Sample records for elastomer actuator dea

  1. A variable stiffness dielectric elastomer actuator based on electrostatic chucking.

    PubMed

    Imamura, Hiroya; Kadooka, Kevin; Taya, Minoru

    2017-05-14

    Dielectric elastomer actuators (DEA) are one type of promising artificial muscle; however, applications of bending-type DEA for robotic end-effectors may be limited by their low stiffness and ability to resist external loads without buckling. Unimorph DEA can produce large out-of-plane deformation suitable for use as robotic end effectors; however, design of such actuators for large displacement comes at the cost of low stiffness and blocking force. This work proposes and demonstrates a variable stiffness dielectric elastomer actuator (VSDEA) consisting of a plurality of unimorph DEA units operating in parallel, which can exhibit variable electrostatic chucking to modulate the structure's bending stiffness. The unimorph DEA units are additively manufactured using a high-resolution pneumatic dispenser, and VSDEA comprising various numbers of units are assembled. The performance of the DEA units and VSDEA are compared to model predictions, exhibiting a maximum stiffness change of 39.2×. A claw actuator comprising two VSDEA and weighing 0.6 grams is demonstrated grasping and lifting a 10 gram object.

  2. Flexible and stretchable electrodes for dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Rosset, Samuel; Shea, Herbert R.

    2013-02-01

    Dielectric elastomer actuators (DEAs) are flexible lightweight actuators that can generate strains of over 100 %. They are used in applications ranging from haptic feedback (mm-sized devices), to cm-scale soft robots, to meter-long blimps. DEAs consist of an electrode-elastomer-electrode stack, placed on a frame. Applying a voltage between the electrodes electrostatically compresses the elastomer, which deforms in-plane or out-of plane depending on design. Since the electrodes are bonded to the elastomer, they must reliably sustain repeated very large deformations while remaining conductive, and without significantly adding to the stiffness of the soft elastomer. The electrodes are required for electrostatic actuation, but also enable resistive and capacitive sensing of the strain, leading to self-sensing actuators. This review compares the different technologies used to make compliant electrodes for DEAs in terms of: impact on DEA device performance (speed, efficiency, maximum strain), manufacturability, miniaturization, the integration of self-sensing and self-switching, and compatibility with low-voltage operation. While graphite and carbon black have been the most widely used technique in research environments, alternative methods are emerging which combine compliance, conduction at over 100 % strain with better conductivity and/or ease of patternability, including microfabrication-based approaches for compliant metal thin-films, metal-polymer nano-composites, nanoparticle implantation, and reel-to-reel production of μm-scale patterned thin films on elastomers. Such electrodes are key to miniaturization, low-voltage operation, and widespread commercialization of DEAs.

  3. Silicone based dielectric elastomer strip actuators coupled with nonlinear biasing elements for large actuation strains

    NASA Astrophysics Data System (ADS)

    Hau, S.; Bruch, D.; Rizzello, G.; Motzki, P.; Seelecke, S.

    2018-07-01

    There are two major categories of dielectric elastomer actuators (DEAs), which differ from the way in which the actuation is exploited: stack DEAs, using the thickness compression, and membrane DEAs, which exploit the expansion in area. In this work we focus on a specific type of membrane DEAs, i.e., silicone-based strip-in-plane (SIP) DEAs with screen printed electrodes. The performance of such actuators strongly depends on their geometry and on the adopted mechanical biasing system. Typically, the biasing is based on elastomer pre-stretch or on dead loads, which results in relatively low actuation strain. Biasing systems characterized by a negative rate spring have proven to significantly increase the performance of circular out-of-plane DEAs. However, this kind of biasing has never been systematically applied to silicone SIP DEAs. In this work, the biasing design based on negative rate springs is extended to strip DEAs as well, allowing to improve speed, strain, and force of the resulting actuator. At first, the DEAs are characterized under electrical and mechanical loading. Afterwards, two actuator systems are studied and compared in terms of actuation strain, force output, and actuation speed. In a first design stage, the DEA is coupled with a linear spring. Subsequently, the membrane is loaded with a combination of linear and nonlinear spring (working in a negative stiffness region). The resulting stroke output of the second systems is more than 9 times higher in comparison to the first one. An actuation strain of up to 45% (11.2 millimeter) and a force output of 0.38 Newton are measured. A maximum speed of 0.29 m s‑1 is achieved, which is about 60 times faster than the one typically measured for similar systems based on VHB.

  4. Holographic Structuring of Elastomer Actuator: First True Monolithic Tunable Elastomer Optics.

    PubMed

    Ryabchun, Alexander; Kollosche, Matthias; Wegener, Michael; Sakhno, Oksana

    2016-12-01

    Volume diffraction gratings (VDGs) are inscribed selectively by diffusive introduction of benzophenone and subsequent UV-holographic structuring into an electroactive dielectric elastomer actuator (DEA), to afford a continuous voltage-controlled grating shift of 17%. The internal stress coupling of DEA and optical domain allows for a new generation of true monolithic tunable elastomer optics with voltage controlled properties. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Zipping dielectric elastomer actuators: characterization, design and modeling

    NASA Astrophysics Data System (ADS)

    Maffli, L.; Rosset, S.; Shea, H. R.

    2013-10-01

    We report on miniature dielectric elastomer actuators (DEAs) operating in zipping mode with an analytical model that predicts their behavior. Electrostatic zipping is a well-known mechanism in silicon MEMS to obtain large deformations and forces at lower voltages than for parallel plate electrostatic actuation. We extend this concept to DEAs, which allows us to obtain much larger out-of-plane displacements compared to silicon thanks to the softness of the elastomer membrane. We study experimentally the effect of sidewall angles and elastomer prestretch on 2.3 mm diameter actuators with PDMS membranes. With 15° and 22.5° sidewall angles, the devices zip in a bistable manner down 300 μm to the bottom of the chambers. The highly tunable bistable behavior is controllable by both chamber geometry and membrane parameters. Other specific characteristics of zipping DEAs include well-controlled deflected shape, tunable displacement versus voltage characteristics to virtually any shape, including multi-stable modes, sealing of embedded holes or channels for valving action and the reduction of the operating voltage. These properties make zipping DEAs an excellent candidate for applications such as integrated microfluidics actuators or Braille displays.

  6. Inkjet 3D printing of UV and thermal cure silicone elastomers for dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    McCoul, David; Rosset, Samuel; Schlatter, Samuel; Shea, Herbert

    2017-12-01

    Dielectric elastomer actuators (DEAs) are an attractive form of electromechanical transducer, possessing high energy densities, an efficient design, mechanical compliance, high speed, and noiseless operation. They have been incorporated into a wide variety of devices, such as microfluidic systems, cell bioreactors, tunable optics, haptic displays, and actuators for soft robotics. Fabrication of DEA devices is complex, and the majority are inefficiently made by hand. 3D printing offers an automated and flexible manufacturing alternative that can fabricate complex, multi-material, integrated devices consistently and in high resolution. We present a novel additive manufacturing approach to DEA devices in which five commercially available, thermal and UV-cure DEA silicone rubber materials have been 3D printed with a drop-on-demand, piezoelectric inkjet system. Using this process, 3D structures and high-quality silicone dielectric elastomer membranes as thin as 2 μm have been printed that exhibit mechanical and actuation performance at least as good as conventionally blade-cast membranes. Printed silicone membranes exhibited maximum tensile strains of up to 727%, and DEAs with printed silicone dielectrics were actuated up to 6.1% area strain at a breakdown strength of 84 V μm-1 and also up to 130 V μm-1 at 2.4% strain. This approach holds great potential to manufacture reliable, high-performance DEA devices with high throughput.

  7. Performance improvement of planar dielectric elastomer actuators by magnetic modulating mechanism

    NASA Astrophysics Data System (ADS)

    Zhao, Yun-Hua; Li, Wen-Bo; Zhang, Wen-Ming; Yan, Han; Peng, Zhi-Ke; Meng, Guang

    2018-06-01

    In this paper, a novel planar dielectric elastomer actuator (DEA) with magnetic modulating mechanism is proposed. This design can provide the availability of wider actuation range and larger output force, which are significant indicators to evaluate the performance of DEAs. The DEA tends to be a compact and simple design, and an analytical model is developed to characterize the mechanical behavior. The result shows that the output force induced by the DEA can be improved by 76.90% under a certain applied voltage and initial magnet distance. Moreover, experiments are carried out to reveal the performance of the proposed DEA and validate the theoretical model. It demonstrates that the DEA using magnetic modulating mechanism can enlarge the actuation range and has more remarkable effect with decreasing initial magnet distance within the stable range. It can be useful to promote the applications of DEAs to soft robots and haptic feedback.

  8. Stress measurements of planar dielectric elastomer actuators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osmani, Bekim; Aeby, Elise A.; Müller, Bert

    Dielectric elastomer actuator (DEA) micro- and nano-structures are referred to artificial muscles because of their specific continuous power and adequate time response. The bending measurement of an asymmetric, planar DEA is described. The asymmetric cantilevers consist of 1 or 5 μm-thin DEAs deposited on polyethylene naphthalate (PEN) substrates 16, 25, 38, or 50 μm thick. The application of a voltage to the DEA electrodes generates an electrostatic pressure in the sandwiched silicone elastomer layer, which causes the underlying PEN substrate to bend. Optical beam deflection enables the detection of the bending angle vs. applied voltage. Bending radii as large asmore » 850 m were reproducibly detected. DEA tests with electric fields of up to 80 V/μm showed limitations in electrode’s conductivity and structure failures. The actuation measurement is essential for the quantitative characterization of nanometer-thin, low-voltage, single- and multi-layer DEAs, as foreseen for artificial sphincters to efficiently treat severe urinary and fecal incontinence.« less

  9. Viscoelastic effects on the actuation performance of a dielectric elastomer actuator under different equal, un-equal biaxial pre-stretches

    NASA Astrophysics Data System (ADS)

    Quang Tran, Danh; Li, Jin; Xuan, Fuzhen; Xiao, Ting

    2018-06-01

    Dielectric elastomers (DEs) are belonged to a group of polymers which cause a time-dependence deformation due to the effect of viscoelastic. In recent years, viscoelasticity has been accounted in the modeling in order to understand the complete electromechanical behavior of dielectric elastomer actuators (DEAs). In this paper, we investigate the actuation performance of a circular DEA under different equal, un-equal biaxial pre-stretches, based on a nonlinear rheological model. The theoretical results are validated by experiments, which verify the electromechanical constitutive equation of the DEs. The viscoelastic mechanical characteristic is analyzed by modeling simulation analysis and experimental to describe the influence of frequency, voltage, pre-stretch, and waveform on the actuation response of the actuator. Our study indicates that: The DEA with different equal or un-equal biaxial pre-stretches undergoes different actuation performance when subject to high voltage. Under an un-equal biaxial pre-stretch, the DEA deforms unequally and shows different deformation abilities in two directions. The relative creep strain behavior of the DEA due to the effect of viscoelasticity can be reduced by increasing pre-stretch ratio. Higher equal biaxial pre-stretch obtains larger deformation strain, improves actuation response time, and reduces the drifting of the equilibrium position in the dynamic response of the DEA when activated by step and period voltage, while increasing the frequency will inhibit the output stretch amplitude. The results in this paper can provide theoretical guidance and application reference for design and control of the viscoelastic DEAs.

  10. Complaint liquid metal electrodes for dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Finkenauer, Lauren R.; Majidi, Carmel

    2014-03-01

    This work presents a liquid-phase metal electrode to be used with poly(dimethylsiloxane) (PDMS) for a dielectric elastomer actuator (DEA). DEAs are favorable for soft-matter applications where high efficiency and response times are desirable. A consistent challenge faced during the fabrication of these devices is the selection and deposition of electrode material. While numerous designs have been demonstrated with a variety of conductive elastomers and greases, these materials have significant and often intrinsic shortcomings, e.g. low conductivity, hysteresis, incapability of large deformations, and complex fabrication requirements. The liquid metal alloy eutectic Gallium-Indium (EGaIn) is a promising alternative to existing compliant electrodes, having both high conductivity and complete soft-matter functionality. The liquid electrode shares almost the same electrical conductivity as conventional metal wiring and provides no mechanical resistance to bending or stretching of the DEA. This research establishes a straightforward and effective method for quickly depositing EGaIn electrodes, which can be adapted for batch fabrication, and demonstrates the successful actuation of sample curved cantilever elastomer actuators using these electrodes. As with the vast majority of electrostatically actuated elastomer devices, the voltage requirements for these curved DEAs are still quite significant, though modifications to the fabrication process show some improved electrical properties. The ease and speed with which this method can be implemented suggests that the development of a more electronically efficient device is realistic and worthwhile.

  11. Tailoring chain length and cross-link density in dielectric elastomer toward enhanced actuation strain

    NASA Astrophysics Data System (ADS)

    Zhang, Quan-Ping; Liu, Jun-Hua; Liu, Hai-Dong; Jia, Fei; Zhou, Yuan-Lin; Zheng, Jian

    2017-10-01

    Adding ceramic or conductive fillers into polymers for increasing permittivity is a direct and effective approach to enhance the actuation strain of dielectric elastomer actuators (DEAs). Unfortunately, the major dielectric loss caused by weak interfaces potentially harms the electro-mechanical stability and lifetime of DEAs. Here, we construct a desired macromolecular network with a long chain length and low cross-link density to reduce the elastic modulus of silicone elastomers. Selecting a high molecular weight of polymethylvinylsiloxane and a low dose of the cross-linker leads the soft but tough networks with rich entanglements, poor cross-links, and a low amount of defects. Then, a ductile material with low elastic modulus but high elongation at break is obtained. It accounts for much more excellent actuation strain of Hl in comparison to that of the other silicone elastomers. Importantly, without other fillers, the ultralow dielectric loss, conductivity, and firm networks possibly promote the electro-mechanical stability and lifetime for the DEA application.

  12. Dielectric elastomer memory

    NASA Astrophysics Data System (ADS)

    O'Brien, Benjamin M.; McKay, Thomas G.; Xie, Sheng Q.; Calius, Emilio P.; Anderson, Iain A.

    2011-04-01

    Life shows us that the distribution of intelligence throughout flexible muscular networks is a highly successful solution to a wide range of challenges, for example: human hearts, octopi, or even starfish. Recreating this success in engineered systems requires soft actuator technologies with embedded sensing and intelligence. Dielectric Elastomer Actuator(s) (DEA) are promising due to their large stresses and strains, as well as quiet flexible multimodal operation. Recently dielectric elastomer devices were presented with built in sensor, driver, and logic capability enabled by a new concept called the Dielectric Elastomer Switch(es) (DES). DES use electrode piezoresistivity to control the charge on DEA and enable the distribution of intelligence throughout a DEA device. In this paper we advance the capabilities of DES further to form volatile memory elements. A set reset flip-flop with inverted reset line was developed based on DES and DEA. With a 3200V supply the flip-flop behaved appropriately and demonstrated the creation of dielectric elastomer memory capable of changing state in response to 1 second long set and reset pulses. This memory opens up applications such as oscillator, de-bounce, timing, and sequential logic circuits; all of which could be distributed throughout biomimetic actuator arrays. Future work will include miniaturisation to improve response speed, implementation into more complex circuits, and investigation of longer lasting and more sensitive switching materials.

  13. A survey on dielectric elastomer actuators for soft robots.

    PubMed

    Gu, Guo-Ying; Zhu, Jian; Zhu, Li-Min; Zhu, Xiangyang

    2017-01-23

    Conventional industrial robots with the rigid actuation technology have made great progress for humans in the fields of automation assembly and manufacturing. With an increasing number of robots needing to interact with humans and unstructured environments, there is a need for soft robots capable of sustaining large deformation while inducing little pressure or damage when maneuvering through confined spaces. The emergence of soft robotics offers the prospect of applying soft actuators as artificial muscles in robots, replacing traditional rigid actuators. Dielectric elastomer actuators (DEAs) are recognized as one of the most promising soft actuation technologies due to the facts that: i) dielectric elastomers are kind of soft, motion-generating materials that resemble natural muscle of humans in terms of force, strain (displacement per unit length or area) and actuation pressure/density; ii) dielectric elastomers can produce large voltage-induced deformation. In this survey, we first introduce the so-called DEAs emphasizing the key points of working principle, key components and electromechanical modeling approaches. Then, different DEA-driven soft robots, including wearable/humanoid robots, walking/serpentine robots, flying robots and swimming robots, are reviewed. Lastly, we summarize the challenges and opportunities for the further studies in terms of mechanism design, dynamics modeling and autonomous control.

  14. Stronger multilayer acrylic dielectric elastomer actuators with silicone gel coatings

    NASA Astrophysics Data System (ADS)

    Lau, Gih-Keong; La, Thanh-Giang; Sheng-Wei Foong, Ervin; Shrestha, Milan

    2016-12-01

    Multilayer dielectric elastomer actuators (DEA) perform worst off than single-layer DEAs due to higher susceptibility to electro-thermal breakdown. This paper presents a hot-spot model to predict the electro-thermal breakdown field of DEAs and its dependence on thermal insulation. To inhibit the electrothermal breakdown, silicone gel coating was applied as barrier coating to multilayer acrylic DEA. The gel coating helps suppress the electro-thermally induced puncturing of DEA membrane at the hot spot. As a result, the gel-coated DEAs, in either a single layer or a multilayer stack, can produce 30% more isometric stress change as compared to those none-coated. These gel-coated acrylic DEAs show great potential to make stronger artificial muscles.

  15. A finite element model of rigid body structures actuated by dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Simone, F.; Linnebach, P.; Rizzello, G.; Seelecke, S.

    2018-06-01

    This paper presents on finite element (FE) modeling and simulation of dielectric elastomer actuators (DEAs) coupled with articulated structures. DEAs have proven to represent an effective transduction technology for the realization of large deformation, low-power consuming, and fast mechatronic actuators. However, the complex dynamic behavior of the material, characterized by nonlinearities and rate-dependent phenomena, makes it difficult to accurately model and design DEA systems. The problem is further complicated in case the DEA is used to activate articulated structures, which increase both system complexity and implementation effort of numerical simulation models. In this paper, we present a model based tool which allows to effectively implement and simulate complex articulated systems actuated by DEAs. A first prototype of a compact switch actuated by DEA membranes is chosen as reference study to introduce the methodology. The commercially available FE software COMSOL is used for implementing and coupling a physics-based dynamic model of the DEA with the external structure, i.e., the switch. The model is then experimentally calibrated and validated in both quasi-static and dynamic loading conditions. Finally, preliminary results on how to use the simulation tool to optimize the design are presented.

  16. A road to practical dielectric elastomer actuators based robotics and mechatronics: discrete actuation

    NASA Astrophysics Data System (ADS)

    Plante, Jean-Sébastien; Devita, Lauren M.; Dubowsky, Steven

    2007-04-01

    Fundamental studies of Dielectric Elastomer Actuators (DEAs) using viscoelastic materials such as VHB 4905/4910 from 3M showed significant advantages at high stretch rates. The film's viscous forces increase actuator life and the short power-on times minimize energy losses through current leakage. This paper presents a design paradigm that exploits these fundamental properties of DEAs called discrete actuation. Discrete actuation uses DEAs at high stretch rates to change the states of robotic or mechatronic systems in discrete steps. Each state of the system is stable and can be maintained without actuator power. Discrete actuation can be used in robotic and mechatronic applications such as manipulation and locomotion. The resolution of such systems increases with the number of discrete states, 10 to 100 being sufficient for many applications. An MRI-guided needle positioning device for cancer treatments and a space exploration robot using hopping for locomotion are presented as examples of this concept.

  17. High-cycle electromechanical aging of dielectric elastomer actuators with carbon-based electrodes

    NASA Astrophysics Data System (ADS)

    de Saint-Aubin, C. A.; Rosset, S.; Schlatter, S.; Shea, H.

    2018-07-01

    We present high-cycle aging tests of dielectric elastomer actuators (DEAs) based on silicone elastomers, reporting on the time-evolution of actuation strain and of electrode resistance over millions of cycles. We compare several types of carbon-based electrodes, and for the first time show how the choice of electrode has a dramatic influence on DEA aging. An expanding circle DEA configuration is used, consisting of a commercial silicone membrane with the following electrodes: commercial carbon grease applied manually, solvent-diluted carbon grease applied by stamping (pad printing), loose carbon black powder applied manually, carbon black powder suspension applied by inkjet-printing, and conductive silicone-carbon composite applied by stamping. The silicone-based DEAs with manually applied carbon grease electrodes show the shortest lifetime of less than 105 cycles at 5% strain, while the inkjet-printed carbon powder and the stamped silicone-carbon composite make for the most reliable devices, with lifetimes greater than 107 cycles at 5% strain. These results are valid for the specific dielectric and electrode configurations that were tested: using other dielectrics or electrode formulations would lead to different lifetimes and failure modes. We find that aging (as seen in the change in resistance and in actuation strain versus cycle number) is independent of the actuation frequency from 10 Hz to 200 Hz, and depends on the total accumulated time the DEA spends in an actuated state.

  18. Ultra-compliant liquid metal electrodes with in-plane self-healing capability for dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Gao, Meng; Mei, Shengfu; Han, Yanting; Liu, Jing

    2013-08-01

    The method of directly printing liquid metal films as highly conductive and super compliant electrodes for dielectric elastomer actuator (DEA) was proposed and experimentally demonstrated with working mechanisms interpreted. Such soft electrodes enable DE film to approach its maximum strain and stress at relatively low voltages. Further, its unique capability of achieving two-dimensional in-plane self-healing by merely actuating the DEA was disclosed, which would allow actuators more tolerant to fault and resilient to abusive environments. This high performance actuator has important value in a wide spectrum of situations ranging from artificial muscle, flexible electronics to smart clothing etc.

  19. Elastomer actuators: systematic improvement in properties by use of composite materials

    NASA Astrophysics Data System (ADS)

    Molberg, Martin; Leterrier, Yves; Plummer, Christopher J. G.; Löwe, Christiane; Opris, Dorina M.; Clemens, Frank; Månson, Jan-Anders E.

    2010-04-01

    Dielectric elastomer actuators (DEAs) have attracted increasing attention over the last few years owing to their outstanding properties, e.g. their large actuation strains, high energy density, and pliability, which have opened up a wide spectrum of potential applications in fields ranging from microengineering to medical prosthetics. There is consequently a huge demand for new elastomer materials with improved properties to enhance the performance of DEAs and to overcome the limitations associated with currently available materials, such as the need for high activation voltages and the poor long-term stability. The electrostatic pressure that activates dielectric elastomers can be increased by higher permittivity of the elastomer and thus may lead to lower activation voltages. This has led us to consider composite elastomeric dielectrics based on thermoplastic elastomers or PDMS, and conductive polyaniline or ceramic (soft doped PZT) powder fillers. The potential of such materials and strategies to counter the adverse effects of increased conductivity and elastic modulus are discussed.

  20. Implementation and simulation of a cone dielectric elastomer actuator

    NASA Astrophysics Data System (ADS)

    Wang, Huaming; Zhu, Jianying

    2008-11-01

    The purpose is to investigate the performance of cone dielectric elastomer actuator (DEA) by experiment and FEM simulation. Two working equilibrium positions of cone DEA, which correspond to its initial displacement and displacement output with voltage off and on respectively, are determined through the analysis on its working principle. Experiments show that analytical results accord with experimental ones, and work output in a workcycle is hereby calculated. Actuator can respond quickly when voltage is applied and can return to its original position rapidly when voltage is released. Also, FEM simulation is used to obtain the movement of cone DEA in advance. Simulation results agree well with experimental ones and prove the feasibility of simulation. Also, causes for small difference between them in displacement output are analyzed.

  1. Mm-size bistable zipping dielectric elastomer actuators for integrated microfluidics

    NASA Astrophysics Data System (ADS)

    Maffli, Luc; Rosset, Samuel; Shea, Herbert R.

    2013-04-01

    We report on a new structure of Dielectric Elastomer Actuators (DEAs) called zipping DEAs, which have a set of unique characteristics that are a good match for the requirements of electrically-powered integrated microfluidic pumping and/or valving units as well as Braille displays. The zipping DEAs operate by pulling electrostatically an elastomer membrane in contact with the rigid sidewalls of a sloped chamber. In this work, we report on fully functional mm-size zipping DEAs that demonstrate a complete sealing of the chamber sidewalls and a tunable bistable behavior, and compare the measurements with an analytical model. Compared to our first generation of devices, we are able vary the sidewall angle and benefit therefore from more flexibility to study the requirements to make fully functional actuators. In particular, we show that with Nusil CF19 as membrane material (1.2 MPa Young's modulus), it is possible to zip completely 2.3 mm diameter chambers with 15° and 21° sidewalls angle equibiaxially prestretched to λ0=1.12 and 15° chambers with λ0=1.27.

  2. Large axial actuation of pre-stretched tubular dielectric elastomer and use of oil encapsulation to enhance dielectric breakdown strength

    NASA Astrophysics Data System (ADS)

    Lau, Gih-Keong; Di-Teng Tan, Desmond; La, Thanh-Giang

    2015-04-01

    Rolled dielectric elastomer actuators (DEAs) are subjected to necking and non-uniform deformation upon pre-stress relaxation. Though rolled up from flat DEAs, they performed much poorer than the flat ones. Their electrically induced axial strains were previously reported as not more than 37.3%, while the flat ones produced greater than 100% strain. Often, the rolled DEAs succumb to premature breakdown before they can realize the full actuation potential like the flat ones do. This study shows that oil encapsulation, together with large hoop pre-stretch, helps single-wound rolled DEAs, which are also known as tubular DEAs, suppress premature breakdown. Consequently, the oil-encapsulated tubular DEAs can sustain higher electric fields, and thus produce larger isotonic strain and higher isometric stress change. Under isotonic testing, they sustained very high electric fields of up to 712.7 MV m-1, which is approximately 50% higher than those of the dry tubular DEAs. They produced up to 55.4% axial isotonic strain despite axially stiffening by the passive oil capsules. In addition, due to the use of large hoop pre-stretch, even the dry tubular DEAs without oil encapsulation achieved a very large axial strain of up to 84.2% compared to previous works. Under isometric testing, the oil-encapsulated tubular DEA with enhanced breakdown strength produced an axial stress change of up to nearly 0.6 MPa, which is 114% higher than that produced by the dry ones. In conclusion, the oil encapsulation and large pre-stretch help realize fuller actuation potential of tubular dielectric elastomer, which is subjected to initially non-uniform deformation.

  3. A small biomimetic quadruped robot driven by multistacked dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Nguyen, Canh Toan; Phung, Hoa; Dat Nguyen, Tien; Lee, Choonghan; Kim, Uikyum; Lee, Donghyouk; Moon, Hyungpil; Koo, Jachoon; Nam, Jae-do; Ryeol Choi, Hyouk

    2014-06-01

    A kind of dielectric elastomer (DE) material, called ‘synthetic elastomer’, has been developed based on acrylonitrile butadiene rubber (NBR) to be used as a dielectric elastomer actuator (DEA). By stacking single layers of synthetic elastomer, a linear actuator, called a multistacked actuator, is produced, and used by mechatronic and robotic systems to generate linear motion. In this paper, we demonstrate the application of the multistacked dielectric elastomer actuator in a biomimetic legged robot. A miniature robot driven by a biomimetic actuation system with four 2-DOF (two-degree-of-freedom) legged mechanisms is realized. Based on the experimental results, we evaluate the performance of the proposed robot and validate the feasibility of the multistacked actuator in a locomotion system as a replacement for conventional actuators.

  4. Design and proof of concept for multi degree of freedom hydrostatically coupled dielectric elastomer actuators with roto-translational kinematics for object handling

    NASA Astrophysics Data System (ADS)

    De Acutis, A.; Calabrese, L.; Bau, A.; Tincani, V.; Pugno, N. M.; Bicchi, A.; De Rossi, D. E.

    2018-07-01

    In this article we present an upgraded design of the existing push–pull hydrostatically coupled dielectric elastomer actuator (HC-DEA) for use in the field of soft manipulators. The new design has segmented electrodes, which stand as four independent elements on the active membrane of the actuator. When properly operated, the actuator can generate both out of plane and in-plane motions resulting in a multi-degrees of freedom soft actuator able to exert both normal pushes (like a traditional HC-DEA) and tangential thrusts. This novel design makes the actuator suitable for delicate flat object transportation. In order to use the actuator in soft systems, we experimentally characterized its electromechanical transduction and modeled its contact mechanics. Finally, we show that the proposed actuator can be employed as a modular unit to develop active surfaces for flat object roto-translation.

  5. Magnetic force induced tristability for dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Li, Xin-Qiang; Li, Wen-Bo; Zhang, Wen-Ming; Zou, Hong-Xiang; Peng, Zhi-Ke; Meng, Guang

    2017-10-01

    This paper presents a novel dielectric elastomer actuator (DEA) with three stable states. By introducing magnetic forces and coupling them with two cone dielectric elastomer (DE) films, an inherent tristability for the DEA is obtained with a compact design. It is easy to switch between the three stable states by controlling the voltages applied to the DE films. A theoretical model of the system’s potential energy that contains the free energy of the DEs and the potential energy of the applied magnetic field was developed for the tristable mechanism. The experimental results demonstrate that controllable transitions between the three stable states can be achieved with this design by applying over-critical voltages to the various DE films. The maximum dynamic range of the DEA can exceed 53.8% of the total length of the device and the DE’s creep speed was accelerated under the action of the magnetic field.

  6. Surface texture change on-demand and microfluidic devices based on thickness mode actuation of dielectric elastomer actuators (DEAs)

    NASA Astrophysics Data System (ADS)

    Ankit, Ankit; Nguyen, Anh Chien; Mathews, Nripan

    2017-04-01

    Tactile feedback devices and microfluidic devices have huge significance in strengthening the area of robotics, human machine interaction and low cost healthcare. Dielectric Elastomer Actuators (DEAs) are an attractive alternative for both the areas; offering the advantage of low cost and simplistic fabrication in addition to the high actuation strains. The inplane deformations produced by the DEAs can be used to produce out-of-plane deformations by what is known as the thickness mode actuation of DEAs. The thickness mode actuation is achieved by adhering a soft passive layer to the DEA. This enables a wide area of applications in tactile applications without the need of complex systems and multiple actuators. But the thickness mode actuation has not been explored enough to understand how the deformations can be improved without altering the material properties; which is often accompanied with increased cost and a trade off with other closely associated material properties. We have shown the effect of dimensions of active region and non-active region in manipulating the out-of-plane deformation. Making use of this, we have been able to demonstrate large area devices and complex patterns on the passive top layer for the surface texture change on-demand applications. We have also been able to demonstrate on-demand microfluidic channels and micro-chambers without the need of actually fabricating the channels; which is a cost incurring and cumbersome process.

  7. Electric field around a dielectric elastomer actuator in proximity to the human body

    NASA Astrophysics Data System (ADS)

    McKenzie, Anita C.; Calius, Emilio P.; Anderson, Iain A.

    2008-03-01

    Dielectric elastomer actuators (DEAs) are a promising artificial muscle technology that will enable new kinds of prostheses and wearable rehabilitation devices. DEAs are driven by electric fields in the MV/m range and the dielectric elastomer itself is typically 30μm in thickness or more. Large operating voltages, in the order of several kilovolts, are then required to produce useful strains and these large voltages and the resulting electric fields could potentially pose problems when DEAs are used in close proximity to the human body. The fringing electric fields of a DEA in close association with the skin were modelled using finite element methods. The model was verified against a known analytic solution describing the electric field surrounding a capacitor in air. The agreement between the two is good, as the difference is less than 10% unless within 4.5mm of the DEA's lateral edges. As expected, it was found that for a DEA constructed with thinner dielectric layers, the fringe field strength dropped in direct proportion to the reduction in applied voltage, despite the internal field being maintained at the same level. More interestingly, modelling the electric field around stacked DEAs showed that for an even number of layers the electric field is an order of magnitude less than for an odd number of layers, due to the cancelling of opposing electric fields.

  8. Dielectric elastomer bending tube actuators with rigid electrode structures

    NASA Astrophysics Data System (ADS)

    Wehrheim, F.; Schlaak, H. F.; Meyer, J.-U.

    2010-04-01

    The common approach for dielectric elastomer actuators (DEA) is based on the assumption that compliant electrodes are a fundamental design requirement. For tube-like applications compliant electrodes cause a change of the actuator diameter during actuation and would require additional support-structures. Focused on thinwalled actuator-tube geometries room consumption and radial stabilityr epresent crucial criteria. Following the ambition of maximum functional integration, the concept of using a rigid electrode structure arises. This structure realizes both, actuation and support characteristics. The intended rigid electrode structure is based on a stacked DEA with a non-compressible dielectric. Byactu ation, the displaced dielectric causes an overlap. This overlap serves as an indicator for geometrical limitations and has been used to extract design rules regarding the electrode size, electrode distance and maximum electrode travel. Bycons idering the strain in anydir ection, the mechanical efficiencyhas been used to define further design aspects. To verifyt he theoretic analysis, a test for determination of the compressive stress-strain-characteristics has been applied for different electrode setups. As result the geometrydep ending elastic pressure module has been formulated by implementation of a shape factor. The presented investigations consider exclusive the static behavior of a DEA-setup with rigid electrodes.

  9. Electrically tunable soft solid lens inspired by reptile and bird accommodation.

    PubMed

    Pieroni, Michael; Lagomarsini, Clara; De Rossi, Danilo; Carpi, Federico

    2016-10-26

    Electrically tunable lenses are conceived as deformable adaptive optical components able to change focus without motor-controlled translations of stiff lenses. In order to achieve large tuning ranges, large deformations are needed. This requires new technologies for the actuation of highly stretchable lenses. This paper presents a configuration to obtain compact tunable lenses entirely made of soft solid matter (elastomers). This was achieved by combining the advantages of dielectric elastomer actuation (DEA) with a design inspired by the accommodation of reptiles and birds. An annular DEA was used to radially deform a central solid-body lens. Using an acrylic elastomer membrane, a silicone lens and a simple fabrication method, we assembled a tunable lens capable of focal length variations up to 55%, driven by an actuator four times larger than the lens. As compared to DEA-based liquid lenses, the novel architecture halves the required driving voltages, simplifies the fabrication process and allows for a higher versatility in design. These new lenses might find application in systems requiring large variations of focus with low power consumption, silent operation, low weight, shock tolerance, minimized axial encumbrance and minimized changes of performance against vibrations and variations in temperature.

  10. Fabrication and electromechanical examination of a spherical dielectric elastomer actuator

    NASA Astrophysics Data System (ADS)

    Ahmadi, S.; Gooyers, M.; Soleimani, M.; Menon, C.

    2013-11-01

    In this paper, a procedure for fabricating and testing a seamless spherical dielectric elastomer actuator (DEA) is presented. In previously developed spherical prototypes, the DEA material is pre-strained by a rigid frame to improve the actuator’s output force; however, it is possible to pre-strain a spherical DEA by inflating the sample with a liquid or gas as long as the sample contains the pressure. In this work, a very compliant silicone-based material was used to fabricate a nearly spherical balloon-shaped prototype. The DEA sample was inflated by air and various electrical-actuation regimes were considered. The performance of the DEA sample was studied using an analytical and a finite element-based model. An Ogden hyperelastic model was used in formulation of the analytical model to include nonlinear behavior of the silicone material. Full statistical analysis of the experimental and numerical results was carried out using the root-mean-square (RMS) error and the normalized RMS error. The analytical and FEM results were in good agreement with the experimental data. According to modeling results, it was found that the DEA’s actuation force can be mainly improved by increasing the voltage, reducing the thickness, lowering the stiffness, and/or increasing the initial pressure. As an example, a three-fold increase of the actuation force was found when the thickness was reduced to half of its initial value. This improvement of the efficiency suggests that the spherical DEA is suitable for use in several applications if an appropriate design with optimal governing parameters is developed.

  11. Fabrication and performance analysis of a DEA cuff designed for dry-suit applications

    NASA Astrophysics Data System (ADS)

    Ahmadi, S.; Camacho Mattos, A.; Barbazza, A.; Soleimani, M.; Boscariol, P.; Menon, C.

    2013-03-01

    A method for manufacturing a cylindrical dielectric elastomer actuator (DEA) is presented. The cylindrical DEA can be used in fabricating the cuff area of dry-suits where the garment is very tight and wearing the suit is difficult. When electrically actuated, the DEA expands radially and the suit can be worn more comfortably. In order to study the performance of the DEA, a customized testing setup was designed, and silicone-made cuff samples with different material stiffnesses were tested. Analytical and FEM modeling were considered to evaluate the experimental output. The results revealed that although the stiffness of the DEA material has a direct relationship with the radial constrictive pressure caused by mechanically stretching the DEA, it has a minor effect on the actuation pressure. It was also found that stacking multiple layers of the DEA to fabricate a laminated structure enabled the attainment of a desired variation of pressure required for the implementation of an electrically tunable cuff.

  12. Fluid electrodes for submersible robotics based on dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Christianson, Caleb; Goldberg, Nathaniel; Cai, Shengqiang; Tolley, Michael T.

    2017-04-01

    Recently, dielectric elastomer actuators (DEAs) have gathered interest for soft robotics due to their low cost, light weight, large strain, low power consumption, and high energy density. However, developing reliable, compliant electrodes for DEAs remains an ongoing challenge due to issues with fabrication, uniformity of the conductive layer, and mechanical stiffening of the actuators caused by conductive materials with large Young's moduli. In this work, we present a method for preparing, patterning, and utilizing conductive fluid electrodes. Further, when we submerse the DEAs in a bath containing a conductive fluid connected to ground, the bath serves as a second electrode, obviating the need for depositing a conductive layer to serve as either of the electrodes required of most DEAs. When we apply a positive electrical potential to the conductive fluid in the actuator with respect to ground, the electric field across the dielectric membrane causes charge carriers in the solution to apply an electrostatic force on the membrane, which compresses the membrane and causes the actuator to deform. We have used this process to develop a tethered submersible robot that can swim in a tank of saltwater at a maximum measured speed of 9.2 mm/s. Since saltwater serves as the electrode, we overcome buoyancy issues that may be a challenge for pneumatically actuated soft robots and traditional, rigid robotics. This research opens the door to low-power underwater robots for search and rescue and environmental monitoring applications.

  13. Saddle-like deformation in a dielectric elastomer actuator embedded with liquid-phase gallium-indium electrodes

    NASA Astrophysics Data System (ADS)

    Wissman, J.; Finkenauer, L.; Deseri, L.; Majidi, C.

    2014-10-01

    We introduce a dielectric elastomer actuator (DEA) composed of liquid-phase Gallium-Indium (GaIn) alloy electrodes embedded between layers of poly(dimethylsiloxane) (PDMS) and examine its mechanics using a specialized elastic shell theory. Residual stresses in the dielectric and sealing layers of PDMS cause the DEA to deform into a saddle-like geometry (Gaussian curvature K <0). Applying voltage Φ to the liquid metal electrodes induces electrostatic pressure (Maxwell stress) on the dielectric and relieves some of the residual stress. This reduces the longitudinal bending curvature and corresponding angle of deflection ϑ. Treating the elastomer as an incompressible, isotropic, NeoHookean solid, we develop a theory based on the principle of minimum potential energy to predict the principal curvatures as a function of Φ. Based on this theory, we predict a dependency of ϑ on Φ that is in strong agreement with experimental measurements performed on a GaIn-PDMS composite. By accurately modeling electromechanical coupling in a soft-matter DEA, this theory can inform improvements in design and fabrication.

  14. Saddle-like deformation in a dielectric elastomer actuator embedded with liquid-phase gallium-indium electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wissman, J., E-mail: jwissman@andrew.cmu.edu; Finkenauer, L.; Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213

    We introduce a dielectric elastomer actuator (DEA) composed of liquid-phase Gallium-Indium (GaIn) alloy electrodes embedded between layers of poly(dimethylsiloxane) (PDMS) and examine its mechanics using a specialized elastic shell theory. Residual stresses in the dielectric and sealing layers of PDMS cause the DEA to deform into a saddle-like geometry (Gaussian curvature K<0). Applying voltage Φ to the liquid metal electrodes induces electrostatic pressure (Maxwell stress) on the dielectric and relieves some of the residual stress. This reduces the longitudinal bending curvature and corresponding angle of deflection ϑ. Treating the elastomer as an incompressible, isotropic, NeoHookean solid, we develop a theorymore » based on the principle of minimum potential energy to predict the principal curvatures as a function of Φ. Based on this theory, we predict a dependency of ϑ on Φ that is in strong agreement with experimental measurements performed on a GaIn-PDMS composite. By accurately modeling electromechanical coupling in a soft-matter DEA, this theory can inform improvements in design and fabrication.« less

  15. Modeling a dielectric elastomer as driven by triboelectric nanogenerator

    NASA Astrophysics Data System (ADS)

    Chen, Xiangyu; Jiang, Tao; Wang, Zhong Lin

    2017-01-01

    By integrating a triboelectric nanogenerator (TENG) and a thin film dielectric elastomer actuator (DEA), the DEA can be directly powered and controlled by the output of the TENG, which demonstrates a self-powered actuation system toward various practical applications in the fields of electronic skin and soft robotics. This paper describes a method to construct a physical model for this integrated TENG-DEA system on the basis of nonequilibrium thermodynamics and electrostatics induction theory. The model can precisely simulate the influences from both the viscoelasticity and current leakage to the output performance of the TENG, which can help us to better understand the interaction between TENG and DEA devices. Accordingly, the established electric field, the deformation strain of the DEA, and the output current from the TENG are systemically analyzed by using this model. A comparison between real measurements and simulation results confirms that the proposed model can predict the dynamic response of the DEA driven by contact-electrification and can also quantitatively analyze the relaxation of the tribo-induced strain due to the leakage behavior. Hence, the proposed model in this work could serve as a guidance for optimizing the devices in the future studies.

  16. Opportunities of hydrostatically coupled dielectric elastomer actuators for haptic interfaces

    NASA Astrophysics Data System (ADS)

    Carpi, Federico; Frediani, Gabriele; De Rossi, Danilo

    2011-04-01

    As a means to improve versatility and safety of dielectric elastomer actuators (DEAs) for several fields of application, so-called 'hydrostatically coupled' DEAs (HC-DEAs) have recently been described. HC-DEAs are based on an incompressible fluid that mechanically couples a DE-based active part to a passive part interfaced to the load, so as to enable hydrostatic transmission. This paper presents ongoing developments of HC-DEAs and potential applications in the field of haptics. Three specific examples are considered. The first deals with a wearable tactile display used to provide users with tactile feedback during electronic navigation in virtual environments. The display consists of HCDEAs arranged in contact with finger tips. As a second example, an up-scaled prototype version of an 8-dots refreshable cell for dynamic Braille displays is shown. Each Braille dot consists of a miniature HC-DEA, with a diameter lower than 2 mm. The third example refers to a device for finger rehabilitation, conceived to work as a sort of active version of a rehabilitation squeezing ball. The device is designed to dynamically change its compliance according to an electric control. The three examples of applications intend to show the potential of the new technology and the prospective opportunities for haptic interfaces.

  17. Improved actuation strain of PDMS-based DEA materials chemically modified with softening agents

    NASA Astrophysics Data System (ADS)

    Biedermann, Miriam; Blümke, Martin; Wegener, Michael; Krüger, Hartmut

    2015-04-01

    Dielectric elastomer actuators (DEAs) are smart materials that gained much in interest particularly in recent years. One active field of research is the improvement of their properties by modification of their structural framework. The object of this work is to improve the actuation properties of polydimethylsiloxane (PDMS)-based DEAs by covalent incorporation of mono-vinyl-terminated low-molecular PDMS chains into the PDMS network. These low-molecular units act as a kind of softener within the PDMS network. The loose chain ends interfere with the network formation and lower the network's density. PDMS films with up to 50wt% of low-molecular PDMS additives were manufactured and the chemical, mechanical, electrical, and electromechanical properties of these novel materials were investigated.

  18. Entirely soft dielectric elastomer robots

    NASA Astrophysics Data System (ADS)

    Henke, E.-F. Markus; Wilson, Katherine E.; Anderson, Iain A.

    2017-04-01

    Multifunctional Dielectric Elastomer (DE) devices are well established as actuators, sensors and energy har- vesters. Since the invention of the Dielectric Elastomer Switch (DES), a piezoresistive electrode that can directly switch charge on and off, it has become possible to expand the wide functionality of DE structures even more. We show the application of fully soft DE subcomponents in biomimetic robotic structures. It is now possible to couple arrays of actuator/switch units together so that they switch charge between them- selves on and off. One can then build DE devices that operate as self-controlled oscillators. With an oscillator one can produce a periodic signal that controls a soft DE robot - a DE device with its own DE nervous system. DESs were fabricated using a special electrode mixture, and imprinting technology at an exact pre-strain. We have demonstrated six orders of magnitude change in conductivity within the DES over 50% strain. The control signal can either be a mechanical deformation from another DE or an electrical input to a connected dielectric elastomer actuator (DEA). We have demonstrated a variety of fully soft multifunctional subcomponents that enable the design of autonomous soft robots without conventional electronics. The combination of digital logic structures for basic signal processing, data storage in dielectric elastomer flip-flops and digital and analogue clocks with adjustable frequencies, made of dielectric elastomer oscillators (DEOs), enables fully soft, self-controlled and electronics-free robotic structures. DE robotic structures to date include stiff frames to maintain necessary pre-strains enabling sufficient actuation of DEAs. Here we present a design and production technology for a first robotic structure consisting only of soft silicones and carbon black.

  19. Assessing the degradation of compliant electrodes for soft actuators.

    PubMed

    Rosset, Samuel; de Saint-Aubin, Christine; Poulin, Alexandre; Shea, Herbert R

    2017-10-01

    We present an automated system to measure the degradation of compliant electrodes used in dielectric elastomer actuators (DEAs) over millions of cycles. Electrodes for DEAs generally experience biaxial linear strains of more than 10%. The decrease in electrode conductivity induced by this repeated fast mechanical deformation impacts the bandwidth of the actuator and its strain homogeneity. Changes in the electrode mechanical properties lead to reduced actuation strain. Rather than using an external actuator to periodically deform the electrodes, our measurement method consists of measuring the properties of an electrode in an expanding circle DEA. A programmable high voltage power supply drives the actuator with a square signal up to 1 kHz, periodically actuating the DEA, and thus stretching the electrodes. The DEA strain is monitored with a universal serial bus camera, while the resistance of the ground electrode is measured with a multimeter. The system can be used for any type of electrode. We validated the test setup by characterising a carbon black/silicone composite that we commonly use as compliant electrode. Although the composite is well-suited for tens of millions of cycles of actuation below 5%, we observe important degradation for higher deformations. When activated at a 20% radial strain, the electrodes suffer from important damage after a few thousand cycles, and an inhomogeneous actuation is observed, with the strain localised in a sub-region of the actuator only.

  20. Assessing the degradation of compliant electrodes for soft actuators

    NASA Astrophysics Data System (ADS)

    Rosset, Samuel; de Saint-Aubin, Christine; Poulin, Alexandre; Shea, Herbert R.

    2017-10-01

    We present an automated system to measure the degradation of compliant electrodes used in dielectric elastomer actuators (DEAs) over millions of cycles. Electrodes for DEAs generally experience biaxial linear strains of more than 10%. The decrease in electrode conductivity induced by this repeated fast mechanical deformation impacts the bandwidth of the actuator and its strain homogeneity. Changes in the electrode mechanical properties lead to reduced actuation strain. Rather than using an external actuator to periodically deform the electrodes, our measurement method consists of measuring the properties of an electrode in an expanding circle DEA. A programmable high voltage power supply drives the actuator with a square signal up to 1 kHz, periodically actuating the DEA, and thus stretching the electrodes. The DEA strain is monitored with a universal serial bus camera, while the resistance of the ground electrode is measured with a multimeter. The system can be used for any type of electrode. We validated the test setup by characterising a carbon black/silicone composite that we commonly use as compliant electrode. Although the composite is well-suited for tens of millions of cycles of actuation below 5%, we observe important degradation for higher deformations. When activated at a 20% radial strain, the electrodes suffer from important damage after a few thousand cycles, and an inhomogeneous actuation is observed, with the strain localised in a sub-region of the actuator only.

  1. Small, fast, and tough: Shrinking down integrated elastomer transducers

    NASA Astrophysics Data System (ADS)

    Rosset, Samuel; Shea, Herbert R.

    2016-09-01

    We review recent progress in miniaturized dielectric elastomer actuators (DEAs), sensors, and energy harvesters. We focus primarily on configurations where the large strain, high compliance, stretchability, and high level of integration offered by dielectric elastomer transducers provide significant advantages over other mm or μm-scale transduction technologies. We first present the most active application areas, including: tunable optics, soft robotics, haptics, micro fluidics, biomedical devices, and stretchable sensors. We then discuss the fabrication challenges related to miniaturization, such as thin membrane fabrication, precise patterning of compliant electrodes, and reliable batch fabrication of multilayer devices. We finally address the impact of miniaturization on strain, force, and driving voltage, as well as the important effect of boundary conditions on the performance of mm-scale DEAs.

  2. Rubbery computing

    NASA Astrophysics Data System (ADS)

    Wilson, Katherine E.; Henke, E.-F. Markus; Slipher, Geoffrey A.; Anderson, Iain A.

    2017-04-01

    Electromechanically coupled dielectric elastomer actuators (DEAs) and dielectric elastomer switches (DESs) may form digital logic circuitry made entirely of soft and flexible materials. The expansion in planar area of a DEA exerts force across a DES, which is a soft electrode with strain-dependent resistivity. When compressed, the DES drops steeply in resistance and changes state from non-conducting to conducting. Logic operators may be achieved with different arrangements of interacting DE actuators and switches. We demonstrate combinatorial logic elements, including the fundamental Boolean logic gates, as well as sequential logic elements, including latches and flip-flops. With both data storage and signal processing abilities, the necessary calculating components of a soft computer are available. A noteworthy advantage of a soft computer with mechanosensitive DESs is the potential for responding to environmental strains while locally processing information and generating a reaction, like a muscle reflex.

  3. Numerical analysis of helical dielectric elastomer actuator

    NASA Astrophysics Data System (ADS)

    Park, Jang Ho; Nair, Saurabh; Kim, Daewon

    2017-04-01

    Dielectric elastomer actuators (DEA) are known for its capability of experiencing extreme strains, as it can expand and contract based on specific actuation voltage applied. On contrary, helical DEA (HDEA) with its unique configuration does not only provide the contractile and extendable capabilities, but also can aid in attaining results for bending and torsion. The concept of HDEA embraces many new techniques and can be applied in multiple disciplines. Thus, this paper focuses on the simulation of HDEA with helical compliant electrodes that is a major factor prior to its application. The attributes of the material used to build the structure plays a vital role in the behavior of the system. For numerical analysis of HDEA, the material characteristics are input into a commercial grade software, and then the appropriate analysis is performed to retrieve its outcome. Applying the material characteristics into numerical analysis modeling, the functionality of HDEA for various activations can be achieved, which is used to test and comply with the fabricated final product.

  4. A novel variable stiffness mechanism for dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Li, Wen-Bo; Zhang, Wen-Ming; Zou, Hong-Xiang; Peng, Zhi-Ke; Meng, Guang

    2017-08-01

    In this paper, a novel variable stiffness mechanism is proposed for the design of a variable stiffness dielectric elastomer actuator (VSDEA) which combines a flexible strip with a DEA in a dielectric elastomer minimum energy structure. The DEA induces an analog tuning of the transverse curvature of the strip, thus conveniently providing a voltage-controllable flexural rigidity. The VSDEA tends to be a fully flexible and compact structure with the advantages of simplicity and fast response. Both experimental and theoretical investigations are carried out to reveal the variable stiffness performances of the VSDEA. The effect of the clamped location on the bending stiffness of the VSDEA is analyzed, and then effects of the lengths, the loading points and the applied voltages on the bending stiffness are experimentally investigated. An analytical model is developed to verify the availability of this variable stiffness mechanism, and the theoretical results demonstrate that the bending stiffness of the VSDEA decreases as the applied voltage increases, which agree well with the experimental data. Moreover, the experimental results show that the maximum change of the relative stiffness can reach about 88.80%. It can be useful for the design and optimization of active variable stiffness structures and DEAs for soft robots, vibration control, and morphing applications.

  5. Dielectric elastomer actuator for mechanical loading of 2D cell cultures.

    PubMed

    Poulin, Alexandre; Saygili Demir, Cansaran; Rosset, Samuel; Petrova, Tatiana V; Shea, Herbert

    2016-09-21

    We demonstrate the use of dielectric elastomer actuators (DEAs) for mechanical stimulation of cells in vitro. The development of living tissues is regulated by their mechanical environment through the modification of fundamental cellular functions such as proliferation, differentiation and gene expression. Mechanical cues have been linked to numerous pathological conditions, and progress in cellular mechanobiology could lead to better diagnosis and treatments of diseases such as atherosclerosis and cancers. Research in this field heavily relies on in vitro models due to the high complexity of the in vivo environment. Current in vitro models however build on bulky and often complex sets of mechanical motors or pneumatic systems. In this work we present an alternative approach based on DEAs, a class of soft actuators capable of large deformation (>100%) and fast response time (<1 ms). The key advantage of DEAs is that they can be integrated within the culture substrate, therefore providing a very compact solution. Here we present a DEA-based deformable bioreactor which can generate up to 35% uniaxial tensile strain, and is compatible with standard cell culture protocols. Our transparent device also includes a static control area, and enables real-time optical monitoring of both the stimulated and control cell populations. As a proof of concept we cycled a population of lymphatic endothelial cells (LECs) between 0% and 10% strain at a 0.1 Hz frequency for 24 h. We observe stretch-induced alignment and elongation of LECs, providing the first demonstration that DEAs can be interfaced with living cells and used to control their mechanical environment.

  6. Electrical breakdown detection system for dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Ghilardi, Michele; Busfield, James J. C.; Carpi, Federico

    2017-04-01

    Electrical breakdown of dielectric elastomer actuators (DEAs) is an issue that has to be carefully addressed when designing systems based on this novel technology. Indeed, in some systems electrical breakdown might have serious consequences, not only in terms of interruption of the desired function but also in terms of safety of the overall system (e.g. overheating and even burning). The risk for electrical breakdown often cannot be completely avoided by simply reducing the driving voltages, either because completely safe voltages might not generate sufficient actuation or because internal or external factors might change some properties of the actuator whilst in operation (for example the aging or fatigue of the material, or an externally imposed deformation decreasing the distance between the compliant electrodes). So, there is the clear need for reliable, simple and cost-effective detection systems that are able to acknowledge the occurrence of a breakdown event, making DEA-based devices able to monitor their status and become safer and "selfaware". Here a simple solution for a portable detection system is reported that is based on a voltage-divider configuration that detects the voltage drop at the DEA terminals and assesses the occurrence of breakdown via a microcontroller (Beaglebone Black single-board computer) combined with a real-time, ultra-low-latency processing unit (Bela cape an open-source embedded platform developed at Queen Mary University of London). The system was used to both generate the control signal that drives the actuator and constantly monitor the functionality of the actuator, detecting any breakdown event and discontinuing the supplied voltage accordingly, so as to obtain a safer controlled actuation. This paper presents preliminary tests of the detection system in different scenarios in order to assess its reliability.

  7. Biomimetic artificial sphincter muscles: status and challenges

    NASA Astrophysics Data System (ADS)

    Leung, Vanessa; Fattorini, Elisa; Karapetkova, Maria; Osmani, Bekim; Töpper, Tino; Weiss, Florian; Müller, Bert

    2016-04-01

    Fecal incontinence is the involuntary loss of bowel content and affects more than 12% of the adult population, including 45% of retirement home residents. Severe fecal incontinence is often treated by implanting an artificial sphincter. Currently available implants, however, have long-term reoperation rates of 95% and definitive explantation rates of 40%. These statistics show that the implants fail to reproduce the capabilities of the natural sphincter and that the development of an adaptive, biologically inspired implant is required. Dielectric elastomer actuators (DEA) are being developed as artificial muscles for a biomimetic sphincter, due to their suitable response time, reaction forces, and energy consumption. However, at present the operation voltage of DEAs is too high for artificial muscles implanted in the human body. To reduce the operating voltage to tens of volts, we are using microfabrication to reduce the thickness of the elastomer layer to the nanometer level. Two microfabrication methods are being investigated: molecular beam deposition and electrospray deposition. This communication covers the current status and a perspective on the way forward, including the long-term prospects of constructing a smart sphincter from low-voltage sensors and actuators based on nanometer-thin dielectric elastomer films. As DEA can also provide sensory feedback, a biomimetic sphincter can be designed in accordance with the geometrical and mechanical parameters of its natural counterpart. The availability of such technology will enable fast pressure adaption comparable to the natural feedback mechanism, so that tissue atrophy and erosion can be avoided while maintaining continence du ring daily activities.

  8. Microscopically crumpled indium-tin-oxide thin films as compliant electrodes with tunable transmittance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ong, Hui-Yng; School of Engineering, Nanyang Polytechnic, Singapore 569830; Shrestha, Milan

    2015-09-28

    Indium-tin-oxide (ITO) thin films are perceived to be stiff and brittle. This letter reports that crumpled ITO thin films on adhesive poly-acrylate dielectric elastomer can make compliant electrodes, sustaining compression of up to 25% × 25% equi-biaxial strain and unfolding. Its optical transmittance reduces with crumpling, but restored with unfolding. A dielectric elastomer actuator (DEA) using the 14.2% × 14.2% initially crumpled ITO thin-film electrodes is electrically activated to produce a 37% areal strain. Such electric unfolding turns the translucent DEA to be transparent, with transmittance increased from 39.14% to 52.08%. This transmittance tunability promises to make a low-cost smart privacy window.

  9. Haptic interfaces using dielectric electroactive polymers

    NASA Astrophysics Data System (ADS)

    Ozsecen, Muzaffer Y.; Sivak, Mark; Mavroidis, Constantinos

    2010-04-01

    Quality, amplitude and frequency of the interaction forces between a human and an actuator are essential traits for haptic applications. A variety of Electro-Active Polymer (EAP) based actuators can provide these characteristics simultaneously with quiet operation, low weight, high power density and fast response. This paper demonstrates a rolled Dielectric Elastomer Actuator (DEA) being used as a telepresence device in a heart beat measurement application. In the this testing, heart signals were acquired from a remote location using a wireless heart rate sensor, sent through a network and DEA was used to haptically reproduce the heart beats at the medical expert's location. A series of preliminary human subject tests were conducted that demonstrated that a) DE based haptic feeling can be used in heart beat measurement tests and b) through subjective testing the stiffness and actuator properties of the EAP can be tuned for a variety of applications.

  10. Optimal haptic feedback control of artificial muscles

    NASA Astrophysics Data System (ADS)

    Chen, Daniel; Besier, Thor; Anderson, Iain; McKay, Thomas

    2014-03-01

    As our population ages, and trends in obesity continue to grow, joint degenerative diseases like osteoarthritis (OA) are becoming increasingly prevalent. With no cure currently in sight, the only effective treatments for OA are orthopaedic surgery and prolonged rehabilitation, neither of which is guaranteed to succeed. Gait retraining has tremendous potential to alter the contact forces in the joints due to walking, reducing the risk of one developing hip and knee OA. Dielectric Elastomer Actuators (DEAs) are being explored as a potential way of applying intuitive haptic feedback to alter a patient's walking gait. The main challenge with the use of DEAs in this application is producing large enough forces and strains to induce sensation when coupled to a patient's skin. A novel controller has been proposed to solve this issue. The controller uses simultaneous capacitive self-sensing and actuation which will optimally apply a haptic sensation to the patient's skin independent of variability in DEAs and patient geometries.

  11. Permanent magnets as biasing mechanism for improving the performance of circular dielectric elastomer out-of-plane actuators

    NASA Astrophysics Data System (ADS)

    Loew, P.; Rizzello, G.; Seelecke, S.

    2017-04-01

    Dielectric Elastomers (DE) represent an attractive technology for the realization of mechatronic actuators, due to their lightweight, high energy density, high energy efficiency, scalability, and low noise features. In order to produce a stroke, a DE membrane needs to be pre-loaded with a mechanical biasing mechanism. In our previous works, we compared the stroke achieved with different biasing mechanisms for a circular out-of-plane DE Actuator (DEA), i.e., hanging masses, linear and bi-stable springs. The novel contribution of this paper is the investigation of a biasing design approach based on permanent magnets. The resulting magnet-based actuators are usually more compact than the spring-based ones, allowing to obtain more compact systems. Two design solutions are proposed and compared, namely a first one characterized by a stable actuation, and a second one which permits to achieve a higher stroke, but it is intrinsically unstable. The effectiveness of the novel design solution is assessed by means of several experiments.

  12. Inkjet printing of carbon black electrodes for dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Schlatter, Samuel; Rosset, Samuel; Shea, Herbert

    2017-04-01

    Inkjet printing is an appealing technique to print electrodes for Dielectric Elastomer Actuators (DEAs). Here we present the preparation and ink-jet printing of a carbon black electrode mixture and characterise its properties. Carbon black has been used extensively in the past because it is very compliant; however, it has a high resistance and can be very dirty to work with. In this paper we show that carbon black remains an appropriate electrode material, and when inkjet printed can be used to fabricate devices meeting today's demanding requirements. DEAs are becoming thinner to decrease actuation voltages and are shrinking in size to match the scale of the devices in the biomedical field, tuneable optics, and microfluidics. Inkjet printing addresses both of these problems. Firstly, Inkjet printing is a non-contact technique and can print on very thin freestanding membranes. Secondly, the high precision of inkjet printers makes it possible to print complex electrode geometries in the millimetre scale. We demonstrate the advantages of inkjet printing and carbon black electrodes by conducting a full characterisation of the printed electrodes. The printed carbon black electrodes have resistances as low as 13kΩ/□, an elastic modulus of approximately 1MPa, and a cyclic resistance swing which increases by 7% over 1500 cycles at 50% stretch. We also demonstrate a DEA with printed carbon black electrodes with a diametral stretch of 8.8% at an electric field of approximately 94V/μm. Finally a qualitative test is conducted to show that the printed carbon black electrode is extremely hardwearing.

  13. A novel method of fabricating laminated silicone stack actuators with pre-strained dielectric layers

    NASA Astrophysics Data System (ADS)

    Hinitt, Andrew D.; Conn, Andrew T.

    2014-03-01

    In recent studies, stack based Dielectric Elastomer Actuators (DEAs) have been successfully used in haptic feedback and sensing applications. However, limitations in the fabrication method, and materials used to con- struct stack actuators constrain their force and displacement output per unit volume. This paper focuses on a fabrication process enabling a stacked elastomer actuator to withstand the high tensile forces needed for high power applications, such as mimetics for mammalian muscle contraction (i.e prostheses), whilst requiring low voltage for thickness-mode contractile actuation. Spun elastomer layers are bonded together in a pre-strained state using a conductive adhesive filler, forming a Laminated Inter-Penetrating Network (L-IPN) with repeatable and uniform electrode thickness. The resulting structure utilises the stored strain energy of the dielectric elas- tomer to compress the cured electrode composite material. The method is used to fabricate an L-IPN example, which demonstrated that the bonded L-IPN has high tensile strength normal to the lamination. Additionally, the uniformity and retained dielectric layer pre-strain of the L-IPN are confirmed. The described method is envisaged to be used in a semi-automated assembly of large-scale multi-layer stacks of pre-strained dielectric layers possessing a tensile strength in the range generated by mammalian muscle.

  14. Soft Biomimetic Fish Robot Made of Dielectric Elastomer Actuators.

    PubMed

    Shintake, Jun; Cacucciolo, Vito; Shea, Herbert; Floreano, Dario

    2018-06-29

    This article presents the design, fabrication, and characterization of a soft biomimetic robotic fish based on dielectric elastomer actuators (DEAs) that swims by body and/or caudal fin (BCF) propulsion. BCF is a promising locomotion mechanism that potentially offers swimming at higher speeds and acceleration rates, and efficient locomotion. The robot consists of laminated silicone layers wherein two DEAs are used in an antagonistic configuration, generating undulating fish-like motion. The design of the robot is guided by a mathematical model based on the Euler-Bernoulli beam theory and takes account of the nonuniform geometry of the robot and of the hydrodynamic effect of water. The modeling results were compared with the experimental results obtained from the fish robot with a total length of 150 mm, a thickness of 0.75 mm, and weight of 4.4 g. We observed that the frequency peaks in the measured thrust force produced by the robot are similar to the natural frequencies computed by the model. The peak swimming speed of the robot was 37.2 mm/s (0.25 body length/s) at 0.75 Hz. We also observed that the modal shape of the robot at this frequency corresponds to the first natural mode. The swimming of the robot resembles real fish and displays a Strouhal number very close to those of living fish. These results suggest the high potential of DEA-based underwater robots relying on BCF propulsion, and applicability of our design and fabrication methods.

  15. Experimental evaluation of a Dielectric Elastomer robotic arm for space applications

    NASA Astrophysics Data System (ADS)

    Branz, F.; Francesconi, A.

    2017-04-01

    A growing interest within the space community focuses on robotics due to the large number of possible applications in many mission scenarios. On-Orbit Servicing (OOS) is arguably the most appealing implementation of space automatic systems. In several cases, OOS requires the capture of orbital objects, which is a complex and risky operation that can be successfully performed by robotic manipulators. Soft robotics, in particular, seems to be suitable for such applications given its intrinsic compliance to the operative environment. Devices based on Dielectric Elastomers (DE) can be employed for the implementation of soft robotic systems and showed promising performances. The introduction of DEs to orbital systems would represent a breakthrough in space technologies. In addition, space conditions could further advantage DE robotics, given the reduced environmental loads experienced and the longer times for operations. Nevertheless, Dielectric Elastomer Actuators (DEA) are a low-TRL (Technology Readiness Level) technology that needs to prove its maturity and suitability to space implementation. In this work, the performances of a redundant manipulator based on DEAs are presented in terms of numerical and experimental results. A 4-DoF planar manipulator has been tested in a gravity-compensated setup. The system is composed by two double-cone actuators mounted in series, each of them providing actuation of two DoF. The end-effector is an optical marker whose position is detected by a vision system. The system has a total of four joint DoF and operates in the xy horizontal plane; only the x and y positions of the end-effector are controlled. Two degrees of redundancy are obtained and exploited for the optimization of joint torques to avoid the saturation of actuators. Numerical simulations have been conducted to predict the system behaviour. The laboratory facility emulates the zero-gravity orbital environment by means of a suspending cable. Detailed experimental results are presented and exploited for the validation of control algorithm and numerical models.

  16. Evaluation of area strain response of dielectric elastomer actuator using image processing technique

    NASA Astrophysics Data System (ADS)

    Sahu, Raj K.; Sudarshan, Koyya; Patra, Karali; Bhaumik, Shovan

    2014-03-01

    Dielectric elastomer actuator (DEA) is a kind of soft actuators that can produce significantly large electric-field induced actuation strain and may be a basic unit of artificial muscles and robotic elements. Understanding strain development on a pre-stretched sample at different regimes of electrical field is essential for potential applications. In this paper, we report about ongoing work on determination of area strain using digital camera and image processing technique. The setup, developed in house consists of low cost digital camera, data acquisition and image processing algorithm. Samples have been prepared by biaxially stretched acrylic tape and supported between two cardboard frames. Carbon-grease has been pasted on the both sides of the sample, which will be compliant with electric field induced large deformation. Images have been grabbed before and after the application of high voltage. From incremental image area, strain has been calculated as a function of applied voltage on a pre-stretched dielectric elastomer (DE) sample. Area strain has been plotted with the applied voltage for different pre-stretched samples. Our study shows that the area strain exhibits nonlinear relationship with applied voltage. For same voltage higher area strain has been generated on a sample having higher pre-stretched value. Also our characterization matches well with previously published results which have been done with costly video extensometer. The study may be helpful for the designers to fabricate the biaxial pre-stretched planar actuator from similar kind of materials.

  17. Morphology and conductivity of Au films on polydimethylsiloxane using (3-mercaptopropyl)trimethoxysilane (MPTMS) as an adhesion promoter

    NASA Astrophysics Data System (ADS)

    Osmani, Bekim; Deyhle, Hans; Weiss, Florian M.; Töpper, Tino; Karapetkova, Maria; Leung, Vanessa; Müller, Bert

    2016-04-01

    Dielectric elastomer actuators (DEA) are often referred to as artificial muscles due to their high specific continuous power, which is comparable to that of human skeletal muscles, and because of their millisecond response time. We intend to use nanometer-thin DEA as medical implant actuators and sensors to be operated at voltages as low as a few tens of volts. The conductivity of the electrode and the impact of its stiffness on the stacked structure are key to the design and operation of future devices. The stiffness of sputtered Au electrodes on polydimethylsiloxane (PDMS) was characterized using AFM nanoindentation techniques. 2500 nanoindentations were performed on 10 x 10 μm2 regions at loads of 100 to 400 nN using a spherical tip with a radius of (522 +/- 2) nm. Stiffness maps based on the Hertz model were calculated using the Nanosurf Flex-ANA system. The low adhesion of Au to PDMS has been reported in the literature and leads to the formation of Au-nanoclusters. The size of the nanoclusters was (25 +/- 10) nm and can be explained by the low surface energy of PDMS leading to a Volmer-Weber growth mode. Therefore, we propose (3-mercaptopropyl)trimethoxysilane (MPTMS) as a molecular adhesive to promote the adhesion between the PDMS and Au electrode. A beneficial side effect of these self-assembling monolayers is the significant improvement of the electrode's conductivity as determined by four-point probe measurements. Therefore, the application of a soft adhesive layer for building a dielectric elastomer actuator appears promising.

  18. Characterization of ultraviolet light cured polydimethylsiloxane films for low-voltage, dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Töpper, Tino; Wohlfender, Fabian; Weiss, Florian; Osmani, Bekim; Müller, Bert

    2016-04-01

    The reduction the operation voltage has been the key challenge to realize of dielectric elastomer actuators (DEA) for many years - especially for the application fields of robotics, lens systems, haptics and future medical implants. Contrary to the approach of manipulating the dielectric properties of the electrically activated polymer (EAP), we intend to realize low-voltage operation by reducing the polymer thickness to the range of a few hundred nanometers. A study recently published presents molecular beam deposition to reliably grow nanometer-thick polydimethylsiloxane (PDMS) films. The curing of PDMS is realized using ultraviolet (UV) radiation with wavelengths from 180 to 400 nm radicalizing the functional side and end groups. The understanding of the mechanical properties of sub-micrometer-thin PDMS films is crucial to optimize DEAs actuation efficiency. The elastic modulus of UV-cured spin-coated films is measured by nano-indentation using an atomic force microscope (AFM) according to the Hertzian contact mechanics model. These investigations show a reduced elastic modulus with increased indentation depth. A model with a skin-like SiO2 surface with corresponding elastic modulus of (2.29 +/- 0.31) MPa and a bulk modulus of cross-linked PDMS with corresponding elastic modulus of (87 +/- 7) kPa is proposed. The surface morphology is observed with AFM and 3D laser microscopy. Wrinkled surface microstructures on UV-cured PDMS films occur for film thicknesses above (510 +/- 30) nm with an UV-irradiation density of 7.2 10-4 J cm-2 nm-1 at a wavelength of 190 nm.

  19. Aerosol-Jet-Printing silicone layers and electrodes for stacked dielectric elastomer actuators in one processing device

    NASA Astrophysics Data System (ADS)

    Reitelshöfer, Sebastian; Göttler, Michael; Schmidt, Philip; Treffer, Philipp; Landgraf, Maximilian; Franke, Jörg

    2016-04-01

    In this contribution we present recent findings of our efforts to qualify the so called Aerosol-Jet-Printing process as an additive manufacturing approach for stacked dielectric elastomer actuators (DEA). With the presented system we are able to print the two essential structural elements dielectric layer and electrode in one machine. The system is capable of generating RTV-2 silicone layers made of Wacker Elastosil P 7670. Therefore, two aerosol streams of both precursor components A and B are generated in parallel and mixed in one printing nozzle that is attached to a 4-axis kinematic. At maximum speed the printing of one circular Elastosil layer with a calculated thickness of 10 μm and a diameter of 1 cm takes 12 seconds while the process keeps stable for 4.5 hours allowing a quite high overall material output and the generation of numerous silicone layers. By adding a second printing nozzle and the infrastructure to generate a third aerosol, the system is also capable of printing inks with conductive particles in parallel to the silicone. We have printed a reduced graphene oxide (rGO) ink prepared in our lab to generate electrodes on VHB 4905, Elastosil foils and finally on Aerosol-Jet-Printed Elastosil layers. With rGO ink printed on Elastosil foil, layers with a 4-point measured sheet resistance as low as 4 kΩ can be realized leaving room for improving the electrode printing time, which at the moment is not as good as the quite good time-frame for printing the silicone layers. Up to now we have used the system to print a fully functional two-layer stacked DEA to demonstrate the principle of continuously 3D printing actuators.

  20. Effect of temperature on the electric breakdown strength of dielectric elastomer

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Chen, Hualing; Sheng, Junjie; Zhang, Junshi; Wang, Yongquan; Jia, Shuhai

    2014-03-01

    DE (dielectric elastomer) is one of the most promising artificial muscle materials for its large strain over 100% under driving voltage. However, to date, dielectric elastomer actuators (DEAs) are prone to failure due to the temperature-dependent electric breakdown. Previously studies had shown that the electrical breakdown strength was mainly related to the temperature-dependent elasticity modulus and the permittivity of dielectric substances. This paper investigated the influence of ambient temperature on the electric breakdown strength of DE membranes (VHB4910 3M). The electric breakdown experiment of the DE membrane was conducted at different ambient temperatures and pre-stretch levels. The real breakdown strength was obtained by measuring the deformation and the breakdown voltage simultaneously. Then, we found that with the increase of the environment temperature, the electric breakdown strength decreased obviously. Contrarily, the high pre-stretch level led to the large electric breakdown strength. What is more, we found that the deformations of DEs were strongly dependent on the ambient temperature.

  1. A thin membrane artificial muscle rotary motor

    NASA Astrophysics Data System (ADS)

    Anderson, Iain A.; Hale, Thom; Gisby, Todd; Inamura, Tokushu; McKay, Thomas; O'Brien, Benjamin; Walbran, Scott; Calius, Emilio P.

    2010-01-01

    Desirable rotary motor attributes for robotics include the ability to develop high torque in a low mass body and to generate peak power at low rotational speeds. Electro-active polymer artificial muscles offer promise as actuator elements for robotic motors. A promising artificial muscle technology for use as a driving mechanism for rotary motion is the dielectric elastomer actuator (DEA). We present a membrane DEA motor in which phased actuation of electroded sectors of the motor membrane impart orbital motion to a central drive that turns a rotor. The motor is inherently scalable, flexible, flat, silent in operation, amenable to deposition-based manufacturing approaches, and uses relatively inexpensive materials. As a membrane it can also form part of the skin of a robot. We have investigated the torque and power of stacked membrane layers. Specific power and torque ratios when calculated using active membrane mass only were 20.8 W/kg and 4.1 Nm/kg, respectively. These numbers compare favorably with a commercially available stepper motor. Multi-membrane fabrication substantially boosts torque and power and increases the active mass of membrane relative to supporting framework. Through finite element modeling, we show the mechanisms governing the maximum torque the device can generate and how the motor can be improved.

  2. Dielectric elastomer actuator for the measurement of cell traction forces with sub-cellular resolution

    NASA Astrophysics Data System (ADS)

    Rosset, Samuel; Poulin, Alexandre; Zollinger, Alicia; Smith, Michael; Shea, Herbert

    2017-04-01

    We report on the use of dielectric elastomer actuators (DEAs) to measure the traction force field of cells with subcellular resolution. The study of cellular electrochemical and mechanical response to deformation is an important area of research, as mechanotransduction has been shown to be linked with fundamental cell functions, or the progression of diseases such as cancer or atherosclerosis. Experimental cell mechanics is based on two fundamental concepts: the ability to measure cell stiffness, and to apply controlled strains to small clusters of cells. However, there is a lack of tools capable of applying precise deformation to a small cell population while being compatible with an inverted microscope (stable focal plane, transparency, compactness, etc.). Here, we use an anisotropically prestretched silicone-based DEA to deform a soft (7.6kPa) polyacrylamide gel on which the cells are cultured. An array of micro-dots of fluorescent fibronectin is transferred on the gel by micro-contact printing and serves as attachment points for the cells. In addition, the fluorescent dots (which have a diameter of 2 μm with a spacing of 6 μm) are used during the experiment to monitor the traction forces of a single cell (or small cluster of cells). The cell locally exerts traction on the gel, thus deforming the matrix of dots. The position of dots versus time is monitored live when the cells are submitted to a uniaxial strain step. Our deformable bioreactor enables the measurement of the local stiffness of cells submitted to mechanical strain, and is fully compatible with an inverted microscope set-up.

  3. A passive autofocus system by using standard deviation of the image on a liquid lens

    NASA Astrophysics Data System (ADS)

    Rasti, Pejman; Kesküla, Arko; Haus, Henry; Schlaak, Helmut F.; Anbarjafari, Gholamreza; Aabloo, Alvo; Kiefer, Rudolf

    2015-04-01

    Today most of applications have a small camera such as cell phones, tablets and medical devices. A micro lens is required in order to reduce the size of the devices. In this paper an auto focus system is used in order to find the best position of a liquid lens without any active components such as ultrasonic or infrared. In fact a passive auto focus system by using standard deviation of the images on a liquid lens which consist of a Dielectric Elastomer Actuator (DEA) membrane between oil and water is proposed.

  4. Towards the development of active compression bandages using dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Pourazadi, S.; Ahmadi, S.; Menon, C.

    2014-06-01

    Disorders associated with the lower extremity venous system are common and significantly affect the quality of life of a large number of individuals. These disorders include orthostatic hypotension, oedema, deep vein thrombosis and a number of other conditions related to insufficient venous blood return. The common recommended treatment for these disorders is the use of hosiery compression stockings. In this research, an active compression bandage (ACB) based on the technology of dielectric elastomeric actuators (DEA) was designed, prototyped and tested. A customized calf prototype (CP) was developed to measure the pressure applied by the ACB. Experimental results performed with the CP showed that the pressure applied by the ACB could be electrically controlled to be either below or above the pressure exerted by commercially available compression stockings. An analytical model was used to provide the design criteria. A finite element model (FEM) was also developed to simulate the electromechanical behaviour of the DEA. Comparison of the experimental results with the FEM and analytical models showed that the modelling could accurately predict the behaviour of the ACB. The FEM was subsequently used to study how to improve the ACB performance by varying geometrical parameters such as the ACB thickness.

  5. Dielectric elastomer actuators used for pneumatic valve technology

    NASA Astrophysics Data System (ADS)

    Giousouf, Metin; Kovacs, Gabor

    2013-10-01

    Dielectric elastomer actuators have been investigated for applications in the field of pneumatic automation technology. We have developed different valve designs with stacked dielectric elastomer actuators and with integrated high voltage converters. The actuators were made using VHB-4910 material and a stacker machine for automated fabrication of the cylindrical actuators. Typical characteristics of pneumatic valves such as flow rate, power consumption and dynamic behaviour are presented. For valve construction the force and stroke parameters of the dielectric elastomer actuator have been measured. Further, benefits for valve applications using dielectric elastomers are shown as well as their potential operational area. Finally, challenges are discussed that are relevant for the use of elastomer actuators in valves for industrial applications.

  6. Optimization of shape control of a cantilever beam using dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Liu, Chong; Mao, Boyong; Huang, Gangting; Wu, Qichen; Xie, Shilin; Xu, Minglong

    2018-05-01

    Dielectric elastomer (DE) is a kind of smart soft material that has many advantages such as large deformation, fast response, lightweight and easy synthesis. These features make dielectric elastomer a suitable material for actuators. This article focuses on the shape control of a cantilever beam by using dielectric elastomer actuators. The shape control equation in finite element formulation of the cantilever beam partially covered with dielectric elastomer actuators is derived based on the constitutive equation of dielectric elastomer material by using Hamilton principle. The actuating forces produced by dielectric elastomer actuators depend on the number of layers, the position and the actuation voltage of dielectric elastomer actuators. First, effects of these factors on the shape control accuracy when one pair or multiple pairs of actuators are employed are simulated, respectively. The simulation results demonstrate that increasing the number of actuators or the number of layers can improve the control effect and reduce the actuation voltages effectively. Second, to achieve the optimal shape control effect, the position of the actuators and the drive voltages are all determined using a genetic algorithm. The robustness of the genetic algorithm is analyzed. Moreover, the implications of using one pair and multiple pairs of actuators to drive the cantilever beam to the expected shape are investigated. The results demonstrate that a small number of actuators with optimal placement and optimal voltage values can achieve the shape control of the beam effectively. Finally, a preliminary experimental verification of the control effect is carried out, which shows the correctness of the theoretical method.

  7. Modeling and control of a dielectric elastomer actuator

    NASA Astrophysics Data System (ADS)

    Gupta, Ujjaval; Gu, Guo-Ying; Zhu, Jian

    2016-04-01

    The emerging field of soft robotics offers the prospect of applying soft actuators as artificial muscles in the robots, replacing traditional actuators based on hard materials, such as electric motors, piezoceramic actuators, etc. Dielectric elastomers are one class of soft actuators, which can deform in response to voltage and can resemble biological muscles in the aspects of large deformation, high energy density and fast response. Recent research into dielectric elastomers has mainly focused on issues regarding mechanics, physics, material designs and mechanical designs, whereas less importance is given to the control of these soft actuators. Strong nonlinearities due to large deformation and electromechanical coupling make control of the dielectric elastomer actuators challenging. This paper investigates feed-forward control of a dielectric elastomer actuator by using a nonlinear dynamic model. The material and physical parameters in the model are identified by quasi-static and dynamic experiments. A feed-forward controller is developed based on this nonlinear dynamic model. Experimental evidence shows that this controller can control the soft actuator to track the desired trajectories effectively. The present study confirms that dielectric elastomer actuators are capable of being precisely controlled with the nonlinear dynamic model despite the presence of material nonlinearity and electromechanical coupling. It is expected that the reported results can promote the applications of dielectric elastomer actuators to soft robots or biomimetic robots.

  8. Parameters design of the dielectric elastomer spring-roll bending actuator (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Li, Jinrong; Liu, Liwu; Liu, Yanju; Leng, Jinsong

    2017-04-01

    Dielectric elastomers are novel soft smart material that could deform sustainably when subjected to external electric field. That makes dielectric elastomers promising materials for actuators. In this paper, a spring-roll actuator that would bend when a high voltage is applied was fabricated based on dielectric elastomer. Using such actuators as active parts, the flexible grippers and inchworm-inspired crawling robots were manufactured, which demonstrated some examples of applications in soft robotics. To guide the parameters design of dielectric elastomer based spring-roll bending actuators, the theoretical model of such actuators was established based on thermodynamic theories. The initial deformation and electrical induced bending angle of actuators were formulated. The failure of actuators was also analyzed considering some typical failure modes like electromechanical instability, electrical breakdown, loss of tension and maximum tolerant stretch. Thus the allowable region of actuators was determined. Then the bending angle-voltage relations and failure voltages of actuators with different parameters, including stretches of the dielectric elastomer film, number of active layers, and dimensions of spring, were investigated. The influences of each parameter on the actuator performances were discussed, providing meaningful guidance to the optical design of the spring-roll bending actuators.

  9. Artificial muscles of dielectric elastomers attached to artificial tendons of functionalized carbon fibers

    NASA Astrophysics Data System (ADS)

    Ye, Zhihang; Faisal, Md. Shahnewaz Sabit; Asmatulu, Ramazan; Chen, Zheng

    2014-03-01

    Dielectric elastomers are soft actuation materials with promising applications in robotics and biomedical de- vices. In this paper, a bio-inspired artificial muscle actuator with artificial tendons is developed for robotic arm applications. The actuator uses dielectric elastomer as artificial muscle and functionalized carbon fibers as artificial tendons. A VHB 4910 tape is used as the dielectric elastomer and PDMS is used as the bonding material to mechanically connect the carbon fibers to the elastomer. Carbon fibers are highly popular for their high electrical conductivities, mechanical strengths, and bio-compatibilities. After the acid treatments for the functionalization of carbon fibers (500 nm - 10 μm), one end of carbon fibers is spread into the PDMS material, which provides enough bonding strength with other dielectric elastomers, while the other end is connected to a DC power supply. To characterize the actuation capability of the dielectric elastomer and electrical conductivity of carbon fibers, a diaphragm actuator is fabricated, where the carbon fibers are connected to the actuator. To test the mechanical bonding between PDMS and carbon fibers, specimens of PDMS bonded with carbon fibers are fabricated. Experiments have been conducted to verify the actuation capability of the dielectric elastomer and mechanical bonding of PDMS with carbon fibers. The energy efficiency of the dielectric elastomer increases as the load increases, which can reach above 50%. The mechanical bonding is strong enough for robotic arm applications.

  10. Inflated dielectric elastomer actuator for eyeball's movements: fabrication, analysis and experiments

    NASA Astrophysics Data System (ADS)

    Liu, Yanju; Shi, Liang; Liu, Liwu; Zhang, Zhen; Leng, Jinsong

    2008-03-01

    Bio-mimetic actuators are inspired to the human or animal organ and they are aimed at replicating actions exerted by the main organic muscles. We present here an inflated dielectric Electroactive Polymer actuator based on acrylic elastomer aiming at mimicing the ocular muscular of the human eye. Two sheets of polyacrylic elastomer coated with conductive carbon grease are sticked to a rotatable backbone, which function like an agonist-antagonist configuration. When stimulating the two elastomer sheets separately, the rotatable mid-arc of the actuator is capable of rotating from -50° to 50°. Experiments shows that the inflated actuator, compared with uninflated one, performs much bigger rotating angle and more strengthened. Connected with the actuator via an elastic tensive line, the eyeball rotates around the symmetrical axes. The realization of more accurate movements and emotional expressions of our native eye system is the next step of our research and still under studied. This inflated dielectric elastomer actuator shows as well great potential application in robofish and adaptive stucture.

  11. Fiber-reinforced dielectric elastomer laminates with integrated function of actuating and sensing

    NASA Astrophysics Data System (ADS)

    Li, Tiefeng; Xie, Yuhan; Li, Chi; Yang, Xuxu; Jin, Yongbin; Liu, Junjie; Huang, Xiaoqiang

    2015-04-01

    The natural limbs of animals and insects integrate muscles, skins and neurons, providing both the actuating and sensing functions simultaneously. Inspired by the natural structure, we present a novel structure with integrated function of actuating and sensing with dielectric elastomer (DE) laminates. The structure can deform when subjected to high voltage loading and generate corresponding output signal in return. We investigate the basic physical phenomenon of dielectric elastomer experimentally. It is noted that when applying high voltage, the actuating dielectric elastomer membrane deforms and the sensing dielectric elastomer membrane changes the capacitance in return. Based on the concept, finite element method (FEM) simulation has been conducted to further investigate the electromechanical behavior of the structure.

  12. Dielectric elastomer actuators for facial expression

    NASA Astrophysics Data System (ADS)

    Wang, Yuzhe; Zhu, Jian

    2016-04-01

    Dielectric elastomer actuators have the advantage of mimicking the salient feature of life: movements in response to stimuli. In this paper we explore application of dielectric elastomer actuators to artificial muscles. These artificial muscles can mimic natural masseter to control jaw movements, which are key components in facial expressions especially during talking and singing activities. This paper investigates optimal design of the dielectric elastomer actuator. It is found that the actuator with embedded plastic fibers can avert electromechanical instability and can greatly improve its actuation. Two actuators are then installed in a robotic skull to drive jaw movements, mimicking the masseters in a human jaw. Experiments show that the maximum vertical displacement of the robotic jaw, driven by artificial muscles, is comparable to that of the natural human jaw during speech activities. Theoretical simulations are conducted to analyze the performance of the actuator, which is quantitatively consistent with the experimental observations.

  13. Design of a rotary dielectric elastomer actuator using a topology optimization method based on pairs of curves

    NASA Astrophysics Data System (ADS)

    Wang, Nianfeng; Guo, Hao; Chen, Bicheng; Cui, Chaoyu; Zhang, Xianmin

    2018-05-01

    Dielectric elastomers (DE), known as electromechanical transducers, have been widely used in the field of sensors, generators, actuators and energy harvesting for decades. A large number of DE actuators including bending actuators, linear actuators and rotational actuators have been designed utilizing an experience design method. This paper proposes a new method for the design of DE actuators by using a topology optimization method based on pairs of curves. First, theoretical modeling and optimization design are discussed, after which a rotary dielectric elastomer actuator has been designed using this optimization method. Finally, experiments and comparisons between several DE actuators have been made to verify the optimized result.

  14. Computational model of deformable lenses actuated by dielectric elastomers

    NASA Astrophysics Data System (ADS)

    Lu, Tongqing; Cai, Shengqiang; Wang, Huiming; Suo, Zhigang

    2013-09-01

    A recent design of deformable lens mimics the human eye, adjusting its focal length in response to muscle-like actuation. The artificial muscle is a membrane of a dielectric elastomer subject to a voltage. Here, we calculate the coupled and inhomogeneous deformation of the lens and the dielectric elastomer actuator by formulating a nonlinear boundary-value problem. We characterize the strain-stiffening elastomer with the Gent model and describe the voltage-induced deformation using the model of ideal dielectric elastomer. The computational predictions agree well with experimental data. We use the model to explore the space of parameters, including the prestretch of the membrane, the volume of the liquid in the lens, and the size of the dielectric elastomer actuator relative to the lens. We examine how various modes of failure limit the minimum radius of curvature.

  15. Giant voltage-induced deformation of a dielectric elastomer under a constant pressure

    NASA Astrophysics Data System (ADS)

    Godaba, Hareesh; Foo, Choon Chiang; Zhang, Zhi Qian; Khoo, Boo Cheong; Zhu, Jian

    2014-09-01

    Dielectric elastomer actuators coupled with liquid have recently been developed as soft pumps, soft lenses, Braille displays, etc. In this paper, we investigate the performance of a dielectric elastomer actuator, which is coupled with water. The experiments demonstrate that the membrane of a dielectric elastomer can achieve a giant voltage-induced area strain of 1165%, when subject to a constant pressure. Both theory and experiment show that the pressure plays an important role in determining the electromechanical behaviour. The experiments also suggest that the dielectric elastomer actuators, when coupled with liquid, may suffer mechanical instability and collapse after a large amount of liquid is enclosed by the membrane. This failure mode needs to be taken into account in designing soft actuators.

  16. Tactile feedback to the palm using arbitrarily shaped DEA

    NASA Astrophysics Data System (ADS)

    Mößinger, Holger; Haus, Henry; Kauer, Michaela; Schlaak, Helmut F.

    2014-03-01

    Tactile stimulation enhances user experience and efficiency in human machine interaction by providing information via another sensory channel to the human brain. DEA as tactile interfaces have been in the focus of research in recent years. Examples are (vibro-) tactile keyboards or Braille displays. These applications of DEA focus mainly on interfacing with the user's fingers or fingertips only - demonstrating the high spatial resolution achievable with DEA. Besides providing a high resolution, the flexibility of DEA also allows designing free form surfaces equipped with single actuators or actuator matrices which can be fitted to the surface of the human skin. The actuators can then be used to provide tactile stimuli to different areas of the body, not to the fingertips only. Utilizing and demonstrating this flexibility we designed a free form DEA pad shaped to fit into the inside of the human palm. This pad consists of four single actuators which can provide e.g. directional information such as left, right, up and down. To demonstrate the value of such free form actuators we manufactured a PC-mouse using 3d printing processes. The actuator pad is mounted on the back of the mouse, resting against the palm while operating it. Software on the PC allows control of the vibration patterns displayed by the actuators. This allows helping the user by raising attention to certain directions or by discriminating between different modes like "pick" or "manipulate". Results of first tests of the device show an improved user experience while operating the PC mouse.

  17. Development of a soft untethered robot using artificial muscle actuators

    NASA Astrophysics Data System (ADS)

    Cao, Jiawei; Qin, Lei; Lee, Heow Pueh; Zhu, Jian

    2017-04-01

    Soft robots have attracted much interest recently, due to their potential capability to work effectively in unstructured environment. Soft actuators are key components in soft robots. Dielectric elastomer actuators are one class of soft actuators, which can deform in response to voltage. Dielectric elastomer actuators exhibit interesting attributes including large voltage-induced deformation and high energy density. These attributes make dielectric elastomer actuators capable of functioning as artificial muscles for soft robots. It is significant to develop untethered robots, since connecting the cables to external power sources greatly limits the robots' functionalities, especially autonomous movements. In this paper we develop a soft untethered robot based on dielectric elastomer actuators. This robot mainly consists of a deformable robotic body and two paper-based feet. The robotic body is essentially a dielectric elastomer actuator, which can expand or shrink at voltage on or off. In addition, the two feet can achieve adhesion or detachment based on the mechanism of electroadhesion. In general, the entire robotic system can be controlled by electricity or voltage. By optimizing the mechanical design of the robot (the size and weight of electric circuits), we put all these components (such as batteries, voltage amplifiers, control circuits, etc.) onto the robotic feet, and the robot is capable of realizing autonomous movements. Experiments are conducted to study the robot's locomotion. Finite element method is employed to interpret the deformation of dielectric elastomer actuators, and the simulations are qualitatively consistent with the experimental observations.

  18. Electrostrictive Graft Elastomers and Applications

    NASA Technical Reports Server (NTRS)

    Su, J.; Harrison, J. S.; St.Clair, T. L.; Bar-Cohen, Y.; Leary, S.

    1999-01-01

    Efficient actuators that are lightweight, high performance and compact are needed to support telerobotic requirements for future NASA missions. In this work, we present a new class of electromechanically active polymers that can potentially be used as actuators to meet many NASA needs. The materials are graft elastomers that offer high strain under an applied electric field. Due to its higher mechanical modulus, this elastomer also has a higher strain energy density as compared to previously reported electrostrictive polyurethane elastomers. The dielectric, mechanical and electromechanical properties of this new electrostrictive elastomer have been studied as a function of temperature and frequency. Combined with structural analysis using x-ray diffraction and differential scanning calorimetry on the new elastomer, structure-property interrelationship and mechanisms of the electric field induced strain in the graft elastomer have also been investigated. This electroactive polymer (EAP) has demonstrated high actuation strain and high mechanical energy density. The combination of these properties with its tailorable molecular composition and excellent processability makes it attractive for a variety of actuation tasks. The experimental results and applications will be presented.

  19. Electrothermal actuation based on carbon nanotube network in silicone elastomer

    NASA Astrophysics Data System (ADS)

    Chen, L. Z.; Liu, C. H.; Hu, C. H.; Fan, S. S.

    2008-06-01

    The authors report an electrothermal actuator, which is fabricated by involving carbon nanotube network into the silicone elastomer. The actuators exhibit excellent performances as good as normal dielectric elastomer actuators while working under much lower voltages (e.g., 1.5Vmm-1). They are longitudinal actuators and there is no need for stacking or rolling sheets of materials. In addition, they can satisfy the demand of different voltage applications ranging from dozens of voltages to thousands of voltages by using different carbon nanotube loading composites. Visible maximal strain of 4.4% occurs at an electric power intensity around 0.03Wmm-3.

  20. Development of soft robots using dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Godaba, Hareesh; Wang, Yuzhe; Cao, Jiawei; Zhu, Jian

    2016-04-01

    Soft robots are gaining in popularity due to their unique attributes such as low weight, compliance, flexibility and diverse range in motion types. This paper illustrates soft robots and actuators which are developed using dielectric elastomer. These developments include a jellyfish robot, a worm like robot and artificial muscle actuators for jaw movement in a robotic skull. The jellyfish robot which employs a bulged dielectric elastomer membrane has been demonstrated too generate thrust and buoyant forces and can move effectively in water. The artificial muscle for jaw movement employs a pure shear configuration and has been shown to closely mimic the jaw motion while chewing or singing a song. Thee inchworm robot, powered by dielectric elastomer actuator can demonstrate stable movement in one-direction.

  1. Röntgen’s electrode-free elastomer actuators without electromechanical pull-in instability

    PubMed Central

    Keplinger, Christoph; Kaltenbrunner, Martin; Arnold, Nikita; Bauer, Siegfried

    2010-01-01

    Electrical actuators made from films of dielectric elastomers coated on both sides with stretchable electrodes may potentially be applied in microrobotics, tactile and haptic interfaces, as well as in adaptive optical elements. Such actuators with compliant electrodes are sensitive to the pull-in electromechanical instability, limiting operational voltages and attainable deformations. Electrode-free actuators driven by sprayed-on electrical charges were first studied by Röntgen in 1880. They withstand much higher voltages and deformations and allow for electrically clamped (charge-controlled) thermodynamic states preventing electromechanical instabilities. The absence of electrodes allows for direct optical monitoring of the actuated elastomer, as well as for designing new 3D actuator configurations and adaptive optical elements. PMID:20173097

  2. Patterning nonisometric origami in nematic elastomer sheets

    NASA Astrophysics Data System (ADS)

    Plucinsky, Paul; Kowalski, Benjamin A.; White, Timothy J.; Bhattacharya, Kaushik

    Nematic elastomers dramatically change their shape in response to diverse stimuli including light and heat. In this paper, we provide a systematic framework for the design of complex three dimensional shapes through the actuation of heterogeneously patterned nematic elastomer sheets. These sheets are composed of \\textit{nonisometric origami} building blocks which, when appropriately linked together, can actuate into a diverse array of three dimensional faceted shapes. We demonstrate both theoretically and experimentally that: 1) the nonisometric origami building blocks actuate in the predicted manner, 2) the integration of multiple building blocks leads to complex multi-stable, yet predictable, shapes, 3) we can bias the actuation experimentally to obtain a desired complex shape amongst the multi-stable shapes. We then show that this experimentally realized functionality enables a rich possible design landscape for actuation using nematic elastomers. We highlight this landscape through theoretical examples, which utilize large arrays of these building blocks to realize a desired three dimensional origami shape. In combination, these results amount to an engineering design principle, which we hope will provide a template for the application of nematic elastomers to emerging technologies.

  3. Apparatus, system, and method for providing fabric-elastomer composites as pneumatic actuators

    DOEpatents

    Martinez, Ramses V.; Whitesides, George M.

    2017-10-25

    Soft pneumatic actuators based on composites consisting of elastomers with embedded sheet or fiber structures (e.g., paper or fabric) that are flexible but not extensible are described. On pneumatic inflation, these actuators move anisotropically, based on the motions accessible by their composite structures. They are inexpensive, simple to fabricate, light in weight, and easy to actuate. This class of structure is versatile: the same principles of design lead to actuators that respond to pressurization with a wide range of motions (bending, extension, contraction, twisting, and others). Paper, when used to introduce anisotropy into elastomers, can be readily folded into three-dimensional structures following the principles of origami; these folded structures increase the stiffness and anisotropy of the elastomeric actuators, while keeping them light in weight.

  4. Transparent actuator made with few layer graphene electrode and dielectric elastomer, for variable focus lens

    NASA Astrophysics Data System (ADS)

    Hwang, Taeseon; Kwon, Hyeok-Yong; Oh, Joon-Suk; Hong, Jung-Pyo; Hong, Seung-Chul; Lee, Youngkwan; Ryeol Choi, Hyouk; Jin Kim, Kwang; Hossain Bhuiya, Mainul; Nam, Jae-Do

    2013-07-01

    A transparent dielectric elastomer actuator driven by few-layer-graphene (FLG) electrode was experimentally investigated. The electrodes were made of graphene, which was dispersed in N-methyl-pyrrolidone. The transparent actuator was fabricated from developed FLG electrodes. The FLG electrode with its sheet resistance of 0.45 kΩ/sq (80 nm thick) was implemented to mask silicone elastomer. The developed FLG-driven actuator exhibited an optical transparency of over 57% at a wavenumber of 600 nm and produced bending displacement performance ranging from 29 to 946 μm as functions of frequency and voltage. The focus variation was clearly demonstrated under actuation to study its application-feasibility in variable focus lens and various opto-electro-mechanical devices.

  5. Dependence of Actuation Strain of Dielectric Elastomer on Equi-biaxial, Pure Shear and Uniaxial Modes of Pre-stretching

    NASA Astrophysics Data System (ADS)

    Kumar, Ajeet; Ahmad, Dilshad; Patra, Karali

    2018-02-01

    A dielectric elastomer is capable of large deformation under three basic modes of deformation: equi-biaxial, pure shear and uniaxial. Pre-stretching of dielectric elastomer improves the actuation strain appreciably. Experimental results shows that pre-stretching using equal biaxial mode can result to higher actuation strain compared to other two modes of stretching, i.e., uniaxial and pure shear. However, analysis of the experimental results shows that the actuation strain is independent of the modes of pre-stretching rather it is dependent upon the thickness stretch. For same thickness stretch at a particular voltage, the actuation strain is almost similar for all pre-stretching modes. Power trend lines are obtained to predict the actuation strain at any thickness stretch for a particular voltage. The present analysis opens the door to easily design the actuators, sensors and energy harvesting devices.

  6. Model For Bending Actuators That Use Electrostrictive Graft Elastomers

    NASA Technical Reports Server (NTRS)

    Costen, Robert C.; Su, Ji; Harrison, Joycelyn S.

    2001-01-01

    Recently, it was reported that an electrostrictive graft elastomer exhibits large electric field-induced strain (4%). Combined with its high mechanical modulus, the elastomer can offer very promising electromechanical properties, in terms of output mechanical energy density, for an electroactive polymeric material. Therefore, it has been considered as one of the candidates that can be used in high performance, low mass actuation devices in many aerospace applications. Various bilayer- based bending actuators have been designed and fabricated. An analytic model based on beam theory in the strength of materials has been derived for the transverse deflection, or curvature, and the longitudinal strain of the bi-layer beam. The curvature and strain are functions of the applied voltage and the thickness, width, and Young s modulus of the active and passive layers. The model can be used to optimize the performance of electrostrictive graft elastomer-based actuators to meet the requirements of various applications. In this presentation, optimization and sensitivity studies are applied to the bending performance of such actuators.

  7. A dielectric elastomer actuator coupled with water: snap-through instability and giant deformation

    NASA Astrophysics Data System (ADS)

    Godaba, Hareesh; Foo, Choon Chiang; Zhang, Zhi Qian; Khoo, Boo Cheong; Zhu, Jian

    2015-04-01

    A dielectric elastomer actuator is one class of soft actuators which can deform in response to voltage. Dielectric elastomer actuators coupled with liquid have recently been developed as soft pumps, soft lenses, Braille displays, etc. In this paper, we conduct experiments to investigate the performance of a dielectric elastomer actuator which is coupled with water. The membrane is subject to a constant water pressure, which is found to significantly affect the electromechanical behaviour of the membrane. When the pressure is small, the membrane suffers electrical breakdown before snap-through instability, and achieves a small voltage-induced deformation. When the pressure is higher to make the membrane near the verge of the instability, the membrane can achieve a giant voltage-induced deformation, with an area strain of 1165%. When the pressure is large, the membrane suffers pressure-induced snap-through instability and may collapse due to a large amount of liquid enclosed by the membrane. Theoretical analyses are conducted to interpret these experimental observations.

  8. Novel electrode-elastomer combinations for improved performance and application of dielectric elastomers

    NASA Astrophysics Data System (ADS)

    Yuan, Wei

    Dielectric elastomers are the most promising technology for mimicking human muscles in terms of strain, stress, and work density, etc. Actuators have been fabricated based on different design concepts and configurations for applications in robotics, prosthetic devices, medical implants, pumps, and valves. However, to date these actuators have experienced high rates of failure caused by electrical shorting of the compliant electrodes through the elastomer film during electrical breakdown, which has prevented their practical application. In this thesis, single walled carbon nanotube (SWNT) thin films were employed as compliant electrodes for dielectric elastomers to reduce the rate of failure. Thanks to the high aspect ratio of the SWNTs, the electrodes maintain substantial conductance at high biaxial strains. 3M VHB acrylics can be actuated up to 200% area strain with SWNT electrodes, this matches the performance of actuators with carbon grease electrodes. During uni-directional stretching, SWNT electrodes can maintain surface conductivity up to 700% linear strain. SWNT electrodes can experience a self-clearing process under high voltage discharging and electrically isolate the electrodes around the breakdown sites when breakdown events happen. With conventional dielectric elastomer electrode materials such as carbon grease and carbon black, a single breakdown event results in a permanent loss in the actuator's functionality. In contrast, for SWNT electrodes, the SWNTs around the breakdown site will be degraded and become non-conductive. The non-conductive area expands outward until the high voltage discharging stops. As such, the opposing electrodes are prevented from coming into contact with each other and forming an electrical short and the breakdown site is electrically isolated from the remainder of the active area. Despite the existence of the breakdown sites, the dielectric elastomer will resume its functionality and avoid permanent failure. Thus, dielectric elastomers with self-clearable SWNT electrodes will be self-healable. Due to the non-uniform surface morphology of SWNT thin films as well as their low turn-on voltage for field emission, corona discharging tends to occur on the electrode surface, even without the presence of a breakdown site through the film. The corona discharging will damage the SWNT electrodes, especially in the regions where the nanotube density is low. This in turn causes the dielectric elastomer to gradually lose its function. By applying a thin coating of dielectric oil on the SWNT electrodes, the corona discharging will be quenched. Dielectric elastomers with self-clearable SWNT electrodes combined with a dielectric oil coating show much longer lifetime and more stable operation. Thus, the SWNT self-clearable electrodes endow dielectric elastomers with fault-tolerance, high dielectric breakdown strength and long lifetime actuation. For examples, VHB acrylic elastomer can achieve 340 V/mum dielectric strength and 20x longer actuation. A dielectric strength of 270 V/mum and longer than 300 minutes of continuous actuation with 50% area strain have also obtained with silicone elastomers. This addition of self-clearable fault-tolerant electrodes to dielectric elastomers transducers improves the manufacturing yield and operational reliability of these artificial muscles and pushes them closer to commercialization.

  9. Self-organized minimum-energy structures for dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Kofod, G.; Paajanen, M.; Bauer, S.

    2006-11-01

    When a stretched elastomer is laminated to a flat plastic frame, a complex shape is formed, which is termed a minimum-energy structure. It is shown how self-organized structures can be applied in the development of actuators with complex, out-of-plane actuationmodes. This unusual concept is then demonstrated in the case of dielectric elastomer actuators. Among advantages of this approach are the simplicity in manufacturing, the potential complexity and sophistication of the manufactured structures, and the general benefits of the concept when applied to other electro-mechanically active materials.

  10. Dielectric Elastomers for Fluidic and Biomedical Applications

    NASA Astrophysics Data System (ADS)

    McCoul, David James

    Dielectric elastomers have demonstrated tremendous potential as high-strain electromechanical transducers for a myriad of novel applications across all engineering disciplines. Because their soft, viscoelastic mechanical properties are similar to those of living tissues, dielectric elastomers have garnered a strong foothold in a plethora of biomedical and biomimetic applications. Dielectric elastomers consist of a sheet of stretched rubber, or elastomer, coated on both sides with compliant electrode materials; application of a voltage generates an electrostatic pressure that deforms the elastomer. They can function as soft generators, sensors, or actuators, and this last function is the focus of this dissertation. Many design configurations are possible, such as stacks, minimum energy structures, interpenetrating polymer networks, shape memory dielectric elastomers, and others; dielectric elastomers are already being applied to many fields of biomedicine. The first part of the original research presented in this dissertation details a PDMS microfluidic system paired with a dielectric elastomer stack actuator of anisotropically prestrained VHB(TM) 4910 (3M(TM)) and single-walled carbon nanotubes. These electroactive microfluidic devices demonstrated active increases in microchannel width when 3 and 4 kV were applied. Fluorescence microscopy also indicated an accompanying increase in channel depth with actuation. The cross-sectional area strains at 3 and 4 kV were approximately 2.9% and 7.4%, respectively. The device was then interfaced with a syringe pump, and the pressure was measured upstream. Linear pressure-flow plots were developed, which showed decreasing fluidic resistance with actuation, from 0.192 psi/(microL/min) at 0 kV, to 0.160 and 0.157 psi/(microL/min) at 3 and 4 kV, respectively. This corresponds to an ~18% drop in fluidic resistance at 4 kV. Active de-clogging was tested in situ with the device by introducing ~50 microm diameter PDMS microbeads and other smaller particulate debris into the system. After a channel blockage was confirmed, three actuation attempts successfully cleared the blockage. Further tests indicated that the device were biocompatible with HeLa cells at 3 kV. To our knowledge this is the first pairing of dielectric elastomers with microfluidics in a non-electroosmotic context. Applications may include adaptive microfilters, micro-peristaltic pumps, and reduced-complexity lab-on-a-chip devices. Dielectric elastomers can also be adapted to manipulate fluidic systems on a larger scale. The second part of the dissertation research reports a novel low-profile, biomimetic dielectric elastomer tubular actuator capable of actively controlling hydraulic flow. The tubular actuator has been established as a reliable tunable valve, pinching a secondary silicone tube completely shut in the absence of a fluidic pressure bias or voltage, offering a high degree of resistance against fluidic flow, and able to open and completely remove this resistance to flow with an applied low power actuation voltage. The system demonstrates a rise in pressure of ~3.0 kPa when the dielectric elastomer valve is in the passive, unactuated state, and there is a quadratic fall in this pressure with increasing actuation voltage, until ~0 kPa is reached at 2.4 kV. The device is reliable for at least 2,000 actuation cycles for voltages at or below 2.2 kV. Furthermore, modeling of the actuator and fluidic system yields results consistent with the observed experimental dependence of intrasystem pressure on input flow rate, actuator prestretch, and actuation voltage. To our knowledge, this is the first actuator of its type that can control fluid flow by directly actuating the walls of a tube. Potential applications may include an implantable artificial sphincter, part of a peristaltic pump, or a computerized valve for fluidic or pneumatic control. The final part of the dissertation presents a novel dielectric elastomer band with integrated rigid elements for the treatment of chronic acid reflux disorders. This dielectric elastomer ring actuator consists of a two-layer stack of prestretched VHB(TM) 4905 with SWCNT electrodes. Its transverse prestretch was maintained by selective rigidification of the VHB(TM) using a UV-curable, solution-processable polymer network. The actuator exhibited a maximum vertical (circumferential) actuation strain of 25% at 3.4 kV in an 24.5 g weighted isotonic setup. It also exhibited the required passive force of 0.25 N and showed a maximum force drop of 0.11 N at 3.32 kV during isometric tests at 4.5 cm. Modeling was performed to determine the prestretches necessary to achieve maximum strain while simultaneously exerting the force of 0.25 N, which corresponds to a required pinching pressure of 3.35 kPa. Modeling also determined the spacing between and number of rigid elements required. The theoretical model curves were adjusted to account for the passive rigid elements, as well as for the addition of margins; the resulting plots agrees well with experiment. The performance of the DE band is comparable to that of living muscle, and this is the first application of dielectric elastomer actuators in the design of a medical implant for the treatment of gastrointestinal disorders. Related applications that could result from this technology are very low-profile linear peristaltic pumps, artificial intestines, an artificial urethra, and artificial blood vessels.

  11. Polymeric blends for sensor and actuation dual functionality

    NASA Technical Reports Server (NTRS)

    St. Clair, Terry L. (Inventor); Harrison, Joycelyn S. (Inventor); Su, Ji (Inventor); Ounaies, Zoubeida (Inventor)

    2004-01-01

    The invention described herein supplies a new class of electroactive polymeric blend materials which offer both sensing and actuation dual functionality. The blend comprises two components, one component having a sensing capability and the other component having an actuating capability. These components should be co-processable and coexisting in a phase separated blend system. Specifically, the materials are blends of a sensing component selected from the group consisting of ferroelectric, piezoelectric, pyroelectric and photoelectric polymers and an actuating component that responds to an electric field in terms of dimensional change. Said actuating component includes, but is not limited to, electrostrictive graft elastomers, dielectric electroactive elastomers, liquid crystal electroactive elastomers and field responsive polymeric gels. The sensor functionality and actuation functionality are designed by tailoring the relative fraction of the two components. The temperature dependence of the piezoelectric response and the mechanical toughness of the dual functional blends are also tailored by the composition adjustment.

  12. Spring roll dielectric elastomer actuators for a portable force feedback glove

    NASA Astrophysics Data System (ADS)

    Zhang, Rui; Lochmatter, Patrick; Kunz, Andreas; Kovacs, Gabor

    2006-03-01

    Miniature spring roll dielectric elastomer actuators for a novel kinematic-free force feedback concept were manufactured and experimentally characterized. The actuators exhibited a maximum blocking force of 7.2 N and a displacement of 5 mm. The theoretical considerations based on the material's incompressibility were discussed in order to estimate the actuator behavior under blocked-strain activation and free-strain activation. One prototype was built for the demonstration of the proposed force feedback concept.

  13. Electromechanical response of silicone dielectric elastomers

    NASA Astrophysics Data System (ADS)

    Cârlescu, V.; Prisăcaru, G.; Olaru, D.

    2016-08-01

    This paper presents an experimental technique to investigate the electromechanical properties of silicone dielectric elastomers actuated with high DC electric fields. A non-contact measurement technique is used to capture and monitor the thickness strain (contraction) of a circular film placed between two metallic disks electrodes. Two active fillers such as silica (10, 15 and 30 wt%) and barium titanate (5 and 15 wt%) were incorporated in order to increase the actuation performance. Thickness strain was measured at HV stimuli up to 4.5 kV and showed a quadratic dependence against applied electric field indicating that the induced strain is triggered by the Maxwell effect and/or electrostriction phenomenon as reported in literature. The actuation process evidences a rapid contraction upon HV activation and a slowly relaxation when the electrodes are short-circuit due to visco-elastic nature of elastomers. A maximum of 1.22 % thickness strain was obtained at low actuating field intensity (1.5 V/pm) comparable with those reported in literature for similar dielectric elastomer materials.

  14. Lifetime of dielectric elastomer stack actuators

    NASA Astrophysics Data System (ADS)

    Lotz, Peter; Matysek, Marc; Schlaak, Helmut F.

    2011-04-01

    Dielectric elastomer stack actuators (DESA) are well suited for the use in mobile devices, fluidic applications and small electromechanical systems. Despite many improvements during the last years the long term behavior of dielectric elastomer actuators in general is not known or has not been published. The first goal of the study is to characterize the overall lifetime under laboratory conditions and to identify potential factors influencing lifetime. For this we have designed a test setup to examine 16 actuators at once. The actuators are subdivided into 4 groups each with a separate power supply and driving signal. To monitor the performance of the actuators driving voltage and current are measured continuously and additionally, the amplitude of the deformations of each actuator is measured sequentially. From our first results we conclude that lifetime of these actuators is mainly influenced by the contact material between feeding line and multilayer electrodes. So far, actuators themselves are not affected by long term actuation. With the best contact material actuators can be driven for more than 2700 h at 200 Hz with an electrical field strength of 20 V/μm. This results in more than 3 billion cycles. Actually, there are further actuators driven at 10 Hz for more than 4000 hours and still working.

  15. Stimuli-Responsive Polymers for Actuation.

    PubMed

    Zhang, Qiang Matthew; Serpe, Michael J

    2017-06-02

    A variety of stimuli-responsive polymers have been developed and used as actuators and/or artificial muscles, with the movement being driven by an external stimulus, such as electrical potential. This Review highlights actuators constructed from liquid-crystal elastomers, dielectric elastomers, ionic polymers, and conducting polymers. The Review covers recent examples of a variety of actuators generated from these materials and their utility. The mechanism of actuation will be detailed for most examples in order to stimulate possible future research, and lead to new applications and advanced applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Anticipating electrical breakdown in dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Muffoletto, Daniel P.; Burke, Kevin M.; Zirnheld, Jennifer L.

    2013-04-01

    The output strain of a dielectric elastomer actuator is directly proportional to the square of its applied electric field. However, since the likelihood of electric breakdown is elevated with an increased applied field, the maximum operating electric field of the dielectric elastomer is significantly derated in systems employing these actuators so that failure due to breakdown remains unlikely even as the material ages. In an effort to ascertain the dielectric strength so that stronger electric fields can be applied, partial discharge testing is used to assess the health of the actuator by detecting the charge that is released when localized instances of breakdown partially bridge the insulator. Pre-stretched and unstretched samples of VHB4910 tape were submerged in dielectric oil to remove external sources of partial discharges during testing, and the partial discharge patterns were recorded just before failure of the dielectric sample.

  17. Selective and directional actuation of elastomer films using chained magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Mishra, Sumeet R.; Dickey, Michael D.; Velev, Orlin D.; Tracy, Joseph B.

    2016-01-01

    We report selective and directional actuation of elastomer films utilizing magnetic anisotropy introduced by chains of Fe3O4 magnetic nanoparticles (MNPs). Under uniform magnetic fields or field gradients, dipolar interactions between the MNPs favor magnetization along the chain direction and cause selective lifting. This mechanism is described using a simple model.We report selective and directional actuation of elastomer films utilizing magnetic anisotropy introduced by chains of Fe3O4 magnetic nanoparticles (MNPs). Under uniform magnetic fields or field gradients, dipolar interactions between the MNPs favor magnetization along the chain direction and cause selective lifting. This mechanism is described using a simple model. Electronic supplementary information (ESI) available: Two videos for actuation while rotating the sample, experimental details of nanoparticle synthesis, polymer composite preparation, and alignment and bending studies, details of the theoretical model of actuation, and supplemental figures for understanding the behavior of rotating samples and results from modelling. See DOI: 10.1039/c5nr07410j

  18. A Soft Parallel Kinematic Mechanism.

    PubMed

    White, Edward L; Case, Jennifer C; Kramer-Bottiglio, Rebecca

    2018-02-01

    In this article, we describe a novel holonomic soft robotic structure based on a parallel kinematic mechanism. The design is based on the Stewart platform, which uses six sensors and actuators to achieve full six-degree-of-freedom motion. Our design is much less complex than a traditional platform, since it replaces the 12 spherical and universal joints found in a traditional Stewart platform with a single highly deformable elastomer body and flexible actuators. This reduces the total number of parts in the system and simplifies the assembly process. Actuation is achieved through coiled-shape memory alloy actuators. State observation and feedback is accomplished through the use of capacitive elastomer strain gauges. The main structural element is an elastomer joint that provides antagonistic force. We report the response of the actuators and sensors individually, then report the response of the complete assembly. We show that the completed robotic system is able to achieve full position control, and we discuss the limitations associated with using responsive material actuators. We believe that control demonstrated on a single body in this work could be extended to chains of such bodies to create complex soft robots.

  19. A numerical insight into elastomer normally closed micro valve actuation with cohesive interfacial cracking modelling

    NASA Astrophysics Data System (ADS)

    Wang, Dongyang; Ba, Dechun; Hao, Ming; Duan, Qihui; Liu, Kun; Mei, Qi

    2018-05-01

    Pneumatic NC (normally closed) valves are widely used in high density microfluidics systems. To improve actuation reliability, the actuation pressure needs to be reduced. In this work, we utilize 3D FEM (finite element method) modelling to get an insight into the valve actuation process numerically. Specifically, the progressive debonding process at the elastomer interface is simulated with CZM (cohesive zone model) method. To minimize the actuation pressure, the V-shape design has been investigated and compared with a normal straight design. The geometrical effects of valve shape has been elaborated, in terms of valve actuation pressure. Based on our simulated results, we formulate the main concerns for micro valve design and fabrication, which is significant for minimizing actuation pressures and ensuring reliable operation.

  20. Modeling of mechanical properties of stack actuators based on electroactive polymers

    NASA Astrophysics Data System (ADS)

    Tepel, Dominik; Graf, Christian; Maas, Jürgen

    2013-04-01

    Dielectric elastomers are thin polymer films belonging to the class of electroactive polymers, which are coated with compliant and conductive electrodes on each side. Under the influence of an electrical field, dielectric elastomers perform a large amount of deformation. Depending on the mechanical setup, stack and roll actuators can be realized. In this contribution the mechanical properties of stack actuators are modeled by a holistic electromechanical approach of a single actuator film, by which the model of a stack actuator without constraints can be derived. Due to the mechanical connection between the stack actuator and the application, bulges occur at the free surfaces of the EAP material, which are calculated, experimentally validated and considered in the model of the stack actuator. Finally, the analytic actuator film model as well as the stack actuator model are validated by comparison to numerical FEM-models in ANSYS.

  1. Automated manufacturing process for DEAP stack-actuators

    NASA Astrophysics Data System (ADS)

    Tepel, Dominik; Hoffstadt, Thorben; Maas, Jürgen

    2014-03-01

    Dielectric elastomers (DE) are thin polymer films belonging to the class of electroactive polymers (EAP), which are coated with compliant and conductive electrodes on each side. Due to the influence of an electrical field, dielectric elastomers perform a large amount of deformation. In this contribution a manufacturing process of automated fabricated stack-actuators based on dielectric electroactive polymers (DEAP) are presented. First of all the specific design of the considered stack-actuator is explained and afterwards the development, construction and realization of an automated manufacturing process is presented in detail. By applying this automated process, stack-actuators with reproducible and homogeneous properties can be manufactured. Finally, first DEAP actuator modules fabricated by the mentioned process are validated experimentally.

  2. Dielectric Actuation of Polymers

    NASA Astrophysics Data System (ADS)

    Niu, Xiaofan

    Dielectric polymers are widely used in a plurality of applications, such as electrical insulation, dielectric capacitors, and electromechanical actuators. Dielectric polymers with large strain deformations under an electric field are named dielectric elastomers (DE), because of their relative low modulus, high elongation at break, and outstanding resilience. Dielectric elastomer actuators (DEA) are superior to traditional transducers as a muscle-like technology: large strains, high energy densities, high coupling efficiency, quiet operation, and light weight. One focus of this dissertation is on the design of DE materials with high performance and easy processing. UV radiation curing of reactive species is studied as a generic synthesis methodology to provide a platform for material scientists to customize their own DE materials. Oligomers/monomers, crosslinkers, and other additives are mixed and cured at appropriate ratios to control the stress-strain response, suppress electromechanical instability of the resulting polymers, and provide stable actuation strains larger than 100% and energy densities higher than 1 J/g. The processing is largely simplified in the new material system by removal of the prestretching step. Multilayer stack actuators with 11% linear strain are demonstrated in a procedure fully compatible with industrial production. A multifunctional DE derivative material, bistable electroactive polymer (BSEP), is invented enabling repeatable rigid-to-rigid deformation without bulky external structures. Bistable actuation allows the polymer actuator to have two distinct states that can support external load without device failure. Plasticizers are used to lower the glass transition temperature to 45 °C. Interpenetrating polymer network structure is established inside the BSEP to suppress electromechanical instability, providing a breakdown field of 194 MV/m and a stable bistable strain as large as 228% with a 97% strain fixity. The application of BSEP in tactile display is investigated by the prototyping of a large scale refreshable Braille display device. Braille is a critical way for the vision impaired community to learn literacy and improve life quality. Current piezoelectrics-based refreshable Braille display technologies are limited to up to 1 line of Braille text, due to the bulky size of bimorph actuators. Based on the unique actuation feature of BSEP, refreshable Braille display devices up to smartphone-size have been demonstrated by polymer sheet laminates. Dots in the devices can be individually controlled via incorporated field-driven BSEP actuators and Joule heater units. A composite material consisting of silver nanowires (AgNW) embedded in a polymer substrate is brought up as a compliant electrode candidate for BSEP application. The AgNW composite is highly conductive (Rs: 10 Ω/sq) and remains conductive at strains as high as 140% (Rs: <10 3 Ω/sq). The baseline conductivity has only small changes up to 90% strain, which makes it low enough for both field driving and stretchable Joule heating. An out-of-plane bistable area strain up to 68% under Joule heating is achieved.

  3. Integrated sensing and actuation of dielectric elastomer actuator

    NASA Astrophysics Data System (ADS)

    Ye, Zhihang; Chen, Zheng

    2017-04-01

    Dielectric elastomer (DE) is a type of soft actuating material, the shape of which can be changed under electrical voltage stimuli. DE materials have great potential in applications involving energy harvesters, micro-manipulators, and adaptive optics. In this paper, a stripe DE actuator with integrated sensing and actuation is designed and fabricated, and characterized through several experiments. Considering the actuator's capacitor-like structure and its deform mechanism, detecting the actuator's displacement through the actuator's circuit feature is a potential approach. A self-sensing scheme that adds a high frequency probing signal into actuation signal is developed. A fast Fourier transform (FFT) algorithm is used to extract the magnitude change of the probing signal, and a non-linear fitting method and artificial neural network (ANN) approach are utilized to reflect the relationship between the probing signal and the actuator's displacement. Experimental results showed this structure has capability of performing self-sensing and actuation, simultaneously. With an enhanced ANN, the self-sensing scheme can achieve 2.5% accuracy.

  4. Vibrotactile display for mobile applications based on dielectric elastomer stack actuators

    NASA Astrophysics Data System (ADS)

    Matysek, Marc; Lotz, Peter; Flittner, Klaus; Schlaak, Helmut F.

    2010-04-01

    Dielectric elastomer stack actuators (DESA) offer the possibility to build actuator arrays at very high density. The driving voltage can be defined by the film thickness, ranging from 80 μm down to 5 μm and driving field strength of 30 V/μm. In this paper we present the development of a vibrotactile display based on multilayer technology. The display is used to present several operating conditions of a machine in form of haptic information to a human finger. As an example the design of a mp3-player interface is introduced. To build up an intuitive and user friendly interface several aspects of human haptic perception have to be considered. Using the results of preliminary user tests the interface is designed and an appropriate actuator layout is derived. Controlling these actuators is important because there are many possibilities to present different information, e.g. by varying the driving parameters. A built demonstrator is used to verify the concept: a high recognition rate of more than 90% validates the concept. A characterization of mechanical and electrical parameters proofs the suitability of dielectric elastomer stack actuators for the use in mobile applications.

  5. Towards fast, reliable, and manufacturable DEAs: miniaturized motor and Rupert the rolling robot

    NASA Astrophysics Data System (ADS)

    Rosset, Samuel; Shea, Herbert

    2015-04-01

    Dielectric elastomer transducers (DETs) are known for their large strains, low mass and high compliance, making them very attractive for a broad range of applications, from soft robotics to tuneable optics, or energy harvesting. However, 15 years after the first major paper in the field, commercial applications of the technology are still scarce, owing to high driving voltages, short lifetimes, slow response speed, viscoelastic drift, and no optimal solution for the compliant electrodes. At the EPFL's Microsystems for Space Technologies laboratory, we have been working on the miniaturization and manufacturability of DETs for the past 10 years. In the frame of this talk, we present our fabrication processes for high quality thin-_lm silicone membranes, and for patterning compliant electrodes on the sub mm-scale. We use either implantation of gold nano-clusters through a mask, or pad-printing of conductive rubber to precisely shape the electrodes on the dielectric membrane. Our electrodes are compliant, time stable and present strong adhesion to the membrane. The combination of low mechanical- loss elastomers with robust and precisely-defined electrodes allows for the fabrication of very fast actuators that exhibit a long lifetime. We present different applications of our DET fabrication process, such as a soft tuneable lens with a settling time smaller than 175 microseconds, a motor spinning at 1500 rpm, and a self-commutating rolling robot.

  6. Actuators Based on Liquid Crystalline Elastomer Materials

    PubMed Central

    Jiang, Hongrui; Li, Chensha; Huang, Xuezhen

    2013-01-01

    Liquid crystalline elastomers (LCEs) exhibit a number of remarkable physical effects, including the unique, high-stroke reversible mechanical actuation when triggered by external stimuli. This article reviews some recent exciting developments in the field of LCEs materials with an emphasis on their utilization in actuator applications. Such applications include artificial muscles, industrial manufacturing, health and microelectromechanical systems (MEMS). With suitable synthetic and preparation pathways and well-controlled actuation stimuli, such as heat, light, electric and magnetic field, excellent physical properties of LCE materials can be realized. By comparing the actuating properties of different systems, general relationships between the structure and the property of LCEs are discussed. How these materials can be turned into usable devices using interdisciplinary techniques is also described. PMID:23648966

  7. Actuators based on liquid crystalline elastomer materials

    NASA Astrophysics Data System (ADS)

    Jiang, Hongrui; Li, Chensha; Huang, Xuezhen

    2013-05-01

    Liquid crystalline elastomers (LCEs) exhibit a number of remarkable physical effects, including the unique, high-stroke reversible mechanical actuation when triggered by external stimuli. This article reviews some recent exciting developments in the field of LCE materials with an emphasis on their utilization in actuator applications. Such applications include artificial muscles, industrial manufacturing, health and microelectromechanical systems (MEMS). With suitable synthetic and preparation pathways and well-controlled actuation stimuli, such as heat, light, electric and magnetic fields, excellent physical properties of LCE materials can be realized. By comparing the actuating properties of different systems, general relationships between the structure and the properties of LCEs are discussed. How these materials can be turned into usable devices using interdisciplinary techniques is also described.

  8. Characterization, fabrication, and analysis of soft dielectric elastomer actuators capable of complex 3D deformation

    NASA Astrophysics Data System (ADS)

    Lai, William

    Inspired by nature, the development of soft actuators has drawn large attention to provide higher flexibility and allow adaptation to more complex environment. This thesis is focused on utilizing electroactive polymers as active materials to develop soft planar dielectric elastomer actuators capable of complex 3D deformation. The potential applications of such soft actuators are in flexible robotic arms and grippers, morphing structures and flapping wings for micro aerial vehicles. The embraces design for a freestanding actuator utilizes the constrained deformation imposed by surface stiffeners on an electroactive membrane to avert the requirement of membrane pre-stretch and the supporting frames. The proposed design increases the overall actuator flexibility and degrees-of-freedom. Actuator design, fabrication, and performance are presented for different arrangement of stiffeners. Digital images correlation technique were utilized to evaluate the in-plane finite strain components, in order to elucidate the role of the stiffeners in controlling the three dimensional deformation. It was found that a key controlling factor was the localized deformation near the stiffeners, while the rest of the membrane would follow through. A detailed finite element modeling framework was developed with a user-material subroutine, built into the ABAQUS commercial finite element package. An experimentally calibrated Neo-Hookean based material model that coupled the applied electrical field to the actuator mechanical deformation was employed. The numerical model was used to optimize different geometrical features, electrode layup and stacking sequence of actuators. It was found that by splitting the stiffeners into finer segments, the force-stroke characteristics of actuator were able to be adjusted with stiffener configuration, while keeping the overall bending stiffness. The efficacy of actuators could also be greatly improved by increasing the stiffener periodicity. The developed framework would aid in designing and optimizing the dielectric elastomer actuator configurations for 3D prescribed deformation configuration. Finally, inspired by the membrane textures of bat wings, a study of utilizing fiber reinforcement on dielectric elastomer actuators were conducted for the mechanical and the coupled electromechanical characteristics. Woven fibers were employed on the surface of actuator membrane with different pre-deformed configurations. Experimentally, actuator stiffness changes were measured for up to four orders of magnitude. The orientation of embedded fibers controlled the level and the triggered phase of stiffness changes. A trade-off between the actuator stiffness and stroke could be controlled during the fabrication stage by the fiber orientation and the prestretch level of the base elastomer membrane. A simplified model using small-strain composite laminate theory was developed and accurately predicted the composite actuator stiffness. Additionally, compliant edge stiffeners were found had to present a marked overall effect on actuator electromechanical response. The developed simplified analytical solutions using Timoshenko-bimaterial laminate solution and composite laminate theory, as well as the developed finite element framework can be utilized in addressing more complex 3D deformation patterns and their electromechanical response.

  9. Musclelike joint mechanism driven by dielectric elastomer actuator for robotic applications

    NASA Astrophysics Data System (ADS)

    Jung, Ho Sang; Cho, Kyeong Ho; Park, Jae Hyeong; Yang, Sang Yul; Kim, Youngeun; Kim, Kihyeon; Nguyen, Canh Toan; Phung, Hoa; Tien Hoang, Phi; Moon, Hyungpil; Koo, Ja Choon; Ryeol Choi, Hyouk

    2018-07-01

    The purpose of this study is to develop an artificial muscle actuator suitable for robotic applications, and to demonstrate the feasibility of applying this actuator to an arm mechanism, and controlling it delicately and smoothly like a human being. To accomplish this, we perform the procedures that integrate the soft actuator, called the single body dielectric elastomer actuator, which is very flexible and capable of high speed operation, and the displacement amplification mechanism called the sliding filament joint mechanism, which mimics the sliding filament model of human muscles. In this paper, we describe the characteristics and control method of the actuation system that consists of actuator, mechanism, and embedded controller, and show the experimental results of the closed-loop position and static stiffness control of the robotic arm application. Finally, based on the results, we evaluate the performance of this application.

  10. Asymmetric Dielectric Elastomer Composite Material

    NASA Technical Reports Server (NTRS)

    Stewart, Brian K. (Inventor)

    2014-01-01

    Embodiments of the invention provide a dielectric elastomer composite material comprising a plurality of elastomer-coated electrodes arranged in an assembly. Embodiments of the invention provide improved force output over prior DEs by producing thinner spacing between electrode surfaces. This is accomplished by coating electrodes directly with uncured elastomer in liquid form and then assembling a finished component (which may be termed an actuator) from coated electrode components.

  11. Hemispherical breathing mode speaker using a dielectric elastomer actuator.

    PubMed

    Hosoya, Naoki; Baba, Shun; Maeda, Shingo

    2015-10-01

    Although indoor acoustic characteristics should ideally be assessed by measuring the reverberation time using a point sound source, a regular polyhedron loudspeaker, which has multiple loudspeakers on a chassis, is typically used. However, such a configuration is not a point sound source if the size of the loudspeaker is large relative to the target sound field. This study investigates a small lightweight loudspeaker using a dielectric elastomer actuator vibrating in the breathing mode (the pulsating mode such as the expansion and contraction of a balloon). Acoustic testing with regard to repeatability, sound pressure, vibration mode profiles, and acoustic radiation patterns indicate that dielectric elastomer loudspeakers may be feasible.

  12. Electromechanical performance analysis of inflated dielectric elastomer membrane for micro pump applications

    NASA Astrophysics Data System (ADS)

    Saini, Abhishek; Ahmad, Dilshad; Patra, Karali

    2016-04-01

    Dielectric elastomers have received a great deal of attention recently as potential materials for many new types of sensors, actuators and future energy generators. When subjected to high electric field, dielectric elastomer membrane sandwiched between compliant electrodes undergoes large deformation with a fast response speed. Moreover, dielectric elastomers have high specific energy density, toughness, flexibility and shape processability. Therefore, dielectric elastomer membranes have gained importance to be applied as micro pumps for microfluidics and biomedical applications. This work intends to extend the electromechanical performance analysis of inflated dielectric elastomer membranes to be applied as micro pumps. Mechanical burst test and cyclic tests were performed to investigate the mechanical breakdown and hysteresis loss of the dielectric membrane, respectively. Varying high electric field was applied on the inflated membrane under different static pressure to determine the electromechanical behavior and nonplanar actuation of the membrane. These tests were repeated for membranes with different pre-stretch values. Results show that pre-stretching improves the electromechanical performance of the inflated membrane. The present work will help to select suitable parameters for designing micro pumps using dielectric elastomer membrane. However this material lacks durability in operation.This issue also needs to be investigated further for realizing practical micro pumps.

  13. Enhancement of the electromechanical transduction properties of a silicone elastomer by blending with a conjugated polymer

    NASA Astrophysics Data System (ADS)

    Carpi, F.; Gallone, G.; Galantini, F.; De Rossi, D.

    2008-03-01

    The need for high driving electric fields currently limits the diffusion of dielectric elastomer actuation in some areas of potential application, especially in the case of biomedical disciplines. A reduction of the driving fields may be achieved with new elastomers offering intrinsically superior electromechanical properties. So far, most of attempts in this direction have been focused on composites between elastomer matrixes and high-permittivity ceramic fillers, yielding to limited results. In this work, the electromechanical response of a silicone rubber (poly-dimethyl-siloxane) was improved by blending, rather than loading, the elastomer with a highly polarizable conjugated polymer (undoped poly-hexyl-thiophene). Very low percentages (1-6 wt%) of poly-hexyl-thiophene yielded both an increase of the dielectric permittivity and an unexpected reduction of the tensile elastic modulus. Both these factors contributed to a remarkable increase of the electromechanical response, which reached a maximum at 1 wt% content of conjugated polymer. This approach may lead to the development of new types of improved dielectric elastomers for actuation.

  14. High-pressure endurable flexible tactile actuator based on microstructured dielectric elastomer

    NASA Astrophysics Data System (ADS)

    Pyo, Dongbum; Ryu, Semin; Kyung, Ki-Uk; Yun, Sungryul; Kwon, Dong-Soo

    2018-02-01

    We demonstrate a robust flexible tactile actuator that is capable of working under high external pressures. The tactile actuator is based on a pyramidal microstructured dielectric elastomer layer inducing variation in both mechanical and dielectric properties. The vibrational performance of the actuator can be modulated by changing the geometric parameter of the microstructures. We evaluated the performance of the actuator under high-pressure loads up to 25 kPa, which is over the typical range of pressure applied when humans touch or manipulate objects. Due to the benefit of nonlinearity of the pyramidal structure, the actuator could maintain high mechanical output under various external pressures in the frequency range of 100-200 Hz, which is the most sensitive to vibration acceleration for human finger pads. The responses are not only fast, reversible, and highly durable under consecutive cyclic operations, but also large enough to impart perceivable vibrations for haptic feedback on practical wearable device applications.

  15. Feasibility study of an active soft catheter actuated by SMA wires

    NASA Astrophysics Data System (ADS)

    Konh, Bardia; Karimi, Saeed; Miller, Scott

    2018-03-01

    This study aims to assess the feasibility of using a combination of thin elastomer tubes and SMA wires to develop an active catheter. Cardiac catheters have been widely used in investigational and interventional procedures such as angiography, angioplasty, electro- physiology, and endocardial ablation. The commercial models manually steer inside the patient's body via internally installed pull wires. Active catheters, on the other hand, have the potential to revolutionize surgical procedures because of their computer-controlled and enhanced motion. Shape memory alloys have been used for almost a decade as a trustworthy actuator for biomedical applications. In this work, SMA wires were attached to a small pressurized elastomer tube to realize deflection. The tube was pressurized to maintain a constant stress on the SMA wires. The tip motion via actuation of SMA wires was then measured and reported. The results of this study showed that by adopting an appropriate training process for the SMA wires prior to performing the experiments and adopting an appropriate internal pressure for the elastomer tube, less external loads on SMA wires would be needed for a consistent actuation.

  16. Dielectric and Electromechanical Properties of Polyurethane and Polydimethylsiloxane Blends and their Nanocomposites

    NASA Astrophysics Data System (ADS)

    Cakmak, Enes

    Conventional means of converting electrical energy to mechanical work are generally considered too noisy and bulky for many contemporary technologies such as microrobotic, microfluidic, and haptic devices. Dielectric electroactive polymers (D-EAPs) constitude a growing class of electroactive polymers (EAP) that are capable of producing mechanica work induced by an applied electric field. D-EAPs are considered remarkably efficient and well suited for a wide range of applications, including ocean-wave energy harvesters and prosthetic devices. However, the real-world application of D-EAPs is very limited due to a number of factors, one of which is the difficulty of producing high actuation strains at acceptably low electric fields. D-EAPs are elastomeric polymers and produce large strain response induced by external electric field. The electromechanical properties of D-EAPs depend on the dielectric properties and mechanical properties of the D-EAP. In terms of dielectric behavior, these actuators require a high dielectric constant, low dielectric loss, and high dielectric strength to produce an improved actuation response. In addition to their dielectric properties, the mechanical properties of D-EAPs, such as elastic moduli and hysteresis, are also of importance. Therefore, material properties are a key feature of D-EAP technology. DE actuator materials reported in the literature cover many types of elastomers and their composites formed with dielectric fillers. Along with polymeric matrix materials, various ceramic, metal, and organic fillers have been employed in enhancing dielectric behavior of DEs. This work describes an effort to characterize elastomer blends and composites of different matrix and dielectric polymer fillers according to their dielectric, mechanical, and electromechanical responses. This dissertation focuses on the development and characterization of polymer-polymer blends and composites from a high-k polyurethane (PU) and polydimethylsiloxane (PDMS) elastomers. Two different routes were followed with respect to elastomer processing: The first is a simple solution blending of the two types of elastomers, and the second is based on preparation of composites from PU nanofiber webs and PDMS elastomer. Both the blends and the nanofiber web composites showed improved dielectric and actuation characteristics.

  17. Tunable actuation of dielectric elastomer by electromechanical loading rates

    NASA Astrophysics Data System (ADS)

    Li, Guorui; Zhang, Mingqi; Chen, Xiangping; Yang, Xuxu; Wong, Tuck-Whye; Li, Tiefeng; Huang, Zhilong

    2017-10-01

    Dielectric elastomer (DE) membranes are able to self-deform with the application of an electric field through the thickness direction. In comparison to conventional rigid counterparts, soft actuators using DE provide a variety of advantages such as high compliance, low noise, and light weight. As one of the challenges in the development of DE actuating devices, tuning the electromechanical actuating behavior is crucial in order to achieve demanded loading paths and to avoid electromechanical failures. In this paper, our experimental results show that the electromechanical loading conditions affect the actuating behaviors of the DE. The electrical actuating force can be tuned by 29.4% with the control of the electrical charging rate. In addition, controllable actuations have been investigated by the mechanical model in manipulating the electromechanical loading rate. The calculated results agree well with the experimental data. Lastly, it is believed that the mechanisms of controlling the electromechanical loading rate may serve as a guide for the design of DE devices and high performance soft robots in the near future.

  18. Dielectric elastomer actuators for octopus inspired suction cups.

    PubMed

    Follador, M; Tramacere, F; Mazzolai, B

    2014-09-25

    Suction cups are often found in nature as attachment strategy in water. Nevertheless, the application of the artificial counterpart is limited by the dimension of the actuators and their usability in wet conditions. A novel design for the development of a suction cup inspired by octopus suckers is presented. The main focus of this research was on the modelling and characterization of the actuation unit, and a first prototype of the suction cup was realized as a proof of concept. The actuation of the suction cup is based on dielectric elastomer actuators. The presented device works in a wet environment, has an integrated actuation system, and is soft. The dimensions of the artificial suction cups are comparable to proximal octopus suckers, and the attachment mechanism is similar to the biological counterpart. The design approach proposed for the actuator allows the definition of the parameters for its development and for obtaining a desired pressure in water. The fabricated actuator is able to produce up to 6 kPa of pressure in water, reaching the maximum pressure in less than 300 ms.

  19. Robust control of dielectric elastomer diaphragm actuator for human pulse signal tracking

    NASA Astrophysics Data System (ADS)

    Ye, Zhihang; Chen, Zheng; Asmatulu, Ramazan; Chan, Hoyin

    2017-08-01

    Human pulse signal tracking is an emerging technology that is needed in traditional Chinese medicine. However, soft actuation with multi-frequency tracking capability is needed for tracking human pulse signal. Dielectric elastomer (DE) is one type of soft actuating that has great potential in human pulse signal tracking. In this paper, a DE diaphragm actuator was designed and fabricated to track human pulse pressure signal. A physics-based and control-oriented model has been developed to capture the dynamic behavior of DE diaphragm actuator. Using the physical model, an H-infinity robust control was designed for the actuator to reject high-frequency sensing noises and disturbances. The robust control was then implemented in real-time to track a multi-frequency signal, which verified the tracking capability and robustness of the control system. In the human pulse signal tracking test, a human pulse signal was measured at the City University of Hong Kong and then was tracked using DE actuator at Wichita State University in the US. Experimental results have verified that the DE actuator with its robust control is capable of tracking human pulse signal.

  20. Self-sensing of dielectric elastomer actuator enhanced by artificial neural network

    NASA Astrophysics Data System (ADS)

    Ye, Zhihang; Chen, Zheng

    2017-09-01

    Dielectric elastomer (DE) is a type of soft actuating material, the shape of which can be changed under electrical voltage stimuli. DE materials have promising usage in future’s soft actuators and sensors, such as soft robotics, energy harvesters, and wearable sensors. In this paper, a stripe DE actuator with integrated sensing capability is designed, fabricated, and characterized. Since the strip actuator can be approximated as a compliant capacitor, it is possible to detect the actuator’s displacement by analyzing the actuator’s impedance change. An integrated sensing scheme that adds a high frequency probing signal into actuation signal is developed. Electrical impedance changes in the probing signal are extracted by fast Fourier transform algorithm, and nonlinear data fitting methods involving artificial neural network are implemented to detect the actuator’s displacement. A series of experiments show that by improving data processing and analyzing methods, the integrated sensing method can achieve error level of lower than 1%.

  1. Effect of organo-clay on the dielectric relaxation response of silicone rubber

    NASA Astrophysics Data System (ADS)

    Gharavi, N.; Razzaghi-Kashani, M.; Golshan-Ebrahimi, N.

    2010-02-01

    Dielectric elastomers are light weight, low-cost, highly deformable and fast response smart materials capable of converting electrical energy into mechanical work or vice versa. Silicone rubber is a well-known dielectric elastomer which is used as actuator, and in order to enhance the efficiency of this smart material, compounding of silicone rubber with various fillers can be carried out. The effect of organically modified montmorillonite (OMMT) nano-clay on improvement of dielectric properties, actuation stress and its relaxation response was considered in this study. OMMT was dispersed in room temperature vulcanized (RTV) silicone rubber, and a composite film was cast. Using an in-house actuation set-up, it was shown that the actuation stress for a given electric field intensity is higher for composites than that for pristine silicone rubber. Also, the time-dependent actuation response of the samples was evaluated, and it was shown that the characteristic relaxation time of the actuation stress for composites is less than for the pristine rubber as a result of OMMT addition.

  2. Polar Elastomers as Novel Materials for Electromechanical Actuator Applications.

    PubMed

    Opris, Dorina M

    2018-02-01

    Dielectric elastomer actuators are stretchable capacitors capable of a musclelike actuation when charged. They will one day be used to replace malfunctioning muscles supposing the driving voltage can be reduced below 24 V. This focus here is on polar dielectric elastomers and their behavior under an electric field. Emphasis is placed on all the features that are correlated with the molecular structure, its synthetic realization, and its impact on properties. Regarding the polymer class, the focus, to some degree, is on polysiloxanes because of their attractively low glass transition temperatures. This enables introduction of highly polar groups to the backbone while maintaining soft elastic properties. The goal is to provide a few guidelines for future research in this emerging field that may be useful for those considering entering this fascinating endeavor. Because of the large number of materials available, a few restrictions in the selection have to be applied. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Near-infrared light-controlled tunable grating based on graphene/elastomer composites

    NASA Astrophysics Data System (ADS)

    Wang, Fei; Jia, Shuhai; Wang, Yonglin; Tang, Zhenhua

    2018-02-01

    A near-infrared (nIR) light actuated tunable transmission optical grating based on graphene nanoplatelet (GNP)/polydimethylsiloxane (PDMS) and PDMS is proposed. A simple fabrication protocol is studied that allows integration of the grating with the actuation mechanism; both components are made from soft elastomers, and this ensure the tunability and the light-driven operation of the grating. The resulting grating structure demonstrates continuous period tunability of 2.7% under an actuation power density of 220 mW cm-2 within a period of 3 s and also demonstrates a time-independent characteristic. The proposed infrared activated grating can be developed for wireless remote light splitting in bio/chemical sensing and optical telecommunications applications.

  4. Soft Dielectric Elastomer Oscillators Driving Bioinspired Robots.

    PubMed

    Henke, E-F Markus; Schlatter, Samuel; Anderson, Iain A

    2017-12-01

    Entirely soft robots with animal-like behavior and integrated artificial nervous systems will open up totally new perspectives and applications. To produce them, we must integrate control and actuation in the same soft structure. Soft actuators (e.g., pneumatic and hydraulic) exist but electronics are hard and stiff and remotely located. We present novel soft, electronics-free dielectric elastomer oscillators, which are able to drive bioinspired robots. As a demonstrator, we present a robot that mimics the crawling motion of the caterpillar, with an integrated artificial nervous system, soft actuators and without any conventional stiff electronic parts. Supplied with an external DC voltage, the robot autonomously generates all signals that are necessary to drive its dielectric elastomer actuators, and it translates an in-plane electromechanical oscillation into a crawling locomotion movement. Therefore, all functional and supporting parts are made of polymer materials and carbon. Besides the basic design of this first electronic-free, biomimetic robot, we present prospects to control the general behavior of such robots. The absence of conventional stiff electronics and the exclusive use of polymeric materials will provide a large step toward real animal-like robots, compliant human machine interfaces, and a new class of distributed, neuron-like internal control for robotic systems.

  5. Nonlinear dynamic characteristics of dielectric elastomer membranes

    NASA Astrophysics Data System (ADS)

    Fox, Jason W.; Goulbourne, Nakhiah C.

    2008-03-01

    The dynamic response of dielectric elastomer membranes subject to time-varying voltage inputs for various initial inflation states is investigated. These results provide new insight into the differences observed between quasi-static and dynamic actuation and presents a new challenge to modeling efforts. Dielectric elastomer membranes are a potentially enabling technology for soft robotics and biomedical devices such as implants and surgical tools. In this work, two key system parameters are varied: the chamber volume and the voltage signal offset. The chamber volume experiments reveal that increasing the size of the chamber onto which the membrane is clamped will increase the deformations as well as cause the membrane's resonance peaks to shift and change in number. For prestretched dielectric elastomer membranes at the smallest chamber volume, the maximum actuation displacement is 81 microns; while at the largest chamber volume, the maximum actuation displacement is 1431 microns. This corresponds to a 1767% increase in maximum pole displacement. In addition, actuating the membrane at the resonance frequencies provides hundreds of percent increase in strain compared to the quasi-static strain. Adding a voltage offset to the time-varying input signal causes the membrane to oscillate at two distinct frequencies rather than one and also presents a unique opportunity to increase the output displacement without electrically overloading the membrane. Experiments to capture the entire motion of the membrane reveal that classical membrane mode shapes are electrically generated although all points of the membrane do not pass through equilibrium at the same moments in time.

  6. Stacking Nematic Elastomers for Artificial Muscle Applications

    DTIC Science & Technology

    2006-04-01

    nematic to isotropic phase transition. In this eport, a new approach is introduced by layering liquid crystal elastomer films to create thermally...actuated stacks. A heating element and thermally onductive grease embedded between elastomer films provide a means for rapid internal heat application...voltage application, stacks composed f two 100 m-thick films and a single heating element produce 18% strain between contracted and relaxed states. In

  7. Modeling of electrically actuated elastomer structures for electro-optical modulation

    NASA Astrophysics Data System (ADS)

    Kluge, Christian; Galler, Nicole; Ditlbacher, Harald; Gerken, Martina

    2011-02-01

    A transparent elastomer layer sandwiched between two metal electrodes deforms upon voltage application due to electrostatic forces. This structure can be used as tunable waveguide. We investigate structures of a polydimethylsiloxane (PDMS) layer with 1-30 μm thickness and 40 nm gold electrodes. For extended electrodes the effect size may be calculated analytically as a function of the Poisson ratio. A fully coupled finite-element method (FEM) is used for calculation of the position-dependent deformation in case of structured electrodes. Different geometries are compared concerning actuation effect size and homogeneity. Structuring of the top electrode results in high effect magnitude, but non-uniform deformation concentrated at the electrode edges. Structured bottom electrodes provide good compromise between effect size and homogeneity for electrode widths of 2.75 times the elastomer thickness.

  8. Highly Stretchable and UV Curable Elastomers for Digital Light Processing Based 3D Printing.

    PubMed

    Patel, Dinesh K; Sakhaei, Amir Hosein; Layani, Michael; Zhang, Biao; Ge, Qi; Magdassi, Shlomo

    2017-04-01

    Stretchable UV-curable (SUV) elastomers can be stretched by up to 1100% and are suitable for digital-light-processing (DLP)-based 3D-printing technology. DLP printing of these SUV elastomers enables the direct creation of highly deformable complex 3D hollow structures such as balloons, soft actuators, grippers, and buckyball electronical switches. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Opto-mechanical analysis of nonlinear elastomer membrane deformation under hydraulic pressure for variable-focus liquid-filled microlenses.

    PubMed

    Choi, Seung Tae; Son, Byeong Soo; Seo, Gye Won; Park, Si-Young; Lee, Kyung-Sick

    2014-03-10

    Nonlinear large deformation of a transparent elastomer membrane under hydraulic pressure was analyzed to investigate its optical performance for a variable-focus liquid-filled membrane microlens. In most membrane microlenses, actuators control the hydraulic pressure of optical fluid so that the elastomer membrane together with the internal optical fluid changes its shape, which alters the light path of the microlens to adapt its optical power. A fluid-structure interaction simulation was performed to estimate the transient behavior of the microlens under the operation of electroactive polymer actuators, demonstrating that the viscosity of the optical fluid successfully stabilizes the fluctuations within a fairly short period of time during dynamic operations. Axisymmetric nonlinear plate theory was used to calculate the deformation profile of the membrane under hydrostatic pressure, with which optical characteristics of the membrane microlens were estimated. The effects of gravitation and viscoelastic behavior of the elastomer membrane on the optical performance of the membrane microlens were also evaluated with finite element analysis.

  10. A Highly Tunable Silicone-Based Magnetic Elastomer with Nanoscale Homogeneity

    PubMed Central

    Evans, Benjamin A.; Fiser, Briana L.; Prins, Willem J.; Rapp, Daniel J.; Shields, Adam R.; Glass, Daniel R.; Superfine, R.

    2011-01-01

    Magnetic elastomers have been widely pursued for sensing and actuation applications. Silicone-based magnetic elastomers have a number of advantages over other materials such as hydrogels, but aggregation of magnetic nanoparticles within silicones is difficult to prevent. Aggregation inherently limits the minimum size of fabricated structures and leads to non-uniform response from structure to structure. We have developed a novel material which is a complex of a silicone polymer (polydimethylsiloxane-co-aminopropylmethylsiloxane) adsorbed onto the surface of magnetite (γ-Fe203) nanoparticles 7–10 nm in diameter. The material is homogenous at very small length scales (< 100 nm) and can be crosslinked to form a flexible, magnetic material which is ideally suited for the fabrication of micro- to nanoscale magnetic actuators. The loading fraction of magnetic nanoparticles in the composite can be varied smoothly from 0 – 50% wt. without loss of homogeneity, providing a simple mechanism for tuning actuator response. We evaluate the material properties of the composite across a range of nanoparticle loading, and demonstrate a magnetic-field-induced increase in compressive modulus as high as 300%. Furthermore, we implement a strategy for predicting the optimal nanoparticle loading for magnetic actuation applications, and show that our predictions correlate well with experimental findings. PMID:22184482

  11. A Highly Tunable Silicone-Based Magnetic Elastomer with Nanoscale Homogeneity.

    PubMed

    Evans, Benjamin A; Fiser, Briana L; Prins, Willem J; Rapp, Daniel J; Shields, Adam R; Glass, Daniel R; Superfine, R

    2012-02-01

    Magnetic elastomers have been widely pursued for sensing and actuation applications. Silicone-based magnetic elastomers have a number of advantages over other materials such as hydrogels, but aggregation of magnetic nanoparticles within silicones is difficult to prevent. Aggregation inherently limits the minimum size of fabricated structures and leads to non-uniform response from structure to structure. We have developed a novel material which is a complex of a silicone polymer (polydimethylsiloxane-co-aminopropylmethylsiloxane) adsorbed onto the surface of magnetite (γ-Fe(2)0(3)) nanoparticles 7-10 nm in diameter. The material is homogenous at very small length scales (< 100 nm) and can be crosslinked to form a flexible, magnetic material which is ideally suited for the fabrication of micro- to nanoscale magnetic actuators. The loading fraction of magnetic nanoparticles in the composite can be varied smoothly from 0 - 50% wt. without loss of homogeneity, providing a simple mechanism for tuning actuator response. We evaluate the material properties of the composite across a range of nanoparticle loading, and demonstrate a magnetic-field-induced increase in compressive modulus as high as 300%. Furthermore, we implement a strategy for predicting the optimal nanoparticle loading for magnetic actuation applications, and show that our predictions correlate well with experimental findings.

  12. Fabrication Process of Silicone-based Dielectric Elastomer Actuators

    PubMed Central

    Rosset, Samuel; Araromi, Oluwaseun A.; Schlatter, Samuel; Shea, Herbert R.

    2016-01-01

    This contribution demonstrates the fabrication process of dielectric elastomer transducers (DETs). DETs are stretchable capacitors consisting of an elastomeric dielectric membrane sandwiched between two compliant electrodes. The large actuation strains of these transducers when used as actuators (over 300% area strain) and their soft and compliant nature has been exploited for a wide range of applications, including electrically tunable optics, haptic feedback devices, wave-energy harvesting, deformable cell-culture devices, compliant grippers, and propulsion of a bio-inspired fish-like airship. In most cases, DETs are made with a commercial proprietary acrylic elastomer and with hand-applied electrodes of carbon powder or carbon grease. This combination leads to non-reproducible and slow actuators exhibiting viscoelastic creep and a short lifetime. We present here a complete process flow for the reproducible fabrication of DETs based on thin elastomeric silicone films, including casting of thin silicone membranes, membrane release and prestretching, patterning of robust compliant electrodes, assembly and testing. The membranes are cast on flexible polyethylene terephthalate (PET) substrates coated with a water-soluble sacrificial layer for ease of release. The electrodes consist of carbon black particles dispersed into a silicone matrix and patterned using a stamping technique, which leads to precisely-defined compliant electrodes that present a high adhesion to the dielectric membrane on which they are applied. PMID:26863283

  13. Tailoring Dielectric and Actuated Properties of Elastomer Composites by Bioinspired Poly(dopamine) Encapsulated Graphene Oxide.

    PubMed

    Ning, Nanying; Ma, Qin; Liu, Suting; Tian, Ming; Zhang, Liqun; Nishi, Toshio

    2015-05-27

    In this study, we obtained dielectric elastomer composites with controllable dielectric and actuated properties by using a biomimetic method. We used dopamine (DA) to simultaneously coat the graphene oxide (GO) and partially reduce GO by self-polymerization of DA on GO. The poly(dopamine) (PDA) coated GO (GO-PDA) was assembled around rubber latex particles by hydrogen bonding interaction between carboxyl groups of carboxylated nitrile rubber (XNBR) and imino groups or phenolic hydroxyl groups of GO-PDA during latex compounding, forming a segregated GO-PDA network at a low percolation threshold. The results showed that the introduction of PDA on GO prevented the restack of GO in the matrix. The dielectric and actuated properties of the composites depend on the thickness of PDA shell. The dielectric loss and the elastic modulus decrease, and the breakdown strength increases with increasing the thickness of PDA shell. The maximum actuated strain increases from 1.7% for GO/XNBR composite to 4.4% for GO-PDA/XNBR composites with the PDA thickness of about 5.4 nm. The actuated strain at a low electric field (2 kV/mm) obviously increases from 0.2% for pure XNBR to 2.3% for GO-PDA/XNBR composite with the PDA thickness of 1.1 nm, much higher than that of other DEs reported in previous studies. Thus, we successfully obtained dielectric composites with low dielectric loss and improved breakdown strength and actuated strain at a low electric field, facilitating the wide application of dielectric elastomers.

  14. A novel application of dielectric stack actuators: a pumping micromixer

    NASA Astrophysics Data System (ADS)

    Solano-Arana, Susana; Klug, Florian; Mößinger, Holger; Förster-Zügel, Florentine; Schlaak, Helmut F.

    2018-07-01

    The fabrication of pumping micromixers as a novel application of dielectric stack actuators is proposed in this work. DEA micromixers can be valuable for medical and pharmaceutical applications, due to: firstly, the biocompatibility of the used materials (PDMS and graphite); secondly, the pumping is done with peristaltic movements, allowing only the walls of the channel to be in contact with the liquid, avoiding possible contamination from external parts; and thirdly, the low flow velocity in the micromixers required in many applications. The micromixer based on peristasltic movements will not only mix, but also pump the fluids in and out the device. The developed device is a hybrid micromixer: active, because it needs a voltage source to enhance the quality and speed of the mixing; and passive, with a similar shape to the well-known Y-type micromixers. The proposed micromixer is based on twelve stack actuators distributed in: two pumping chambers, consisting of four stack actuators in series; and a mixing chamber, made of four consecutive stack actuators with 30 layers per stack. The DEA micromixer is able to mix two solutions with a flow rate of 21.5 μl min–1 at the outlet, applying 1500 V at 10 Hz and actuating two actuators at a time.

  15. Preparation and Characterizing of PANI/PDMS Elastomer for Artificial Muscles

    NASA Astrophysics Data System (ADS)

    Zhang, Yiyang; Zhang, Jie; Wang, Genlin; Zhang, Ming; Luo, Zhiwei

    2018-01-01

    A dielectric elastomer has been synthesized using organic soluble PANI and PDMS through solution blending method for applications as artificial muscles. The dielectric constant of PANI/PDMS composite reached 4.82 with a filling amount of 0.8 wt.%, which was 2.24 times of pure silicone, due to the dipole polarization in matrix network and electron polarization in conductive polyaniline. The actuated strain of 0.8w.t % PANI/PDMS was 16.57% compared to 8.52% of pure silicone at an electric field of 10V/μm, and can be applied as a soft actuator.

  16. Centrifugal forming and mechanical properties of silicone-based elastomers for soft robotic actuators

    NASA Astrophysics Data System (ADS)

    Kulkarni, Parth

    This thesis describes the centrifugal forming and resulting mechanical properties of silicone-based elastomers for the manufacture of soft robotic actuators. This process is effective at removing bubbles that get entrapped within 3D-printed, enclosed molds. Conventional methods for rapid prototyping of soft robotic actuators to remove entrapped bubbles typically involve degassing under vacuum, with open-faced molds that limit the layout of formed parts to raised 2D geometries. As the functionality and complexity of soft robots increase, there is a need to mold complete 3D structures with controlled thicknesses or curvatures on multiples surfaces. In addition, characterization of the mechanical properties of common elastomers for these soft robots has lagged the development of new designs. As such, relationships between resulting material properties and processing parameters are virtually non-existent. One of the goals of this thesis is to provide guidelines and physical insights to relate the design, processing conditions, and resulting properties of soft robotic components to each other. Centrifugal forming with accelerations on the order of 100 g's is capable of forming bubble-free, true 3D components for soft robotic actuators, and resulting demonstrations in this work include an aquatic locomotor, soft gripper, and an actuator that straightens when pressurized. Finally, this work shows that the measured mechanical properties of 3D geometries fabricated within enclosed molds through centrifugal forming possess comparable mechanical properties to vacuumed materials formed from open-faced molds with raised 2D features.

  17. Numerical study on the electromechanical behavior of dielectric elastomer with the influence of surrounding medium

    NASA Astrophysics Data System (ADS)

    Jia; Lu

    2016-01-01

    The considerable electric-induced shape change, together with the attributes of lightweight, high efficiency, and inexpensive cost, makes dielectric elastomer, a promising soft active material for the realization of actuators in broad applications. Although, a number of prototype devices have been demonstrated in the past few years, the further development of this technology necessitates adequate analytical and numerical tools. Especially, previous theoretical studies always neglect the influence of surrounding medium. Due to the large deformation and nonlinear equations of states involved in dielectric elastomer, finite element method (FEM) is anticipated; however, the few available formulations employ homemade codes, which are inconvenient to implement. The aim of this work is to present a numerical approach with the commercial FEM package COMSOL to investigate the nonlinear response of dielectric elastomer under electric stimulation. The influence of surrounding free space on the electric field is analyzed and the corresponding electric force is taken into account through an electric surface traction on the circumstances edge. By employing Maxwell stress tensor as actuation pressure, the mechanical and electric governing equations for dielectric elastomer are coupled, and then solved simultaneously with the Gent model of stain energy to derive the electric induced large deformation as well as the electromechanical instability. The finite element implementation presented here may provide a powerful computational tool to help design and optimize the engineering applications of dielectric elastomer.

  18. Magnetic properties of hybrid elastomers with magnetically hard fillers: rotation of particles

    NASA Astrophysics Data System (ADS)

    Stepanov, G. V.; Borin, D. Yu; Bakhtiiarov, A. V.; Storozhenko, P. A.

    2017-03-01

    Hybrid magnetic elastomers belonging to the family of magnetorheological elastomers contain magnetically hard components and are of the utmost interest for the development of semiactive and active damping devices as well as actuators and sensors. The processes of magnetizing of such elastomers are accompanied by structural rearrangements inside the material. When magnetized, the elastomer gains its own magnetic moment resulting in changes of its magneto-mechanical properties, which remain permanent, even in the absence of external magnetic fields. Influenced by the magnetic field, magnetized particles move inside the matrix forming chain-like structures. In addition, the magnetically hard particles can rotate to align their magnetic moments with the new direction of the external field. Such an elastomer cannot be demagnetized by the application of a reverse field.

  19. Dielectric elastomer membranes undergoing inhomogeneous deformation

    NASA Astrophysics Data System (ADS)

    He, Tianhu; Zhao, Xuanhe; Suo, Zhigang

    2009-10-01

    Dielectric elastomers are capable of large deformation subject to an electric voltage and are promising for use as actuators, sensors, and generators. Because of large deformation, nonlinear equations of states, and diverse modes of failure, modeling the process of electromechanical transduction has been challenging. This paper studies a membrane of a dielectric elastomer deformed into an out-of-plane axisymmetric shape, a configuration used in a family of commercial devices known as the universal muscle actuators. The kinematics of deformation and charging, together with thermodynamics, leads to equations that govern the state of equilibrium. Numerical results indicate that the field in the membrane can be very inhomogeneous, and that the membrane is susceptible to several modes of failure, including electrical breakdown, loss of tension, and rupture by stretch. Care is needed in the design to balance the requirements of averting various modes of failure while using the material efficiently.

  20. Development of dielectric elastomer nanocomposites as stretchable actuating materials

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Sun, L. Z.

    2017-10-01

    Dielectric elastomer nanocomposites (DENCs) filled with multi-walled carbon nanotubes are developed. The electromechanical responses of DENCs to applied electric fields are investigated through laser Doppler vibrometry. It is found that a small amount of carbon nanotube fillers can effectively enhance the electromechanical performance of DENCs. The enhanced electromechanical properties have shown not only that the desired thickness strain can be achieved with reduced required electric fields but also that significantly large thickness strain can be obtained with any electric fields compared to pristine dielectric elastomers.

  1. Development of a spined underwater biomimetic vehicle with SMA actuators

    NASA Astrophysics Data System (ADS)

    Rediniotis, Othon K.; Lagoudas, Dimitris C.; Garner, Luke J.; Wilson, Larry N.

    1999-06-01

    We present here our progress towards the development of a type of biomimetic active hydrofoil that utilizes Shape Memory Alloy (SMA) actuator technology. The actuation is presently applied to the control of hydrodynamic forces and moments, including thrust generation, on a 2D hydrofoil. The SMA actuation elements are two sets of thin wires (0.015' to 0.027') on either side of an elastomer element that provides the main structural support. Controlled heating and cooling of the two wire sets generates bi-directional bending of the elastomer, which in turn deflects (for quasi-static control) or oscillates (for thrust generation) the trailing edge of the hydrofoil. The aquatic environment of the hydrofoil lends itself to cooling schemes that utilize the excellent heat transfer properties of water. The SMA actuator was able to deflect the trailing edge by +/- 5 degree(s) at rates as high as 2 Hz. FEM modeling of hydrofoil response to thermoelectric heating has been carried out using a thermomechanical constitutive model for SMAs. FEM predictions are compared with experimental measurements.

  2. Switchable adhesion for wafer-handling based on dielectric elastomer stack transducers

    NASA Astrophysics Data System (ADS)

    Grotepaß, T.; Butz, J.; Förster-Zügel, F.; Schlaak, H. F.

    2016-04-01

    Vacuum grippers are often used for the handling of wafers and small devices. In order to evacuate the gripper, a gas flow is created that can harm the micro structures on the wafer. A promising alternative to vacuum grippers could be adhesive grippers with switchable adhesion. There have been some publications of gecko-inspired adhesive devices. Most of these former works consist of a structured surface which adheres to the object manipulated and an actuator for switching the adhesion. Until now different actuator principles have been investigated, like smart memory alloys and pneumatics. In this work for the first time dielectric elastomer stack transducers (DEST) are combined with a structured surface. DESTs are a promising new transducer technology with many applications in different industry sectors like medical devices, human-machine-interaction and soft robotics. Stacked dielectric elastomer transducers show thickness contraction originating from the electromechanical pressure of two compliant electrodes compressing an elastomeric dielectric when a voltage is applied. Since DESTs and the adhesive surfaces previously described are made of elastomers, it is self-evident to combine both systems in one device. The DESTs are fabricated by a spin coating process. If the flat surface of the spinning carrier is substituted for example by a perforated one, the structured elastomer surface and the DEST can be fabricated in one process. By electrical actuation the DEST contracts and laterally expands which causes the gecko-like cilia to adhere on the object to manipulate. This work describes the assembly and the experimental results of such a device using switchable adhesion. It is intended to be used for the handling of glass wafers.

  3. Thermally Driven Photonic Actuator Based on Silica Opal Photonic Crystal with Liquid Crystal Elastomer.

    PubMed

    Xing, Huihui; Li, Jun; Shi, Yang; Guo, Jinbao; Wei, Jie

    2016-04-13

    We have developed a novel thermoresponsive photonic actuator based on three-dimensional SiO2 opal photonic crystals (PCs) together with liquid crystal elastomers (LCEs). In the process of fabrication of such a photonic actuator, the LCE precursor is infiltrated into the SiO2 opal PC followed by UV light-induced photopolymerization, thereby forming the SiO2 opal PC/LCE composite film with a bilayer structure. We find that this bilayer composite film simultaneously exhibits actuation behavior as well as the photonic band gap (PBG) response to external temperature variation. When the SiO2 opal PC/LCE composite film is heated, it exhibits a considerable bending deformation, and its PBG shifts to a shorter wavelength at the same time. In addition, this actuation is quite fast, reversible, and highly repeatable. The thermoresponsive behavior of the SiO2 opal PC/LCE composite films mainly derives from the thermal-driven change of nematic order of the LCE layer which leads to the asymmetric shrinkage/expansion of the bilayer structure. These results will be of interest in designing optical actuator systems for environment-temperature detection.

  4. Layered liquid crystal elastomer actuators.

    PubMed

    Guin, Tyler; Settle, Michael J; Kowalski, Benjamin A; Auguste, Anesia D; Beblo, Richard V; Reich, Gregory W; White, Timothy J

    2018-06-28

    Liquid crystalline elastomers (LCEs) are soft, anisotropic materials that exhibit large shape transformations when subjected to various stimuli. Here we demonstrate a facile approach to enhance the out-of-plane work capacity of these materials by an order of magnitude, to nearly 20 J/kg. The enhancement in force output is enabled by the development of a room temperature polymerizable composition used both to prepare individual films, organized via directed self-assembly to retain arrays of topological defect profiles, as well as act as an adhesive to combine the LCE layers. The material actuator is shown to displace a load >2500× heavier than its own weight nearly 0.5 mm.

  5. A Recipe for Soft Fluidic Elastomer Robots

    PubMed Central

    Marchese, Andrew D.; Katzschmann, Robert K.

    2015-01-01

    Abstract This work provides approaches to designing and fabricating soft fluidic elastomer robots. That is, three viable actuator morphologies composed entirely from soft silicone rubber are explored, and these morphologies are differentiated by their internal channel structure, namely, ribbed, cylindrical, and pleated. Additionally, three distinct casting-based fabrication processes are explored: lamination-based casting, retractable-pin-based casting, and lost-wax-based casting. Furthermore, two ways of fabricating a multiple DOF robot are explored: casting the complete robot as a whole and casting single degree of freedom (DOF) segments with subsequent concatenation. We experimentally validate each soft actuator morphology and fabrication process by creating multiple physical soft robot prototypes. PMID:27625913

  6. A Recipe for Soft Fluidic Elastomer Robots.

    PubMed

    Marchese, Andrew D; Katzschmann, Robert K; Rus, Daniela

    2015-03-01

    This work provides approaches to designing and fabricating soft fluidic elastomer robots. That is, three viable actuator morphologies composed entirely from soft silicone rubber are explored, and these morphologies are differentiated by their internal channel structure, namely, ribbed, cylindrical, and pleated. Additionally, three distinct casting-based fabrication processes are explored: lamination-based casting, retractable-pin-based casting, and lost-wax-based casting. Furthermore, two ways of fabricating a multiple DOF robot are explored: casting the complete robot as a whole and casting single degree of freedom (DOF) segments with subsequent concatenation. We experimentally validate each soft actuator morphology and fabrication process by creating multiple physical soft robot prototypes.

  7. Soft mobile robots driven by foldable dielectric elastomer actuators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Wenjie; Liu, Fan; Ma, Ziqi

    A cantilever beam with elastic hinge pulled antagonistically by two dielectric elastomer (DE) membranes in tension forms a foldable actuator if one DE membrane is subject to a voltage and releases part of tension. Simply placing parallel rigid bars on the prestressed DE membranes results in enhanced actuators working in a pure shear state. We report design, analysis, fabrication, and experiment of soft mobile robots that are moved by such foldable DE actuators. We describe systematic measurement of the foldable actuators and perform theoretical analysis of such actuators based on minimization of total energy, and a good agreement is achievedmore » between model prediction and measurement. We develop two versions of prototypes of soft mobile robots driven either by two sets of DE membranes or one DE membrane and elastic springs. We demonstrate locomotion of these soft mobile robots and highlight several key design parameters that influence locomotion of the robots. A 45 g soft robot driven by a cyclic triangle voltage with amplitude 7.4 kV demonstrates maximal stroke 160 mm or maximal rolling velocity 42 mm/s. The underlying mechanics and physics of foldable DE actuators can be leveraged to develop other soft machines for various applications.« less

  8. Finite element analysis of electroactive polymer and magnetoactive elastomer based actuation for origami folding

    NASA Astrophysics Data System (ADS)

    Zhang, Wei; Ahmed, Saad; Masters, Sarah; Ounaies, Zoubeida; Frecker, Mary

    2017-10-01

    The incorporation of smart materials such as electroactive polymers and magnetoactive elastomers in origami structures can result in active folding using external electric and magnetic stimuli, showing promise in many origami-inspired engineering applications. In this study, 3D finite element analysis (FEA) models are developed using COMSOL Multiphysics software for three configurations that incorporate a combination of active and passive material layers, namely: (1) a single-notch unimorph folding configuration actuated using only external electric field, (2) a double-notch unimorph folding configuration actuated using only external electric field, and (3) a bifold configuration which is actuated using multi-field (electric and magnetic) stimuli. The objectives of the study are to verify the effectiveness of the FEA models to simulate folding behavior and to investigate the influence of geometric parameters on folding quality. Equivalent mechanical pressure and surface stress are used as external loads in the FEA to simulate electric and magnetic fields, respectively. Compared quantitatively with experimental data, FEA captured the folding performance of electric actuation well for notched configurations and magnetic actuation for a bifold structure, but underestimated electric actuation for the bifold structure. By investigating the impact of geometric parameters and locations to place smart materials, FEA can be used in design, avoiding trial-and-error iterations of experiments.

  9. Computational modeling of electromechanical instabilities in dielectric elastomers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Park, Harold

    2016-04-01

    Dielectric elastomers are a class of soft, active materials that have recently gained significant interest due to the fact that they can be electrostatically actuated into undergoing extremely large deformations. An ongoing challenge has been the development of robust and accurate computational models for elastomers, particularly those that can capture electromechanical instabilities that limit the performance of elastomers such as creasing, wrinkling, and snap-through. I discuss in this work a recently developed finite element model for elastomers that is dynamic, nonlinear, and fully electromechanically coupled. The model also significantly alleviates volumetric locking due that arises due to the incompressible nature of the elastomers, and incorporates viscoelasticity within a finite deformation framework. Numerical examples are shown that demonstrate the performance of the proposed method in capturing electromechanical instabilities (snap-through, creasing, cratering, wrinkling) that have been observed experimentally.

  10. A soft flying robot driven by a dielectric elastomer actuator (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wang, Yingxi; Zhang, Hui; Godaba, Hareesh; Khoo, Boo Cheong; Zhu, Jian

    2017-04-01

    Modern unmanned aerial vehicles are gaining promising success because of their versatility, flexibility, and minimized risk of operations. Most of them are normally designed and constructed based on hard components. For example, the body of the vehicle is generally made of aluminum or carbon fibers, and electric motors are adopted as the main actuators. These hard materials are able to offer reasonable balance of structural strength and weight. However, they exhibit apparent limitations. For instance, such robots are fragile in even small clash with surrounding objects. In addition, their noise is quite high due to spinning of rotors or propellers. Here we aim to develop a soft flying robot using soft actuators. Due to its soft body, the robot can work effectively in unstructured environment. The robot may also exhibit interesting attributes, including low weight, low noise, and low power consumption. This robot mainly consists of a dielectric elastomer balloon made of two layers of elastomers. One is VHB (3M), and the other is natural rubber. The balloon is filled with helium, which can make the robot nearly neutral. When voltage is applied to either of the two dielectric elastomers, the balloon expands. So that the buoyance can be larger than the robot's weight, and the robot can move up. In this seminar, we will show how to harness the dielectric breakdown of natural rubber to achieve giant deformation of this soft robot. Based on this method, the robot can move up effectively in air.

  11. Photo-actuating materials based on elastomers and modified carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Czaniková, Klaudia; Krupa, Igor; Ilčíková, Markéta; Kasák, Peter; Chorvát, , Dušan; Valentin, Marian; Šlouf, Miroslav; Mosnáček, Jaroslav; Mičušík, Matej; Omastová, Mária

    2012-01-01

    The photo-actuating behavior of new polymeric nanocomposite materials based on a commercial elastomer, an ethylene-vinylacetate copolymer (EVA), filled with multiwalled carbon nanotubes (MWCNT) was investigated. A good dispersion of the MWCNT within the elastomeric matrix was ensured by using a novel, specific compatibilizer consisting of pyrenyl and cholesteryl groups. A uniaxial orientation of the MWCNT within the matrix was induced with shear forces by employing a special custom-made punch/die system. Good dispergation and alignment of the MWCNT within the matrix were demonstrated by scanning electron microscopy. Transmission electron microscopy showed a good dispersion of the MWCNT within the composite. Photo-actuation was qualitatively characterized by atomic force microscopy and quantitatively characterized by nanoindentation. The samples prepared in the form of Braille element showed expansion upon illumination by light diodes. The maximal height deformation changes about 15% was detected when a blue diode was used.

  12. Stacked dielectric elastomer actuator (SDEA): casting process, modeling and active vibration isolation

    NASA Astrophysics Data System (ADS)

    Li, Zhuoyuan; Sheng, Meiping; Wang, Minqing; Dong, Pengfei; Li, Bo; Chen, Hualing

    2018-07-01

    In this paper, a novel fabrication process of stacked dielectric elastomer actuator (SDEA) is developed based on casting process and elastomeric electrode. The so-fabricated SDEA benefits the advantages of homogenous and reproducible properties as well as little performance degradation after one-year use. A coupling model of SDEA is established by taking into consideration of the elastomeric electrode and the calculated results agree with the experiments. Based on the model, we attain the method to optimize the SDEA’s parameters. Finally, the SDEA is used as an isolator in active vibration isolation system to verify the feasibility in dynamic application. And the experiment results show a great prospect for SDEA in such application.

  13. Development and experimental characterization of a pneumatic valve actuated by a dielectric elastomer membrane

    NASA Astrophysics Data System (ADS)

    Hill, Marc; Rizzello, Gianluca; Seelecke, Stefan

    2017-08-01

    Due to their many features including lightweight and low energy consumption, dielectric elastomer (DE) membrane actuators are of interest for a number of industrial applications, such as pumping systems or valve control units. In particular, the use of DEs in valve control units offers advantages over traditional solenoid valves, including lower power requirements and relative simplicity in achieving proportional control. Additionally, DEs generate low thermal dissipation and are capable of virtually silent operation. The contribution of this work is the development of a new valve system based on a circular DE membrane pre-loaded with a linear spring. The valve is designed for pressurized air and operates by actuating a lever mechanism that opens and closes an outlet port. After presenting the operating principle and system design, several experiments are presented to compare actuator force, stroke, and dissipated energy for several pressure differentials and associated volume flows. It is observed that the DE-driven valve achieves a performance similar to a solenoid-based valve, while requiring a significantly lower amount of input energy. In addition, it is shown that DE-membrane valves can be controlled proportionally by simply adjusting the actuator voltage.

  14. Actuator device utilizing a conductive polymer gel

    DOEpatents

    Chinn, Douglas A.; Irvin, David J.

    2004-02-03

    A valve actuator based on a conductive polymer gel is disclosed. A nonconductive housing is provided having two separate chambers separated by a porous frit. The conductive polymer is held in one chamber and an electrolyte solution, used as a source of charged ions, is held in the second chamber. The ends of the housing a sealed with a flexible elastomer. The polymer gel is further provide with electrodes with which to apply an electrical potential across the gel in order to initiate an oxidation reaction which in turn drives anions across the porous frit and into the polymer gel, swelling the volume of the gel and simultaneously contracting the volume of the electrolyte solution. Because the two end chambers are sealed the flexible elastomer expands or contracts with the chamber volume change. By manipulating the potential across the gel the motion of the elastomer can be controlled to act as a "gate" to open or close a fluid channel and thereby control flow through that channel.

  15. A magnetically actuated cellular strain assessment tool for quantitative analysis of strain induced cellular reorientation and actin alignment

    NASA Astrophysics Data System (ADS)

    Khademolhosseini, F.; Liu, C.-C.; Lim, C. J.; Chiao, M.

    2016-08-01

    Commercially available cell strain tools, such as pneumatically actuated elastomer substrates, require special culture plates, pumps, and incubator setups. In this work, we present a magnetically actuated cellular strain assessment tool (MACSAT) that can be implemented using off-the-shelf components and conventional incubators. We determine the strain field on the MACSAT elastomer substrate using numerical models and experimental measurements and show that a specific region of the elastomer substrate undergoes a quasi-uniaxial 2D stretch, and that cells confined to this region of the MACSAT elastomer substrate undergo tensile, compressive, or zero axial strain depending on their angle of orientation. Using the MACSAT to apply cyclic strain on endothelial cells, we demonstrate that actin filaments within the cells reorient away from the stretching direction, towards the directions of minimum axial strain. We show that the final actin orientation angles in strained cells are spread over a region of compressive axial strain, confirming previous findings on the existence of a varied pre-tension in the actin filaments of the cytoskeleton. We also demonstrate that strained cells exhibit distinctly different values of actin alignment coherency compared to unstrained cells and therefore propose that this parameter, i.e., the coherency of actin alignment, can be used as a new readout to determine the occurrence/extent of actin alignment in cell strain experiments. The tools and methods demonstrated in this study are simple and accessible and can be easily replicated by other researchers to study the strain response of other adherent cells.

  16. Synthesis and electromechanical characterization of a new acrylic dielectric elastomer with high actuation strain and dielectric strength

    NASA Astrophysics Data System (ADS)

    Hu, Wei; Niu, Xiaofan; Yang, Xinguo; Zhang, Naifang; Pei, Qibing

    2013-04-01

    Dielectric Elastomers (DEs) can be actuated under high electric field to produce large strains. Most high-performing DE materials such as the 3M™ VHB™ membranes are commercial products designed for industrial pressure-sensitive adhesives. The limited knowledge of the exact chemical structures of these commercial materials has made it difficult to understand the relationship between molecular structures and electromechanical properties. In this work, new acrylic elastomers based on n-butyl acrylate and acrylic acid were synthesized from monomer solutions by UV-initiated bulk polymerization. The new acrylic copolymers have a potential to obtain high dielectric constant, actuation strain, dielectric strength, and a high energy density. Silicone and ester oligomer diacrylates were also added onto the copolymer structures to suppress crystallization and to crosslink the polymer chains. Four acrylic formulations were developed with different amounts of acrylic acid. This gives a tunable stiffness, while the dielectric constant is varied from 4.3 to 7.1. The figure-of-merit performance of the best formulation is 186 % area strain, 222 MV/m of dielectric strength, and 2.7 MJ/m3 of energy density. To overcome electromechanical instability, different prestrain ratios were investigated, and under the optimized prestrain, the material has a lifetime of thousands of cycles at 120 % area strain.

  17. Bottlebrush elastomers: a promising molecular engineering route to tunable, prestrain-free dielectric elastomers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Vatankhah-Varnosfaderani, Mohammad; Daniel, William F. M.; Zhushma, Alexandr P.; Li, Qiaoxi; Morgan, Benjamin J.; Matyjaszewski, Krzysztof; Armstrong, Daniel P.; Dobrynin, Andrey V.; Sheyko, Sergei S.; Spontak, Richard J.

    2017-04-01

    Electroactive polymers (EAPs) refer to a broad range of relatively soft materials that change size and/or shape upon application of an electrical stimulus. Of these, dielectric elastomers (DEs) generated from either chemically- or physically-crosslinked polymer networks afford the highest levels of electroactuation strain, thereby making this class of EAPs the leading technology for artificial-muscle applications. While mechanically prestraining elastic networks remarkably enhances DEs electroactuation, external prestrain protocols severely limit both actuator performance and device implementation due to gradual DE stress relaxation and the presence of a cumbersome load frame. These drawbacks have persisted with surprisingly minimal advances in the actuation of single-component elastomers since the dawn of the "pre-strain era" introduced by Pelrine et al. (Science, 2000). In this work, we present a bottom-up, molecular-based strategy for the design of prestrain-free (freestanding) DEs derived from covalently-crosslinked bottlebrush polymers. This architecture, wherein design factors such as crosslink density, graft density and graft length can all be independently controlled, yields inherently strained polymer networks that can be readily adapted to a variety of chemistries. To validate the use of these molecularly-tunable materials as DEs, we have synthesized a series of bottlebrush silicone elastomers in as-cast shapes. Examination of these materials reveals that they undergo giant electroactuation strains (>300%) at relatively low fields (<10 V/m), thereby outperforming all commercial DEs to date and opening new opportunities in responsive soft-material technologies (e.g., robotics). The molecular design approach to controlling (electro)mechanical developed here is independent of chemistry and permits access to an unprecedented range of actuation properties from elastomeric materials with traditionally modest electroactuation performance (e.g., polydimethylsiloxane, PDMS). Experimental results obtained here compare favorably with theoretical predictions and demonstrate that the unique behavior of these materials is a direct consequence of the molecular architecture.

  18. Dielectric elastomers: from the beginning of modern science to applications in actuators and energy harvesters

    NASA Astrophysics Data System (ADS)

    Baumgartner, Richard; Keplinger, Christoph; Kaltseis, Rainer; Schwödiauer, Reinhard; Bauer, Siegfried

    2011-04-01

    Electrically deformable materials have a long history, with first quotations in a letter from Alessandro Volta. The topic turned out to be hot at the end of the 19th century, with a landmark paper of Röntgen anticipating the dielectric elastomer principle. In 2000, Pelrine and co-workers generated huge interest in such soft actuators, by demonstrating voltage induced huge area expansion rates of more than 300%. Since then, the field became mature, with first commercial applications appearing on the market. New frontiers also emerged recently, for example by using dielectric transducers in a reverse mode for scavenging mechanical energy. In the present survey we briefly discuss the latest developments in the field.

  19. Development of an active isolation mat based on dielectric elastomer stack actuators for mechanical vibration cancellation

    NASA Astrophysics Data System (ADS)

    Karsten, Roman; Flittner, Klaus; Haus, Henry; Schlaak, Helmut F.

    2013-04-01

    This paper describes the development of an active isolation mat for cancelation of vibrations on sensitive devices with a mass of up to 500 gram. Vertical disturbing vibrations are attenuated actively while horizontal vibrations are damped passively. The dimensions of the investigated mat are 140 × 140 × 20 mm. The mat contains 5 dielectric elastomer stack actuators (DESA). The design and the optimization of active isolation mat are realized by ANSYS FEM software. The best performance shows a DESA with air cushion mounted on its circumference. Within the mounting encased air increases static and reduces dynamic stiffness. Experimental results show that vibrations with amplitudes up to 200 μm can be actively eliminated.

  20. Bistable electroactive polymer for refreshable Braille display with improved actuation stability

    NASA Astrophysics Data System (ADS)

    Niu, Xiaofan; Brochu, Paul; Stoyanov, Hristiyan; Yun, Sung Ryul; Pei, Qibing

    2012-04-01

    Poly(t-butyl acrylate) is a bistable electroactive polymer (BSEP) capable of rigid-to-rigid actuation. The BSEP combines the large-strain actuation of dielectric elastomers with shape memory property. We have introduced a material approach to overcome pull-in instability in poly(t-butyl acrylate) that significantly improves the actuation lifetime at strains greater than 100%. Refreshable Braille display devices with size of a smartphone screen have been fabricated to manifest a potential application of the BSEP. We will report the testing results of the devices by a Braille user.

  1. Computational Model of Hydrostatically Coupled Dielectric Elastomer Actuators (Preprint)

    DTIC Science & Technology

    2011-01-01

    gaming [6] and Braille displays [15]. Within this context, the HCDE actuators offer two attractive features [12-14]. First, one can touch the passive...AHp //  , the voltage as   // H , and the force as  AHF / . When the HCDE actuators are developed as Braille displays, it is desirable to...permittivity, along with our fitted parameter 71 07 3.1  V/m , gives the shear modulus kPa5.1 2 . When the HCDE actuators are developed as Braille

  2. Converging the capabilities of EAP artificial muscles and the requirements of bio-inspired robotics

    NASA Astrophysics Data System (ADS)

    Hanson, David F.; White, Victor

    2004-07-01

    The characteristics of Electro-actuated polymers (EAP) are typically considered inadequate for applications in robotics. But in recent years, there has been both dramatic increases in EAP technological capbilities and reductions in power requirements for actuating bio-inspired robotics. As the two trends continue to converge, one may anticipate that dramatic breakthroughs in biologically inspired robotic actuation will result due to the marraige of these technologies. This talk will provide a snapshot of how EAP actuator scientists and roboticists may work together on a common platform to accelerate the growth of both technologies. To demonstrate this concept of a platform to accelerate this convergence, the authors will discuss their work in the niche application of robotic facial expression. In particular, expressive robots appear to be within the range of EAP actuation, thanks to their low force requirements. Several robots will be shown that demonstrate realistic expressions with dramatically decreased force requirements. Also, detailed descriptions will be given of the engineering innovations that have enabled these robotics advancements-most notably, Structured-Porosity Elastomer Materials (SPEMs). SPEM manufacturing techniques create delicate cell-structures in a variety of elastomers that maintain the high elongation characteristics of the mother material, but because of the porisity, behave as sponge-materials, thus lower the force required to emulate facial expressions to levels output by several extant EAP actuators.

  3. Polymer-dispersed liquid crystal elastomers

    NASA Astrophysics Data System (ADS)

    Rešetič, Andraž; Milavec, Jerneja; Zupančič, Blaž; Domenici, Valentina; Zalar, Boštjan

    2016-10-01

    The need for mechanical manipulation during the curing of conventional liquid crystal elastomers diminishes their applicability in the field of shape-programmable soft materials and future applications in additive manufacturing. Here we report on polymer-dispersed liquid crystal elastomers, novel composite materials that eliminate this difficulty. Their thermal shape memory anisotropy is imprinted by curing in external magnetic field, providing for conventional moulding of macroscopically sized soft, thermomechanically active elastic objects of general shapes. The binary soft-soft composition of isotropic elastomer matrix, filled with freeze-fracture-fabricated, oriented liquid crystal elastomer microparticles as colloidal inclusions, allows for fine-tuning of thermal morphing behaviour. This is accomplished by adjusting the concentration, spatial distribution and orientation of microparticles or using blends of microparticles with different thermomechanical characteristics. We demonstrate that any Gaussian thermomechanical deformation mode (bend, cup, saddle, left and right twist) of a planar sample, as well as beat-like actuation, is attainable with bilayer microparticle configurations.

  4. Autonomous Soft Robotic Fish Capable of Escape Maneuvers Using Fluidic Elastomer Actuators.

    PubMed

    Marchese, Andrew D; Onal, Cagdas D; Rus, Daniela

    2014-03-01

    In this work we describe an autonomous soft-bodied robot that is both self-contained and capable of rapid, continuum-body motion. We detail the design, modeling, fabrication, and control of the soft fish, focusing on enabling the robot to perform rapid escape responses. The robot employs a compliant body with embedded actuators emulating the slender anatomical form of a fish. In addition, the robot has a novel fluidic actuation system that drives body motion and has all the subsystems of a traditional robot onboard: power, actuation, processing, and control. At the core of the fish's soft body is an array of fluidic elastomer actuators. We design the fish to emulate escape responses in addition to forward swimming because such maneuvers require rapid body accelerations and continuum-body motion. These maneuvers showcase the performance capabilities of this self-contained robot. The kinematics and controllability of the robot during simulated escape response maneuvers are analyzed and compared with studies on biological fish. We show that during escape responses, the soft-bodied robot has similar input-output relationships to those observed in biological fish. The major implication of this work is that we show soft robots can be both self-contained and capable of rapid body motion.

  5. Dielectric elastomer pump for artificial organisms

    NASA Astrophysics Data System (ADS)

    Bowers, Amy E.; Rossiter, Jonathan M.; Walters, Peter J.; Ieropoulos, Ioannis A.

    2011-04-01

    This paper presents a bio-inspired, dielectric elastomer (DE) based tubular pumping unit, developed for eventual use as a component of an artificial digestive tract onboard a microbial fuel cell powered robot (EcoBot). The pump effects fluid displacement by direct actuation of the tube wall as opposed to excitation by an external body. The actuator consists of a DE tube moulded from silicone, held in a negative pressure chamber, which is used for prestraining the tube. The pump is coupled with custom designed polymeric check valves in order to rectify the fluid flow and assess the performance of the unit. The valves exhibited the necessary low opening pressures required for use with the actuator. The tube's actuation characteristics were measured both with and without liquid in the system. Based on these data the optimal operating conditions for the pump are discussed. The pump and valve system has achieved flowrates in excess of 40μl/s. This radially contracting/expanding actuator element is the fundamental component of a peristaltic pump. This 'soft pump' concept is suitable for biomimetic robotic systems, or for the medical or food industries where hard contact with the delivered substrate may be undesirable. Future work will look at connecting multiple tubes in series in order to achieve peristalsis.

  6. Batch fabrication of optical actuators using nanotube-elastomer composites towards refreshable Braille displays

    NASA Astrophysics Data System (ADS)

    Camargo, C. J.; Campanella, H.; Marshall, J. E.; Torras, N.; Zinoviev, K.; Terentjev, E. M.; Esteve, J.

    2012-07-01

    This paper reports an opto-actuable device fabricated using micro-machined silicon moulds. The actuating component of the device is made from a composite material containing carbon nanotubes (CNTs) embedded in a liquid crystal elastomer (LCE) matrix. We demonstrate the fabrication of a patterned LCE-CNT film by a combination of mechanical stretching and thermal cross-linking. The resulting poly-domain LCE-CNT film contains ‘blister-shaped’ mono-domain regions, which reversibly change their shape under light irradiation and hence can be used as dynamic Braille dots. We demonstrate that blisters with diameters of 1.0 and 1.5 mm, and wall thickness 300 µm, will mechanically contract under irradiation by a laser diode with optical power up to 60 mW. The magnitude of this contraction was up to 40 µm, which is more than 10% of their height in the ‘rest’ state. The stabilization time of the material is less than 6 s for both actuation and recovery. We also carried out preliminary tests on the repeatability of this photo-actuation process, observing no material or performance degradation. This manufacturing approach establishes a starting point for the design and fabrication of wide-area tactile actuators, which are promising candidates for the development of new Braille reading applications for the visually impaired.

  7. Microstamped opto-mechanical actuator for tactile displays

    NASA Astrophysics Data System (ADS)

    Camargo, Carlos J.; Torras, Núria; Campanella, Humberto; Marshall, Jean E.; Zinoviev, Kirill; Campo, Eva M.; Terentjev, Eugene M.; Esteve, Jaume

    2011-10-01

    Over the last few years, several technologies have been adapted for use in tactile displays, such as thermo-pneumatic actuators, piezoelectric polymers and dielectric elastomers. None of these approaches offers high-performance for refreshable Braille display system (RBDS), due to considerations of weight, power efficiency and response speed. Optical actuation offers an attractive alternative to solve limitations of current-art technologies, allowing electromechanical decoupling, elimination of actuation circuits and remote controllability. Creating these opticallydriven devices requires liquid crystal - carbon nanotube (LC-CNT) composites that show a reversible shape change in response to an applied light. This work thus reports on novel opto-actuated Braille dots based on LC-CNT composite and silicon mold microstamping. The manufacturing approach succeeds on producing blisters according to the Braille standard for the visually impaired, by taking shear-aligned LC-CNT films and silicon stamps. For this application, we need to define specifically-shaped structures. Some technologies have succeeded on elastomer microstructuring. Nevertheless, they are not applicable for LC-CNT molding because they do not consider the stretching of the polymer which is required for LC-CNT fabrication. Our process demonstrates that composites micro-molding and their 3-D structuring is feasible by silicon-based stamping. Its work principle involves the mechanical stretching, allowing the LC mesogens alignment.

  8. A biologically inspired artificial muscle based on fiber-reinforced and electropneumatic dielectric elastomers

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Zhang, Chi; Luo, Meng; Chen, Xi; Li, Dichen; Chen, Hualing

    2017-08-01

    Dielectric elastomers (DEs) have great potential for use as artificial muscles because of the following characteristics: electrical activity, fast and large deformation under stimuli, and softness as natural muscles. Inspired by the traditional McKibben actuators, in this study, we developed a cylindrical soft fiber-reinforced and electropneumatic DE artificial muscle (DEAM) by mimicking the spindle shape of natural muscles. Based on continuum mechanics and variation principle, the inhomogeneous actuation of DEAMs was theoretically modeled and calculated. Prototypes of DEAMs were prepared to validate the design concept and theoretical model. The theoretical predictions are consistent with the experimental results; they successfully predicted the evolutions of the contours of DEAMs with voltage. A pneumatically supported high prestretch in the hoop direction was achieved by our DEAM prototype without buckling the soft fibers sandwiched by the DE films. Besides, a continuously tunable prestretch in the actuation direction was achieved by varying the supporting pressure. Using the theoretical model, the failure modes, maximum actuations, and critical voltages were analyzed; they were highly dependent on the structural parameters, i.e., the cylinder aspect ratio, prestretch level, and supporting pressure. The effects of structural parameters and supporting pressure on the actuation performance were also investigated to optimize the DEAMs.

  9. Metachronal wave of artificial cilia array actuated by applied magnetic field

    NASA Astrophysics Data System (ADS)

    Tsumori, Fujio; Marume, Ryuma; Saijou, Akinori; Kudo, Kentaro; Osada, Toshiko; Miura, Hideshi

    2016-06-01

    In this paper, a biomimetic microstructure related to cilia, which are effective fluidic and conveying systems in nature, is described. Authors have already reported that a magnetic elastomer pillar actuated by a rotating magnetic field can work like a natural cilium. In the present work, we show examples of a cilia array with a metachronal wave as the next step. A metachronal wave is a sequential action of a number of cilia. It is theoretically known that a metachronal wave gives a higher fluidic efficiency; however, there has been no report on a metachronal wave by artificial cilia. We prepared magnetic elastomer pillars that contain chainlike clusters of magnetic particles. The orientation of chains was set to be different in each pillar so that each pillar will deform with a different phase.

  10. Polydopamine-Coated Main-Chain Liquid Crystal Elastomer as Optically Driven Artificial Muscle.

    PubMed

    Tian, Hongmiao; Wang, Zhijian; Chen, Yilong; Shao, Jinyou; Gao, Tong; Cai, Shengqiang

    2018-03-07

    Optically driven active materials have received much attention because their deformation and motion can be controlled remotely, instantly, and precisely in a contactless way. In this study, we investigated an optically actuated elastomer with rapid response: polydopamine (PDA)-coated liquid crystal elastomer (LCE). Because of the photothermal effect of PDA coating and thermal responsiveness of LCE, the elastomer film contracted significantly with near-infrared (NIR) irradiation. With a fixed strain, light-induced actuating stress in the film could be as large as 1.5 MPa, significantly higher than the maximum stress generated by most mammalian skeletal muscle (0.35 MPa). The PDA-coated LCE films could also bend or roll up by surface scanning of an NIR laser. The response time of the film to light exposure could be as short as 1/10 of a second, comparable to or even faster than that of mammalian skeletal muscle. Using the PDA-coated LCE film, we designed and fabricated a prototype of robotic swimmer that was able to swim near the water-air interface by performing "swimming strokes" through reversible bending and unbending motions induced and controlled by an NIR laser. The results presented in this study clearly demonstrated that PDA-coated LCE is a promising optically driven artificial muscle, which may have great potential for applications of soft robotics and optomechanical coupling devices.

  11. Energy minimization for self-organized structure formation and actuation

    NASA Astrophysics Data System (ADS)

    Kofod, Guggi; Wirges, Werner; Paajanen, Mika; Bauer, Siegfried

    2007-02-01

    An approach for creating complex structures with embedded actuation in planar manufacturing steps is presented. Self-organization and energy minimization are central to this approach, illustrated with a model based on minimization of the hyperelastic free energy strain function of a stretched elastomer and the bending elastic energy of a plastic frame. A tulip-shaped gripper structure illustrates the technological potential of the approach. Advantages are simplicity of manufacture, complexity of final structures, and the ease with which any electroactive material can be exploited as means of actuation.

  12. Characterization of screen-printed electrodes for dielectric elastomer (DE) membranes: influence of screen dimensions and electrode thickness on actuator performance

    NASA Astrophysics Data System (ADS)

    Fasolt, Bettina; Hodgins, Micah; Seelecke, Stefan

    2016-04-01

    Screen printing is used as a method for printing electrodes on silicone thin films for the fabrication of dielectric elastomer transducers (DET). This method can be used to manufacture a multitude of patternable designs for actuator and sensor applications, implementing the same method for prototyping as well as large-scale production. The fabrication of DETs does not only require the development of a flexible, highly conductive electrode material, which adheres to a stretched and unstretched silicone film, but also calls for a thorough understanding of the effects of the different printing parameters. This work studies the influence of screen dimensions (open area, mesh thickness) as well as the influence of multiple-layer- printing on the electrode stiffness, electrical resistance and capacitance as well as actuator performance. The investigation was conducted in a custom-built testing device, which enabled an electro-mechanical characterization of the DET, simultaneously measuring parameters such as strain, voltage, current, force, sheet resistance, capacitance and membrane thickness. Magnified pictures of the electrodes will additionally illustrate the effects of the different printing parameters.

  13. Modeling of dielectric elastomer as electromechanical resonator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Bo, E-mail: liboxjtu@mail.xjtu.edu.cn; Liu, Lei; Chen, Hualing

    Dielectric elastomers (DEs) feature nonlinear dynamics resulting from an electromechanical coupling. Under alternating voltage, the DE resonates with tunable performances. We present an analysis of the nonlinear dynamics of a DE as electromechanical resonator (DEER) configured as a pure shear actuator. A theoretical model is developed to characterize the complex performance under different boundary conditions. Physical mechanisms are presented and discussed. Chaotic behavior is also predicted, illustrating instabilities in the dynamics. The results provide a guide to the design and application of DEER in haptic devices.

  14. Large-strain, rigid-to-rigid deformation of bistable electroactive polymers

    NASA Astrophysics Data System (ADS)

    Yu, Zhibin; Yuan, Wei; Brochu, Paul; Chen, Bin; Liu, Zhitian; Pei, Qibing

    2009-11-01

    Thermoplastic poly(tert-butyl acrylate) (PTBA) is reported as an electroactive polymer that is rigid at ambient conditions and turns into a dielectric elastomer above a transition temperature. In the rubbery state, a PTBA thin film can be electrically actuated to strains up to 335% in area expansion. The calculated actuation pressure is 3.2 MPa. The actuation is made bistable by cooling to below glass transition temperature. The PTBA represents the bistable electroactive polymer (BSEP) that can be actuated to various largely strained, rigid shapes. The application of the BSEP for refreshable Braille display, an active tactile display, is also demonstrated.

  15. Multiscale modelling of a composite electroactive polymer structure

    NASA Astrophysics Data System (ADS)

    Wang, P.; Lassen, B.; Jones, R. W.; Thomsen, B.

    2010-12-01

    Danfoss PolyPower has developed a tubular actuator comprising a dielectric elastomer sheet with specially shaped compliant electrodes rolled into a tube. This paper is concerned with the modelling of this kind of tubular actuator. This is a challenging task due to the system's multiscale nature which is caused by the orders of magnitude difference between the length and thickness of the sheets as well as the thickness of the electrodes and the elastomer in the sheets. A further complication is the presence of passive parts at both ends of the actuator, i.e. areas without electrodes which are needed in order to avoid short circuits between negative and positively charged electrodes on the two sides of the sheet. Due to the complexities in shape and size it is necessary to introduce some simplifying assumptions. This paper presents a set of models where the three-dimensional problem has been reduced to two-dimensional problems, ensuring that the resulting models can be handled numerically within the framework of the finite element method. These models have been derived by expressing Navier's equation in elliptical cylindrical coordinates in order to take full advantage of the special shape of these actuators. Emphasis is placed on studying the passive parts of the actuator, as these degrade the effectiveness of the actuator. Two approaches are used here to model the passive parts: a spring-stiffness analogy model and a longitudinal section model of the actuator. The models have been compared with experimental results for the force-elongation characteristics of the commercially available PolyPower 'InLastor push' actuator. The comparison shows good agreement between model and experiments for the case where the passive parts were taken into account. One of the models developed is subsequently used to study geometric effects—specifically the effect of changing the ellipticity of the tubular actuator on the actuator's performance is investigated.

  16. Cerebellar-inspired algorithm for adaptive control of nonlinear dielectric elastomer-based artificial muscle

    PubMed Central

    Assaf, Tareq; Rossiter, Jonathan M.; Porrill, John

    2016-01-01

    Electroactive polymer actuators are important for soft robotics, but can be difficult to control because of compliance, creep and nonlinearities. Because biological control mechanisms have evolved to deal with such problems, we investigated whether a control scheme based on the cerebellum would be useful for controlling a nonlinear dielectric elastomer actuator, a class of artificial muscle. The cerebellum was represented by the adaptive filter model, and acted in parallel with a brainstem, an approximate inverse plant model. The recurrent connections between the two allowed for direct use of sensory error to adjust motor commands. Accurate tracking of a displacement command in the actuator's nonlinear range was achieved by either semi-linear basis functions in the cerebellar model or semi-linear functions in the brainstem corresponding to recruitment in biological muscle. In addition, allowing transfer of training between cerebellum and brainstem as has been observed in the vestibulo-ocular reflex prevented the steady increase in cerebellar output otherwise required to deal with creep. The extensibility and relative simplicity of the cerebellar-based adaptive-inverse control scheme suggests that it is a plausible candidate for controlling this type of actuator. Moreover, its performance highlights important features of biological control, particularly nonlinear basis functions, recruitment and transfer of training. PMID:27655667

  17. Designing micro- and nanostructures for artificial urinary sphincters

    NASA Astrophysics Data System (ADS)

    Weiss, Florian M.; Deyhle, Hans; Kovacs, Gabor; Müller, Bert

    2012-04-01

    The dielectric elastomers are functional materials that have promising potential as actuators with muscle-like mechanical properties due to their inherent compliancy and overall performance: the combination of large deformations, high energy densities and unique sensory capabilities. Consequently, such actuators should be realized to replace the currently available artificial urinary sphincters building dielectric thin film structures that work with several 10 V. The present communication describes the determination of the forces (1 - 10 N) and deformation levels (~10%) necessary for the appropriate operation of the artificial sphincter as well as the response time to master stress incontinence (reaction time less than 0.1 s). Knowing the dimensions of the presently used artificial urinary sphincters, these macroscopic parameters form the basis of the actuator design. Here, we follow the strategy to start from organic thin films maybe even monolayers, which should work with low voltages but only provide small deformations. Actuators out of 10,000 or 100,000 layers will finally provide the necessary force. The suitable choice of elastomer and electrode materials is vital for the success. As the number of incontinent patients is steadily increasing worldwide, it becomes more and more important to reveal the sphincter's function under static and stress conditions to realize artificial urinary sphincters, based on sophisticated, biologically inspired concepts to become nature analogue.

  18. Nanomechanical probing of thin-film dielectric elastomer transducers

    NASA Astrophysics Data System (ADS)

    Osmani, Bekim; Seifi, Saman; Park, Harold S.; Leung, Vanessa; Töpper, Tino; Müller, Bert

    2017-08-01

    Dielectric elastomer transducers (DETs) have attracted interest as generators, actuators, sensors, and even as self-sensing actuators for applications in medicine, soft robotics, and microfluidics. Their performance crucially depends on the elastic properties of the electrode-elastomer sandwich structure. The compressive displacement of a single-layer DET can be easily measured using atomic force microscopy (AFM) in the contact mode. While polymers used as dielectric elastomers are known to exhibit significant mechanical stiffening for large strains, their mechanical properties when subjected to voltages are not well understood. To examine this effect, we measured the depths of 400 nanoindentations as a function of the applied electric field using a spherical AFM probe with a radius of (522 ± 4) nm. Employing a field as low as 20 V/μm, the indentation depths increased by 42% at a load of 100 nN with respect to the field-free condition, implying an electromechanically driven elastic softening of the DET. This at-a-glance surprising experimental result agrees with related nonlinear, dynamic finite element model simulations. Furthermore, the pull-off forces rose from (23.0 ± 0.4) to (49.0 ± 0.7) nN implying a nanoindentation imprint after unloading. This embossing effect is explained by the remaining charges at the indentation site. The root-mean-square roughness of the Au electrode raised by 11% upon increasing the field from zero to 12 V/μm, demonstrating that the electrode's morphology change is an undervalued factor in the fabrication of DET structures.

  19. Fish-like propulsion of an airship with planar membrane dielectric elastomer actuators.

    PubMed

    Jordi, C; Michel, S; Fink, E

    2010-06-01

    The goal of our project is to mimic fish-like movement in air, propelling an airship by undulating its hull and a caudal fin. The activation of the fish-like body in air is realized by dielectric elastomers. These actuators are quite unique for their soft light-weight membrane structure and they are therefore very appropriate to the application on inflated structures. The principles of biomimetics for the structural design and movement are discussed and the conception and design of the airship is described. Various development tests, including wind tunnel testing and flight trials, were performed and the results obtained are presented. It can be shown that an 8 m model airship can be propelled in a fish-like manner in air and that the propulsion can be drastically improved by undulating the body as well as the caudal fin contrary to propulsion with only the caudal fin.

  20. Liquid lens driven by elastomer actuator

    NASA Astrophysics Data System (ADS)

    Jin, Boya; Lee, Ji-Hyeon; Zhou, Zuowei; Lee, Gi-Bbeum; Ren, Hongwen; Nah, Changwoon

    2015-09-01

    By filling a liquid droplet in the hole of a dielectric elastomer (DE) film directly, we prepared two small liquid lenses. The aperture of one lens is macro size and the other is micro size. The liquid droplet in each hole of the DE film exhibits a lens character due to its biconvex shape. In relaxed state, the focal length of each liquid droplet is the longest. When a sufficiently high DC voltage is applied, the diameter of each DE hole is decreased by the generated Maxwell stress, causing the curvature of its droplet to increase. As a result, the focal length of each lens is reduced. Here the DE film functions as an actuator. In contrast to previous approaches, our miniature liquid lenses possess the advantages of simple fabrication, fast response time (~ 540 ms), and high optical performance (~ 114 lp/mm). Moreover, the micro-sized liquid lens presents good mechanical stability.

  1. Nonlinear Dynamical Model of a Soft Viscoelastic Dielectric Elastomer

    NASA Astrophysics Data System (ADS)

    Zhang, Junshi; Chen, Hualing; Li, Dichen

    2017-12-01

    Actuated by alternating stimulation, dielectric elastomers (DEs) show a behavior of complicated nonlinear vibration, implying a potential application as dynamic electromechanical actuators. As is well known, for a vibrational system, including the DE system, the dynamic properties are significantly affected by the geometrical sizes. In this article, a nonlinear dynamical model is deduced to investigate the geometrical effects on dynamic properties of viscoelastic DEs. The DEs with square and arbitrary rectangular geometries are considered, respectively. Besides, the effects of tensile forces on dynamic performances of rectangular DEs with comparably small and large geometrical sizes are explored. Phase paths and Poincaré maps are utilized to detect the periodicity of the nonlinear vibrations of DEs. The resonance characteristics of DEs incorporating geometrical effects are also investigated. The results indicate that the dynamic properties of DEs, including deformation response, vibrational periodicity, and resonance, are tuned when the geometrical sizes vary.

  2. A simple analytical thermo-mechanical model for liquid crystal elastomer bilayer structures

    NASA Astrophysics Data System (ADS)

    Cui, Yun; Wang, Chengjun; Sim, Kyoseung; Chen, Jin; Li, Yuhang; Xing, Yufeng; Yu, Cunjiang; Song, Jizhou

    2018-02-01

    The bilayer structure consisting of thermal-responsive liquid crystal elastomers (LCEs) and other polymer materials with stretchable heaters has attracted much attention in applications of soft actuators and soft robots due to its ability to generate large deformations when subjected to heat stimuli. A simple analytical thermo-mechanical model, accounting for the non-uniform feature of the temperature/strain distribution along the thickness direction, is established for this type of bilayer structure. The analytical predictions of the temperature and bending curvature radius agree well with finite element analysis and experiments. The influences of the LCE thickness and the heat generation power on the bending deformation of the bilayer structure are fully investigated. It is shown that a thinner LCE layer and a higher heat generation power could yield more bending deformation. These results may help the design of soft actuators and soft robots involving thermal responsive LCEs.

  3. Kinematics and control of redundant robotic arm based on dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Branz, Francesco; Antonello, Andrea; Carron, Andrea; Carli, Ruggero; Francesconi, Alessandro

    2015-04-01

    Soft robotics is a promising field and its application to space mechanisms could represent a breakthrough in space technologies by enabling new operative scenarios (e.g. soft manipulators, capture systems). Dielectric Elastomers Actuators have been under deep study for a number of years and have shown several advantages that could be of key importance for space applications. Among such advantages the most notable are high conversion efficiency, distributed actuation, self-sensing capability, multi-degree-of-freedom design, light weight and low cost. The big potentialities of double cone actuators have been proven in terms of good performances (i.e. stroke and force/torque), ease of manufacturing and durability. In this work the kinematic, dynamic and control design of a two-joint redundant robotic arm is presented. Two double cone actuators are assembled in series to form a two-link design. Each joint has two degrees of freedom (one rotational and one translational) for a total of four. The arm is designed to move in a 2-D environment (i.e. the horizontal plane) with 4 DoF, consequently having two degrees of redundancy. The redundancy is exploited in order to minimize the joint loads. The kinematic design with redundant Jacobian inversion is presented. The selected control algorithm is described along with the results of a number of dynamic simulations that have been executed for performance verification. Finally, an experimental setup is presented based on a flexible structure that counteracts gravity during testing in order to better emulate future zero-gravity applications.

  4. Multi-functional dielectric elastomer artificial muscles for soft and smart machines

    NASA Astrophysics Data System (ADS)

    Anderson, Iain A.; Gisby, Todd A.; McKay, Thomas G.; O'Brien, Benjamin M.; Calius, Emilio P.

    2012-08-01

    Dielectric elastomer (DE) actuators are popularly referred to as artificial muscles because their impressive actuation strain and speed, low density, compliant nature, and silent operation capture many of the desirable physical properties of muscle. Unlike conventional robots and machines, whose mechanisms and drive systems rapidly become very complex as the number of degrees of freedom increases, groups of DE artificial muscles have the potential to generate rich motions combining many translational and rotational degrees of freedom. These artificial muscle systems can mimic the agonist-antagonist approach found in nature, so that active expansion of one artificial muscle is taken up by passive contraction in the other. They can also vary their stiffness. In addition, they have the ability to produce electricity from movement. But departing from the high stiffness paradigm of electromagnetic motors and gearboxes leads to new control challenges, and for soft machines to be truly dexterous like their biological analogues, they need precise control. Humans control their limbs using sensory feedback from strain sensitive cells embedded in muscle. In DE actuators, deformation is inextricably linked to changes in electrical parameters that include capacitance and resistance, so the state of strain can be inferred by sensing these changes, enabling the closed loop control that is critical for a soft machine. But the increased information processing required for a soft machine can impose a substantial burden on a central controller. The natural solution is to distribute control within the mechanism itself. The octopus arm is an example of a soft actuator with a virtually infinite number of degrees of freedom (DOF). The arm utilizes neural ganglia to process sensory data at the local "arm" level and perform complex tasks. Recent advances in soft electronics such as the piezoresistive dielectric elastomer switch (DES) have the potential to be fully integrated with actuators and sensors. With the DE switch, we can produce logic gates, oscillators, and a memory element, the building blocks for a soft computer, thus bringing us closer to emulating smart living structures like the octopus arm. The goal of future research is to develop fully soft machines that exploit smart actuation networks to gain capabilities formerly reserved to nature, and open new vistas in mechanical engineering.

  5. Inkjet printed multiwall carbon nanotube electrodes for dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Baechler, Curdin; Gardin, Samuele; Abuhimd, Hatem; Kovacs, Gabor

    2016-05-01

    Dielectric elastomers (DE’s) offer promising applications as soft and light-weight electromechanical actuators. It is known that beside the dielectric material, the electrode properties are of particular importance regarding the DE performance. Therefore, in recent years various studies have focused on the optimization of the electrode in terms of conductivity, stretchability and reliability. However, less attention was given to efficient electrode processing and deposition methods. In the present study, digital inkjet printing was used to deposit highly conductive and stretchable electrodes on silicone. Inkjet printing is a versatile and cost effective deposition method, which allows depositing complex-shaped electrode patterns with high precision. The electrodes were printed using an ink based on industrial low-cost MWCNT. Experiments have shown that the strain-conductivity properties of the printed electrode are strongly depended on the deposition parameters like drop-spacing and substrate temperature. After the optimization of the printing parameters, thin film electrodes could be deposited showing conductivities of up to 30 S cm-1 without the need of any post-treatment. In addition, electromechanical tests with fabricated DE actuators have revealed that the inkjet printed MWCNT electrodes are capable to self-clear in case of a dielectric breakdown.

  6. Development of Dielectric Elastomer Nanocomposites as Stretchable and Flexible Actuating Materials

    NASA Astrophysics Data System (ADS)

    Wang, Yu

    Dielectric elastomers (DEs) are a new type of smart materials showing promising functionalities as energy harvesting materials as well as actuating materials for potential applications such as artificial muscles, implanted medical devices, robotics, loud speakers, micro-electro-mechanical systems (MEMS), tunable optics, transducers, sensors, and even generators due to their high electromechanical efficiency, stability, lightweight, low cost, and easy processing. Despite the advantages of DEs, technical challenges must be resolved for wider applications. A high electric field of at least 10-30 V/um is required for the actuation of DEs, which limits the practical applications especially in biomedical fields. We tackle this problem by introducing the multiwalled carbon nanotubes (MWNTs) in DEs to enhance their relative permittivity and to generate their high electromechanical responses with lower applied field level. This work presents the dielectric, mechanical and electromechanical properties of DEs filled with MWNTs. The micromechanics-based finite element models are employed to describe the dielectric, and mechanical behavior of the MWNT-filled DE nanocomposites. A sufficient number of models are computed to reach the acceptable prediction of the dielectric and mechanical responses. In addition, experimental results are analyzed along with simulation results. Finally, laser Doppler vibrometer is utilized to directly detect the enhancement of the actuation strains of DE nanocomposites filled with MWNTs. All the results demonstrate the effective improvement in the electromechanical properties of DE nanocomposites filled with MWNTs under the applied electric fields.

  7. Ion implanted dielectric elastomer circuits

    NASA Astrophysics Data System (ADS)

    O'Brien, Benjamin M.; Rosset, Samuel; Anderson, Iain A.; Shea, Herbert R.

    2013-06-01

    Starfish and octopuses control their infinite degree-of-freedom arms with panache—capabilities typical of nature where the distribution of reflex-like intelligence throughout soft muscular networks greatly outperforms anything hard, heavy, and man-made. Dielectric elastomer actuators show great promise for soft artificial muscle networks. One way to make them smart is with piezo-resistive Dielectric Elastomer Switches (DES) that can be combined with artificial muscles to create arbitrary digital logic circuits. Unfortunately there are currently no reliable materials or fabrication process. Thus devices typically fail within a few thousand cycles. As a first step in the search for better materials we present a preliminary exploration of piezo-resistors made with filtered cathodic vacuum arc metal ion implantation. DES were formed on polydimethylsiloxane silicone membranes out of ion implanted gold nano-clusters. We propose that there are four distinct regimes (high dose, above percolation, on percolation, low dose) in which gold ion implanted piezo-resistors can operate and present experimental results on implanted piezo-resistors switching high voltages as well as a simple artificial muscle inverter. While gold ion implanted DES are limited by high hysteresis and low sensitivity, they already show promise for a range of applications including hysteretic oscillators and soft generators. With improvements to implanter process control the promise of artificial muscle circuitry for soft smart actuator networks could become a reality.

  8. Dielectric Elastomer Actuators for Soft Wave-Handling Systems.

    PubMed

    Wang, Tao; Zhang, Jinhua; Hong, Jun; Wang, Michael Yu

    2017-03-01

    This article presents a soft handling system inspired by the principle of the natural wave (named Wave-Handling system) aiming to offer a soft solution to delicately transport and sort fragile items such as fruits, vegetables, biological tissues in food, and biological industries. The system consists of an array of hydrostatically coupled dielectric elastomer actuators (HCDEAs). Due to the electrostriction property of dielectric elastomers, the handling system can be controlled by electric voltage rather than the cumbersome pneumatic system. To study the working performance of the Wave-Handling system and how the performance can be improved, the basic properties of HCDEA are investigated through experiments. We find that the HCDEA exhibits some delay and hysteretic characteristics when activated by periodic voltage and the characteristics are influenced by the frequency and external force also. All this will affect the performance of the Wave-Handling system. However, the electric control, simple structure, light weight, and low cost of the soft handling system show great potential to move from laboratory to practical application. As a proof of design concept, a simply made prototype of the handling system is controlled to generate a parallel moving wave to manipulate a ball. Based on the experimental results, the improvements and future work are discussed and we believe this work will provide inspiration for soft robotic engineering.

  9. New dielectric elastomers with improved properties for energy harvesting and actuation

    NASA Astrophysics Data System (ADS)

    Stiubianu, George; Bele, Adrian; Tugui, Codrin; Musteata, Valentina

    2015-02-01

    New materials with large value for dielectric constant were obtained by using siloxane and chemically modified lignin. The modified lignin does not act as a stiffening filler material for the siloxane but acts as bulk filler, preserving the softness and low value of Young's modulus specific for silicones. The measured values for dielectric constant compare positively with the ones for previously tested dielectric elastomers based on siloxane rubber or acrylic rubber loaded with ceramic nanoparticles. The new materials use the well-known silicone chemistry and lignin which is available worldwide in large amounts as a by-product of pulp and paper industry, making its manufacturing affordable. The prepared dielectric elastomers were tested for possible applications for wave, wind and kinetic body motion energy harvesting. Siloxane, lignin, dielectric

  10. Dielectric elastomers with novel highly-conducting electrodes

    NASA Astrophysics Data System (ADS)

    Böse, Holger; Uhl, Detlev

    2013-04-01

    Beside the characteristics of the elastomer material itself, the performance of dielectric elastomers in actuator, sensor as well as generator applications depends also on the properties of the electrode material. Various electrode materials based on metallic particles dispersed in a silicone matrix were manufactured and investigated. Anisotropic particles such as silver-coated copper flakes and silver-coated glass flakes were used for the preparation of the electrodes. The concentration of the metallic particles and the thickness of the electrode layers were varied. Specific conductivities derived from resistance measurements reached about 100 S/cm and surmount those of the reference materials based on graphite and carbon black by up to three orders of magnitude. The high conductivities of the new electrode materials can be maintained even at very large stretch deformations up to 200 %.

  11. Magnetomechanical properties of composites and fibers made from thermoplastic elastomers (TPE) and carbonyl iron powder (CIP)

    NASA Astrophysics Data System (ADS)

    Schrödner, Mario; Pflug, Günther

    2018-05-01

    Magnetoactive elastomers (MAE) made from composites of five thermoplastic elastomers (TPE) of different stiffness with carbonyl iron powder (CIP) as magnetic component were investigated. The composites were produced by melt blending of the magnetic particles with the TPEs in a twin-screw extruder. The resulting materials were characterized by ac permeability testing, stress-strain measurements with and without external magnetic field and magnetically controlled bending of long cylindrical rods in a homogenous magnetic field. The magnetic field necessary for deflection of the rods decreases with decreasing modulus and increasing iron particle content. This effect can be used e.g. for magnetically controlled actuation. Some highly filled MAE show a magnetic field induced increase of Young's modulus. Filaments could be spun from some of the composites.

  12. Soft electroactive actuators and hard ratchet-wheels enable unidirectional locomotion of hybrid machine

    NASA Astrophysics Data System (ADS)

    Sun, Wenjie; Liu, Fan; Ma, Ziqi; Li, Chenghai; Zhou, Jinxiong

    2017-01-01

    Combining synergistically the muscle-like actuation of soft materials and load-carrying and locomotive capability of hard mechanical components results in hybrid soft machines that can exhibit specific functions. Here, we describe the design, fabrication, modeling and experiment of a hybrid soft machine enabled by marrying unidirectionally actuated dielectric elastomer (DE) membrane-spring system and ratchet wheels. Subjected to an applied voltage 8.2 kV at ramping velocity 820 V/s, the hybrid machine prototype exhibits monotonic uniaxial locomotion with an averaged velocity 0.5mm/s. The underlying physics and working mechanisms of the soft machine are verified and elucidated by finite element simulation.

  13. 3D printing antagonistic systems of artificial muscle using projection stereolithography.

    PubMed

    Peele, Bryan N; Wallin, Thomas J; Zhao, Huichan; Shepherd, Robert F

    2015-09-09

    The detailed mechanical design of a digital mask projection stereolithgraphy system is described for the 3D printing of soft actuators. A commercially available, photopolymerizable elastomeric material is identified and characterized in its liquid and solid form using rheological and tensile testing. Its capabilities for use in directly printing high degree of freedom (DOF), soft actuators is assessed. An outcome is the ∼40% strain to failure of the printed elastomer structures. Using the resulting material properties, numerical simulations of pleated actuator architectures are analyzed to reduce stress concentration and increase actuation amplitudes. Antagonistic pairs of pleated actuators are then fabricated and tested for four-DOF, tentacle-like motion. These antagonistic pairs are shown to sweep through their full range of motion (∼180°) with a period of less than 70 ms.

  14. Modeling of dielectric elastomer oscillators for soft biomimetic applications.

    PubMed

    Henke, E-F M; Wilson, Katherine E; Anderson, I A

    2018-06-26

    Biomimetic, entirely soft robots with animal-like behavior and integrated artificial nervous systems will open up totally new perspectives and applications. However, until now, most presented studies on soft robots were limited to only partly soft designs, since all solutions at least needed conventional, stiff electronics to sense, process signals and activate actuators. We present a novel approach for a set up and the experimental validation of an artificial pace maker that is able to drive basic robotic structures and act as artificial central pattern generator. The structure is based on multi-functional dielectric elastomers (DEs). DE actuators, DE switches and DE resistors are combined to create complex DE oscillators (DEOs). Supplied with only one external DC voltage, the DEO autonomously generates oscillating signals that can be used to clock a robotic structure, control the cyclic motion of artificial muscles in bionic robots or make a whole robotic structure move. We present the basic functionality, derive a mathematical model for predicting the generated signal waveform and verify the model experimentally.

  15. Compliant Buckled Foam Actuators and Application in Patient-Specific Direct Cardiac Compression.

    PubMed

    Mac Murray, Benjamin C; Futran, Chaim C; Lee, Jeanne; O'Brien, Kevin W; Amiri Moghadam, Amir A; Mosadegh, Bobak; Silberstein, Meredith N; Min, James K; Shepherd, Robert F

    2018-02-01

    We introduce the use of buckled foam for soft pneumatic actuators. A moderate amount of residual compressive strain within elastomer foam increases the applied force ∼1.4 × or stroke ∼2 × compared with actuators without residual strain. The origin of these improved characteristics is explained analytically. These actuators are applied in a direct cardiac compression (DCC) device design, a type of implanted mechanical circulatory support that avoids direct blood contact, mitigating risks of clot formation and stroke. This article describes a first step toward a pneumatically powered, patient-specific DCC design by employing elastomer foam as the mechanism for cardiac compression. To form the device, a mold of a patient's heart was obtained by 3D printing a digitized X-ray computed tomography or magnetic resonance imaging scan into a solid model. From this model, a soft, robotic foam DCC device was molded. The DCC device is compliant and uses compressed air to inflate foam chambers that in turn apply compression to the exterior of a heart. The device is demonstrated on a porcine heart and is capable of assisting heart pumping at physiologically relevant durations (∼200 ms for systole and ∼400 ms for diastole) and stroke volumes (∼70 mL). Although further development is necessary to produce a fully implantable device, the material and processing insights presented here are essential to the implementation of a foam-based, patient-specific DCC design.

  16. Contractive tension force stack actuator based on soft dielectric EAP

    NASA Astrophysics Data System (ADS)

    Kovacs, Gabor; Düring, Lukas

    2009-03-01

    Among the electronic polymers EAPs especially the dielectric elastomers are functional materials that have promising potential as muscle-like actuators due to their inherent compliancy and good overall performance. The combination of huge active deformations, high energy densities, good efficiencies and fast response is unique to dielectric elastomers. Furthermore, they are lightweight, have a simple structure and can be easily tailored to various applications. Up to now most scientific research work has been focused on the planar expanding actuation mode due to the fact that the commercially available acrylic material VHB 4910 (3M) can easily be processed to planar actuators and has demonstrated very high actuation performance when pre-strained. Many different actuator designs have been developed and tested which expands in plane when voltage is applied and shrinks back as soon as the applied charges are removed from the electrodes. Obviously the contractive operation mode at activation is required for a wide range of application. Due to the principle of operation of soft DE EAP, mainly two directions to performed work against external loads are possible. Beside of the commonly used expanding actuation in planar direction the contractile actuation in thickness direction of the DE film represents a very promising option in the multilayer configuration. First approaches have been presented by the folded actuator design and by the multilayer tactile display device. In this study a novel approach for active structures driven by soft dielectric EAP is presented, which can perform contractive displacements at external tensile load. The device is composed of an array of equal segments, where the dielectric films are arranged in a pile-up configuration. In order to maintain satisfying structural integrity when external tension load is applied special attention was paid to the compliant electrode design which takes a central importance concerning the force transmission capability between each layer of the actuator. Due to the stack configuration of the actuator the commonly used and pre-strained acrylic film was replaced by the stress-free IPN modified acrylic film in order to eliminate the need for external pre-strain-supporting structures. Introductorily, the specific problems on conventional expanding actuators are discussed and the aims for contractive tension force actuators are specified. Then some structural design parameters are addressed in order to achieve a high rate of yield and reliable working principle. In the main part of the study the manufacturing process of the actuators and some measurement results and experiences are discussed in detail.

  17. Electrospraying and ultraviolet light curing of nanometer-thin polydimethylsiloxane membranes for low-voltage dielectric elastomer transducers

    NASA Astrophysics Data System (ADS)

    Osmani, Bekim; Töpper, Tino; Siketanc, Matej; Kovacs, Gabor M.; Müller, Bert

    2017-04-01

    Dielectric elastomer transducers (DETs) have attracted interest as actuators, sensors, and even as self-sensing actuators for applications in medicine, soft robotics, and microfluidics. To reach strains of more than 10 %, they currently require operating voltages of several hundred volts. In medical applications for artificial muscles, however, their operation is limited to a very few tens of volts, which implies high permittivity materials and thin-film structures. Such micro- or nanostructures can be prepared using electro-spraying, a cost-effective technique that allows upscaling using multiple nozzles for the fabrication of silicone films down to nanometer thickness. Deposition rates of several micrometers per hour have already been reached. It has been recently demonstrated that such membranes can be fabricated by electro-spraying and subsequent ultraviolet light irradiation. Herein, we introduce a relatively fast deposition of a dimethyl silicone copolymer fluid that contains mercaptopropyl side chains in addition to the methyl groups. Its elastic modulus was tuned with the irradiation dose of the 200 W Hg-Xe lamp. We also investigated the formation of elastomer films, using polymer concentrations in ethyl acetate of 1, 2, 5 and 10 vol%. After curing, the surface roughness was measured by means of atomic force microscopy. This instrument also enabled us to determine the average elastic modulus out of, for example, 400 nanoindentation measurements, using a spherical tip with a radius of 500 nm. The elastomer films were cured for a period of less than one minute, a speed that makes it feasible to combine electro-spraying and in situ curing in a single process step for fabricating low-voltage, multilayer DETs.

  18. Development of a shape memory alloy actuated biomimetic vehicle

    NASA Astrophysics Data System (ADS)

    Garner, L. J.; Wilson, L. N.; Lagoudas, D. C.; Rediniotis, O. K.

    2000-10-01

    The development of a biomimetic active hydrofoil that utilizes shape memory alloy (SMA) actuator technology is presented. This work is the first stage prototype of a vehicle that will consist of many actuated body segments. The current work describes the design, modeling and testing of a single-segment demonstration SMA actuated hydrofoil. The SMA actuation elements are two sets of thin wires on either side of an elastomeric component that joins together the leading and trailing edges of the hydrofoil. Controlled heating and cooling of the two wire sets generates bi-directional bending of the elastomer, which in turn deflects the trailing edge of the hydrofoil. In this paper the design of the hydrofoil and the experimental tests preformed thereon are explained. A detailed account of SMA actuator preparation (training) and material characterization is given. Finite-element method (FEM) modeling of hydrofoil response to electrical heating of the SMA actuators is carried out using a thermomechanical constitutive model for the SMA with input from the material characterization. The modeling predictions are finally compared with experimental measurements of the trailing edge deflection and the SMA actuator temperature.

  19. Fabrication, sensation and control of fluidic elastomer actuators and their application towards hand orthotics and prosthetics

    NASA Astrophysics Data System (ADS)

    Zhao, Huichan

    Due to their continuous and natural motion, fluidic elastomer actuators (FEAs) have shown potential in a range of robotic applications including prosthetics and orthotics. Despite their advantages and rapid developments, robots using these actuators still have several challenging issues to be addressed. First, the reliable production of low cost and complex actuators that can apply high forces is necessary, yet none of existing fabrication methods are both easy to implement and of high force output. Next, compliant or stretchable sensors that can be embedded into their bodies for sophisticated functions are required, however, many of these sensors suffer from hysteresis, fabrication complexity, chemical safety and environmental instability, and material incompatibility with soft actuators. Finally, feedback control for FEAs is necessary to achieve better performance, but most soft robots are still "open-loop". In this dissertation, I intend to help solve the above issues and drive the applications of soft robotics towards hand orthotics and prosthetics. First, I adapt rotational casting as a new manufacturing method for soft actuators. I present a cuboid soft actuator that can generate a force of >25 N at its tip, a near ten-fold increase over similar actuators previously reported. Next, I propose a soft orthotic finger with position control enabled via embedded optical fiber. I monitor both the static and dynamic states via the optical sensor and achieve the prescribed curvatures accurately and with stability by a gain-scheduled proportional-integral-derivative controller. Then I develop the soft orthotic fingers into a low-cost, closed-loop controlled, soft orthotic glove that can be worn by a typical human hand and helpful for grasping light objects, while also providing finger position control. I achieve motion control with inexpensive, binary pneumatic switches controlled by a simple finite-state-machine. Finally, I report the first use of stretchable optical waveguides for strain sensing in a soft prosthetic hand. These optoelectronic strain sensors are easy to fabricate, chemically inert, and demonstrate low hysteresis and high precision in their output signals. I use the optoelectronically innervated prosthetic hand to conduct various active sensation experiments inspired by the capabilities of a real hand.

  20. Near-Infrared Chromophore Functionalized Soft Actuator with Ultrafast Photoresponsive Speed and Superior Mechanical Property.

    PubMed

    Liu, Li; Liu, Mei-Hua; Deng, Lin-Lin; Lin, Bao-Ping; Yang, Hong

    2017-08-23

    In this Communication, we develop a two-step acyclic diene metathesis in situ polymerization/cross-linking method to synthesize uniaxially aligned main-chain liquid crystal elastomers with chemically bonded near-infrared absorbing four-alkenyl-tailed croconaine-core cross-linkers. Because of the extraordinary photothermal conversion property, such a soft actuator material can raise its local temperature from 18 to 260 °C in 8 s, and lift up burdens 5600 times heavier than its own weight, under 808 nm near-infrared irradiation.

  1. Application of EAP materials toward a refreshable Braille display

    NASA Astrophysics Data System (ADS)

    Di Spigna, N.; Chakraborti, P.; Yang, P.; Ghosh, T.; Franzon, P.

    2009-03-01

    The development of a multiline, refreshable Braille display will assist with the full inclusion and integration of blind people into society. The use of both polyvinylidene fluoride (PVDF) film planar bending mode actuators and silicone dielectric elastomer cylindrical tube actuators have been investigated for their potential use in a Braille cell. A liftoff process that allows for aggressive scaling of miniature bimorph actuators has been developed using standard semiconductor lithography techniques. The PVDF bimorphs have been demonstrated to provide enough displacement to raise a Braille dot using biases less than 1000V and operating at 10Hz. In addition, silicone tube actuators have also been demonstrated to achieve the necessary displacement, though requiring higher voltages. The choice of electrodes and prestrain conditions aimed at maximizing axial strain in tube actuators are discussed. Characterization techniques measuring actuation displacement and blocking forces appropriate for standard Braille cell specifications are presented. Finally, the integration of these materials into novel cell designs and the fabrication of a prototype Braille cell are discussed.

  2. 3D Printing of Highly Stretchable, Shape-Memory, and Self-Healing Elastomer toward Novel 4D Printing.

    PubMed

    Kuang, Xiao; Chen, Kaijuan; Dunn, Conner K; Wu, Jiangtao; Li, Vincent C F; Qi, H Jerry

    2018-02-28

    The three-dimensional (3D) printing of flexible and stretchable materials with smart functions such as shape memory (SM) and self-healing (SH) is highly desirable for the development of future 4D printing technology for myriad applications, such as soft actuators, deployable smart medical devices, and flexible electronics. Here, we report a novel ink that can be used for the 3D printing of highly stretchable, SM, and SH elastomer via UV-light-assisted direct-ink-write printing. An ink containing urethane diacrylate and a linear semicrystalline polymer is developed for the 3D printing of a semi-interpenetrating polymer network elastomer that can be stretched by up to 600%. The 3D-printed complex structures show interesting functional properties, such as high strain SM and SM -assisted SH capability. We demonstrate that such a 3D-printed SM elastomer has the potential application for biomedical devices, such as vascular repair devices. This research paves a new way for the further development of novel 4D printing, soft robotics, and biomedical devices.

  3. Phenomena of nonlinear oscillation and special resonance of a dielectric elastomer minimum energy structure rotary joint

    NASA Astrophysics Data System (ADS)

    Zhao, Jianwen; Niu, Junyang; McCoul, David; Ren, Zhi; Pei, Qibing

    2015-03-01

    The dielectric elastomer minimum energy structure can realize large angular deformations by a small voltage-induced strain of the dielectric elastomer, so it is a suitable candidate to make a rotary joint for a soft robot. Driven with an alternating electric field, the joint deformation vibrational frequency follows the input voltage frequency. However, the authors find that if the rotational inertia increases such that the inertial torque makes the frame deform over a negative angle, then the joint motion will become complicated and the vibrational mode will alter with the change of voltage frequency. The vibration with the largest amplitude does not occur while the voltage frequency is equal to natural response frequency of the joint. Rather, the vibrational amplitude will be quite large over a range of other frequencies at which the vibrational frequency is half of the voltage frequency. This phenomenon was analyzed by a comparison of the timing sequences between voltage and joint vibration. This vibrational mode with the largest amplitude can be applied to the generation lift in a flapping wing actuated by dielectric elastomers.

  4. Electromechanical instability in soft materials: Theory, experiments and applications

    NASA Astrophysics Data System (ADS)

    Suo, Zhigang

    2013-03-01

    Subject to a voltage, a membrane of a dielectric elastomer reduces thickness and expands area, possibly straining over 100%. The phenomenon is being developed as transducers for broad applications, including soft robots, adaptive optics, Braille displays, and electric generators. The behavior of dielectric elastomers is closely tied to electromechanical instability. This instability may limit the performance of devices, and may also be used to achieve giant actuation strains. This talk reviews the theory of dielectric elastomers, coupling large deformation and electric potential. The theory is developed within the framework of continuum mechanics and thermodynamics. The theory attempts to answer commonly asked questions. How do mechanics and electrostatics work together to generate large deformation? How efficiently can a material convert energy from one form to another? How do molecular processes affect macroscopic behavior? The theory is used to describe electromechanical instability, and is related to recent experiments.

  5. Curvature by design and on demand in liquid crystal elastomers

    NASA Astrophysics Data System (ADS)

    Kowalski, B. A.; Mostajeran, C.; Godman, N. P.; Warner, M.; White, T. J.

    2018-01-01

    The shape of liquid crystalline elastomers (LCEs) with spatial variation in the director orientation can be transformed by exposure to a stimulus. Here, informed by previously reported analytical treatments, we prepare complex spiral patterns imprinted into LCEs and quantify the resulting shape transformation. Quantification of the stimuli-induced shapes reveals good agreement between predicted and experimentally observed curvatures. We conclude this communication by reporting a design strategy to allow LCE films to be anchored at their external boundaries onto rigid substrates without incurring internal, mechanical-mismatch stresses upon actuation, a critical advance to the realization of shape transformation of LCEs in practical device applications.

  6. Finite element analysis of multilayer DEAP stack-actuators

    NASA Astrophysics Data System (ADS)

    Kuhring, Stefan; Uhlenbusch, Dominik; Hoffstadt, Thorben; Maas, Jürgen

    2015-04-01

    Dielectric elastomers (DE) are thin polymer films belonging to the class of electroactive polymers (EAP). They are coated with compliant and conductive electrodes on each side, which make them performing a relative high amount of deformation with considerable force generation under the influence of an electric field. Because the realization of high electric fields with a limited voltage level requests single layer polymer films to be very thin, novel multilayer actuators are utilized to increase the absolute displacement and force. In case of a multilayer stack-actuator, many actuator films are mechanically stacked in series and electrically connected in parallel. Because there are different ways to design such a stack-actuator, this contribution considers an optimization of some design parameters using the finite element analysis (FEA), whereby the behavior and the actuation of a multilayer dielectric electroactive polymer (DEAP) stack-actuator can be improved. To describe the material behavior, first different material models are compared and necessary material parameters are identified by experiments. Furthermore, a FEA model of a DEAP film is presented, which is expanded to a multilayer DEAP stack-actuator model. Finally, the results of the FEA are discussed and conclusions for design rules of optimized stack-actuators are outlined.

  7. Dielectric Elastomer Actuated Systems and Methods

    NASA Technical Reports Server (NTRS)

    Dubowsky, Steven (Inventor); Hafez, Moustapha (Inventor); Lichter, Matthew (Inventor); Weiss, Peter (Inventor); Wingert, Andreas (Inventor)

    2008-01-01

    The system of the present invention includes an actuator having at least two electrodes, an elastomeric dielectric film disposed between the two electrodes, and a frame attached to the elastomeric dielectric film. The frame provides a linear actuation force characteristic over a displacement range. The displacement range is preferably the stroke of the actuator. The displacement range can be about 5 mm and greater. Further, the frame can include a plurality of configurations, for example, at least a rigid members coupled to a flexible member wherein the frame provides an elastic restoring force. In preferred embodiments, the rigid member can be, but is not limited to, curved beams, parallel beams, rods and plates. In a preferred embodiment the actuator can further include a passive element disposed between two flexible members such as, for example, links to tune a stiffness characteristic of the actuator. The passive element can be a bi-stable element. Further, the actuator can include a plurality of layers of the elastomeric dielectric film integrated into the frame. The elastomeric film can be made of different materials such as, for example, acrylic, silicone and latex.

  8. Microfabrication and characterization of an array of dielectric elastomer actuators generating uniaxial strain to stretch individual cells

    NASA Astrophysics Data System (ADS)

    Akbari, S.; Shea, H. R.

    2012-04-01

    Cells regulate their behavior in response to mechanical strains. Cell cultures to study mechanotransuction are typically cm2 in area, far too large to monitor single cell response. We have developed an array of dielectric elastomer microactuators as a tool to study mechanotransduction of individual cells. The array consists of 72 100 µm × 200 µm electroactive polymer actuators which expand uniaxially when a voltage is applied. Single cells will be attached on each actuator to study their response to periodic mechanical strains. The device is fabricated by patterning compliant microelectrodes on both sides of a 30 µm thick polydimethylsiloxane membrane, which is bonded to a Pyrex chip with 200 µm wide trenches. Low-energy metal ion implantation is used to make stretchable electrodes and we demonstrate here the successful miniaturization of such ion-implanted electrodes. The top electrode covers the full membrane area, while the bottom electrodes are 100 µm wide parallel lines, perpendicular to the trenches. Applying a voltage between the top and bottom electrodes leads to uniaxial expansion of the membrane at the intersection of the bottom electrodes and the trenches. To characterize the in-plane strain, an array of 4 µm diameter aluminum dots is deposited on each actuator. The position of each dot is tracked, allowing displacement and strain profiles to be measured as a function of voltage. The uniaxial strain reaches 4.7% at 2.9 kV with a 0.2 s response time, sufficient to stimulate most cells with relevant biological strains and frequencies.

  9. Nanocarbon/elastomer composites: Characterization and applications in photo-mechanical actuation

    NASA Astrophysics Data System (ADS)

    Loomis, Robert James, III

    The magnitude and direction of photo-mechanical actuation responses generated in carbon nanostructure/elastomer composites depend on applied pre-strains. At low levels of pre-strains (3--9%), actuators show reversible photo-induced expansion while at high levels (15--40%), actuators exhibit reversible contraction. Large, light-induced reversible and elastic responses of graphene nanoplatelet (GNP) polymer composites were demonstrated for the first time, with an extraordinary optical-to-mechanical energy conversion factor (etaM) of 7--9 MPa/W. Following this demonstration, similar elastomeric composite were fabricated with a variety of carbon nanostructures. Investigation into photo-actuation properties of these composites revealed both layer-dependent, as well as dimensionally-dependent responses. For a given carbon concentration, both steady-state photo-mechanical stress response and energy conversion efficiency were found to be directly related to dimensional state of carbon nanostructure additive, with one-dimensional (1D) carbon nanotubes demonstrating the highest responses (˜60 kPa stress and ˜5 x 10-3% efficiency at just 1 wt% loading) and three-dimensional (3D) highly ordered pyrolytic graphite demonstrating the lowest responses. Furthermore, development of an advanced dispersion technique (evaporative mixing) resulted in the ability to fabricate conductive composites. Actuation and relaxation kinetics responses were investigated and found to be related not to dimensionality, but rather the percolation threshold of carbon nanostructure additive in the polymer. Establishing a connective network of carbon nanostructure additive allowed for energy transduction responsible for photo-mechanical effect to activate carbon beyond the infrared (IR) illumination point, resulting in enhanced actuation. Additionally, in the conductive samples photo-conductivity as a function of applied pre-strain was also measured. Photo-conductive response was found to be inversely proportional to applied pre-strain, demonstrating mechanical coupling. Following investigation into photo-mechanical actuation responses between the various carbon forms, use of these composite actuators to achieve both macroscopic as well as microscopic movement in practical applications was evaluated. Using dual GNP/elastomer actuators, a two-axis sub-micron translation stage was developed, and allowed for two-axis photo-thermal positioning (˜100 microm per axis) with 120 nm resolution (limitation of the feedback sensor) and ˜5 microm/s actuation speeds. A proportional-integral-derivative control loop automatically stabilizes the stage against thermal drift, as well as random thermal-induced position fluctuations (up to the bandwidth of the feedback and position sensor). Nanopositioner performance characteristics were found to be on par with other commercial systems, with resolution limited only by the feedback system used. A mathematical model was developed to describe the elastomeric composite actuators as a series of n springs, with each spring element having its own independent IR-tunable spring constant. Effects of illumination intensity, position, and amount of the composite actuator illuminated are discussed. This model provided several additional insights, such as demonstrating the ability to place not just one, but multiple stages on a single polymer composite strip and position them independently from one another, a benefit not seen in any other type of positioning system. Further investigation yielded interesting and novel photo-mechanical properties with actuation visible on macroscopic scales. Addition of a third component (thermally expanding microspheres), produced a new class of stimuli-responsive expanding polymer composites with ability to unidirectionally transform physical dimensions, elastic modulus, density, and electrical resistance. Carbon nanotubes and core-shell acrylic microspheres were dispersed in polydimethylsiloxane, resulting in composites that exhibit a binary set of material properties. Upon thermal or IR stimuli, liquid cores encapsulated within the microspheres vaporize, expanding the surrounding shells and stretching the matrix. Microsphere expansion results in visible dimensional changes, regions of reduced polymeric chain mobility, nanotube tensioning, and overall elastic to plastic-like transformation of the composite. Transformations include macroscopic volume expansion (>500%), density reduction (>80%), and elastic modulus increase (>675%). Additionally, conductive nanotubes allow for remote expansion monitoring and exhibit distinct loading-dependent electrical responses. (Abstract shortened by UMI.).

  10. Viscoelastic performance of dielectric elastomer subject to different voltage stimulation

    NASA Astrophysics Data System (ADS)

    Sheng, Junjie; Zhang, Yuqing; Liu, Lei; Li, Bo; Chen, Hualing

    2017-04-01

    Dielectric elastomer (DE) is capable of giant deformation subject to an electric field, and demonstrates significant advantages in the potentially application of soft machines with muscle-like characteristics. Due to an inherent property of all macromolecular materials, DE exhibits strong viscoelastic properties. Viscoelasticity could cause a time-dependent deformation and lower the response speed and energy conversion efficiency of DE based actuators, thus strongly affect its electromechanical performance and applications. Combining with the rheological model of viscoelastic relaxation, the viscoelastic performance of a VHB membrane in a circular actuator configuration undergoing separately constant, ramp and sinusoidal voltages are analyzed both theoretically and experimentally. The theoretical results indicated that DE could attain a big deformation under a small constant voltage with a longer time or under a big voltage with a shorter time. The model also showed that a higher critical stretch could be achieved by applying ramping voltage with a lower rate and the stretch magnitude under sinusoidal voltage is much larger at a relatively low frequency. Finally, experiments were designed to validate the simulation and show well consistent with the simulation results.

  11. A Soft Gripper with Rigidity Tunable Elastomer Strips as Ligaments.

    PubMed

    Nasab, Amir Mohammadi; Sabzehzar, Amin; Tatari, Milad; Majidi, Carmel; Shan, Wanliang

    2017-12-01

    Like their natural counterparts, soft bioinspired robots capable of actively tuning their mechanical rigidity can rapidly transition between a broad range of motor tasks-from lifting heavy loads to dexterous manipulation of delicate objects. Reversible rigidity tuning also enables soft robot actuators to reroute their internal loading and alter their mode of deformation in response to intrinsic activation. In this study, we demonstrate this principle with a three-fingered pneumatic gripper that contains "programmable" ligaments that change stiffness when activated with electrical current. The ligaments are composed of a conductive, thermoplastic elastomer composite that reversibly softens under resistive heating. Depending on which ligaments are activated, the gripper will bend inward to pick up an object, bend laterally to twist it, and bend outward to release it. All of the gripper motions are generated with a single pneumatic source of pressure. An activation-deactivation cycle can be completed within 15 s. The ability to incorporate electrically programmable ligaments in a pneumatic or hydraulic actuator has the potential to enhance versatility and reduce dependency on tubing and valves.

  12. Giant lateral electrostriction in ferroelectric liquid-crystalline elastomers

    NASA Astrophysics Data System (ADS)

    Lehmann, W.; Skupin, H.; Tolksdorf, C.; Gebhard, E.; Zentel, R.; Krüger, P.; Lösche, M.; Kremer, F.

    2001-03-01

    Mechanisms for converting electrical energy into mechanical energy are essential for the design of nanoscale transducers, sensors, actuators, motors, pumps, artificial muscles, and medical microrobots. Nanometre-scale actuation has to date been mainly achieved by using the (linear) piezoelectric effect in certain classes of crystals (for example, quartz), and `smart' ceramics such as lead zirconate titanate. But the strains achievable in these materials are small-less than 0.1 per cent-so several alternative materials and approaches have been considered. These include grafted polyglutamates (which have a performance comparable to quartz), silicone elastomers (passive material-the constriction results from the Coulomb attraction of the capacitor electrodes between which the material is sandwiched) and carbon nanotubes (which are slow). High and fast strains of up to 4 per cent within an electric field of 150MVm-1 have been achieved by electrostriction (this means that the strain is proportional to the square of the applied electric field) in an electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer. Here we report a material that shows a further increase in electrostriction by two orders of magnitude: ultrathin (less than 100nanometres) ferroelectric liquid-crystalline elastomer films that exhibit 4 per cent strain at only 1.5 MVm-1. This giant electrostriction was obtained by combining the properties of ferroelectric liquid crystals with those of a polymer network. We expect that these results, which can be completely understood on a molecular level, will open new perspectives for applications.

  13. Development of elastomeric flight muscles for flapping wing micro air vehicles

    NASA Astrophysics Data System (ADS)

    Lau, Gih-Keong; Chin, Yao-Wei; La, Thanh-Giang

    2017-04-01

    Common drivers of flapping wings are a motorized crank mechanisms, which convert the motor rotation into wing reciprocation. Energetic efficiency of the motorized wing flappers can be quite low due to the lack of elastic storage and high friction. This paper relook into the flapping flight apparatus of natural flyers and draw inspiration to develop flight muscles capable of elastic storage, in addition to the frictionless thoracic compliant mechanisms. We review the recent findings on the use of dielectric elastomer actuators as flight muscles. We also discuss the challenges and the prospects of using dielectric elastomer minimum energy structure to create large and fast bending/unbending, possibly for wing flapping.

  14. Biomimetic small scale variable focal length lens unit using synthetic elastomer actuators

    NASA Astrophysics Data System (ADS)

    Kim, Baek-chul; Chung, Jinah; Lee, Y.; Nam, Jae-Do; Moon, Hyungpil; Choi, Hyouk Ryeol; Koo, J. C.

    2011-04-01

    Having a combination of a gel-like soft lens, ligaments, and the Ciliary muscles, the human eyes are effectively working for various focal lengths without a complicated group of lens. The simple and compact but effective optical system should deserve numerous attentions from various technical field especially portable information technology device industry. Noting the limited physical space of those deivces, demanding shock durability, and massive volume productivity, the present paper proposes a biomimetic optical lens unit that is organized with a circular silicone lens and an annular dielectric polymer actuator. Unlike the traditional optical lens mechanism that normally acquires a focus by changing its focal distance with moving lens or focal plane. the proposed optical system changes its lens thickness using a annulary connected polymer actuator in order to get image focuses. The proposed biomimetic lens system ensures high shock durability, compact physical dimensions, fast actuations, simple manufacturing process, and low production cost.

  15. Bistable electroactive polymers (BSEP): large-strain actuation of rigid polymers

    NASA Astrophysics Data System (ADS)

    Yu, Zhibin; Niu, Xiaofan; Brochu, Paul; Yuan, Wei; Li, Huafeng; Chen, Bin; Pei, Qibing

    2010-04-01

    Reversible, large-strain, bistable actuation has been a lasting puzzle in the pursuit of smart materials and structures. Conducting polymers are bistable, but the achievable strain is small. Large deformations have been achieved in dielectric elastomers at the expense of mechanical strength. The gel or gel-like soft polymers generally have elastic moduli around or less than 10 MPa. The deformed polymer relaxes to its original shape once the applied electric field is removed. We report new, bistable electroactive polymers (BSEP) that are capable of electrically actuated strains as high as 335% area strain. The BSEP could be useful for constructing rigid structures. The structures can support high mechanical loads, and be actuated to large-strain deformations. We will present one unique application of the BSEP for Braille displays that can be quickly refreshed and maintain the displayed contents without a bias voltage.

  16. Rupture of a highly stretchable acrylic dielectric elastomer

    NASA Astrophysics Data System (ADS)

    Pharr, George; Sun, Jeong-Yun; Suo, Zhigang

    2012-02-01

    Dielectric elastomers have found widespread application as energy harvesters, actuators, and sensors. In practice these elastomers are subject to large tensile stretches, which potentially can lead to mechanical fracture. In this study, we have examined fracture properties of the commercial acrylic elastomer VHB 4905. We have found that inserting a pre-cut into the material drastically reduces the stretch at rupture from λrup = 9.43±1.05 for pristine samples down to only λrup = 3.63±0.45 for the samples with a pre-cut. Furthermore, using ``pure-shear'' test specimens with a pre-crack, we have measured the fracture energy and stretch at rupture as a function of the sample geometry. The stretch at rupture was found to decrease with sample height, which agrees with an analytical prediction. Additionally, we have measured the fracture energy as a function of stretch-rate. The apparent fracture energy was found to increase with stretch-rate from γ 1500 J/m^2 to γ 5000 J/m^2 for the investigated rates of deformation. This phenomenon is due to viscoelastic properties of VHB 4905, which result in an apparent stiffening for sufficiently large stretch-rates.

  17. Electrical conductivity, dielectric response and space charge dynamics of an electroactive polymer with and without nanofiller reinforcement

    NASA Astrophysics Data System (ADS)

    Kochetov, R.; Tsekmes, I. A.; Morshuis, P. H. F.

    2015-07-01

    Electroactive polymers have gained considerable attention over the last 20 years for exhibiting a large displacement in response to electrical stimulation. The promising fields of application include wave energy converters, muscle-like actuators, sensors, robotics, and biomimetics. For an electrical engineer, electroactive polymers can be seen as a dielectric elastomer film or a compliant capacitor with a highly deformable elastomeric medium. If the elastomer is pre-stretched and pre-charged, a reduction of the tensile force lets the elastomer revert to its original form and increases the electrical potential. The light weight of electroactive polymers, low cost, high intrinsic breakdown strength, cyclical way of operation, reliable performance, and high efficiency can be exploited to utilize the elastomeric material as a transducer. The energy storage for a linear dielectric polymer is determined by its relative permittivity and the applied electric field. The latter is limited by the dielectric breakdown strength of the material. Therefore, to generate a high energy density of a flexible capacitor, the film must be used at the voltage level close to the material’s breakdown or inorganic particles with high dielectric permittivity which can be introduced into the polymer matrix. In the present study, silicone-titania elastomer nanocomposites were produced and the influence of nanoparticles on the macroscopic dielectric properties of the neat elastomer including space charge dynamics, complex permittivity, and electrical conductivity, were investigated.

  18. Soft Active Materials for Actuation, Sensing, and Electronics

    NASA Astrophysics Data System (ADS)

    Kramer, Rebecca Krone

    Future generations of robots, electronics, and assistive medical devices will include systems that are soft and elastically deformable, allowing them to adapt their morphology in unstructured environments. This will require soft active materials for actuation, circuitry, and sensing of deformation and contact pressure. The emerging field of soft robotics utilizes these soft active materials to mimic the inherent compliance of natural soft-bodied systems. As the elasticity of robot components increases, the challenges for functionality revert to basic questions of fabrication, materials, and design - whereas such aspects are far more developed for traditional rigid-bodied systems. This thesis will highlight preliminary materials and designs that address the need for soft actuators and sensors, as well as emerging fabrication techniques for manufacturing stretchable circuits and devices based on liquid-embedded elastomers.

  19. Large-Strain Transparent Magnetoactive Polymer Nanocomposites

    NASA Technical Reports Server (NTRS)

    Meador, Michael A.

    2012-01-01

    A document discusses polymer nano - composite superparamagnetic actuators that were prepared by the addition of organically modified superparamagnetic nanoparticles to the polymer matrix. The nanocomposite films exhibited large deformations under a magnetostatic field with a low loading level of 0.1 wt% in a thermoplastic polyurethane elastomer (TPU) matrix. The maximum actuation deformation of the nanocomposite films increased exponentially with increasing nanoparticle concentration. The cyclic deformation actuation of a high-loading magnetic nanocomposite film was examined in a low magnetic field, and it exhibited excellent reproducibility and controllability. Low-loading TPU nanocomposite films (0.1-2 wt%) were transparent to semitransparent in the visible wavelength range, owing to good dispersion of the magnetic nanoparticles. Magnetoactuation phenomena were also demonstrated in a high-modulus, high-temperature polyimide resin with less mechanical deformation.

  20. Energy harvesting with stacked dielectric elastomer transducers: Nonlinear theory, optimization, and linearized scaling law

    NASA Astrophysics Data System (ADS)

    Tutcuoglu, A.; Majidi, C.

    2014-12-01

    Using principles of damped harmonic oscillation with continuous media, we examine electrostatic energy harvesting with a "soft-matter" array of dielectric elastomer (DE) transducers. The array is composed of infinitely thin and deformable electrodes separated by layers of insulating elastomer. During vibration, it deforms longitudinally, resulting in a change in the capacitance and electrical enthalpy of the charged electrodes. Depending on the phase of electrostatic loading, the DE array can function as either an actuator that amplifies small vibrations or a generator that converts these external excitations into electrical power. Both cases are addressed with a comprehensive theory that accounts for the influence of viscoelasticity, dielectric breakdown, and electromechanical coupling induced by Maxwell stress. In the case of a linearized Kelvin-Voigt model of the dielectric, we obtain a closed-form estimate for the electrical power output and a scaling law for DE generator design. For the complete nonlinear model, we obtain the optimal electrostatic voltage input for maximum electrical power output.

  1. Power-efficient low-temperature woven coiled fibre actuator for wearable applications.

    PubMed

    Hiraoka, Maki; Nakamura, Kunihiko; Arase, Hidekazu; Asai, Katsuhiko; Kaneko, Yuriko; John, Stephen W; Tagashira, Kenji; Omote, Atsushi

    2016-11-04

    A fibre actuator that generates a large strain with high specific power represents a promising strategy to develop novel wearable devices and robotics. We propose a new coiled-fibre actuator based on highly drawn, hard linear low-density polyethylene (LLDPE) fibres. Driven by resistance heating, the actuator can be operated at temperatures as low as 60 °C and uses only 20% of the power consumed by previously coiled fibre actuators when generating 20 MPa of stress at 10% strain. In this temperature range, 1600 W kg -1 of specific work (8 times that of a skeletal muscle) at 69 MPa of tensile stress (230 times that of a skeletal muscle) with a work efficiency of 2% is achieved. The actuator generates strain as high as 23% at 90 °C. Given the low driving temperature, the actuator can be combined with common fabrics or stretchable conductive elastomers without thermal degradation, allowing for easy use in wearable systems. Nanostructural analysis implies that the lamellar crystals in drawn LLDPE fibres are weakly bridged with each other, which allows for easy deformation into compact helical shapes via twisting and the generation of large strain with high work efficiency.

  2. Power-efficient low-temperature woven coiled fibre actuator for wearable applications

    PubMed Central

    Hiraoka, Maki; Nakamura, Kunihiko; Arase, Hidekazu; Asai, Katsuhiko; Kaneko, Yuriko; John, Stephen W.; Tagashira, Kenji; Omote, Atsushi

    2016-01-01

    A fibre actuator that generates a large strain with high specific power represents a promising strategy to develop novel wearable devices and robotics. We propose a new coiled-fibre actuator based on highly drawn, hard linear low-density polyethylene (LLDPE) fibres. Driven by resistance heating, the actuator can be operated at temperatures as low as 60 °C and uses only 20% of the power consumed by previously coiled fibre actuators when generating 20 MPa of stress at 10% strain. In this temperature range, 1600 W kg−1 of specific work (8 times that of a skeletal muscle) at 69 MPa of tensile stress (230 times that of a skeletal muscle) with a work efficiency of 2% is achieved. The actuator generates strain as high as 23% at 90 °C. Given the low driving temperature, the actuator can be combined with common fabrics or stretchable conductive elastomers without thermal degradation, allowing for easy use in wearable systems. Nanostructural analysis implies that the lamellar crystals in drawn LLDPE fibres are weakly bridged with each other, which allows for easy deformation into compact helical shapes via twisting and the generation of large strain with high work efficiency. PMID:27812014

  3. Power-efficient low-temperature woven coiled fibre actuator for wearable applications

    NASA Astrophysics Data System (ADS)

    Hiraoka, Maki; Nakamura, Kunihiko; Arase, Hidekazu; Asai, Katsuhiko; Kaneko, Yuriko; John, Stephen W.; Tagashira, Kenji; Omote, Atsushi

    2016-11-01

    A fibre actuator that generates a large strain with high specific power represents a promising strategy to develop novel wearable devices and robotics. We propose a new coiled-fibre actuator based on highly drawn, hard linear low-density polyethylene (LLDPE) fibres. Driven by resistance heating, the actuator can be operated at temperatures as low as 60 °C and uses only 20% of the power consumed by previously coiled fibre actuators when generating 20 MPa of stress at 10% strain. In this temperature range, 1600 W kg-1 of specific work (8 times that of a skeletal muscle) at 69 MPa of tensile stress (230 times that of a skeletal muscle) with a work efficiency of 2% is achieved. The actuator generates strain as high as 23% at 90 °C. Given the low driving temperature, the actuator can be combined with common fabrics or stretchable conductive elastomers without thermal degradation, allowing for easy use in wearable systems. Nanostructural analysis implies that the lamellar crystals in drawn LLDPE fibres are weakly bridged with each other, which allows for easy deformation into compact helical shapes via twisting and the generation of large strain with high work efficiency.

  4. Theoretical and experimental investigations of an active hydrofoil with SMA actuators

    NASA Astrophysics Data System (ADS)

    Rediniotis, Othon K.; Lagoudas, Dimitris C.; Mashio, Tomoka; Garner, Luke J.; Qidwai, Muhammad A.

    1997-06-01

    In the area of underwater vehicle design, the development of highly maneuverable vehicles is presently of interest with their design being based on the swimming techniques and anatomic structure of fish; primarily the undulatory body motions, the highly controllable fins and the large aspect ratio lunatic tail. The tailoring and implementation of the accumulated knowledge into biomimetic vehicles is a task of multidisciplinary nature with two of the dominant fields being actuation and hydrodynamic control. Within this framework, we present here our progress towards the development of a type of biomimetic muscle that utilizes shape memory alloy (SMA) technology. The muscle is presently applied to the control of hydrodynamic forces and moments, including thrust generation, on a 2D hydrofoil. The main actuation elements are two sets of thin SMA wires embedded into an elastomeric element that provides the main structural support. Controlled heating and cooling of the two wire sets generates bi-direction bending of the elastomer, which in turn deflects or oscillates the trailing edge of the hydrofoil. The aquatic environment of the hydrofoil lends itself to cooling schemes that utilize the excellent heat transfer properties of water. The modeling of deflected shapes as a function of input current has been carried out using a thermomechanical constitutive model for SMA coupled with the elastic response of the elastomer. An approximate structural analysis model, as well as detailed FEM analysis has been performed and the model predictions are been compared with preliminary experimental measurements.

  5. Modeling Defects, Shape Evolution, and Programmed Auto-origami in Liquid Crystal Elastomers

    NASA Astrophysics Data System (ADS)

    Konya, Andrew; Gimenez-Pinto, Vianney; Selinger, Robin

    2016-06-01

    Liquid crystal elastomers represent a novel class of programmable shape-transforming materials whose shape change trajectory is encoded in the material’s nematic director field. Using three-dimensional nonlinear finite element elastodynamics simulation, we model a variety of different actuation geometries and device designs: thin films containing topological defects, patterns that induce formation of folds and twists, and a bas-relief structure. The inclusion of finite bending energy in the simulation model reveals features of actuation trajectory that may be absent when bending energy is neglected. We examine geometries with a director pattern uniform through the film thickness encoding multiple regions of positive Gaussian curvature. Simulations indicate that heating such a system uniformly produces a disordered state with curved regions emerging randomly in both directions due to the film’s up/down symmetry. By contrast, applying a thermal gradient by heating the material first on one side breaks up/down symmetry and results in a deterministic trajectory producing a more ordered final shape. We demonstrate that a folding zone design containing cut-out areas accommodates transverse displacements without warping or buckling; and demonstrate that bas-relief and more complex bent/twisted structures can be assembled by combining simple design motifs.

  6. Soft Robots: Manipulation, Mobility, and Fast Actuation

    NASA Astrophysics Data System (ADS)

    Shepherd, Robert; Ilievski, Filip; Choi, Wonjae; Stokes, Adam; Morin, Stephen; Mazzeo, Aaron; Kramer, Rebecca; Majidi, Carmel; Wood, Rob; Whitesides, George

    2012-02-01

    Material innovation will be a key feature in the next generation of robots. A simple, pneumatically powered actuator composed of only soft-elastomers can perform the function of a complex arrangement of mechanical components and electric motors. This talk will focus on soft-lithography as a simple method to fabricate robots--composed of exclusively soft materials (elastomeric polymers). These robots have sophisticated capabilities: a gripper (with no electrical sensors) can manipulate delicate and irregularly shaped objects and a quadrupedal robot can walk to an obstacle (a gap smaller than its walking height) then shrink its body and squeeze through the gap using an undulatory gait. This talk will also introduce a new method of rapidly actuating soft robots. Using this new method, a robot can be caused to jump more than 30 times its height in under 200 milliseconds.

  7. Actuator model of electrostrictive polymers (EPs) for microactuators

    NASA Astrophysics Data System (ADS)

    Kim, Hunmo; Oh, Sinjong; Hwang, Kyoil; Choi, Hyoukryeol; Jeon, Jaewook; Nam, Jaedo

    2001-07-01

    Recently, Electrostrictive polymers (EPs) are studied for micro-actuator, because of similarity of body tissue. Electrostrictive polymers (EPs) are based on the deformation of dielectric elastomer polymer in the presence of an electric field. Modeling of electrostrictive polymer has been studied, which is about voltage and displacement. And there are many parameters such as Young's modulus, voltage, thickness of EPs, pre-strain, dielectric, frequency and temperature which effect to movement of EPs. To do exact modeling, all parameters are included. In order to use as actuator, we accurately understood about the parameter that we refer above. And we have to execute modeling which parameters are considered. We used FEM in order to understand effects of parameters. Specially, because of pre-strain effects are very important, we derive the relations of stress and strain by using elastic strain energy.

  8. Chemical Modification and Structure-property Relationships of Acrylic and Ionomeric Thermoplastic Elastomer Gels

    NASA Astrophysics Data System (ADS)

    Vargantwar, Pruthesh Hariharrao

    Block copolymers (BCs) have remained at the forefront of materials research due to their versatility in applications ranging from hot-melt/pressure-sensitive adhesives and impact modifiers to compatibilizing agents and vibration-dampening/nanotemplating media. Of particular interest are macromolecules composed of two or more chemically dissimilar blocks covalently linked together to form triblock or pentablock copolymers. If the blocks are sufficiently incompatible and the copolymer behaves as a thermoplastic elastomer, the molecules can spontaneously self-assemble to form nanostructured materials that exhibit shape memory due to the formation of a supramolecular network. The BCs of these types are termed as conventional. When BCs contain blocks having ionic moieties such as sulfonic acid groups, they are termed as block ionomers. Designing new systems based on either conventional or ionic BCs, characterizing their structure-property relationships and later using them as electroacive polymers form the essential objectives of this work. Electroactive polymers (EAPs) exhibit electromechanical actuation when stimulated by an external electric field. In the first part of this work, it is shown that BCs resolve some of the outstanding problems presently encountered in the design of two different classes of EAP actuators: dielectric elastomers (DEs) and ionic polymer metal composites (IPMCs). All-acrylic triblock copolymer gels used as DEs actuate with high efficacy without any requirement of mechanical prestrain and, thus, eliminate the need for bulky and heavy hardware essential with prestrained dielectric actuators, as well as material problems associated with stress relaxation. The dependence of actuation behavior on gel morphology as evaluated from mechanical and microstructure studies is observed. In the case of IPMCs, ionic BCs employed in this study greatly facilitate processing compared to other contenders such as NafionRTM, which is commonly used in this class of EAPs. The unique copolymer investigated here (i) retains its mechanical integrity when highly solvated by polar solvents, (ii) demonstrates a high degree of actuation when tested in a cantilever configuration, and (iii) avoids the shortcomings of back-relaxation/overshoot within the testing conditions when used in combination with an appropriate solvent. In the second part of this work, two chemical strategies to design midblock sulfonated block ionomers are explored. In one case, selective sulfonation of the midblocks in triblock copolymers is achieved via a dioxane:sulfur trioxide chemistry, while in the other acetyl sulfate is used for the same purpose. Excellent control on the degree of sulfonation (DOS) is achieved. The block ionomers swell in different solvents while retaining their mechanical integrity. They show disorder-order, order-order, and order-reduced order morphological transitions as DOS varies. These transitions in morphologies are reflected in their thermal behavior as well. The microstructures show periodicity, which is, again, a function of DOS. The transitions are explained in terms of the molar volume expansion and volume densification of the blocks on sulfonation. The ionic levels, morphology and periodicity in microstructure are important for applications such as actuators, sensors and fuel cell membranes. The ability to tune these aspects in the ionomers designed in this work make them potential candidates for these applications.

  9. Micromixer based on dielectric stack actuators for medical applications

    NASA Astrophysics Data System (ADS)

    Solano-Arana, Susana; Klug, Florian; Mößinger, Holger; Förster-Zügel, Florentine; Schlaak, Helmut F.

    2017-04-01

    Based on a previously developed microperistaltic pump, a micromixer made out of dielectric elastomer stack actuators (DESA) is proposed. The micromixer will be able to mix two fluids at the microscale, pumping both fluids in and out of the device. The device consists of three chambers. In the first and second chambers, fluids A and B are hosted, while in the third chamber, fluids A and B are mixed. The fluid flow regime is laminar. The application of voltage leads to an increase of the size of a gap in the z-axis direction, due to the actuators area expansion. This makes a channel open through which the fluid flows. The frequency of the actuation of the different actuators allows an increase of the flow rate. The micromixer can be used for applications such as drug delivery and synthesis of nucleic acids, the proposed device will be made of Polydimethylsiloxane (PDMS) as dielectric and graphite powder as electrode material. PDMS is a biocompatible material, widely used in the prosthesis field. Mixing fluids at a microscale is also in need in the lab-on-achip technology for complex chemical reactions.

  10. Unsteady aerodynamics of membrane wings with adaptive compliance

    NASA Astrophysics Data System (ADS)

    Kiser, Jillian; Breuer, Kenneth

    2016-11-01

    Membrane wings are known to provide superior aerodynamic performance at low Reynolds numbers (Re =104 -105), primarily due to passive shape adaptation to flow conditions. In addition to this passive deformation, active control of the fluid-structure interaction and resultant aerodynamic properties can be achieved through the use of dielectric elastomer actuators as the wing membrane material. When actuated, membrane pretension is decreased and wing camber increases. Additionally, actuation at resonance frequencies allows additional control over wing camber. We present results using synchronized (i) time-resolved particle image velocimetry (PIV) to resolve the flow field, (ii) 3D direct linear transformation (DLT) to recover membrane shape, (iii) lift/drag/torque measurements and (iv) near-wake hot wire anemometry measurements to characterize the fluid-structure interactions. Particular attention is paid to cases in which the vortex shedding frequency, the membrane resonance, and the actuation frequency coincide. In quantitatively examining both flow field and membrane shape at a range of actuation frequencies and vortex shedding frequencies, this work seeks to find actuation parameters that allow for active control of boundary layer separation over a range of flow conditions. Also at Naval Undersea Warfare Center, Division Newport.

  11. Fractional viscoelasticity of soft elastomers and auxetic foams

    NASA Astrophysics Data System (ADS)

    Solheim, Hannah; Stanisauskis, Eugenia; Miles, Paul; Oates, William

    2018-03-01

    Dielectric elastomers are commonly implemented in adaptive structures due to their unique capabilities for real time control of a structure's shape, stiffness, and damping. These active polymers are often used in applications where actuator control or dynamic tunability are important, making an accurate understanding of the viscoelastic behavior critical. This challenge is complicated as these elastomers often operate over a broad range of deformation rates. Whereas research has demonstrated success in applying a nonlinear viscoelastic constitutive model to characterize the behavior of Very High Bond (VHB) 4910, robust predictions of the viscoelastic response over the entire range of time scales is still a significant challenge. An alternative formulation for viscoelastic modeling using fractional order calculus has shown significant improvement in predictive capabilities. While fractional calculus has been explored theoretically in the field of linear viscoelasticity, limited experimental validation and statistical evaluation of the underlying phenomena have been considered. In the present study, predictions across several orders of magnitude in deformation rates are validated against data using a single set of model parameters. Moreover, we illustrate the fractional order is material dependent by running complementary experiments and parameter estimation on the elastomer VHB 4949 as well as an auxetic foam. All results are statistically validated using Bayesian uncertainty methods to obtain posterior densities for the fractional order as well as the hyperelastic parameters.

  12. Model photo-responsive elastomers based on the self-assembly of side group liquid crystal triblock copolymers (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Kurji, Zuleikha; Kornfield, Julia A.; Kuzyk, Mark G.

    2015-10-01

    We report the synthesis of azobenzene-containing coil-liquid crystal-coil triblock copolymers that form uniform and highly reproducible elastomers by self-assembly. To serve as actuators to (non-invasively) steer a fiber optic, for example in deep brain stimulation, the polymers are designed to become monodomain "single liquid crystal" elastomers during the fiber-draw process and to have a large stress/strain response to stimulation with either light or heat. A fundamental scientific question that we seek to answer is how the interplay between the concentration of photoresponsive mesogens and the proximity to the nematic-isotropic transition governs the sensitivity of the material to stimuli. Specifically, a matched pair of polymers, one with ~5% azobenzene-containing side groups (~95% cyanobiphenyl side groups) and the other with 100% cyanobiphenyl side groups were synthesized from identical triblock pre-polymers (with polystyerene end blocks and 1,2-polybutadiene midblocks). These can be blended in various ratios to prepare a series of elastomers that are precisely matched in terms of the backbone length between physical crosslinks (because each polymer is derived from the same pre-polymer), while differing in % azobenzene side groups, allowing the effect of concentration of photoresponsive groups to be unambiguously determined.

  13. Fluid control structures in microfluidic devices

    DOEpatents

    Mathies, Richard A.; Grover, William H.; Skelley, Alison; Lagally, Eric; Liu, Chung N.

    2008-11-04

    Methods and apparatus for implementing microfluidic analysis devices are provided. A monolithic elastomer membrane associated with an integrated pneumatic manifold allows the placement and actuation of a variety of fluid control structures, such as structures for pumping, isolating, mixing, routing, merging, splitting, preparing, and storing volumes of fluid. The fluid control structures can be used to implement a variety of sample introduction, preparation, processing, and storage techniques.

  14. Fluid control structures in microfluidic devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mathies, Richard A.; Grover, William H.; Skelley, Alison

    2017-05-09

    Methods and apparatus for implementing microfluidic analysis devices are provided. A monolithic elastomer membrane associated with an integrated pneumatic manifold allows the placement and actuation of a variety of fluid control structures, such as structures for pumping, isolating, mixing, routing, merging, splitting, preparing, and storing volumes of fluid. The fluid control structures can be used to implement a variety of sample introduction, preparation, processing, and storage techniques.

  15. Fluid control structures in microfluidic devices

    NASA Technical Reports Server (NTRS)

    Skelley, Alison (Inventor); Mathies, Richard A. (Inventor); Lagally, Eric (Inventor); Grover, William H. (Inventor); Liu, Chung N. (Inventor)

    2008-01-01

    Methods and apparatus for implementing microfluidic analysis devices are provided. A monolithic elastomer membrane associated with an integrated pneumatic manifold allows the placement and actuation of a variety of fluid control structures, such as structures for pumping, isolating, mixing, routing, merging, splitting, preparing, and storing volumes of fluid. The fluid control structures can be used to implement a variety of sample introduction, preparation, processing, and storage techniques.

  16. Actuating materials. Voxelated liquid crystal elastomers.

    PubMed

    Ware, Taylor H; McConney, Michael E; Wie, Jeong Jae; Tondiglia, Vincent P; White, Timothy J

    2015-02-27

    Dynamic control of shape can bring multifunctionality to devices. Soft materials capable of programmable shape change require localized control of the magnitude and directionality of a mechanical response. We report the preparation of soft, ordered materials referred to as liquid crystal elastomers. The direction of molecular order, known as the director, is written within local volume elements (voxels) as small as 0.0005 cubic millimeters. Locally, the director controls the inherent mechanical response (55% strain) within the material. In monoliths with spatially patterned director, thermal or chemical stimuli transform flat sheets into three-dimensional objects through controlled bending and stretching. The programmable mechanical response of these materials could yield monolithic multifunctional devices or serve as reconfigurable substrates for flexible devices in aerospace, medicine, or consumer goods. Copyright © 2015, American Association for the Advancement of Science.

  17. Flexible helical yarn swimmers.

    PubMed

    Zakharov, A P; Leshansky, A M; Pismen, L M

    2016-09-01

    We investigate the motion of a flexible Stokesian flagellar swimmer realised as a yarn made of two intertwined elastomer fibres, one active, that can reversibly change its length in response to a local excitation causing transition to the nematic state or swelling, and the other one, a passive isotropic elastomer with identical mechanical properties. A propagating chemical wave may provide an excitation mechanism ensuring a constant length of the excited region. Generally, the swimmer moves along a helical trajectory, and the propagation and rotation velocity are very sensitive to the ratio of the excited region to the pitch of the yarn, as well as to the size of a carried load. External excitation by a moving actuating beam is less effective, unless the direction of the beam is adjusted to rotation of the swimmer.

  18. Auto-Origami and Soft Programmable Transformers: Simulation Studies of Liquid Crystal Elastomers and Swelling Polymer Gels

    NASA Astrophysics Data System (ADS)

    Konya, Andrew; Santangelo, Christian; Selinger, Robin

    2014-03-01

    When the underlying microstructure of an actuatable material varies in space, simple sheets can transform into complex shapes. Using nonlinear finite element elastodynamic simulations, we explore the design space of two such materials: liquid crystal elastomers and swelling polymer gels. Liquid crystal elastomers (LCE) undergo shape transformations induced by stimuli such as heating/cooling or illumination; complex deformations may be programmed by ``blueprinting'' a non-uniform director field in the sample when the polymer is cross-linked. Similarly, swellable gels can undergo shape change when they are swollen anisotropically as programmed by recently developed halftone gel lithography techniques. For each of these materials we design and test programmable motifs which give rise to complex deformation trajectories including folded structures, soft swimmers, apertures that open and close, bas relief patterns, and other shape transformations inspired by art and nature. In order to accommodate the large computational needs required to model these materials, our 3-d nonlinear finite element elastodynamics simulation algorithm is implemented in CUDA, running on a single GPU-enabled workstation.

  19. Rigidity-tuning conductive elastomer

    NASA Astrophysics Data System (ADS)

    Shan, Wanliang; Diller, Stuart; Tutcuoglu, Abbas; Majidi, Carmel

    2015-06-01

    We introduce a conductive propylene-based elastomer (cPBE) that rapidly and reversibly changes its mechanical rigidity when powered with electrical current. The elastomer is rigid in its natural state, with an elastic (Young’s) modulus of 175.5 MPa, and softens when electrically activated. By embedding the cPBE in an electrically insulating sheet of polydimethylsiloxane (PDMS), we create a cPBE-PDMS composite that can reversibly change its tensile modulus between 37 and 1.5 MPa. The rigidity change takes ˜6 s and is initiated when a 100 V voltage drop is applied across the two ends of the cPBE film. This magnitude of change in elastic rigidity is similar to that observed in natural skeletal muscle and catch connective tissue. We characterize the tunable load-bearing capability of the cPBE-PDMS composite with a motorized tensile test and deadweight experiment. Lastly, we demonstrate the ability to control the routing of internal forces by embedding several cPBE-PDMS ‘active tendons’ into a soft robotic pneumatic bending actuator. Selectively activating the artificial tendons controls the neutral axis and direction of bending during inflation.

  20. Liquid-Crystalline Elastomers with Gold Nanoparticle Cross-Linkers.

    PubMed

    Wójcik, Michał M; Wróbel, Jarosław; Jańczuk, Zuzanna Z; Mieczkowski, Józef; Górecka, Ewa; Choi, Joonmyung; Cho, Maenghyo; Pociecha, Damian

    2017-07-03

    Embedding nanoparticles in a responsive polymer matrix is a formidable way to fabricate hybrid materials with predesigned properties and prospective applications in actuators, mechanically tunable optical elements, and electroclinic films. However, achieving chemical compatibility between nanoparticles and organic matter is not trivial and often results in disordered structures. Herein, it is shown that using nanoparticles as exclusive cross-linkers in the preparation of liquid-crystalline polymers can yield long-range-ordered liquid-crystalline elastomers with high loadings of well-dispersed nanoparticles, as confirmed by small-angle XRD measurements. Moreover, the strategy of incorporating NPs as cross-linking units does not result in disruption of mechanical properties of the polymer, and this phenomenon was explained by the means of all-atom molecular dynamics simulations. Such materials can exhibit switchable behavior under thermal stimulus with stability spanning over multiple heating/cooling cycles. The presented strategy has proven to be a promising approach for the preparation of new types of hybrid liquid-crystalline elastomers that can be of value for future photonic applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Shape forming by thermal expansion mismatch and shape memory locking in polymer/elastomer laminates

    NASA Astrophysics Data System (ADS)

    Yuan, Chao; Ding, Zhen; Wang, T. J.; Dunn, Martin L.; Qi, H. Jerry

    2017-10-01

    This paper studies a novel method to fabricate three-dimensional (3D) structure from 2D thermo-responsive shape memory polymer (SMP)/elastomer bilayer laminate. In this method, the shape change is actuated by the thermal mismatch strain between the SMP and the elastomer layers upon heating. However, the glass transition behavior of the SMP locks the material into a new 3D shape that is stable even upon cooling. Therefore, the second shape becomes a new permanent shape of the laminate. A theoretical model that accounts for the temperature-dependent thermomechanical behavior of the SMP material and thermal mismatch strain between the two layers is developed to better understand the underlying physics. Model predictions and experiments show good agreement and indicate that the theoretical model can well predict the bending behavior of the bilayer laminate. The model is then used in the optimal design of geometrical configuration and material selection. The latter also illustrates the requirement of thermomechanical behaviors of the SMP to lock the shape. Based on the fundamental understandings, several self-folding structures are demonstrated by the bilayer laminate design.

  2. Enhanced multimaterial 4D printing with active hinges

    NASA Astrophysics Data System (ADS)

    Akbari, Saeed; Hosein Sakhaei, Amir; Kowsari, Kavin; Yang, Bill; Serjouei, Ahmad; Yuanfang, Zhang; Ge, Qi

    2018-06-01

    Despite great progress in four-dimensional (4D) printing, i.e. three-dimensional (3D) printing of active (stimuli-responsive) materials, the relatively low actuation force of the 4D printed structures often impedes their engineering applications. In this study, we use multimaterial inkjet 3D printing technology to fabricate shape memory structures, including a morphing wing flap and a deployable structure, which consist of active and flexible hinges joining rigid (non-active) parts. The active hinges, printed from a shape memory polymer (SMP), lock the structure into a second temporary shape during a thermomechanical programming process, while the flexible hinges, printed from an elastomer, effectively increase the actuation force and the load-bearing capacity of the printed structure as reflected in the recovery ratio. A broad range of mechanical properties such as modulus and failure strain can be achieved for both active and flexible hinges by varying the composition of the two base materials, i.e. the SMP and the elastomer, to accommodate large deformation induced during programming step, and enhance the recovery in the actuating step. To find the important design parameters, including local deformation, shape fixity and recovery ratio, we conduct high fidelity finite element simulations, which are able to accurately predict the nonlinear deformation of the printed structures. In addition, a coupled thermal-electrical finite element analysis was performed to model the heat transfer within the active hinges during the localized Joule heating process. The model predictions showed good agreement with the measured temperature data and were used to find the major parameters affecting temperature distribution including the applied voltage and the convection rate.

  3. A Magnetic Resonance Compatible Soft Wearable Robotic Glove for Hand Rehabilitation and Brain Imaging.

    PubMed

    Hong Kai Yap; Kamaldin, Nazir; Jeong Hoon Lim; Nasrallah, Fatima A; Goh, James Cho Hong; Chen-Hua Yeow

    2017-06-01

    In this paper, we present the design, fabrication and evaluation of a soft wearable robotic glove, which can be used with functional Magnetic Resonance imaging (fMRI) during the hand rehabilitation and task specific training. The soft wearable robotic glove, called MR-Glove, consists of two major components: a) a set of soft pneumatic actuators and b) a glove. The soft pneumatic actuators, which are made of silicone elastomers, generate bending motion and actuate finger joints upon pressurization. The device is MR-compatible as it contains no ferromagnetic materials and operates pneumatically. Our results show that the device did not cause artifacts to fMRI images during hand rehabilitation and task-specific exercises. This study demonstrated the possibility of using fMRI and MR-compatible soft wearable robotic device to study brain activities and motor performances during hand rehabilitation, and to unravel the functional effects of rehabilitation robotics on brain stimulation.

  4. Soft Sensors and Actuators based on Nanomaterials

    NASA Astrophysics Data System (ADS)

    Yao, Shanshan

    The focus of this research is using novel bottom-up synthesized nanomaterials and structures to build up devices for wearable sensors and soft actuators. The applications of the wearable sensors towards motion detection and health monitoring are investigated. In addition, flexible heaters for bimorph actuators and stretchable patches made of microgel depots containing drug-loaded nanoparticles (NPs) for stretch-triggered wearable drug delivery are studied. Considerable efforts have been made to achieve highly sensitive and wearable sensors that can simultaneously detect multiple stimuli such as stretch, pressure, temperature or touch. Highly stretchable multifunctional sensors that can detect strain (up to 50%), pressure (up to 1 MPa) and finger touch with good sensitivity, fast response time ( 40 ms) and good pressure mapping function were developed. The sensors were demonstrated for several wearable applications including monitoring thumb movements and knee motions, illustrating the potential utilities of such sensors in robotic systems, prosthetics, healthcare and flexible touch panels. In addition to mechanical sensors, a wearable skin hydration sensor made of silver nanowires (AgNWs) in a polydimethylsiloxane (PDMS) matrix was demonstrated based on skin impedance measurement. The hydration sensors were packaged into a flexible wristband for skin hydration monitoring and a chest patch consisting of a strain sensor, three electrocardiogram (ECG) electrodes and a skin hydration sensor for multimodal sensing. The wearable wristband and chest patch may be used for low-cost, wireless and continuous sensing of skin hydration and other health parameters. Two representative applications of the nanomaterials for soft actuators were investigated. In the first application on bimorph actuation, low-voltage and extremely flexible electrothermal bimorph actuators were fabricated in a simple, efficient and scalable process. The bimorph actuators were made of flexible AgNW based heaters, which exhibited a fast heating rate of 18°C/s and stable heating performance under large bending. The actuators offered the largest bending angle (720°) or curvature (2.6 cm-1) at a very low actuation voltage (0.2 V sq-1 or 4.5 V) among all types of bimorph actuators that have been reported. The actuators can be designed and fabricated in different configurations that can achieve complex patterns and shapes upon actuation. Two applications of this type of soft actuators were demonstrated towards biomimetic robotics - a crawling robot that can walk spontaneously on ratchet surfaces and a soft gripper that is capable of manipulating lightweight and delicate objects. In another application towards wearable drug delivery, a wearable, tensile strain-triggered drug delivery device consisting of a stretchable elastomer and microgel depots containing drug loaded nanoparticles is described. By applying a tensile strain to the elastomer film, the release of drug from the micro-depot is promoted. Correspondingly, both sustained drug release by daily body motions and pulsatile release by intentional administration can be conveniently achieved. The work demonstrated that the tensile strain, applied to the stretchable device, facilitated release of therapeutics from micro-depots for anticancer and antibacterial treatments, respectively. Moreover, polymeric microneedles were further integrated with the stretch-responsive device for transcutaneous delivery of insulin and regulation of blood glucose levels of chemically-induced type 1 diabetic mice.

  5. Soft Ultrathin Electronics Innervated Adaptive Fully Soft Robots.

    PubMed

    Wang, Chengjun; Sim, Kyoseung; Chen, Jin; Kim, Hojin; Rao, Zhoulyu; Li, Yuhang; Chen, Weiqiu; Song, Jizhou; Verduzco, Rafael; Yu, Cunjiang

    2018-03-01

    Soft robots outperform the conventional hard robots on significantly enhanced safety, adaptability, and complex motions. The development of fully soft robots, especially fully from smart soft materials to mimic soft animals, is still nascent. In addition, to date, existing soft robots cannot adapt themselves to the surrounding environment, i.e., sensing and adaptive motion or response, like animals. Here, compliant ultrathin sensing and actuating electronics innervated fully soft robots that can sense the environment and perform soft bodied crawling adaptively, mimicking an inchworm, are reported. The soft robots are constructed with actuators of open-mesh shaped ultrathin deformable heaters, sensors of single-crystal Si optoelectronic photodetectors, and thermally responsive artificial muscle of carbon-black-doped liquid-crystal elastomer (LCE-CB) nanocomposite. The results demonstrate that adaptive crawling locomotion can be realized through the conjugation of sensing and actuation, where the sensors sense the environment and actuators respond correspondingly to control the locomotion autonomously through regulating the deformation of LCE-CB bimorphs and the locomotion of the robots. The strategy of innervating soft sensing and actuating electronics with artificial muscles paves the way for the development of smart autonomous soft robots. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Designing components using smartMOVE electroactive polymer technology

    NASA Astrophysics Data System (ADS)

    Rosenthal, Marcus; Weaber, Chris; Polyakov, Ilya; Zarrabi, Al; Gise, Peter

    2008-03-01

    Designing components using SmartMOVE TM electroactive polymer technology requires an understanding of the basic operation principles and the necessary design tools for integration into actuator, sensor and energy generation applications. Artificial Muscle, Inc. is collaborating with OEMs to develop customized solutions for their applications using smartMOVE. SmartMOVE is an advanced and elegant way to obtain almost any kind of movement using dielectric elastomer electroactive polymers. Integration of this technology offers the unique capability to create highly precise and customized motion for devices and systems that require actuation. Applications of SmartMOVE include linear actuators for medical, consumer and industrial applications, such as pumps, valves, optical or haptic devices. This paper will present design guidelines for selecting a smartMOVE actuator design to match the stroke, force, power, size, speed, environmental and reliability requirements for a range of applications. Power supply and controller design and selection will also be introduced. An overview of some of the most versatile configuration options will be presented with performance comparisons. A case example will include the selection, optimization, and performance overview of a smartMOVE actuator for the cell phone camera auto-focus and proportional valve applications.

  7. Standards for dielectric elastomer transducers

    NASA Astrophysics Data System (ADS)

    Carpi, Federico; Anderson, Iain; Bauer, Siegfried; Frediani, Gabriele; Gallone, Giuseppe; Gei, Massimiliano; Graaf, Christian; Jean-Mistral, Claire; Kaal, William; Kofod, Guggi; Kollosche, Matthias; Kornbluh, Roy; Lassen, Benny; Matysek, Marc; Michel, Silvain; Nowak, Stephan; O'Brien, Benjamin; Pei, Qibing; Pelrine, Ron; Rechenbach, Björn; Rosset, Samuel; Shea, Herbert

    2015-10-01

    Dielectric elastomer transducers consist of thin electrically insulating elastomeric membranes coated on both sides with compliant electrodes. They are a promising electromechanically active polymer technology that may be used for actuators, strain sensors, and electrical generators that harvest mechanical energy. The rapid development of this field calls for the first standards, collecting guidelines on how to assess and compare the performance of materials and devices. This paper addresses this need, presenting standardized methods for material characterisation, device testing and performance measurement. These proposed standards are intended to have a general scope and a broad applicability to different material types and device configurations. Nevertheless, they also intentionally exclude some aspects where knowledge and/or consensus in the literature were deemed to be insufficient. This is a sign of a young and vital field, whose research development is expected to benefit from this effort towards standardisation.

  8. Modeling liquid crystal polymeric devices

    NASA Astrophysics Data System (ADS)

    Gimenez Pinto, Vianney Karina

    The main focus of this work is the theoretical and numerical study of materials that combine liquid crystal and polymer. Liquid crystal elastomers are polymeric materials that exhibit both the ordered properties of the liquid crystals and the elastic properties of rubbers. Changing the order of the liquid crystal molecules within the polymer network can induce shape change. These materials are very valuable for applications such as actuators, sensors, artificial muscles, haptic displays, etc. In this work we apply finite element elastodynamics simulations to study the temperature induced shape deformation in nematic elastomers with complex director microstructure. In another topic, we propose a novel numerical method to model the director dynamics and microstructural evolution of three dimensional nematic and cholesteric liquid crystals. Numerical studies presented in this work are in agreement with experimental observations and provide insight into the design of application devices.

  9. Untethered Recyclable Tubular Actuators with Versatile Locomotion for Soft Continuum Robots.

    PubMed

    Qian, Xiaojie; Chen, Qiaomei; Yang, Yang; Xu, Yanshuang; Li, Zhen; Wang, Zhenhua; Wu, Yahe; Wei, Yen; Ji, Yan

    2018-05-27

    Stimuli-responsive materials offer a distinguished platform to build tether-free compact soft robots, which can combine sensing and actuation without a linked power supply. In the past, tubular soft robots have to be made by multiple components with various internal channels or complex cavities assembled together. Moreover, robust processing, complex locomotion, simple structure, and easy recyclability represent major challenges in this area. Here, it is shown that those challenges can be tackled by liquid crystalline elastomers with allyl sulfide functional groups. The light-controlled exchange reaction between allyl sulfide groups allows flexible processing of tubular soft robots/actuators, which does not need any assisting materials. Complex locomotion demonstrated here includes reversible simultaneous bending and elongation; reversible diameter expansion; and omnidirectional bending via remote infrared light control. Different modes of actuation can be programmed into the same tube without the routine assembly of multiple tubes as used in the past. In addition, the exchange reaction also makes it possible to use the same single tube repeatedly to perform different functions by erasing and reprogramming. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Tactile Feedback Display with Spatial and Temporal Resolutions

    PubMed Central

    Vishniakou, Siarhei; Lewis, Brian W.; Niu, Xiaofan; Kargar, Alireza; Sun, Ke; Kalajian, Michael; Park, Namseok; Yang, Muchuan; Jing, Yi; Brochu, Paul; Sun, Zhelin; Li, Chun; Nguyen, Truong; Pei, Qibing; Wang, Deli

    2013-01-01

    We report the electronic recording of the touch contact and pressure using an active matrix pressure sensor array made of transparent zinc oxide thin-film transistors and tactile feedback display using an array of diaphragm actuators made of an interpenetrating polymer elastomer network. Digital replay, editing and manipulation of the recorded touch events were demonstrated with both spatial and temporal resolutions. Analog reproduction of the force is also shown possible using the polymer actuators, despite of the high driving voltage. The ability to record, store, edit, and replay touch information adds an additional dimension to digital technologies and extends the capabilities of modern information exchange with the potential to revolutionize physical learning, social networking, e-commerce, robotics, gaming, medical and military applications. PMID:23982053

  11. Tactile feedback display with spatial and temporal resolutions.

    PubMed

    Vishniakou, Siarhei; Lewis, Brian W; Niu, Xiaofan; Kargar, Alireza; Sun, Ke; Kalajian, Michael; Park, Namseok; Yang, Muchuan; Jing, Yi; Brochu, Paul; Sun, Zhelin; Li, Chun; Nguyen, Truong; Pei, Qibing; Wang, Deli

    2013-01-01

    We report the electronic recording of the touch contact and pressure using an active matrix pressure sensor array made of transparent zinc oxide thin-film transistors and tactile feedback display using an array of diaphragm actuators made of an interpenetrating polymer elastomer network. Digital replay, editing and manipulation of the recorded touch events were demonstrated with both spatial and temporal resolutions. Analog reproduction of the force is also shown possible using the polymer actuators, despite of the high driving voltage. The ability to record, store, edit, and replay touch information adds an additional dimension to digital technologies and extends the capabilities of modern information exchange with the potential to revolutionize physical learning, social networking, e-commerce, robotics, gaming, medical and military applications.

  12. Tactile Feedback Display with Spatial and Temporal Resolutions

    NASA Astrophysics Data System (ADS)

    Vishniakou, Siarhei; Lewis, Brian W.; Niu, Xiaofan; Kargar, Alireza; Sun, Ke; Kalajian, Michael; Park, Namseok; Yang, Muchuan; Jing, Yi; Brochu, Paul; Sun, Zhelin; Li, Chun; Nguyen, Truong; Pei, Qibing; Wang, Deli

    2013-08-01

    We report the electronic recording of the touch contact and pressure using an active matrix pressure sensor array made of transparent zinc oxide thin-film transistors and tactile feedback display using an array of diaphragm actuators made of an interpenetrating polymer elastomer network. Digital replay, editing and manipulation of the recorded touch events were demonstrated with both spatial and temporal resolutions. Analog reproduction of the force is also shown possible using the polymer actuators, despite of the high driving voltage. The ability to record, store, edit, and replay touch information adds an additional dimension to digital technologies and extends the capabilities of modern information exchange with the potential to revolutionize physical learning, social networking, e-commerce, robotics, gaming, medical and military applications.

  13. Dielectric elastomer vibrissal system for active tactile sensing

    NASA Astrophysics Data System (ADS)

    Conn, Andrew T.; Pearson, Martin J.; Pipe, Anthony G.; Welsby, Jason; Rossiter, Jonathan

    2012-04-01

    Rodents are able to dexterously navigate confined and unlit environments by extracting spatial and textural information with their whiskers (or vibrissae). Vibrissal-based active touch is suited to a variety of applications where vision is occluded, such as search-and-rescue operations in collapsed buildings. In this paper, a compact dielectric elastomer vibrissal system (DEVS) is described that mimics the vibrissal follicle-sinus complex (FSC) found in rodents. Like the vibrissal FSC, the DEVS encapsulates all sensitive mechanoreceptors at the root of a passive whisker within an antagonistic muscular system. Typically, rats actively whisk arrays of macro-vibrissae with amplitudes of up to +/-25°. It is demonstrated that these properties can be replicated by exploiting the characteristic large actuation strains and passive compliance of dielectric elastomers. A prototype DEVS is developed using VHB 4905 and embedded strain gauges bonded to the root of a tapered whisker. The DEVS is demonstrated to produce a maximum rotational output of +/-22.8°. An electro-mechanical model of the DEVS is derived, which incorporates a hyperelastic material model and Euler- Bernoulli beam equations. The model is shown to predict experimental measurements of whisking stroke amplitude and whisker deflection.

  14. Study on a new self-sensing magnetorheological elastomer bearing

    NASA Astrophysics Data System (ADS)

    Li, Rui; Zhou, Mengjiao; Wang, Minglian; Yang, Ping-an

    2018-06-01

    The complexity of a semi-active vibration isolation system results in the difficulty of realizing its role on impact load effectively. Thus, a new self-sensing bearing based on modified anisotropic magnetorheological elastomer (MRE) is proposed in this study. This self-sensing bearing was fabricated by dispersed multi-walled carbon nanotubes and carbonyl iron particles into polydimethylsiloxane matrix under a magnetic field. The working conditions of the bearing were analyzed and decoupled. An optimal structure size of the bearing was selected and used for setting up the experiment test system. The self-sensing characteristic of the MRE bearing under the multi-field coupling of load and magnetic fields was then investigated by this test system. Results showed that the resistance of the modified MRE, in which a preload was applied by the bearing, could change approximately 28%-56% under extrusion force, mechanical force, and external magnetic field. The vibration isolation performance was tested based on the self-sensing characteristic. The bearing had excellent mechanical properties, which could reduce at least 30% of vibration. Thus, the modified MRE of the magnetorheological elastomer bearing could be simultaneously used as an actuator and a sensor.

  15. DEMES rotary joint: theories and applications

    NASA Astrophysics Data System (ADS)

    Wang, Shu; Hao, Zhaogang; Li, Mingyu; Huang, Bo; Sun, Lining; Zhao, Jianwen

    2017-04-01

    As a kind of dielectric elastomer actuators, dielectric elastomer minimum energy structure (DEMES) can realize large angular deformations by small voltage-induced strains, which make them an attractive candidate for use as biomimetic robotics. Considering the rotary joint is a basic and common component of many biomimetic robots, we have been fabricated rotary joint by DEMES and developed its performances in the past two years. In this paper, we have discussed the static analysis, dynamics analysis and some characteristics of the DEMES rotary joint. Based on theoretical analysis, some different applications of the DEMES rotary joint were presented, such as a flapping wing, a biomimetic fish and a two-legged walker. All of the robots are fabricated by DEMES rotary joint and can realize some basic biomimetic motions. Comparing with traditional rigid robot, the robot based on DEMES is soft and light, so it has advantage on the collision-resistant.

  16. Printable elastic conductors by in situ formation of silver nanoparticles from silver flakes

    NASA Astrophysics Data System (ADS)

    Matsuhisa, Naoji; Inoue, Daishi; Zalar, Peter; Jin, Hanbit; Matsuba, Yorishige; Itoh, Akira; Yokota, Tomoyuki; Hashizume, Daisuke; Someya, Takao

    2017-08-01

    Printable elastic conductors promise large-area stretchable sensor/actuator networks for healthcare, wearables and robotics. Elastomers with metal nanoparticles are one of the best approaches to achieve high performance, but large-area utilization is limited by difficulties in their processability. Here we report a printable elastic conductor containing Ag nanoparticles that are formed in situ, solely by mixing micrometre-sized Ag flakes, fluorine rubbers, and surfactant. Our printable elastic composites exhibit conductivity higher than 4,000 S cm-1 (highest value: 6,168 S cm-1) at 0% strain, and 935 S cm-1 when stretched up to 400%. Ag nanoparticle formation is influenced by the surfactant, heating processes, and elastomer molecular weight, resulting in a drastic improvement of conductivity. Fully printed sensor networks for stretchable robots are demonstrated, sensing pressure and temperature accurately, even when stretched over 250%.

  17. Understanding efficiency limits of dielectric elastomer driver circuitry

    NASA Astrophysics Data System (ADS)

    Lo, Ho Cheong; Calius, Emilio; Anderson, Iain

    2013-04-01

    Dielectric elastomers (DEs) can theoretically operate at efficiencies greater than that of electromagnetics. This is due to their unique mode of operation which involves charging and discharging a capacitive load at a few kilovolts (typically 1kV-4kV). Efficient recovery of the electrical energy stored in the capacitance of the DE is essential in achieving favourable efficiencies as actuators or generators. This is not a trivial problem because the DE acts as a voltage source with a low capacity and a large output resistance. These properties are not ideal for a power source, and will reduce the performance of any power conditioning circuit utilizing inductors or transformers. This paper briefly explores how circuit parameters affect the performance of a simple inductor circuit used to transfer energy from a DE to another capacitor. These parameters must be taken into account when designing the driving circuitry to maximize performance.

  18. Modeling nonlinear dynamic properties of dielectric elastomers with various crosslinks, entanglements, and finite deformations

    NASA Astrophysics Data System (ADS)

    Zhang, Junshi; Chen, Hualing; Li, Dichen

    2018-02-01

    Subject to an AC voltage, dielectric elastomers (DEs) behave as a nonlinear vibration, implying potential applications as soft dynamical actuators and robots. In this article, by utilizing the Lagrange's equation, a theoretical model is deduced to investigate the dynamic performances of DEs by considering three internal properties, including crosslinks, entanglements, and finite deformations of polymer chains. Numerical calculations are employed to describe the dynamic response, stability, periodicity, and resonance properties of DEs. It is observed that the frequency and nonlinearity of dynamic response are tuned by the internal properties of DEs. Phase paths and Poincaré maps are utilized to detect the stability and periodicity of the nonlinear vibrations of DEs, which demonstrate that transitions between aperiodic and quasi-periodic vibrations may occur when the three internal properties vary. The resonance of DEs involving the three internal properties of polymer chains is also investigated.

  19. Development of a fatigue testing setup for dielectric elastomer membrane actuators

    NASA Astrophysics Data System (ADS)

    Hill, M.; Rizzello, G.; Seelecke, S.

    2017-04-01

    Dielectric elastomers (DE's) represent a transduction technology with high potential in many fields, including industries, due to their low weight, flexibility, and small energy consumption. For industrial applications, it is of fundamental importance to quantify the lifetime of DE technology, in terms of electrical and mechanical fatigue, when operating in realistic environmental conditions. This work contributes toward this direction, by presenting the development of an experimental setup which permits systematic fatigue testing of DE membranes. The setup permits to apply both mechanical and electrical stimuli to several membranes simultaneously, while measuring at the same time their mechanical (force, deformation) and electrical response (capacitance, resistance). In its final state, the setup will allow to test up to 15 DE membranes at the same time for several thousands of cycles. Control of the modules, monitoring of the actuators, and data acquisition are realized on a cRio FPGA-system running with LabVIEW. The setup is located in a climate chamber, in order to investigate the fatigue mechanisms at different environmental conditions, i.e., in terms of temperature and humidity. The setup consists of two main parts, namely a fatigue group and a measurement group. The fatigue group stays permanently in the climate chamber, while the measurement group is assembled to the fatigue group and allows to perform measurements at 20°C.

  20. Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot.

    PubMed

    Onal, Cagdas D; Rus, Daniela

    2013-06-01

    Soft robotics offers the unique promise of creating inherently safe and adaptive systems. These systems bring man-made machines closer to the natural capabilities of biological systems. An important requirement to enable self-contained soft mobile robots is an on-board power source. In this paper, we present an approach to create a bio-inspired soft robotic snake that can undulate in a similar way to its biological counterpart using pressure for actuation power, without human intervention. With this approach, we develop an autonomous soft snake robot with on-board actuation, power, computation and control capabilities. The robot consists of four bidirectional fluidic elastomer actuators in series to create a traveling curvature wave from head to tail along its body. Passive wheels between segments generate the necessary frictional anisotropy for forward locomotion. It takes 14 h to build the soft robotic snake, which can attain an average locomotion speed of 19 mm s(-1).

  1. Adaptive lenses using transparent dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Shian, Samuel; Diebold, Roger; Clarke, David

    2013-03-01

    Variable focal lenses, used in a vast number of applications such as endoscope, digital camera, binoculars, information storage, communication, and machine vision, are traditionally constructed as a lens system consisting of solid lenses and actuating mechanisms. However, such lens system is complex, bulky, inefficient, and costly. Each of these shortcomings can be addressed using an adaptive lens that performs as a lens system. In this presentation, we will show how we push the boundary of adaptive lens technology through the use of a transparent electroactive polymer actuator that is integral to the optics. Detail of our concepts and lens construction will be described as well as electromechanical and optical performances. Preliminary data indicate that our adaptive lens prototype is capable of varying its focus by more than 100%, which is higher than that of human eyes. Furthermore, we will show how our approach can be used to achieve certain controls over the lens characteristics such as adaptive aberration and optical axis, which are difficult or impossible to achieve in other adaptive lens configurations.

  2. Graphene/elastomer composite-based photo-thermal nanopositioners

    PubMed Central

    Loomis, James; Fan, Xiaoming; Khosravi, Farhad; Xu, Peng; Fletcher, Micah; Cohn, Robert W.; Panchapakesan, Balaji

    2013-01-01

    The addition of nanomaterials to polymers can result not only in significant material property improvements, but also assist in creating entirely new composite functionalities. By dispersing graphene nanoplatelets (GNPs) within a polydimethylsiloxane matrix, we show that efficient light absorption by GNPs and subsequent energy transduction to the polymeric chains can be used to controllably produce significant amounts of motion through entropic elasticity of the pre-strained composite. Using dual actuators, a two-axis sub-micron resolution stage was developed, and allowed for two-axis photo-thermal positioning (~100 μm per axis) with 120 nm resolution (feedback sensor limitation), and ~5 μm/s actuation speeds. A PID control loop automatically stabilizes the stage against thermal drift, as well as random thermal-induced position fluctuations (up to the bandwidth of the feedback and position sensor). Maximum actuator efficiency values of ~0.03% were measured, approximately 1000 times greater than recently reported for light-driven polymer systems. PMID:23712601

  3. Design of a 3D printed lightweight orthotic device based on twisted and coiled polymer muscle: iGrab hand orthosis

    NASA Astrophysics Data System (ADS)

    Saharan, Lokesh; Sharma, Ashvath; Jung de Andrade, Monica; Baughman, Ray H.; Tadesse, Yonas

    2017-04-01

    Partial or total upper extremity impairment affects the quality of life of a vast number of people due to stroke, neuromuscular disease, or trauma. Many researchers have presented hand orthosis to address the needs of rehabilitation or assistance on upper extremity function. Most of the devices available commercially and in literature are powered by conventional actuators such as DC motors, servomotors or pneumatic actuators. Some prototypes are developed based on shape memory alloy (SMA) and dielectric elastomers (DE). This study presents a customizable, 3D printed, a lightweight exoskeleton (iGrab) based on recently reported Twisted and Coiled Polymer (TCP) muscles, which are lightweight, provide high power to weight ratio and large stroke. We used silver coated nylon 6, 6 threads to make the TCP muscles, which can be easily actuated electrothermally. We reviewed briefly hand orthosis created with various actuation technologies and present our design of tendon-driven exoskeleton with the muscles confined in the forearm area. A single muscle is used to facilitate the motion of all three joints namely DIP (Distal interphalangeal), PIP (Proximal Interphalangeal) and MCP (Metacarpophalangeal) using passive tendons though circular rings. The grasping capabilities, along with TCP muscle properties utilized in the design such as life cycle, actuation under load and power inputs are discussed.

  4. A light-driven artificial flytrap

    PubMed Central

    Wani, Owies M.; Zeng, Hao; Priimagi, Arri

    2017-01-01

    The sophistication, complexity and intelligence of biological systems is a continuous source of inspiration for mankind. Mimicking the natural intelligence to devise tiny systems that are capable of self-regulated, autonomous action to, for example, distinguish different targets, remains among the grand challenges in biomimetic micro-robotics. Herein, we demonstrate an autonomous soft device, a light-driven flytrap, that uses optical feedback to trigger photomechanical actuation. The design is based on light-responsive liquid-crystal elastomer, fabricated onto the tip of an optical fibre, which acts as a power source and serves as a contactless probe that senses the environment. Mimicking natural flytraps, this artificial flytrap is capable of autonomous closure and object recognition. It enables self-regulated actuation within the fibre-sized architecture, thus opening up avenues towards soft, autonomous small-scale devices. PMID:28534872

  5. New Magnetic Microactuator Design Based on PDMS Elastomer and MEMS Technologies for Tactile Display.

    PubMed

    Streque, Jeremy; Talbi, Abdelkrim; Pernod, Philippe; Preobrazhensky, Vladimir

    2010-01-01

    Highly efficient tactile display devices must fulfill technical requirements for tactile stimulation, all the while preserving the lightness and compactness needed for handheld operation. This paper focuses on the elaboration of highly integrated magnetic microactuators for tactile display devices. FEM simulation, conception, fabrication, and characterization of these microactuators are presented in this paper. The current demonstrator offers a 4 × 4 flexible microactuator array with a resolution of 2 mm. Each actuator is composed of a Poly (Dimethyl-Siloxane) (PDMS) elastomeric membrane, magnetically actuated by coil-magnet interaction. It represents a proof of concept for fully integrated MEMS tactile devices, with fair actuation forces provided for a power consumption up to 100 mW per microactuator. The prototypes are destined to provide both static and dynamic tactile sensations, with an optimized membrane geometry for actuation frequencies between DC and 350 Hz. On the basis of preliminary experiments, this display device can offer skin stimulations for various tactile stimuli for applications in the fields of Virtual Reality or Human-Computer Interaction (HCI). Moreover, the elastomeric material used in this device and its global compactness offer great advantages in matter of comfort of use and capabilities of integration in haptic devices.

  6. Mirrors Containing Biomimetic Shape-Control Actuators

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Mouroulis, Pantazis; Bao, Xiaoqi; Sherrit, Stewart

    2003-01-01

    Curved mirrors of a proposed type would comprise lightweight sheets or films containing integral, biologically inspired actuators for controlling their surface figures. These mirrors could be useful in such applications as collection of solar energy, focusing of radio beams, and (provided sufficient precision could be achieved) imaging. These mirrors were originally intended for use in outer space, but it should also be possible to develop terrestrial versions. Several prior NASA Tech Briefs articles have described a variety of approaches to the design of curved, lightweight mirrors containing integral shape-control actuators. The primary distinction between the present approach and the prior approaches lies in the actuator design concept, which involves shapes and movements reminiscent of those of a variety of small, multi-armed animals. The shape and movement of an actuator of this type can also be characterized as reminiscent of that of an umbrella. This concept can be further characterized as a derivative of that of multifinger grippers, the fingers of which are bimorph bending actuators (see Figure 1). The fingers of such actuators can be strips containing any of a variety of materials that have been investigated for use as actuators, including such electroactive polymers as ionomeric polymer/metal composites (IPMCs), ferroelectric polymers, and grafted elastomers. A mirror according to this proposal would be made from a sheet of one of the actuator composites mentioned above. The design would involve many variables, including the pre-curvature and stiffness of the mirror sheet, the required precision of figure control, the required range of variation in focal length (see Figure 2), the required precision of figure control for imaging or non-imaging use, the bending and twisting moments needed to effect the required deformations, and voltage-tomoment coefficients of the actuators, and the voltages accordingly required for actuation. A typical design would call for segmentation of the electrodes on the actuators so that voltages could be applied locally to effect local bending for fine adjustment of the surface figure.

  7. Biaxial experimental and analytical characterization of a dielectric elastomer

    NASA Astrophysics Data System (ADS)

    Helal, Alexander; Doumit, Marc; Shaheen, Robert

    2018-01-01

    Electroactive polymers (EAPs) have emerged as a strong contender for use in low-cost efficient actuators in multiple applications especially related to biomimetic and mobile-assistive devices. Dielectric elastomers (DE), a subcategory of these smart materials, have been of particular interest due to their large achievable deformation and favourable mechanical and electro-mechanical properties. Previous work has been completed to understand the behaviour of these materials; however, their properties require further investigation to properly integrate them into real-world applications. In this study, a biaxial tensile experimental evaluation of 3M™ VHB 4905 and VHB 4910 is presented with the purpose of illustrating the elastomers' transversely isotropic mechanical behaviours. These tests were applied to both tapes for equibiaxial stretch rates ranging between 0.025 and 0.300 s-1. Subsequently, a dynamic planar biaxial visco-hyperelastic constitutive relationship was derived from a Kelvin-Voigt rheological model and the general Hooke's law for transversely isotropic materials. The model was then fitted to the experimental data to obtain three general material parameters for either tapes. The model's ability to predict tensile stress response and internal energy dissipation, with respect to experimental data, is evaluated with good agreement. The model's ability to predict variations in mechanical behaviour due to changes in kinematic variables is then illustrated for different conditions.

  8. Viscoelastic effects on frequency tuning of a dielectric elastomer membrane resonator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Jianyou; Jiang, Liying, E-mail: lyjiang@eng.uwo.ca; Khayat, Roger E.

    2014-03-28

    As a recent application of dielectric elastomers (DEs), DE resonators have become an alternative to conventional silicon-based resonators used in MEMS and have attracted much interest from the research community. However, most existing modeling works for the DE resonators ignore the intrinsic viscoelastic effect of the material that may strongly influence their dynamic performance. Based on the finite-deformation viscoelasticity theory for dielectrics, this paper theoretically examines the in-plane oscillation of a DE membrane resonator to demonstrate how the material viscoelasticity affects the actuation and frequency tuning processes of the resonator. From the simulation results, it is concluded that not onlymore » the applied voltage can change the natural frequency of the resonator, but also the inelastic deformation contributes to frequency tuning. Due to the viscoelasticity of the material, the electrical loading rate influences the actuation process of the DE resonator, while it has little effect on the final steady frequency tuned by the prescribed voltage within the safety range. With the consideration of the typical failure modes of the resonator and the evolution process of the material, the tunable frequency range and the safe range of the applied voltage of the DE membrane resonator with different dimension parameters are determined in this work, which are found to be dependent on the electrical loading rate. This work is expected to provide a better understanding on the frequency tuning of viscoelastic DE membrane resonators and a guideline for the design of DE devices.« less

  9. Closed-loop control of a core free rolled EAP actuator

    NASA Astrophysics Data System (ADS)

    Sarban, Rahimullah; Oubaek, Jakob; Jones, Richard W.

    2009-03-01

    Tubular dielectric electro-active polymer actuators, also referred as tubular InLastors, have many possible applications. One of the most obvious is as a positioning push-type device. This work examines the feedback closed-loop control of a core-free tubular InLastor fabricated from sheets of PolyPowerTM, an EAP material developed by Danfoss PolyPower A/S, which uses a silicone elastomer in conjunction with smart compliant electrode technology. This is part of an ongoing study to develop a precision positioning feedback control system for this device. Initially proportional and integral (PI) control is considered to provide position control of the tubular InLastor. Control of the tubular Inlastors require more than conventional control, used for linear actuators, because the InLastors display highly nonlinear static voltage-strain and voltage-force characteristics as well as dynamic hysteresis and time-dependent strain behavior. In an attempt to overcome the nonlinear static voltage-strain characteristics of the Inlastors and for improving the dynamic performance of the controlled device, a gain scheduling algorithm is then integrated into the PI controlled system.

  10. Arrays of EAP micro-actuators for single-cell stretching applications

    NASA Astrophysics Data System (ADS)

    Akbari, S.; Niklaus, M.; Shea, H.

    2010-04-01

    Mechanical stimuli are critical for the development and maintenance of most tissues such as muscles, cartilage, bones and blood vessels. The commercially available cell culture systems replicating the in vivo environment are typically based on simple membrane cell-stretching equipment, which can only measure the average response of large colonies of cells over areas of greater than one cm2. We present here the conceptual design and the complete fabrication process of an array of 128 Electro-Active Polymer (EAP) micro-actuators which are uni-axially stretched and hence used to impose unidirectional strain on single cells, make it feasible to do experiments on the cytomechanics of individual cells. The Finite Element Method is employed to study the effect of different design parameters on achievable strain, leading to the optimized design. Compliant gold electrodes are deposited by low-energy ion implantation on both sides of a PDMS membrane, as this technique allows making electrodes that support large strain with minimal stiffening of the elastomer. The membrane is bonded to a rigid support, leading to an array of 100×100 μm2 EAP actuators.

  11. An electromagnetic microvalve for pneumatic control of microfluidic systems.

    PubMed

    Liu, Xuling; Li, Songjing

    2014-10-01

    An electromagnetic microvalve for pneumatic control of microfluidic devices has been designed, fabricated, and tested. The microvalve is composed of two parts: a miniature electromagnetic actuator and a valve body. The electromagnetic actuator consists mainly of a thin polydimethylsiloxane (PDMS)-based elastomer, which acts as the valve diaphragm. The diaphragm, used as a solid hydraulic medium, converts the large contact area of a valve core into a small contact area of valve head while maintaining a large stroking force. This microvalve remains closed because of a compressed mechanical spring force generated by the actuator. On the other hand, when a voltage is applied, the valve core moves up, relaxing the thin PDMS membrane, opening the microvalve. The fast open response (~17 ms) of the valve was achieved with a leak rate as low as 0.026 sccm at 200 KPa (N2) pressure. We tested the pertinent dynamic parameters such as flow rate in on/off mode, flow rate of duty cycles, and actuated frequencies in pulse width modulation (PWM) mode. Our method provides a simple, cheap, and small microvalve that avoids the bulky and expensive external pressure control solenoid manifold. This allows it to be easily integrated into portable and disposable devices. © 2014 Society for Laboratory Automation and Screening.

  12. Contraction Sensing with Smart Braid McKibben Muscles

    PubMed Central

    Felt, Wyatt; Chin, Khai Yi; Remy, C. David

    2016-01-01

    The inherent compliance of soft fluidic actuators makes them attractive for use in wearable devices and soft robotics. Their flexible nature permits them to be used without traditional rotational or prismatic joints. Without these joints, however, measuring the motion of the actuators is challenging. Actuator-level sensors could improve the performance of continuum robots and robots with compliant or multi-degree-of-freedom joints. We make the reinforcing braid of a pneumatic artificial muscle (PAM or McKibben muscle) “smart” by weaving it from conductive, insulated wires. These wires form a solenoid-like circuit with an inductance that more than doubles over the PAM contraction. The reinforcing and sensing fibers can be used to measure the contraction of a PAM actuator with a simple, linear function of the measured inductance. Whereas other proposed self-sensing techniques rely on the addition of special elastomers or transducers, the technique presented in this work can be implemented without modifications of this kind. We present and experimentally validate two models for Smart Braid sensors based on the long solenoid approximation and the Neumann formula, respectively. We test a McKibben muscle made from a Smart Braid in quasistatic conditions with various end-loads and in dynamic conditions. We also test the performance of the Smart Braid sensor alongside steel. PMID:28503062

  13. Synthesis of Programmable Main-chain Liquid-crystalline Elastomers Using a Two-stage Thiol-acrylate Reaction.

    PubMed

    Saed, Mohand O; Torbati, Amir H; Nair, Devatha P; Yakacki, Christopher M

    2016-01-19

    This study presents a novel two-stage thiol-acrylate Michael addition-photopolymerization (TAMAP) reaction to prepare main-chain liquid-crystalline elastomers (LCEs) with facile control over network structure and programming of an aligned monodomain. Tailored LCE networks were synthesized using routine mixing of commercially available starting materials and pouring monomer solutions into molds to cure. An initial polydomain LCE network is formed via a self-limiting thiol-acrylate Michael-addition reaction. Strain-to-failure and glass transition behavior were investigated as a function of crosslinking monomer, pentaerythritol tetrakis(3-mercaptopropionate) (PETMP). An example non-stoichiometric system of 15 mol% PETMP thiol groups and an excess of 15 mol% acrylate groups was used to demonstrate the robust nature of the material. The LCE formed an aligned and transparent monodomain when stretched, with a maximum failure strain over 600%. Stretched LCE samples were able to demonstrate both stress-driven thermal actuation when held under a constant bias stress or the shape-memory effect when stretched and unloaded. A permanently programmed monodomain was achieved via a second-stage photopolymerization reaction of the excess acrylate groups when the sample was in the stretched state. LCE samples were photo-cured and programmed at 100%, 200%, 300%, and 400% strain, with all samples demonstrating over 90% shape fixity when unloaded. The magnitude of total stress-free actuation increased from 35% to 115% with increased programming strain. Overall, the two-stage TAMAP methodology is presented as a powerful tool to prepare main-chain LCE systems and explore structure-property-performance relationships in these fascinating stimuli-sensitive materials.

  14. An all-organic composite actuator material with a high dielectric constant.

    PubMed

    Zhang, Q M; Li, Hengfeng; Poh, Martin; Xia, Feng; Cheng, Z-Y; Xu, Haisheng; Huang, Cheng

    2002-09-19

    Electroactive polymers (EAPs) can behave as actuators, changing their shape in response to electrical stimulation. EAPs that are controlled by external electric fields--referred to here as field-type EAPs--include ferroelectric polymers, electrostrictive polymers, dielectric elastomers and liquid crystal polymers. Field-type EAPs can exhibit fast response speeds, low hysteresis and strain levels far above those of traditional piezoelectric materials, with elastic energy densities even higher than those of piezoceramics. However, these polymers also require a high field (>70 V micro m(-1)) to generate such high elastic energy densities (>0.1 J cm(-3); refs 4, 5, 9, 10). Here we report a new class of all-organic field-type EAP composites, which can exhibit high elastic energy densities induced by an electric field of only 13 V micro m(-1). The composites are fabricated from an organic filler material possessing very high dielectric constant dispersed in an electrostrictive polymer matrix. The composites can exhibit high net dielectric constants while retaining the flexibility of the matrix. These all-organic actuators could find applications as artificial muscles, 'smart skins' for drag reduction, and in microfluidic systems for drug delivery.

  15. Fabrication, characterization, and heuristic trade space exploration of magnetically actuated Miura-Ori origami structures

    NASA Astrophysics Data System (ADS)

    Cowan, Brett; von Lockette, Paris R.

    2017-04-01

    The authors develop magnetically actuated Miura-Ori structures through observation, experiment, and computation using an initially heuristic strategy followed by trade space visualization and optimization. The work is novel, especially within origami engineering, in that beyond final target shape approximation, Miura-Ori structures in this work are additionally evaluated for the shape approximation while folding and for their efficient use of their embedded actuators. The structures consisted of neodymium magnets placed on the panels of silicone elastomer substrates cast in the Miura-Ori folding pattern. Initially four configurations, arrangements of magnets on the panels, were selected based on heuristic arguments that (1) maximized the amount of magnetic torque applied to the creases and (2) reduced the number of magnets needed to affect all creases in the pattern. The results of experimental and computational performance metrics were used in a weighted sum model to predict the optimum configuration, which was then fabricated and experimentally characterized for comparison to the initial prototypes. As expected, optimization of magnet placement and orientation was effective at increasing the degree of theoretical useful work. Somewhat unexpectedly, however, trade space results showed that even after optimization, the configuration with the most number of magnets was least effective, per magnet, at directing its actuation to the structure’s creases. Overall, though the winning configuration experimentally outperformed its initial, non-optimal counterparts, results showed that the choice of optimum configuration was heavily dependent on the weighting factors. These results highlight both the ability of the Miura-Ori to be actuated with external magnetic stimuli, the effectiveness of a heuristic design approach that focuses on the actuation mechanism, and the need to address path-dependent metrics in assessing performance in origami folding structures.

  16. Electroactive polymer (EAP) actuators for planetary applications

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, Yoseph; Leary, Sean P.; Shahinpoor, Mohsen; Harrison, Joycelyn S.; Smith, J.

    1999-05-01

    NASA is seeking to reduce the mass, size, consumed power, and cost of the instrumentation used in its future missions. An important element of many instruments and devices is the actuation mechanism and electroactive polymers (EAP) are offering an effective alternative to current actuators. In this study, two families of EAP materials were investigated, including bending ionomers and longitudinal electrostatically driven elastomers. These materials were demonstrated to effectively actuate manipulation devices and their performance is being enhanced in this on-going study. The recent observations are reported in this paper, include the operation of the bending-EAP at conditions that exceed the harsh environment on Mars, and identify the obstacles that its properties and characteristics are posing to using them as actuators. Analysis of the electrical characteristics of the ionomer EAP showed that it is a current driven material rather than voltage driven and the conductivity distribution on the surface of the material greatly influences the bending performance. An accurate equivalent circuit modeling of the ionomer EAP performance is essential for the design of effective drive electronics. The ionomer main limitations are the fact that it needs to be moist continuously and the process of electrolysis that takes place during activation. An effective coating technique using a sprayed polymer was developed extending its operation in air from a few minutes to about four months. The coating technique effectively forms the equivalent of a skin to protect the moisture content of the ionomer. In parallel to the development of the bending EAP, the development of computer control of actuated longitudinal EAP has been pursued. An EAP driven miniature robotic arm was constructed and it is controlled by a MATLAB code to drop and lift the arm and close and open EAP fingers of a 4-finger gripper.

  17. Dielectric elastomer peristaltic pump module with finite deformation

    NASA Astrophysics Data System (ADS)

    Mao, Guoyong; Huang, Xiaoqiang; Liu, Junjie; Li, Tiefeng; Qu, Shaoxing; Yang, Wei

    2015-07-01

    Inspired by various peristaltic structures existing in nature, several bionic peristaltic actuators have been developed. In this study, we propose a novel dielectric elastomer peristaltic pump consisting of short tubular modules, with the saline solution as the electrodes. We investigate the performance of this soft pump module under hydraulic pressure and voltage via experiments and an analytical model based on nonlinear field theory. It is observed that the individual pump module undergoes finite deformation and may experience electromechanical instability during operations. The driving pressure and displaced volume of the peristaltic pump module can be modulated by applied voltage. The efficiency of the pump module is enhanced by alternating current voltage, which can suppress the electromechanical pull-in instability. An analytical model is developed within the framework of the nonlinear field theory, and its predictive capacity is checked by experimental observations. The effects of the prestretch, aspect ratio, and voltage on the performance of the pump modules are characterized by the analytical model. This work can guide the designs of soft active peristaltic pumps in the field of artificial organs and industrial conveying systems.

  18. Characterization of Bonding Between Poly(dimethylsiloxane) and Cyclic Olefin Coplymer Using Corona Discharge Induced Grafting Polymerization

    PubMed Central

    Liu, Ke; Gu, Pan; Hamaker, Kiri; Fan, Z. Hugh

    2011-01-01

    Thermoplastics have been increasingly used for fabricating microfluidic devices because of their low cost, mechanical/biocompatible attributes, and well-established manufacturing processes. However, there is sometimes a need to integrate such a device with components made from other materials such as polydimethylsiloxane (PDMS). Bonding thermoplastics with PDMS to produce hybrid devices is not straightforward. We have reported our method to modify the surface property of a cyclic olefin copolymer (COC) substrate by using corona discharge and grafting polymerization of 3-(trimethoxysilyl)propyl methacrylate; the modified surface enabled strong bonding of COC with PDMS. In this paper, we report our studies on the surface modification mechanism using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and contact angle measurement. Using this bonding method, we fabricated a three-layer (COC/PDMS/COC) hybrid device consisting of elastomer-based valve arrays. The microvalve operation was confirmed through the displacement of a dye solution in a fluidic channel when the elastomer membrane was pneumatically actuated. Valve-enabled microfluidic handling was demonstrated. PMID:21962541

  19. Energy analysis of a DEAP based cylindrical actuator coupled with a radial negative stiffness spring

    NASA Astrophysics Data System (ADS)

    Chavanne, Jonathan; Civet, Yoan; Perriard, Yves

    2017-04-01

    The main problem to obtain considerable deformation with dielectric electro-active polymer based technology is the electrical breakdown. A simple solution consists in pre-stretching the elastomer before activating it which cancels the snap-through effect and thus avoid reaching the electrical limit. Due to the stress characteristic of the DEAP, it could be demonstrated that a spring with a negative stiffness provides the best strain. In this paper, a new design of a monostable spring with a negative stiffness is suggested for a DEAP tubular shape actuator. The particularity of the proposed solution is the radial direction of the displacement with a special load characteristic. In order to determine the performance of the system, the mechanical and electrical behaviour are investigated through analytical models with the assumption that the axial stretch stays constant. A finite element method is used to validate these latter and maximal error lower than 2% is reported. The energy chain conversion is developed in detail which allows studying all the energies transferred from both the electrical input and any pre-stretch solution to the membrane during a cycle of activation. From these models, the negative stiffness spring is compared to the common solution, i.e a constant pressure or a linear positive spring, to pre-stretch a cylindrical EAP. The results show that the linear spring always removes the snap-through behaviour contrary to the constant pressure. Depending on the geometry, the monostable solution cancels also this latter and owns a better energy transfer from the power supply to the elastomer (around 50% against 40% for the linear spring) or a better stroke compared to the linear spring. Furthermore, due to the hollow in its stress characteristic, the cylindrical shaped actuator associated to a linear spring or the proposed spring allows increasing the strain. Through the different analytical models, the definition of the electrical breakdown and the analysis of the limits of the stresses, a qualitative study of the performance is given for the different pre-stretches.

  20. Characterization and application of shape-changing panels with embedded rubber muscle actuators

    NASA Astrophysics Data System (ADS)

    Peel, Larry D.; Molina, Enrique, Jr.; Baur, Jeffery W.; Justice, Ryan S.

    2013-09-01

    Cylindrical soft actuators efficiently convert fluid pressure into mechanical energy and thus offer excellent force-to-weight ratios while behaving similar to biological muscle. McKibben-like rubber muscle actuators (RMAs) were embedded into neat elastomer and act as shape-changing panels. The effect of actuator spacing and modeling methods on the performance of these panels was investigated. Simulations from nonlinear finite element models were compared with results from test panels containing four RMAs that were spaced 0, 1/2, 1, and 1.3 RMA diameters apart. Nonlinear ‘laminated plate’ and ‘rod & plate’ finite element (FE) models of individual (non-embedded) RMAs and panels with embedded RMAs were developed. Due to model complexity and resource limitations, several simplified 2D and 3D FE model types, including a 3D ‘Unit Cell’ were created. After subtracting the ‘activation pressure’ needed to initiate contraction, all the models for the individual actuators produced forces consistent with experimental values, but only the more resource-intensive rod & plate models replicated fiber/braid re-orientation and produced more realistic values for actuator contraction. For panel models, the Full 3D rod & plate model appeared to be the most accurate for panel contraction and force, but was not completed for all configurations due to resource limitations. Most embedded panel FE models produced maximum panel actuator force and maximum contraction when the embedded actuators are spaced between 1/2 and 1 diameter apart. Seven panels with embedded RMAs were experimentally fabricated and tested. Panel tests confirmed that maximum or optimal performance occurs when the RMAs are spaced between 1/2 and 1 diameter apart. The tested actuator force was fairly constant in this range, suggesting that minor design or manufacturing differences may not significantly affect panel performance. However, the amount of axial force and contraction decreases significantly at greater than optimal spacing. This multi-faceted work provides useful design, simulation fabrication, and test characteristics for shape-adaptive panels. Bending panels were demonstrated but not modeled. Developers of future shape-adaptive air vehicles have been provided with additional simulation and design tools.

  1. Light Robots: Bridging the Gap between Microrobotics and Photomechanics in Soft Materials.

    PubMed

    Zeng, Hao; Wasylczyk, Piotr; Wiersma, Diederik S; Priimagi, Arri

    2018-06-01

    For decades, roboticists have focused their efforts on rigid systems that enable programmable, automated action, and sophisticated control with maximal movement precision and speed. Meanwhile, material scientists have sought compounds and fabrication strategies to devise polymeric actuators that are small, soft, adaptive, and stimuli-responsive. Merging these two fields has given birth to a new class of devices-soft microrobots that, by combining concepts from microrobotics and stimuli-responsive materials research, provide several advantages in a miniature form: external, remotely controllable power supply, adaptive motion, and human-friendly interaction, with device design and action often inspired by biological systems. Herein, recent progress in soft microrobotics is highlighted based on light-responsive liquid-crystal elastomers and polymer networks, focusing on photomobile devices such as walkers, swimmers, and mechanical oscillators, which may ultimately lead to flying microrobots. Finally, self-regulated actuation is proposed as a new pathway toward fully autonomous, intelligent light robots of the future. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. 3D Printing of Liquid Crystal Elastomeric Actuators with Spatially Programed Nematic Order.

    PubMed

    Kotikian, Arda; Truby, Ryan L; Boley, John William; White, Timothy J; Lewis, Jennifer A

    2018-03-01

    Liquid crystal elastomers (LCEs) are soft materials capable of large, reversible shape changes, which may find potential application as artificial muscles, soft robots, and dynamic functional architectures. Here, the design and additive manufacturing of LCE actuators (LCEAs) with spatially programed nematic order that exhibit large, reversible, and repeatable contraction with high specific work capacity are reported. First, a photopolymerizable, solvent-free, main-chain LCE ink is created via aza-Michael addition with the appropriate viscoelastic properties for 3D printing. Next, high operating temperature direct ink writing of LCE inks is used to align their mesogen domains along the direction of the print path. To demonstrate the power of this additive manufacturing approach, shape-morphing LCEA architectures are fabricated, which undergo reversible planar-to-3D and 3D-to-3D' transformations on demand, that can lift significantly more weight than other LCEAs reported to date. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. High-Power Actuation from Molecular Photoswitches in Enantiomerically Paired Soft Springs.

    PubMed

    Aßhoff, Sarah J; Lancia, Federico; Iamsaard, Supitchaya; Matt, Benjamin; Kudernac, Tibor; Fletcher, Stephen P; Katsonis, Nathalie

    2017-03-13

    Motion in plants often relies on dynamic helical systems as seen in coiling tendrils, spasmoneme springs, and the opening of chiral seedpods. Developing nanotechnology that would allow molecular-level phenomena to drive such movements in artificial systems remains a scientific challenge. Herein, we describe a soft device that uses nanoscale information to mimic seedpod opening. The system exploits a fundamental mechanism of stimuli-responsive deformation in plants, namely that inflexible elements with specific orientations are integrated into a stimuli-responsive matrix. The device is operated by isomerization of a light-responsive molecular switch that drives the twisting of strips of liquid-crystal elastomers. The strips twist in opposite directions and work against each other until the pod pops open from stress. This mechanism allows the photoisomerization of molecular switches to stimulate rapid shape changes at the macroscale and thus to maximize actuation power. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  4. Electro-Active Polymer (EAP) Actuators for Planetary Applications

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.; Leary, S.; Shahinpoor, M.; Harrison, J. O.; Smith, J.

    1999-01-01

    NASA is seeking to reduce the mass, size, consumed power, and cost of the instrumentation used in its future missions. An important element of many instruments and devices is the actuation mechanism and electroactive polymers (EAP) are offering an effective alternative to current actuators. In this study, two families of EAP materials were investigated, including bending ionomers and longitudinal electrostatically driven elastomers. These materials were demonstrated to effectively actuate manipulation devices and their performance is being enhanced in this on-going study. The recent observations are reported in this paper, include the operation of the bending-EAP at conditions that exceed the harsh environment on Mars, and identify the obstacles that its properties and characteristics are posing to using them as actuators. Analysis of the electrical characteristics of the ionomer EAP showed that it is a current driven material rather than voltage driven and the conductivity distribution on the surface of the material greatly influences the bending performance. An accurate equivalent circuit modeling of the ionomer EAP performance is essential for the design of effective drive electronics. The ionomer main limitations are the fact that it needs to be moist continuously and the process of electrolysis that takes place during activation. An effective coating technique using a sprayed polymer was developed extending its operation in air from a few minutes to about four months. The coating technique effectively forms the equivalent of a skin to protect the moisture content of the ionomer. In parallel to the development of the bending EAP, the development of computer control of actuated longitudinal EAP has been pursued. An EAP driven miniature robotic arm was constructed and it is controlled by a MATLAB code to drop and lift the arm and close and open EAP fingers of a 4-finger gripper. Keywords: Miniature Robotics, Electroactive Polymers, Electroactive Actuators, EAP Materials

  5. Numerical simulation and experimental validation of the large deformation bending and folding behavior of magneto-active elastomer composites

    NASA Astrophysics Data System (ADS)

    Sheridan, Robert; Roche, Juan; Lofland, Samuel E.; vonLockette, Paris R.

    2014-09-01

    This work seeks to provide a framework for the numerical simulation of magneto-active elastomer (MAE) composite structures for use in origami engineering applications. The emerging field of origami engineering employs folding techniques, an array of crease patterns traditionally on a single flat sheet of paper, to produce structures and devices that perform useful engineering operations. Effective means of numerical simulation offer an efficient way to optimize the crease patterns while coupling to the performance and behavior of the active material. The MAE materials used herein are comprised of nominally 30% v/v, 325 mesh barium hexafarrite particles embedded in Dow HS II silicone elastomer compound. These particulate composites are cured in a magnetic field to produce magneto-elastic solids with anisotropic magnetization, e.g. they have a preferred magnetic axis parallel to the curing axis. The deformed shape and/or blocked force characteristics of these MAEs are examined in three geometries: a monolithic cantilever as well as two- and four-segment composite accordion structures. In the accordion structures, patches of MAE material are bonded to a Gelest OE41 unfilled silicone elastomer substrate. Two methods of simulation, one using the Maxwell stress tensor applied as a traction boundary condition and another employing a minimum energy kinematic (MEK) model, are investigated. Both methods capture actuation due to magnetic torque mechanisms that dominate MAE behavior. Comparison with experimental data show good agreement with only a single adjustable parameter, either an effective constant magnetization of the MAE material in the finite element models (at small and moderate deformations) or an effective modulus in the minimum energy model. The four-segment finite element model was prone to numerical locking at large deformation. The effective magnetization and modulus values required are a fraction of the actual experimentally measured values which suggests a reduction in the amount of magnetic torque transferred from the particles to the matrix.

  6. Electro-actuated hydrogel walkers with dual responsive legs.

    PubMed

    Morales, Daniel; Palleau, Etienne; Dickey, Michael D; Velev, Orlin D

    2014-03-07

    Stimuli responsive polyelectrolyte hydrogels may be useful for soft robotics because of their ability to transform chemical energy into mechanical motion without the use of external mechanical input. Composed of soft and biocompatible materials, gel robots can easily bend and fold, interface and manipulate biological components and transport cargo in aqueous solutions. Electrical fields in aqueous solutions offer repeatable and controllable stimuli, which induce actuation by the re-distribution of ions in the system. Electrical fields applied to polyelectrolyte-doped gels submerged in ionic solution distribute the mobile ions asymmetrically to create osmotic pressure differences that swell and deform the gels. The sign of the fixed charges on the polyelectrolyte network determines the direction of bending, which we harness to control the motion of the gel legs in opposing directions as a response to electrical fields. We present and analyze a walking gel actuator comprised of cationic and anionic gel legs made of copolymer networks of acrylamide (AAm)/sodium acrylate (NaAc) and acrylamide/quaternized dimethylaminoethyl methacrylate (DMAEMA Q), respectively. The anionic and cationic legs were attached by electric field-promoted polyion complexation. We characterize the electro-actuated response of the sodium acrylate hydrogel as a function of charge density and external salt concentration. We demonstrate that "osmotically passive" fixed charges play an important role in controlling the bending magnitude of the gel networks. The gel walkers achieve unidirectional motion on flat elastomer substrates and exemplify a simple way to move and manipulate soft matter devices and robots in aqueous solutions.

  7. A validated finite element model of a soft artificial muscle motor

    NASA Astrophysics Data System (ADS)

    Tse, Tony Chun H.; O'Brien, Benjamin; McKay, Thomas; Anderson, Iain A.

    2011-04-01

    The Biomimetics Laboratory has developed a soft artificial muscle motor based on Dielectric Elastomers. The motor, 'Flexidrive', is light-weight and has low system complexity. It works by gripping and turning a shaft with a soft gear, like we would with our fingers. The motor's performance depends on many factors, such as actuation waveform, electrode patterning, geometries and contact tribology between the shaft and gear. We have developed a finite element model (FEM) of the motor as a study and design tool. Contact interaction was integrated with previous material and electromechanical coupling models in ABAQUS. The model was experimentally validated through a shape and blocked force analysis.

  8. Iterative and variational homogenization methods for filled elastomers

    NASA Astrophysics Data System (ADS)

    Goudarzi, Taha

    Elastomeric composites have increasingly proved invaluable in commercial technological applications due to their unique mechanical properties, especially their ability to undergo large reversible deformation in response to a variety of stimuli (e.g., mechanical forces, electric and magnetic fields, changes in temperature). Modern advances in organic materials science have revealed that elastomeric composites hold also tremendous potential to enable new high-end technologies, especially as the next generation of sensors and actuators featured by their low cost together with their biocompatibility, and processability into arbitrary shapes. This potential calls for an in-depth investigation of the macroscopic mechanical/physical behavior of elastomeric composites directly in terms of their microscopic behavior with the objective of creating the knowledge base needed to guide their bottom-up design. The purpose of this thesis is to generate a mathematical framework to describe, explain, and predict the macroscopic nonlinear elastic behavior of filled elastomers, arguably the most prominent class of elastomeric composites, directly in terms of the behavior of their constituents --- i.e., the elastomeric matrix and the filler particles --- and their microstructure --- i.e., the content, size, shape, and spatial distribution of the filler particles. This will be accomplished via a combination of novel iterative and variational homogenization techniques capable of accounting for interphasial phenomena and finite deformations. Exact and approximate analytical solutions for the fundamental nonlinear elastic response of dilute suspensions of rigid spherical particles (either firmly bonded or bonded through finite size interphases) in Gaussian rubber are first generated. These results are in turn utilized to construct approximate solutions for the nonlinear elastic response of non-Gaussian elastomers filled with a random distribution of rigid particles (again, either firmly bonded or bonded through finite size interphases) at finite concentrations. Three-dimensional finite element simulations are also carried out to gain further insight into the proposed theoretical solutions. Inter alia, we make use of these solutions to examine the effects of particle concentration, mono- and poly-dispersity of the filler particle size, and the presence of finite size interphases on the macroscopic response of filled elastomers. The solutions are found able to explain and describe experimental results that to date have been understood only in part. More generally, the solutions provide a robust tool to efficiently guide the design of filled elastomers with desired macroscopic properties. The homogenization techniques developed in this work are not limited to nonlinear elasticity, but can be readily utilized to study multi-functional properties as well. For demonstration purposes, we work out a novel exact solution for the macroscopic dielectric response of filled elastomers with interphasial space charges.

  9. 25th Anniversary Article: A Soft Future: From Robots and Sensor Skin to Energy Harvesters

    PubMed Central

    Bauer, Siegfried; Bauer-Gogonea, Simona; Graz, Ingrid; Kaltenbrunner, Martin; Keplinger, Christoph; Schwödiauer, Reinhard

    2014-01-01

    Scientists are exploring elastic and soft forms of robots, electronic skin and energy harvesters, dreaming to mimic nature and to enable novel applications in wide fields, from consumer and mobile appliances to biomedical systems, sports and healthcare. All conceivable classes of materials with a wide range of mechanical, physical and chemical properties are employed, from liquids and gels to organic and inorganic solids. Functionalities never seen before are achieved. In this review we discuss soft robots which allow actuation with several degrees of freedom. We show that different actuation mechanisms lead to similar actuators, capable of complex and smooth movements in 3d space. We introduce latest research examples in sensor skin development and discuss ultraflexible electronic circuits, light emitting diodes and solar cells as examples. Additional functionalities of sensor skin, such as visual sensors inspired by animal eyes, camouflage, self-cleaning and healing and on-skin energy storage and generation are briefly reviewed. Finally, we discuss a paradigm change in energy harvesting, away from hard energy generators to soft ones based on dielectric elastomers. Such systems are shown to work with high energy of conversion, making them potentially interesting for harvesting mechanical energy from human gait, winds and ocean waves. PMID:24307641

  10. 25th anniversary article: A soft future: from robots and sensor skin to energy harvesters.

    PubMed

    Bauer, Siegfried; Bauer-Gogonea, Simona; Graz, Ingrid; Kaltenbrunner, Martin; Keplinger, Christoph; Schwödiauer, Reinhard

    2014-01-08

    Scientists are exploring elastic and soft forms of robots, electronic skin and energy harvesters, dreaming to mimic nature and to enable novel applications in wide fields, from consumer and mobile appliances to biomedical systems, sports and healthcare. All conceivable classes of materials with a wide range of mechanical, physical and chemical properties are employed, from liquids and gels to organic and inorganic solids. Functionalities never seen before are achieved. In this review we discuss soft robots which allow actuation with several degrees of freedom. We show that different actuation mechanisms lead to similar actuators, capable of complex and smooth movements in 3d space. We introduce latest research examples in sensor skin development and discuss ultraflexible electronic circuits, light emitting diodes and solar cells as examples. Additional functionalities of sensor skin, such as visual sensors inspired by animal eyes, camouflage, self-cleaning and healing and on-skin energy storage and generation are briefly reviewed. Finally, we discuss a paradigm change in energy harvesting, away from hard energy generators to soft ones based on dielectric elastomers. Such systems are shown to work with high energy of conversion, making them potentially interesting for harvesting mechanical energy from human gait, winds and ocean waves. © 2013 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Electrostatic actuators for portable microfluidic systems

    NASA Astrophysics Data System (ADS)

    Tice, Joshua

    Both developed and developing nations have an urgent need to diagnose disease cheaply, reliably, and independently of centralized facilities. Microfulidic platforms are well-positioned to address the need for portable diagnostics, mainly due to their obvious advantage in size. However, most microfluidic methods rely on equipment outside of the chip either for driving fluid flow (e.g., syringe pumps) or for taking measurements (e.g., lasers or microscopes). The energy and space requirements of the whole system inhibit portability and contribute to costs. To capitalize on the strengths of microfluidic platforms and address the serious needs of society, system components need to be miniaturized. Also, miniaturization should be accomplished as simply as possible, considering that simplicity is usually requisite for achieving truly transformative technology. Herein, I attempt to address the issue of controlling fluid flow in portable microfluidic systems. I focus on systems that are driven by elastomer-based membrane valves, since these valves are inherently simple, yet they are capable of sophisticated fluid manipulation. Others have attempted to modify pneumatic microvalves for portable applications, e.g., by transitioning to electromagnetic, thermopneumatic, or piezoelectric actuation principles. However, none of these strategies maintain the proper balance of simplicity, functionality, and ease of integration. My research centers on electrostatic actuators, due to their conceptual simplicity and the efficacy of electrostatic forces on the microscale. To ensure easy integration with polymer-based systems, and to maintain simplicity in the fabrication procedure, the actuators were constructed solely from poly(dimethylsiloxane) and multi-walled carbon nanotubes. In addition, the actuators were fabricated exclusively with soft-lithographic techniques. A mathematical model was developed to identify actuator parameters compatible with soft-lithography, and also to minimize actuation potentials while eliminating stiction. Two strategies were developed to overcome challenges with electrode screening in the presence of aqueous fluids. First, instead of using the electrostatic actuators to interact directly with aqueous solutions, the actuators were used to regulate pressurized control lines for pneumatic microvalves. Secondly, by adopting a normally-closed architecture, the actuators were converted into microvalves capable of directly interacting with aqueous solutions. The two strategies are complementary, and together should enable sophisticated microfluidic systems for applications ranging from point-of-care diagnostics to portable chemical detection. To conclude the dissertation, I demonstrate a proof-of-principle microfluidic system that contained sixteen independently-operated electrostatic valves, operated with battery-operated electrical ancillaries in a hand-held format.

  12. Enabling Desktop Nanofabrication with the Targeted Use of Soft Materials

    NASA Astrophysics Data System (ADS)

    Eichelsdoerfer, Daniel James

    This thesis focuses on the application of soft materials to scanning probe-based molecular printing techniques, such as dip-pen nanolithography (DPN). The selective incorporation of soft materials in place of hard materials in traditional cantilever-based scanning probe lithography (SPL) systems not only enables the deposition of a broader range of materials, but also dramatically lowers the cost while simultaneously increasing the throughput of SPL. Chapter 1 introduces SPL and DPN, and highlights a few recent advances in using DPN to control surface chemical functionality at the nanoscale. In addition to introducing the material deposition capabilities of DPN, Chapter 1 introduces the development of the cantilever-free architecture, a relatively recent paradigm shift in high-throughput SPL. Furthermore, an in-depth synthetic methodology for making the most widely used cantilever-free tip arrays, consisting of elastomeric nanoscale pens adhered to an elastomeric backing layer on a glass slide, is included as an appendix. Chapter 2 discusses the synthesis of metal and metal oxide nanoparticles at specified locations by using DPN to deposit the precursors dispersed in a polymer matrix; after deposition, the precursors are annealed to form single nanoparticles. This work builds on previous soft material-based advances in DPN by utilizing the polymer as a "nanoreactor" to synthesize the desired nanoparticles, where the precursors can diffuse and coalesce into a single nanoparticle within each spot. The process of precursor aggregation and single nanoparticle formation is studied, and it is found that metal precursors follow one of three pathways based upon their reduction potential. Chapter 3 is the first of three chapters that highlights the power of soft materials in the cantilever-free architecture. In particular, Chapter 3 examines the role of the elastomeric backing layer as a compliant spring whose stiffness (as measured by the spring constant, k) can be tuned with a simple chemical change to the composition of the elastomer. In particular, the extent of cross-linking within the elastomer is found to dictate the k the backing layer, and arrays with spring constants tuned from 7 to 150 N/m are described. Furthermore, a simple geometric model is developed that explains the low variation of k within each cantilever-free array; this stands in contrast to arrays of cantilevers, which typically show large variations of k within an array. Chapter 4 addresses the problem of individual actuation in SPL by embedding resistive heaters directly beneath the elastomeric backing layer. This actuation scheme was chosen because the elastomer used in the cantilever-free tip arrays has extraordinary thermal expansion properties, and thorough exploration of their actuation behavior shows that the heater arrays are fast (> 100 microm/s) and powerful (> 4 microm) enough for actuation. After implementing several corrections for the tip height -- a problem that is intractable without the heaters, and has never been addressed before -- printing of alkanethiols onto Au is demonstrated with a 2D array of individually actuated probes. Chapter 5 examines the hypothesis that elastomeric tips can absorb solvent and be used to transport materials in the absence of environmental solvent. This is evaluated by first using tip arrays soaked in a nonpolar solvent to pattern a hydrophobic block copolymer that cannot be patterned by traditional DPN, and is subsequently explored for the case of water uptake into the pen arrays. Surprisingly, despite their poor water retention ability, the tip arrays can store enough water to pattern hydrophilic polymers in dry environments for over 2 hours. The dynamics of the solvent absorption are captured by a simple calculation that accounts for the dynamical behavior of water retention and the backing layer thickness, thereby allowing these results to be generalized to other solvents. This exploration of the subtle and dynamic role of absorbed solvent in cantilever-free pen arrays shows that proper pre-treatment of the arrays can be used to obviate the need for an environmental chamber in molecular printing. (Abstract shortened by UMI.)

  13. Prevalence of naturally occurring antibodies against dog erythrocyte antigen 7 in a population of dog erythrocyte antigen 7-negative dogs from Spain and Italy.

    PubMed

    Spada, Eva; Proverbio, Daniela; Viñals Flórez, Luis Miguel; Del Rosario Perlado Chamizo, Maria; Serra Y Gómez de la Serna, Blanca; Perego, Roberta; Baggiani, Luciana

    2016-08-01

    OBJECTIVE To determine the prevalence of naturally occurring anti-dog erythrocyte antigen (DEA) 7 antibodies in DEA 7-negative dogs from Spain and Italy. ANIMALS 252 DEA 7-negative dogs from a population of 312 dogs that were previously tested for DEA 1, DEA 4, and DEA 7. PROCEDURES A plasma sample was obtained from each dog and evaluated for anti-DEA 7 antibodies by the use of gel column agglutination. Each plasma sample underwent major crossmatching with RBCs from DEA 7-positive dogs. Samples that resulted in agglutination were then crossmatched with RBCs from DEA 1-negative, DEA 4-positive, and DEA 7-negative dogs to confirm the presence of anti-DEA 7 antibodies. Results were then used to calculate the risk for a delayed transfusion reaction in a DEA 7-negative dog with anti-DEA 7 antibodies after a transfusion with blood that was not crossmatched or typed for DEA 7. RESULTS 96 of 252 (38.1%) plasma samples contained anti-DEA 7 antibodies. A DEA 7-negative dog with anti-DEA 7 antibodies had a 5.9% chance of developing a delayed hemolytic reaction after transfusion with blood not crossmatched or typed for DEA 7. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that canine blood used for transfusion should be crossmatched with the blood or plasma of the intended recipient prior to transfusion to minimize the likelihood that the recipient will develop a hemolytic reaction associated with anti-DEA 7 antibodies. Ideal canine blood donors should be negative for both DEA 1 and DEA 7.

  14. Dog erythrocyte antigens (DEA) 1, 4, 7 and suspected naturally occurring anti-DEA 7 antibodies in Italian Corso dogs.

    PubMed

    Spada, E; Proverbio, D; Priolo, V; Ippolito, D; Baggiani, L; Perego, R; Pennisi, M G

    2017-04-01

    We sought to determine the prevalence of dog erythrocyte antigen (DEA) 1, 4 and 7 and naturally occurring anti-DEA7 antibodies in Italian Corso dogs. In addition, we correlated DEAs with different epidemiologic variables, compared the prevalence of DEAs against other canine populations and assessed the risk of sensitisation and transfusion reactions (TRs) following unmatched transfusion. Blood samples from 100 Corso dogs were evaluated for DEA 1, 4, 7 and naturally occurring anti-DEA 7 antibodies. Seventy-one percent of samples were DEA 1-negative, 100% tested DEA 4-positive, and 95% tested DEA 7-negative. Suspected anti-DEA7 antibodies were found in 32% dogs. The DEA 1 and 7-negative phenotypes were significantly more common than in most canine populations. When a previously tested Italian canine population was considered as blood donors for Corso dogs, the risk of DEA 1 sensitisation using DEA 1 untyped blood was 29%, and of acute haemolytic TRs after a second untyped DEA 1-incompatible transfusion was 8%. The potential for delayed TRs between DEA 7-negative Corso dogs with suspected naturally occurring anti-DEA 7 antibodies receiving untyped DEA 7-positive blood was 11%. Conversely, when Corso dogs were blood donors for the same population, the risk of DEA 1 sensitisation was 17% and the risk of an acute haemolytic TR after a second DEA 1-incompatible blood transfusion was 3%. Corso dogs can be suitable blood donors. Additional studies are needed to clarify whether the high prevalence of naturally occurring anti-DEA 7 antibodies in this breed could increase their risk of delayed TRs when they are blood recipients. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Voltage-controlled radial wrinkles of a trumpet-like dielectric elastomer structure

    NASA Astrophysics Data System (ADS)

    Mao, Guoyong; Wu, Lei; Fu, Yimou; Liu, Junjie; Qu, Shaoxing

    2018-03-01

    Wrinkle is usually considered as one failure mode of membrane structure. However, it can also be harnessed in developing smart devices such as dry adhesion tape, diffraction grating, smart window, etc. In this paper, we present a method to generate voltage-controlled radial wrinkles, which are fast response and reversible, in a stretched circular dielectric elastomer (DE) membrane with boundary fixed. In the experiment, we bond a circular plate on the center of the circular membrane and then pull the DE membrane perpendicular to itself via the plate. The stretched DE membrane is a trumpet-like structure. When the stretched DE membrane is subjected to a certain voltage, wrinkles nucleate from the center of the DE membrane and propagate to the boundary as the voltage increases. We adopt a theoretical framework to analyze the nucleation of the wrinkles. A simple wavelength expression is achieved, which is only related to the geometry and the stretch of the DE membrane. Results show that the theory agrees well with the experiment. This work may help the future design of DE actuators in avoiding mechanical instability and provide a new method to generate controllable radial DE wrinkles.

  16. Characterization of bonding between poly(dimethylsiloxane) and cyclic olefin copolymer using corona discharge induced grafting polymerization.

    PubMed

    Liu, Ke; Gu, Pan; Hamaker, Kiri; Fan, Z Hugh

    2012-01-01

    Thermoplastics have been increasingly used for fabricating microfluidic devices because of their low cost, mechanical/biocompatible attributes, and well-established manufacturing processes. However, there is sometimes a need to integrate such a device with components made from other materials such as polydimethylsiloxane (PDMS). Bonding thermoplastics with PDMS to produce hybrid devices is not straightforward. We have reported our method to modify the surface property of a cyclic olefin copolymer (COC) substrate by using corona discharge and grafting polymerization of 3-(trimethoxysilyl)propyl methacrylate; the modified surface enabled strong bonding of COC with PDMS. In this paper, we report our studies on the surface modification mechanism using attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and contact angle measurement. Using this bonding method, we fabricated a three-layer (COC/PDMS/COC) hybrid device consisting of elastomer-based valve arrays. The microvalve operation was confirmed through the displacement of a dye solution in a fluidic channel when the elastomer membrane was pneumatically actuated. Valve-enabled microfluidic handling was demonstrated. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. A new design of dielectric elastomer membrane resonator with tunable resonant frequencies and mode shapes

    NASA Astrophysics Data System (ADS)

    Li, Yunlong; Oh, Inkyu; Chen, Jiehao; Hu, Yuhang

    2018-06-01

    Conventional membrane resonators are bulky, and once the geometries and materials are fixed in the fabricated device, the resonators’ characteristics are fixed. In this work, we introduce the active membrane, dielectric elastomer (DE), into the resonator design. Attaching a stiffer passive membrane onto the active DE membrane forms a two-layer system, which generates an out-of-plane deformation when the DE is actuated through a DC voltage applied across the thickness of the DE membrane. When an AC voltage is applied, the two-layer system can generate an out-of-plane oscillation which enables its use as membrane resonators. Both experiments and simulations are carried out to study the dynamic characteristics of the system. The resonant frequencies and mode shapes of the resonator can be tuned through the passive layer properties such as the modulus, thickness, density, and size. The effective stiffness of the DE film changes as the magnitude of the voltage applied on the film changes, which provides an active way to tune the dynamic characteristics of the two-layer resonator even after the device is set. The system is also light weight, low cost, and easy to fabricate, and has great potential in many engineering applications.

  18. Dog Erythrocyte Antigen 1 (DEA 1): Mode of Inheritance and Initial Characterization

    PubMed Central

    Polak, Klaudia; Acierno, Michelle; Raj, Karthik; Mizukami, Keijiro; Siegel, Don L.; Giger, Urs

    2015-01-01

    Background The Dog Erythrocyte Antigen (DEA) 1 blood group system remains poorly defined. Objectives The purpose of the study was to determine the DEA 1 mode of inheritance and to characterize the DEA 1 antigen and alloantibodies. Animals Canine research colony families, clinic canine patients, and DEA 1.2+ blood bank dogs were studied. Methods Canine blood was typed by flow cytometry and immunochromatographic strips using anti-DEA 1 monoclonal antibodies. Gel column experiments with polyclonal and immunoblotting with monoclonal anti-DEA 1 antibodies were performed to analyze select samples. Cross-reactivity of human typing reagents against canine RBCs and one monoclonal anti-DEA 1 antibody against human RBC panels was assessed. Results Typing of 12 families comprising 144 dogs indicated an autosomal dominant inheritance with ≥4 alleles: DEA 1− (0) and DEA 1+ weak (1+), intermediate (2+) and strong (3+ and 4+). Samples from 6 dogs previously typed as DEA 1.2+ were typed as DEA 1+ or DEA 1− using monoclonal antibodies. Human typing reagents produced varied reactions in tube agglutination experiments against DEA 1+ and DEA 1− RBCs. Polypeptide bands were not detected on immunoblots using a monoclonal anti-DEA 1 antibody, therefore the anti-DEA 1 antibody may be specific for conformational epitopes lost during denaturation. Conclusions The autosomal dominant inheritance of DEA 1 with ≥4 alleles indicates a complex blood group system; the antigenicity of each DEA 1+ type will need to be determined. The biochemical nature of the DEA 1 antigen(s) appears different from human blood group systems tested. PMID:26291052

  19. Novel on-demand droplet generation for selective fluid sample extraction

    PubMed Central

    Lin, Robert; Fisher, Jeffery S.; Simon, Melinda G.; Lee, Abraham P.

    2012-01-01

    A novel microfluidic device enabling selective generation of droplets and encapsulation of targets is presented. Unlike conventional methods, the presented mechanism generates droplets with unique selectivity by utilizing a K-junction design. The K-junction is a modified version of the classic T-junction with an added leg that serves as the exit channel for waste. The dispersed phase fluid enters from one diagonal of the K and exits the other diagonal while the continuous phase travels in the straight leg of the K. The intersection forms an interface that allows the dispersed phase to be controllably injected through actuation of an elastomer membrane located above the inlet channel near the interface. We have characterized two critical components in controlling the droplet size—membrane actuation pressure and timing as well as identified the region of fluid in which the droplet will be formed. This scheme will have applications in fluid sampling processes and selective encapsulation of materials. Selective encapsulation of a single cell from the dispersed phase fluid is demonstrated as an example of functionality of this design. PMID:22655015

  20. Electroactive Ionic Soft Actuators with Monolithically Integrated Gold Nanocomposite Electrodes.

    PubMed

    Yan, Yunsong; Santaniello, Tommaso; Bettini, Luca Giacomo; Minnai, Chloé; Bellacicca, Andrea; Porotti, Riccardo; Denti, Ilaria; Faraone, Gabriele; Merlini, Marco; Lenardi, Cristina; Milani, Paolo

    2017-06-01

    Electroactive ionic gel/metal nanocomposites are produced by implanting supersonically accelerated neutral gold nanoparticles into a novel chemically crosslinked ion conductive soft polymer. The ionic gel consists of chemically crosslinked poly(acrylic acid) and polyacrylonitrile networks, blended with halloysite nanoclays and imidazolium-based ionic liquid. The material exhibits mechanical properties similar to that of elastomers (Young's modulus ≈ 0.35 MPa) together with high ionic conductivity. The fabrication of thin (≈100 nm thick) nanostructured compliant electrodes by means of supersonic cluster beam implantation (SCBI) does not significantly alter the mechanical properties of the soft polymer and provides controlled electrical properties and large surface area for ions storage. SCBI is cost effective and suitable for the scaleup manufacturing of electroactive soft actuators. This study reports the high-strain electromechanical actuation performance of the novel ionic gel/metal nanocomposites in a low-voltage regime (from 0.1 to 5 V), with long-term stability up to 76 000 cycles with no electrode delamination or deterioration. The observed behavior is due to both the intrinsic features of the ionic gel (elasticity and ionic transport capability) and the electrical and morphological features of the electrodes, providing low specific resistance (<100 Ω cm -2 ), high electrochemical capacitance (≈mF g -1 ), and minimal mechanical stress at the polymer/metal composite interface upon deformation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Proximity and touch sensing using deformable ionic conductors (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Madden, John D. W.; Dobashi, Yuta; Sarwar, Mirza S.; Preston, Eden C.; Wyss, Justin K. M.; Woehling, Vincent; Nguyen, Tran-Minh-Giao; Plesse, Cedric; Vidal, Frédéric; Naficy, Sina; Spinks, Geoffrey M.

    2017-04-01

    There is increasing interest in creating bendable and stretchable electronic interfaces that can be worn or applied to virtually any surface. The electroactive polymer community is well placed to add value by incorporating sensors and actuators. Recent work has demonstrated transparent dielectric elastomer actuation as well as pressure, stretch or touch sensing. Here we present two alternative forms of sensing. The first uses ionically conductive and stretchable gels as electrodes in capacitive sensors that detect finger proximity. In this case the finger acts as a third electrode, reducing capacitance between the two gel electrodes as it approaches, which can be detected even during bending and stretching. Very light finger touch is readily detected even during deformation of the substrate. Lateral resolution is achieved by creating a sensor array. In the second approach, electrodes placed beneath a salt containing gel are able to detect ion currents generated by the deformation of the gel. In this approach, applied pressure results in ion currents that create a potential difference around the point of contact, leading to a voltage and current in the electrodes without any need for input electrical energy. The mechanism may be related to effects seen in ionomeric polymer metal composites (IPMCs), but with the response in plane rather than through the thickness of the film. Ultimately, these ionically conductive materials that can also be transparent and actuate, have the potential to be used in wearable devices.

  2. 21 CFR 1305.11 - Procedure for obtaining DEA Forms 222.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... the name, address, and registration number of the registrant and the number of books of DEA Forms 222... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Procedure for obtaining DEA Forms 222. 1305.11... I AND II CONTROLLED SUBSTANCES DEA Form 222 § 1305.11 Procedure for obtaining DEA Forms 222. (a) DEA...

  3. 21 CFR 1305.11 - Procedure for obtaining DEA Forms 222.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 9 2011-04-01 2011-04-01 false Procedure for obtaining DEA Forms 222. 1305.11... I AND II CONTROLLED SUBSTANCES DEA Form 222 § 1305.11 Procedure for obtaining DEA Forms 222. (a) DEA..., which is based on the business activity of the registrant, will be imposed on the number of DEA Forms...

  4. Design and application of permanent magnet flux sources for mechanical testing of magnetoactive elastomers at variable field directions.

    PubMed

    Hiptmair, F; Major, Z; Haßlacher, R; Hild, S

    2015-08-01

    Magnetoactive elastomers (MAEs) are a class of smart materials whose mechanical properties can be rapidly and reversibly changed by an external magnetic field. Due to this tunability, they are useable for actuators or in active vibration control applications. An extensive magnetomechanical characterization is necessary for MAE material development and requires experiments under cyclic loading in uniform but variable magnetic fields. MAE testing apparatus typically rely on fields of adjustable strength, but fixed (transverse) direction, often provided by electromagnets. In this work, two permanent magnet flux sources were developed as an add-on for a modular test stand, to allow for mechanical testing in uniform fields of variable direction. MAE specimens, based on a silicone matrix with isotropic and anisotropic carbonyl iron particle distributions, were subjected to dynamic mechanical analysis under different field and loading configurations. The magneto-induced increase of stiffness and energy dissipation was determined by the change of the hysteresis loop area and dynamic modulus values. A distinct influence of the composite microstructure and the loading state was observed. Due to the very soft and flexible matrix used for preparing the MAE samples, the material stiffness and damping behavior could be varied over a wide range via the applied field direction and intensity.

  5. Fabrication of dielectric elastomer stack transducers (DEST) by liquid deposition modeling

    NASA Astrophysics Data System (ADS)

    Klug, Florian; Solano-Arana, Susana; Mößinger, Holger; Förster-Zügel, Florentine; Schlaak, Helmut F.

    2017-04-01

    Established fabrication methods for dielectric elastomer stack transducers (DEST) are mostly based on twodimensional thin-film technology. Because of this, DEST are based on simple two-dimensionally structured shapes. For certain applications, like valves or Braille displays, these structures are suited well enough. However, a more flexible fabrication method allows for more complex actuator designs, which would otherwise require extra processing steps. Fabrication methods with the possibility of three-dimensional structuring allow e.g. the integration of electrical connections, cavities, channels, sensor and other structural elements during the fabrication. This opens up new applications, as well as the opportunity for faster prototype production of individually designed DEST for a given application. In this work, a manufacturing system allowing three dimensional structuring is described. It enables the production of multilayer and three-dimensional structured DEST by liquid deposition modelling. The system is based on a custom made dual extruder, connected to a commercial threeaxis positioning system. It allows a computer controlled liquid deposition of two materials. After tuning the manufacturing parameters the production of thin layers with at thickness of less than 50 μm, as well as stacking electrode and dielectric materials is feasible. With this setup a first DEST with dielectric layer thickness less than 50 μm is build successfully and its performance is evaluated.

  6. Current status and future prospects of power generators using dielectric elastomers

    NASA Astrophysics Data System (ADS)

    Chiba, Seiki; Waki, Mikio; Kornbluh, Roy; Pelrine, Ron

    2011-12-01

    Electroactive polymer artificial muscle (EPAM), known collectively as dielectric elastomers in the literature, has been shown to offer unique capabilities as an actuator and is now being developed for a wide variety of generator applications. EPAM has several characteristics that make it potentially well suited for wave, water current, wind, human motion, and other environmental energy harvesting systems including a high energy density allowing for minimal EPAM material quantities, high energy conversion efficiency independent of frequency of operation and non-toxic and low-cost materials not susceptible to corrosion. Experiments have been performed on push-button and heel-mounted generator devices powered by human motion, ocean wave power harvesters mounted on buoys and water turbines. While the power output levels of such demonstration devices is small, the performance of these devices has supported the potential benefits of EPAM. For example, an electrical energy conversion efficiency of over 70% was achieved with small wave heights. The ability of EPAM to produce hydrogen fuel for energy storage was also demonstrated. Because the energy conversion principle of EPAM is capacitive in nature, the performance is largely independent of size and it should eventually be possible to scale up EPAM generators to the megawatt level to address a variety of electrical power needs.

  7. 28 CFR 0.103 - Release of information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Enforcement Administration § 0.103 Release of information. (a) The Administrator of DEA is authorized— (1) To release information obtained by DEA and DEA investigative reports to Federal, State, and local officials... by DEA and DEA investigative reports to Federal, State, and local prosecutors, and State licensing...

  8. 28 CFR 0.103 - Release of information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Enforcement Administration § 0.103 Release of information. (a) The Administrator of DEA is authorized— (1) To release information obtained by DEA and DEA investigative reports to Federal, State, and local officials... by DEA and DEA investigative reports to Federal, State, and local prosecutors, and State licensing...

  9. Fused Filament Fabrication of Prosthetic Components for Trans-Humeral Upper Limb Prosthetics

    NASA Astrophysics Data System (ADS)

    Lathers, Steven M.

    Presented below is the design and fabrication of prosthetic components consisting of an attachment, tactile sensing, and actuator systems with Fused Filament Fabrication (FFF) technique. The attachment system is a thermoplastic osseointegrated upper limb prosthesis for average adult trans-humeral amputation with mechanical properties greater than upper limb skeletal bone. The prosthetic designed has: a one-step surgical process, large cavities for bone tissue ingrowth, uses a material that has an elastic modulus less than skeletal bone, and can be fabricated on one system. FFF osseointegration screw is an improvement upon the current two-part osseointegrated prosthetics that are composed of a fixture and abutment. The current prosthetic design requires two invasive surgeries for implantation and are made of titanium, which has an elastic modulus greater than bone. An elastic modulus greater than bone causes stress shielding and overtime can cause loosening of the prosthetic. The tactile sensor is a thermoplastic piezo-resistive sensor for daily activities for a prosthetic's feedback system. The tactile sensor is manufactured from a low elastic modulus composite comprising of a compressible thermoplastic elastomer and conductive carbon. Carbon is in graphite form and added in high filler ratios. The printed sensors were compared to sensors that were fabricated in a gravity mold to highlight the difference in FFF sensors to molded sensors. The 3D printed tactile sensor has a thickness and feel similar to human skin, has a simple fabrication technique, can detect forces needed for daily activities, and can be manufactured in to user specific geometries. Lastly, a biomimicking skeletal muscle actuator for prosthetics was developed. The actuator developed is manufactured with Fuse Filament Fabrication using a shape memory polymer composite that has non-linear contractile and passive forces, contractile forces and strains comparable to mammalian skeletal muscle, reaction time under one second, low operating temperature, and has a low mass, volume, and material costs. The actuator improves upon current prosthetic actuators that provide rigid, linear force with high weight, cost, and noise.

  10. Miniaturized soft bio-hybrid robotics: a step forward into healthcare applications.

    PubMed

    Patino, T; Mestre, R; Sánchez, S

    2016-10-07

    Soft robotics is an emerging discipline that employs soft flexible materials such as fluids, gels and elastomers in order to enhance the use of robotics in healthcare applications. Compared to their rigid counterparts, soft robotic systems have flexible and rheological properties that are closely related to biological systems, thus allowing the development of adaptive and flexible interactions with complex dynamic environments. With new technologies arising in bioengineering, the integration of living cells into soft robotic systems offers the possibility of accomplishing multiple complex functions such as sensing and actuating upon external stimuli. These emerging bio-hybrid systems are showing promising outcomes and opening up new avenues in the field of soft robotics for applications in healthcare and other fields.

  11. 28 CFR 16.98 - Exemption of the Drug Enforcement Administration (DEA) Systems-limited access.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Planning and Inspection Division Records (Justice/DEA-010). (4) Operation Files (Justice/DEA-011). (5...); Planning and Inspection Division Records (Justice/DEA-010); and Security Files (Justice/DEA-013..., fabrication of testimony, and/or flight of the subject; reveal the details of a sensitive investigative or...

  12. 28 CFR 16.98 - Exemption of the Drug Enforcement Administration (DEA) Systems-limited access.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Planning and Inspection Division Records (Justice/DEA-010). (4) Operation Files (Justice/DEA-011). (5...); Planning and Inspection Division Records (Justice/DEA-010); and Security Files (Justice/DEA-013..., fabrication of testimony, and/or flight of the subject; reveal the details of a sensitive investigative or...

  13. 21 CFR 1305.12 - Procedure for executing DEA Forms 222.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Procedure for executing DEA Forms 222. 1305.12... I AND II CONTROLLED SUBSTANCES DEA Form 222 § 1305.12 Procedure for executing DEA Forms 222. (a) A purchaser must prepare and execute a DEA Form 222 simultaneously in triplicate by means of interleaved...

  14. 21 CFR 1305.17 - Preservation of DEA Forms 222.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 9 2011-04-01 2011-04-01 false Preservation of DEA Forms 222. 1305.17 Section... II CONTROLLED SUBSTANCES DEA Form 222 § 1305.17 Preservation of DEA Forms 222. (a) The purchaser must retain Copy 3 of each executed DEA Form 222 and all copies of unaccepted or defective forms with each...

  15. 21 CFR 1305.12 - Procedure for executing DEA Forms 222.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 9 2011-04-01 2011-04-01 false Procedure for executing DEA Forms 222. 1305.12... I AND II CONTROLLED SUBSTANCES DEA Form 222 § 1305.12 Procedure for executing DEA Forms 222. (a) A purchaser must prepare and execute a DEA Form 222 simultaneously in triplicate by means of interleaved...

  16. 21 CFR 1305.18 - Return of unused DEA Forms 222.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 9 2011-04-01 2011-04-01 false Return of unused DEA Forms 222. 1305.18 Section... II CONTROLLED SUBSTANCES DEA Form 222 § 1305.18 Return of unused DEA Forms 222. If the registration... substances for which the purchaser is registered, the purchaser must return all unused DEA Forms 222 to the...

  17. 21 CFR 1305.17 - Preservation of DEA Forms 222.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Preservation of DEA Forms 222. 1305.17 Section... II CONTROLLED SUBSTANCES DEA Form 222 § 1305.17 Preservation of DEA Forms 222. (a) The purchaser must retain Copy 3 of each executed DEA Form 222 and all copies of unaccepted or defective forms with each...

  18. Evaluate and Analysis Efficiency of Safaga Port Using DEA-CCR, BCC and SBM Models-Comparison with DP World Sokhna

    NASA Astrophysics Data System (ADS)

    Elsayed, Ayman; Shabaan Khalil, Nabil

    2017-10-01

    The competition among maritime ports is increasing continuously; the main purpose of Safaga port is to become the best option for companies to carry out their trading activities, particularly importing and exporting The main objective of this research is to evaluate and analyze factors that may significantly affect the levels of Safaga port efficiency in Egypt (particularly the infrastructural capacity). The assessment of such efficiency is a task that must play an important role in the management of Safaga port in order to improve the possibility of development and success in commercial activities. Drawing on Data Envelopment Analysis(DEA)models, this paper develops a manner of assessing the comparative efficiency of Safaga port in Egypt during the study period 2004-2013. Previous research for port efficiencies measurement usually using radial DEA models (DEA-CCR), (DEA-BCC), but not using non radial DEA model. The research applying radial - output oriented (DEA-CCR), (DEA-BCC) and non-radial (DEA-SBM) model with ten inputs and four outputs. The results were obtained from the analysis input and output variables based on DEA-CCR, DEA-BCC and SBM models, by software Max DEA Pro 6.3. DP World Sokhna port higher efficiency for all outputs were compared to Safaga port. DP World Sokhna position is below the southern entrance to the Suez Canal, on the Red Sea, Egypt, makes it strategically located to handle cargo transiting through one of the world's busiest commercial waterways.

  19. Bacillus spores as building blocks for stimuli-responsive materials and nanogenerators

    NASA Astrophysics Data System (ADS)

    Sahin, Ozgur; Chen, Xi

    2014-03-01

    Materials that mechanically respond to external chemical stimuli have applications in a wide range of fields. Inspired by biological systems, stimuli-responsive materials that can oscillate, transport fluid, mimic homeostasis, and undergo complex changes in shape have been previously demonstrated. However, the effectiveness of synthetic stimuli-responsive materials in generating work is limited when compared to mechanical actuators. During studies of bacterial sporulation, we have found that the mechanical response of Bacillus spores to water gradients exhibits an energy density of more than 10 MJ/m3, which is two orders of magnitude higher than synthetic water-responsive materials. We also identified mutations that can approximately double the energy density of the spores, and found that spores can self-assemble into dense, submicron-thick monolayers on substrates such as silicon microcantilevers and elastomer sheets, creating self-assembled actuators that can remotely generate electrical power from an evaporating body of water. The energy conversion mechanism of Bacillus spores may facilitate synthetic stimuli-responsive materials with significantly higher energy densities. We acknowledge support from the U.S. Dept. of Energy Early Career Research Program, the Wyss Institute for Biologically Inspired Engineering, and the Rowland Institute at Harvard.

  20. DoDEA 2010-11 Customer Satisfaction Survey. Executive Summary

    ERIC Educational Resources Information Center

    Department of Defense Education Activity, 2011

    2011-01-01

    Every two years the Department of Defense Education Activity (DoDEA) administers the DoDEA Customer Satisfaction Survey (CSS) to all parents with children attending DoDEA schools and all 4th-12th grade students enrolled in a DoDEA school. Parents were asked to complete one survey for each school in which they had a child enrolled. The purpose of…

  1. 21 CFR 1305.14 - Procedure for endorsing DEA Forms 222.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... on the reverse sides of Copies 1 and 2 of the DEA Form 222) the name and address of the second... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Procedure for endorsing DEA Forms 222. 1305.14... I AND II CONTROLLED SUBSTANCES DEA Form 222 § 1305.14 Procedure for endorsing DEA Forms 222. (a) A...

  2. 21 CFR 1305.16 - Lost and stolen DEA Forms 222.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... names and addresses of the purchasers. (d) If an entire book of DEA Forms 222 is lost or stolen, and the... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Lost and stolen DEA Forms 222. 1305.16 Section... II CONTROLLED SUBSTANCES DEA Form 222 § 1305.16 Lost and stolen DEA Forms 222. (a) If a purchaser...

  3. 21 CFR 1305.15 - Unaccepted and defective DEA Forms 222.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 9 2011-04-01 2011-04-01 false Unaccepted and defective DEA Forms 222. 1305.15... I AND II CONTROLLED SUBSTANCES DEA Form 222 § 1305.15 Unaccepted and defective DEA Forms 222. (a) A DEA Form 222 must not be filled if either of the following apply: (1) The order is not complete...

  4. 21 CFR 1305.16 - Lost and stolen DEA Forms 222.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 9 2011-04-01 2011-04-01 false Lost and stolen DEA Forms 222. 1305.16 Section... II CONTROLLED SUBSTANCES DEA Form 222 § 1305.16 Lost and stolen DEA Forms 222. (a) If a purchaser ascertains that an unfilled DEA Form 222 has been lost, he or she must execute another in triplicate and...

  5. 21 CFR 1305.19 - Cancellation and voiding of DEA Forms 222.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 9 2011-04-01 2011-04-01 false Cancellation and voiding of DEA Forms 222. 1305.19... I AND II CONTROLLED SUBSTANCES DEA Form 222 § 1305.19 Cancellation and voiding of DEA Forms 222. (a) A purchaser may cancel part or all of an order on a DEA Form 222 by notifying the supplier in...

  6. 21 CFR 1305.14 - Procedure for endorsing DEA Forms 222.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 9 2011-04-01 2011-04-01 false Procedure for endorsing DEA Forms 222. 1305.14... I AND II CONTROLLED SUBSTANCES DEA Form 222 § 1305.14 Procedure for endorsing DEA Forms 222. (a) A DEA Form 222, made out to any supplier who cannot fill all or a part of the order within the time...

  7. 21 CFR 1305.15 - Unaccepted and defective DEA Forms 222.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Unaccepted and defective DEA Forms 222. 1305.15... I AND II CONTROLLED SUBSTANCES DEA Form 222 § 1305.15 Unaccepted and defective DEA Forms 222. (a) A DEA Form 222 must not be filled if either of the following apply: (1) The order is not complete...

  8. 21 CFR 1305.19 - Cancellation and voiding of DEA Forms 222.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Cancellation and voiding of DEA Forms 222. 1305.19... I AND II CONTROLLED SUBSTANCES DEA Form 222 § 1305.19 Cancellation and voiding of DEA Forms 222. (a) A purchaser may cancel part or all of an order on a DEA Form 222 by notifying the supplier in...

  9. 21 CFR 1309.72 - Felony conviction; employer responsibilities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... application for registration with the DEA denied, had a DEA registration revoked, or surrendered a DEA... procedures to limit the potential for diversion of List I chemicals. (b) It is the position of DEA that...

  10. 75 FR 56661 - Agency Information Collection (Dependents' Educational Assistance (DEA) Election Request...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-16

    ... (Dependents' Educational Assistance (DEA) Election Request) Activity; Under OMB Review AGENCY: Veterans... [email protected] . SUPPLEMENTARY INFORMATION: Title: Dependents' Educational Assistance (DEA... currently approved collection. Abstract: VA must notify eligible dependents of veterans receiving DEA...

  11. Diethanolamine alters proliferation and choline metabolism in mouse neural precursor cells.

    PubMed

    Niculescu, Mihai D; Wu, Renan; Guo, Zhong; da Costa, Kerry Ann; Zeisel, Steven H

    2007-04-01

    Diethanolamine (DEA) is a widely used ingredient in many consumer products and in a number of industrial applications. It has been previously reported that dermal administration of DEA to mice diminished hepatic stores of choline and altered brain development in the fetus. The aim of this study was to use mouse neural precursor cells in vitro to assess the mechanism underlying the effects of DEA. Cells exposed to DEA treatment (3mM) proliferated less (by 5-bromo-2-deoxyuridine incorporation) at 48 h (24% of control [CT]), and had increased apoptosis at 72 h (308% of CT). Uptake of choline into cells was reduced by DEA treatment (to 52% of CT), resulting in diminished intracellular concentrations of choline and phosphocholine (55 and 12% of CT, respectively). When choline concentration in the growth medium was increased threefold (to 210 microM), the effects of DEA exposure on cell proliferation and apoptosis were prevented, however, intracellular phosphocholine concentrations remained low. In choline kinase assays, we observed that DEA can be phosphorylated to phospho-DEA at the expense of choline. Thus, the effects of DEA are likely mediated by inhibition of choline transport into neural precursor cells and by altered metabolism of choline. Our study suggests that prenatal exposure to DEA may have a detrimental effect on brain development.

  12. Diethanolamine Alters Proliferation and Choline Metabolism in Mouse Neural Precursor Cells

    PubMed Central

    Niculescu, Mihai D.; Wu, Renan; Guo, Zhong; da Costa, Kerry Ann; Zeisel, Steven H.

    2008-01-01

    Diethanolamine (DEA) is a widely used ingredient in many consumer products and in a number of industrial applications. It has been previously reported that dermal administration of DEA to mice diminished hepatic stores of choline and altered brain development in the fetus. The aim of this study was to use mouse neural precursor cells in vitro to assess the mechanism underlying the effects of DEA. Cells exposed to DEA treatment (3mM) proliferated less (by 5-bromo-2-deoxyuridine incorporation) at 48 h (24% of control [CT]), and had increased apoptosis at 72 h (308% of CT). Uptake of choline into cells was reduced by DEA treatment (to 52% of CT), resulting in diminished intracellular concentrations of choline and phosphocholine (55 and 12% of CT, respectively). When choline concentration in the growth medium was increased threefold (to 210μM), the effects of DEA exposure on cell proliferation and apoptosis were prevented, however, intracellular phosphocholine concentrations remained low. In choline kinase assays, we observed that DEA can be phosphorylated to phospho-DEA at the expense of choline. Thus, the effects of DEA are likely mediated by inhibition of choline transport into neural precursor cells and by altered metabolism of choline. Our study suggests that prenatal exposure to DEA may have a detrimental effect on brain development. PMID:17204582

  13. Mechanisms and actuators for rotorcraft blade morphing

    NASA Astrophysics Data System (ADS)

    Vocke, Robert D., III

    The idea of improved fight performance through changes in the control surfaces dates back to the advent of aviation with the Wright brothers' pioneering work on "wing warping," but it was not until the recent progress in material and actuator development that such control surfaces seemed practical for modern aircraft. This has opened the door to a new class of aircraft that have the ability to change shape or morph, which are being investigated due to the potential to have a single platform serve multiple mission objectives, as well as improve performance characteristics. While the majority of existing research for morphing aircraft has focused on fixedwing aircraft, rotary-wing aircraft have begun to receive more attention. The purpose of this body of work is to investigate the current state of morphing actuation technology for rotorcraft and improve upon it. Specifically, this work looks at two types of morphing: Pneumatic Artificial Muscle (PAM) actuated trailing edge flaps and conformal variable diameter morphing. First, active camber changes through the use of PAM powered trailing edge flaps were investigated due to the potential for reductions in power requirements and vibration/noise levels. A PAM based antagonistic actuation system was developed utilizing a novel combination of mechanism geometry and PAM bias contraction optimization to overcome the natural extension stiffening characteristics of PAMs. In open-loop bench-top testing against a "worst-case" constant torsional loading, the system demonstrated actuation authority suitable for both primary control and vibration/noise reduction. Additionally, closed-loop test data indicated that the system was capable of tracking complex waveforms consistent with those needed for rotorcraft control. This system demonstrated performance on-par with the state of the art pneumatic trailing edge flap actuators, yet with a much smaller footprint and impact on the rotor-blade. The second morphing system developed in this work is a conformal variable diameter rotor system suitable for implementation on a modern tilt-rotor aircraft, which can reduce power requirements in both cruise and hover configurations. An initial prototype variable span airfoil was constructed using a silicone elastomer matrix composite skin and a plastic rapid prototyped morphing substructure. Benchtop and wind tunnel tests verified the ability of this system to increase active wing area by 100%. The prototype technology was then matured for use in the harsh rotor blade environment, with a much stiffer polyurethane skin and a titanium substructure. Coupon testing verified the efficacy of this approach, and a final conceptual design was completed using the stiffness-tuning characteristics of the morphing substructure to create a self-actuating morphing blade tip.

  14. Frequency of DEA 1 antigen in 1037 mongrel and PUREBREED dogs in ITALY.

    PubMed

    Carli, E; Carminato, A; Ravagnan, S; Capello, K; Antognoni, M T; Miglio, A; Furlanello, T; Proverbio, D; Spada, E; Stefani, A; Mutinelli, F; Vascellari, M

    2017-11-29

    The prevalence of dog erythrocyte antigen (DEA 1) in canine population is approximately 40-60%. Often data are limited to a small number of breeds and/or dogs. The aims of this study were to evaluate frequency of DEA 1 in a large population of purebred and mongrel dogs including Italian native breeds and to recognize a possible association between DEA 1 and breed, sex, and genetic and phenotypical/functional classifications of breeds. Frequencies of DEA 1 blood group collected from screened/enrolled blood donors and from healthy and sick dogs were retrospectively evaluated. The breed and the sex were recorded when available. DEA 1 blood typing was assessed by immunocromatographic test on K3EDTA blood samples. The prevalence of DEA 1 antigen was statistically related to breed, gender, Fédération Cynologique Internationale (FCI) and genotypic grouping. Sixty-two per cent dogs resulted DEA 1+ and 38% DEA 1-. DEA 1- was statistically associated with Dogo Argentino, Dobermann, German Shepherd, Boxer, Corso dogs, the molossian dogs, the FCI group 1, 2 and 3 and the genetic groups "working dogs" and "mastiff". DEA 1+ was statistically associated with Rottweiler, Briquet Griffon Vendéen, Bernese mountain dog, Golden Retriever, the hunting breeds, the FCI group 4, 6, 7 and 8 and the genetic groups "scent hounds" and "retrievers". No gender association was observed. Data obtained by this work may be clinically useful to drive blood donor enrollment and selection among different breeds.

  15. Towards an integrated optofluidic system for highly sensitive detection of antibiotics in seawater incorporating bimodal waveguide photonic biosensors and complex, active microfluidics

    NASA Astrophysics Data System (ADS)

    Szydzik, C.; Gavela, A. F.; Roccisano, J.; Herranz de Andrés, S.; Mitchell, A.; Lechuga, L. M.

    2016-12-01

    We present recent results on the realisation and demonstration of an integrated optofluidic lab-on-a-chip measurement system. The system consists of an integrated on-chip automated microfluidic fluid handling subsystem, coupled with bimodal nano-interferometer waveguide technology, and is applied in the context of detection of antibiotics in seawater. The bimodal waveguide (BMWG) is a highly sensitive label-free biosensor. Integration of complex microfluidic systems with bimodal waveguide technology enables on-chip sample handling and fluid processing capabilities and allows for significant automation of experimental processes. The on-chip fluid-handling subsystem is realised through the integration of pneumatically actuated elastomer pumps and valves, enabling high temporal resolution sample and reagent delivery and facilitating multiplexed detection processes.

  16. Ultra-Soft PDMS-Based Magnetoactive Elastomers as Dynamic Cell Culture Substrata

    PubMed Central

    Mayer, Matthias; Rabindranath, Raman; Börner, Juliane; Hörner, Eva; Bentz, Alexander; Salgado, Josefina; Han, Hong; Böse, Holger; Probst, Jörn; Shamonin, Mikhail; Monkman, Gareth J.; Schlunck, Günther

    2013-01-01

    Mechanical cues such as extracellular matrix stiffness and movement have a major impact on cell differentiation and function. To replicate these biological features in vitro, soft substrata with tunable elasticity and the possibility for controlled surface translocation are desirable. Here we report on the use of ultra-soft (Young’s modulus <100 kPa) PDMS-based magnetoactive elastomers (MAE) as suitable cell culture substrata. Soft non-viscous PDMS (<18 kPa) is produced using a modified extended crosslinker. MAEs are generated by embedding magnetic microparticles into a soft PDMS matrix. Both substrata yield an elasticity-dependent (14 vs. 100 kPa) modulation of α-smooth muscle actin expression in primary human fibroblasts. To allow for static or dynamic control of MAE material properties, we devise low magnetic field (≈40 mT) stimulation systems compatible with cell-culture environments. Magnetic field-instigated stiffening (14 to 200 kPa) of soft MAE enhances the spreading of primary human fibroblasts and decreases PAX-7 transcription in human mesenchymal stem cells. Pulsatile MAE movements are generated using oscillating magnetic fields and are well tolerated by adherent human fibroblasts. This MAE system provides spatial and temporal control of substratum material characteristics and permits novel designs when used as dynamic cell culture substrata or cell culture-coated actuator in tissue engineering applications or biomedical devices. PMID:24204603

  17. Prevalence of dog erythrocyte antigens in retired racing Greyhounds.

    PubMed

    Iazbik, Maria Cristina; O'Donnell, Margee; Marin, Liliana; Zaldivar, Sara; Hudson, Dawn; Couto, C Guillermo

    2010-12-01

    Blood groups in dogs are designated as dog erythrocyte antigen (DEA) 1.1, 1.2, 3, 4, 5, 7, and Dal. There is limited information about the frequency of different antigens in Greyhound dogs, despite their frequent use as blood donors. The aims of this study were to determine the frequencies of DEA 1.1, 1.2, 3, 4, 5, and 7 in Greyhounds, to compare the frequencies with those of non-Greyhound dogs, and to evaluate the presence of naturally occurring anti-DEA antibodies. Blood was collected from 206 Greyhound and 66 non-Greyhound dogs being screened as potential blood donors. Blood-typing was performed at Animal Blood Resources International by tube agglutination utilizing polyclonal anti-DEA antibodies. Of the Greyhound dogs, 27/206 (13.1%) were positive for DEA 1.1, and this frequency was significantly lower (P<.0001) than for non-Greyhound dogs of which 40/66 (60.6%) were DEA 1.1-positive. The frequency of positivity for both DEA 1.1 and 1.2 was also lower in Greyhounds (P<.0001). There were no significant differences between Greyhounds and non-Greyhounds for DEA 1.2, 3, 4, 5, or 7. All 137 dogs (113 Greyhounds and 24 non-Greyhounds) that were evaluated for naturally occurring anti-DEA antibodies in serum were negative. A higher percentage of Greyhound dogs (57.3%, 118/206) were considered "universal donors" (negative for all DEAs except DEA 4) compared with non-Greyhound dogs (28%, 13/46). The frequency of positivity for DEA 1.1 in our population of Greyhounds was significantly lower than previously reported for dogs. Furthermore, a large majority of Greyhounds met the criteria for universal donors. ©2010 American Society for Veterinary Clinical Pathology.

  18. Considerations for using data envelopment analysis for the assessment of radiotherapy treatment plan quality.

    PubMed

    Simpson, John; Raith, Andrea; Rouse, Paul; Ehrgott, Matthias

    2017-10-09

    Purpose The operations research method of data envelopment analysis (DEA) shows promise for assessing radiotherapy treatment plan quality. The purpose of this paper is to consider the technical requirements for using DEA for plan assessment. Design/methodology/approach In total, 41 prostate treatment plans were retrospectively analysed using the DEA method. The authors investigate the impact of DEA weight restrictions with reference to the ability to differentiate plan performance at a level of clinical significance. Patient geometry influences plan quality and the authors compare differing approaches for managing patient geometry within the DEA method. Findings The input-oriented DEA method is the method of choice when performing plan analysis using the key undesirable plan metrics as the DEA inputs. When considering multiple inputs, it is necessary to constrain the DEA input weights in order to identify potential plan improvements at a level of clinical significance. All tested approaches for the consideration of patient geometry yielded consistent results. Research limitations/implications This work is based on prostate plans and individual recommendations would therefore need to be validated for other treatment sites. Notwithstanding, the method that requires both optimised DEA weights according to clinical significance and appropriate accounting for patient geometric factors is universally applicable. Practical implications DEA can potentially be used during treatment plan development to guide the planning process or alternatively used retrospectively for treatment plan quality audit. Social implications DEA is independent of the planning system platform and therefore has the potential to be used for multi-institutional quality audit. Originality/value To the authors' knowledge, this is the first published examination of the optimal approach in the use of DEA for radiotherapy treatment plan assessment.

  19. A study on the prevalence of dog erythrocyte antigen 1.1 and detection of canine Babesia by polymerase chain reaction from apparently healthy dogs in a selected rural community in Zimbabwe.

    PubMed

    Dhliwayo, Solomon; Makonese, Tariro A; Whittall, Belinda; Chikerema, Silvester M; Pfukenyi, Davies M; Tivapasi, Musavenga T

    2016-10-26

    A study was carried out to determine the prevalence of blood group antigen dog erythrocyte antigen (DEA) 1.1 in mixed breed dogs in rural Chinamhora, Zimbabwe. DEA 1.1 is clinically the most important canine blood group as it is the most antigenic blood type; hence, DEA 1.1 antibodies are capable of causing acute haemolytic, potentially life-threatening transfusion reactions. In this study, blood samples were collected from 100 dogs in Chinamhora, and blood typing was carried out using standardised DEA 1.1 typing strips with monoclonal anti-DEA 1.1 antibodies (Alvedia® LAB DEA 1.1 test kits). Polymerase chain reaction for detecting Babesia spp. antigen was carried out on 58 of the samples. Of the 100 dogs, 78% were DEA 1.1 positive and 22% were DEA 1.1 negative. A significantly (p = 0.02) higher proportion of females (90.5%) were DEA 1.1 positive than males (69.0%). The probability of sensitisation of recipient dogs following first-time transfusion of untyped or unmatched blood was 17.2%, and an approximately 3% (2.95%) probability of an acute haemolytic reaction following a second incompatible transfusion was found. Babesia spp. antigen was found in 6.9% of the samples. No significant relationship (χ2 = 0.56, p = 0.45) was found between DEA 1.1 positivity and Babesia spp. antigen presence. Despite a low probability of haemolysis after a second incompatibility transfusion, the risk remains present and should not be ignored. Hence, where possible, blood typing for DEA 1.1 is recommended. A survey of DEA 3, 4, 5 and 7 in various breeds is also recommended.

  20. 75 FR 39620 - Proposed Information Collection (Dependents' Educational Assistance (DEA) Election Request...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-09

    ... (Dependents' Educational Assistance (DEA) Election Request) Activity: Comment Request AGENCY: Veterans... veterans beginning date to start their DEA benefits. DATES: Written comments and recommendations on the.... Title: Dependents' Educational Assistance (DEA) Election Request, VA Form Letter 22-909. OMB Control...

  1. 78 FR 17778 - Proposed Information Collection (Dependents' Educational Assistance (DEA) Election Request...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-22

    ... (Dependents' Educational Assistance (DEA) Election Request) Activity: Comment Request AGENCY: Veterans... veterans beginning date to start their DEA benefits. DATES: Written comments and recommendations on the.... Title: Dependents' Educational Assistance (DEA) Election Request, VA Form Letter 22-909. OMB Control...

  2. 21 CFR 1301.93 - Sources of information for employee checks.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...-Practitioners § 1301.93 Sources of information for employee checks. DEA recommends that inquiries concerning... enforcement agencies. DEA inquiries. Inquiries supplying identifying information should also be furnished to DEA Field Division Offices along with written consent from the concerned individual for a check of DEA...

  3. 21 CFR 1301.93 - Sources of information for employee checks.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...-Practitioners § 1301.93 Sources of information for employee checks. DEA recommends that inquiries concerning... enforcement agencies. DEA inquiries. Inquiries supplying identifying information should also be furnished to DEA Field Division Offices along with written consent from the concerned individual for a check of DEA...

  4. Mechanical design handbook for elastomers. [the design of elastomer dampers for application in rotating machinery

    NASA Technical Reports Server (NTRS)

    Darlow, M.; Zorzi, E.

    1981-01-01

    A comprehensive guide for the design of elastomer dampers for application in rotating machinery is presented. Theoretical discussions, a step by step procedure for the design of elastomer dampers, and detailed examples of actual elastomer damper applications are included. Dynamic and general physical properties of elastomers are discussed along with measurement techniques.

  5. 28 CFR 16.98 - Exemption of the Drug Enforcement Administration (DEA)-limited access.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (Justice/DEA-013) (7) System to Retrieve Information from Drug Evidence (STRIDE/Ballistics) (Justice/DEA... Retrieve Information from Drug Evidence (STRIDE/Ballistics) (Justice/DEA-014) only to the extent that..., implemented internal quality assurance procedures to ensure that ESS data is as thorough, accurate, and...

  6. 28 CFR 16.98 - Exemption of the Drug Enforcement Administration (DEA)-limited access.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (Justice/DEA-013) (7) System to Retrieve Information from Drug Evidence (STRIDE/Ballistics) (Justice/DEA... Retrieve Information from Drug Evidence (STRIDE/Ballistics) (Justice/DEA-014) only to the extent that..., implemented internal quality assurance procedures to ensure that ESS data is as thorough, accurate, and...

  7. Floating compression of Ag nanowire networks for effective strain release of stretchable transparent electrodes

    NASA Astrophysics Data System (ADS)

    Pyo, Jun Beom; Kim, Byoung Soo; Park, Hyunchul; Kim, Tae Ann; Koo, Chong Min; Lee, Jonghwi; Son, Jeong Gon; Lee, Sang-Soo; Park, Jong Hyuk

    2015-10-01

    Manipulation of the configuration of Ag nanowire (NW) networks has been pursued to enhance the performance of stretchable transparent electrodes. However, it has remained challenging due to the high Young's modulus and low yield strain of Ag NWs, which lead to their mechanical failure when subjected to structural deformation. We demonstrate that floating a Ag NW network on water and subsequent in-plane compression allows convenient development of a wavy configuration in the Ag NW network, which can release the applied strain. A greatly enhanced electromechanical stability of Ag NW networks can be achieved due to their wavy configuration, while the NW networks maintain the desirable optical and electrical properties. Moreover, the produced NW networks can be transferred to a variety of substrates, offering flexibility for device fabrication. The Ag NW networks with wavy configurations are used as compliant electrodes for dielectric elastomer actuators. The study demonstrates their promising potential to provide improved performance for soft electronic devices.Manipulation of the configuration of Ag nanowire (NW) networks has been pursued to enhance the performance of stretchable transparent electrodes. However, it has remained challenging due to the high Young's modulus and low yield strain of Ag NWs, which lead to their mechanical failure when subjected to structural deformation. We demonstrate that floating a Ag NW network on water and subsequent in-plane compression allows convenient development of a wavy configuration in the Ag NW network, which can release the applied strain. A greatly enhanced electromechanical stability of Ag NW networks can be achieved due to their wavy configuration, while the NW networks maintain the desirable optical and electrical properties. Moreover, the produced NW networks can be transferred to a variety of substrates, offering flexibility for device fabrication. The Ag NW networks with wavy configurations are used as compliant electrodes for dielectric elastomer actuators. The study demonstrates their promising potential to provide improved performance for soft electronic devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr03814f

  8. 76 FR 46325 - Agency Information Collection Activities: Proposed Collection; Comments Requested: Red Ribbon...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-02

    ... Collection Activities: Proposed Collection; Comments Requested: Red Ribbon Week Patch DEA Form 316 and 316A... Enforcement Administration (DEA) will be submitting the following information collection request to the Office... the collection: Form number: DEA Form 316 and DEA Form 316A. Component: Office of Congressional and...

  9. Review of life-cycle approaches coupled with data envelopment analysis: launching the CFP + DEA method for energy policy making.

    PubMed

    Vázquez-Rowe, Ian; Iribarren, Diego

    2015-01-01

    Life-cycle (LC) approaches play a significant role in energy policy making to determine the environmental impacts associated with the choice of energy source. Data envelopment analysis (DEA) can be combined with LC approaches to provide quantitative benchmarks that orientate the performance of energy systems towards environmental sustainability, with different implications depending on the selected LC + DEA method. The present paper examines currently available LC + DEA methods and develops a novel method combining carbon footprinting (CFP) and DEA. Thus, the CFP + DEA method is proposed, a five-step structure including data collection for multiple homogenous entities, calculation of target operating points, evaluation of current and target carbon footprints, and result interpretation. As the current context for energy policy implies an anthropocentric perspective with focus on the global warming impact of energy systems, the CFP + DEA method is foreseen to be the most consistent LC + DEA approach to provide benchmarks for energy policy making. The fact that this method relies on the definition of operating points with optimised resource intensity helps to moderate the concerns about the omission of other environmental impacts. Moreover, the CFP + DEA method benefits from CFP specifications in terms of flexibility, understanding, and reporting.

  10. Prevalence of Dog Erythrocyte Antigens 1, 4, and 7 in Podenco Ibicenco (Ibizan Hounds) from Ibiza Island

    PubMed Central

    Proverbio, Daniela; Viñals Flórez, Luis Miguel; Serra Gómez de la Serna, Blanca; del Rosario Perlado Chamizo, Maria; Baggiani, Luciana; Perego, Roberta

    2016-01-01

    The aims of this study were to evaluate the prevalence of Dog Erythrocyte Antigens (DEA) 1, 4, and 7 in Ibizan hounds, to compare the results with the prevalence of DEA in Spanish greyhounds, and to determine the risk of sensitization following the first transfusion of blood not typed for DEA 1 and the probability of an acute hemolytic reaction following a second incompatible transfusion using untyped DEA 1 blood. DEA 1, 4, and 7 status was determined in 92 Ibizan hounds. Results were compared with the previously reported prevalence in Spanish greyhounds. The risks of sensitization and of a hemolytic transfusion reaction were determined amongst Ibizan hounds and between Ibizan hounds and Spanish greyhounds. The prevalence of DEA 1, 4, and 7 was 75%, 98.9%, and 25%, respectively. There was a significantly higher expression of DEA 1 and 7 in Ibizan hounds than in Spanish greyhounds. The probability of sensitization of a recipient dog to DEA 1 with transfusions amongst Ibizan hounds was 18.5% and between Ibizan hounds and Spanish greyhounds was 13.7%. The probability of an acute hemolytic reaction in each group was 3.5% and 1.9%, respectively. There is a higher prevalence of DEA 1 and 7 in Ibizan hounds than in other sighthounds. PMID:27034890

  11. Review of Life-Cycle Approaches Coupled with Data Envelopment Analysis: Launching the CFP + DEA Method for Energy Policy Making

    PubMed Central

    Vázquez-Rowe, Ian

    2015-01-01

    Life-cycle (LC) approaches play a significant role in energy policy making to determine the environmental impacts associated with the choice of energy source. Data envelopment analysis (DEA) can be combined with LC approaches to provide quantitative benchmarks that orientate the performance of energy systems towards environmental sustainability, with different implications depending on the selected LC + DEA method. The present paper examines currently available LC + DEA methods and develops a novel method combining carbon footprinting (CFP) and DEA. Thus, the CFP + DEA method is proposed, a five-step structure including data collection for multiple homogenous entities, calculation of target operating points, evaluation of current and target carbon footprints, and result interpretation. As the current context for energy policy implies an anthropocentric perspective with focus on the global warming impact of energy systems, the CFP + DEA method is foreseen to be the most consistent LC + DEA approach to provide benchmarks for energy policy making. The fact that this method relies on the definition of operating points with optimised resource intensity helps to moderate the concerns about the omission of other environmental impacts. Moreover, the CFP + DEA method benefits from CFP specifications in terms of flexibility, understanding, and reporting. PMID:25654136

  12. A soft robot capable of 2D mobility and self-sensing for obstacle detection and avoidance

    NASA Astrophysics Data System (ADS)

    Qin, Lei; Tang, Yucheng; Gupta, Ujjaval; Zhu, Jian

    2018-04-01

    Soft robots have shown great potential for surveillance applications due to their interesting attributes including inherent flexibility, extreme adaptability, and excellent ability to move in confined spaces. High mobility combined with the sensing systems that can detect obstacles plays a significant role in performing surveillance tasks. Extensive studies have been conducted on movement mechanisms of traditional hard-bodied robots to increase their mobility. However, there are limited efforts in the literature to explore the mobility of soft robots. In addition, little attempt has been made to study the obstacle-detection capability of a soft mobile robot. In this paper, we develop a soft mobile robot capable of high mobility and self-sensing for obstacle detection and avoidance. This robot, consisting of a dielectric elastomer actuator as the robot body and four electroadhesion actuators as the robot feet, can generate 2D mobility, i.e. translations and turning in a 2D plane, by programming the actuation sequence of the robot body and feet. Furthermore, we develop a self-sensing method which models the robot body as a deformable capacitor. By measuring the real-time capacitance of the robot body, the robot can detect an obstacle when the peak capacitance drops suddenly. This sensing method utilizes the robot body itself instead of external sensors to achieve detection of obstacles, which greatly reduces the weight and complexity of the robot system. The 2D mobility and self-sensing capability ensure the success of obstacle detection and avoidance, which paves the way for the development of lightweight and intelligent soft mobile robots.

  13. Frequency of dog erythrocyte antigen 1.1 in 4 breeds native to different areas in Turkey.

    PubMed

    Ergul Ekiz, Elif; Arslan, Murat; Ozcan, Mukaddes; Gultekin, Guldal Inal; Gulay, Ozlem Yildiz; Kirmizibayrak, Turgut; Giger, Urs

    2011-12-01

    Dog erythrocyte antigen (DEA) 1.1 is the most important RBC antigen clinically, as it is highly immunogenic and causes acute hemolytic transfusion reactions (HTR) in sensitized dogs. The aims of this study were to determine the frequency of DEA 1.1 expression in 4 Turkish dog breeds, and to estimate the potential risk of HTR when blood from a DEA 1.1-positive donor is administered to a DEA 1.1-negative recipient following sensitization by a prior mismatched transfusion. EDTA blood samples (n = 178) were typed for DEA 1.1 using a commercial gel-column agglutination test (ID-Gel-Test Canine DEA 1.1). Probabilities of sensitization and risk of an HTR were calculated. The frequency of positivity for DEA 1.1 among Kars (n = 59), Kangal (n = 53), Akbash (n = 50), and Catalburun (n = 16) breeds was 71.2%, 67.9%, 60.0%, and 50.0%, respectively. Potential risk for occurrence of an HTR after administration of blood from a dog of the same breed ranged from 12.5% to 14.8%, whereas HTR induced by blood of a dog from a different breed ranged from 7.2% to 25.3%. The frequency of DEA 1.1-positive dogs among 4 Turkish breeds is high compared with that of most other breeds previously surveyed. The predicted risk of both sensitization and occurrence of DEA 1.1-related HTR following transfusion between dogs of either the same or different Turkish breeds was considerable. Although few dogs are transfused ≥4 days after the first transfusion, we recommend that (1) all donors and recipients be typed for DEA 1.1, (2) DEA 1.1-negative recipients receive only DEA 1.1-negative blood, and (3) blood be cross-matched prior to transfusing any dog ≥4 days after the first transfusion. These guidelines are also applicable to other breeds and countries. © 2011 American Society for Veterinary Clinical Pathology.

  14. 21 CFR 1305.18 - Return of unused DEA Forms 222.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Return of unused DEA Forms 222. 1305.18 Section... II CONTROLLED SUBSTANCES DEA Form 222 § 1305.18 Return of unused DEA Forms 222. If the registration... business or professional practice, or changes the name or address as shown on the purchaser's registration...

  15. 21 CFR 1312.27 - Contents of special controlled substances invoice.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... DEA Form 236 to the Import/Export Unit, Drug Enforcement Administration, not less than 15 calendar... directed in § 1312.28 of this part. See the Table of DEA Mailing Addresses in § 1321.01 of this chapter for... destination. (iii) Any reexportation be made known to DEA at the time the initial DEA Form 236, Controlled...

  16. 21 CFR 1312.27 - Contents of special controlled substances invoice.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... DEA Form 236 to the Import/Export Unit, Drug Enforcement Administration, not less than 15 calendar... directed in § 1312.28 of this part. See the Table of DEA Mailing Addresses in § 1321.01 of this chapter for... destination. (iii) Any reexportation be made known to DEA at the time the initial DEA Form 236, Controlled...

  17. 21 CFR 1309.32 - Application forms; contents; signature.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... and is not so registered, shall apply on DEA Form 510. (b) Any person who is registered pursuant to Section 1309.21, shall apply for reregistration on DEA Form 510a. (c) DEA Form 510 may be obtained at any... Administration. See the Table of DEA Mailing Addresses in § 1321.01 of this chapter for the current mailing...

  18. Dependents' Educational Assistance Program (DEA), Chapter 25 of Title 38, U.S. Code

    ERIC Educational Resources Information Center

    US Department of Veterans Affairs, 2005

    2005-01-01

    This pamphlet provides a general description of the Dependents' Educational Assistance program, or DEA (chapter 35 of title 38, U. S. Code). The DEA program provides education and training opportunities to eligible dependents and survivors of certain veterans. It covers the main questions prospective participants may have about DEA benefits,…

  19. 21 CFR 1305.29 - Reporting to DEA.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 9 2010-04-01 2010-04-01 false Reporting to DEA. 1305.29 Section 1305.29 Food and... SUBSTANCES Electronic Orders § 1305.29 Reporting to DEA. A supplier must, for each electronic order filled, forward either a copy of the electronic order or an electronic report of the order in a format that DEA...

  20. 21 CFR 1305.29 - Reporting to DEA.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 9 2011-04-01 2011-04-01 false Reporting to DEA. 1305.29 Section 1305.29 Food and... SUBSTANCES Electronic Orders § 1305.29 Reporting to DEA. A supplier must, for each electronic order filled, forward either a copy of the electronic order or an electronic report of the order in a format that DEA...

  1. Skin-inspired hydrogel-elastomer hybrids with robust interfaces and functional microstructures

    NASA Astrophysics Data System (ADS)

    Yuk, Hyunwoo; Zhang, Teng; Parada, German Alberto; Liu, Xinyue; Zhao, Xuanhe

    2016-06-01

    Inspired by mammalian skins, soft hybrids integrating the merits of elastomers and hydrogels have potential applications in diverse areas including stretchable and bio-integrated electronics, microfluidics, tissue engineering, soft robotics and biomedical devices. However, existing hydrogel-elastomer hybrids have limitations such as weak interfacial bonding, low robustness and difficulties in patterning microstructures. Here, we report a simple yet versatile method to assemble hydrogels and elastomers into hybrids with extremely robust interfaces (interfacial toughness over 1,000 Jm-2) and functional microstructures such as microfluidic channels and electrical circuits. The proposed method is generally applicable to various types of tough hydrogels and diverse commonly used elastomers including polydimethylsiloxane Sylgard 184, polyurethane, latex, VHB and Ecoflex. We further demonstrate applications enabled by the robust and microstructured hydrogel-elastomer hybrids including anti-dehydration hydrogel-elastomer hybrids, stretchable and reactive hydrogel-elastomer microfluidics, and stretchable hydrogel circuit boards patterned on elastomer.

  2. Tissue Response to, and Degradation Rate of, Photocrosslinked Trimethylene Carbonate-Based Elastomers Following Intramuscular Implantation

    PubMed Central

    Timbart, Laurianne; Tse, Man Yat; Pang, Stephen C.; Amsden, Brian G.

    2010-01-01

    Cylindrical elastomers were prepared through the UV-initiated crosslinking of terminally acrylated, 8,000 Da star-poly(trimethylene carbonate-co-ε-caprolactone) and star-poly(trimethylene carbonate-co-d,l-lactide). These elastomers were implanted intramuscularly into the hind legs of male Wistar rats to determine the influence of the comonomer on the weight loss, tissue response, and change in mechanical properties of the elastomer. The elastomers exhibited only a mild inflammatory response that subsided after the first week; the response was greater for the stiffer d,l-lactide-containing elastomers. The elastomers exhibited weight loss and sol content changes consistent with a bulk degradation mechanism. The d,l-lactide-containing elastomers displayed a nearly zero-order change in Young’s modulus and stress at break over the 30 week degradation time, while the ε-caprolactone-containing elastomers exhibited little change in modulus or stress at break.

  3. A Circadian Rhythm-Regulated Tomato Gene Is Induced by Arachidonic Acid and Phythophthora infestans Infection1[W

    PubMed Central

    Weyman, Philip D.; Pan, Zhiqiang; Feng, Qin; Gilchrist, David G.; Bostock, Richard M.

    2006-01-01

    A cDNA clone of unknown function, DEA1, was isolated from arachidonic acid-treated tomato (Solanum lycopersicum) leaves by differential display PCR. The gene, DEA1, is expressed in response to the programmed cell death-inducing arachidonic acid within 8 h following treatment of a tomato leaflet, 16 h prior to the development of visible cell death. DEA1 transcript levels were also affected by the late blight pathogen, Phytophthora infestans. To gain further insight into the transcriptional regulation of DEA1, the promoter region was cloned by inverse PCR and was found to contain putative stress-, signaling-, and circadian-response elements. DEA1 is highly expressed in roots, stems, and leaves, but not in flowers. Leaf expression of DEA1 is regulated by circadian rhythms during long days with the peak occurring at midday and the low point midway through the dark period. During short days, the rhythm is lost and DEA1 expression becomes constitutive. The predicted DEA1 protein has a conserved domain shared by the eight-cysteine motif superfamily of protease inhibitors, α-amylase inhibitors, seed storage proteins, and lipid transfer proteins. A DEA1-green fluorescent protein fusion protein localized to the plasma membrane in protoplasts and plasmolysis experiments, suggesting that the native protein is associated with the plasmalemma in intact cells. PMID:16361525

  4. Disordered eating attitudes, alexithymia and suicide probability among Turkish high school girls.

    PubMed

    Alpaslan, Ahmet Hamdi; Soylu, Nusret; Avci, Kadriye; Coşkun, Kerem Şenol; Kocak, Uğur; Taş, Hanife Uzel

    2015-03-30

    We aimed to examine association between disordered eating attitudes (DEAs), alexithymia and suicide probability among adolescent females and to explore potential link between alexithymia and suicide probability in subjects with DEAs. 381 female students completed Eating Attitude Test (EAT-26), Toronto Alexithymia Scale (TAS-20) and Suicide Probability Scale (SPS). It was found that 13.2% (n=52) of the subjects have DEAs. Results indicated that total TAS-20 score and scores of Difficulty in Identifying Feelings (DIF) and Difficulty in Describing Feelings (DDF) subscales were significantly higher in DEAs group than in those non DEAs group (p<0.05). Additionally, total SPS score (p<0.001), Hopelessness (p=0.001), Suicide Ideation (p<0.001) and Hostility (p=0.003) subscales scores of SPS were significantly higher in the alexithymic DEAs than the non-alexithymic DEAs group. In order to control potential effect of depression, SPS subscales were used as covariate factors in ANCOVA. Negative Self-Evaluation subscale yielded a statistically significant difference between groups, other subscales did not. Results point out these; DEAs are relatively frequent phenomenon among female students in Turkey and presence of alexithymia was associated with an increased suicide probability in adolescents with DEAs. The results should be evaluated taking into account that depressive symptomatology was not assessed using a depression scale. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. SY 2010-11 Customer Satisfaction Survey Results (Full Report). DoDEA Results

    ERIC Educational Resources Information Center

    Department of Defense Education Activity, 2011

    2011-01-01

    The Department of Defense Education Activity (DoDEA) Customer Satisfaction Survey is a biennial survey administered by DoDEA to parents and students to monitor DoDEA's success in meeting students' needs. The survey is administered every other year to sponsors with children in pre-kindergarten-12th grade and to students in grades 4-12. For the…

  6. SY 2008-09 Customer Satisfaction Survey Results (Full Report). DoDEA Results

    ERIC Educational Resources Information Center

    Department of Defense Education Activity, 2009

    2009-01-01

    The Department of Defense Education Activity (DoDEA) Customer Satisfaction Survey is a biennial survey administered by DoDEA to parents and students to monitor DoDEA's success in meeting students' needs. The survey is administered every other year to sponsors with children in pre-kindergarten--12th grade and to students in grades 4-12. For the…

  7. 76 FR 24056 - Agency Information Collection Activities: Proposed Collection; Comments Requested: Application...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-29

    ... Forms 510 and 510a AGENCY: Department of Justice. ACTION: 30-Day Notice of Information Collection under... Department sponsoring the collection: Form number: DEA Forms 510 and 510a. Component: Office of Diversion...) burden DEA-510 (paper) 12 0.5 hours 6 DEA-510 (electronic) 112 0.25 hours 28 DEA-510a (paper) 165 0.5...

  8. A reconfigurable tactile display based on polymer MEMS technology

    NASA Astrophysics Data System (ADS)

    Wu, Xiaosong

    A tactile display provides information such as shape, texture, temperature, and hardness to a user. Ultimately, a tactile display could be used to recreate a virtual object that may be stored in a computer. However, such advanced displays are not yet widely available, primarily due to the lack of low cost, large area, compact actuator arrays that can stimulate the large numbers of receptors of the user and that can also meet the high requirements for user safety and comfort. This research focuses on the development of polymer microfabrication technologies for the realization of two major components of a pneumatic tactile display: a microactuator array and a complementary microvalve (control) array. In this work, the concept, fabrication, and characterization of a kinematically-stabilized polymeric microbubble actuator ("endoskeletal microbubble actuator") is presented. A systematic design and modeling procedure was carried out to generate an optimized geometry of the corrugated diaphragm to satisfy membrane deflection, force, and stability requirements set forth by the tactile display goals. A mass-manufacturable actuator has been fabricated using the approaches of lithography and micromolding. A prototype of a single endoskeletal bubble actuator with a diameter of 2.6mm has been fabricated and characterized. In addition, in order to further reduce the size and cost of the tactile display, a microvalve array can be integrated into the tactile display system to control the pneumatic fluid that actuates the microbubble actuator. A piezoelectrically-driven and hydraulically-amplified polymer microvalve has been designed, fabricated, and tested. An incompressible elastomer was used as a solid hydraulic medium to convert the small axial displacement of a piezoelectric actuator into a large valve head stroke while maintaining a large blocking force. The function of the microvalve as an on-off switch for a pneumatic microbubble tactile actuator has been demonstrated. Compared to present technologies, the microvalve developed can achieve large flow rate control due to its amplification mechanism, can avoid complex sealing problem because solid rather than liquid medium is used, and can form a dense valve array due to the small lateral dimension of the actuator used. To further reduce the cost of the microvalve, a laterally-laminated multilayer PZT actuator has been fabricated using diced PZT multilayer, high aspect ratio SU-8 photolithography, and molding of electrically conductive polymer composite electrodes. This fabrication process is simple and straightforward compared to previous lateral lamination approaches. An 8-layer device has shown a displacement of 0.63 micron at 100V driving voltage, which agrees well with simulation results. The lateral lamination fabrication process provides a valuable alternative for making compact, low-voltage, multilayer piezoelectric micro-actuators as microvalve driving element. A refreshable Braille cell as a tactile display prototype has been developed based on a 2x3 endoskeletal microbubble array and an array of commercial valves. The prototype can provide both a static display (which meets the displacement and force requirement of a Braille display) and vibratory tactile sensations. Along with the above capabilities, the device was designed to meet the criteria of lightness and compactness to permit portable operation. The design is scalable with respect to the number of tactile actuators while still being simple to fabricate.

  9. Review of the carcinogenic activity of diethanolamine and evidence of choline deficiency as a plausible mode of action.

    PubMed

    Leung, Hon-Wing; Kamendulis, Lisa M; Stott, William T

    2005-12-01

    Diethanolamine (DEA) is a chemical used widely in a number of industries and is present in many consumer products. Studies by the National Toxicology Program (NTP) have indicated that lifetime dermal exposure to DEA increased the incidence and multiplicity of liver tumors in mice, but not in rats. In addition, DEA was not carcinogenic when tested in the Tg.Ac transgenic mouse model. Short-term genotoxicity tests have yielded negative results. In view of these apparent inconsistencies, we have critically evaluated the NTP studies and other data relevant to assessing the carcinogenic potential of DEA. The available data indicate that DEA induces mouse liver tumors by a non-genotoxic mode of action that involves its ability to cause choline deficiency. The following experimental evidence supports this hypothesis. DEA decreased the hepatic choline metabolites and S-adenosylmethionine levels in mice, similar to those observed in choline-deficient mice. In contrast, DEA had no effect in the rat, a species in which it was not carcinogenic at a maximum tolerated dose level. In addition, a consistent dose-effect relationship had been established between choline deficiency and carcinogenic activity since all DEA dosages that induced tumors in the NTP studies were also shown to cause choline deficiency. DEA decreased phosphatidylcholine synthesis by blocking the cellular uptake of choline in vitro, but these events did not occur in the presence of excess choline. Finally, DEA induced transformation in the Syrian hamster embryo cells, increased S-phase DNA synthesis in mouse hepatocytes, and decreased gap junctional intracellular communication in primary cultured mouse and rat hepatocytes, but all these events were prevented with choline supplementation. Since choline is an essential nutrient in mammals, this mode of action is qualitatively applicable to humans. However, there are marked species differences in susceptibility to choline deficiency, with rats and mice being far more susceptible than other mammalian species including humans. These differences are attributed to quantitative differences in the enzyme kinetics controlling choline metabolism. The fact that DEA was carcinogenic in mice but not in rats also has important implications for human risk assessment. DEA has been shown to be less readily absorbed across rat and human skin than mouse skin. Since a no observed effect level for DEA-induced choline deficiency in mice has been established to be 10 mg/kg/d, this indicates that there is a critical level of DEA that must be attained in order to affect choline homeostasis. The lack of a carcinogenic response in rats suggests that exposure to DEA did not reach this critical level. Since rodents are far more sensitive to choline deficiency than humans, it can be concluded that the hepatocarcinogenic effect of DEA in mice is not predictive of similar susceptibility in humans.

  10. Mechanical Design Handbook for Elastomers

    NASA Technical Reports Server (NTRS)

    Darlow, M.; Zorzi, E.

    1986-01-01

    Mechanical Design Handbook for Elastomers reviews state of art in elastomer-damper technology with particular emphasis on applications of highspeed rotor dampers. Self-contained reference but includes some theoretical discussion to help reader understand how and why dampers used for rotating machines. Handbook presents step-by-step procedure for design of elastomer dampers and detailed examples of actual elastomer damper applications.

  11. Plant Trait Diversity Buffers Variability in Denitrification Potential over Changes in Season and Soil Conditions

    PubMed Central

    McGill, Bonnie M.; Sutton-Grier, Ariana E.; Wright, Justin P.

    2010-01-01

    Background Denitrification is an important ecosystem service that removes nitrogen (N) from N-polluted watersheds, buffering soil, stream, and river water quality from excess N by returning N to the atmosphere before it reaches lakes or oceans and leads to eutrophication. The denitrification enzyme activity (DEA) assay is widely used for measuring denitrification potential. Because DEA is a function of enzyme levels in soils, most ecologists studying denitrification have assumed that DEA is less sensitive to ambient levels of nitrate (NO3 −) and soil carbon and thus, less variable over time than field measurements. In addition, plant diversity has been shown to have strong effects on microbial communities and belowground processes and could potentially alter the functional capacity of denitrifiers. Here, we examined three questions: (1) Does DEA vary through the growing season? (2) If so, can we predict DEA variability with environmental variables? (3) Does plant functional diversity affect DEA variability? Methodology/Principal Findings The study site is a restored wetland in North Carolina, US with native wetland herbs planted in monocultures or mixes of four or eight species. We found that denitrification potentials for soils collected in July 2006 were significantly greater than for soils collected in May and late August 2006 (p<0.0001). Similarly, microbial biomass standardized DEA rates were significantly greater in July than May and August (p<0.0001). Of the soil variables measured—soil moisture, organic matter, total inorganic nitrogen, and microbial biomass—none consistently explained the pattern observed in DEA through time. There was no significant relationship between DEA and plant species richness or functional diversity. However, the seasonal variance in microbial biomass standardized DEA rates was significantly inversely related to plant species functional diversity (p<0.01). Conclusions/Significance These findings suggest that higher plant functional diversity may support a more constant level of DEA through time, buffering the ecosystem from changes in season and soil conditions. PMID:20661464

  12. Survey of Two New (Kai 1 and Kai 2) and Other Blood Groups in Dogs of North America.

    PubMed

    Euler, C C; Lee, J H; Kim, H Y; Raj, K; Mizukami, K; Giger, U

    2016-09-01

    Based upon serology, >10 canine blood group systems have been reported. We surveyed dogs for dog erythrocyte antigen (DEA) 1 and 2 new blood types (Kai 1 and Kai 2), and some samples also were screened for Dal and DEA 3, 4, and 7. Blood samples provided by owners, breeders, animal blood banks, and clinical laboratories were typed for DEA 1 by an immunochromatographic strip technique with a monoclonal antibody and analysis of band intensity. Both new antigens, the Dal and other DEAs (except DEA 7 by tube method), were assessed by a gel column method with either monoclonal or polyclonal antibodies. The same gel column method was applied for alloantibody detection. Of 503 dogs typed, 59.6% were DEA 1+ with 4% weakly, 10% moderately, and 45.6% strongly DEA 1+. Regarding Kai 1 and Kai 2, 94% were Kai 1+/Kai 2-, 5% were Kai 1-/Kai 2- and 1% were Kai 1-/Kai 2+, but none were Kai 1+/Kai 2+. There was no relationship between Kai 1/Kai 2 and other blood types tested. Plasma from DEA 1-, Kai 1-, Kai 2- dogs, or some combination of these contained no detectable alloantibodies against DEA 1 and Kai 1 or Kai, respectively. The new blood types, called Kai 1 and Kai 2, are unrelated to DEA 1, 3, 4, and 7 and Dal. Kai 1+/Kai 2- dogs were most commonly found in North America. The clinical relevance of Kai 1 and Kai 2 in canine transfusion medicine still needs to be elucidated. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  13. DC dynamic pull-in instability of a dielectric elastomer balloon: an energy-based approach

    NASA Astrophysics Data System (ADS)

    Sharma, Atul Kumar; Arora, Nitesh; Joglekar, M. M.

    2018-03-01

    This paper reports an energy-based method for the dynamic pull-in instability analysis of a spherical dielectric elastomer (DE) balloon subjected to a quasi-statically applied inflation pressure and a Heaviside step voltage across the balloon wall. The proposed technique relies on establishing the energy balance at the point of maximum stretch in an oscillation cycle, followed by the imposition of an instability condition for extracting the threshold parameters. The material models of the Ogden family are employed for describing the hyperelasticity of the balloon. The accuracy of the critical dynamic pull-in parameters is established by examining the saddle-node bifurcation in the transient response of the balloon obtained by integrating numerically the equation of motion, derived using the Euler-Lagrange equation. The parametric study brings out the effect of inflation pressure on the onset of the pull-in instability in the DE balloon. A quantitative comparison between the static and dynamic pull-in parameters at four different levels of the inflation pressure is presented. The results indicate that the dynamic pull-in instability gets triggered at electric fields that are lower than those corresponding to the static instability. The results of the present investigation can find potential use in the design and development of the balloon actuators subjected to transient loading. The method developed is versatile and can be used in the dynamic instability analysis of other conservative systems of interest.

  14. DC dynamic pull-in instability of a dielectric elastomer balloon: an energy-based approach.

    PubMed

    Sharma, Atul Kumar; Arora, Nitesh; Joglekar, M M

    2018-03-01

    This paper reports an energy-based method for the dynamic pull-in instability analysis of a spherical dielectric elastomer (DE) balloon subjected to a quasi-statically applied inflation pressure and a Heaviside step voltage across the balloon wall. The proposed technique relies on establishing the energy balance at the point of maximum stretch in an oscillation cycle, followed by the imposition of an instability condition for extracting the threshold parameters. The material models of the Ogden family are employed for describing the hyperelasticity of the balloon. The accuracy of the critical dynamic pull-in parameters is established by examining the saddle-node bifurcation in the transient response of the balloon obtained by integrating numerically the equation of motion, derived using the Euler-Lagrange equation. The parametric study brings out the effect of inflation pressure on the onset of the pull-in instability in the DE balloon. A quantitative comparison between the static and dynamic pull-in parameters at four different levels of the inflation pressure is presented. The results indicate that the dynamic pull-in instability gets triggered at electric fields that are lower than those corresponding to the static instability. The results of the present investigation can find potential use in the design and development of the balloon actuators subjected to transient loading. The method developed is versatile and can be used in the dynamic instability analysis of other conservative systems of interest.

  15. Occupational allergic contact dermatitis caused by coconut fatty acids diethanolamide.

    PubMed

    Aalto-Korte, Kristiina; Pesonen, Maria; Kuuliala, Outi; Suuronen, Katri

    2014-03-01

    Coconut fatty acids diethanolamide [cocamide diethanolamine (cocamide DEA)] is a surface-active derivative of coconut oil that is used in industrial, household and cosmetic products. Cocamide DEA contact allergy has been reported relatively seldom. To describe cocamide DEA-positive patients in an occupational dermatology clinic. We retrieved allergic reactions to cocamide DEA from test files, and studied the occupation, exposure, concomitant allergic reactions and diagnoses of the positive patients. Of the 2572 patients tested, 25 (1%) had an allergic reaction to cocamide DEA. Nineteen patients were occupational cases, and 11 worked in the metal industry. Hand cleansers constituted the main source of sensitization (n = 17). Other sources included two dishwashing liquids, one barrier cream, and one metalworking fluid. Three patients reacted to monoethanolamine and 2 to diethanolamine. Diethanolamine is an impurity of cocamide DEA, and can be found in cocamide DEA-containing products and in commercial patch test substances, which may explain some concomitant reactions. Cocamide DEA allergy is relatively common in patients with occupational hand dermatitis, and mainly derives from hand cleansers. However, exposure to detergents, metalworking fluids and barrier creams must also be taken into account. Concomitant reactions to ethanolamines are possible. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. On the design of a DEA-based device to pot entially assist lower leg disorders: an analytical and FEM investigation accounting for nonlinearities of the leg and device deformations.

    PubMed

    Pourazadi, Shahram; Ahmadi, Sadegh; Menon, Carlo

    2015-11-05

    One of the recommended treatments for disorders associated with the lower extremity venous insufficiency is the application of external mechanical compression. Compression stockings and elastic bandages are widely used for the purpose of compression therapy and are usually designed to exert a specified value or range of compression on the leg. However, the leg deforms under external compression, which can lead to undesirable variations in the amount of compression applied by the compression bandages. In this paper, the use of an active compression bandage (ACB), whose compression can be regulated through an electrical signal, is investigated. The ACB is based on the use of dielectric elastomer actuators. This paper specifically investigates, via both analytical and non-linear numerical simulations, the potential pressure the ACB can apply when the compliancy of the human leg is taken into account. The work underpins the need to account for the compressibility of the leg when designing compression garments for lower extremity venous insufficiency. A mathematical model is used to simulate the volumetric change of a calf when compressed. Suitable parameters for this calf model are selected from the literature where the calf, from ankle to knee, is divided into six different regions. An analytical electromechanical model of the ACB, which considers its compliancy as a function of its pre-stretch and electricity applied, is used to predict the ACB's behavior. Based on these calf and ACB analytical models, a simulation is performed to investigate the interaction between the ACB and the human calf with and without an electrical stimulus applied to the ACB. This simulation is validated by non-linear analysis performed using a software based on the finite element method (FEM). In all simulations, the ACB's elastomer is stretched to a value in the range between 140 and 220 % of its initial length. Using data from the literature, the human calf model, which is examined in this work, has different compliancy in its different regions. For example, when a 28.5 mmHg (3.8 kPa) of external compression is applied to the entire calf, the ankle shows a 3.7 % of volume change whereas the knee region undergoes a 2.7 % of volume change. The paper presents the actual pressure in the different regions of the calf for different values of the ACB's stretch ratio when it is either electrically activated or not activated, and when compliancy of the leg is either considered or not considered. For example, results of the performed simulation show that about 10 % variation in compression in the ankle region is expected when the ACB initially applies 6 kPa and the compressibility of the calf is first considered and then not considered. Such a variation reduces to 5 % when the initial pressure applied by the ACB reduced by half. Comparison with non-linear FEM simulations show that the analytical models used in this work can closely estimate interaction between an active compression bandage and a human calf. In addition, compliancy of the leg should not be neglected when either designing a compression band or predicting the compressive force it can exert. The methodology proposed in this work can be extended to other types of elastic compression bandages and garments for biomedical applications.

  17. The Current State of Silicone-Based Dielectric Elastomer Transducers.

    PubMed

    Madsen, Frederikke B; Daugaard, Anders E; Hvilsted, Søren; Skov, Anne L

    2016-03-01

    Silicone elastomers are promising materials for dielectric elastomer transducers (DETs) due to their superior properties such as high efficiency, reliability and fast response times. DETs consist of thin elastomer films sandwiched between compliant electrodes, and they constitute an interesting class of transducer due to their inherent lightweight and potentially large strains. For the field to progress towards industrial implementation, a leap in material development is required, specifically targeting longer lifetime and higher energy densities to provide more efficient transduction at lower driving voltages. In this review, the current state of silicone elastomers for DETs is summarised and critically discussed, including commercial elastomers, composites, polymer blends, grafted elastomers and complex network structures. For future developments in the field it is essential that all aspects of the elastomer are taken into account, namely dielectric losses, lifetime and the very often ignored polymer network integrity and stability. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Data Envelopment Analysis in the Presence of Measurement Error: Case Study from the National Database of Nursing Quality Indicators® (NDNQI®)

    PubMed Central

    Gajewski, Byron J.; Lee, Robert; Dunton, Nancy

    2012-01-01

    Data Envelopment Analysis (DEA) is the most commonly used approach for evaluating healthcare efficiency (Hollingsworth, 2008), but a long-standing concern is that DEA assumes that data are measured without error. This is quite unlikely, and DEA and other efficiency analysis techniques may yield biased efficiency estimates if it is not realized (Gajewski, Lee, Bott, Piamjariyakul and Taunton, 2009; Ruggiero, 2004). We propose to address measurement error systematically using a Bayesian method (Bayesian DEA). We will apply Bayesian DEA to data from the National Database of Nursing Quality Indicators® (NDNQI®) to estimate nursing units’ efficiency. Several external reliability studies inform the posterior distribution of the measurement error on the DEA variables. We will discuss the case of generalizing the approach to situations where an external reliability study is not feasible. PMID:23328796

  19. 75 FR 39664 - Grant of Authority For Subzone Status Materials Science Technology, Inc. (Specialty Elastomers...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-12

    ... Status Materials Science Technology, Inc. (Specialty Elastomers and Fire Retardant Chemicals) Conroe... specialty elastomer manufacturing and distribution facility of Materials Science Technology, Inc., located... and distribution of specialty elastomers and fire retardant chemicals at the facility of Materials...

  20. Fractal design concepts for stretchable electronics.

    PubMed

    Fan, Jonathan A; Yeo, Woon-Hong; Su, Yewang; Hattori, Yoshiaki; Lee, Woosik; Jung, Sung-Young; Zhang, Yihui; Liu, Zhuangjian; Cheng, Huanyu; Falgout, Leo; Bajema, Mike; Coleman, Todd; Gregoire, Dan; Larsen, Ryan J; Huang, Yonggang; Rogers, John A

    2014-01-01

    Stretchable electronics provide a foundation for applications that exceed the scope of conventional wafer and circuit board technologies due to their unique capacity to integrate with soft materials and curvilinear surfaces. The range of possibilities is predicated on the development of device architectures that simultaneously offer advanced electronic function and compliant mechanics. Here we report that thin films of hard electronic materials patterned in deterministic fractal motifs and bonded to elastomers enable unusual mechanics with important implications in stretchable device design. In particular, we demonstrate the utility of Peano, Greek cross, Vicsek and other fractal constructs to yield space-filling structures of electronic materials, including monocrystalline silicon, for electrophysiological sensors, precision monitors and actuators, and radio frequency antennas. These devices support conformal mounting on the skin and have unique properties such as invisibility under magnetic resonance imaging. The results suggest that fractal-based layouts represent important strategies for hard-soft materials integration.

  1. Electroactive polymers for sensing

    PubMed Central

    2016-01-01

    Electromechanical coupling in electroactive polymers (EAPs) has been widely applied for actuation and is also being increasingly investigated for sensing chemical and mechanical stimuli. EAPs are a unique class of materials, with low-moduli high-strain capabilities and the ability to conform to surfaces of different shapes. These features make them attractive for applications such as wearable sensors and interfacing with soft tissues. Here, we review the major types of EAPs and their sensing mechanisms. These are divided into two classes depending on the main type of charge carrier: ionic EAPs (such as conducting polymers and ionic polymer–metal composites) and electronic EAPs (such as dielectric elastomers, liquid-crystal polymers and piezoelectric polymers). This review is intended to serve as an introduction to the mechanisms of these materials and as a first step in material selection for both researchers and designers of flexible/bendable devices, biocompatible sensors or even robotic tactile sensing units. PMID:27499846

  2. Fractal design concepts for stretchable electronics

    NASA Astrophysics Data System (ADS)

    Fan, Jonathan A.; Yeo, Woon-Hong; Su, Yewang; Hattori, Yoshiaki; Lee, Woosik; Jung, Sung-Young; Zhang, Yihui; Liu, Zhuangjian; Cheng, Huanyu; Falgout, Leo; Bajema, Mike; Coleman, Todd; Gregoire, Dan; Larsen, Ryan J.; Huang, Yonggang; Rogers, John A.

    2014-02-01

    Stretchable electronics provide a foundation for applications that exceed the scope of conventional wafer and circuit board technologies due to their unique capacity to integrate with soft materials and curvilinear surfaces. The range of possibilities is predicated on the development of device architectures that simultaneously offer advanced electronic function and compliant mechanics. Here we report that thin films of hard electronic materials patterned in deterministic fractal motifs and bonded to elastomers enable unusual mechanics with important implications in stretchable device design. In particular, we demonstrate the utility of Peano, Greek cross, Vicsek and other fractal constructs to yield space-filling structures of electronic materials, including monocrystalline silicon, for electrophysiological sensors, precision monitors and actuators, and radio frequency antennas. These devices support conformal mounting on the skin and have unique properties such as invisibility under magnetic resonance imaging. The results suggest that fractal-based layouts represent important strategies for hard-soft materials integration.

  3. Performance through Deformation and Instability

    NASA Astrophysics Data System (ADS)

    Bertoldi, Katia

    2015-03-01

    Materials capable of undergoing large deformations like elastomers and gels are ubiquitous in daily life and nature. An exciting field of engineering is emerging that uses these compliant materials to design active devices, such as actuators, adaptive optical systems and self-regulating fluidics. Compliant structures may significantly change their architecture in response to diverse stimuli. When excessive deformation is applied, they may eventually become unstable. Traditionally, mechanical instabilities have been viewed as an inconvenience, with research focusing on how to avoid them. Here, I will demonstrate that these instabilities can be exploited to design materials with novel, switchable functionalities. The abrupt changes introduced into the architecture of soft materials by instabilities will be used to change their shape in a sudden, but controlled manner. Possible and exciting applications include materials with unusual properties such negative Poisson's ratio, phononic crystals with tunable low-frequency acoustic band gaps and reversible encapsulation systems.

  4. Structured light enables biomimetic swimming and versatile locomotion of photoresponsive soft microrobots

    NASA Astrophysics Data System (ADS)

    Palagi, Stefano; Mark, Andrew G.; Reigh, Shang Yik; Melde, Kai; Qiu, Tian; Zeng, Hao; Parmeggiani, Camilla; Martella, Daniele; Sanchez-Castillo, Alberto; Kapernaum, Nadia; Giesselmann, Frank; Wiersma, Diederik S.; Lauga, Eric; Fischer, Peer

    2016-06-01

    Microorganisms move in challenging environments by periodic changes in body shape. In contrast, current artificial microrobots cannot actively deform, exhibiting at best passive bending under external fields. Here, by taking advantage of the wireless, scalable and spatiotemporally selective capabilities that light allows, we show that soft microrobots consisting of photoactive liquid-crystal elastomers can be driven by structured monochromatic light to perform sophisticated biomimetic motions. We realize continuum yet selectively addressable artificial microswimmers that generate travelling-wave motions to self-propel without external forces or torques, as well as microrobots capable of versatile locomotion behaviours on demand. Both theoretical predictions and experimental results confirm that multiple gaits, mimicking either symplectic or antiplectic metachrony of ciliate protozoa, can be achieved with single microswimmers. The principle of using structured light can be extended to other applications that require microscale actuation with sophisticated spatiotemporal coordination for advanced microrobotic technologies.

  5. Magnetorheological technology for fabricating tunable solid electrolyte with enhanced conductivity and mechanical property

    NASA Astrophysics Data System (ADS)

    Peng, Gangrou; Ge, Yu; Ding, Jie; Wang, Caiyun; Wallace, Gordon G.; Li, Weihua

    2018-03-01

    Ionogels are a new class of hybrid materials where ionic liquids are immobilized by macromolecular support. The excessive amount of crosslinking polymer enhances the mechanical strength but compromises the conductivity. Here, we report an elastomeric magnetorheological (MR) ionogel with an enhanced conductivity and mechanical strength as well. Following the application of magnetic nanoparticles into an ionic liquid containing minimum cross-linking agent, the formation, thus physical properties, of MR ionogels are co-controlled by simultaneously applied UV light and external magnetic field. The application of MR ionogels as solid electrolytes in supercapacitors is also demonstrated to study electrochemical performance. This work opens a new avenue to synthesize robust ionogels with the desired conductivity and controllable mechanical properties for soft flexible electronic devices. Besides, as a new class of conductive MR elastomers, the proposed MR ionogel also possesses the potential for engineering applications, such as sensors and actuators.

  6. The effect of elastomer chain length on properties of silicone-modified polyimide adhesives

    NASA Technical Reports Server (NTRS)

    St.clair, A. K.; St.clair, T. L.; Ezzell, S.

    1981-01-01

    A series of polyimides containing silicone elastomers was synthesized in order to study the effects of the elastomer chain length on polymer properties. The elastomer with repeat units varying from n=10 to 105 was chemically reacted into the backbone of an addition polyimide oligomer via reactive aromatic amine groups. Glass transition temperatures of the elastomer and polyimide phases were observed by torsional braid analysis. The elastomer-modified polyimides were tested as adhesives for bonding titanium in order to determine their potential for aerospace applications. Adhesive lap shear tests were performed before and after aging bonded specimens at elevated temperatures.

  7. Synthesis, characterization and applications of new photocurable and biodegradable elastomers

    NASA Astrophysics Data System (ADS)

    Liu, Jinrong

    Biodegradable elastomers have attracted a great deal of interest due to their potential applications in the biomedical field. Based on the advantages of the photocuring method, a new series of photocurable and biodegradable elastomers were designed. By using step growth polymerization, polyester liquids with different composition and molecular weights were synthesized. After endcapping with methacrylate groups, these liquids can be easily fabricated into completely amorphous elastomers by UV exposure for 1 min at room conditions. The prepared elastomers presented a wide range of mechanical properties (G = 0.1-10 MPa) and a fast degradation rate (16% after 5 week incubation in PBS). The in vitro and in vivo biocompatibility studies of the elastomers indicated that these elastomers were good candidates as tissue engineering scaffolds. Meanwhile, the functionality of these photocurable elastomers was expanded by incorporation of amine containing monomers, and new elastomers were prepared to explore their potential as drug carrier systems. Monodispersed elastomeric particles were fabricated out of these amine containing materials by PRINT(TM) technology. These particles showed pH sensitive drug release of Doxorubicin (a hydrophobic drug model) and Minocycline chloride (a hydrophilic drug model), and the release profiles can be further tuned by the incorporation of a disulfide crosslinker.

  8. Evaluation of Material Models within LS-DYNA(Registered TradeMark) for a Kevlar/Epoxy Composite Honeycomb

    NASA Technical Reports Server (NTRS)

    Polanco, Michael A.; Kellas, Sotiris; Jackson, Karen

    2009-01-01

    The performance of material models to simulate a novel composite honeycomb Deployable Energy Absorber (DEA) was evaluated using the nonlinear explicit dynamic finite element code LS-DYNA(Registered TradeMark). Prototypes of the DEA concept were manufactured using a Kevlar/Epoxy composite material in which the fibers are oriented at +/-45 degrees with respect to the loading axis. The development of the DEA has included laboratory tests at subcomponent and component levels such as three-point bend testing of single hexagonal cells, dynamic crush testing of single multi-cell components, and impact testing of a full-scale fuselage section fitted with a system of DEA components onto multi-terrain environments. Due to the thin nature of the cell walls, the DEA was modeled using shell elements. In an attempt to simulate the dynamic response of the DEA, it was first represented using *MAT_LAMINATED_COMPOSITE_FABRIC, or *MAT_58, in LS-DYNA. Values for each parameter within the material model were generated such that an in-plane isotropic configuration for the DEA material was assumed. Analytical predictions showed that the load-deflection behavior of a single-cell during three-point bending was within the range of test data, but predicted the DEA crush response to be very stiff. In addition, a *MAT_PIECEWISE_LINEAR_PLASTICITY, or *MAT_24, material model in LS-DYNA was developed, which represented the Kevlar/Epoxy composite as an isotropic elastic-plastic material with input from +/-45 degrees tensile coupon data. The predicted crush response matched that of the test and localized folding patterns of the DEA were captured under compression, but the model failed to predict the single-cell three-point bending response.

  9. Pre- and Post-Transfusion Alloimmunization in Dogs Characterized by 2 Antiglobulin-Enhanced Cross-match Tests.

    PubMed

    Goy-Thollot, I; Giger, U; Boisvineau, C; Perrin, R; Guidetti, M; Chaprier, B; Barthélemy, A; Pouzot-Nevoret, C; Canard, B

    2017-09-01

    When dogs are transfused, blood compatibility testing varies widely but may include dog erythrocyte antigen (DEA) 1 typing and rarely cross-matching. Prospective study to examine naturally occurring alloantibodies against red blood cells (RBCs) and alloimmunization by transfusion using 2 antiglobulin-enhanced cross-match tests. Eighty client-owned anemic, 72 donor, and 7 control dogs. All dogs were typed for DEA 1 and some also for DEA 4 and DEA 7. Major cross-match tests with canine antiglobulin-enhanced immunochromatographic strip and gel columns were performed 26-129 days post-transfusion (median, 39 days); some dogs had an additional early evaluation 11-22 days post-transfusion (median, 16 days). Plasma from alloimmunized recipients was cross-matched against RBCs from 34 donor and control dogs. The 2 cross-match methods gave entirely concordant results. All 126 pretransfusion cross-match results for the 80 anemic recipients were compatible, but 54 dogs died or were lost to follow up. Among the 26 recipients with follow-up, 1 dog accidently received DEA 1-mismatched blood and became cross-match-incompatible post-transfusion. Eleven of the 25 DEA 1-matched recipients (44%) became incompatible against other RBC antigens. No naturally occurring anti-DEA 7 alloantibodies were detected in DEA 7- dogs. The antiglobulin-enhanced immunochromatographic strip cross-match and laboratory gel column techniques identified no naturally occurring alloantibodies against RBC antigens, but a high degree of post-transfusion alloimmunization in dogs. Cross-matching is warranted in any dog that has been previously transfused independent of initial DEA 1 typing and cross-matching results before the first transfusion event. Copyright © 2017 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  10. 21 CFR 1305.05 - Power of attorney.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... of revocation must be similar to the following format: Power of Attorney for DEA Forms 222 and Electronic Orders (Name of registrant) (Address of registrant) (DEA registration number) I, ____ (name of... most recent application for DEA registration or reregistration; the person to whom the power of...

  11. 76 FR 10391 - Agency Information Collection Activities: Proposed Collection; Comments Requested: ARCOS...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-24

    ... Collection Activities: Proposed Collection; Comments Requested: ARCOS Transaction Reporting; DEA Form 333... Enforcement Administration (DEA), will be submitting the following information collection request to the... approved collection. (2) Title of the Form/Collection: ARCOS Transaction Reporting--DEA Form 333. (3...

  12. 76 FR 24054 - Agency Information Collection Activities: Proposed Collection; Comments Requested: Registrants...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-29

    ... Collection; Comments Requested: Registrants Inventory of Drugs Surrendered; DEA Form 41 AGENCY: Department of...), Drug Enforcement Administration (DEA) will be submitting the following information collection request... component of the Department sponsoring the collection: Form number: DEA Form 41; component: Office of...

  13. 21 CFR 1305.05 - Power of attorney.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... of revocation must be similar to the following format: Power of Attorney for DEA Forms 222 and Electronic Orders (Name of registrant) (Address of registrant) (DEA registration number) I, ____ (name of... most recent application for DEA registration or reregistration; the person to whom the power of...

  14. Simulating the Response of a Composite Honeycomb Energy Absorber. Part 1; Dynamic Crushing of Components and Multi-Terrain Impacts

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Fasanella, Edwin L.; Polanco, Michael A.

    2012-01-01

    This paper describes the experimental and analytical evaluation of an externally deployable composite honeycomb structure that is designed to attenuate impact energy during helicopter crashes. The concept, designated the Deployable Energy Absorber (DEA), utilizes an expandable Kevlar (Registered Trademark) honeycomb to dissipate kinetic energy through crushing. The DEA incorporates a unique flexible hinge design that allows the honeycomb to be packaged and stowed until needed for deployment. Experimental evaluation of the DEA included dynamic crush tests of multi-cell components and vertical drop tests of a composite fuselage section, retrofitted with DEA blocks, onto multi-terrain. Finite element models of the test articles were developed and simulations were performed using the transient dynamic code, LSDYNA (Registered Trademark). In each simulation, the DEA was represented using shell elements assigned two different material properties: Mat 24, an isotropic piecewise linear plasticity model, and Mat 58, a continuum damage mechanics model used to represent laminated composite fabrics. DEA model development and test-analysis comparisons are presented.

  15. Determinants of Problematic Internet use and its Association with Disordered Eating Attitudes among Minia University Students.

    PubMed

    Kamal, Nashwa Nabil; Kamal, Nashaat Nabil

    2018-01-01

    To determine the association between problematic Internet use (PIU) and disordered eating attitudes (DEAs) and to detect the potential risk factors for PIU among University students in Minia, Egypt. A cross-sectional study was carried out among a random sample ( n = 2365) of Minia University students. PIU was assessed using The Problematic Internet Use Scale (PIUS), and the DEAs were assessed using eating attitudes test-26 questionnaire. Of the 2365 students, 424 (17.9%) had DEAs, and it was more in females than males (22.3% and 14.5%, respectively). The mean of the PIUS score also was significantly higher in males than females (120.3 ± 30.5, and 117.5 ± 30.6, respectively). A positive moderate correlation ( r = 0.48, P < 0.05) was detected between PIU and DEAs. The results of this study indicate that PIU is significantly correlated with DEAs among University students in Minia, Egypt, and further studies are needed to identify the association between DEAs and PIU.

  16. A prodrug approach to enhance azelaic acid percutaneous availability.

    PubMed

    Al-Marabeh, Sara; Khalil, Enam; Khanfar, Mohammad; Al-Bakri, Amal G; Alzweiri, Muhammed

    2017-06-01

    Azelaic acid is a dicarboxylic acid compound used in treatment of acne vulgaris. However, high concentration (ca 20%) is needed to guarantee the drug availability in the skin. The latter increases the incidence of side effects such as local irritation. The prodrug strategy to enhance azelaic acid diffusion through skin was not reported before. Thus, a lipophilic prodrug of azelaic acid (diethyl azelate [DEA]) was synthesized and investigated to improve percutaneous availability of azelaic acid, with a subsequent full physical, chemical, and biological characterization. Expectedly, DEA exhibited a significant increase in diffusion compared to azelaic acid through silicone membrane. In contrast, the diffusion results through human stratum corneum (SC) displayed weaker permeation for DEA with expected retention in the SC. Therefore, a desorption study of DEA from SC was conducted to examine the reservoir behavior in SC. Results showed an evidence of sustained release behavior of DEA from SC. Consequently, enhancement of keratolytic effect is expected due to azelaic acid produced from enzymatic conversion of DEA released from SC.

  17. 21 CFR 177.1590 - Polyester elastomers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Polyester elastomers. 177.1590 Section 177.1590... Components of Single and Repeated Use Food Contact Surfaces § 177.1590 Polyester elastomers. The polyester...) For the purpose of this section, polyester elastomers are those produced by the ester exchange...

  18. 21 CFR 177.1590 - Polyester elastomers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Polyester elastomers. 177.1590 Section 177.1590... Components of Single and Repeated Use Food Contact Surfaces § 177.1590 Polyester elastomers. The polyester...) For the purpose of this section, polyester elastomers are those produced by the ester exchange...

  19. 75 FR 54653 - Agency Information Collection Activities: Proposed Collection; Comments Requested; Application...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-08

    ..., Pseudoephedrine, and Phenylpropanolamine (DEA Form 488) ACTION: 30-Day Notice of Information Collection Under..., Pseudoephedrine, and Phenylpropanolamine (DEA Form 488). (3) Agency form number, if any, and the applicable... ephedrine, pseudoephedrine, and phenylpropanolamine during the next calendar year shall apply on DEA Form...

  20. 76 FR 29793 - Agency Information Collection Activities: Proposed Collection; Comments Requested: Controlled...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-23

    ... Declaration; DEA Form 236 ACTION: 30-Day notice of information collection under review. The Department of Justice (DOJ), Drug Enforcement Administration (DEA) will be submitting the following information... the applicable component of the Department sponsoring the collection: Form number: DEA Form 236...

  1. 76 FR 10392 - Agency Information Collection Activities: Proposed Collection; Comments Requested

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-24

    ... collection under review; Registrants' Inventory of Drugs Surrendered--DEA Form 41. The Department of Justice (DOJ), Drug Enforcement Administration (DEA), will be submitting the following information collection...--DEA Form 41. (3) Agency form number, if any, and the applicable component of the Department sponsoring...

  2. 21 CFR 1311.20 - Coordinators for CSOS digital certificate holders.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... digital certificates issued under that registrant's DEA registration. While the coordinator will be the main point of contact between one or more DEA registered locations and the CSOS Certification Authority... application that the DEA Certification Authority provides and submit the following: (1) Two copies of...

  3. 76 FR 20710 - Agency Information Collection Activities: Proposed Collection; Comments Requested: U.S. Official...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-13

    ... II Controlled Substances (Accountable Forms); Order Form Requisition DEA Form 222, 222a, Controlled... Justice (DOJ), Drug Enforcement Administration (DEA), will be submitting the following information...: DEA Forms 222 and 222a. Component: Office of Diversion Control, Drug Enforcement Administration...

  4. Soft Polydimethylsiloxane Elastomers from Architecture-driven Entanglement Free Design

    PubMed Central

    Cai, Li-Heng; Kodger, Thomas E.; Guerra, Rodrigo E.; Pegoraro, Adrian F.; Rubinstein, Michael; Weitz, David A.

    2015-01-01

    We fabricate soft, solvent-free polydimethylsiloxane (PDMS) elastomers by crosslinking bottlebrush polymers rather than linear polymers. We design the chemistry to allow commercially available linear PDMS precursors to deterministically form bottlebrush polymers, which are simultaneously crosslinked, enabling a one-step synthesis. The bottlebrush architecture prevents the formation of entanglements, resulting in elastomers with precisely controllable elastic moduli from ~1 to ~100 kPa, below the intrinsic lower limit of traditional elastomers. Moreover, the solvent-free nature of the soft PDMS elastomers enables a negligible contact adhesion compared to commercially available silicone products of similar stiffness. The exceptional combination of softness and negligible adhesiveness may greatly broaden the applications of PDMS elastomers in both industry and research. PMID:26259975

  5. Thermodynamics and instability of dielectric elastomer (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Liu, Liwu; Liu, Yanju; Leng, Jinsong; Mu, Tong

    2017-04-01

    Dielectric elastomer is a kind of typical soft active material. It can deform obviously when subjected to an external voltage. When a dielectric elastomer with randomly oriented dipoles is subject to an electric field, the dipoles will rotate to and align with the electric field. The polarization of the dielectric elastomer may be saturated when the voltage is high enough. When subjected to a mechanical force, the end-to-end distance of each polymer chain, which has a finite contour length, will approach the finite value, reaching a limiting stretch. On approaching the limiting stretch, the elastomer stiffens steeply. Here, we develop a thermodynamic constitutive model of dielectric elastomers undergoing polarization saturation and strain-stiffening, and then investigate the stability (electromechanical stability, snap-through stability) and voltage induced deformation of dielectric elastomers. Analytical solution has been obtained and it reveals the marked influence of the extension limit and polarization saturation limit on its instability. The developed thermodynamic constitutive model and simulation results would be helpful in future to the research of dielectric elastomer based high-performance transducers.

  6. Phase Behavior of Three PBX Elastomers in High-Pressure Chlorodifluoromethane

    NASA Astrophysics Data System (ADS)

    Lee, Byung-Chul

    2017-10-01

    The phase equilibrium behavior data are presented for three kinds of commercial polymer-bonded explosive (PBX) elastomers in chlorodifluoromethane (HCFC22). Levapren^{{registered }} ethylene- co-vinyl acetate (LP-EVA), HyTemp^{{registered }} alkyl acrylate copolymer (HT-ACM), and Viton^{{registered }} fluoroelastomer (VT-FE) were used as the PBX elastomers. For each elastomer + HCFC22 system, the cloud point (CP) and/or bubble point (BP) pressures were measured while varying the temperature and elastomer composition using a phase equilibrium apparatus fitted with a variable-volume view cell. The elastomers examined in this study indicated a lower critical solution temperature phase behavior in the HCFC22 solvent. LP-EVA showed the CPs at temperatures of 323 K to 343 K and at pressures of 3 MPa to 10 MPa, whereas HT-ACM showed the CPs at conditions between 338 K and 363 K and between 4 MPa and 12 MPa. For the LP-EVA and HT-ACM elastomers, the BP behavior was observed at temperatures below about 323 K. For the VT-FE + HCFC22 system, only the CP behavior was observed at temperatures between 323 K and 353 K and at pressures between 6 MPa and 21 MPa. As the elastomer composition increased, the CP pressure increased, reached a maximum value at a specific elastomer composition, and then remained almost constant.

  7. 77 FR 75414 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-20

    ... conduct non-DoDEA sponsored research studies in DoDEA schools, districts, and/ or areas. The DoDEA Form 2071.3-F1, ``Research Study Request'' collects information about the researcher, the research project, audience, timeline, and the statistical analyses that will be conducted during the proposed research study...

  8. 21 CFR 1321.01 - DEA mailing addresses.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Addresses Code of Federal Regulations Section—Topic DEA Mailing address DEA Administrator 1308.43(b)—Petition to initiate proceedings for rulemaking316.23(b)—Petition for grant of confidentiality for research..., Springfield, VA 22152-2639. 1301.18(c)—Research project controlled substance increase request. 1301.51...

  9. 21 CFR 1321.01 - DEA mailing addresses.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Addresses Code of Federal Regulations Section—Topic DEA Mailing address DEA Administrator 1308.43(b)—Petition to initiate proceedings for rulemaking316.23(b)—Petition for grant of confidentiality for research..., Springfield, VA 22152-2639. 1301.18(c)—Research project controlled substance increase request. 1301.51...

  10. 21 CFR 1321.01 - DEA mailing addresses.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Addresses Code of Federal Regulations Section—Topic DEA Mailing address DEA Administrator 1308.43(b)—Petition to initiate proceedings for rulemaking316.23(b)—Petition for grant of confidentiality for research..., Springfield, VA 22152-2639. 1301.18(c)—Research project controlled substance increase request. 1301.51...

  11. 21 CFR 1321.01 - DEA mailing addresses.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Addresses Code of Federal Regulations Section—Topic DEA Mailing address DEA Administrator 1308.43(b)—Petition to initiate proceedings for rulemaking316.23(b)—Petition for grant of confidentiality for research..., Springfield, VA 22152-2639. 1301.18(c)—Research project controlled substance increase request. 1301.51...

  12. 21 CFR 1321.01 - DEA mailing addresses.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Addresses Code of Federal Regulations Section—Topic DEA Mailing address DEA Administrator 1308.43(b)—Petition to initiate proceedings for rulemaking316.23(b)—Petition for grant of confidentiality for research..., Springfield, VA 22152-2639. 1301.18(c)—Research project controlled substance increase request. 1301.51...

  13. 76 FR 35913 - Agency Information Collection Activities: Proposed Collection; Comments Requested: U.S. Official...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-20

    ... II Controlled Substances (Accountable Forms); Order Form Requisition; DEA Form 222, 222a, Controlled... Justice (DOJ), Drug Enforcement Administration (DEA) will be submitting the following information... applicable component of the Department sponsoring the collection: Form number: DEA Forms 222 and 222a...

  14. 21 CFR 1316.81 - Handling of petitions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... Upon receipt of a petition, the custodian or DEA Asset Forfeiture System shall request an appropriate... the Administrator of the DEA, depending upon which agency seized the property. If the petition... custodian or DEA Asset Forfeiture System shall transmit the petition to the U.S. Attorney for the judicial...

  15. 77 FR 1510 - Agency Information Collection Activities: Proposed Collection; Comments Requested: Application...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-10

    ... for Registration Renewal DEA Forms 363 and 363a ACTION: 30-Day Notice of Information Collection Under Review. The Department of Justice (DOJ), Drug Enforcement Administration (DEA) will be submitting the...: Form number: DEA forms 363 and 363a. Component: Office of Diversion Control, Drug Enforcement...

  16. 76 FR 14993 - Agency Information Collection Activities: Proposed Collection; Comments Requested: Controlled...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-18

    ... Declaration-- DEA Form 236 ACTION: 60-Day Notice of Information Collection Under Review. The Department of Justice (DOJ), Drug Enforcement Administration (DEA), will be submitting the following information... Substances Import/ Export Declaration--DEA Form 236. (3) Agency form number, if any, and the applicable...

  17. 21 CFR 1311.110 - Requirements for obtaining an authentication credential-Individual practitioners eligible to use...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... within a DEA-registered institutional practitioner that grants that individual practitioner privileges at... current and in good standing. (3) Either ensure that the individual practitioner's DEA registration is... prescribe controlled substances using the institutional practitioner's DEA registration number. (4) If the...

  18. 77 FR 47666 - Agency Information Collection Activities: Proposed Collection; Comments Requested: Import/Export...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-09

    ... II Chemicals; DEA Forms 486 and 486A ACTION: 60-Day Notice of Information Collection Under Review. The Department of Justice (DOJ), Drug Enforcement Administration (DEA), will be submitting the... Justice sponsoring the collection: Form Number: DEA Forms 486 and 486A. Component: Office of Diversion...

  19. 21 CFR 1316.78 - Judicial forfeiture.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... have been received for property the jurisdictional limits in § 1316.76, the custodian or DEA Asset... furnished the newspaper advertisements required by § 1316.75. The Forfeiture Counsel of DEA shall make applications to the U.S. District Courts to place property in official DEA use. (Authority: Sec. 610, 46 Stat...

  20. 76 FR 24057 - Agency Information Collection Activities; Proposed Collection; Comments Requested; ARCOS...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-29

    ... Collection; Comments Requested; ARCOS Transaction Reporting DEA Form 333 ACTION: 30-Day Notice of Information Collection Under Review. The Department of Justice (DOJ), Drug Enforcement Administration (DEA) will be... applicable component of the Department of Justice sponsoring the collection: Form Number: DEA Form 333...

  1. 21 CFR 1311.25 - Requirements for obtaining a CSOS digital certificate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... attorney for a registrant must complete the application that the DEA Certification Authority provides and... photographic identification. (2) A current listing of DEA registrations for which the individual has authority... agrees to the statement of subscriber obligations that DEA provides. (b) The applicant must provide the...

  2. 21 CFR 1316.81 - Handling of petitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... Upon receipt of a petition, the custodian or DEA Asset Forfeiture System shall request an appropriate... the Administrator of the DEA, depending upon which agency seized the property. If the petition... custodian or DEA Asset Forfeiture System shall transmit the petition to the U.S. Attorney for the judicial...

  3. 21 CFR 1316.78 - Judicial forfeiture.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... have been received for property the jurisdictional limits in § 1316.76, the custodian or DEA Asset... furnished the newspaper advertisements required by § 1316.75. The Forfeiture Counsel of DEA shall make applications to the U.S. District Courts to place property in official DEA use. (Authority: Sec. 610, 46 Stat...

  4. 21 CFR 1311.10 - Eligibility to obtain a CSOS digital certificate.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... obtain a CSOS digital certificate from the DEA Certification Authority to sign electronic orders for controlled substances. (a) The person who signed the most recent DEA registration application or renewal... by a DEA registrant to sign orders for one or more schedules of controlled substances. ...

  5. 21 CFR 1311.125 - Requirements for establishing logical access control-Individual practitioner.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... least one of the individuals designated under paragraph (a) of this section must verify that the DEA... authentication credential to satisfy the logical access controls. The second individual must be a DEA registrant... practitioner's DEA registration expires, unless the registration has been renewed. (3) The individual...

  6. 76 FR 27352 - Agency Information Collection Activities; Proposed Collection; Comments Requested; Application...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-11

    ... Substances/Export Controlled Substances for Reexport DEA Forms 161 and 161r ACTION: 30-Day Notice of Information Collection Under Review. The Department of Justice (DOJ), Drug Enforcement Administration (DEA... sponsoring the collection: Form number: DEA Forms 161 and 161r. Component: Office of Diversion Control, Drug...

  7. 76 FR 12371 - Agency Information Collection Activities: Proposed Collection; Comments Requested: Application...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-07

    ... Controlled Substances/Export Controlled Substances for Re-Export--DEA Forms 161 and 161r ACTION: 60-Day... Administration (DEA), will submit the following information collection request to the Office of Management and...: Application for Permit to Export Controlled Substances/Export Controlled Substances for Reexport--DEA Forms...

  8. Experimental and Analytical Evaluation of a Composite Honeycomb Deployable Energy Absorber

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Kellas, Sotiris; Horta, Lucas G.; Annett, Martin S.; Polanco, Michael A.; Littell, Justin D.; Fasanella, Edwin L.

    2011-01-01

    In 2006, the NASA Subsonic Rotary Wing Aeronautics Program sponsored the experimental and analytical evaluation of an externally deployable composite honeycomb structure that is designed to attenuate impact energy during helicopter crashes. The concept, which is designated the Deployable Energy Absorber (DEA), utilizes an expandable Kevlar honeycomb structure to dissipate kinetic energy through crushing. The DEA incorporates a unique flexible hinge design that allows the honeycomb to be packaged and stowed flat until needed for deployment. A variety of deployment options such as linear, radial, and/or hybrid methods can be used. Experimental evaluation of the DEA utilized a building block approach that included material characterization testing of its constituent, Kevlar -129 fabric/epoxy, and flexural testing of single hexagonal cells. In addition, the energy attenuation capabilities of the DEA were demonstrated through multi-cell component dynamic crush tests, and vertical drop tests of a composite fuselage section, retrofitted with DEA blocks, onto concrete, water, and soft soil. During each stage of the DEA evaluation process, finite element models of the test articles were developed and simulations were performed using the explicit, nonlinear transient dynamic finite element code, LS-DYNA. This report documents the results of the experimental evaluation that was conducted to assess the energy absorption capabilities of the DEA.

  9. Enhanced Deposition by Electrostatic Field-Assistance Aggravating Diesel Exhaust Aerosol Toxicity for Human Lung Cells.

    PubMed

    Stoehr, Linda C; Madl, Pierre; Boyles, Matthew S P; Zauner, Roland; Wimmer, Monika; Wiegand, Harald; Andosch, Ancuela; Kasper, Gerhard; Pesch, Markus; Lütz-Meindl, Ursula; Himly, Martin; Duschl, Albert

    2015-07-21

    Air pollution is associated with increased risk of cardiovascular and pulmonary diseases, but conventional air quality monitoring gives no information about biological consequences. Exposing human lung cells at the air-liquid interface (ALI) to ambient aerosol could help identify acute biological responses. This study investigated electrode-assisted deposition of diesel exhaust aerosol (DEA) on human lung epithelial cells (A549) in a prototype exposure chamber. A549 cells were exposed to DEA at the ALI and under submerged conditions in different electrostatic fields (EFs) and were assessed for cell viability, membrane integrity, and IL-8 secretion. Qualitative differences of the DEA and its deposition under different EFs were characterized using scanning mobility particle sizer (SMPS) measurements, transmission electron microscopy (TEM), and electron energy loss spectroscopy (EELS). Upon exposure to DEA only, cell viability decreased and membrane impairment increased for cells at the ALI; submerged cells were unaffected. These responses were enhanced upon application of an EF, as was DEA deposition. No adverse effects were observed for filtered DEA or air only, confirming particle-induced responses. The prototype exposure chamber proved suitable for testing DEA-induced biological responses of cells at the ALI using electrode-assisted deposition and may be useful for analysis of other air pollutants.

  10. State and change of Dryland East Asia (DEA)

    Treesearch

    Jiquan Chen; Ranjeet John; Guanghua Qiao; Ochirbat Batkhishig; Wenping Yuan; Yaoqi Zhang; Changliang Shao; Zutao Ouyang; Linghao Li; Ke Guo; Ge Sun

    2013-01-01

    Dry land East Asia (DEA) refers to a region with 4.81 million square kilometers (km²) and includes Mongolia and four provinces/regions in Northern China (hereafter called "administrative units" ): Inner Mongolia, Gansu, Ningxia, and Xinjiang. This introduction chapter provides an overview of the DEA region from three perspectives: 1) geography,...

  11. 76 FR 24055 - Agency Information Collection Activities: Proposed Collection; Comments Requested: Report of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-29

    ... Collection; Comments Requested: Report of Theft or Loss of Controlled Substances; DEA Form 106 AGENCY...) Title of the Form/Collection: Report of Theft or Loss of Controlled Substances (DEA Form 106). (3... DEA-106 upon discovery of a theft or significant loss of controlled substances. This provides accurate...

  12. 77 FR 70471 - Agency Information Collection Activities: Proposed Collection; Comments Requested: Application...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-26

    ... Diversion Control Act of 1993 DEA Forms 510 & 510A ACTION: 60-Day notice. The Department of Justice (DOJ... Application for Registration under Domestic Chemical Diversion Control Act of 1993 DEA Forms 510 & 510A. (3...: Form number: DEA Forms 510 and 510a. Component: Office of Diversion Control, Drug Enforcement...

  13. 78 FR 6348 - Agency Information Collection Activities; Proposed Collection; Comments Requested: Application...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-30

    ...; DEA Forms 510 and 510a ACTION: 30-Day notice. The Department of Justice (DOJ), Drug Enforcement... collection: Form number: DEA Forms 510 and 510a. Component: Office of Diversion Control, Drug Enforcement... average respondent to respond: Total hour Respondents Burden (minutes) burden @ $50.14/hour = DEA-510...

  14. 21 CFR 1312.12 - Application for import permit.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... permit. (a) An application for a permit to import controlled substances shall be made on DEA Form 357. DEA Form 357 may be obtained from, and shall be filed with, the Import/Export Unit, Drug Enforcement Administration. See the Table of DEA Mailing Addresses in § 1321.01 of this chapter for the current mailing...

  15. 76 FR 64381 - Agency Information Collection Activities: Proposed Collection; Comments Requested: Application...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-18

    ... Registration Renewal, Affidavit for Chain Renewal--DEA Forms 225, 225a, 225b ACTION: 60-Day Notice of Information Collection Under Review. The Department of Justice (DOJ), Drug Enforcement Administration (DEA... applicable component of the Department of Justice sponsoring the collection: Form Number: DEA Forms 225, 225a...

  16. 76 FR 80406 - Agency Information Collection Activities; Proposed Collection; Comments Requested: Application...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ... Registration Renewal, Affidavit for Chain Renewal DEA Forms 225, 225a, 225b ACTION: 30-Day notice of information collection under review. The Department of Justice (DOJ), Drug Enforcement Administration (DEA... applicable component of the Department sponsoring the collection: Form number: DEA Forms 225, 225a, 225b...

  17. 21 CFR 1312.18 - Contents of import declaration.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... furnish a controlled substances import declaration on DEA Form 236 to the Import/Export Unit, Drug... distribute four copies of same as hereinafter directed in § 1312.19. See the Table of DEA Mailing Addresses in § 1321.01 of this chapter for the current mailing address. (c) DEA Form 236 must be executed in...

  18. 78 FR 48718 - Agency Information Collection Activities; Proposed Collection; Comments Requested: Application...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-09

    ... Substances for Domestic and/or Scientific Purposes (DEA Form 357) ACTION: 60-Day notice. The Department of Justice (DOJ), Drug Enforcement Administration (DEA), will be submitting the following information... Substances for Domestic and/or Scientific Purposes pursuant to 21 U.S.C. 952 (DEA Form 357). (3) Agency form...

  19. 21 CFR 1312.18 - Contents of import declaration.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... furnish a controlled substances import declaration on DEA Form 236 to the Import/Export Unit, Drug... distribute four copies of same as hereinafter directed in § 1312.19. See the Table of DEA Mailing Addresses in § 1321.01 of this chapter for the current mailing address. (c) DEA Form 236 must be executed in...

  20. 77 FR 62532 - Agency Information Collection Activities; Proposed Collection; Comments Requested: Import/Export...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-15

    ... II Chemicals; DEA Forms 486 and 486A ACTION: 30-Day Notice. The Department of Justice (DOJ), Drug Enforcement Administration (DEA) will be submitting the following information collection request to the Office... number: DEA Forms 486 and 486A. Component: Office of Diversion Control, Drug Enforcement Administration...

  1. 76 FR 66085 - Agency Information Collection Activities; Proposed Collection, Comments Requested: Application...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-25

    ... for Registration Renewal DEA Forms 363 and 363a ACTION: 60-Day Notice of Information Collection Under Review. The Department of Justice (DOJ), Drug Enforcement Administration (DEA), will be submitting the... Department of Justice sponsoring the collection: Form Number: DEA forms 363 and 363a. Component: Office of...

  2. 21 CFR 1312.12 - Application for import permit.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... permit. (a) An application for a permit to import controlled substances shall be made on DEA Form 357. DEA Form 357 may be obtained from, and shall be filed with, the Import/Export Unit, Drug Enforcement Administration. See the Table of DEA Mailing Addresses in § 1321.01 of this chapter for the current mailing...

  3. 21 CFR 1313.22 - Contents of export declaration.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... through procedures outlined in § 1313.21 and distribute three copies of DEA Form 486 as directed in § 1313.23. (c) The DEA Form 486 must be executed in triplicate and must include all the following... record. A brief written notification (this does not require a DEA Form 486) outlining the circumstances...

  4. Solubility of carbon dioxide in aqueous mixtures of alkanolamines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dawodu, O.F.; Meisen, A.

    1994-07-01

    The solubility of CO[sub 2] in water + N-methyldiethanolamine + monoethanolamine (MDEA + MEA) and water + N-methyldiethanolamine + diethanolamine (MDEA + DEA) are reported at two compositions of 3.4 M MDEA + 0.8 M MEA or DEA and 2.1 M MDEA + 2.1 M MEA or DEA at temperatures from 70 to 180 C and CO[sub 2] partial pressures from 100 to 3,850 kPa. The solubility of CO[sub 2] in the blends decreased with an increase in temperature but increased with an increase in CO[sub 2] partial pressure. At low partial pressures of CO[sub 2] and the same totalmore » amine concentration, the equilibrium CO[sub 2] loadings were in the order MDEA + MEA > MDEA + DEA > MDEA. However, at high CO[sub 2] partial pressures, the equilibrium CO[sub 2] loadings in the MDEA solutions were higher than those of the MDEA + MEA and MDEA + DEA blends of equal molar strengths due to the stoichiometric loading limitations of MEA and DEA. The nonadditivity of the equilibrium loadings for single amine systems highlights the need for independent measurements on amine blends.« less

  5. Pharmacists correcting schedule II prescriptions: DEA flip-flops continue.

    PubMed

    Abood, Richard R

    2010-12-01

    The Drug Enforcement Administration (DEA) has in recent years engaged in flip-flopping over important policy decisions. The most recent example involved whether a pharmacist can correct a written schedule II prescription upon verification with the prescriber. For several years the DEA's policy permitted this practice. Then the DEA issued a conflicting policy statement in 2007 in the preamble to the multiple schedule II prescription regulation, causing a series of subsequent contradictory statements ending with the policy that pharmacists should follow state law or policy until the Agency issues a regulation. It is doubtful that the DEA's opinion in the preamble would in itself constitute legal authority, or that the Agency would try to enforce the opinion. Nonetheless, these flip-flop opinions have confused pharmacists, caused some pharmacies to have claims rejected by third party payors, and most likely have inconvenienced patients.

  6. Dog erythrocyte antigens 1.1, 1.2, 3, 4, 7, and Dal blood typing and cross-matching by gel column technique.

    PubMed

    Kessler, Rebecca J; Reese, Jessica; Chang, Denise; Seth, Mayank; Hale, Anne S; Giger, Urs

    2010-09-01

    Testing for canine blood types other than dog erythrocyte antigen 1.1 (DEA 1.1) is controversial and complicated by reagent availability and methodology. The objectives of this study were to use available gel column technology to develop an extended blood-typing method using polyclonal reagents for DEA 1.1, 1.2, 3, 4, 7, and Dal and to assess the use of gel columns for cross-matching. Dogs (43-75) were typed for DEA 1.1, 1.2, 3, 4, 7, and Dal. METHODS included tube agglutination (Tube) using polyclonal reagents, a commercially available DEA 1.1 gel column test kit (Standard-Gel) using monoclonal reagent, and multiple gel columns (Extended-Gel) using polyclonal reagents. Blood from 10 recipient and 15 donor dogs was typed as described above and cross-matched using the gel column technique. Of 43 dogs typed for DEA 1.1, 23, 25, and 20 dogs were positive using Standard-Gel, Extended-Gel, and Tube, respectively. Typing for DEA 1.2 was not achievable with Extended-Gel. For 75 dogs typed for DEA 3, 4, and 7, concordance of Extended-Gel with Tube was 94.7%, 100%, and 84%, respectively. Dal, determined only by Extended-Gel, was positive for all dogs. Post-transfusion major cross-matches were incompatible in 10 of 14 pairings, but none were associated with demonstrable blood type incompatibilities. Gel column methodology can be adapted for use with polyclonal reagents for detecting DEA 1.1, 3, 4, 7, and Dal. Agglutination reactions are similar between Extended-Gel and Tube, but are more easily interpreted with Extended-Gel. When using gel columns for cross-matching, incompatible blood cross-matches can be detected following sensitization by transfusion, although in this study incompatibilities associated with any tested DEA or Dal antigens were not found. ©2010 American Society for Veterinary Clinical Pathology.

  7. Experimental Characterization of Nonlinear Viscoelastic and Adhesive Properties of Elastomers

    DTIC Science & Technology

    2006-07-27

    Final report to the Office of Naval Research on the Experimental Characterization of Nonlinear Viscoelastic and Adhesive Properties of Elastomers ...Experimental Characterization of Nonlinear Viscoelastic and Adhesive Properties of Elastomers 5b. GRANT NUMBER N000 14-1-0400 5c. PROGRAM ELEMENT...Experimental Characterization of Nonlinear Viscoelastic and Adhesive Properties of Elastomers Principal Investigator K. Ravi-Chandar Organization The University

  8. Effect of tulle on the mechanical properties of a maxillofacial silicone elastomer.

    PubMed

    Gunay, Yumushan; Kurtoglu, Cem; Atay, Arzu; Karayazgan, Banu; Gurbuz, Cihan Cem

    2008-11-01

    The purpose of this research was to investigate if physical properties could be improved by incorporating a tulle reinforcement material into a maxillofacial silicone elastomer. A-2186 silicone elastomer was used in this study. The study group consisted of 20 elastomer specimens incorporated with tulle and fabricated in dumbbell-shaped silicone patterns using ASTM D412 and D624 standards. The control group consisted of 20 elastomer specimens fabricated without tulle. Tensile strength, ultimate elongation, and tear strength of all specimens were measured and analyzed. Statistical analyses were performed using Mann-Whitney U test with a statistical significance at 95% confidence level. It was found that the tensile and tear strengths of tulle-incorporated maxillofacial silicone elastomer were higher than those without tulle incorporation (p < 0.05). Therefore, findings of this study suggested that tulle successfully reinforced a maxillofacial silicone elastomer by providing it with better mechanical properties and augmented strength--especially for the delicate edges of maxillofacial prostheses.

  9. Preparation and properties of adjacency crosslinked polyurethane-urea elastomers

    NASA Astrophysics Data System (ADS)

    Wu, Yuan; Cao, Yu-Yang; Wu, Shou-Peng; Li, Zai-Feng

    2012-12-01

    Adjacency crosslinked polyurethane-urea (PUU) elastomers with different crosslinking density were prepared by using hydroxyl-terminated liquid butadiene-nitrile (HTBN), toluene diisocyanate (TDI) and chain extender 3,5-dimethyl thio-toluene diamine (DMTDA) as raw materials, dicumyl peroxide (DCP) as initiator, and N,N'-m-phenylene dimaleimide (HVA-2) as the crosslinking agent. The influences of the crosslinking density and temperature on the structure and properties of such elastomers were investigated. The crosslinking density of PUU elastomer was tested by the NMR method. It is found that when the content of HVA-2 is 1.5%, the mechanical properties of polyurethane elastomer achieve optimal performance. By testing thermal performance of PUU, compared with linear PUU, the thermal stability of the elastomers has a marked improvement. With the addition of HVA-2, the loss factor tan δ decreases. FT-IR spectral studies of PUU elastomer at various temperatures were performed. From this study, heat-resistance polyurethane could be prepared, and the properties of PUU at high temperature could be improved obviously.

  10. Indentation of a stretched elastomer

    NASA Astrophysics Data System (ADS)

    Zheng, Yue; Crosby, Alfred J.; Cai, Shengqiang

    2017-10-01

    Indentation has been intensively used to characterize mechanical properties of soft materials such as elastomers, gels, and soft biological tissues. In most indentation measurements, residual stress or stretch which can be commonly found in soft materials is ignored. In this article, we aim to quantitatively understand the effects of prestretches of an elastomer on its indentation measurement. Based on surface Green's function, we analytically derive the relationship between indentation force and indentation depth for a prestretched Neo-Hookean solid with a flat-ended cylindrical indenter as well as a spherical indenter. In addition, for a non-equal biaxially stretched elastomer, we obtain the equation determining the eccentricity of the elliptical contacting area between a spherical indenter and the elastomer. Our results clearly demonstrate that the effects of prestretches of an elastomer on its indentation measurement can be significant. To validate our analytical results, we further conduct correspondent finite element simulations of indentation of prestretched elastomers. The numerical results agree well with our analytical predictions.

  11. Elastomers in mud motors for oil field applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendrik, J.

    1997-08-01

    Mud motors, the most frequently used downhole drilling motors in modern drilling systems, are described in their application and function. The elastomeric liner in a mud motor acts as a huge continuous seal. Important properties of elastomers such as chemical resistance, fatigue resistance, mechanical strength, abrasion resistance, bonding to steel and processability are discussed. Advantages and disadvantages of NBR, HNBR, FKM, TFEP, and EPDM elastomers for mud motor applications are briefly described. The importance of drilling fluids and their physical and chemical impact on motor elastomers are described. Drilling fluids are categorized in: oil based-, synthetic-, and water based. Resultsmore » of compatibility tests in the different drilling muds of the presented categories demonstrate the complexity of elastomer development. Elastomers with an equally good performance in all drilling muds are not available. Future developments and improvements are directed towards higher chemical resistance at higher service temperatures. This will be possible only with improved elastomer-to-metal bonding, increased mechanical and better dynamic properties.« less

  12. Ground-water quality in agricultural areas, Anoka Sand Plain Aquifer, east-central Minnesota, 1984-90

    USGS Publications Warehouse

    Landon, M.K.; Delin, G.N.

    1995-01-01

    Concentrations of atrazine and DEA generally were greater near the water table and decreased or were not detected in deeper wells. All of the samples in which atrazine and DEA were detected also had increased (greater than 3 mg/L) nitrate-N concentrations. However, not all samples with increased concentrations of nitrate-N had detections of atrazine or DEA. This likely indicates either that there were sources of nitrate-N other than cultivated fields on which both atrazine and nitrogen were applied or that nitrate-N reached ground water more readily than atrazine or DEA.

  13. Homogeneous graft copolymerization of styrene onto cellulose in a sulfur dioxide-diethylamine-dimethyl sulfoxide cellulose solvent

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuzuki, M.; Hagiwara, I.; Shiraishi, N.

    1980-12-01

    Graft copolymerization of styrene onto cellulose was studied in a homogeneous system (SO/sub 2/(liquid)- diethylamine (DEA)-dimethyl sulfoxide (DMSO) medium)) by ..gamma..-ray mutual irradiation technique. At the same time, homopolymerization of styrene was also examined separately in DMSO, SO/sub 2/-DMSO, DEA-DMSO, and SO/sub 2/-DEA-DMSO media by the same technique. Polymerization of styrene hardly occurs on concentrations above 10 mole SO/sub 2/-DEA complex per mole glucose unit. Maximum percent grafting was obtained in concentrations of 4 mole, after which it decreased rapidly. Total conversion and percent grafting increased with the irradiation time. The value (=0.55) of the slope of the total conversionmore » rate plotted against the dose was only a little higher than the 1/2 which was expected from normal kinetics. No retardation in homopolymerization of styrene in DMSO, SO/sub 2/-DMSO, and DEA-DMSO was evident, while the retardation of homopolymerization in the SO/sub 2/-DEA-DMSO medium was measurable. Sulfur atoms were detected in the polymers obtained in both of SO/sub 2/-DMSO and SO/sub 2/-DEA-DMSO solutions. All of the molecular weights of polymers obtained in the present experiment were very low (3.9 x 10/sup 3/-1.75 x 10/sup 4/).« less

  14. Co-extruded mechanically tunable multilayer elastomer laser

    NASA Astrophysics Data System (ADS)

    Crescimanno, Michael; Mao, Guilin; Andrews, James; Singer, Kenneth; Baer, Eric; Hiltner, Anne; Song, Hyunmin; Shakya, Bijayandra

    2011-04-01

    We have fabricated and studied mechanically tunable elastomer dye lasers constructed in large area sheets by a single-step layer-multiplying co-extrusion process. The laser films consist of a central dye-doped (Rhodamine-6G) elastomer layer between two 128-layer distributed Bragg reflector (DBR) films comprised of alternating elastomer layers with different refractive indices. The central gain layer is formed by folding the coextruded DBR film to enclose a dye-doped skin layer. By mechanically stretching the elastomer laser film from 0% to 19%, a tunable miniature laser source was obtained with ˜50 nm continuous tunability from red to green.

  15. Using AFM Force Curves to Explore Properties of Elastomers

    ERIC Educational Resources Information Center

    Ferguson, Megan A.; Kozlowski, Joseph J.

    2013-01-01

    polydimethylsiloxane (PDMS) elastomers. Force curves are used to quantify the stiffness of elastomers prepared with different base-to-curing agent ratios. Trends in observed spring constants of the…

  16. The Impact of Size and Specialisation on Universities' Department Performance: A DEA Analysis Applied to Austrian Universities

    ERIC Educational Resources Information Center

    Leitner, Karl-Heinz; Prikoszovits, Julia; Schaffhauser-Linzatti, Michaela; Stowasser, Rainer; Wagner, Karin

    2007-01-01

    This paper explores the performance efficiency of natural and technical science departments at Austrian universities using Data Envelopment Analysis (DEA). We present DEA as an alternative tool for benchmarking and ranking the assignment of decision-making units (organisations and organisational units). The method applies a multiple input and…

  17. 75 FR 54653 - Agency Information Collection Activities: Proposed Collection; Comments Requested; Application...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-08

    ... Substances for Domestic and/or Scientific Purposes Pursuant to 21 U.S.C. 952; DEA Form 357 ACTION: 30-Day... Administration (DEA) will be submitting the following information collection request to the Office of Management... U.S.C. 952 (DEA Form 357). (3) Agency form number, if any, and the applicable component of the...

  18. 21 CFR 1313.32 - Requirement of authorization for international transactions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... completed DEA Form 486 must be received by the Import/Export Unit, Drug Enforcement Administration, not later than 15 days prior to the international transaction. See the Table of DEA Mailing Addresses in § 1321.01 of this chapter for the current mailing address. (2) A copy of the DEA Form 486 may be...

  19. 21 CFR 1313.21 - Requirement of authorization to export.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... notification to the Administration as far in advance of the 15 days as possible. (b) A completed DEA Form 486... prior to the exportation. See the Table of DEA Mailing Addresses in § 1321.01 of this chapter for the current mailing address. A copy of the completed DEA Form 486 may be transmitted directly to the Drug...

  20. 78 FR 63246 - Agency Information Collection Activities; Proposed Collection; Comments Requested: Application...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ... Substances for Domestic and/or Scientific Purposes Pursuant to 21 U.S.C. 952 (DEA Form 357) ACTION: 30-Day Notice. The Department of Justice (DOJ), Drug Enforcement Administration (DEA) will be submitting the... pursuant to 21 U.S.C. 952 (DEA Form 357). (3) Agency form number, if any, and the applicable component of...

  1. 21 CFR 1303.12 - Procurement quotas.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... purposes of manufacturing, shall apply on DEA Form 250 for a procurement quota for such basic class. A... specified unit of the second basic class. DEA Form 250 shall be filed on or before April 1 of the year preceding the calendar year for which the procurement quota is being applied. Copies of DEA Form 250 may be...

  2. 28 CFR 0.103a - Delegations respecting claims against the Drug Enforcement Administration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... claims against the Drug Enforcement Administration. (a) The Administrator of DEA is authorized to... lawful activities of DEA personnel in an amount not to exceed $50,000.00 in any one case. (b) Notwithstanding the provisions of 28 CFR 0.104, the Administrator of DEA is authorized to redelegate the power and...

  3. 75 FR 38835 - Agency Information Collection Activities: Proposed collection; comments requested: Application...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-06

    ... Substances for Domestic and/or Scientific Purposes pursuant to 21 U.S.C. 952; DEA Form 357 ACTION: 60-Day... Administration (DEA), will be submitting the following information collection request to the Office of Management... Import Controlled Substances for Domestic and/or Scientific Purposes pursuant to 21 U.S.C. 952 (DEA Form...

  4. 21 CFR 1311.45 - Requirements for registrants that allow powers of attorney to obtain CSOS digital certificates...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... attorney to obtain CSOS digital certificates under their DEA registration. 1311.45 Section 1311.45 Food and... registrants that allow powers of attorney to obtain CSOS digital certificates under their DEA registration. (a) A registrant that grants power of attorney must report to the DEA Certification Authority within 6...

  5. 28 CFR 0.103a - Delegations respecting claims against the Drug Enforcement Administration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... claims against the Drug Enforcement Administration. (a) The Administrator of DEA is authorized to... lawful activities of DEA personnel in an amount not to exceed $50,000.00 in any one case. (b) Notwithstanding the provisions of 28 CFR 0.104, the Administrator of DEA is authorized to redelegate the power and...

  6. 21 CFR 1313.32 - Requirement of authorization for international transactions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... completed DEA Form 486 must be received by the Import/Export Unit, Drug Enforcement Administration, not later than 15 days prior to the international transaction. See the Table of DEA Mailing Addresses in § 1321.01 of this chapter for the current mailing address. (2) A copy of the DEA Form 486 may be...

  7. 21 CFR 1313.12 - Requirement of authorization to import.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... not later than 15 days before the transaction is to take place. (b) A completed DEA Form 486 must be... importation. See the Table of DEA Mailing Addresses in § 1321.01 of this chapter for the current mailing address. A copy of the completed DEA Form 486 may be transmitted directly to the Drug Enforcement...

  8. 21 CFR 1313.12 - Requirement of authorization to import.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... not later than 15 days before the transaction is to take place. (b) A completed DEA Form 486 must be... importation. See the Table of DEA Mailing Addresses in § 1321.01 of this chapter for the current mailing address. A copy of the completed DEA Form 486 may be transmitted directly to the Drug Enforcement...

  9. Synthesis of perfluoroalkylether triazine elastomers

    NASA Technical Reports Server (NTRS)

    Rosser, R. W.; Korus, R. A.

    1980-01-01

    A method of perfluoroalkylether triazine elastomer synthesis is described. To form an elastomer, the resultant polymer is heated in a closed oven at slightly reduced pressures for 1-day periods at 100, 130 and 150 C. A high-molecular-weight perfluoroalkylether triazine elastomer is produced that exhibits thermal and oxidative stability. This material is potentially useful in applications such as high-temperature seals, 'O' rings, and wire enamels.

  10. The RNA Helicase DeaD Stimulates ExsA Translation To Promote Expression of the Pseudomonas aeruginosa Type III Secretion System

    PubMed Central

    Intile, Peter J.; Balzer, Grant J.; Wolfgang, Matthew C.

    2015-01-01

    ABSTRACT The Pseudomonas aeruginosa type III secretion system (T3SS) is a primary virulence factor important for phagocytic avoidance, disruption of host cell signaling, and host cell cytotoxicity. ExsA is the master regulator of T3SS transcription. The expression, synthesis, and activity of ExsA is tightly regulated by both intrinsic and extrinsic factors. Intrinsic regulation consists of the well-characterized ExsECDA partner-switching cascade, while extrinsic factors include global regulators that alter exsA transcription and/or translation. To identify novel extrinsic regulators of ExsA, we conducted a transposon mutagenesis screen in the absence of intrinsic control. Transposon disruptions within gene PA2840, which encodes a homolog of the Escherichia coli RNA-helicase DeaD, significantly reduced T3SS gene expression. Recent studies indicate that E. coli DeaD can promote translation by relieving inhibitory secondary structures within target mRNAs. We report here that PA2840, renamed DeaD, stimulates ExsA synthesis at the posttranscriptional level. Genetic experiments demonstrate that the activity of an exsA translational fusion is reduced in a deaD mutant. In addition, exsA expression in trans fails to restore T3SS gene expression in a deaD mutant. We hypothesized that DeaD relaxes mRNA secondary structure to promote exsA translation and found that altering the mRNA sequence of exsA or the native exsA Shine-Dalgarno sequence relieved the requirement for DeaD in vivo. Finally, we show that purified DeaD promotes ExsA synthesis using in vitro translation assays. Together, these data reveal a novel regulatory mechanism for P. aeruginosa DeaD and add to the complexity of global regulation of T3SS. IMPORTANCE Although members of the DEAD box family of RNA helicases are appreciated for their roles in mRNA degradation and ribosome biogenesis, an additional role in gene regulation is now emerging in bacteria. By relaxing secondary structures in mRNAs, DEAD box helicases are now thought to promote translation by enhancing ribosomal recruitment. We identify here an RNA helicase that plays a critical role in promoting ExsA synthesis, the central regulator of the Pseudomonas aeruginosa type III secretion system, and provide additional evidence that DEAD box helicases directly stimulate translation of target genes. The finding that DeaD stimulates exsA translation adds to a growing list of transcriptional and posttranscriptional regulatory mechanisms that control type III gene expression. PMID:26055113

  11. Use of LS-DYNA(Registered TradeMark) to Assess the Energy Absorption Performance of a Shell-Based Kevlar(TradeMark)/Epoxy Composite Honeycomb

    NASA Technical Reports Server (NTRS)

    Polanco, Michael

    2010-01-01

    The forward and vertical impact stability of a composite honeycomb Deployable Energy Absorber (DEA) was evaluated during a full-scale crash test of an MD-500 helicopter at NASA Langley?s Landing and Impact Research Facility. The lower skin of the helicopter was retrofitted with DEA components to protect the airframe subfloor upon impact and to mitigate loads transmitted to Anthropomorphic Test Device (ATD) occupants. To facilitate the design of the DEA for this test, an analytical study was conducted using LS-DYNA(Registered TradeMark) to evaluate the performance of a shell-based DEA incorporating different angular cell orientations as well as simultaneous vertical and forward impact conditions. By conducting this study, guidance was provided in obtaining an optimum design for the DEA that would dissipate the kinetic energy of the airframe while maintaining forward and vertical impact stability.

  12. How does methylation suppress the electron-induced decomposition of 1-methyl-nitroimidazoles?

    NASA Astrophysics Data System (ADS)

    Kossoski, F.; Varella, M. T. do N.

    2017-10-01

    The efficient decomposition of nitroimidazoles (NIs) by low energy electrons is believed to underlie their radiosensitizing properties. Recent dissociative electron attachment (DEA) measurements showed that methylation at the N1 site unexpectedly suppresses the electron-induced reactions in 4(5)-NI. We report theoretical results that provide a clear interpretation of that astounding finding. Around 1.5 eV, DEA reactions into several fragments are initiated by a π* resonance, not considered in previous studies. The autoionization lifetime of this anion state, which limits the predissociation dynamics, is considerably shorter in the methylated species, thereby suppressing the DEA signals. On the other hand, the lifetime of the π* resonance located around 3 eV is less affected by methylation, which explains why DEA is still observed at these energies. Our results demonstrate how even a simple methylation can significantly modify the probabilities for DEA reactions, which may be significant for NI-based cancer therapy.

  13. Material Model Evaluation of a Composite Honeycomb Energy Absorber

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Annett, Martin S.; Fasanella, Edwin L.; Polanco, Michael A.

    2012-01-01

    A study was conducted to evaluate four different material models in predicting the dynamic crushing response of solid-element-based models of a composite honeycomb energy absorber, designated the Deployable Energy Absorber (DEA). Dynamic crush tests of three DEA components were simulated using the nonlinear, explicit transient dynamic code, LS-DYNA . In addition, a full-scale crash test of an MD-500 helicopter, retrofitted with DEA blocks, was simulated. The four material models used to represent the DEA included: *MAT_CRUSHABLE_FOAM (Mat 63), *MAT_HONEYCOMB (Mat 26), *MAT_SIMPLIFIED_RUBBER/FOAM (Mat 181), and *MAT_TRANSVERSELY_ANISOTROPIC_CRUSHABLE_FOAM (Mat 142). Test-analysis calibration metrics included simple percentage error comparisons of initial peak acceleration, sustained crush stress, and peak compaction acceleration of the DEA components. In addition, the Roadside Safety Verification and Validation Program (RSVVP) was used to assess similarities and differences between the experimental and analytical curves for the full-scale crash test.

  14. Surface Coating of Gypsum-Based Molds for Maxillofacial Prosthetic Silicone Elastomeric Material: The Surface Topography.

    PubMed

    Khalaf, Salah; Ariffin, Zaihan; Husein, Adam; Reza, Fazal

    2015-07-01

    This study aimed to compare the surface roughness of maxillofacial silicone elastomers fabricated in noncoated and coated gypsum materials. This study was also conducted to characterize the silicone elastomer specimens after surfaces were modified. A gypsum mold was coated with clear acrylic spray. The coated mold was then used to produce modified silicone experimental specimens (n = 35). The surface roughness of the modified silicone elastomers was compared with that of the control specimens, which were prepared by conventional flasking methods (n = 35). An atomic force microscope (AFM) was used for surface roughness measurement of silicone elastomer (unmodified and modified), and a scanning electron microscope (SEM) was used to evaluate the topographic conditions of coated and noncoated gypsum and silicone elastomer specimens (unmodified and modified) groups. After the gypsum molds were characterized, the fabricated silicone elastomers molded on noncoated and coated gypsum materials were evaluated further. Energy-dispersive X-ray spectroscopy (EDX) analysis of gypsum materials (noncoated and coated) and silicone elastomer specimens (unmodified and modified) was performed to evaluate the elemental changes after coating was conducted. Independent t test was used to analyze the differences in the surface roughness of unmodified and modified silicone at a significance level of p < 0.05. Roughness was significantly reduced in the silicone elastomers processed against coated gypsum materials (p < 0.001). The AFM and SEM analysis results showed evident differences in surface smoothness. EDX data further revealed the presence of the desired chemical components on the surface layer of unmodified and modified silicone elastomers. Silicone elastomers with lower surface roughness of maxillofacial prostheses can be obtained simply by coating a gypsum mold. © 2014 by the American College of Prosthodontists.

  15. Synthesis and Characterization of Ionically Crosslinked Elastomers

    DTIC Science & Technology

    2015-05-12

    SECURITY CLASSIFICATION OF: In this research poly(n-butyl acrylate) (PBA) elastomers were investigated as model systems to study the thermomechanical...subject to any oenalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO...Ionically Crosslinked Elastomers Report Title In this research poly(n-butyl acrylate) (PBA) elastomers were investigated as model systems to study the

  16. Measuring Productivity of Depot-Level Aircraft Maintenance in the Air Force Logistics Command.

    DTIC Science & Technology

    1985-09-01

    of Figures...... . . . . . . . . . . . . vi List of Tables . . . . . . . . . ............ vii Abstract . . . ...................... viii I...59 6. DEA Efficiency Values (Third DEA Model) . .... 62 7. DMU 5 Input Efficiencies ................ 64 vi F "-’ List of Tables Table Page I. DEA...Regression Results for 20 Months . . . ..... 68 V. Regression Results for 7 Quarters . . ..... 70 VI . Coefficients of Correlation (Using Quarterly Data

  17. 28 CFR 0.157 - Federal Bureau of Investigation-Drug Enforcement Administration Senior Executive Service.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... within the Federal Bureau of Investigation (FBI) and the Drug Enforcement Administration (DEA) to be known as the FBI-DEA Senior Executive Service (FBI-DEA SES). (b) Pursuant to 5 U.S.C. 3151(b)(2)(B), a... the position of Deputy Director of the FBI (which remains subject to the exclusive authority of the...

  18. 28 CFR 0.157 - Federal Bureau of Investigation-Drug Enforcement Administration Senior Executive Service.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... within the Federal Bureau of Investigation (FBI) and the Drug Enforcement Administration (DEA) to be known as the FBI-DEA Senior Executive Service (FBI-DEA SES). (b) Pursuant to 5 U.S.C. 3151(b)(2)(B), a... the position of Deputy Director of the FBI (which remains subject to the exclusive authority of the...

  19. 28 CFR 0.157 - Federal Bureau of Investigation-Drug Enforcement Administration Senior Executive Service.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... within the Federal Bureau of Investigation (FBI) and the Drug Enforcement Administration (DEA) to be known as the FBI-DEA Senior Executive Service (FBI-DEA SES). (b) Pursuant to 5 U.S.C. 3151(b)(2)(B), a... the position of Deputy Director of the FBI (which remains subject to the exclusive authority of the...

  20. 28 CFR 0.157 - Federal Bureau of Investigation-Drug Enforcement Administration Senior Executive Service.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... within the Federal Bureau of Investigation (FBI) and the Drug Enforcement Administration (DEA) to be known as the FBI-DEA Senior Executive Service (FBI-DEA SES). (b) Pursuant to 5 U.S.C. 3151(b)(2)(B), a... the position of Deputy Director of the FBI (which remains subject to the exclusive authority of the...

  1. Services Provided to Military Dependents Who Are "Mentally Gifted" in the US Department of Defense (DoDEA) Schools

    ERIC Educational Resources Information Center

    Bugaj, Stephen J.

    2013-01-01

    The US Department of Defense Education Activity (DoDEA) is a federal agency that provides educational services to military dependents in 12 foreign countries, seven states, Cuba, and Puerto Rico. Perhaps due to its restricted audience, the general public has limited knowledge of DoDEA services; moreover, empirical information about these services…

  2. 21 CFR 1303.22 - Procedure for applying for individual manufacturing quotas.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... in Schedule I or II and who desires to manufacture a quantity of such class shall apply on DEA Form 189 for a manufacturing quota for such quantity of such class. Copies of DEA Form 189 may be obtained... Administration. See the Table of DEA Mailing Addresses in § 1321.01 of this chapter for the current mailing...

  3. 21 CFR 1305.04 - Persons entitled to order Schedule I and II controlled substances.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... to order Schedule I and II controlled substances. (a) Only persons who are registered with DEA under... are registered with DEA under section 1008 of the Act (21 U.S.C. 958) to export these substances may obtain and use DEA Form 222 (order forms) or issue electronic orders for these substances. Persons not...

  4. 75 FR 32831 - Self-Regulatory Organizations; The Chicago Stock Exchange, Inc.; Notice of Filing and Immediate...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-09

    ... Change To Change Its Transaction Fees and Rebates to Exchange Participants for SRO Fees and DEA... DEA Examinations. The text of this proposed rule change is available on the Exchange's Web site at... Exchange also proposes to reduce the DEA Examinations Fee under Section J.4. of the Fee Schedule from $1000...

  5. 21 CFR 1305.06 - Persons entitled to fill orders for Schedule I and II controlled substances.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... II controlled substances, whether on a DEA Form 222 or an electronic order, may be filled only by a person registered with DEA as a manufacturer or distributor of controlled substances listed in Schedule I... DEA to dispense the substances, or to export the substances, if he/she is discontinuing business or if...

  6. 21 CFR 1305.06 - Persons entitled to fill orders for Schedule I and II controlled substances.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... II controlled substances, whether on a DEA Form 222 or an electronic order, may be filled only by a person registered with DEA as a manufacturer or distributor of controlled substances listed in Schedule I... DEA to dispense the substances, or to export the substances, if he/she is discontinuing business or if...

  7. 21 CFR 1305.04 - Persons entitled to order Schedule I and II controlled substances.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... to order Schedule I and II controlled substances. (a) Only persons who are registered with DEA under... are registered with DEA under section 1008 of the Act (21 U.S.C. 958) to export these substances may obtain and use DEA Form 222 (order forms) or issue electronic orders for these substances. Persons not...

  8. Replication of the nano-scale mold fabricated with focused ion beam

    NASA Astrophysics Data System (ADS)

    Gao, J. X.; Chan-Park, M. B.; Xie, D. Z.; Ngoi, Bryan K. A.

    2004-12-01

    Silicon mold fabricated with Focused Ion Beam lithography (FIB) was used to make silicone elastomer molds. The silicon mold is composed of lattice of holes which the diameter and depth are about 200 nm and 60 nm, respectively. The silicone elastomer material was then used to replicate slavery mold. Our study show the replication process with the elastomer mold had been performed successfully and the diameter of humps on the elastomer mold is near to that of holes on the master mold. But the height of humps in the elastomer mold is only 42 nm and it is different from the depth of holes in the master mold.

  9. Adjustable Membrane Mirrors Incorporating G-Elastomers

    NASA Technical Reports Server (NTRS)

    Chang, Zensheu; Morgan, Rhonda M.; Xu, Tian-Bing; Su, Ji; Hishinuma, Yoshikazu; Yang, Eui-Hyeok

    2008-01-01

    Lightweight, flexible, large-aperture mirrors of a type being developed for use in outer space have unimorph structures that enable precise adjustment of their surface figures. A mirror of this type includes a reflective membrane layer bonded with an electrostrictive grafted elastomer (G-elastomer) layer, plus electrodes suitably positioned with respect to these layers. By virtue of the electrostrictive effect, an electric field applied to the G-elastomer membrane induces a strain along the membrane and thus causes a deflection of the mirror surface. Utilizing this effect, the mirror surface figure can be adjusted locally by individually addressing pairs of electrodes. G-elastomers, which were developed at NASA Langley Research Center, were chosen for this development in preference to other electroactive polymers partly because they offer superior electromechanical performance. Whereas other electroactive polymers offer, variously, large strains with low moduli of elasticity or small strains with high moduli of elasticity, G-elastomers offer both large strains (as large as 4 percent) and high moduli of elasticity (about 580 MPa). In addition, G-elastomer layers can be made by standard melt pressing or room-temperature solution casting.

  10. Starch-based bio-elastomers functionalized with red beetroot natural antioxidant.

    PubMed

    Tran, Thi Nga; Athanassiou, Athanassia; Basit, Abdul; Bayer, Ilker S

    2017-02-01

    Red beetroot (RB) powder was incorporated into starch-based bio-elastomers to obtain flexible biocomposites with tunable antioxidant properties. Starch granules within the bio-elastomers affected the release of the antioxidant molecule betanin in the RB powder. The bio-elastomers were hydrophobic and resisted dissolution in water, hence the release of betanin was due to diffusion rather than polymer matrix disintegration. Hydrophobicity was maintained even after water immersion. Released betanin demonstrated highly efficient antioxidant scavenging activity against 2,2-diphenyl-1-picrylhydrazyl free radical (DPPH) and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS(+)). RB powder was also found to increase the Young's modulus of the bio-elastomers without compromising their elongation ability. Infrared spectral analysis indicated weak interactions through hydrogen bonding among starch granules, RB powder and PDMS polymer within the bio-elastomers. Hence, as a simple but intelligent biomaterial consisting of mainly edible starch and RB powder the present bio-elastomers can be used in active packaging for a variety of pharmaceutical, medical, and food applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Global effects of the DEAD-box RNA helicase DeaD (CsdA) on gene expression over a broad range of temperatures

    PubMed Central

    Vakulskas, Christopher A.; Pannuri, Archana; Cortés-Selva, Diana; Zere, Tesfalem R.; Ahmer, Brian M.; Babitzke, Paul; Romeo, Tony

    2014-01-01

    Summary In Escherichia coli, activity of the global regulatory RNA binding protein CsrA is antagonized by two noncoding sRNAs, CsrB and CsrC, which sequester it away from its lower affinity mRNA targets. Transcription of csrB/C requires the BarA-UvrY two component signal transduction system, which responds to short chain carboxylates. We show that two DEAD-box RNA helicases, DeaD and SrmB, activate csrB/C expression by different pathways. DeaD facilitates uvrY translation by counteracting the inhibitory effect of long distance basepairing between the uvrY mRNA leader and coding region, while SrmB does not affect UvrY or UvrY-phosphate levels. Contrary to the prevailing notion that these helicases act primarily at low temperatures, DeaD and SrmB activated csrB expression over a wide temperature range. High-throughput sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-CLIP) revealed in vivo interactions of DeaD with 39 mRNAs, including those of uvrY and 9 other regulatory genes. Studies on the expression of several of the identified genes revealed regulatory effects of DeaD in all cases and diverse temperature response patterns. Our findings uncover an expanded regulatory role for DeaD, which is mediated through novel mRNA targets, important global regulators and under physiological conditions that were considered to be incompatible with its function. PMID:24708042

  12. Swellable elastomers under constraint

    NASA Astrophysics Data System (ADS)

    Lou, Yucun; Robisson, Agathe; Cai, Shengqiang; Suo, Zhigang

    2012-08-01

    Swellable elastomers are widely used in the oilfield to seal the flow of downhole fluids. For example, when a crack appears in self-healing cement, the liquid in the surroundings flows into the crack and permeates into the cement, causing small particles of elastomers in the cement to swell, resulting in the blocking of the flow. Elastomers are also used as large components in swellable packers, which can swell and seal zones in the borehole. In these applications, the elastomers swell against the constraint of stiff materials, such as cement, metal, and rock. The pressure generated by the elastomer against the confinement is a key factor that affects the quality of the sealing. This work develops a systematic approach to predict the magnitude of the pressure in such components. Experiments are carried out to determine the stress-stretch curve, free swelling ratio, and confining pressure. The data are interpreted in terms of a modified Flory-Rehner model.

  13. Localised strain sensing of dielectric elastomers in a stretchable soft-touch musical keyboard

    NASA Astrophysics Data System (ADS)

    Xu, Daniel; Tairych, Andreas; Anderson, Iain A.

    2015-04-01

    We present a new sensing method that can measure the strain at different locations in a dielectric elastomer. The method uses multiple sensing frequencies to target different regions of the same dielectric elastomer to simultaneously detect position and pressure using only a single pair of connections. The dielectric elastomer is modelled as an RC transmission line and its internal voltage and current distribution used to determine localised capacitance changes resulting from contact and pressure. This sensing method greatly simplifies high degree of freedom systems and does not require any modifications to the dielectric elastomer or sensing hardware. It is demonstrated on a multi-touch musical keyboard made from a single low cost carbon-based dielectric elastomer with 4 distinct musical tones mapped along a length of 0.1m. Loudness was controlled by the amount of pressure applied to each of these 4 positions.

  14. Sustainable Elastomers from Renewable Biomass.

    PubMed

    Wang, Zhongkai; Yuan, Liang; Tang, Chuanbing

    2017-07-18

    Sustainable elastomers have undergone explosive growth in recent years, partly due to the resurgence of biobased materials prepared from renewable natural resources. However, mounting challenges still prevail: How can the chemical compositions and macromolecular architectures of sustainable polymers be controlled and broadened? How can their processability and recyclability be enabled? How can they compete with petroleum-based counterparts in both cost and performance? Molecular-biomass-derived polymers, such as polymyrcene, polymenthide, and poly(ε-decalactone), have been employed for constructing thermoplastic elastomers (TPEs). Plant oils are widely used for fabricating thermoset elastomers. We use abundant biomass, such as plant oils, cellulose, rosin acids, and lignin, to develop elastomers covering a wide range of structure-property relationships in the hope of delivering better performance. In this Account, recent progress in preparing monomers and TPEs from biomass is first reviewed. ABA triblock copolymer TPEs were obtained with a soft middle block containing a soybean-oil-based monomer and hard outer blocks containing styrene. In addition, a combination of biobased monomers from rosin acids and soybean oil was formulated to prepare triblock copolymer TPEs. Together with the above-mentioned approaches based on block copolymers, multigraft copolymers with a soft backbone and rigid side chains are recognized as the first-generation and second-generation TPEs, respectively. It has been recently demonstrated that multigraft copolymers with a rigid backbone and elastic side chains can also be used as a novel architecture of TPEs. Natural polymers, such as cellulose and lignin, are utilized as a stiff, macromolecular backbone. Cellulose/lignin graft copolymers with side chains containing a copolymer of methyl methacrylate and butyl acrylate exhibited excellent elastic properties. Cellulose graft copolymers with biomass-derived polymers as side chains were further explored to enhance the overall sustainability. Isoprene polymers were grafted from a cellulosic backbone to afford Cell-g-polyisoprene copolymers. Via cross-linking of these graft copolymers, human-skin-mimic elastomers and high resilient elastomers with a well-defined network structure were achieved. The mechanical properties of these resilient elastomers could be finely controlled by tuning the cellulose content. As isoprene can be produced by engineering of microorganisms, these elastomers could be a renewable alternative to petroleum products. In summary, triblock copolymer and graft copolymer TPEs with biomass components, skin-mimic elastomers, high resilient biobased elastomers, and engineering of macromolecular architectures for elastomers are discussed. These approaches and design provide us knowledge on the potential to make sustainable elastomers for various applications to compete with petroleum-based counterparts.

  15. High-Aspect-Ratio Ridge Structures Induced by Plastic Deformation as a Novel Microfabrication Technique.

    PubMed

    Takei, Atsushi; Jin, Lihua; Fujita, Hiroyuki; Takei, A; Fujita, H; Jin, Lihua

    2016-09-14

    Wrinkles on thin film/elastomer bilayer systems provide functional surfaces. The aspect ratio of these wrinkles is critical to their functionality. Much effort has been dedicated to creating high-aspect-ratio structures on the surface of bilayer systems. A highly prestretched elastomer attached to a thin film has recently been shown to form a high-aspect-ratio structure, called a ridge structure, due to a large strain induced in the elastomer. However, the prestretch requirements of the elastomer during thin film attachment are not compatible with conventional thin film deposition methods, such as spin coating, dip coating, and chemical vapor deposition (CVD). Thus, the fabrication method is complex, and ridge structure formation is limited to planar surfaces. This paper presents a new and simple method for constructing ridge structures on a nonplanar surface using a plastic thin film/elastomer bilayer system. A plastic thin film is attached to a stress-free elastomer, and the resulting bilayer system is highly stretched one- or two-dimensionally. Upon the release of the stretch load, the deformation of the elastomer is reversible, while the plastically deformed thin film stays elongated. The combination of the length mismatch and the large strain induced in the elastomer generates ridge structures. The morphology of the plastic thin film/elastomer bilayer system is experimentally studied by varying the physical parameters, and the functionality and the applicability to a nonplanar surface are demonstrated. Finally, we simulate the effect of plasticity on morphology. This study presents a new technique for generating microscale high-aspect-ratio structures and its potential for functional surfaces.

  16. Electrostrictive Graft Elastomers

    NASA Technical Reports Server (NTRS)

    Su, Ji (Inventor); Harrison, Joycelyn S. (Inventor); St.Clair, Terry L. (Inventor)

    2003-01-01

    An electrostrictive graft elastomer has a backbone molecule which is a non-crystallizable, flexible macromolecular chain and a grafted polymer forming polar graft moieties with backbone molecules. The polar graft moieties have been rotated by an applied electric field, e.g., into substantial polar alignment. The rotation is sustained until the electric field is removed. In another embodiment, a process for producing strain in an elastomer includes: (a) providing a graft elastomer having a backbone molecule which is a non-crystallizable, flexible macromolecular chain and a grafted polymer forming polar graft moieties with backbone molecules; and (b) applying an electric field to the graft elastomer to rotate the polar graft moieties, e.g., into substantial polar alignment.

  17. Effects of Carbon Black and the Presence of Static Mechanical Strain on the Swelling of Elastomers in Solvent

    PubMed Central

    Ch’ng, Shiau Ying; Andriyana, Andri; Tee, Yun Lu; Verron, Erwan

    2015-01-01

    The effect of carbon black on the mechanical properties of elastomers is of great interest, because the filler is one of principal ingredients for the manufacturing of rubber products. While fillers can be used to enhance the properties of elastomers, including stress-free swelling resistance in solvent, it is widely known that the introduction of fillers yields significant inelastic responses of elastomers under cyclic mechanical loading, such as stress-softening, hysteresis and permanent set. When a filled elastomer is under mechanical deformation, the filler acts as a strain amplifier in the rubber matrix. Since the matrix local strain has a profound effect on the material’s ability to absorb solvent, the study of the effect of carbon black content on the swelling characteristics of elastomeric components exposed to solvent in the presence of mechanical deformation is a prerequisite for durability analysis. The aim of this study is to investigate the effect of carbon black content on the swelling of elastomers in solvent in the presence of static mechanical strains: simple extension and simple torsion. Three different types of elastomers are considered: unfilled, filled with 33 phr (parts per hundred) and 66 phr of carbon black. The peculiar role of carbon black on the swelling characteristics of elastomers in solvent in the presence of mechanical strain is explored. PMID:28787977

  18. Assessing the Queuing Process Using Data Envelopment Analysis: an Application in Health Centres.

    PubMed

    Safdar, Komal A; Emrouznejad, Ali; Dey, Prasanta K

    2016-01-01

    Queuing is one of the very important criteria for assessing the performance and efficiency of any service industry, including healthcare. Data Envelopment Analysis (DEA) is one of the most widely-used techniques for performance measurement in healthcare. However, no queue management application has been reported in the health-related DEA literature. Most of the studies regarding patient flow systems had the objective of improving an already existing Appointment System. The current study presents a novel application of DEA for assessing the queuing process at an Outpatients' department of a large public hospital in a developing country where appointment systems do not exist. The main aim of the current study is to demonstrate the usefulness of DEA modelling in the evaluation of a queue system. The patient flow pathway considered for this study consists of two stages; consultation with a doctor and pharmacy. The DEA results indicated that waiting times and other related queuing variables included need considerable minimisation at both stages.

  19. Measuring and Benchmarking Technical Efficiency of Public Hospitals in Tianjin, China

    PubMed Central

    Li, Hao; Dong, Siping

    2015-01-01

    China has long been stuck in applying traditional data envelopment analysis (DEA) models to measure technical efficiency of public hospitals without bias correction of efficiency scores. In this article, we have introduced the Bootstrap-DEA approach from the international literature to analyze the technical efficiency of public hospitals in Tianjin (China) and tried to improve the application of this method for benchmarking and inter-organizational learning. It is found that the bias corrected efficiency scores of Bootstrap-DEA differ significantly from those of the traditional Banker, Charnes, and Cooper (BCC) model, which means that Chinese researchers need to update their DEA models for more scientific calculation of hospital efficiency scores. Our research has helped shorten the gap between China and the international world in relative efficiency measurement and improvement of hospitals. It is suggested that Bootstrap-DEA be widely applied into afterward research to measure relative efficiency and productivity of Chinese hospitals so as to better serve for efficiency improvement and related decision making. PMID:26396090

  20. Allergic contact dermatitis caused by cocamide diethanolamine.

    PubMed

    Mertens, Sarien; Gilissen, Liesbeth; Goossens, An

    2016-07-01

    Cocamide DEA (CAS no. 68603-42-9) is a non-ionic surfactant frequently used in industrial, household and cosmetic products for its foam-producing and stabilizing properties. Contact allergy has been reported quite rarely in the past, but recently several cases were published, raising the question of an increase in the frequency of allergic dermatitis caused by this substance. To describe cocamide DEA-allergic patients and their characteristics observed in our department. Medical charts of patients, investigated between 1990 and December 2015, were retrospectively reviewed for cocamide DEA-allergy. Demographic characteristics and patch test results were analyzed. Out of 1767 patients tested, 18 (1%) presented with an allergic reaction to cocamide DEA, all of them at least with hand dermatitis. Twelve patients had (past) occupational exposure to cocamide DEA. Out of the 18 patients, 15 showed (most often) multiple positive reactions and 7 also suffered from atopic dermatitis. Cocamide DEA allergy is relatively rare, despite frequent use, and an increasing trend was not observed. Reactions to cocamidopropyl betaine and cocamide MEA only occurred in some of the subjects tested. Shampoos and liquid hand soaps/cleansers dominated as sources of exposure. All patients presented with an impaired skin barrier due to atopic and/or previous contact dermatitis. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

Top