs) using a spatial light modulator. The diameter of the annular beam can be easily adjusted by varying the radius of the smallest ring in the axicon. Multiple annular beams with arbitrary arrangement and multiple annular beam arrays were generated by superimposing an axicon CGH onto a grating and lenses algorithm calculated multi-beam CGH and a binary Dammann grating CGH, respectively. Microholes were drilled through a 0.03 mm thick stainless steel foil using the multiple annular beams. By avoiding huge laser output attenuation and mechanical annular scanning, the processing is ˜200 times faster than the normal single beam processing.

  17. Dual annular rotating "windowed" nuclear reflector reactor control system

    DOEpatents

    Jacox, Michael G.; Drexler, Robert L.; Hunt, Robert N. M.; Lake, James A.

    1994-01-01

    A nuclear reactor control system is provided in a nuclear reactor having a core operating in the fast neutron energy spectrum where criticality control is achieved by neutron leakage. The control system includes dual annular, rotatable reflector rings. There are two reflector rings: an inner reflector ring and an outer reflector ring. The reflectors are concentrically assembled, surround the reactor core, and each reflector ring includes a plurality of openings. The openings in each ring are capable of being aligned or non-aligned with each other. Independent driving means for each of the annular reflector rings is provided so that reactor criticality can be initiated and controlled by rotation of either reflector ring such that the extent of alignment of the openings in each ring controls the reflection of neutrons from the core.

  18. Annular fuel and air co-flow premixer

    DOEpatents

    Stevenson, Christian Xavier; Melton, Patrick Benedict; York, William David

    2013-10-15

    Disclosed is a premixer for a combustor including an annular outer shell and an annular inner shell. The inner shell defines an inner flow channel inside of the inner shell and is located to define an outer flow channel between the outer shell and the inner shell. A fuel discharge annulus is located between the outer flow channel and the inner flow channel and is configured to inject a fuel flow into a mixing area in a direction substantially parallel to an outer airflow through the outer flow channel and an inner flow through the inner flow channel. Further disclosed are a combustor including a plurality of premixers and a method of premixing air and fuel in a combustor.

  19. Electroosmotic flow and Joule heating in preparative continuous annular electrochromatography.

    PubMed

    Laskowski, René; Bart, Hans-Jörg

    2015-09-01

    An openFOAM "computational fluid dynamic" simulation model was developed for the description of local interaction of hydrodynamics and Joule heating in annular electrochromatography. A local decline of electrical conductivity of the background eluent is caused by an electrokinetic migration of ions resulting in higher Joule heat generation. The model equations consider the Navier-Stokes equation for incompressible fluids, the energy equation for stationary temperature fields, and the mass transfer equation for the electrokinetic flow. The simulations were embedded in commercial ANSYS Fluent software and in open-source environment openFOAM. The annular gap (1 mm width) contained an inorganic C8 reverse-phase monolith as stationary phase prepared by an in situ sol-gel process. The process temperature generated by Joule heating was determined by thermal camera system. The local hydrodynamics in the prototype was detected by a gravimetric contact-free measurement method and experimental and simulated values matched quite well.

  20. Droplet deposition and momentum transfer in annular flow

    SciTech Connect

    Fore, L.B.; Dukler, A.E.

    1995-09-01

    Entrainment and deposition in gas-liquid annular upflow are known to account for as much as 20% of the pressure gradient, through droplet accelerations in the core region. Momentum is transferred from the core when droplets decelerate upon impact with the liquid film. It is usually assumed that all of this momentum is transferred to the film, essentially driving the film upward in conjunction with interfacial friction. New data, obtained for annular gas-liquid upflow in a 5.08-cm-ID tube, are used in a momentum balance analysis to determine the mechanism of momentum transfer from depositing droplets. Measurements include the liquid film thickness, wall shear stress, pressure gradient, entrained liquid fraction, droplet deposition rate, droplet centerline axial velocity, and mass-average drop size for two gas-liquid systems. This analysis supports the idea that large droplets displace the film locally and decelerate primarily at the wall, effectively transferring negligible momentum to the liquid film.

  1. Higher order annular Gaussian laser beam propagation in free space

    NASA Astrophysics Data System (ADS)

    Eyyuboglu, Halil T.; Yenice, Yusuf E.; Baykal, Yahya K.

    2006-03-01

    Propagation of higher order annular Gaussian (HOAG) laser beams in free space is examined. HOAG beams are defined as the difference of two Hermite-Gaussian (HG) beams; thus, they can be produced by subtracting a smaller beam from a larger beam, that are cocentered and both possess HG mode field distributions. Such beams can be considered as a generalization of the well-known annular Gaussian beams. We formulate the source and receiver plane characteristics and kurtosis parameter of HOAG beams propagating in free space and evaluate them numerically. In comparison to HG beams, HOAG beams have a broader beam size with outer lobes of kidney shape. The amount of received power within the same receiver aperture size, that is, power in bucket, is generally lower for higher order beams. The convergence of the kurtosis parameter to an asymptotic value for higher order beams takes much longer propagation distances compared to zero-order beams.

  2. High Thrust-to-Power Annular Engine Technology

    NASA Technical Reports Server (NTRS)

    Patterson, Michael; Thomas, Robert; Crofton, Mark; Young, Jason A.; Foster, John E.

    2015-01-01

    Gridded ion engines have the highest efficiency and total impulse of any mature electric propulsion technology, and have been successfully implemented for primary propulsion in both geocentric and heliocentric environments with excellent ground-in-space correlation of performance. However, they have not been optimized to maximize thrust-to-power, an important parameter for Earth orbit transfer applications. This publication discusses technology development work intended to maximize this parameter. These activities include investigating the capabilities of a non-conventional design approach, the annular engine, which has the potential of exceeding the thrust-to-power of other EP technologies. This publication discusses the status of this work, including the fabrication and initial tests of a large-area annular engine. This work is being conducted in collaboration among NASA Glenn Research Center, The Aerospace Corporation, and the University of Michigan.

  3. High Thrust-to-Power Annular Engine Technology

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Thomas, Robert E.; Crofton, Mark W.; Young, Jason A.; Foster, John E.

    2015-01-01

    Gridded ion engines have the highest efficiency and total impulse of any mature electric propulsion technology, and have been successfully implemented for primary propulsion in both geocentric and heliocentric environments with excellent ground/in-space correlation of performance. However, they have not been optimized to maximize thrust-to-power, an important parameter for Earth orbit transfer applications. This publication discusses technology development work intended to maximize this parameter. These activities include investigating the capabilities of a non-conventional design approach, the annular engine, which has the potential of exceeding the thrust-to-power of other EP technologies. This publication discusses the status of this work, including the fabrication and initial tests of a large-area annular engine. This work is being conducted in collaboration among NASA Glenn Research Center, The Aerospace Corporation, and the University of Michigan.

  4. Vortex dynamics in an annular Josephson ratchet ladder

    NASA Astrophysics Data System (ADS)

    Lee, Ki Ho

    2016-11-01

    We present numerically the motion of vortices placed in an annular Josephson ladder which has a periodic ratchet potential along the annular direction. The ratchet characteristics are provided by assigning both alternate critical currents and alternate plaquette areas. The vortices are subject to an external current applied uniformly from each superconducting grain in the inner ring to each grain in the outer ring. The current-voltage (I-V) curves show asymmetric features because of the spatially broken symmetry of the potential. When an alternating current is added to the external current, Shapiro steps appear in the I-V curves, showing asymmetric values of the step widths and on-set currents. For a certain range of the alternating currents, vortices rotate to the easy direction, even at zero driving current, that corresponds to the direction away from the steep slope and toward the gentle slope of the ratchet potential.

  5. Simple analysis and design of annular ring microstrip antennas

    NASA Astrophysics Data System (ADS)

    El-Khamy, S. E.; El-Awadi, R. M.; El-Sharrawy, E.-B. A.

    1986-06-01

    A simple analysis of thin annular-ring microstrip antennas (AR-MSA), along with a design technique that yields the optimum ring dimensions which maximizes the radiation efficiency and the bandwidth, is presented in this paper. Using the cavity model, exact closed form solutions for the radiation fields are derived. The antenna fields distribution, resonance dimensions, radiation patterns, directivity, radiation conductance, quality factor and bandwidth are investigated for the different TMnm modes. AR-MSAs operated at the high order TMn2 modes are found to have better radiation properties and broader bandwidths than the corresponding disk-MSAs. A design table for the optimum ring dimensions for different types of the dielectric substrate material is also given in the paper.

  6. Axisymmetric buckling of laminated thick annular spherical cap

    NASA Astrophysics Data System (ADS)

    Dumir, P. C.; Dube, G. P.; Mallick, A.

    2005-03-01

    Axisymmetric buckling analysis is presented for moderately thick laminated shallow annular spherical cap under transverse load. Buckling under central ring load and uniformly distributed transverse load, applied statically or as a step function load is considered. The central circular opening is either free or plugged by a rigid central mass or reinforced by a rigid ring. Annular spherical caps have been analysed for clamped and simple supports with movable and immovable inplane edge conditions. The governing equations of the Marguerre-type, first order shear deformation shallow shell theory (FSDT), formulated in terms of transverse deflection w, the rotation ψ of the normal to the midsurface and the stress function Φ, are solved by the orthogonal point collocation method. Typical numerical results for static and dynamic buckling loads for FSDT are compared with the classical lamination theory and the dependence of the effect of the shear deformation on the thickness parameter for various boundary conditions is investigated.

  7. Analysis of Enriched Uranyl Nitrate in Nested Annular Tank Array

    SciTech Connect

    John D. Bess; James D. Cleaver

    2009-06-01

    Two series of experiments were performed at the Rocky Flats Critical Mass Laboratory during the 1980s using highly enriched (93%) uranyl nitrate solution in annular tanks. [1, 2] Tanks were of typical sizes found in nuclear production plants. Experiments looked at tanks of varying radii in a co-located set of nested tanks, a 1 by 2 array, and a 1 by 3 array. The co-located set of tanks had been analyzed previously [3] as a benchmark for inclusion within the International Handbook of Evaluated Criticality Safety Benchmark Experiments. [4] The current study represents the benchmark analysis of the 1 by 3 array of a series of nested annular tanks. Of the seventeen configurations performed in this set of experiments, twelve were evaluated and nine were judged as acceptable benchmarks.

  8. Piezoelectric annular array for large depth of field photoacoustic imaging

    PubMed Central

    Passler, K.; Nuster, R.; Gratt, S.; Burgholzer, P.; Paltauf, G.

    2011-01-01

    A piezoelectric detection system consisting of an annular array is investigated for large depth of field photoacoustic imaging. In comparison to a single ring detection system, X-shaped imaging artifacts are suppressed. Sensitivity and image resolution studies are performed in simulations and in experiments and compared to a simulated spherical detector. In experiment an eight ring detection systems offers an extended depth of field over a range of 16 mm with almost constant lateral resolution. PMID:21991555

  9. Hydraulic forces caused by annular pressure seals in centrifugal pumps

    NASA Technical Reports Server (NTRS)

    Iino, T.; Kaneko, H.

    1980-01-01

    The hydraulic forces caused by annular pressure seals were investigated. The measured inlet and exit loss coefficients of the flow through the seals were much smaller than the conventional values. The results indicate that the damping coefficient and the inertia coefficient of the fluid film in the seal are not affected much by the rotational speed or the eccentricity of the rotor, though the stiffness coefficient seemed to be influenced by the eccentricity.

  10. Annular Momentum Control Device (AMCD). Volume 1: Laboratory model development

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The annular momentum control device (AMCD) a thin hoop-like wheel with neither shaft nor spokes is described. The wheel floats in a magnetic field and can be rotated by a segmented motor. Potential advantages of such a wheel are low weight, configuration flexibility, a wheel that stiffens with increased speed, vibration isolation, and increased reliability. The analysis, design, fabrication, and testing is described of the laboratory model of the AMCD.

  11. System design of the annular suspension and pointing system /ASPS/

    NASA Technical Reports Server (NTRS)

    Cunningham, D. C.; Gismondi, T. P.; Wilson, G. W.

    1978-01-01

    This paper presents the control system design for the Annular Suspension and Pointing System. Actuator sizing and configuration of the system are explained, and the control laws developed for linearizing and compensating the magnetic bearings, roll induction motor and gimbal torquers are given. Decoupling, feedforward and error compensation for the vernier and gimbal controllers is developed. The algorithm for computing the strapdown attitude reference is derived, and the allowable sampling rates, time delays and quantization of control signals are specified.

  12. Closed cycle annular-return gas flow electrical discharge laser

    SciTech Connect

    Bletzinger, P.; Garscadden, A.; Hasinger, S.H.; Olson, R.A.; Sarka, B.

    1981-06-16

    A closed cycle, high repetition pulsed laser is disclosed that has a laser flow channel with an annular flow return surrounding the laser flow channel. Ultra high vacuum components and low out-gassing materials are used in the device. An externally driven axial flow fan is used for gas recirculation. A thyratron-switched lowinductance energy storage capacitor is used to provide a transverse discharge between profiled electrodes in the laser cavity.

  13. The influence of annular seal clearance to the critical speed of the multistage pump

    NASA Astrophysics Data System (ADS)

    Wang, J.; Shen, H. P.; Y Ye, X.; Hu, J. N.; Feng, Y. N.

    2013-12-01

    In the multistage pump of high head, pressure difference in two ends of annular seal clearance and rotor eccentric would produce the sealing fluid force, the effect of which can be expressed by a damping and stiffness coefficient. It has a great influence on the critical speed of the rotor system. In order to research the influence of the annular seal to the rotor system, this paper used CFD method to conduct the numerical simulation for the flow field of annular seal clearance. The radial and tangential forces were obtained to calculate the annular dynamic coefficients. Also dynamic coefficient were obtained by Matlab. The rotor system was modeled using ANSYS finite software and the critical speed with and without annular seal clearance were calculated. The result shows: annular seal's fluid field is under the comprehensive effect of pressure difference and rotor entrainment. Due to the huge pressure difference in front annular seal, fluid flows under pressure difference; the low pressure difference results in the more obvious effect on the clearance field in back annular seal. The first order critical speed increases greatly with the annular seal clearance; while the average growth rate of the second order critical speed is only 3.2%; the third and fourth critical speed decreases little. Based on the above result, the annular seal has great influence to the first order speed, while has little influence on the rest.

  14. Guided Wave Annular Array Sensor Design for Improved Tomographic Imaging

    NASA Astrophysics Data System (ADS)

    Koduru, Jaya Prakash; Rose, Joseph L.

    2009-03-01

    Guided wave tomography for structural health monitoring is fast emerging as a reliable tool for the detection and monitoring of hotspots in a structure, for any defects arising from corrosion, crack growth etc. To date guided wave tomography has been successfully tested on aircraft wings, pipes, pipe elbows, and weld joints. Structures practically deployed are subjected to harsh environments like exposure to rain, changes in temperature and humidity. A reliable tomography system should take into account these environmental factors to avoid false alarms. The lack of mode control with piezoceramic disk sensors makes it very sensitive to traces of water leading to false alarms. In this study we explore the design of annular array sensors to provide mode control for improved structural tomography, in particular, addressing the false alarm potential of water loading. Clearly defined actuation lines in the phase velocity dispersion curve space are calculated. A dominant in-plane displacement point is found to provide a solution to the water loading problem. The improvement in the tomographic images with the annular array sensors in the presence of water traces is clearly illustrated with a series of experiments. An annular array design philosophy for other problems in NDE/SHM is also discussed.

  15. Quantitative annular dark field electron microscopy using single electron signals.

    PubMed

    Ishikawa, Ryo; Lupini, Andrew R; Findlay, Scott D; Pennycook, Stephen J

    2014-02-01

    One of the difficulties in analyzing atomic resolution electron microscope images is that the sample thickness is usually unknown or has to be fitted from parameters that are not precisely known. An accurate measure of thickness, ideally on a column-by-column basis, parameter free, and with single atom accuracy, would be of great value for many applications, such as matching to simulations. Here we propose such a quantification method for annular dark field scanning transmission electron microscopy by using the single electron intensity level of the detector. This method has the advantage that we can routinely quantify annular dark field images operating at both low and high beam currents, and under high dynamic range conditions, which is useful for the quantification of ultra-thin or light-element materials. To facilitate atom counting at the atomic scale we use the mean intensity in an annular dark field image averaged over a primitive cell, with no free parameters to be fitted. To illustrate the potential of our method, we demonstrate counting the number of Al (or N) atoms in a wurtzite-type aluminum nitride single crystal at each primitive cell over the range of 3-99 atoms.

  16. Annular tautomerism: experimental observations and quantum mechanics calculations

    NASA Astrophysics Data System (ADS)

    Cruz-Cabeza, Aurora J.; Schreyer, Adrian; Pitt, William R.

    2010-06-01

    The use of MP2 level quantum mechanical (QM) calculations on isolated heteroaromatic ring systems for the prediction of the tautomeric propensities of whole molecules in a crystalline environment was examined. A Polarisable Continuum Model was used in the calculations to account for environment effects on the tautomeric relative stabilities. The calculated relative energies of tautomers were compared to relative abundances within the Cambridge Structural Database (CSD) and the Protein Data Bank (PDB). The work was focussed on 84 annular tautomeric forms of 34 common ring systems. Good agreement was found between the calculations and the experimental data even if the quantity of these data was limited in many cases. The QM results were compared to those produced by much faster semiempirical calculations. In a search for other sources of the useful experimental data, the relative numbers of known compounds in which prototropic positions were often substituted by heavy atoms were also analysed. A scheme which groups all annular tautomeric transformations into 10 classes was developed. The scheme was designed to encompass a comprehensive set of known and theoretically possible tautomeric ring systems generated as part of a previous study. General trends across analogous ring systems were detected as a result. The calculations and statistics collected on crystallographic data as well as the general trends observed should be useful for the better modelling of annular tautomerism in the applications such as computer-aided drug design, small molecule crystal structure prediction, the naming of compounds and the interpretation of protein—small molecule crystal structures.

  17. Free vortex theory for efficiency calculations from annular cascade data

    SciTech Connect

    Main, A.J.; Oldfield, M.L.G.; Lock, G.D.; Jones, T.V.

    1997-04-01

    This paper describes a new three-dimensional theory to calculate the efficiency or loss of nozzle guide vane annular cascades from experimental area traverse measurements of the compressible downstream flow. To calculate such an efficiency, it is necessary to mix out the measured flow computationally to either a uniform state or one that is a function of radius only. When this is done by conserving momentum, mass, and energy flow, there is a remaining degree of freedom in that the radial distribution of circumferential velocity can be chosen. This extra freedom does not arise in two-dimensional cascades. The new method mixes the flow out to a free (i.e., irrotational) vortex. This is preferred to existing methods in that it gives a physically realistic flow and also provides a unique, lossless, isentropic reference flow. The annular cascade efficiency is then uniquely defined as the ratio of the mixed-out experimental kinetic energy flux to the ideal isentropic kinetic energy flux at the same mean radius static pressure. The mathematical derivation of this method is presented. This new theory has been used to process data obtained from a large, transonic, annular cascade in a blowdown tunnel. A four-hole pyramid probe, mounted on a computer-controlled traverse, has been used to map the passage flowfield downstream of the nozzle guide vanes. Losses calculated by the new method are compared with those calculated from the same data using earlier analysis methods.

  18. Droplet sizes, dynamics and deposition in vertical annular flow

    SciTech Connect

    Lopes, J C.B.; Dukler, A E

    1985-10-01

    The role of droplets in vertical upwards annular flow is investigated, focusing on the droplet size distributions, dynamics, and deposition phenomena. An experimental program was performed based on a new laser optical technique developed in these laboratories and implemented here for annular flow. This permitted the simultaneous measurement of droplet size, axial and radial velocity. The dependence of droplet size distributions on flow conditions is analyzed. The Upper-Log Normal function proves to be a good model for the size distribution. The mechanism controlling the maximum stable drop size was found to result from the interaction of the pressure fluctuations of the turbulent flow of the gas core with the droplet. The average axial droplet velocity showed a weak dependence on gas rates. This can be explained once the droplet size distribution and droplet size-velocity relationship are analyzed simultaneously. The surprising result from the droplet conditional analysis is that larger droplet travel faster than smaller ones. This dependence cannot be explained if the drag curves used do not take into account the high levels of turbulence present in the gas core in annular flow. If these are considered, then interesting new situations of multiplicity and stability of droplet terminal velocities are encountered. Also, the observed size-velocity relationship can be explained. A droplet deposition is formulated based on the particle inertia control. This permitted the calculation of rates of drop deposition directly from the droplet size and velocities data.

  19. The annular flow electrothermal ramjet. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Shaw, B. D.

    1984-01-01

    The annular flow, electrothermal, plug ramjet is examined as a possible means of achieving rapid projectile acceleration to velocities for such applications as direct launch of spacebound payloads. The performance of this ramjet operating with hydrogen propellant is examined for cases where this working fluid is treated: (1) as a perfect gas, and (2) as a gas that is allowed to dissociate and ionize and then recombine with finite reaction rates in the nozzle. Performance results for these cases are compared to the performance of a conventional ramjet operating with perfect gas hydrogen propellant. The performance of the conventional ramjet is superior to that of the annular flow, electrothermal ramjet. However, it is argued that the mechanical complexities associated with conventional ramjet operation are difficult to attain, and for this reason the annular flow, electrothermal ramjet is more desirable as a launch system. Models are presented which describe both electrothermal plug ramjet and conventional ramjet operation, and it is shown that for a given flight velocity there is a rate of heat addition per unit propellant mass for which ramjet operation is optimized.

  20. Linearization of an annular image by using a diffractive optic

    NASA Technical Reports Server (NTRS)

    Matthys, Donald R.

    1996-01-01

    The goal for this project is to develop the algorithms for fracturing the zones defined by the mapping transformation, and to actually produce the binary optic in an appropriate setup. In 1984 a side-viewing panoramic viewing system was patented, consisting of a single piece of glass with spherical surfaces which produces a 360 degree view of the region surrounding the lens which extends about 25 degrees in front of and 20 degrees behind the lens. The system not only produces images of good quality, it is also afocal, i.e., images stay in focus for objects located right next to the lens as well as those located far from the lens. The lens produced a panoramic view in an annular shaped image, and so the lens was called a PAL (panoramic annular lens). When applying traditional measurements to PAL images, it is found advantageous to linearize the annular image. This can easily be done with a computer and such a linearized image can be produced within about 40 seconds on current microcomputers. However, this process requires a frame-grabber and a computer, and is not real-time. Therefore, it was decided to try to perform this linearization optically by using a diffractive optic.

  1. Corrugated cover plate for flat plate collector

    DOEpatents

    Hollands, K. G. Terry; Sibbitt, Bruce

    1978-01-01

    A flat plate radiant energy collector is providing having a transparent cover. The cover has a V-corrugated shape which reduces the amount of energy reflected by the cover away from the flat plate absorber of the collector.

  2. Growth Plate Fractures

    MedlinePlus

    .org Growth Plate Fractures Page ( 1 ) The bones of children and adults share many of the same risks for injury. But because they ... to a unique injury called a growth plate fracture. Growth plates are areas of cartilage located near ...

  3. An annular pancreas associated with carcinoma of the papilla of Vater: report of a case.

    PubMed

    Yazawa, Naoki; Imaizumi, Toshihide; Furukawa, Daisuke; Matsuyama, Masahiro; Gunji, Hisashi; Kato, Kenichiro; Tobita, Kosuke; Nakagohri, Toshio; Makuuchi, Hiroyasu; Hirabayashi, Kenichi; Ogoshi, Kyoji

    2012-05-01

    An annular pancreas is an uncommon congenital anomaly that usually presents early in childhood. Malignancy in the setting of an annular pancreas is unusual. We herein report a case of annular pancreas with carcinoma of the papilla of Vater. A 59-year-old man presented with epigastric discomfort and was referred to us after gastroduodenal endoscopy showed a tumor of the papilla of Vater. Preoperative imaging showed the pancreatic parenchyma encircling the descending duodenum and a tumor at the papilla of Vater. A pancreaticoduodenectomy was performed for the annular pancreas and the ampullary tumor. Histological examination confirmed a complete annular pancreas and carcinoma in situ of the papilla of Vater. We also provide a review of the reported cases of an annular pancreas with periampullary neoplasms and discuss the clinical characteristics of this anomaly.

  4. Accurate direct Eulerian simulation of dynamic elastic-plastic flow

    SciTech Connect

    Kamm, James R; Walter, John W

    2009-01-01

    The simulation of dynamic, large strain deformation is an important, difficult, and unsolved computational challenge. Existing Eulerian schemes for dynamic material response are plagued by unresolved issues. We present a new scheme for the first-order system of elasto-plasticity equations in the Eulerian frame. This system has an intrinsic constraint on the inverse deformation gradient. Standard Godunov schemes do not satisfy this constraint. The method of Flux Distributions (FD) was devised to discretely enforce such constraints for numerical schemes with cell-centered variables. We describe a Flux Distribution approach that enforces the inverse deformation gradient constraint. As this approach is new and novel, we do not yet have numerical results to validate our claims. This paper is the first installment of our program to develop this new method.

  5. Accurate numerical solutions for elastic-plastic models. [LMFBR

    SciTech Connect

    Schreyer, H. L.; Kulak, R. F.; Kramer, J. M.

    1980-03-01

    The accuracy of two integration algorithms is studied for the common engineering condition of a von Mises, isotropic hardening model under plane stress. Errors in stress predictions for given total strain increments are expressed with contour plots of two parameters: an angle in the pi plane and the difference between the exact and computed yield-surface radii. The two methods are the tangent-predictor/radial-return approach and the elastic-predictor/radial-corrector algorithm originally developed by Mendelson. The accuracy of a combined tangent-predictor/radial-corrector algorithm is also investigated.

  6. A simplified method for elastic-plastic-creep structural analysis

    NASA Technical Reports Server (NTRS)

    Kaufman, A.

    1984-01-01

    A simplified inelastic analysis computer program (ANSYPM) was developed for predicting the stress-strain history at the critical location of a thermomechanically cycled structure from an elastic solution. The program uses an iterative and incremental procedure to estimate the plastic strains from the material stress-strain properties and a plasticity hardening model. Creep effects are calculated on the basis of stress relaxation at constant strain, creep at constant stress or a combination of stress relaxation and creep accumulation. The simplified method was exercised on a number of problems involving uniaxial and multiaxial loading, isothermal and nonisothermal conditions, dwell times at various points in the cycles, different materials and kinematic hardening. Good agreement was found between these analytical results and nonlinear finite element solutions for these problems. The simplified analysis program used less than 1 percent of the CPU time required for a nonlinear finite element analysis.

  7. A simplified method for elastic-plastic-creep structural analysis

    NASA Technical Reports Server (NTRS)

    Kaufman, A.

    1985-01-01

    A simplified inelastic analysis computer program (ANSYPM) was developed for predicting the stress-strain history at the critical location of a thermomechanically cycled structure from an elastic solution. The program uses an iterative and incremental procedure to estimate the plastic strains from the material stress-strain properties and a plasticity hardening model. Creep effects are calculated on the basis of stress relaxation at constant strain, creep at constant stress or a combination of stress relaxation and creep accumulation. The simplified method was exercised on a number of problems involving uniaxial and multiaxial loading, isothermal and nonisothermal conditions, dwell times at various points in the cycles, different materials and kinematic hardening. Good agreement was found between these analytical results and nonlinear finite element solutions for these problems. The simplified analysis program used less than 1 percent of the CPU time required for a nonlinear finite element analysis.

  8. Thermo-mechanical coupling strategies in elastic-plastic problems

    NASA Astrophysics Data System (ADS)

    Vaz, M.; Lange, M. R.

    2017-03-01

    Modeling strategies aimed at thermo-mechanical coupled problems has been developed for a wide range of engineering applications. Staggered-type coupling procedures have been largely used in materials processing operations, especially in commercial codes, owing to their simplicity and flexibility. The present work shows that, in thermo-plastic problems, the classical implementation of the most common coupling procedure may present accuracy issues and time-stepping dependency. Numerical experiments indicate that an iterative coupling scheme constitutes a viable and simple approach to this class of problems.

  9. Elastic - Plastic Fracture Mechanics. A Critical Review. Part 1

    DTIC Science & Technology

    1990-04-01

    STATE UNIVERSITY OF NEW YORK MICS COMMITTEE MARITIME COLLE GE Dr. William Sandberg Dr. W. R. Porter AMERICAN IRON AND STEEL INSTITUTE WELDING RESEARCH... welded steel structures. Fundamental concepts and underlying assumptions are described. Standardized test methods and recent developments are reviewed...fracture mechanics, as applied to welded steel structures. First, the fundamental concepts and underlying assumptions of fracture mechanics are described

  10. Elastic-plastic fracture mechanics of strength-mismatching

    SciTech Connect

    Parks, D.M.; Ganti, S.; McClintock, F.A.

    1996-12-31

    Approximate solutions to stress-fields are provided for a strength-mismatched interface crack in small-scale yielding (SSY) for non-hardening and low hardening materials. Variations of local deformation intensities, characterized by a J-type contour integral, are proposed. The softer material experiences a higher deformation intensity level, J{sub S}, while the harder material sees a much lower deformation intensity level, J{sub H}, compared to that obtained from the applied J near the respective homogeneous crack-tips. For a low hardening material, the stress fields are obtained by scaling from an elastic/perfectly-plastic problem, based on an effective mismatch, M{sub eff}, which is a function of mismatch, M, and the hardening exponent, n. Triaxial stress build-up is discussed quantitatively in terms of M. The influence of strength-mismatch on cleavage fracture is discussed using Weibull statistics.

  11. Numerical Resolution Calculation for Elastic-Plastic Impact Problems

    DTIC Science & Technology

    1984-12-01

    heroin should serve as a quide to proper selection of mesh size and orientation for accurate representation of physical problems. 4. UNCLASSIFIED...5 . 1 INTRODUCTION . . . 9 I1. APPROACH .... .......................... . 9 P 111. RESULTS . . . . . 14 IV. CONCLUSIONS...Aspect Ratio 1 - 1 , Case 104 . . . . . . 18 5 Computational Grid Map, 1600 Elements . . . . . . . . . . . . . 19 6 Load/Displacement in Bar, Aspect Ratio 1

  12. Annular pancreas complicated by carcinoma of the bile duct: diagnosis by MR cholangiopancreatography and endoscopic ultrasonography.

    PubMed

    Yamaguchi, Y; Sugiyama, M; Sato, Y; Mine, Y; Yamato, T; Ishida, H; Takahashi, S

    2003-01-01

    It has been reported that annular pancreas should be evaluated for coexisting malignant tumors. However, no cases have been reported in which magnetic resonance cholangiopancreatography and endoscopic ultrasonography clearly demonstrated an annular pancreas complicated by bile duct carcinoma. We present a case that emphasizes the importance of magnetic resonance cholangiopancreatography and endoscopic ultrasonography in directly confirming a diagnosis of annular pancreas complicated by bile duct carcinoma.

  13. Pancreaticoduodenectomy for pancreas carcinoma occurring in the annular pancreas: report of a case.

    PubMed

    Kawaida, Hiromichi; Kono, Hiroshi; Watanabe, Mitsuaki; Maki, Akira; Amemiya, Hidetake; Matsuda, Masanori; Fujii, Hideki; Fukasawa, Mitsuharu; Takahashi, Ei; Sano, Katsuhiro; Inoue, Tomohiro

    2015-08-01

    The annular pancreas is a rare congenital anomaly in which a ring of the pancreas parenchyma surrounds the second part of the duodenum. Malignant tumors are extremely rare in patients with an annular pancreas. A 64-year-old man presented with appetite loss and vomiting. Abdominal contrast-enhanced computed tomography (CT) indicated pancreas parenchyma surrounding the second part of the duodenum, and a hypovascular area occupying lesion in the annular pancreas. Subtotal stomach-preserving pancreaticoduodenectomy was performed. Histopathology showed pancreatic carcinoma occurring in the complete annular pancreas.

  14. Links between granuloma annulare, necrobiosis lipoidica diabeticorum and childhood diabetes: a matter of time?

    PubMed

    Davison, James E; Davies, Alison; Moss, Celia; Kirk, Jeremy M W; Taibjee, Saleem M; Agwu, J Chizo

    2010-01-01

    Diabetes mellitus is associated with a range of dermatologic presentations, including granuloma annulare and necrobiosis lipoidica diabeticorum. Granuloma annulare occurs earlier than necrobiosis lipoidica diabeticorum and the association with diabetes mellitus is much weaker. We describe two children with diabetes who both developed granuloma annulare and later, necrobiosis lipoidica diabeticorum. We postulate that the early onset and transient nature of granuloma annulare, compared with the later onset and persistence of necrobiosis lipoidica diabeticorum, might account for the different apparent rates of association with diabetes mellitus.

  15. Electron beam diagnostic system using computed tomography and an annular sensor

    DOEpatents

    Elmer, John W.; Teruya, Alan T.

    2014-07-29

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.

  16. Electron beam diagnostic system using computed tomography and an annular sensor

    DOEpatents

    Elmer, John W.; Teruya, Alan T.

    2015-08-11

    A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.

  17. A grillage model for predicting wrinkles in annular graphene under circular shearing

    SciTech Connect

    Zhang, Z.; Duan, W. H.; Wang, C. M.

    2013-01-07

    This paper is concerned with a Timoshenko grillage model for modeling the wrinkling phenomenon in annular graphene under circular shearing applied at its inner edge. By calibrating the grillage model results against the molecular mechanics (MM) results, the grillage model comprising beams of elliptical cross-section orientated along the carbon-carbon bond has section dimensions of 0.06 nm for the major axis length and 0.036 nm for the minor axis length. Moreover, the beams are connected to one another at 0.00212 nm from the geometric centric. This eccentric connection of beams allows the proposed grillage model to cater for the cross-couplings among bonds that produce the out-of-plane wrinkling pattern. The out-of-plane to in-plane bending stiffnesses' ratio is 0.36, and the cross bending stiffness provided by the ellipse eccentricity is 0.025 times that of the in-plane bending stiffness. Besides furnishing identical wave numbers as well as amplitudes and wavelengths that are in good agreement with MM results, the grillage model can capture wrinkling patterns with a boundary layer, whereas plate and membrane models could not mimic the boundary layer.

  18. A photosynthetic rotating annular bioreactor (Taylor-Couette type flow) for phototrophic biofilm cultures.

    PubMed

    Paule, A; Lauga, B; Ten-Hage, L; Morchain, J; Duran, R; Paul, E; Rols, J L

    2011-11-15

    In their natural environment, the structure and functioning of microbial communities from river phototrophic biofilms are driven by biotic and abiotic factors. An understanding of the mechanisms that mediate the community structure, its dynamics and the biological succession processes during phototrophic biofilm development can be gained using laboratory-scale systems operating with controlled parameters. For this purpose, we present the design and description of a new prototype of a rotating annular bioreactor (RAB) (Taylor-Couette type flow, liquid working volume of 5.04 L) specifically adapted for the cultivation and investigation of phototrophic biofilms. The innovation lies in the presence of a modular source of light inside of the system, with the biofilm colonization and development taking place on the stationary outer cylinder (onto 32 removable polyethylene plates). The biofilm cultures were investigated under controlled turbulent flowing conditions and nutrients were provided using a synthetic medium (tap water supplemented with nitrate, phosphate and silica) to favour the biofilm growth. The hydrodynamic features of the water flow were characterized using a tracer method, showing behaviour corresponding to a completely mixed reactor. Shear stress forces on the surface of plates were also quantified by computer simulations and correlated with the rotational speed of the inner cylinder. Two phototrophic biofilm development experiments were performed for periods of 6.7 and 7 weeks with different inoculation procedures and illumination intensities. For both experiments, biofilm biomasses exhibited linear growth kinetics and produced 4.2 and 2.4 mg cm(-)² of ash-free dry matter. Algal and bacterial community structures were assessed by microscopy and T-RFLP, respectively, and the two experiments were different but revealed similar temporal dynamics. Our study confirmed the performance and multipurpose nature of such an innovative photosynthetic bioreactor

  19. Non-linear analysis of moderately thick sector plates

    NASA Astrophysics Data System (ADS)

    Nath, Y.; Sharda, H. B.; Sharma, Ashish

    2005-10-01

    Non-linear static analysis of moderately thick sector plates under uniformly distributed loading is presented. Using the first-order shear deformation theory and Von Karman type non-linearity, the governing equations of equilibrium are developed and expressed in terms of displacement components. The Chebyshev polynomial is used for spatial discretization of the differential equations. An iterative incremental approach based on Newton-Raphson method is used for the solution. Convergence study is carried out. Effects of annularity, thickness ratio, sector angle and boundary conditions are investigated. Results are compared with those available from the literature.

  20. Studies on Normal and Microgravity Annular Two Phase Flows

    NASA Technical Reports Server (NTRS)

    Balakotaiah, V.; Jayawardena, S. S.; Nguyen, L. T.

    1999-01-01

    Two-phase gas-liquid flows occur in a wide variety of situations. In addition to normal gravity applications, such flows may occur in space operations such as active thermal control systems, power cycles, and storage and transfer of cryogenic fluids. Various flow patterns exhibiting characteristic spatial and temporal distribution of the two phases are observed in two-phase flows. The magnitude and orientation of gravity with respect to the flow has a strong impact on the flow patterns observed and on their boundaries. The identification of the flow pattern of a flow is somewhat subjective. The same two-phase flow (especially near a flow pattern transition boundary) may be categorized differently by different researchers. Two-phase flow patterns are somewhat simplified in microgravity, where only three flow patterns (bubble, slug and annular) have been observed. Annular flow is obtained for a wide range of gas and liquid flow rates, and it is expected to occur in many situations under microgravity conditions. Slug flow needs to be avoided, because vibrations caused by slugs result in unwanted accelerations. Therefore, it is important to be able to accurately predict the flow pattern which exists under given operating conditions. It is known that the wavy liquid film in annular flow has a profound influence on the transfer of momentum and heat between the phases. Thus, an understanding of the characteristics of the wavy film is essential for developing accurate correlations. In this work, we review our recent results on flow pattern transitions and wavy films in microgravity.

  1. Geometry optimization of linear and annular plasma synthetic jet actuators

    NASA Astrophysics Data System (ADS)

    Neretti, G.; Seri, P.; Taglioli, M.; Shaw, A.; Iza, F.; Borghi, C. A.

    2017-01-01

    The electrohydrodynamic (EHD) interaction induced in atmospheric air pressure by a surface dielectric barrier discharge (DBD) actuator has been experimentally investigated. Plasma synthetic jet actuators (PSJAs) are DBD actuators able to induce an air stream perpendicular to the actuator surface. These devices can be used in the field of aerodynamics to prevent or induce flow separation, modify the laminar to turbulent transition inside the boundary layer, and stabilize or mix air flows. They can also be used to enhance indirect plasma treatment effects, increasing the reactive species delivery rate onto surfaces and liquids. This can play a major role in plasma processing and chemical kinetics modelling, where often only diffusive mechanisms are considered. This paper reports on the importance that different electrode geometries can have on the performance of different PSJAs. A series of DBD aerodynamic actuators designed to produce perpendicular jets has been fabricated on two-layer printed circuit boards (PCBs). Both linear and annular geometries were considered, testing different upper electrode distances in the linear case and different diameters in the annular one. An AC voltage supplied at a peak of 11.5 kV and a frequency of 5 kHz was used. Lower electrodes were connected to the ground and buried in epoxy resin to avoid undesired plasma generation on the lower actuator surface. Voltage and current measurements were carried out to evaluate the active power delivered to the discharges. Schlieren imaging allowed the induced jets to be visualized and gave an estimate of their evolution and geometry. Pitot tube measurements were performed to obtain the velocity profiles of the PSJAs and to estimate the mechanical power delivered to the fluid. The optimal values of the inter-electrode distance and diameter were found in order to maximize jet velocity, mechanical power or efficiency. Annular geometries were found to achieve the best performance.

  2. Sputtering and ion plating

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The proceedings of a conference on sputtering and ion plating are presented. Subjects discussed are: (1) concepts and applications of ion plating, (2) sputtering for deposition of solid film lubricants, (3) commercial ion plating equipment, (4) industrial potential for ion plating and sputtering, and (5) fundamentals of RF and DC sputtering.

  3. Structure Limits for a 30mm Annular Piston.

    DTIC Science & Technology

    1988-05-01

    Properties ," BRL Report #1359, Mar 1971. 4. Republic Steel Corp., "Precipitation Hardenable Stainless Steel, PH13 -8MO, 15-5 PH, PH15-7MO, 17-4 PH, 17...u * 3 *1938 - Serving the Army for Fifty Years - 1988 STRUCTURE LIMITS FOR A *30-MMA ANN.,\\ULAR PISTON CRIS WATSON DTIC MAY 1988 JUN 14 8 APPROVED...NAME OF FUNDING/SPONSORING 8 b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER ORGANIZATIONj (If applicable) r-c ADDRESS (City, State

  4. Cylindrical plasmas generated by an annular beam of ultraviolet light

    SciTech Connect

    Thomas, D. M.; Allen, J. E.

    2015-07-15

    We investigate a cylindrical plasma system with ionization, by an annular beam of ultraviolet light, taking place only in the cylinder's outer region. In the steady state, both the outer and inner regions contain a plasma, with that in the inner region being uniform and field-free. At the interface between the two regions, there is an infinitesimal jump in ion density, the magnitude approaching zero in the quasi-neutral (λ{sub D} → 0) limit. The system offers the possibility of producing a uniform stationary plasma in the laboratory, hitherto obtained only with thermally produced alkali plasmas.

  5. Detonation Initiation by Annular Jets and Shock Waves

    DTIC Science & Technology

    2007-11-02

    11,12,13,14,15,16,17,18, 19,20,21,22 to better understand the shock implosion process. The current interest in air-breathing pulse detonation engines ( PDEs ) has led...This technology has yet to be realized and, as a result, current PDEs use initiator tubes sensitized with oxygen 23 or detonate more sensitive mixtures... Detonation Initiation by Annular Jets and Shock Waves Final Report for Award ONR N00014-03 -0931 Joseph E. Shepherd Aeronautics California Institute

  6. Histiocytoid Sweet's syndrome presenting with annular erythematous plaques*

    PubMed Central

    Marcarini, Renata; de Araujo, Raquel Nardelli; Nóbrega, Monisa Martins; Medeiros, Karina Bittencourt; Gripp, Alexandre Carlos; Maceira, Juan Manuel Piñeiro

    2016-01-01

    Histiocytoid Sweet's Syndrome is a rare inflammatory disease described in 2005 as a variant of the classical Sweet's Syndrome (SS). Histopathologically, the dermal inflammatory infiltrate is composed mainly of mononuclear cells that have a histiocytic appearance and represent immature myeloid cells. We describe a case of Histiocytoid Sweet's Syndrome in an 18-year-old man. Although this patient had clinical manifestations compatible with SS, the cutaneous lesions consisted of erythematous annular plaques, which are not typical for this entity and have not been described in histiocytic form so far. The histiocytic subtype was confirmed by histopathological analysis that showed positivity for myeloperoxidase in multiple cells with histiocytic appearance. PMID:28300927

  7. Dynamically adjustable annular laser trapping based on axicons

    SciTech Connect

    Shao, Bing; Esener, Sadik C.; Nascimento, Jaclyn M.; Botvinick, Elliot L.; Berns, Michael W

    2006-09-01

    To study the chemotactic response of sperm to an egg and to characterize sperm motility, an annular laser trap based on axicons is designed, simulated with the ray-tracing tool, and implemented. The diameter of the trapping ring can be adjusted dynamically for a range of over 400 {mu}m by simply translating one axicon along the optical axis. Trapping experiments with microspheres and dog sperm demonstrate the feasibility of the system,and the power requirement agrees with theoretical expectation. This new type of laser trapping could provide a prototype of a parallel, objective, and quantitative tool for animal fertility and biotropism study.

  8. Laser window with annular grooves for thermal isolation

    DOEpatents

    Warner, B.E.; Horton, J.A.; Alger, T.W.

    1983-07-13

    A laser window or other optical element which is thermally loaded, heats up and causes optical distortions because of temperature gradients between the center and the edge. A number of annular grooves, one to three or more, are formed in the element between a central portion and edge portion, producing a web portion which concentrates the thermal gradient and thermally isolates the central portion from the edge portion, producing a uniform temperature profile across the central portion and therefore reduce the optical distortions. The grooves are narrow and closely spaced with respect to the thickness of the element, and successive grooves are formed from alternate sides of the element.

  9. New fluxon resonant mechanism in annular Josephson tunnel structures.

    PubMed

    Nappi, C; Lisitskiy, M P; Rotoli, G; Cristiano, R; Barone, A

    2004-10-29

    A novel dynamical state has been observed in the dynamics of a perturbed sine-Gordon system. This resonant state has been experimentally observed as a singularity in the dc current-voltage characteristic of an annular Josephson tunnel junction, excited in the presence of a magnetic field. In this respect it can be assimilated to self-resonances known as Fiske steps. Differently from these, however, we demonstrate, on the basis of numerical simulations, that its detailed dynamics involves rotating fluxon pairs, a mechanism associated, so far, to self-resonances known as zero-field steps. This occurs because the size of nonlinear excitations is comparable with that of the system.

  10. A study of unsteady flow induced by annular cascade

    SciTech Connect

    Takama, N.; Yoshiki, H.; Nishimura, K.; Sumiyoshi, K.

    1999-07-01

    The authors have experimentally studied phenomena of unsteady flow induced by annular cascade. The test apparatus consists of a swirl generator connected to a suction-type wind tunnel. The swirl generator duplicates variable inlet guide vanes (VIGV). The authors measured distributions of velocity flow by a hot wire anemometer and a three-hole Pilot tube, and pressure by semiconductor transducers. Results are: (1) the Strouhal number is independent of Reynolds number under each experimental condition; (2) the velocity wave propagates from pressure side of a vane to suction side of a neighboring vane; and (3) the setting angle of VIGV has effects on a fundamental frequency.

  11. Preparative-scale proteins seperations by continuous annular chromatography

    SciTech Connect

    Bloomingburg, G.F.; Bauer, J.S.; Carta, G.; Byers, C.H. . Dept. of Chemical Engineering; Oak Ridge National Lab., TN )

    1989-01-01

    The use of continuous annular chromatography (CAC) for the separation of protein mixtures is studied in a preparative-scale CAC unit. S-Sepharose, a strong-acid porous cation exchange resin is used as the separation medium mixtures of albumin, hemoglobin, and cytochrome-C are used as a model separation system. Equilibrium and mass transfer parameter are developed for this system on the basis of fixed-bed chromatograph experiments. A mathematical model is then successfully used in conjunction with these parameters to simulate the performance of the CAC separations. 11 refs., 11 figs., 3 tabs.

  12. Asymmetric Separation and Perturbation Sensitivity in an Annular Diffuser

    NASA Astrophysics Data System (ADS)

    Coffman, Jesse; Morris, Scott; Jemcov, Aleksander; Cameron, Joshua

    2013-11-01

    When an annular diffuser stalls, the separation can take many forms. Experiments show that one type of separation appears to be asymmetric and periodic. This asymmetry appears to be influenced by upstream and downstream components and inlet flow conditions. By understanding the changes effected at the exit of the diffuser by the inlet perturbations, the diffuser performance can be more accurately predicted within a system. This work aims to understand the influence of velocity perturbations at the inlet of the diffuser on the overall duct performance. This is done by application of the Euler equations and a RANS simulation for various circumferential wavenumbers.

  13. Annular Suspension and Pointing System (ASPS) magnetic rotary joint

    NASA Technical Reports Server (NTRS)

    Smith, W. E.; Quach, W.; Thomas, W.

    1993-01-01

    The Annular Suspension and Pointing System (ASPS) is a prototype of flight hardware for a high-accuracy space payload pointing mount. The long term project objective is to perform modifications and implement improvements to the existing ASPS in hopes of recommission. Also, new applications will be investigated for this technology. This report will focus on the first aspect of this overall goal, to establish operation of a single bearing station. Presented is an overview of the system history and bearing operation followed by the processes, results, and status of the single bearing study.

  14. Identification of dynamic coefficients of annular turbulent seals

    NASA Technical Reports Server (NTRS)

    Nordmann, R.; Massmann, H.

    1984-01-01

    An identification procedure to determine dynamic coefficients of annular turbulent seals in turbopumps is presented. Measurements were carried out at a built test rig with two symmetrical arranged seals. A rigid rotating shaft is surrounded by an elastically supported housing, which is excited by impact forces. The relative radial motion between the rotating parts and the housing, respectively between the seal surfaces, is measured by displacement pick-ups and from the time signals complex frequency response functions can be calculated. Finally an analytical model, depending on the seal parameters, is fitted to the measured data, to find the dynamic coefficients.

  15. Dynamically adjustable annular laser trapping based on axicons

    NASA Astrophysics Data System (ADS)

    Shao, Bing; Esener, Sadik C.; Nascimento, Jaclyn M.; Botvinick, Elliot L.; Berns, Michael W.

    2006-09-01

    To study the chemotactic response of sperm to an egg and to characterize sperm motility, an annular laser trap based on axicons is designed, simulated with the ray-tracing tool, and implemented. The diameter of the trapping ring can be adjusted dynamically for a range of over 400 μm by simply translating one axicon along the optical axis. Trapping experiments with microspheres and dog sperm demonstrate the feasibility of the system, and the power requirement agrees with theoretical expectation. This new type of laser trapping could provide a prototype of a parallel, objective, and quantitative tool for animal fertility and biotropism study.

  16. Beamforming using spatial matched filtering with annular arrays (L).

    PubMed

    Kim, Kang-Sik; Liu, Jie; Insana, Michael F

    2007-04-01

    A linear array beamforming method for ultrasonic B-mode imaging using spatial matched filtering (SMF) and a rectangular aperture geometry was recently proposed Kim et al., [J. Acoust. Soc. Am. 120, 852-861 (2006)]. This letter extends those results to include circularly symmetric apertures. SMF applied to annular arrays can improve the lateral resolution and echo signal-to-noise ratio as compared with conventional dynamic-receive delay-sum beamforming. At high frequencies, where delay and sum beamforming is problematic, SMF showed greatly improved target contrast over an extended field of view.

  17. Exhaust emissions of a double annular combustor: Parametric study

    NASA Technical Reports Server (NTRS)

    Schultz, D. F.

    1974-01-01

    A full scale double-annular ram-induction combustor designed for Mach 3.0 cruise operation was tested. Emissions of oxides of nitrogen, carbon monoxide, unburned hydrocarbons, and smoke were measured over a range of combustor operating variables including reference velocity, inlet air temperature and pressure, and exit average temperature. ASTM Jet-A fuel was used for these tests. An equation is provided relating oxides of nitrogen emissions as a function of the combustor, operating variables. A small effect of radial fuel staging on reducing exhaust emissions (which were originally quite low) is demonstrated.

  18. Final Technical Report for the MIT Annular Fuel Research Project

    SciTech Connect

    Mujid S. Kazimi; Pavel Hejzlar

    2008-01-31

    MIT-NFC-PR-082 (January 2006) Abstract This summary provides an overview of the results of the U.S. DOE funded NERI (Nuclear Research ENergy Initiative) program on development of the internally and externally cooled annular fuel for high power density PWRs. This new fuel was proposed by MIT to allow a substantial increase in poer density (on the order of 30% or higher) while maintaining or improving safety margins. A comprehensive study was performed by a team consisting of MIT (lead organization), Westinghuse Electric Corporation, Gamma Engineering Corporation, Framatome ANP(formerly Duke Engineering) and Atomic Energy of Canada Limited.

  19. Non-null annular subaperture stitching interferometry for aspheric test

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Liu, Dong; Shi, Tu; Yang, Yongying; Chong, Shiyao; Miao, Liang; Huang, Wei; Shen, Yibing; Bai, Jian

    2015-10-01

    A non-null annular subaperture stitching interferometry (NASSI), combining the subaperture stitching idea and non-null test method, is proposed for steep aspheric testing. Compared with standard annular subaperture stitching interferometry (ASSI), a partial null lens (PNL) is employed as an alternative to the transmission sphere, to generate different aspherical wavefronts as the references. The coverage subaperture number would thus be reduced greatly for the better performance of aspherical wavefronts in matching the local slope of aspheric surfaces. Instead of various mathematical stitching algorithms, a simultaneous reverse optimizing reconstruction (SROR) method based on system modeling and ray tracing is proposed for full aperture figure error reconstruction. All the subaperture measurements are simulated simultaneously with a multi-configuration model in a ray-tracing program, including the interferometric system modeling and subaperture misalignments modeling. With the multi-configuration model, full aperture figure error would be extracted in form of Zernike polynomials from subapertures wavefront data by the SROR method. This method concurrently accomplishes subaperture retrace error and misalignment correction, requiring neither complex mathematical algorithms nor subaperture overlaps. A numerical simulation exhibits the comparison of the performance of the NASSI and standard ASSI, which demonstrates the high accuracy of the NASSI in testing steep aspheric. Experimental results of NASSI are shown to be in good agreement with that of Zygo® VerifireTM Asphere interferometer.

  20. Gouy phase shift for annular beam profiles in attosecond experiments.

    PubMed

    Schlaepfer, F; Ludwig, A; Lucchini, M; Kasmi, L; Volkov, M; Gallmann, L; Keller, U

    2017-02-20

    Attosecond pump-probe measurements are typically performed by combining attosecond pulses with more intense femtosecond, phase-locked infrared (IR) pulses because of the low average photon flux of attosecond light sources based on high-harmonic generation (HHG). Furthermore, the strong absorption of materials at the extreme ultraviolet (XUV) wavelengths of the attosecond pulses typically prevents the use of transmissive optics. As a result, pump and probe beams are typically recombined geometrically with a center-hole mirror that reflects the larger IR beam and transmits the smaller XUV, which leads to an annular beam profile of the IR. This modification of the IR beam can affect the pump-probe measurements because the propagation that follows the reflection on the center-hole mirror can strongly deviate from that of an ideal Gaussian beam. Here we present a detailed experimental study of the Gouy phase of an annular IR beam across the focus using a two-foci attosecond beamline and the RABBITT (reconstruction of attosecond beating by interference of two-photon transitions) technique. Our measurements show a Gouy phase shift of the truncated beam as large as 2π and a corresponding rate of 50 as/mm time delay change across the focus in a RABBITT measurement. These results are essential for attosecond pump-probe experiments that compare measurements of spatially separated targets.

  1. A Compact Annular Ring Microstrip Antenna for WSN Applications

    PubMed Central

    Wang, Daihua; Song, Linli; Zhou, Hanchang; Zhang, Zhijie

    2012-01-01

    A compact annular ring microstrip antenna was proposed for a wireless sensor network (WSN) application in the 2.4 GHz band. In this paper the major considerations of the conformal antenna design were the compact size and the impact on antenna's performance of a steel installation base. By using a chip resistor of large resistance (120 Ω) the antenna size was reduced to 38% of that a conventional annular ring patch antenna. With the addition of the steel installation base the resonant frequency of the antenna increases about 4.2% and the bandwidth reduces from 17.5% to 11.7% by adjusting the load resistance simultaneously. Several key parameters were discussed and optimized, and the antenna was fabricated and its performance measured. The antenna is well matched at 2.4 GHz with 34.2 dB return loss and –2.5 dBi peak gain. Meanwhile, it exhibits excellent radiation patterns with very low cross-polarization levels. PMID:23012510

  2. Characterization of interfacial waves in horizontal core-annular flow

    NASA Astrophysics Data System (ADS)

    Tripathi, Sumit; Bhattacharya, Amitabh; Singh, Ramesh; Tabor, Rico F.

    2016-11-01

    In this work, we characterize interfacial waves in horizontal core annular flow (CAF) of fuel-oil and water. Experimental studies on CAF were performed in an acrylic pipe of 15.5mm internal diameter, and the time evolution of the oil-water interface shape was recorded with a high speed camera for a range of different flow-rates of oil (Qo) and water (Qw). The power spectrum of the interface shape shows a range of notable features. First, there is negligible energy in wavenumbers larger than 2 π / a , where a is the thickness of the annulus. Second, for high Qo /Qw , there is no single dominant wavelength, as the flow in the confined annulus does not allow formation of a preferred mode. Third, for lower Qo /Qw , a dominant mode arises at a wavenumber of 2 π / a . We also observe that the power spectrum of the interface shape depends weakly on Qw, and strongly on Qo, perhaps because the net shear rate in the annulus appears to depend weakly on Qw as well. We also attempt to build a general empirical model for CAF by relating the interfacial stress (calculated via the mean pressure gradient) to the flow rate in the annulus, the annular thickness and the core velocity. Authors are thankful to Orica Mining Services (Australia) for the financial support.

  3. Portal annular pancreas: a systematic review of a clinical challenge.

    PubMed

    Harnoss, Jonathan M; Harnoss, Julian C; Diener, Markus K; Contin, Pietro; Ulrich, Alexis B; Büchler, Markus W; Schmitz-Winnenthal, Friedrich H

    2014-10-01

    Portal annular pancreas (PAP) is an asymptomatic congenital pancreas anomaly, in which portal and/or mesenteric veins are encased by pancreas tissue. The aim of the study was to determine the role of PAP in pancreatic surgery as well as its management and potential complication, specifically, postoperative pancreatic fistula (POPF).On the basis of a case report, the MEDLINE and ISI Web of Science databases were systematically reviewed up to September 2012. All articles describing a case of PAP were considered.In summary, 21 studies with 59 cases were included. The overall prevalence of PAP was 2.4% and the patients' mean (SD) age was 55.9 (16.2) years. The POPF rate in patients with PAP (12 pancreaticoduodenectomies and 3 distal pancreatectomies) was 46.7% (in accordance with the definition of the International Study Group of Pancreatic Surgery).Portal annular pancreas is a quite unattended pancreatic variant with high prevalence and therefore still remains a clinical challenge to avoid postoperative complications. To decrease the risk for POPF, attentive preoperative diagnostics should also focus on PAP. In pancreaticoduodenectomy, a shift of the resection plane to the pancreas tail should be considered; in extensive pancreatectomy, coverage of the pancreatic remnant by the falciform ligament could be a treatment option.

  4. Critical Heat Flux in a Thin Annular Channel

    NASA Astrophysics Data System (ADS)

    Habtour, Ahmed; Anderson, Elgin

    2002-11-01

    The improved accuracy in predicting critical heat flux (CHF) for specific reactor core geometry would allow for increased power output. The objectives of this project were to incorporate a scale model test to determine the feasibility of generating high power density in an annular fuel arrangement in a reactor. The desired power density was 100W/cm2. This would be accomplished by using resistive heating on the outer cylinder of an annular flow channel between concentric cylinders. The inner cylinder consists of a hemispherical shape in the upstream direction to condition the flow. The second objective was to study the behavior of two-phase flow through a simulated reactor core. The CHF would be measured and compared with existing correlations. Finally, the concept of a future full scale testing would be investigated. The results of this project are not only applicable to nuclear reactors, but can be used to increase the efficiency of other applications such as fuel cells, combustion engines, turbines and polymer processes.

  5. Design Attributes and Scale Up Testing of Annular Centrifugal Contactors

    SciTech Connect

    David H. Meikrantz; Jack D. Law

    2005-04-01

    Annular centrifugal contactors are being used for rapid yet efficient liquid- liquid processing in numerous industrial and government applications. Commercialization of this technology began eleven years ago and now units with throughputs ranging from 0.25 to 700 liters per minute are readily available. Separation, washing, and extraction processes all benefit from the use of this relatively new commercial tool. Processing advantages of this technology include: low in-process volume per stage, rapid mixing and separation in a single unit, connection-in-series for multi-stage use, and a wide operating range of input flow rates and phase ratios without adjustment. Recent design enhancements have been added to simplify maintenance, improve inspection ability, and provide increased reliability. Cartridge-style bearing and mechanical rotary seal assemblies that can include liquid-leak sensors are employed to enhance remote operations, minimize maintenance downtime, prevent equipment damage, and extend service life. Clean-in-place capability eliminates the need for disassembly, facilitates the use of contactors for feed clarification, and can be automated for continuous operation. In nuclear fuel cycle studies, aqueous based separations are being developed that efficiently partition uranium, actinides, and fission products via liquid-liquid solvent extraction. Thus, annular centrifugal contactors are destined to play a significant role in the design of such new processes. Laboratory scale studies using mini-contactors have demonstrated feasibility for many such separation processes but validation at an engineering scale is needed to support actual process design.

  6. Swirling Annular Flow Experiments with Application to Plasma Torches

    NASA Astrophysics Data System (ADS)

    Fisher, L. E.; Settles, G. S.; Miller, J. D.

    2001-11-01

    Swirling flows have many applications such as combustors and cyclone separators. Here, a turbulent swirling annular cold-flow experiment is conducted in order to gain insight into conditions within a plasma cutting torch. Compressed air is forced through six circumferentially-spaced holes that impart tangential velocity to the flow at the annulus inlet. The flow subsequently traverses an annulus of L/D1 =1.8 before exiting through a sonic nozzle. The annulus (created by a cylindrical cathode in the center of the actual plasma torch) is viewable through an outer plexiglass cylinder in our 11:1 scaled-up cold-flow apparatus. Surface oil-flow visualization and laser sheet imaging are employed to investigate the annular flowfield at a Reynolds number of about 1000 based on gap width D2-D1. Results of these experiments, leading to a physical model of the flowfield, are shown. These results are helpful in understanding and improving the fluid-dynamic behavior of actual plasma torches, widely used to cut sheet metal in manufacturing. Supported by Hypertherm Inc.

  7. The Growth of Instabilities in Annular Liquid Sheets

    SciTech Connect

    Duke, Daniel J.; Honnery, Damon R; Soria, Julio

    2015-11-01

    An annular liquid sheet surrounded by parallel co-flowing gas is an effective atomiser. However, the initial instabilities which determine the primary break-up of the liquid sheet are not well understood. Lack of agreement on the influence of the boundary conditions and the non-dimension scaling of the initial instability persists between theoretical stability analyses and experiments. To address this matter, we have undertaken an experimental parametric study of an aerodynamically-driven, non-swirling annular water sheet. The effects of sheet thickness, inner and outer gas-liquid momentum ratio were investigated over an order of magnitude variation in Reynolds and Weber number. From high-speed image correlation measurements in the near-nozzle region, we propose new empirical correlations for the frequency of the instability as a function of the total gas-liquid momentum ratio, with good non-dimensional collapse. From analysis of the instability velocity probability densities, we find two persistent and distinct superimposed instabilities with different growth rates. The first is a short-lived, rapidly saturating sawtooth-like instability. The second is a slower-growing stochastic instability which persists through the break-up of the sheet. The presence of multiple instabilities whose growth rates do not strongly correlate with the shear velocities may explain some of the discrepancies between experiments and stability analyses.

  8. Oscillation Characteristics of Thermocapillary Convection in An Open Annular Pool

    NASA Astrophysics Data System (ADS)

    Duan, Li; Kang, Qi; Zhang, Di

    2016-07-01

    Temperature oscillation characteristics and free surface deformation are essential phenomena in fluids with free surface. We report experimental oscillatory behaviors for hydrothermal wave instability in thermocapillary-driven flow in an open annular pool of silicone oil. The annular pool is heated from the inner cylindrical wall with the radius 4mm and cooled at the outer wall with radius 20mm, and the depth of the silicone oil layer is in the range of 0.8mm-3mm.Temperature difference between the two sidewalls was increased gradually, and the flow will become unstable via a super critical temperature difference. In the present paper we used T-type thermocouple measuring the single-point temperature inside the liquid layer and captured the tiny micrometer wave signal through a high-precision laser displacement sensor. The critical temperature difference and critical Ma number of onset of oscillation have been obtained. We discussed the critical temperature difference and critical Marangoni number varies with the change of the depth of liquid layer, and the relationship between the temperature oscillation and surface oscillation has been discussed. Experimental results show that temperature oscillation and surface oscillation start almost at the same time with similar spectrum characteristic.

  9. Flow properties of particles in a model annular shear cell

    NASA Astrophysics Data System (ADS)

    Wang, X.; Zhu, H. P.; Yu, A. B.

    2012-05-01

    In order to quantitatively investigate the mechanical and rheological properties of solid flow in a shear cell under conditions relevant to those in an annular cell, we performed a series of discrete particle simulations of slightly polydispersed spheres from quasi-static to intermediate flow regimes. It is shown that the average values of stress tensor components are uniformly distributed in the cell space away from the stationary walls; however, some degree of inhomogeneity in their spatial distributions does exist. A linear relationship between the (internal/external) shear and normal stresses prevails in the shear cell and the internal and external friction coefficients can compare well with each other. It is confirmed that annular shear cells are reasonably effective as a method of measuring particle flow properties. The so-called I-rheology proposed by Jop et al. [Nature (London) 441, 727 (2006)] is rigorously tested in this cell system. The results unambiguously display that the I-rheology can effectively describe the intermediate flow regime with a high correlation coefficient. However, significant deviations take place when it is applied to the quasi-static regime, which corresponds to very small values of inertial number.

  10. The Effect of Nonuniform Inlet Conditions on Annular Diffusers

    NASA Astrophysics Data System (ADS)

    Padilla, Angelina; Elkins, Chris; Eaton, John

    2010-11-01

    Most practical diffusers have complex 3D geometries and may have highly disturbed inlet flows. The performance of diffusers designed for optimum pressure recovery is governed by flow separation which can be very sensitive to inlet perturbations. We are examining the effect of upstream disturbances on the performance of practical annular diffusers. Experiments are conducted in an annular diffuser sector containing a single NACA 0015 airfoil shaped support strut. Three component, time averaged velocities are measured using magnetic resonance velocimetry and static pressure data are measured with conventional wall taps. We are testing four inlet conditions: a uniform velocity profile with thin boundary layers and relatively low turbulence intensity, a similar case with higher turbulence levels, a mean profile with uniform velocity except for a high velocity wall jet at the outer radius, and a nonuniform profile in which the mean velocity decreases with increasing radius. Generally, the results show that the diffuser acts to increase flow distortion. For the case with the radial velocity gradient, passing through the diffuser strongly increases the velocity gradient. The wall jet on the outer (diffusing) wall eliminates flow separation resulting in higher pressure recovery and thicker wall boundary layers on the other three walls. Interestingly, the separated wake of the support strut closes more rapidly for the case with the radial velocity gradient.

  11. Novel applications of continuous annular chromatography: Separation of sugars

    SciTech Connect

    Howard, A.J.; Carta, G.; Byers, C.H.

    1987-01-01

    Continuous chromatographic separations of fructose-glucose-sucrose mixtures have been investigated experimentally in a laboratory-scale continuous annular chromatograph using Ca-exchanged Dowex 50W-X8 resin as adsorbent. Comparative chromatographic separation studies have also been conducted for the system using a conventional fixed-bed column packed with the same resin. Complete resolution of fructose-glucose mixtures could be obtained both in a 60 cm-long continuous annular chromatograph and in a conventional column of the same length with sugars feed concentration up to 200 g/L. In the four-component mixture blue dextran (higher molecular weight saccharide), sucrose, glucose and fructose complete rsolution of all species except sucrose-glucose under the relatively mild separating conditions tested. The experimental results have been analyzed in terms of approximate linear chromatographic theories for fixed and rotating beds. Bed properties and equilibrium and mass transfer parameters used in the model were obtained through independent experiments. With these parameters a good fit to the experimental results was obtained. Differences in feed mixtures and dispersion characteristics contribute to the minor offset between fixed bed and continuous chromatograph results. 21 refs., 12 figs., 3 tabs.

  12. Baroclinic annular variability of internal motions in a Patagonian fjord

    NASA Astrophysics Data System (ADS)

    Ross, Lauren; Valle-Levinson, Arnoldo; Pérez-Santos, Iván.; Tapia, Fabian J.; Schneider, Wolfgang

    2015-08-01

    Time series of horizontal velocities, echo intensity, wind velocity, and atmospheric pressure were collected for ˜200 days in a Patagonian fjord to explore pycnocline motions produced by the Southern Hemisphere's baroclinic annular mode (BAM). The BAM variability occurs between 20 and 30 days and is associated with fluctuations in atmospheric kinetic energy and in turbulent fluxes of heat. Spectra of horizontal velocities and normalized echo intensity in the fjord's water showed highest energy between 25 and 30 days. This was explained by sustained westerly winds associated with extreme low-pressure systems (˜900 hPa) that had periodicity related to the BAM. Wind forcing produced >40 cm s-1 along-channel and cross-channel currents in the surface layer, which in turn created a wind-induced setup toward the head of the fjord. The setup was accompanied by a deepening of the pycnocline (from 5 to 15 m depth) with ˜25 to 30 day periodicity, as derived from the normalized echo intensity. The dominant empirical orthogonal function mode of the normalized echo intensity profiles explained 70.8% of the variance and also exhibited a ˜25-30 day periodicity. Further, a wavelet and spectral analysis of 10 years of atmospheric pressure indicated peaks between 25 and 30 days each year, indicating that the BAM consistently influences weather patterns in Chilean Patagonia. This is the first documented case of baroclinic annular variability in a specific region of the Southern Hemisphere, and of its effects on fjord systems.

  13. Mount assembly for porous transition panel at annular combustor outlet

    NASA Technical Reports Server (NTRS)

    Sweeney, Ralph B. (Inventor); Verdouw, Albert J. (Inventor)

    1980-01-01

    A gas turbine engine combustor assembly of annular configuration has outer and inner walls made up of a plurality of axially extending multi-layered porous metal panels joined together at butt joints therebetween and each outer and inner wall including a transition panel of porous metal defining a combustor assembly outlet supported by a combustor mount assembly including a stiffener ring having a side undercut thereon fit over a transition panel end face; and wherein an annular weld joins the ring to the end face to transmit exhaust heat from the end face to the stiffener ring for dissipation from the combustor; a combustor pilot member is located in axially spaced, surrounding relationship to the end face and connector means support the stiffener ring in free floating relationship with the pilot member to compensate for both radial and axial thermal expansion of the transition panel; and said connector means includes a radial gap for maintaining a controlled flow of coolant from outside of the transition panel into cooling relationship with the stiffener ring and said weld to further cool the end face against excessive heat build-up therein during flow of hot gas exhaust through said outlet.

  14. A compact annular ring microstrip antenna for WSN applications.

    PubMed

    Wang, Daihua; Song, Linli; Zhou, Hanchang; Zhang, Zhijie

    2012-01-01

    A compact annular ring microstrip antenna was proposed for a wireless sensor network (WSN) application in the 2.4 GHz band. In this paper the major considerations of the conformal antenna design were the compact size and the impact on antenna's performance of a steel installation base. By using a chip resistor of large resistance (120 Ω) the antenna size was reduced to 38% of that a conventional annular ring patch antenna. With the addition of the steel installation base the resonant frequency of the antenna increases about 4.2% and the bandwidth reduces from 17.5% to 11.7% by adjusting the load resistance simultaneously. Several key parameters were discussed and optimized, and the antenna was fabricated and its performance measured. The antenna is well matched at 2.4 GHz with 34.2 dB return loss and -2.5 dBi peak gain. Meanwhile, it exhibits excellent radiation patterns with very low cross-polarization levels.

  15. Effects of Gravity on Bubble Formation in an Annular Jet

    NASA Technical Reports Server (NTRS)

    Koepp, R. A.; Parthasarathy, R. N.; Gollahalli, S. R.

    2004-01-01

    The effects of gravity on the bubble formation in an annular jet were studied. The experiments were conducted in the 2.2-second drop tower at the NASA Glenn Research Center. Terrestrial gravity experiments were conducted at the Fluid Dynamics Research Laboratory at the University of Oklahoma. Stainless steel tubing with inner diameters of 1/8" (gas inner annulus) and 5/16" (liquid outer annulus) served as the injector. A rectangular test section, 6" x 6" x 14" tall, made out of half-inch thick Lexan was used. Images of the annular jet were acquired using a high-speed camera. The effects of gravity and varying liquid and gas flow rates on bubble size, wavelength, and breakup length were documented. In general, the bubble diameter was found to be larger in terrestrial gravity than in microgravity for varying Weber numbers (0.05 - 0.16 and 5 - 11) and liquid flow rates (1.5 ft/s - 3.0 ft/s). The wavelength was found to be larger in terrestrial gravity than in microgravity, but remained constant for varying Weber numbers. For low Weber numbers (0.05 - 0.16), the breakup length in microgravity was significantly higher than in terrestrial gravity. Comparison with linear stability analysis showed estimated bubble sizes within 9% of experimental bubble sizes. Bubble size compared to other terrestrial gravity experiments with same flow conditions showed distinct differences in bubble size, which displayed the importance of injector geometry on bubble formation.

  16. Annular Lichenoid Dermatitis of Youth: A Chronic Case Managed Using Pimecrolimus.

    PubMed

    Malachowski, Stephen J; Creasey, Mackenzie; Kinkley, Nancy; Heaphy, Michael R

    2016-11-01

    Annular lichenoid dermatitis of youth, first described in 2003, is a rare and occasionally chronic skin disease. We report a case of annular lichenoid dermatitis of youth relapsing over the course of 5 years successfully treated and maintained with topical pimecrolimus cream.

  17. Simultaneous occurrence of ulcerated necrobiosis lipoidica and granuloma annulare in a patient: case report.

    PubMed

    Souza, Fernanda Homem de Mello de; Ribeiro, Camila Ferrari; Pereira, Marcela Abou Chami; Mesquita, Lismary; Fabrício, Lincoln

    2011-01-01

    Simultaneous occurrence of granuloma annulare and necrobiosis lipoidica is quite rare. There are seven reported cases in the literature, but only one presenting ulcerated necrobiosis lipoidica. We report a 39-year-old male with histopathologically confirmed granuloma annulare and ulcerated necrobiosis lipoidica, without diabetes mellitus.

  18. Analytical model of an Annular Momentum Control Device (AMCD) laboratory test model magnetic bearing actuator

    NASA Technical Reports Server (NTRS)

    Groom, N. J.

    1979-01-01

    An analytical model of an Annular Momentum Control Device (AMCD) laboratory test model magnetic bearing actuator with permanent magnet fluxbiasing is presented. An AMCD consists of a spinning annular rim which is suspended by a noncontacting linear electromagnetic spin motor. The actuator is treated as a lumped-parameter electromechanical system in the development of the model.

  19. Annular core liquid-salt cooled reactor with multiple fuel and blanket zones

    DOEpatents

    Peterson, Per F.

    2013-05-14

    A liquid fluoride salt cooled, high temperature reactor having a reactor vessel with a pebble-bed reactor core. The reactor core comprises a pebble injection inlet located at a bottom end of the reactor core and a pebble defueling outlet located at a top end of the reactor core, an inner reflector, outer reflector, and an annular pebble-bed region disposed in between the inner reflector and outer reflector. The annular pebble-bed region comprises an annular channel configured for receiving pebble fuel at the pebble injection inlet, the pebble fuel comprising a combination of seed and blanket pebbles having a density lower than the coolant such that the pebbles have positive buoyancy and migrate upward in said annular pebble-bed region toward the defueling outlet. The annular pebble-bed region comprises alternating radial layers of seed pebbles and blanket pebbles.

  20. Enhanced simulation software for rocket turbopump, turbulent, annular liquid seals

    NASA Technical Reports Server (NTRS)

    Padavala, Satya; Palazzolo, Alan

    1994-01-01

    One of the main objectives of this work is to develop a new dynamic analysis for liquid annular seals with arbitrary profile and to analyze a general distorted interstage seal of the space shuttle main engine high pressure oxygen turbopump (SSME-ATD-HPOTP). The dynamic analysis developed is based on a method originally proposed by Nelson and Nguyen. A simpler scheme based on cubic splines is found to be computationally more efficient and has better convergence properties at higher eccentricities. The first order solution of the original analysis is modified by including a more exact solution that takes into account the variation of perturbed variables along the circumference. A new set of equations for dynamic analysis are derived based on this more general model. A unified solution procedure that is valid for both Moody's and Hirs' friction models is presented. Dynamic analysis is developed for three different models: constant properties, variable properties, and thermal effects with variable properties. Arbitrarily varying seal profiles in both axial and circumferential directions are considered. An example case of an elliptical seal with varying degrees of axial curvature is analyzed in detail. A case study based on predicted clearances of an interstage seal of the SSME-ATD-HPOTP is presented. Dynamic coefficients based on external specified load are introduced to analyze seals that support a preload. The other objective of this work is to study the effect of large rotor displacements of SSME-ATD-HPOTP on the dynamics of the annular seal and the resulting transient motion. One task is to identify the magnitude of motion of the rotor about the centered position and establish limits of effectiveness of using current linear models. This task is accomplished by solving the bulk flow model seal governing equations directly for transient seal forces for any given type of motion, including motion with large eccentricities. Based on the above study, an equivalence is

  1. Theory of low voltage annular beam free-electron lasers

    SciTech Connect

    Blank, M.; Freund, H.P.; Jackson, R.H.

    1995-12-31

    An nonlinear analysis of an annular beam propagating through a cylindrical waveguide in the presence of a helical wiggler and an axial guide field is presented. The analysis is based upon the ARACHNE simulation which is a non-wiggler-averaged slow-time-scale simulation code in which the electromagnetic field is represented as a superposition of the TE and TM modes in a vacuum waveguide, and the beam space-charge waves are represented as a superposition of Gould-Trivelpiece modes. The DC self-electric and self-magnetic fields are also included in the model. ARACHNE has been extensively benchmarked against experiments at MIT and NRL in the past with good agreement, but all of these experiments have dealt with solid electron beams and beam voltages in excess of 200 kV. In seeking to reduce the beam voltage requirements we now consider the effect of operation with an annular beam. One advantage to be obtained by using an annular beam is that, for a fixed beam current, the effect of the DC selffields (i.e., the space-charge depression in beam voltage) will be reduced relative to that of a solid beam. This facilitates beam transport in short period wigglers in which the transverse dimensions are also small. A specific example is under study which makes use of 55 kV/5A electron beam with inner and outer radii of 0.27 cm and 0.33 cm respectively. The wiggler amplitude is 250 G with a period of 0.9 cm. and guide fields up to 3 kG corresponding to Group I trajectories. The waveguide radius is chosen to correspond to grazing incidence for the fundamental mode in Ku-Band (12-18 GHz). Preliminary results indicate that efficiencies upwards of 10% are possible with no wiggler taper. In addition, the energy spread must be held below 0.1%, and the instantaneous bandwidth is found to be greater than 20%.

  2. Earth's Decelerating Tectonic Plates

    SciTech Connect

    Forte, A M; Moucha, R; Rowley, D B; Quere, S; Mitrovica, J X; Simmons, N A; Grand, S P

    2008-08-22

    Space geodetic and oceanic magnetic anomaly constraints on tectonic plate motions are employed to determine a new global map of present-day rates of change of plate velocities. This map shows that Earth's largest plate, the Pacific, is presently decelerating along with several other plates in the Pacific and Indo-Atlantic hemispheres. These plate decelerations contribute to an overall, globally averaged slowdown in tectonic plate speeds. The map of plate decelerations provides new and unique constraints on the dynamics of time-dependent convection in Earth's mantle. We employ a recently developed convection model constrained by seismic, geodynamic and mineral physics data to show that time-dependent changes in mantle buoyancy forces can explain the deceleration of the major plates in the Pacific and Indo-Atlantic hemispheres.

  3. Accelerated plate tectonics.

    PubMed

    Anderson, D L

    1975-03-21

    The concept of a stressed elastic lithospheric plate riding on a viscous asthenosphere is used to calculate the recurrence interval of great earthquakes at convergent plate boundaries, the separation of decoupling and lithospheric earthquakes, and the migration pattern of large earthquakes along an arc. It is proposed that plate motions accelerate after great decoupling earthquakes and that most of the observed plate motions occur during short periods of time, separated by periods of relative quiescence.

  4. Annular suspension and pointing system with controlled DC electromagnets

    NASA Technical Reports Server (NTRS)

    Vu, Josephine Lynn; Tam, Kwok Hung

    1993-01-01

    The Annular Suspension and Pointing System (ASPS) developed by the Flight System division of Sperry Corporation is a six-degree of freedom payload pointing system designed for use with the space shuttle. This magnetic suspension and pointing system provides precise controlled pointing in six-degrees of freedom, isolation of payload-carrier disturbances, and end mount controlled pointing. Those are great advantages over the traditional mechanical joints for space applications. In this design, we first analyzed the assumed model of the single degree ASPS bearing actuator and obtained the plant dynamics equations. By linearizing the plant dynamics equations, we designed the cascade and feedback compensators such that a stable and satisfied result was obtained. The specified feedback compensator was computer simulated with the nonlinearized plant dynamics equations. The results indicated that an unstable output occurred. In other words, the designed feedback compensator failed. The failure of the design is due to the Taylor's series expansion not converging.

  5. Visualization of lithium ions by annular bright field imaging.

    PubMed

    Oshima, Yoshifumi; Lee, Soyeon; Takayanagi, Kunio

    2016-10-14

    The detection of lithium ions is required for characterization of lithium ion batteries, since the movement of lithium ions in the battery is one of the key ways to improve the performance. Annular bright field (ABF) imaging enables us to visualize individual lithium atomic columns simultaneously with heavy elements. Furthermore, it has been found that the number of lithium ions at the column is countable when the specimen is thin. These results suggest that movement of lithium ions in the material can be observed by taking consecutive ABF images during operation or in situ ABF observation. Actually, the spinel structure of L2V4O crystals was directly observed to be transformed into the defective NaCl structure at the moment when lithium ions were extracted from the original position during electron beam irradiation. We clarify the features of ABF imaging by comparing it with HAADF imaging in order to understand what information can be obtained by ABF imaging directly.

  6. Dynamic force and moment coefficients for short length annular seals

    NASA Astrophysics Data System (ADS)

    San Andres, Luis

    1993-01-01

    Close form expressions for the dynamic force and moment coefficients in short length annular pressure seals operating at the concentric and aligned position are derived. The analysis considers fully developed turbulent flow within the seal and determines a set of ordinary differential equations for the bulk-flow field due to perturbations in rotor displacements and angular motions. The flow equations are solved exactly for seals of short length where dynamic variations in circumferential velocity are neglected. The analytical solution derived is simple and reasonably accurate for seals of length to diameter ratios (L/D) as large as 0.5 as comparisons with results from full-scale numerical solutions show. The formulae presented are practical for use in preliminary design stages and parametric studies of dynamic seal performance.

  7. Geometry-Driven Folding of a Floating Annular Sheet.

    PubMed

    Paulsen, Joseph D; Démery, Vincent; Toga, K Buğra; Qiu, Zhanlong; Russell, Thomas P; Davidovitch, Benny; Menon, Narayanan

    2017-01-27

    Predicting the large-amplitude deformations of thin elastic sheets is difficult due to the complications of self contact, geometric nonlinearities, and a multitude of low-lying energy states. We study a simple two-dimensional setting where an annular polymer sheet floating on an air-water interface is subjected to different tensions on the inner and outer rims. The sheet folds and wrinkles into many distinct morphologies that break axisymmetry. These states can be understood within a recent geometric approach for determining the gross shape of extremely bendable yet inextensible sheets by extremizing an appropriate area functional. Our analysis explains the remarkable feature that the observed buckling transitions between wrinkled and folded shapes are insensitive to the bending rigidity of the sheet.

  8. Annular resonators for high-power chemical lasers

    NASA Astrophysics Data System (ADS)

    Wade, Richard C.

    1993-08-01

    Resonators capable of extracting highly coherent energy from DF and HF chemical laser annular gain media have been under investigation for weapon application since 1974. This survey article traces the background of interest in these devices, describes the various concepts that have been experimentally and analytically investigated, and discusses the issues associated with their operation. From the discussion of issues, preferred concepts are selected. Applicability of these concepts to high-power operation is addressed through discussions of past and ongoing high-power demonstration programs and the issues facing their application to weapon sized devices capable of strategic and tactical missions such as ballistic missile defense (BMD), theater missile defense (TMD), and anti satellite (ASAT).

  9. Hydrodynamics of annular-dispersed flow. [PWR; BWR

    SciTech Connect

    Ishii, M.; Kataoka, I.

    1982-01-01

    The interfacial drag, droplet entrainment, and droplet size distributions are important for detailed mechanistic modeling of annular dispersed two-phase flow. In view of this, recently developed correlations for these parameters are presented and discussed in this paper. The drag correlations for multiple fluid particle systems have been developed from a similarity hypothesis based on the mixture viscosity model. The results show that the drag coefficient depends on the particle Reynolds number and droplet concentration. The onset on droplet entrainment significantly alters the mechanisms of mass, momentum, and energy transfer between the film and gas core flow as well as the transfer between the two-phase mixture and the wall. By assuming the roll wave entrainment mechanism, the correlations for the amount of entrained droplet as well as for the droplet size distribution have been obtained from a simple model in collaboration with a large number of data.

  10. The liquid annular reactor system (LARS) for deep space exploration

    NASA Astrophysics Data System (ADS)

    Maise, George; Paniagua, John; Powell, James R.; Ludewig, Hans; Todosow, Michael

    1999-05-01

    A new propulsion concept for high Δ V space missions, termed LARS (Liquid Annular Reactor System), uses liquid nuclear fuel elements to heat hydrogen propellant to very high temperatures (-6000 K). The molten fuel is contained in a lower-temperature solid container which rotates to stabilize and hold in the liquid layer by centripetal force. Containment of ultra high temperature molten refractories, using this method, has been experimentally demonstrated by A.V. Grosse. The specific impulse of a rocket exhausting hydrogen at 6000 K is 2000 seconds, approximately double that of solid-core nuclear rockets. A LARS-powered space probe could accomplish extra-solar missions to 550 A.U. in approximately 35 years.

  11. Annular Plaques on the Tongue: What Is Your Diagnosis?

    PubMed Central

    Kayhan, Tuba Çelebĺ; Bĺlaç, Cemal; Bĺlaç, Dilek Bayraktar; Ecemĺş, Talat

    2011-01-01

    Geographic tongue is an inflammatory disorder of the tongue characterized by asymptomatic erythematous patches with serpiginous borders. Candidiasis of the tongue may be confused with geographic tongue. A 63-year-old male patient with painful white annular lesions localized to the left side of his tongue is presented. He applied topical corticosteroid and antiinflammatory agents, but his lesions did not respond to those therapies. Using direct mycologic examination and culture, the patient was diagnosed with candidiasis. After systemic and topical antifungal therapy, clinical improvement was observed. With this case, the clinical forms of oral candidiasis were discussed, and it was suggested that the clinical presentation of mucosal candidiasis may vary according to the stage of infection and individual immunity. PMID:22148032

  12. Investigation of a low NOx full-scale annular combustor

    NASA Technical Reports Server (NTRS)

    1982-01-01

    An atmospheric test program was conducted to evaluate a low NOx annular combustor concept suitable for a supersonic, high-altitude aircraft application. The lean premixed combustor, known as the vortex air blast (VAB) concept, was tested as a 22.0-cm diameter model in the early development phases to arrive at basic design and performance criteria. Final demonstration testing was carried out on a full scale combustor of 0.66-m diameter. Variable geometry dilution ports were incorporated to allow operation of the combustor across the range of conditions between idle (T(in) = 422 K, T(out) = 917 K) and cruise (T(in) = 833 K, T(out) - 1778 K). Test results show that the design could meet the program NOx goal of 1.0 g NO2/kg fuel at a one-atmospheric simulated cruise condition.

  13. Mathematical model for multicomponent separations on the continuous annular chromatograph

    SciTech Connect

    Bratzler, R.L.; Begovich, J.M.

    1980-12-01

    A model for multicomponent separations on ion exchange columns has been adapted for use in studying the performance of the continuous annular chromatograph. The model accurately predicts solute peak positions in the column effluent and qualitatively predicts trends in solute effluent resolution as a function of increasing bandwidth of the solute feed pulse. The major virtues of the model are its simplicity in terms of the calculations involved and the fact that it incorporates the nonlinear solute-resin binding isotherms common in many ion exchange separations. Because dispersion effects are not accounted for in the model, discrepancies exist between the shapes of the effluent peaks predicted by the model and those determined experimentally.

  14. The Effect of Upstream Vane Wakes on Annular Diffuser Flows

    NASA Astrophysics Data System (ADS)

    Cherry, Erica; Padilla, Angelina; Elkins, Christopher; Eaton, John

    2008-11-01

    Experiments were performed to determine the sensitivity to inlet conditions of the flow in two annular diffusers. One of the diffusers was a conservative design typical of a diffuser directly upstream of the combustor in a jet engine. The other had the same length and inlet shape as the first diffuser but a larger area ratio and was meant to operate on the verge of separation. Each diffuser was connected to two different inlets, one containing a fully-developed channel flow, the other containing wakes from a row of airfoils. Three-component velocity measurements were taken on the flow in each inlet/diffuser combination using Magnetic Resonance Velocimetry. Results will be presented on the 3D velocity fields in the two diffusers and the effect of the airfoil wakes on separation and secondary flows.

  15. Annular billiard dynamics in a circularly polarized strong laser field

    NASA Astrophysics Data System (ADS)

    Kamor, A.; Mauger, F.; Chandre, C.; Uzer, T.

    2012-01-01

    We analyze the dynamics of a valence electron of the buckminsterfullerene molecule (C60) subjected to a circularly polarized laser field by modeling it with the motion of a classical particle in an annular billiard. We show that the phase space of the billiard model gives rise to three distinct trajectories: “whispering gallery orbits,” which hit only the outer billiard wall; “daisy orbits,” which hit both billiard walls (while rotating solely clockwise or counterclockwise for all time); and orbits that only visit the downfield part of the billiard, as measured relative to the laser term. These trajectories, in general, maintain their distinct features, even as the intensity is increased from 1010 to 1014Wcm-2. We attribute this robust separation of phase space to the existence of twistless tori.

  16. Geometry-Driven Folding of a Floating Annular Sheet

    NASA Astrophysics Data System (ADS)

    Paulsen, Joseph D.; Démery, Vincent; Toga, K. Buǧra; Qiu, Zhanlong; Russell, Thomas P.; Davidovitch, Benny; Menon, Narayanan

    2017-01-01

    Predicting the large-amplitude deformations of thin elastic sheets is difficult due to the complications of self contact, geometric nonlinearities, and a multitude of low-lying energy states. We study a simple two-dimensional setting where an annular polymer sheet floating on an air-water interface is subjected to different tensions on the inner and outer rims. The sheet folds and wrinkles into many distinct morphologies that break axisymmetry. These states can be understood within a recent geometric approach for determining the gross shape of extremely bendable yet inextensible sheets by extremizing an appropriate area functional. Our analysis explains the remarkable feature that the observed buckling transitions between wrinkled and folded shapes are insensitive to the bending rigidity of the sheet.

  17. Thirty Stage Annular Centrifugal Contactor Thermal Profile Measurements

    SciTech Connect

    David H. Meikrantz; Troy G. Garn; Jack D. Law

    2010-02-01

    A thirty stage 5 cm annular centrifugal contactor cascade has been assembled and tested to obtain thermal profiles during both ambient and heated input conditions of operation. Thermocouples were installed on every stage as well as feed inputs and Real-time data was taken during experiments lasting from two to eight hours at total flow rates of 0.5 to 1.4 liters per minute. Ambient temperature profile results show that only a small amount of heat is generated by the mechanical energy of the contactors. Steady state temperature profiles mimic the ambient temperature of the lab but are higher toward the middle of the cascade. Heated inlet solutions gave temperature profiles with smaller temperature gradients, more driven by the temperature of the inlet solutions than ambient lab temperature. Temperature effects of solution mixing, even at rotor speeds of 4000 rpm, were not measurable.

  18. Design and application of three-zone annular filters

    NASA Astrophysics Data System (ADS)

    Liu, Ximin; Liu, Liren; Liu, De'an; Bai, Lihua

    2006-10-01

    We design three-zone annular filters to be applied to optical storage system. The designed filters extend the depth of focus and realize transverse superresolution simultaneously, which will improve the performance of optical storage system greatly. And we propose two feasible schemes to improve imaging resolution of three-dimensional imaging system. One scheme depends on a complex filter formed by cascading of a three-zone phase filter and a three-zone amplitude filter. The complex filter converge the optimized transverse superresolution and the optimized axial superresolution of two different filters onto a single filter. It can improve the three-dimensional imaging performances greatly. Another scheme depends on a single three-zone complex filter. We propose a three-zone complex filter with phase shift 0.8[pi], which presents bigger design margin, better imaging quality and stronger three-dimensional superresolution capability.

  19. Interfacial shear modeling in two-phase annular flow

    SciTech Connect

    Kumar, R.; Edwards, D.P.

    1996-11-01

    A new interfacial shear stress model called the law of the interface model, based on the law of the wall approach in turbulent flows, has been developed and locally applied in a fully developed, adiabatic, two-phase annular flow in a duct. Numerical results have been obtained using this model in conjunction with other models available in the literature that are required for the closure of the continuity and momentum equations. These results have been compared with droplet velocity data (using laser Doppler velocimetry and hot film anemometry), void fraction data (using gamma densitometry) and pressure drop data obtained in a R-134A refrigerant test facility. Droplet velocity results match the experimental data well, however, the prediction of the void fraction is less accurate. The poor prediction of void fraction, especially for the low void fraction cases, appears to be due to the lack of a good mechanistic model for entrainment.

  20. Interfacial shear modeling in two-phase annular flow

    SciTech Connect

    Kumar, R.; Edwards, D.P.

    1996-07-01

    A new interfacial shear stress model called the law of the interface model, based on the law of the wall approach in turbulent flows, has been developed and locally applied in a fully developed, adiabatic, two-phase annular flow in a duct. Numerical results have been obtained using this model in conjunction with other models available in the literature that are required for the closure of the continuity and momentum equations. These results have been compared with droplet velocity data (using laser Doppler velocimetry and hot film anemometry), void fraction data (using gamma densitometry) and pressure drop data obtained in a R-134A refrigerant test facility. Droplet velocity results match the experimental data well, however, the prediction of the void fraction is less accurate. The poor prediction of void fraction, especially for the low void fraction cases, appears to be due to the lack of a good mechanistic model for entrainment.

  1. Interfacial transfer in annular dispersed flow. [PWR; BWR

    SciTech Connect

    Ishii, M.; Kataoka, I.

    1982-01-01

    The interfacial drag, droplet entrainment, droplet deposition and droplet-size distributions are important for detailed mechanistic modeling of annular dispersed two-phase flow. In view of this, recently developed correlations for these parameters are presented and discussed in this paper. The onset of droplet entrainment significantly alters the mechanisms of mass, momentum, and energy transfer between the film and gas core flow as well as the transfer between the two-phase mixture and the wall. By assuming the roll wave entrainment mechanism, the correlations for the amount of entrained droplet as well as for the droplet-size distribution have been obtained from a simple model in collaboration with a large number of data. Then the rate equations for entrainment and deposition have been developed. The drag correlations relevant to the droplet transfer is also presented. The comparison of the correlations to various data show satisfactory agreement.

  2. Fuel Injector Design Optimization for an Annular Scramjet Geometry

    NASA Technical Reports Server (NTRS)

    Steffen, Christopher J., Jr.

    2003-01-01

    A four-parameter, three-level, central composite experiment design has been used to optimize the configuration of an annular scramjet injector geometry using computational fluid dynamics. The computational fluid dynamic solutions played the role of computer experiments, and response surface methodology was used to capture the simulation results for mixing efficiency and total pressure recovery within the scramjet flowpath. An optimization procedure, based upon the response surface results of mixing efficiency, was used to compare the optimal design configuration against the target efficiency value of 92.5%. The results of three different optimization procedures are presented and all point to the need to look outside the current design space for different injector geometries that can meet or exceed the stated mixing efficiency target.

  3. Annular-beam, 17 GHz free-electron maser experiment

    SciTech Connect

    Earley, L.M.; Carlsten, B.E.; Fazio, M.V.

    1997-06-01

    Experiments have been conducted on a 15-17 GHz free electron maser (FEM) for producing a 500 MW output pulse with a phase stability appropriate for linear collider applications. The electron beam source was a 1 {mu}s, 800 kV, 5 kA, 6-cm-dia annular electron beam machine called BANSHEE. The beam interacted with the TM{sub 02} and TM{sub 03} mode Raman FEM amplifier in a corrugated cylindrical waveguide where the beam runs close to the interaction device walls to reduce the power density in the fields. This greatly reduced the kinetic energy loss caused by the beam potential depression associated with the space charge which was a significant advantage in comparison with conventional solid beam microwave tubes at the same beam current. The experiment was operated in a single shot mode with a large number of diagnostics to measure power, frequency and energy.

  4. Fast High Capacity Annular Gas Puff Valve Design Concept

    NASA Astrophysics Data System (ADS)

    Ruden, Edward

    2000-10-01

    A fast opening gas valve design concept is presented that can theoretically inject a few grams of D2 gas radially outward into a coaxial annular vacuum region with a radius of about 10 cm in less that 100 μ s. The concept employs a single turn 20-30 T pulsed magnetic field coil that axially accelerates an Mg alloy ring, which seals a gas plenum, to high velocity, releasing the gas. Both coil and ring are profiled to minimize stress in the ring. Such a device could be used to supply the initial gas load for a proposed 5 MJ Dense Plasma Focus driven by AFRL's Shiva Star Capacitor bank. The intent here is keep the vacuum current feed insulator under high vacuum during the discharge to avoid surface breakdown. Alternatively, a high energy rep ratable plasma flow opening switch could be supplied with such a valve. This work is funded by the USAF.

  5. Two-phase flow instabilities in a vertical annular channel

    SciTech Connect

    Babelli, I.; Nair, S.; Ishii, M.

    1995-09-01

    An experimental test facility was built to study two-phase flow instabilities in vertical annular channel with emphasis on downward flow under low pressure and low flow conditions. The specific geometry of the test section is similar to the fuel-target sub-channel of the Savannah River Site (SRS) Mark 22 fuel assembly. Critical Heat Flux (CHF) was observed following flow excursion and flow reversal in the test section. Density wave instability was not recorded in this series of experimental runs. The results of this experimental study show that flow excursion is the dominant instability mode under low flow, low pressure, and down flow conditions. The onset of instability data are plotted on the subcooling-Zuber (phase change) numbers stability plane.

  6. Closed-cycle annular-flow-return laser

    SciTech Connect

    Olson, R.A.; Sarka, B. Jr.; Garscadden, A.; Bletzinger, P.

    1981-07-01

    A compact, high repetition rate, closed-cycle rare-gas laser has been achieved in a novel design utilizing an annular flow return surrounding the laser flow channel. The 112-cm long by 30.5-cm-diam. laser head is compact and attractive for portable applications. High repetition rate (to 15 kHz) multiline laser operation has been achieved in high-pressure (to 2 atm) mixtures of Ne--Xe (6 lines), Ar--Xe (7 lines), He--Xe (9 lines), He--Kr (4 lines), and He--Ar (3 lines). Reliable long lifetime performance has been demonstrated by operating a He--Xe laser continuously for 100 hours at a pulse-repetition rate of 5 kHz (1.8 x 10/sup 9/ pulses) with no degradation of the 1.1-W average laser output power.

  7. Annular dark field transmission electron microscopy for protein structure determination.

    PubMed

    Koeck, Philip J B

    2016-02-01

    Recently annular dark field (ADF) transmission electron microscopy (TEM) has been advocated as a means of recording images of biological specimens with better signal to noise ratio (SNR) than regular bright field images. I investigate whether and how such images could be used to determine the three-dimensional structure of proteins given that an ADF aperture with a suitable pass-band can be manufactured and used in practice. I develop an approximate theory of ADF-TEM image formation for weak amplitude and phase objects and test this theory using computer simulations. I also test whether these simulated images can be used to calculate a three-dimensional model of the protein using standard software and discuss problems and possible ways to overcome these.

  8. Intermittent Flow of Granular Matter in an Annular Geometry

    NASA Astrophysics Data System (ADS)

    Brzinski, Ted; Daniels, Karen E.

    Granular solids can be subjected to a finite stress below which the response is elastic. Above this yield stress, however, the material fails catastrophically, undergoing a rapid plastic deformation. In the case of a monotonically increasing stress the material exhibits a characteristic stick-slip response. We investigate the statistics of this intermittent failure in an annular shear geometry, driven with a linear-ramp torque in order to generate the stick-slip behavior. The apparatus is designed to allow visual access to particle trajectories and inter-particle forces (through the use of photoelastic materials). Additionally, twelve piezoelectric sensors at the outer wall measure acoustic emissions due to the plastic deformation of the material. We vary volume fraction, and use both fixed and deformable boundaries. We measure how the distribution of slip size and duration are related to the bulk properties of the packing, and compare to systems with similar governing statistics.

  9. Non-axisymmetric instability of core-annular flow

    NASA Astrophysics Data System (ADS)

    Hu, Howard H.; Patankar, Neelesh

    1995-05-01

    Stability of core-annular flow of water and oil in a vertical circular pipe is studied with respect to non-axisymmetric disturbances. Results show that when the oil core is thin, the flow is most unstable to the asymmetric sinuous mode of disturbance, and the core moves in the form of corkscrew waves as observed in experiments. The asymmetric mode of disturbance is the most dangerous mode for quite a wide range of material and flow parameters. This asymmetric mode persists in vertical pipes with upward and downward flows and in horizontal pipes. The analysis also applies to the instability of freely rising axisymmetric cigarette smoke or a thermal plume. The study predicts a unique wavelength for the asymmetric meandering waves.

  10. Obliquity along plate boundaries

    NASA Astrophysics Data System (ADS)

    Philippon, Mélody; Corti, Giacomo

    2016-12-01

    Most of the plate boundaries are activated obliquely with respect to the direction of far field stresses, as roughly only 8% of the plate boundaries total length shows a very low obliquity (ranging from 0 to 10°, sub-orthogonal to the plate displacement). The obliquity along plate boundaries is controlled by (i) lateral rheological variations within the lithosphere and (ii) consistency with the global plate circuit. Indeed, plate tectonics and magmatism drive rheological changes within the lithosphere and consequently influence strain localization. Geodynamical evolution controls large-scale mantle convection and plate formation, consumption, and re-organization, thus triggering plate kinematics variations, and the adjustment and re-orientation of far field stresses. These geological processes may thus result in plate boundaries that are not perpendicular but oblique to the direction of far field stresses. This paper reviews the global patterns of obliquity along plate boundaries. Using GPlate, we provide a statistical analysis of present-day obliquity along plate boundaries. Within this framework, by comparing natural examples and geological models, we discuss deformation patterns and kinematics recorded along oblique plate boundaries.

  11. Plating Tank Control Software

    SciTech Connect

    Krafcik, John

    1998-03-01

    The Plating Tank Control Software is a graphical user interface that controls and records plating process conditions for plating in high aspect ratio channels that require use of low current and long times. The software is written for a Pentium II PC with an 8 channel data acquisition card, and the necessary shunt resistors for measuring currents in the millampere range.

  12. Rotatable shear plate interferometer

    DOEpatents

    Duffus, Richard C.

    1988-01-01

    A rotatable shear plate interferometer comprises a transparent shear plate mounted obliquely in a tubular supporting member at 45.degree. with respect to its horizontal center axis. This tubular supporting member is supported rotatably around its center axis and a collimated laser beam is made incident on the shear plate along this center axis such that defocus in different directions can be easily measured.

  13. Approximants to the Tonks-Langmuir theory for a collisionless annular plasma.

    PubMed

    Zhang, Yunchao; Charles, Christine; Boswell, Rod

    2015-12-01

    Maclaurin series approximant and Padé rational approximant are used to solve the Tonks-Langmuir theory for an annular plasma and investigate the radial transport behavior of charged particles. Coefficients of the well-known Maclaurin approximant are given in a novel form of recurrence relations which are convenient for computation and present a lower limit for the annular ratio of inner radius to outer radius (i.e., this approximant is not applicable to annular geometries with small inner radii). The newly introduced Padé approximant extrapolates the annular ratio limit determined by the Maclaurin approximant to a lower value and hence is applicable to most annular geometries. General radial profiles of the normalized plasma density and mean drift velocity of ions are given across the annulus and they are independent of the gas type and the Paschen number of the discharge. The annular modeling is applied to an argon plasma and obtains the electron temperature as a function of the Paschen number for different annular geometries.

  14. Malachite green photosensitive plates.

    PubMed

    Solano, C

    1989-08-15

    An experimental study of the behavior of malachite green sensitized plates was carried out. The transmittance variation of the irradiated plates was taken as a parameter. It has been observed that photoreduction in the malachite green plates is present only when ammonium dichromate is added to the plates. The introduction of external electron donors does not improve the photochemical reaction. It has been determined that malachite green molecules form a weak complex with the dichromate molecules and this complex can only be destroyed photochemically. This effect can explain the limited response of the malachite green dichromated plates.

  15. An improved plating process

    NASA Technical Reports Server (NTRS)

    Askew, John C.

    1994-01-01

    An alternative to the immersion process for the electrodeposition of chromium from aqueous solutions on the inside diameter (ID) of long tubes is described. The Vessel Plating Process eliminates the need for deep processing tanks, large volumes of solutions, and associated safety and environmental concerns. Vessel Plating allows the process to be monitored and controlled by computer thus increasing reliability, flexibility and quality. Elimination of the trivalent chromium accumulation normally associated with ID plating is intrinsic to the Vessel Plating Process. The construction and operation of a prototype Vessel Plating Facility with emphasis on materials of construction, engineered and operational safety and a unique system for rinse water recovery are described.

  16. Sizing defects using annular-array techniques with an automatic ultrasonic data-acquisition system

    SciTech Connect

    Gieske, J.H.; Stoker, G.C.; Walkington, P.D.

    1983-01-01

    The results of sizing internal flaws by a annular phased array technique are presented. The data was taken using a microprocessor controlled phased array pulser/receiver operated with a minicomputer ultrasonic data acquisition system. Flat bottom holes of two sizes which were machined in an aluminum block at various depths were used as targets. Sizing of these targets by the annular array technique is compared with sizing by conventional flat and focused single transducer techniques. The results show that the measured flaw size determined by the annular array technique is to a large extent independent of echo amplitude and flaw depth.

  17. On the Motion of an Annular Film in Microgravity Gas-Liquid Flow

    NASA Astrophysics Data System (ADS)

    McQuillen, John B.

    2002-11-01

    Three flow regimes have been identified for gas-liquid flow in a microgravity environment: Bubble, Slug, and Annular. For the slug and annular flow regimes, the behavior observed in vertical upflow in normal gravity is similar to microgravity flow with a thin, symmetrical annular film wetting the tube wall. However, the motion and behavior of this film is significantly different between the normal and low gravity cases. Specifically, the liquid film will slow and come to a stop during low frequency wave motion or slugging. In normal gravity vertical upflow, the film has been observed to slow, stop, and actually reverse direction until it meets the next slug or wave.

  18. Characterization of annular two-phase gas-liquid flows in microgravity

    NASA Astrophysics Data System (ADS)

    Bousman, W. Scott; McQuillen, John B.

    1994-08-01

    A series of two-phase gas-liquid flow experiments were developed to study annular flows in microgravity using the NASA Lewis Learjet. A test section was built to measure the liquid film thickness around the perimeter of the tube permitting the three dimensional nature of the gas-liquid interface to be observed. A second test section was used to measure the film thickness, pressure drop and wall shear stress in annular microgravity two-phase flows. Three liquids were studied to determine the effects of liquid viscosity and surface tension. The result of this study provide insight into the wave characteristics, pressure drop and droplet entrainment in microgravity annular flows.

  19. Annular ballast resistor: Symmetry breaking, pinning, and coarsening in a globally constrained reaction-diffusion system

    NASA Astrophysics Data System (ADS)

    Meerson, Baruch; Tsori, Yoav

    1998-01-01

    The wire ballast resistor (BR) is one of the simplest physical systems that exhibit bistability and pattern formation. An annular BR is suggested as a simple two-dimensional extension of the wire BR. The nonuniformity of the electric current density in the annular BR leads to translational symmetry breaking in the temperature domain dynamics. As a result, the steady-state position of the domain wall is ``pinned'' and the system exhibits coarsening. The two-phase steady-state relaxation towards it and coarsening in the annular BR are investigated analytically and numerically.

  20. Characterization of annular two-phase gas-liquid flows in microgravity

    NASA Technical Reports Server (NTRS)

    Bousman, W. Scott; Mcquillen, John B.

    1994-01-01

    A series of two-phase gas-liquid flow experiments were developed to study annular flows in microgravity using the NASA Lewis Learjet. A test section was built to measure the liquid film thickness around the perimeter of the tube permitting the three dimensional nature of the gas-liquid interface to be observed. A second test section was used to measure the film thickness, pressure drop and wall shear stress in annular microgravity two-phase flows. Three liquids were studied to determine the effects of liquid viscosity and surface tension. The result of this study provide insight into the wave characteristics, pressure drop and droplet entrainment in microgravity annular flows.

  1. High-frequency annular array with coaxial illumination for dual-modality ultrasonic and photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Filoux, Erwan; Sampathkumar, Ashwin; Chitnis, Parag V.; Aristizábal, Orlando; Ketterling, Jeffrey A.

    2013-05-01

    This paper presents a combined ultrasound and photoacoustic (PA) imaging (PAI) system used to obtain high-quality, co-registered images of mouse-embryo anatomy and vasculature. High-frequency ultrasound (HFU, >20 MHz) is utilized to obtain high-resolution anatomical images of small animals while PAI provides high-contrast images of the vascular network. The imaging system is based on a 40 MHz, 5-element, 6 mm aperture annular-array transducer with a 800 μm diameter hole through its central element. The transducer was integrated in a cage-plate assembly allowing for a collimated laser beam to pass through the hole so that the optical and acoustic beams were collinear. The assembly was mounted on a two-axis, motorized stage to enable the simultaneous acquisition of co-registered HFU and PA volumetric data. Data were collected from all five elements in receive and a synthetic-focusing algorithm was applied in post-processing to beamform the data and increase the spatial resolution and depth-of-field (DOF) of the HFU and PA images. Phantom measurements showed that the system could achieve high-resolution images (down to 90 μm for HFU and 150 μm for PAI) and a large DOF of >8 mm. Volume renderings of a mouse embryo showed that the scanner allowed for visualizing morphologically precise anatomy of the entire embryo along with corresponding co-registered vasculature. Major head vessels, such as the superior sagittal sinus or rostral vein, were clearly identified as well as limb bud vasculature.

  2. Multicolor printing plate joining

    NASA Technical Reports Server (NTRS)

    Waters, W. J. (Inventor)

    1984-01-01

    An upper plate having ink flow channels and a lower plate having a multicolored pattern are joined. The joining is accomplished without clogging any ink flow paths. A pattern having different colored parts and apertures is formed in a lower plate. Ink flow channels each having respective ink input ports are formed in an upper plate. The ink flow channels are coated with solder mask and the bottom of the upper plate is then coated with solder. The upper and lower plates are pressed together at from 2 to 5 psi and heated to a temperature of from 295 F to 750 F or enough to melt the solder. After the plates have cooled and the pressure is released, the solder mask is removed from the interior passageways by means of a liquid solvent.

  3. High-power test of annular-ring coupled structures for the J-PARC linac energy upgrade

    NASA Astrophysics Data System (ADS)

    Tamura, Jun; Ao, Hiroyuki; Nemoto, Yasuo; Asano, Hiroyuki; Suzuki, Takahiro

    2015-02-01

    Annular-ring coupled structures (ACSs) will increase the beam energy of the Japan proton accelerator research complex (J-PARC) linac from 181 to 400 MeV to achieve a beam power of 1 MW for a materials and life science experimental facility. The mass production of the ACS cavities commenced in March 2009. Before the installation, all cavities require power testing. High-power testing is essential not only for confirming the cavity's design performance but also for preventing delays in cavity conditioning schedule. However, the 2011 Tohoku earthquake damaged J-PARC facilities, including the ACS power-test area, and cavity conditioning was interrupted for two years. After the facility's restoration, two ACS cavities (M01 and M11) were conditioned. They performed 15-20% above the designed accelerating field of 4.2 MV/m. As M01 was initially conditioned six years ago, the most recent conditioning time required for M01 was drastically reduced. From this result, we confirmed that long-term stored ACS cavities purged with nitrogen gas do not produce critical cavity performance issues. During high-power operation of M11, which is a unique cavity equipped with a capacitive iris in a waveguide, no significant increases in the temperature and the discharge rate around the capacitive iris were observed. Even considering beam loss due to residual gas scattering, the vacuum pressure was sufficiently low (4 × 10-6 Pa). More stable operation can be expected following a month-long conditioning process before the beam is commissioned. M11's conditioning successfully demonstrated an auto-conditioning program, and we established the conditioning scheme using this auto-conditioning program for all ACS cavities in a limited time and with limited manpower.

  4. Annular lichenoid dermatitis of youth--a further case in a 12-year-old girl.

    PubMed

    Kleikamp, Stefanie; Kutzner, Heinz; Frosch, Peter J

    2008-08-01

    Annular lichenoid dermatitis of youth was first described by Annessi et al. in 2003. Clinical criteria are persistent erythematous macules and annular lesions with a red-brown edge and a central hypopigmentation usually found on the flanks and groins of children and adolescents. Histologically, the disease is characterized by a lichenoid interface dermatitis with necrotic keratinocytes at the tip of the rete ridges. In our case a 12-year old girl developed annular red-brown macules with papules at the borders in an inframammary location. The histology of the lesion's border showed a lichenoid lymphocytic infiltrate with apoptotic keratinocytes at the tip of rete ridges. The lesions cleared with 0.03% tacrolimus ointment. Annular lichenoid dermatitis of youth is probably a new entity in the group of lichenoid dermatoses.

  5. An iterative method for the solution of nonlinear systems using the Faber polynomials for annular sectors

    SciTech Connect

    Myers, N.J.

    1994-12-31

    The author gives a hybrid method for the iterative solution of linear systems of equations Ax = b, where the matrix (A) is nonsingular, sparse and nonsymmetric. As in a method developed by Starke and Varga the method begins with a number of steps of the Arnoldi method to produce some information on the location of the spectrum of A. This method then switches to an iterative method based on the Faber polynomials for an annular sector placed around these eigenvalue estimates. The Faber polynomials for an annular sector are used because, firstly an annular sector can easily be placed around any eigenvalue estimates bounded away from zero, and secondly the Faber polynomials are known analytically for an annular sector. Finally the author gives three numerical examples, two of which allow comparison with Starke and Varga`s results. The third is an example of a matrix for which many iterative methods would fall, but this method converges.

  6. Predicting multidimensional annular flows with a locally based two-fluid model

    SciTech Connect

    Antal, S.P. Edwards, D.P.; Strayer, T.D.

    1998-06-01

    Annular flows are a well utilized flow regime in many industrial applications, such as, heat exchangers, chemical reactors and industrial process equipment. These flows are characterized by a droplet laden vapor core with a thin, wavy liquid film wetting the walls. The prediction of annular flows has been largely confined to one-dimensional modeling which typically correlates the film thickness, droplet loading, and phase velocities by considering the average flow conditions and global mass and momentum balances to infer the flow topology. In this paper, a methodology to predict annular flows using a locally based two-fluid model of multiphase flow is presented. The purpose of this paper is to demonstrate a modeling approach for annular flows using a multifield, multidimensional two-fluid model and discuss the need for further work in this area.

  7. Biofilm Community Dynamics in Bench-Scale Annular Reactors Simulating Arrestment of Chloraminated Drinking Water Nitrification

    EPA Science Inventory

    Annular reactors (ARs) were used to study biofilm community succession and provide an ecological insight during nitrification arrestment through simultaneously increasing monochloramine (NH2Cl) and chlorine to nitrogen mass ratios, resulting in four operational periods (I to IV)....

  8. Free transverse vibration of a wrinkled annular thin film by using finite difference method

    NASA Astrophysics Data System (ADS)

    Wang, C. G.; Liu, Y. P.; Lan, L.; Tan, H. F.

    2016-02-01

    This paper investigates the free transverse vibration of a wrinkled annular thin film. The non-dimensional Hamilton motion equation of the wrinkled annular thin film is established, which is solved by using the finite difference method to acquire the vibration frequency and mode. The predicted vibration characteristics are verified by the experimental measurements based on the digital image correlation (DIC) technique. The results show that wrinkles have great effects on the vibration of the annular thin film. Especially for the heavily wrinkled cases, the local-global interactive mode dominates the vibration of the annular thin film. The frequency increases as the wrinkling level increases which is mainly due to the increased nonlinear geometric stiffness. The results provide favorable supports for understanding the role of nonlinear wrinkling on the vibration of thin films.

  9. Apparatus for tensile testing plate-type ceramic specimens

    DOEpatents

    Liu, K.C.

    1993-08-24

    Apparatus is described for gripping a plate-type tensile specimen having generally T-shaped end regions in a dynamic tension fatigue testing apparatus comprising an annular housing having an open-ended elongated cavity therein, a plurality of hydraulic piston means supported by the housing in a spaced array about the cavity, and a specimen-supporting plate means overlying the piston means at one end of the elongated cavity and displaceable by said piston means in a longitudinal direction with respect to the longitudinal axis of the cavity, said apparatus for gripping a flat plate-type tensile specimen comprising: a pair of elongated pull rods each having oppositely disposed first and second end regions; a pair of mounting means carried by said plate means with each mounting means for pivotally attaching the first end region of each of said pull rods in a central region of said plate means for supporting said pair of elongated pull rods in a side-by-side relationship along a common longitudinal centerline within said cavity; recess means in the second end region of each of said pull rods in adjacently disposed surface regions thereof with said recess means facing one another and each adapted to receive one side of one of the generally T-shaped end regions of the plate-type tensile specimen; and load-bearing means positionable in each of said recess means and adapted to bear against a shoulder on each side of the generally T-shaped end region of the plate-type tensile specimen when a tensile loading is applied thereon.

  10. An X-band high-impedance relativistic klystron amplifier with an annular explosive cathode

    SciTech Connect

    Zhu, Danni; Zhang, Jun Zhong, Huihuang; Qi, Zumin

    2015-11-15

    The feasibility of employing an annular beam instead of a solid one in the X-band high-impedance relativistic klystron amplifier (RKA) is investigated in theory and simulation. Small-signal theory analysis indicates that the optimum bunching distance, fundamental current modulation depth, beam-coupling coefficient, and beam-loaded quality factor of annular beams are all larger than the corresponding parameters of solid beams at the same beam voltage and current. An annular beam RKA and a solid beam RKA with almost the same geometric parameters are compared in particle-in-cell simulation. Output microwave power of 100 MW, gain of 50 dB, and power conversion efficiency of 42% are obtained in an annular beam RKA. The annular beam needs a 15% lower uniform guiding magnetic field than the solid beam. Our investigations demonstrate that we are able to use a simple annular explosive cathode immersed in a lower uniform magnetic field instead of a solid thermionic cathode in a complicated partially shielding magnetic field for designing high-impedance RKA, which avoids high temperature requirement, complicated electron-optical system, large area convergence, high current density, and emission uniformity for the solid beam. An equivalent method for the annular beam and the solid beam on bunching features is proposed and agrees with the simulation. The annular beam has the primary advantages over the solid beam that it can employ the immersing uniform magnetic field avoiding the complicated shielding magnetic field system and needs a lower optimum guiding field due to the smaller space charge effect.

  11. An X-band high-impedance relativistic klystron amplifier with an annular explosive cathode

    NASA Astrophysics Data System (ADS)

    Zhu, Danni; Zhang, Jun; Zhong, Huihuang; Qi, Zumin

    2015-11-01

    The feasibility of employing an annular beam instead of a solid one in the X-band high-impedance relativistic klystron amplifier (RKA) is investigated in theory and simulation. Small-signal theory analysis indicates that the optimum bunching distance, fundamental current modulation depth, beam-coupling coefficient, and beam-loaded quality factor of annular beams are all larger than the corresponding parameters of solid beams at the same beam voltage and current. An annular beam RKA and a solid beam RKA with almost the same geometric parameters are compared in particle-in-cell simulation. Output microwave power of 100 MW, gain of 50 dB, and power conversion efficiency of 42% are obtained in an annular beam RKA. The annular beam needs a 15% lower uniform guiding magnetic field than the solid beam. Our investigations demonstrate that we are able to use a simple annular explosive cathode immersed in a lower uniform magnetic field instead of a solid thermionic cathode in a complicated partially shielding magnetic field for designing high-impedance RKA, which avoids high temperature requirement, complicated electron-optical system, large area convergence, high current density, and emission uniformity for the solid beam. An equivalent method for the annular beam and the solid beam on bunching features is proposed and agrees with the simulation. The annular beam has the primary advantages over the solid beam that it can employ the immersing uniform magnetic field avoiding the complicated shielding magnetic field system and needs a lower optimum guiding field due to the smaller space charge effect.

  12. Annular Pulse Shaping Technique for Large-Diameter Kolsky Bar Experiments on Concrete

    DTIC Science & Technology

    2014-10-01

    AFRL-RW-EG-TP-2014-005 Annular Pulse Shaping Technique for Large- Diameter Kolsky Bar Experiments on Concrete ...EXPERIMENTS ON CONCRETE N/A N/A 2502 9210 W0DT (1) Bradley E. Martin, RWMW (2) William F. Heard, Engineer Research and Development Center (3) Thomas...the dynamic compressive response of concretes . The purpose of implementing an annular pulse shaper design is to alleviate inertia-induced stresses in

  13. Phase reconstruction in annular bright-field scanning transmission electron microscopy.

    PubMed

    Ishida, Takafumi; Kawasaki, Tadahiro; Tanji, Takayoshi; Kodama, Tetsuji; Matsutani, Takaomi; Ogai, Keiko; Ikuta, Takashi

    2015-04-01

    A novel technique for reconstructing the phase shifts of electron waves was applied to Cs-corrected scanning transmission electron microscopy (STEM). To realize this method, a new STEM system equipped with an annular aperture, annularly arrayed detectors and an arrayed image processor has been developed and evaluated in experiments. We show a reconstructed phase image of graphite particles and demonstrate that this new method works effectively for high-resolution phase imaging.

  14. GOLD PLATING PROCESS

    DOEpatents

    Seegmiller, R.

    1957-08-01

    An improved bath is reported for plating gold on other metals. The composition of the plating bath is as follows: Gold cyanide from about 15 to about 50 grams, potassium cyanide from about 70 to about 125 grams, and sulfonated castor oil from about 0.1 to about 10 cc. The gold plate produced from this bath is smooth, semi-hard, and nonporous.

  15. Plating methods, a survey

    NASA Technical Reports Server (NTRS)

    Berkowitz, J. B.; Emerson, N. H.

    1972-01-01

    Results are presented of a comprehensive search of the literature available, much of which has been generated by the research centers of NASA and its contractors, on plating and coating methods and techniques. Methods covered included: (1) electroplating from aqueous solutions; (2) electroplating from nonaqueous solutions; (3) electroplating from fused-salt baths; (4) electroforming; (5) electroless plating, immersion plating, and mirroring; (6) electroplating from gaseous plasmas; and (7) anodized films and conversion coatings.

  16. Characterization of Lumbar Spine Annular Disruption in PMHS Using MRI, Cryomicrotomy and Histology Techniques.

    PubMed

    Curry, William H; Stemper, Brian D; Pryzbylo, Jason; Trueden, Justine; Wilkins, Natasha; Paskoff, Glenn R; Shender, Barry S

    2015-01-01

    Internal intervertebral disc disruption is involved in the onset of a wide range of spinal dysfunction, ultimately affecting not only the disc itself but the surrounding osseous and neural structures as well. The ability of disc to withstand and effectively distribute axial load is dependent upon whether peripherally located annular fibers provide the support necessary to contain and corral the pressure sensitive nucleus. Any alteration in the structures immediate to the nucleus jeopardize this ability. While annular tears and fissures have been thoroughly investigated, one form of internal disc disruption is less well-understood. A network of elastin cross-bridges provides resistance to delamination of the collagenous sheets that comprise the annulus. The current investigation utilized a Nitrogen gas-induced pressure mechanism to disrupt elastin cross links that exist between annular lamellae. Twenty five cadaveric lumbar spine motion segments (mean age: 52±12 yr.) were subjected to the annular disruption protocol. Damage to the annulus was assessed using MRI, cryomicrotome and histological staining procedures. MRI images were compared to cryomicrotome images to determine the ability of standard clinical MRI scans to determine annular damage. In many cases MRI was moderately revealing in terms of damage. Future studies will quantify biomechanical consequences of these low level annular disruptions relative to segmental stability.

  17. Depth-targeted transvascular drug delivery by using annular-shaped photomechanical waves

    NASA Astrophysics Data System (ADS)

    Akiyama, Takuya; Sato, Shunichi; Ashida, Hiroshi; Terakawa, Mitsuhiro

    2011-02-01

    Laser-based drug delivery is attractive for the targeting capability due to high spatial controllability of laser energy. Recently, we found that photomechanical waves (PMWs) can transiently increase the permeability of blood vessels in skin, muscle and brain of rats. In this study, we examined the use of annular-shaped PMWs to increase pressure at target depths due to superposition effect of pressure waves. This can increase the permeability of blood vessels located in the specific depth regions, enabling depth-targeted transvascular drug delivery. Annular PMWs were produced by irradiating a laser-absorbing material with annular-shaped pulsed laser beams that were produced by using an axicon lens. We first examined propagation and pressure characteristics of annular PMWs in tissue phantoms and confirmed an increased pressure at a target depth, which can be controlled by changing laser parameters. We injected Evans blue (EB) into a rat tail vein, and annular PMWs (inner diameter, 3 mm; outer diameter, 5 mm) were applied from the myofascial surface of the anterior tibialis muscle. After perfusion fixation, we observed fluorescence originating from EB in the tissue. We observed intense fluorescence at a target depth region of around 5 mm. These results demonstrate the capability of annular PMWs for depth-targeted transvascular drug delivery.

  18. Jet Mixing and Emission Characteristics of Transverse Jets in Annular and Cylindrical Confined Crossflow

    NASA Technical Reports Server (NTRS)

    Bain, D. B.; Smith, C. E.; Holdeman, J. D.

    1995-01-01

    Three dimensional turbulent reacting CFD analyses were performed on transverse jets injected into annular and cylindrical (can) confined crossflows. The goal was to identify and assess mixing differences between annular and can geometries. The approach taken was to optimize both annular and can configurations by systematically varying orifice spacing until lowest emissions were achieved, and then compare the results. Numerical test conditions consisted of a jet-to-mainstream mass-flow ratio of 3.2 and a jet-to-mainstream momentum-flux ratio (J) of 30. The computational results showed that the optimized geometries had similar emission levels at the exit of the mixing section although the annular configuration did mix-out faster. For lowest emissions, the density correlation parameter (C = (S/H) square root of J) was 2.35 for the annular geometry and 3.5 for the can geometry. For the annular geometry, the constant was about twice the value seen for jet mixing at low mass-flow ratios (i.e., MR less than 0.5). For the can geometry, the constant was about 1 1/2 times the value seen for low mass-flow ratios.

  19. Design and Fabrication of Micro Hemispheric Shell Resonator with Annular Electrodes

    PubMed Central

    Wang, Renxin; Bai, Bing; Feng, Hengzhen; Ren, Ziming; Cao, Huiliang; Xue, Chenyang; Zhang, Binzhen; Liu, Jun

    2016-01-01

    Electrostatic driving and capacitive detection is widely used in micro hemispheric shell resonators (HSR). The capacitor gap distance is a dominant factor for the initial capacitance, and affects the driving voltage and sensitivity. In order to decrease the equivalent gap distance, a micro HSR with annular electrodes fabricated by a glassblowing method was developed. Central and annular cavities are defined, and then the inside gas drives glass softening and deformation at 770 °C. While the same force is applied, the deformation of the hemispherical shell is about 200 times that of the annular electrodes, illustrating that the deformation of the electrodes will not affect the measurement accuracy. S-shaped patterns on the annular electrodes and internal-gear-like patterns on the hemispherical shell can improve metal malleability and avoid metal cracking during glass expansion. An arched annular electrode and a hemispheric shell are demonstrated. Compared with HSR with a spherical electrode, the applied voltage could be reduced by 29%, and the capacitance could be increased by 39%, according to theoretical and numerical calculation. The surface roughness of glass after glassblowing was favorable (Rq = 0.296 nm, Ra = 0.217 nm). In brief, micro HSR with an annular electrode was fabricated, and its superiority was preliminarily confirmed. PMID:27897977

  20. Design and characterization of the annular cathode high current pulsed electron beam source for circular components

    NASA Astrophysics Data System (ADS)

    Jiang, Wei; Wang, Langping; Wang, Xiaofeng

    2016-08-01

    In order to irradiate circular components with high current pulsed electron beam (HCPEB), an annular cathode based on carbon fiber bunches was designed and fabricated. Using an acceleration voltage of 25 kV, the maximum pulsed irradiation current and energy of this annular cathode can reach 7.9 kA and 300 J, respectively. The irradiation current density distribution of the annular cathode HCPEB source measured along the circumferential direction shows that the annular cathode has good emission uniformity. In addition, four 9310 steel substrates fixed uniformly along the circumferential direction of a metal ring substrate were irradiated by this annular cathode HCPEB source. The surface and cross-section morphologies of the irradiated samples were characterized by scanning electron microscopy (SEM). SEM images of the surface reveal that crater and surface undulation have been formed, which hints that the irradiation energy of the HCPEB process is large enough for surface modification of 9310 steel. Meanwhile, SEM cross-section images exhibit that remelted layers with a thickness of about 5.4 μm have been obtained in all samples, which proves that a good practical irradiation uniformity can be achieved by this annular cathode HCPEB source.

  1. Annular structures as intermediates in fibril formation of Alzheimer Abeta17-42.

    PubMed

    Zheng, Jie; Jang, Hyunbum; Ma, Buyong; Nussinov, Ruth

    2008-06-05

    We report all-atom molecular dynamics simulations of annular beta-amyloid (17-42) structures, single- and double-layered, in solution. We assess the structural stability and association force of Abeta annular oligomers associated through different interfaces, with a mutated sequence (M35A), and with the oxidation state (M35O). Simulation results show that single-layered annular models display inherent structural instability: one is broken down into linear-like oligomers, and the other collapses. On the other hand, a double-layered annular structure where the two layers interact through their C-termini to form an NC-CN interface (where N and C are the N and C termini, respectively) exhibits high structural stability over the simulation time due to strong hydrophobic interactions and geometrical constraints induced by the closed circular shape. The observed dimensions and molecular weight of the oligomers from atomic force microscopy (AFM) experiments are found to correspond well to our stable double-layered model with the NC-CN interface. Comparison with K3 annular structures derived from the beta 2-microglobulin suggests that the driving force for amyloid formation is sequence specific, strongly dependent on side-chain packing arrangements, structural morphologies, sequence composition, and residue positions. Combined with our previous simulations of linear-like Abeta, K3 peptide, and sup35-derived GNNQQNY peptide, the annular structures provide useful insight into oligomeric structures and driving forces that are critical in amyloid fibril formation.

  2. PLATES WITH OXIDE INSERTS

    DOEpatents

    West, J.M.; Schumar, J.F.

    1958-06-10

    Planar-type fuel assemblies for nuclear reactors are described, particularly those comprising fuel in the oxide form such as thoria and urania. The fuel assembly consists of a plurality of parallel spaced fuel plate mennbers having their longitudinal side edges attached to two parallel supporting side plates, thereby providing coolant flow channels between the opposite faces of adjacent fuel plates. The fuel plates are comprised of a plurality of longitudinally extending tubular sections connected by web portions, the tubular sections being filled with a plurality of pellets of the fuel material and the pellets being thermally bonded to the inside of the tubular section by lead.

  3. CALUTRON FACE PLATE

    DOEpatents

    Brobeck, W.M.

    1959-08-25

    The construction of a removable cover plate for a calutron tank is described. The plate is fabricated of a rectangular frame member to which is welded a bowed or dished plate of thin steel, reinforced with transverse stiffening ribs. When the tank is placed between the poles of a magnet, the plate may be pivoted away from the tank and magnet and is adapted to support the ion separation mechanism secured to its inner side as well as the vacuum load within the tank.

  4. Add-on unidirectional elastic metamaterial plate cloak

    PubMed Central

    Lee, Min Kyung; Kim, Yoon Young

    2016-01-01

    Metamaterial cloaks control the propagation of waves to make an object invisible or insensible. To manipulate elastic waves in space, a metamaterial cloak is typically embedded in a base system that includes or surrounds a target object. The embedding is undesirable because it structurally weakens or permanently alters the base system. In this study, we propose a new add-on metamaterial elastic cloak that can be placed over and mechanically coupled with a base structure without embedding. We designed an add-on type annular metamaterial plate cloak through conformal mapping, fabricated it and performed cloaking experiments in a thin-plate with a hole. Experiments were performed in a thin plate by using the lowest symmetric Lamb wave centered at 100 kHz. As a means to check the cloaking performance of the add-on elastic plate cloak, possibly as a temporary stress reliever or a so-called “stress bandage”, the degree of stress concentration mitigation and the recovery from the perturbed wave field due to a hole were investigated. PMID:26860896

  5. Add-on unidirectional elastic metamaterial plate cloak.

    PubMed

    Lee, Min Kyung; Kim, Yoon Young

    2016-02-10

    Metamaterial cloaks control the propagation of waves to make an object invisible or insensible. To manipulate elastic waves in space, a metamaterial cloak is typically embedded in a base system that includes or surrounds a target object. The embedding is undesirable because it structurally weakens or permanently alters the base system. In this study, we propose a new add-on metamaterial elastic cloak that can be placed over and mechanically coupled with a base structure without embedding. We designed an add-on type annular metamaterial plate cloak through conformal mapping, fabricated it and performed cloaking experiments in a thin-plate with a hole. Experiments were performed in a thin plate by using the lowest symmetric Lamb wave centered at 100 kHz. As a means to check the cloaking performance of the add-on elastic plate cloak, possibly as a temporary stress reliever or a so-called "stress bandage", the degree of stress concentration mitigation and the recovery from the perturbed wave field due to a hole were investigated.

  6. Criticality Benchmark Analysis of the HTTR Annular Startup Core Configurations

    SciTech Connect

    John D. Bess

    2009-11-01

    One of the high priority benchmarking activities for corroborating the Next Generation Nuclear Plant (NGNP) Project and Very High Temperature Reactor (VHTR) Program is evaluation of Japan's existing High Temperature Engineering Test Reactor (HTTR). The HTTR is a 30 MWt engineering test reactor utilizing graphite moderation, helium coolant, and prismatic TRISO fuel. A large amount of critical reactor physics data is available for validation efforts of High Temperature Gas-cooled Reactors (HTGRs). Previous international reactor physics benchmarking activities provided a collation of mixed results that inaccurately predicted actual experimental performance.1 Reevaluations were performed by the Japanese to reduce the discrepancy between actual and computationally-determined critical configurations.2-3 Current efforts at the Idaho National Laboratory (INL) involve development of reactor physics benchmark models in conjunction with the International Reactor Physics Experiment Evaluation Project (IRPhEP) for use with verification and validation methods in the VHTR Program. Annular cores demonstrate inherent safety characteristics that are of interest in developing future HTGRs.

  7. Predicting Activation of Experiments Inside the Annular Core Research Reactor

    SciTech Connect

    Greenberg, Joseph Isaac

    2015-11-01

    The objective of this thesis is to create a program to quickly estimate the radioactivity and decay of experiments conducted inside of the Annular Core Research Reactor at Sandia National Laboratories and eliminate the need for users to write code. This is achieved by model the neutron fluxes in the reactor’s central cavity where experiments are conducted for 4 different neutron spectra using MCNP. The desired neutron spectrum, experiment material composition, and reactor power level are then input into CINDER2008 burnup code to obtain activation and decay information for every isotope generated. DREAD creates all of the files required for CINDER2008 through user selected inputs in a graphical user interface and executes the program for the user and displays the resulting estimation for dose rate at various distances. The DREAD program was validated by weighing and measuring various experiments in the different spectra and then collecting dose rate information after they were irradiated and comparing it to the dose rates that DREAD predicted. The program provides results with an average of 17% higher estimates than the actual values and takes seconds to execute.

  8. Acoustic modal analysis of a full-scale annular combustor

    NASA Technical Reports Server (NTRS)

    Karchmer, A. M.

    1982-01-01

    An acoustic modal decomposition of the measured pressure field in a full scale annular combustor installed in a ducted test rig is described. The modal analysis, utilizing a least squares optimization routine, is facilitated by the assumption of randomly occurring pressure disturbances which generate equal amplitude clockwise and counter-clockwise pressure waves, and the assumption of statistical independence between modes. These assumptions are fully justified by the measured cross spectral phases between the various measurement points. The resultant modal decomposition indicates that higher order modes compose the dominant portion of the combustor pressure spectrum in the range of frequencies of interest in core noise studies. A second major finding is that, over the frequency range of interest, each individual mode which is present exists in virtual isolation over significant portions of the spectrum. Finally, a comparison between the present results and a limited amount of data obtained in an operating turbofan engine with the same combustor is made. The comparison is sufficiently favorable to warrant the conclusion that the structure of the combustor pressure field is preserved between the component facility and the engine.

  9. Current Density Measurements of an Annular-Geometry Ion Engine

    NASA Technical Reports Server (NTRS)

    Shastry, Rohit; Patterson, Michael J.; Herman, Daniel A.; Foster, John E.

    2012-01-01

    The concept of the annular-geometry ion engine, or AGI-Engine, has been shown to have many potential benefits when scaling electric propulsion technologies to higher power. However, the necessary asymmetric location of the discharge cathode away from thruster centerline could potentially lead to non-uniformities in the discharge not present in conventional geometry ion thrusters. In an effort to characterize the degree of this potential non-uniformity, a number of current density measurements were taken on a breadboard AGI-Engine. Fourteen button probes were used to measure the ion current density of the discharge along a perforated electrode that replaced the ion optics during conditions of simulated beam extraction. Three Faraday probes spaced apart in the vertical direction were also used in a separate test to interrogate the plume of the AGI-Engine during true beam extraction. It was determined that both the discharge and the plume of the AGI-Engine are highly uniform, with variations under most conditions limited to +/-10% of the average current density in the discharge and +/-5% of the average current density in the plume. Beam flatness parameter measured 30 mm from the ion optics ranged from 0.85 - 0.95, and overall uniformity was shown to generally increase with increasing discharge and beam currents. These measurements indicate that the plasma is highly uniform despite the asymmetric location of the discharge cathode.

  10. Current Density Measurements of an Annular-Geometry Ion Engine

    NASA Technical Reports Server (NTRS)

    Shastry, Rohit; Patterson, Michael J.; Herman, Daniel A.; Foster, John E.

    2012-01-01

    The concept of the annular-geometry ion engine, or AGI-Engine, has been shown to have many potential benefits when scaling electric propulsion technologies to higher power. However, the necessary asymmetric location of the discharge cathode away from thruster centerline could potentially lead to non-uniformities in the discharge not present in conventional geometry ion thrusters. In an effort to characterize the degree of this potential nonuniformity, a number of current density measurements were taken on a breadboard AGI-Engine. Fourteen button probes were used to measure the ion current density of the discharge along a perforated electrode that replaced the ion optics during conditions of simulated beam extraction. Three Faraday probes spaced apart in the vertical direction were also used in a separate test to interrogate the plume of the AGI-Engine during true beam extraction. It was determined that both the discharge and the plume of the AGI-Engine are highly uniform, with variations under most conditions limited to 10% of the average current density in the discharge and 5% of the average current density in the plume. Beam flatness parameter measured 30 mm from the ion optics ranged from 0.85 0.95, and overall uniformity was shown to generally increase with increasing discharge and beam currents. These measurements indicate that the plasma is highly uniform despite the asymmetric location of the discharge cathode.

  11. Reactor pulse repeatability studies at the annular core research reactor

    SciTech Connect

    DePriest, K.R.; Trinh, T.Q.; Luker, S. M.

    2011-07-01

    The Annular Core Research Reactor (ACRR) at Sandia National Laboratories is a water-moderated pool-type reactor designed for testing many types of objects in the pulse and steady-state mode of operations. Personnel at Sandia began working to improve the repeatability of pulse operations for experimenters in the facility. The ACRR has a unique UO{sub 2}-BeO fuel that makes the task of producing repeatable pulses difficult with the current operating procedure. The ACRR produces a significant quantity of photoneutrons through the {sup 9}Be({gamma}, n){sup 8}Be reaction in the fuel elements. The photoneutrons are the result of the gammas produced during fission and in fission product decay, so their production is very much dependent on the reactor power history and changes throughout the day/week of experiments in the facility. Because the photoneutrons interfere with the delayed-critical measurements required for accurate pulse reactivity prediction, a new operating procedure was created. The photoneutron effects at delayed critical are minimized when using the modified procedure. In addition, the pulse element removal time is standardized for all pulse operations with the modified procedure, and this produces less variation in reactivity removal times. (authors)

  12. Adipophilin expression in necrobiosis lipoidica, granuloma annulare, and sarcoidosis.

    PubMed

    Schulman, Joshua M; LeBoit, Philip E

    2015-03-01

    Necrobiosis lipoidica (NL), granuloma annulare (GA), and sarcoidosis usually are distinguished by clinical presentation and routine microscopy, but their distinction can sometimes be challenging. Historically, a clue to diagnosing NL or GA has been the identification of lipid droplets in the areas of altered collagen, but such studies have required fresh frozen tissue, making them impractical. Here, we present the first report of immunohistochemical staining to detect adipophilin, a membrane protein in lipid droplets, in NL (n = 12), GA (n = 19), sarcoidosis (n = 12), and, as a control for nonspecific tissue damage, nongranulomatous cutaneous necrosis (n = 13). Four patterns of labeling were identified: (1) extracellular, within zones of altered collagen; (2) both intracellular and extracellular, after the distribution of palisaded or scattered histiocytes; (3) intracellular, within clustered histiocytes; and (4) periadnexal. All cases of NL demonstrated pattern 1; nearly all cases of GA (18/19) demonstrated pattern 2; most sarcoidosis (10/12) demonstrated pattern 3; and nongranulomatous necrosis demonstrated either pattern 4 (6/13) or did not stain (6/13), confirming that the antibody to adipophilin did not adhere nonspecifically to the damaged tissue. An additional set of 3 biopsies with overlapping or partially sampled features of NL, GA, and/or sarcoidosis subsequently confirmed the potential utility of adipophilin staining in diagnostically challenging cases. We conclude that the pattern of adipophilin expression is a useful adjunct in the evaluation of granulomatous dermatitis.

  13. Flow Pressure Loss through Straight Annular Corrugated Pipes

    NASA Technical Reports Server (NTRS)

    Sargent, Joseph R.; Kirk, Daniel R.; Marsell, Brandon; Roth, Jacob; Schallhorn, Paul A.; Pitchford, Brian; Weber, Chris; Bulk, Timothy

    2016-01-01

    Pressure loss through annular corrugated pipes, using fully developed gaseous nitrogen representing purge pipes in spacecraft fairings, was studied to gain insight into a friction factor coefficient for these pipes. Twelve pipes were tested: four Annuflex, four Masterflex and two Titeflex with ¼”, 3/8”, ½” and ¾” inner diameters. Experimental set-up was validated using smooth-pipe and showed good agreement to the Moody diagram. Nitrogen flow rates between 0-200 standard cubic feet per hour were used, producing approximate Reynolds numbers from 300-23,000. Corrugation depth varied from 0.248 = E/D = 0.349 and relative corrugation pitch of 0.192 = P/D = 0.483. Differential pressure per unit length was measured and calculated using 8-9 equidistant pressure taps. A detailed experimental uncertainty analysis, including correlated bias error terms, is presented. Results show larger differential pressure losses than smooth-pipes with similar inner diameters resulting in larger friction factor coefficients.

  14. Imbalanced superfluid state in an annular disk.

    PubMed

    Ye, Fei; Chen, Yan; Wang, Z D; Zhang, F C

    2009-09-02

    The imbalanced superfluid state of spin- 1/2 fermions with s-wave pairing is numerically studied by solving the Bogoliubov-de Gennes equation at zero temperature in an annular disk geometry with narrow radial width. Two distinct types of systems are considered. The first case may be relevant to heavy fermion superconductors, where magnetic field causes spin imbalance via Zeeman interaction and the system is studied in a grand canonical ensemble. As the magnetic field increases, the system is transformed from the uniform superfluid state to the Fulde-Ferrell-Larkin-Ovchinnikov state, and finally to the spin polarized normal state. The second case may be relevant to cold fermionic systems, where the number of fermions of each species is fixed as in a canonical ensemble. In this case, the ground state depends on the pairing strength. For weak pairing, the order parameter exhibits a periodic domain wall lattice pattern with a localized spin distribution at low spin imbalance, and a sinusoidally modulated pattern with extended spin distribution at high spin imbalance. For strong pairing, the phase separation between the superfluid state and polarized normal state is found to be preferable, while the increase of spin imbalance simply changes the ratio between them.

  15. Extraction of phenol in wastewater with annular centrifugal contactors.

    PubMed

    Xu, Jin-Quan; Duan, Wu-Hua; Zhou, Xiu-Zhu; Zhou, Jia-Zhen

    2006-04-17

    Solvent extraction is an effective way to treat and recover the phenolic compounds from the high content phenolic wastewater at present. The experimental study on treating the wastewater containing phenol has been carried out with QH-1extractant (the amine mixture) and annular centrifugal contactors. The distribution ratio of phenol was 108.6 for QH-1-phenol system. The mass-transfer process of phenol for the system was mainly controlled by diffusion. When the flow ratio (aqueous/organic) was changed from 1/1 to 4/1, the rotor speed was changed from 2500 to 4000 r/min, and the total flow of two phases was changed from 20 to 70 mL/min, the mass-transfer efficiency E of the single-stage centrifugal contactor was more than 95%. When the flow ratio was changed from 4.4/1 to 4.9/1, the rotor speed was 3000 r/min, and the total flow of two phases was changed from 43.0 to 47.0 mL/min, the extraction rate rho of the three-stage cascade was more than 99%. When 15% NaOH was used for stripping of phenol in QH-1, the stripping efficiency of the three-stage cascade was also more than 99% under the experimental conditions.

  16. Linear unsteady aerodynamic forces on vibrating annular cascade blades

    NASA Astrophysics Data System (ADS)

    Nagasaki, Taketo; Yamasaki, Nobuhiko

    2003-05-01

    The paper presents the formulation to compute numerically the unsteady aerodynamic forces on the vibrating annular cascade blades. The formulation is based on the finite volume method. By applying the TVD scheme to the linear unsteady calculations, the precise calculation of the peak of unsteady aerodynamic forces at the shock wave location like the delta function singularity becomes possible without empirical constants. As a further feature of the present paper, results of the present numerical calculation are compared with those of the double linearization theory (DLT), which assumes small unsteady and steady disturbances but the unsteady disturbances are much smaller than the steady disturbances. Since DLT requires far less computational resources than the present numerical calculation, the validation of DLT is quite important from the engineering point of view. Under the conditions of small steady disturbances, a good agreement between these two results is observed, so that the two codes are cross-validated. The comparison also reveals the limitation on the applicability of DLT.

  17. Visual Measurements of Droplet Size in Gas Liquid Annular Flow

    SciTech Connect

    Fore, L.B.; Ibrahim, B.B.; Beus, S.G.

    2000-07-01

    Drop size distributions have been measured for nitrogen-water annular flow in a 9.67 mm hydraulic diameter duct, at system pressures of 3.4 and 17 atm and a temperature of 38 C. These new data extend the range of conditions represented by existing data in the open literature, primarily through an increase in system pressure. Since most existing correlations were developed from data obtained at lower pressures, it should be expected that the higher-pressure data presented in this paper would not necessarily follow those correlations. The correlation of Tatterson, et al. (1977) does not predict the new data very well, while the correlation of Kataoka, et al. (1983) only predicts those data taken at the lower pressure of 3.4 atm. However, the maximum drop size correlation of Kocamustafaogullari, et al. (1994) does predict the current data to a reasonable approximation. Similarly, their correlation for the Sauter mean diameter can predict the new data, provided the coefficient in the equation is adjusted.

  18. Pollution technology program, can-annular combustor engines

    NASA Technical Reports Server (NTRS)

    Roberts, R.; Fiorentino, A. J.; Greene, W.

    1976-01-01

    A Pollution Reduction Technology Program to develop and demonstrate the combustor technology necessary to reduce exhaust emissions for aircraft engines using can-annular combustors is described. The program consisted of design, fabrication, experimental rig testing and assessment of results and was conducted in three program elements. The combustor configurations of each program element represented increasing potential for meeting the 1979 Environmental Protection Agency (EPA) emission standards, while also representing increasing complexity and difficulty of development and adaptation to an operational engine. Experimental test rig results indicate that significant reductions were made to the emission levels of the baseline JT8D-17 combustor by concepts in all three program elements. One of the Element I single-stage combustors reduced carbon monoxide to a level near, and total unburned hydrocarbons (THC) and smoke to levels below the 1979 EPA standards with little or no improvement in oxides of nitrogen. The Element II two-stage advanced Vorbix (vortex burning and mixing) concept met the standard for THC and achieved significant reductions in CO and NOx relative to the baseline. Although the Element III prevaporized-premixed concept reduced high power NOx below the Element II results, there was no improvement to the integrated EPA parameter relative to the Vorbix combustor.

  19. HAMLET forms annular oligomers when deposited with phospholipid monolayers.

    PubMed

    Baumann, Anne; Gjerde, Anja Underhaug; Ying, Ming; Svanborg, Catharina; Holmsen, Holm; Glomm, Wilhelm R; Martinez, Aurora; Halskau, Oyvind

    2012-04-20

    Recently, the anticancer activity of human α-lactalbumin made lethal to tumor cells (HAMLET) has been linked to its increased membrane affinity in vitro, at neutral pH, and ability to cause leakage relative to the inactive native bovine α-lactalbumin (BLA) protein. In this study, atomic force microscopy resolved membrane distortions and annular oligomers (AOs) produced by HAMLET when deposited at neutral pH on mica together with a negatively charged lipid monolayer. BLA, BAMLET (HAMLET's bovine counterpart) and membrane-binding Peptide C, corresponding to BLA residues 75-100, also form AO-like structures under these conditions but at higher subphase concentrations than HAMLET. The N-terminal Peptide A, which binds to membranes at acidic but not at neutral pH, did not form AOs. This suggests a correlation between the capacity of the proteins/peptides to integrate into the membrane at neutral pH-as observed by liposome content leakage and circular dichroism experiments-and the formation of AOs, albeit at higher concentrations. Formation of AOs, which might be important to HAMLET's tumor toxic action, appears related to the increased tendency of the protein to populate intermediately folded states compared to the native protein, the formation of which is promoted by, but not uniquely dependent on, the oleic acid molecules associated with HAMLET.

  20. Characterization of Novel Calorimeters in the Annular Core Research Reactor

    NASA Astrophysics Data System (ADS)

    Hehr, Brian D.; Parma, Edward J.; Peters, Curtis D.; Naranjo, Gerald E.; Luker, S. Michael

    2016-02-01

    A series of pulsed irradiation experiments have been performed in the central cavity of Sandia National Laboratories' Annular Core Research Reactor (ACRR) to characterize the responses of a set of elemental calorimeter materials including Si, Zr, Sn, Ta, W, and Bi. Of particular interest was the perturbing effect of the calorimeter itself on the ambient radiation field - a potential concern in dosimetry applications. By placing the calorimeter package into a neutron-thermalizing lead/polyethylene (LP) bucket and irradiating both with and without a cadmium wrapper, it was demonstrated that prompt capture gammas generated inside the calorimeters can be a significant contributor to the measured dose in the active disc region. An MCNP model of the experimental setup was shown to replicate measured dose responses to within 10%. The internal (n,γ) contribution was found to constitute as much as 50% of the response inside the LP bucket and up to 20% inside the nominal (unmodified) cavity environment, with Ta and W exhibiting the largest enhancement due to their sizable (n,γ) cross sections. Capture reactions in non-disc components of the calorimeter were estimated to be responsible for up to a few percent of the measured response. This work was supported by the United States Department of Energy under Contract DE-AC04-94AL85000. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy.

  1. Experimental Investigation and Analysis of an Annular Pogo Accumulator

    NASA Technical Reports Server (NTRS)

    Peugeot, John; Schwarz, Jordan; Yang, H. Q.; Zoladz, Tom

    2011-01-01

    An experimental investigation was conducted on a scaled annular pogo accumulator for the Ares I Upper Stage. The test article was representative of the LO2 feedline and preliminary accumulator design, and included multiple designs of a perforated ring connecting the accumulator to the core feedline flow. The system was pulse tested in water over a range of pulse frequency and flow rates. Time dependent measurements of pressure at various locations in the test article were used to extract system compliance, inertance, and resistance. Preliminary results indicated a significant deviation from standard orifice flow theory and suggest a strong dependence on feedline average velocity. In addition, several CFD analyses were conducted to investigate the details of the time variant flow field. Both two-dimensional and three-dimensional simulations were performed with time varying boundary conditions used to represent system pulsing. The CFD results compared well with the sub-scale results and demonstrated the influence of feedline average velocity on the flow into and out of the accumulator. This paper presents updated results of the investigation including a parametric design space for determining resistance characteristics. Using the updated experimental results a new scaling relationship has been defined for shear flow over a cavity. A comparison of sub-scale and full scale CFD simulations provided early verification of the scaling of the fluid flowfield and resistance characteristics.

  2. Stability of three-layered core-annular flow

    NASA Astrophysics Data System (ADS)

    Pillai, Dipin; Pushpavanam, Subramaniam; Sundararajan, T.

    2016-11-01

    Stability of a three-layered core-annular flow is analyzed using the method of modal linear stability analysis. A temporal analysis shows that the flow becomes unstable to two modes of instability when inertial effects are negligible. An energy budget analysis reveals that these two modes correspond to capillary instability associated with each fluid-fluid interface. With an increase in Reynolds number, the system exhibits additional Reynolds stress modes of instabilities. These modes correspond to the Tollmien-Schlichting type of waves associated with high Reynolds number shear flows, and are considered precursor to transition to turbulence. An investigation of the parameter space reveals that the system may simultaneously show up to 5 distinct modes of instability, viz., the two capillary modes at each interface and three Reynolds stress modes in the bulk of each phase. In addition, a spatio-temporal analysis shows that the Reynolds stress modes are always convectively unstable whereas the capillary modes may undergo a transition from convective to absolute instability with decrease in Weber number. To obtain encapsulated droplets in experiments, the operating parameters must be chosen such that the system lies in the regime of convective instability. MHRD-Govt of India, NSF 0968313.

  3. Design, simulation and fabrication of a flexible bond pad with a hollow annular protuberance to improve the thermal fatigue lifetime for through-silicon vias

    NASA Astrophysics Data System (ADS)

    Wang, Guilian; Ding, Guifu; Liu, Rui; Luo, Jiangbo; Niu, Di; Zhao, Junhong; Zhao, Xiaolin; Wang, Yan

    2014-12-01

    This paper presents a flexible bond pad (FBP) with a hollow annular protuberance to improve the thermal fatigue lifetime for its application to through-silicon vias (TSVs). The hollow annular protuberance structure across the interface between the filled copper in TSV and silicon substrate not only isolates the FBP from stress/strain concentration regions (the corners of the TSV) but also disperses TSV-induced deformation. The plastic strain distributions of the FBP and conventional plate-type bond pad (CPBP) were simulated by finite element method (FEM) under the temperature cycles. Based on the simulation results, the thermal fatigue lifetimes of the CPBP and the FBP with different TSV diameters were predicted by the Coffin-Manson equation. The results indicate that thermal fatigue lifetimes of the FBP are significantly greater than those of the CPBP and their fatigue lifetimes both decrease with the increase of TSV diameter. To examine the reliability of the predicted results, the CPBP and the FBP with TSV diameter of 100 µm were fabricated by MEMS technology and temperature cycling tests (TCTs) were performed to obtain their thermal fatigue lifetimes. The test results are in good agreement with the numerical simulation results, and it shows that the proposed FBP can effectively improve the thermal fatigue lifetime for TSVs.

  4. Quantifying the uncertainty of the annular mode time scale and the role of the stratosphere

    NASA Astrophysics Data System (ADS)

    Kim, Junsu; Reichler, Thomas

    2016-07-01

    The proper simulation of the annular mode time scale may be regarded as an important benchmark for climate models. Previous research demonstrated that this time scale is systematically overestimated by climate models. As suggested by the fluctuation-dissipation theorem, this may imply that climate models are overly sensitive to external forcings. Previous research also made it clear that calculating the AM time scale is a slowly converging process, necessitating relatively long time series and casting doubts on the usefulness of the historical reanalysis record to constrain climate models in terms of the annular mode time scale. Here, we use long control simulations with the coupled and uncoupled version of the GFDL climate model, CM2.1 and AM2.1, respectively, to study the effects of internal atmospheric variability and forcing from the lower boundary on the stability of the annular mode time scale. In particular, we ask whether a model's annular mode time scale and dynamical sensitivity can be constrained from the 50-year-long reanalysis record. We find that internal variability attaches large uncertainty to the annular mode time scale when diagnosed from decadal records. Even under the fixed forcing conditions of our long control run at least 100 years of data are required in order to keep the uncertainty in the annular mode time scale of the Northern Hemisphere to 10 %; over the Southern Hemisphere, the required length increases to 200 years. If nature's annular mode time scale over the Northern Hemisphere is similarly variable, there is no guarantee that the historical reanalysis record is a fully representative target for model evaluation. Over the Southern Hemisphere, however, the discrepancies between model and reanalysis are sufficiently large to conclude that the model is unable to reproduce the observed time scale structure correctly. The effects of ocean coupling lead to a considerable increase in time scale and uncertainty in time scale, effects which

  5. Blue Willow Story Plates

    ERIC Educational Resources Information Center

    Fontes, Kris

    2009-01-01

    In the December 1997 issue of "SchoolArts" is a lesson titled "Blue Willow Story Plates" by Susan Striker. In this article, the author shares how she used this lesson with her middle-school students many times over the years. Here, she describes a Blue Willow plate painting project that her students made.

  6. Earthquakes and plate tectonics

    USGS Publications Warehouse

    Spall, H.

    1977-01-01

    An explanation is to be found in plate tectonics, a concept which has revolutionized thinking in the Earth sciences in the last 10 years. The theory of plate tectonics combines many of the ideas about continental drift (originally proposed in 1912 by Alfred Wegener in Germany) and sea-floor spreading (suggested originally by Harry Hess of Princeton University). 

  7. Turbine vane plate assembly

    DOEpatents

    Schiavo Jr., Anthony L.

    2006-01-10

    A turbine vane assembly includes a turbine vane having first and second shrouds with an elongated airfoil extending between. Each end of the airfoil transitions into a shroud at a respective junction. Each of the shrouds has a plurality of cooling passages, and the airfoil has a plurality of cooling passages extending between the first and second shrouds. A substantially flat inner plate and an outer plate are coupled to each of the first and second shrouds so as to form inner and outer plenums. Each inner plenum is defined between at least the junction and the substantially flat inner plate; each outer plenum is defined between at least the substantially flat inner plate and the outer plate. Each inner plenum is in fluid communication with a respective outer plenum through at least one of the cooling passages in the respective shroud.

  8. Rotating annular chromatograph for continuous metal separations and recovery

    SciTech Connect

    Begovich, J.M.; Sisson, W.G.

    1981-01-01

    Multicomponent liquid chromatographic separations have been achieved by using a slowly rotating annular bed of sorbent material. By continuously introducing the feed material to be separated at a stationary point at the top of the bed and eluent everywhere else around the annulus, elution chromatography occurs. The rotation of the sorbent bed causes the separated components to appear as helical bands, each of which has a characteristic, stationary exit point; hence, the separation process is truly continuous. The concept has been developed primarily on a 279-mm-diam by 0.6-m-long device with a 12.7-mm-wide annulus. The effect of annulus width and diameter has recently been studied using the same device with a 50.8-mm-wide annulus and another 0.6-m-long chromatograph with an 89-mm diameter and annulus widths of 6.4, 12.7, and 22.2 mm. These columns have been constructed of Plexiglas and typically operate at a gauge pressure of 175 kPa. To further study the effect of size and pressure, a new 445-mm-diam by 1-m-long column with a 31.8-mm-wide annulus has been fabricated. Its metal construction allows preparative-scale operation with a wide variety of liquids at pressures to 1.3 MPa. Three metal recovery systems have been explored: (1) separation of iron and aluminum in ammonium sulfate-sulfuric acid solutions; (2) separation of hafnium from zirconium in sulfuric acid solutions; and (3) the separation of copper, nickel, and cobalt in ammonium carbonate solutions. This last system simulates the leach liquor of the Caron process for recovering nickel and cobalt from laterite ores. It has been studied, using similar conditions, on each of the chromatographs, and the results demonstrate the effect of column dimensions on the quality and quantity of the separation. 8 figures, 1 table.

  9. Genetic predisposition to calcific aortic stenosis and mitral annular calcification.

    PubMed

    Kutikhin, Anton G; Yuzhalin, Arseniy E; Brusina, Elena B; Ponasenko, Anastasia V; Golovkin, Alexey S; Barbarash, Olga L

    2014-09-01

    Valvular calcification precedes the development of valvular stenosis and may represent an important early phenotype for valvular heart disease. It is known that development of valvular calcification is likely to occur among members of a family. However, the knowledge about the role of genomic predictive markers in valvular calcification is still elusive. Aims of this review are to assess the impact of gene polymorphisms on risk and severity of aortic stenosis and mitral annular calcification. According to the results of the investigations carried out, all polymorphisms may be divided into the three groups conferring the level of evidence of their association with valvular stenosis. It is possible to conclude that apoB (XbaI, rs1042031, and rs6725189), ACE (rs4340), IL10 (rs1800896 and rs1800872), and LPA (rs10455872) gene polymorphisms may be associated with valvular calcific stenosis with a relatively high level of evidence. A number of other polymorphisms, such as PvuII polymorphism within the ORα gene, rs1042636 polymorphism within the CaSR gene, rs3024491, rs3021094, rs1554286, and rs3024498 polymorphisms within the IL10 gene, rs662 polymorphism within the PON1 gene, rs2276288 polymorphism within the MYO7A gene, rs5194 polymorphism within the AGTR1 gene, rs2071307 polymorphism within the ELN gene, rs17659543 and rs13415097 polymorphisms within the IL1F9 gene may correlate with a risk of calcific valve stenosis with moderate level of evidence. Finally, rs1544410 polymorphism within the VDR gene, E2 and E4 alleles within the apoE gene, rs6254 polymorphism within the PTH gene, and rs1800871 polymorphism within the IL10 gene may be associated with aortic stenosis with low level of evidence.

  10. Interaction of acoustic and vortical waves with an annular cascade

    NASA Astrophysics Data System (ADS)

    Vinogradov, Igor V.

    Noise generated by a turbofan engine has both tonal and broadband noise components. It is shown in this thesis that a computationally efficient method for tonal noise can be applied for broadband noise as well. In the thesis, both types of noise are studied using linearized three-dimensional Euler equations model. First, a numerical method for tonal noise calculation is formulated using a high accuracy implicit scheme for the spatial derivatives and the assumption that the flow variables depend on time in a periodic fashion. The system of equations is then solved in frequency domain using time-marching technique. The high accuracy approximation allows to reduce the number of grid points while, due to factoring out of the time variable, grid-dependent time step can be used. In order to verify the method, comparison with existing codes is made for a number of geometries. Several acceleration techniques are tested, including parallel computing, grid clustering, and multigrid. Second, for an annular cascade with zero blade loading the results show that the mean flow swirl changes the physics of scattering in three major ways: (i) it modifies the number of acoustic modes in the duct, (ii) it changes their duct radial profile, and (iii) it causes significant amplitude and radial phase variations of the incident disturbances. The method is also applied toward loaded cascades and the results indicate significant effect of thickness at high frequency for cases of non-zero stagger and camber. Finally, a three-dimensional model is presented for fan broadband interaction noise based on spectral representation of the impinging upstream turbulence and a multiple scale analysis for the evolution of turbulence in a nonuniform swirling flow. Comparison of the radiated noise spectra for three-dimensional and two-dimensional cascades is presented.

  11. Earthquakes and plate tectonics.

    USGS Publications Warehouse

    Spall, H.

    1982-01-01

    Earthquakes occur at the following three kinds of plate boundary: ocean ridges where the plates are pulled apart, margins where the plates scrape past one another, and margins where one plate is thrust under the other. Thus, we can predict the general regions on the earth's surface where we can expect large earthquakes in the future. We know that each year about 140 earthquakes of magnitude 6 or greater will occur within this area which is 10% of the earth's surface. But on a worldwide basis we cannot say with much accuracy when these events will occur. The reason is that the processes in plate tectonics have been going on for millions of years. Averaged over this interval, plate motions amount to several mm per year. But at any instant in geologic time, for example the year 1982, we do not know, exactly where we are in the worldwide cycle of strain build-up and strain release. Only by monitoring the stress and strain in small areas, for instance, the San Andreas fault, in great detail can we hope to predict when renewed activity in that part of the plate tectonics arena is likely to take place. -from Author

  12. Pixelated neutron image plates

    NASA Astrophysics Data System (ADS)

    Schlapp, M.; Conrad, H.; von Seggern, H.

    2004-09-01

    Neutron image plates (NIPs) have found widespread application as neutron detectors for single-crystal and powder diffraction, small-angle scattering and tomography. After neutron exposure, the image plate can be read out by scanning with a laser. Commercially available NIPs consist of a powder mixture of BaFBr : Eu2+ and Gd2O3 dispersed in a polymer matrix and supported by a flexible polymer sheet. Since BaFBr : Eu2+ is an excellent x-ray storage phosphor, these NIPs are particularly sensitive to ggr-radiation, which is always present as a background radiation in neutron experiments. In this work we present results on NIPs consisting of KCl : Eu2+ and LiF that were fabricated into ceramic image plates in which the alkali halides act as a self-supporting matrix without the necessity for using a polymeric binder. An advantage of this type of NIP is the significantly reduced ggr-sensitivity. However, the much lower neutron absorption cross section of LiF compared with Gd2O3 demands a thicker image plate for obtaining comparable neutron absorption. The greater thickness of the NIP inevitably leads to a loss in spatial resolution of the image plate. However, this reduction in resolution can be restricted by a novel image plate concept in which a ceramic structure with square cells (referred to as a 'honeycomb') is embedded in the NIP, resulting in a pixelated image plate. In such a NIP the read-out light is confined to the particular illuminated pixel, decoupling the spatial resolution from the optical properties of the image plate material and morphology. In this work, a comparison of experimentally determined and simulated spatial resolutions of pixelated and unstructured image plates for a fixed read-out laser intensity is presented, as well as simulations of the properties of these NIPs at higher laser powers.

  13. Measuring Orbital Angular Momentum (OAM) States of Vortex Beams with Annular Gratings

    PubMed Central

    Zheng, Shuang; Wang, Jian

    2017-01-01

    Measuring orbital angular momentum (OAM) states of vortex beams is of great importance in diverse applications employing OAM-carrying vortex beams. We present a simple and efficient scheme to measure OAM states (i.e. topological charge values) of vortex beams with annular gratings. The magnitude of the topological charge value is determined by the number of dark fringes after diffraction, and the sign of the topological charge value is distinguished by the orientation of the diffraction pattern. We first theoretically study the diffraction patterns using both annular amplitude and phase gratings. The annular phase grating shows almost 10-dB better diffraction efficiency compared to the annular amplitude grating. We then experimentally demonstrate the OAM states measurement of vortex beams using annular phase grating. The scheme works well even for high-order vortex beams with topological charge value as high as ± 25. We also experimentally show the evolution of diffraction patterns when slightly changing the fractional topological charge value of vortex beam from 0.1 to 1.0. In addition, the proposed scheme shows potential large tolerance of beam alignment during the OAM states measurement of vortex beams. PMID:28094325

  14. Prenatal Diagnosis of Annular Pancreas: Reliability of the Double Bubble Sign with Periduodenal Hyperechogenic Band

    PubMed Central

    Dankovcik, Robert; Jirasek, Jan E.; Kucera, Eduard; Feyereisl, Jaroslav; Radonak, Jozef; Dudas, Marek

    2009-01-01

    Objective To evaluate the power of prenatal 2-D ultrasound examination in the 2nd trimester as a method of choice for accurate diagnosis of annular pancreas. Methods Co-incidence of the double bubble sign (often accompanying gastroduodenal dilatation) together with a hyperechogenic band around the duodenum (corresponding with the tissue of annular pancreas) was used as a diagnostic criterion. Findings from postnatal surgery served for verification. Results From 7,897 screened pregnancies, annular pancreas was proven in the cases where both signs were present, but never without the hyperechogenic band (N1 = 3, N2 = 3, p ≤ 0.05). Sensitivity and specificity were 100%. Conclusions More multicentric studies are required to test this approach. The following diagnostic strategy is reasonable at the present time: when the double bubble sign is discovered, always suspect annular pancreas and look for the second sign: hyperechogenic bands around the duodenum. Also look for known associated anomalies, and vice versa, if any of associated anomalies are noted, also search specifically for the signs of annular pancreas. PMID:19047797

  15. Propagation characteristics of annular laser beams passing through the reflection Bragg grating with deformation

    NASA Astrophysics Data System (ADS)

    Yin, Suqin; Zhang, Bin; Dan, Youquan

    2011-06-01

    When high-power annular laser beams produced by the unstable resonator pass through the volume Bragg grating (VBG), absorption of light in the VBG will induce a temperature increment, resulting in changes in surface distortion. Considering that the surface distortion of the grating induces index and period differences, the scalar wave equations for the annular laser beams propagating in the VBG have been solved numerically and iteratively using finite-difference and sparse matrix methods. The variation in intensity distributions, the total power reflection coefficient, and the power in the bucket (PIB) for the annular laser beams passing through the reflection VBG with deformation have been analyzed quantitatively. It can be shown that the surface distortion of the VBG and the beam orders of the annular beams affect evidently the intensity distributions, the power reflection coefficient, and the PIB of the output beam. The peak intensity decreases as the deformation of the VBG increases. The total power reflection efficiency decreases significantly with the increase in deformations of the VBG. The PIB of the output beam decreases as the obscuration ratio β and the deformation of the VBG increase. For the given obscuration ratio β, the influence of deformation of reflection VBG on the PIB of the annular beams is more sensitive with increase in distortion of the VBG and decrease in beam order.

  16. Measuring Orbital Angular Momentum (OAM) States of Vortex Beams with Annular Gratings

    NASA Astrophysics Data System (ADS)

    Zheng, Shuang; Wang, Jian

    2017-01-01

    Measuring orbital angular momentum (OAM) states of vortex beams is of great importance in diverse applications employing OAM-carrying vortex beams. We present a simple and efficient scheme to measure OAM states (i.e. topological charge values) of vortex beams with annular gratings. The magnitude of the topological charge value is determined by the number of dark fringes after diffraction, and the sign of the topological charge value is distinguished by the orientation of the diffraction pattern. We first theoretically study the diffraction patterns using both annular amplitude and phase gratings. The annular phase grating shows almost 10-dB better diffraction efficiency compared to the annular amplitude grating. We then experimentally demonstrate the OAM states measurement of vortex beams using annular phase grating. The scheme works well even for high-order vortex beams with topological charge value as high as ± 25. We also experimentally show the evolution of diffraction patterns when slightly changing the fractional topological charge value of vortex beam from 0.1 to 1.0. In addition, the proposed scheme shows potential large tolerance of beam alignment during the OAM states measurement of vortex beams.

  17. Three-dimensional regular arrangement of the annular ligament of the rat stapediovestibular joint.

    PubMed

    Ohashi, Mitsuru; Ide, Soyuki; Kimitsuki, Takashi; Komune, Shizuo; Suganuma, Tatsuo

    2006-03-01

    The stapes footplate articulates with the vestibular window through the annular ligament. This articulation is known as the stapediovestibular joint (SVJ). We investigated the ultrastructure of adult rat SVJ and report here on the characteristic ultrastructure of the corresponding annular ligament. Transmission electron microscopy showed that this annular ligament comprises thick ligament fibers consisting of a peripheral mantle of microfibrils and an electron-lucent central amorphous substance that is regularly arranged in a linear fashion, forming laminated structures parallel to the horizontal plane of the SVJ. Scanning electron microscopy revealed that transverse microfibrils cross the thick ligament fibers, showing a lattice-like structure. The annular ligament was vividly stained with elastica van Gieson's stain and the Verhoeff's iron hematoxylin method. Staining of the electron-lucent central amorphous substance of the thick ligament fibers by the tannate-metal salt method revealed an intense electron density. These results indicate that the annular ligament of the SVJ is mainly composed of mature elastic fibers.

  18. Stroke volume and mitral annular velocities. Insights from tissue Doppler imaging.

    PubMed

    Bruch, C; Stypmann, J; Gradaus, R; Breithardt, G; Wichter, T

    2004-10-01

    The aim of this study was to assess the impact of stroke volume (SV) on mitral annular velocities derived from tissue Doppler imaging (TDI). To this end, conventional echocardiographic variables and TDI derived mitral annular velocities (S', E', A') were obtained in 14 patients (pts) with increased SV (due to primary mitral (n=12) (ISV group)), in 41 pts with reduced SV (due to ischemic (n=27) or dilated cardiomyopathy (n=9) or hypertensive heart disease (n=5) (RSV group)) and 29 asymptomatic controls with normal SV (CON group). Systolic (S') and early diastolic (E') mitral annular velocities were elevated in the ISV group in the comparison to the CON group, but were significantly reduced in the RSV group. Late diastolic annular velocities (A') did not differ between the ISV and the CON group, but were lowest in the RSV group. On simple linear regression analysis, SV was significantly related to S' (r=0.74, p<0.001), to E' (r=0.74, p<0.001) and to A' (r=0.43, p<0.01). On multiple regression analysis, SV was a stronger independent predictor of S' and E' than conventional systolic or diastolic echocardiographic variables. Thus, stroke volume has a significant impact on TDI derived systolic (S') and early diastolic (E') mitral annular velocities. This should be considered, when TDI is used in the evaluation of LV performance or in the estimation of filling pressures.

  19. Two-phase gas-liquid flow characteristics inside a plate heat exchanger

    SciTech Connect

    Nilpueng, Kitti; Wongwises, Somchai

    2010-11-15

    In the present study, the air-water two-phase flow characteristics including flow pattern and pressure drop inside a plate heat exchanger are experimentally investigated. A plate heat exchanger with single pass under the condition of counter flow is operated for the experiment. Three stainless steel commercial plates with a corrugated sinusoidal shape of unsymmetrical chevron angles of 55 and 10 are utilized for the pressure drop measurement. A transparent plate having the same configuration as the stainless steel plates is cast and used as a cover plate in order to observe the flow pattern inside the plate heat exchanger. The air-water mixture flow which is used as a cold stream is tested in vertical downward and upward flow. The results from the present experiment show that the annular-liquid bridge flow pattern appeared in both upward and downward flows. However, the bubbly flow pattern and the slug flow pattern are only found in upward flow and downward flow, respectively. The variation of the water and air velocity has a significant effect on the two-phase pressure drop. Based on the present data, a two-phase multiplier correlation is proposed for practical application. (author)

  20. Designing Assemblies Of Plates

    NASA Technical Reports Server (NTRS)

    Williams, F. W.; Kennedy, D.; Butler, R.; Aston, G.; Anderson, M. S.

    1992-01-01

    VICONOPT calculates vibrations and instabilities of assemblies of prismatic plates. Designed for efficient, accurate analysis of buckling and vibration, and for optimum design of panels of composite materials. Written in FORTRAN 77.

  1. Plate tectonics: Metamorphic myth

    NASA Astrophysics Data System (ADS)

    Korenaga, Jun

    2016-01-01

    Clear evidence for subduction-induced metamorphism, and thus the operation of plate tectonics on the ancient Earth has been lacking. Theoretical calculations indicate that we may have been looking for something that cannot exist.

  2. Violin plate modes.

    PubMed

    Gough, Colin

    2015-01-01

    As the first step toward developing a generic model for the acoustically radiating vibrational modes of the violin and related instruments, the modes of both freely supported and edge-constrained top and back plates have been investigated as functions of shape, arching height, elastic anisotropy, the f-holes and associated island area, thickness graduations, and the additional boundary constraints of the ribs, soundpost, and bass-bar present in the assembled instrument. Comsol shell structure finite element software has been used as a quasi-experimental tool, with physical and geometric properties varied smoothly, often over several orders of magnitude, allowing the development of the plate modes to be followed continuously from those of an initially square plate to those of doubly-arched, guitar-shaped, orthotropic plates and their dependence on all the above factors.

  3. Tectonic Plate Movement.

    ERIC Educational Resources Information Center

    Landalf, Helen

    1998-01-01

    Presents an activity that employs movement to enable students to understand concepts related to plate tectonics. Argues that movement brings topics to life in a concrete way and helps children retain knowledge. (DDR)

  4. Reduction of astrometric plates

    NASA Technical Reports Server (NTRS)

    Stock, J.

    1984-01-01

    A rapid and accurate method for the reduction of comet or asteroid plates is described. Projection equations, scale length correction, rotation of coordinates, linearization, the search for additional reference stars, and the final solution are examined.

  5. What's On Your Plate?

    MedlinePlus

    ... Table of Contents What's On Your Plate? Smart Food Choices for Healthy Aging www.nia.nih.gov/health/ ... calories in" and "calories out," and making good food choices as you age. Shopping Tips See how planning ...

  6. Feynman's wobbling plate

    NASA Astrophysics Data System (ADS)

    Tuleja, Slavomir; Gazovic, Boris; Tomori, Alexander; Hanc, Jozef

    2007-03-01

    In the book Surely You Are Joking, Mr. Feynman! Richard Feynman tells a story of a Cornell cafeteria plate being tossed into the air. As the plate spun, it wobbled. Feynman noticed a relation between the two motions. He solved the motion of the plate by using the Lagrangian approach. This solution didn't satisfy him. He wanted to understand the motion of the plate by analyzing the motion of its individual particles and the forces acting on them. He was successful, but he didn't tell us how he did it. We provide an elementary explanation for the two-to-one ratio of wobble to spin frequencies, based on an analysis of the motion of the particles and the forces acting on them. We also demonstrate the power of numerical simulation and computer animation to provide insight into a physical phenomenon and guidance on how to do the analysis.

  7. Flat plate solar oven

    SciTech Connect

    Parikh, M.

    1981-01-01

    The construction of an Indian Rs. 186 (US $20.33) flat-plate solar oven is described. Detailed drawings are provided and relevant information on cooking times and temperature for different foods is given.

  8. Fractal multifiber microchannel plates

    NASA Technical Reports Server (NTRS)

    Cook, Lee M.; Feller, W. B.; Kenter, Almus T.; Chappell, Jon H.

    1992-01-01

    The construction and performance of microchannel plates (MCPs) made using fractal tiling mehtods are reviewed. MCPs with 40 mm active areas having near-perfect channel ordering were produced. These plates demonstrated electrical performance characteristics equivalent to conventionally constructed MCPs. These apparently are the first MCPs which have a sufficiently high degree of order to permit single channel addressability. Potential applications for these devices and the prospects for further development are discussed.

  9. Positive battery plate

    NASA Technical Reports Server (NTRS)

    Rowlette, John R. (Inventor)

    1985-01-01

    The power characteristics of a lead acid battery are improved by incorporating a dispersion of 1 to 10% by weight of a thermodynamically stable conductivity additive, such as conductive tin oxide coated glass fibers (34) of filamentary glass wool (42) in the positive active layer (32) carried on the grid (30) of the positive plate (16). Positive plate potential must be kept high enough to prevent reduction of the tin oxide to tin by utilizing an oversized, precharged positive paste.

  10. Compressibility effects in a turbulent annular mixing layer

    NASA Astrophysics Data System (ADS)

    Freund, Jonathan Ben

    1998-12-01

    Mixing between supersonic streams is critical to many technological applications, especially scramjets. This work uses direct numerical simulations of time evolving annular mixing layers, which correspond to the early development of round jets, to study compressibility effects on turbulence dynamics and mixing in free shear flow. Nine cases were considered with convective Mach numbers ranging from Mc = 0.1 to 1.8 and turbulent Mach numbers reaching as high as Mt = 0.8. Growth rates of the simulated mixing layers are suppressed with increasing Mach number as observed experimentally. The Reynolds stresses, with exception of the axial normal stress, /overline[ux/sp/prime x/sp'], are also suppressed. Flow visualizations show a distinct change in turbulence structure with increasing Mach number. At low Mach numbers, the flow is dominated by large azimuthally correlated rollers whereas at high Mach numbers the flow is dominated by small streamwise oriented structures. Dilatational terms are found to have negligible net effect upon the turbulence energetics despite the fact that shocklets are found at high Mach numbers. The growth rate suppression is analyzed with the Reynolds stress transport equations and a simple relation between mixing layer growth rate and the pressure-strain-rate correlation is found. This correlation is suppressed at higher Mach numbers due to suppressed pressure fluctuations. A change in structure caused by a 'communication' breakdown across supersonically deforming eddies is found to be responsible for the suppression of pressure fluctuations and this effect is parameterized with a gradient Mach number, Mg=[/ell/over a][/partial/bar u/over/partial y]. Mixing is studied with a passive scalar transport equation. Increasing the Mach number changes the mixture fraction probability density function from non-marching to marching and the mixing efficiency from 0.5 at Mc = 0.1 to 0.67 at Mc = 1.5. The scalar concentration and the axial velocity

  11. A computational investigation of impulsive and pulsed starting annular jets

    NASA Astrophysics Data System (ADS)

    Abdel-Raouf, Emad Mohamed Refaat

    2011-12-01

    A computational study is carried out on low Reynolds number impulsive and pulsating annular jets. This work is inspired by the biological flow of marine life that uses jet propulsion for self maneuver. Marine life such as squids and jellyfish propel themselves by discharging a water jet followed by a refilling phase. The discharging portion is a starting jet, i.e. the releasing of a moving fluid into a quiescent fluid, while the refilling phase can be viewed as an inflow jet. The combined jets will be called fully oscillating jets. Although fully oscillating jets have been indirectly examined experimentally, they have never been studied computationally. This dissertation is divided into three investigations that examine the starting jet, inflow jet, and fully oscillating jet based on the resultant force (i.e. either thrust or suction force) at the annulus exit plane, jet efficiency, and vortex dynamics. Furthermore, each of the following three performance criterion is examined under various velocity imposed boundaries (i.e. impulsive, unit pulsed, and sinusoidal pulsed jets), ambient pressure, and blocking ratios. An axisymmetric, incompressible and unsteady Navier Stokes numerical model was used to implement the analysis. The model was validated against theoretical and experimental results, where both result types bounded the computational results of this endeavor. In addition, numerical verification was carried out on each of the three investigations ensuring grid and time independent results. Several substantial outcomes were drawn from the results of the three investigations. The numerical results confirmed previously published experimental data regarding the universal dimensionless time scale (i.e. vortex formation number) of optimal vortex ring development triggered by starting jets. Moreover, the computational results showed evidence that the vortex formation number was not affected by ambient pressure nor blocking ratio. The computational results also

  12. Beyond the Cosmological: Numerical Scenarios underneath Ancient Annular Architectural Structures

    NASA Astrophysics Data System (ADS)

    Ranieri, M.

    2009-08-01

    ``Cecì est la regle du carré et du cercle. Pour toutes choses, la circonférence (tcheou) est en usage, et les figures circulaire et carrée sont employées. L'officier dit ta-tsiang (grand charpentier, titre du Tcheou-li) prend ses mesures. Le compass et le règle sont apprêtés. Tantot on rompt le carré et on fait un cercle. Tantot on brise le cercle et on fait un carré. Au milieu d'un carré, quand on fait un cercle, on appelle cette figure cercle-carré. Au milieu d'un cercle, quand on fait un carré, on appelle cette figure carré-cercle.'' (Tcheou-Pei-Souan-King, book one, trad. E.Biot, Journal Asiatique, Juin 1841 p. 614 Circles and squares, as geometrical representations of the cosmos, are frequent in ancient cultures, mainly with the earth represented by the square and the sky by the circle. Quite many are the circular or circle-and-square architectures of the past that are to be interpreted as related to the cosmologies of the cultures to which they belong. In this paper we focus on those relevant annular geometries (CQC) where the square inscribable into the external circumference in turn perfectly circumscribes the internal one. Beyond the possible cosmological significances, a CQC geometry bears underneath a strict numerical structure that can be put in relation to the length-units used by the builders. Results are presented of CAD (Computer Aided Drawing) analyses performed on the plans of ancient structures where the CQC geometry was suspected to exist. A large repertory of such structures has been found, from Nuragic Sardinia to Mesoamerica including Minoans, Greeks, Romans and others. In many cases the found length-units coincide with known ancient units. The large variety presented at CAC 2000 cannot be shown in this paper for reasons of space and only a smaller but significant selection is presented.

  13. Enhancing VVER Annular Proliferation Resistance Fuel with Minor Actinides

    SciTech Connect

    G. S. Chang

    2007-06-01

    Key aspects of the Global Nuclear Energy Partnership (GNEP) are to significantly advance the science and technology of nuclear energy systems and the Advanced Fuel Cycle (AFC) program. The merits of nuclear energy are the high-density energy, and low environmental impacts i.e. almost zero greenhouse gas emission. Planned efforts involve near-term and intermediate-term improvements in fuel utilization and recycling in current LWR as well as the longer-term development of new nuclear energy systems that offer much improved fuel utilization and proliferation resistance, along with continued advances in operational safety. The challenges are solving the energy needs of the world, protection against nuclear proliferation, the problem of nuclear waste, and the global environmental problem. To reduce the spent fuel for storage and enhance the proliferation resistance for the intermediate-term, there are two major approaches (a) increase the discharged spent fuel burnup in the advanced LWR (Gen-III Plus), which not only can reduce the spent fuel for storage, but also increase the 238Pu and 240Pu isotopes ratio to enhance the proliferation resistance, (b) use of transuranic nuclides (237Np and 241Am) in the high burnup fuel, which can drastically increase the proliferation resistance isotope 238Pu /Pu ratio. For future advanced nuclear systems, the minor actinides are viewed more as a resource to be recycled, or transmuted to less hazardous and possibly more useful forms, rather than simply as a waste stream to be disposed of in expensive repository facilities. In this paper, a typical pressurized water reactor (PWR) VVER-1000 annular fuel unit lattice cell model with UO2 fuel pins will be used to investigate the effectiveness of minor actinide reduction approach (MARA) for enhancing proliferation resistance and improving the fuel cycle performance. We concluded that the concept of MARA, involves the use of transuranic nuclides (237Np and/or 241Am), can not only drastically

  14. Sound generation and propagation in annular cascades with swirling flows

    NASA Astrophysics Data System (ADS)

    El Hadidi, Basman Mohamed Nabil

    An efficient numerical model is developed for solving the interaction of high frequency, unsteady, three-dimensional incident disturbances with an annular cascade of loaded blades in swirling flows. The numerical scheme is made efficient by split ting the velocity field into nearly-acoustic and nearly-convected vortical components. This leads to a coupled set of equations, which can be solved iteratively. Numerical results show that the number of iterations between the two sets of equations decreases as the frequency increases as predicted by asymptotic analysis. The nearly-convected component of the velocity is analyzed using an initial value analysis which calculates its evolution in swirling flows. The pressure associated with the nearly-convected disturbance is small and can be neglected locally, however, its effects are significant over large propagation distances. Viscosity and entropy are included in the model and results show significant effects for disturbances with large azimuthal mode number and propagation distance. Non-reflecting boundary conditions are developed to avoid wave reflection inside the computational domain. The method is based on the expansion of the downstream and upstream acoustic eigenmodes. Because the mean flow is non-uniform, a Gram-Schmidt procedure is used to express the acoustic pressure coefficients. Unsteady aerodynamic and acoustic scattering problems are validated through extensive comparisons with known solutions in the narrow annulus and full annulus cases. Computations indicate that full three-dimensional calculations are essential at high frequency. Steady blade loading increases the acoustic pressure compared to the unloaded blades in swirling flows. Furthermore, spanwise blade loading and blade twist excite higher order acoustic modes and may contribute significantly to the sound level. Passive noise reduction techniques are explored by increasing rotor/stator gap, applying blade lean and sweep and mean flow acceleration

  15. Transverse bed slope effects in an annular flume

    NASA Astrophysics Data System (ADS)

    Baar, Anne; Kleinhans, Maarten; de Smit, Jaco; Uijttewaal, Wim

    2016-04-01

    Large scale morphology, in particular bar dimensions and bifurcation dynamics, are greatly affected by the deflection of sediment transport on transverse bed slopes due to gravity and by helical flows. However, existing transverse bed slope predictors are based on a small set of experiments with a minor range of flow conditions and sediment sizes, and do not account for the presence of bedforms. In morphological modelling the deflection angle is therefore often calibrated on measured morphology. Our objective is to experimentally quantify the transverse slope effect for a large range of near-bed flow conditions and sediment sizes (0.17 - 4 mm) to test existing predictors, in order to improve morphological modelling of rivers and estuaries. We have conducted about 400 experiments in an annular flume, which functions as an infinitely long bended flume and therefore avoids boundary effects. Flow is generated by rotating the lid of the flume, while the intensity of the helical flow can be decreased by counterrotating the bottom of the flume. The equilibrium transverse slope that develops during the experiments is a balance between the transverse bed slope effect and the bed shear stress caused by the helical flow. We obtained sediment mobilities from no motion to sheet flow, ranging across bedload and suspended load. Resulting equilibrium transverse slopes show a clear trend with varying sediment mobilities and helical flow intensities that deviate from typical power relations with Shields number. As an end member we found transversely horizontal beds by counterrotation that partially cancelled the helical flow near the bed, which allows us to quantify helical flow. The large range in sediment mobilities caused different bed states from ripples and dunes to sheet flow that affect near-bed flow, which cause novel nonlinear relations between transverse slope and Shields number. In conclusion, our results show for a wide range of conditions and sediments that transverse

  16. Velocity and phase distribution measurements in vertical air-water annular flows

    SciTech Connect

    Vassallo, P.

    1997-07-01

    Annular flow topology for three air-water conditions in a vertical duct is investigated through the use of a traversing double-sensor hot-film anemometry probe and differential pressure measurements. Near wall measurements of mean and fluctuating velocities, as well as local void fraction, are taken in the liquid film, with the highest turbulent fluctuations occurring for the flow condition with the largest pressure drop. A modified law-of-the-wall formulation for wall shear is presented which, using near wall values of mean velocity and kinetic energy, agrees reasonably well with the average stress obtained from direct pressure drop measurements. The linear profile using wall coordinates in the logarithmic layer is preserved in annular flow; however, the slope and intercept of the profile differ from the single-phase values for the annular flow condition which has a thicker, more turbulent, liquid film.

  17. Key messages from a rare case of annular sarcoidosis of scalp

    PubMed Central

    Bhushan, Premanshu; Thatte, Sarvesh S.; Singh, Avninder

    2016-01-01

    Sarcoidosis, a multisystem disease of obscure etiology, is characterized by the formation of noncaseating epithelioid cell granulomas in several organs or tissues. The diagnosis of sarcoidosis requires a compatible clinical picture, histologic demonstration of noncaseating granulomas, and exclusion of other diseases capable of producing similar histology or clinical features. The lung is the most commonly affected organ, but the skin is frequently involved. Sarcoidosis occurs worldwide and affects all ages and races with female predominance. Scalp involvement is decidedly rare among the myriad cutaneous manifestations of sarcoidosis. Alopecia is common in sarcoidosis and is generally scarring in nature. Annular sarcoidosis is a rare morphology and annular sarcoid of scalp is seldom reported. Herein we present a case of annular scalp sarcoid with systemic involvement and without alopecia. PMID:27294057

  18. Hybrid multiphase CFD simulation for liquid-liquid interfacial area prediction in annular centrifugal contactors

    SciTech Connect

    Wardle, K.E.

    2013-07-01

    Liquid-liquid contacting equipment used in solvent extraction processes has the dual purpose of mixing and separating two immiscible fluids. Consequently, such devices inherently encompass a wide variety of multiphase flow regimes. A hybrid multiphase computational fluid dynamics (CFD) solver which combines the Eulerian multi-fluid method with VOF (volume of fluid) sharp interface capturing has been developed for application to annular centrifugal contactors. This solver has been extended to enable prediction of mean droplet size and liquid-liquid interfacial area through a single moment population balance method. Simulations of liquid-liquid mixing in a simplified geometry and a model annular centrifugal contactor are reported with droplet breakup/coalescence models being calibrated versus available experimental data. Quantitative comparison is made for two different housing vane geometries and it is found that the predicted droplet size is significantly smaller for vane geometries which result in higher annular liquid holdup.

  19. An experimental technique for performing 3-D LDA measurements inside whirling annular seals

    NASA Technical Reports Server (NTRS)

    Morrison, Gerald L.; Johnson, Mark C.; Deotte, Robert E., Jr.; Thames, H. Davis, III.; Wiedner, Brian G.

    1992-01-01

    During the last several years, the Fluid Mechanics Division of the Turbomachinery Laboratory at Texas A&M University has developed a rather unique facility with the experimental capability for measuring the flow field inside journal bearings, labyrinth seals, and annular seals. The facility consists of a specially designed 3-D LDA system which is capable of measuring the instantaneous velocity vector within 0.2 mm of a wall while the laser beams are aligned almost perpendicular to the wall. This capability was required to measure the flow field inside journal bearings, labyrinth seals, and annular seals. A detailed description of this facility along with some representative results obtained for a whirling annular seal are presented.

  20. Annular Ligament Reconstruction With Triceps Autograft for Chronic Radial Head Instability.

    PubMed

    Marinello, Patrick G; Wagner, Timothy; Styron, Joseph; Maschke, Steven; Evans, Peter J

    2016-03-01

    We present a modification and revisit of the Bell Tawse technique for annular ligament reconstruction with triceps autograft for chronic radial head instability. In patients with instability stemming from an incompetent annular ligament, this technique has proved successful to restore stability to the proximal radial capitellar joint as an augment after ensuring normal boney anatomy. Through a lateral Kocher approach, an approximately 10 cm × 4 mm strip of lateral triceps tendon is harvested as a free graft for the reconstruction. Following passing of the triceps autograft around the radial neck, it is sutured to a mini-Mitek suture anchor and is placed into a decorticated portion of the proximal ulna to recreate the annular ligament. Finally, we present 2 case illustrations where this technique was successfully used for chronic radial head instability.