Ferguson, V L
2009-08-01
The relative contributions of elastic, plastic, and viscous material behavior are poorly described by the separate extraction and analysis of the plane strain modulus, E('), the contact hardness, H(c) (a hybrid parameter encompassing both elastic and plastic behavior), and various viscoelastic material constants. A multiple element mechanical model enables the partitioning of a single indentation response into its fundamental elastic, plastic, and viscous deformation components. The objective of this study was to apply deformation partitioning to explore the role of hydration, tissue type, and degree of mineralization in bone and calcified cartilage. Wet, ethanol-dehydrated, and PMMA-embedded equine cortical bone samples and PMMA-embedded human femoral head tissues were analyzed for contributions of elastic, plastic and viscous deformation to the overall nanoindentation response at each site. While the alteration of hydration state had little effect on any measure of deformation, unembedded tissues demonstrated significantly greater measures of resistance to plastic deformation than PMMA-embedded tissues. The PMMA appeared to mechanically stabilize the tissues and prevent extensive permanent deformation within the bone material. Increasing mineral volume fraction correlated with positive changes in E('), H(c), and resistance to plastic deformation, H; however, the partitioned deformation components were generally unaffected by mineralization. The contribution of viscous deformation was minimal and may only play a significant role in poorly mineralized tissues. Deformation partitioning enables a detailed interpretation of the elastic, plastic, and viscous contributions to the nanomechanical behavior of mineralized tissues that is not possible when examining modulus and contact hardness alone. Varying experimental or biological factors, such as hydration or mineralization level, enables the understanding of potential mechanisms for specific mechanical behavior patterns that would otherwise be hidden within a more complex set of material property parameters.
Micromechanics and effective elastoplastic behavior of two-phase metal matrix composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ju, J.W.; Chen, T.M.
A micromechanical framework is presented to predict effective (overall) elasto-(visco-)plastic behavior of two-phase particle-reinforced metal matrix composites (PRMMC). In particular, the inclusion phase (particle) is assumed to be elastic and the matrix material is elasto-(visco-)plastic. Emanating from Ju and Chen's (1994a,b) work on effective elastic properties of composites containing many randomly dispersed inhomogeneities, effective elastoplastic deformations and responses of PRMMC are estimated by means of the effective yield criterion'' derived micromechanically by considering effects due to elastic particles embedded in the elastoplastic matrix. The matrix material is elastic or plastic, depending on local stress and deformation, and obeys general plasticmore » flow rule and hardening law. Arbitrary (general) loadings and unloadings are permitted in the framework through the elastic predictor-plastic corrector two-step operator splitting methodology. The proposed combined micromechanical and computational approach allows one to estimate overall elastoplastic responses of PRMMCs by accounting for the microstructural information (such as the spatial distribution and micro-geometry of particles), elastic properties of constituent phases, and the plastic behavior of the matrix-only materials.« less
Shape memory polymer network with thermally distinct elasticity and plasticity.
Zhao, Qian; Zou, Weike; Luo, Yingwu; Xie, Tao
2016-01-01
Stimuli-responsive materials with sophisticated yet controllable shape-changing behaviors are highly desirable for real-world device applications. Among various shape-changing materials, the elastic nature of shape memory polymers allows fixation of temporary shapes that can recover on demand, whereas polymers with exchangeable bonds can undergo permanent shape change via plasticity. We integrate the elasticity and plasticity into a single polymer network. Rational molecular design allows these two opposite behaviors to be realized at different temperature ranges without any overlap. By exploring the cumulative nature of the plasticity, we demonstrate easy manipulation of highly complex shapes that is otherwise extremely challenging. The dynamic shape-changing behavior paves a new way for fabricating geometrically complex multifunctional devices.
Finite element solutions for crack-tip behavior in small-scale yielding
NASA Technical Reports Server (NTRS)
Tracey, D. M.
1976-01-01
The subject considered is the stress and deformation fields in a cracked elastic-plastic power law hardening material under plane strain tensile loading. An incremental plasticity finite element formulation is developed for accurate analysis of the complete field problem including the extensively deformed near tip region, the elastic-plastic region, and the remote elastic region. The formulation has general applicability and was used to solve the small scale yielding problem for a set of material hardening exponents. Distributions of stress, strain, and crack opening displacement at the crack tip and through the elastic-plastic zone are presented as a function of the elastic stress intensity factor and material properties.
Shape memory polymer network with thermally distinct elasticity and plasticity
Zhao, Qian; Zou, Weike; Luo, Yingwu; Xie, Tao
2016-01-01
Stimuli-responsive materials with sophisticated yet controllable shape-changing behaviors are highly desirable for real-world device applications. Among various shape-changing materials, the elastic nature of shape memory polymers allows fixation of temporary shapes that can recover on demand, whereas polymers with exchangeable bonds can undergo permanent shape change via plasticity. We integrate the elasticity and plasticity into a single polymer network. Rational molecular design allows these two opposite behaviors to be realized at different temperature ranges without any overlap. By exploring the cumulative nature of the plasticity, we demonstrate easy manipulation of highly complex shapes that is otherwise extremely challenging. The dynamic shape-changing behavior paves a new way for fabricating geometrically complex multifunctional devices. PMID:26824077
Explicit 2-D Hydrodynamic FEM Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Jerry
1996-08-07
DYNA2D* is a vectorized, explicit, two-dimensional, axisymmetric and plane strain finite element program for analyzing the large deformation dynamic and hydrodynamic response of inelastic solids. DYNA2D* contains 13 material models and 9 equations of state (EOS) to cover a wide range of material behavior. The material models implemented in all machine versions are: elastic, orthotropic elastic, kinematic/isotropic elastic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, rubber, high explosive burn, isotropic elastic-plastic, temperature-dependent elastic-plastic. The isotropic and temperature-dependent elastic-plastic models determine only the deviatoric stresses. Pressure is determined by one of 9 equations of state including linear polynomial, JWL highmore » explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, and tabulated.« less
Simulations of laser thrombolysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapyak, E.J.; Godwin, R.P.
1999-03-01
The authors have shown that bubble expansion and collapse near the interface between two materials with modest property differences produces jet-like interpenetration of the two materials. The bubble dynamics at a water-viscous fluid interface is compared with that at the interface of water with a weak elastic-plastic material. The authors find that, despite rather similar behavior during bubble growth and the initial portion of bubble collapse, the terminal jetting behavior is quite different, even in direction. The elastic-plastic properties chosen realistically represent real and surrogate thrombus. Simulations using the elastic-plastic model quantitatively agree with laboratory thrombolysis mass removal experiments. Inmore » the earlier simulations of laboratory experiments, walls have been remote so as to not effect the dynamics. Here the authors present two-dimensional simulations of thrombolysis with water over elastic-plastic surrogate thrombus in a geometry representative of the clinical situation. The calculations include thin cylindrical elastic walls with properties and dimensions appropriate for arteries. The presence of these artery walls does not substantially change the interface jetting predicted in unconfined simulations.« less
Indentation-derived elastic modulus of multilayer thin films: Effect of unloading induced plasticity
Jamison, Ryan Dale; Shen, Yu -Lin
2015-08-13
Nanoindentation is useful for evaluating the mechanical properties, such as elastic modulus, of multilayer thin film materials. A fundamental assumption in the derivation of the elastic modulus from nanoindentation is that the unloading process is purely elastic. In this work, the validity of elastic assumption as it applies to multilayer thin films is studied using the finite element method. The elastic modulus and hardness from the model system are compared to experimental results to show validity of the model. Plastic strain is shown to increase in the multilayer system during the unloading process. Additionally, the indentation-derived modulus of a monolayermore » material shows no dependence on unloading plasticity while the modulus of the multilayer system is dependent on unloading-induced plasticity. Lastly, the cyclic behavior of the multilayer thin film is studied in relation to the influence of unloading-induced plasticity. Furthermore, it is found that several cycles are required to minimize unloading-induced plasticity.« less
Finite Element Analysis of Plastic Deformation During Impression Creep
NASA Astrophysics Data System (ADS)
Naveena; Ganesh Kumar, J.; Mathew, M. D.
2015-04-01
Finite element (FE) analysis of plastic deformation associated with impression creep deformation of 316LN stainless steel was carried out. An axisymmetric FE model of 10 × 10 × 10 mm specimen with 1-mm-diameter rigid cylindrical flat punch was developed. FE simulation of impression creep deformation was performed by assuming elastic-plastic-power-law creep deformation behavior. Evolution of the stress with time under the punch during elastic, plastic, and creep processes was analyzed. The onset of plastic deformation was found to occur at a nominal stress about 1.12 times the yield stress of the material. The size of the developed plastic zone was predicted to be about three times the radius of the punch. The material flow behavior and the pile-up on specimen surface have been modeled.
Elastic-plastic analysis of a propagating crack under cyclic loading
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.; Armen, H., Jr.
1974-01-01
Development and application of a two-dimensional finite-element analysis to predict crack-closure and crack-opening stresses during specified histories of cyclic loading. An existing finite-element computer program which accounts for elastic-plastic material behavior under cyclic loading was modified to account for changing boundary conditions - crack growth and intermittent contact of crack surfaces. This program was subsequently used to study the crack-closure behavior under constant-amplitude and simple block-program loading.
NASA Astrophysics Data System (ADS)
Larsson, Per-Lennart
2018-05-01
It is established long since that the material hardness is independent of residual stresses at predominantly plastic deformation close to the contact region at indentation. Recently though, it has been shown that when elastic and plastic deformations are of equal magnitude this invariance is lost. For materials such as ceramics and polymers, this will complicate residual stress determination but can also, if properly understood, provide additional important information for performing such a task. Indeed, when the residual stresses are equi-biaxial, the situation is quite well understood, but additional efforts have to be made to understand the mechanical behavior in other loading states. Presently therefore, the variation of hardness, due to residual stresses, is examined at a uniaxial stress state. Correlation with global indentation quantities is analyzed, discussed and compared to corresponding equi-biaxial results. Cone indentation of elastic-perfectly plastic materials is considered.
NASA Astrophysics Data System (ADS)
Kuhn, Matthew R.; Daouadji, Ali
2018-05-01
The paper addresses a common assumption of elastoplastic modeling: that the recoverable, elastic strain increment is unaffected by alterations of the elastic moduli that accompany loading. This assumption is found to be false for a granular material, and discrete element (DEM) simulations demonstrate that granular materials are coupled materials at both micro- and macro-scales. Elasto-plastic coupling at the macro-scale is placed in the context of thermomechanics framework of Tomasz Hueckel and Hans Ziegler, in which the elastic moduli are altered by irreversible processes during loading. This complex behavior is explored for multi-directional loading probes that follow an initial monotonic loading. An advanced DEM model is used in the study, with non-convex non-spherical particles and two different contact models: a conventional linear-frictional model and an exact implementation of the Hertz-like Cattaneo-Mindlin model. Orthotropic true-triaxial probes were used in the study (i.e., no direct shear strain), with tiny strain increments of 2 ×10-6 . At the micro-scale, contact movements were monitored during small increments of loading and load-reversal, and results show that these movements are not reversed by a reversal of strain direction, and some contacts that were sliding during a loading increment continue to slide during reversal. The probes show that the coupled part of a strain increment, the difference between the recoverable (elastic) increment and its reversible part, must be considered when partitioning strain increments into elastic and plastic parts. Small increments of irreversible (and plastic) strain and contact slipping and frictional dissipation occur for all directions of loading, and an elastic domain, if it exists at all, is smaller than the strain increment used in the simulations.
The importance of stress percolation patterns in rocks and other polycrystalline materials.
Burnley, P C
2013-01-01
A new framework for thinking about the deformation behavior of rocks and other heterogeneous polycrystalline materials is proposed, based on understanding the patterns of stress transmission through these materials. Here, using finite element models, I show that stress percolates through polycrystalline materials that have heterogeneous elastic and plastic properties of the same order as those found in rocks. The pattern of stress percolation is related to the degree of heterogeneity in and statistical distribution of the elastic and plastic properties of the constituent grains in the aggregate. The development of these stress patterns leads directly to shear localization, and their existence provides insight into the formation of rhythmic features such as compositional banding and foliation in rocks that are reacting or dissolving while being deformed. In addition, this framework provides a foundation for understanding and predicting the macroscopic rheology of polycrystalline materials based on single-crystal elastic and plastic mechanical properties.
The importance of stress percolation patterns in rocks and other polycrystalline materials
Burnley, P.C.
2013-01-01
A new framework for thinking about the deformation behavior of rocks and other heterogeneous polycrystalline materials is proposed, based on understanding the patterns of stress transmission through these materials. Here, using finite element models, I show that stress percolates through polycrystalline materials that have heterogeneous elastic and plastic properties of the same order as those found in rocks. The pattern of stress percolation is related to the degree of heterogeneity in and statistical distribution of the elastic and plastic properties of the constituent grains in the aggregate. The development of these stress patterns leads directly to shear localization, and their existence provides insight into the formation of rhythmic features such as compositional banding and foliation in rocks that are reacting or dissolving while being deformed. In addition, this framework provides a foundation for understanding and predicting the macroscopic rheology of polycrystalline materials based on single-crystal elastic and plastic mechanical properties. PMID:23823992
Metal nanoplates: Smaller is weaker due to failure by elastic instability
NASA Astrophysics Data System (ADS)
Ho, Duc Tam; Kwon, Soon-Yong; Park, Harold S.; Kim, Sung Youb
2017-11-01
Under mechanical loading, crystalline solids deform elastically, and subsequently yield and fail via plastic deformation. Thus crystalline materials experience two mechanical regimes: elasticity and plasticity. Here, we provide numerical and theoretical evidence to show that metal nanoplates exhibit an intermediate mechanical regime that occurs between elasticity and plasticity, which we call the elastic instability regime. The elastic instability regime begins with a decrease in stress, during which the nanoplates fail via global, and not local, deformation mechanisms that are distinctly different from traditional dislocation-mediated plasticity. Because the nanoplates fail via elastic instability, the governing strength criterion is the ideal strength, rather than the yield strength, and as a result, we observe a unique "smaller is weaker" trend. We develop a simple surface-stress-based analytic model to predict the ideal strength of the metal nanoplates, which accurately reproduces the smaller is weaker behavior observed in the atomistic simulations.
Adler, Thomas A.
1996-01-01
The invention pertains a method of determining elastic and plastic mechanical properties of ceramics, intermetallics, metals, plastics and other hard, brittle materials which fracture prior to plastically deforming when loads are applied. Elastic and plastic mechanical properties of ceramic materials are determined using spherical indenters. The method is most useful for measuring and calculating the plastic and elastic deformation of hard, brittle materials with low values of elastic modulus to hardness.
PAFAC- PLASTIC AND FAILURE ANALYSIS OF COMPOSITES
NASA Technical Reports Server (NTRS)
Bigelow, C. A.
1994-01-01
The increasing number of applications of fiber-reinforced composites in industry demands a detailed understanding of their material properties and behavior. A three-dimensional finite-element computer program called PAFAC (Plastic and Failure Analysis of Composites) has been developed for the elastic-plastic analysis of fiber-reinforced composite materials and structures. The evaluation of stresses and deformations at edges, cut-outs, and joints is essential in understanding the strength and failure for metal-matrix composites since the onset of plastic yielding starts very early in the loading process as compared to the composite's ultimate strength. Such comprehensive analysis can only be achieved by a finite-element program like PAFAC. PAFAC is particularly suited for the analysis of laminated metal-matrix composites. It can model the elastic-plastic behavior of the matrix phase while the fibers remain elastic. Since the PAFAC program uses a three-dimensional element, the program can also model the individual layers of the laminate to account for thickness effects. In PAFAC, the composite is modeled as a continuum reinforced by cylindrical fibers of vanishingly small diameter which occupy a finite volume fraction of the composite. In this way, the essential axial constraint of the phases is retained. Furthermore, the local stress and strain fields are uniform. The PAFAC finite-element solution is obtained using the displacement method. Solution of the nonlinear equilibrium equations is obtained with a Newton-Raphson iteration technique. The elastic-plastic behavior of composites consisting of aligned, continuous elastic filaments and an elastic-plastic matrix is described in terms of the constituent properties, their volume fractions, and mutual constraints between phases indicated by the geometry of the microstructure. The program uses an iterative procedure to determine the overall response of the laminate, then from the overall response determines the stress state in each phase of the composite material. Failure of the fibers or matrix within an element can also be modeled by PAFAC. PAFAC is written in FORTRAN IV for batch execution and has been implemented on a CDC CYBER 170 series computer with a segmented memory requirement of approximately 66K (octal) of 60 bit words. PAFAC was developed in 1982.
Material nonlinear analysis via mixed-iterative finite element method
NASA Technical Reports Server (NTRS)
Sutjahjo, Edhi; Chamis, Christos C.
1992-01-01
The performance of elastic-plastic mixed-iterative analysis is examined through a set of convergence studies. Membrane and bending behaviors are tested using 4-node quadrilateral finite elements. The membrane result is excellent, which indicates the implementation of elastic-plastic mixed-iterative analysis is appropriate. On the other hand, further research to improve bending performance of the method seems to be warranted.
NASA Technical Reports Server (NTRS)
Zirin, R. M.; Witmer, E. A.
1972-01-01
An approximate collision analysis, termed the collision-force method, was developed for studying impact-interaction of an engine rotor blade fragment with an initially circular containment ring. This collision analysis utilizes basic mass, material property, geometry, and pre-impact velocity information for the fragment, together with any one of three postulated patterns of blade deformation behavior: (1) the elastic straight blade model, (2) the elastic-plastic straight shortening blade model, and (3) the elastic-plastic curling blade model. The collision-induced forces are used to predict the resulting motions of both the blade fragment and the containment ring. Containment ring transient responses are predicted by a finite element computer code which accommodates the large deformation, elastic-plastic planar deformation behavior of simple structures such as beams and/or rings. The effects of varying the values of certain parameters in each blade-behavior model were studied. Comparisons of predictions with experimental data indicate that of the three postulated blade-behavior models, the elastic-plastic curling blade model appears to be the most plausible and satisfactory for predicting the impact-induced motions of a ductile engine rotor blade and a containment ring against which the blade impacts.
Correlation between elastic and plastic deformations of partially cured epoxy networks
NASA Astrophysics Data System (ADS)
Müller, Michael; Böhm, Robert; Geller, Sirko; Kupfer, Robert; Jäger, Hubert; Gude, Maik
2018-05-01
The thermo-mechanical behavior of polymer matrix materials is strongly dependent on the curing reaction as well as temperature and time. To date, investigations of epoxy resins and their composites mainly focused on the elastic domain because plastic deformation of cross-linked polymer networks was considered as irrelevant or not feasible. This paper presents a novel approach which combines both elastic and plastic domain. Based on an analytical framework describing the storage modulus, analogous parameter combinations are defined in order to reduce complexity when variations in temperature, strain rate and degree of cure are encountered.
Brittle behavior of ceramic matrix composites made of 2 different phases
NASA Astrophysics Data System (ADS)
Sadowski, Tomasz; Craciun, Eduard; Marsavina, Liviu
2018-02-01
Brittle behavior of Ceramic matrix Composites (CMCs) results from overall response to applied loads due to complex of their internal microstructure. The CMCs materials are composed of mixtures of phases, some amount of porosity and technological defects. The phases can exhibit purely elastic behavior or elastic-plastic one under high level of loading. The crucial point in description of their behavior is correlation of microcracking processes with the type of loading, i.e. tensile or compressive. This distinction in the material behavior is typical for so called brittle materials. In this paper we compared both microcracking processes for the above 2 characteristic loading paths.
Straightening of a wavy strip: An elastic-plastic contact problem including snap-through
NASA Technical Reports Server (NTRS)
Fischer, D. F.; Rammerstorfer, F. G.
1980-01-01
The nonlinear behavior of a wave like deformed metal strip during the levelling process were calculated. Elastic-plastic material behavior as well as nonlinearities due to large deformations were considered. The considered problem lead to a combined stability and contact problem. It is shown that, despite the initially concentrated loading, neglecting the change of loading conditions due to altered contact domains may lead to a significant error in the evaluation of the nonlinear behavior and particularly to an underestimation of the stability limit load. The stability was examined by considering the load deflection path and the behavior of a load-dependent current stiffness parameter in combination with the determinant of the current stiffness matrix.
Finite Element Analysis of a Dynamically Loaded Flat Laminated Plate
1980-07-01
and the elements are stacked in the thickness direction to represent various material layers. This analysis allows for orthotropic, elastic- plastic or...INCREMENTS 27 V. PLASTICITY 34 Orthotropic Elastic- Plastic Yielding 34 Orthotropic Elastic-Viscoplastic Yielding 37 VI. ELEMENT EQUILIBRIUM...with time, consequently the materials are assumed to be represented by elastic- plastic and elastic-viscoplastic models. The finite element model
Stress Wave Propagation in Viscoelastic-Plastic Rock-Like Materials.
Lang, Liu; Song, Ki-Il; Zhai, Yue; Lao, Dezheng; Lee, Hang-Lo
2016-05-17
Rock-like materials are composites that can be regarded as a mixture composed of elastic, plastic, and viscous components. They exhibit viscoelastic-plastic behavior under a high-strain-rate loading according to element model theory. This paper presents an analytical solution for stress wave propagation in viscoelastic-plastic rock-like materials under a high-strain-rate loading and verifies the solution through an experimental test. A constitutive equation of viscoelastic-plastic rock-like materials was first established, and then kinematic and kinetic equations were then solved to derive the analytic solution for stress wave propagation in viscoelastic-plastic rock-like materials. An experimental test using the SHPB (Split Hopkinson Pressure Bar) for a concrete specimen was conducted to obtain a stress-strain curve under a high-strain-rate loading. Inverse analysis based on differential evolution was conducted to estimate undetermined variables for constitutive equations. Finally, the relationship between the attenuation factor and the strain rate in viscoelastic-plastic rock-like materials was investigated. According to the results, the frequency of the stress wave, viscosity coefficient, modulus of elasticity, and density play dominant roles in the attenuation of the stress wave. The attenuation decreases with increasing strain rate, demonstrating strongly strain-dependent attenuation in viscoelastic-plastic rock-like materials.
Stress Wave Propagation in Viscoelastic-Plastic Rock-Like Materials
Lang, Liu; Song, KI-IL; Zhai, Yue; Lao, Dezheng; Lee, Hang-Lo
2016-01-01
Rock-like materials are composites that can be regarded as a mixture composed of elastic, plastic, and viscous components. They exhibit viscoelastic-plastic behavior under a high-strain-rate loading according to element model theory. This paper presents an analytical solution for stress wave propagation in viscoelastic-plastic rock-like materials under a high-strain-rate loading and verifies the solution through an experimental test. A constitutive equation of viscoelastic-plastic rock-like materials was first established, and then kinematic and kinetic equations were then solved to derive the analytic solution for stress wave propagation in viscoelastic-plastic rock-like materials. An experimental test using the SHPB (Split Hopkinson Pressure Bar) for a concrete specimen was conducted to obtain a stress-strain curve under a high-strain-rate loading. Inverse analysis based on differential evolution was conducted to estimate undetermined variables for constitutive equations. Finally, the relationship between the attenuation factor and the strain rate in viscoelastic-plastic rock-like materials was investigated. According to the results, the frequency of the stress wave, viscosity coefficient, modulus of elasticity, and density play dominant roles in the attenuation of the stress wave. The attenuation decreases with increasing strain rate, demonstrating strongly strain-dependent attenuation in viscoelastic-plastic rock-like materials. PMID:28773500
NASA Technical Reports Server (NTRS)
Sanfeliz, Jose G.
1993-01-01
Micromechanical modeling via elastic-plastic finite element analyses were performed to investigate the effects that the residual stresses and the degree of matrix work hardening (i.e., cold-worked, annealed) have upon the behavior of a 9 vol percent, unidirectional W/Cu composite, undergoing tensile loading. The inclusion of the residual stress-containing state as well as the simulated matrix material conditions proved to be significant since the Cu matrix material exhibited plastic deformation, which affected the subsequent tensile response of the composite system. The stresses generated during cooldown to room temperature from the manufacturing temperature were more of a factor on the annealed-matrix composite, since they induced the softened matrix to plastically flow. This event limited the total load-carrying capacity of this matrix-dominated, ductile-ductile type material system. Plastic deformation of the hardened-matrix composite during the thermal cooldown stage was not considerable, therefore, the composite was able to sustain a higher stress before showing any appreciable matrix plasticity. The predicted room temperature, stress-strain response, and deformation stages under both material conditions represented upper and lower bounds characteristic of the composite's tensile behavior. The initial deformation stage for the hardened material condition showed negligible matrix plastic deformation while for the annealed state, its initial deformation stage showed extensive matrix plasticity. Both material conditions exhibited a final deformation stage where the fiber and matrix were straining plastically. The predicted stress-strain results were compared to the experimental, room temperature, tensile stress-strain curve generated from this particular composite system. The analyses indicated that the actual thermal-mechanical state of the composite's Cu matrix, represented by the experimental data, followed the annealed material condition.
Plastics as structural materials for aircraft
NASA Technical Reports Server (NTRS)
Kline, G M
1937-01-01
The purpose here is to consider the mechanical characteristics of reinforced phenol-formaldehyde resin as related to its use as structural material for aircraft. Data and graphs that have appeared in the literature are reproduced to illustrate the comparative behavior of plastics and materials commonly used in aircraft construction. Materials are characterized as to density, static strength, modulus of elasticity, resistance to long-time loading, strength under repeated impact, energy absorption, corrosion resistance, and ease of fabrication.
Elastic and microplastic properties of titanium in different structural states
NASA Astrophysics Data System (ADS)
Kardashev, B. K.; Betekhtin, V. I.; Kadomtsev, A. G.; Narykova, M. V.; Kolobov, Yu. R.
2017-09-01
The behavior of elastic (Young's modulus) and microplastic properties of titanium depending on the initial structure and subsequent severe plastic deformation that transforms the material (concerning the grain size) into the submicrocrystalline structural state has been studied. It has been shown that, to a great extent, different initial structures of the metal predetermine its elastic properties after deformation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Versino, Daniele; Brock, Jerry Steven
In this manuscript we describe test cases for the dynamic sphere problem in presence of finite deformations. The spherical shell in exam is made of a homogeneous, isotropic or transverse isotropic material and elastic and elastic-plastic material behaviors are considered. Twenty cases, (a) to (t), are thus defined combining material types and boundary conditions. The inner surface radius, the outer surface radius and the material's density are kept constant for all the considered test cases and their values are r i = 10mm, r o = 20mm and p = 1000Kg/m 3 respectively.
Self-actuating and self-diagnosing plastically deforming piezo-composite flapping wing MAV
NASA Astrophysics Data System (ADS)
Harish, Ajay B.; Harursampath, Dineshkumar; Mahapatra, D. Roy
2011-04-01
In this work, we propose a constitutive model to describe the behavior of Piezoelectric Fiber Reinforced Composite (PFRC) material consisting of elasto-plastic matrix reinforced by strong elastic piezoelectric fibers. Computational efficiency is achieved using analytical solutions for elastic stifness matrix derived from Variational Asymptotic Methods (VAM). This is extended to provide Structural Health Monitoring (SHM) based on plasticity induced degradation of flapping frequency of PFRC. Overall this work provides an effective mathematical tool that can be used for structural self-health monitoring of plasticity induced flapping degradation of PFRC flapping wing MAVs. The developed tool can be re-calibrated to also provide SHM for other forms of failures like fatigue, matrix cracking etc.
NASA Astrophysics Data System (ADS)
Li, Qingda; Hua, Guomin; Lu, Hao; Yu, Bin; Li, D. Y.
2018-05-01
The elastic modulus of materials is usually treated as a constant in engineering applications. However, plastic deformation may result in changes in the elastic modulus of metallic materials. Using brass, aluminum, and low-carbon steel as sample materials, it is demonstrated that plastic deformation decreased the elastic modulus of the materials by 10% to 20%. A percolation model incorporating the electron work function is proposed to correlate such plastic-strain-induced variations in the elastic modulus to corresponding changes in the electron work function. Efforts are made to understand the observed phenomenon on an electronic basis. The obtained experimental results are consistent with the theoretical analysis.
Microstructural and Morphological Factors Affecting Uncertainty in Small Scale Mechanical Properties
NASA Astrophysics Data System (ADS)
Maughan, Michael R.
If materials are to be developed from the ground up, the process will be dependent upon accurate and well-defined models of material behavior. These models can be closed-form solutions developed from first principles, simulations, or empirically derived equations, among others. Material behavior at the mesoscale is in general well understood, having had several centuries of study. However, behavior at the micro or nanoscale still requires characterization. Understanding the collective influence of the microstructure on the bulk material, for example with models like the Hall-Petch relation, has advanced our ability to manipulate the material to our advantage. We now have the ability to study not only the structure of the material, but also the material behavior and properties at the nanoscale. Understanding this behavior is critical to developing a framework for interpreting and utilizing these properties in materials design. This research aims to improve the fundamental understanding of the mechanical performance of materials and the subsequent variation in measured properties. The literature reports widely varying material properties such as hardness, elastic modulus, and yield point when measured at the nanoscale. Proposed variation mechanisms in these properties include surface preparation, error in measurement, heterogeneous dislocation density and distribution, crystal orientation, surface oxide film fracture, and others. Among other things, this work shows that these sources of variation can be determined and quantified, and that this information can be utilized as a characterization and/or predictive tool. The main goals of this work are to 1) continue basic research on sources of variation in the nanoscale properties of materials, specifically hardness and modulus in crystalline and glassy solids, 2) study the abrupt transition from elastic to plastic material behavior known as pop-in and resolve the problem of pseudo-elastic behavior prior to plasticity, and 3) integrate the sources of and propagate the variation into materials simulations, 4) study the influence of dislocation processes on indentation size effects, and 5) apply this learning to difficult to measure or interpret materials applications.
Deformation behavior of human dentin in liquid nitrogen: a diametral compression test.
Zaytsev, Dmitry; Panfilov, Peter
2014-09-01
Contribution of the collagen fibers into the plasticity of human dentin is considered. Mechanical testing of dentin at low temperature allows excluding the plastic response of its organic matrix. Therefore, deformation and fracture behavior of the dentin samples under diametral compression at room temperature and liquid nitrogen temperature are compared. At 77K dentin behaves like almost brittle material: it is deformed exclusively in the elastic regime and it fails due to growth of the sole crack. On the contrary, dentin demonstrates the ductile response at 300K. There are both elastic and plastic contributions in the deformation of dentin samples. Multiple cracking and crack tip blunting precede the failure of samples. Organic phase plays an important role in fracture of dentin: plasticity of the collagen fibers could inhibit the crack growth. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Heyman, J. S.; Allison, S. G.; Salama, K.
1985-01-01
The behavior of higher order elastic properties, which are much more sensitive to material state than are second order properties, has been studied for steel alloys AISI 1016, 1045, 1095, and 8620 by measuring the stress derivative of the acoustic natural velocity to determine the stress acoustic constants (SAC's). Results of these tests show a 20 percent linear variation of SAC's with carbon content as well as even larger variations with prestrain (plastic deformation). The use of higher order elastic characterization permits quantitative evaluation of solids and may prove useful in studies of fatigue and fracture.
NASA Astrophysics Data System (ADS)
Ku-Herrera, J. J.; Avilés, F.; Seidel, G. D.
2013-08-01
The piezoresistive response of multiwalled carbon nanotube/vinyl ester composites containing 0.3, 0.5 and 1% w/w carbon nanotubes (CNTs) loaded in tension and compression is investigated. The change in electrical resistance (ΔR) under tension loading was positive and showed a linear relationship with the applied strain up to failure, with slightly increased sensitivity for decreased CNT content. In compression, a nonlinear and non-monotonic piezoresistive behavior was observed, with ΔR initially decreasing in the elastic regime, leveling off at the onset of yielding and increasing after matrix yielding. The piezoresistive response of the composite is more sensitive to the CNT content for compression than for tension, and the calculated gage factors are higher in the compressive plastic regime. The results show that the piezoresistive signal is dependent on the CNT concentration, loading type and material elastoplastic behavior, and that recording ΔR during mechanical loading can allow self-identification of the elastic and plastic regimes of the composite.
NASA Astrophysics Data System (ADS)
Lopez Ortega, Alejandro
This thesis presents a numerical and analytical study of two problems of interest involving shock waves propagating through elastic-plastic media: the motion of converging (imploding) shocks and the Richtmyer-Meshkov (RM) instability. Since the stress conditions encountered in these cases normally produce large deformations in the materials, an Eulerian description, in which the spatial coordinates are fixed, is employed. This formulation enables a direct comparison of similarities and differences between the present study of phenomena driven by shock-loading in elastic-plastic solids, and in fluids, where they have been studied extensively. In the first application, Whitham's shock dynamics (WSD) theory is employed for obtaining an approximate description of the motion of an elastic-plastic material processed by a cylindrically/spherically converging shock. Comparison with numerical simulations of the full set of equations of motion reveal that WSD is an accurate tool for characterizing the evolution of converging shocks at all stages. The study of the Richtmyer-Meshkov flow (i.e., interaction between the interface separating two materials of different density and a shock wave incoming at an angle) in solids is performed by means of analytical models for purely elastic solids and numerical simulations when plasticity is included in the material model. To this effect, an updated version of a previously developed multi-material, level-set-based, Eulerian framework for solid mechanics is employed. The revised code includes the use of a multi-material HLLD Riemann problem for imposing material boundary conditions, and a new formulation of the equations of motion that makes use of the stretch tensor while avoiding the degeneracy of the stress tensor under rotation. Results reveal that the interface separating two elastic solids always behaves in a stable oscillatory or decaying oscillatory manner due to the existence of shear waves, which are able to transport the initial vorticity away from the interface. In the case of elastic-plastic materials, the interface behaves at first in an unstable manner similar to a fluid. Ejecta formation is appreciated under certain initial conditions while in other conditions, after an initial period of growth, the interface displays a quasi-stationary long-term behavior due to stress relaxation. The effect of secondary shock-interface interactions (re-shocks) in converging geometries is also studied. A turbulent mixing zone, similar to what is observed in gas--gas interfaces, is created, especially when materials with low strength driven by moderate to strong shocks are considered.
Deformation behavior of human enamel and dentin-enamel junction under compression.
Zaytsev, Dmitry; Panfilov, Peter
2014-01-01
Deformation behavior under uniaxial compression of human enamel and dentin-enamel junction (DEJ) is considered in comparison with human dentin. This deformation scheme allows estimating the total response from all levels of the hierarchical composite material in contrast with the indentation, which are limited by the mesoscopic and microscopic scales. It was shown for the first time that dental enamel is the strength (up to 1850MPa) hard tissue, which is able to consider some elastic (up to 8%) and plastic (up to 5%) deformation under compression. In so doing, it is almost undeformable substance under the creep condition. Mechanical properties of human enamel depend on the geometry of sample. Human dentin exhibits the similar deformation behavior under compression, but the values of its elasticity (up to 40%) and plasticity (up to 18%) are much more, while its strength (up to 800MPa) is less in two times. Despite the difference in mechanical properties, human enamel is able to suppress the cracking alike dentin. Deformation behavior under the compression of the samples contained DEJ as the same to dentin. This feature allows a tooth to be elastic-plastic (as dentin) and wear resistible (as enamel), simultaneously. © 2013 Elsevier B.V. All rights reserved.
Elastic-plastic mixed-iterative finite element analysis: Implementation and performance assessment
NASA Technical Reports Server (NTRS)
Sutjahjo, Edhi; Chamis, Christos C.
1993-01-01
An elastic-plastic algorithm based on Von Mises and associative flow criteria is implemented in MHOST-a mixed iterative finite element analysis computer program developed by NASA Lewis Research Center. The performance of the resulting elastic-plastic mixed-iterative analysis is examined through a set of convergence studies. Membrane and bending behaviors of 4-node quadrilateral shell finite elements are tested for elastic-plastic performance. Generally, the membrane results are excellent, indicating the implementation of elastic-plastic mixed-iterative analysis is appropriate.
Two-zone elastic-plastic single shock waves in solids.
Zhakhovsky, Vasily V; Budzevich, Mikalai M; Inogamov, Nail A; Oleynik, Ivan I; White, Carter T
2011-09-23
By decoupling time and length scales in moving window molecular dynamics shock-wave simulations, a new regime of shock-wave propagation is uncovered characterized by a two-zone elastic-plastic shock-wave structure consisting of a leading elastic front followed by a plastic front, both moving with the same average speed and having a fixed net thickness that can extend to microns. The material in the elastic zone is in a metastable state that supports a pressure that can substantially exceed the critical pressure characteristic of the onset of the well-known split-elastic-plastic, two-wave propagation. The two-zone elastic-plastic wave is a general phenomenon observed in simulations of a broad class of crystalline materials and is within the reach of current experimental techniques.
On the cyclic stress-strain behavior and low cycle fatigue of aerospace materials
NASA Technical Reports Server (NTRS)
Burbach, J.
1972-01-01
The elastic-plastic deformation behavior under cyclic stress of a number of different engineering materials was experimentally investigated with the aid of high-precision methods of measuring, some of which had been newly developed. Experiments made with a variety of steels, the titanium alloy Ti-A16-V4, a cobalt (tungsten) alloy, the high-temperature material Nimonic 90 and Dural (A1-Cu) are reported. The theory given in an attempt to explain these experiments is aimed at finding general formulas for the cyclic stress-strain behavior materials.
Dynamic elastic-plastic response of a 2-DOF mass-spring system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Corona, Edmundo
The objective of the work presented here arose from abnormal, drop scenarios and specifically the question of how the accelerations and accumulation of plastic strains of internal components could be a ected by the material properties of the external structure. In some scenarios, the impact loads can induce cyclic motion of the internal components. Therefore, a second objective was to explore di erences that could be expected when simulations are conducted using isotropic hardening vs. kinematic hardening plasticity models. The simplest model that can be used to investigate the objectives above is a two-degree-offreedom mass/spring model where the springs exhibitmore » elastic-plastic behavior. The purpose of this memo is to develop such model and present a few results that address the objectives.« less
NASA Astrophysics Data System (ADS)
Klecka, Michael A.
Case hardened materials, popularly used in many demanding engineering applications such as bearings, gears, and wear/impact surfaces, have high surface hardness and a gradient in material properties (hardness, yield strength, etc.) as a function of depth; therefore, they behave as plastically graded materials. In the current study, two different commercially available case carburized steels along with two through hardened steels are characterized to obtain relationships among the volume fraction of subsurface carbides, indentation hardness, elastic modulus, and yield strength as a function of depth. A variety of methods including microindentation, nanoindentation, ultrasonic measurements, compression testing, rule of mixtures, and upper and lower bound models are used to determine the relationships for elastic modulus and compare the experimental results with model predictions. In addition, the morphology, composition, and properties of the carbide particles are also determined. The gradient in hardness with depth in graded materials is commonly determined using microindentation on the cross-section of the material which contains the gradation in microstructure or composition. In the current study, a novel method is proposed to predict the hardness gradient profile using solely surface indentations at a range of loads. The method does not require the graded material to be sectioned, and has practical utility in the surface heat-treatment industry. For a material with a decreasing gradient in hardness, higher indent loads result in a lower measured hardness due to the influence of the softer subsurface layers. A power-law model is presented which relates the measured surface indentation hardness under increasing load to the subsurface gradient in hardness. A coordinated experimental and numerical study is presented to extract the constitutive response of graded materials, utilizing relationships between hardness, plastic deformation, and strain hardening response. The average plastic strain induced by an indent is shown to be an effective measure of the representative plastic strain, which is used in order to relate hardness to yield strength in both virgin and plastically deformed materials. It is shown that the two carburized steels contain gradients in yield strength, but constant strain hardening exponent with depth. The resulting model of material behavior is used to characterize the influence of specific gradients in material properties on the surface indentation behavior under increasing indentation loads. It is also shown that the response of the material is not greatly influenced by strain hardening exponent, while a gradient in strain hardening ability only has minimal impact. Gradients in elastic properties are also shown to have negligible influence for a fixed gradient in hardness. The depth of subsurface plastic deformation is shown to increase with sharper gradients in hardness, but is not altered by gradients in elastic properties. The proposed approach is not specific to case hardened materials and can be used to determine the subsurface hardness gradient for any graded material.
Mechanical behavior of nanocrystalline NaCl islands on Cu(111).
Bombis, Ch; Ample, F; Mielke, J; Mannsberger, M; Villagómez, C J; Roth, Ch; Joachim, C; Grill, L
2010-05-07
The mechanical response of ultrathin NaCl crystallites of nanometer dimensions upon manipulation with the tip of a scanning tunneling microscope (STM) is investigated, expanding STM manipulation to various nanostructuring modes of inorganic materials as cutting, moving, and cracking. In the light of theoretical calculations, our results reveal that atomic-scale NaCl islands can behave elastically and follow a classical Hooke's law. When the elastic limit of the nanocrystallites is reached, the STM tip induces atomic dislocations and consequently the regime of plastic deformation is entered. Our methodology is paving the way to understand the mechanical behavior and properties of other nanoscale materials.
Bone strength in pure bending: bearing of geometric and material properties.
Winter, Werner
2008-01-01
Osteoporosis is characterized by decreasing of bone mass and bone strength with advanced age. For characterization of material properties of dense and cellular bone the volumetric bone mineral density (vBMD) is one of the most important contributing factors to bone strength. Often bending tests of whole bone are used to get information about the state of osteoporosis. In a first step, different types of cellular structures are considered to characterize vBMD and its influence to elastic and plastic material properties. Afterwards, the classical theory of plastic bending is used to describe the non-linear moment-curvature relation of a whole bone. For bending of whole bone with sandwich structure an effective second moment of area can be defined. The shape factor as a pure geometrical value is considered to define bone strength. This factor is discussed for a bone with circular cross section and different thickness of cortical bone. The deduced relations and the decrease of material properties are used to demonstrate the influence of osteoporosis to bone bending strength. It can be shown that the elastic and plastic material properties of bone are related to a relative bone mineral density. Starting from an elastic-plastic bone behavior with an constant yield stress the non-linear moment-curvature relation in bending is related to yielding of the fibres in the cross section. The ultimate moment is characterized by a shape factor depending on the geometry of the cross section and on the change of cortical thickness.
Application of an Uncoupled Elastic-plastic-creep Constitutive Model to Metals at High Temperature
NASA Technical Reports Server (NTRS)
Haisler, W. E.
1983-01-01
A uniaxial, uncoupled constitutive model to predict the response of thermal and rate dependent elastic-plastic material behavior is presented. The model is based on an incremental classicial plasticity theory extended to account for thermal, creep, and transient temperature conditions. Revisions to he combined hardening rule of the theory allow for better representation of cyclic phenomenon including the high rate of strain hardening upon cyclic reyield and cyclic saturation. An alternative approach is taken to model the rate dependent inelastic deformation which utilizes hysteresis loops and stress relaxation test data at various temperatures. The model is evaluated and compared to experiments which involve various thermal and mechanical load histories on 5086 aluminum alloy, 304 stainless steel and Hastelloy-X.
NASA Technical Reports Server (NTRS)
Riff, R.; Carlson, R. L.; Simitses, G. J.
1985-01-01
The paper is concerned with the development of constitutive relations for large nonisothermal elastic-viscoplastic deformations for metals. The kinematics of elastic-plastic deformation, valid for finite strains and rotations, is presented. The resulting elastic-plastic uncoupled equations for the deformation rate combined with use of the incremental elasticity law permits a precise and purely deductive development of elastic-viscoplastic theory. It is shown that a phenomenological thermodynamic theory in which the elastic deformation and the temperature are state variables, including few internal variables, can be utilized to construct elastic-viscoplastic constitutive equations, which are appropriate for metals. The limiting case of inviscid plasticity is examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmauder, S.; Haake, S.; Mueller, W.H.
Computer modeling of materials and especially modeling the mechanical behavior of composites became increasingly popular in the past few years. Among them are examples of micromechanical modeling of real structures as well as idealized model structures of linear elastic and elasto-plastic material response. In this paper, Erdogan`s Integral Equation Method (IEM) is chosen as an example for a powerful method providing principle insight into elastic fracture mechanical situations. IEM or, alternatively, complex function techniques sometimes even allow for deriving analytical solutions such as in the case of a circumferential crack along a fiber/matrix interface. The analytical formulae of this interfacemore » crack will be analyzed numerically and typical results will be presented graphically.« less
Cyclic steady states in diffusion-induced plasticity with applications to lithium-ion batteries
NASA Astrophysics Data System (ADS)
Peigney, Michaël
2018-02-01
Electrode materials in lithium-ion batteries offer an example of medium in which stress and plastic flow are generated by the diffusion of guest atoms. In such a medium, deformation and diffusion are strongly coupled processes. For designing electrodes with improved lifetime and electro-mechanical efficiency, it is crucial to understand how plasticity and diffusion evolve over consecutive charging-recharging cycles. With such questions in mind, this paper provides general results for the large-time behavior of media coupling plasticity with diffusion when submitted to cyclic chemo-mechanical loadings. Under suitable assumptions, we show that the stress, the plastic strain rate, the chemical potential and the flux of guest atoms converge to a cyclic steady state which is largely independent of the initial state. A special emphasis is laid on the special case of elastic shakedown, which corresponds to the situation where the plastic strain stops evolving after a sufficiently large number of cycles. Elastic shakedown is expected to be beneficial for the fatigue behavior and - in the case of lithium-ion batteries - for the electro-chemical efficiency. We provide a characterization of the chemo-mechanical loadings for which elastic shakedown occurs. Building on that characterization, we suggest a general method for designing structures in such fashion that they operate in the elastic shakedown regime, whatever the initial state is. An attractive feature of the proposed method is that incremental analysis of the fully coupled plasticity-diffusion problem is avoided. The results obtained are applied to the model problem of a battery electrode cylinder particle under cyclic charging. Closed-form expressions are obtained for the set of charging rates and charging amplitudes for which elastic shakedown occurs, as well as for the corresponding cyclic steady states of stress, lithium concentration and chemical potential. Some results for a spherical particle are also presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ba Nghiep; Wang, Jin
2012-12-01
Under the Predictive Engineering effort, PNNL developed linear and nonlinear property prediction models for long-fiber thermoplastics (LFTs). These models were implemented in PNNL’s EMTA and EMTA-NLA codes. While EMTA is a standalone software for the computation of the composites thermoelastic properties, EMTA-NLA presents a series of nonlinear models implemented in ABAQUS® via user subroutines for structural analyses. In all these models, it is assumed that the fibers are linear elastic while the matrix material can exhibit a linear or typical nonlinear behavior depending on the loading prescribed to the composite. The key idea is to model the constitutive behavior ofmore » the matrix material and then to use an Eshelby-Mori-Tanaka approach (EMTA) combined with numerical techniques for fiber length and orientation distributions to determine the behavior of the as-formed composite. The basic property prediction models of EMTA and EMTA-NLA have been subject for implementation in the Autodesk® Moldflow® software packages. These models are the elastic stiffness model accounting for fiber length and orientation distributions, the fiber/matrix interface debonding model, and the elastic-plastic models. The PNNL elastic-plastic models for LFTs describes the composite nonlinear stress-strain response up to failure by an elastic-plastic formulation associated with either a micromechanical criterion to predict failure or a continuum damage mechanics formulation coupling damage to plasticity. All the models account for fiber length and orientation distributions as well as fiber/matrix debonding that can occur at any stage of loading. In an effort to transfer the technologies developed under the Predictive Engineering project to the American automotive and plastics industries, PNNL has obtained the approval of the DOE Office of Vehicle Technologies to provide Autodesk, Inc. with the technical support for the implementation of the basic property prediction models of EMTA and EMTA-NLA in the Autodesk® Moldflow® packages. This report summarizes the recent results from Autodesk Simulation Moldlow Insight (ASMI) analyses using the EMTA models and EMTA-NLA/ABAQUS® analyses for further assessment of the EMTA-NLA models to support their implementation in Autodesk Moldflow Structural Alliance (AMSA). PNNL’s technical support to Autodesk, Inc. included (i) providing the theoretical property prediction models as described in published journal articles and reports, (ii) providing explanations of these models and computational procedure, (iii) providing the necessary LFT data for process simulations and property predictions, and (iv) performing ABAQUS/EMTA-NLA analyses to further assess and illustrate the models for selected LFT materials.« less
Compaction of granular materials composed of deformable particles
NASA Astrophysics Data System (ADS)
Nguyen, Thanh Hai; Nezamabadi, Saeid; Delenne, Jean-Yves; Radjai, Farhang
2017-06-01
In soft particle materials such as metallic powders the particles can undergo large deformations without rupture. The large elastic or plastic deformations of the particles are expected to strongly affect the mechanical properties of these materials compared to hard particle materials more often considered in research on granular materials. Herein, two numerical approaches are proposed for the simulation of soft granular systems: (i) an implicit formulation of the Material Point Method (MPM) combined with the Contact Dynamics (CD) method to deal with contact interactions, and (i) Bonded Particle Model (BPM), in which each deformable particle is modeled as an aggregate of rigid primary particles using the CD method. These two approaches allow us to simulate the compaction of an assembly of elastic or plastic particles. By analyzing the uniaxial compaction of 2D soft particle packings, we investigate the effects of particle shape change on the stress-strain relationship and volume change behavior as well as the evolution of the microstructure.
HEMP 3D: A finite difference program for calculating elastic-plastic flow, appendix B
NASA Astrophysics Data System (ADS)
Wilkins, Mark L.
1993-05-01
The HEMP 3D program can be used to solve problems in solid mechanics involving dynamic plasticity and time dependent material behavior and problems in gas dynamics. The equations of motion, the conservation equations, and the constitutive relations listed below are solved by finite difference methods following the format of the HEMP computer simulation program formulated in two space dimensions and time.
PLANS; a finite element program for nonlinear analysis of structures. Volume 2: User's manual
NASA Technical Reports Server (NTRS)
Pifko, A.; Armen, H., Jr.; Levy, A.; Levine, H.
1977-01-01
The PLANS system, rather than being one comprehensive computer program, is a collection of finite element programs used for the nonlinear analysis of structures. This collection of programs evolved and is based on the organizational philosophy in which classes of analyses are treated individually based on the physical problem class to be analyzed. Each of the independent finite element computer programs of PLANS, with an associated element library, can be individually loaded and used to solve the problem class of interest. A number of programs have been developed for material nonlinear behavior alone and for combined geometric and material nonlinear behavior. The usage, capabilities, and element libraries of the current programs include: (1) plastic analysis of built-up structures where bending and membrane effects are significant, (2) three dimensional elastic-plastic analysis, (3) plastic analysis of bodies of revolution, and (4) material and geometric nonlinear analysis of built-up structures.
Surface temperatures and glassy state investigations in tribology, part 2
NASA Technical Reports Server (NTRS)
Bair, S. S.; Winer, W. O.
1979-01-01
Measurements of lubricant shear rheological behavior in the amorphous solid region and near the liquid solid transition are reported. Elastic, plastic and viscous behavior was observed. The maximum yield shear stress (limiting shear stress) is a function of temperature and pressure and is believed to be the property which determines the maximum traction in elastohydrodynamic contacts such as traction drives. A shear rheological model based on primary laboratory data is proposed for concentrated contact lubrication. The model is Maxwell model modified with a limiting shear stress. Three material properties are required: low shear stress viscosity, limiting elastic shear modulus, and the limiting shear stress the material can withstand. All three are functions of temperature and pressure.
NASA Astrophysics Data System (ADS)
Kramer, Hendrik; Klein, Marcus; Eifler, Dietmar
Conventional methods to characterize the fatigue behavior of metallic materials are very time and cost consuming. That is why the new short-time procedure PHYBALCHT was developed at the Institute of Materials Science and Engineering at the University of Kaiserslautern. This innovative method requires only a planar material surface to perform cyclic force-controlled hardness indentation tests. To characterize the cyclic elastic-plastic behavior of the test material the change of the force-indentation-depth-hysteresis is plotted versus the number of indentation cycles. In accordance to the plastic strain amplitude the indentation-depth width of the hysteresis loop is measured at half minimum force and is called plastic indentation-depth amplitude. Its change as a function of the number of cycles of indentation can be described by power-laws. One of these power-laws contains the hardening-exponentCHT e II , which correlates very well with the amount of cyclic hardening in conventional constant amplitude fatigue tests.
An anisotropic elastoplasticity model implemented in FLAG
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buechler, Miles Allen; Canfield, Thomas R.
2017-10-12
Many metals, including Tantalum and Zirconium, exhibit anisotropic elastoplastic behavior at the single crystal level, and if components are manufactured from these metals through forming processes the polycrystal (component) may also exhibit anisotropic elastoplastic behavior. This is because the forming can induce a preferential orientation of the crystals in the polycrystal. One example is a rolled plate of Uranium where the sti /strong orientation of the crystal (c-axis) tends to align itself perpendicular to the rolling direction. If loads are applied to this plate in di erent orientations the sti ness as well as the ow strength of the materialmore » will be greater in the through thickness direction than in other directions. To better accommodate simulations of such materials, an anisotropic elastoplasticity model has been implemented in FLAG. The model includes an anisotropic elastic stress model as well as an anisotropic plasticity model. The model could represent single crystals of any symmetry, though it should not be confused with a high- delity crystal plasticity model with multiple slip planes and evolutions. The model is most appropriate for homogenized polycrystalline materials. Elastic rotation of the material due to deformation is captured, so the anisotropic models are appropriate for arbitrary large rotations, but currently they do not account for signi cant change in material texture beyond the elastic rotation of the entire polycrystal.« less
NASA Astrophysics Data System (ADS)
Geetha, D.; Pratyank, R.; Kiran, P.
2018-04-01
Silicon being the most important material applied in microelectronic and photovoltaic technology, repeated investigation of the mechanical properties becomes essential. The nanoscale elastic-plastic deformation characteristics of Si (100) film were analyzed using nanoindentation and nanoscratch techniques. The hardness and elastic modulus values of the film obtained from nanoindentation tests were found to be consistent with the reported values. The load-displacement curves showed discontinuities and kinks which confirms the plastic behaviour of Si. The indentation induced plastic deformations were the consequences of the phase transformations. The critical shear stress, tensile strength and plastic zone size, of the Si film when subjected to nanoindentation were determined. The nanoscratch tests were performed to understand the tribological properties of the film. The SPM images of both the nanoindentation and nanoscratch profiles were useful in revealing the plastic character in terms of the piling up of matter in the vicinity of the dents. Conclusions were drawn in quantifying the plastic deformations and phase transformations.
Size-dependent elastic/inelastic behavior of enamel over millimeter and nanometer length scales.
Ang, Siang Fung; Bortel, Emely L; Swain, Michael V; Klocke, Arndt; Schneider, Gerold A
2010-03-01
The microstructure of enamel like most biological tissues has a hierarchical structure which determines their mechanical behavior. However, current studies of the mechanical behavior of enamel lack a systematic investigation of these hierarchical length scales. In this study, we performed macroscopic uni-axial compression tests and the spherical indentation with different indenter radii to probe enamel's elastic/inelastic transition over four hierarchical length scales, namely: 'bulk enamel' (mm), 'multiple-rod' (10's microm), 'intra-rod' (100's nm with multiple crystallites) and finally 'single-crystallite' (10's nm with an area of approximately one hydroxyapatite crystallite). The enamel's elastic/inelastic transitions were observed at 0.4-17 GPa depending on the length scale and were compared with the values of synthetic hydroxyapatite crystallites. The elastic limit of a material is important as it provides insights into the deformability of the material before fracture. At the smallest investigated length scale (contact radius approximately 20 nm), elastic limit is followed by plastic deformation. At the largest investigated length scale (contact size approximately 2 mm), only elastic then micro-crack induced response was observed. A map of elastic/inelastic regions of enamel from millimeter to nanometer length scale is presented. Possible underlying mechanisms are also discussed. (c) 2009 Elsevier Ltd. All rights reserved.
Valíček, Jan; Harničárová, Marta; Öchsner, Andreas; Hutyrová, Zuzana; Kušnerová, Milena; Tozan, Hakan; Michenka, Vít; Šepelák, Vladimír; Mitaľ, Dušan; Zajac, Jozef
2015-01-01
The paper solves the problem of the nonexistence of a new method for calculation of dynamics of stress-deformation states of deformation tool-material systems including the construction of stress-strain diagrams. The presented solution focuses on explaining the mechanical behavior of materials after cutting by abrasive waterjet technology (AWJ), especially from the point of view of generated surface topography. AWJ is a flexible tool accurately responding to the mechanical resistance of the material according to the accurately determined shape and roughness of machined surfaces. From the surface topography, it is possible to resolve the transition from ideally elastic to quasi-elastic and plastic stress-strain states. For detecting the surface structure, an optical profilometer was used. Based on the analysis of experimental measurements and the results of analytical studies, a mathematical-physical model was created and an exact method of acquiring the equivalents of mechanical parameters from the topography of surfaces generated by abrasive waterjet cutting and external stress in general was determined. The results of the new approach to the construction of stress-strain diagrams are presented. The calculated values agreed very well with those obtained by a certified laboratory VÚHŽ. PMID:28793645
Valíček, Jan; Harničárová, Marta; Öchsner, Andreas; Hutyrová, Zuzana; Kušnerová, Milena; Tozan, Hakan; Michenka, Vít; Šepelák, Vladimír; Mitaľ, Dušan; Zajac, Jozef
2015-11-03
The paper solves the problem of the nonexistence of a new method for calculation of dynamics of stress-deformation states of deformation tool-material systems including the construction of stress-strain diagrams. The presented solution focuses on explaining the mechanical behavior of materials after cutting by abrasive waterjet technology (AWJ), especially from the point of view of generated surface topography. AWJ is a flexible tool accurately responding to the mechanical resistance of the material according to the accurately determined shape and roughness of machined surfaces. From the surface topography, it is possible to resolve the transition from ideally elastic to quasi-elastic and plastic stress-strain states. For detecting the surface structure, an optical profilometer was used. Based on the analysis of experimental measurements and the results of analytical studies, a mathematical-physical model was created and an exact method of acquiring the equivalents of mechanical parameters from the topography of surfaces generated by abrasive waterjet cutting and external stress in general was determined. The results of the new approach to the construction of stress-strain diagrams are presented. The calculated values agreed very well with those obtained by a certified laboratory VÚHŽ.
Finite element elastic-plastic-creep and cyclic life analysis of a cowl lip
NASA Technical Reports Server (NTRS)
Arya, Vinod K.; Melis, Matthew E.; Halford, Gary R.
1990-01-01
Results are presented of elastic, elastic-plastic, and elastic-plastic-creep analyses of a test-rig component of an actively cooled cowl lip. A cowl lip is part of the leading edge of an engine inlet of proposed hypersonic aircraft and is subject to severe thermal loadings and gradients during flight. Values of stresses calculated by elastic analysis are well above the yield strength of the cowl lip material. Such values are highly unrealistic, and thus elastic stress analyses are inappropriate. The inelastic (elastic-plastic and elastic-plastic-creep) analyses produce more reasonable and acceptable stress and strain distributions in the component. Finally, using the results from these analyses, predictions are made for the cyclic crack initiation life of a cowl lip. A comparison of predicted cyclic lives shows the cyclic life prediction from the elastic-plastic-creep analysis to be the lowest and, hence, most realistic.
Phase transition induced strain in ZnO under high pressure
Yan, Xiaozhi; Dong, Haini; Li, Yanchun; ...
2016-05-13
Under high pressure, the phase transition mechanism and mechanical property of material are supposed to be largely associated with the transformation induced elastic strain. However, the experimental evidences for such strain are scanty. The elastic and plastic properties of ZnO, a leading material for applications in chemical sensor, catalyst, and optical thin coatings, were determined using in situ high pressure synchrotron axial and radial x-ray diffraction. The abnormal elastic behaviors of selected lattice planes of ZnO during phase transition revealed the existence of internal elastic strain, which arise from the lattice misfit between wurtzite and rocksalt phase. Furthermore, the strengthmore » decrease of ZnO during phase transition under non-hydrostatic pressure was observed and could be attributed to such internal elastic strain, unveiling the relationship between pressure induced internal strain and mechanical property of material. Ultimately, these findings are of fundamental importance to understanding the mechanism of phase transition and the properties of materials under pressure.« less
Modeling multiscale evolution of numerous voids in shocked brittle material.
Yu, Yin; Wang, Wenqiang; He, Hongliang; Lu, Tiecheng
2014-04-01
The influence of the evolution of numerous voids on macroscopic properties of materials is a multiscale problem that challenges computational research. A shock-wave compression model for brittle material, which can obtain both microscopic evolution and macroscopic shock properties, was developed using discrete element methods (lattice model). Using a model interaction-parameter-mapping procedure, qualitative features, as well as trends in the calculated shock-wave profiles, are shown to agree with experimental results. The shock wave splits into an elastic wave and a deformation wave in porous brittle materials, indicating significant shock plasticity. Void collapses in the deformation wave were the natural reason for volume shrinkage and deformation. However, media slippage and rotation deformations indicated by complex vortex patterns composed of relative velocity vectors were also confirmed as an important source of shock plasticity. With increasing pressure, the contribution from slippage deformation to the final plastic strain increased. Porosity was found to determine the amplitude of the elastic wave; porosity and shock stress together determine propagation speed of the deformation wave, as well as stress and strain on the final equilibrium state. Thus, shock behaviors of porous brittle material can be systematically designed for specific applications.
Numerical and Experimental Studies on Impact Loaded Concrete Structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saarenheimo, Arja; Hakola, Ilkka; Karna, Tuomo
2006-07-01
An experimental set-up has been constructed for medium scale impact tests. The main objective of this effort is to provide data for the calibration and verification of numerical models of a loading scenario where an aircraft impacts against a nuclear power plant. One goal is to develop and take in use numerical methods for predicting response of reinforced concrete structures to impacts of deformable projectiles that may contain combustible liquid ('fuel'). Loading, structural behaviour, like collapsing mechanism and the damage grade, will be predicted by simple analytical methods and using non-linear FE-method. In the so-called Riera method the behavior ofmore » the missile material is assumed to be rigid plastic or rigid visco-plastic. Using elastic plastic and elastic visco-plastic material models calculations are carried out by ABAQUS/Explicit finite element code, assuming axisymmetric deformation mode for the missile. With both methods, typically, the impact force time history, the velocity of the missile rear end and the missile shortening during the impact were recorded for comparisons. (authors)« less
Numerical modelling of the reinforced concrete influence on a combined system of tunnel support
NASA Astrophysics Data System (ADS)
Grujić, Bojana; Jokanović, Igor; Grujić, Žarko; Zeljić, Dragana
2017-12-01
The paper presents the experimental, laboratory determined rheological-dynamic analysis of the properties of fiber reinforced concrete, which was then utilized to show nonlinear analysis of combined system of tunnel support structure. According to the performed experiments and calculations, different processes of destructive behavior of tunnel lining were simulated in combination with elastic and elastic-plastic behavior of materials taking into account the tunnel loading, the interaction between the fiber reinforced concrete and soil, as well as the interaction between the fiber reinforced concrete and the inner lining of the tunnel.
The notion of a plastic material spin in atomistic simulations
NASA Astrophysics Data System (ADS)
Dickel, D.; Tenev, T. G.; Gullett, P.; Horstemeyer, M. F.
2016-12-01
A kinematic algorithm is proposed to extend existing constructions of strain tensors from atomistic data to decouple elastic and plastic contributions to the strain. Elastic and plastic deformation and ultimately the plastic spin, useful quantities in continuum mechanics and finite element simulations, are computed from the full, discrete deformation gradient and an algorithm for the local elastic deformation gradient. This elastic deformation gradient algorithm identifies a crystal type using bond angle analysis (Ackland and Jones 2006 Phys. Rev. B 73 054104) and further exploits the relationship between bond angles to determine the local deformation from an ideal crystal lattice. Full definitions of plastic deformation follow directly using a multiplicative decomposition of the deformation gradient. The results of molecular dynamics simulations of copper in simple shear and torsion are presented to demonstrate the ability of these new discrete measures to describe plastic material spin in atomistic simulation and to compare them with continuum theory.
Dynamic compressive strength of epoxy composites
NASA Astrophysics Data System (ADS)
Plastinin, A. V.; Sil'vestrov, V. V.
1996-11-01
The strength of laminated and unidirectionally reinforced composite materials was investigated in conditions of dynamic uniaxial compression with a strain rate of 50-1000 sec-1 using the split Hopkinson pressure bar method. It was shown that in conditions of dynamic compression, glass/epoxy, aramid/epoxy, and carbon/epoxy composites exhibit elastic-brittle behavior with anisotropy of the strength and elastic properties. The effect of the strain rate on the strength characteristics of fiberglass-reinforced plastics was demonstrated.
NASA Technical Reports Server (NTRS)
Koh, Severino L. (Editor); Speziale, Charles G. (Editor)
1989-01-01
Various papers on recent advances in engineering science are presented. Some individual topics addressed include: advances in adaptive methods in computational fluid mechanics, mixtures of two medicomorphic materials, computer tests of rubber elasticity, shear bands in isotropic micropolar elastic materials, nonlinear surface wave and resonator effects in magnetostrictive crystals, simulation of electrically enhanced fibrous filtration, plasticity theory of granular materials, dynamics of viscoelastic media with internal oscillators, postcritical behavior of a cantilever bar, boundary value problems in nonlocal elasticity, stability of flexible structures with random parameters, electromagnetic tornadoes in earth's ionosphere and magnetosphere, helicity fluctuations and the energy cascade in turbulence, mechanics of interfacial zones in bonded materials, propagation of a normal shock in a varying area duct, analytical mechanics of fracture and fatigue.
Thermodynamic potential of free energy for thermo-elastic-plastic body
NASA Astrophysics Data System (ADS)
Śloderbach, Z.; Pająk, J.
2018-01-01
The procedure of derivation of thermodynamic potential of free energy (Helmholtz free energy) for a thermo-elastic-plastic body is presented. This procedure concerns a special thermodynamic model of a thermo-elastic-plastic body with isotropic hardening characteristics. The classical thermodynamics of irreversible processes for material characterized by macroscopic internal parameters is used in the derivation. Thermodynamic potential of free energy may be used for practical determination of the level of stored energy accumulated in material during plastic processing applied, e.g., for industry components and other machinery parts received by plastic deformation processing. In this paper the stored energy for the simple stretching of austenitic steel will be presented.
Determining Crack Tip Field Parameters for Elastic-Plastic Materials via an Estimation Scheme
1981-07-01
of the Materials Laboratory was the Project Monitor for this study of the application of the Nonlinear Fracture Mechanics (NLFM) parameters to the...fracture mechanics (LEFM) is applicable . If the plastic zone size is large, compared to the case of small scale yielding, LEFM is not applicable . The...above HRR field equations are applicable only for the case of stationary cracks. 2.2 PARAMETER DETERMINATION For elastic-plastic materials, the
Local elasticity map and plasticity in a model Lennard-Jones glass.
Tsamados, Michel; Tanguy, Anne; Goldenberg, Chay; Barrat, Jean-Louis
2009-08-01
In this work we calculate the local elastic moduli in a weakly polydispersed two-dimensional Lennard-Jones glass undergoing a quasistatic shear deformation at zero temperature. The numerical method uses coarse-grained microscopic expressions for the strain, displacement, and stress fields. This method allows us to calculate the local elasticity tensor and to quantify the deviation from linear elasticity (local Hooke's law) at different coarse-graining scales. From the results a clear picture emerges of an amorphous material with strongly spatially heterogeneous elastic moduli that simultaneously satisfies Hooke's law at scales larger than a characteristic length scale of the order of five interatomic distances. At this scale, the glass appears as a composite material composed of a rigid scaffolding and of soft zones. Only recently calculated in nonhomogeneous materials, the local elastic structure plays a crucial role in the elastoplastic response of the amorphous material. For a small macroscopic shear strain, the structures associated with the nonaffine displacement field appear directly related to the spatial structure of the elastic moduli. Moreover, for a larger macroscopic shear strain we show that zones of low shear modulus concentrate most of the strain in the form of plastic rearrangements. The spatiotemporal evolution of this local elasticity map and its connection with long term dynamical heterogeneity as well as with the plasticity in the material is quantified. The possibility to use this local parameter as a predictor of subsequent local plastic activity is also discussed.
Peculiarities of evolutions of elastic-plastic shock compression waves in different materials
NASA Astrophysics Data System (ADS)
Kanel, G. I.; Savinykh, A. S.; Garkushin, G. V.; Razorenov, S. V.; Ashitkov, S. I.; Zaretsky, E. B.
2016-11-01
In the paper, we discuss such unexpected features in the wave evolution in solids as strongly nonlinear uniaxial elastic compression in a picosecond time range, a departure from self-similar development of the wave process which is accompanied with apparent sub-sonic wave propagation, changes of shape of elastic precursor wave as a result of variations in the material structure and the temperature, unexpected peculiarities of reflection of elastic-plastic waves from free surface.
An elastic-perfectly plastic analysis of the bending of the lithosphere at a trench
NASA Technical Reports Server (NTRS)
Turcotte, D. L.; Mcadoo, D. C.; Caldwell, J. G.
1978-01-01
A number of authors have modeled the flexure of the lithosphere at an oceanic trench using a thin elastic plate with a hydrostatic restoring force. In some cases good agreement with observed topography is obtained but in other cases the slope of the lithosphere within the trench is greater than that predicted by the elastic theory. In this paper the bending of a thin plate is considered using an elastic-perfectly plastic rheology. It is found that the lithosphere behaves elastically seaward of the trench, but that plasticity decreases the radius of curvature within the trench. The results are compared with a number of observed trench profiles. The elastic-perfectly plastic profiles are in excellent agreement with those profiles that deviate from elastic behavior.
Metamodel-based inverse method for parameter identification: elastic-plastic damage model
NASA Astrophysics Data System (ADS)
Huang, Changwu; El Hami, Abdelkhalak; Radi, Bouchaïb
2017-04-01
This article proposed a metamodel-based inverse method for material parameter identification and applies it to elastic-plastic damage model parameter identification. An elastic-plastic damage model is presented and implemented in numerical simulation. The metamodel-based inverse method is proposed in order to overcome the disadvantage in computational cost of the inverse method. In the metamodel-based inverse method, a Kriging metamodel is constructed based on the experimental design in order to model the relationship between material parameters and the objective function values in the inverse problem, and then the optimization procedure is executed by the use of a metamodel. The applications of the presented material model and proposed parameter identification method in the standard A 2017-T4 tensile test prove that the presented elastic-plastic damage model is adequate to describe the material's mechanical behaviour and that the proposed metamodel-based inverse method not only enhances the efficiency of parameter identification but also gives reliable results.
NASA Technical Reports Server (NTRS)
Lee, Jong-Won; Allen, David H.
1993-01-01
The uniaxial response of a continuous fiber elastic-perfectly plastic composite is modeled herein as a two-element composite cylinder. An axisymmetric analytical micromechanics solution is obtained for the rate-independent elastic-plastic response of the two-element composite cylinder subjected to tensile loading in the fiber direction for the case wherein the core fiber is assumed to be a transversely isotropic elastic-plastic material obeying the Tsai-Hill yield criterion, with yielding simulating fiber failure. The matrix is assumed to be an isotropic elastic-plastic material obeying the Tresca yield criterion. It is found that there are three different circumstances that depend on the fiber and matrix properties: fiber yield, followed by matrix yielding; complete matrix yield, followed by fiber yielding; and partial matrix yield, followed by fiber yielding, followed by complete matrix yield. The order in which these phenomena occur is shown to have a pronounced effect on the predicted uniaxial effective composite response.
Experimental investigation of Rayleigh Taylor instability in elastic-plastic materials
NASA Astrophysics Data System (ADS)
Haley, Aaron Alan; Banerjee, Arindam
2010-11-01
The interface of an elastic-plastic plate accelerated by a fluid of lower density is Rayleigh Taylor (RT) unstable, the growth being mitigated by the mechanical strength of the plate. The instability is observed when metal plates are accelerated by high explosives, in explosive welding, and in volcanic island formation due to the strength of the inner crust. In contrast to the classical case involving Newtonian fluids, RT instability in accelerated solids is not well understood. The difficulties for constructing a theory for the linear growth phase in solids is essentially due to the character of elastic-plastic constitutive properties which has a nonlinear dependence on the magnitude of the rate of deformation. Experimental investigation of the phenomena is difficult due to the exceedingly small time scales (in high energy density experiments) and large measurement uncertainties of material properties. We performed experiments on our Two-Wheel facility to study the linear stage of the incompressible RT instability in elastic-plastic materials (yogurt) whose properties were well characterized. Rotation of the wheels imparted a constant centrifugal acceleration on the material interface that was cut with a small sinusoidal ripple. The controlled initial conditions and precise acceleration amplitudes are levied to investigate transition from elastic to plastic deformation and allow accurate and detailed measurements of flow properties.
Change and anisotropy of elastic modulus in sheet metals due to plastic deformation
NASA Astrophysics Data System (ADS)
Ishitsuka, Yuki; Arikawa, Shuichi; Yoneyama, Satoru
2015-03-01
In this study, the effect of the plastic deformation on the microscopic structure and the anisotropy of the elastic modulus in the cold-rolled steel sheet (SPCC) is investigated. Various uniaxial plastic strains (0%, 2.5%, 5%, 7.5%, and 10%) are applied to the annealed SPCC plates, then, the specimens for the tensile tests are cut out from them. The elastic moduli in the longitudinal direction and the transverse direction to the direction that are pre-strained are measured by the tensile tests. Cyclic tests are performed to investigate the effects of the internal friction caused by the movable dislocations in the elastic deformation. Also, the movable dislocations are quantified by the boundary tracking for TEM micrographs. In addition, the behaviors of the change of the elastic modulus in the solutionized and thermal aged aluminum alloy (A5052) are measured to investigate the effect on the movable dislocations with the amount of the depositions. As a result in SPCC, the elastic moduli of the 0° and 90° directions decrease more than 10% as 10% prestrain applied. On the other hand, the elastic modulus shows the recovery behavior after the strain aging and the annealing. The movable dislocation and the internal friction show a tendency to increase as the plastic strain increases. The marked anisotropy is not observed in the elastic modulus and the internal friction. The elastic modulus in A5052 with many and few depositions decreases similarly by the plastic deformation. From the above, the movable dislocations affect the elastic modulus strongly without depending on the deposition amount. Moreover, the elastic modulus recovers after the plastic deformation by reducing the effects of them with the strain aging and the heat treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beaudoin, A. J.; Shade, P. A.; Schuren, J. C.
The plastic deformation of crystalline materials is usually modeled as smoothly progressing in space and time, yet modern studies show intermittency in the deformation dynamics of single-crystals arising from avalanche behavior of dislocation ensembles under uniform applied loads. However, once the prism of the microstructure in polycrystalline materials disperses and redistributes the load on a grain-by-grain basis, additional length and time scales are involved. Thus, the question is open as to how deformation intermittency manifests for the nonuniform grain-scale internal driving forces interacting with the finer-scale dislocation ensemble behavior. In this work we track the evolution of elastic strain withinmore » individual grains of a creep-loaded titanium alloy, revealing widely varying internal strains that fluctuate over time. Here, the findings provide direct evidence of how flow intermittency proceeds for an aggregate of ~700 grains while showing the influences of multiscale ensemble interactions and opening new avenues for advancing plasticity modeling.« less
Beaudoin, A. J.; Shade, P. A.; Schuren, J. C.; ...
2017-11-30
The plastic deformation of crystalline materials is usually modeled as smoothly progressing in space and time, yet modern studies show intermittency in the deformation dynamics of single-crystals arising from avalanche behavior of dislocation ensembles under uniform applied loads. However, once the prism of the microstructure in polycrystalline materials disperses and redistributes the load on a grain-by-grain basis, additional length and time scales are involved. Thus, the question is open as to how deformation intermittency manifests for the nonuniform grain-scale internal driving forces interacting with the finer-scale dislocation ensemble behavior. In this work we track the evolution of elastic strain withinmore » individual grains of a creep-loaded titanium alloy, revealing widely varying internal strains that fluctuate over time. Here, the findings provide direct evidence of how flow intermittency proceeds for an aggregate of ~700 grains while showing the influences of multiscale ensemble interactions and opening new avenues for advancing plasticity modeling.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogel, A.; Scammon, R.J.; Godwin, R.P.
Biological tissue is more susceptible to damage from tensile stress than to compressive stress. Tensile stress may arise through the thermoelastic response of laser-irradiated media. Optical breakdown, however, has to date been exclusively associated with compressive stress. The authors show that this is appropriate for water, but not for tissues for which the elastic-plastic material response needs to be considered. The acoustic transients following optical breakdown in water and cornea were measured with a fast hydrophone and the cavitation bubble dynamics, which is closely linked to the stress wave generation, was documented by flash photography. Breakdown in water produced amore » monopolar acoustic signal and a bubble oscillation in which the expansion and collapse phases were symmetric. Breakdown in cornea produced a bipolar acoustic signal coupled with a pronounced shortening of the bubble expansion phase and a considerable prolongation of its collapse phase. The tensile stress wave is related to the abrupt end of the bubble expansion. Numerical simulations using the MESA-2D code were performed assuming elastic-plastic material behavior in a wide range of values for the shear modulus and yield strength. The calculations revealed that consideration of the elastic-plastic material response is essential to reproduce the experimentally observed bipolar stress waves. The tensile stress evolves during the outward propagation of the acoustic transient and reaches an amplitude of 30--40% of the compressive pulse.« less
Target Soil Impact Verification: Experimental Testing and Kayenta Constitutive Modeling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broome, Scott Thomas; Flint, Gregory Mark; Dewers, Thomas
2015-11-01
This report details experimental testing and constitutive modeling of sandy soil deformation under quasi - static conditions. This is driven by the need to understand constitutive response of soil to target/component behavior upon impact . An experimental and constitutive modeling program was followed to determine elastic - plastic properties and a compressional failure envelope of dry soil . One hydrostatic, one unconfined compressive stress (UCS), nine axisymmetric compression (ACS) , and one uniaxial strain (US) test were conducted at room temperature . Elastic moduli, assuming isotropy, are determined from unload/reload loops and final unloading for all tests pre - failuremore » and increase monotonically with mean stress. Very little modulus degradation was discernable from elastic results even when exposed to mean stresses above 200 MPa . The failure envelope and initial yield surface were determined from peak stresses and observed onset of plastic yielding from all test results. Soil elasto - plastic behavior is described using the Brannon et al. (2009) Kayenta constitutive model. As a validation exercise, the ACS - parameterized Kayenta model is used to predict response of the soil material under uniaxial strain loading. The resulting parameterized and validated Kayenta model is of high quality and suitable for modeling sandy soil deformation under a range of conditions, including that for impact prediction.« less
Application of a substructuring technique to the problem of crack extension and closure
NASA Technical Reports Server (NTRS)
Armen, H., Jr.
1974-01-01
A substructuring technique, originally developed for the efficient reanalysis of structures, is incorporated into the methodology associated with the plastic analysis of structures. An existing finite-element computer program that accounts for elastic-plastic material behavior under cyclic loading was modified to account for changing kinematic constraint conditions - crack growth and intermittent contact of crack surfaces in two dimensional regions. Application of the analysis is presented for a problem of a centercrack panel to demonstrate the efficiency and accuracy of the technique.
High-temperature elastic-plastic and creep properties for SA533 Grade B Class I and SA508 materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reddy, G.B.; Ayres, D.J.
1982-12-01
High temperature elastic-plastic and creep properties are presented for SA533 Grade B Class I and SA508 Class II materials. These properties are derived from tests conducted at Combustion Engineering Material and Metallurgical Laboratories and cover the temperature range of 70/sup 0/F to 1200/sup 0/F.
Elastic-Plastic Behavior of U6Nb Under Ramp Wave Loading
NASA Astrophysics Data System (ADS)
Hayes, D. B.; Hall, C.; Hixson, R. S.
2005-07-01
Prior shock experiments on the alloy uranium-niobium-6 wt.% (U6Nb) were absent an elastic precursor when one was expected (A. K. Zurek, et. al., Journal de Physique IV, 10 (#9) p677-682). This was later explained as a consequence of shear stress relaxation from time-dependent twinning that prevented sufficient shear stress for plastic yielding. (D. B. Hayes, et. al., Shock Compression of Condensed Matter-2003, p1177, American Institute of Physics 2004) Pressure was ramped to 13 GPa in 150-ns on eight U6Nb specimens with thicknesses from 0.5 -- 1.1-mm and the back surface velocities were measured with laser interferometry. This pressure load produces a stress wave with sufficiently fast rise time so that, according to the prior work, twins do not have time to form. Four of the U6Nb specimens had been cold-rolled which increased the yield stress. Each velocity history was analyzed with a backward integration analysis to give the stress-strain response of the U6Nb. Comparison of these results with prior Hugoniot measurements shows that the U6Nb in the present experiments responds as an elastic-plastic material and the deduced yield strength of the baseline and of the cold-rolled material agree with static results.
NASA Astrophysics Data System (ADS)
Lan, Hongzhi; Venkatesh, T. A.
2014-01-01
A comprehensive understanding of the relationship between the hardness and the elastic and plastic properties for a wide range of materials is obtained by analysing the hardness characteristics (that are predicted by experimentally verified indentation analyses) of over 9000 distinct combinations of material properties that represent isotropic, homogeneous, power-law hardening metallic materials. Finite element analysis has been used to develop the indentation algorithms that provide the relationships between the elastic and plastic properties of the indented material and its indentation hardness. Based on computational analysis and virtual testing, the following observations are made. The hardness (H) of a material tends to increase with an increase in the elastic modulus (E), yield strength (σy) and the strain-hardening exponent (n). Several materials with different combinations of elastic and plastic properties can exhibit identical true hardness (for a particular indenter geometry/apex angle). In general, combinations of materials that exhibit relatively low elastic modulus and high yield strength or strain-hardening exponents and those that exhibit relatively high elastic modulus and low yield strength or strain-hardening exponents exhibit similar hardness properties. Depending on the strain-hardening characteristics of the indented material, (i.e. n = 0 or ?), the ratio H/σy ranges, respectively, from 2.2 to 2.6 or 2 to 20 (for indentations with a cone angle of 70.3°). The materials that have lower σy/E and higher n exhibit higher H/σy ratios. The commonly invoked relationship between hardness and the yield strength, i.e. H ≈ 3σy, is not generally valid or applicable for all power-law hardening materials. The indentation hardness of a power law hardening material can be taken as following the relationship H ≈ (2.1-2.8)σr where σr is the representative stress based on Tabor's representative strain for a wide range of materials.
Converging shocks in elastic-plastic solids.
Ortega, A López; Lombardini, M; Hill, D J
2011-11-01
We present an approximate description of the behavior of an elastic-plastic material processed by a cylindrically or spherically symmetric converging shock, following Whitham's shock dynamics theory. Originally applied with success to various gas dynamics problems, this theory is presently derived for solid media, in both elastic and plastic regimes. The exact solutions of the shock dynamics equations obtained reproduce well the results obtained by high-resolution numerical simulations. The examined constitutive laws share a compressible neo-Hookean structure for the internal energy e=e(s)(I(1))+e(h)(ρ,ς), where e(s) accounts for shear through the first invariant of the Cauchy-Green tensor, and e(h) represents the hydrostatic contribution as a function of the density ρ and entropy ς. In the strong-shock limit, reached as the shock approaches the axis or origin r=0, we show that compression effects are dominant over shear deformations. For an isothermal constitutive law, i.e., e(h)=e(h)(ρ), with a power-law dependence e(h) is proportional to ρ(α), shock dynamics predicts that for a converging shock located at r=R(t) at time t, the Mach number increases as M is proportional to [log(1/R)](α), independently of the space index s, where s=2 in cylindrical geometry and 3 in spherical geometry. An alternative isothermal constitutive law with p(ρ) of the arctanh type, which enforces a finite density in the strong-shock limit, leads to M is proportional to R(-(s-1)) for strong shocks. A nonisothermal constitutive law, whose hydrostatic part e(h) is that of an ideal gas, is also tested, recovering the strong-shock limit M is proportional to R(-(s-1)/n(γ)) originally derived by Whitham for perfect gases, where γ is inherently related to the maximum compression ratio that the material can reach, (γ+1)/(γ-1). From these strong-shock limits, we also estimate analytically the density, radial velocity, pressure, and sound speed immediately behind the shock. While the hydrostatic part of the energy essentially commands the strong-shock behavior, the shear modulus and yield stress modify the compression ratio and velocity of the shock far from the axis or origin. A characterization of the elastic-plastic transition in converging shocks, which involves an elastic precursor and a plastic compression region, is finally exposed.
NASA Astrophysics Data System (ADS)
Goyal, Deepak
Textile composites have a wide variety of applications in the aerospace, sports, automobile, marine and medical industries. Due to the availability of a variety of textile architectures and numerous parameters associated with each, optimal design through extensive experimental testing is not practical. Predictive tools are needed to perform virtual experiments of various options. The focus of this research is to develop a better understanding of linear elastic response, plasticity and material damage induced nonlinear behavior and mechanics of load flow in textile composites. Textile composites exhibit multiple scales of complexity. The various textile behaviors are analyzed using a two-scale finite element modeling. A framework to allow use of a wide variety of damage initiation and growth models is proposed. Plasticity induced non-linear behavior of 2x2 braided composites is investigated using a modeling approach based on Hill's yield function for orthotropic materials. The mechanics of load flow in textile composites is demonstrated using special non-standard postprocessing techniques that not only highlight the important details, but also transform the extensive amount of output data into comprehensible modes of behavior. The investigations show that the damage models differ from each other in terms of amount of degradation as well as the properties to be degraded under a particular failure mode. When compared with experimental data, predictions of some models match well for glass/epoxy composite whereas other's match well for carbon/epoxy composites. However, all the models predicted very similar response when damage factors were made similar, which shows that the magnitude of damage factors are very important. Full 3D as well as equivalent tape laminate predictions lie within the range of the experimental data for a wide variety of braided composites with different material systems, which validated the plasticity analysis. Conclusions about the effect of fiber type on the degree of plasticity induced non-linearity in a +/-25° braid depend on the measure of non-linearity. Investigations about the mechanics of load flow in textile composites bring new insights about the textile behavior. For example, the reasons for existence of transverse shear stress under uni-axial loading and occurrence of stress concentrations at certain locations were explained.
Elastic-plastic deformation of molybdenum single crystals shocked along [100
Mandal, A.; Gupta, Y. M.
2017-01-24
To understand the elastic-plastic deformation response of shock-compressed molybdenum (Mo) – a body-centered cubic (BCC) metal, single crystal samples were shocked along the [100] crystallographic orientation to an elastic impact stress of 12.5 GPa. Elastic-plastic wave profiles, measured at different propagation distances ranging between ~0.23 to 2.31 mm using laser interferometry, showed a time-dependent material response. Within experimental scatter, the measured elastic wave amplitudes were nearly constant over the propagation distances examined. These data point to a large and rapid elastic wave attenuation near the impact surface, before reaching a threshold value (elastic limit) of ~3.6 GPa. Numerical simulations ofmore » the measured wave profiles, performed using a dislocation-based continuum model, suggested that {110}<111> and/or {112}<111> slip systems are operative under shock loading. In contrast to shocked metal single crystals with close-packed structures, the measured wave profiles in Mo single crystals could not be explained in terms of dislocation multiplication alone. A dislocation generation mechanism, operative for shear stresses larger than that at the elastic limit, was required to model the rapid elastic wave attenuation and to provide a good overall match to the measured wave profiles. However, the physical basis for this mechanism was not established for the high-purity single crystal samples used in this study. As a result, the numerical simulations also suggested that Mo single crystals do not work harden significantly under shock loading in contrast to the behavior observed under quasi-static loading.« less
Numerical study of impact erosion of multiple solid particle
NASA Astrophysics Data System (ADS)
Zheng, Chao; Liu, Yonghong; Chen, Cheng; Qin, Jie; Ji, Renjie; Cai, Baoping
2017-11-01
Material erosion caused by continuous particle impingement during hydraulic fracturing results in significant economic loss and increased production risks. The erosion process is complex and has not been clearly explained through physical experiments. To address this problem, a multiple particle model in a 3D configuration was proposed to investigate the dynamic erosion process. This approach can significantly reduce experiment costs. The numerical model considered material damping and elastic-plastic material behavior of target material. The effects of impact parameters on erosion characteristics, such as plastic deformation, contact time, and energy loss rate, were investigated. Based on comprehensive studies, the dynamic erosion mechanism and geometry evolution of eroded crater was obtained. These findings can provide a detailed erosion process of target material and insights into the material erosion caused by multiple particle impingement.
Nonlinear softening of unconsolidated granular earth materials
NASA Astrophysics Data System (ADS)
Lieou, Charles K. C.; Daub, Eric G.; Guyer, Robert A.; Johnson, Paul A.
2017-09-01
Unconsolidated granular earth materials exhibit softening behavior due to external perturbations such as seismic waves, namely, the wave speed and elastic modulus decrease upon increasing the strain amplitude above dynamics strains of about 10-6 under near-surface conditions. In this letter, we describe a theoretical model for such behavior. The model is based on the idea that shear transformation zones—clusters of grains that are loose and susceptible to contact changes, particle displacement, and rearrangement—are responsible for plastic deformation and softening of the material. We apply the theory to experiments on simulated fault gouge composed of glass beads and demonstrate that the theory predicts nonlinear resonance shifts, reduction of the P wave modulus, and attenuation, in agreement with experiments. The theory thus offers insights on the nature of nonlinear elastic properties of a granular medium and potentially into phenomena such as triggering on earthquake faults.
NASA Astrophysics Data System (ADS)
Hopmann, Ch.; Schöngart, M.; Weber, M.; Klein, J.
2015-05-01
Thermoplastic materials are more and more used as a light weight replacement for metal, especially in the automotive industry. Since these materials do not provide the mechanical properties, which are required to manufacture supporting elements like an auto body or a cross bearer, plastics are combined with metals in so called hybrid structures. Normally, the plastics components are joined to the metal structures using different technologies like welding or screwing. Very often, the hybrid structures are made of flat metal parts, which are stiffened by a reinforcement structure made of thermoplastic materials. The loads on these structures are very often impulsive, for example in the crash situation of an automobile. Due to the large stiffness variation of metal and thermoplastic materials, complex states of stress and very high local strain rates occur in the contact zone under impact conditions. Since the mechanical behavior of thermoplastic materials is highly dependent on these types of load, the crash failure of metal plastic hybrid parts is very complex. The problem is that the normally used strain rate dependent elastic/plastic material models are not capable to simulate the mechanical behavior of thermoplastic materials depended on the state of stress. As part of a research project, a method to simulate the mechanical behavior of hybrid structures under impact conditions is developed at the IKV. For this purpose, a specimen for the measurement of mechanical properties dependet on the state of stress and a method for the strain rate depended characterization of thermoplastic materials were developed. In the second step impact testing is performed. A hybrid structure made from a metal sheet and a reinforcement structure of a Polybutylenterephthalat Polycarbonate blend is tested under impact conditions. The measured stress and strain rate depended material data are used to simulate the mechanical behavior of the hybrid structure under highly dynamic load with impact velocities up to 5 m/s. The mechanical behavior of the plastics structure is simulated using a quadratic yield surface, which takes the state of stress and the strain rate into account. The FE model is made from mid surface elements to reduce the computing time.
Study of radial die-wall pressure changes during pharmaceutical powder compaction.
Abdel-Hamid, Sameh; Betz, Gabriele
2011-04-01
In tablet manufacturing, less attention is paid to the measurement of die-wall pressure than to force-displacement diagrams. Therefore, the aim of this study was to investigate radial stress change during pharmaceutical compaction. The Presster(TM), a tablet-press replicator, was used to characterize compaction behavior of microcrystalline cellulose (viscoelastic), calcium hydrogen phosphate dihydrate (brittle), direct compressible mannitol (plastic), pre-gelatinized starch (plastic/elastic), and spray dried lactose monohydrate (plastic/brittle) by measuring radial die-wall pressure; therefore powders were compacted at different (pre) compaction pressures as well as different speeds. Residual die-wall pressure (RDP) and maximum die-wall pressure (MDP) were measured. Various tablet physical properties were correlated to radial die-wall pressure. With increasing compaction pressure, RDP and MDP (P < 0.0001) increased for all materials, with increasing precompaction RDP decreased for plastic materials (P < 0.05), whereas with increasing speed MDP decreased for all materials (P < 0.05). During decompression, microcrystalline cellulose and pre-gelatinized starch showed higher axial relaxation, whereas mannitol and lactose showed higher radial relaxation, calcium hydrogen phosphate showed high axial and radial relaxations. Plastic and brittle materials showed increased tendencies for friction because of high radial relaxation. Die-wall monitoring is suggested as a valuable tool for characterizing compaction behavior of materials and detecting friction phenomena in the early stage of development.
Rebound mechanics of micrometre-scale, spherical particles in high-velocity impacts.
Yildirim, Baran; Yang, Hankang; Gouldstone, Andrew; Müftü, Sinan
2017-08-01
The impact mechanics of micrometre-scale metal particles with flat metal surfaces is investigated for high-velocity impacts ranging from 50 m s -1 to more than 1 km s -1 , where impact causes predominantly plastic deformation. A material model that includes high strain rate and temperature effects on the yield stress, heat generation due to plasticity, material damage due to excessive plastic strain and heat transfer is used in the numerical analysis. The coefficient of restitution e is predicted by the classical work using elastic-plastic deformation analysis with quasi-static impact mechanics to be proportional to [Formula: see text] and [Formula: see text] for the low and moderate impact velocities that span the ranges of 0-10 and 10-100 m s -1 , respectively. In the elastic-plastic and fully plastic deformation regimes the particle rebound is attributed to the elastic spring-back that initiates at the particle-substrate interface. At higher impact velocities (0.1-1 km s -1 ) e is shown to be proportional to approximately [Formula: see text]. In this deeply plastic deformation regime various deformation modes that depend on plastic flow of the material including the time lag between the rebound instances of the top and bottom points of particle and the lateral spreading of the particle are identified. In this deformation regime, the elastic spring-back initiates subsurface, in the substrate.
An inelastic analysis of a welded aluminum joint
NASA Astrophysics Data System (ADS)
Vaughan, R. E.
1994-09-01
Butt-weld joints are most commonly designed into pressure vessels which then become as reliable as the weakest increment in the weld chain. In practice, weld material properties are determined from tensile test specimen and provided to the stress analyst in the form of a stress versus strain diagram. Variations in properties through the thickness of the weld and along the width of the weld have been suspect but not explored because of inaccessibility and cost. The purpose of this study is to investigate analytical and computational methods used for analysis of welds. The weld specimens are analyzed using classical elastic and plastic theory to provide a basis for modeling the inelastic properties in a finite-element solution. The results of the analysis are compared to experimental data to determine the weld behavior and the accuracy of prediction methods. The weld considered in this study is a multiple-pass aluminum 2219-T87 butt weld with thickness of 1.40 in. The weld specimen is modeled using the finite-element code ABAQUS. The finite-element model is used to produce the stress-strain behavior in the elastic and plastic regimes and to determine Poisson's ratio in the plastic region. The value of Poisson's ratio in the plastic regime is then compared to experimental data. The results of the comparisons are used to explain multipass weld behavior and to make recommendations concerning the analysis and testing of welds.
An inelastic analysis of a welded aluminum joint
NASA Technical Reports Server (NTRS)
Vaughan, R. E.
1994-01-01
Butt-weld joints are most commonly designed into pressure vessels which then become as reliable as the weakest increment in the weld chain. In practice, weld material properties are determined from tensile test specimen and provided to the stress analyst in the form of a stress versus strain diagram. Variations in properties through the thickness of the weld and along the width of the weld have been suspect but not explored because of inaccessibility and cost. The purpose of this study is to investigate analytical and computational methods used for analysis of welds. The weld specimens are analyzed using classical elastic and plastic theory to provide a basis for modeling the inelastic properties in a finite-element solution. The results of the analysis are compared to experimental data to determine the weld behavior and the accuracy of prediction methods. The weld considered in this study is a multiple-pass aluminum 2219-T87 butt weld with thickness of 1.40 in. The weld specimen is modeled using the finite-element code ABAQUS. The finite-element model is used to produce the stress-strain behavior in the elastic and plastic regimes and to determine Poisson's ratio in the plastic region. The value of Poisson's ratio in the plastic regime is then compared to experimental data. The results of the comparisons are used to explain multipass weld behavior and to make recommendations concerning the analysis and testing of welds.
Evolutions of elastic-plastic shock compression waves in different materials
NASA Astrophysics Data System (ADS)
Kanel, G. I.; Zaretsky, E. B.; Razorenov, S. V.; Savinykh, A. S.; Garkushin, G. V.
2017-01-01
In the paper, we discuss such unexpected features in the wave evolution in solids as a departure from self-similar development of the wave process which is accompanied with apparent sub-sonic wave propagation, changes of shape of elastic precursor wave as a result of variations in the material structure and the temperature, unexpected peculiarities of reflection of elastic-plastic waves from free surface, effects of internal friction at shock compression of glasses and some other effects.
Rock Failure Analysis Based on a Coupled Elastoplastic-Logarithmic Damage Model
NASA Astrophysics Data System (ADS)
Abdia, M.; Molladavoodi, H.; Salarirad, H.
2017-12-01
The rock materials surrounding the underground excavations typically demonstrate nonlinear mechanical response and irreversible behavior in particular under high in-situ stress states. The dominant causes of irreversible behavior are plastic flow and damage process. The plastic flow is controlled by the presence of local shear stresses which cause the frictional sliding. During this process, the net number of bonds remains unchanged practically. The overall macroscopic consequence of plastic flow is that the elastic properties (e.g. the stiffness of the material) are insensitive to this type of irreversible change. The main cause of irreversible changes in quasi-brittle materials such as rock is the damage process occurring within the material. From a microscopic viewpoint, damage initiates with the nucleation and growth of microcracks. When the microcracks length reaches a critical value, the coalescence of them occurs and finally, the localized meso-cracks appear. The macroscopic and phenomenological consequence of damage process is stiffness degradation, dilatation and softening response. In this paper, a coupled elastoplastic-logarithmic damage model was used to simulate the irreversible deformations and stiffness degradation of rock materials under loading. In this model, damage evolution & plastic flow rules were formulated in the framework of irreversible thermodynamics principles. To take into account the stiffness degradation and softening on post-peak region, logarithmic damage variable was implemented. Also, a plastic model with Drucker-Prager yield function was used to model plastic strains. Then, an algorithm was proposed to calculate the numerical steps based on the proposed coupled plastic and damage constitutive model. The developed model has been programmed in VC++ environment. Then, it was used as a separate and new constitutive model in DEM code (UDEC). Finally, the experimental Oolitic limestone rock behavior was simulated based on the developed model. The irreversible strains, softening and stiffness degradation were reproduced in the numerical results. Furthermore, the confinement pressure dependency of rock behavior was simulated in according to experimental observations.
The Riemann problem for longitudinal motion in an elastic-plastic bar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Trangenstein, J.A.; Pember, R.B.
In this paper the analytical solution to the Riemann problem for the Antman-Szymczak model of longitudinal motion in an elastic-plastic bar is constructed. The model involves two surfaces corresponding to plastic yield in tension and compression, and exhibits the appropriate limiting behavior for total compressions. The solution of the Riemann problem involves discontinuous changes in characteristic speeds due to transitions from elastic to plastic response. Illustrations are presented, in both state-space and self-similar coordinates, of the variety of possible solutions to the Riemann problem for possible use with numerical algorithms.
Roa, J J; Rayon, E; Morales, M; Segarra, M
2012-06-01
In the last years, Nanoindentation or Instrumented Indentation Technique has become a powerful tool to study the mechanical properties at micro/nanometric scale (commonly known as hardness, elastic modulus and the stress-strain curve). In this review, the different contact mechanisms (elastic and elasto-plastic) are discussed, the recent patents for each mechanism (elastic and elasto-plastic) are summarized in detail, and the basic equations employed to know the mechanical behaviour for brittle and ductile materials are described.
A Proposed Method for the Computer-aided Discovery and Design of High-strength, Ductile Metals
NASA Astrophysics Data System (ADS)
Winter, Ian Stewart
Gum Metal, a class of Ti-Nb alloys, has generated a great deal of interest in the metallurgical community since its development in 2003. These alloys display numerous novel and anomalous properties, many of which only occur after severe plastic deformation has been incurred on the material. Such properties include: super-elasticity, super-coldworkability, Invar and Elinvar behavior, high ductility, as well as high strength. The high strength of gum metal has generated particular enthusiasm as it is on the order of the predicted ideal strength of the material. Many of the properties of gum metal appear to be a direct result of tuning the composition to be near an elastic instability resulting in a high degree of elastic anisotropy. This presents an opportunity for the computer-aided discovery and design of structural materials as the ideal strength and elastic anisotropy can be approximated from the elastic constants. Two approaches are described for searching for this high ansitropy. In the first, The possibility of forming gum metal in Mg is explored by tuning the material to be near the BCC-HCP transition either by pressure or alloying with Li. The second makes use of the Materials Project's elastic constants database, which contains thousands of ordered compounds, in order to screen for gum metal candidates. By defining an elastic anisotropy parameter consistent with the behavior of gum metal and calculating it for all cubic materials in the elastic constants database several gum metal candidates are found. In order to better assess their candidacy information on the intrinsic ductility of these materials is necessary. A method is proposed for calculating the ideal strength and deformation mode of a solid solution from first-principles. In order to validate this method the intrinsic ductile-to-brittle transition composition of Ti-V systems is calculated. It is further shown that this method can be applied to the calculation of an ideal tensile yield surface.
Micromechanical models to guide the development of synthetic ‘brick and mortar’ composites
NASA Astrophysics Data System (ADS)
Begley, Matthew R.; Philips, Noah R.; Compton, Brett G.; Wilbrink, David V.; Ritchie, Robert O.; Utz, Marcel
2012-08-01
This paper describes a micromechanical analysis of the uniaxial response of composites comprising elastic platelets (bricks) bonded together with thin elastic perfectly plastic layers (mortar). The model yields closed-form results for the spatial variation of displacements in the bricks as a function of constituent properties, which can be used to calculate the effective properties of the composite, including elastic modulus, strength and work-to-failure. Regime maps are presented which indicate critical stresses for failure of the bricks and mortar as a function of constituent properties and brick architecture. The solution illustrates trade-offs between elastic modulus, strength and dissipated work that are a result of transitions between various failure mechanisms associated with brick rupture and rupture of the interfaces. Detailed scaling relationships are presented with the goal of providing material developers with a straightforward means to identify synthesis targets that balance competing mechanical behaviors and optimize material response. Ashby maps are presented to compare potential brick and mortar composites with existing materials, and identify future directions for material development.
Cunningham, J C; Sinka, I C; Zavaliangos, A
2004-08-01
In this first of two articles on the modeling of tablet compaction, the experimental inputs related to the constitutive model of the powder and the powder/tooling friction are determined. The continuum-based analysis of tableting makes use of an elasto-plastic model, which incorporates the elements of yield, plastic flow potential, and hardening, to describe the mechanical behavior of microcrystalline cellulose over the range of densities experienced during tableting. Specifically, a modified Drucker-Prager/cap plasticity model, which includes material parameters such as cohesion, internal friction, and hydrostatic yield pressure that evolve with the internal state variable relative density, was applied. Linear elasticity is assumed with the elastic parameters, Young's modulus, and Poisson's ratio dependent on the relative density. The calibration techniques were developed based on a series of simple mechanical tests including diametrical compression, simple compression, and die compaction using an instrumented die. The friction behavior is measured using an instrumented die and the experimental data are analyzed using the method of differential slices. The constitutive model and frictional properties are essential experimental inputs to the finite element-based model described in the companion article. Copyright 2004 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 93:2022-2039, 2004
Computational Modeling of Interfacial Behaviors in Nanocomposite Materials
Lin, Liqiang; Wang, Xiaodu; Zeng, Xiaowei
2017-01-01
Towards understanding the bulk material response in nanocomposites, an interfacial zone model was proposed to define a variety of material interface behaviors (e.g. brittle, ductile, rubber-like, elastic-perfectly plastic behavior etc.). It also has the capability to predict bulk material response though independently control of the interface properties (e.g. stiffness, strength, toughness). The mechanical response of granular nanocomposite (i.e. nacre) was investigated through modeling the “relatively soft” organic interface as an interfacial zone among “hard” mineral tablets and simulation results were compared with experimental measurements of stress-strain curves in tension and compression tests. Through modeling varies material interfaces, we found out that the bulk material response of granular nanocomposite was regulated by the interfacial behaviors. This interfacial zone model provides a possible numerical tool for qualitatively understanding of structure-property relationships through material interface design. PMID:28983123
Shock wave properties of anorthosite and gabbro
NASA Technical Reports Server (NTRS)
Boslough, M. B.; Ahrens, T. J.
1984-01-01
Hugoniot data on San Gabriel anorthosite and San Marcos gabbro to 11 GPA are presented. Release paths in the stress-density plane and sound velocities are reported as determined from particl velocity data. Electrical interference effects precluded the determination of accurate release paths for the gabbro. Because of the loss of shear strength in the shocked state, the plastic behavior exhibited by anorthosite indicates that calculations of energy partitioning due to impact onto planetary surfaces based on elastic-plastic models may underestimate the amount of internal energy deposited in the impacted surface material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, B.
1994-12-31
This paper describes an elastic-plastic fracture mechanics (EPFM) study of shallow weld-toe cracks. Two limiting crack configurations, plane strain edge crack and semi-circular surface crack in fillet welded T-butt plate joint, were analyzed using the finite element method. Crack depth ranging from 2 to 40% of plate thickness were considered. The elastic-plastic analysis, assuming power-law hardening relationship and Mises yield criterion, was based on incremental plasticity theory. Tension and bending loads applied were monotonically increased to a level causing relatively large scale yielding at the crack tip. Effects of weld-notch geometry and ductile material modeling on prediction of fracture mechanicsmore » characterizing parameter were assessed. It was found that the weld-notch effect reduces and the effect of material modeling increases as crack depth increases. Material modeling is less important than geometric modeling in analysis of very shallow cracks but is more important for relatively deeper cracks, e.g. crack depth more than 20% of thickness. The effect of material modeling can be assessed using a simplified structural model. Weld magnification factors derived assuming linear elastic conditions can be applied to EPFM characterization.« less
Green's Function and Stress Fields in Stochastic Heterogeneous Continua
NASA Astrophysics Data System (ADS)
Negi, Vineet
Many engineering materials used today are heterogenous in composition e.g. Composites - Polymer Matrix Composites, Metal Matrix Composites. Even, conventional engineering materials - metals, plastics, alloys etc. - may develop heterogeneities, like inclusions and residual stresses, during the manufacturing process. Moreover, these materials may also have intrinsic heterogeneities at a nanoscale in the form of grain boundaries in metals, crystallinity in amorphous polymers etc. While, the homogenized constitutive models for these materials may be satisfactory at a macroscale, recent studies of phenomena like fatigue failure, void nucleation, size-dependent brittle-ductile transition in polymeric nanofibers reveal a major play of micro/nanoscale physics in these phenomena. At this scale, heterogeneities in a material may no longer be ignored. Thus, this demands a study into the effects of various material heterogeneities. In this work, spatial heterogeneities in two material properties - elastic modulus and yield stress - have been investigated separately. The heterogeneity in the elastic modulus is studied in the context of Green's function. The Stochastic Finite Element method is adopted to get the mean statistics of the Green's function defined on a stochastic heterogeneous 2D infinite space. A study of the elastic-plastic transition in a domain having stochastic heterogenous yield stress was done using Mont-Carlo methods. The statistics for various stress and strain fields during the transition were obtained. Further, the effects of size of the domain and the strain-hardening rate on the stress fields during the heterogeneous elastic-plastic transition were investigated. Finally, a case is made for the role of the heterogenous elastic-plastic transition in damage nucleation and growth.
NASA Astrophysics Data System (ADS)
Anderson, Charles E., Jr.; O'Donoghue, Padraic E.; Lankford, James; Walker, James D.
1992-06-01
Complementary to a study of the compressive strength of ceramic as a function of strain rate and confinement, numerical simulations of the split-Hopkinson pressure bar (SHPB) experiments have been performed using the two-dimensional wave propagation computer program HEMP. The numerical effort had two main thrusts. Firstly, the interpretation of the experimental data relies on several assumptions. The numerical simulations were used to investigate the validity of these assumptions. The second part of the effort focused on computing the idealized constitutive response of a ceramic within the SHPB experiment. These numerical results were then compared against experimental data. Idealized models examined included a perfectly elastic material, an elastic-perfectly plastic material, and an elastic material with failure. Post-failure material was modeled as having either no strength, or a strength proportional to the mean stress. The effects of confinement were also studied. Conclusions concerning the dynamic behavior of a ceramic up to and after failure are drawn from the numerical study.
Elastic-Plastic Calculation of a Dilatation Compensation Component
NASA Astrophysics Data System (ADS)
Atanasiu, Costică; Iliescu, Nicolae; Sorohan, Ștefan
2017-12-01
Compensators are elastic structures that have the role of taking over the axial displacements that occur in the junction areas of the technological equipment (pipelines or containers) through which the fluids circulate at pressures and high temperatures. These elastic structures, realized in a very wide range of shapes and sizes, are sujected by the inner pressure and an axial force produced by dilatation of structures in which they are mounted. The calculation of the expansion compensators raises many problems caused by the working regimes of the technological equipments they belong to. Following previous studies, undertaken by calculus and experimental, by the authors of this paper, it was found that in operation the state of stress in these elastic structures exceeds the flow limit of the material from which they are manufacturated. For this reason, in the present paper, the authors present the results of a calculus study, by FEM, on the stress and strain state, in the elasto-plastic regime of a leticular compensator. The calculation was made for two loading modes, separately applied and superimposed. The nonlinear mechanical behavior of this compensator is analyzed and discussed comparatively to the results of previous studies performed in elastic regime on the same type of compensator.
Material model validation for laser shock peening process simulation
NASA Astrophysics Data System (ADS)
Amarchinta, H. K.; Grandhi, R. V.; Langer, K.; Stargel, D. S.
2009-01-01
Advanced mechanical surface enhancement techniques have been used successfully to increase the fatigue life of metallic components. These techniques impart deep compressive residual stresses into the component to counter potentially damage-inducing tensile stresses generated under service loading. Laser shock peening (LSP) is an advanced mechanical surface enhancement technique used predominantly in the aircraft industry. To reduce costs and make the technique available on a large-scale basis for industrial applications, simulation of the LSP process is required. Accurate simulation of the LSP process is a challenging task, because the process has many parameters such as laser spot size, pressure profile and material model that must be precisely determined. This work focuses on investigating the appropriate material model that could be used in simulation and design. In the LSP process material is subjected to strain rates of 106 s-1, which is very high compared with conventional strain rates. The importance of an accurate material model increases because the material behaves significantly different at such high strain rates. This work investigates the effect of multiple nonlinear material models for representing the elastic-plastic behavior of materials. Elastic perfectly plastic, Johnson-Cook and Zerilli-Armstrong models are used, and the performance of each model is compared with available experimental results.
Damage tolerant functionally graded materials for advanced wear and friction applications
NASA Astrophysics Data System (ADS)
Prchlik, Lubos
The research work presented in this dissertation focused on processing effects, microstructure development, characterization and performance evaluation of composite and graded coatings used for friction and wear control. The following issues were addressed. (1) Definition of prerequisites for a successful composite and graded coating formation by means of thermal spraying. (2) Improvement of characterization methods available for homogenous thermally sprayed coating and their extension to composite and graded materials. (3) Development of novel characterization methods specifically for FGMs, with a focus on through thickness property measurement by indentation and in-situ curvature techniques. (4) Design of composite materials with improved properties compared to homogenous coatings. (5) Fabrication and performance assessment of FGM with improved wear and impact damage properties. Materials. The materials studied included several material systems relevant to low friction and contact damage tolerant applications: MO-Mo2C, WC-Co cermets as materials commonly used sliding components of industrial machinery and NiCrAlY/8%-Yttria Partially Stabilized Zirconia composites as a potential solution for abradable sections of gas turbines and aircraft engines. In addition, uniform coatings such as molybdenum and Ni5%Al alloy were evaluated as model system to assess the influence of microstructure variation onto the mechanical property and wear response. Methods. The contact response of the materials was investigated through several techniques. These included methods evaluating the relevant intrinsic coating properties such as elastic modulus, residual stress, fracture toughness, scratch resistance and tests measuring the abrasion and friction-sliding behavior. Dry-sand and wet two-body abrasion testing was performed in addition to traditional ball on disc sliding tests. Among all characterization techniques the spherical indentation deserved most attention and enabled to measure elastic-plastic properties of uniform and graded structures. In-situ curvature method used for residual stress and elastic modulus measurement was extended from uniform coatings to coatings with compositional/property gradients. Properties of composite and graded materials were measured using the inverse analysis. Conclusions. The specifics of the elastic-plastic response for thermally sprayed coatings were demonstrated. These included the strain dependence of elastic modulus and damage accumulation related to unloading/reloading loop formation. The measurement of elastic-plastic characteristics of composite coatings revealed the mixing and bonding mechanisms unique for thermally sprayed materials. Microstructural and compositional factors governing the frictional vs. abrasion response of carbide-metallic composite coatings were described. The measurement of abrasion resistance and friction sliding properties demonstrated that grading of cermet and ceramic coatings by adding moderate amount of metallic alloys can enhance elastic-properties radically and have a beneficial effect onto the coating performance.
Wrinkles, folds, and plasticity in granular rafts
NASA Astrophysics Data System (ADS)
Jambon-Puillet, Etienne; Josserand, Christophe; Protière, Suzie
2017-09-01
We investigate the mechanical response of a compressed monolayer of large and dense particles at a liquid-fluid interface: a granular raft. Upon compression, rafts first wrinkle; then, as the confinement increases, the deformation localizes in a unique fold. This characteristic buckling pattern is usually associated with floating elastic sheets, and as a result, particle laden interfaces are often modeled as such. Here, we push this analogy to its limits by comparing quantitative measurements of the raft morphology to a theoretical continuous elastic model of the interface. We show that, although powerful to describe the wrinkle wavelength, the wrinkle-to-fold transition, and the fold shape, this elastic description does not capture the finer details of the experiment. We describe an unpredicted secondary wavelength, a compression discrepancy with the model, and a hysteretic behavior during compression cycles, all of which are a signature of the intrinsic discrete and frictional nature of granular rafts. It suggests also that these composite materials exhibit both plastic transition and jamming dynamics.
Yield strength of Cu and an engineered material of Cu with 1% Pb
NASA Astrophysics Data System (ADS)
Buttler, William; Gray, George, III; Fensin, Saryu; Grover, Mike; Stevens, Gerald; Stone, Joseph; Turley, William
2015-06-01
To study the effects of engineered elastic-plastic yield on the mass-ejection from shocked materials we fielded explosively driven Cu and CuPb experiments. The Cu and CuPb experiments fielded fully annealed disks in contact with PBX 9501; the CuPb was extruded with 1% Pb that aggregates at the Cu grain boundaries. The elastic-plastic yield strength is explored as a difference of ejecta production of CuPb versus Cu, where the ejecta production of solid materials ties directly to the surface perturbation geometries of wavelengths (fixed at 65 μm) and amplitudes (which were varied). We observed that the Cu performs as expected, with ejecta turning on at the previously observed yield threshold, but the CuPb ejects mass in much larger quantities, at much lower wavenumber (k = 2 π/ λ) amplitude (h) products (kh), implying a reduced elastic-plastic yield stress of the engineered material, CuPb.
NASA Technical Reports Server (NTRS)
Marr, W. A., Jr.
1972-01-01
The behavior of finite element models employing different constitutive relations to describe the stress-strain behavior of soils is investigated. Three models, which assume small strain theory is applicable, include a nondilatant, a dilatant and a strain hardening constitutive relation. Two models are formulated using large strain theory and include a hyperbolic and a Tresca elastic perfectly plastic constitutive relation. These finite element models are used to analyze retaining walls and footings. Methods of improving the finite element solutions are investigated. For nonlinear problems better solutions can be obtained by using smaller load increment sizes and more iterations per load increment than by increasing the number of elements. Suitable methods of treating tension stresses and stresses which exceed the yield criteria are discussed.
Hysteretic behavior using the explicit material point method
NASA Astrophysics Data System (ADS)
Sofianos, Christos D.; Koumousis, Vlasis K.
2018-05-01
The material point method (MPM) is an advancement of particle in cell method, in which Lagrangian bodies are discretized by a number of material points that hold all the properties and the state of the material. All internal variables, stress, strain, velocity, etc., which specify the current state, and are required to advance the solution, are stored in the material points. A background grid is employed to solve the governing equations by interpolating the material point data to the grid. The derived momentum conservation equations are solved at the grid nodes and information is transferred back to the material points and the background grid is reset, ready to handle the next iteration. In this work, the standard explicit MPM is extended to account for smooth elastoplastic material behavior with mixed isotropic and kinematic hardening and stiffness and strength degradation. The strains are decomposed into an elastic and an inelastic part according to the strain decomposition rule. To account for the different phases during elastic loading or unloading and smoothening the transition from the elastic to inelastic regime, two Heaviside-type functions are introduced. These act as switches and incorporate the yield function and the hardening laws to control the whole cyclic behavior. A single expression is thus established for the plastic multiplier for the whole range of stresses. This overpasses the need for a piecewise approach and a demanding bookkeeping mechanism especially when multilinear models are concerned that account for stiffness and strength degradation. The final form of the constitutive stress rate-strain rate relation incorporates the tangent modulus of elasticity, which now includes the Heaviside functions and gathers all the governing behavior, facilitating considerably the simulation of nonlinear response in the MPM framework. Numerical results are presented that validate the proposed formulation in the context of the MPM in comparison with finite element method and experimental results.
Stress relaxation study of fillers for directly compressed tablets
Rehula, M.; Adamek, R.; Spacek, V.
2012-01-01
It is possible to assess viscoelastic properties of materials by means of the stress relaxation test. This method records the decrease in pressing power in a tablet at its constant height. The cited method was used to evaluate the time-dependent deformation for six various materials: microcrystalline cellulose, cellulose powder, hydroxypropyl methylcellulose, mannitol, lactose monohydrate, and hydrogen phosphate monohydrate. The decrease in pressing powering of a tablet during a 180 s period was described mathematically by the parameters of three exponential equations, where the whole course of the stress relaxation is divided into three individual processes (instant elastic deformation, retarded elastic deformation and permanent plastic deformation). Three values of the moduli of plasticity and elasticity were calculated for each compound. The values of elastic parameters ATi have a strong relationship with bulk density. The plastic parameters PTi represent particle tendency to form bonds. The values of plasticity in the third process PT3 ranged from 400 to 600 MPas. Mannitol had higher plasticity and lactose monohydrate on the contrary reduced plasticity. A linear relation exists between AT3 and PT3 for the third process. No similar interpretation of moduli calculated on the basis of three exponential equations has been realized yet. PMID:24850972
NASA Astrophysics Data System (ADS)
Sambasivan, Shiv Kumar; Shashkov, Mikhail J.; Burton, Donald E.
2013-03-01
A finite volume cell-centered Lagrangian formulation is presented for solving large deformation problems in cylindrical axisymmetric geometries. Since solid materials can sustain significant shear deformation, evolution equations for stress and strain fields are solved in addition to mass, momentum and energy conservation laws. The total strain-rate realized in the material is split into an elastic and plastic response. The elastic and plastic components in turn are modeled using hypo-elastic theory. In accordance with the hypo-elastic model, a predictor-corrector algorithm is employed for evolving the deviatoric component of the stress tensor. A trial elastic deviatoric stress state is obtained by integrating a rate equation, cast in the form of an objective (Jaumann) derivative, based on Hooke's law. The dilatational response of the material is modeled using an equation of state of the Mie-Grüneisen form. The plastic deformation is accounted for via an iterative radial return algorithm constructed from the J2 von Mises yield condition. Several benchmark example problems with non-linear strain hardening and thermal softening yield models are presented. Extensive comparisons with representative Eulerian and Lagrangian hydrocodes in addition to analytical and experimental results are made to validate the current approach.
The 3D model: explaining densification and deformation mechanisms by using 3D parameter plots.
Picker, Katharina M
2004-04-01
The aim of the study was to analyze very differently deforming materials using 3D parameter plots and consequently to gain deeper insights into the densification and deformation process described with the 3D model in order to define an ideal tableting excipient. The excipients used were dicalcium phosphate dihydrate (DCPD), sodium chloride (NaCl), microcrystalline cellulose (MCC), xylitol, mannitol, alpha-lactose monohydrate, maltose, hydroxypropyl methylcellulose (HPMC), sodium carboxymethylcellulose (NaCMC), cellulose acetate (CAC), maize starch, potato starch, pregelatinized starch, and maltodextrine. All of the materials were tableted to graded maximum relative densities (rhorel, max) using an eccentric tableting machine. The data which resulted, namely force, displacement, and time, were analyzed by the application of 3D modeling. Different particle size fractions of DCPD, CAC, and MCC were analyzed in addition. Brittle deforming materials such as DCPD exhibited a completely different 3D parameter plot, with low time plasticity, d, and low pressure plasticity, e, and a strong decrease in omega values when densification increased, in contrast to the plastically deforming MCC, which had much higher d, e, and omega values. e and omega values changed only slightly when densification increased for MCC. NaCl showed less of a decrease in omega values than DCPD did, and the d and e values were between those of MCC and DCPD. The sugar alcohols, xylitol and mannitol, behaved in a similar fashion to sodium chloride. This is also valid for the crystalline sugars, alpha-lactose monohydrate, and maltose. However, the sugars are more brittle than the sugar alcohols. The cellulose derivatives, HPMC, NaCMC, and CAC, are as plastic as MCC, however, their elasticity depends on substitution indicated by lower (more elastic) or higher (less elastic) omega values. The native starches, maize starch and potato starch, are very elastic, and pregelatinized starch and maltodextrine are less elastic and exhibited higher omega values. Deformation behavior as shown in 3D parameter plots depends on particle size for polymers such as CAC and MCC; however, it does not depend on particle size for brittle materials such as DCPD. An ideally deforming tableting excipient should exhibit high e, d, and omega values with a constant ratio of e and omega at increasing densification.
Classical and sequential limit analysis revisited
NASA Astrophysics Data System (ADS)
Leblond, Jean-Baptiste; Kondo, Djimédo; Morin, Léo; Remmal, Almahdi
2018-04-01
Classical limit analysis applies to ideal plastic materials, and within a linearized geometrical framework implying small displacements and strains. Sequential limit analysis was proposed as a heuristic extension to materials exhibiting strain hardening, and within a fully general geometrical framework involving large displacements and strains. The purpose of this paper is to study and clearly state the precise conditions permitting such an extension. This is done by comparing the evolution equations of the full elastic-plastic problem, the equations of classical limit analysis, and those of sequential limit analysis. The main conclusion is that, whereas classical limit analysis applies to materials exhibiting elasticity - in the absence of hardening and within a linearized geometrical framework -, sequential limit analysis, to be applicable, strictly prohibits the presence of elasticity - although it tolerates strain hardening and large displacements and strains. For a given mechanical situation, the relevance of sequential limit analysis therefore essentially depends upon the importance of the elastic-plastic coupling in the specific case considered.
Elasto-Plastic Analysis of Tee Joints Using HOT-SMAC
NASA Technical Reports Server (NTRS)
Arnold, Steve M. (Technical Monitor); Bednarcyk, Brett A.; Yarrington, Phillip W.
2004-01-01
The Higher Order Theory - Structural/Micro Analysis Code (HOT-SMAC) software package is applied to analyze the linearly elastic and elasto-plastic response of adhesively bonded tee joints. Joints of this type are finding an increasing number of applications with the increased use of composite materials within advanced aerospace vehicles, and improved tools for the design and analysis of these joints are needed. The linearly elastic results of the code are validated vs. finite element analysis results from the literature under different loading and boundary conditions, and new results are generated to investigate the inelastic behavior of the tee joint. The comparison with the finite element results indicates that HOT-SMAC is an efficient and accurate alternative to the finite element method and has a great deal of potential as an analysis tool for a wide range of bonded joints.
NASA Astrophysics Data System (ADS)
Denisov, O. V.; Buligin, Y. I.; Ponomarev, A. E.; Ponomareva, I. A.; Lebedeva, V. V.
2017-01-01
An important direction in the development of the shockproof devices for occupations associated with an increased risk of injury is reducing their overall size with the preservation the ability of energy absorption. The fixture protection of large joints, with the brace in the coils of an elastic-plastic material with shape memory effect, can effectively protect people from injury and can be used in the domain of occupational safety to reduce injuries by shocks or jolts. In innovative anti-shock device as elastic-plastic material applied equiatomic Titanium-Nickel alloy which has acceptable temperature phase transitions that is necessary to restore shape. As an experienced model first approximation was adopted shockproof device, having in its composition a bandage in coils of elastic-plastic material with shape memory effect and with electric contacts at the ends. This solution allows the punches to plastically deform with the absorption of the impact energy, and then recover the original shape, including at the expense of electric heating.
NASA Astrophysics Data System (ADS)
Zhang, X. C.; Lu, J.; Shi, S. Q.
2010-05-01
As a technique of grain refinement process by plastic deformation, surface mechanical attrition treatment (SMAT) has been developed to be one of the most effective ways to optimize the mechanical properties of various materials including pure metals and alloys. SMAT can significantly reduce grain size into nanometer regime in the surface layer of bulk materials, providing tremendous opportunities for improving physical, chemical and mechanical properties of the materials. In this work, a computational modeling of the surface mechanical attrition treatment (SMAT) process is presented, in which Johnson-Cook plasticity model and the finite element method were employed to study the high strain rate, elastic-plastic dynamic process of ball impact on a metallic target. AISI 304 steel with low stacking fault energy was chosen as the target material. First, a random impact model was used to analyze the statistic characteristics of ball impact, and then the plastic deformation behavior and residual stress distribution in AISI 304 stainless steel during SMAT were studied. The simulation results show that the compressive residual stress and vertical deformation of the surface structures were directly affected by ball impact frequency, incident impact angle and ball diameter used in SMAT process.
Effects of fine porosity on the fatigue behavior of a powder metallurgy superalloy
NASA Technical Reports Server (NTRS)
Miner, R. V.; Dreshfield, R. L.
1980-01-01
Hot-isostatically-pressed powder-metallurgy Astroloy was obtained which contained 1.4 percent porosity at the grain boundaries produced by argon entering the powder container during pressing. This material was tested at 650 C in fatigue, creep-fatigue, tension, and stress-rupture and the results compared with data on sound Astroloy. They influenced fatigue crack initiation and produced a more intergranular mode of propagation but fatigue life was not drastically reduced. Fatigue behavior of the porous material showed typical correlation with tensile behavior. The plastic strain range-life relation was reduced proportionately with the reduction in tensile ductility, but the elastic strain range-life relation was changed little.
Strain localization and elastic-plastic coupling during deformation of porous sandstone
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dewers, Thomas A.; Issen, Kathleen A.; Holcomb, David J.
Results of axisymmetric compression tests on weak, porous Castlegate Sandstone (Cretaceous, Utah, USA), covering a range of dilational and compactional behaviors, are examined for localization behavior. Assuming isotropy, bulk and shear moduli evolve as increasing functions of mean stress and Mises equivalent shear stress respectively, and as decreasing functions of work-conjugate plastic strains. Acoustic emissions events located during testing show onset of localization and permit calculation of observed shear and low-angle compaction localization zones, or bands, as localization commences. Total strain measured experimentally partitions into: A) elastic strain with constant moduli, B) elastic strain due to stress dependence of moduli,more » C) elastic strain due to moduli degradation with increasing plastic strain, and D) plastic strain. The third term is the elastic-plastic coupling strain, and though often ignored, contributes significantly to pre-failure total strain for brittle and transitional tests. Constitutive parameters and localization predictions derived from experiments are compared to theoretical predictions. In the brittle regime, predictions of band angles (angle between band normal and maximum compression) demonstrate good agreement with observed shear band angles. Compaction localization was observed in the transitional regime in between shear localization and spatially pervasive compaction, over a small range of mean stresses. In contrast with predictions however, detailed acoustic emissions analyses in this regime show low angle, compaction-dominated but shear-enhanced, localization.« less
Biaxial Testing of 2219-T87 Aluminum Alloy Using Cruciform Specimens
NASA Technical Reports Server (NTRS)
Dawicke, D. S.; Pollock, W. D.
1997-01-01
A cruciform biaxial test specimen was designed and seven biaxial tensile tests were conducted on 2219-T87 aluminum alloy. An elastic-plastic finite element analysis was used to simulate each tests and predict the yield stresses. The elastic-plastic finite analysis accurately simulated the measured load-strain behavior for each test. The yield stresses predicted by the finite element analyses indicated that the yield behavior of the 2219-T87 aluminum alloy agrees with the von Mises yield criterion.
NASA Astrophysics Data System (ADS)
Revil-Baudard, Benoit; Cazacu, Oana; Flater, Philip; Chandola, Nitin; Alves, J. L.
2016-03-01
In this paper, we present an experimental study on plastic deformation and damage of polycrystalline pure HCP Ti, as well as modeling of the observed behavior. Mechanical characterization data were conducted, which indicate that the material is orthotropic and displays tension-compression asymmetry. The ex-situ and in-situ X-ray tomography measurements conducted reveal that damage distribution and evolution in this HCP Ti material is markedly different than in a typical FCC material such as copper. Stewart and Cazacu (2011) anisotropic elastic/plastic damage model is used to describe the behavior. All the parameters involved in this model have a clear physical significance, being related to plastic properties, and are determined from very few simple mechanical tests. It is shown that this model predicts correctly the anisotropy in plastic deformation, and its strong influence on damage distribution and damage accumulation. Specifically, for a smooth axisymmetric specimen subject to uniaxial tension, damage initiates at the center of the specimen, and is diffuse; the level of damage close to failure being very low. On the other hand, for a notched specimen subject to the same loading the model predicts that damage initiates at the outer surface of the specimen, and further grows from the outer surface to the center of the specimen, which corroborates with the in-situ tomography data.
NASA Astrophysics Data System (ADS)
Wen, Jici; Wei, Yujie; Cheng, Yang-Tse
2018-07-01
Monitoring in real time the stress state in high capacity electrodes during charge-discharge processes is pivotal to the performance assessment and structural optimization of advanced batteries. The wafer curvature measurement technique broadly employed in thin-film industry, together with stress analysis using the Stoney equation, has been successfully adopted to measure in situ the stress in thin film electrodes. How large plastic deformation or interfacial delamination during electrochemical cycles in such electrodes affects the applicability of Stoney equation remains unclear. Here we develop a robust electrochemical-mechanical coupled numerical procedure to investigate the influence of large plastic deformation and interfacial failure on the measured stress in thin film electrodes. We identify how the constitutive behavior of electrode materials and film-substrate interfacial properties affect the measured stress-capacity curves of electrodes, and hence establish the relationship of electrode material parameters with the characteristics of stress-capacity curves. Using Li-ions batteries as examples, we show that plastic deformation and interfacial delamination account for the asymmetric stress-capacity loops seen in in situ stress measurements. The methods used here, along with the finite-element code in the supplementary material, may be used to model the electrode behavior as a function of the state of charge.
Scaling Symmetries in Elastic-Plastic Dynamic Cavity Expansion Equations Using the Isovector Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albright, Eric Jason; Ramsey, Scott D.; Schmidt, Joseph H.
Cavity-expansion approximations are widely-used in the study of penetration mechanics and indentation phenomena. We apply the isovector method to a well-established model in the literature for elastic-plastic cavity-expansion to systematically demonstrate the existence of Lie symmetries corresponding to scale-invariant solutions. Here we use the symmetries obtained from the equations of motion to determine compatible auxiliary conditions describing the cavity wall trajectory and the elastic-plastic material interface. The admissible conditions are then compared with specific similarity solutions in the literature.
Scaling Symmetries in Elastic-Plastic Dynamic Cavity Expansion Equations Using the Isovector Method
Albright, Eric Jason; Ramsey, Scott D.; Schmidt, Joseph H.; ...
2017-09-16
Cavity-expansion approximations are widely-used in the study of penetration mechanics and indentation phenomena. We apply the isovector method to a well-established model in the literature for elastic-plastic cavity-expansion to systematically demonstrate the existence of Lie symmetries corresponding to scale-invariant solutions. Here we use the symmetries obtained from the equations of motion to determine compatible auxiliary conditions describing the cavity wall trajectory and the elastic-plastic material interface. The admissible conditions are then compared with specific similarity solutions in the literature.
Study of the elastic behavior of synthetic lightweight aggregates (SLAs)
NASA Astrophysics Data System (ADS)
Jin, Na
Synthetic lightweight aggregates (SLAs), composed of coal fly ash and recycled plastics, represent a resilient construction material that could be a key aspect to future sustainable development. This research focuses on a prediction of the elastic modulus of SLA, assumed as a homogenous and isotropic composite of particulates of high carbon fly ash (HCFA) and a matrix of plastics (HDPE, LDPE, PS and mixture of plastics), with the emphasis on SLAs made of HCFA and PS. The elastic moduli of SLA with variable fly ash volume fractions are predicted based on finite element analyses (FEA) performed using the computer programs ABAQUS and PLAXIS. The effect of interface friction (roughness) between phases and other computation parameters; e.g., loading strain, stiffness of component, element type and boundary conditions, are included in these analyses. Analytical models and laboratory tests provide a baseline for comparison. Overall, results indicate ABAQUS generates elastic moduli closer to those predicted by well-established analytical models than moduli predicted from PLAXIS, especially for SLAs with lower fly ash content. In addition, an increase in roughness, loading strain indicated increase of SLAs stiffness, especially as fly ash content increases. The elastic moduli obtained from unconfined compression generally showed less elastic moduli than those obtained from analytical and ABAQUS 3D predictions. This may be caused by possible existence of pre-failure surface in specimen and the directly interaction between HCFA particles. Recommendations for the future work include laboratory measurements of SLAs moduli and FEM modeling that considers various sizes and random distribution of HCFA particles in SLAs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lawrence, Samantha K.; Somerday, Brian P.; Ingraham, Mathew Duffy
Hydrogen effects on small-volume plasticity and elastic stiffness constants are investigated with nanoindentation of Ni-201 and sonic velocity measurements of bulk Ni single crystals. Elastic modulus of Ni-201, calculated from indentation data, decreases ~22% after hydrogen charging. This substantial decrease is independently confirmed by sonic velocity measurements of Ni single crystals; c 44 decreases ~20% after hydrogen exposure. Furthermore, clear hydrogen-deformation interactions are observed. The maximum shear stress required to nucleate dislocations in hydrogen-charged Ni-201 is markedly lower than in as-annealed material, driven by hydrogen-reduced shear modulus. Additionally, a larger number of depth excursions are detected prior to general yieldingmore » in hydrogen-charged material, suggesting cross-slip restriction. Together, these data reveal direct correlation between hydrogen-affected elastic properties and plastic deformation in Ni alloys.« less
Lawrence, Samantha K.; Somerday, Brian P.; Ingraham, Mathew Duffy; ...
2018-04-11
Hydrogen effects on small-volume plasticity and elastic stiffness constants are investigated with nanoindentation of Ni-201 and sonic velocity measurements of bulk Ni single crystals. Elastic modulus of Ni-201, calculated from indentation data, decreases ~22% after hydrogen charging. This substantial decrease is independently confirmed by sonic velocity measurements of Ni single crystals; c 44 decreases ~20% after hydrogen exposure. Furthermore, clear hydrogen-deformation interactions are observed. The maximum shear stress required to nucleate dislocations in hydrogen-charged Ni-201 is markedly lower than in as-annealed material, driven by hydrogen-reduced shear modulus. Additionally, a larger number of depth excursions are detected prior to general yieldingmore » in hydrogen-charged material, suggesting cross-slip restriction. Together, these data reveal direct correlation between hydrogen-affected elastic properties and plastic deformation in Ni alloys.« less
NASA Astrophysics Data System (ADS)
Lawrence, S. K.; Somerday, B. P.; Ingraham, M. D.; Bahr, D. F.
2018-04-01
Hydrogen effects on small-volume plasticity and elastic stiffness constants are investigated with nanoindentation of Ni-201 and sonic velocity measurements of bulk Ni single crystals. Elastic modulus of Ni-201, calculated from indentation data, decreases 22% after hydrogen charging. This substantial decrease is independently confirmed by sonic velocity measurements of Ni single crystals; c 44 decreases 20% after hydrogen exposure. Furthermore, clear hydrogen-deformation interactions are observed. The maximum shear stress required to nucleate dislocations in hydrogen-charged Ni-201 is markedly lower than in as-annealed material, driven by hydrogen-reduced shear modulus. Additionally, a larger number of depth excursions are detected prior to general yielding in hydrogen-charged material, suggesting cross-slip restriction. Together, these data reveal a direct correlation between hydrogen-affected elastic properties and plastic deformation in Ni alloys.
Nanoindentation of HMX and Idoxuridine to Determine Mechanical Similarity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burch, Alexandra; Yeager, John; Bahr, David
Assessing the mechanical behavior (elastic properties, plastic properties, and fracture phenomena) of molecular crystals is often complicated by the difficulty in preparing samples. Pharmaceuticals and energetic materials in particular are often used in composite structures or tablets, where the individual grains can strongly impact the solid behavior. Nanoindentation is a convenient method to experimentally assess these properties, and it is used here to demonstrate the similarity in the mechanical properties of two distinct systems: individual crystals of the explosive cyclotetramethylene tetranitramine (HMX) and the pharmaceutical idoxuridine were tested in their as-precipitated state, and the effective average modulus and hardness (whichmore » can be orientation dependent) were determined. Both exhibit a hardness of 1.0 GPa, with an effective reduced modulus of 25 and 23 GPa for the HMX and idoxuridine, respectively. They also exhibit similar yield point behavior. This indicates idoxuridine may be a suitable mechanical surrogate (or “mock”) for HMX. While the methodology to assess elastic and plastic properties was relatively insensitive to specific crystal orientation (i.e., a uniform distribution in properties was observed for all random crystals tested), the indentation-induced fracture properties appear to be much more sensitive to tip-crystal orientation, and an unloading slope analysis is used to demonstrate the need for further refinement in relating toughness to orientation in these materials with relatively complex slip systems and crystal structures. View Full-Text« less
Nanoindentation of HMX and Idoxuridine to Determine Mechanical Similarity
Burch, Alexandra; Yeager, John; Bahr, David
2017-11-01
Assessing the mechanical behavior (elastic properties, plastic properties, and fracture phenomena) of molecular crystals is often complicated by the difficulty in preparing samples. Pharmaceuticals and energetic materials in particular are often used in composite structures or tablets, where the individual grains can strongly impact the solid behavior. Nanoindentation is a convenient method to experimentally assess these properties, and it is used here to demonstrate the similarity in the mechanical properties of two distinct systems: individual crystals of the explosive cyclotetramethylene tetranitramine (HMX) and the pharmaceutical idoxuridine were tested in their as-precipitated state, and the effective average modulus and hardness (whichmore » can be orientation dependent) were determined. Both exhibit a hardness of 1.0 GPa, with an effective reduced modulus of 25 and 23 GPa for the HMX and idoxuridine, respectively. They also exhibit similar yield point behavior. This indicates idoxuridine may be a suitable mechanical surrogate (or “mock”) for HMX. While the methodology to assess elastic and plastic properties was relatively insensitive to specific crystal orientation (i.e., a uniform distribution in properties was observed for all random crystals tested), the indentation-induced fracture properties appear to be much more sensitive to tip-crystal orientation, and an unloading slope analysis is used to demonstrate the need for further refinement in relating toughness to orientation in these materials with relatively complex slip systems and crystal structures. View Full-Text« less
NASA Technical Reports Server (NTRS)
Boslough, M. B.; Ahrens, T. J.
1985-01-01
Huyoniot data on San Gabriel anorthosite and San Marcos gabbro to 11 GPA are presented. Release paths in the stress-density plane and sound velocities are reported as determined from partial velocity data. Electrical interference effects precluded the determination of accurate release paths for the gabbro. Because of the loss of shear strength in the shocked state, the plastic behavior exhibited by anorthosite indicates that calculations of energy partitioning due to impact onto planetary surfaces based on elastic-plastic models may underestimate the amount of internal energy deposited in the impacted surface material.
NASA Astrophysics Data System (ADS)
Gotsev, D. V.; Perunov, N. S.; Sviridova, E. N.
2018-03-01
The mathematical model describing the stress-strain state of a cylindrical body under the uniform radial compression effect is constructed. The model of the material is the porous medium model. The compressed skeleton of the porous medium possesses hardening elastic-plastic properties. Deforming of the porous medium under the specified compressive loads is divided into two stages: elastic deforming of the porous medium and further elastic-plastic deforming of the material with completely compressed matrix. The analytical relations that define the fields of stress and displacement at each stage of the deforming are obtained. The influence of the porosity and other physical, mechanical and geometric parameters of the construction on the size of the plastic zone is evaluated. The question of the ground state equilibrium instability is investigated within the framework of the three-dimensional linearized relationships of the stability theory of deformed bodies.
NASA Astrophysics Data System (ADS)
Burnley, P. C.; Kaboli, S.
2016-12-01
The textbook stress strain curve has an elastic response followed by a yield point and then plastic flow. Typically in rock deformation experiments the observed `elastic' behavior deviates from the Young's modulus because the mechanical response of the loading frame and friction in the sample assembly and between moving parts of the loading frame cannot be easily corrected for. Stress strain curves generated in a D-DIA apparatus used in conjunction with synchrotron x-rays should not have these problems because the sample length is measured directly by radiography and the stress in the sample is measured from the sample itself by x-ray diffraction. However, the sample's `elastic behavior', in many instances, still deviates from what is expected. For example, in constant strain rate experiments on both polycrystalline San Carlos olivine and fayalite olivine conducted at a variety of temperatures (25 - 1200 C) and pressures (4 and 7 GPa) although we are able to use elastic plastic self-consistent (EPSC) models to describe the plastic behavior of the olivine we are not able to fit the initial elastic behavior for all but the lowest temperature experiments. To a first approximation it appears that samples are generally more compliant than their elastic properties would predict and that the degree of softening is temperature dependent. For D-DIA experiments which have been conducted at strain rates of 10-5 /sec, there are not enough data points to really clarify what is happening in the elastic portion of the experiment. Therefore, we conducted a suite of low strain experiments at 5 x 10-6/sec at temperatures ranging from 400 C to 1200 C. For each experiment we fit the diffraction data using EPSC models. We will present the results from our diffraction analysis as well as detailed microstructural analysis of the experimental samples using electron backscatter diffraction (EBSD) and electron channeling contrast imaging (ECCI). The relative degree of relaxation observed for each grain population in the diffraction data as well as to the predictions of the EPSC model combined with the microstructural data, will be used create a more comprehensive picture of how individual grains and various grain populations contribute to the low strain mechanical behavior of the polycrystal.
Alleman, Coleman N.; Foulk, James W.; Mota, Alejandro; ...
2017-11-06
The heterogeneity in mechanical fields introduced by microstructure plays a critical role in the localization of deformation. In order to resolve this incipient stage of failure, it is therefore necessary to incorporate microstructure with sufficient resolution. On the other hand, computational limitations make it infeasible to represent the microstructure in the entire domain at the component scale. Here, the authors demonstrate the use of concurrent multiscale modeling to incorporate explicit, finely resolved microstructure in a critical region while resolving the smoother mechanical fields outside this region with a coarser discretization to limit computational cost. The microstructural physics is modeled withmore » a high-fidelity model that incorporates anisotropic crystal elasticity and rate-dependent crystal plasticity to simulate the behavior of a stainless steel alloy. The component-scale material behavior is treated with a lower fidelity model incorporating isotropic linear elasticity and rate-independent J 2 plasticity. The microstructural and component scale subdomains are modeled concurrently, with coupling via the Schwarz alternating method, which solves boundary-value problems in each subdomain separately and transfers solution information between subdomains via Dirichlet boundary conditions. In this study, the framework is applied to model incipient localization in tensile specimens during necking.« less
NASA Astrophysics Data System (ADS)
Alleman, Coleman N.; Foulk, James W.; Mota, Alejandro; Lim, Hojun; Littlewood, David J.
2018-02-01
The heterogeneity in mechanical fields introduced by microstructure plays a critical role in the localization of deformation. To resolve this incipient stage of failure, it is therefore necessary to incorporate microstructure with sufficient resolution. On the other hand, computational limitations make it infeasible to represent the microstructure in the entire domain at the component scale. In this study, the authors demonstrate the use of concurrent multiscale modeling to incorporate explicit, finely resolved microstructure in a critical region while resolving the smoother mechanical fields outside this region with a coarser discretization to limit computational cost. The microstructural physics is modeled with a high-fidelity model that incorporates anisotropic crystal elasticity and rate-dependent crystal plasticity to simulate the behavior of a stainless steel alloy. The component-scale material behavior is treated with a lower fidelity model incorporating isotropic linear elasticity and rate-independent J2 plasticity. The microstructural and component scale subdomains are modeled concurrently, with coupling via the Schwarz alternating method, which solves boundary-value problems in each subdomain separately and transfers solution information between subdomains via Dirichlet boundary conditions. In this study, the framework is applied to model incipient localization in tensile specimens during necking.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alleman, Coleman N.; Foulk, James W.; Mota, Alejandro
The heterogeneity in mechanical fields introduced by microstructure plays a critical role in the localization of deformation. In order to resolve this incipient stage of failure, it is therefore necessary to incorporate microstructure with sufficient resolution. On the other hand, computational limitations make it infeasible to represent the microstructure in the entire domain at the component scale. Here, the authors demonstrate the use of concurrent multiscale modeling to incorporate explicit, finely resolved microstructure in a critical region while resolving the smoother mechanical fields outside this region with a coarser discretization to limit computational cost. The microstructural physics is modeled withmore » a high-fidelity model that incorporates anisotropic crystal elasticity and rate-dependent crystal plasticity to simulate the behavior of a stainless steel alloy. The component-scale material behavior is treated with a lower fidelity model incorporating isotropic linear elasticity and rate-independent J 2 plasticity. The microstructural and component scale subdomains are modeled concurrently, with coupling via the Schwarz alternating method, which solves boundary-value problems in each subdomain separately and transfers solution information between subdomains via Dirichlet boundary conditions. In this study, the framework is applied to model incipient localization in tensile specimens during necking.« less
Plastic behavior of polycrystalline copper at optical scales of deformation
NASA Astrophysics Data System (ADS)
Domber, Jeanette Leah
Microplasticity is permanent deformation that occurs below the proportional limit of a material. For precision deployable optical spacecraft, it is unknown how microplasticity will affect the performance of the precision structure. An examination of the rolling of thin film optical reflectors indicates a strong dependence of the post-deployed shape on the strain hardening exponent of the material. However, confirmation of the valid extension of the constitutive model used to predict the deployed shape to microscopic strain regimes is necessary. The primary objective of this thesis is threefold: determine the relationship between stress and strain at nano to microstrain levels for representative materials; determine if the relationship between microscopic and macroscopic plastic behavior can be accurately characterized by the Ramberg-Osgood strain hardening constitutive model with a single set of material parameters; and determine if dislocation motion is the root cause of microplastic behavior at room temperature. The test apparatus, with a dynamic force range of 40,000 to 1, measures strains from 0.01 to 1000 parts per million (ppm) of cylindrical amorphous quartz and cold-worked and annealed tempered polycrystalline copper specimen. Elastic behavior in all three materials was consistent with typical values. However, plastic responses were larger than expected. Stresses on the order of 10 to 10,000 kPa (1.45 to 1450 psi) produced permanent strain in all three types of materials ranging from 0.01 to 1 ppm, some of which was attributable to a systematic error in the measurement. Extrapolating macroplastic behavior to lower stress and strain values underestimates the amount of microplasticity observed in the material. Therefore, material property characterization is required at all strain levels that are of concern for a particular application. The similarity in the levels of measured permanent strain for a given stress level between the as-drawn and annealed copper is consistent with the observed dislocation substructure of the two materials, which is also similar. This uniformity indicates that microplastic behavior at room temperature is driven by dislocation glide.
NASA Technical Reports Server (NTRS)
Lee, Jong-Won; Allen, David H.
1990-01-01
A continuous fiber composite is modelled by a two-element composite cylinder in order to predict the elastoplastic response of the composite under a monotonically increasing tensile loading parallel to fibers. The fibers and matrix are assumed to be elastic-perfectly plastic materials obeying Hill's and Tresca's yield criteria, respectively. Here, the composite behavior when the fibers yield prior to the matrix is investigated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandal, A.; Gupta, Y. M.
To understand the elastic-plastic deformation response of shock-compressed molybdenum (Mo) – a body-centered cubic (BCC) metal, single crystal samples were shocked along the [100] crystallographic orientation to an elastic impact stress of 12.5 GPa. Elastic-plastic wave profiles, measured at different propagation distances ranging between ~0.23 to 2.31 mm using laser interferometry, showed a time-dependent material response. Within experimental scatter, the measured elastic wave amplitudes were nearly constant over the propagation distances examined. These data point to a large and rapid elastic wave attenuation near the impact surface, before reaching a threshold value (elastic limit) of ~3.6 GPa. Numerical simulations ofmore » the measured wave profiles, performed using a dislocation-based continuum model, suggested that {110}<111> and/or {112}<111> slip systems are operative under shock loading. In contrast to shocked metal single crystals with close-packed structures, the measured wave profiles in Mo single crystals could not be explained in terms of dislocation multiplication alone. A dislocation generation mechanism, operative for shear stresses larger than that at the elastic limit, was required to model the rapid elastic wave attenuation and to provide a good overall match to the measured wave profiles. However, the physical basis for this mechanism was not established for the high-purity single crystal samples used in this study. As a result, the numerical simulations also suggested that Mo single crystals do not work harden significantly under shock loading in contrast to the behavior observed under quasi-static loading.« less
NASA Astrophysics Data System (ADS)
Liu, X. P.; Lin Peng, R.; Hofmann, M.; Johansson, S.; Wang, Y. D.
2011-01-01
An in-situ neutron diffraction technique was used to investigate the lattice strain distributions and micromechanical behavior in a friction stir welded (FSW) sheet of AA7475-T761. The neutron diffraction experiments were performed on the spectrometer for material research, STRESS-SPEC, at FRM II (Garching, Germany). The lattice strain profiles around the weld center were measured as a function of the applied strain during the tensile loading and unloading. The anisotropic elastic and plastic properties of the FSW aluminum alloy were simulated by elasto-plastic self-consistent (EPSC) model to predict the anisotropic deformation behaviors involving the grain-to-grain interactions. Material parameters used for describing the constitutive laws of each test position were determined from the measured lattice strain distributions for different diffraction hkl planes as well as the macroscopic stress-strain curve of the FSW aluminum alloy. A good agreement between experimental results and numerical simulations was obtained. The present investigations provided a reliable prediction of the anisotropic micromechanical behavior of the FSW aluminum alloy during tensile deformation.
Manufacture and Preparation of Test Specimens for Johnson-Cook Material Characterization
2013-01-01
modeling and simulation, and will be included in the Elastic Plastic Impact Code (EPIC) library. This report describes the welding and machining...used by the government for ballistic, blast and other types of modeling and simulation, and will be included in the Elastic Plastic Impact Code (EPIC...made of H13 tool steel with a scrolled pin and shoulder (See Figure 2-3) was used however the different heat requirements of the materials required
Elastic-plastic models for multi-site damage
NASA Technical Reports Server (NTRS)
Actis, Ricardo L.; Szabo, Barna A.
1994-01-01
This paper presents recent developments in advanced analysis methods for the computation of stress site damage. The method of solution is based on the p-version of the finite element method. Its implementation was designed to permit extraction of linear stress intensity factors using a superconvergent extraction method (known as the contour integral method) and evaluation of the J-integral following an elastic-plastic analysis. Coarse meshes are adequate for obtaining accurate results supported by p-convergence data. The elastic-plastic analysis is based on the deformation theory of plasticity and the von Mises yield criterion. The model problem consists of an aluminum plate with six equally spaced holes and a crack emanating from each hole. The cracks are of different sizes. The panel is subjected to a remote tensile load. Experimental results are available for the panel. The plasticity analysis provided the same limit load as the experimentally determined load. The results of elastic-plastic analysis were compared with the results of linear elastic analysis in an effort to evaluate how plastic zone sizes influence the crack growth rates. The onset of net-section yielding was determined also. The results show that crack growth rate is accelerated by the presence of adjacent damage, and the critical crack size is shorter when the effects of plasticity are taken into consideration. This work also addresses the effects of alternative stress-strain laws: The elastic-ideally-plastic material model is compared against the Ramberg-Osgood model.
Nanotribological behavior of deep cryogenically treated martensitic stainless steel.
Prieto, Germán; Bakoglidis, Konstantinos D; Tuckart, Walter R; Broitman, Esteban
2017-01-01
Cryogenic treatments are increasingly used to improve the wear resistance of various steel alloys by means of transformation of retained austenite, deformation of virgin martensite and carbide refinement. In this work the nanotribological behavior and mechanical properties at the nano-scale of cryogenically and conventionally treated AISI 420 martensitic stainless steel were evaluated. Conventionally treated specimens were subjected to quenching and annealing, while the deep cryogenically treated samples were quenched, soaked in liquid nitrogen for 2 h and annealed. The elastic-plastic parameters of the materials were assessed by nanoindentation tests under displacement control, while the friction behavior and wear rate were evaluated by a nanoscratch testing methodology that it is used for the first time in steels. It was found that cryogenic treatments increased both hardness and elastic limit of a low-carbon martensitic stainless steel, while its tribological performance was enhanced marginally.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Todd O
2009-01-01
The exact solution for the history-dependent behavior of laminated plates subjected to cylindrical bending is presented. The solution represents the extension of Pagano's solution to consider arbitrary types of constitutive behaviors for the individual lamina as well as arbitrary types of cohesive zones models for delamination behavior. Examples of the possible types of material behavior are plasticity, viscoelasticity, viscoplasticity, and damaging. Examples of possible CZMs that can be considered are linear, nonlinear hardening, as well as nonlinear with softening. The resulting solution is intended as a benchmark solution for considering the predictive capabilities of different plate theories. Initial results aremore » presented for several types of history-dependent material behaviors. It is shown that the plate response in the presence of history-dependent behaviors can differ dramatically from the elastic response. These results have strong implications for what constitutes an appropriate plate theory for modeling such behaviors.« less
An anisotropic elastoplastic constitutive formulation generalised for orthotropic materials
NASA Astrophysics Data System (ADS)
Mohd Nor, M. K.; Ma'at, N.; Ho, C. S.
2018-03-01
This paper presents a finite strain constitutive model to predict a complex elastoplastic deformation behaviour that involves very high pressures and shockwaves in orthotropic materials using an anisotropic Hill's yield criterion by means of the evolving structural tensors. The yield surface of this hyperelastic-plastic constitutive model is aligned uniquely within the principal stress space due to the combination of Mandel stress tensor and a new generalised orthotropic pressure. The formulation is developed in the isoclinic configuration and allows for a unique treatment for elastic and plastic orthotropy. An isotropic hardening is adopted to define the evolution of plastic orthotropy. The important feature of the proposed hyperelastic-plastic constitutive model is the introduction of anisotropic effect in the Mie-Gruneisen equation of state (EOS). The formulation is further combined with Grady spall failure model to predict spall failure in the materials. The proposed constitutive model is implemented as a new material model in the Lawrence Livermore National Laboratory (LLNL)-DYNA3D code of UTHM's version, named Material Type 92 (Mat92). The combination of the proposed stress tensor decomposition and the Mie-Gruneisen EOS requires some modifications in the code to reflect the formulation of the generalised orthotropic pressure. The validation approach is also presented in this paper for guidance purpose. The \\varvec{ψ} tensor used to define the alignment of the adopted yield surface is first validated. This is continued with an internal validation related to elastic isotropic, elastic orthotropic and elastic-plastic orthotropic of the proposed formulation before a comparison against range of plate impact test data at 234, 450 and {895 ms}^{-1} impact velocities is performed. A good agreement is obtained in each test.
FY16 Status Report on Development of Integrated EPP and SMT Design Methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jetter, R. I.; Sham, T. -L.; Wang, Y.
2016-08-01
The goal of the Elastic-Perfectly Plastic (EPP) combined integrated creep-fatigue damage evaluation approach is to incorporate a Simplified Model Test (SMT) data based approach for creep-fatigue damage evaluation into the EPP methodology to avoid the separate evaluation of creep and fatigue damage and eliminate the requirement for stress classification in current methods; thus greatly simplifying evaluation of elevated temperature cyclic service. The EPP methodology is based on the idea that creep damage and strain accumulation can be bounded by a properly chosen “pseudo” yield strength used in an elastic-perfectly plastic analysis, thus avoiding the need for stress classification. The originalmore » SMT approach is based on the use of elastic analysis. The experimental data, cycles to failure, is correlated using the elastically calculated strain range in the test specimen and the corresponding component strain is also calculated elastically. The advantage of this approach is that it is no longer necessary to use the damage interaction, or D-diagram, because the damage due to the combined effects of creep and fatigue are accounted in the test data by means of a specimen that is designed to replicate or bound the stress and strain redistribution that occurs in actual components when loaded in the creep regime. The reference approach to combining the two methodologies and the corresponding uncertainties and validation plans are presented. Results from recent key feature tests are discussed to illustrate the applicability of the EPP methodology and the behavior of materials at elevated temperature when undergoing stress and strain redistribution due to plasticity and creep.« less
Influence of voids distribution on the deformation behavior of nanocrystalline palladium
NASA Astrophysics Data System (ADS)
Bachurin, D. V.
2018-07-01
Uniaxial deformation of three-dimensional nanocrystalline palladium containing porosity in the form of voids was investigated by means of molecular dynamics method. Simulations were performed at temperature of 300 K and at a constant strain rate of 108s-1. Two cases of voids distribution were considered: random and at triple or quadrupole junctions. It has been revealed that both the voids distribution and subsequent annealing at elevated temperature influence the deformation behavior of nanocrystalline palladium. In particular, the presence of voids at grain junctions results in a reduction of the Young's modulus and more pronounced softening effect during plastic deformation. The subsequent annealing evokes shrinkage of voids and strengthening effect. Contribution of grain boundary accommodation processes into both elastic and plastic deformation of nanocrystalline materials is discussed.
Surface plasticity: theory and computation
NASA Astrophysics Data System (ADS)
Esmaeili, A.; Steinmann, P.; Javili, A.
2017-11-01
Surfaces of solids behave differently from the bulk due to different atomic rearrangements and processes such as oxidation or aging. Such behavior can become markedly dominant at the nanoscale due to the large ratio of surface area to bulk volume. The surface elasticity theory (Gurtin and Murdoch in Arch Ration Mech Anal 57(4):291-323, 1975) has proven to be a powerful strategy to capture the size-dependent response of nano-materials. While the surface elasticity theory is well-established to date, surface plasticity still remains elusive and poorly understood. The objective of this contribution is to establish a thermodynamically consistent surface elastoplasticity theory for finite deformations. A phenomenological isotropic plasticity model for the surface is developed based on the postulated elastoplastic multiplicative decomposition of the surface superficial deformation gradient. The non-linear governing equations and the weak forms thereof are derived. The numerical implementation is carried out using the finite element method and the consistent elastoplastic tangent of the surface contribution is derived. Finally, a series of numerical examples provide further insight into the problem and elucidate the key features of the proposed theory.
Dislocation dynamics simulations of plasticity at small scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Caizhi
2010-01-01
As metallic structures and devices are being created on a dimension comparable to the length scales of the underlying dislocation microstructures, the mechanical properties of them change drastically. Since such small structures are increasingly common in modern technologies, there is an emergent need to understand the critical roles of elasticity, plasticity, and fracture in small structures. Dislocation dynamics (DD) simulations, in which the dislocations are the simulated entities, offer a way to extend length scales beyond those of atomistic simulations and the results from DD simulations can be directly compared with the micromechanical tests. The primary objective of this researchmore » is to use 3-D DD simulations to study the plastic deformation of nano- and micro-scale materials and understand the correlation between dislocation motion, interactions and the mechanical response. Specifically, to identify what critical events (i.e., dislocation multiplication, cross-slip, storage, nucleation, junction and dipole formation, pinning etc.) determine the deformation response and how these change from bulk behavior as the system decreases in size and correlate and improve our current knowledge of bulk plasticity with the knowledge gained from the direct observations of small-scale plasticity. Our simulation results on single crystal micropillars and polycrystalline thin films can march the experiment results well and capture the essential features in small-scale plasticity. Furthermore, several simple and accurate models have been developed following our simulation results and can reasonably predict the plastic behavior of small scale materials.« less
Theoretical study of strength of elastic-plastic water-saturated interface under constrained shear
NASA Astrophysics Data System (ADS)
Dimaki, Andrey V.; Shilko, Evgeny V.; Psakhie, Sergey G.
2016-11-01
This paper presents a theoretical study of shear strength of an elastic-plastic water-filled interface between elastic permeable blocks under compression. The medium is described within the discrete element method. The relationship between the stress-strain state of the solid skeleton and pore pressure of a liquid is described in the framework of the Biot's model of poroelasticity. The simulation demonstrates that shear strength of an elastic-plastic interface depends non-linearly on the values of permeability and loading to a great extent. We have proposed an empirical relation that approximates the obtained results of the numerical simulation in assumption of the interplay of dilation of the material and mass transfer of the liquid.
Three-dimensional elastic-plastic finite-element analysis of fatigue crack propagation
NASA Technical Reports Server (NTRS)
Goglia, G. L.; Chermahini, R. G.
1985-01-01
Fatigue cracks are a major problem in designing structures subjected to cyclic loading. Cracks frequently occur in structures such as aircraft and spacecraft. The inspection intervals of many aircraft structures are based on crack-propagation lives. Therefore, improved prediction of propagation lives under flight-load conditions (variable-amplitude loading) are needed to provide more realistic design criteria for these structures. The main thrust was to develop a three-dimensional, nonlinear, elastic-plastic, finite element program capable of extending a crack and changing boundary conditions for the model under consideration. The finite-element model is composed of 8-noded (linear-strain) isoparametric elements. In the analysis, the material is assumed to be elastic-perfectly plastic. The cycle stress-strain curve for the material is shown Zienkiewicz's initial-stress method, von Mises's yield criterion, and Drucker's normality condition under small-strain assumptions are used to account for plasticity. The three-dimensional analysis is capable of extending the crack and changing boundary conditions under cyclic loading.
Effects of acceleration rate on Rayleigh-Taylor instability in elastic-plastic materials
NASA Astrophysics Data System (ADS)
Banerjee, Arindam; Polavarapu, Rinosh
2016-11-01
The effect of acceleration rate in the elastic-plastic transition stage of Rayleigh-Taylor instability in an accelerated non-Newtonian material is investigated experimentally using a rotating wheel experiment. A non-Newtonian material (mayonnaise) was accelerated at different rates by varying the angular acceleration of a rotating wheel and growth patterns of single mode perturbations with different combinations of amplitude and wavelength were analyzed. Experiments were run at two different acceleration rates to compare with experiments presented in prior years at APS DFD meetings and the peak amplitude responses are captured using a high-speed camera. Similar to the instability acceleration, the elastic-plastic transition acceleration is found to be increasing with increase in acceleration rate for a given amplitude and wavelength. The experimental results will be compared to various analytical strength models and prior experimental studies using Newtonian fluids. Authors acknowledge funding support from Los Alamos National Lab subcontract(370333) and DOE-SSAA Grant (DE-NA0001975).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Guang; Sun, Xin; Wang, Yuxin
A new inverse method was proposed to calculate the anisotropic elastic-plastic properties (flow stress) of thin electrodeposited Ag coating utilizing nanoindentation tests, previously reported inverse method for isotropic materials and three-dimensional (3-D) finite element analyses (FEA). Indentation depth was ~4% of coating thickness (~10 μm) to avoid substrate effect and different indentation responses were observed in the longitudinal (L) and the transverse (T) directions. The estimated elastic-plastic properties were obtained in the newly developed inverse method by matching the predicted indentation responses in the L and T directions with experimental measurements considering indentation size effect (ISE). The results were validatedmore » with tensile flow curves measured from free-standing (FS) Ag film. The current method can be utilized to characterize the anisotropic elastic-plastic properties of coatings and to provide the constitutive properties for coating performance evaluations.« less
NASA Astrophysics Data System (ADS)
Zhou, Y.; Voyiadjis, G.
2017-12-01
Subsidence has caused significant wetland losses in coastal Louisiana due to various anthropogenic and geologic processes. Releveling data from National Geodetic Survey show that one of the governing factors in the coastal Louisiana is hydrocarbon production, which has led to the acceleration of spatial- and temporal-dependent subsidence. This work investigates the influence of hydrocarbon production on subsidence for a typical reservoir, the Valentine field in coastal Louisiana, based on finite element modeling in the framework of poroelasticity and poroplasticity. Geertsma's analytical model is first used in this work to interpret the observed subsidence, for a disc-shaped reservoir embedded in a semi-infinite homogeneous elastic medium. Based on the calibrated elastic material properties, the authors set up a 3D finite element model and validate the numerical results with Geertsma's analytical model. As the plastic deformation of a reservoir in an inhomogeneous medium plays an important role in the compaction of the reservoir and the land subsidence, the authors further adopt a modified Cam-Clay model to take account of the plastic compaction of the reservoir. The material properties in the Cam-Clay model are calibrated based on the subsidence observed in the field and that in the homogeneous elastic case. The observed trend and magnitude of subsidence in the Valentine field can be approximately reproduced through finite element modeling in both the homogeneous elastic case and the inhomogeneous plastic case, by using the calibrated material properties. The maximum compaction in the inhomogeneous plastic case is around half of that in the homogeneous elastic case, and thus the ratio of subsidence over compaction is larger in the inhomogeneous plastic case for a softer reservoir embedded in a stiffer medium.
Finite lateral compression of an elastic plasticfibre-reinforced tube : loading solutions
NASA Astrophysics Data System (ADS)
England, A. H.; Gregory, P. W.
1999-02-01
This paper considers the finite plane-strain deformations of an elastic-plastic tubecompressed between two rigid smooth parallel plates. The tube is composed of an elastic-plasticfibre-reinforced material in which the fibres lie in planes perpendicular to the axis of the tube andreinforce the tube in the circumferential direction. The composite is assumed to be an idealmaterial which is inextensible in the fibre-direction and is incompressible. The unloading of theelastic-plastic tube will be considered in a subsequent paper.
Anisotropy of machine building materials
NASA Technical Reports Server (NTRS)
Ashkenazi, Y. K.
1981-01-01
The results of experimental studies of the anisotropy of elastic and strength characteristics of various structural materials, including pressure worked metals and alloys, laminated fiberglass plastics, and laminated wood plastics, are correlated and classified. Strength criteria under simple and complex stresses are considered as applied to anisotropic materials. Practical application to determining the strength of machine parts and structural materials is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kahl, W.K.
1997-03-01
The paper describes a study which attempted to extrapolate meaningful elastic-plastic fracture toughness data from flexure tests of a chemical vapor-infiltrated SiC/Nicalon fiber-reinforced ceramic matrix composite. Fibers in the fabricated composites were pre-coated with pyrolytic carbon to varying thicknesses. In the tests, crack length was not measured and the study employed an estimate procedure, previously used successfully for ductile metals, to derive J-R curve information. Results are presented in normalized load vs. normalized displacements and comparative J{sub Ic} behavior as a function of fiber precoating thickness.
NASA Technical Reports Server (NTRS)
Wu, R. W.; Witmer, E. A.
1972-01-01
Assumed-displacement versions of the finite-element method are developed to predict large-deformation elastic-plastic transient deformations of structures. Both the conventional and a new improved finite-element variational formulation are derived. These formulations are then developed in detail for straight-beam and curved-beam elements undergoing (1) Bernoulli-Euler-Kirchhoff or (2) Timoshenko deformation behavior, in one plane. For each of these categories, several types of assumed-displacement finite elements are developed, and transient response predictions are compared with available exact solutions for small-deflection, linear-elastic transient responses. The present finite-element predictions for large-deflection elastic-plastic transient responses are evaluated via several beam and ring examples for which experimental measurements of transient strains and large transient deformations and independent finite-difference predictions are available.
Coupled thermal stresses analysis in the composite elastic-plastic cylinder
NASA Astrophysics Data System (ADS)
Murashkin, E. V.; Dats, E. P.
2018-04-01
The present study is devoted to the set of boundary value problems in the frameworks of coupled thermoelastoplasticity under axial symmetry conditions for a composite circular cylinder. Throughout the paper the conventional Prandtl–Reuss elastic–plastic model generalised on the thermal effects is used. The yield stress is assumed by linear function of the temperature. The plastic potential is chosen in the form of Tresca yield criterion and the associated plastic flow rule is derived. The adding process of a heated cylinder to another is simulated. The coupled thermal stresses are calculated during processes of cooling and material unloading. The elastic-plastic borders positions are calculated and plastic flow domains are localized. Numerical results are graphically analysed.
NASA Astrophysics Data System (ADS)
Gaume, Johan; Löwe, Henning; Tan, Shurun; Tsang, Leung
2017-09-01
We have conducted discrete element simulations (pfc3d) of very loose, cohesive, granular assemblies with initial configurations which are drawn from Baxter's sticky hard sphere (SHS) ensemble. The SHS model is employed as a promising auxiliary means to independently control the coordination number zc of cohesive contacts and particle volume fraction ϕ of the initial states. We focus on discerning the role of zc and ϕ for the elastic modulus, failure strength, and the plastic consolidation line under quasistatic, uniaxial compression. We find scaling behavior of the modulus and the strength, which both scale with the cohesive contact density νc=zcϕ of the initial state according to a power law. In contrast, the behavior of the plastic consolidation curve is shown to be independent of the initial conditions. Our results show the primary control of the initial contact density on the mechanics of cohesive granular materials for small deformations, which can be conveniently, but not exclusively explored within the SHS-based assembling procedure.
Sun, Zhiqian; Song, Gian; Sisneros, Thomas A.; Clausen, Bjørn; Pu, Chao; Li, Lin; Gao, Yanfei; Liaw, Peter K.
2016-01-01
An understanding of load sharing among constituent phases aids in designing mechanical properties of multiphase materials. Here we investigate load partitioning between the body-centered-cubic iron matrix and NiAl-type precipitates in a ferritic alloy during uniaxial tensile tests at 364 and 506 °C on multiple length scales by in situ neutron diffraction and crystal plasticity finite element modeling. Our findings show that the macroscopic load-transfer efficiency is not as high as that predicted by the Eshelby model; moreover, it depends on the matrix strain-hardening behavior. We explain the grain-level anisotropic load-partitioning behavior by considering the plastic anisotropy of the matrix and elastic anisotropy of precipitates. We further demonstrate that the partitioned load on NiAl-type precipitates relaxes at 506 °C, most likely through thermally-activated dislocation rearrangement on the microscopic scale. The study contributes to further understanding of load-partitioning characteristics in multiphase materials. PMID:26979660
Sun, Zhiqian; Song, Gian; Sisneros, Thomas A.; ...
2016-03-16
An understanding of load sharing among constituent phases aids in designing mechanical properties of multiphase materials. Here we investigate load partitioning between the body-centered-cubic iron matrix and NiAl-type precipitates in a ferritic alloy during uniaxial tensile tests at 364 and 506 C on multiple length scales by in situ neutron diffraction and crystal plasticity finite element modeling. Our findings show that the macroscopic load-transfer efficiency is not as high as that predicted by the Eshelby model; moreover, it depends on the matrix strain-hardening behavior. We explain the grain-level anisotropic load-partitioning behavior by considering the plastic anisotropy of the matrix andmore » elastic anisotropy of precipitates. We further demonstrate that the partitioned load on NiAl-type precipitates relaxes at 506 C, most likely through thermally-activated dislocation rearrangement on the microscopic scale. Furthermore, the study contributes to further understanding of load-partitioning characteristics in multiphase materials.« less
The application of continuum damage mechanics to solve problems in geodynamics
NASA Astrophysics Data System (ADS)
Manaker, David Martin
Deformation within the Earth's lithosphere is largely controlled by the rheology of the rock. Ductile behavior in rocks is often associated with plasticity due to dislocation motion or diffusion under high pressures and temperatures. However, ductile behavior can also occur in brittle materials. An example would be cataclastic flow associated with folding at shallow crustal levels, steep subduction zones, and large-scale deformation at plate boundaries. Engineers utilize damage mechanics to model the continuum deformation of brittle materials. We utilize a modified form of damage mechanics where damage represents a reduction in frictional strength and includes a yield stress. We use this empirical approach to simulate the bending of the lithosphere. We use numerical simulations to obtain elastostatic solutions for plate bending and where the stress exceeds a yield stress, we apply damage to reduce the elastic moduli. Damage is calculated at each time step by a power-law relationship of the ratio of the yield stress to stress and the yield strain to the strain. To test our method, we apply our damage rheology to a plate deforming under applied shear, a constant bending moment, and a constant load. We simulate a wide range of behaviors from slow relaxation to instantaneous failure, over timescales that span six orders of magnitude. Stress relaxation produces elastic-perfectly plastic behavior in cases where failure does not occur. For cases of failure, we observe a rapid increase in damage leading to failure. The changes in the rate of damage accumulation in failure cases are similar to the changes in b-values of acoustic emissions observed in triaxial compression tests of fractured rock and b-value changes prior to some large earthquakes. Thus continuum damage mechanics can simulate ductile behavior due to brittle mechanisms as well as observations of laboratory experiments and seismicity.
Deformation of compound shells under action of internal shock wave loading
NASA Astrophysics Data System (ADS)
Chernobryvko, Marina; Kruszka, Leopold; Avramov, Konstantin
2015-09-01
The compound shells under the action of internal shock wave loading are considered. The compound shell consists of a thin cylindrical shell and two thin parabolic shells at the edges. The boundary conditions in the shells joints satisfy the equality of displacements. The internal shock wave loading is modelled as the surplus pressure surface. This pressure is a function of the shell coordinates and time. The strain rate deformation of compound shell takes place in both the elastic and in plastic stages. In the elastic stage the equations of the structure motions are obtained by the assumed-modes method, which uses the kinetic and potential energies of the cylindrical and two parabolic shells. The dynamic behaviour of compound shells is treated. In local plastic zones the 3-D thermo-elastic-plastic model is used. The deformations are described by nonlinear model. The stress tensor elements are determined using dynamic deformation theory. The deformation properties of materials are influenced by the strain rate behaviour, the influence of temperature parameters, and the elastic-plastic properties of materials. The dynamic yield point of materials and Pisarenko-Lebedev's criterion of destruction are used. The modified adaptive finite differences method of numerical analysis is suggested for those simulations. The accuracy of the numerical simulation is verified on each temporal step of calculation and in the case of large deformation gradients.
Seventh International Symposium on Nondestructive Characterization of Materials
1995-01-01
Steel Elastic into the Microplastic State Ropes-O. Lesn~k, Research Mining Transition-L. Keller & P. Stanek, TSI Institute, Czech Republic System...DETERMINATION OF ELASTIC INTO THE MICROPLASTIC STATE TRANSITION L. Keller & P. Stanek, TSI System s.r.o., Military Technical Institute of Protection...elongation by 0.2%. Determination of a physically justified stress at which the material passes from the elastic into plastic, or microplastic state
Geometric charges in theories of elasticity and plasticity
NASA Astrophysics Data System (ADS)
Moshe, Michael
The mechanics of many natural systems is governed by localized sources of stresses. Examples include ''plastic events'' that occur in amorphous solids under external stress, defects formation in crystalline material, and force-dipoles applied by cells adhered to an elastic substrate. Recent developments in a geometric formulation of elasticity theory paved the way for a unifying mathematical description of such singular sources of stress, as ''elastic charges''. In this talk I will review basic results in this emerging field, focusing on the geometry and mechanics of elastic charges in two-dimensional solid bodies. I will demonstrate the applicability of this new approach in three different problems: failure of an amorphous solid under load, mechanics of Kirigami, and wrinkle patterns in geometrically-incompatible elastic sheets.
Modeling of wave processes in blocky media with porous and fluid-saturated interlayers
NASA Astrophysics Data System (ADS)
Sadovskii, Vladimir M.; Sadovskaya, Oxana V.; Lukyanov, Alexander A.
2017-09-01
The wave processes in blocky media are analyzed by applying different mathematical models, wherein the elastic blocks interact with each other via pliant interlayers with the complex mechanical properties. Four versions of constitutive equations are considered. In the first version, an elastic interaction between the blocks is simulated within the framework of linear elasticity theory, and the model of elastic-plastic interlayers is constructed to take into account the appearance of irreversible deformation of interlayers at short time intervals. In the second one, the effects of viscoelastic shear in the interblock interlayers are taken into the consideration using the Poynting-Thomson rheological scheme. In the third option, the model of an elastic porous material is used in the interlayers, where the pores collapse if an abrupt compressive stress is applied. In the fourth case, the model of a fluid-saturated material with open pores is examined based on Biot's equations. The collapse of pores is modeled by the generalized rheological approach, wherein the mechanical properties of a material are simulated using four rheological elements. Three of them are the traditional elastic, viscous and plastic elements, the fourth element is the so-called rigid contact, which is used to describe the behavior of materials with the different resistance to tension and compression. It was shown that the thermodynamically consistent model is provided, which means that the energy balance equation is fulfilled for an entire blocky structure, where the kinetic and potential energy of the system is the sum of the kinetic and potential energies of the blocks and interlayers. Under numerical implementation of the interlayers models, the dissipationless finite difference Ivanov's method was used. The splitting method by spatial variables in the combination with the Godunov gap decay scheme was applied in the blocks. As a result, robust and stable computational algorithms are built and tested. Using MPI technology, the parallel software was designed for the modeling of wave processes in 2D setting. The numerical results are presented, discussed and future studies are outlined.
Size and density avalanche scaling near jamming.
Arévalo, Roberto; Ciamarra, Massimo Pica
2014-04-28
The current microscopic picture of plasticity in amorphous materials assumes local failure events to produce displacement fields complying with linear elasticity. Indeed, the flow properties of nonaffine systems, such as foams, emulsions and granular materials close to jamming, that produce a fluctuating displacement field when failing, are still controversial. Here we show, via a thorough numerical investigation of jammed materials, that nonaffinity induces a critical scaling of the flow properties dictated by the distance to the jamming point. We rationalize this critical behavior by introducing a new universal jamming exponent and hyperscaling relationships, and we use these results to describe the volume fraction dependence of the friction coefficient.
Elastic-Plastic Thermal Stress Analysis of a High-Pressure Cryogenic Storage Tank
NASA Technical Reports Server (NTRS)
Barker, J. Mark; Field, Robert E. (Technical Monitor)
2003-01-01
The thermal stresses on a cryogenic storage tank contribute strongly to the state of stress of the tank material and its ability to withstand operational stresses. These thermal stresses also affect the growth of any surface damage that might occur in the tank walls. These stresses are particularly of concern during the initial cooldown period for a new tank placed into service, and during any subsequent thermal cycles. A previous preliminary elastic analysis showed that the thermal stress on the inner wall would reach approximately 1,000MPa (145,000 psi). This stress far exceeds the ASTM specified room temperature values for both yield (170MPa) and ultimate (485 MPa) strength for 304L stainless steel. The present analysis determines the thermal stresses using an elastic-plastic model. The commercial software application ANSYS was used to determine the transient spatial temperature profile and the associated spatial thermal stress profiles in a segment of a thick-walled vessel during a typical cooldown process. A strictly elastic analysis using standard material properties for 304L stainless steel showed that the maximum thermal stress on the inner and outer walls was approximately 960 MPa (tensile) and - 270 MPa (compressive) respectively. These values occurred early in the cooldown process, but at different times, An elastic-plastic analysis showed significantly reducing stress, as expected due to the plastic deformation of the material. The maximum stress for the inner wall was approximately 225 MPa (tensile), while the maximum stress for the outer wall was approximately - 130 MPa (compressive).
Elastic-Plastic J-Integral Solutions or Surface Cracks in Tension Using an Interpolation Methodology
NASA Technical Reports Server (NTRS)
Allen, P. A.; Wells, D. N.
2013-01-01
No closed form solutions exist for the elastic-plastic J-integral for surface cracks due to the nonlinear, three-dimensional nature of the problem. Traditionally, each surface crack must be analyzed with a unique and time-consuming nonlinear finite element analysis. To overcome this shortcoming, the authors have developed and analyzed an array of 600 3D nonlinear finite element models for surface cracks in flat plates under tension loading. The solution space covers a wide range of crack shapes and depths (shape: 0.2 less than or equal to a/c less than or equal to 1, depth: 0.2 less than or equal to a/B less than or equal to 0.8) and material flow properties (elastic modulus-to-yield ratio: 100 less than or equal to E/ys less than or equal to 1,000, and hardening: 3 less than or equal to n less than or equal to 20). The authors have developed a methodology for interpolating between the goemetric and material property variables that allows the user to reliably evaluate the full elastic-plastic J-integral and force versus crack mouth opening displacement solution; thus, a solution can be obtained very rapidly by users without elastic-plastic fracture mechanics modeling experience. Complete solutions for the 600 models and 25 additional benchmark models are provided in tabular format.
Spring back of infinite honeycomb sheets beyond plastic deformation
NASA Astrophysics Data System (ADS)
Bonfanti, A.; Bhaskar, A.
2015-02-01
Cellular structures are promising for applications where high stiffness and strength are required with the minimal use of material. They are often used in applications where the plastic deformation plays an important role, such as those involving crashworthiness, energy absorption, and stents. The elastic analysis of a honeycomb sheet has been carried out in the past [1]. The present analysis extends this classical work in the elasto-plastic regime. Recoil analysis due to elastic recovery is absent from the published literature. This work aims to develop an analytical model to calculate the spring back for a simplified case, that of an infinite honeycomb sheet. An elastic-perfectly plastic material model is assumed. The recoil for a clamped beam with a load and moment applied at the free edge is analytically calculated first. This is carried out by relating the stress distribution of the cross section to the final deformed shape. The part corresponding to the elastic contribution is subsequently subtracted in order to obtain the final configuration after the external load is removed. This simple elasto-plastic analysis is then incorporated into the analysis of an infinite sheet made of uniform hexagonal cells. The translational symmetry of the lattice is exploited along with the analysis of a beam under tip loading through to plastic stage and recoil. The final shape of the struts upon the removal of the remote stress is completely determined by the plastic deformation which cannot be recovered. The expression for the beam thus obtained is then used to build an analytical model for an infinite honeycomb sheet loaded in both directions.
Geometry and mechanics of two-dimensional defects in amorphous materials
Moshe, Michael; Levin, Ido; Aharoni, Hillel; Kupferman, Raz; Sharon, Eran
2015-01-01
We study the geometry of defects in amorphous materials and their elastic interactions. Defects are defined and characterized by deviations of the material’s intrinsic metric from a Euclidian metric. This characterization makes possible the identification of localized defects in amorphous materials, the formulation of a corresponding elastic problem, and its solution in various cases of physical interest. We present a multipole expansion that covers a large family of localized 2D defects. The dipole term, which represents a dislocation, is studied analytically and experimentally. Quadrupoles and higher multipoles correspond to fundamental strain-carrying entities. The interactions between those entities, as well as their interaction with external stress fields, are fundamental to the inelastic behavior of solids. We develop analytical tools to study those interactions. The model, methods, and results presented in this work are all relevant to the study of systems that involve a distribution of localized sources of strain. Examples are plasticity in amorphous materials and mechanical interactions between cells on a flexible substrate. PMID:26261331
Hydrodynamics with strength: scaling-invariant solutions for elastic-plastic cavity expansion models
NASA Astrophysics Data System (ADS)
Albright, Jason; Ramsey, Scott; Baty, Roy
2017-11-01
Spherical cavity expansion (SCE) models are used to describe idealized detonation and high-velocity impact in a variety of materials. The common theme in SCE models is the presence of a pressure-driven cavity or void within a domain comprised of plastic and elastic response sub-regions. In past work, the yield criterion characterizing material strength in the plastic sub-region is usually taken for granted and assumed to take a known functional form restrictive to certain classes of materials, e.g. ductile metals or brittle geologic materials. Our objective is to systematically determine a general functional form for the yield criterion under the additional requirement that the SCE admits a similarity solution. Solutions determined under this additional requirement have immediate implications toward development of new compressible flow algorithm verification test problems. However, more importantly, these results also provide novel insight into modeling the yield criteria from the perspective of hydrodynamic scaling.
NASA Technical Reports Server (NTRS)
Duberg, John E; Wilder, Thomas W , III
1952-01-01
The significant findings of a theoretical study of column behavior in the plastic stress range are presented. When the behavior of a straight column is regarded as the limiting behavior of an imperfect column as the initial imperfection (lack of straightness) approaches zero, the departure from the straight configuration occurs at the tangent-modulus load. Without such a concept of the behavior of a straight column, one is led to the unrealistic conclusion that lateral deflection of the column can begin at any load between the tangent-modulus value and the Euler load, based on the original elastic modulus. A family of curves showing load against lateral deflection is presented for idealized h-section columns of various lengths and of various materials that have a systematic variation of their stress-strain curves.
Field study of a pedestrian bridge of reinforced plastic.
DOT National Transportation Integrated Search
1985-01-01
A discussion of the behavior of the superstructure of a pedestrian bridge fabricated with glass-reinforced plastic under a field load test is presented. Experimental measurements of elastic vertical deflections were 1.8 times greater than those predi...
A constitutive model for AS4/PEEK thermoplastic composites under cyclic loading
NASA Technical Reports Server (NTRS)
Rui, Yuting; Sun, C. T.
1990-01-01
Based on the basic and essential features of the elastic-plastic response of the AS4/PEEK thermoplastic composite subjected to off-axis cyclic loadings, a simple rate-independent constitutive model is proposed to describe the orthotropic material behavior for cyclic loadings. A one-parameter memory surface is introduced to distinguish the virgin deformation and the subsequent deformation process and to characterize the loading range effect. Cyclic softening is characterized by the change of generalized plastic modulus. By the vanishing yield surface assumption, a yield criterion is not needed and it is not necessary to consider loading and unloading separately. The model is compared with experimental results and good agreement is obtained.
Impact Dynamics: Theory and Experiment
1980-10-01
in the HEMP QHydrodynamic, Elastic, Magneto & Plastic ) code, employ a quadrilateral grid and may be solved in plane coordinates or with cylindrical...material constitution, strain rate. localized plastic flow, and failure are manifest at various stages of the impact process. Typically, loading and...STRENGTH; DENSITY /A DOMINANT’ PARAMETER 104 - 500-1000ms-1 VISCOUS-MATERIAL POWDER GUNS STRENGTH STILL SIGNIFICANT 10 2 50- 500 ms- PRIMARILY PLASTIC
NASA Astrophysics Data System (ADS)
Williams, James; Tremblay, L. Bruno; Lemieux, Jean-François
2017-07-01
The plastic wave speed is derived from the linearized 1-D version of the widely used viscous-plastic (VP) and elastic-viscous-plastic (EVP) sea-ice models. Courant-Friedrichs-Lewy (CFL) conditions are derived using the propagation speed of the wave. 1-D numerical experiments of the VP, EVP and EVP* models successfully recreate a reference solution when the CFL conditions are satisfied, in agreement with the theory presented. The IMplicit-EXplicit (IMEX) method is shown to effectively alleviate the plastic wave CFL constraint on the timestep in the implicitly solved VP model in both 1-D and 2-D. In 2-D, the EVP and EVP* models show first order error in the simulated velocity field when the plastic wave is not resolved. EVP simulations are performed with various advective timestep, number of subcycles, and elastic-wave damping timescales. It is found that increasing the number of subcycles beyond that needed to resolve the elastic wave does not improve the quality of the solution. It is found that reducing the elastic wave damping timescale reduces the spatial extent of first order errors cause by the unresolved plastic wave. Reducing the advective timestep so that the plastic wave is resolved also reduces the velocity error in terms of magnitude and spatial extent. However, the parameter set required for convergence to within the error bars of satellite (RGPS) deformation fields is impractical for use in climate model simulations. The behavior of the EVP* method is analogous to that of the EVP method except that it is not possible to reduce the damping timescale with α = β.
Levrero-Florencio, Francesc; Pankaj, Pankaj
2018-01-01
Realistic macro-level finite element simulations of the mechanical behavior of trabecular bone, a cellular anisotropic material, require a suitable constitutive model; a model that incorporates the mechanical response of bone for complex loading scenarios and includes post-elastic phenomena, such as plasticity (permanent deformations) and damage (permanent stiffness reduction), which bone is likely to experience. Some such models have been developed by conducting homogenization-based multiscale finite element simulations on bone micro-structure. While homogenization has been fairly successful in the elastic regime and, to some extent, in modeling the macroscopic plastic response, it has remained a challenge with respect to modeling damage. This study uses a homogenization scheme to upscale the damage behavior from the tissue level (microscale) to the organ level (macroscale) and assesses the suitability of different damage constitutive laws. Ten cubic specimens were each subjected to 21 strain-controlled load cases for a small range of macroscopic post-elastic strains. Isotropic and anisotropic criteria were considered, density and fabric relationships were used in the formulation of the damage law, and a combined isotropic/anisotropic law with tension/compression asymmetry was formulated, based on the homogenized results, as a possible alternative to the currently used single scalar damage criterion. This computational study enhances the current knowledge on the macroscopic damage behavior of trabecular bone. By developing relationships of damage progression with bone's micro-architectural indices (density and fabric) the study also provides an aid for the creation of more precise macroscale continuum models, which are likely to improve clinical predictions.
Coupled THM processes in EDZ of crystalline rocks using an elasto-plastic cellular automaton
NASA Astrophysics Data System (ADS)
Pan, Peng-Zhi; Feng, Xia-Ting; Huang, Xiao-Hua; Cui, Qiang; Zhou, Hui
2009-05-01
This paper aims at a numerical study of coupled thermal, hydrological and mechanical processes in the excavation disturbed zones (EDZ) around nuclear waste emplacement drifts in fractured crystalline rocks. The study was conducted for two model domains close to an emplacement tunnel; (1) a near-field domain and (2) a smaller wall-block domain. Goodman element and weak element were used to represent the fractures in the rock mass and the rock matrix was represented as elasto-visco-plastic material. Mohr-Coulomb criterion and a non-associated plastic flow rule were adopted to consider the viscoplastic deformation in the EDZ. A relation between volumetric strain and permeability was established. Using a self-developed EPCA2D code, the elastic, elasto-plastic and creep analyses to study the evolution of stress and deformations, as well as failure and permeability evolution in the EDZ were conducted. Results indicate a strong impact of fractures, plastic deformation and time effects on the behavior of EDZ especially the evolution of permeability around the drift.
Elastic, plastic, fracture analysis of masonry arches: A multi-span bridge case study
NASA Astrophysics Data System (ADS)
Lacidogna, Giuseppe; Accornero, Federico
2018-01-01
In this work a comparison is presented between elastic, plastic, and fracture analysis of the monumental arch bridge of Porta Napoli, Taranto (Italy). By means of a FEM model and applying the Mery's Method, the behavior of the curved structure under service loads is verified, while considering the Safe Theorem approach byHeyman, the ultimate carrying capacity of the structure is investigated. Moreover, by using Fracture Mechanics concepts, the damage process which takes place when the conditions assessed through linear elastic analysis are no longer valid, and before the set-in of the conditions established by means of the plastic limit analysis, is numerically analyzed. The study of these transitions returns an accurate and effective whole service life assessment of the Porta Napoli masonry arch bridge.
NASA Astrophysics Data System (ADS)
Sadovskaya, Oxana; Sadovskii, Vladimir
2017-04-01
Under modeling the wave propagation processes in geomaterials (granular and porous media, soils and rocks) it is necessary to take into account the structural inhomogeneity of these materials. Parallel program systems for numerical solution of 2D and 3D problems of the dynamics of deformable media with constitutive relationships of rather general form on the basis of universal mathematical model describing small strains of elastic, elastic-plastic, granular and porous materials are worked out. In the case of an elastic material, the model is reduced to the system of equations, hyperbolic by Friedrichs, written in terms of velocities and stresses in a symmetric form. In the case of an elastic-plastic material, the model is a special formulation of the Prandtl-Reuss theory in the form of variational inequality with one-sided constraints on the stress tensor. Generalization of the model to describe granularity and the collapse of pores is obtained by means of the rheological approach, taking into account different resistance of materials to tension and compression. Rotational motion of particles in the material microstructure is considered within the framework of a mathematical model of the Cosserat continuum. Computational domain may have a blocky structure, composed of an arbitrary number of layers, strips in a layer and blocks in a strip from different materials with self-consistent curvilinear interfaces. At the external boundaries of computational domain the main types of dissipative boundary conditions in terms of velocities, stresses or mixed boundary conditions can be given. Shock-capturing algorithm is proposed for implementation of the model on supercomputers with cluster architecture. It is based on the two-cyclic splitting method with respect to spatial variables and the special procedures of the stresses correction to take into account plasticity, granularity or porosity of a material. An explicit monotone ENO-scheme is applied for solving one-dimensional systems of equations at the stages of splitting method. The parallelizing of computations is carried out using the MPI library and the SPMD technology. The data exchange between processors occurs at step "predictor" of the finite-difference scheme. Program systems allow simulate the propagation of waves produced by external mechanical effects in a medium, aggregated of arbitrary number of heterogeneous blocks. Some computations of dynamic problems with and without taking into account the moment properties of a material were performed on clusters of ICM SB RAS (Krasnoyarsk) and JSCC RAS (Moscow). Parallel program systems 2Dyn_Granular, 3Dyn_Granular, 2Dyn_Cosserat, 3Dyn_Cosserat and 2Dyn_Blocks_MPI for numerical solution of 2D and 3D elastic-plastic problems of the dynamics of granular media and problems of the Cosserat elasticity theory, as well as for modeling of the dynamic processes in multi-blocky media with pliant viscoelastic, porous and fluid-saturated interlayers on cluster systems were registered by Rospatent.
Atomic-scale modeling of cellulose nanocrystals
NASA Astrophysics Data System (ADS)
Wu, Xiawa
Cellulose nanocrystals (CNCs), the most abundant nanomaterials in nature, are recognized as one of the most promising candidates to meet the growing demand of green, bio-degradable and sustainable nanomaterials for future applications. CNCs draw significant interest due to their high axial elasticity and low density-elasticity ratio, both of which are extensively researched over the years. In spite of the great potential of CNCs as functional nanoparticles for nanocomposite materials, a fundamental understanding of CNC properties and their role in composite property enhancement is not available. In this work, CNCs are studied using molecular dynamics simulation method to predict their material' behaviors in the nanoscale. (a) Mechanical properties include tensile deformation in the elastic and plastic regions using molecular mechanics, molecular dynamics and nanoindentation methods. This allows comparisons between the methods and closer connectivity to experimental measurement techniques. The elastic moduli in the axial and transverse directions are obtained and the results are found to be in good agreement with previous research. The ultimate properties in plastic deformation are reported for the first time and failure mechanism are analyzed in details. (b) The thermal expansion of CNC crystals and films are studied. It is proposed that CNC film thermal expansion is due primarily to single crystal expansion and CNC-CNC interfacial motion. The relative contributions of inter- and intra-crystal responses to heating are explored. (c) Friction at cellulose-CNCs and diamond-CNCs interfaces is studied. The effects of sliding velocity, normal load, and relative angle between sliding surfaces are predicted. The Cellulose-CNC model is analyzed in terms of hydrogen bonding effect, and the diamond-CNC model compliments some of the discussion of the previous model. In summary, CNC's material properties and molecular models are both studied in this research, contributing to the present understanding of this material and leading to some possible future work.
Fracture mechanics validity limits
NASA Technical Reports Server (NTRS)
Lambert, Dennis M.; Ernst, Hugo A.
1994-01-01
Fracture behavior is characteristics of a dramatic loss of strength compared to elastic deformation behavior. Fracture parameters have been developed and exhibit a range within which each is valid for predicting growth. Each is limited by the assumptions made in its development: all are defined within a specific context. For example, the stress intensity parameters, K, and the crack driving force, G, are derived using an assumption of linear elasticity. To use K or G, the zone of plasticity must be small as compared to the physical dimensions of the object being loaded. This insures an elastic response, and in this context, K and G will work well. Rice's J-integral has been used beyond the limits imposed on K and G. J requires an assumption of nonlinear elasticity, which is not characteristic of real material behavior, but is thought to be a reasonable approximation if unloading is kept to a minimum. As well, the constraint cannot change dramatically (typically, the crack extension is limited to ten-percent of the initial remaining ligament length). Rice, et al investigated the properties required of J-type parameters, J(sub x), and showed that the time rate, dJ(sub x)/dt, must not be a function of the crack extension rate, da/dt. Ernst devised the modified-J parameter, J(sub M), that meets this criterion. J(sub M) correlates fracture data to much higher crack growth than does J. Ultimately, a limit of the validity of J(sub M) is anticipated, and this has been estimated to be at a crack extension of about 40-percent of the initial remaining ligament length. None of the various parameters can be expected to describe fracture in an environment of gross plasticity, in which case the process is better described by deformation parameters, e.g., stress and strain. In the current study, various schemes to identify the onset of the plasticity-dominated behavior, i.e., the end of fracture mechanics validity, are presented. Each validity limit parameter is developed in detail, and then data is presented and the various schemes for establishing a limit of the validity are compared. The selected limiting parameter is applied to a set of fracture data showing the improvement of correlation gained.
Elucidating the atomistic mechanisms underpinning plasticity in Li-Si nanostructures
NASA Astrophysics Data System (ADS)
Yan, Xin; Gouissem, Afif; Guduru, Pradeep R.; Sharma, Pradeep
2017-10-01
Amorphous lithium-silicon (a-Li-Si), especially in nanostructure form, is an attractive high-capacity anode material for next-generation Li-ion batteries. During cycles of charging and discharging, a-Li-Si undergoes substantive inelastic deformation and exhibits microcracking. The mechanical response to repeated lithiation-delithiation eventually results in the loss of electrical contact and consequent decrease of capacity, thus underscoring the importance of studying the plasticity of a-Li-Si nanostructures. In recent years, a variety of phenomenological continuum theories have been introduced that purport to model plasticity and the electro-chemo-mechanical behavior of a-Li-Si. Unfortunately, the micromechanisms and atomistic considerations underlying plasticity in Li-Si material are not yet fully understood and this impedes the development of physics-based constitutive models. Conventional molecular dynamics, although extensively used to study this material, is grossly inadequate to resolve this matter. As is well known, conventional molecular dynamics simulations can only address phenomena with characteristic time scales of (at most) a microsecond. Accordingly, in such simulations, the mechanical behavior is deduced under conditions of very high strain rates (usually, 108s-1 or even higher). This limitation severely impacts a realistic assessment of rate-dependent effects. In this work, we attempt to circumvent the time-scale bottleneck of conventional molecular dynamics and provide novel insights into the mechanisms underpinning plastic deformation of Li-Si nanostructures. We utilize an approach that allows imposition of slow strain rates and involves the employment of a new and recently developed potential energy surface sampling method—the so-called autonomous basin climbing—to identify the local minima in the potential energy surface. Combined with other techniques, such as nudged elastic band, kinetic Monte Carlo and transition state theory, we assess the behavior of a-Li-Si nanostructures under tensile strain rates ranging from 103 to 108s-1 . We find significant differences in the deformation behavior across the strain rates and discover that the well-known shear transformation zones (widely discussed in the context of amorphous materials) are formed by a "diffusionlike" process. We identify the rotation of the shear transformation zone as a key dissipation mechanism.
NASA Technical Reports Server (NTRS)
Rodal, J. J. A.; Witmer, E. A.
1979-01-01
A method of analysis for thin structures that incorporates finite strain, elastic-plastic, strain hardening, time dependent material behavior implemented with respect to a fixed configuration and is consistently valid for finite strains and finite rotations is developed. The theory is formulated systematically in a body fixed system of convected coordinates with materially embedded vectors that deform in common with continuum. Tensors are considered as linear vector functions and use is made of the dyadic representation. The kinematics of a deformable continuum is treated in detail, carefully defining precisely all quantities necessary for the analysis. The finite strain theory developed gives much better predictions and agreement with experiment than does the traditional small strain theory, and at practically no additional cost. This represents a very significant advance in the capability for the reliable prediction of nonlinear transient structural responses, including the reliable prediction of strains large enough to produce ductile metal rupture.
An analysis of hypercritical states in elastic and inelastic systems
NASA Astrophysics Data System (ADS)
Kowalczk, Maciej
The author raises a wide range of problems whose common characteristic is an analysis of hypercritical states in elastic and inelastic systems. the article consists of two basic parts. The first part primarily discusses problems of modelling hypercritical states, while the second analyzes numerical methods (so-called continuation methods) used to solve non-linear problems. The original approaches for modelling hypercritical states found in this article include the combination of plasticity theory and an energy condition for cracking, accounting for the variability and cyclical nature of the forms of fracture of a brittle material under a die, and the combination of plasticity theory and a simplified description of the phenomenon of localization along a discontinuity line. The author presents analytical solutions of three non-linear problems for systems made of elastic/brittle/plastic and elastic/ideally plastic materials. The author proceeds to discuss the analytical basics of continuation methods and analyzes the significance of the parameterization of non-linear problems, provides a method for selecting control parameters based on an analysis of the rank of a rectangular matrix of a uniform system of increment equations, and also provides a new method for selecting an equilibrium path originating from a bifurcation point. The author provides a general outline of continuation methods based on an analysis of the rank of a matrix of a corrective system of equations. The author supplements his theoretical solutions with numerical solutions of non-linear problems for rod systems and problems of the plastic disintegration of a notched rectangular plastic plate.
Miniaturization of Micro-Solder Bumps and Effect of IMC on Stress Distribution
NASA Astrophysics Data System (ADS)
Choudhury, Soud Farhan; Ladani, Leila
2016-07-01
As the joints become smaller in more advanced packages and devices, intermetallic (IMCs) volume ratio increases, which significantly impacts the overall mechanical behavior of joints. The existence of only a few grains of Sn (Tin) and IMC materials results in anisotropic elastic and plastic behavior which is not detectable using conventional finite element (FE) simulation with average properties for polycrystalline material. In this study, crystal plasticity finite element (CPFE) simulation is used to model the whole joint including copper, Sn solder and Cu6Sn5 IMC material. Experimental lap-shear test results for solder joints from the literature were used to validate the models. A comparative analysis between traditional FE, CPFE and experiments was conducted. The CPFE model was able to correlate the experiments more closely compared to traditional FE analysis because of its ability to capture micro-mechanical anisotropic behavior. Further analysis was conducted to evaluate the effect of IMC thickness on stress distribution in micro-bumps using a systematic numerical experiment with IMC thickness ranging from 0% to 80%. The analysis was conducted on micro-bumps with single crystal Sn and bicrystal Sn. The overall stress distribution and shear deformation changes as the IMC thickness increases. The model with higher IMC thickness shows a stiffer shear response, and provides a higher shear yield strength.
NASA Technical Reports Server (NTRS)
Allen, Phillip A.; Wells, Douglas N.
2013-01-01
No closed form solutions exist for the elastic-plastic J-integral for surface cracks due to the nonlinear, three-dimensional nature of the problem. Traditionally, each surface crack must be analyzed with a unique and time-consuming nonlinear finite element analysis. To overcome this shortcoming, the authors have developed and analyzed an array of 600 3D nonlinear finite element models for surface cracks in flat plates under tension loading. The solution space covers a wide range of crack shapes and depths (shape: 0.2 less than or equal to a/c less than or equal to 1, depth: 0.2 less than or equal to a/B less than or equal to 0.8) and material flow properties (elastic modulus-to-yield ratio: 100 less than or equal to E/ys less than or equal to 1,000, and hardening: 3 less than or equal to n less than or equal to 20). The authors have developed a methodology for interpolating between the goemetric and material property variables that allows the user to reliably evaluate the full elastic-plastic J-integral and force versus crack mouth opening displacement solution; thus, a solution can be obtained very rapidly by users without elastic-plastic fracture mechanics modeling experience. Complete solutions for the 600 models and 25 additional benchmark models are provided in tabular format.
1991-10-01
23 8. High Cycle Fatigue Crack Growth Data for Cast Stainless Steel Showing Comparison with Rolfe and Barsom Fit .......... 24 9. Cyclic Load...compared to the Rolfe /Barsom4 fatigue crack propagation equation for austenitic stainless steels in Fig. 8. ELASTIC-PLASTIC Cyclic J-testing was...place during both the compression and tensile loadings. The J-integral was calculated on each cycle using the Merkle -Corten 9 J equation as modified by
NASA Astrophysics Data System (ADS)
Kucher, N. K.; Dveyrin, A. Z.; Zarazovskii, M. N.; Zemtsov, M. P.
2004-05-01
The regularities of elastic deformation of multilayered fiberglass plastics reinforced with a fabric of sateen weave are studied. The effect of cooling to 77 K on the averaged elastic characteristics of the orthotropic material is analyzed. The efficiency of mathematical modeling in calculating the stiffness and compliance parameters of the woven composites based on the geometry and mechanical properties of their constituents is investigated.
Shaped Charge Jet Penetration of Discontinuous Media
1977-07-01
operational at the Ballistic1Research Laboratory. These codes are OIL, 1 TOIL, 2 DORF, 3 and HELP,4 ,5 which are Eulerian formulated, and HEMP ,6 which...ELastic Plastic ) is a FORTRAN code developed by Systems, Science and Software, Inc. It evolved from three major hydrodynamic codes previously developed...introduced into the treatment of moving surfaces. The HELP code, using the von Mises yield condition, treats materials as being elastic- plastic . The input for
Stress Wave Interactions with Tunnels Buried in Well-Characterized Jointed Media.
1980-06-01
27 14 Particle Velocity and Principal Stress Fields at 62 jisec for the Elastic- Plastic Media Model (Case 1, 0.8 kbar...is used; the basic formulation is similar to the HEMP code (Ref. 3) . Tn numerical solutions and material properties are luscriben in Section 3. 3...media is 16A rock simulant. The elastic- plastic properties are modeled with the following parameters: Bulk Modulus K = .131 Mbar Shear Modulus G
NASA Technical Reports Server (NTRS)
Hashin, Z. (Editor); Herakovich, C. T. (Editor)
1983-01-01
The present conference on the mechanics of composites discusses microstructure's influence on particulate and short fiber composites' thermoelastic and transport properties, the elastoplastic deformation of composites, constitutive equations for viscoplastic composites, the plasticity and fatigue of metal matrix composites, laminate damping mechanisms, the micromechanical modeling of Kevlar/epoxy composites' time-dependent failure, the variational characterization of waves in composites, and computational methods for eigenvalue problems in composite design. Also discussed are the elastic response of laminates, elastic coupling nonlinear effects in unsymmetrical laminates, elasticity solutions for laminate problems having stress singularities, the mechanics of bimodular composite structures, the optimization of laminated plates and shells, NDE for laminates, the role of matrix cracking in the continuum constitutive behavior of a damaged composite ply, and the energy release rates of various microcracks in short fiber composites.
Refractive index of r-cut sapphire under shock pressure range 5 to 65 GPa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Xiuxia; Li, Jiabo; Li, Jun
2014-09-07
High-pressure refractive index of optical window materials not only can provide information on electronic polarizability and band-gap structure, but also is important for velocity correction in particle-velocity measurement with laser interferometers. In this work, the refractive index of r-cut sapphire window at 1550 nm wavelength was measured under shock pressures of 5–65 GPa. The refractive index (n) decreases linearly with increasing shock density (ρ) for shock stress above the Hugoniot elastic limit (HEL): n = 2.0485 (± 0.0197) − 0.0729 (± 0.0043)ρ, while n remains nearly a constant for elastic shocks. This behavior is attributed to the transition from elastic (below HEL) to heterogeneous plastic deformationmore » (above HEL). Based on the obtained refractive index-density relationship, polarizability of the shocked sapphire was also obtained.« less
Testing Plastic Deformations of Materials in the Introductory Undergraduate Mechanics Laboratory
ERIC Educational Resources Information Center
Romo-Kroger, C. M.
2012-01-01
Normally, a mechanics laboratory at the undergraduate level includes an experiment to verify compliance with Hooke's law in materials, such as a steel spring and an elastic rubber band. Stress-strain curves are found for these elements. Compression in elastic bands is practically impossible to achieve due to flaccidity. A typical experiment for…
Modeling the impact behavior of high strength ceramics. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajendran, A.M.
1993-12-01
An advanced constitutive model is used to describe the shock and high strain rate behaviors of silicon carbide (SC), boron carbide B4C, and titanium diboride (TiB2) under impact loading conditions. The model's governing equations utilize a set of microphysically-based constitutive relationships to model the deformation and damage processes in a ceramic. The total strain is decomposed into elastic, plastic, and microcracking components. The plastic strain component was calculated using conventional viscoplastic equations. The strain components due to microcracking utilized relationships derived for a penny-shaped crack containing elastic solids. The main features of the model include degradation of strength and stiffnessmore » under both compressive and tensile loading conditions. When loaded above the Hugoniot elastic limit (HEL), the strength is limited by the strain rate dependent strength equation. However, below the HEL, the strength variation with respect to strain rate and pressure is modeled through microcracking relationships assuming no plastic flow. The ceramic model parameters were determined using a set of VISAR data from the plate impact experiments.« less
Generalized continuum modeling of scale-dependent crystalline plasticity
NASA Astrophysics Data System (ADS)
Mayeur, Jason R.
The use of metallic material systems (e.g. pure metals, alloys, metal matrix composites) in a wide range of engineering applications from medical devices to electronic components to automobiles continues to motivate the development of improved constitutive models to meet increased performance demands while minimizing cost. Emerging technologies often incorporate materials in which the dominant microstructural features have characteristic dimensions reaching into the submicron and nanometer regime. Metals comprised of such fine microstructures often exhibit unique and size-dependent mechanical response, and classical approaches to constitutive model development at engineering (continuum) scales, being local in nature, are inadequate for describing such behavior. Therefore, traditional modeling frameworks must be augmented and/or reformulated to account for such phenomena. Crystal plasticity constitutive models have proven quite capable of capturing first-order microstructural effects such as grain orientation (elastic/plastic anisotropy), grain morphology, phase distribution, etc. on the deformation behavior of both single and polycrystals, yet suffer from the same limitations as other local continuum theories with regard to capturing scale-dependent mechanical response. This research is focused on the development, numerical implementation, and application of a generalized (nonlocal) theory of single crystal plasticity capable of describing the scale-dependent mechanical response of both single and polycrystalline metals that arises as a result of heterogeneous deformation. This research developed a dislocation-based theory of micropolar single crystal plasticity. The majority of nonlocal crystal plasticity theories are predicated on the connection between gradients of slip and geometrically necessary dislocations. Due to the diversity of existing nonlocal crystal plasticity theories, a review, summary, and comparison of representative model classes is presented in Chapter 2 from a unified dislocation-based perspective. The discussion of the continuum crystal plasticity theories is prefaced by a brief review of discrete dislocation plasticity, which facilitates the comparison of certain model aspects and also serves as a reference for latter segments of the research which make connection to this constitutive description. Chapter 2 has utility not only as a literature review, but also as a synthesis and analysis of competing and alternative nonlocal crystal plasticity modeling strategies from a common viewpoint. The micropolar theory of single crystal plasticity is presented in Chapter 3. Two different types of flow criteria are considered - the so-called single and multicriterion theories, and several variations of the dislocation-based strength models appropriate for each theory are presented and discussed. The numerical implementation of the two-dimensional version of the constitutive theory is given in Chapter 4. A user element subroutine for the implicit commercial finite element code Abaqus/Standard is developed and validated through the solution of initial-boundary value problems with closed-form solutions. Convergent behavior of the subroutine is also demonstrated for an initial-boundary value problem exhibiting strain localization. In Chapter 5, the models are employed to solve several standard initial-boundary value problems for heterogeneously deforming single crystals including simple shearing of a semi-infinite constrained thin film, pure bending of thin films, and simple shearing of a metal matrix composite with elastic inclusions. The simulation results are compared to those obtained from the solution of equivalent boundary value problems using discrete dislocation dynamics and alternative generalized crystal plasticity theories. Comparison and calibration with respect to the former provides guidance in the specification of non-traditional material parameters that arise in the model formulation and demonstrates its effectiveness at capturing the heterogeneous deformation fields and size-dependent mechanical behavior predicted by a finer scale constitutive description. Finally, in Chapter 6, the models are applied to simulate the deformation behavior of small polycrystalline ensembles. Several grain boundary constitutive descriptions are explored and the response characteristics are analyzed with respect to experimental observations as well as results obtained from discrete dislocation dynamics and alternative nonlocal crystal plasticity theories. Particular attention is focused on how the various grain boundary descriptions serve to either locally concentrate or diffuse deformation heterogeneity as a function of grain size.
Development of a Practical Methodology for Elastic-Plastic and Fully Plastic Fatigue Crack Growth
NASA Technical Reports Server (NTRS)
McClung, R. C.; Chell, G. G.; Lee, Y. -D.; Russell, D. A.; Orient, G. E.
1999-01-01
A practical engineering methodology has been developed to analyze and predict fatigue crack growth rates under elastic-plastic and fully plastic conditions. The methodology employs the closure-corrected effective range of the J-integral, delta J(sub eff) as the governing parameter. The methodology contains original and literature J and delta J solutions for specific geometries, along with general methods for estimating J for other geometries and other loading conditions, including combined mechanical loading and combined primary and secondary loading. The methodology also contains specific practical algorithms that translate a J solution into a prediction of fatigue crack growth rate or life, including methods for determining crack opening levels, crack instability conditions, and material properties. A critical core subset of the J solutions and the practical algorithms has been implemented into independent elastic-plastic NASGRO modules. All components of the entire methodology, including the NASGRO modules, have been verified through analysis and experiment, and limits of applicability have been identified.
Development of a Practical Methodology for Elastic-Plastic and Fully Plastic Fatigue Crack Growth
NASA Technical Reports Server (NTRS)
McClung, R. C.; Chell, G. G.; Lee, Y.-D.; Russell, D. A.; Orient, G. E.
1999-01-01
A practical engineering methodology has been developed to analyze and predict fatigue crack growth rates under elastic-plastic and fully plastic conditions. The methodology employs the closure-corrected effective range of the J-integral, (Delta)J(sub eff), as the governing parameter. The methodology contains original and literature J and (Delta)J solutions for specific geometries, along with general methods for estimating J for other geometries and other loading conditions, including combined mechanical loading and combined primary and secondary loading. The methodology also contains specific practical algorithms that translate a J solution into a prediction of fatigue crack growth rate or life, including methods for determining crack opening levels, crack instability conditions, and material properties. A critical core subset of the J solutions and the practical algorithms has been implemented into independent elastic-plastic NASGRO modules. All components of the entire methodology, including the NASGRO modules, have been verified through analysis and experiment, and limits of applicability have been identified.
Gurrutxaga-Lerma, Beñat; Balint, Daniel S; Dini, Daniele; Eakins, Daniel E; Sutton, Adrian P
2015-05-01
When a metal is subjected to extremely rapid compression, a shock wave is launched that generates dislocations as it propagates. The shock wave evolves into a characteristic two-wave structure, with an elastic wave preceding a plastic front. It has been known for more than six decades that the amplitude of the elastic wave decays the farther it travels into the metal: this is known as "the decay of the elastic precursor." The amplitude of the elastic precursor is a dynamic yield point because it marks the transition from elastic to plastic behavior. In this Letter we provide a full explanation of this attenuation using the first method of dislocation dynamics to treat the time dependence of the elastic fields of dislocations explicitly. We show that the decay of the elastic precursor is a result of the interference of the elastic shock wave with elastic waves emanating from dislocations nucleated in the shock front. Our simulations reproduce quantitatively recent experiments on the decay of the elastic precursor in aluminum and its dependence on strain rate.
NASA Technical Reports Server (NTRS)
Reed, R. P.
1972-01-01
The elastic and plastic deformation behavior of high-purity aluminum and of dilute aluminum alloys is reviewed. Reliable property data, including elastic moduli, elastic coefficients, tensile, creep, fatigue, hardness, and impact are presented. Single crystal tensile results are discussed. Rather comprehensive reference lists, containing publications of the past 20 years, are included for each of the above categories. Defect structures and mechanisms responsible for mechanical behavior are presented. Strengthening techniques (alloys, cold work, irradiation, quenching, composites) and recovery are briefly reviewed.
Stress Intensity Factor Plasticity Correction for Flaws in Stress Concentration Regions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedman, E.; Wilson, W.K.
2000-02-01
Plasticity corrections to elastically computed stress intensity factors are often included in brittle fracture evaluation procedures. These corrections are based on the existence of a plastic zone in the vicinity of the crack tip. Such a plastic zone correction is included in the flaw evaluation procedure of Appendix A to Section XI of the ASME Boiler and Pressure Vessel Code. Plasticity effects from the results of elastic and elastic-plastic explicit flaw finite element analyses are examined for various size cracks emanating from the root of a notch in a panel and for cracks located at fillet fadii. The results ofmore » these caluclations provide conditions under which the crack-tip plastic zone correction based on the Irwin plastic zone size overestimates the plasticity effect for crack-like flaws embedded in stress concentration regions in which the elastically computed stress exceeds the yield strength of the material. A failure assessment diagram (FAD) curve is employed to graphically c haracterize the effect of plasticity on the crack driving force. The Option 1 FAD curve of the Level 3 advanced fracture assessment procedure of British Standard PD 6493:1991, adjusted for stress concentration effects by a term that is a function of the applied load and the ratio of the local radius of curvature at the flaw location to the flaw depth, provides a satisfactory bound to all the FAD curves derived from the explicit flaw finite element calculations. The adjusted FAD curve is a less restrictive plasticity correction than the plastic zone correction of Section XI for flaws embedded in plastic zones at geometric stress concentrators. This enables unnecessary conservatism to be removed from flaw evaluation procedures that utilize plasticity corrections.« less
A 3/D finite element approach for metal matrix composites based on micromechanical models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svobodnik, A.J.; Boehm, H.J.; Rammerstorfer, F.G.
Based on analytical considerations by Dvorak and Bahel-El-Din, a 3/D finite element material law has been developed for the elastic-plastic analysis of unidirectional fiber-reinforced metal matrix composites. The material law described in this paper has been implemented in the finite element code ABAQUS via the user subroutine UMAT. A constitutive law is described under the assumption that the fibers are linear-elastic and the matrix is of a von Mises-type with a Prager-Ziegler kinematic hardening rule. The uniaxial effective stress-strain relationship of the matrix in the plastic range is approximated by a Ramberg-Osgood law, a linear hardening rule or a nonhardeningmore » rule. Initial yield surface of the matrix material and for the fiber reinforced composite are compared to show the effect of reinforcement. Implementation of this material law in a finite element program is shown. Furthermore, the efficiency of substepping schemes and stress corrections for the numerical integration of the elastic-plastic stress-strain relations for anisotropic materials are investigated. The results of uniaxial monotonic tests of a boron/aluminum composite are compared to some finite element analyses based on micromechanical considerations. Furthermore a complete 3/D analysis of a tensile test specimen made of a silicon-carbide/aluminum MMC and the analysis of an MMC inlet inserted in a homogenous material are shown. 12 refs.« less
Relationship between fatigue life in the creep-fatigue region and stress-strain response
NASA Technical Reports Server (NTRS)
Berkovits, A.; Nadiv, S.
1988-01-01
On the basis of mechanical tests and metallographic studies, strainrange partitioned lives were predicted by introducing stress-strain materials parameters into the Universal Slopes Equation. This was the result of correlating fatigue damage mechanisms and deformation mechanisms operating at elevated temperatures on the basis of observed mechanical and microstructural behavior. Correlation between high temperature fatigue and stress strain properties for nickel base superalloys and stainless steel substantiated the method. Parameters which must be evaluated for PP- and CC- life are the maximum stress achievable under entirely plastic and creep conditions respectively and corresponding inelastic strains, and the elastic modulus. For plasticity/creep interaction conditions (PC and CP) two more pairs of stress strain parameters must be ascertained.
Lattice-level measurement of material strength with LCLS during ultrafast dynamic compression
NASA Astrophysics Data System (ADS)
Milathianaki, Despina; Boutet, Sebastien; Ratner, Daniel; White, William; Williams, Garth; Gleason, Arianna; Swift, Damian; Higginbotham, Andrew; Wark, Justin
2013-10-01
An in-depth understanding of the stress-strain behavior of materials during ultrafast dynamic compression requires experiments that offer in-situ observation of the lattice at the pertinent temporal and spatial scales. To date, the lattice response under extreme strain-rate conditions (>108 s-1) has been inferred predominantly from continuum-level measurements and multi-million atom molecular dynamics simulations. Several time-resolved x-ray diffraction experiments have captured important information on plasticity kinetics, while limited to nanosecond timescales due to the lack of high brilliance ultrafast x-ray sources. Here we present experiments at LCLS combining ultrafast laser-shocks and serial femtosecond x-ray diffraction. The high spectral brightness (~1012 photons per pulse, ΔE/E = 0.2%) and subpicosecond temporal resolution (<100 fs pulsewidth) of the LCLS x-ray free electron laser allow investigations that link simulations and experiments at the fundamental temporal and spatial scales for the first time. We present movies of the lattice undergoing rapid shock-compression, composed by a series of single femtosecond x-ray snapshots, demonstrating the transient behavior while successfully decoupling the elastic and plastic response in polycrystalline Cu.
Predicting shrinkage and warpage in injection molding: Towards automatized mold design
NASA Astrophysics Data System (ADS)
Zwicke, Florian; Behr, Marek; Elgeti, Stefanie
2017-10-01
It is an inevitable part of any plastics molding process that the material undergoes some shrinkage during solidification. Mainly due to unavoidable inhomogeneities in the cooling process, the overall shrinkage cannot be assumed as homogeneous in all volumetric directions. The direct consequence is warpage. The accurate prediction of such shrinkage and warpage effects has been the subject of a considerable amount of research, but it is important to note that this behavior depends greatly on the type of material that is used as well as the process details. Without limiting ourselves to any specific properties of certain materials or process designs, we aim to develop a method for the automatized design of a mold cavity that will produce correctly shaped moldings after solidification. Essentially, this can be stated as a shape optimization problem, where the cavity shape is optimized to fulfill some objective function that measures defects in the molding shape. In order to be able to develop and evaluate such a method, we first require simulation methods for the diffierent steps involved in the injection molding process that can represent the phenomena responsible for shrinkage and warpage ina sufficiently accurate manner. As a starting point, we consider the solidification of purely amorphous materials. In this case, the material slowly transitions from fluid-like to solid-like behavior as it cools down. This behavior is modeled using adjusted viscoelastic material models. Once the material has passed a certain temperature threshold during cooling, any viscous effects are neglected and the behavior is assumed to be fully elastic. Non-linear elastic laws are used to predict shrinkage and warpage that occur after this point. We will present the current state of these simulation methods and show some first approaches towards optimizing the mold cavity shape based on these methods.
Physical modeling of axisymmetric hydrofracturing by plastic material injection in elastic medium
NASA Astrophysics Data System (ADS)
Kolykhalov, I. V.
2018-03-01
The article describes the experimental and numerical investigation of hydraulic fracture propagation under injection of a plastic material near the free surface and the surface loaded by a die block to simulate the effect of an open fracture in the course of the multiple hydrofracturing. The experimental and calculated data are compared.
On the Plasticity of Amorphous Solids
NASA Astrophysics Data System (ADS)
Lin, Jie
Mechanical behaviors of amorphous materials under external stress are central to various phenomena including earthquakes and landslides. Most amorphous materials possess a well defined yield stress when thermal fluctuations are negligible. Only when the shear stress is above the yield stress, the material can flow as a fluid, otherwise it deforms as a solid. There are accumulating evidences that the yielding transition between the flowing and solid phase is a critical phenomenon, and one evidence is the long ranged correlations of plastic strain during adiabatic shear. In spite of this, we still have not fully understood the associated critical exponents and their scaling relations. In the last decade, it has been widely accepted that the elementary rearrangements in amorphous solids are not well-defined topological defects as crystals, instead they are local irreversible rearrangements of a few particles, denoted as shear transformations. Because a single shear transformation changes the local arrangement of particles, it therefore generates an elastic stress field propagating over the whole system. The resulting changes in the local stresses in other regions of the system may in turn trigger more shear transformations. A central feature that complicates the yielding transition is the long range and anisotropic stress field generated by shear transformations. This peculiar interaction between shear transformations leads to two important characteristics: 1.the mechanical noises generated by plastic deformation are broadly distributed 2.those regions that are undergoing plastic deformation has equal probability to make other parts of the material to be more stable or more unstable, depending on the direction between them. In this thesis, we show that these two important factors leads to a singular density of shear transformations, P( x) xtheta at small x, where x is a local measure of stability, namely, the extra stress one needs to add locally to reach the elastic instabilities. We denote such a singular distribution as a pseudo gap, and the theta exponent as the pseudo gap exponent. The fact that the plastic avalanche rates, i.e., number of avalanches per unit strain, during quasi-static shear is not proportional to system size implies the existence of a finite pseudo gap exponent. Arguments based on stability against local perturbations lead to a lower bound of the pseudo gap exponents. In the flowing phase, we construct the scaling description of the yielding transition of soft amorphous solids at zero temperature. The yielding transition shares similarities with another well studied dynamic phase transition, the depinning transition where an elastic interface is driven in a disordered medium, however, there are also striking differences between them. Avalanches are fractal in the yielding transition, characterized by a fractal dimension smaller than the spatial dimension, while avalanches are compact with a fractal dimension, not smaller than the spatial dimension in the depinning transition. We make connections between the Herschel-Bulkley exponent characterizing the singularity of the flow curve near the yield stress, the extension and duration of the avalanches of plasticity, and the pseudo gap exponent. On the other hand, in the solid phase, the pseudo gap also plays a significant role as one increases the shear stress adiabatically. We point out the connection between the local slope of stress-strain curve in the transient state and mean avalanche sizes as the system approaches failure. We argue that the entire solid phase below the yield stress is critical as long as there is finite amount of plastic strain, and plasticity always involves system-spanning events because of the finite pseudo gap exponent. We use the elasto-plastic model, a mesoscopic approach, to verify our theoretical predictions and obtain satisfying results. Finally, a mean field description of plastic flow in amorphous solids are proposed and solved analytically. The mean field models captures the broad distribution of mechanical noise generated by plasticity, leading to a biased Levy flight behavior of local stresses, with the elastic instabilities as the absorbing boundary. The mean field model implies an upper critical dimension as dc = 4.
NASA Astrophysics Data System (ADS)
Turangan, C. K.; Ball, G. J.; Jamaluddin, A. R.; Leighton, T. G.
2017-09-01
We present a study of shock-induced collapse of single bubbles near/attached to an elastic-plastic solid using the free-Lagrange method, which forms the latest part of our shock-induced collapse studies. We simulated the collapse of 40 μm radius single bubbles near/attached to rigid and aluminium walls by a 60 MPa lithotripter shock for various scenarios based on bubble-wall separations, and the collapse of a 255 μm radius bubble attached to aluminium foil with a 65 MPa lithotripter shock. The coupling of the multi-phases, compressibility, axisymmetric geometry and elastic-plastic material model within a single solver has enabled us to examine the impingement of high-speed liquid jets from the shock-induced collapsing bubbles, which imposes an extreme compression in the aluminium that leads to pitting and plastic deformation. For certain scenarios, instead of the high-speed jet, a radially inwards flow along the aluminium surface contracts the bubble to produce a `mushroom shape'. This work provides methods for quantifying which parameters (e.g. bubble sizes and separations from the solid) might promote or inhibit erosion on solid surfaces.
Mechanical behavior and fatigue performance of SMA short fiber reinforced MMC
NASA Astrophysics Data System (ADS)
Al-Matar, Basem Jawad
The mechanical behavior and performance of Shape Memory Alloy (SMA) short fiber NiTi reinforced Al was experimentally investigated for monotonic and fatigue test Al 6061 NiTi-SiC T6 was superior to unreinforced materials as well as to the reinforced Al T4. Taya three-dimensional model was performed on the monotonic tensile test at room temperature. It showed good agreement with experimental results. In order to utilize the compressive criterion for SMA, the NiTi reinforced Al composite was cooled at -10°C and prestrained at 1.2%. Beyond this limit composite suffered from damage. The net enhancement of SMA effect was around 10 MPa on composite yield stress. Results showed that the elastic constant for the composite did not change with loading and unloading suggesting that the inelastic behavior is plasticity. Further investigation on the inelastic behavior model as damage and/or plasticity by evaluating Poisson's ratio during loading was carried out by Adaptive Image Correlation Technique for Full-Field Strain Measurement. Poisson's ratio increased from around 0.33 to 0.5 demonstrating that it is plasticity that is responsible for the inelastic behavior. Scanning electron microscopy was also used and confirmed model results. The overall damage-behavior was quantified in terms of the post fatigue failure strength for low-cycle fatigue tests. Power law model was best to fit experimental findings.
Nonlinear problems of the theory of heterogeneous slightly curved shells
NASA Technical Reports Server (NTRS)
Kantor, B. Y.
1973-01-01
An account if given of the variational method of the solution of physically and geometrically nonlinear problems of the theory of heterogeneous slightly curved shells. Examined are the bending and supercritical behavior of plates and conical and spherical cupolas of variable thickness in a temperature field, taking into account the dependence of the elastic parameters on temperature. The bending, stability in general and load-bearing capacity of flexible isotropic elastic-plastic shells with different criteria of plasticity, taking into account compressibility and hardening. The effect of the plastic heterogeneity caused by heat treatment, surface work hardening and irradiation by fast neutron flux is investigated. Some problems of the dynamic behavior of flexible shells are solved. Calculations are performed in high approximations. Considerable attention is given to the construction of a machine algorithm and to the checking of the convergence of iterative processes.
A Unified Constitutive Model for Subglacial Till, Part I: The Disturbed State Concept
NASA Astrophysics Data System (ADS)
Jenson, J. W.; Desai, C. S.; Clark, P. U.; Contractor, D. N.; Sane, S. M.; Carlson, A. E.
2006-12-01
Classical plasticity models such as Mohr-Coulomb may not adequately represent the full range of possible motion and failure in tills underlying ice sheets. Such models assume that deformations are initially elastic, and that when a peak or failure stress level is reached the system experiences sudden failure, after which the stress remains constant and the deformations can tend to infinite magnitudes. However, theory suggests that the actual behavior of deforming materials, including granular materials such as glacial till, can involve plastic or irreversible strains almost from the beginning, in which localized zones of microcracking and "failure" can be distributed over the material element. As the loading increases, and with associated plastic and creep deformations, the distributed failure zones coalesce. When the extent of such coalesced zones reaches critical values of stresses and strains, the critical condition (failure) can occur in the till, which would cause associated movements of the ice sheet. Failure or collapse then may occur at much larger strain levels. Classical models (e.g., Mohr-Coulomb) may therefore not be able to fully and realistically characterize deformation behavior and the gradual developments of localized failures tending to the global failure and movements. We present and propose the application of the Disturbed State Concept (DSC), a unified model that incorporates the actual pre- and post-failure behavior, for characterizing the behavior of subglacial tills. In this presentation (Part I), we describe the DSC and propose its application to subglacial till. Part II (Desai et al.) describes our application of the DSC with laboratory testing, model calibration, and validations to evaluate the mechanical properties of two regionally significant Pleistocene tills.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Dongsheng; Ahzi, Said; M'Guil, S. M.
2014-01-06
The viscoplastic intermediate phi-model was applied in this work to predict the deformation behavior and texture evolution in a magnesium alloy, an HCP material. We simulated the deformation behavior with different intergranular interaction strengths and compared the predicted results with available experimental results. In this approach, elasticity is neglected and the plastic deformation mechanisms are assumed as a combination of crystallographic slip and twinning systems. Tests are performed for rolling (plane strain compression) of random textured Mg polycrystal as well as for tensile and compressive tests on rolled Mg sheets. Simulated texture evolutions agree well with experimental data. Activities of twinning and slip, predicted by the intermediatemore » $$\\phi$$-model, reveal the strong anisotropic behavior during tension and compression of rolled sheets.« less
Research on mechanical and sensoric set-up for high strain rate testing of high performance fibers
NASA Astrophysics Data System (ADS)
Unger, R.; Schegner, P.; Nocke, A.; Cherif, C.
2017-10-01
Within this research project, the tensile behavior of high performance fibers, such as carbon fibers, is investigated under high velocity loads. This contribution (paper) focuses on the clamp set-up of two testing machines. Based on a kinematic model, weight optimized clamps are designed and evaluated. By analyzing the complex dynamic behavior of conventional high velocity testing machines, it has been shown that the impact typically exhibits an elastic characteristic. This leads to barely predictable breaking speeds and will not work at higher speeds when acceleration force exceeds material specifications. Therefore, a plastic impact behavior has to be achieved, even at lower testing speeds. This type of impact behavior at lower speeds can be realized by means of some minor test set-up adaptions.
Effects of fine porosity on the fatigue behavior of a powder metallurgy superalloy
NASA Technical Reports Server (NTRS)
Miner, R. V., Jr.; Dreshfield, R. L.
1980-01-01
Hot isostatically pressed powder metallurgy Astroloy was obtained which contained 1.4 percent fine porosity at the grain boundaries produced by argon entering the powder container during pressing. This material was tested at 650 C in fatigue, creep fatigue, tension, and stress-rupture and the results compared with previous data on sound Astroloy. The pores averaged about 2 micrometers diameter and 20 micrometers spacing. They did influence fatigue crack initiation and produced a more intergranular mode of propagation. However, fatigue life was not drastically reduced. A large 25 micrometers pore in one specimen resulting from a hollow particle did not reduce life by 60 percent. Fatigue behavior of the porous material showed typical correlation with tensile behavior. The plastic strain range life relation was reduced proportionately with the reduction in tensile ductility, but the elastic strain range-life relation was little changed reflecting the small reduction in sigma sub u/E for the porous material.
The elastic and inelastic behavior of woven graphite fabric reinforced polyimide composites
NASA Astrophysics Data System (ADS)
Searles, Kevin H.
In many aerospace and conventional engineering applications, load-bearing composite structures are designed with the intent of being subjected to uniaxial stresses that are predominantly tensile or compressive. However, it is likely that biaxial and possibly triaxial states of stress will exist throughout the in-service life of the structure or component. The existing paradigm suggests that unidirectional tape materials are superior under uniaxial conditions since the vast majority of fibers lie in-plane and can be aligned to the loading axis. This may be true, but not without detriment to impact performance, interlaminar strength, strain to failure and complexity of part geometry. In circumstances where a sufficient balance of these properties is required, composites based on woven fabric reinforcements become attractive choices. In this thesis, the micro- and mesoscale elastic behavior of composites based on 8HS woven graphite fabric architectures and polyimide matrices is studied analytically and numerically. An analytical model is proposed to predict the composite elastic constants and is verified using numerical strain energy methods of equivalence. The model shows good agreement with the experiments and numerical strain energy equivalence. Lamina stresses generated numerically from in-plane shear loading show substantial shear and transverse normal stress concentrations in the transverse undulated tow which potentially leads to intralaminar damage. The macroscale inelastic behavior of the same composites is also studied experimentally and numerically. On an experimental basis, the biaxial and modified biaxial Iosipescu test methods are employed to study the weaker-mode shear and biaxial failure properties at room and elevated temperatures. On a numerical basis, the macroscale inelastic shear behavior of the composites is studied. Structural nonlinearities and material nonlinearities are identified and resolved. In terms of specimen-to-fixture interactions, load eccentricities, geometric (large strains and rotations) nonlinearities and boundary contact (friction) nonlinearities are explored. In terms of material nonlinearities, anisotropic plasticity and progressive damage are explored. A progressive damage criterion is proposed which accounts for the elastic strain energy densities in three directions. Of the types of nonlinearities studied, the nonlinear shear stress-strain behavior of the composites is principally from progressive intralaminar damage. Structural nonlinearities and elastoplastic deformation appear to be inconsequential.
NASA Technical Reports Server (NTRS)
Yang, J. C. S.; Tsui, C. Y.
1972-01-01
Analytical and experimental studies were made of the attenuation of the stress waves during passage through single and multilayer structures. The investigation included studies on elastic and plastic stress wave propagation in the composites and those on shock mitigating material characteristics such as dynamic stress-strain relations and energy absorbing properties. The results of the studies are applied to methods for reducing the stresses imposed on a spacecraft during planetary or ocean landings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henager, Charles H.; Nguyen, Ba Nghiep; Kurtz, Richard J.
2015-03-01
The use of SiC and SiC-composites in fission or fusion environments requires joining methods for assembling systems. The international fusion community designed miniature torsion specimens for joint testing and irradiation in test reactors with limited irradiation volumes. These torsion specimens fail out-of-plane when joints are strong and when elastic moduli are within a certain range compared to SiC, which causes difficulties in determining shear strengths for joints or for comparing unirradiated and irradiated joints. A finite element damage model was developed that indicates fracture is likely to occur within the joined pieces to cause out-of-plane failures for miniature torsion specimensmore » when a certain modulus and strength ratio between the joint material and the joined material exists. The model was extended to treat elastic-plastic joints such as SiC/epoxy and steel/epoxy joints tested as validation of the specimen design.« less
Characterization of elastic-plastic properties of AS4/APC-2 thermoplastic composite
NASA Technical Reports Server (NTRS)
Sun, C. T.; Yoon, K. J.
1988-01-01
Elastic and inelastic properties of AS4/APC-2 composites were characterized with respect to temperature variation by using a one-parameter orthotropic plasticity model and a one parameter failure criterion. Simple uniaxial off-axis tension tests were performed on coupon specimens of unidirectional AS4/APC-2 thermoplastic composite at various temperatures. To avoid the complication caused by the extension-shear coupling effect in off-axis testing, new tabs were designed and used on the test specimens. The experimental results showed that the nonlinear behavior of constitutive relations and the failure strengths can be characterized quite well using the one parameter plasticity model and the failure criterion, respectively.
NASA Astrophysics Data System (ADS)
Various papers on applied mathematics and mechanics are presented. Among the individual topics addressed are: dynamical systems with time-varying or unsteady structure, micromechanical modeling of creep rupture, forced vibrations of elastic sandwich plates with thick surface layers, postbuckling of a complete spherical shell under a line load, differential-geometric approach to the multibody system dynamics, stability of an oscillator with stochastic parametric excitation, identification strategies for crack-formation in rotors, identification of physical parameters of FEMs, impact model for elastic and partly plastic impacts on objects, varying delay and stability in dynamical systems. Also discussed are: parameter identification of a hybrid model for vibration analysis using the FEM, vibration behavior of a labyrinth seal with through-flow, similarities in the boundary layer of fiber composite materials, distortion parameter in shell theories, elastoplastic crack problem at finite strain, algorithm for computing effective stiffnesses of plates with periodic structure, plasticity of metal-matrix composites in a mixed stress-strain space formation, constitutive equations in directly formulated plate theories, microbuckling and homogenization for long fiber composites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henager, Charles H.; Nguyen, Ba Nghiep; Kurtz, Richard J.
2015-06-30
The international fusion community designed miniature torsion specimens for joint testing and irradiation in test reactors with limited irradiation volumes since SiC and SiC-composites used in fission or fusion environments require joining methods for assembling systems. Torsion specimens fail out-of-plane when joints are strong and when elastic moduli are comparable to SiC, which causes difficulties in determining shear strengths for many joints or for comparing unirradiated and irradiated joints. A finite element damage model was developed to treat elastic joints such as SiC/Ti3SiC2+SiC and elastic-plastic joints such as SiC/epoxy and steel/epoxy. The model uses constitutive shear data and is validatedmore » using epoxy joint data. The elastic model indicates fracture is likely to occur within the joined pieces to cause out-of-plane failures for miniature torsion specimens when a certain modulus and strength ratio between the joint material and the joined material exists. Lower modulus epoxy joints always fail in plane and provide good model validation.« less
Levitation of YBa2Cu3O(7-x) superconductor in a variable magnetic field
NASA Technical Reports Server (NTRS)
Terentiev, Alexander N.; Kuznetsov, Anatoliy A.
1992-01-01
The influence of both a linear alternating and rotational magnetic field component on the levitation behavior of a YBa2Cu3O(7-x) superconductor was examined. The transition from a plastic regime of levitation to an elastic one, induced by an alternating field component, was observed. An elastic regime in contrast to a plastic one is characterized by the unique position of stable levitation and field frequency dependence of relaxation time to this position. It was concluded that the vibrations of a magnet levitated above the superconductor can induce a transition from a plastic regime of levitation to an elastic one. It was found that a rotational magnetic field component induced rotations of a levitated superconductor. Rotational frictional motion of flux lines is likely to be an origin of torque developed. A prototype of a motor based on a levitated superconductor rotor is proposed.
NASA Astrophysics Data System (ADS)
Terekhina, A. I.; Plekhov, O. A.; Kostina, A. A.; Susmel, L.
2017-06-01
The problem of determining the strength of engineering structures, considering the effects of the non-local fracture in the area of stress concentrators is a great scientific and industrial interest. This work is aimed on modification of the classical theory of critical distance that is known as a method of failure prediction based on linear-elastic analysis in case of elasto-plastic material behaviour to improve the accuracy of estimation of lifetime of notched components. Accounting plasticity has been implemented with the use of the Simplified Johnson-Cook model. Mechanical tests were carried out using a 300 kN electromechanical testing machine Shimadzu AG-X Plus. The cylindrical un-notched specimens and specimens with stress concentrators of titanium alloy Grade2 were tested under tensile loading with different grippers travel speed, which ensured several orders of strain rate. The results of elasto-plastic analyses of stress distributions near a wide variety of notches are presented. The results showed that the use of the modification of the TCD based on elasto-plastic analysis gives us estimates falling within an error interval of ±5-10%, that more accurate predictions than the linear elastic TCD solution. The use of an improved description of the stress-strain state at the notch tip allows introducing the critical distances as a material parameter.
Lubricant Rheology in Concentrated Contacts
NASA Technical Reports Server (NTRS)
Jacobson, B. O.
1984-01-01
Lubricant behavior in highly stressed situtations shows that a Newtonian model for lubricant rheology is insufficient for explanation of traction behavior. The oil film build up is predicted by using a Newtonian lubricant model except at high slide to roll ratios and at very high loads, where the nonNewtonian behavior starts to be important already outside the Hertzian contact area. Static and dynamic experiments are reported. In static experiments the pressure is applied to the lubricant more than a million times longer than in an EHD contact. Depending on the pressure-temperature history of the experiment the lubricant will become a crystallized or amorphous solid at high pressures. In dynamic experiments, the oil is in an amorphous solid state. Depending on the viscosity, time scale, elasticity of the oil and the bearing surfaces, the oil film pressure, shear strain rate and the type of lubricant, different properties of the oil are important for prediction of shear stresses in the oil. The different proposed models for the lubricant, which describe it to a Newtonian liquid, an elastic liquid, a plastic liquid and an elastic-plastic solid.
Time-independent Anisotropic Plastic Behavior by Mechanical Subelement Models
NASA Technical Reports Server (NTRS)
Pian, T. H. H.
1983-01-01
The paper describes a procedure for modelling the anisotropic elastic-plastic behavior of metals in plane stress state by the mechanical sub-layer model. In this model the stress-strain curves along the longitudinal and transverse directions are represented by short smooth segments which are considered as piecewise linear for simplicity. The model is incorporated in a finite element analysis program which is based on the assumed stress hybrid element and the iscoplasticity-theory.
Elastic plastic fracture mechanics methodology for surface cracks
NASA Astrophysics Data System (ADS)
Ernst, Hugo A.; Boatwright, D. W.; Curtin, W. J.; Lambert, D. M.
1993-08-01
The Elastic Plastic Fracture Mechanics (EPFM) Methodology has evolved significantly in the last several years. Nevertheless, some of these concepts need to be extended further before the whole methodology can be safely applied to structural parts. Specifically, there is a need to include the effect of constraint in the characterization of material resistance to crack growth and also to extend these methods to the case of 3D defects. As a consequence, this project was started as a 36 month research program with the general objective of developing an EPFM methodology to assess the structural reliability of pressure vessels and other parts of interest to NASA containing defects. This report covers a computer modelling algorithm used to simulate the growth of a semi-elliptical surface crack; the presentation of a finite element investigation that compared the theoretical (HRR) stress field to that produced by elastic and elastic-plastic models; and experimental efforts to characterize three dimensional aspects of fracture present in 'two dimensional', or planar configuration specimens.
Elastic plastic fracture mechanics methodology for surface cracks
NASA Technical Reports Server (NTRS)
Ernst, Hugo A.; Boatwright, D. W.; Curtin, W. J.; Lambert, D. M.
1993-01-01
The Elastic Plastic Fracture Mechanics (EPFM) Methodology has evolved significantly in the last several years. Nevertheless, some of these concepts need to be extended further before the whole methodology can be safely applied to structural parts. Specifically, there is a need to include the effect of constraint in the characterization of material resistance to crack growth and also to extend these methods to the case of 3D defects. As a consequence, this project was started as a 36 month research program with the general objective of developing an EPFM methodology to assess the structural reliability of pressure vessels and other parts of interest to NASA containing defects. This report covers a computer modelling algorithm used to simulate the growth of a semi-elliptical surface crack; the presentation of a finite element investigation that compared the theoretical (HRR) stress field to that produced by elastic and elastic-plastic models; and experimental efforts to characterize three dimensional aspects of fracture present in 'two dimensional', or planar configuration specimens.
Thermo-elasto-viscoplastic analysis of problems in extension and shear
NASA Technical Reports Server (NTRS)
Riff, R.; Simitses, G. J.
1987-01-01
The problems of extension and shear behavior of structural elements made of carbon steel and subjected to large thermomechanical loads are investigated. The analysis is based on nonlinear geometric and constitutive relations, and is expressed in a rate form. The material constitutive equations are capable of reproducing all nonisothermal, elasto-viscoplastic characteristics. The results of the test problems show that: (1) the formulation can accommodate very large strains and rotations; (2) the model incorporates the simplification associated with rate-insensitive elastic response without losing the ability to model a rate-temperature dependent yield strength and plasticity; and (3) the formulation does not display oscillatory behavior in the stresses for the simple shear problem.
Healing in Unconsolidated Granular Earth Materials: a Mechanistic Theory
NASA Astrophysics Data System (ADS)
Lieou, C.; Daub, E. G.; Ecke, R. E.; Johnson, P. A.
2017-12-01
Abstract: Rock materials often display long-time relaxation, commonly termed aging or ``slow dynamics'', after the cessation of acoustic perturbations. In this presentation, we focus on unconsolidated rock materials and propose to explain such nonlinear relaxation through the Shear-Transformation-Zone (STZ) theory of granular media, adapted for small stresses and strains. The theory attributes the observed relaxation to the slow change of positions of constituent grains, and posits that the aging process can be described in three stages: fast recovery before some characteristic time associated with the fast nonlinear plasticity carriers, log-linear recovery of the elastic modulus at intermediate times, and gradual turnover to equilibrium steady-state behavior at long times. We demonstrate good agreement with experiments on aging in granular materials such as simulated fault gouge after an external disturbance.
On the elastic–plastic decomposition of crystal deformation at the atomic scale
Stukowski, Alexander; Arsenlis, A.
2012-03-02
Given two snapshots of an atomistic system, taken at different stages of the deformation process, one can compute the incremental deformation gradient field, F, as defined by continuum mechanics theory, from the displacements of atoms. However, such a kinematic analysis of the total deformation does not reveal the respective contributions of elastic and plastic deformation. We develop a practical technique to perform the multiplicative decomposition of the deformation field, F = F eF p, into elastic and plastic parts for the case of crystalline materials. The described computational analysis method can be used to quantify plastic deformation in a materialmore » due to crystal slip-based mechanisms in molecular dynamics and molecular statics simulations. The knowledge of the plastic deformation field, F p, and its variation with time can provide insight into the number, motion and localization of relevant crystal defects such as dislocations. As a result, the computed elastic field, F e, provides information about inhomogeneous lattice strains and lattice rotations induced by the presence of defects.« less
NASA Astrophysics Data System (ADS)
El Jai, Mostapha; Akhrif, Iatimad; Mesrar, Laila; Jabrane, Raouf
2018-05-01
The aim of this paper is to characterize mechanically the new micro-composites that have been developed in our laboratories. The composites are composed by natural clay (as a matrix) with variant percentages of Polyethylene Glycol 6000 (PEG 6000) as micro-fillers. We used the compression test for the measurement of the static parameters such as elasticity modulus in elastic region and the hardening coefficient which permits to describe the plasticity behaviour of the materials. An additional energetic approach is proposed in order to quantify the evolution of the plasticity of the reinforced materials, caused by the PEG 6000, for different percentages of this polymer.
Fatigue damage mechanisms in boron-aluminium composite laminates
NASA Technical Reports Server (NTRS)
Dvorak, G. J.; Johnson, W. S.
1980-01-01
The relationship between fatigue and shakedown in metal matrix composites is investigated theoretically and experimentally for unidirectional and laminated 6061 Al-B materials. It is shown that no fatigue damage takes place if the applied stress range is such that the material remains elastic, or shakes down, i.e., resumes elastic cyclic straining after a small number of plastic strain cycles. Fatigue damage occurs only in specimens subjected to stress ranges which cause sustained cyclic plastic straining in the aluminum matrix. If the applied stress range is smaller than that required for fatigue failure, after about 10 to the 6th cycles a saturation damage state is reached which remains essentially unchanged with increasing number of cycles.
Hard tissue as a composite material. I - Bounds on the elastic behavior.
NASA Technical Reports Server (NTRS)
Katz, J. L.
1971-01-01
Recent determination of the elastic moduli of hydroxyapatite by ultrasonic methods permits a re-examination of the Voigt or parallel model of the elastic behavior of bone, as a two phase composite material. It is shown that such a model alone cannot be used to describe the behavior of bone. Correlative data on the elastic moduli of dentin, enamel and various bone samples indicate the existence of a nonlinear dependence of elastic moduli on composition of hard tissue. Several composite models are used to calculate the bounds on the elastic behavior of these tissues. The limitations of these models are described, and experiments to obtain additional critical data are discussed.
Badgayan, Nitesh Dhar; Sahu, Santosh Kumar; Samanta, Sutanu; Rama Sreekanth, P S
2018-04-01
A thrust on improvement of different properties of polymer has taken a contemporary route with advent of nanofillers. Although several nanofillers are existent; MultiWalled Carbon Nanotubes- (MWCNTs) and h-Boron Nitride nanoplatelets-(h-BNNPs) unique combination of 1D and 2D dimensional geometry aids an advantage of B-C-N triad elemental effects on properties of tested samples. The current study aims to investigate the effects of MWCNT and h-BNNP reinforcement in High Density Polyethylene (HDPE) for high load bearing areas of medical applications requiring both elastic and viscous behavior. The results were analyzed keeping a view of its application in areas like HDPE based fracture fixation plates, acetabular cups and others. The composite and hybrid samples with different loadings were prepared after surface modification of nanofillers by mechanical mixing and molding technique. The dynamic nano-mechanical properties like storage modulus, loss modulus and tan delta were assessed for each sample during frequency swept from 10 to 220 Hz. The viscoelastic properties like h c /h m , H/E, elastic-plastic deformation were investigated and evaluated. At a frequency of 10 Hz, the storage and loss modulus of 0.1 CNT increased by 37.56% and decreased by 23.52% respectively on comparison with pure HDPE. This infers a good elastic as well as viscous behavior. Overall elastic behavior of 0.1 CNT was confirmed from tan delta evaluation. The interaction between B-C-N elemental triad had significant effect on creep strength, visco-damping property (h c /h m and H/E), elastic plastic displacement and pile-up and sink-in behavior. Highest creep strength and visco-damping property was exhibited by 0.25 CNT/0.15 BNNP hybrid. The elastic-plastic displacement of hybrid composite was noted as least, which decreased by 30% on comparison with pure HDPE. It can be inferred that presence of 1D-MWCNT and 2D-h-BNNP had significant effect on important dynamic viscoelastic and creep properties of HDPE based hybrid composites. Copyright © 2018 Elsevier Ltd. All rights reserved.
Correction of the post -- necking true stress -- strain data using instrumented nanoindentation
NASA Astrophysics Data System (ADS)
Romero Fonseca, Ivan Dario
The study of large plastic deformations has been the focus of numerous studies particularly in the metal forming processes and fracture mechanics fields. A good understanding of the plastic flow properties of metallic alloys and the true stresses and true strains induced during plastic deformation is crucial to optimize the aforementioned processes, and to predict ductile failure in fracture mechanics analyzes. Knowledge of stresses and strains is extracted from the true stress-strain curve of the material from the uniaxial tensile test. In addition, stress triaxiality is manifested by the neck developed during the last stage of a tensile test performed on a ductile material. This necking phenomenon is the factor responsible for deviating from uniaxial state into a triaxial one, then, providing an inaccurate description of the material's behavior after the onset of necking. The research of this dissertation is aimed at the development of a correction method for the nonuniform plastic deformation (post-necking) portion of the true stress-strain curve. The correction proposed is based on the well-known relationship between hardness and flow (yield) stress, except that instrumented nanoindentation hardness is utilized rather than conventional macro or micro hardness. Three metals with different combinations of strain hardening behavior and crystal structure were subjected to quasi-static tensile tests: power-law strain hardening low carbon G10180 steel (BCC) and electrolytic tough pitch copper C11000 (FCC), and linear strain hardening austenitic stainless steel S30400 (FCC). Nanoindentation hardness values, measured on the broken tensile specimen, were converted into flow stress values by means of the constraint factor C from Tabor's, the representative plastic strainepsilonr and the post-test true plastic strains measured. Micro Vickers hardness testing was carried out on the sample as well. The constraint factors were 5.5, 4.5 and 4.5 and the representative plastic strains were 0.028, 0.062 and 0.061 for G101800, C11000 and S30400 respectively. The established corrected curves relating post-necking flow stress to true plastic strain turned out to be well represented by a power-law function. Experimental results dictated that a unique single value for C and for epsilonr is not appropriate to describe materials with different plastic behaviors. Therefore, Tabor's equation, along with the representative plastic strain concept, has been misused in the past. The studied materials exhibited different nanohardness and plastic strain distributions due to their inherently distinct elasto-plastic response. The proposed post-necking correction separates out the effect of triaxiality on the uniaxial true stress-strain curve provided that the nanohardness-flow stress relationship is based on uniaxial values of stress. Some type of size effect, due to the microvoids at the tip of the neck, influenced nanohardness measurements. The instrumented nanoindentation technique proved to be a very suitable method to probe elasto-plastic properties of materials such as nanohardness, elastic modulus, and quasi-static strain rate sensitivity among others. Care should be taken when converting nanohardness to Vickers and vice versa due to their different area definition used. Nanohardness to Vickers ratio oscillated between 1.01 and 1.17.
Katz, Jeffrey M; Roopwani, Rahul; Buckner, Ira S
2013-10-01
Compressibility profiles, or functions of solid fraction versus applied pressure, are used to provide insight into the fundamental mechanical behavior of powders during compaction. These functions, collected during compression (in-die) or post ejection (out-of-die), indicate the amount of pressure that a given powder formulation requires to be compressed to a given density or thickness. To take advantage of the benefits offered by both methods, the data collected in-die during a single compression-decompression cycle will be used to generate the equivalent of a complete out-of-die compressibility profile that has been corrected for both elastic and viscoelastic recovery of the powder. This method has been found to be both a precise and accurate means of evaluating out-of-die compressibility for four common tableting excipients. Using this method, a comprehensive characterization of powder compaction behavior, specifically in relation to plastic/brittle, elastic and viscoelastic deformation, can be obtained. Not only is the method computationally simple, but it is also material-sparing. The ability to characterize powder compressibility using this approach can improve productivity and streamline tablet development studies. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.
1982-09-01
mechanics ( EPFM ) may be applied to engineering problems to determine material properties related to crack initiation and propagation. Specifically, these...Introduction The application of linear elastic fracture mechanics (LEFM) to engineering fracture analyses has become increasingly widespread and the use...structures to which the particular material was to be applied. The advent of elastic-plastic fracture mechanics ( EPFM ) has proven valuable because a
On stress field near a stationary crack tip
NASA Technical Reports Server (NTRS)
Nemat-Nasser, S.; Obata, M.
1984-01-01
It is well known that the stress and elastic-plastic deformation fields near a crack tip have important roles in the corresponding fracture process. For elastic-perfectly-plastic solids, different solutions are given in the literature. In this work several of these solutions are examined and compared for Mode I (tension), Mode II (shear), and mixed Modes I and II loading conditions in plane strain. By consideration of the dynamic solution, it is shown that the assumption that the material is yielding all around a crack tip may not be reasonable in all cases. By admitting the existence of some elastic sectors, continuous stress fields are obtained even for mixed Modes I and II.
Nonlinear Elastic J-Integral Measurements in Mode I Using a Tapered Double Cantilever Beam Geometry
NASA Technical Reports Server (NTRS)
Macon, David J.
2006-01-01
An expression for the J-integral of a nonlinear elastic material is derived for an advancing crack in a tapered double cantilever beam fracture specimen. The elastic and plastic fracture energies related to the test geometry and how these energies correlates to the crack position are discussed. The dimensionless shape factors eta(sub el and eta(sub p) are shown to be equivalent and the deformation J-integral is analyzed in terms of the eta(sub el) function. The fracture results from a structural epoxy are interpreted using the discussed approach. The magnitude of the plastic dissipation is found to strongly depend upon the initial crack shape.
A simplified method for elastic-plastic-creep structural analysis
NASA Technical Reports Server (NTRS)
Kaufman, A.
1984-01-01
A simplified inelastic analysis computer program (ANSYPM) was developed for predicting the stress-strain history at the critical location of a thermomechanically cycled structure from an elastic solution. The program uses an iterative and incremental procedure to estimate the plastic strains from the material stress-strain properties and a plasticity hardening model. Creep effects are calculated on the basis of stress relaxation at constant strain, creep at constant stress or a combination of stress relaxation and creep accumulation. The simplified method was exercised on a number of problems involving uniaxial and multiaxial loading, isothermal and nonisothermal conditions, dwell times at various points in the cycles, different materials and kinematic hardening. Good agreement was found between these analytical results and nonlinear finite element solutions for these problems. The simplified analysis program used less than 1 percent of the CPU time required for a nonlinear finite element analysis.
A simplified method for elastic-plastic-creep structural analysis
NASA Technical Reports Server (NTRS)
Kaufman, A.
1985-01-01
A simplified inelastic analysis computer program (ANSYPM) was developed for predicting the stress-strain history at the critical location of a thermomechanically cycled structure from an elastic solution. The program uses an iterative and incremental procedure to estimate the plastic strains from the material stress-strain properties and a plasticity hardening model. Creep effects are calculated on the basis of stress relaxation at constant strain, creep at constant stress or a combination of stress relaxation and creep accumulation. The simplified method was exercised on a number of problems involving uniaxial and multiaxial loading, isothermal and nonisothermal conditions, dwell times at various points in the cycles, different materials and kinematic hardening. Good agreement was found between these analytical results and nonlinear finite element solutions for these problems. The simplified analysis program used less than 1 percent of the CPU time required for a nonlinear finite element analysis.
NASA Astrophysics Data System (ADS)
Revil-Baudard, Benoit; Chandola, Nitin; Cazacu, Oana; Barlat, Frédéric
2014-10-01
The Swift phenomenon, which refers to the occurrence of permanent axial deformation during monotonic free-end torsion, has been known for a very long time. While plastic anisotropy is considered to be its main cause, there is no explanation as to why in certain materials irreversible elongation occurs while in others permanent shortening is observed. In this paper, a correlation between Swift effects and the stress-strain behavior in uniaxial tension and compression is established. It is based on an elastic-plastic model that accounts for the combined influence of anisotropy and tension-compression asymmetry. It is shown that, if for a given orientation the uniaxial yield stress in tension is larger than that in compression, the specimen will shorten when twisted about that direction; however, if the yield stress in uniaxial compression is larger than that in uniaxial tension, axial elongation will occur. Furthermore, it is shown that on the basis of a few simple mechanical tests it is possible to predict the particularities of the plastic response in torsion for both isotropic and initially anisotropic materials. Unlike other previous interpretations of the Swift effects, which were mainly based on crystal plasticity and/or texture evolution, it is explained the occurrence of Swift effects at small to moderate plastic strains. In particular, the very good quantitative agreement between model and data for a strongly anisotropic AZ31-Mg alloy confirm the correlation established in this work between tension-compression asymmetry and Swift effects. Furthermore, it is explained why the sign of the axial plastic strains that develop depends on the twisting direction.
Finite element based contact analysis of radio frequency MEMs switch membrane surfaces
NASA Astrophysics Data System (ADS)
Liu, Jin-Ya; Chalivendra, Vijaya; Huang, Wenzhen
2017-10-01
Finite element simulations were performed to determine the contact behavior of radio frequency (RF) micro-electro-mechanical (MEM) switch contact surfaces under monotonic and cyclic loading conditions. Atomic force microscopy (AFM) was used to capture the topography of RF-MEM switch membranes and later they were analyzed for multi-scale regular as well as fractal structures. Frictionless, non-adhesive contact 3D finite element analysis was carried out at different length scales to investigate the contact behavior of the regular-fractal surface using an elasto-plastic material model. Dominant micro-scale regular patterns were found to significantly change the contact behavior. Contact areas mainly cluster around the regular pattern. The contribution from the fractal structure is not significant. Under cyclic loading conditions, plastic deformation in the 1st loading/unloading cycle smooth the surface. The subsequent repetitive loading/unloading cycles undergo elastic contact without changing the morphology of the contacting surfaces. The work is expected to shed light on the quality of the switch surface contact as well as the optimum design of RF MEM switch surfaces.
Analytical Model for Thermal Elastoplastic Stresses of Functionally Graded Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, P. C.; Chen, G.; Liu, L. S.
2008-02-15
A modification analytical model is presented for the thermal elastoplastic stresses of functionally graded materials subjected to thermal loading. The presented model follows the analytical scheme presented by Y. L. Shen and S. Suresh [6]. In the present model, the functionally graded materials are considered as multilayered materials. Each layer consists of metal and ceramic with different volume fraction. The ceramic layer and the FGM interlayers are considered as elastic brittle materials. The metal layer is considered as elastic-perfectly plastic ductile materials. Closed-form solutions for different characteristic temperature for thermal loading are presented as a function of the structure geometriesmore » and the thermomechanical properties of the materials. A main advance of the present model is that the possibility of the initial and spread of plasticity from the two sides of the ductile layers taken into account. Comparing the analytical results with the results from the finite element analysis, the thermal stresses and deformation from the present model are in good agreement with the numerical ones.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peralta, Pedro; Fortin, Elizabeth; Opie, Saul
Activities for this grant included: 1) Development of dynamic impact experiments to probe strength and phase transition influence on dynamic deformation, 2) development of modern strength and phase aware simulation capabilities, 3) and post-processing of experimental data with simulation and closed form analytical techniques. Two different dynamic experiments were developed to probe material strengths in solid metals (largely copper and iron in this effort). In the first experiment a flyer plate impacts a flat target with an opposite rippled surface that is partially supported by a weaker window material. Post mortem analysis of the target sample showed a strong andmore » repeatable residual plastic deformation dependence on grain orientation. Yield strengths for strain rates near 10 5 s -1 and plastic strains near ~50% were estimated to be around 180 to 240 MPa, varying in this range with grain orientation. Unfortunately dynamic real-time measurements were difficult with this setup due to diagnostic laser scattering; hence, an additional experimental setup was developed to complement these results. In the second set of experiments a rippled surface was ablated by a controlled laser pulsed, which launched a rippled shock front to an opposite initially flat diagnostic surface that was monitored in real-time with spatially resolved velocimetry techniques, e.g., line VISAR in addition to Transient Imaging Displacement Interferometry (TIDI) displacement measurements. This setup limited the displacements at the diagnostic surface to a reasonable level for TIDI measurements (~ less than one micrometer). These experiments coupled with analytical and numerical solutions provided evidence that viscous and elastic deviatoric strength affect shock front perturbation evolution in clearly different ways. Particularly, normalized shock front perturbation amplitudes evolve with viscosity (η) and perturbation wavelength (λ) as η/λ, such that increasing viscosity (or decreasing the initial wavelength) delays the perturbation decay. Conversely our experimental data, analysis and simulations show that for materials with elastic yield strength Y the normalized shock perturbation amplitude evolves with Yλ/A 0, which shows wavelength increases have the opposite effect as in viscous materials and perturbation decay is also dependent on initial amplitude A 0 (viscous materials are independent of this parameter). Materials where strength had clear strain rate dependence, e.g., such as a PTW material law, behaved similarly to materials with only an effective yield stress (elastic-perfectly plastic) in the shock front perturbation studies obeying a Y effλA 0 relationship where Y eff was a constant (near ~400 MPa for Cu for strain rates around 10 6 s -1). Magnitude changes in strain rate would increase Y eff as would be expected from the PTW behavior, but small perturbations (typical of regions behind the shock front) near a mean had little effect. Additional work based on simulations showed that phase transformation kinetics can affect the behavior of the perturbed shock front as well as the evolution of the RM-like instability that develops due to the imprint of the perturbed shock front on the initially flat surface as the shock breaks out.« less
Elastic and plastic buckling of simply supported solid-core sandwich plates in compression
NASA Technical Reports Server (NTRS)
Seide, Paul; Stowell, Elbridge Z
1950-01-01
A solution is presented for the problem of the compressive buckling of simply supported, flat, rectangular, solid-core sandwich plates stressed either in the elastic range or in the plastic range. Charts for the analysis of long sandwich plates are presented for plates having face materials of 24s-t3 aluminum alloy, 76s-t6 alclad aluminum alloy, and stainless steel. A comparison of computed and experimental buckling stresses of square solid-core sandwich plates indicates fair agreement between theory and experiment.
Tatavarti, Aditya S; Muller, Francis X; Hoag, Stephen W
2008-02-04
Methacrylic acid copolymers have been shown to enhance release of weakly basic drugs from rate controlling polymer matrices through the mechanism of microenvironmental pH modulation. Since these matrices are typically formed through a compaction process, an understanding of the deformation behavior of these polymers in there neat form and in combination with rate controlling polymers such as HPMC is critical to their successful formulation. Binary mixes of two methacrylic acid copolymers, Eudragit L100 and L100-55 in combination with HPMC K4M were subjected to compaction studies on a compaction simulator. The deformation behavior of the powder mixes was analyzed based on pressure-porosity relationships, strain rate sensitivity (SRS), residual die wall force data and work of compaction. Methacrylic acid copolymers, L100-55 and L-100 and the hydrophilic polymer, HPMC K4M exhibited Heckel plots representative of plastic deformation although L-100 exhibited significantly greater resistance to densification as evident from the high yield pressure values ( approximately 120MPa). The yield pressures for the binary mixes were linearly related to the weight fractions of the components. All powder mixes exhibited significant speed sensitivity with SRS values ranging from 21.7% to 42.4%. The residual die-wall pressures indicated that at slow speeds (1mm/s) and at lower pressures (<150MPa), HPMC possesses significant elastic behavior. However, the good compacts formed at this punch speed indicate significant plastic deformation and bond formation which is able to predominate over the elastic recovery component. The apparent mean yield pressure values, the residual die-wall forces and the net work of compaction exhibited a linear relationship with mixture composition, thereby indicating predictability of these parameters based on the behavior of the neat materials.
Fundamental structure of steady plastic shock waves in metals
NASA Astrophysics Data System (ADS)
Molinari, A.; Ravichandran, G.
2004-02-01
The propagation of steady plane shock waves in metallic materials is considered. Following the constitutive framework adopted by R. J. Clifton [Shock Waves and the Mechanical Properties of Solids, edited by J. J. Burke and V. Weiss (Syracuse University Press, Syracuse, N.Y., 1971), p. 73] for analyzing elastic-plastic transient waves, an analytical solution of the steady state propagation of plastic shocks is proposed. The problem is formulated in a Lagrangian setting appropriate for large deformations. The material response is characterized by a quasistatic tensile (compression) test (providing the isothermal strain hardening law). In addition the elastic response is determined up to second order elastic constants by ultrasonic measurements. Based on this simple information, it is shown that the shock kinetics can be quite well described for moderate shocks in aluminum with stress amplitude up to 10 GPa. Under the later assumption, the elastic response is assumed to be isentropic, and thermomechanical coupling is neglected. The model material considered here is aluminum, but the analysis is general and can be applied to any viscoplastic material subjected to moderate amplitude shocks. Comparisons with experimental data are made for the shock velocity, the particle velocity and the shock structure. The shock structure is obtained by quadrature of a first order differential equation, which provides analytical results under certain simplifying assumptions. The effects of material parameters and loading conditions on the shock kinetics and shock structure are discussed. The shock width is characterized by assuming an overstress formulation for the viscoplastic response. The effects on the shock structure of strain rate sensitivity are analyzed and the rationale for the J. W. Swegle and D. E. Grady [J. Appl. Phys. 58, 692 (1985)] universal scaling law for homogeneous materials is explored. Finally, the ability to deduce information on the viscoplastic response of materials subjected to very high strain rates from shock wave experiments is discussed.
Influence of stress interaction on the behavior of off-axis unidirectional composites
NASA Technical Reports Server (NTRS)
Pindera, M. J.; Herakovich, C. T.
1980-01-01
The yield function for plane stress of a transversely isotropic composite lamina consisting of stiff, linearly elastic fibers and a von Mises matrix material is formulated in terms of Hill's elastic stress concentration factors and a single plastic constraint parameter. The above are subsequently evaluated on the basis of observed average lamina and constituent response for the Avco 5505 boron epoxy system. It is shown that inclusion of residual stresses in the yield function together with the incorporation of Dubey and Hillier's concept of generalized yield stress for anisotropic media in the constitutive equation correctly predicts the trends observed in experiments. The incorporation of the strong axial stress interaction necessary to predict the correct trends in the shear response is directly traced to the high residual axial stresses in the matrix induced during fabrication of the composite.
NASA Astrophysics Data System (ADS)
Chen, Ya-Zhou; Zhou, Liu-Cheng; He, Wei-Feng; Sun, Yu; Li, Ying-Hong; Jiao, Yang; Luo, Si-Hai
2017-01-01
Molecular dynamics simulations were used to study the plastic behavior of monocrystalline nickel under shock compression along the [100] and [110] orientations. The shock Hugoniot relation, local stress curve, and process of microstructure development were determined. Results showed the apparent anisotropic behavior of monocrystalline nickel under shock compression. The separation of elastic and plastic waves was also obvious. Plastic deformation was more severely altered along the [110] direction than the [100] direction. The main microstructure phase transformed from face-centered cubic to body-centered cubic and generated a large-scale and low-density stacking fault along the family of { 111 } crystal planes under shock compression along the [100] direction. By contrast, the main mechanism of plastic deformation in the [110] direction was the nucleation of the hexagonal, close-packed phase, which generated a high density of stacking faults along the [110] and [1̅10] directions.
Elastic energy distribution in bi-material lithosphere: implications for shear zone formation
NASA Astrophysics Data System (ADS)
So, B.; Yuen, D. A.
2013-12-01
Shear instability in the lithosphere can cause mechanical rupturing such as slab detachment and deep focus earthquake. Recent studies reported that bi-material interface, which refers to sharp elastic modulus contrast, plays an important role in triggering the instability [So and Yuen et al., 2012, GJI]. In present study, we performed two-dimensional numerical simulations to investigate the distribution of thermal-mechanical energy within the bi-material lithosphere. Under the far-field constant compression exerted on the domain, a larger elastic energy is accumulated into the compliant part than stiff medium. For instance, the compliant part has two times greater elastic energy density than surrounding stiff part, when the elastic modulus contrast between two different parts is five. Although these elastic energies in both parts are conversed into thermal energies after plastic yielding, denser elastic energy in the compliant is released more efficiently. This leads to efficient strength weakening and the subsequent ductile shear zone in the compliant part. We propose that strong shear heating occurs in lithosphere with the bi-material interface due to locally non-uniform distribution of the energy around the interface.
On the bending of structural materials with plastic anisotropic effect
NASA Astrophysics Data System (ADS)
Lachugin, D. V.; Pavilaynen, G. V.
2018-05-01
The study of a deformation features of metal alloys which are sensitive to tension or compression loading is an important technical challenge in the design and creation of a new shipbuilding and aircraft constructions. We use a mathematical model for the elastic-plastic bending of such material where SD(strength-different) parameter is taken into account. The problem is solved analytically and numerically. As an example of the material with the SD-effect the steel alloy is considered.
On the residual yield stress of shocked metals
NASA Astrophysics Data System (ADS)
Chapman, David; Eakins, Daniel; Savinykh, Andrey; Garkushin, Gennady; Kanel, Gennady; Razorenov, Sergey
2013-06-01
The measurement of the free-surface velocity is commonly employed in planar shock-compression experiments. It is known that the peak free-surface velocity of a shocked elastic-plastic material should be slightly less than twice the particle velocity behind shock front; this difference being proportional to the yield stress. Precise measurement of the free-surface velocity can be a rich source of information on the effects of time and strain on material hardening or softening. With this objective, we performed comparative measurements of the free-surface velocity of shock loaded aluminium AD1 and magnesium alloy Ma2 samples of various thicknesses in the range 0.2 mm to 5 mm. We observed the expected hysteresis in the elastic-plastic compression-unloading cycle for both AD1 and Ma2; where qualitatively the peak free-surface velocity increased with increasing specimen thickness. However, the relative change in magnitude of hysteresis as function of specimen thickness observed for the Ma2 alloy was smaller than expected given the large observed change in precursor magnitude. We propose that softening due to multiplication of dislocations is relatively large in Ma2 and results in a smaller hysteresis in the elastic-plastic cycle.
NASA Technical Reports Server (NTRS)
Paglietti, A.
1982-01-01
At high strain rates the heat produced by plastic deformation can give rise to a rate dependent response even if the material has rate independent constitutive equations. This effect has to be evaluated when interpreting a material test, or else it could erroneously be ascribed to viscosity. A general thermodynamic theory of tensile testing of elastic-plastic materials is given in this paper; it is valid for large strain at finite strain rates. It enables discovery of the parameters governing the thermodynamic strain rate effect, provides a method for proper interpretation of the results of the tests of dynamic plasticity, and suggests a way of planning experiments in order to detect the real contribution of viscosity.
Two-Dimensional Imaging Velocimetry of Heterogeneous Flow and Brittle Failure in Diamond
NASA Astrophysics Data System (ADS)
Ali, S. J.; Smith, R.; Erskine, D.; Eggert, J.; Celliers, P. M.; Collins, G. W.; Jeanloz, R.
2014-12-01
Understanding the nature and dynamics of heterogeneous flow in diamond subjected to shock compression is important for many fields of research, from inertial confinement fusion to the study of carbon rich planets. Waves propagating through a shocked material can be significantly altered by the various deformation mechanisms present in shocked materials, including anisotropic sound speeds, phase transformations, plastic/inelastic flow and brittle failure. Quantifying the spatial and temporal effects of these deformation mechanisms has been limited by a lack of diagnostics capable of obtaining simultaneous micron resolution spatial measurements and nanosecond resolution time measurements. We have utilized the 2D Janus High Resolution Velocimeter at LLNL to study the time and space dependence of fracture in shock-compressed diamond above the Hugoniot elastic limit. Previous work on the OMEGA laser facility (Rochester) has shown that the free-surface reflectivity of μm-grained diamond samples drops linearly with increasing sample pressure, whereas under the same conditions the reflectivity of nm-grained samples remains unaffected. These disparate observations can be understood by way of better documenting fracture in high-strain compression of diamond. To this end, we have imaged the development and evolution of elastic-wave propagation, plastic-wave propagation and fracture networks in the three primary orientations of single-crystal diamond, as well as in microcrystalline and nanocrystalline diamond, and find that the deformation behavior depends sensitively on the orientation and crystallinity of the diamonds.
Effective viscoelastic properties of shales.
NASA Astrophysics Data System (ADS)
Cornet, Jan; Dabrowski, Marcin; Schmid, Daniel
2017-04-01
Shales are often characterized as being elasto-plastic: they deform elastically for stresses below a certain yield and plastically at the limit. This approach dismisses any time dependent behavior that occurs in nature. Our goal is to better understand this time dependency by considering the visco-elastic behavior of shales before plasticity is reached. Shales are also typically heterogeneous and the question arises as to how to derive their effective properties in order to model them as a homogeneous medium. We model shales using inclusion based models due to their versatility and their ability to represent the microstructure. The inclusions represent competent quartz or calcite grains which are set in a viscous matrix made of clay minerals. Our approach relies on both numerical and analytical results in two dimension and we use them to cross check each other. The numerical results are obtained using MILAMIN, a fast-finite element solver for large problems, while the analytical solutions are based on the correspondence principle of linear viscoelasticity. This principle allows us to use the results on effective properties already derived for elastic bodies and to adapt them to viscoelastic bodies. We start by revisiting the problem of a single inclusion in an infinite medium and then move on to consider many inclusions.
NASA Astrophysics Data System (ADS)
Xu, Jinyang; El Mansori, Mohamed
2016-10-01
This paper studied the machinability of hybrid CFRP/Ti stack via the numerical approach. To this aim, an original FE model consisting of three fundamental physical constituents, i.e., CFRP phase, interface and Ti phase, was established in the Abaqus Explicit/code to construct the machining behavior of the composite-to-metal alliance. The CFRP phase was modeled as an equivalent homogeneous material (EHM) by considering its anisotropic behavior relative to the fiber orientation (θ) while the Ti alloy phase was assumed to exhibit isotropic and elastic-plastic behavior. The "interface" linking the "CFRP-to-Ti" contact boundary was physically modeled as an intermediate transition region through the concept of cohesive zone (CZ). Different constitutive laws and damage criteria were implemented to simulate the chip separation process of the bi-material system. The key cutting responses including specific cutting energy consumption, induced subsurface damage, and interface delamination were precisely addressed via the comprehensive FE analyses, and several key conclusions were drawn from this study.
Modeling Plastic Shocks in Periodic Laminates with Gradient Plasticity Theories
2007-08-26
stainless steel (SS)) layers with volume fractions being respectively, LLf /11= , LLf /22= . (3) Material characteristics of the...characteristics of polycarbonate and stainless steel Poisson ratio Elastic shear modulus Mass density PC...Polycarbonate) 0.37 0.94 Gpa 1190 kg/m3 SS ( Stainless steel ) 0.29 77 Gpa 7890 kg
Calculations of the Performance of Explosive Impulse Generators
1979-08-01
low impedance material such as lexan or some other plastic between the tungsten and the titanium, the stress is reduced even further. As we said...codes modeled after the HEMP family of codes^ cur- rently in use at the Lawrence Livermore Laboratory. The codes have a broad range of capabilities...for problems involving the dynamics of fluid and solid continua. They contain a full range of material property models including elastic- plastic flow
Ali, Murtaza N; Rehman, Ihtesham Ur
2011-11-01
Oesophageal cancer is the ninth leading cause of malignant cancer death and its prognosis remains poor. Dysphagia which is an inability to swallow is a presenting symptom of oesophageal cancer and is indicative of incurability. The goal of this study was to design and manufacture an Auxetic structure film and to configure this film as an Auxetic stent for the palliative treatment of oesophageal cancer, and for the prevention of dysphagia. Polypropylene was used as a material for its flexibility and non-toxicity. The Auxetic (rotating-square geometry) structure was made by laser cutting the polypropylene film. This flat structure was welded together to form a tubular form (stent), by an adjustable temperature control soldering iron station: following this, an annealing process was also carried out to ease any material stresses. Poisson's ratio was estimated and elastic and plastic deformation of the Auxetic structure was evaluated. The elastic and plastic deformation behaviours of the Auxetic polypropylene film were evaluated by applying repetitive uniaxial tensile loads. Observation of the structure showed that it was initially elastically deformed, thereafter plastic deformation occurred. This research discusses a novel way of fabricating an Auxetic structure (rotating-squares connected together through hinges) on Polypropylene films, by estimating the Poisson's ratio and evaluating the plastic deformation relevant to the expansion behaviour of an Auxetic stent within the oesophageal lumen.
Three-dimensional elastic-plastic finite-element analyses of constraint variations in cracked bodies
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.; Bigelow, C. A.; Shivakumar, K. N.
1993-01-01
Three-dimensional elastic-plastic (small-strain) finite-element analyses were used to study the stresses, deformations, and constraint variations around a straight-through crack in finite-thickness plates for an elastic-perfectly plastic material under monotonic and cyclic loading. Middle-crack tension specimens were analyzed for thicknesses ranging from 1.25 to 20 mm with various crack lengths. Three local constraint parameters, related to the normal, tangential, and hydrostatic stresses, showed similar variations along the crack front for a given thickness and applied stress level. Numerical analyses indicated that cyclic stress history and crack growth reduced the local constraint parameters in the interior of a plate, especially at high applied stress levels. A global constraint factor alpha(sub g) was defined to simulate three-dimensional effects in two-dimensional crack analyses. The global constraint factor was calculated as an average through-the-thickness value over the crack-front plastic region. Values of alpha(sub g) were found to be nearly independent of crack length and were related to the stress-intensity factor for a given thickness.
NASA Technical Reports Server (NTRS)
Coats, Timothy William
1996-01-01
An investigation of translaminate fracture and a progressive damage methodology was conducted to evaluate and develop a residual strength prediction capability for laminated composites with through penetration notches. This is relevant to the damage tolerance of an aircraft fuselage that might suffer an in-flight accident such as an uncontained engine failure. An experimental characterization of several composite materials systems revealed an R-curve type of behavior. Fractographic examinations led to the postulate that this crack growth resistance could be due to fiber bridging, defined here as fractured fibers of one ply bridged by intact fibers of an adjacent ply. The progressive damage methodology is currently capable of predicting the initiation and growth of matrix cracks and fiber fracture. Using two difference fiber failure criteria, residual strength was predicted for different size panel widths and notch lengths. A ply discount fiber failure criterion yielded extremely conservative results while an elastic-perfectly plastic fiber failure criterion showed that the fiber bridging concept is valid for predicting residual strength for tensile dominated failure loads. Furthermore, the R-curves predicted by the model using the elastic-perfectly plastic fiber criterion compared very well with the experimental R-curves.
Hooke's Law and the Stiffness of a Plastic Spoon
NASA Astrophysics Data System (ADS)
Pestka, Kenneth A.; Warren, Cori
2012-11-01
The study of elastic properties of solids is essential to both physics and engineering. Finding simple, easy-to-visualize examples to demonstrate these concepts is often difficult. In a previous article written by one of us (KAPII), a simple method for determining Youngs modulus using marshmallows was given. In this article we will illustrate another method to explore elastic properties of everyday materials. This experiment uses a common plastic spoon exposed to a transverse force in order to determine the stiffness constant, yield point, and rupture point of the plastic spoon. In addition, much like the "Youngs Modulus of a Marshmallow" activity, this experiment visually demonstrates Hooke's law, is fun and easy to perform, and leaves a lasting impression on the students.
NASA Technical Reports Server (NTRS)
Padovan, J.; Tovichakchaikul, S.
1983-01-01
This paper will develop a new solution strategy which can handle elastic-plastic-creep problems in an inherently stable manner. This is achieved by introducing a new constrained time stepping algorithm which will enable the solution of creep initiated pre/postbuckling behavior where indefinite tangent stiffnesses are encountered. Due to the generality of the scheme, both monotone and cyclic loading histories can be handled. The presentation will give a thorough overview of current solution schemes and their short comings, the development of constrained time stepping algorithms as well as illustrate the results of several numerical experiments which benchmark the new procedure.
Brake, M. R. W.
2015-02-17
Impact between metallic surfaces is a phenomenon that is ubiquitous in the design and analysis of mechanical systems. We found that to model this phenomenon, a new formulation for frictional elastic–plastic contact between two surfaces is developed. The formulation is developed to consider both frictional, oblique contact (of which normal, frictionless contact is a limiting case) and strain hardening effects. The constitutive model for normal contact is developed as two contiguous loading domains: the elastic regime and a transitionary region in which the plastic response of the materials develops and the elastic response abates. For unloading, the constitutive model ismore » based on an elastic process. Moreover, the normal contact model is assumed to only couple one-way with the frictional/tangential contact model, which results in the normal contact model being independent of the frictional effects. Frictional, tangential contact is modeled using a microslip model that is developed to consider the pressure distribution that develops from the elastic–plastic normal contact. This model is validated through comparisons with experimental results reported in the literature, and is demonstrated to be significantly more accurate than 10 other normal contact models and three other tangential contact models found in the literature.« less
NASA Astrophysics Data System (ADS)
Mann, Ruddy; Magnier, Vincent; Serrano-Munoz, Itziar; Brunel, Jean-Francois; Brunel, Florent; Dufrenoy, Philippe; Henrion, Michele
2017-12-01
Friction materials for braking applications are complex composites made of many components to ensure the various performances required (friction coefficient level, low wear, mechanical strength, thermal resistance, etc.). The material is developed empirically by a trial and error approach. With the solicitation, the material evolves and probably also its properties. In the literature, the mechanical behavior of such materials is generally considered as linear elastic and independent of the loading history. This paper describes a methodology to characterize the mechanical behavior of such a heterogeneous material in order to investigate its non-linear mechanical behavior. Results from mechanical tests are implemented into material laws for numerical simulations. Thanks to the instrumentation, some links with the microstructure can also be proposed. The material is made of a metallic matrix embedding graphite and ceramic particles and is manufactured by sintering. It is used for dry friction applications such as high-energy brake for trains, cars and motorcycles. Compression tests are done with digital image correlation to measure full-filled displacement. It allows to calculate strain fields with enough resolution to identify the material heterogeneity and the role of some of the components of the formulation. A behavior model of the material with plasticity and damage is proposed to simulate the non-linear mechanical behavior and is implemented in an FEM code. Results of mechanical test simulations are compared with two types of experiments showing good agreement. This method thus makes it possible to determine mechanical properties at a virgin state but is extensible for characterizing a material having been submitted to braking solicitations.
The behavior of commensurate-incommensurate transitions using the phase field crystal model
NASA Astrophysics Data System (ADS)
Zhang, Tinghui; Lu, Yanli; Chen, Zheng
2018-02-01
We study the behavior of the commensurate-incommensurate (CI) transitions by using a phase field crystal model. The model is capable of modeling both elastic and plastic deformation and can simulate the evolution of the microstructure of the material at the atomic scale and the diffusive time scale, such as for adsorbed monolayer. Specifically, we study the behavior of the CI transitions as a function of lattice mismatch and the amplitude of substrate pinning potential. The behavior of CI phase transitions is revealed with the increase of the amplitude of pinning potential in some certain lattice mismatches. We find that for the negative lattice mismatch absorbed monolayer undergoes division, reorganization and displacement as increasing the amplitude of substrate pinning potential. In addition, for the positive mismatch absorbed monolayer undergoes a progress of phase transformation after a complete grain is split. Our results accord with simulations for atomic models of absorbed monolayer on a substrate surface.
Elastic-plastic finite-element analyses of thermally cycled single-edge wedge specimens
NASA Technical Reports Server (NTRS)
Kaufman, A.
1982-01-01
Elastic-plastic stress-strain analyses were performed for single-edge wedge alloys subjected to thermal cycling in fluidized beds. Three cases (NASA TAZ-8A alloy under one cycling condition and 316 stainless steel alloy under two cycling conditions) were analyzed by using the MARC nonlinear, finite-element computer program. Elastic solutions from MARC showed good agreement with previously reported solutions that used the NASTRAN and ISO3DQ computer programs. The NASA TAZ-8A case exhibited no plastic strains, and the elastic and elastic-plastic analyses gave identical results. Elastic-plastic analyses of the 316 stainless steel alloy showed plastic strain reversal with a shift of the mean stresses in the compressive direction. The maximum equivalent total strain ranges for these cases were 13 to 22 percent greater than that calculated from elastic analyses.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foulk, James W.; Alleman, Coleman N.; Mota, Alejandro
The heterogeneity in mechanical fields introduced by microstructure plays a critical role in the localization of deformation. To resolve this incipient stage of failure, it is therefore necessary to incorporate microstructure with sufficient resolution. On the other hand, computational limitations make it infeasible to represent the microstructure in the entire domain at the component scale. In this study, the authors demonstrate the use of concurrent multi- scale modeling to incorporate explicit, finely resolved microstructure in a critical region while resolving the smoother mechanical fields outside this region with a coarser discretization to limit computational cost. The microstructural physics is modeledmore » with a high-fidelity model that incorporates anisotropic crystal elasticity and rate-dependent crystal plasticity to simulate the behavior of a stainless steel alloy. The component-scale material behavior is treated with a lower fidelity model incorporating isotropic linear elasticity and rate-independent J 2 plas- ticity. The microstructural and component scale subdomains are modeled concurrently, with coupling via the Schwarz alternating method, which solves boundary-value problems in each subdomain separately and transfers solution information between subdomains via Dirichlet boundary conditions. Beyond cases studies in concurrent multiscale, we explore progress in crystal plastic- ity through modular designs, solution methodologies, model verification, and extensions to Sierra/SM and manycore applications. Advances in conformal microstructures having both hexahedral and tetrahedral workflows in Sculpt and Cubit are highlighted. A structure-property case study in two-phase metallic composites applies the Materials Knowledge System to local metrics for void evolution. Discussion includes lessons learned, future work, and a summary of funded efforts and proposed work. Finally, an appendix illustrates the need for two-way coupling through a single degree of freedom.« less
The dynamic behavior of mortar under impact-loading
NASA Astrophysics Data System (ADS)
Kawai, Nobuaki; Inoue, Kenji; Misawa, Satoshi; Tanaka, Kyoji; Hayashi, Shizuo; Kondo, Ken-Ichi; Riedel, Werner
2007-06-01
Concrete and mortar are the most fundamental structural material. Therefore, considerable interest in characterizing the dynamic behavior of them under impact-loading exists. In this study, plate impact experiments have been performed to determine the dynamic behavior of mortar. Longitudinal and lateral stresses have been directly measured by means of embedded polyvinylidene fluoride (PVDF) gauges up to 1 GPa. A 200 mm-cal. powder gun enable us to measure longitudinal and lateral stresses at several point from the impact surface, simultaneously. The shear strength under impact-loading has been obtained from measured longitudinal and lateral stresses. The longitudinal stress profile shows a two-wave structure. It is indicated that this structure is associated with the onset of pore compaction and failure of mortar by comparing with hydrocode simulations using an elastic-plastic damage model for concrete.
Indentation cracking of composite matrix materials.
Baran, G; Shin, W; Abbas, A; Wunder, S
1994-08-01
Composite restorative materials wear by a fatigue mechanism in the occlusal contact area. Here, tooth cusps and food debris cyclically indent the restoration. Modeling this phenomenon requires an understanding of material response to indentation. The question in this study was whether material response depends on indenter size and geometry, and also, whether polymers used in restorative materials should be considered elastic and brittle, or plastic and ductile for modeling purposes. Three resins used as matrices in proprietary restorative composites were the experimental materials. To ascertain the influence of glass transition temperature, liquid sorption, and small amounts of filler on indentation response, we prepared materials with various degrees of cure; some samples were soaked in a 50/50 water/ethanol solution, and 3 vol% silica was added in some cases. Indentation experiments revealed that no cracking occurred in any material after indentation by Vickers pyramid or spherical indenters with diameters equal to or smaller than 0.254 mm. Larger spherical indenters induced subsurface median and surface radial and/or ring cracks. Critical loads causing subsurface cracks were measured. Indentation with suitably large spherical indenters provoked an elastoplastic response in polymers, and degree of cure and Tg had less influence on critical load than soaking in solution. Crack morphology was correlated with yield strain. Commonly held assumptions regarding the brittle elastic behavior of composite matrix materials may be incorrect.
NASA Astrophysics Data System (ADS)
Mohan, Nisha
Compliant foams are usually characterized by a wide range of desirable mechanical properties. These properties include viscoelasticity at different temperatures, energy absorption, recoverability under cyclic loading, impact resistance, and thermal, electrical, acoustic and radiation-resistance. Some foams contain nano-sized features and are used in small-scale devices. This implies that the characteristic dimensions of foams span multiple length scales, rendering modeling their mechanical properties difficult. Continuum mechanics-based models capture some salient experimental features like the linear elastic regime, followed by non-linear plateau stress regime. However, they lack mesostructural physical details. This makes them incapable of accurately predicting local peaks in stress and strain distributions, which significantly affect the deformation paths. Atomistic methods are capable of capturing the physical origins of deformation at smaller scales, but suffer from impractical computational intensity. Capturing deformation at the so-called meso-scale, which is capable of describing the phenomenon at a continuum level, but with some physical insights, requires developing new theoretical approaches. A fundamental question that motivates the modeling of foams is `how to extract the intrinsic material response from simple mechanical test data, such as stress vs. strain response?' A 3D model was developed to simulate the mechanical response of foam-type materials. The novelty of this model includes unique features such as the hardening-softening-hardening material response, strain rate-dependence, and plastically compressible solids with plastic non-normality. Suggestive links from atomistic simulations of foams were borrowed to formulate a physically informed hardening material input function. Motivated by a model that qualitatively captured the response of foam-type vertically aligned carbon nanotube (VACNT) pillars under uniaxial compression [2011,"Analysis of Uniaxial Compression of Vertically Aligned Carbon Nanotubes," J. Mech.Phys. Solids, 59, pp. 2227--2237, Erratum 60, 1753-1756 (2012)], the property space exploration was advanced to three types of simple mechanical tests: 1) uniaxial compression, 2) uniaxial tension, and 3) nanoindentation with a conical and a flat-punch tip. The simulations attempt to explain some of the salient features in experimental data, like 1) The initial linear elastic response. 2) One or more nonlinear instabilities, yielding, and hardening. The model-inherent relationships between the material properties and the overall stress-strain behavior were validated against the available experimental data. The material properties include the gradient in stiffness along the height, plastic and elastic compressibility, and hardening. Each of these tests was evaluated in terms of their efficiency in extracting material properties. The uniaxial simulation results proved to be a combination of structural and material influences. Out of all deformation paths, flat-punch indentation proved to be superior since it is the most sensitive in capturing the material properties.
Assessment of compressive failure process of cortical bone materials using damage-based model.
Ng, Theng Pin; R Koloor, S S; Djuansjah, J R P; Abdul Kadir, M R
2017-02-01
The main failure factors of cortical bone are aging or osteoporosis, accident and high energy trauma or physiological activities. However, the mechanism of damage evolution coupled with yield criterion is considered as one of the unclear subjects in failure analysis of cortical bone materials. Therefore, this study attempts to assess the structural response and progressive failure process of cortical bone using a brittle damaged plasticity model. For this reason, several compressive tests are performed on cortical bone specimens made of bovine femur, in order to obtain the structural response and mechanical properties of the material. Complementary finite element (FE) model of the sample and test is prepared to simulate the elastic-to-damage behavior of the cortical bone using the brittle damaged plasticity model. The FE model is validated in a comparative method using the predicted and measured structural response as load-compressive displacement through simulation and experiment. FE results indicated that the compressive damage initiated and propagated at central region where maximum equivalent plastic strain is computed, which coincided with the degradation of structural compressive stiffness followed by a vast amount of strain energy dissipation. The parameter of compressive damage rate, which is a function dependent on damage parameter and the plastic strain is examined for different rates. Results show that considering a similar rate to the initial slope of the damage parameter in the experiment would give a better sense for prediction of compressive failure. Copyright © 2016 Elsevier Ltd. All rights reserved.
Williams, J G; Patel, Y
2016-06-06
The process of cutting is analysed in fracture mechanics terms with a view to quantifying the various parameters involved. The model used is that of orthogonal cutting with a wedge removing a layer of material or chip. The behaviour of the chip is governed by its thickness and for large radii of curvature the chip is elastic and smooth cutting occurs. For smaller thicknesses, there is a transition, first to plastic bending and then to plastic shear for small thicknesses and smooth chips are formed. The governing parameters are tool geometry, which is principally the wedge angle, and the material properties of elastic modulus, yield stress and fracture toughness. Friction can also be important. It is demonstrated that the cutting process may be quantified via these parameters, which could be useful in the study of cutting in biology.
Nano-Scale Characterization of Al-Mg Nanocrystalline Alloys
NASA Astrophysics Data System (ADS)
Harvey, Evan; Ladani, Leila
Materials with nano-scale microstructure have become increasingly popular due to their benefit of substantially increased strengths. The increase in strength as a result of decreasing grain size is defined by the Hall-Petch equation. With increased interest in miniaturization of components, methods of mechanical characterization of small volumes of material are necessary because traditional means such as tensile testing becomes increasingly difficult with such small test specimens. This study seeks to characterize elastic-plastic properties of nanocrystalline Al-5083 through nanoindentation and related data analysis techniques. By using nanoindentation, accurate predictions of the elastic modulus and hardness of the alloy were attained. Also, the employed data analysis model provided reasonable estimates of the plastic properties (strain-hardening exponent and yield stress) lending credibility to this procedure as an accurate, full mechanical characterization method.
NASA Astrophysics Data System (ADS)
Rabahallah, M.; Bouvier, S.; Balan, T.; Bacroix, B.; Teodosiu, C.
2007-04-01
In this work, an implicit, backward Euler time integration scheme is developed for an anisotropic, elastic-plastic model based on strain-rate potentials. The constitutive algorithm includes a sub-stepping procedure to deal with the strong nonlinearity of the plastic potentials when applied to FCC materials. The algorithm is implemented in the static implicit version of the Abaqus finite element code. Several recent plastic potentials have been implemented in this framework. The most accurate potentials require the identification of about twenty material parameters. Both mechanical tests and micromechanical simulations have been used for their identification, for a number of BCC and FCC materials. The impact of the identification procedure on the prediction of ears in cup drawing is investigated.
Identification of fundamental deformation and failure mechanisms in armor ceramics
NASA Astrophysics Data System (ADS)
Muller, Andrea Marie
Indentation of a surface with a hard sphere can be used to examine micromechanical response of a wide range of materials and has been shown to generate loading conditions resembling early stages of ballistic impact events. Cracking morphologies also show similarities, particularly with formation of cone cracks at the contact site. The approach in this thesis is to use this indentation technique to characterize contact damage and deformation processes in armor ceramics, as well as identify the role of cone cracking and inelastic behavior. To accomplish these objectives, an instrumented indentation system was designed and fabricated, extending depth-sensing capabilities originally developed for nano-indentation to higher forces. This system is also equipped with an acoustic emission system to detect onset of cone cracking and subsequent failure. Once calibrated and verified the system was used to evaluate elastic modulus and cone crack initiation forces of two commercial float glasses. As-received air and tin surfaces of soda-lime-silica and borosilicate float glass were tested to determine differences in elastic and fracture behavior. Information obtained from load--displacement curves and visual inspection of indentation sites were used to determine elastic modulus, and conditions for onset of cone cracking as a function of surface roughness. No difference in reduced modulus or cone cracking loads on as-received air and tin surfaces were observed. Abraded surfaces showed the tin surface to be slightly more resistant to cone cracking. A study focusing on the transition from elastic to inelastic deformation in two transparent fine-grained polycrystalline spinels with different grain sizes was then conducted. Congruent experiments included observations on evolution of damage, examinations of sub-surface damage and inspection of remnant surface profiles. Indentation stress--strain behavior obtained from load--displacement curves revealed a small difference in yielding and strain-hardening behavior given the significant grain size difference. Directly below the indentation sites, regions of grain boundary cracking, associated with the inelastic zone, were identified in both spinels. Comparison of Meyer hardness and in-situ hardness showed a discrepancy at low loads, a result of elastic recovery. Elastic-plastic indentation behavior of the two spinels was then compared to behavior of a transparent large-grained aluminum oxinitirde (AlON) and a small-grained sintered aluminum nitride (AlN). Subsurface indentation damage revealed transitions from intergranular to transgranular fracture in the two spinels, AlON showed a transition from multiple cleavage microcracks to transgranular fracture while AlN exhibited only intergranular fracture. Analysis of indentation stress-strain results showed a slight difference in yielding behaviors of the two spinels and AlON whereas AlN showed a much lower yield value comparatively. Slight differences in strain-hardening behavior were observed. When comparing indentation stress--strain energy density and work of indentation a linear correlation was observed and a clear distinction could be made between materials. Therefore, it is suggested by the work in this thesis that instrumented spherical indentation could serve as a useful method of evaluating armor materials, particularly when behavior is described using indentation stress and strain, as this is a useful way to evaluate onset and development of inelastic deformation under high contact pressures and self-confining stresses. Additionally, it proposes that comparison of the work of indentation and indentation strain energy density approaches provide a good foundation for evaluating and comparing a materials penetration resistance.
Modeling the Temperature Rise at the Tip of a Fast Crack
1989-08-01
plastic deformation in the plastic zone, the strain rate and the temperature dependence of the flow stress have been incorporated in the determination ...of dislocation generation in the plastic zone. The stress field 1 associated with a moving elastic crack tip is used to determine the increment of...yield stress and the crack tip stress field for a given mode of the applied stress. The fracture toughness of several materials, determined
An elasto-plastic solution for channel cracking of brittle coating on polymer substrate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Chao; Chen, Fangliang; Gray, Matthew H.
In this study, an elasto-plastic channel-cracking model is presented to study the open-mode fracture of a thin layer brittle coating grown on a polymer substrate. A linear elastic shear interlayer is introduced to describe the stress transfer from the elasto-plastic substrate to the brittle coating, on basis of the shear-lag principle. The channel cracking behavior involves three stages: elastic, elasto-plastic and plastic stages, which are solved in a continuous manner based on the deformation status of the substrate. Explicit solutions are derived for the mutli-stage cracking process. Corresponding experimental tests for a titanium oxide (TiO 2) coating on a polymore » (ethylene terephthalate) substrate are conducted. The fracture toughness of the coating layer is estimated based on the crack spacing versus layer thickness relationship at certain strain levels. This method is found to be more reliable than the traditional methods using crack onset strain. Parametric studies of the fracture energy release rate for the coating and interfacial compliance of the thin film system are conducted, through which the effect of plastic deformation on the channel cracking behavior is studied extensively. The results indicate that the tangent modulus of the substrate controls the evolution curvature of crack spacing where a smaller tangent modulus corresponds to a slower saturation of crack spacing. The energy release rate also varies significantly with the properties of the interlayer. The study highlights the necessity of an elasto-plastic model for the thin film systems of brittle coating on a plastic substrate.« less
An elasto-plastic solution for channel cracking of brittle coating on polymer substrate
Zhang, Chao; Chen, Fangliang; Gray, Matthew H.; ...
2017-04-25
In this study, an elasto-plastic channel-cracking model is presented to study the open-mode fracture of a thin layer brittle coating grown on a polymer substrate. A linear elastic shear interlayer is introduced to describe the stress transfer from the elasto-plastic substrate to the brittle coating, on basis of the shear-lag principle. The channel cracking behavior involves three stages: elastic, elasto-plastic and plastic stages, which are solved in a continuous manner based on the deformation status of the substrate. Explicit solutions are derived for the mutli-stage cracking process. Corresponding experimental tests for a titanium oxide (TiO 2) coating on a polymore » (ethylene terephthalate) substrate are conducted. The fracture toughness of the coating layer is estimated based on the crack spacing versus layer thickness relationship at certain strain levels. This method is found to be more reliable than the traditional methods using crack onset strain. Parametric studies of the fracture energy release rate for the coating and interfacial compliance of the thin film system are conducted, through which the effect of plastic deformation on the channel cracking behavior is studied extensively. The results indicate that the tangent modulus of the substrate controls the evolution curvature of crack spacing where a smaller tangent modulus corresponds to a slower saturation of crack spacing. The energy release rate also varies significantly with the properties of the interlayer. The study highlights the necessity of an elasto-plastic model for the thin film systems of brittle coating on a plastic substrate.« less
Biomechanical evaluation of different instrumentation for spinal stabilisation.
Graftiaux, A G; Wattier, B; Gentil, P; Mazel, C; Skalli, W; Diop, A; Kehr, P H; Lavaste, F
1995-12-01
The varying problems following arthrodesis of the lumbar spine with rods or plates (too much rigidity for the first and insufficient stability for the second) have led us to conceive another type of material, flexible but with enough stability, to favorise healing of bone graft, and decrease the induced pathology on adjacent levels. An experimental study of three types of material: rigid, semi-rigid and flexible was performed on eighteen fresh cadaver spinal segments without and then with discectomy and corporectomy to find out the various types of behaviour. The flexible device seems more supple than the other materials tested: more mobility, less stiffness. Rising hysteresis is explained by plastic deformation. The semi-rigid device presents strong osseous stresses on the L3 level and a large hysteresis corresponding most likely to a mobility between the screws and plates. The rigid device has less mobility, especially in torsion, ascribed to the transverse connection. The stability is high with a small hysteresis. This is of value for bone loss or instability with displacement of the vertebral body.The second study was a modeling of the flexible device validated by comparison to the experimental study. The strains in the wire were high, decreasing with increasing diameter, but is still lower than the elastic limit. The proximity of the elastic limit may allow plastic deformation of the wire. Howewer less strains were found on the screw fixation but increase with the increase diameter of the wire. The influence of the bone quality on the behavior of the device was demonstrated.
Vibration control by limiting the maximum axial forces in space trusses
NASA Technical Reports Server (NTRS)
Chawla, Vikas; Utku, Senol; Wada, Ben K.
1993-01-01
Proposed here is a method of vibration control based on limiting the maximum axial forces in the active members of an adaptive truss. The actuators simulate elastic rigid-plastic behavior and consume the vibrational energy as work. The method is applicable to both statically determinate as well as indeterminate truss structures. However, for energy efficient control of statistically indeterminate trusses extra actuators may be provided on the redundant bars. An energy formulation relating the various control parameters is derived to get an estimate of the control time. Since the simulation of elastic rigid-plastic behavior requires a piecewise linear control law, a general analytical solution is not possible. Numerical simulation by step-by-step integration is performed to simulate the control of an example truss structure. The problems of application to statically indeterminate trusses and optimal actuator placement are identified for future work.
Coarse gaining of molecular crystals: limitations imposed by molecular flexibility
NASA Astrophysics Data System (ADS)
Picu, Catalin; Pal, Anirban
Molecular crystals include molecular electronics, energetic materials, pharmaceuticals and some food components. In many of these applications the small scale mechanical behavior of the crystal is important such as for example in energetic materials where detonation is induced by the formation of hot spots which are induced thermomechanically, and in pharmaceuticals where phase stability is critical for the biochemical activity of the drug. Accurate modeling of these processes requires resolving the atomistic scale details of the material. However, the cost of these models is very large due to the complexity of the molecules forming the crystal, and some form of coarse graning is necessary. In this study we identify the limitations imposed by the need to accurately capture molecular flexibility on the development of coarse grained models for the energetic molecular crystal RDX. We define guidelines for the definition of coarse grained models that target elastic and plastic crystal scale properties such as elastic constants, thermal expansion, compressibility, the critical stress for the motion of dislocations (Peierls stress) and the stacking fault energy This work was supported by the ARO through Grant W911NF-09-1-0330 and AFRL through Grant FA8651-16-1-0004.
NASA Technical Reports Server (NTRS)
Miyoshi, K.; Buckley, D. H.
1984-01-01
The effects of humidity (water-vapor) in nitrogen on the friction and deformation behavior of magnetic tape in contact with a Ni-Zn ferrite spherical pin were studied. The coefficient of friction is markedly dependent on the ambient relative humidity. In elastic contacts the coefficient of friction increased linearly with increasing humidity; it decreased linearly when humidity was lowered. This effect is the result of changes in the chemistry and interaction of tape materials such as degradation of the lubricant. In plastic contacts there was no effect of humidity on friction below 40 percent relative humidity. There is no effect on friction associated with the breakthrough of the adsorbed water-vapor film at the interface of the tape and Ni-Zn ferrite. The coefficient of friction, however, increased rapidly with increasing relative humidity above 40 percent in plastic contacts.
Orthotropic elastic-plastic behavior of AS4/APC-2 thermoplastic composite at elevated temperatures
NASA Technical Reports Server (NTRS)
Sun, C. T.; Yoon, K. J.
1989-01-01
Inelastic and strength properties of AS4/APC-2 composites were characterized with respect to temperature variation by using a one parameter orthotropic plasticity model and a one parameter failure criterion. Simple uniaxial off-axis tension tests were performed on coupon specimens of unidirectional AS4/APC-2 thermoplastic composite at various temperatures. To avoid the complication caused by the extension-shear coupling effect in off-axis testing, new tabs were designed and used on the test specimens. The experimental results showed that the nonlinear behavior of constitutive relations and the strength can be characterized quite well using the one parameter plasticity model and the failure criterion, respectively.
NASA Astrophysics Data System (ADS)
Romanova, V.; Balokhonov, R.; Batukhtina, E.; Zinovieva, O.; Bezmozgiy, I.
2015-10-01
The results of a numerical analysis of the mesoscale surface roughening in a polycrystalline aluminum alloy exposed to uniaxial tension are presented. A 3D finite-element model taking an explicit account of grain structure is developed. The model describes a constitutive behavior of the material on the grain scale, using anisotropic elasticity and crystal plasticity theory. The effects of the grain shape and texture on the deformation-induced roughening are investigated. Calculation results have shown that surface roughness is much higher and develops at the highest rate in a polycrystal with equiaxed grains where both the micro- and mesoscale surface displacements are observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Landauer, Alexander K.; Barnhill, William C.; Qu, Jun
Here we examine the elasticity, hardness, and resistance-to-plastic-deformation (P/S 2) measured via nanoindentation of several tribofilms and correlates these properties to friction and wear behavior. The tribofilms were generated by ball-on-plate reciprocating sliding lubricated by a base oil containing an ionic liquid, phosphonium-organophosphate or ammonium-organophosphate, zinc dialkyldithiophosphate (ZDDP), or combination of IL and ZDDP. Nanoindentation was conducted at room and elevated temperatures. While there seems little correlation between the tribofilm hardness and tribological behavior, a higher modulus generally leads to better friction and wear performance. Interestingly, a lower P/S 2 ratio tends to reduce friction and improve wear protection, whichmore » is in an opposite trend as reported for bulk materials. Ultimately, this is likely attributable to the dynamic, self-healing characteristics of tribofilms.« less
Closed system of coupling effects in generalized thermo-elastoplasticity
NASA Astrophysics Data System (ADS)
Śloderbach, Z.
2016-05-01
In this paper, the field equations of the generalized coupled thermoplasticity theory are derived using the postulates of classical thermodynamics of irreversible processses. Using the Legendre transformations two new thermodynamics potentials P and S depending upon internal thermodynamic forces Π are introduced. The most general form for all the thermodynamics potentials are assumed instead of the usually used additive form. Due to this assumption, it is possible to describe all the effects of thermomechanical couples and also the elastic-plastic coupling effects observed in such materials as rocks, soils, concretes and in some metalic materials. In this paper not only the usual postulate of existence of a dissipation qupotential (the Gyarmati postulate) is used to derive the velocity equation. The plastic flow constitutive equations have the character of non-associated flow laws even when the Gyarmati postulate is assumed. In general formulation, the plastic strain rate tensor is normal to the surface of the generalized function of plastic flow defined in the the space of internal thermodynamic forces Π but is not normal to the yield surface. However, in general formulation and after the use the Gyarmati postulate, the direction of the sum of the plastic strain rate tensor and the coupled elastic strain rate tensor is normal to the yield surface.
Effect of ageing time on mechanical properties of plasticized poly(hydroxybutyrate) (PHB)
NASA Astrophysics Data System (ADS)
Farris, Giuseppe; Cinelli, Patrizia; Anguillesi, Irene; Salvadori, Sara; Coltelli, Maria-Beatrice; Lazzeri, Andrea
2014-05-01
Polyhydroxybutyrate (PHB) based materials were prepared by melt extrusion by using different plasticizers, such as poly(ethylene glycol)s (PEG)s having different molecular weight (400, 1500 and 4000). The plasticizers content was varied in the range 10-20% by weight versus the PHB polymeric matrix. The variation of tensile properties of the different samples was monitored as a function of time of ageing to study the stability of the material. The elastic modulus and tensile strength increased as a function of time, whereas the strain at break decreased. The experimental results were explained by considering both the demixing of the plasticizers and the occurring of secondary crystallization. Moreover the variation in mechanical properties was correlated to the structure and concentration of the different plasticizers employed.
NASA Astrophysics Data System (ADS)
Hayman, N. W.; Shafiei, M.; Balhoff, M.; Daigle, H.
2017-12-01
To a first order, sedimentary materials behave in an elastic-plastic manner for most experimental and natural conditions at short time scales. However, long-term patterns of leakage from carbon-capture and storage efforts, and reduced efficiency during unconventional hydrocarbon production, point to a broader range of subsurface behaviors. Our analyses of microstructural and porosity responses to experimental deformation of shale suggest that sedimentary rock deformation is not strictly elastic-plastic. For example, organic matter (OM) in mudrocks can fracture during failure, but elsewhere may be more viscous in the same rock volume. The fracture of OM can be accompanied by some combination of frictional and poroelastic deformation in the surrounding clay aggregates, potentially described by critical-state-line soil mechanics. What is less clear is the possible role of viscoplasticity in sedimentary rock deformation. Though not a good analog material for all rock deformation, the cross-linked polymer Carbopol provides an excellent opportunity to explore controls on viscoplasticity. Above the yield stress, carbopol plastic deformation follows a Herschel-Bulkley model wherein shear stress varies as function of strain rate to a power that is generally <1; i.e. it is a shear-thinning material. The rheology can then be tuned by changing the pH of the gel. Using images obtained from scanning electron microscopy, including using a cryogenic system, we found that a structural transition from a dilute neutralized dispersion to an aggregate of closely packed particulates occurs as the pH of the polymer solution increases. This closely packed microstructure thus controls the yield strength which in turn follows approximately a non-linear relationship with porosity. This "analog material" thus has allowed us to quantify the microstructural length-scales that govern viscoplasticity in this material. Future experiments and numerical modeling can evaluate if a viscoplastic component to sedimentary rock deformation is important during engineering efforts. Such an exploration might focus on porosity-yield stress relationships and the monitoring fracture propagation for a wide range of stress conditions, including those which enhance ductility.
Hydrodynamic instability of elastic-plastic solid plates at the early stage of acceleration.
Piriz, A R; Sun, Y B; Tahir, N A
2015-03-01
A model is presented for the linear Rayleigh-Taylor instability taking place at the early stage of acceleration of an elastic-plastic solid, when the shock wave is still running into the solid and is driven by a time varying pressure on the interface. When the the shock is formed sufficiently close to the interface, this stage is considered to follow a previous initial phase controlled by the Ritchmyer-Meshkov instability that settles new initial conditions. The model reproduces the behavior of the instability observed in former numerical simulation results and provides a relatively simpler physical picture than the currently existing one for this stage of the instability evolution.
NASA Technical Reports Server (NTRS)
Ward, Steven N.
1988-01-01
Data obtained by Mark III VLBI measurements of radio signals from permanent and mobile VLBI sites for 5.5 years of observations, starting in October 1982, were used to derive a picture of the earth crust deformation near the North America-Pacific plate boundary. The data, which included the vector positions of the VLBI sites and their rate of change, were used for comparison with a number of lithospheric deformation models based upon the concept that the motions of points near the North America-Pacific plate boundary are a linear combination of North America and Pacific velocities. The best of these models were found to fit 95 percent of the variance in 139 VLBI length and transverse velocity observations. Instantaneous shear deformation associated with plate tectonics is apparently developing in a zone 450 km wide paralleling the San Andreas Fault; some of this deformation will be recovered through elastic rebound, while the rest will be permanently set through plastic processes. Because the VLBI data have not been collected for a significant fraction of the earthquake cycle, they cannot discriminate between elastic and plastic behaviors.
NASA Astrophysics Data System (ADS)
Kim, Jong-Min; Lee, Hyun-Boo; Chang, Yoon-Suk; Choi, Jae-Boong; Kim, Young-Jin; Ji, Kum-Young
2010-05-01
Recently, the reliability assurance of lead-free solder to prevent environmental contamination is quite important issue for chip-scale packaging. Although lots of efforts have been devoted to the solder undergone drop, shear and creep loads, there was a little research on IMC due primarily to its thickness restriction and geometric irregularity. However, the IMC is known as the weakest layer governing failures of the solder joint. The present work is to characterize realistic material properties of the IMC for ENEPIG process. Lee's modified reverse algorithm was adopted to determine elastic-plastic stress-strain curve and so forth, after examining several methods, which requires inherently elastic data. In this context, a series of nano-indentation tests as well as corresponding simulations were carried out by changing indentation depths from 200 to 400 nm and strain rates from 0.05 to 0.10 1/s. It would be conclude that effect of strain rate is relatively small and IMC layer should be more than 5 times of indentation depth when using the recommended method, which are applicable to generate realistic material properties for further diverse structural integrity simulations.
Experimental Study in Taguchi Method on Surface Quality Predication of HSM
NASA Astrophysics Data System (ADS)
Ji, Yan; Li, Yueen
2018-05-01
Based on the study of ball milling mechanism and machining surface formation mechanism, the formation of high speed ball-end milling surface is a time-varying and cumulative Thermos-mechanical coupling process. The nature of this problem is that the uneven stress field and temperature field affect the machined surface Process, the performance of the processing parameters in the processing interaction in the elastic-plastic materials produced by the elastic recovery and plastic deformation. The surface quality of machining surface is characterized by multivariable nonlinear system. It is still an indispensable and effective method to study the surface quality of high speed ball milling by experiments.
Zügner, Sascha; Marquardt, Karin; Zimmermann, Ingfried
2006-02-01
Elastic-plastic properties of single crystals are supposed to influence the size reduction process of bulk materials during jet milling. According to Pahl [M.H. Pahl, Zerkleinerungstechnik 2. Auflage. Fachbuchverlag, Leipzig (1993)] and H. Rumpf: [Prinzipien der Prallzerkleinerung und ihre Anwendung bei der Strahlmahlung. Chem. Ing. Tech., 3(1960) 129-135.] fracture toughness, maximum strain or work of fracture for example are strongly dependent on mechanical parameters like hardness (H) and young's modulus of elasticity (E). In addition the dwell time of particles in a spiral jet mill proved to correlate with the hardness of the feed material [F. Rief: Ph. D. Thesis, University of Würzburg (2001)]. Therefore 'near-surface' properties have a direct influence on the effectiveness of the comminution process. The mean particle diameter as well as the size distribution of the ground product may vary significantly with the nanomechanical response of the material. Thus accurate measurement of crystals' hardness and modulus is essential to determine the ideal operational micronisation conditions of the spiral jet mill. The recently developed nanoindentation technique is applied to examine subsurface properties of pharmaceutical bulk materials, namely calcite, sodium ascorbate, lactose and sodium chloride. Pressing a small sized tip into the material while continuously recording load and displacement, characteristic diagrams are derived. The mathematical evaluation of the force-displacement-data allows for calculation of the hardness and the elastic modulus of the investigated material at penetration depths between 50-300 nm. Grinding experiments performed with a modified spiral jet mill (Type Fryma JMRS 80) indicate the strong impact of the elastic-plastic properties of a given substance on its breaking behaviour. The fineness of milled products produced at constant grinding conditions but with different crystalline powders varies significantly as it is dependent on the nanohardness and the elasticity of the feed material. The analysis of this correlation gives new insights into the size reduction process.
Stress and strain concentration at a circular hole in an infinite plate
NASA Technical Reports Server (NTRS)
Stowell, Elbridge Z
1950-01-01
The theory of elasticity shows that the maximum stress at a circular hole in an infinite plate in tension is three times the applied stress when the material remains elastic. The effect of plasticity of the material is to lower this ratio. This paper considers the theoretical problem of the stress distribution in an infinitely large sheet with a circular hole for the general case where the material may have any stress-strain curve. The plate is assumed to be under uniform tension at a large distance from the hole. The material is taken to be isotropic and incompressible. (author)
Mesoscale modeling of strain induced solid state amorphization in crystalline materials
NASA Astrophysics Data System (ADS)
Lei, Lei
Solid state amorphization, and in particular crystalline to amorphous transformation, can be observed in metallic alloys, semiconductors, intermetallics, minerals, and also molecular crystals when they undergo irradiation, hydrogen gas dissolution, thermal interdiffusion, mechanical alloying, or mechanical milling. Although the amorphization mechanisms may be different, the transformation occurs due to the high level of disorder introduced into the material. Milling induced solid state amorphization is proposed to be the result of accumulation of crystal defects, specifically dislocations, as the material is subjected to large deformations during the high energy process. Thus, understanding the deformation mechanisms of crystalline materials will be the first step in studying solid state amorphization in crystalline materials, which not only has scientific contributions, but also technical consequences. A phase field dislocation dynamics (PFDD) approach is employed in this work to simulate plastic deformation of molecular crystals. This PFDD model has the advantage of tracking all of the dislocations in a material simultaneously. The model takes into account the elastic interaction between dislocations, the lattice resistance to dislocation motion, and the elastic interaction of dislocations with an external stress field. The PFDD model is employed to describe the deformation of molecular crystals with pharmaceutical applications, namely, single crystal sucrose, acetaminophen, gamma-indomethacin, and aspirin. Stress-strain curves are produced that result in expected anisotropic material response due to the activation of different slip systems and yield stresses that agree well with those from experiments. The PFDD model is coupled to a phase transformation model to study the relation between plastic deformation and the solid state amorphization of crystals that undergo milling. This model predicts the amorphous volume fraction in excellent agreement with experimental observation. Finally, we incorporate the effect of stress free surfaces to model the behavior of dislocations close to these surfaces and in the presence of voids.
DYCAST: A finite element program for the crash analysis of structures
NASA Technical Reports Server (NTRS)
Pifko, A. B.; Winter, R.; Ogilvie, P.
1987-01-01
DYCAST is a nonlinear structural dynamic finite element computer code developed for crash simulation. The element library contains stringers, beams, membrane skin triangles, plate bending triangles and spring elements. Changing stiffnesses in the structure are accounted for by plasticity and very large deflections. Material nonlinearities are accommodated by one of three options: elastic-perfectly plastic, elastic-linear hardening plastic, or elastic-nonlinear hardening plastic of the Ramberg-Osgood type. Geometric nonlinearities are handled in an updated Lagrangian formulation by reforming the structure into its deformed shape after small time increments while accumulating deformations, strains, and forces. The nonlinearities due to combined loadings are maintained, and stiffness variation due to structural failures are computed. Numerical time integrators available are fixed-step central difference, modified Adams, Newmark-beta, and Wilson-theta. The last three have a variable time step capability, which is controlled internally by a solution convergence error measure. Other features include: multiple time-load history tables to subject the structure to time dependent loading; gravity loading; initial pitch, roll, yaw, and translation of the structural model with respect to the global system; a bandwidth optimizer as a pre-processor; and deformed plots and graphics as post-processors.
Modeling collective behavior of dislocations in crystalline materials
NASA Astrophysics Data System (ADS)
Varadhan, Satya N.
Elastic interaction of dislocations leads to collective behavior and determines plastic response at the mesoscale. Notable characteristics of mesoscale plasticity include the formation of dislocation patterns, propagative instability phenomena due to strain aging such as the Luders and Portevin-Le Chatelier effects, and size-dependence of low stress. This work presents a unified approach to modeling collective behavior based on mesoscale field dislocation mechanics and crystal plasticity, using constitutive models with physical basis. Successful application is made to: compression of a bicrystal, where "smaller is stronger"---the flow stress increases as the specimen size is reduced; torsional creep of ice single crystals, where the plastic strain rate increases with time under constant applied torque; strain aging in a single crystal alloy, where the transition from homogeneous deformation to intermittent bands to continuous band is captured as the applied deformation rate is increased. A part of this work deals with the kinematics of dislocation density evolution. An explicit Galerkin/least-squares formulation is introduced for the quasilinear evolution equation, which leads to a symmetric and well-conditioned system of equations with constant coefficients, making it attractive for large-scale problems. It is shown that the evolution equation simplifies to the Hamilton-Jacobi equations governing geometric optics and level set methods in the following physical contexts: annihilation of dislocations, expansion of a polygonal dislocation loop and operation of a Frank-Read source. The weak solutions to these equations are not unique, and the numerical method is able to capture solutions corresponding to shock as well as expansion fans.
NASA Technical Reports Server (NTRS)
Deng, Xiaomin; Newman, James C., Jr.
1997-01-01
ZIP2DL is a two-dimensional, elastic-plastic finte element program for stress analysis and crack growth simulations, developed for the NASA Langley Research Center. It has many of the salient features of the ZIP2D program. For example, ZIP2DL contains five material models (linearly elastic, elastic-perfectly plastic, power-law hardening, linear hardening, and multi-linear hardening models), and it can simulate mixed-mode crack growth for prescribed crack growth paths under plane stress, plane strain and mixed state of stress conditions. Further, as an extension of ZIP2D, it also includes a number of new capabilities. The large-deformation kinematics in ZIP2DL will allow it to handle elastic problems with large strains and large rotations, and elastic-plastic problems with small strains and large rotations. Loading conditions in terms of surface traction, concentrated load, and nodal displacement can be applied with a default linear time dependence or they can be programmed according to a user-defined time dependence through a user subroutine. The restart capability of ZIP2DL will make it possible to stop the execution of the program at any time, analyze the results and/or modify execution options and resume and continue the execution of the program. This report includes three sectons: a theoretical manual section, a user manual section, and an example manual secton. In the theoretical secton, the mathematics behind the various aspects of the program are concisely outlined. In the user manual section, a line-by-line explanation of the input data is given. In the example manual secton, three types of examples are presented to demonstrate the accuracy and illustrate the use of this program.
2014-05-01
Royal Society of London Series A, 465, 307–334. Clayton, J. (2010a). Modeling nonlinear electromechanical behavior of shocked silicon carbide . Journal...and fourth-order longitudinal elastic constants by shock compression techniques–application to sapphire and fused quartz. Journal of the Acoustical...Vogler, T., & Clayton, J. (2008). Heterogeneous deformation and spall of an extruded tungsten alloy: Plate impact experiments and crystal plasticity
Nanotribological behavior of deep cryogenically treated martensitic stainless steel
Bakoglidis, Konstantinos D; Tuckart, Walter R; Broitman, Esteban
2017-01-01
Cryogenic treatments are increasingly used to improve the wear resistance of various steel alloys by means of transformation of retained austenite, deformation of virgin martensite and carbide refinement. In this work the nanotribological behavior and mechanical properties at the nano-scale of cryogenically and conventionally treated AISI 420 martensitic stainless steel were evaluated. Conventionally treated specimens were subjected to quenching and annealing, while the deep cryogenically treated samples were quenched, soaked in liquid nitrogen for 2 h and annealed. The elastic–plastic parameters of the materials were assessed by nanoindentation tests under displacement control, while the friction behavior and wear rate were evaluated by a nanoscratch testing methodology that it is used for the first time in steels. It was found that cryogenic treatments increased both hardness and elastic limit of a low-carbon martensitic stainless steel, while its tribological performance was enhanced marginally. PMID:28904837
NASA Astrophysics Data System (ADS)
Kumar, Manoj; Khan, Gufran S.; Shakher, Chandra
2015-08-01
In the present work, application of digital speckle pattern interferometry (DSPI) was applied for the measurement of mechanical/elastic and thermal properties of fibre reinforced plastics (FRP). Digital speckle pattern interferometric technique was used to characterize the material constants (Poisson's ratio and Young's modulus) of the composite material. Poisson ratio based on plate bending and Young's modulus based on plate vibration of material are measured by using DSPI. In addition to this, the coefficient of thermal expansion of composite material is also measured. To study the thermal strain analysis, a single DSPI fringe pattern is used to extract the phase information by using Riesz transform and the monogenic signal. The phase extraction from a single DSPI fringe pattern by using Riesz transform does not require a phase-shifting system or spatial carrier. The elastic and thermal parameters obtained from DSPI are in close agreement with the theoretical predictions available in literature.
Elastic-plastic finite-element analyses of thermally cycled double-edge wedge specimens
NASA Technical Reports Server (NTRS)
Kaufman, A.; Hunt, L. E.
1982-01-01
Elastic-plastic stress-strain analyses were performed for double-edge wedge specimens subjected to thermal cycling in fluidized beds at 316 and 1088 C. Four cases involving different nickel-base alloys (IN 100, Mar M-200, NASA TAZ-8A, and Rene 80) were analyzed by using the MARC nonlinear, finite element computer program. Elastic solutions from MARC showed good agreement with previously reported solutions obtained by using the NASTRAN and ISO3DQ computer programs. Equivalent total strain ranges at the critical locations calculated by elastic analyses agreed within 3 percent with those calculated from elastic-plastic analyses. The elastic analyses always resulted in compressive mean stresses at the critical locations. However, elastic-plastic analyses showed tensile mean stresses for two of the four alloys and an increase in the compressive mean stress for the highest plastic strain case.
Mechanical behaviors of multi-filament twist superconducting strand under tensile and cyclic loading
NASA Astrophysics Data System (ADS)
Wang, Xu; Li, Yingxu; Gao, Yuanwen
2016-01-01
The superconducting strand, serving as the basic unit cell of the cable-in-conduit-conductors (CICCs), is a typical multi-filament twist composite which is always subjected to a cyclic loading under the operating condition. Meanwhile, the superconducting material Nb3Sn in the strand is sensitive to strain frequently relating to the performance degradation of the superconductivity. Therefore, a comprehensive study on the mechanical behavior of the strand helps understanding the superconducting performance of the strained Nb3Sn strands. To address this issue, taking the LMI (internal tin) strand as an example, a three-dimensional structural finite element model, named as the Multi-filament twist model, of the strand with the real configuration of the LMI strand is built to study the influences of the plasticity of the component materials, the twist of the filament bundle, the initial thermal residual stress and the breakage and its evolution of the filaments on the mechanical behaviors of the strand. The effective properties of superconducting filament bundle with random filament breakage and its evolution versus strain are obtained based on the damage theory of fiber-reinforced composite materials proposed by Curtin and Zhou. From the calculation results of this model, we find that the occurrence of the hysteresis loop in the cyclic loading curve is determined by the reverse yielding of the elastic-plastic materials in the strand. Both the initial thermal residual stress in the strand and the pitch length of the filaments have significant impacts on the axial and hysteretic behaviors of the strand. The damage of the filaments also affects the axial mechanical behavior of the strand remarkably at large axial strain. The critical current of the strand is calculated by the scaling law with the results of the Multi-filament twist model. The predicted results of the Multi-filament twist model show an acceptable agreement with the experiment.
Stability Study of Sunscreens with Free and Encapsulated UV Filters Contained in Plastic Packaging
Briasco, Benedetta; Capra, Priscilla; Mannucci, Barbara; Perugini, Paola
2017-01-01
Sunscreens play a fundamental role in skin cancer prevention and in protection against photo-aging. UV filters are often photo-unstable, especially in relation to their vehicles and, being lipophilic substances, they are able to interact with plastic packaging. Finally, UV filter stability can be significantly affected by the routine use of the product at high temperatures. This work aims to study the stability of sunscreen formulations in polyethylene packaging. Butyl methoxydibenzoylmethane and octocrylene, both in a free form and as encapsulated filters were chosen as UV filters. Stability evaluations were performed both in the packaging and on the formulations. Moreover, a further two non-destructive techniques, near-infrared (NIR) spectroscopy and a multiple light scattering technique, were also used to evaluate the stability of the formulation. Results demonstrated clearly that all of the pack underwent significant changes in its elastic/plastic behavior and in external color after solar irradiation. From the evaluation of the extractable profile of untreated and treated packaging material an absorption of 2-phenoxyethanol and octocrylene were shown. In conclusion, the results highlighted clearly that a reduction of the UV filter in the formulation packed in high-density polyethylene/low-density polyethylene (HDPE/LDPE) material can occur over time, reducing the protective effect of the product when applied to the skin. PMID:28561775
Stability Study of Sunscreens with Free and Encapsulated UV Filters Contained in Plastic Packaging.
Briasco, Benedetta; Capra, Priscilla; Mannucci, Barbara; Perugini, Paola
2017-05-31
Sunscreens play a fundamental role in skin cancer prevention and in protection against photo-aging. UV filters are often photo-unstable, especially in relation to their vehicles and, being lipophilic substances, they are able to interact with plastic packaging. Finally, UV filter stability can be significantly affected by the routine use of the product at high temperatures. This work aims to study the stability of sunscreen formulations in polyethylene packaging. Butyl methoxydibenzoylmethane and octocrylene, both in a free form and as encapsulated filters were chosen as UV filters. Stability evaluations were performed both in the packaging and on the formulations. Moreover, a further two non-destructive techniques, near-infrared (NIR) spectroscopy and a multiple light scattering technique, were also used to evaluate the stability of the formulation. Results demonstrated clearly that all of the pack underwent significant changes in its elastic/plastic behavior and in external color after solar irradiation. From the evaluation of the extractable profile of untreated and treated packaging material an absorption of 2-phenoxyethanol and octocrylene were shown. In conclusion, the results highlighted clearly that a reduction of the UV filter in the formulation packed in high-density polyethylene/low-density polyethylene (HDPE/LDPE) material can occur over time, reducing the protective effect of the product when applied to the skin.
Elastic precursor wave decay in shock-compressed aluminum over a wide range of temperature
NASA Astrophysics Data System (ADS)
Austin, Ryan A.
2018-01-01
The effect of temperature on the dynamic flow behavior of aluminum is considered in the context of precursor wave decay measurements and simulations. In this regard, a dislocation-based model of high-rate metal plasticity is brought into agreement with previous measurements of evolving wave profiles at 300 to 933 K, wherein the amplification of the precursor structure with temperature arises naturally from the dislocation mechanics treatment. The model suggests that the kinetics of inelastic flow and stress relaxation are governed primarily by phonon scattering and radiative damping (sound wave emission from dislocation cores), both of which intensify with temperature. The manifestation of these drag effects is linked to low dislocation density ahead of the precursor wave and the high mobility of dislocations in the face-centered cubic lattice. Simulations performed using other typical models of shock wave plasticity do not reproduce the observed temperature-dependence of elastic/plastic wave structure.
NASA Astrophysics Data System (ADS)
Krivosheev, S. I.; Magazinov, S. G.; Alekseev, D. I.
2018-01-01
At interaction of super strong magnetic fields with a solenoid material, a specific mode of the material flow forms. To describe this process, magnetohydrodynamic approximation is traditionally used. The formation of plastic shock-waves in material in a rapidly increasing pressure of 100 GPa/μs, can significantly alter the distribution of the physical parameters in the medium and affect the flow modes. In this paper, an analysis of supporting results of numerical simulations in comparison with available experimental data is presented.
Molecular deformation mechanisms of the wood cell wall material.
Jin, Kai; Qin, Zhao; Buehler, Markus J
2015-02-01
Wood is a biological material with outstanding mechanical properties resulting from its hierarchical structure across different scales. Although earlier work has shown that the cellular structure of wood is a key factor that renders it excellent mechanical properties at light weight, the mechanical properties of the wood cell wall material itself still needs to be understood comprehensively. The wood cell wall material features a fiber reinforced composite structure, where cellulose fibrils act as stiff fibers, and hemicellulose and lignin molecules act as soft matrix. The angle between the fiber direction and the loading direction has been found to be the key factor controlling the mechanical properties. However, how the interactions between theses constitutive molecules contribute to the overall properties is still unclear, although the shearing between fibers has been proposed as a primary deformation mechanism. Here we report a molecular model of the wood cell wall material with atomistic resolution, used to assess the mechanical behavior under shear loading in order to understand the deformation mechanisms at the molecular level. The model includes an explicit description of cellulose crystals, hemicellulose, as well as lignin molecules arranged in a layered nanocomposite. The results obtained using this model show that the wood cell wall material under shear loading deforms in an elastic and then plastic manner. The plastic regime can be divided into two parts according to the different deformation mechanisms: yielding of the matrix and sliding of matrix along the cellulose surface. Our molecular dynamics study provides insights of the mechanical behavior of wood cell wall material at the molecular level, and paves a way for the multi-scale understanding of the mechanical properties of wood. Copyright © 2014 Elsevier Ltd. All rights reserved.
Derivation of a variational principle for plane strain elastic-plastic silk biopolymers
NASA Astrophysics Data System (ADS)
He, J. H.; Liu, F. J.; Cao, J. H.; Zhang, L.
2014-01-01
Silk biopolymers, such as spider silk and Bombyx mori silk, behave always elastic-plastically. An elastic-plastic model is adopted and a variational principle for the small strain, rate plasticity problem is established by semi-inverse method. A trial Lagrangian is constructed where an unknown function is included which can be identified step by step.
High Pressure Elastic Constants of High-Pressure Iron Analog Osmium
NASA Astrophysics Data System (ADS)
Godwal, B. K.; Geballe, Z.; Jeanloz, R.
2011-12-01
Understanding the elasticity of hcp iron is important both for ascertaining the stable phase and for explaining the observed seismic anomalies of Earth's inner core. A systematic experimental study of analog materials is warranted because experiments at inner-core conditions remain exceptionally challenging and theory has yielded conflicting results for iron. The deformation of hexagonal close-packed (hcp) Os, an analog for the high-pressure hcp form of Fe, has been characterized under non-hydrostatic stresses using synchrotron-based angular-dispersive radial x-ray diffraction to pressures of 60 GPa at room temperature. Starting with published ultrasonic values of elastic constants and previous measurements of linear and volume compressibilities, we estimate the single-crystal elasticity tensor of osmium to 60 GPa and find that the crystal orientation with the largest shear modulus, (002), accommodates the largest shear stress (10 GPa) and a differential strain surpassing the Voigt iso-strain limit. We find the conventional elastic model, bounded by Reuss (iso-stress) and Voigt limits, inadequate for explaining our measurements. Instead, we infer that plastic deformation limits the amount of shear stress supported by the crystal planes near the a-axis, causing the more elastically strong c-axis to support the majority of the differential strain. This conclusion is consistent with the elasto-plastic self-consistent approach used to model the effect of plasticity on the high-pressure deformation of hcp-Co (Merkel et al, PRB 79, 064110 (2009)). Importantly, we document a strength anisotropy so large that the Voigt (elastic) limit is clearly surpassed.
1991-01-01
their midsurface counterparts due to the nature of the pin deflection and resulting load transfer. Linear elastic coupon radial stresses also followed... midsurface counterparts. The effects of the nonlinear elastic material behavior were quite evident when viewing the [(0/90)3,01, coupon intralaminar...to the midsurface of the coupon. The nonlinear elastic intralaminar shear stress-strain assumption acted to increase through thickness stresses
Elastic-plastic analysis of AS4/PEEK composite laminate using a one-parameter plasticity model
NASA Technical Reports Server (NTRS)
Sun, C. T.; Yoon, K. J.
1992-01-01
A one-parameter plasticity model was shown to adequately describe the plastic deformation of AS4/PEEK (APC-2) unidirectional thermoplastic composite. This model was verified further for unidirectional and laminated composite panels with and without a hole. The elastic-plastic stress-strain relations of coupon specimens were measured and compared with those predicted by the finite element analysis using the one-parameter plasticity model. The results show that the one-parameter plasticity model is suitable for the analysis of elastic-plastic deformation of AS4/PEEK composite laminates.
Nonlinear behavior of shells of revolution under cyclic loading.
NASA Technical Reports Server (NTRS)
Levine, H. S.; Armen, H., Jr.; Winter, R.; Pifko, A.
1973-01-01
A large deflection elastic-plastic analysis is presented applicable to orthotropic axisymmetric plates and shells of revolution subjected to monotonic and cyclic loading conditions. The analysis is based on the finite-element method. It employs a new higher order, fully compatible, doubly curved orthotropic shell-of-revolution element using cubic Hermitian expansions for both meridional and normal displacements. Both perfectly plastic and strain hardening behavior are considered. Strain hardening is incorporated through use of the Prager-Ziegler kinematic hardening theory, which predicts an ideal Bauschinger effect. Numerous sample problems involving monotonic and cyclic loading conditions are analyzed.
Algorithms for elasto-plastic-creep postbuckling
NASA Technical Reports Server (NTRS)
Padovan, J.; Tovichakchaikul, S.
1984-01-01
This paper considers the development of an improved constrained time stepping scheme which can efficiently and stably handle the pre-post-buckling behavior of general structure subject to high temperature environments. Due to the generality of the scheme, the combined influence of elastic-plastic behavior can be handled in addition to time dependent creep effects. This includes structural problems exhibiting indefinite tangent properties. To illustrate the capability of the procedure, several benchmark problems employing finite element analyses are presented. These demonstrate the numerical efficiency and stability of the scheme. Additionally, the potential influence of complex creep histories on the buckling characteristics is considered.
Cho, Yi-Gil; Kim, Jin-You; Cho, Hoon-Hwe; Cha, Pil-Ryung; Suh, Dong-Woo; Lee, Jae Kon; Han, Heung Nam
2012-01-01
An implicit finite element model was developed to analyze the deformation behavior of low carbon steel during phase transformation. The finite element model was coupled hierarchically with a phase field model that could simulate the kinetics and micro-structural evolution during the austenite-to-ferrite transformation of low carbon steel. Thermo-elastic-plastic constitutive equations for each phase were adopted to confirm the transformation plasticity due to the weaker phase yielding that was proposed by Greenwood and Johnson. From the simulations under various possible plastic properties of each phase, a more quantitative understanding of the origin of transformation plasticity was attempted by a comparison with the experimental observation. PMID:22558295
Numerical tool for SMA material simulation: application to composite structure design
NASA Astrophysics Data System (ADS)
Chemisky, Yves; Duval, Arnaud; Piotrowski, Boris; Ben Zineb, Tarak; Tahiri, Vanessa; Patoor, Etienne
2009-10-01
Composite materials based on shape memory alloys (SMA) have received growing attention over these last few years. In this paper, two particular morphologies of composites are studied. The first one is an SMA/elastomer composite in which a snake-like wire NiTi SMA is embedded into an elastomer ribbon. The second one is a commercial Ni47Ti44Nb9 which presents elastic-plastic inclusions in an NiTi SMA matrix. In both cases, the design of such composites required the development of an SMA design tool, based on a macroscopic 3D constitutive law for NiTi alloys. Two different strategies are then applied to compute these composite behaviors. For the SMA/elastomer composite, the macroscopic behavior law is implemented in commercial FEM software, and for the Ni47Ti44Nb9 a scale transition approach based on the Mori-Tanaka scheme is developed. In both cases, simulations are compared to experimental data.
A Reformulation of Nonlinear Anisotropic Elasticity for Impact Physics
2014-02-01
aluminum, copper, and magnesium . 15. SUBJECT TERMS impact physics, shock compression, elasticity, plasticity 16. SECURITY CLASSIFICATION OF: 17... deformation wave propagation code accounting for dissipative inelastic mechanisms. • Accuracy of the new nonlinear elastic- plastic model(s) will be...gradient and its transpose. A new general thermomechanical theory accounting for both elastic and plastic deformations has been briefly outlined in
Study of free edge effect on sub-laminar scale for thermoplastic composite laminates
NASA Astrophysics Data System (ADS)
Shen, Min; Lu, Huanbao; Tong, Jingwei; Su, Yishi; Li, Hongqi; Lv, Yongmin
2008-11-01
The interlaminar deformation on the free edge surface in thermoplastic composite AS4/PEEK laminates under bending loading are studied by means of digital image correlation method (DICM) using a white-light industrial microscopic. During the test, any artificial stochastic spray is not applied to the specimen surface. In laminar scale, the interlaminare displacements of [0/90]3s laminate are measured. In sub-laminar scale, the tested area includes a limited number of fibers; the fiber is elastic with actual diameter about 7μm, and PEEK matrix has elastic-plastic behavior. The local mesoscopic fields of interlaminar displacement near the areas of fiber-matrix interface are obtained by DICM. The distributions of in-plane elastic-plastic stresses near the interlaminar interface between different layers are indirectly obtained using the coupling the results of DICM with finite element method. Based on above DICM experiments, the influences of random fiber distribution and the PEEK matrix ductility in sub-laminar scale on the ineterlaminar mesomechanical behavior are investigated. The experimental results in the present work are important for multi-scale theory and numerical analysis of interlaminar deformation and stresses in these composite laminates.
Finite plate thickness effects on the Rayleigh-Taylor instability in elastic-plastic materials
NASA Astrophysics Data System (ADS)
Polavarapu, Rinosh; Banerjee, Arindam
2017-11-01
The majority of theoretical studies have tackled the Rayleigh-Taylor instability (RTI) problem in solids using an infinitely thick plate. Recent theoretical studies by Piriz et al. (PRE 95, 053108, 2017) have explored finite thickness effects. We seek to validate this recent theoretical estimate experimentally using our rotating wheel RTI experiment in an accelerated elastic-plastic material. The test section consists of a container filled with air and mayonnaise (a non-Newtonian emulsion) with an initial perturbation between two materials. The plate thickness effects are studied by varying the depth of the soft-solid. A set of experiments is run by employing different initial conditions with different container dimensions. Additionally, the effect of acceleration rate (driving pressure rise time) on the instability threshold with reference to the finite thickness will also be inspected. Furthermore, the experimental results are compared to the analytical strength models related to finite thickness effects on RTI. Authors acknowledge financial support from DOE-SSAA Grant # DE-NA0003195 and LANL subcontract #370333.
Revealing flow behaviors of metallic glass based on activation of flow units
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ge, T. P.; Wang, W. H.; Bai, H. Y., E-mail: hybai@iphy.ac.cn
2016-05-28
Atomic level flow plays a critical role in the mechanical behavior of metallic glass (MG) while the connection between the flow and the heterogeneous microstructure of the glass remains unclear. We describe the heterogeneity of MGs as the elastic matrix with “inclusions” of nano-scale liquid-like flow units, and the plastic flow behavior of MGs is considered to be accommodated by the flow units. We show that the model can explain the various deformation behaviors, the transformation from inhomogeneous deformation to homogeneous flow upon strain rate or temperature, and the deformation map in MGs, which might provide insights into the flowmore » mechanisms in glasses and inspiration for improving the plasticity of MGs.« less
NASA Astrophysics Data System (ADS)
Chen, J.; Girard, J.
2012-12-01
Study of mechanical properties of mantle minerals has unveiled many mysteries of Earth's interior alluded through seismic events. However, some details of seismic models remain unexplained. For instance, magnitude of seismic discontinuity at 410 km depth in seismic models is significantly larger than that derived from elastic properties of dominant minerals at such depth. For another example, although the attenuation of seismic anisotropy in the upper mantle at about 200-220 km depth can be attributed to switchover of active dislocation slip system in the dominant mineral, olivine, the depth and its variation are discrepant from that derived from the pressure at which such switchover is observed in the deformation experiment of mineral plasticity study. We have investigated influence of water on elastic and plastic behaviors of olivine through equation of state and rheological creep experiments using synchrotron x-rays at the X17C and X17B2 beamlines of the NSLS. Results indicate water significantly weakens the mineral. Elastically, 0.4 wt% H2O in olivine results in a 5% reduction in bulk modulus (i.e. from 130 GPa for anhydrous sample to 123 GPa for hydrous sample). Plastically, structural H2O in olivine influences different dislocation slip system very differently, and therefore alters the pressure of active slip system switchover with respect to "dry" sample. Even 30 ppm H2O in weight may lower down the pressure for transition from [100](010) slip to [001](010) slip by 2 GPa (i.e. from 8 GPa in dry condition to 6 GPa in wet condition). Implications of these results will be discussed in this presentation. Together with previously reported results on elastic and plastic properties of mantle dominant minerals, we are able to reconcile the discrepancies between mineral physics and seismology models for the magnitude of 410 km discontinuity and for the attenuation of seismic anisotropy at about 200-220 km respectively.
A size-dependent constitutive model of bulk metallic glasses in the supercooled liquid region
Yao, Di; Deng, Lei; Zhang, Mao; Wang, Xinyun; Tang, Na; Li, Jianjun
2015-01-01
Size effect is of great importance in micro forming processes. In this paper, micro cylinder compression was conducted to investigate the deformation behavior of bulk metallic glasses (BMGs) in supercooled liquid region with different deformation variables including sample size, temperature and strain rate. It was found that the elastic and plastic behaviors of BMGs have a strong dependence on the sample size. The free volume and defect concentration were introduced to explain the size effect. In order to demonstrate the influence of deformation variables on steady stress, elastic modulus and overshoot phenomenon, four size-dependent factors were proposed to construct a size-dependent constitutive model based on the Maxwell-pulse type model previously presented by the authors according to viscosity theory and free volume model. The proposed constitutive model was then adopted in finite element method simulations, and validated by comparing the micro cylinder compression and micro double cup extrusion experimental data with the numerical results. Furthermore, the model provides a new approach to understanding the size-dependent plastic deformation behavior of BMGs. PMID:25626690
Molecular dynamics simulation on the elastoplastic properties of copper nanowire under torsion
NASA Astrophysics Data System (ADS)
Yang, Yong; Li, Ying; Yang, Zailin; Zhang, Guowei; Wang, Xizhi; Liu, Jin
2018-02-01
Influences of different factors on the torsion properties of single crystal copper nanowire are studied by molecular dynamics method. The length, torsional rate, and temperature of the nanowire are discussed at the elastic-plastic critical point. According to the average potential energy curve and shear stress curve, the elastic-plastic critical angle is determined. Also, the dislocation at elastoplastic critical points is analyzed. The simulation results show that the single crystal copper nanowire can be strengthened by lengthening the model, decreasing the torsional rate, and lowering the temperature. Moreover, atoms move violently and dislocation is more likely to occur with a higher temperature. This work mainly describes the mechanical behavior of the model under different states.
The Shock and Vibration Digest. Volume 16, Number 11
1984-11-01
wave [19], a secular equation for Rayleigh waves on ing, seismic risk, and related problems are discussed. the surface of an anisotropic half-space...waves in an !so- tive equation of an elastic-plastic rack medium was....... tropic linear elastic half-space with plane material used; the coefficient...pair of semi-linear hyperbolic partial differential -- " Conditions under which the equations of motion equations governing slow variations in amplitude
Taw, Matthew R.; Yeager, John D.; Hooks, Daniel E.; ...
2017-06-19
Organic molecular crystals are often noncubic and contain significant steric hindrance within their structure to resist dislocation motion. Plastic deformation in these systems can be imparted during processing (tableting and comminution of powders), and the defect density impacts subsequent properties and performance. This paper measured the elastic and plastic properties of representative monoclinic, orthorhombic, and triclinic molecular crystalline structures using nanoindentation of as-grown sub-mm single crystals. The variation in modulus due to in-plane rotational orientation, relative to a Berkovich tip, was approximately equal to the variation of a given crystal at a fixed orientation. The onset of plasticity occurs consistentlymore » at shear stresses between 1 and 5% of the elastic modulus in all three crystal systems, and the hardness to modulus ratio suggests conventional Berkovich tips do not generate fully self-similar plastic zones in these materials. Finally, this provides guidance for mechanical models of tableting, machining, and property assessment of molecular crystals.« less
Error driven remeshing strategy in an elastic-plastic shakedown problem
NASA Astrophysics Data System (ADS)
Pazdanowski, Michał J.
2018-01-01
A shakedown based approach has been for many years successfully used to calculate the distributions of residual stresses in bodies made of elastic-plastic materials and subjected to cyclic loads exceeding their bearing capacity. The calculations performed indicated the existence of areas characterized by extremely high gradients and rapid changes of sign over small areas in the stress field sought. In order to account for these changes in sign, relatively dense nodal meshes had to be used during calculations in disproportionately large parts of considered bodies, resulting in unnecessary expenditure of computer resources. Therefore the effort was undertaken to limit the areas of high mesh densities and drive the mesh regeneration algorithm by selected error indicators.
NASA Technical Reports Server (NTRS)
Wu, R. W.; Witmer, E. A.
1972-01-01
A user-oriented FORTRAN 4 computer program, called JET 3, is presented. The JET 3 program, which employs the spatial finite-element and timewise finite-difference method, can be used to predict the large two-dimensional elastic-plastic transient Kirchhoff-type deformations of a complete or partial structural ring, with various support conditions and restraints, subjected to a variety of initial velocity distributions and externally-applied transient forcing functions. The geometric shapes of the structural ring can be circular or arbitrarily curved and with variable thickness. Strain-hardening and strain-rate effects of the material are taken into account.
Computational Nanomechanics of Carbon Nanotubes and Composites
NASA Technical Reports Server (NTRS)
Srivastava, Deepak; Wei, Chenyu; Cho, Kyeongjae; Biegel, Bryan (Technical Monitor)
2002-01-01
Nanomechanics of individual carbon and boron-nitride nanotubes and their application as reinforcing fibers in polymer composites has been reviewed with interplay of theoretical modeling, computer simulations and experimental observations. The emphasis in this work is on elucidating the multi-length scales of the problems involved, and of different simulation techniques that are needed to address specific characteristics of individual nanotubes and nanotube polymer-matrix interfaces. Classical molecular dynamics simulations are shown to be sufficient to describe the generic behavior such as strength and stiffness modulus but are inadequate to describe elastic limit and nature of plastic buckling at large strength. Quantum molecular dynamics simulations are shown to bring out explicit atomic nature dependent behavior of these nanoscale materials objects that are not accessible either via continuum mechanics based descriptions or through classical molecular dynamics based simulations. As examples, we discus local plastic collapse of carbon nanotubes under axial compression and anisotropic plastic buckling of boron-nitride nanotubes. Dependence of the yield strain on the strain rate is addressed through temperature dependent simulations, a transition-state-theory based model of the strain as a function of strain rate and simulation temperature is presented, and in all cases extensive comparisons are made with experimental observations. Mechanical properties of nanotube-polymer composite materials are simulated with diverse nanotube-polymer interface structures (with van der Waals interaction). The atomistic mechanisms of the interface toughening for optimal load transfer through recycling, high-thermal expansion and diffusion coefficient composite formation above glass transition temperature, and enhancement of Young's modulus on addition of nanotubes to polymer are discussed and compared with experimental observations.
NASA Astrophysics Data System (ADS)
Maire, Pierre-Henri; Abgrall, Rémi; Breil, Jérôme; Loubère, Raphaël; Rebourcet, Bernard
2013-02-01
In this paper, we describe a cell-centered Lagrangian scheme devoted to the numerical simulation of solid dynamics on two-dimensional unstructured grids in planar geometry. This numerical method, utilizes the classical elastic-perfectly plastic material model initially proposed by Wilkins [M.L. Wilkins, Calculation of elastic-plastic flow, Meth. Comput. Phys. (1964)]. In this model, the Cauchy stress tensor is decomposed into the sum of its deviatoric part and the thermodynamic pressure which is defined by means of an equation of state. Regarding the deviatoric stress, its time evolution is governed by a classical constitutive law for isotropic material. The plasticity model employs the von Mises yield criterion and is implemented by means of the radial return algorithm. The numerical scheme relies on a finite volume cell-centered method wherein numerical fluxes are expressed in terms of sub-cell force. The generic form of the sub-cell force is obtained by requiring the scheme to satisfy a semi-discrete dissipation inequality. Sub-cell force and nodal velocity to move the grid are computed consistently with cell volume variation by means of a node-centered solver, which results from total energy conservation. The nominally second-order extension is achieved by developing a two-dimensional extension in the Lagrangian framework of the Generalized Riemann Problem methodology, introduced by Ben-Artzi and Falcovitz [M. Ben-Artzi, J. Falcovitz, Generalized Riemann Problems in Computational Fluid Dynamics, Cambridge Monogr. Appl. Comput. Math. (2003)]. Finally, the robustness and the accuracy of the numerical scheme are assessed through the computation of several test cases.
Elastic Plastic Fracture Analysis of an Aluminum COPV Liner
NASA Technical Reports Server (NTRS)
Forth, Scott; Gregg, Bradley; Bailey, Nathaniel
2012-01-01
Onboard any space-launch vehicle, composite over-wrapped pressure vessels (COPVs) may be utilized by propulsion or environmental control systems. The failure of a COPV has the potential to be catastrophic, resulting in the loss of vehicle, crew or mission. The latest COPV designs have reduced the wall-thickness of the metallic liner to the point where the material strains plastically during operation. At this time, the only method to determine the damage tolerance lifetime (safe-life) of a plastically responding metallic liner is through full-scale COPV testing. Conducting tests costs substantially more and can be far more time consuming than performing an analysis. As a result of this cost, there is a need to establish a qualifying process through the use of a crack growth analysis tool. This paper will discuss fracture analyses of plastically responding metallic liners in COPVs. Uni-axial strain tests have been completed on laboratory specimens to collect elastic-plastic crack growth data. This data has been modeled with the crack growth analysis tool, NASGRO 6.20 to predict the response of laboratory specimens and subsequently the complexity of a COPV.
Physical properties of polyurethane plastic sheets produced from polyols from canola oil.
Kong, Xiaohua; Narine, Suresh S
2007-07-01
Polyurethane (PUR) plastic sheets were prepared by reacting polyols synthesized from canola oil with aromatic diphenylmethane diisocyanate. The properties of the material were measured by dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA) as well as tensile properties measurements. The effect of stoichiometric balance (i.e., OH/NCO molar ratio) on the final properties was evaluated. The concentration of elastically active network chains (EANCs), nue, of the polymer networks was calculated using rubber elasticity theory. The glass transition temperatures (Tg) for the plastic sheets with OH/NCO molar ratios of 1.0/1.0, 1.0/1.1, and 1.0/1.2 were found to be 23, 41, and 43 degrees C, respectively. The kinetic studies of the degradation process of the PUR plastics showed three well-defined steps of degradation. The PUR plastic sheets with OH/NCO molar ratio 1.0/1.1 had the highest nue, lowest number-average molecule weight between cross-links, MC, and excellent mechanical properties, indicating that this is the optimum ratio in the PUR formulations.
Solution of elastic-plastic stress analysis problems by the p-version of the finite element method
NASA Technical Reports Server (NTRS)
Szabo, Barna A.; Actis, Ricardo L.; Holzer, Stefan M.
1993-01-01
The solution of small strain elastic-plastic stress analysis problems by the p-version of the finite element method is discussed. The formulation is based on the deformation theory of plasticity and the displacement method. Practical realization of controlling discretization errors for elastic-plastic problems is the main focus. Numerical examples which include comparisons between the deformation and incremental theories of plasticity under tight control of discretization errors are presented.
NASA Technical Reports Server (NTRS)
Brady, V. L.; Reed, R.; Merwin, L.; Nissan, R.
1994-01-01
A new class of liquid curable elastomers with unusual strength and elasticity has been developed at the Naval Air Warfare Center Weapons Division, China Lake. Over the years, studies have been conducted on polymer structure and its influence on the mechanical properties of the ensuing composites. Different tools, including nuclear magnetic resonance, have been used. This paper presents a summary of the factors controlling the mechanical behavior of composites produced with the new liquid curable elastomers, including the effects of plasticizers. It also provides an overview of the nuclear magnetic resonance study on polymer structure, the composition and properties of some live and inert formulations produced at China Lake, and some possible peace-time applications for these new elastomeric materials.
Effect of texture on rheological properties: the case of ɛ-Fe (Invited)
NASA Astrophysics Data System (ADS)
Merkel, S.; Gruson, M.; Tomé, C. N.; Nishiyama, N.; Wang, Y.
2009-12-01
Lattice preferred orientations (LPO) are known to affect the physical properties of materials. However, in most high pressure deformation experiments, LPO are ignored when interpreting the measured stress-strain curves. In addition, stress measurements in those experiments are complicated by the effect of plastic deformation on the measured lattice strains(1). Here, we present a new interpretation of the results obtained on hcp-iron at up to 19 GPa and 600 K in the deformation-DIA(2). In those experiments, five independent stress-strain curves were obtained on axial shortening with a ductile behavior of the sample for all. Stress were studied using results of monochromatic X-ray diffraction and the elastic theory of lattice strains(3). However, measured stresses were inconsistent with a change of behavior after 4% axial strain, particularly for strains measured on the 0002 line. We use elasto-plastic self consistent modeling(1) to show that this change of behavior is due to the evolution of LPO in the sample. With compression, 10-10 planes in hcp-iron align parallel to the compression direction and this affects the rheological behavior of the sample, which can not be summarized in a simple average law. We will also discuss the implication of those results for the extraction of polycrystalline rheological properties for materials with non-random lattice preferred orientations and how this could affect our understanding of the Earth deep interior. 1- S. Merkel, C.N. Tomé, H.-R Wenk, A modeling analysis of the influence of plasticity on high pressure deformation of hcp-Co, Phys. Rev. B, 79, 064110 (2009) 2- N. Nishiyama, Y. Wang, M. L. Rivers, S. R. Sutton, D. Cookson, Rheology of e-iron up to 19 GPa and 600 K in the D-DIA, Geophys. Res. Lett., 34, L23304 (2007) 3- A. K. Singh, C. Balasingh, H. K. Mao, R. J. Hemley, J. Shu, Analysis of lattice strains measured under non-hydrostatic pressure, J. Appl. Phys., 83, 7567-7575 (1998)
Micromechanical Behavior and Modelling of Granular Soil
1989-07-01
DiMaggio and Sandier 1971, Baladi and Rohani 1979). The problem of inherent (structural) anisotropy - especially important for 3 anisotropically...Republic of Germany. Baladi ,G.Y. and Rohani, B. (1979), "Elastic-Plastic Model for Saturated Sand," Journal of the Geotechnical Engineering Division, ASCE
Modelling Dynamic Behaviour and Spall Failure of Aluminium Alloy AA7010
NASA Astrophysics Data System (ADS)
Ma'at, N.; Nor, M. K. Mohd; Ismail, A. E.; Kamarudin, K. A.; Jamian, S.; Ibrahim, M. N.; Awang, M. K.
2017-10-01
A finite strain constitutive model to predict the dynamic deformation behaviour of Aluminium Alloy 7010 including shockwaves and spall failure is developed in this work. The important feature of this newly hyperelastic-plastic constitutive formulation is a new Mandel stress tensor formulated using new generalized orthotropic pressure. This tensor is combined with a shock equation of state (EOS) and Grady spall failure. The Hill’s yield criterion is adopted to characterize plastic orthotropy by means of the evolving structural tensors that is defined in the isoclinic configuration. This material model was developed and integration into elastic and plastic parts. The elastic anisotropy is taken into account through the newly stress tensor decomposition of a generalized orthotropic pressure. Plastic anisotropy is considered through yield surface and an isotropic hardening defined in a unique alignment of deviatoric plane within the stress space. To test its ability to describe shockwave propagation and spall failure, the new material model was implemented into the LLNL-DYNA3D code of UTHM’s. The capability of this newly constitutive model were compared against published experimental data of Plate Impact Test at 234m/s, 450m/s and 895m/s impact velocities. A good agreement is obtained between experimental and simulation in each test.
Fracture toughness and fractography of dental cements, lining, build-up, and filling materials.
Mueller, H J
1990-06-01
The plane strain fracture toughness (K1c) at 23 degrees C and the fractography of zinc phosphate and zinc polycarboxylate cements, buffered glass ionomer liner, amalgam alloy admixed glass ionomer build-up material, and glass ionomer, microfilled and conventionally filled bis-GMA resin composite filling materials were analyzed by elastic-plastic short-rod and scanning electron microscopy methodologies. Results indicated that significant differences occurred in their K1c's from the lowest to the highest in the following groups of materials, (i) buffered glass ionomer, (ii) zinc phosphate, glass ionomer, zinc polycarboxylate, and alloy mixed glass ionomer, (iii) microfilled resin, and (iv) conventionally filled resin. All materials except the microfilled resin, which fractured via crack jumping, fractured via smooth crack advance. Filler debonding without any crack inhibiting process was related to materials with low K1c values. The incorporation of either buffering compounds or alloy particles into glass ionomer had no beneficial effect upon fracture toughness. This was in contrast to microfilled and conventionally filled resins where either crack blunting or crack pinning processes, respectively, were likely involved with their increased K1c's. For microfilled resin, distinct radial zones positioned around the chevron apex and characterized by plastically deformed deposited material were related to distinct crack jumps that occurred in the load versus displacement behavior. Finally, for the two remaining materials of zinc phosphate and polycarboxylate, particle cleavage and matrix debonding for the former and shear yielding for the latter occurred.
Rubin, M. B.; Vorobiev, O.; Vitali, E.
2016-04-21
Here, a large deformation thermomechanical model is developed for shock loading of a material that can exhibit elastic and inelastic anisotropy. Use is made of evolution equations for a triad of microstructural vectors m i(i=1,2,3) which model elastic deformations and directions of anisotropy. Specific constitutive equations are presented for a material with orthotropic elastic response. The rate of inelasticity depends on an orthotropic yield function that can be used to model weak fault planes with failure in shear and which exhibits a smooth transition to isotropic response at high compression. Moreover, a robust, strongly objective numerical algorithm is proposed formore » both rate-independent and rate-dependent response. The predictions of the continuum model are examined by comparison with exact steady-state solutions. Also, the constitutive equations are used to obtain a simplified continuum model of jointed rock which is compared with high fidelity numerical solutions that model a persistent system of joints explicitly in the rock medium.« less
NASA Astrophysics Data System (ADS)
Hueckel, T.; Hu, M.
2015-12-01
Crack propagation in a subcritically stressed rock subject to chemically aggressive environment is analyzed and numerically simulated. Chemically induced weakening is often encountered in hydraulic fracturing of low-permeability oil/gas reservoirs and heat reservoirs, during storage of CO2 and nuclear waste corroding canisters, and other circumstances when rock matrix acidizing is involved. Upon acidizing, mineral mass dissolution is substantially enhanced weakening the rock and causing crack propagation and eventually permeability changes in the medium. The crack process zone is modeled mathematically via a chemo-plastic coupling and chemo-elastic coupling model. In plasticity a two-way coupling is postulated between mineral dissolution and a yield limit of rock matrix. The rate of dissolution is described by a rate law, but the mineral mass removal per unit volume is also a function of a variable internal specific surface area, which is in turn affected by the micro-cracking (treated as a plastic strain). The behavior of the rock matrix is modeled as rigid-plastic adding a chemical softening capacity to Cam-Clay model. Adopting the Extended Johnson's approximation of processes around the crack tip, the evolution of the stress field and deformation as a function of the chemically enhanced rock damage is modeled in a simplified way. In addition, chemical reactive transport is made dependent on plastic strain representing micro-cracking. Depending on mechanical and chemical boundary conditions, the area of enhanced chemical softening is near or somewhat away from the crack tip.In elasticity, chemo-mechanical effect is postulated via a chemical volumetric shrinkage strain proportional to mass removal variable, conceived analogously to thermal expansion. Two versions are considered: of constant coefficient of shrinkage and a variable one, coupled to deviatoric strain. Airy Potential approach used for linear elasticity is extended considering an extra term, which is uncoupled or coupled to strain. The later case requires iterations with solution of reactive transport equation. A decrease of stress intensity factor with time of reaction is well reproduced.
Study of an athermal quasi static plastic deformation in a 2D granular material
NASA Astrophysics Data System (ADS)
Zhang, Jie; Zheng, Jie
In crystalline materials, the plasticity has been well understood in terms of dynamics of dislocation, i.e. flow defects in the crystals where the flow defects can be directly visualized under a microscope. In a contrast, the plasticity in amorphous materials, i.e. glass, is still poorly understood due to the disordered nature of the materials. In this talk, I will discuss the recent results we have obtained in our ongoing research of the plasticity of a 2D glass in the athermal quasi static limit where the 2D glass is made of bi-disperse granular disks with very low friction. Starting from a densely packed homogeneous and isotropic initial state, we apply pure shear deformation to the system. For a sufficiently small strain, the response of the system is linear and elastic like; when the strain is large enough, the plasticity of the system gradually develops and eventually the shear bands are fully developed. In this study, we are particularly interested in how to relate the local plastic deformation to the macroscopic response of the system and also in the development of the shear bands.
Study of an athermal quasi static plastic deformation in a 2D granular material
NASA Astrophysics Data System (ADS)
Zhang, Jie; Zheng, Jie
2016-11-01
In crystalline materials, the plasticity has been well understood in terms of dynamics of dislocation, i.e. flow defects in the crystals where the flow defects can be directly visualized under a microscope. In a contrast, the plasticity in amorphous materials, i.e. glass, is still poorly understood due to the disordered nature of the materials. In this talk, I will discuss the recent results we have obtained in our ongoing research of the plasticity of a 2D glass in the athermal quasi static limit where the 2D glass is made of bi-disperse granular disks with very low friction. Starting from a densely packed homogeneous and isotropic initial state, we apply pure shear deformation to the system. For a sufficiently small strain, the response of the system is linear and elastic like; when the strain is large enough, the plasticity of the system gradually develops and eventually the shear bands are fully developed. In this study, we are particularly interested in how to relate the local plastic deformation to the macroscopic response of the system and also in the development of the shear bands.
Study of an athermal quasi static plastic deformation in a 2D granular material
NASA Astrophysics Data System (ADS)
Zhang, Jie
2017-11-01
In crystalline materials, the plasticity has been well understood in terms of dynamics of dislocation, i.e. flow defects in the crystals where the flow defects can be directly visualized under a microscope. In a contrast, the plasticity in amorphous materials, i.e. glass, is still poorly understood due to the disordered nature of the materials. In this talk, I will discuss the recent results we have obtained in our ongoing research of the plasticity of a 2D glass in the athermal quasi static limit where the 2D glass is made of bi-disperse granular disks with very low friction. Starting from a densely packed homogeneous and isotropic initial state, we apply pure shear deformation to the system. For a sufficiently small strain, the response of the system is linear and elastic like; when the strain is large enough, the plasticity of the system gradually develops and eventually the shear bands are fully developed. In this study, we are particularly interested in how to relate the local plastic deformation to the macroscopic response of the system and also in the development of the shear bands.
NASA Astrophysics Data System (ADS)
Lee, Chin-Hyung; Nguyen Van Do, Vuong; Chang, Kyong-Ho; Jeon, Jun-Tai; Um, Tae-Hwan
2018-04-01
The present study attempts to characterize the relevance of welding residual stresses to the hysteretic behaviour of a girth-welded circular stainless steel tube under cyclic mechanical loadings. Finite element (FE) thermal simulation of the girth butt welding process is first performed to identify the weld-induced residual stresses by using the one-way coupled three-dimensional (3-D) thermo-mechanical FE analysis method. 3-D elastic-plastic FE analysis equipped with the cyclic plasticity constitutive model capable of describing the cyclic response is next carried out to scrutinize the effects that the residual stresses have on the hysteretic performance of the girth-welded steel tube exposed to cyclic axial loading, which takes the residual stresses and plastic strains calculated from the preceding thermo-mechanical analysis as the initial condition. The analytical results demonstrate that the residual stresses bring about premature yielding and deterioration of the load carrying capacity in the elastic and the transition load ranges, whilst the residual stress effect is wiped out quickly in the plastic load domain since the residual stresses are nearly wholly relaxed after application of the cyclic plastic loading.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brannon, R.M.
1996-12-31
A mathematical framework is developed for the study of materials containing axisymmetric inclusions or flaws such as ellipsoidal voids, penny-shaped cracks, or fibers of circular cross-section. The general case of nonuniform statistical distributions of such heterogeneities is attacked by first considering a spatially uniform distribution of flaws that are all oriented in the same direction. Assuming an isotropic substrate, the macroscopic material properties of this simpler microstructure naturally should be transversely isotropic. An orthogonal basis for the linear subspace consisting of all double-symmetric transversely-isotropic fourth-order tensors associated with a given material vector is applied to deduce the explicit functional dependencemore » of the material properties of these aligned materials on the shared symmetry axis. The aligned and uniform microstructure seems geometrically simple enough that the macroscopic transversely isotropic properties could be derived in closed form. Since the resulting properties are transversely isotropic, the analyst must therefore be able to identify the appropriate coefficients of the transverse basis. Once these functions are identified, a principle of superposition of strain rates ay be applied to define an expectation integral for the composite properties of a material containing arbitrary anisotropic distributions of axisymmetric inhomogeneities. A proposal for coupling plastic anisotropy to the elastic anisotropy is presented in which the composite yield surface is interpreted as a distortion of the isotropic substrate yield surface; the distortion directions are coupled to the elastic anisotropy directions. Finally, some commonly assumed properties (such as major symmetry) of the Cauchy tangent stiffness tensor are shown to be inappropriate for large distortions of anisotropic materials.« less
Impact of ductility on hydraulic fracturing in shales
NASA Astrophysics Data System (ADS)
MacMinn, Chris; Auton, Lucy
2016-04-01
Hydraulic fracturing is a method for extracting natural gas and oil from low-permeability rocks such as shale via the high-pressure injection of fluid into the bulk of the rock. The goal is to initiate and propagate fractures that will provide hydraulic access deeper into the reservoir, enabling gas or oil to be collected from a larger region of the rock. Fracture is the tensile failure of a brittle material upon reaching a threshold tensile stress, but some shales have a high clay content and may yield plastically before fracturing. Plastic deformation is the shear failure of a ductile material, during which stress relaxes through irreversible rearrangements of the particles of the material. Here, we investigate the impact of the ductility of shales on hydraulic fracturing. We first consider a simple, axisymmetric model for radially outward fluid injection from a wellbore into a ductile porous rock. We use this model to show that plastic deformation greatly reduces the maximum tensile stress, and that this maximum stress does not always occur at the wellbore. We then complement these results with laboratory experiments in an analogue system, and with numerical simulations based on the discrete element method (DEM), both of which suggest that ductile failure can indeed dramatically change the resulting deformation pattern. These results imply that hydraulic fracturing may fail in ductile rocks, or that the required injection rate for fracking may be much larger than the rate predicted from models that assume purely elastic mechanical behavior.
Hypo-Elastic Model for Lung Parenchyma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freed, Alan D.; Einstein, Daniel R.
2012-03-01
A simple elastic isotropic constitutive model for the spongy tissue in lung is derived from the theory of hypoelasticity. The model is shown to exhibit a pressure dependent behavior that has been interpreted by some as indicating extensional anisotropy. In contrast, we show that this behavior arises natural from an analysis of isotropic hypoelastic invariants, and is a likely result of non-linearity, not anisotropy. The response of the model is determined analytically for several boundary value problems used for material characterization. These responses give insight into both the material behavior as well as admissible bounds on parameters. The model ismore » characterized against published experimental data for dog lung. Future work includes non-elastic model behavior.« less
Mechanical Behavior of Al-SiC Nanolaminate Composites Using Micro-Scale Testing Methods
NASA Astrophysics Data System (ADS)
Mayer, Carl Randolph
Nanolaminate composite materials consist of alternating layers of materials at the nanoscale (≤100 nm). Due to the nanometer scale thickness of their layers, these materials display unique and tailorable properties. This enables us to alter both mechanical attributes such as strength and wear properties, as well as functional characteristics such as biocompatibility, optical, and electronic properties. This dissertation focuses on understanding the mechanical behavior of the Al-SiC system. From a practical perspective, these materials exhibit a combination of high toughness and strength which is attractive for many applications. Scientifically, these materials are interesting due to the large elastic modulus mismatch between the layers. This, paired with the small layer thickness, allows a unique opportunity for scientists to study the plastic deformation of metals under extreme amounts of constraint. Previous studies are limited in scope and a more diverse range of mechanical characterization is required to understand both the advantages and limitations of these materials. One of the major challenges with testing these materials is that they are only able to be made in thicknesses on the order of micrometers so the testing methods are limited to small volume techniques. This work makes use of both microscale testing techniques from the literature as well as novel methodologies. Using these techniques we are able to gain insight into aspects of the material's mechanical behavior such as the effects of layer orientation, flaw dependent fracture, tension-compression asymmetry, fracture toughness as a function of layer thickness, and shear behavior as a function of layer thickness.
Plastic Deformation of Magnesium Alloy Subjected to Compression-First Cyclic Loading
NASA Astrophysics Data System (ADS)
Lee, Soo Yeol; Gharghouri, Michael A.; Root, John H.
In-situ neutron diffraction has been employed to study the deformation mechanisms in a precipitation-hardened and extruded Mg-8.5wt.% Al alloy subjected to compression followed by reverse tension. The starting texture is such that the basal poles of most grains are oriented normal to the extrusion axis and a small portion of grains are oriented with the basal pole parallel to the extrusion axis. Diffraction peak intensities for several grain orientations monitored in-situ during deformation show that deformation twinning plays an important role in the elastic-plastic transition and subsequent plastic deformation behavior. Significant non-linear behavior is observed during unloading after compression and appears to be due to detwinning. This effect is much stronger after compressive loading than after tensile loading.
Two Back Stress Hardening Models in Rate Independent Rigid Plastic Deformation
NASA Astrophysics Data System (ADS)
Yun, Su-Jin
In the present work, the constitutive relations based on the combination of two back stresses are developed using the Armstrong-Frederick, Phillips and Ziegler’s type hardening rules. Various evolutions of the kinematic hardening parameter can be obtained by means of a simple combination of back stress rate using the rule of mixtures. Thus, a wide range of plastic deformation behavior can be depicted depending on the dominant back stress evolution. The ultimate back stress is also determined for the present combined kinematic hardening models. Since a kinematic hardening rule is assumed in the finite deformation regime, the stress rate is co-rotated with respect to the spin of substructure obtained by incorporating the plastic spin concept. A comparison of the various co-rotational rates is also included. Assuming rigid plasticity, the continuum body consists of the elastic deformation zone and the plastic deformation zone to form a hybrid finite element formulation. Then, the plastic deformation behavior is investigated under various loading conditions with an assumption of the J2 deformation theory. The plastic deformation localization turns out to be strongly dependent on the description of back stress evolution and its associated hardening parameters. The analysis for the shear deformation with fixed boundaries is carried out to examine the deformation localization behavior and the evolution of state variables.
The stress relaxation of cement clinkers under high temperature
NASA Astrophysics Data System (ADS)
Wang, Xiufang; Bao, Yiwang; Liu, Xiaogen; Qiu, Yan
2015-12-01
The energy consumption of crushing is directly affected by the mechanical properties of cement materials. This research provides a theoretical proof for the mechanism of the stress relaxation of cement clinkers under high temperature. Compression stress relaxation under various high temperatures is discussed using a specially developed load cell, which can measure stress and displacement under high temperatures inside an autoclave. The cell shows that stress relaxation dramatically increases and that the remaining stress rapidly decreases with an increase in temperature. Mechanical experiments are conducted under various temperatures during the cooling process to study the changes in the grinding resistance of the cement clinker with temperature. The effects of high temperature on the load-displacement curve, compressive strength, and elastic modulus of cement clinkers are systematically studied. Results show that the hardening phenomenon of the clinker becomes apparent with a decrease in temperature and that post-peak behaviors manifest characteristics of the transformation from plasticity to brittleness. The elastic modulus and compressive strength of cement clinkers increase with a decrease in temperature. The elastic modulus increases greatly when the temperature is lower than 1000 °C. The compressive strength of clinkers increases by 73.4% when the temperature drops from 1100 to 800 °C.
Modeling Anisotropic Elastic Wave Propagation in Jointed Rock Masses
NASA Astrophysics Data System (ADS)
Hurley, R.; Vorobiev, O.; Ezzedine, S. M.; Antoun, T.
2016-12-01
We present a numerical approach for determining the anisotropic stiffness of materials with nonlinearly-compliant joints capable of sliding. The proposed method extends existing ones for upscaling the behavior of a medium with open cracks and inclusions to cases relevant to natural fractured and jointed rocks, where nonlinearly-compliant joints can undergo plastic slip. The method deviates from existing techniques by incorporating the friction and closure states of the joints, and recovers an anisotropic elastic form in the small-strain limit when joints are not sliding. We present the mathematical formulation of our method and use Representative Volume Element (RVE) simulations to evaluate its accuracy for joint sets with varying complexity. We then apply the formulation to determine anisotropic elastic constants of jointed granite found at the Nevada Nuclear Security Site (NNSS) where the Source Physics Experiments (SPE), a campaign of underground chemical explosions, are performed. Finally, we discuss the implementation of our numerical approach in a massively parallel Lagrangian code Geodyn-L and its use for studying wave propagation from underground explosions. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Comparison between instrumented precracked Charpy and compact specimen tests of carbon steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nanstad, R.K.
1980-01-01
The General Atomic Company High Temperature Gas-Cooled Reactor (HTGR) is housed within a prestressed concrete reactor vessel (PCRV). Various carbon steel structural members serve as closures at penetrations in the vessel. A program of testing and evaluation is underway to determine the need for reference fracture toughness (K/sub IR/) and indexing procedures for these materials as described in Appendix G to Section III, ASME Code for light water reactor steels. The materials of interest are carbon steel forgings (SA508, Class 1) and plates (SA537, Classes 1 and 2) as well as weldments of these steels. The fracture toughness behavior ismore » characterized with instrumented precracked Charpy V-votch specimens (PCVN) - slow-bend and dynamic - and compact specimens (10-mm and 25-mm thicknesses) using both linear elastic (ASTM E399) and elastic-plastic (equivalent Energy and J-Integral) analytical procedures. For the dynamic PCVN tests, force-time traces are analyzed according to the procedures of the Pressure Vessel Research Council (PVRC)/Metal Properties Council (MPC). Testing and analytical procedures are discussed and PCVN results are compared to those obtained with compact specimens.« less
Slow dynamics and strength recovery in unconsolidated granular earth materials: a mechanistic theory
Lieou, Charles Ka Cheong; Daub, Eric G.; Ecke, Robert E.; ...
2017-09-08
Rock materials often display long-time relaxation, commonly termed aging or “slow dynamics”, after the cessation of acoustic perturbations. In this paper, we focus on unconsolidated rock materials and propose to explain such nonlinear relaxation through the Shear-Transformation-Zone (STZ) theory of granular media, adapted for small stresses and strains. The theory attributes the observed relaxation to the slow, irreversible change of positions of constituent grains, and posits that the aging process can be described in three stages: fast recovery before some characteristic time associated with the subset of local plastic events or grain rearrangements with a short time scale, log-linear recoverymore » of the elastic modulus at intermediate times, and gradual turnover to equilibrium steady-state behavior at long times. Here we demonstrate good agreement with experiments on aging in granular materials such as simulated fault gouge after an external disturbance. These results may provide insights into observed modulus recovery after strong shaking in the near surface region of earthquake zones.« less
Slow Dynamics and Strength Recovery in Unconsolidated Granular Earth Materials: A Mechanistic Theory
NASA Astrophysics Data System (ADS)
Lieou, Charles K. C.; Daub, Eric G.; Ecke, Robert E.; Johnson, Paul A.
2017-10-01
Rock materials often display long-time relaxation, commonly termed aging or "slow dynamics," after the cessation of acoustic perturbations. In this paper, we focus on unconsolidated rock materials and propose to explain such nonlinear relaxation through the shear-transformation-zone theory of granular media, adapted for small stresses and strains. The theory attributes the observed relaxation to the slow, irreversible change of positions of constituent grains and posits that the aging process can be described in three stages: fast recovery before some characteristic time associated with the subset of local plastic events or grain rearrangements with a short time scale, log linear recovery of the elastic modulus at intermediate times, and gradual turnover to equilibrium steady state behavior at long times. We demonstrate good agreement with experiments on aging in granular materials such as simulated fault gouge after an external disturbance. These results may provide insights into observed modulus recovery after strong shaking in the near surface region of earthquake zones.
NASA Astrophysics Data System (ADS)
Li, Yaokun; Han, Xiaolei; Galal, Khaled; Ji, Jing
2018-01-01
Cushion is a layer of granular materials between the raft and the ground. The shear behavior of the interface between the cushion and the raft may influence the seismic performance of the superstructure. In order to quantify such influences, horizontal shear tests on the interfaces between different cushion materials and concrete raft under monotonic and cyclic loading were carried out. The vertical pressure P v, material type and cushion thickness h c were taken as variables. Conclusions include: 1) under monotonic loading, P v is the most significant factor; the shear resistance P hmax increases as P v increases, but the normalized factor of resistance μ n has an opposite tendency; 2) for the materials used in this study, μ n varies from 0.40 to 0.70, the interface friction angle δ s varies from 20° to 35°, while u max varies from 3 mm to 15 mm; 3) under cyclic loading, the interface behavior can be abstracted as a "three-segment" back-bone curve, the main parameters include μ n, the displacement u 1 and stiffness K 1 of the elastic stage, the displacement u 2 and stiffness K 2 of the plastic stage; 4) by observation and statistical analysis, the significance of different factors, together with values of K 1, K 2 and μ n have been obtained.
Nonlinear behavior of shells of revolution under cyclic loading
NASA Technical Reports Server (NTRS)
Levine, H. S.; Armen, H., Jr.; Winter, R.; Pifko, A.
1972-01-01
A large deflection elastic-plastic analysis is presented, applicable to orthotropic axisymmetric plates and shells of revolution subjected to monotonic and cyclic loading conditions. The analysis is based on the finite-element method. It employs a new higher order, fully compatible, doubly curved orthotropic shell-of-revolution element using cubic Hermitian expansions for both meridional and normal displacements. Both perfectly plastic and strain hardening behavior are considered. Strain hardening is incorporated through use of the Prager-Ziegler kinematic hardening theory, which predicts an ideal Bauschinger effect. Numerous sample problems involving monotonic and cyclic loading conditions are analyzed. The monotonic results are compared with other theoretical solutions.
A thermodynamic approach to nonlinear ultrasonics for material state awareness and prognosis
NASA Astrophysics Data System (ADS)
Chillara, Vamshi Krishna
2017-11-01
We develop a thermodynamic framework for modeling nonlinear ultrasonic damage sensing and prognosis in materials undergoing progressive damage. The framework is based on the internal variable approach and relies on the construction of a pseudo-elastic strain energy function that captures the energetics associated with the damage progression. The pseudo-elastic strain energy function is composed of two energy functions—one that describes how a material stores energy in an elastic fashion and the other describes how material dissipates energy or stores it in an inelastic fashion. Experimental motivation for the choice of the above two functionals is discussed and some specific choices pertaining to damage progression during fatigue and creep are presented. The thermodynamic framework is employed to model the nonlinear response of material undergoing stress relaxation and creep-like degradation. For each of the above cases, evolution of the nonlinearity parameter with damage as well as with macroscopic measurables like accumulated plastic strain is obtained.
NONLINEAR SYSTEMS, LINEAR SYSTEMS, SUBROUTINES , SOIL MECHANICS, INTERFACES, DYNAMICS, LOADS(FORCES), FORCE(MECHANICS), DAMPING, ACCELERATION, ELASTIC...PROPERTIES, PLASTIC PROPERTIES, CRACKS , REINFORCING MATERIALS , COMPOSITE MATERIALS , FAILURE(MECHANICS), MECHANICAL PROPERTIES, INSTRUCTION MANUALS, DIGITAL COMPUTERS...STRESSES, *COMPUTER PROGRAMS), (*STRUCTURES, STRESSES), (*DATA PROCESSING, STRUCTURAL PROPERTIES), SOILS , STRAIN(MECHANICS), MATHEMATICAL MODELS
NASA Astrophysics Data System (ADS)
Betekhtin, V. I.; Kadomtsev, A. G.; Kardashev, B. K.
2006-08-01
The effect of the amplitude of vibrational deformation on the elastic modulus and internal friction of microcrystalline aluminum samples produced by equal-channel angular pressing was studied. The samples have various deformation and thermal histories. The elastic and inelastic (microplastic) properties of the samples are investigated. As the degree of plastic deformation increases, the Young’s modulus E, the amplitude-independent decrement δi, and the microplastic flow stress σ increase. As the annealing temperature increases, the quantities δi and σ decrease noticeably and the modulus E exhibits a more complex behavior. The experimental data are discussed under the assumption that the dislocation mobility depends on both the spectrum of point defects and the internal stresses, whose level is determined by the degree of plastic deformation and the temperature of subsequent annealing. The concept of internal stresses is also used to analyze the data on the effect of the degree of deformation and annealing on the rupture strength of the samples.
Shape Memory Alloy Modeling and Applications to Porous and Composite Structures
NASA Astrophysics Data System (ADS)
Zhu, Pingping
There has been a growing concern about an exciting class of advanced material -- shape memory alloys (SMAs) since their discovery several decades ago. SMAs exhibit large reversible stresses and strains owing to a thermoelastic phase transformation. They have been widely used in many engineering fields including aerospace, biomedical, and automotive engineering, especially as sensors, actuators, bone implants and deployable switches. The behavior of SMAs is very complex due to the coupling between thermal and mechanical effects. Theoretical and computational tools are used in this dissertation to investigate the mechanical behavior of SMA and its related structures for seeking better and wider application of this material. In the first part of this dissertation, we proposed an improved macroscopic phenomenological constitutive model of SMA that accounts for all major mechanical behaviors including elasticity, phase transformation, reorientation and plasticity. The model is based on some previous work developed in the Brinson group, and the current efforts are focused on plasticity, the application of a pre-defined strain, unification of notations, and other coding-related work. A user subroutine script VUMAT is developed to implement the constitutive model to the commercial finite element software Abaqus. Typical simulation results based on the model are presented, as well as verification with some experimental results. In the second part, we apply the developed constitutive model to a series of two-dimensional SMA plates with structured arrays of pores to investigate the structural response, especially the stress, strain, phase transformation, and plastic fields. Results are documented about the coupling of the elastic, transformation and plastic fields about the arrays of pores. Theoretical and experimental DIC results are also utilized to validate some simulation results. Conclusions are then drawn to provide understanding in the effect of pores and the underlying mechanism of pore interactions in the SMA foams. Additionally, the influence of geometric features including the number, size and locations of pores are studied to guide the design and optimization of porous SMAs. Thirdly, modeling and simulation are performed on a series of cracked self-healing SMA composite systems. These composites are to be applied in aeronautic structures where fatigue crack initiation and propagation is a significant safety and economic concern, based on a liquid-assisted SMA self-healing technology. We develop a modeling approach in Abaqus to create composite models with the as-is or pre-strained SMA wires. The modeling approach is validated by two simulation cases following the experiment setups. The amount of crack closure in the SMA-reinforced MMC is then focused, especially on the role of the SMA reinforcement, the softening property of the matrix, and the effect of pre-strain in the SMA. Composites with various geometric configurations of SMA are also created to study how the number, location, length and orientation of the SMA wires would affect the crack closure and self-healing behavior. These studies, from three aspects, provide deep insights to SMA and its related applications from the modeling and simulation point of view, which can further guide the development and application of this unique material.
NASA Astrophysics Data System (ADS)
Roychowdhury, S.; Seifert, H.-P.; Spätig, P.; Que, Z.
2016-09-01
Structural integrity of reactor pressure vessels (RPV) is critical for safety and lifetime. Possible degradation of fracture resistance of RPV steel due to exposure to coolant and hydrogen is a concern. In this study tensile and elastic-plastic fracture mechanics (EPFM) tests in air (hydrogen pre-charged) and EFPM tests in hydrogenated/oxygenated high-temperature water (HTW) was done, using a low-alloy RPV steel. 2-5 wppm hydrogen caused embrittlement in air tensile tests at room temperature (25 °C) and at 288 °C, effects being more significant at 25 °C and in simulated weld coarse grain heat affected zone material. Embrittlement at 288 °C is strain rate dependent and is due to localized plastic deformation. Hydrogen pre-charging/HTW exposure did not deteriorate the fracture resistance at 288 °C in base metal, for investigated loading rate range. Clear change in fracture morphology and deformation structures was observed, similar to that after air tests with hydrogen.
Strength computation of forged parts taking into account strain hardening and damage
NASA Astrophysics Data System (ADS)
Cristescu, Michel L.
2004-06-01
Modern non-linear simulation software, such as FORGE 3 (registered trade mark of TRANSVALOR), are able to compute the residual stresses, the strain hardening and the damage during the forging process. A thermally dependent elasto-visco-plastic law is used to simulate the behavior of the material of the hot forged piece. A modified Lemaitre law coupled with elasticiy, plasticity and thermic is used to simulate the damage. After the simulation of the different steps of the forging process, the part is cooled and then virtually machined, in order to obtain the finished part. An elastic computation is then performed to equilibrate the residual stresses, so that we obtain the true geometry of the finished part after machining. The response of the part to the loadings it will sustain during it's life is then computed, taking into account the residual stresses, the strain hardening and the damage that occur during forging. This process is illustrated by the forging, virtual machining and stress analysis of an aluminium wheel hub.
Gradient plasticity for thermo-mechanical processes in metals with length and time scales
NASA Astrophysics Data System (ADS)
Voyiadjis, George Z.; Faghihi, Danial
2013-03-01
A thermodynamically consistent framework is developed in order to characterize the mechanical and thermal behavior of metals in small volume and on the fast transient time. In this regard, an enhanced gradient plasticity theory is coupled with the application of a micromorphic approach to the temperature variable. A physically based yield function based on the concept of thermal activation energy and the dislocation interaction mechanisms including nonlinear hardening is taken into consideration in the derivation. The effect of the material microstructural interface between two materials is also incorporated in the formulation with both temperature and rate effects. In order to accurately address the strengthening and hardening mechanisms, the theory is developed based on the decomposition of the mechanical state variables into energetic and dissipative counterparts which endowed the constitutive equations to have both energetic and dissipative gradient length scales for the bulk material and the interface. Moreover, the microstructural interaction effect in the fast transient process is addressed by incorporating two time scales into the microscopic heat equation. The numerical example of thin film on elastic substrate or a single phase bicrystal under uniform tension is addressed here. The effects of individual counterparts of the framework on the thermal and mechanical responses are investigated. The model is also compared with experimental results.
Addendum to the User Manual for NASGRO Elastic-Plastic Fracture Mechanics Software Module
NASA Technical Reports Server (NTRS)
Gregg, M. Wayne (Technical Monitor); Chell, Graham; Gardner, Brian
2003-01-01
The elastic-plastic fracture mechanics modules in NASGRO have been enhanced by the addition of of the following: new J-integral solutions based on the reference stress method and finite element solutions; the extension of the critical crack and critical load modules for cracks with two degrees of freedom that tear and failure by ductile instability; the addition of a proof test analysis module that includes safe life analysis, calculates proof loads, and determines the flaw screening 1 capability for a given proof load; the addition of a tear-fatigue module for ductile materials that simultaneously tear and extend by fatigue; and a multiple cycle proof test module for estimating service reliability following a proof test.
Modeling plasticity by non-continuous deformation
NASA Astrophysics Data System (ADS)
Ben-Shmuel, Yaron; Altus, Eli
2017-10-01
Plasticity and failure theories are still subjects of intense research. Engineering constitutive models on the macroscale which are based on micro characteristics are very much in need. This study is motivated by the observation that continuum assumptions in plasticity in which neighbour material elements are inseparable at all-time are physically impossible, since local detachments, slips and neighbour switching must operate, i.e. non-continuous deformation. Material microstructure is modelled herein by a set of point elements (particles) interacting with their neighbours. Each particle can detach from and/or attach with its neighbours during deformation. Simulations on two- dimensional configurations subjected to uniaxial compression cycle are conducted. Stochastic heterogeneity is controlled by a single "disorder" parameter. It was found that (a) macro response resembles typical elasto-plastic behaviour; (b) plastic energy is proportional to the number of detachments; (c) residual plastic strain is proportional to the number of attachments, and (d) volume is preserved, which is consistent with macro plastic deformation. Rigid body displacements of local groups of elements are also observed. Higher disorder decreases the macro elastic moduli and increases plastic energy. Evolution of anisotropic effects is obtained with no additional parameters.
Rubber-like materials derived from biosourced phenolic resins
NASA Astrophysics Data System (ADS)
Amaral-Labat, G.; Grishechko, L. I.; Silva, G. F. B. Lenz e.; Kuznetsov, B. N.; Fierro, V.; Pizzi, A.; Celzard, A.
2017-07-01
The present work describes new gels derived from cheap, abundant and non-toxic wood bark extracts of phenolic nature, behaving like elastomers. Especially, we show that these materials might be used as rubber springs. Such amazing properties were obtained by a quite simple synthesis based on the autocondensation of flavonoid tannins in water at low pH in the presence of a plasticizer. After gelation and drying, the materials presented elastic properties that could be tuned from hard and brittle to quite soft and deformable, depending on the amount of plasticizer in the starting formulation. Not only the materials containing the relevant amount of plasticizer had stress-strain characteristics in quasi-static and cyclic compression similar to most commercial rubber springs, but they presented outstanding fire retardance, surviving 5 min in a flame at 1000°C in air. Neither flame propagation nor drips were noticed during the fire test, and the materials were auto-extinguishable. These excellent features make these materials potential substitutes to usual organic elastomers.
Innovative energy absorbing devices based on composite tubes
NASA Astrophysics Data System (ADS)
Tiwari, Chandrashekhar
Analytical and experimental study of innovative load limiting and energy absorbing devices are presented here. The devices are based on composite tubes and can be categorized in to two groups based upon the energy absorbing mechanisms exhibited by them, namely: foam crushing and foam fracturing. The device based on foam crushing as the energy absorbing mechanism is composed of light weight elastic-plastic foam filling inside an angle ply composite tube. The tube is tailored to have a high Poisson’s ratio (>20). Upon being loaded the device experiences large transverse contraction resulting in rapid decrease in diameter. At a certain axial load the foam core begins to crush and energy is dissipated. This device is termed as crush tube device. The device based upon foam shear fracture as the energy absorbing mechanism involves an elastic-plastic core foam in annulus of two concentric extension-twist coupled composite tubes with opposite angles of fibers. The core foam is bonded to the inner and outer tube walls. Upon being loaded axially, the tubes twist in opposite directions and fracture the core foam in out of plane shear and thus dissipate the energy stored. The device is termed as sandwich core device (SCD). The devices exhibit variations in force-displacement characteristics with changes in design and material parameters, resulting in wide range of energy absorption capabilities. A flexible matrix composite system was selected, which was composed of high stiffness carbon fibers as reinforcements in relatively low stiffness polyurethane matrix, based upon large strain to failure capabilities and large beneficial elastic couplings. Linear and non-linear analytical models were developed encapsulating large deformation theory of the laminated composite shells (using non-linear strain energy formulation) to the fracture mechanics of core foam and elastic-plastic deformation theory of the foam filling. The non-linear model is capable of including material and geometric nonlinearities that arise from large deformation and fiber reorientation. Developed non-linear analysis predicts the behavior of extension-twist coupled and angle ply flexible matrix composite tubes under multi-axial loadings. The predicted results show close correlation with experimental findings. It was also found that these devices exhibit variations with respect to rate of loading. It was found that the novel energy absorbing devices are capable of providing 4-5 times higher specific energy absorption (SEA) than currently used devices for similar purposes (such as wire bender which has SEA of 3.6 J/g).
NASA Technical Reports Server (NTRS)
Wang, John T.; Bomarito, Geoffrey F.
2016-01-01
This study implements a plasticity tool to predict the nonlinear shear behavior of unidirectional composite laminates under multiaxial loadings, with an intent to further develop the tool for use in composite progressive damage analysis. The steps for developing the plasticity tool include establishing a general quadratic yield function, deriving the incremental elasto-plastic stress-strain relations using the yield function with associated flow rule, and integrating the elasto-plastic stress-strain relations with a modified Euler method and a substepping scheme. Micromechanics analyses are performed to obtain normal and shear stress-strain curves that are used in determining the plasticity parameters of the yield function. By analyzing a micromechanics model, a virtual testing approach is used to replace costly experimental tests for obtaining stress-strain responses of composites under various loadings. The predicted elastic moduli and Poisson's ratios are in good agreement with experimental data. The substepping scheme for integrating the elasto-plastic stress-strain relations is suitable for working with displacement-based finite element codes. An illustration problem is solved to show that the plasticity tool can predict the nonlinear shear behavior for a unidirectional laminate subjected to multiaxial loadings.
Creep, Plasticity, and Fatigue of Single Crystal Superalloy. (Preprint)
2011-07-01
existing approaches (Nissley et al . 1991, Cuitino and Ortiz M. 1993, C. Allen 1995) to increase the accuracy of elastic-visco-plastic material deformation...and higher, as shown in (Pierce et al 1983, Needleman 1988, Kalidindi and Anand, 1994) but this leads to stiff numerical equations with their...1980), Cassenti (1983), Pierce et al 1982, and Chaboche (1986). However, the rate-independent model should be free of limitations inherent in the rate
Shock-induced microstructural response of mono- and nanocrystalline SiC ceramics
NASA Astrophysics Data System (ADS)
Branicio, Paulo S.; Zhang, Jingyun; Rino, José P.; Nakano, Aiichiro; Kalia, Rajiv K.; Vashishta, Priya
2018-04-01
The dynamic behavior of mono- and nanocrystalline SiC ceramics under plane shock loading is revealed using molecular-dynamics simulations. The generation of shock-induced elastic compression, plastic deformation, and structural phase transformation is characterized at different crystallographic directions as well as on a 5-nm grain size nanostructure at 10 K and 300 K. Shock profiles are calculated in a wide range of particle velocities 0.1-6.0 km/s. The predicted Hugoniot agree well with experimental data. Results indicate the generation of elastic waves for particle velocities below 0.8-1.9 km/s, depending on the crystallographic direction. In the intermediate range of particle velocities between 2 and 5 km/s, the shock wave splits into an elastic precursor and a zinc blende-to-rock salt structural transformation wave, which is triggered by shock pressure over the ˜90 GPa threshold value. A plastic wave, with a strong deformation twinning component, is generated ahead of the transformation wave for shocks in the velocity range between 1.5 and 3 km/s. For particle velocities greater than 5-6 km/s, a single overdriven transformation wave is generated. Surprisingly, shocks on the nanocrystalline sample reveal the absence of wave splitting, and elastic, plastic, and transformation wave components are seamlessly connected as the shock strength is continuously increased. The calculated strengths 15.2, 31.4, and 30.9 GPa for ⟨001⟩, ⟨111⟩, and ⟨110⟩ directions and 12.3 GPa for the nanocrystalline sample at the Hugoniot elastic limit are in excellent agreement with experimental data.
1982-05-01
Pugh, C. E., "Creep Studies on Type 304 Stainless Steel (Heat 8043813) Under Constant and Varying Loads," ORNL -TM- 4427 , June 1974, Oak Ridge National...34 hysteria loop predictions show. Oak Ridge ( ORNL ) [30) and combined hardening rules predict overall * 21 Stes Stress...Analysis of FFTF Components," ORNL TM-3602, Oak Ridge National Laboratory, Oak Ridge, Tenn., Sept. 1972. 31. Dafalias, Y. F., and Popov, E. P., "Plastic
NASA Astrophysics Data System (ADS)
Vyletel, G. M.; Allison, J. E.; van Aken, D. C.
1995-12-01
The low-cycle and high-cycle fatigue behavior and cyclic response of naturally aged and overaged 2219/TiC/15p and unreinforced 2219 Al were investigated using plastic strain-controlled and stress-controlled testing. In addition, the influence of grain size on the particle-reinforced materials was examined. In both reinforced and unreinforced materials, the naturally aged conditions were cyclically unstable, exhibiting an initial hardening behavior followed by an extended region of cyclic stability and ultimately a softening region. The overaged reinforced material was cyclically stable for the plastic strains examined, while the overaged unreinforced material exhibited cyclic hardening at plastic strains greater than 2.5 × 10-4. Decreasing grain size of particle-reinforced materials modestly increased the cyclic flow stress of both naturally aged and overaged materials. Reinforced and unreinforced materials exhibited similar fatigue life behaviors; however, the reinforced and unreinforced naturally aged materials had superior fatigue lives in comparison to the overaged materials. Grain size had no effect on the fatigue life behavior of the particle-reinforced materials. The fatigue lives were strongly influenced by the presence of clusters of TiC particles and exogenous Al3Ti intermetallics.
Initial Mechanical Testing of Superalloy Lattice Block Structures Conducted
NASA Technical Reports Server (NTRS)
Krause, David L.; Whittenberger, J. Daniel
2002-01-01
The first mechanical tests of superalloy lattice block structures produced promising results for this exciting new lightweight material system. The testing was performed in-house at NASA Glenn Research Center's Structural Benchmark Test Facility, where small subelement-sized compression and beam specimens were loaded to observe elastic and plastic behavior, component strength levels, and fatigue resistance for hundreds of thousands of load cycles. Current lattice block construction produces a flat panel composed of thin ligaments arranged in a three-dimensional triangulated trusslike structure. Investment casting of lattice block panels has been developed and greatly expands opportunities for using this unique architecture in today's high-performance structures. In addition, advances made in NASA's Ultra-Efficient Engine Technology Program have extended the lattice block concept to superalloy materials. After a series of casting iterations, the nickel-based superalloy Inconel 718 (IN 718, Inco Alloys International, Inc., Huntington, WV) was successfully cast into lattice block panels; this combination offers light weight combined with high strength, high stiffness, and elevated-temperature durability. For tests to evaluate casting quality and configuration merit, small structural compression and bend test specimens were machined from the 5- by 12- by 0.5-in. panels. Linear elastic finite element analyses were completed for several specimen layouts to predict material stresses and deflections under proposed test conditions. The structural specimens were then subjected to room-temperature static and cyclic loads in Glenn's Life Prediction Branch's material test machine. Surprisingly, the test results exceeded analytical predictions: plastic strains greater than 5 percent were obtained, and fatigue lives did not depreciate relative to the base material. These assets were due to the formation of plastic hinges and the redundancies inherent in lattice block construction, which were not considered in the simplified computer models. The fatigue testing proved the value of redundancies since specimen strength was maintained even after the fracture of one or two ligaments. This ongoing test program is planned to continue through high-temperature testing. Also scheduled for testing are IN 718 lattice block panels with integral face sheets, as well as specimens cast from a higher temperature alloy. The initial testing suggests the value of this technology for large panels under low and moderate pressure loadings and for high-risk, damage-tolerant structures. Potential aeropropulsion uses for lattice blocks include turbine-engine actuated panels, exhaust nozzle flaps, and side panel structures.
2015-04-01
of impact-initiated reactions in Ti-Al-B based reactive materials in the form of compacts of powders of different sizes and morphologies . The major...More specifically, the influence of material-inherent elastic/plastic properties and reactant configuration (e.g., porosity, morphology , spacing...materials in the form of compacts of powders of different sizes and morphologies . The major goal is to delineate how processes of localized deformation and
Cementless fixation of "isoelastic" hip endoprostheses manufactured from plastic materials.
Morscher, E W; Dick, W
1983-06-01
Nine years of clinical experience with an "isoelastic" shaft prosthesis manufactured using polyacetal resin reveal that for the transmission of forces from the pelvis through the femoral head and neck into the femoral shaft, some rigidity of the proximal part of the prosthesis is necessary. The object is to eliminate micromovements, which lead to bone resorption and implant loosening. However, elasticity greater than that present in metallic implants prevents stress concentrations and disuse stress protection atrophy of the bone. Greater elasticity of the prosthesis, which can be achieved by plastic materials, makes possible a more even, harmonious distribution of the forces transmitted from the implant to the bone and vice versa. A more elastic implant can also act as a better shock absorber than a rigid one. The results in 627 cementless polyethylene cups after a maximum observation period of 5.5 years reveal good incorporation and no aseptic loosening. Especially favorable results occurred in 61 cases by replacing loosened cemented cups with bone grafts and cementless polyethylene cups. On the femoral shaft side too high an elasticity in the proximal part of the prosthesis led to bone resorption and loosening with the first model of the prosthesis. By reinforcing the proximal part of the femoral component, much better results were obtained. The isoelastic femoral shaft, however, is in an early stage of experimentation.
A study of microindentation hardness tests by mechanism-based strain gradient plasticity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Y.; Xue, Z.; Gao, H.
2000-08-01
We recently proposed a theory of mechanism-based strain gradient (MSG) plasticity to account for the size dependence of plastic deformation at micron- and submicron-length scales. The MSG plasticity theory connects micron-scale plasticity to dislocation theories via a multiscale, hierarchical framework linking Taylor's dislocation hardening model to strain gradient plasticity. Here we show that the theory of MSG plasticity, when used to study micro-indentation, indeed reproduces the linear dependence observed in experiments, thus providing an important self-consistent check of the theory. The effects of pileup, sink-in, and the radius of indenter tip have been taken into account in the indentation model.more » In accomplishing this objective, we have generalized the MSG plasticity theory to include the elastic deformation in the hierarchical framework. (c) 2000 Materials Research Society.« less
Landauer, Alexander K.; Barnhill, William C.; Qu, Jun
2016-03-10
Here we examine the elasticity, hardness, and resistance-to-plastic-deformation (P/S 2) measured via nanoindentation of several tribofilms and correlates these properties to friction and wear behavior. The tribofilms were generated by ball-on-plate reciprocating sliding lubricated by a base oil containing an ionic liquid, phosphonium-organophosphate or ammonium-organophosphate, zinc dialkyldithiophosphate (ZDDP), or combination of IL and ZDDP. Nanoindentation was conducted at room and elevated temperatures. While there seems little correlation between the tribofilm hardness and tribological behavior, a higher modulus generally leads to better friction and wear performance. Interestingly, a lower P/S 2 ratio tends to reduce friction and improve wear protection, whichmore » is in an opposite trend as reported for bulk materials. Ultimately, this is likely attributable to the dynamic, self-healing characteristics of tribofilms.« less
Elastic plastic fracture mechanics methodology for surface cracks
NASA Technical Reports Server (NTRS)
Ernst, Hugo A.; Lambert, D. M.
1994-01-01
The Elastic Plastic Fracture Mechanics Methodology has evolved significantly in the last several years. Nevertheless, some of these concepts need to be extended further before the whole methodology can be safely applied to structural parts. Specifically, there is a need to include the effect of constraint in the characterization of material resistance to crack growth and also to extend these methods to the case of 3D defects. As a consequence, this project was started as a 36 month research program with the general objective of developing an elastic plastic fracture mechanics methodology to assess the structural reliability of pressure vessels and other parts of interest to NASA which may contain flaws. The project is divided into three tasks that deal with (1) constraint and thickness effects, (2) three-dimensional cracks, and (3) the Leak-Before-Burst (LBB) criterion. This report period (March 1994 to August 1994) is a continuation of attempts to characterize three dimensional aspects of fracture present in 'two dimensional' or planar configuration specimens (Chapter Two), especially, the determination of, and use of, crack face separation data. Also, included, are a variety of fracture resistance testing results (J(m)R-curve format) and a discussion regarding two materials of NASA interest (6061-T651 Aluminum alloy and 1N718-STA1 nickel-base super alloy) involving a bases for like constraint in terms of ligament dimensions, and their comparison to the resulting J(m)R-curves (Chapter Two).
Effect of strain rate and temperature on mechanical properties of selected building Polish steels
NASA Astrophysics Data System (ADS)
Moćko, Wojciech; Kruszka, Leopold
2015-09-01
Currently, the computer programs of CAD type are basic tool for designing of various structures under impact loading. Application of the numerical calculations allows to substantially reduce amount of time required for the design stage of such projects. However, the proper use of computer aided designing technique requires input data for numerical software including elastic-plastic models of structural materials. This work deals with the constitutive model developed by Rusinek and Klepaczko (RK) applied for the modelling of mechanical behaviour of selected grades structural St0S, St3SX, 18GS and 34GS steels and presents here results of experimental and empirical analyses to describe dynamic elastic-plastic behaviours of tested materials at wide range of temperature. In order to calibrate the RK constitutive model, series of compression tests at wide range of strain rates, including static, quasi-static and dynamic investigations at lowered, room and elevated temperatures, were carried out using two testing stands: servo-hydraulic machine and split Hopkinson bar. The results were analysed to determine influence of temperature and strain rate on visco-plastic response of tested steels, and show good correlation with experimental data.
NASA Technical Reports Server (NTRS)
Ford, Hugh; Turner, C. E.; Fenner, R. T.; Curr, R. M.; Ivankovic, A.
1995-01-01
The objects of the first, exploratory, stage of the project were listed as: (1) to make a detailed and critical review of the Boundary Element method as already published and with regard to elastic-plastic fracture mechanics, to assess its potential for handling present concepts in two-dimensional and three-dimensional cases. To this was subsequently added the Finite Volume method and certain aspects of the Finite Element method for comparative purposes; (2) to assess the further steps needed to apply the methods so far developed to the general field, covering a practical range of geometries, work hardening materials, and composites: to consider their application under higher temperature conditions; (3) to re-assess the present stage of development of the energy dissipation rate, crack tip opening angle and J-integral models in relation to the possibilities of producing a unified technology with the previous two items; and (4) to report on the feasibility and promise of this combined approach and, if appropriate, make recommendations for the second stage aimed at developing a generalized crack growth technology for its application to real-life problems.
Computational Study of Uniaxial Deformations in Silica Aerogel Using a Coarse-Grained Model.
Ferreiro-Rangel, Carlos A; Gelb, Lev D
2015-07-09
Simulations of a flexible coarse-grained model are used to study silica aerogels. This model, introduced in a previous study (J. Phys. Chem. C 2007, 111, 15792), consists of spherical particles which interact through weak nonbonded forces and strong interparticle bonds that may form and break during the simulations. Small-deformation simulations are used to determine the elastic moduli of a wide range of material models, and large-deformation simulations are used to probe structural evolution and plastic deformation. Uniaxial deformation at constant transverse pressure is simulated using two methods: a hybrid Monte Carlo approach combining molecular dynamics for the motion of individual particles and stochastic moves for transverse stress equilibration, and isothermal molecular dynamics simulations at fixed Poisson ratio. Reasonable agreement on elastic moduli is obtained except at very low densities. The model aerogels exhibit Poisson ratios between 0.17 and 0.24, with higher-density gels clustered around 0.20, and Young's moduli that vary with aerogel density according to a power-law dependence with an exponent near 3.0. These results are in agreement with reported experimental values. The models are shown to satisfy the expected homogeneous isotropic linear-elastic relationship between bulk and Young's moduli at higher densities, but there are systematic deviations at the lowest densities. Simulations of large compressive and tensile strains indicate that these materials display a ductile-to-brittle transition as the density is increased, and that the tensile strength varies with density according to a power law, with an exponent in reasonable agreement with experiment. Auxetic behavior is observed at large tensile strains in some models. Finally, at maximum tensile stress very few broken bonds are found in the materials, in accord with the theory that only a small fraction of the material structure is actually load-bearing.
Materials constitutive models for nonlinear analysis of thermally cycled structures
NASA Technical Reports Server (NTRS)
Kaufman, A.; Hunt, L. E.
1982-01-01
Effects of inelastic materials models on computed stress-strain solutions for thermally loaded structures were studied by performing nonlinear (elastoplastic creep) and elastic structural analyses on a prismatic, double edge wedge specimen of IN 100 alloy that was subjected to thermal cycling in fluidized beds. Four incremental plasticity creep models (isotropic, kinematic, combined isotropic kinematic, and combined plus transient creep) were exercised for the problem by using the MARC nonlinear, finite element computer program. Maximum total strain ranges computed from the elastic and nonlinear analyses agreed within 5 percent. Mean cyclic stresses, inelastic strain ranges, and inelastic work were significantly affected by the choice of inelastic constitutive model. The computing time per cycle for the nonlinear analyses was more than five times that required for the elastic analysis.
A review of micro-contact physics for microelectromechanical systems (MEMS) metal contact switches
NASA Astrophysics Data System (ADS)
Toler, Benjamin F.; Coutu, Ronald A., Jr.; McBride, John W.
2013-10-01
Innovations in relevant micro-contact areas are highlighted, these include, design, contact resistance modeling, contact materials, performance and reliability. For each area the basic theory and relevant innovations are explored. A brief comparison of actuation methods is provided to show why electrostatic actuation is most commonly used by radio frequency microelectromechanical systems designers. An examination of the important characteristics of the contact interface such as modeling and material choice is discussed. Micro-contact resistance models based on plastic, elastic-plastic and elastic deformations are reviewed. Much of the modeling for metal contact micro-switches centers around contact area and surface roughness. Surface roughness and its effect on contact area is stressed when considering micro-contact resistance modeling. Finite element models and various approaches for describing surface roughness are compared. Different contact materials to include gold, gold alloys, carbon nanotubes, composite gold-carbon nanotubes, ruthenium, ruthenium oxide, as well as tungsten have been shown to enhance contact performance and reliability with distinct trade offs for each. Finally, a review of physical and electrical failure modes witnessed by researchers are detailed and examined.
Elastic And Plastic Deformations In Butt Welds
NASA Technical Reports Server (NTRS)
Verderaime, V.
1992-01-01
Report presents study of mathematical modeling of stresses and strains, reaching beyond limits of elasticity, in bars and plates. Study oriented toward development of capability to predict stresses and resulting elastic and plastic strains in butt welds.
NASA Astrophysics Data System (ADS)
Burnley, P. C.
2013-12-01
One of the fundamental challenges in characterizing the plastic properties of deep earth materials at relevant length and time scales is that some form of extrapolation will always be required. With increasing computational power, single crystal mechanical properties will probably be accessible to first principles calculations in the not too distant future. If the relationship between single crystal and polycrystal mechanical properties were straightforward, with some ground truthing in the lab, the bulk behavior could be confidently extrapolated to experimentally inaccessible conditions. However, we currently lack a satisfactory paradigm to describe the relationship between single crystal and polycrystalline deformation. Existing mechanical models, including self-consistent models cannot predict or account for the spatial variations in the local stress and strain states observed in real-world materials. Full field models can be constructed so as to explicitly include the spatial relationships between crystals and their neighbors, but in their explicitness they lose the ability to generalize. Using finite element (FEM) simulations of a polycrystalline material (Figure 1a), I show that local variations in stress and strain participate in large-scale patterns, that are a function of the heterogeneity and statistical distribution of elastic and plastic properties across the population of mechanical components (grains and grain boundaries) in the material. The patterns of modulation in the local stress tensor are similar to the patterns of stress distribution observed in granular materials - often referred to as force chains. Force chains are caused by percolation of stress through strong contacts between particles in a granular aggregate. The patterns in stress modulation observed in the FEM simulations are caused by stress percolation through the elastically heterogeneous mechanical elements. Greater degrees of heterogeneity lead to more intense stress concentrations across a less dense pattern (Figure 1b). Lower degrees of elastic heterogeneity lead to a denser pattern of stress transmission that carries smaller modulations (Figure1e). Paralleling the development of shear bands in granular materials, the stress patterns lead directly to shear localization even in the absence of strain softening. The recognition of stress percolation provides a foundation for devising models that link single crystal mechanics and local interactions to bulk behavior. Such rheological models should provide a more robust platform for extrapolating to deep earth conditions including spatial and time scales. Figure 1: Panel a) FE model mesh, inset shows an enlarged region. Properties are assigned to each of 25 grain sets (coded by color). Panels b)-e) Equivalent von Mises stress patterns for models in compression. For b) Young's modulus E of grain sets ranges from 500 to 0 GPa with v=0.1 to 0.4, for c) E= 500 to 0 GPa with v=0.3 for d) E= 200 to 20 GPa with v=0.3 and for e) E =120 to 100 GPa with v=0.3. The maximum value of the equivalent stress in b) is 10 times that found in e).
1994-06-30
tip Opening Displacement (CTOD) Fracture Toughness Measurement". 48 The method has found application in the elastic-plastic fracture mechanics ( EPFM ...68 6.1 Proposed Material Property Database Format and Hierarchy .............. 68 6.2 Sample Application of the Material Property Database...the E 49.05 sub-committee. The relevant quality indicators applicable to the present program are: source of data, statistical basis of data
Sandeep, Chitta Sai; Senetakis, Kostas
2018-01-31
In the study we experimentally examine the influence of elastic properties and surface morphology on the inter-particle friction of natural soil grains. The experiments are conducted with a custom-built micromechanical apparatus and the database is enhanced by testing engineered-reference grains. Naturally-occurring geological materials are characterized by a wide spectrum of mechanical properties (e.g., Young's modulus) and surface morphology (e.g., roughness), whereas engineered grains have much more consistent characteristics. Comparing to engineered materials, geological materials are found to display more pronounced initial plastic behavior during compression. Under the low normal load range applied in the study, between 1 and 5 N, we found that the frictional force is linearly correlated with the applied normal load, but we acknowledge that the data are found more scattered for natural soil grains, especially for rough and weathered materials which have inconsistent characteristics. The inter-particle coefficient of friction is found to be inversely correlated with the Young's modulus and the surface roughness. These findings are important in geophysical and petroleum engineering contents, since a number of applications, such as landslides and granular flows, hydraulic fracturing using proppants, and weathering process of cliffs, among others, can be simulated using discrete numerical methods. These methods employ contact mechanics properties at the grain scale and the inter-particle friction is one of these critical components. It is stressed in our study that friction is well correlated with the elastic and morphological characteristics of the grains.
Zuanetti, Bryan; McGrane, Shawn David; Bolme, Cynthia Anne; ...
2018-05-18
Here, this article presents results from laser-driven shock compression experiments performed on pre-heated pure aluminum films at temperatures ranging from 23 to 400 °C. The samples were vapor deposited on the surface of a 500 μm thick sapphire substrate and mounted onto a custom holder with an integrated ring-heater to enable variable initial temperature conditions. A chirped pulse amplified laser was used to generate a pulse for both shocking the films and for probing the free surface velocity using Ultrafast Dynamic Ellipsometry. The particle velocity traces measured at the free surface clearly show elastic and plastic wave separation, which wasmore » used to estimate the decay of the elastic precursor amplitude over propagation distances ranging from 0.278 to 4.595 μm. Elastic precursors (which also correspond to dynamic material strength under uniaxial strain) of increasing amplitudes were observed with increasing initial sample temperatures for all propagation distances, which is consistent with expectations for aluminum in a deformation regime where phonon drag limits the mobility of dislocations. The experimental results show peak elastic amplitudes corresponding to axial stresses of over 7.5 GPa; estimates for plastic strain-rates in the samples are of the order 10 9/s. The measured elastic amplitudes at the micron length scales are compared with those at the millimeter length-scales using a two-parameter model and used to correlate the rate sensitivity of the dynamic strength at strain-rates ranging from 10 3 to 10 9/s and elevated temperature conditions. The overall trend, as inferred from the experimental data, indicates that the temperature-strengthening effect decreases with increasing plastic strain-rates.« less
NASA Astrophysics Data System (ADS)
Zuanetti, Bryan; McGrane, Shawn D.; Bolme, Cynthia A.; Prakash, Vikas
2018-05-01
This article presents results from laser-driven shock compression experiments performed on pre-heated pure aluminum films at temperatures ranging from 23 to 400 °C. The samples were vapor deposited on the surface of a 500 μm thick sapphire substrate and mounted onto a custom holder with an integrated ring-heater to enable variable initial temperature conditions. A chirped pulse amplified laser was used to generate a pulse for both shocking the films and for probing the free surface velocity using Ultrafast Dynamic Ellipsometry. The particle velocity traces measured at the free surface clearly show elastic and plastic wave separation, which was used to estimate the decay of the elastic precursor amplitude over propagation distances ranging from 0.278 to 4.595 μm. Elastic precursors (which also correspond to dynamic material strength under uniaxial strain) of increasing amplitudes were observed with increasing initial sample temperatures for all propagation distances, which is consistent with expectations for aluminum in a deformation regime where phonon drag limits the mobility of dislocations. The experimental results show peak elastic amplitudes corresponding to axial stresses of over 7.5 GPa; estimates for plastic strain-rates in the samples are of the order 109/s. The measured elastic amplitudes at the micron length scales are compared with those at the millimeter length-scales using a two-parameter model and used to correlate the rate sensitivity of the dynamic strength at strain-rates ranging from 103 to 109/s and elevated temperature conditions. The overall trend, as inferred from the experimental data, indicates that the temperature-strengthening effect decreases with increasing plastic strain-rates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zuanetti, Bryan; McGrane, Shawn David; Bolme, Cynthia Anne
Here, this article presents results from laser-driven shock compression experiments performed on pre-heated pure aluminum films at temperatures ranging from 23 to 400 °C. The samples were vapor deposited on the surface of a 500 μm thick sapphire substrate and mounted onto a custom holder with an integrated ring-heater to enable variable initial temperature conditions. A chirped pulse amplified laser was used to generate a pulse for both shocking the films and for probing the free surface velocity using Ultrafast Dynamic Ellipsometry. The particle velocity traces measured at the free surface clearly show elastic and plastic wave separation, which wasmore » used to estimate the decay of the elastic precursor amplitude over propagation distances ranging from 0.278 to 4.595 μm. Elastic precursors (which also correspond to dynamic material strength under uniaxial strain) of increasing amplitudes were observed with increasing initial sample temperatures for all propagation distances, which is consistent with expectations for aluminum in a deformation regime where phonon drag limits the mobility of dislocations. The experimental results show peak elastic amplitudes corresponding to axial stresses of over 7.5 GPa; estimates for plastic strain-rates in the samples are of the order 10 9/s. The measured elastic amplitudes at the micron length scales are compared with those at the millimeter length-scales using a two-parameter model and used to correlate the rate sensitivity of the dynamic strength at strain-rates ranging from 10 3 to 10 9/s and elevated temperature conditions. The overall trend, as inferred from the experimental data, indicates that the temperature-strengthening effect decreases with increasing plastic strain-rates.« less
NASA Astrophysics Data System (ADS)
Kelkar, S.; Karra, S.; Pawar, R. J.; Zyvoloski, G.
2012-12-01
There has been an increasing interest in the recent years in developing computational tools for analyzing coupled thermal, hydrological and mechanical (THM) processes that occur in geological porous media. This is mainly due to their importance in applications including carbon sequestration, enhanced geothermal systems, oil and gas production from unconventional sources, degradation of Arctic permafrost, and nuclear waste isolation. Large changes in pressures, temperatures and saturation can result due to injection/withdrawal of fluids or emplaced heat sources. These can potentially lead to large changes in the fluid flow and mechanical behavior of the formation, including shear and tensile failure on pre-existing or induced fractures and the associated permeability changes. Due to this, plastic deformation and large changes in material properties such as permeability and porosity can be expected to play an important role in these processes. We describe a general purpose computational code FEHM that has been developed for the purpose of modeling coupled THM processes during multi-phase fluid flow and transport in fractured porous media. The code uses a continuum mechanics approach, based on control volume - finite element method. It is designed to address spatial scales on the order of tens of centimeters to tens of kilometers. While large deformations are important in many situations, we have adapted the small strain formulation as useful insight can be obtained in many problems of practical interest with this approach while remaining computationally manageable. Nonlinearities in the equations and the material properties are handled using a full Jacobian Newton-Raphson technique. Stress-strain relationships are assumed to follow linear elastic/plastic behavior. The code incorporates several plasticity models such as von Mises, Drucker-Prager, and also a large suite of models for coupling flow and mechanical deformation via permeability and stresses/deformations. In this work we present several example applications of such models.
NASA Technical Reports Server (NTRS)
1983-01-01
SMART, Sound Modification and Regulated Temperature compound, is a liquid plastic mixture with exceptional energy and sound absorbing qualities. It is derived from a very elastic plastic which was an effective noise abatement material in the Apollo Guidance System. Discovered by a NASA employee, it is marketed by Environmental Health Systems, Inc. (EHS). The product has been successfully employed by a diaper company with noisy dryers and a sugar company with noisy blowers. The company also manufactures an audiometric test booth and acoustical office partitions.
Grain-size-yield stress relationship: Analysis and computation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meyers, M.A.; Benson, D.J.; Fu, H.H.
1999-07-01
The seminal contributions of Julia Weertman to the understanding of the mechanical properties of nanocrystalline materials will be briefly outlined. A constitutive equation predicting the effect of grain size on the yield stress of metals, based on the model proposed by M.A. Meyers and E. Ashworth, is discussed and extended to the nanocrystalline regime. At large grain sizes, it has the Hall-Petch form, and in the nanocrystalline domain the slope gradually decreases until it asymptotically approaches the flow stress of the grain boundaries. The material is envisaged as a composite, comprised of the grain interior, with flow stress {sigma}{sub fB},more » and grain boundary work-hardened layer, with flow stress {sigma}{sub fGB}. Three principal factors contribute to the grain-boundary hardening: (1) the grain boundaries act as barriers to plastic flow; (2) the grain boundaries act as dislocation sources; and (3) elastic anisotropy causes additional stresses in grain-boundary surroundings. The predictions of this model are compared with experimental measurements over the mono, micro, and nanocrystalline domains. Computational predictions are made of plastic flow as a function of grain size incorporating elastic and plastic anisotropy as well as differences of dislocation accumulation rate in grain boundary regions and grain interiors. This is the first plasticity calculation that accounts for grain size effects in a physically-based manner. 58 refs., 7 figs., 1 tab.« less
Dynamic fields near a crack tip growing in an elastic-perfectly-plastic solid
NASA Technical Reports Server (NTRS)
Nemat-Nasser, S.; Gao, Y. C.
1983-01-01
A full asymptotic solution is presented for the fields in the neighborhood of the tip of a steadily advancing crack in an incompressible elastic-perfectly-plastic solid. There are four findings for mode I crack growth in the plane strain condition. The first is that the entire crack tip in steady crack growth is surrounded by a plastic region and that no elastic unloading is predicted by the complete dynamic asymptotic solution. The second is that, in contrast to the quasi-static solution, the dynamic solution yields strain fields with a logarithmic singularity everywhere near the crack tip. The third is that whereas the stress field varies throughout the entire crack tip neighborhood, it does not exhibit behavior that can be approximated by a constant field followed by an essentially centered-fan field and then by another constant field, especially for small crack growth speeds. The fourth finding is that there are two shock fronts emanating from the crack tip across which certain stress and strain components undergo jump discontinuities. After reviewing the mode III steady-state crack growth, it is concluded that ductile fracture criteria for nonstationary cracks must be based on solutions that include the inertia effects and that for this purpose quasi-static solutions may be inadequate.
Dynamic Behavior of Engineered Lattice Materials
Hawreliak, J. A.; Lind, J.; Maddox, B.; Barham, M.; Messner, M.; Barton, N.; Jensen, B. J.; Kumar, M.
2016-01-01
Additive manufacturing (AM) is enabling the fabrication of materials with engineered lattice structures at the micron scale. These mesoscopic structures fall between the length scale associated with the organization of atoms and the scale at which macroscopic structures are constructed. Dynamic compression experiments were performed to study the emergence of behavior owing to the lattice periodicity in AM materials on length scales that approach a single unit cell. For the lattice structures, both bend and stretch dominated, elastic deflection of the structure was observed ahead of the compaction of the lattice, while no elastic deformation was observed to precede the compaction in a stochastic, random structure. The material showed lattice characteristics in the elastic response of the material, while the compaction was consistent with a model for compression of porous media. The experimental observations made on arrays of 4 × 4 × 6 lattice unit cells show excellent agreement with elastic wave velocity calculations for an infinite periodic lattice, as determined by Bloch wave analysis, and finite element simulations. PMID:27321697
NASA Astrophysics Data System (ADS)
Saha, Sourav; Mojumder, Satyajit; Mahboob, Monon; Islam, M. Zahabul
2016-07-01
Tungsten is a promising material and has potential use as battery anode. Tungsten nanowires are gaining attention from researchers all over the world for this wide field of application. In this paper, we investigated effect of temperature and geometric parameters (diameter and aspect ratio) on elastic properties of Tungsten nanowire. Aspect ratios (length to diameter ratio) considered are 8:1, 10:1, and 12:1 while diameter of the nanowire is varied from 1-4 nm. For 2 nm diameter sample (aspect ratio 10:1), temperature is varied (10K ~ 1500K) to observe elastic behavior of Tungsten nanowire under uniaxial tensile loading. EAM potential is used for molecular dynamic simulation. We applied constant strain rate of 109 s-1 to deform the nanowire. Elastic behavior is expressed through stress vs. strain plot. We also investigated the fracture mechanism of tungsten nanowire and radial distribution function. Investigation suggests peculiar behavior of Tungsten nanowire in nano-scale with double peaks in stress vs. strain diagram. Necking before final fracture suggests that actual elastic behavior of the material is successfully captured through atomistic modeling.
Nguyen, Ngoc-Trung; Seo, Oh Suk; Lee, Chung An; Lee, Myoung-Gyu; Kim, Ji-hoon; Kim, Heon Young
2014-01-01
Large-strain monotonic and cyclic loading tests of AZ31B magnesium alloy sheets were performed with a newly developed testing system, at different temperatures, ranging from room temperature to 250 °C. Behaviors showing significant twinning during initial in-plane compression and untwinning in subsequent tension at and slightly above room temperature were recorded. Strong yielding asymmetry and nonlinear hardening behavior were also revealed. Considerable Bauschinger effects, transient behavior, and variable permanent softening responses were observed near room temperature, but these were reduced and almost disappeared as the temperature increased. Different stress–strain responses were inherent to the activation of twinning at lower temperatures and non-basal slip systems at elevated temperatures. A critical temperature was identified to account for the transition between the twinning-dominant and slip-dominant deformation mechanisms. Accordingly, below the transition point, stress–strain curves of cyclic loading tests exhibited concave-up shapes for compression or compression following tension, and an unusual S-shape for tension following compression. This unusual shape disappeared when the temperature was above the transition point. Shrinkage of the elastic range and variation in Young’s modulus due to plastic strain deformation during stress reversals were also observed. The texture-induced anisotropy of both the elastic and plastic behaviors was characterized experimentally. PMID:28788514
NASA Astrophysics Data System (ADS)
González, C.; Segurado, J.; LLorca, J.
2004-07-01
The deformation of a composite made up of a random and homogeneous dispersion of elastic spheres in an elasto-plastic matrix was simulated by the finite element analysis of three-dimensional multiparticle cubic cells with periodic boundary conditions. "Exact" results (to a few percent) in tension and shear were determined by averaging 12 stress-strain curves obtained from cells containing 30 spheres, and they were compared with the predictions of secant homogenization models. In addition, the numerical simulations supplied detailed information of the stress microfields, which was used to ascertain the accuracy and the limitations of the homogenization models to include the nonlinear deformation of the matrix. It was found that secant approximations based on the volume-averaged second-order moment of the matrix stress tensor, combined with a highly accurate linear homogenization model, provided excellent predictions of the composite response when the matrix strain hardening rate was high. This was not the case, however, in composites which exhibited marked plastic strain localization in the matrix. The analysis of the evolution of the matrix stresses revealed that better predictions of the composite behavior can be obtained with new homogenization models which capture the essential differences in the stress carried by the elastic and plastic regions in the matrix at the onset of plastic deformation.
Structure and mechanical behavior of human hair.
Yu, Yang; Yang, Wen; Wang, Bin; Meyers, Marc André
2017-04-01
The understanding of the mechanical behavior of hair under various conditions broadens our knowledge in biological materials science and contributes to the cosmetic industry. The hierarchical organization of hair is studied from the intermediate filament to the structural levels. The effects of strain rate, relative humidity, and temperature are evaluated. Hair exhibits a high tensile strength, 150-270MPa, which is significantly dependent on strain rate and humidity. The strain-rate sensitivity, approximately 0.06-0.1, is comparable to that of other keratinous materials and common synthetic polymers. The structures of the internal cortex and surface cuticle are affected by the large tensile extension. One distinguishing feature, the unwinding of the α-helix and the possible transformation to β-sheet structure of keratin under tension, which affects the ductility of hair, is analytically evaluated and incorporated into a constitutive equation. A good agreement with the experimental results is obtained. This model elucidates the tensile response of the α-keratin fibers. The contributions of elastic and plastic strains on reloading are evaluated and correlated to structural changes. Copyright © 2016 Elsevier B.V. All rights reserved.
An Elastic Plastic Contact Model with Strain Hardening for the LAMMPS Granular Package
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhr, Bryan; Brake, Matthew Robert; Lechman, Jeremy B.
2015-03-01
The following details the implementation of an analytical elastic plastic contact model with strain hardening for normal im pacts into the LAMMPS granular package. The model assumes that, upon impact, the co llision has a period of elastic loading followed by a period of mixed elastic plas tic loading, with contributions to each mechanism estimated by a hyperbolic seca nt weight function. This function is implemented in the LAMMPS source code as the pair style gran/ep/history. Preliminary tests, simulating the pouring of pure nickel spheres, showed the elastic/plastic model took 1.66x as long as similar runs using gran/hertz/history.
Probabilistic analysis of structures involving random stress-strain behavior
NASA Technical Reports Server (NTRS)
Millwater, H. R.; Thacker, B. H.; Harren, S. V.
1991-01-01
The present methodology for analysis of structures with random stress strain behavior characterizes the uniaxial stress-strain curve in terms of (1) elastic modulus, (2) engineering stress at initial yield, (3) initial plastic-hardening slope, (4) engineering stress at point of ultimate load, and (5) engineering strain at point of ultimate load. The methodology is incorporated into the Numerical Evaluation of Stochastic Structures Under Stress code for probabilistic structural analysis. The illustrative problem of a thick cylinder under internal pressure, where both the internal pressure and the stress-strain curve are random, is addressed by means of the code. The response value is the cumulative distribution function of the equivalent plastic strain at the inner radius.
NASA Astrophysics Data System (ADS)
Shimanovskii, A. V.
A method for calculating the plane bending of elastic-plastic filaments of finite stiffness is proposed on the basis of plastic flow theory. The problem considered is shown to reduce to relations similar to Kirchhoff equations for elastic work. Expressions are obtained for determining the normalized stiffness characteristics for the cross section of a filament with plastic regions containing beam theory equations as a particular case. A study is made of the effect of the plastic region size on the position of the elastic deformation-unloading interface and on the normalized stiffness of the filament cross section. Calculation results are presented in graphic form.
Microstructural controls on the macroscopic behavior of geo-architected rock samples
NASA Astrophysics Data System (ADS)
Mitchell, C. A.; Pyrak-Nolte, L. J.
2017-12-01
Reservoir caprocks, are known to span a range of mechanical behavior from elastic granitic units to visco-elastic shale units. Whether a rock will behave elastically, visco-elastically or plastically depends on both the compositional and textural or microsctructural components of the rock, and how these components are spatially distributed. In this study, geo-architected caprock fabrication was performed to develop synthetic rock to study the role of rock rheology on fracture deformations, fluid flow and geochemical alterations. Samples were geo-architected with Portland Type II cement, Ottawa sand, and different clays (kaolinite, illite, and Montmorillonite). The relative percentages of these mineral components are manipulated to generate different rock types. With set protocols, the mineralogical content, texture, and certain structural aspects of the rock were controlled. These protocols ensure that identical samples with the same morphological and mechanical characteristics are constructed, thus overcoming issues that may arise in the presence of heterogeneity and high anisotropy from natural rock samples. Several types of homogeneous geo-architected rock samples were created, and in some cases the methods were varied to manipulate the physical parameters of the rocks. Characterization of rocks that the samples exhibit good repeatability. Rocks with the same mineralogical content generally yielded similar compressional and shear wave velocities, UCS and densities. Geo-architected rocks with 10% clay in the matrix had lower moisture content and effective porosities than rocks with no clay. The process by which clay is added to the matrix can strongly affect the resulting compressive strength and physical properties of the geo-architected sample. Acknowledgment: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Geosciences Research Program under Award Number (DE-FG02-09ER16022).
NASA Technical Reports Server (NTRS)
Stang, Ambrose H; Ramberg, Walter; Back, Goldie
1937-01-01
This report presents the results of tests of 63 chromium-molybdenum steel tubes and 102 17st aluminum-alloy tubes of various sizes and lengths made to study the dependence of the torsional strength on both the dimensions of the tube and the physical properties of the tube material. Three types of failure are found to be important for sizes of tubes frequently used in aircraft construction: (1) failure by plastic shear, in which the tube material reached its yield strength before the critical torque was reached; (2) failure by elastic two-lobe buckling, which depended only on the elastic properties of the tube material and the dimensions of the tube; and (3) failure by a combination of (1) and (2) that is, by buckling taking place after some yielding of the tube material.
Inelastic behavior of structural components
NASA Technical Reports Server (NTRS)
Hussain, N.; Khozeimeh, K.; Toridis, T. G.
1980-01-01
A more accurate procedure was developed for the determination of the inelastic behavior of structural components. The actual stress-strain curve for the mathematical of the structure was utilized to generate the force-deformation relationships for the structural elements, rather than using simplified models such as elastic-plastic, bilinear and trilinear approximations. relationships were generated for beam elements with various types of cross sections. In the generational of these curves, stress or load reversals, kinematic hardening and hysteretic behavior were taken into account. Intersections between loading and unloading branches were determined through an iterative process. Using the inelastic properties obtained, the plastic static response of some simple structural systems composed of beam elements was computed. Results were compared with known solutions, indicating a considerable improvement over response predictions obtained by means of simplified approximations used in previous investigations.
3D printing of an interpenetrating network hydrogel material with tunable viscoelastic properties.
Bootsma, Katherine; Fitzgerald, Martha M; Free, Brandon; Dimbath, Elizabeth; Conjerti, Joe; Reese, Greg; Konkolewicz, Dominik; Berberich, Jason A; Sparks, Jessica L
2017-06-01
Interpenetrating network (IPN) hydrogel materials are recognized for their unique mechanical properties. While IPN elasticity and toughness properties have been explored in previous studies, the factors that impact the time-dependent stress relaxation behavior of IPN materials are not well understood. Time-dependent (i.e. viscoelastic) mechanical behavior is a critical design parameter in the development of materials for a variety of applications, such as medical simulation devices, flexible substrate materials, cellular mechanobiology substrates, or regenerative medicine applications. This study reports a novel technique for 3D printing alginate-polyacrylamide IPN gels with tunable elastic and viscoelastic properties. The viscoelastic stress relaxation behavior of the 3D printed alginate-polyacrylamide IPN hydrogels was influenced most strongly by varying the concentration of the acrylamide cross-linker (MBAA), while the elastic modulus was affected most by varying the concentration of total monomer material. The material properties of our 3D printed IPN constructs were consistent with those reported in the biomechanics literature for soft tissues such as skeletal muscle, cardiac muscle, skin and subcutaneous tissue. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lieou, Charles Ka Cheong; Daub, Eric G.; Ecke, Robert E.
Rock materials often display long-time relaxation, commonly termed aging or “slow dynamics”, after the cessation of acoustic perturbations. In this paper, we focus on unconsolidated rock materials and propose to explain such nonlinear relaxation through the Shear-Transformation-Zone (STZ) theory of granular media, adapted for small stresses and strains. The theory attributes the observed relaxation to the slow, irreversible change of positions of constituent grains, and posits that the aging process can be described in three stages: fast recovery before some characteristic time associated with the subset of local plastic events or grain rearrangements with a short time scale, log-linear recoverymore » of the elastic modulus at intermediate times, and gradual turnover to equilibrium steady-state behavior at long times. Here we demonstrate good agreement with experiments on aging in granular materials such as simulated fault gouge after an external disturbance. These results may provide insights into observed modulus recovery after strong shaking in the near surface region of earthquake zones.« less
Scalerandi, Marco; Agostini, Valentina; Delsanto, Pier Paolo; Van Den Abeele, Koen; Johnson, Paul A
2003-06-01
Recent studies show that a broad category of materials share "nonclassical" nonlinear elastic behavior much different from "classical" (Landau-type) nonlinearity. Manifestations of "nonclassical" nonlinearity include stress-strain hysteresis and discrete memory in quasistatic experiments, and specific dependencies of the harmonic amplitudes with respect to the drive amplitude in dynamic wave experiments, which are remarkably different from those predicted by the classical theory. These materials have in common soft "bond" elements, where the elastic nonlinearity originates, contained in hard matter (e.g., a rock sample). The bond system normally comprises a small fraction of the total material volume, and can be localized (e.g., a crack in a solid) or distributed, as in a rock. In this paper a model is presented in which the soft elements are treated as hysteretic or reversible elastic units connected in a one-dimensional lattice to elastic elements (grains), which make up the hard matrix. Calculations are performed in the framework of the local interaction simulation approach (LISA). Experimental observations are well predicted by the model, which is now ready both for basic investigations about the physical origins of nonlinear elasticity and for applications to material damage diagnostics.
Gu, X. Wendy; Ye, Xingchen; Koshy, David M.; ...
2017-02-27
Large, freestanding membranes with remarkably high elastic modulus ( > 10 GPa) have been fabricated through the self-Assembly of ligand-stabilized inorganic nanocrystals, even though these nanocrystals are connected only by soft organic ligands (e.g., dodecanethiol or DNA) that are not cross-linked or entangled. Recent developments in the synthesis of polymer-grafted nanocrystals have greatly expanded the library of accessible superlattice architectures,which allows superlattice mechanical behavior to be linked to specific structural features. Here, colloidal self-Assembly is used to organize polystyrene-grafted Au nanocrystals at a fluid interface to form ordered solids with sub-10-nm periodic features. We used thin-film buckling and nanoindentation tomore » evaluate the mechanical behavior of polymer-grafted nanocrystal superlattices while exploring the role of polymer structural conformation, nanocrystal packing, and superlattice dimensions. Superlattices containing 3-20 vol % Au are found to have an elastic modulus of ~6-19 GPa, and hardness of ~120-170 MPa. We also found that rapidly self-Assembled superlattices have the highest elastic modulus, despite containing significant structural defects. Polymer extension, interdigitation, and grafting density are determined to be critical parameters that govern superlattice elastic and plastic deformation.« less
Elasticity and yielding of a calcite paste: scaling laws in a dense colloidal suspension.
Liberto, Teresa; Le Merrer, Marie; Barentin, Catherine; Bellotto, Maurizio; Colombani, Jean
2017-03-08
We address the mechanical characterization of a calcite paste as a model system to investigate the relation between the microstructure and macroscopic behavior of colloidal suspensions. The ultimate goal is to achieve control of the elastic and yielding properties of calcite which will prove valuable in several domains, from paper coating to paint manufacture and eventually in the comprehension and control of the mechanical properties of carbonate rocks. Rheological measurements have been performed on calcite suspensions over a wide range of particle concentrations. The calcite paste exhibits a typical colloidal gel behavior, with an elastic regime and a clear yield strain above which it enters a plastic regime. The yield strain shows a minimum when increasing the solid concentration, connected to a change in the power law scaling of the storage modulus. In the framework of the classical fractal elasticity model for colloidal suspensions proposed by Shih et al. [Phys. Rev. A, 1990, 42, 4772], we interpret this behavior as a switch with the concentration from the strong-link regime to the weak-link regime, which had never been observed so far in one well-defined system without external or chemical forcing.
NASA Astrophysics Data System (ADS)
Gu, X. Wendy; Ye, Xingchen; Koshy, David M.; Vachhani, Shraddha; Hosemann, Peter; Alivisatos, A. Paul
2017-03-01
Large, freestanding membranes with remarkably high elastic modulus (>10 GPa) have been fabricated through the self-assembly of ligand-stabilized inorganic nanocrystals, even though these nanocrystals are connected only by soft organic ligands (e.g., dodecanethiol or DNA) that are not cross-linked or entangled. Recent developments in the synthesis of polymer-grafted nanocrystals have greatly expanded the library of accessible superlattice architectures, which allows superlattice mechanical behavior to be linked to specific structural features. Here, colloidal self-assembly is used to organize polystyrene-grafted Au nanocrystals at a fluid interface to form ordered solids with sub-10-nm periodic features. Thin-film buckling and nanoindentation are used to evaluate the mechanical behavior of polymer-grafted nanocrystal superlattices while exploring the role of polymer structural conformation, nanocrystal packing, and superlattice dimensions. Superlattices containing 3-20 vol % Au are found to have an elastic modulus of ˜6-19 GPa, and hardness of ˜120-170 MPa. We find that rapidly self-assembled superlattices have the highest elastic modulus, despite containing significant structural defects. Polymer extension, interdigitation, and grafting density are determined to be critical parameters that govern superlattice elastic and plastic deformation.
Shock response of nanoporous Cu--A molecular dynamics simulation
NASA Astrophysics Data System (ADS)
Zhao, Fengpeng
2015-06-01
Shock response of porous materials can be of crucial significance for shock physics and bears many practical applications in materials synthesis and engineering. Molecular dynamics simulations are carried out to investigate shock response of nanoporous metal materials, including elastic-plastic deformation, Hugoniot states, shock-induced melting, partial or complete void collapse, hotspot formation, nanojetting, and vaporization. A model nanoporous Cu with cylindrical voids and a high porosity under shocking is established to investigate such physical properties as velocity, temperature, density, stress and von Mises stress at different stages of compression and release. The elastic-plastic and overtaking shocks are observed at different shock strengths. A modified power-law P- α model is proposed to describe the Hugoniot states. The Grüneisen equation of state is validated. Shock-induced melting shows no clear signs of bulk premelting or superheating. Void collapse via plastic flow nucleated from voids, and the exact processes are shock strength dependent. With increasing shock strengths, void collapse transits from the ``geometrical'' mode (collapse of a void is dominated by crystallography and void geometry and can be different from that of one another) to ``hydrodynamic'' mode (collapse of a void is similar to one another). The collapse may be achieved predominantly by plastic flows along the {111} slip planes, by way of alternating compression and tension zones, by means of transverse flows, via forward and transverse flows, or through forward nano-jetting. The internal jetting induces pronounced shock front roughening, leading to internal hotspot formation and sizable high speed jets on atomically flat free surfaces. P. O. Box 919-401, Mianyang, 621900, Sichuan, PRC.
NASA Astrophysics Data System (ADS)
Lee, Hyung Jin; Lee, Heung Son; Ma, Pyung Sik; Kim, Yoon Young
2016-09-01
In this paper, the scattering (S-) parameter retrieval method is presented specifically for anisotropic elastic metamaterials; so far, no retrieval has been accomplished when elastic metamaterials exhibit fully anisotropic behavior. Complex constitutive property and intrinsic scattering behavior of elastic metamaterials make their characterization far more complicated than that for acoustic and electromagnetic metamaterials. In particular, elastic metamaterials generally exhibit anisotropic scattering behavior due to higher scattering modes associated with shear deformation. They also exhibit nonlocal responses to some degrees, which originate from strong multiple scattering interactions even in the long wavelength limit. Accordingly, the conventional S-parameter retrieval methods cannot be directly used for elastic metamaterials, because they determine only the diagonal components in effective tensor property. Also, the conventional methods simply use the analytic inversion formulae for the material characterization so that inherent nonlocality cannot be taken into account. To establish a retrieval method applicable to anisotropic elastic metamaterials, we propose an alternative S-parameter method to deal with full anisotropy of elastic metamaterials. To retrieve the whole effective anisotropic parameter, we utilize not only normal but also oblique wave incidences. For the retrieval, we first retrieve the ratio of the effective stiffness tensor to effective density and then determine the effective density. The proposed retrieval method is validated by characterizing the effective material parameters of various types of non-resonant anisotropic metamaterials. It is found that the whole effective parameters are retrieved consistently regardless of used retrieval conditions in spite of inherent nonlocality.
Plastic deformation in a metallic granular chain
NASA Astrophysics Data System (ADS)
Musson, Ryan W.; Carlson, William
2016-03-01
Solitary wave response was investigated in a metallic granular chain-piston system using LS-DYNA. A power law hardening material model was used to show that localized plastic deformation is present in a metallic granular chain for an impact velocity of 0.5 m/s. This loss due to plastic deformation was quantified via impulse, and it was shown that the loss scales nearly linearly with impact velocity. Therefore, metallic grains may not be suitable for devices that require high-amplitude solitary waves. There would be too much energy lost to plastic deformation. One can assume that ceramics will behave elastically; therefore, the response of an aluminum oxide granular chain was compared to that of a steel chain.
NASA Astrophysics Data System (ADS)
Altenbach, H.; Naumenko, K.; L'vov, G. I.; Pilipenko, S. N.
2003-05-01
A model which allows us to estimate the elastic properties of thin-walled structures manufactured by injection molding is presented. The starting step is the numerical prediction of the microstructure of a short-fiber-reinforced composite developed during the filling stage of the manufacturing process. For this purpose, the Moldflow Plastic Insight® commercial program is used. As a result of simulating the filling process, a second-rank orientation tensor characterizing the microstructure of the material is obtained. The elastic properties of the prepared material locally depend on the orientational distribution of fibers. The constitutive equation is formulated by means of orientational averaging for a given orientation tensor. The tensor of elastic material properties is computed and translated into the format for a stress-strain analysis based on the ANSYSÒ finite-element code. The numerical procedure and the convergence of results are discussed for a thin strip, a rectangular plate, and a shell of revolution. The influence of manufacturing conditions on the stress-strain state of statically loaded thin-walled elements is illustrated.
Hardness, elastic, and electronic properties of chromium monoboride
Han, Lei; Wang, Shanmin; Zhu, Jinlong; ...
2015-06-03
Here, we report high-pressure synthesis of chromium monoboride (CrB) at 6 GPa and 1400 K. The elastic and plastic behaviors have been investigated by hydrostatic compression experiment and micro-indentation measurement. CrB is elastically incompressible with a high bulk modulus of 269.0 (5.9) GPa and exhibits a high Vickers hardness of 19.6 (0.7) GPa under the load of 1 kg force. Based on first principles calculations, the observed mechanical properties are attributed to the polar covalent Cr-B bonds interconnected with strong zigzag B-B covalent bonding network. The presence of metallic Cr bilayers is presumably responsible for the weakest paths in shearmore » deformation.« less
Phase transformation and deformation behavior of NiTi-Nb eutectic joined NiTi wires
Wang, Liqiang; Wang, Cong; Zhang, Lai-Chang; Chen, Liangyu; Lu, Weijie; Zhang, Di
2016-01-01
NiTi wires were brazed together via eutectic reaction between NiTi and Nb powder deposited at the wire contact region. Phase transformation and deformation behavior of the NiTi-Nb eutectic microstructure were investigated using transmission electron microscopy (TEM) and cyclic loading-unloading tests. Results show that R phase and B19′ martensite transformation are induced by plastic deformation. R phase transformation, which significantly contributes to superelasticity, preferentially occurs at the interfaces between NiTi and eutectic region. Round-shaped Nb-rich phase with rod-like and lamellar-type eutectics are observed in eutectic regions. These phases appear to affect the deformation behavior of the brazed NiTi-Nb region via five distinct stages in stress-strain curves: (I) R phase reorientation, (II) R phase transformation from parent phase, (III) elastic deformation of reoriented martensite accompanied by the plastic deformation of Nb-rich phase and lamellar NiTi-Nb eutectic, (IV) B19′ martensitic transformation, and (V) plastic deformation of the specimen. PMID:27049025
Modeling of stresses at grain boundaries with respect to occurrence of stress corrosion cracking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozaczek, K.J.; Sinharoy, A.; Ruud, C.O.
The distributions of elastic stresses/strains in the grain boundary regions were studied by the analytical and the finite element models. The grain boundaries represent the sites where stress concentration occurs as a result of discontinuity of elastic properties across the grain boundary and the presence of second phase particles elastically different from the surrounding matrix grains. A quantitative analysis of those stresses for steels and nickel based alloys showed that the stress concentrations in the grain boundary regions are high enough to cause a local microplastic deformation even when the material is in the macroscopic elastic regime. The stress redistributionmore » as a result of such a plastic deformation was discussed.« less
Constitutive Theory Developed for Monolithic Ceramic Materials
NASA Technical Reports Server (NTRS)
Janosik, Lesley A.
1998-01-01
With the increasing use of advanced ceramic materials in high-temperature structural applications such as advanced heat engine components, the need arises to accurately predict thermomechanical behavior that is inherently time-dependent and that is hereditary in the sense that the current behavior depends not only on current conditions but also on the material's thermomechanical history. Most current analytical life prediction methods for both subcritical crack growth and creep models use elastic stress fields to predict the time-dependent reliability response of components subjected to elevated service temperatures. Inelastic response at high temperatures has been well documented in the materials science literature for these material systems, but this issue has been ignored by the engineering design community. From a design engineer's perspective, it is imperative to emphasize that accurate predictions of time-dependent reliability demand accurate stress field information. Ceramic materials exhibit different time-dependent behavior in tension and compression. Thus, inelastic deformation models for ceramics must be constructed in a fashion that admits both sensitivity to hydrostatic stress and differing behavior in tension and compression. A number of constitutive theories for materials that exhibit sensitivity to the hydrostatic component of stress have been proposed that characterize deformation using time-independent classical plasticity as a foundation. However, none of these theories allow different behavior in tension and compression. In addition, these theories are somewhat lacking in that they are unable to capture the creep, relaxation, and rate-sensitive phenomena exhibited by ceramic materials at high temperatures. The objective of this effort at the NASA Lewis Research Center has been to formulate a macroscopic continuum theory that captures these time-dependent phenomena. Specifically, the effort has focused on inelastic deformation behavior associated with these service conditions by developing a multiaxial viscoplastic constitutive model that accounts for time-dependent hereditary material deformation (such as creep and stress relaxation) in monolithic structural ceramics. Using continuum principles of engineering mechanics, we derived the complete viscoplastic theory from a scalar dissipative potential function.
A review of path-independent integrals in elastic-plastic fracture mechanics
NASA Technical Reports Server (NTRS)
Kim, Kwang S.; Orange, Thomas W.
1988-01-01
The objective of this paper is to review the path-independent (P-I) integrals in elastic plastic fracture mechanics which have been proposed in recent years to overcome the limitations imposed on the J-integral. The P-I integrals considered are the J-integral by Rice (1968), the thermoelastic P-I integrals by Wilson and Yu (1979) and Gurtin (1979), the J-integral by Blackburn (1972), the J(theta)-integral by Ainsworth et al. (1978), the J-integral by Kishimoto et al. (1980), and the Delta-T(p) and Delta T(p)-asterisk integrals by Alturi et al. (1982). The theoretical foundation of the P-I integrals is examined with an emphasis on whether or not the path independence is maintained in the presence of nonproportional loading and unloading in the plastic regime, thermal gradient, and material inhomogeneities. The simularities, difference, salient features, and limitations of the P-I integrals are discussed. Comments are also made with regard to the physical meaning, the possibility of experimental measurement, and computational aspects.
A review of path-independent integrals in elastic-plastic fracture mechanics, task 4
NASA Technical Reports Server (NTRS)
Kim, K. S.
1985-01-01
The path independent (P-I) integrals in elastic plastic fracture mechanics which have been proposed in recent years to overcome the limitations imposed on the J integral are reviewed. The P-I integrals considered herein are the J integral by Rice, the thermoelastic P-I integrals by Wilson and Yu and by Gurtin, the J* integral by Blackburn, the J sub theta integral by Ainsworth et al., the J integral by Kishimoto et al., and the delta T sub p and delta T* sub p integrals by Atluri et al. The theoretical foundation of these P-I integrals is examined with emphasis on whether or not path independence is maintained in the presence of nonproportional loading and unloading in the plastic regime, thermal gradients, and material inhomogeneities. The similarities, differences, salient features, and limitations of these P-I integrals are discussed. Comments are also made with regard to the physical meaning, the possibility of experimental measurement, and computational aspects.
Instability of fiber-reinforced viscoelastic composite plates to in-plane compressive loads
NASA Technical Reports Server (NTRS)
Chandiramani, N. K.; Librescu, L.
1990-01-01
This study analyzes the stability behavior of unidirectional fiber-reinforced composite plates with viscoelastic material behavior subject to in-plane biaxial compressive edge loads. To predict the effective time-dependent material properties, elastic fibers embedded in a linearly viscoelastic matrix are examined. The micromechanical relations developed for a transversely isotropic medium are discussed along with the correspondence principle of linear viscoelasticity. It is concluded that the stability boundary obtained for a viscoelastic plate is lower (more critical) than its elastic counterpart, and the transverse shear deformation effects are more pronounced in viscoelastic plates than in their elastic counterparts.
Physics in Plastics Technology.
ERIC Educational Resources Information Center
Thomas, Ken
1980-01-01
Discusses the increasing role of the physicist in plastics technology. Relationships of molecular structure to material behavior, design which is related to the material, and the practical problems of fabricating a material into an article are included. (HM)
Wang, Raorao; Lu, Chenglin; Arola, Dwayne; Zhang, Dongsheng
2013-08-01
The aim of this study was to compare failure modes and fracture strength of ceramic structures using a combination of experimental and numerical methods. Twelve specimens with flat layer structures were fabricated from two types of ceramic systems (IPS e.max ceram/e.max press-CP and Vita VM9/Lava zirconia-VZ) and subjected to monotonic load to fracture with a tungsten carbide sphere. Digital image correlation (DIC) and fractography technology were used to analyze fracture behaviors of specimens. Numerical simulation was also applied to analyze the stress distribution in these two types of dental ceramics. Quasi-plastic damage occurred beneath the indenter in porcelain in all cases. In general, the fracture strength of VZ specimens was greater than that of CP specimens. The crack initiation loads of VZ and CP were determined as 958 ± 50 N and 724 ± 36 N, respectively. Cracks were induced by plastic damage and were subsequently driven by tensile stress at the elastic/plastic boundary and extended downward toward to the veneer/core interface from the observation of DIC at the specimen surface. Cracks penetrated into e.max press core, which led to a serious bulk fracture in CP crowns, while in VZ specimens, cracks were deflected and extended along the porcelain/zirconia core interface without penetration into the zirconia core. The rupture loads for VZ and CP ceramics were determined as 1150 ± 170 N and 857 ± 66 N, respectively. Quasi-plastic deformation (damage) is responsible for crack initiation within porcelain in both types of crowns. Due to the intrinsic mechanical properties, the fracture behaviors of these two types of ceramics are different. The zirconia core with high strength and high elastic modulus has better resistance to fracture than the e.max core. © 2013 by the American College of Prosthodontists.
Preliminary Thermal Stress Analysis of a High-Pressure Cryogenic Storage Tank
NASA Technical Reports Server (NTRS)
Baker, J. Mark
2003-01-01
The thermal stresses on a cryogenic storage tank strongly affect the condition of the tank and its ability to withstand operational stresses. These thermal stresses also affect the growth of any surface damage that might occur in the tank walls. These stresses are particularly of concern during the initial cooldown period for a new tank placed into service, and during any subsequent thermal cycles. A preliminary thermal stress analysis of a high-pressure cryogenic storage tank was performed. Stresses during normal operation were determined, as well as the transient temperature distribution. An elastic analysis was used to determine the thermal stresses in the inner wall based on the temperature data. The results of this elastic analysis indicate that the inner wall of the storage tank will experience thermal stresses of approximately 145,000 psi (1000 MPa). This stress level is well above the room-temperature yield strength of 304L stainless steel, which is about 25,000 psi (170 MPa). For this preliminary analysis, several important factors have not yet been considered. These factors include increased strength of 304L stainless steel at cryogenic temperatures, plastic material behavior, and increased strength due to strain hardening. In order to more accurately determine the thermal stresses and their affect on the tank material, further investigation is required, particularly in the area of material properties and their relationship to stress.
NASA Astrophysics Data System (ADS)
Pepi, John W.
2017-08-01
Thermally induced stress is readily calculated for linear elastic material properties using Hooke's law in which, for situations where expansion is constrained, stress is proportional to the product of the material elastic modulus and its thermal strain. When material behavior is nonlinear, one needs to make use of nonlinear theory. However, we can avoid that complexity in some situations. For situations in which both elastic modulus and coefficient of thermal expansion vary with temperature, solutions can be formulated using secant properties. A theoretical approach is thus presented to calculate stresses for nonlinear, neo-Hookean, materials. This is important for high acuity optical systems undergoing large temperature extremes.
Plasticity - Theory and finite element applications.
NASA Technical Reports Server (NTRS)
Armen, H., Jr.; Levine, H. S.
1972-01-01
A unified presentation is given of the development and distinctions associated with various incremental solution procedures used to solve the equations governing the nonlinear behavior of structures, and this is discussed within the framework of the finite-element method. Although the primary emphasis here is on material nonlinearities, consideration is also given to geometric nonlinearities acting separately or in combination with nonlinear material behavior. The methods discussed here are applicable to a broad spectrum of structures, ranging from simple beams to general three-dimensional bodies. The finite-element analysis methods for material nonlinearity are general in the sense that any of the available plasticity theories can be incorporated to treat strain hardening or ideally plastic behavior.
NASA Technical Reports Server (NTRS)
Lerch, Bradley A.; Melis, Matthew E.; Tong, Mike
1991-01-01
The nonlinear stress strain behavior of 90 degree/0 degree sub 2s, SiC/Ti-15-3 composite laminate was numerically investigated with a finite element, unit cell approach. Tensile stress-strain curves from room temperature experiments depicted three distinct regions of deformation, and these regions were predicted by finite element analysis. The first region of behavior, which was linear elastic, occurred at low applied stresses. As applied stresses increased, fiber/matrix debonding in the 90 degree plies caused a break in the stress-strain curve and initiated a second linear region. In this second region, matrix plasticity in the 90 degree plies developed. The third region, which was typified by nonlinear, stress-strain behavior occr red at high stresses. In this region, the onset of matrix plasticity in the 0 degree plies stiffened the laminate in the direction transverse to the applied load. Metallographic sections confirmed the existence of matrix plasticity in specific areas of the structure. Finite element analysis also predicted these locations of matrix slip.
Stress regularity in quasi-static perfect plasticity with a pressure dependent yield criterion
NASA Astrophysics Data System (ADS)
Babadjian, Jean-François; Mora, Maria Giovanna
2018-04-01
This work is devoted to establishing a regularity result for the stress tensor in quasi-static planar isotropic linearly elastic - perfectly plastic materials obeying a Drucker-Prager or Mohr-Coulomb yield criterion. Under suitable assumptions on the data, it is proved that the stress tensor has a spatial gradient that is locally squared integrable. As a corollary, the usual measure theoretical flow rule is expressed in a strong form using the quasi-continuous representative of the stress.
A Critical Review of the State of Finite Plasticity
1990-05-01
finite deformation of elastic-plastic materials, the development of which began with the work of Green and Naghdi (1965, 1966). A point of departure which...related results, see Naghdi (1972, p. 485) and Green and Naghdi (1979). The equations ot motion (3.2) or (3.3), as well as the fields which occur in...unaltered apart from onentation as defined by Green and Naghdi (1979). However. it should be emphasized that the use of the term objective hire differs from
Arrieta, Marina Patricia; Castro-López, María del Mar; Rayón, Emilio; Barral-Losada, Luis Fernando; López-Vilariño, José Manuel; López, Juan; González-Rodríguez, María Victoria
2014-10-15
Active biobased packaging materials based on poly(lactic acid)-poly(hydroxybutyrate) (PLA-PHB) blends were prepared by melt blending and fully characterized. Catechin incorporation, as antioxidant compound, enhanced the thermal stability, whereas its release was improved by the addition of acetyl(tributyl citrate) (ATBC) as plasticizer. Whereas the incorporation of ATBC resulted in a reduction of elastic modulus and hardness, catechin addition produced more rigid materials due to hydrogen-bonding interactions between catechin hydroxyl groups and carbonyl groups of PLA and PHB. The quantification of catechin released into a fatty food simulant and the antioxidant effectiveness after the release process were demonstrated. The effect of the materials' exposure to a food simulant was also investigated. PHB-added materials maintained their structural and mechanical properties after 10 days in a test medium that represents the worst foreseeable conditions of the intended use. Thus, plasticized PLA-PHB blends with catechin show their potential as biobased active packaging for fatty food.
Finite Element Studies of Solitary Waves in Granular Chains
NASA Astrophysics Data System (ADS)
Musson, Ryan W.
Solitary wave propagation in a monodisperse metallic granular chain was simulated using the finite element method. The model was built to address a discrepancy between numerical and experimental results from Lazaridi and Nesterenko (J. Appl. Mech. Tech. Phys., 26 [3] 405-408 1985). In their work, solitary waves were generated in a chain of particles through impact of a piston, and results were quantified by comparing the chains' reactions to a rigid wall. Their numerical calculations resulted in a solitary wave with a force amplitude of 83 N, while it was measured experimentally to be 71 N. In the present work, the configuration of the granular chain and piston was duplicated from Lazaridi and Nesterenko (J. Appl. Mech. Tech. Phys., 26 [3] 405-408 1985). Qualitatively similar solitary waves were produced, and von Mises stress values indicated that localized plastic deformation is possible, even at low piston impact velocities. These results show that localized plastic deformation was a likely source of dissipation in experiments performed by Lazaridi and Nesterenko. Solitary wave response was investigated in the same metallic granular chain-piston system using LS-DYNA. A power-law hardening material model was used to show that localized plastic deformation is present in the metallic granular chain, even for an impact velocity of 0.5 m/s. This loss due to plastic deformation was quantified via impulse, and it was shown that the loss scales nearly linearly with impact velocity. Therefore, metallic grains may not be suitable for devices that require high amplitude solitary waves. There would be too much energy lost to plastic deformation. The response of an aluminum oxide granular chain was subsequently compared to that of a steel chain because ceramics are inherently elastic. It was shown that solitary waves travel faster and the initial peak is slightly lower when compared to a steel chain. The response of granular chains to impulse loading was investigated as a function of material properties. COMSOL Multiphysics was used to study the effect of density and elastic modulus on a granular chain with fixed Poisson's ratio. Solitary wave velocity and amplitude increased with elastic modulus. Increasing density caused a decrease in wave velocity and an increase in amplitude. In addition, higher density granular chains exhibited a decrease in the number of solitary waves in their respective solitary wave trains. LS-DYNA was then used to explore the response of a variety of ceramic and metallic granular chains. Density, elastic modulus, and Poisson's ratio were all set to representative values for the respective material. It was shown that solitary wave development and decay occur at different rates for different materials. In addition, the kinetic energy decay of the impactor was slower for glass compared with tungsten. Finally, it was shown that a single solitary wave with no train could be produced by impacting a high density, high modulus chain such as tungsten with a glass piston, which has relatively low density and elastic modulus. Increasing impact velocity for this case resulted in a single high-amplitude solitary wave with no train.
Belli, Renan; Wendler, Michael; de Ligny, Dominique; Cicconi, Maria Rita; Petschelt, Anselm; Peterlik, Herwig; Lohbauer, Ulrich
2017-01-01
A deeper understanding of the mechanical behavior of dental restorative materials requires an insight into the materials elastic constants and microstructure. Here we aim to use complementary methodologies to thoroughly characterize chairside CAD/CAM materials and discuss the benefits and limitations of different analytical strategies. Eight commercial CAM/CAM materials, ranging from polycrystalline zirconia (e.max ZirCAD, Ivoclar-Vivadent), reinforced glasses (Vitablocs Mark II, VITA; Empress CAD, Ivoclar-Vivadent) and glass-ceramics (e.max CAD, Ivoclar-Vivadent; Suprinity, VITA; Celtra Duo, Dentsply) to hybrid materials (Enamic, VITA; Lava Ultimate, 3M ESPE) have been selected. Elastic constants were evaluated using three methods: Resonant Ultrasound Spectroscopy (RUS), Resonant Beam Technique (RBT) and Ultrasonic Pulse-Echo (PE). The microstructures were characterized using Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX), Raman Spectroscopy and X-ray Diffraction (XRD). Young's modulus (E), Shear modulus (G), Bulk modulus (B) and Poisson's ratio (ν) were obtained for each material. E and ν reached values ranging from 10.9 (Lava Ultimate) to 201.4 (e.max ZirCAD) and 0.173 (Empress CAD) to 0.47 (Lava Ultimate), respectively. RUS showed to be the most complex and reliable method, while the PE method the easiest to perform but most unreliable. All dynamic methods have shown limitations in measuring the elastic constants of materials showing high damping behavior (hybrid materials). SEM images, Raman spectra and XRD patterns were made available for each material, showing to be complementary tools in the characterization of their crystal phases. Here different methodologies are compared for the measurement of elastic constants and microstructural characterization of CAD/CAM restorative materials. The elastic properties and crystal phases of eight materials are herein fully characterized. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Zou, Shuiping; Wan, Zhenping; Lu, Longsheng; Tang, Yong
2016-01-01
A novel porous metal fiber/powder sintered composite sheet (PMFPSCS) is developed by sintering a mixture of a porous metal fiber sintered sheet (PMFSS) and copper powders with particles of a spherical shape. The characteristics of the PMFPSCS including its microstructure, sintering density and porosity are investigated. A uniaxial tensile test is carried out to study the tensile behaviors of the PMFPSCS. The deformation and failure mechanisms of the PMFSCS are discussed. Experimental results show that the PMFPSCS successively experiences an elastic stage, hardening stage, and fracture stage under tension. The tensile strength of the PMFPSCS is determined by a reticulated skeleton of fibers and reinforcement of copper powders. With the porosity of the PMFSS increasing, the tensile strength of the PMFPSCS decreases, whereas the reinforcement of copper powders increases. At the elastic stage, the structural elastic deformation is dominant, and at the hardening stage, the plastic deformation is composed of the structural deformation and the copper fibers’ plastic deformation. The fracture of the PMFPSCS is mainly caused by the breaking of sintering joints. PMID:28773833
Correlating elastic and plastic deformation with magnetic permeability values
NASA Astrophysics Data System (ADS)
Papadopoulou, S.
2017-12-01
This paper investigates the utilization of magnetic permeability method in determining elastic and plastic deformation state of ferromagnetic steels. The results have shown a strong degradation of the magnetic values on plastically region due to the irreversible movements of the magnetic domain walls.
NASA Astrophysics Data System (ADS)
Guo, Xiaoxiang; Xie, Xie; Ren, Jingli; Laktionova, Marina; Tabachnikova, Elena; Yu, Liping; Cheung, Wing-Sum; Dahmen, Karin A.; Liaw, Peter K.
2017-12-01
This study investigates the plastic behavior of the Al0.5CoCrCuFeNi high-entropy alloy at cryogenic temperatures. The samples are uniaxially compressed at 4.2 K, 7.5 K, and 9 K. A jerky evolution of stress and stair-like fluctuation of strain are observed during plastic deformation. A scaling relationship is detected between the released elastic energy and strain-jump sizes. Furthermore, the dynamical evolution of serrations is characterized by the largest Lyapunov exponent. The largest Lyapunov exponents of the serrations at the three temperatures are all negative, which indicates that the dynamical regime is non-chaotic. This trend reflects an ordered slip process, and this ordered slip process exhibits a more disordered slip process, as the temperature decreases from 9 K to 4.2 K or 7.5 K.
A nonlinear fracture mechanics approach to the growth of small cracks
NASA Technical Reports Server (NTRS)
Newman, J. C., Jr.
1983-01-01
An analytical model of crack closure is used to study the crack growth and closure behavior of small cracks in plates and at notches. The calculated crack opening stresses for small and large cracks, together with elastic and elastic plastic fracture mechanics analyses, are used to correlate crack growth rate data. At equivalent elastic stress intensity factor levels, calculations predict that small cracks in plates and at notches should grow faster than large cracks because the applied stress needed to open a small crack is less than that needed to open a large crack. These predictions agree with observed trends in test data. The calculations from the model also imply that many of the stress intensity factor thresholds that are developed in tests with large cracks and with load reduction schemes do not apply to the growth of small cracks. The current calculations are based upon continuum mechanics principles and, thus, some crack size and grain structure exist where the underlying fracture mechanics assumptions become invalid because of material inhomogeneity (grains, inclusions, etc.). Admittedly, much more effort is needed to develop the mechanics of a noncontinuum. Nevertheless, these results indicate the importance of crack closure in predicting the growth of small cracks from large crack data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voothaluru, Rohit; Bedekar, Vikram; Xie, Qingge
This work integrates in-situ neutron diffraction and crystal plasticity finite element modeling to study the kinematic stability of retained austenite in high carbon bearing steels. The presence of a kinematically metastable retained austenite in bearing steels can significantly affect the macro-mechanical and micro-mechanical material response. Mechanical characterization of metastable austenite is a critical component in accurately capturing the micro-mechanical behavior under typical application loads. Traditional mechanical characterization techniques are unable to discretely quantify the micro-mechanical response of the austenite, and as a result, the computational predictions rely heavily on trial and error or qualitative descriptions of the austenite phase. Inmore » order to overcome this, in the present work, we use in-situ neutron diffraction of a uniaxial tension test of an A485 Grade 1 bearing steel specimen. The mechanical response determined from the neutron diffraction analysis was incorporated into a hybrid crystal plasticity finite element model that accounts for the martensite's crystal plasticity and the stress-assisted transformation from austenite to martensite in bearing steels. Here, the modeling response was used to estimate the single crystal elastic constants of the austenite and martensite phases. Finally, the results show that using in-situ neutron diffraction, coupled with a crystal plasticity model, can successfully predict both the micro-mechanical and macro-mechanical responses of bearing steels while accounting for the martensitic transformation of the retained austenite.« less
Voothaluru, Rohit; Bedekar, Vikram; Xie, Qingge; ...
2018-11-21
This work integrates in-situ neutron diffraction and crystal plasticity finite element modeling to study the kinematic stability of retained austenite in high carbon bearing steels. The presence of a kinematically metastable retained austenite in bearing steels can significantly affect the macro-mechanical and micro-mechanical material response. Mechanical characterization of metastable austenite is a critical component in accurately capturing the micro-mechanical behavior under typical application loads. Traditional mechanical characterization techniques are unable to discretely quantify the micro-mechanical response of the austenite, and as a result, the computational predictions rely heavily on trial and error or qualitative descriptions of the austenite phase. Inmore » order to overcome this, in the present work, we use in-situ neutron diffraction of a uniaxial tension test of an A485 Grade 1 bearing steel specimen. The mechanical response determined from the neutron diffraction analysis was incorporated into a hybrid crystal plasticity finite element model that accounts for the martensite's crystal plasticity and the stress-assisted transformation from austenite to martensite in bearing steels. Here, the modeling response was used to estimate the single crystal elastic constants of the austenite and martensite phases. Finally, the results show that using in-situ neutron diffraction, coupled with a crystal plasticity model, can successfully predict both the micro-mechanical and macro-mechanical responses of bearing steels while accounting for the martensitic transformation of the retained austenite.« less
Rico, M; Rodríguez-Llamazares, S; Barral, L; Bouza, R; Montero, B
2016-09-20
Biocomposites suitable for short-life applications such as food packaging were prepared by melt processing and investigated. Biocomposites studied are wheat starch plasticized with two different molecular weight polyols (glycerol and sorbitol) and reinforced with various amounts of microcrystalline cellulose. The effect of the plasticizer type and the filler amount on the processing properties, the crystallization behavior and morphology developed for the materials, and the influence on thermal stability, dynamic mechanical properties and water absorption behavior were investigated. Addition of microcrystalline cellulose led to composites with good filler-matrix adhesion where the stiffness and resistance to humidity absorption were improved. The use of sorbitol as a plasticizer of starch also improved the stiffness and water uptake behavior of the material as well as its thermal stability. Biodegradable starch-based materials with a wide variety of properties can be tailored by varying the polyol plasticizer type and/or by adding microcrystalline cellulose filler. Copyright © 2016 Elsevier Ltd. All rights reserved.
Constitutive Modelling and Deformation Band Angle Predictions for High Porosity Sandstones
NASA Astrophysics Data System (ADS)
Richards, M. C.; Issen, K. A.; Ingraham, M. D.
2017-12-01
The development of a field-scale deformation model requires a constitutive framework that is capable of representing known material behavior and able to be calibrated using available mechanical response data. This work employs the principle of hyperplasticity (e.g., Houlsby and Puzrin, 2006) to develop such a constitutive framework for high porosity sandstone. Adapting the works of Zimmerman et al. (1986) and Collins and Houlsby (1997), the mechanical data set of Ingraham et al. (2013 a, b) was used to develop a specific constitutive framework for Castlegate sandstone, a high porosity fluvial-deposited reservoir analog rock. Using the mechanical data set of Ingraham et al. (2013 a, b), explicit expressions and material parameters of the elastic moduli and strain tensors were obtained. With these expressions, analytical and numerical techniques were then employed to partition the total mechanical strain into elastic, coupled, and plastic strain components. With the partitioned strain data, yield surfaces in true-stress space, coefficients of internal friction, dilatancy factors, along with the theorectical predictions of the deformation band angles were obtained. These results were also evaluated against band angle values obtained from a) measurements on specimen jackets (Ingraham et al., 2013a), b) plane fits through located acoustic emissions (AE) events (Ingraham et al. 2013b), and c) X-ray micro-computed tomography (micro-CT) calculations.
Gradient Plasticity Model and its Implementation into MARMOT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barker, Erin I.; Li, Dongsheng; Zbib, Hussein M.
2013-08-01
The influence of strain gradient on deformation behavior of nuclear structural materials, such as boby centered cubic (bcc) iron alloys has been investigated. We have developed and implemented a dislocation based strain gradient crystal plasticity material model. A mesoscale crystal plasticity model for inelastic deformation of metallic material, bcc steel, has been developed and implemented numerically. Continuum Dislocation Dynamics (CDD) with a novel constitutive law based on dislocation density evolution mechanisms was developed to investigate the deformation behaviors of single crystals, as well as polycrystalline materials by coupling CDD and crystal plasticity (CP). The dislocation density evolution law in thismore » model is mechanism-based, with parameters measured from experiments or simulated with lower-length scale models, not an empirical law with parameters back-fitted from the flow curves.« less
NASA Astrophysics Data System (ADS)
Alfat, Sayahdin; Kimura, Masato; Firihu, Muhammad Zamrun; Rahmat
2018-05-01
In engineering area, investigation of shape effect in elastic materials was very important. It can lead changing elasticity and surface energy, and also increase of crack propagation in the material. A two-dimensional mathematical model was developed to investigation of elasticity and surface energy in elastic material by Adaptive Finite Element Method. Besides that, behavior of crack propagation has observed for every those materials. The government equations were based on a phase field approach in crack propagation model that developed by Takaishi-Kimura. This research has varied four shape domains where physical properties of materials were same (Young's modulus E = 70 GPa and Poisson's ratio ν = 0.334). Investigation assumptions were; (1) homogeneous and isotropic material, (2) there was not initial cracking at t = 0, (3) initial displacement was zero [u1, u2] = 0) at initial condition (t = 0), and (4) length of time simulation t = 5 with interval Δt = 0.005. Mode I/II or mixed mode crack propagation has been used for the numerical investigation. Results of this studies were very good and accurate to show changing energy and behavior of crack propagation. In the future time, this research can be developed to complex phenomena and domain. Furthermore, shape optimization can be investigation by the model.
Elastic-plastic Crack Growth Along Ductile/Ductile Interfaces
NASA Astrophysics Data System (ADS)
Drugan, W. J.
An analytical study is performed of the stress and deformation fields near the tip of a crack that grows quasi-statically along an interface between two generally dissimilar ductile materials. The materials are modeled as homogeneous, isotropic, incompressible, elastic-ideally plastic Prandtl-Reuss-Mises, and the analysis is carried out within a small-displacement-gradient formulation. The case of anti-plane shear deformations is considered first. We derive near-tip solutions for the full range of the ratio of the two materials' yield stresses, and show that a near-tip family of solutions exists for each set of material properties; the implication is that far-field loading and geometrical conditions determine which specific near-tip solution governs in a particular problem. As a by-product of this analysis, we derive a new solution family for anti-plane shear crack growth in homogeneous material, one limiting member of which is the familiar Chitaley and McClintock (1971) solution. We also analyze the case of plane strain crack growth under applied tensile loading. Here, we account for curvature of inter-sector boundaries, in an attempt to obtain a complete set of solutions. When the material properties are identical, the solution family of Drugan and Chen (1989) for homogeneous material crack growth, which has an undetermined parameter in the near-tip field, is recovered. As the ratio of the two materials' yield strengths, ĸ, deviates from unity, the near-tip solution structure is found to change, but the near-tip fields are shown to continue to possess a free parameter for a substantial range of ĸ. Below this range, a second solution structure develops for which the near-tip free parameter has a restricted range of freedom. Finally, a third near-tip solution structure develops for sufficiently low ĸ, for which there are no free parameters. The implications of these results appear to be that as the plastic yield strength mismatch of the two materials becomes larger, far-field loading and geometry have increasingly weaker effects on the leading-order near-tip fields, until finally a mismatch level is reached beyond which far-field conditions no longer affect the leading-order fields. However, conclusions are complicated by the fact that the analysis also implies the radius of validity of the leading-order fields to decrease continuously with increasing yield strength mismatch (beyond a certain level), so that below some ¯k value, it will become necessary to retain more than one term to describe the physical near-tip fields. Although not specifically explored here, our analysis also allows comparison of the effects of changing elastic and plastic properties of the two materials on crack growth propensity, so that perhaps this analysis could assist in the optimization of interfacial fracture properties.
Practical solution of plastic deformation problems in elastic-plastic range
NASA Technical Reports Server (NTRS)
Mendelson, A; Manson, S
1957-01-01
A practical method for solving plastic deformation problems in the elastic-plastic range is presented. The method is one of successive approximations and is illustrated by four examples which include a flat plate with temperature distribution across the width, a thin shell with axial temperature distribution, a solid cylinder with radial temperature distribution, and a rotating disk with radial temperature distribution.
The relationship between elastic constants and structure of shock waves in a zinc single crystal
NASA Astrophysics Data System (ADS)
Krivosheina, M. N.; Kobenko, S. V.; Tuch, E. V.
2017-12-01
The paper provides a 3D finite element simulation of shock-loaded anisotropic single crystals on the example of a Zn plate under impact using a mathematical model, which allows for anisotropy in hydrostatic stress and wave velocities in elastic and plastic ranges. The simulation results agree with experimental data, showing the absence of shock wave splitting into an elastic precursor and a plastic wave in Zn single crystals impacted in the [0001] direction. It is assumed that the absence of an elastic precursor under impact loading of a zinc single crystal along the [0001] direction is determined by the anomalously large ratio of the c/a-axes and close values of the propagation velocities of longitudinal and bulk elastic waves. It is shown that an increase in only one elastic constant along the [0001] direction results in shock wave splitting into an elastic precursor and a shock wave of "plastic" compression.
Elastic-Plastic Behaviour of Ultrasonic Assisted Compression of Polyvinyl Chloride (PVC) Foam
NASA Astrophysics Data System (ADS)
Muhalim, N. A. D.; Hassan, M. Z.; Daud, Y.
2018-04-01
The present study aims to investigate the elastic-plastic behaviour of ultrasonic assisted compression of PVC closed-cell foam. A series of static and ultrasonic compression test of PVC closed-cell foam were conducted at a constant cross head speed of 30 mm/min on dry surface condition. For quasi-static test, specimen was compressed between two rigid platens using universal testing machine. In order to evaluate the specimen behavior under ultrasonic condition, specimen was placed between a specifically design double-slotted block horn and rigid platen. The horn was designed and fabricated prior to the test as a medium to transmit the ultrasonic vibration from the ultrasonic transducer to the working specimen. It was tuned to a frequency of 19.89 kHz in longitudinal mode and provided an average oscillation amplitude at 6 µm on the uppermost surface. Following, the characteristics of stress-strain curves for quasi-static and ultrasonic compression tests were analyzed. It was found that the compressive stress was significantly reduced at the onset of superimposed ultrasonic vibration during plastic deformation.
NASA Astrophysics Data System (ADS)
Wang, Huamiao; Wu, Peidong; Wang, Jian
2015-07-01
Magnesium alloy AZ31B plastically deforms via twinning and slip. Corresponding to the unidirectional nature of twinning, the activity of twinning/detwinning is directly related to loading history and materials texture. Using the elastic viscoplastic self-consistent model implementing with the twinning and detwinning model (EVPSC-TDT), we revisited experimental data of AZ31B sheets under four different strain paths: (1) tension-compression-tension along rolling direction, (2) tension-compression-tension along transverse direction, (3) compression-tension-compression along rolling direction, and (4) compression-tension-compression along transverse direction, and identified the dominant deformation mechanisms with respect to the strain path. We captured plastic deformation behaviors observed in experiments and quantitatively interpreted experimental observations in terms of the activities of different deformation mechanisms and the evolution of texture. It is found that the in-plane pre-tension has slight effect on the subsequent deformation, and the pre-compression and the reverse tension after compression have significant effect on the subsequent deformation. The inelastic behavior under compressive unloading is found to be insignificant at a small strain level but pronounced at a large strain level. Such significant effect is mainly ascribed to the activity of twinning and detwinning.
In-process, non-destructive multimodal dynamic testing of high-speed composite rotors
NASA Astrophysics Data System (ADS)
Kuschmierz, Robert; Filippatos, Angelos; Langkamp, Albert; Hufenbach, Werner; Czarske, Jürgern W.; Fischer, Andreas
2014-03-01
Fibre reinforced plastic (FRP) rotors are lightweight and offer great perspectives in high-speed applications such as turbo machinery. Currently, novel rotor structures and materials are investigated for the purpose of increasing machine efficiency, lifetime and loading limits. Due to complex rotor structures, high anisotropy and non-linear behavior of FRP under dynamic loads, an in-process measurement system is necessary to monitor and to investigate the evolution of damages under real operation conditions. A non-invasive, optical laser Doppler distance sensor measurement system is applied to determine the biaxial deformation of a bladed FRP rotor with micron uncertainty as well as the tangential blade vibrations at surface speeds above 300 m/s. The laser Doppler distance sensor is applicable under vacuum conditions. Measurements at varying loading conditions are used to determine elastic and plastic deformations. Furthermore they allow to determine hysteresis, fatigue, Eigenfrequency shifts and loading limits. The deformation measurements show a highly anisotropic and nonlinear behavior and offer a deeper understanding of the damage evolution in FRP rotors. The experimental results are used to validate and to calibrate a simulation model of the deformation. The simulation combines finite element analysis and a damage mechanics model. The combination of simulation and measurement system enables the monitoring and prediction of damage evolutions of FRP rotors in process.
Wang, Huamiao; Wu, Peidong; Wang, Jian
2015-04-17
Magnesium alloy AZ31B plastically deforms via twinning and slip. Corresponding to the unidirectional nature of twinning, the activity of twinning/detwinning is directly related to loading history and materials texture. Using the elastic viscoplastic self-consistent model implementing with the twinning and detwinning model (EVPSC–TDT), we revisited experimental data of AZ31B sheets under four different strain paths: (1) tension–compression–tension along rolling direction, (2) tension–compression–tension along transverse direction, (3) compression–tension–compression along rolling direction, and (4) compression–tension–compression along transverse direction, and identified the dominant deformation mechanisms with respect to the strain path. We captured plastic deformation behaviors observed in experiments and quantitatively interpreted experimentalmore » observations in terms of the activities of different deformation mechanisms and the evolution of texture. It is found that the in-plane pre-tension has slight effect on the subsequent deformation, and the pre-compression and the reverse tension after compression have significant effect on the subsequent deformation. The inelastic behavior under compressive unloading is found to be insignificant at a small strain level but pronounced at a large strain level. Lastly, such significant effect is mainly ascribed to the activity of twinning and detwinning.« less
Propagation of ultrasonic Love waves in nonhomogeneous elastic functionally graded materials.
Kiełczyński, P; Szalewski, M; Balcerzak, A; Wieja, K
2016-02-01
This paper presents a theoretical study of the propagation behavior of ultrasonic Love waves in nonhomogeneous functionally graded elastic materials, which is a vital problem in the mechanics of solids. The elastic properties (shear modulus) of a semi-infinite elastic half-space vary monotonically with the depth (distance from the surface of the material). The Direct Sturm-Liouville Problem that describes the propagation of Love waves in nonhomogeneous elastic functionally graded materials is formulated and solved by using two methods: i.e., (1) Finite Difference Method, and (2) Haskell-Thompson Transfer Matrix Method. The dispersion curves of phase and group velocity of surface Love waves in inhomogeneous elastic graded materials are evaluated. The integral formula for the group velocity of Love waves in nonhomogeneous elastic graded materials has been established. The effect of elastic non-homogeneities on the dispersion curves of Love waves is discussed. Two Love wave waveguide structures are analyzed: (1) a nonhomogeneous elastic surface layer deposited on a homogeneous elastic substrate, and (2) a semi-infinite nonhomogeneous elastic half-space. Obtained in this work, the phase and group velocity dispersion curves of Love waves propagating in the considered nonhomogeneous elastic waveguides have not previously been reported in the scientific literature. The results of this paper may give a deeper insight into the nature of Love waves propagation in elastic nonhomogeneous functionally graded materials, and can provide theoretical guidance for the design and optimization of Love wave based devices. Copyright © 2015 Elsevier B.V. All rights reserved.
Weng, Shayuan; Ning, Huiming; Fu, Tao; Hu, Ning; Zhao, Yinbo; Huang, Cheng; Peng, Xianghe
2018-02-15
Molecular dynamics simulations of nanolaminated graphene/Cu (NGCu) and pure Cu under compression are conducted to investigate the underlying strengthening mechanism of graphene and the effect of lamella thickness. It is found that the stress-strain curves of NGCu undergo 3 regimes i.e. the elastic regime I, plastic strengthening regime II and plastic flow regime III. Incorporating graphene monolayer is proved to simultaneously contribute to the strength and ductility of the composites and the lamella thickness has a great effect on the mechanical properties of NGCu composites. Different strengthening mechanisms play main role in different regimes, the transition of mechanisms is found to be related to the deformation behavior. Graphene affected zone is developed and integrated with rule of mixtures and confined layer slip model to describe the elastic properties of NGCu and the strengthening effect of the incorporated graphene.
Mechanical response of unidirectional boron/aluminum under combined loading
NASA Technical Reports Server (NTRS)
Becker, Wolfgang; Pindera, Marek-Jerzy; Herakovich, Carl T.
1987-01-01
Three test methods were employed to characterize the response of unidirectional Boron/Aluminum metal matrix composite material under monotonic and cyclic loading conditions, namely, losipescu shear, off-axis tension and compression. The characterization of the elastic and plastic response includes the elastic material properties, yielding and subsequent hardening of the unidirectional composite under different stress ratios in the material principal coordinate system. Yield loci generated for different stress ratios are compared for the three different test methods, taking into account residual stresses and specimen geometry. Subsequently, the yield locus for in-plane shear is compared with the prediction of an analytical, micromechanical model. The influence of the scatter in the experimental data on the predicted yield surface is also analyzed. Lastly, the experimental material strengths in tension and compression are correlated with the maximum stress and the Tsai-Wu failure criterion.
Constitutive Models for Design of Sustainable Concrete Structures
NASA Astrophysics Data System (ADS)
Brozovsky, J.; Cajka, R.; Koktan, J.
2018-04-01
The paper deals with numerical models of reinforced concrete which are expected to be useful to enhance design of sustainable reinforced concrete structures. That is, the models which can deliver higher precision of results than the linear elastic models but which are still feasible for engineering practice. Such models can be based on an elastic-plastic material. The paper discusses properties of such models. A material model based of the Chen criteria and the Ohtani hardening model for concrete was selected for further development. There is also given a comparison of behaviour of such model with behaviour of a more complex smeared crack model which is based on principles of fracture mechanics.
NASA Astrophysics Data System (ADS)
Olney, Karl L.
The dynamic behavior of granular/porous and laminate reactive materials is of interest due to their practical applications; reactive structural components, reactive fragments, etc. The mesostructural properties control meso- and macro-scale dynamic behavior of these heterogeneous composites including the behavior during the post-critical stage of deformation. They heavily influence mechanisms of fragment generation and the in situ development of local hot spots, which act as sites of ignition in these materials. This dissertation concentrates on understanding the mechanisms of plastic strain accommodation in two representative reactive material systems with different heterogeneous mesostructrues: Aluminum-Tungsten granular/porous and Nickel-Aluminum laminate composites. The main focus is on the interpretation of results of the following dynamic experiments conducted at different strain and strain rates: drop weight tests, explosively expanded ring experiments, and explosively collapsed thick walled cylinder experiments. Due to the natural limitations in the evaluation of the mesoscale behavior of these materials experimentally and the large variation in the size scales between the mesostructural level and the sample, it is extremely difficult, if not impossible, to examine the mesoscale behavior in situ. Therefore, numerical simulations of the corresponding experiments are used as the main tool to explore material behavior at the mesoscale. Numerical models were developed to elucidate the mechanisms of plastic strain accommodation and post critical behavior in these heterogeneous composites subjected to dynamic loading. These simulations were able to reproduce the qualitative and quantitative features that were observable in the experiments and provided insight into the evolution of the mechanisms of plastic strain accommodation and post critical behavior in these materials with complex mesotructure. Additionally, these simulations provided a framework to examine the influence of various mesoscale properties such as the bonding of interfaces, the role of material properties, and the influence of mesoscale geometry. The results of this research are helpful in the design of material mesotructures conducive to the desirable behavior under dynamic loading.
Softening non-metallic crystals by inhomogeneous elasticity.
Howie, P R; Thompson, R P; Korte-Kerzel, S; Clegg, W J
2017-09-14
High temperature structural materials must be resistant to cracking and oxidation. However, most oxidation resistant materials are brittle and a significant reduction in their yield stress is required if they are to be resistant to cracking. It is shown, using density functional theory, that if a crystal's unit cell elastically deforms in an inhomogeneous manner, the yield stress is greatly reduced, consistent with observations in layered compounds, such as Ti 3 SiC 2 , Nb 2 Co 7 , W 2 B 5 , Ta 2 C and Ta 4 C 3 . The mechanism by which elastic inhomogeneity reduces the yield stress is explained and the effect demonstrated in a complex metallic alloy, even though the electronegativity differences within the unit cell are less than in the layered compounds. Substantial changes appear possible, suggesting this is a first step in developing a simple way of controlling plastic flow in non-metallic crystals, enabling materials with a greater oxidation resistance and hence a higher temperature capability to be used.
Physical property measurements of doped cesium iodide crystals
NASA Technical Reports Server (NTRS)
Synder, R. S.; Clotfelter, W. N.
1974-01-01
Mechanical and thermal property values are reported for crystalline cesium iodide doped with sodium and thallium. Young's modulus, bulk modulus, shear modulus, and Poisson's ratio were obtained from ultrasonic measurements. Young's modulus and the samples' elastic and plastic behavior were also measured under tension and compression. Thermal expansion and thermal conductivity were the temperature dependent measurements that were made.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Saha, Sourav, E-mail: ssaha09@me.buet.ac.bd; Mojumder, Satyajit; Mahboob, Monon
2016-07-12
Tungsten is a promising material and has potential use as battery anode. Tungsten nanowires are gaining attention from researchers all over the world for this wide field of application. In this paper, we investigated effect of temperature and geometric parameters (diameter and aspect ratio) on elastic properties of Tungsten nanowire. Aspect ratios (length to diameter ratio) considered are 8:1, 10:1, and 12:1 while diameter of the nanowire is varied from 1-4 nm. For 2 nm diameter sample (aspect ratio 10:1), temperature is varied (10 K ~ 1500 K) to observe elastic behavior of Tungsten nanowire under uniaxial tensile loading. EAMmore » potential is used for molecular dynamic simulation. We applied constant strain rate of 10{sup 9} s{sup −1} to deform the nanowire. Elastic behavior is expressed through stress vs. strain plot. We also investigated the fracture mechanism of tungsten nanowire and radial distribution function. Investigation suggests peculiar behavior of Tungsten nanowire in nano-scale with double peaks in stress vs. strain diagram. Necking before final fracture suggests that actual elastic behavior of the material is successfully captured through atomistic modeling.« less
Elasticity of crystalline molecular explosives
Hooks, Daniel E.; Ramos, Kyle J.; Bolme, C. A.; ...
2015-04-14
Crystalline molecular explosives are key components of engineered explosive formulations. In precision applications a high degree of consistency and predictability is desired under a range of conditions to a variety of stimuli. Prediction of behaviors from mechanical response and failure to detonation initiation and detonation performance of the material is linked to accurate knowledge of the material structure and first stage of deformation: elasticity. The elastic response of pentaerythritol tetranitrate (PETN), cyclotrimethylene trinitramine (RDX), and cyclotetramethylene tetranitramine (HMX), including aspects of material and measurement variability, and computational methods are described in detail. Experimental determinations of elastic tensors are compared, andmore » an evaluation of sources of error is presented. Furthermore, computed elastic constants are also compared for these materials and for triaminotrinitrobenzene (TATB), for which there are no measurements.« less
Use of recycled plastics in concrete: A critical review.
Gu, Lei; Ozbakkaloglu, Togay
2016-05-01
Plastics have become an essential part of our modern lifestyle, and the global plastic production has increased immensely during the past 50years. This has contributed greatly to the production of plastic-related waste. Reuse of waste and recycled plastic materials in concrete mix as an environmental friendly construction material has drawn attention of researchers in recent times, and a large number of studies reporting the behavior of concrete containing waste and recycled plastic materials have been published. This paper summarizes the current published literature until 2015, discussing the material properties and recycling methods of plastic and the influence of plastic materials on the properties of concrete. To provide a comprehensive review, a total of 84 studies were considered, and they were classified into sub categories based on whether they dealt with concrete containing plastic aggregates or plastic fibers. Furthermore, the morphology of concrete containing plastic materials is described in this paper to explain the influence of plastic aggregates and plastic fibers on the properties of concrete. The properties of concretes containing virgin plastic materials were also reviewed to establish their similarities and differences with concrete containing recycled plastics. Copyright © 2016 Elsevier Ltd. All rights reserved.
Experimental Investigation of Compressed Thin-Walled Steel Members
NASA Astrophysics Data System (ADS)
Juhás, Pavol; Juhásová Šenitková, Ingrid
2017-10-01
The paper presents fundamental information about realized experimental-theoretical research to determinate the load-carrying capacities for thin-walled compressed steel members with quasi-homogenous and hybrid cross-sections. The webs of such members are stressed in the elastic-plastic region. This continuous research joins on previous research of the first author of the paper. The aim of this research is to investigate and analyse the elastic-plastic post-critical behaviour of thin web and its interaction with flanges. The experimental program, test members and their geometrical parameters and material properties are evident from table 1 and table 2 as well as from figure 1 and figure 2. The test arrangement and failures of the test members are illustrated on Figures 3, 4 and 5. Some partial results are presented in Table 3 of the paper, too.
Large deflection elastic-plastic dynamic response of stiffened shells of revolution
NASA Technical Reports Server (NTRS)
Stricklin, J. A.; Haisler, W. E.; Vonriesemann, W. A.; Leick, R. D.; Hunsaker, B.; Saczalski, K. J.
1972-01-01
The formulation and check out porblems for a computer code DYNAPLAS, which analyzes the large deflection elastic-plastic dynamic response of stiffened shells of revolution, are presented. The formulation for special discretization is by the finite element method with finite differences being used for the evaluation of the pseudo forces due to material and geometric nonlinearities. Time integration is by the Houbolt method. The stiffeners may be due to concentrated or distributed eccentric rings and spring supports at arbitrary angles around the circumference of the elements. Check out porblems include the comparison of solutions from DYNAPLAS with experimental and other computer solutions for rings, conical and cylindrical shells and a curved panel. A hypothetical submarine including stiffeners and missile tube is studied under a combination of hydrostatic and dynamically applied asymmetrical pressure loadings.
X-ray Topographic Methods and Application to Analysis of Electronic Materials
NASA Technical Reports Server (NTRS)
Mayo, W. E.; Liu, H. Y.; Chaudhuri, J.
1984-01-01
Three supplementary X-ray techniques new to semiconductor applications are discussed. These are the Computer Aided Rocking Curve Analyzer, the Divergent Beam Method and a new method based on enhanced X-ray flourescence. The first method is used for quantitative mapping of an elastic or plastic strain field while the other two methods are used only to measure elastic strains. The divergent beam method is used for measuring the full strain tensor while the microfluorescence method is useful for monitoring strain uniformity. These methods are discussed in detail and examples of their application is presented. Among these are determination of the full strain ellipsoid in state-of-the-art liquid phase epitaxy deposited III-V epitaxial films; mapping of the plastic strain concentrations in tensile deformed Si; and quantitative determination of damage in V3Si due to ion implantation.
Fractal modeling of fluidic leakage through metal sealing surfaces
NASA Astrophysics Data System (ADS)
Zhang, Qiang; Chen, Xiaoqian; Huang, Yiyong; Chen, Yong
2018-04-01
This paper investigates the fluidic leak rate through metal sealing surfaces by developing fractal models for the contact process and leakage process. An improved model is established to describe the seal-contact interface of two metal rough surface. The contact model divides the deformed regions by classifying the asperities of different characteristic lengths into the elastic, elastic-plastic and plastic regimes. Using the improved contact model, the leakage channel under the contact surface is mathematically modeled based on the fractal theory. The leakage model obtains the leak rate using the fluid transport theory in porous media, considering that the pores-forming percolation channels can be treated as a combination of filled tortuous capillaries. The effects of fractal structure, surface material and gasket size on the contact process and leakage process are analyzed through numerical simulations for sealed ring gaskets.
Bauschinger Effect in an Austenitic Steel: Neutron Diffraction and a Multiscale Approach
NASA Astrophysics Data System (ADS)
Fajoui, Jamal; Gloaguen, David; Legrand, Vincent; Oum, Guy; Kelleher, Joe; Kockelmann, Winfried
2016-05-01
The generation of internal stresses/strains arising from mechanical deformations in single-phase engineering materials was studied. Neutron diffraction measurements were performed to study the evolution of intergranular strains in austenitic steel during sequential loadings. Intergranular strains expand due to incompatibilities between grains and also resulting from single-crystal elastic and plastic anisotropy. A two-level homogenization approach was adopted in order to predict the mechanical state of deformed polycrystals in relation to the microstructure during Bauschinger tests. A mechanical description of the grain was developed through a micro-meso transition based on the Kröner model. The meso-macro transition using a self-consistent approach was applied to deduce the global behavior. Mechanical tests and neutron diffraction measurements were used to validate and assess the model.
Interdisciplinary cantilever physics: Elasticity of carrot, celery, and plasticware
NASA Astrophysics Data System (ADS)
Pestka, Kenneth A.
2014-05-01
This article presents several simple cantilever-based experiments using common household items (celery, carrot, and a plastic spoon) that are appropriate for introductory undergraduate laboratories or independent student projects. By applying Hooke's law and Euler beam theory, students are able to determine Young's modulus, fracture stress, yield stress, strain energy, and sound speed of these apparently disparate materials. In addition, a cellular foam elastic model is introduced—applicable to biologic materials as well as an essential component in the development of advanced engineering composites—that provides a mechanism to determine Young's modulus of the cell wall material found in celery and carrot. These experiments are designed to promote exploration of the similarities and differences between common inorganic and organic materials, fill a void in the typical undergraduate curriculum, and provide a foundation for more advanced material science pursuits within biology, botany, and food science as well as physics and engineering.
NASA Astrophysics Data System (ADS)
Li, Y.; Zhou, X. M.; Cai, Y.; Liu, C. L.; Luo, S. N.
2018-04-01
[100] CaF2 single crystals are shock-compressed via symmetric planar impact, and the flyer plate-target interface velocity histories are measured with a laser displacement interferometry. The shock loading is slightly above the Hugoniot elastic limit to investigate incipient plasticity and its kinetics, and its effects on optical properties and deformation inhomogeneity. Fringe patterns demonstrate different features in modulation of fringe amplitude, including birefringence and complicated modulations. The birefringence is attributed to local lattice rotation accompanying incipient plasticity. Spatially resolved measurements show inhomogeneity in deformation, birefringence, and fringe pattern evolutions, most likely caused by the inhomogeneity associated with lattice rotation and dislocation slip. Transiently overdriven elastic states are observed, and the incubation time for incipient plasticity decreases inversely with increasing overdrive by the elastic shock.
Elastic behavior of brain simulants in comparison to porcine brain at different loading velocities.
Falland-Cheung, Lisa; Scholze, Mario; Hammer, Niels; Waddell, J Neil; Tong, Darryl C; Brunton, Paul A
2018-01-01
Blunt force impacts to the head and the resulting internal force transmission to the brain and other cranial tissue are difficult to measure. To model blunt force impact scenarios, the compressive properties resembling tissue elasticity are of importance. Therefore, this study investigated and compared the elastic behavior of gelatin, alginate, agar/glycerol and agar/glycerol/water simulant materials to that of porcine brain in a fresh and unfixed condition. Specimens, 10 × 10 × 10mm 3 , were fabricated and tested at 22°C, apart from gelatin which was conditioned to 4°C prior to testing. For comparison, fresh porcine brains were sourced and prepared to the same dimensions as the simulants. Specimens underwent compression tests at crosshead displacement rates of 2.5, 10 and 16mms -1 (equivalent to strain rates of 0.25, 1 and 1.6s -1 ), obtaining apparent elastic moduli values at different strain rate intervals (0-0.2, 0.2-0.4 and 0.4-0.5). The results of this study indicate that overall all simulant materials had an apparent elastic moduli similar in magnitude across all strain ranges compared to brain, even though comparatively higher, especially the apparent elastic moduli values of alginate. In conclusion, while agar/glycerol/water and agar/glycerol had similar apparent elastic moduli in magnitude and the closest apparent elastic moduli in the initial strain range (E 1 ), gelatin showed the most similar values to fresh porcine brain at the transitional (E 2 ) and higher strain range (E 3 ). The simulant materials and the fresh porcine brain exhibited strain rate dependent behavior, with increasing elastic moduli upon increasing loading velocities. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Milligan, W. W.; Jayaraman, N.
1984-01-01
Twenty three high temperature low-cycle fatigue tests were conducted on single crystals of the nickel-based superalloy Mar-M 200. Tests were conducted at 760 and 870 C. SEM fractography and transmission electron microscopy were used to determine mechanisms responsible for the observed orientation dependent fatigue behavior. It has been concluded that the plastic characteristics of the alloy lead to orientation-dependent strain hardening and fatigue lives at 760 C. At 870 C, the elastic characteristics of the alloy dominated the behavior, even though the plastic strain ranges were about the same as they were at 760 C. This led to orientation-dependent fatigue lives, but the trends were not the same as they were at 760 C.
Han, Xiaodong; Wang, Lihua; Yue, Yonghai; Zhang, Ze
2015-04-01
In this review, we briefly introduce our in situ atomic-scale mechanical experimental technique (ASMET) for transmission electron microscopy (TEM), which can observe the atomic-scale deformation dynamics of materials. This in situ mechanical testing technique allows the deformation of TEM samples through a simultaneous double-tilt function, making atomic-scale mechanical microscopy feasible. This methodology is generally applicable to thin films, nanowires (NWs), tubes and regular TEM samples to allow investigation of the dynamics of mechanically stressed samples at the atomic scale. We show several examples of this technique applied to Pt and Cu single/polycrystalline specimens. The in situ atomic-scale observation revealed that when the feature size of these materials approaches the nano-scale, they often exhibit "unusual" deformation behaviours compared to their bulk counterparts. For example, in Cu single-crystalline NWs, the elastic-plastic transition is size-dependent. An ultra-large elastic strain of 7.2%, which approaches the theoretical elasticity limit, can be achieved as the diameter of the NWs decreases to ∼6 nm. The crossover plasticity transition from full dislocations to partial dislocations and twins was also discovered as the diameter of the single-crystalline Cu NWs decreased. For Pt nanocrystals (NC), the long-standing uncertainties of atomic-scale plastic deformation mechanisms in NC materials (grain size G less than 15 nm) were clarified. For larger grains with G<∼10 nm, we frequently observed movements and interactions of cross-grain full dislocations. For G between 6 and 10 nm, stacking faults resulting from partial dislocations become more frequent. For G<∼6 nm, the plasticity mechanism transforms from a mode of cross-grain dislocation to a collective grain rotation mechanism. This grain rotation process is mediated by grain boundary (GB) dislocations with the assistance of GB diffusion and shuffling. These in situ atomic-scale images provide a direct demonstration that grain rotation, through the evolution of the misorientation angle between neighbouring grains, can be quantitatively assessed by the dislocation content within the grain boundaries. In combination with the revolutionary Cs-corrected sub-angstrom imaging technologies developed by Urban et al., the opportunities for experimental mechanics at the atomic scale are emerging. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Gradient-type modeling of the effects of plastic recovery and surface passivation in thin films
NASA Astrophysics Data System (ADS)
Liu, Jinxing; Kah Soh, Ai
2016-08-01
The elasto-plastic responses of thin films subjected to cyclic tension-compression loading and bending are studied, with a focus on Bauschinger and size effects. For this purpose, a model is established by incorporating plastic recovery into the strain gradient plasticity theory we proposed recently. Elastic and plastic parts of strain and strain gradient, which are determined by the elasto-plastic decomposition according to the associative rule, are assumed to have a degree of material-dependent reversibility. Based on the above assumption, a dislocation reversibility-dependent rule is built to describe evolutions of different deformation components under cyclic loadings. Furthermore, a simple strategy is provided to implement the passivated boundary effects by introducing a gradual change to relevant material parameters in the yield function. Based on this theory, both bulge and bending tests under cyclic loading conditions are investigated. By comparing the present predictions with the existing experimental data, it is found that the yield function is able to exhibit the size effect, the Bauschinger effect, the influence of surface passivation and the hysteresis-loop phenomenon. Thus, the proposed model is deemed helpful in studying plastic deformations of micron-scale films.
Numerical Simulation of Roller Levelling using SIMULIA Abaqus
NASA Astrophysics Data System (ADS)
Trusov, K. A.; Mishnev, P. A.; Kopaev, O. V.; Nushtaev, D. V.
2017-12-01
The finite element (FE) 2D-model of roller levelling process is developed in the SIMILIA Abaqus. The objective of this paper is development FE-model and investigation of adjustable parameters of roller leveller together with elastic-plastic material behaviour. Properties of the material were determined experimentally. After levelling, the strip had a residual stress distribution. The longbow after cutting is predicted too. Recommendation for practical use were proposed.
An Orthotropic Model for Composite Materials in EPIC
2014-06-06
directions, and fails the material by eliminating the deviatoric stresses when any of the plastic strain components reaches its user-supplied critical...the directions of the fibers, especially in comparison to the non-linear stress -strain curves obtained from off-axis tensile tests. A somewhat...increment in Cauchy stress ; and is the tensor of elastic moduli. In EPIC, this equation is implemented via central differences because the velocity
A statistical model of brittle fracture by transgranular cleavage
NASA Astrophysics Data System (ADS)
Lin, Tsann; Evans, A. G.; Ritchie, R. O.
A MODEL for brittle fracture by transgranular cleavage cracking is presented based on the application of weakest link statistics to the critical microstructural fracture mechanisms. The model permits prediction of the macroscopic fracture toughness, KI c, in single phase microstructures containing a known distribution of particles, and defines the critical distance from the crack tip at which the initial cracking event is most probable. The model is developed for unstable fracture ahead of a sharp crack considering both linear elastic and nonlinear elastic ("elastic/plastic") crack tip stress fields. Predictions are evaluated by comparison with experimental results on the low temperature flow and fracture behavior of a low carbon mild steel with a simple ferrite/grain boundary carbide microstructure.
Numerical Analysis in Fracture Mechanics.
1983-01-20
pressuriza- tion has also been solved [66] by the HEMP code. The advantage of such supercode, however, lies in its ability to analyze elastic- plastic ...analyzing the elasto-dynamic and elastic- plastic dynamic states In fracturing 2- and 3-D prob’ems. The use of a super finite difference code to study...the finite difference elastic- plastic result of Jacobs in 1950 [2J which was followed by others In the 1960’s [3 - 5). Swedlow et al [6], on the other a
A Multi-Parameter Approach for Calculating Crack Instability
NASA Technical Reports Server (NTRS)
Zanganeh, M.; Forman, R. G.
2014-01-01
An accurate fracture control analysis of spacecraft pressure systems, boosters, rocket hardware and other critical low-cycle fatigue cases where the fracture toughness highly impacts cycles to failure requires accurate knowledge of the material fracture toughness. However, applicability of the measured fracture toughness values using standard specimens and transferability of the values to crack instability analysis of the realistically complex structures is refutable. The commonly used single parameter Linear Elastic Fracture Mechanics (LEFM) approach which relies on the key assumption that the fracture toughness is a material property would result in inaccurate crack instability predictions. In the past years extensive studies have been conducted to improve the single parameter (K-controlled) LEFM by introducing parameters accounting for the geometry or in-plane constraint effects]. Despite the importance of the thickness (out-of-plane constraint) effects in fracture control problems, the literature is mainly limited to some empirical equations for scaling the fracture toughness data] and only few theoretically based developments can be found. In aerospace hardware where the structure might have only one life cycle and weight reduction is crucial, reducing the design margin of safety by decreasing the uncertainty involved in fracture toughness evaluations would result in lighter hardware. In such conditions LEFM would not suffice and an elastic-plastic analysis would be vital. Multi-parameter elastic plastic crack tip field quantifying developments combined with statistical methods] have been shown to have the potential to be used as a powerful tool for tackling such problems. However, these approaches have not been comprehensively scrutinized using experimental tests. Therefore, in this paper a multi-parameter elastic-plastic approach has been used to study the crack instability problem and the transferability issue by considering the effects of geometrical constraints as well as the thickness. The feasibility of the approach has been examined using a wide range of specimen geometries and thicknesses manufactured from 7075-T7351 aluminum alloy.
1993-03-01
correlation was determined between the matrix microplastic flow and the global composite tensile stress-strain curve. Based on the knowledge of the...framentation of the elastic matrix to form remnant elastic pockets at Silw tip surrounded y the matrix plastic flow. The matrix microplasticity is also...Deformation of SiC-Al Composites.’ Mater. Sci. Engng., A131:55-68. 11. Hamann, R., P. F. Gobin, and R. Fougeres, 1990. "A Study of the Microplasticity of Some
3D Imaging of a Dislocation Loop at the Onset of Plasticity in an Indented Nanocrystal.
Dupraz, M; Beutier, G; Cornelius, T W; Parry, G; Ren, Z; Labat, S; Richard, M-I; Chahine, G A; Kovalenko, O; De Boissieu, M; Rabkin, E; Verdier, M; Thomas, O
2017-11-08
Structural quality and stability of nanocrystals are fundamental problems that bear important consequences for the performances of small-scale devices. Indeed, at the nanoscale, their functional properties are largely influenced by elastic strain and depend critically on the presence of crystal defects. It is thus of prime importance to be able to monitor, by noninvasive means, the stability of the microstructure of nano-objects against external stimuli such as mechanical load. Here we demonstrate the potential of Bragg coherent diffraction imaging for such measurements, by imaging in 3D the evolution of the microstructure of a nanocrystal exposed to in situ mechanical loading. Not only could we observe the evolution of the internal strain field after successive loadings, but we also evidenced a transient microstructure hosting a stable dislocation loop. The latter is fully characterized from its characteristic displacement field. The mechanical behavior of this small crystal is clearly at odds with what happens in bulk materials where many dislocations interact. Moreover, this original in situ experiment opens interesting possibilities for the investigation of plastic deformation at the nanoscale.
NASA Technical Reports Server (NTRS)
Noebe, Ronald; Padula, Santo, II; Bigelow, Glen; Rios, Orlando; Garg, Anita; Lerch, Brad
2006-01-01
Potential applications involving high-temperature shape memory alloys have been growing in recent years. Even in those cases where promising new alloys have been identified, the knowledge base for such materials contains gaps crucial to their maturation and implementation in actuator and other applications. We begin to address this issue by characterizing the mechanical behavior of a Ni19.5Pd30Ti50.5 high-temperature shape memory alloy in both uniaxial tension and compression at various temperatures. Differences in the isothermal uniaxial deformation behavior were most notable at test temperatures below the martensite finish temperature. The elastic modulus of the material was very dependent on strain level; therefore, dynamic Young#s Modulus was determined as a function of temperature by an impulse excitation technique. More importantly, the performance of a thermally activated actuator material is dependent on the work output of the alloy. Consequently, the strain-temperature response of the Ni19.5Pd30Ti50.5 alloy under various loads was determined in both tension and compression and the specific work output calculated and compared in both loading conditions. It was found that the transformation strain and thus, the specific work output were similar regardless of the loading condition. Also, in both tension and compression, the strain-temperature loops determined under constant load conditions did not close due to the fact that the transformation strain during cooling was always larger than the transformation strain during heating. This was apparently the result of permanent plastic deformation of the martensite phase with each cycle. Consequently, before this alloy can be used under cyclic actuation conditions, modification of the microstructure or composition would be required to increase the resistance of the alloy to plastic deformation by slip.
Experiment Evaluation of Bifurcation in Sands
NASA Technical Reports Server (NTRS)
Alshibi, Khalid A.; Sture, Stein
2000-01-01
The basic principles of bifurcation analysis have been established by several investigators, however several issues remain unresolved, specifically how do stress level, grain size distribution, and boundary conditions affect general bifurcation phenomena in pressure sensitive and dilatant materials. General geometrical and kinematics conditions for moving surfaces of discontinuity was derived and applied to problems of instability of solids. In 1962, the theoretical framework of bifurcation by studying the acceleration waves in elasto-plastic (J2) solids were presented. Bifurcation analysis for more specific forms of constitutive behavior was examined by studying localization in pressure-sensitive, dilatant materials, however, analyses were restricted to plane deformation states only. Bifurcation analyses were presented and applied to predict shear band formations in sand under plane strain condition. The properties of discontinuous bifurcation solutions for elastic-plastic solids under axisymmetric and plane strain loading conditions were studied. The study focused on theory, but also references and comparisons to experiments were made. The current paper includes a presentation of a summary of bifurcation analyses for biaxial and triaxial (axisymmetric) loading conditions. The Coulomb model is implemented using incremental piecewise scheme to predict the constitutive relations and shear band inclination angles. Then, a comprehensive evaluation of bifurcation phenomena is presented based on data from triaxial experiments performed under microgravity conditions aboard the Space Shuttle under very low effective confining pressure (0.05 to 1.30 kPa), in which very high peak friction angles (47 to 75 degrees) and dilatancy angles (30 to 31 degrees) were measured. The evaluation will be extended to include biaxial experiments performed on the same material under low (10 kPa) and moderate (100 kPa) confining pressures. A comparison between the behavior under biaxial and triaxial loading conditions will be presented, and related issues concerning influence of confining pressure will be discussed.
Elastic Properties of Plasticine, Silly Putty, and Tennis Strings
ERIC Educational Resources Information Center
Cross, Rod
2012-01-01
How would a physicist describe the elastic properties of an apple or a banana? Physics students and teachers are familiar with the elastic properties of metal springs, but are likely to be less familiar with the elastic properties of other common materials. The behavior of a metal spring is commonly examined in the laboratory by adding masses to…
Theoretical and numerical aspects of fluid-saturated elasto-plastic soils
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ehlers, W.
1995-12-31
The theoretical and numerical treatment of fluid-saturated porous solid materials generally falls into the category of porous media models, which are described within the framework of the classical theory of mixtures extended by the concept of volume fractions (porous media theories). In particular, this concept allows for the description of saturated, unsaturated and empty porous matrix materials, thus offering a well-founded theoretical background for a lot of engineering problems occurring, for instance, in the fields of geomechanics (soil and rock mechanics as well as glacier and rock ice mechanics), oil producing industries, sintering technologies, biomechanics, etc. In the present contribution,more » theoretical and numerical studies are outlined to describe a two-phase material composed of an incompressible elasto-plastic soil matrix saturated by an incompressible viscous pore fluid. In this context, the phenomenon of phase incompressibility is well known as a microscopic effect not implying bulk incompressibility in the macro regime. This is seen from the fact that even if the material density functions of the individual constituents are constant during deformation, the corresponding bulk densities can still change through changes in the volume fractions. Within the framework of a pure mechanical theory, constitutive equations are given for both the solid and the fluid partial stress tensors and for the interaction force acting between the two materials. Concerning the porous soil matrix, the elastic properties are described by an elasticity law of Hookean type, while the plastic range is governed by a {open_quote}single surface{close_quote} yield function exhibiting a smooth and closed shape in the principal stress space together with a non-associated flow rule. The viscosity effects of the pore fluid are included in the fluid stress tensor and in the drag force.« less
NASA Technical Reports Server (NTRS)
Arakere, Nagaraj K.; Magnan, Shannon; Ebrahimi, Fereshteh; Ferroro, Luis
2004-01-01
Metals and their alloys, except for a few intermetallics, are inherently ductile, i.e. plastic deformation precedes fracture in these materials. Therefore, resistance to fracture is directly related to the development of the plastic zone at the crack tip. Recent studies indicate that the fracture toughness of single crystals depends on the crystallographic orientation of the notch as well as the loading direction. In general, the dependence of crack propagation resistance on crystallographic orientation arises from the anisotropy of (i) elastic constants, (ii) plastic deformation (or slip), and (iii) the weakest fracture planes (e.g. cleavage planes). Because of the triaxial stress state at the notch tips, many slip systems that otherwise would not be activated during uniaxial testing, become operational. The plastic zone formation in single crystals has been tackled theoretically by Rice and his co-workers and only limited experimental work has been conducted in this area. The study of the stresses and strains in the vicinity of a FCC single crystal notch tip is of relatively recent origin. We present experimental and numerical investigation of 3D stress fields and evolution of slip sector boundaries near notches in FCC single crystal tension test specimens, and demonstrate that a 3D linear elastic finite element model that includes the effect of material anisotropy is shown to predict active slip planes and sectors accurately. The slip sector boundaries are shown to have complex curved shapes with several slip systems active simultaneously near the notch. Results are presented for surface and mid-plane of the specimens. The results demonstrate that accounting for 3D elastic anisotropy is very important for accurate prediction of slip activation near FCC single crystal notches loaded in tension. Results from the study will help establish guidelines for fatigue damage near single crystal notches.
Chimeric Plastics : a new class of thermoplastic
NASA Astrophysics Data System (ADS)
Sonnenschein, Mark
A new class of thermoplastics (dubbed ``Chimerics'') is described that exhibits a high temperature glass transition followed by high performance elastomer properties, prior to melting. These transparent materials are comprised of co-continuous phase-separated block copolymers. One block is an amorphous glass with a high glass transition temperature, and the second is a higher temperature phase transition block creating virtual thermoreversible crosslinks. The material properties are highly influenced by phase separation on the order of 10-30 nanometers. At lower temperatures the polymer reflects the sum of the block copolymer properties. As the amorphous phase glass transition is exceeded, the virtual crosslinks of the higher temperature second phase dominate the plastic properties, resulting in rubber-like elasticity.
Techniques for Single System Integration of Elastic Simulation Features
NASA Astrophysics Data System (ADS)
Mitchell, Nathan M.
Techniques for simulating the behavior of elastic objects have matured considerably over the last several decades, tackling diverse problems from non-linear models for incompressibility to accurate self-collisions. Alongside these contributions, advances in parallel hardware design and algorithms have made simulation more efficient and affordable than ever before. However, prior research often has had to commit to design choices that compromise certain simulation features to better optimize others, resulting in a fragmented landscape of solutions. For complex, real-world tasks, such as virtual surgery, a holistic approach is desirable, where complex behavior, performance, and ease of modeling are supported equally. This dissertation caters to this goal in the form of several interconnected threads of investigation, each of which contributes a piece of an unified solution. First, it will be demonstrated how various non-linear materials can be combined with lattice deformers to yield simulations with behavioral richness and a high potential for parallelism. This potential will be exploited to show how a hybrid solver approach based on large macroblocks can accelerate the convergence of these deformers. Further extensions of the lattice concept with non-manifold topology will allow for efficient processing of self-collisions and topology change. Finally, these concepts will be explored in the context of a case study on virtual plastic surgery, demonstrating a real-world problem space where these ideas can be combined to build an expressive authoring tool, allowing surgeons to record procedures digitally for future reference or education.
Elastic-Plastic Deformation in Cracked Solids and Ductile Fracture Criterion.
1982-01-01
stresses fracture propertiesstanfedi; /atigue(materials)____ 0 AserivAcT ecwesu -oroe silill of1 reew-W vis t~dUiP by block nbr he main objectives of the... rubber infiltration, etc. None of these methods can avoid some degree of arbitrariness, either in the relation between the far field measurement and the
2011-01-01
other mechanism ? What accelerates the solar wind? What are the near- Sun plasma properties (particle density, magnetic field)? Does the solar wind come...microstructure character iza tion, elec tronic ceramics, solid-state physics, fiber optics, electro-optics, microelectronics, fracture mechan ics...computational fluid mechanics , experi mental structural mechanics , solid me chan ics, elastic/plastic fracture mechanics , materials, finite-element
On the residual yield stress of shocked metals
NASA Astrophysics Data System (ADS)
Chapman, David J.; Eakins, Daniel E.; Proud, William G.; Savinykh, Andrey S.; Garkushin, Gennady V.; Razorenov, Sergey V.; Kanel, Gennady I.
2014-05-01
Precise measurement of the free-surface velocity can be a rich source of information on the effects of time and strain on material strength. With this objective, we performed a careful comparative measurement of the free-surface velocity of shock loaded aluminium AD1 and magnesium alloy Ma2 samples of various thicknesses in the range 0.2 mm to 5 mm. We observed the expected decay in the elastic precursor state with increasing sample thickness for both aluminium and magnesium alloy. However, we also observed a small change in the magnitude of hysteresis in the elastic-plastic compression-unloading cycle; where qualitatively the peak free-surface velocity also increased with increasing specimen thickness. Interestingly, the observed change in hysteresis as function of specimen thickness for the Ma2 alloy was relatively smaller than the AD1, in contrast with the larger change in precursor magnitude observed for the magnesium. We propose that softening due to multiplication of dislocations is relatively large in Ma2 and results in a smaller hysteresis in the elastic-plastic cycle.
NASA Astrophysics Data System (ADS)
Li, Qingbin; Li, Guang; Wang, Guanglun
2003-12-01
Brittleness of the glass core inside fiber optic sensors limits their practical usage, and therefore they are coated with low-modulus softer protective materials. Protective coatings absorb a portion of the strain, and hence part of the structural strain is sensed. The study reported here corrects for this error through development of a theoretical model to account for the loss of strain in the protective coating of optical fibers. The model considers the coating as an elasto-plastic material and formulates strain transfer coefficients for elastic, elasto-plastic and strain localization phases of coating deformations in strain localization in concrete. The theoretical findings were verified through laboratory experimentation. The experimental program involved fabrication of interferometric optical fiber sensors, embedding within mortar samples and tensile tests in a closed-loop servo-hydraulic testing machine. The elasto-plastic strain transfer coefficients were employed for correction of optical fiber sensor data and results were compared with those of conventional extensometers.
ZIP3D: An elastic and elastic-plastic finite-element analysis program for cracked bodies
NASA Technical Reports Server (NTRS)
Shivakumar, K. N.; Newman, J. C., Jr.
1990-01-01
ZIP3D is an elastic and an elastic-plastic finite element program to analyze cracks in three dimensional solids. The program may also be used to analyze uncracked bodies or multi-body problems involving contacting surfaces. For crack problems, the program has several unique features including the calculation of mixed-mode strain energy release rates using the three dimensional virtual crack closure technique, the calculation of the J integral using the equivalent domain integral method, the capability to extend the crack front under monotonic or cyclic loading, and the capability to close or open the crack surfaces during cyclic loading. The theories behind the various aspects of the program are explained briefly. Line-by-line data preparation is presented. Input data and results for an elastic analysis of a surface crack in a plate and for an elastic-plastic analysis of a single-edge-crack-tension specimen are also presented.
Constitutive model for porous materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weston, A.M.; Lee, E.L.
1982-01-01
A simple pressure versus porosity compaction model is developed to calculate the response of granular porous bed materials to shock impact. The model provides a scheme for calculating compaction behavior when relatively limited material data are available. While the model was developed to study porous explosives and propellants, it has been applied to a much wider range of materials. The early development of porous material models, such as that of Hermann, required empirical dynamic compaction data. Erkman and Edwards successfully applied the early theory to unreacted porous high explosives using a Gruneisen equation of state without yield behavior and withoutmore » trapped gas in the pores. Butcher included viscoelastic rate dependance in pore collapse. The theoretical treatment of Carroll and Holt is centered on the collapse of a circular pore and includes radial inertia terms and a complex set of stress, strain and strain rate constitutive parameters. Unfortunately data required for these parameters are generally not available. The model described here is also centered on the collapse of a circular pore, but utilizes a simpler elastic-plastic static equilibrium pore collapse mechanism without strain rate dependence, or radial inertia terms. It does include trapped gas inside the pore, a solid material flow stress that creates both a yield point and a variation in solid material pressure with radius. The solid is described by a Mie-Gruneisen type EOS. Comparisons show that this model will accurately estimate major mechanical features which have been observed in compaction experiments.« less
NASA Astrophysics Data System (ADS)
Rubin, M. B.; Cardiff, P.
2017-11-01
Simo (Comput Methods Appl Mech Eng 66:199-219, 1988) proposed an evolution equation for elastic deformation together with a constitutive equation for inelastic deformation rate in plasticity. The numerical algorithm (Simo in Comput Methods Appl Mech Eng 68:1-31, 1988) for determining elastic distortional deformation was simple. However, the proposed inelastic deformation rate caused plastic compaction. The corrected formulation (Simo in Comput Methods Appl Mech Eng 99:61-112, 1992) preserves isochoric plasticity but the numerical integration algorithm is complicated and needs special methods for calculation of the exponential map of a tensor. Alternatively, an evolution equation for elastic distortional deformation can be proposed directly with a simplified constitutive equation for inelastic distortional deformation rate. This has the advantage that the physics of inelastic distortional deformation is separated from that of dilatation. The example of finite deformation J2 plasticity with linear isotropic hardening is used to demonstrate the simplicity of the numerical algorithm.
NASA Technical Reports Server (NTRS)
Haisler, W. E.
1983-01-01
An uncoupled constitutive model for predicting the transient response of thermal and rate dependent, inelastic material behavior was developed. The uncoupled model assumes that there is a temperature below which the total strain consists essentially of elastic and rate insensitive inelastic strains only. Above this temperature, the rate dependent inelastic strain (creep) dominates. The rate insensitive inelastic strain component is modelled in an incremental form with a yield function, blow rule and hardening law. Revisions to the hardening rule permit the model to predict temperature-dependent kinematic-isotropic hardening behavior, cyclic saturation, asymmetric stress-strain response upon stress reversal, and variable Bauschinger effect. The rate dependent inelastic strain component is modelled using a rate equation in terms of back stress, drag stress and exponent n as functions of temperature and strain. A sequence of hysteresis loops and relaxation tests are utilized to define the rate dependent inelastic strain rate. Evaluation of the model has been performed by comparison with experiments involving various thermal and mechanical load histories on 5086 aluminum alloy, 304 stainless steel and Hastelloy X.
Laminated anisotropic reinforced plastic plates and shells
NASA Technical Reports Server (NTRS)
Korolev, V. I.
1981-01-01
Basic technical theories and engineering calculation equations for anisotropic plates and shells made of rigid reinforced plastics, mainly laminated fiberglass, are presented and discussed. Solutions are given for many problems of design of structural plates and shells, including curved sections and tanks, as well as two chapters on selection of the optimum materials, are given. Accounting for interlayer shearing and transverse separation, which are new engineering properties, are discussed. Application of the results obtained to thin three ply plates and shells wth a light elastic filler is presented and discussed.